

Learning Angular
Fourth Edition

A no-nonsense guide to building web applications
with Angular

Aristeidis Bampakos
Pablo Deeleman

BIRMINGHAM—MUMBAI

Learning Angular
Fourth Edition

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Senior Publishing Product Manager: Suman Sen
Acquisition Editor – Peer Reviews: Gaurav Gavas
Project Editor: Meenakshi Vijay
Content Development Editor: Shazeen Iqbal
Copy Editor: Safis Editing
Technical Editor: Srishty Bhardwaj
Proofreader: Safis Editing
Indexer: Hemangini Bari
Presentation Designer: Rajesh Shirsath
Developer Relations Marketing Executive: Priyadarshini Sharma

First published: April 2016
Second edition: December 2017
Third edition: September 2020
Fourth edition: February 2023

Production reference: 2230223

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80324-060-2

www.packt.com

http://www.packt.com

Contributors

About the authors
Aristeidis Bampakos has over 20 years of experience in the software development industry.

He is a Greek national who currently works in Athens as a Web Development Team Leader at

Plex-Earth, specializing in the development of web applications using Angular.

He studied Computer Technology at the University of Portsmouth and in 2002 he was awarded

the degree of Bachelor of Engineering with Second Class Honours (Upper Division). In 2004, he

completed his MSc in Telecommunications Technology at Aston University. His career started

as a C# .NET developer, but he saw the potential of web development and moved toward it in

early 2011. He began working with AngularJS, and Angular later on, and in 2020 he was officially

recognized as a Google Developer Expert (GDE) for Angular.

Aristeidis is passionate about helping the developer community learn and grow. His love for teach-

ing has led him to become an award-winning author of 2 successful book titles about Angular

(Learning Angular – 3rd edition and Angular Projects – 2nd edition), as well as an Angular Senior

Tech Instructor at Code.Hub, where he nurtures aspiring Angular developers and professionals.

In his spare time, he enjoys being an occasional speaker in meetups, conferences, and podcasts,

where he talks about Angular. He is currently leading the effort of making Angular accessible to

the Greek development community by maintaining the open-source Greek translation of the

official Angular documentation.

To my pet bunny Elpida (Hope), my writing companion in this authoring journey and my best friend during

the last 10 years. R.I.P.

Pablo Deeleman has contributed to the dev community with several books on Angular since

2016, all published by Packt Publishing.

With sound expertise in front-end libraries and frameworks such as Backbone.js, Knockout.js,

VueJS, React, Svelte, AngularJs, and Angular, Pablo Deeleman has developed his career since

1998 as a JavaScript engineer across a broad range of successful companies, such as Gameloft,

Red Hat or Dynatrace, just to name a few. He currently works as Staff Software Engineer at Twilio,

the global leader in customer engagement communications.

I’d like to thank my team at Twilio and the awesome bunch of passionate individuals that support and

challenge me to become a better professional each day: Gemma Gelida, David Luna, Natalia Venditto, Adrián

González, Rafael Marfil, Andreia Leite, and many more. I’d like to personally thank Aristeidis Bampakos for

driving this editorial franchise to an unparalleled level of excellence.

About the reviewers
Jurgen Van de Moere is a front-end architect based in Belgium.

He began his career in 1999 and worked for more than a decade as a web developer and system

engineer for large companies across Europe. In 2012, driven by his passion for web technologies,

Jurgen decided to specialise in JavaScript and Angular.

Since then, he has helped many leading businesses succeed in building secure, maintainable,

testable, and scalable Angular applications. In his mission to continually share his knowledge

with others, Jurgen serves as a private advisor and mentor to world-renowned businesses and

developers around the world.

You won’t find Jurgen in the spotlight very often as he loves to spend time with his family, reading

books, and writing articles. His writings impact thousands of developers a day and are regularly

featured by some of the leading publishers in the tech industry.

Jurgen is actively involved in growing the Belgian Angular community as co-organizer of NG-BE,

Belgium’s first ever Angular conference. In 2016, he was awarded through the Google GDE pro-

gram as the first ever Google Developer Expert in Belgium for web technologies.

You can reach Jurgen at hire@jvandemo.com, follow him on Twitter at https://twitter.com/

jvandemo or read his articles on https://jvandemo.com.

Santosh Yadav works as a Senior Software Engineer at Celonis and is a GDE for Angular,

GitHub Star, and an Auth0 Ambassador. He loves contributing to Angular and its ecosystem. He

is co-founder of This is Learning. He is also the author of the Ngx-Builders package and part of

the NestJsAddOns core Team. He is also running This is Tech Talks talk show, where he invites in-

dustry experts to discuss different technologies. You can find him on Twitter (@SantoshYadavDev).

I would like to dedicate this book to my wife, Rekha, and daughter, Hiya. Also, I would like to thank Lars

Gyrup, Brink Nielsen, Tanay Pant, Anuj Tripathi, Sajith Karad, and my teammates at Celonis for all the

help they provided through the year and for keeping me motivated.

mailto:hire@jvandemo.com
https://twitter.com/jvandemo
https://twitter.com/jvandemo
https://jvandemo.com

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

Table of Contents

Preface � xix

Chapter 1: Building Your First Angular Application � 1

Technical requirements ��� 2

What is Angular? �� 2

Why choose Angular? ��� 3

Cross-platform • 3

Tooling • 4

Onboarding • 4

Who uses Angular? • 4

Setting up the Angular CLI workspace ��� 5

Prerequisites • 5

Node.js • 5

npm • 6

Git • 6

Installing the Angular CLI • 6

CLI commands • 7

Creating a new project • 8

Structure of an Angular application �� 11

Components • 12

Modules • 12

Template syntax • 13

Table of Contentsviii

VS Code tooling ��� 15

Angular Language Service • 15

Angular Snippets • 17

Nx Console • 17

Material icon theme • 18

EditorConfig • 18

Angular Evergreen • 18

Rename Angular Component • 20

Summary ��� 20

Chapter 2: Introduction to TypeScript � 23

The history of TypeScript ��� 24

The benefits of TypeScript • 24

Introducing TypeScript resources • 25

The official website • 25

The official wiki documentation • 25

Types ��� 26

String • 26

Declaring variables • 27

The let keyword • 27

The const keyword • 27

Number • 28

Boolean • 28

Array • 28

Dynamic typing with no type • 29

Custom types • 29

Enum • 30

Void • 31

Type inference • 31

Functions, lambdas, and execution flow ��� 31

Annotating types in functions • 31

Table of Contents ix

Function parameters in TypeScript • 32

Optional parameters • 32

Default parameters • 33

Rest parameters • 34

Function overloading • 34

Arrow functions • 35

Common TypeScript features �� 36

Spread parameter • 36

Template strings • 37

Generics • 37

Optional chaining • 39

Nullish coalescing • 40

Classes, interfaces, and inheritance ��� 40

Anatomy of a class • 40

Constructor parameters with accessors • 42

Interfaces • 43

Class inheritance • 47

Decorators ��� 48

Class decorators • 48

Extending a class decorator • 49

Property decorators • 50

Method decorators • 52

Parameter decorator • 53

Advanced types �� 54

Partial • 54

Record • 54

Union • 55

Modules ��� 55

Summary ��� 56

Table of Contentsx

Chapter 3: Organizing Application into Modules � 59

Technical requirements ��� 59

Introducing Angular modules �� 60

Creating our first module ��� 62

Group application features into modules ��� 63

Add a module in the main module • 64

Exposing feature modules • 65

Organizing modules by type • 68

Leveraging Angular built-in modules �� 69

Summary �� 70

Chapter 4: Enabling User Experience with Components � 71

Technical requirements ��� 72

Creating our first component ��� 72

The structure of an Angular component • 73

Registering components with modules • 74

Creating standalone components • 75

Interacting with the template �� 77

Loading the component template • 77

Displaying data from the component class • 79

Styling the component • 80

Getting data from the template • 82

Component inter-communication ��� 83

Passing data using an input binding • 83

Listening for events using an output binding • 85

Emitting data through custom events • 88

Local reference variables in templates • 89

Encapsulating CSS styling �� 90

Deciding on a change detection strategy �� 92

Introducing the component lifecycle �� 93

Table of Contents xi

Performing component initialization • 94

Cleaning up component resources • 96

Detecting input binding changes • 97

Accessing child components • 98

Summary ��� 100

Chapter 5: Enrich Applications Using Pipes and Directives � 103

Technical requirements ��� 103

Introducing directives �� 104

Transforming elements using directives ��� 104

Displaying data conditionally • 104

Iterating through data • 107

Switching through templates • 109

Manipulating data with pipes ��� 110

Building custom pipes �� 116

Sorting data using pipes • 117

Change detection with pipes • 121

Creating standalone pipes • 122

Building custom directives ��� 123

Displaying dynamic data • 123

Property binding and responding to events • 126

Creating components dynamically • 128

Toggling templates dynamically • 131

Creating standalone directives • 133

Summary �� 134

Chapter 6: Managing Complex Tasks with Services � 135

Technical requirements �� 136

Introducing Angular DI ��� 136

Creating our first Angular service ��� 137

Providing dependencies across the application ��� 140

Table of Contentsxii

Injecting services in the component tree �� 143

Sharing dependencies through components • 143

Root and component injectors • 146

Sandboxing components with multiple instances • 147

Restricting DI down the component tree • 152

Restricting provider lookup • 152

Overriding providers in the injector hierarchy �� 154

Overriding service implementation • 155

Providing services conditionally • 157

Transforming objects in Angular services • 159

Summary �� 161

Chapter 7: Being Reactive Using Observables and RxJS � 163

Technical requirements �� 163

Strategies for handling asynchronous information �� 164

Shifting from callback hell to promises • 164

Observables in a nutshell • 167

Reactive programming in Angular ��� 169

The RxJS library �� 173

Creating observables • 173

Transforming observables • 174

Higher-order observables • 176

Subscribing to observables �� 180

Unsubscribing from observables �� 182

Destroying a component • 183

Using the async pipe • 185

Summary �� 187

Chapter 8: Communicating with Data Services over HTTP � 189

Technical requirements ��� 189

Communicating data over HTTP �� 190

Table of Contents xiii

Introducing the Angular HTTP client �� 191

Setting up a backend API �� 193

Handling CRUD data in Angular �� 194

Fetching data through HTTP • 196

Modifying data through HTTP • 202

Adding new products • 203

Updating product price • 207

Removing a product • 210

Authentication and authorization with HTTP �� 213

Authenticating with backend API • 213

Authorizing user access • 215

Authorizing HTTP requests • 218

Summary ��� 222

Chapter 9: Navigating through Application with Routing � 223

Technical requirements ��� 224

Introducing the Angular router �� 224

Specifying a base path • 226

Importing the router module • 227

Configuring the router • 227

Rendering components • 228

Creating an Angular application with routing ��� 229

Scaffolding an Angular application with routing • 229

Configuring routing in our application • 231

Creating feature routing modules �� 233

Handling unknown route paths • 238

Setting a default path • 240

Navigating imperatively to a route • 241

Decorating router links with styling • 242

Passing parameters to routes �� 243

Building a detail page using route parameters • 243

Table of Contentsxiv

Reusing components using child routes • 247

Taking a snapshot of route parameters • 249

Filtering data using query parameters • 250

Enhancing navigation with advanced features �� 250

Controlling route access • 251

Preventing navigation away from a route • 253

Prefetching route data • 255

Lazy-loading routes • 257

Protecting a lazy-loaded module • 260

Lazy loading components • 261

Summary ��� 263

Chapter 10: Collecting User Data with Forms � 265

Technical requirements ��� 266

Introducing forms to web apps �� 266

Data binding with template-driven forms ��� 267

Using reactive patterns in Angular forms �� 271

Interacting with reactive forms • 272

Providing form status feedback • 276

Creating nesting form hierarchies • 278

Creating elegant reactive forms • 280

Validating controls in a reactive way �� 281

Building a custom validator • 284

Modifying forms dynamically �� 285

Manipulating form data ��� 290

Watching state changes and being reactive ��� 291

Summary ��� 293

Chapter 11: Introduction to Angular Material � 295

Technical requirements ��� 295

Introducing Material Design �� 296

Table of Contents xv

Introducing Angular Material �� 297

Adding Angular Material to your application • 297

Adding Angular Material controls • 299

Theming Angular Material components • 300

Adding core UI controls �� 301

Buttons • 301

Form controls • 303

Input • 304

Autocomplete • 306

Select • 310

Checkbox • 311

Date picker • 312

Navigation • 313

Layout • 316

List • 316

Grid list • 317

Popups and modal dialogs • 318

Creating a simple dialog • 318

Configuring a dialog • 322

Getting data back from a dialog • 324

Data table • 325

Table • 325

Sort table • 327

Pagination • 329

Integration controls • 330

Introducing the Angular CDK �� 333

Clipboard • 333

Drag and drop • 334

Summary ��� 335

Table of Contentsxvi

Chapter 12: Unit Test an Angular Application � 337

Technical requirements ��� 337

Why do we need tests? ��� 338

The anatomy of a unit test ��� 338

Introducing unit tests in Angular �� 341

Testing components ��� 342

Testing with dependencies • 346

Replacing the dependency with a stub • 347

Spying on the dependency method • 350

Testing asynchronous services • 352

Testing with inputs and outputs • 355

Testing with a component harness • 357

Testing services �� 360

Testing a synchronous method • 360

Testing an asynchronous method • 361

Testing services with dependencies • 361

Testing pipes �� 363

Testing directives ��� 364

Testing forms �� 366

Summary ��� 369

Chapter 13: Bringing an Application to Production � 371

Technical requirements ��� 372

Building an Angular application �� 372

Building for different environments • 374

Building for the window object • 376

Limiting the application bundle size �� 377

Optimizing the application bundle �� 378

Deploying an Angular application ��� 382

Summary ��� 383

Table of Contents xvii

Chapter 14: Handling Errors and Application Debugging � 385

Technical requirements ��� 385

Handling application errors ��� 386

Catching HTTP request errors • 386

Creating a global error handler • 389

Responding to 401 Unauthorized error • 390

Demystifying framework errors ��� 392

Debugging Angular applications ��� 395

Using the Console API • 395

Adding breakpoints in source code • 395

Using Angular DevTools • 397

Summary ��� 401

Other Books You May Enjoy � 405

Index � 409

Preface

As Angular continues to reign as one of the top JavaScript frameworks, more developers are seeking

out the best way to get started with this extraordinarily flexible and secure framework. Learning

Angular, now in its fourth edition, will show you how you can use it to achieve cross-platform high

performance with the latest web techniques, extensive integration with modern web standards,

and integrated development environments (IDEs).

The book is especially useful for those new to Angular and will help you to get to grips with the

bare bones of the framework needed to start developing Angular apps. You’ll learn how to de-

velop apps by harnessing the power of the Angular command-line interface (CLI), write unit

tests, style your apps by following the Material Design guidelines, and finally, deploy them to a

hosting provider.

Updated for Angular 15, this new edition covers lots of new features and practices that address

the current frontend web development challenges. You’ll find a new dedicated chapter on observ-

ables and RxJS, more on error handling and debugging in Angular, and new real-life examples.

By the end of this book, you’ll not only be able to create Angular applications with TypeScript

from scratch, but also enhance your coding skills with best practices.

Who this book is for
This book is for JavaScript and full-stack developers dipping their feet for the first time in to the

world of frontend development with Angular, as well as those migrating to the Angular frame-

work to build professional web applications. You’ll need prior exposure to JavaScript and a solid

foundation in the basics of web programming before you get started with this book.

What this book covers
Chapter 1, Building Your First Angular Application, shows how to set up the development environ-

ment by installing the Angular CLI and explains how to use schematics (commands) to automate

tasks such as code generation and application building.

Prefacexx

We will create a new simple application using the Angular CLI and build it. We will also learn

about some of the most useful Angular tools that are available on Visual Studio Code.

Chapter 2, Introduction to TypeScript, explains what is TypeScript, the language that is used when

creating Angular applications, and covers the most basic building blocks, such as types, template

strings, lambdas, and classes. We will learn how to use decorators that are widely used in Angular

classes and modules. We will take a look at some of the advanced types and the latest features

of the language.

Chapter 3, Organizing Application into Modules, explains what modules are in Angular and how

they differ from modules in TypeScript. We will learn about the most common modules that we

use in Angular and discuss the purposes of the different types of modules.

Chapter 4, Enabling User Experience with Components, explains how a component is connected to

its template and how to use a TypeScript decorator to configure it. We will take a look at how

components communicate with each other by passing data from one component to another

using input and output bindings and learn about the different strategies for detecting changes

in a component. We will also learn how to create standalone components.

Chapter 5, Enrich Applications Using Pipes and Directives, covers the built-in directives and pipes. We

will build our own custom pipe and directive and use them in a sample application that demon-

strates their use. We will also learn the difference between attribute and structural directives.

Chapter 6, Managing Complex Tasks with Services, explains how the dependency injection mecha-

nism works, how to create and use services in components, and how we can create providers in

an Angular application.

Chapter 7, Being Reactive Using Observables and RxJS, discusses reactive programming and how

we can use observables in the context of an Angular application through the RxJS library. We

will also take a tour of all the common RxJS operators that are used in an Angular application.

Chapter 8, Communicating with Data Services over HTTP, explains how to interact with a remote

backend API and perform CRUD operations with data in Angular. We will also investigate how

to set additional headers to an HTTP request and intercept such a request to act before sending

the request or upon completion.

Preface xxi

Chapter 9, Navigate through Application with Routing, explains how to use the Angular router in

order to activate different parts of an Angular application. We will find out how to pass parameters

through the URL and how we can break an application into routing modules that can be laz ily

loaded. We will then learn how to guard against our components and how to prepare data prior

to initialization of the component.

Chapter 10, Collecting User Data with Forms, explains how to use Angular reactive forms in order

to integrate HTML forms and how to set them up using FormGroup and FormControl. We will

track the interaction of the user in the form and validate input fields.

Chapter 11, Introduction to Angular Material, discusses how to integrate Google Material Design

guidelines in to an Angular application using a library called Angular Material that is developed

by the Angular team. We will take a look at some of the core components of the library and their

usage. We will discuss the themes that are bundled with the library and how to install them.

Chapter 12, Unit Test an Angular Application, explains how to test Angular artifacts and override

them in a test, examines the different parts of a test, and explains which parts of a component

should be tested.

Chapter 13, Bringing Application to Production, discusses the hosting providers that are supported

by the Angular CLI. We will perform build optimizations prior to deployment, and we will use

the Angular CLI to deploy to GitHub Pages.

Chapter 14, Handling Errors and Application Debugging, explains how to handle different types of

errors in an Angular application and understand errors that come from the framework itself. We

will learn how to debug an Angular application using and how to profile it using Angular DevTools.

To get the most out of this book
•	 You will need a version of Angular 15 installed on your computer, preferably the latest one.

All code examples have been tested using Angular 15.0.0 on Windows, but they should

work with any future release of Angular 15 as well.

•	 If you are using the digital version of this book, we advise you to type the code yourself

or access the code via the GitHub repository (link available in the next section). Doing so

will help you avoid any potential errors related to the copying and pasting of code.

Prefacexxii

Download the example code files
The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/

Learning-Angular-Fourth-Edition. We also have other code bundles from our rich catalog of

books and videos available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/af51s.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “When we

run the preceding command in the src\app\products folder, it will create the sort.pipe.ts file

and its corresponding unit test file, sort.pipe.spec.ts."

A block of code is set as follows:

let distance: any;

distance = '1000km';

distance = 1000;

const distances: any[] = ['1000km', 1000];

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

const basket: any = new FruitBasket();

Any command-line input or output is written as follows:

ng generate interface product

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “There are two categories

of pipes: pure and impure.”

https://github.com/PacktPublishing/Learning-Angular-Fourth-Edition
https://github.com/PacktPublishing/Learning-Angular-Fourth-Edition
https://github.com/PacktPublishing/
https://packt.link/af51s

Preface xxiii

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book’s title in the subject of

your message. If you have questions about any aspect of this book, please email us at questions@

packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to us.

Please visit http://www.packtpub.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packtpub.

com.

Warnings or important notes appear like this.

 Tips and tricks appear like this.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com
http://authors.packtpub.com

Prefacexxiv

Share your thoughts
Once you’ve read Learning Angular, Fourth Edition, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1803240601
https://packt.link/r/1803240601

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803240602

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803240602

1
Building Your First Angular
Application

To better understand how to develop an Angular application, we need to learn some basic but

essential things to have a great experience on our journey with the Angular framework. One of

the primary things we should know is what Angular is and why we should start using it for web

development. We will also take a tour of the history of Angular to understand how the platform

evolved.

Another important but sometimes painful topic is setting up our development environment. It

must be done at the beginning of a project but getting this right early can reduce friction as our

application grows. Therefore, a large part of this chapter is dedicated to Angular CLI, a tool de-

veloped by the Angular team that provides scaffolding and automation tasks in an Angular app,

eliminating configuration boilerplate and saving developers from facing future frustrations. We

will use the Angular CLI to create our first application from scratch, get a feel for the anatomy of

an Angular application, and take a sneak peek at how Angular works under the hood.

Working in an Angular project without an Integrated Development Environment (IDE) can be

painful. Our favorite code editor can provide an agile development workflow that includes com-

pilation at runtime, static type checking, introspection, code completion, and visual assistance

for debugging and building our app. We will highlight Visual Studio Code (VS Code), one of the

most popular editors in the Angular ecosystem, with a rich collection of extensions for working

with Angular.

Building Your First Angular Application2

To sum up, here are the main topics that we will explore in this chapter:

•	 What is Angular?

•	 Why choose Angular?

•	 Setting up the Angular CLI workspace

•	 Structure of Angular application

•	 VS Code tooling

Technical requirements
•	 GitHub: https://github.com/PacktPublishing/Learning-Angular-Fourth-Edition/

tree/main/ch01

•	 Node.js: https://nodejs.org

•	 Git: https://git-scm.com/downloads

•	 VS Code: https://code.visualstudio.com/download

What is Angular?
Angular is a development platform that is written in the TypeScript language. It consists of

smaller sub-systems, including a JavaScript framework, a command-line interface, a language

service, and a rich collection of first-party libraries.

Angular enables developers to build scalable web applications with TypeScript, a strict syntactic

superset of JavaScript. Developing with Angular does not require knowledge of JavaScript, but it

is nice to have. We will learn more details about TypeScript in Chapter 2, Introduction to TypeScript.

The official Angular documentation can be found at https://www.angular.io.

Angular was created by a team internally at Google. The first version, 1.0, was released in 2012

and was called AngularJS. AngularJS was a JavaScript framework, and web applications built

with it were written in JavaScript.

We suggest relying first on the official Angular documentation and then on any other

sources because it is the most up-to-date source for Angular development.

https://github.com/PacktPublishing/Learning-Angular-Fourth-Edition/tree/main/ch01
https://github.com/PacktPublishing/Learning-Angular-Fourth-Edition/tree/main/ch01
https://nodejs.org
https://git-scm.com/downloads
https://code.visualstudio.com/download
https://www.angular.io

Chapter 1 3

In 2016 the Angular team decided to make a revolutionary change in AngularJS. The team joined

forces with the TypeScript team at Microsoft and introduced TypeScript into the framework. A

vital consideration towards that decision was decorators, a powerful feature of the TypeScript

language that Angular heavily uses. The next version of the framework, 2.0, was written in Type-

Script and re-branded as Angular with a different logo than AngularJS.

Angular is based on the most modern web standards and supports all the evergreen browsers.

It is compatible with the two most recent major versions of all browsers except for Chrome and

Firefox, which supports the latest ones.

In the following section, we will learn the benefits of choosing Angular for web development.

Why choose Angular?
The power of the Angular platform is based on the combination of the following characteristics:

•	 The main pillars of the platform: cross-platform, incredible tooling, and easy onboarding

•	 The usage of Angular worldwide

In the following sections, we will examine each characteristic in more detail.

Cross-platform
Angular applications can run on different platforms: web, server, desktop, and mobile. Angular

can run natively only on the web because it is a JavaScript framework. However, it is open-source

and is backed by a vast and incredible community that enables the framework to run on the re-

maining three using the following integrations:

•	 Angular Universal: Renders Angular applications server-side

•	 Angular Service Worker: Enables Angular applications to run as Progressive Web Ap-

plications (PWA) that are customizable and can be installed on a desktop environment

•	 Ionic Framework: Allows us to build mobile applications using Angular

The next pillar of the framework describes the tooling available in the Angular ecosystem.

In this book, we will cover Angular 15, which is the latest stable version of the An-

gular framework. AngularJS reached the end of its life in 2022, and it is no longer

supported and maintained by the Angular team.

Building Your First Angular Application4

Tooling
The Angular team has built two great tools that make Angular development easy and fun:

•	 Angular CLI: A command-line interface that allows us to work with Angular projects

from creation to deployment.

•	 Angular DevTools: A browser extension that enables us to debug and profile Angular ap-

plications from the comfort of our browser. We will learn more about this tool in Chapter

14, Handling Errors and Application Debugging.

The Angular CLI is the de facto solution for working with Angular applications. It allows the de-

veloper to focus on writing application code, eliminating the boilerplate of configuration tasks

such as scaffolding, building, testing, and deploying an Angular application.

Onboarding
It is simple and easy for a web developer to start with Angular development because when we

install Angular, we also get a rich collection of first-party libraries out of the box, including:

•	 Angular HTTP client to communicate with a REST API endpoint over HTTP

•	 Angular forms to create HTML forms for collecting input and data from users

•	 Angular router to perform in-app navigations

The preceding libraries are installed by default when we create a new Angular application using

the Angular CLI. However, they are not used in our application unless we import them explicitly

into our project.

Who uses Angular?
Many companies use Angular for their websites and web applications. The website https://www.

madewithangular.com contains an extensive list of those companies, including some popular ones.

Statistically, more than 2,500 projects inside Google use the Angular framework. Additionally,

more than 1.5 million developers worldwide prefer Angular for web development.

A first-party library is a library that is provided from the Angular framework out of

the box without the need to install it separately.

https://www.madewithangular.com
https://www.madewithangular.com

Chapter 1 5

The fact that Angular is already used internally at Google is a crucial factor for the reliability of

the platform. Every new version of Angular is first thoroughly tested in those projects before

becoming available to the public. The testing process helps the Angular team catch bugs early

and delivers a top-quality platform to the rest of the developer community.

Now that we have already seen what Angular is and why someone should choose it for web de-

velopment, we will learn how to use it and start building great web applications.

Setting up the Angular CLI workspace
Setting up a frontend project today is more cumbersome than ever. We used to manually include

the necessary JavaScript and CSS files in our HTML. Life used to be simple. Then frontend devel-

opment became more ambitious: we started splitting our code into modules and using special

tools called preprocessors for our code and CSS.

Our projects became more complicated, and we started to rely on build systems to bundle our

applications. As developers, we are not huge fans of configuration—we want to focus on building

awesome apps. However, modern browsers do more to support the latest web standards, and

some have even started to support JavaScript modules. That said, this is far from being widely

supported. In the meantime, we still have to rely on bundling and module support tools.

Setting up a project with Angular can be tricky. You need to know what libraries to import and

ensure that files are processed in the correct order, which leads us to the topic of scaffolding. Scaf-

folder tools almost become necessary as complexity grows and where every hour counts towards

producing business value rather than being spent fighting configuration problems.

The primary motivation behind creating the Angular CLI was to help developers focus on appli-

cation building, eliminating the configuration boilerplate. Essentially, with a simple command,

you should be able to initialize an application, add new artifacts, run tests, and create a produc-

tion-grade bundle. The Angular CLI supports all of this with the use of special commands.

Prerequisites
Before we begin, we need to ensure that our development environment includes a set of software

tools essential to the Angular development workflow.

Node.js
Node.js is a JavaScript runtime built on top of Chrome’s v8 JavaScript engine. Angular requires

an active or maintenance Long Time Support (LTS) version. If you have already installed it, you can

run node -v in the command line to check which version you are running. The Angular CLI uses

Node.js to accomplish specific tasks, such as serving, building, and bundling your application.

Building Your First Angular Application6

npm
npm is a software package manager that is included by default in Node.js. You can check this out by

running npm -v in the command line. An Angular application consists of various libraries, called

packages, that exist in a central place called the npm registry. The npm client downloads and installs

the libraries that are needed to run your application from the npm registry to your local computer.

Git
Git is a client that allows us to connect to distributed version-control systems, such as GitHub,

Bitbucket, and GitLab. It is optional from the perspective of the Angular CLI. You should install

it if you want to upload your Angular project to a Git repository, which you might want to do.

Installing the Angular CLI
The Angular CLI is part of the Angular ecosystem and can be downloaded from the npm package

registry. Since it is used for creating Angular projects, we need to install it globally in our system.

Open a terminal and run the following command:

npm install -g @angular/cli

The command that we used to install Angular CLI uses the npm client followed by a set of runtime

arguments:

•	 install or i: Denotes the installation of a package

•	 -g: Indicates that the package will be installed on the system globally

•	 @angular/cli: The name of the package to install

The Angular CLI follows the same major version as the Angular framework, which in this book is

15. The preceding command will install the latest stable version of the Angular CLI. You can check

which version you have installed by running ng version or ng v in the command line. If you have

a different version than Angular CLI 15, you can run the following command:

npm install -g @angular/cli@15

The preceding command will fetch and install the latest version of Angular CLI 15.

On some Windows systems, you may need elevated permissions, so you should

run your terminal as an administrator. In Linux/macOS systems, run the command

using the sudo keyword.

Chapter 1 7

CLI commands
The Angular CLI is a command-line interface tool that automates specific tasks during develop-

ment, such as serving, building, bundling, and testing an Angular project. As the name implies, it

uses the command line to invoke the ng executable and run commands using the following syntax:

ng command [options]

Here, the command is the name of the command to be executed, and [options] denotes additional

parameters that can be passed to each command. To view all available commands, you can run

the following:

ng help

Some commands can also be invoked using an alias instead of the actual command name. In this

book, we revise the most common ones (the alias of each command is shown inside parentheses):

•	 new (n): Creates a new Angular CLI workspace from scratch.

•	 build (b): Compiles an Angular application and outputs generated files in a predefined

folder.

•	 generate (g): Creates new files that comprise an Angular application.

•	 serve (s): Builds an Angular application and serves it using a pre-configured web server.

•	 test (t): Runs unit tests of an Angular application.

•	 deploy: Deploys an Angular application to a web-hosting provider. You can choose from

a collection of providers included in the Angular CLI.

•	 add: Installs an Angular library to an Angular application.

•	 completion: Enables auto-complete for Angular CLI commands through the terminal.

•	 update: Updates an Angular application to the latest Angular version.

Updating an Angular application is one of the most critical tasks from the preceding list. It helps

us stay updated by upgrading our Angular applications to the latest platform version.

Additionally, you can use the Angular upgrade guide that contains tips and step-by-step instruc-

tions on how to update your application at https://update.angular.io.

Try to keep your Angular projects up to date because each new version of Angular

comes packed with many exciting new features, performance improvements, and

bug fixes.

https://update.angular.io

Building Your First Angular Application8

Creating a new project
Now that we have prepared our development environment, we can start creating magic by scaf-

folding our first Angular application. We use the new command of the Angular CLI and pass the

name of the application that we want to create as an option. To do so, go to a folder of your choice

and type the following:

ng new my-app

Creating a new Angular application is a straightforward process. The Angular CLI will ask you

for details about the application you want to create so that it can scaffold the Angular project as

best as possible. Initially, it will ask if you want to enable Angular analytics:

Would you like to share pseudonymous usage data about this project with
the Angular Team at Google under Google's Privacy Policy at https://
policies.google.com/privacy. For more details and how to change this
setting, see https://angular.io/analytics. (y/N)

The Angular CLI will only ask the previous question once when you create your first Angular proj-

ect and apply it globally in your system. However, you can change the setting later in a specific

Angular workspace. Next, it will ask if you want to include routing in your application:

Would you like to add Angular routing? (y/N)

Routing is related to navigating from one view of your application to another, which we will learn

later in Chapter 9, Navigate through Application with Routing. For now, answer No to the question

and press Enter. The next question is related to the styling of your application:

Which stylesheet format would you like to use? (Use arrow keys)

It is common to use CSS for styling Angular applications. However, you can use preprocessors

like SCSS or Less to add value to your development workflow. In this book, we work with CSS

directly, so accept the default choice, CSS, and press Enter.

The process may take some time, depending on your internet connection. During this time, the

Angular CLI downloads and installs all necessary packages and creates default files for your Angu-

lar application. When finished, it will have created a folder called my-app. The folder represents an

Angular CLI workspace that contains a single Angular application called my-app at the root level.

Chapter 1 9

The workspace contains various folders and configuration files that the Angular CLI needs to

build, test, and publish the Angular application:

•	 .vscode: Includes VS Code configuration files

•	 node_modules: Includes npm packages needed for development and running the Angular

application

•	 src: Contains the source files of the application

•	 .editorconfig: Defines coding styles for your editor

•	 .gitignore: Specifies files and folders that Git should not track

•	 angular.json: The main configuration file of the Angular CLI workspace

•	 package.json and package-lock.json: Provide definitions of npm packages, along with

their exact versions, which are needed to develop, test, and run the Angular application

•	 README.md: A README file that is automatically generated from the Angular CLI

•	 tsconfig.app.json: TypeScript configuration that is specific to the Angular application

•	 tsconfig.json: TypeScript configuration that is specific to the Angular CLI workspace

•	 tsconfig.spec.json: TypeScript configuration that is specific to unit tests

As developers, we should only care about writing the source code that implements features for

our application. Nevertheless, having a piece of basic knowledge on how the application is or-

chestrated and configured helps us better understand the mechanics and means we can intervene

if necessary.

Navigate to the newly created folder and start your application with the following command:

ng serve

The Angular CLI compiles the Angular project and starts a web server that watches for changes

in project files. This way, whenever you change your application code, the web server rebuilds

the project to reflect the new changes.

Remember that any Angular CLI commands must be run inside an Angular CLI

workspace folder.

Building Your First Angular Application10

After compilation has been completed successfully, you can preview the application by opening

your browser and navigating to http://localhost:4200:

Figure 1.1: Angular application landing page

Congratulations, you have created your first Angular CLI workspace! The Angular CLI created, by

default, a sample web page that we can use as a reference and start building our project based

on that. In the next section, we will explore the main parts of our application and learn how to

modify this page.

Chapter 1 11

Structure of an Angular application
We are about to take the first intrepid steps into examining our Angular application. The Angular

CLI has already scaffolded our project and has carried much heavy lifting for us. All we need to

do is fire up our favorite IDE and start working with the Angular project. We will use VS Code in

this book, but feel free to choose any editor you are comfortable with:

1.	 Open VS Code and select File | Open Folder… from the main menu.

2.	 Navigate to the my-app folder and select it. VS Code will load the associated Angular project.

3.	 Navigate to the src folder.

When we develop an Angular application, we’ll likely interact with the src folder. It is where we

write the code and tests of our application. It is also where we define the styles of our application

and any static assets we use, such as icons, images, and JSON files. It contains the following:

•	 app: Contains all the Angular-related files of the application. You interact with this folder

most of the time during development.

•	 assets: Contains static assets such as fonts, images, and icons.

•	 favicon.ico: The icon displayed in the tab of your browser, along with the page title.

•	 index.html: The main HTML page of the Angular application.

•	 main.ts: The main entry point of the Angular application.

•	 styles.css: Contains application-wide styles. These are CSS styles that apply globally to

the Angular application. The extension of this file depends on the stylesheet format you

choose when creating the application.

The app folder contains the actual source code we write for our application. Developers spend

most of their time inside that folder. The Angular application that is created automatically from

the Angular CLI contains the following files:

•	 app.component.css: Contains CSS styles specific for the sample page

•	 app.component.html: Contains the HTML content of the sample page

•	 app.component.spec.ts: Contains unit tests for the sample page

•	 app.component.ts: Defines the presentational logic of the sample page

•	 app.module.ts: Defines the main module of the Angular application

Building Your First Angular Application12

In the following sections, we will learn about the purpose of each of those files in more detail.

Components
The files whose name starts with app.component constitute an Angular component. A component

in Angular controls part of a web page by orchestrating the interaction of the presentational logic

with the HTML content of the page called a template. A typical Angular application has at least

a main component called AppComponent by convention.

Each Angular application has a main HTML file, named index.html, that exists inside the src

folder and contains the following body HTML element:

<body>

 <app-root></app-root>

</body>

The app-root tag is used to identify the main component of the application and acts as a container

to display its HTML content. It instructs Angular to render the template of the main component

inside that tag. We will learn how it works in Chapter 4, Enabling User Experience with Components.

When the Angular CLI builds an Angular app, it first parses the index.html file and starts iden-

tifying HTML tag elements inside the body tag. An Angular application is always rendered inside

the body tag and comprises a tree of components. When the Angular CLI finds a tag that is not

a known HTML element, such as app-root, it starts searching through the components of the

application tree. But how does it know which components belong to the app?

Modules
The main module of our application is a TypeScript file that acts as a container for the main com-

ponent. The component was registered with this module upon creating the Angular application;

otherwise, the Angular framework would not be able to recognize and load it. A typical Angular

application has at least a main module called AppModule by convention.

The filename extension .ts refers to TypeScript files.

Chapter 1 13

The main module is also the starting point of an Angular application. The startup method of an

Angular application is called bootstrapping, and it is defined in the main.ts file inside the src

folder:

import { platformBrowserDynamic } from '@angular/platform-browser-
dynamic';

import { AppModule } from './app/app.module';

platformBrowserDynamic().bootstrapModule(AppModule)

 .catch(err => console.error(err));

The main task of the bootstrapping file is to define the module that will be loaded at application

startup. It calls the bootstrapModule method of the platformBrowserDynamic method and passes

AppModule as the entry point of the application.

We will learn more about the capabilities of Angular modules in Chapter 3, Organizing Application

into Modules.

Template syntax
Now that we have taken a brief overview of our sample application, it’s time to start interacting

with the source code:

1.	 Run the following command in a terminal to start the application:

ng serve

2.	 Open the application with your browser at http://localhost:4200 and notice the text

next to the rocket icon that reads my-app app is running! The word my-app that corre-

sponds to the name of our application comes from a variable declared in the TypeScript file

of the main component. Open the app.component.ts file and locate the title variable:

import { Component } from '@angular/core';

@Component({

As we have already learned, Angular can run on different platforms. The

platformBrowserDynamic method that we use targets the browser platform.

Building Your First Angular Application14

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'my-app';

}

The title variable is a property of the component and is currently used in the compo-

nent template.

3.	 Open the app.component.html file and go to line 344:

{{ title }} app is running!

The title property is surrounded by double curly braces syntax called interpolation,

which is part of the Angular template syntax. In a nutshell, interpolation converts the

value of the title property to text and displays it on the page.

Angular uses template syntax to extend and enrich the standard HTML syntax in the tem-

plate of an application. We will learn more about the syntax used in Angular templates

in Chapter 4, Enabling User Experience with Components.

4.	 Change the value of the title property in the TypeScript class to Learning Angular and

examine the application in the browser:

Figure 1.2: Landing page title

Congratulations! You have successfully used the Angular CLI to interact with the Angular ap-

plication.

By now, you should have a basic understanding of how Angular works and what are the basic

parts of a sample Angular application. As a reader, you had to swallow much information at this

point. However, you will get a chance to get more acquainted with the components and mod-

ules in the upcoming chapters. For now, the focus is to get you up and running by giving you a

powerful tool like the Angular CLI and showing you how just a few steps are needed to display

an application on the screen.

Chapter 1 15

VS Code tooling
VS Code is an open-source code editor backed by Microsoft. It is very popular in the Angular

community, primarily because of its robust support for TypeScript. TypeScript has been, to a

great extent, a project driven by Microsoft, so it makes sense that one of its popular editors was

conceived with built-in support for this language. All the nice features we might want are al-

ready baked in, including syntax, error highlighting, and automatic builds. Another reason for its

broad popularity is the various extensions available in the marketplace that enrich the Angular

development workflow. What makes VS Code so great is not only its design and ease of use but

also the access to a ton of plugins, and there are some great ones for Angular development. The

most popular are included in the Angular Essentials extension pack from John Papa. To get it,

go through the following steps:

1.	 Navigate to the Extensions menu of VS Code.

2.	 Type Angular Essentials in the search box.

3.	 Click the Install button on the first entry item.

Alternatively, you can install it automatically since it is already included in the repository of this

book’s source code. When you download the project from GitHub and open it in VS Code, it will

prompt you to view and install the recommended extensions:

Figure 1.3: Recommended extensions prompt

In the following sections, we will look at some of the extensions included in the Angular Essentials

pack as well as other useful extensions for Angular development.

Angular Language Service
The Angular Language Service extension is developed and maintained by the Angular team and

provides code completion, navigation, and error detection inside Angular templates. It enriches

VS Code with the following features:

•	 Code completion

•	 Go-to definition

Building Your First Angular Application16

•	 Quick info

•	 Diagnostic messages

To get a glimpse of its powerful capabilities, let’s look at the code completion feature. Suppose

we want to display a new property called description in the template of the main component.

We can set this up by going through the following steps:

1.	 Define the new property in the app.component.ts file:

export class AppComponent {

 title = 'Learning Angular';

 description = 'Hello World';

}

2.	 Open the app.component.html file and start typing the name of the property in the tem-

plate. The Angular Language Service will find it and suggest it for you automatically:

Figure 1.4: Angular Language Service

You may have noticed that a red line appeared instantly underneath the HTML element as you

were typing. The Angular Language Service did not recognize the property until you typed it

correctly and gave you a proper indication of this lack of recognition. If you hover over the red

indication, it displays a complete information message about what went wrong:

Figure 1.5: Error handling in the template

The description property is a public property. In public methods and properties,

we can omit the keyword public. Code completion works only for public properties

and methods. If the property had been declared private, then the Angular Language

Service and the template would not have been able to recognize it.

Chapter 1 17

The preceding information message comes from the diagnostic messages feature. The Angular

Language Service supports various messages according to the use case. You will encounter more

of these messages as you work more with Angular.

Angular Snippets
The Angular Snippets extension contains a collection of TypeScript and HTML code snippets

for various Angular artifacts, such as components. To create the TypeScript class of an Angular

component using the extension, go through the following steps:

1.	 Open our Angular application in VS Code and click on the New File button next to the

workspace name in the EXPLORER pane.

2.	 Enter a proper file name, including the .ts extension, and press Enter.

3.	 Type a-component inside the file and press Enter.

The extension builds the TypeScript code for you automatically:

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'selector-name',

 templateUrl: 'name.component.html'

})

export class NameComponent implements OnInit {

 constructor() { }

 ngOnInit() { }

}

There are also other available snippets for creating various Angular artifacts, such as modules.

All snippets start with the a- prefix.

Nx Console
Nx Console is an interactive UI for the Angular CLI that aims to assist developers who are not very

comfortable with the command-line interface or do not want to use it. It works as a wrapper over

Angular CLI commands, and it helps developers concentrate on delivering outstanding Angular

applications instead of trying to remember the syntax of every CLI command they want to use.

Building Your First Angular Application18

The extension is automatically enabled when you open an Angular CLI project. If you click on the

Nx Console menu of VS Code, it displays a list of Angular CLI commands that you can execute:

Figure 1.6: Nx Console

Nx Console includes most of the Angular CLI commands. The user interface allows developers to

use them without remembering the available options each command supports.

Material icon theme
VS Code has a built-in set of icons that it uses to display different types of files in a project. This

extension provides additional icons that conform to the Material Design guidelines by Google; a

subset of this collection targets Angular-based artifacts.

Using this extension, you can easily spot the type of Angular files in a project, such as components

and modules, and increase developer productivity, especially in large projects with lots of files.

EditorConfig
VS Code editor settings, such as indentation or spacing, can be set at a user or project level. Edi-

torConfig can override these settings using a configuration file called .editorconfig, which can

be found in the root folder of an Angular CLI project. You can define unique settings in this file to

ensure the consistency of the coding style across your team.

Angular Evergreen
The stability of the Angular platform is heavily based on the regular release cycles according to

the following schedule:

•	 A major version every six months

Chapter 1 19

•	 Various minor versions between each major one

•	 A patch version every week

The Angular Evergreen extension helps us follow the previous schedule and keep our Angular

projects up to date. It provides us with a unique user interface containing information about the

current Angular version of our project and actions we can take to update it. Updating an Angu-

lar project can also be accomplished using a custom menu that appears if we right-click on the

angular.json file of the workspace.

In a nutshell, Angular Evergreen is loaded in an Angular CLI project and compares the local ver-

sion of Angular with the latest one. If there is a new version, it will alert the user by displaying a

notification message:

Figure 1.7: Angular Evergreen

Additional to the latest version, we can update to the next Angular version, which is the beta

version currently under development, or upgrade other npm packages of the project.

Building Your First Angular Application20

Rename Angular Component
Renaming Angular artifacts such as components and modules usually requires visiting different

parts of the codebase in a project. Working your way through the project when you are a beginner

is a daunting task. Thankfully, there is an extension that can help us with that.

The Rename Angular Component extension provides a user-friendly interface that enables us

to rename certain Angular artifacts. We can right-click on any component-related file, select the

Rename Angular Component option and enter the new name of the component. The extension

will find all template and TypeScript files that use the component and rename them accordingly.

Although the name of the extension refers to components, it can currently be used with other

Angular artifacts such as services, directives, and guards. We will learn about these artifacts later

in the book.

Summary
That’s it! Your journey to the world of Angular has just begun. Let’s recap the features that you

have learned so far. We learned what Angular is, looked over the brief history of the platform,

and examined the benefits of using it for web development.

We saw how to set up our development workspace and find the tools we need to bring TypeScript

into the game. We introduced the Angular CLI tool, the Swiss Army knife for Angular, that au-

tomates specific development tasks. We used some of the most common commands to scaffold

our first Angular application. We also examined the structure of our application and learned

how to interact with it.

Our first application gave us a basic understanding of how Angular works internally to render our

application on a web page. We embarked on our journey, starting with the main HTML file of an

Angular application. We saw how Angular parses that file and starts searching the component

tree to load the main component. We learned the main module of an Angular application and

looked at how Angular bootstraps it at application startup.

Finally, we met the VS Code editor and learned how it could empower you as a software developer.

We examined some of the essential available plugins and extensions for Angular that save quite

a few keystrokes. Your focus and energy should be spent on solving the problem and structuring

your solution, not making your fingers tired. We encourage you to learn more about your editor

and its possibilities because this will make you faster and more efficient.

Chapter 1 21

In the next chapter, you will learn some of the basics of the TypeScript language. The chapter will

cover what problems can be solved by introducing types and the language itself. TypeScript, as

a superset of JavaScript, contains a lot of powerful concepts and marries well with the Angular

framework, as you are about to discover.

2
Introduction to TypeScript

As we learned in the previous chapter, where we built our very first Angular application, the code of

an Angular project is written in TypeScript. Writing in TypeScript and leveraging its static typing

gives us a remarkable advantage over other scripting languages. This chapter is not a thorough

overview of the TypeScript language. Instead, we’ll focus on the core elements and study them in

detail on our journey through Angular. The good news is that TypeScript is not all that complex,

and we will manage to cover most of its relevant parts.

In this chapter, we’re going to cover the following main topics:

•	 The history of TypeScript

•	 Types

•	 Functions, lambdas, and execution flow

•	 Common TypeScript features

•	 Decorators

•	 Advanced types

•	 Modules

We will first investigate the background of TypeScript and the rationale behind its creation. We

will also learn what tools and online resources are available to practice with TypeScript. We will

emphasize the typing system, which is the main advantage of TypeScript, and learn how we can

use it to create some basic types. We will expand our typing knowledge by learning how to use

classes, interfaces, and advanced types in the Angular context. At the end of the chapter, we will

explore how to organize the structure of an application by combining the typing system with

modules.

Introduction to TypeScript24

The history of TypeScript
Transforming small web applications into thick monolithic clients was impossible due to the

limitations of earlier JavaScript versions, such as the ECMAScript 5 specification. In a nutshell,

large-scale JavaScript applications suffered from serious maintainability and scalability problems

as soon as they grew in size and complexity. This issue became more relevant as new libraries and

modules required seamless integration into our applications. The lack of proper mechanisms for

interoperability led to cumbersome solutions that never seemed to fit the bill.

As a response to these concerns, ECMAScript 6 (also known as ES6 or ES2015) promised to solve

these issues by introducing better module loading functionalities, an improved language archi-

tecture for better scope handling, and a wide variety of syntactic sugar to better manage types and

objects. Class-based programming introduced an opportunity to embrace a more Object-Oriented

Programming (OOP) approach when building large-scale applications.

Microsoft took on this challenge and spent nearly two years building a superset of the language,

combining the conventions of ES6 and borrowing some proposals from the next specification

version. The idea was to launch something that would help build enterprise applications with a

lower error footprint using static type checking, better tooling, and code analysis. After two years

of development led by Anders Hejlsberg, lead architect of C# and creator of Delphi and Turbo

Pascal, TypeScript 0.8 was finally introduced in 2012 and reached version 1.0 2 years later. It was

not only running ahead of ES6 but also implemented the same features and provided a stable

environment for building large-scale applications. It introduced, among other features, option-

al static typing through type annotations, thereby ensuring type checking at compile time and

catching errors early in the development process. Its support for declaration files also enabled

developers to describe the interface of their modules so that other developers could better inte-

grate them into their code workflow and tooling.

The benefits of TypeScript
As a superset of JavaScript, one of the main advantages of embracing TypeScript in your next

project is the low entry barrier. If you know JavaScript, you are pretty much all set since all the

additional features in TypeScript are optional. You can pick and introduce any of them to achieve

your goal. Overall, there is a long list of solid arguments for advocating TypeScript in your next

project, and all of them apply to Angular as well.

Here is a short rundown, to name a few:

•	 Annotating your code with types ensures a consistent integration of your different code

units and improves code readability and comprehension.

Chapter 2 25

•	 The built-in type-checker analyzes your code at compile time and helps you prevent errors

before executing your code.

•	 The use of types ensures consistency across your application. Combined with the previous

two, the overall code error footprint gets minimized in the long run.

•	 TypeScript extends classes with long-time demanded features such as class fields, private

members, and enumerations.

•	 Decorators allow you to extend your classes and implementations in unique ways.

•	 Interfaces ensure a smooth and seamless integration of your libraries in other systems

and code bases.

•	 TypeScript support across different IDEs is terrific, and you can benefit from features

such as highlighting code, real-time type checking, and automatic compilation at no cost.

•	 The syntax is familiar to developers coming from other OOP-based backgrounds such as

Java, C#, and C++.

Introducing TypeScript resources
Let’s have a look at where we can get further support to learn and test-drive our new knowledge

of TypeScript.

The official website
Our first stop is the official website of the language at https://www.typescriptlang.org.

It contains extensive language documentation and a playground that gives us access to a quick

tutorial to get up to speed with the language in no time. It includes some ready-made code exam-

ples that cover some of the most common traits of the language. We encourage you to leverage

this tool to test the code examples we cover throughout this chapter.

The official wiki documentation
The code for TypeScript is fully open-sourced at GitHub, and the Microsoft team has put reasonable

effort into documenting the different facets of the code in the wiki available on the repository site.

We encourage you to take a look at it any time you have a question or if you want to dive deeper

into any of the language features or form aspects of its syntax. The wiki is located at https://

github.com/Microsoft/TypeScript/wiki.

In this book, we will be using TypeScript 4.8 as it is supported by Angular 15.

https://www.typescriptlang.org
https://github.com/Microsoft/TypeScript/wiki
https://github.com/Microsoft/TypeScript/wiki

Introduction to TypeScript26

In the following section, we will introduce the typing system of TypeScript. We will explore the

most basic types of the TypeScript language. We will also learn how to benefit from the typing

system and create custom and dynamic types to enhance our applications further.

Types
Working with TypeScript or any other coding language means working with data, and such data

can represent different sorts of content that are called types. Types are used to represent the fact

that such data can be a text string, an integer value, or an array of these value types, among oth-

ers. You may have already met types in JavaScript since we have always worked implicitly with

them. This also means that any given variable could assume (or return, in the case of functions)

any value. Sometimes, this leads to errors and exceptions in our code because of type collisions

between what our code returned and what we expected it to return type-wise. We can enforce this

flexibility using a specific type called any, as we will see later in this chapter. However, statically

typing our variables gives our IDE and us a good picture of what kind of data we are supposed

to find in each instance of code. It becomes an invaluable way to help debug our applications at

compile time before the code is executed.

String
One of the most widely used primitive types is the string, which populates a variable with a

piece of text:

var brand: string = 'Chevrolet';

Check out the type definition next to the variable name, separated by a colon. It is the way to

annotate types in TypeScript.

We can use single or double quotes for the value of a string variable. Feel free to choose either

and stick with it within your team. We can define multiline text strings with support for text

interpolation using placeholder variables and backticks:

var brand: string = 'Chevrolet';

var message: string = 'Today it's a happy day! I just bought a new
${brand} car';

In the preceding snippet, any variables that we may use inside the multiline text must be sur-

rounded by the curly braces of the placeholder ${}.

Chapter 2 27

Declaring variables
TypeScript, as a superset of JavaScript, supports expressive declaration nouns such as let, which

denotes that the scope of the variable is the nearest enclosing block (either a function, for loop, or

any other enclosing statement). On the other hand, const indicates that the value of the declared

variable cannot be changed once it’s set.

The let keyword
Traditionally, developers have been using the keyword var to declare objects, variables, and other

artifacts, but this is discouraged when you start using ES6 or TypeScript. The reason is that ES5

only has a function scope; that is, a variable is unique within the context of a function:

function test() {

 var x;

}

There can be no other variable declared as x in this function. If you do declare one, then you

effectively redefine it. However, there are cases in which scoping is not applied, such as in loops.

For example, in Java, you would write the following and ensure that a variable will never leak

outside of the loop:

var i = 3;

for (var i = 0; i < 10; i++) {

}

In the preceding snippet, the i variable outside the loop will not affect the i variable inside it

because they have a different scope. To overcome this limitation, ES6 introduced the let keyword:

let i = 3;

for (let i = 0; i < 10; i++) {

}

So, remember, no more var; use the let keyword wherever possible.

The const keyword
The const keyword is a way to indicate that a variable should never change. As a code base grows,

changes may happen by mistake, which can be costly. The const keyword can prevent these types

of mistakes through compile-time support. Consider the following code snippet:

const PI = 3.14;

PI = 3;

Introduction to TypeScript28

If we try to run it with TypeScript, the compiler will throw the following error message:

Cannot assign to 'PI' because it is a constant

The preceding error will come up only at the top level. You need to be aware of this if you declare

objects as constants, like so:

const obj = {

 a: 3

};

obj.a = 4;

If we declare the obj variable as a constant, it does not prevent the entire object from being edited

but rather its reference. So, the preceding code is valid. If we try to change the reference of the

variable such as obj = {}, it is not allowed, and we get the same compiler error.

Prefer to use the const keyword when you are sure that the properties of an object will not change

during its lifetime. It prevents the object from accidentally changing and enforces data immuta-

bility, a hot topic in Angular applications.

Number
The number type is probably the other most widespread primitive data type, along with string

and boolean:

const age: number = 7;

const height: number = 5.6;

It defines a floating-point number and hexadecimal, decimal, binary, and octal literals.

Boolean
The boolean type defines a variable that can have a value of either true or false:

const isZeroGreaterThanOne: boolean = false;

The result of the variable represents the fulfillment of a boolean condition.

Array
The array type defines a list of items that contain certain types only. Handling exceptions that

arise from errors such as assigning wrong member types in a list can now be easily avoided with

this type.

Chapter 2 29

The syntax requires the postfix [] in the type annotation, as follows:

const brands: string[] = ['Chevrolet', 'Ford', 'General Motors'];

const ages: number[] = [8, 5, 12, 3, 1];

If we try to add a new item to the ages array with a type other than a number, the runtime

type-checker will complain, making sure our typed members remain consistent and that our

code is error-free.

Dynamic typing with no type
Sometimes, it is hard to infer the data type from the information we have at any given point, es-

pecially when we are porting legacy code to TypeScript or integrating loosely typed third-party

libraries and modules. TypeScript supplies us with a convenient type for these cases. The any

type is compatible with all the other existing types, so we can type any data value with it and

assign any value to it later:

let distance: any;

distance = '1000km';

distance = 1000;

const distances: any[] = ['1000km', 1000];

However, this great power comes with great responsibility. If we bypass the convenience of static

type checking, we are opening the door to type errors when piping data through our modules. It

is up to us to ensure type safety throughout our application.

Custom types
In TypeScript, you can come up with your own type if you need to by using the type keyword in

the following way:

type Animal = 'Cheetah' | 'Lion';

It is essentially a type with a finite number of allowed values. Let’s create a variable of this type:

const animal: Animal = 'Cheetah';

The preceding code is perfectly valid as Cheetah is one of the allowed values and works as intended.

The interesting part happens when we give our variable a value it does not expect:

const animal: Animal = 'Turtle';

Introduction to TypeScript30

The preceding code will result in the following compiler error:

Type '"Turtle"' is not assignable to type 'Animal'

Enum
The enum type is a set of unique numeric values that we can represent by assigning user-friendly

names to each one. Its use goes beyond assigning an alias to a number. We can use it to list the

variations that a specific type can assume in a convenient and recognizable way. It begins num-

bering members, starting at 0 unless explicit numeric values are assigned to them:

enum Brands { Chevrolet, Cadillac, Ford, Buick, Chrysler, Dodge };

const myCar: Brands = Brands.Cadillac;

In the preceding code, if we inspect the variable myCar, we will see that it returns the value 1,

which is the index of Cadillac. As we mentioned already, we can also assign custom numeric

values like the following:

enum BrandsReduced { Tesla = 1, GMC, Jeep };

const myTruck: BrandsReduced = BrandsReduced.GMC;

In the preceding code, if we inspect the variable myTruck, we will see that it returns the value 2

because the first enumerated value, Tesla, was set to 1 already. We can extend value assignation

to all members as long as such values are integers:

enum StackingIndex {

 None = 0,

 Dropdown = 1000,

 Overlay = 2000,

 Modal = 3000

};

const mySelectBoxStacking: StackingIndex = StackingIndex.Dropdown;

One last point worth mentioning is the possibility to look up a member mapped to a given nu-

meric value:

enum Brands { Chevrolet, Cadillac, Ford, Buick, Chrysler, Dodge };

const myCarBrandName: string = Brands[1];

In the preceding snippet, the myCarBrandName variable will be equal to Cadillac.

Chapter 2 31

It should also be mentioned that from TypeScript 2.4 and onward, it is possible to assign string

values to enums. It is a technique preferred in Angular projects because of its extended support

in template files.

Void
The void type represents the absence of a type, and its use is constrained to annotating functions

that do not return an actual value:

function test(): void {

 const a = 0;

}

In the preceding snippet, there is no return type in the function.

Type inference
Typing is optional since TypeScript is smart enough to infer the data types of variables and function

return values out of context with a certain level of accuracy. If it is not possible, it will assign the

dynamic any type to the loosely typed data at the cost of reducing type checking to a bare minimum.

In the following section, we will embark on a new journey through TypeScript to learn more

about TypeScript functions and their execution flow.

Functions, lambdas, and execution flow
Functions are the processing machines we use to analyze input, digest information, and apply

the necessary transformations to data. Data can be provided either to transform the state of our

application or to return an output that will be used to shape our application’s business logic or

user interactivity.

Functions in TypeScript are not that different from regular JavaScript, except that, like everything

else in TypeScript, they can be annotated with static types. Thus, they improve the compiler by

providing the information it expects in their signature and the data type it aims to return, if any.

Annotating types in functions
The following example showcases how a regular function is annotated in TypeScript:

function sayHello(name: string): string {

 return 'Hello, ' + name;

}

Introduction to TypeScript32

There are two main differences from the usual function syntax in regular JavaScript. First, we an-

notate the parameters declared in the function signature, which makes sense since the compiler

will want to check whether the data provided holds the correct type. In addition to this, we also

annotate the returning value by adding the string type to the function declaration.

As mentioned in the previous section, the TypeScript compiler is smart enough to infer types

when no annotation is provided. In this case, the compiler looks into the arguments provided

and returns statements to infer a returning type from them.

Functions in TypeScript can also be represented as expressions of anonymous functions, where

we bind the function declaration to a variable:

const sayHello = function(name: string): string {

 return 'Hello, ' + name;

}

However, there is a downside to that approach. Although typing function expressions this way

is allowed, thanks to type inference, the compiler is missing the type definition of the declared

variable. We might assume that the inferred type of a variable that points to a function typed as

a string is a string. Well, it’s not. A variable that points to an anonymous function ought to be

annotated with a function type:

const sayHello: (name: string) => string = function(name: string): string
{

 return 'Hello, ' + name;

}

The function type informs us of the types expected in the payload and the type returned by the

function execution, if any. This whole block, which is of the form (arguments: type) => returned

type, becomes the type annotation that our compiler expects.

Function parameters in TypeScript
Due to the type checking performed by the compiler, function parameters require special atten-

tion in TypeScript.

Optional parameters
Parameters are a core part of the type checking applied by the TypeScript compiler. Parameters

are defined as optional by adding the character ? after the parameter name:

function greetMe(name: string, greeting?: string): string {

Chapter 2 33

 if (!greeting) {

 greeting = 'Hello';

 }

 return greeting + ', ' + name;

}

To call the previous function, we can omit the second parameter in the function call:

greetMe('John');

So, an optional parameter is not set unless you explicitly pass it a value. It is more of a construct

so that you can get help deciding what parameters are mandatory and which ones are optional.

To exemplify this, consider the following function signature:

function add(mandatory: string, optional?: number) {}

We can invoke the previous function in the following ways:

add('some string');

add('some string', 3.14);

Both versions are valid. Be aware that optional parameters should be placed last in a function

signature. Consider the following function:

function add(optional?: number, mandatory: string) {}

Both parameters of the previous function would be considered mandatory. Suppose that we call

the function like so:

add(1);

The compiler would complain that you have not provided a value for the mandatory parameter.

Remember, optional arguments are great, but place them last.

Default parameters
TypeScript gives us another feature to cope with default parameters, where we can set a default

value that the parameter assumes when it’s not explicitly passed upon executing the function.

The syntax is pretty straightforward, as we can see when we refactor the previous example:

function greetMe(name: string, greeting: string = 'Hello'): string {

 return '${greeting}, ${name}';

}

Introduction to TypeScript34

Like optional parameters, default parameters must be put right after the required parameters in

the function signature.

Rest parameters
One of the significant advantages of JavaScript flexibility when defining functions is the ability

to accept an unlimited non-declared array of parameters. TypeScript can achieve the same be-

havior using the rest syntax. Essentially, we can define an additional parameter at the end of the

arguments list prefixed by an ellipsis (…) and typed as an array:

function greetPeople(greeting: string, ...names: string[]): string {

 return greeting + ', ' + names.join(' and ') + '!';

}

Rest parameters are beneficial when we don’t know how many arguments will be passed in.

Function overloading
Method and function overloading are typical in other languages, such as C#. However, imple-

menting this functionality in TypeScript clashes with the fact that JavaScript, which TypeScript

is meant to compile to, does not implement any elegant way to integrate it out of the box. So, the

only workaround possible requires writing function declarations for each of the overloads and

then writing a general-purpose function that wraps the actual implementation, whose list of

typed arguments and return types are compatible with all the others:

function hello(names: string): string

function hello(names: string[]): string

function hello(names: any, greeting?: string): string {

 let namesArray: string[];

 if (Array.isArray(names)) {

 namesArray = names;

 } else {

 namesArray = [names];

 }

 if (!greeting) {

 greeting = 'Hello';

 }

 return greeting + ', ' + namesArray.join(' and ') + '!';

}

Chapter 2 35

In the preceding example, we create three different function signatures, each of which features

different type annotations. We could even define different return types by annotating the wrap-

ping function with type any.

Arrow functions
ES6 introduced the concept of fat arrow functions (also called lambda functions in other languages

such as Python, C#, Java, or C++). The purpose of the arrow function is to simplify the general

function syntax and provide a bulletproof way to handle the function scope traditionally handled

by the this keyword. The first thing we notice is its minimalistic syntax, where, most of the time,

we see arrow functions as single-line, anonymous expressions:

const double = x => x * 2;

The preceding function computes the double of a given number x and returns the result, although

we do not see any function or return statements in the expression. If the function signature con-

tains more than one argument, we need to wrap them all between parentheses:

const add = (x, y) => x + y;

Arrow functions can also contain statements by wrapping the whole implementation in curly

braces:

const addAndDouble = (x, y) => {

 const sum = x + y;

 return sum * 2;

}

Still, what does this have to do with scope handling? The value of this can point to a different

context, depending on where we execute the function. When we refer to this inside a callback,

we lose track of the upper context, which usually leads us to use conventions such as assigning its

value to a variable named self or that. It is this variable that is used later on within the callback.

Statements containing interval or timeout functions make for a perfect example of this:

function delayedGreeting(name): void {

 this.name = name;

 this.greet = function(){

 setTimeout(function() {

 console.log('Hello ' + this.name);

 }, 0);

 }

Introduction to TypeScript36

}

const greeting = new delayedGreeting('John');

greeting.greet();

If we execute the preceding script, it won’t print the name John in the browser console as expected

because it modifies the scope of this when evaluating the function inside the timeout call. If we

modify the code according to the following, it will do the trick:

function delayedGreeting(name): void {

 this.name = name;

 this.greet = function() {

 setTimeout(() =>

 console.log('Hello ' + this.name)

 , 0);

 }

}

Even if we break down the statement contained in the arrow function into several lines of code

wrapped by curly braces, the scope of this keeps pointing to the instance itself outside the tim-

eout call, allowing for more elegant and clean syntax.

Now that we have acquired basic knowledge of functions in TypeScript and how they are exe-

cuted, we can continue our journey to the typing system and learn some of the most common

TypeScript features used in Angular.

Common TypeScript features
TypeScript has some general features that don’t apply to classes, functions, or parameters but

make coding more efficient and fun. The idea is that the fewer lines of code we write, the better

it is. It’s not only about fewer lines but also about making things more straightforward. There

are many such features in ES6 that TypeScript has also implemented. In the following sections,

we’ll name a few that you will likely use in an Angular project.

Spread parameter
A spread parameter uses the same ellipsis syntax as the rest parameter but is used inside the body

of a function. Let’s illustrate this with an example:

const newItem = 3;

const oldArray = [1, 2];

const newArray = [...oldArray, newItem];

Chapter 2 37

In the preceding snippet, we add an item to an existing array without changing the old one. The

old array still contains 1, 2, whereas the new array contains 1, 2, and 3. The current behavior is

called immutability, which means not changing the old array but rather creating a new state from

it. It is a principle used in functional programming as a paradigm and for performance reasons.

We can also use a spread parameter on objects:

const oldPerson = { name: 'John' };

const newPerson = { ...oldPerson, age: 20 };

In the preceding snippet, we are creating a merge between the two objects. Like in the array ex-

ample, we don’t change the previous variable, oldPerson. Instead, the newPerson variable takes

the information from the oldPerson variable and adds its new values to it.

Template strings
Template strings are all about making your code clearer. Consider the following:

const url = 'http://path_to_domain' +

 'path_to_resource' +

 '?param=' + parameter +

 '¶m2=' + parameter2;

So, what’s wrong with the previous snippet? The answer is readability. It’s hard to imagine what

the resulting string will look like but editing the code by mistake and producing an unwanted

result is also easy. To overcome this, we can use template strings in the following way:

const url =

'${baseUrl}/${path_to_resource}?param=${parameter}¶m2={parameter2}';

The preceding syntax is a much more condensed expression and much easier to read.

Generics
Generics are expression indicating a general code behavior that we can employ, regardless of the

data type. They are often used in collections because they have similar behavior, regardless of the

type. They can, however, be used on other constructs such as methods. The idea is that generics

should indicate if you are about to mix types in a way that isn’t allowed:

function method<T>(arg: T): T {

 return arg;

}

method<number>(1);

Introduction to TypeScript38

In the preceding example, the type of T is not evaluated until we use the method. As you can see,

its type varies, depending on how you call it. It also ensures that you are passing the correct type

of data. Suppose that the preceding method is called in this way:

method<string>(1);

We specify that T should be a string, but we insist on passing it a value as a number. The compiler

clearly states that this is not correct. You can, however, be more specific on what T should be. You

can make sure that it is an array type so that any value you pass must adhere to this:

function method<T>(arg: T[]): T[] {

 console.log(arg.length);

 return arg;

}

class CustomPerson extends Array {}

class Person {}

const people: Person[] = [];

const newPerson = new CustomPerson();

method<Person>(people);

method<CustomPerson>(newPerson);

In the preceding case, we decide that T should be of Person or CustomPerson type and that the

parameter needs to be of the array type. If we try to pass a single object, the compiler will complain:

const person = new Person();

method<Person>(person);

Alternatively, we can define that T should adhere to an interface like this:

interface Shape {

 area(): number;

}

class Square implements Shape {

 area() { return 1; }

}

class Circle implements Shape {

 area() { return 2; }

}

function allAreas<T extends Shape>(...args: T[]): number {

 let total = 0;

 args.forEach (x => {

Chapter 2 39

 total += x.area();

 });

 return total;

}

allAreas(new Square(), new Circle());

Generics are powerful to use if you have a typical behavior with many different data types. You

probably won’t be writing custom generics, at least not initially, but it’s good to know what is

going on.

Optional chaining
The optional chaining in TypeScript is a powerful feature that can help us with refactoring and

simplifying our code. In a nutshell, it can guide our TypeScript code to ignore the execution of

a statement unless a value has been provided somewhere in that statement. Let’s see optional

chaining with an example:

const square = new Square();

In the preceding snippet, we create a square object using the Square class of the previous section.

Later, we read the value of the area method by making sure that the object has a value set before

reading it:

if (square !== undefined) {

 const area = square.area();

}

The previous snippet is a precautionary step in case our object has been modified in the mean-

time. If we do not check the object and it has become undefined, the compiler will throw an error.

However, we can use optional chaining to make the previous statement more readable:

const area = square?.area();

The character ? after the square object ensures that the area method will be accessed only if the

object has a value. The case where optional chaining shines is in more complicated scenarios

with much more values to check, such as the following:

const width = square?.area()?.width;

In the preceding scenario, we assume that the area property is an optional object that contains

a width property. In that case, we would need to check values for both square and area.

Introduction to TypeScript40

Although the optional chaining feature was added in an earlier version of TypeScript, it has

become very popular in the latest versions of Angular with its support in component templates.

Nullish coalescing
The nullish coalescing feature in TypeScript looks similar to the optional chaining we learned

about in the previous section. However, it is more related to providing a default value when a

variable is not set. Consider the following example that assigns a value to the mySquare variable

only if the square object exists:

const mySquare = square ? square : new Square();

The previous statement is called a ternary operator and operates like a conditional statement. If

the square object is undefined or null, the mySquare variable will take the default value of a new

square object. We can rewrite the previous expression using nullish coalescing:

const mySquare = square ?? new Square();

Although the nullish coalescing feature was added in an earlier version of TypeScript, it has

become very popular in the latest versions of Angular with its support in component templates.

Classes, interfaces, and inheritance
We have already overviewed the most relevant bits and pieces of TypeScript, and now it’s time to

see how everything falls into place with TypeScript classes. Classes are a fundamental concept in

Angular development because everything in the Angular world is a TypeScript class.

Although the class is a reserved keyword in JavaScript, the language itself never had an actual

implementation as in other languages such as Java or C#. JavaScript developers used to mimic

this kind of functionality by leveraging the function object as a constructor type and instantiat-

ing it with the new operator. Other standard practices, such as extending function objects, were

implemented by applying prototypal inheritance or using composition.

The class functionality in TypeScript is flexible and powerful enough to use in our applications.

We already had the chance to tap into classes in the previous chapter. We’ll look at them in more

detail now.

Anatomy of a class
Property members are declared first in a class, then a constructor, and several other methods and

property accessors follow. None contain the reserved function keyword, and all the members

and methods are annotated with a type, except the constructor.

Chapter 2 41

The following code snippet illustrates what a class looks like:

class Car {

 private distanceRun: number = 0;

 private color: string;

 constructor(private isHybrid: boolean, color: string = 'red') {

 this.color = color;

 }

 getGasConsumption(): string {

 return this.isHybrid ? 'Very low' : 'Too high!';

 }

 drive(distance: number): void {

 this.distanceRun += distance;

 }

 static honk(): string {

 return 'HOOONK!';

 }

 get distance(): number {

 return this.distanceRun;

 }

}

The class statement wraps several elements that we can break down:

•	 Members: Any instance of the Car class will contain three properties: color typed as a

string, distanceRun typed as a number, and isHybrid as a boolean. Class members will

only be accessible from within the class itself. If we instantiate this class, distanceRun,

or any other member or method marked as private, won’t be publicly exposed as part

of the object API.

•	 Constructor: The constructor parameter is executed when we create an instance of the

class. Usually, we want to initialize the class members inside it with the data provided in

the constructor signature. We can also leverage the signature to declare class members,

as we did with the isHybrid property.

Introduction to TypeScript42

To do so, we need to prefix the constructor parameter with an access modifier such as

private or public. As we learned when analyzing functions, we can define rest, option-

al, or default parameters, as depicted in the previous example with the color argument,

which falls back to red when it is not explicitly defined.

•	 Methods: A method is a particular member representing a function and may return a

typed value. It is a function that becomes part of the object API but can also be private.

In this case, it can be used as a helper function within the internal scope of the class to

achieve the functionalities required by other class members.

•	 Static members: Members marked as static are associated with the class and not with

the object instances of that class. We can consume static members directly without having

to instantiate an object first. Static members are not accessible from the object instances,

which means they cannot access other class members using the this keyword. These

members are usually included in the class definition as helper or factory methods to

provide a generic functionality unrelated to any specific object instance.

•	 Property accessors: A property accessor is defined by prefixing a typed method with the

name of the property we want to expose using the set (to make it writable) and get (to

make it readable) keywords.

Constructor parameters with accessors
Typically, when we create a class, we give it a name, define a constructor, and create one or more

fields, like so:

class Car {

 make: string;

 model: string;

 constructor(make: string, model: string) {

 this.make = make;

 this.model = model;

 }

}

For every field of the class, we usually need to do the following:

1.	 Add an entry to the constructor

2.	 Assign a value within the constructor

3.	 Declare the field

Chapter 2 43

TypeScript eliminates the preceding boilerplate steps by using accessors on the constructor

parameters:

class Car {

 constructor(public make: string, public model: string) {}

}

TypeScript will create the respective public fields and make the assignment automatically for

us. As you can see, more than half of the code disappears; this is a selling point for TypeScript as

it saves you from typing quite a lot of tedious code.

Interfaces
As applications scale and more classes are created, we need to find ways to ensure consistency

and rule compliance in our code. One of the best ways to address the consistency and validation

of types is to create interfaces. An interface is a code contract that defines a particular schema.

Any artifacts such as classes and functions that implement an interface should comply with this

schema. Interfaces are beneficial when we want to enforce strict typing on classes generated

by factories or when we define function signatures to ensure that a particular typed property is

found in the payload.

In the following snippet, we’re defining the Vehicle interface:

interface Vehicle {

 make: string;

}

Any class that implements the preceding interface must contain a member named make, which

must be typed as a string:

class Car implements Vehicle {

 make: string;

}

Interfaces are also beneficial for defining the minimum set of members any artifact must fulfill,

becoming an invaluable method to ensure consistency throughout our code base.

It is important to note that interfaces are not used just to define minimum class schemas but any

type out there. This way, we can harness the power of interfaces by enforcing the existence of

specific fields that are used later on as function parameters, function types, types contained in

specific arrays, and even variables.

Introduction to TypeScript44

An interface may contain optional members as well. The following is an example of defining an

interface that contains a required message and an optional id property member:

interface Exception {

 message: string;

 id?: number;

}

In the following snippet, we define the contract for our future class with a typed array and a

method, with its returning type defined as well:

interface ErrorHandler {

 exceptions: Exception[];

 logException(message: string, id?: number): void

}

We can also define interfaces for standalone object types, which is quite useful when we need to

define templated constructors or method signatures:

interface ExceptionHandlerSettings {

 logAllExceptions: boolean;

}

Let’s bring them all together by creating a custom error handler class:

class CustomErrorHandler implements ErrorHandler {

 exceptions: Exception[] = [];

 logAllExceptions: boolean;

 constructor(settings: ExceptionHandlerSettings) {

 this.logAllExceptions = settings.logAllExceptions;

 }

 logException(message: string, id?: number): void {

 this.exceptions.push({message, id });

 }

}

The preceding class manages an internal array of exceptions. It also exposes the logException

method to log new exceptions by saving them into an array. These two elements are defined in

the ErrorHandler interface and are mandatory.

Chapter 2 45

So far, we have seen interfaces as they are used in other high-level languages, but interfaces in

TypeScript are stronger and more flexible; let’s exemplify that. In the following code, we’re de-

claring an interface, but we’re also telling the TypeScript compiler to treat the instance variable

as an A interface:

interface A {

 a: number;

}

const instance = { a: 3 } as A;

instance.a = 5;

An example of demonstrating the preceding code is to create a mocking library. When writing

code, we might think about interfaces before we even start thinking about concrete classes be-

cause we know what methods need, but we might not have decided what methods will contain.

Imagine that you are building an order module. You have logic in your order module, and you

know that, at some point, you will need to talk to a database service. You come up with an inter-

face for the database service, and you defer the implementation of this interface until later. At

this point, a mocking library can help you create a mock instance from the interface. Your code,

at this point, might look something like this:

interface DatabaseService {

 save(order: Order): void

}

class Order {}

class OrderProcessor {

 constructor(private databaseService: DatabaseService) {}

 process(order) {

 this.databaseService.save(order);

 }

}

let orderProcessor = new OrderProcessor(mockLibrary.
mock<DatabaseService>());

orderProcessor.process(new Order());

Introduction to TypeScript46

Mocking at this point allows us to defer the implementation of DatabaseService until we are

done writing the OrderProcessor. It also makes the testing experience a lot better. While in other

languages, we need to bring in a mock library as a dependency, in TypeScript, we can utilize a

built-in construct by typing the following:

const databaseServiceInstance = {} as DatabaseService;

In the preceding snippet, we create an empty object as a DatabaseService. However, be aware

that you are responsible for adding a process method to your instance because it starts as an empty

object. It will not raise any problems with the compiler; it is a powerful feature, but it is up to us

to verify that what we create is correct. Let’s emphasize how significant this TypeScript feature

is by looking at some more cases where it pays off to be able to mock things.

Let’s reiterate that the reason for mocking anything in your code is to make it easier to test. Let’s

assume your code looks something like this:

class Auth {

 srv: AuthService = new AuthService();

 execute() {

 if (srv.isAuthenticated()) {}

 else {}

 }

}

A better way to test this is to make sure that the Auth class relies on abstractions, which means

that the AuthService should be created elsewhere and that we use an interface rather than a

concrete implementation. So, we should modify our code so that it looks like this:

interface AuthService {

 isAuthenticated(): boolean;

}

class Auth {

 constructor(private srv: AuthService) {}

 execute() {

 if (this.srv.isAuthenticated()) {}

 else {}

 }

}

Chapter 2 47

To test the preceding class, we would typically need to create a concrete implementation of the

AuthService and use that as a parameter in the Auth instance:

class MockAuthService implements AuthService {

 isAuthenticated() { return true; }

}

const srv = new MockAuthService();

const auth = new Auth(srv);

It would, however, become quite tedious to write a mock version of every dependency that you

wanted to mock. Therefore, mocking frameworks exist in most languages. The idea is to give the

mocking framework an interface from which it would create a concrete object. You would never

have to create a mock class, as we did previously, but that would be something that would be up

to the mocking framework to do internally.

Class inheritance
Just like an interface can define a class, it can also extend the members and functionality of other

classes. We can make a class inherit from another by appending the extends keyword to the class

name, including the name of the class we want to inherit its members from:

class Sedan extends Car {

 model: string;

 constructor(make: string, model: string) {

 super(make);

 this.model = model;

 }

}

In the preceding class, we extend from a parent Car class, which already exposes a member called

make. We can populate the members by the parent class and execute their constructor using the

super method, which points to the parent constructor. We can also override methods from the

parent class by appending a method with the same name. Nevertheless, we can still execute the

original parent’s class methods as it is still accessible from the super object.

Classes and interfaces are basic features of the TypeScript language. As we will see in the fol-

lowing section, decorators enhance the use of classes in an application by extending them with

custom functionality.

Introduction to TypeScript48

Decorators
Decorators are a very cool functionality that allows us to add metadata to class declarations for

further use. By creating decorators, we are defining special annotations that may impact how our

classes, methods, or functions behave or simply altering the data we define in fields or parameters.

They are a powerful way to augment our type’s native functionalities without creating subclasses

or inheriting from other types. It is, by far, one of the most exciting features of TypeScript. It is

extensively used in Angular when designing modules and components or managing dependency

injection, as we will learn later in Chapter 6, Managing Complex Tasks with Services.

The @ prefix recognizes decorators in their name, which are standalone statements above the

element they decorate. We can define up to four different types of decorators, depending on what

element each type is meant to decorate:

•	 Class decorators

•	 Property decorators

•	 Method decorators

•	 Parameter decorators

We’ll look at the previous types of decorators in the following subsections.

Class decorators
Class decorators allow us to augment a class or perform operations on its members. The decora-

tor statement is executed before the class gets instantiated. Creating a class decorator requires

defining a plain function, whose signature is a pointer to the constructor belonging to the class

we want to decorate. The formal declaration defines a class decorator as follows:

declare type ClassDecorator = <TFunction extends
Function>(Target:TFunction) => TFunction | void;

Let’s see how we can use a class decorator through a simple example:

function Banana(target: Function): void {

 target.prototype.banana = function(): void {

 console.log('We have bananas!');

 The Angular framework defines custom decorators, which we will use during the

development of an application.

Chapter 2 49

 }

}

@Banana

class FruitBasket {}

const basket = new FruitBasket();

basket.banana();

In the preceding snippet, we use the banana method, which was not initially defined in the

FruitBasket class. However, we decorate it with the @Banana decorator. It is worth mentioning,

though, that this won’t compile. The compiler will complain that FruitBasket does not have a

banana method, and rightfully so because TypeScript is typed. So, at this point, we need to tell

the compiler that this is valid. So, how do we do that? One way is that, when we create our basket

instance, we give it the type any:

const basket: any = new FruitBasket();

The compiler will not complain about the method now, and the compilation of our code will

complete successfully.

Extending a class decorator
Sometimes, we might need to customize how a decorator operates upon instantiating it. We can

design our decorators with custom signatures and then have them return a function with the

same signature we defined without parameters. The following piece of code illustrates the same

functionality as the previous example, but it allows us to customize the message:

function Banana(message: string) {

 return function(target: Function) {

 target.prototype.banana = function(): void {

 console.log(message);

 }

 }

}

@Banana('Bananas are yellow!')

class FruitBasket {}

const basket: any = new FruitBasket();

basket.banana();

Introduction to TypeScript50

If we run the preceding code, the browser console will print the following message:

Bananas are yellow!

As a rule of thumb, decorators that accept parameters require a function whose signature matches

the parameters we want to configure. The function also returns another function that matches

the signature of the decorator.

Property decorators
Property decorators are applied to class fields and are defined by creating a function whose sig-

nature takes two parameters:

•	 target: The prototype of the class we want to decorate

•	 key: The name of the property we want to decorate

Possible use cases for this decorator are logging the values assigned to class fields when instanti-

ating objects or reacting to data changes in such fields. Let’s see an actual example that showcases

both behaviors:

function Jedi(target: Object, key: string) {

 let propertyValue: string = target[key];

 if (delete target[key]) {

 Object.defineProperty(target, key, {

 get: function() {

 return propertyValue;

 },

 set: function(newValue){

 propertyValue = newValue;

 console.log('${propertyValue} is a Jedi');

 }

 });

 }

}

class Character {

 @Jedi

 name: string;

}

const character = new Character();

character.name = 'Luke';

Chapter 2 51

The preceding snippet follows the same logic as for parameterized class decorators. However,

the signature of the returned function is slightly different to match that of the parameterless

decorator declaration we saw earlier.

Let’s now see an example that depicts how we can log changes on a given class property using

a property decorator:

function NameChanger(callbackObject: any): Function {

 return function(target: Object, key: string): void {

 let propertyValue: string = target[key];

 if (delete target[key]) {

 Object.defineProperty(target, key, {

 get: function() {

 return propertyValue;

 },

 set: function(newValue) {

 propertyValue = newValue;

 callbackObject.changeName.call(this, propertyValue);

 }

 });

 }

 }

}

The NameChanger decorator can be applied in a class to be executed when the name property is

modified:

class Character {

 @NameChanger ({

 changeName: function(newValue: string): void {

 console.log('You are now known as ${newValue}');

 }

 })

 name: string;

}

var character = new Character();

character.name = 'Anakin';

Introduction to TypeScript52

In the preceding snippet, the changeName function is triggered when the value of the property

changes in the character instance.

Method decorators
A method decorator can detect, log, and intervene in how methods are executed. To do so, we

need to define a function whose payload takes the following parameters:

•	 target: Represents the decorated method.

•	 key: The actual name of the decorated method.

•	 descriptor: A property descriptor of the given method. It is a hash object containing,

among other things, a property named value that references the method itself.

In the following example, we’re creating a decorator that displays how a method is called:

function Log(){

 return function(target, key: string, descriptor: PropertyDescriptor) {

 const oldMethod = descriptor.value;

 descriptor.value = function newFunc(...args:any[]){

 let result = oldMethod.apply(this, args);

 console.log('${key} is called with ${args.join(',')} and
result ${result}');

 return result;

 }

 }

}

class Hero {

 @Log()

 attack(...args:[]) { return args.join(); }

}

const hero = new Hero();

hero.attack();

The preceding snippet also illustrates what the arguments were upon calling the method and

the result of the method’s invocation.

Chapter 2 53

Parameter decorator
A parameter decorator, the last one we will learn about, taps into parameters located in function

signatures. It is not intended to alter the parameter information or the function behavior but

to look into the parameter value and perform operations such as logging or replicating data. It

accepts the following parameters:

•	 target: The object prototype where the function, whose parameters are decorated, usually

belongs to a class

•	 key: The name of the function whose signature contains the decorated parameter

•	 index: The index where this decorator has been applied in the parameter’s array

The following example shows a working example of a parameter decorator:

function Log(target: Function, key: string, index: number) {

 const functionLogged = key || target.prototype.constructor.name;

 console.log('The parameter in position ${index} at ${functionLogged}
has been decorated');

}

class Greeter {

 greeting: string;

 constructor (@Log phrase: string) {

 this.greeting = phrase;

 }

}

In the preceding snippet, we declare the functionLogged variable in that way because the value of

the target parameter varies depending on the function whose parameters are decorated. Therefore,

decorating a constructor or a method parameter is different. The former returns a reference to

the class prototype, while the latter returns a reference to the constructor function. The same

applies to the key parameter, which is undefined when decorating the constructor parameters.

Parameter decorators do not modify the value of the parameters decorated or alter the behavior

of the methods or constructors where these parameters live. They usually log or prepare the ob-

ject created to implement additional layers of abstraction or functionality through higher-level

decorators, such as a method or class decorator. Common use case scenarios for this encompass

logging component behavior or managing dependency injection.

Introduction to TypeScript54

Advanced types
We have already learned about some basic types in the TypeScript language that we usually meet

in other high-level languages. In this section, we’ll look at some advanced types that will help

us during Angular development.

Partial
The Partial type is used when we want to create an object from an interface but include some

of its properties:

interface Hero {

 name: string;

 power: number;

}

const hero: Partial<Hero> = {

 name: 'Boothstomper'

}

In the preceding snippet, we can see that the hero object does not include power in its properties.

Record
Some languages, such as C#, have a reserved type when defining a key-value pair object or dic-

tionary, as it is known. In TypeScript, there is no such thing. If we want to define such a type, we

declare it as follows:

interface Hero {

 powers: {

 [key: string]: number

 }

}

However, the preceding syntax is not clear. In a real-world scenario, interfaces have many more

properties. Alternatively, we can use the Record type to define the interface:

interface Hero {

 powers: Record<string, number>

}

It defines the key as a string, which is the name of the power in this case, and the value, which

is the actual power factor, as a number.

Chapter 2 55

Union
We’ve already learned about generics and how they can help us when we want to mix types. A

nice alternative, when we know what the possible types are, is the Union type:

interface Hero {

 name: string;

 powers: number[] | Record<string, number>;

}

In the preceding snippet, we define the powers property as an array of numbers or a key-value

pair collection.

And that wraps up advanced types. As we learned, the TypeScript typing system is very flexible

and allows us to combine types for more advanced scenarios.

In the following section, we will learn how to use modules with TypeScript.

Modules
As our applications scale and grow, there will be a time when we need to organize our code better

and make it sustainable and reusable. Modules are a great way to accomplish these tasks, so let’s

look at how they work and how we can implement them in our application.

A module works at a file level, where each file is the module itself, and the module name matches

the filename without the .ts extension. Each member marked with the export keyword becomes

part of the module’s public API. Consider the following module that is declared in a my-service.

ts file:

export class MyService {

 getData() {}

}

To use the preceding module and its exported class, we need to import it into our application code:

import { MyService } from './my-service';

The ./my-service path is relative to the location of the file that imports the module. If the mod-

ule exports more than one artifact, we place them inside the curly braces one by one, separated

with a comma:

export class MyService {

 getData() {}

Introduction to TypeScript56

}

export const PI = 3.14;

import { MyService, PI } from './my-service';

In the preceding example, the MyService class exports the getData method and the PI variable

in one go.

Summary
It was a long read, but this introduction to TypeScript was necessary to understand the logic

behind many of the most brilliant parts of Angular. It gave us the chance to introduce the lan-

guage syntax and explain the rationale behind its success as the syntax of choice for building the

Angular framework.

We reviewed the type architecture and how we can create advanced business logic when design-

ing functions with various alternatives for parameterized signatures. We even discovered how to

bypass scope-related issues using the powerful arrow functions. We enhanced our knowledge of

TypeScript by exploring some of the most common features used in Angular applications.

Probably the most relevant part of this chapter encompassed our overview of classes, methods,

properties, and accessors and how we can handle inheritance and better application design

through interfaces. Modules and decorators were some other significant features we explored in

this chapter. As we will see very soon, having sound knowledge of these mechanisms is paramount

to understanding how dependency injection works in Angular.

With all this knowledge at our disposal, we can start learning how to apply it by building Angu-

lar applications. In the next chapter, we will learn how to use Angular modules, which are not

the same as JavaScript modules, to structure an Angular application. We will see in detail what

Angular modules are and how we can use them to organize an Angular application in an efficient

and properly structured way.

Chapter 2 57

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

3
Organizing Application into
Modules

The purpose of a web application is to provide end users with a specific set of functionalities to

fulfill their particular needs using a web interface. The functionality of the web application is

organized into cohesive blocks of features.

Application features in an Angular application are represented using Angular modules. An An-

gular module groups specific functionality concerned with a particular application domain or

user workflow.

In this chapter, we will cover the following topics:

•	 Introducing Angular modules

•	 Creating our first module

•	 Grouping application features into modules

•	 Leveraging Angular built-in modules

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular modules.

You can find the related source code in the ch03 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Organizing Application into Modules60

Introducing Angular modules
Angular modules are containers for a particular block of code that adheres to the same function-

ality. An Angular module is dedicated to an application domain, such as orders or customers for

an e-shop application, or a user workflow, such as order checkout or user registration. Generally,

it addresses a particular set of capabilities that an application can have.

The main advantage of the Angular module architecture is that it scales better and is easier to

test. If we think of a module as a particular feature of an application, it allows us to organize our

Angular application so that we can develop a particular piece of functionality independently of

the others. It dramatically enhances team management in large organizations where each devel-

opment team can work in a separate feature. Features can gradually be deployed, ensuring the

seamless operation of our application.

Angular modules are different from JavaScript modules due to the context in which they operate.

As we learned in the previous chapter, JavaScript modules help us organize our code in multiple

files. On the other hand, Angular modules work in the context of the Angular framework. They

play a significant role when the framework compiler converts an Angular application into JavaS-

cript code. The role of an Angular module is to group all the artifacts of an Angular application

that share common functionality.

As we learned in Chapter 1, Building Your First Angular Application, a typical Angular application

contains at least a main module called AppModule that is defined in the app.module.ts file:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Chapter 3 61

The import statements at the top of the file are used to import the following artifacts into the

main Angular module:

•	 NgModule: This is used to configure an Angular module.

•	 BrowserModule: Configures an Angular application to run in the browser platform. We

have already learned that the Angular framework is cross-platform in Chapter 1, Building

Your First Angular Application. We would import a different module to run the Angular

application on another platform, such as the server.

•	 AppComponent: The main component of the Angular application.

The NgModule is an Angular decorator similar to the TypeScript decorators we already saw in the

previous chapter. It accepts an object as a parameter with the following properties:

•	 declarations: This contains Angular artifacts that share common functionality bound

to a specific application feature. Artifacts that can be added to this property are Angular

components, directives, and pipes, which we will see in more detail later in the book. The

main module of the application contains the main component by default.

•	 imports: This contains other Angular modules whose declarations are needed by the

current module. When an Angular module needs to use features from another module, it

must import it first to start using it. The main application module imports BrowserModule

because it needs its functionality for loading the current application into the browser.

•	 providers: It contains special-purpose Angular artifacts that are called services. Services

handle complex tasks in an Angular application, such as communicating with an HTTP

endpoint or interacting with a browser API. We will learn more about them in Chapter

6, Managing Complex Tasks with Services. Initially, the main application module does not

need any services. Services provided in the main application module are accessible ap-

plication-wide.

•	 bootstrap: Defines the component that will be loaded at application startup. The

bootstrap property is set only once in the main application module and is usually the

main component. You should not change it unless there is a compelling reason.

The imports array should not be confused with the import statements at

the top of the module file. The former is used to import functionality from

other Angular modules into the current module, whereas the latter is for

importing their respective JavaScript modules.

Organizing Application into Modules62

The AppModule TypeScript class is empty because Angular modules usually do not contain any

logic. As we have learned, the primary purpose of an Angular module is to group artifacts with

similar functionality. Their purpose is fulfilled by using the @NgModule decorator above the class.

The Angular framework would treat AppModule as a single TypeScript class if the decorator was

missing. It actually tells Angular that this is indeed an Angular module.

In addition, to the main application module, we can create other Angular modules that represent

features of the application and are typically called feature modules. In the next section, we will

learn how to create feature modules using the Angular CLI.

Creating our first module
When creating a new Angular application, the first step is to define the different features our

application needs. We should remember that each one should make sense on its own in isolation

from the others. Once we’ve defined the required features, we will create a module for each. Each

module will then be filled with the Angular artifacts that shape the feature it represents. Always

remember the principles of encapsulation and reusability when defining your feature set.

If we wanted to create an e-shop application, we would typically need a module to manage the

stock of our products. To create a new module in an Angular application, we use the generate com-

mand of the Angular CLI, passing the name of the module as a parameter:

ng generate module products

The preceding command will create a products folder inside the src\app folder of our Angular

workspace. The products folder is the container for Angular artifacts that contain functionality

related to the products module.

It will also create the products.module.ts file, which is the TypeScript file that contains the

Angular module:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

@NgModule({

Keeping all module artifacts inside the module’s folder is good practice. It helps you

visualize the functionality of a module at a glance and concentrate on that specific

module during development. It is also helpful when you decide to make a refactor

to your code and must move the whole module.

Chapter 3 63

 declarations: [],

 imports: [

 CommonModule

]

})

export class ProductsModule { }

The preceding module seems slightly different from the main application module we saw earlier

because it currently contains less functionality.

The declarations array is initially empty because our module has no functionality yet. When

we add new Angular artifacts to our module to implement specific functionality, they will appear

in that array. The next chapter will teach us how to create a component in an Angular module.

The imports array contains the CommonModule by default. The CommonModule is a built-in module

of the Angular framework that contains common Angular artifacts we usually would like to use

in an Angular application.

We will learn more about other built-in modules of the Angular framework in the Leveraging

Angular built-in modules section. In real-world applications, feature modules can also share their

encapsulated functionality with other modules. We will learn how to accomplish that in the

following section.

Group application features into modules
Each Angular module represents a particular feature of an Angular application. The way these

feature modules are added to the application depends on a business’s needs. In this section, we

will investigate three different ways:

•	 Adding modules in the main application module

•	 Adding modules to another feature module

•	 Grouping feature modules by type

In the following sections, we will explore each way in more detail.

When importing other modules, we should take extra precautions not to cause any

cyclic dependencies by using one that has already imported our module. Otherwise,

we may end up with circular reference issues.

Organizing Application into Modules64

Add a module in the main module
We have already learned how to create a new Angular module for our application using the Angular

CLI. Creating an Angular module does not make it automatically available to the application. It

is our responsibility to register the new module with the rest of the application using the main

application module:

1.	 Open the app.module.ts file and add a new import statement to import ProductsModule:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { ProductsModule } from './products/products.module';

2.	 Add the ProductsModule class into the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 ProductsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

Our Angular application is now fully aware of the new module we created. Importing an Angular

module into the main application module extends the capabilities of the application because it

adds the existing functionality of the imported module into the Angular application.

The purpose of the main application module is to orchestrate the interaction of

feature modules throughout the application and is not tied to a specific feature.

Generally, we should never touch the app.module.ts file, except to import a new

feature module to add new functionality to the application.

Chapter 3 65

The following is a representation of an Angular application organized into three features:

Figure 3.1: Module hierarchy

In the preceding diagram, each circle represents a particular block of functionality implemented

using Angular components. We will learn more about components in Chapter 4, Enabling User

Experience with Components.

Additional to the main application module, other feature modules may need existing functionality

from the products module. In this case, we need to follow the same process as we did for the main

module to make it available to other modules as well. In the following section, we will learn how

to expose functionality from the products module to other feature modules of an application.

Exposing feature modules
An e-shop web application will generally need a module to manage orders. We will use the Angular

CLI to generate a new Angular module called orders:

ng generate module orders

Organizing Application into Modules66

Customers must select products from a list when they place a new order through the applica-

tion. The product list will be a particular block of functionality that exists in the products mod-

ule. Consider that the product list is an existing component inside the products module called

ProductListComponent.

The TypeScript file of the products module would look like the following:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { ProductListComponent } from './product-list/product-list.
component';

@NgModule({

 declarations: [

 ProductListComponent

],

 imports: [

 CommonModule

]

})

export class ProductsModule { }

As we have already learned, when a module needs functionality from another feature module, it

must import it. So, the orders module must only add ProductsModule in its imports array:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { ProductsModule } from '../products/products.module';

@NgModule({

 declarations: [],

 imports: [

 CommonModule,

 ProductsModule

]

We will not implement the ProductListComponent yet because components will

be covered in the next chapter.

Chapter 3 67

})

export class OrdersModule { }

However, the preceding code is insufficient because Angular modules use a public API to com-

municate with other modules in an application. All components of an Angular module are not

exposed to that API by default. We have already seen one part of the API: the imports array of

the @NgModule decorator. To expose a component through the API, we need to use another part

of the decorator: the exports array. When we want to make a component publicly available to

other modules that import an existing feature module, we need to add it to the exports array of

the module that owns it:

@NgModule({

 declarations: [

 ProductListComponent

],

 imports: [

 CommonModule

],

 exports: [ProductListComponent]

})

In the preceding code, the orders module can now use the product list from the products module

normally.

Remember to always add the import statement at the top of the file first; otherwise,

Angular will not be able to recognize ProductsModule.

VS Code will also help by adding the import statement directly after typing the

module name in the imports array. If this does not work, you can do it manually

by clicking on ProductsModule and selecting the Code Actions menu from the

blue bulb icon.

The exports array should not be confused with the export statement in front of the

TypeScript class. The former is used for Angular modules, whereas the latter is to

export the TypeScript class so that it can be imported into other Angular module files.

Organizing Application into Modules68

So far, we have seen two types of modules: the main application module and the feature module.

There are also other types of modules that we can use in Angular applications that serve specific

purposes and needs. We’ll look at these in the next section.

Organizing modules by type
Angular modules are used to group similar functionality and provide this to other modules. They

can be further organized by the type of functionality and how an Angular application loads them.

We can separate modules according to the feature that they represent:

•	 Core module: This usually contains application-wide artifacts that do not fit in a specific

module. Such artifacts are components that are loaded once in an application, such as a

top bar that contains the main menu of the application, a footer component with copy-

right information, or a loading spinner. It also contains services that can be shared among

modules, such as a local cache service or a custom logger. This module is usually called

core, and the accompanying TypeScript file is named core.module.ts. The core module

should be loaded only once in the main application module.

•	 Shared module: This contains Angular artifacts such as components, directives, and pipes

that can be used in multiple feature modules. It may also provide a container for other

exported modules that contain reusable artifacts. This module is usually called shared,

and the accompanying TypeScript file is named shared.module.ts. The shared module

is imported into each feature module that wants to use its exported artifacts.

The preceding list is a recommendation on how to group your Angular modules for specific types

of artifacts. However, the flexibility of the Angular framework allows you to use a custom grouping

that fits your particular business needs.

We can also distinguish between modules according to how the Angular framework loads them:

•	 Eager-loaded modules: These are loaded at the application startup. We can distinguish

between an eagerly loaded module by whether it is declared in the imports array of an-

other module or not. All feature modules we have used in the chapter are eagerly loaded.

•	 Lazy-loaded modules: These are loaded on-demand, usually due to in-app navigation.

Lazy-loaded modules are not declared in the imports array of a module, but they have

their specific way of loading, as we will learn in Chapter 9, Navigate through Application

with Routing.

Chapter 3 69

How Angular loads a module is directly related to the final bundle of an application. In Chapter

13, Bringing Application to Production, we will see that how we load our Angular modules affects

the build process of our application directly.

We have already learned how to create Angular modules and add them to an Angular application.

In the following section, we will see some of the built-in modules that the Angular framework

provides us out of the box.

Leveraging Angular built-in modules
We have already learned that the Angular framework contains a rich collection of first-party li-

braries that can help us during the development of an Angular application. The functionality of

each library is exposed through an Angular module. We need to import these modules into our

applications to start using their functionality, as with any other module in Angular. Below are

some of the most widely used modules of the Angular framework:

•	 BrowserModule: This is used to run Angular applications in the browser and must be

imported only once in an Angular application.

•	 CommonModule: This contains specific Angular artifacts that support the Angular template

syntax and enrich our HTML templates. Typical examples include directives for looping or

displaying HTML content conditionally and applying CSS styles in HTML. We will work

most of the time with this module in this book.

•	 FormsModule/ReactiveFormsModule: This allows us to build HTML forms for interacting

with user input data. We will learn more about Angular Forms in Chapter 10, Collecting

User Data with Forms.

•	 HttpClientModule: This enables communication and data exchange with a remote end-

point over HTTP. We will learn more about HTTP communication in Chapter 8, Commu-

nicating with Data Services over HTTP.

•	 RouterModule: This performs and handles navigation in an Angular application. We will

learn more about Angular Router in Chapter 9, Navigate through Application with Routing.

•	 BrowserAnimationsModule: This cooperates with the Angular Material library and enables

UI animations in an Angular application. We will learn more about Angular Material in

Chapter 11, Introduction to Angular Material.

The preceding list contains Angular modules you will primarily use in an Angular application as

you start out. The Angular framework contains a lot more for many business needs and use cases.

Organizing Application into Modules70

Summary
Angular modules are an essential part of an Angular application. They define the main features

of the application and organize them cohesively and efficiently.

We learned the purpose of a module in an Angular application and how different they are from

JavaScript modules. We also explored the structure of an Angular module and how Angular uses

decorators to configure it.

We also learned the different ways to add a module in an Angular application and how modules

communicate with each other over a public API. Finally, we saw how we could group modules

according to their features and some of the most widely used Angular built-in modules.

In the next chapter, we will learn more about the functionality that goes into an Angular module

and how it can be represented as an Angular component.

4
Enabling User Experience with
Components

So far, we have had the opportunity to take a bird’s-eye overview of the Angular framework. We

learned how to create a new Angular application using the Angular CLI and how to group appli-

cation features into modules. We saw how to use Angular modules and organize our application

in an efficient and cohesive way that empowers scalability and testability.

As we learned, Angular modules extend our Angular applications by adding extra functionality.

We have already mentioned that the functionality of a module is mainly represented using Angular

components. We seem to have everything we need to explore further possibilities that Angular

brings to the game regarding creating interactive components and how they can communicate

with each other.

In this chapter, we will learn about the following concepts:

•	 Creating our first component

•	 Interacting with the template

•	 Component inter-communication

•	 Encapsulating CSS styling

•	 Deciding on a change detection strategy

•	 Introducing the component lifecycle

Enabling User Experience with Components72

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular compo-

nents. You can find the related source code in the ch04 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Creating our first component
Components are the basic building blocks of an Angular application. They control different parts of

a web page called views, such as a list of products or an order checkout form. They are responsible

for the presentational logic of an Angular application, and they are organized in a hierarchical

tree of components that can interact with each other:

Figure 4.1: Component architecture

The architecture of an Angular application is based on Angular components. Each Angular com-

ponent can communicate and interact with one or more components in the component tree. As

we can see in the previous diagram, a component can simultaneously be a parent of some child

components and a child of another parent component.

In this section, we will explore the following topics about Angular components:

•	 The structure of an Angular component

•	 Registering components with modules

•	 Creating standalone components

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Chapter 4 73

We will start our journey by investigating the internals of an Angular component.

The structure of an Angular component
As we learned in Chapter 1, Building Your First Angular Application, a typical Angular application

contains at least a main component that consists of multiple files. The TypeScript file of the

component is defined in the app.component.ts file:

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'Learning Angular';

}

The import statement at the top of the file is used to import the Component artifact from the @

angular/core npm package. The Component artifact is an Angular decorator that is used to con-

figure an Angular component. It contains the following properties:

•	 selector: A CSS selector that instructs Angular to load the component in the location

that finds the corresponding tag in an HTML template. The Angular CLI adds the app

prefix by default, but you can customize it using the --prefix option when creating the

Angular project.

•	 templateUrl: Defines the path of an external HTML file that contains the HTML tem-

plate of the component. Alternatively, you can provide the template inline using

the template property.

•	 styleUrls: Defines a list of paths that point to external CSS style sheet files. Alternatively,

you can provide the styles inline using the styles property.

The TypeScript file of the component also has a TypeScript class called AppComponent that contains

a title property. The @Component decorator above the class tells Angular that it is an Angular

component. If the decorator was missing, the Angular framework would treat it as a simple

TypeScript class.

Enabling User Experience with Components74

Registering components with modules
In addition to the main application component, we can create other Angular components that

provide specific functionality to the Angular module. In the previous chapter, we created an

Angular module for managing the products of our e-shop application and used an imaginary

product list component. Now it is time to create this component for real!

To create a new component in an Angular application, we use the generate command of the

Angular CLI, passing the name of the component as a parameter. Run the following command

inside the products folder we created in the previous chapter:

ng generate component product-list

The preceding command will create the product-list component and register it with the prod-

ucts module.

Creating an Angular component is a two-step process. It includes creating the necessary files of

the component and registering it with an Angular module. The preceding command will create

a product-list folder that contains the individual component files we learned about in Chapter

1, Building Your First Angular Application. At the same time, the Angular CLI will register the spe-

cific component with the products module by adding the ProductListComponent class in the

declarations array of the products.module.ts file:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { ProductListComponent } from './product-list/product-list.
component';

@NgModule({

 declarations: [

 ProductListComponent

],

 imports: [

 CommonModule

]

If we run the generate command in the src\app folder, it will register it with the

main application module. We do not want this because it violates the principle of

modularity and re-usability of Angular modules.

Chapter 4 75

})

export class ProductsModule { }

When we register a component with an Angular module, we give it a compilation context. The

component can find everything that needs to be loaded inside that context. However, we can

create components that do not exist in the context of a specific Angular module.

Creating standalone components
A component that is not registered with an Angular module is called a standalone component.

Standalone components do not need a compilation context from an Angular module because

they import any Angular artifacts they need by themselves. To create a standalone component

using the Angular CLI, we pass the standalone option in the generate command that we learned

about earlier:

 ng generate component product --standalone

The TypeScript file of a standalone component is slightly different, as we can see in the product.

component.ts file:

import { Component } from '@angular/core';
import { CommonModule } from '@angular/common';

@Component({
 selector: 'app-product',
 standalone: true,
 imports: [CommonModule],
 templateUrl: './product.component.html',
 styleUrls: ['./product.component.css']
})
export class ProductComponent {}

The @Component decorator contains the following additional properties:

•	 standalone: Indicates whether a component is standalone or not.

•	 imports: Contains Angular modules or other standalone components that the component

needs to be loaded correctly. The Angular CLI adds CommonModule by default when gen-

erating new standalone components.

Angular components must be registered with only one Angular module.

Enabling User Experience with Components76

Looking closely, you may notice that the @Component decorator does the same job as an Angular

module regarding imported artifacts. It looks like we moved the imports array from the Angular

module to the component decorator. Also, you will notice that the component generation did

not modify any Angular module.

Standalone components can import Angular modules and vice versa. All we have to do is add the

standalone component in the imports array of the module as if it was a module itself:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { ProductListComponent } from './product-list/product-list.
component';

import { ProductComponent } from './product/product.component';

@NgModule({

 declarations: [

 ProductListComponent

],

 imports: [

 CommonModule,

 ProductComponent

]

})

export class ProductsModule { }

Importing ProductComponent into the ProductsModule makes the standalone component avail-

able module-wide.

Standalone components are a revolutionary way to adopt a simpler and component-centric ap-

proach to building Angular applications. We learned how to create them, and we also saw how

to create components and register them with an Angular module.

A standalone component should not be added to the declarations array of an

Angular module because that would make it registered with that module.

Chapter 4 77

In this section, we focused on the TypeScript class of Angular components, but how do they

interact with their HTML template?

In the following section, we will learn how to display the HTML template of an Angular compo-

nent on a page. We will also see how to use the Angular template syntax for interacting between

the TypeScript class of the component and its HTML template.

Interacting with the template
As we have learned, creating an Angular component using the Angular CLI involves generating

a set of accompanying files. One of these files is the component template containing the HTML

content displayed on the page. In this section, we will explore how to display and interact with

the template through the following topics:

•	 Loading the component template

•	 Displaying data from the component class

•	 Styling the component

•	 Getting data from the template

We will start our journey in component template land by exploring how we render the compo-

nent on the web page.

Loading the component template
We have already learned that Angular uses the selector to load the component in an HTML tem-

plate. A typical Angular application loads the template of the main component at application

startup. The <app-root> tag we saw in Chapter 1, Building Your First Angular Application, is the

selector of the main application component. To load a component we have created, such as the

product list component, we need to add its selector inside an HTML template.

Standalone components are recommended for quick prototyping, demo purposes,

or when learning Angular for the first time. As you progress and add more features

to your application, you may need to use Angular modules to organize your com-

ponent hierarchy better.

Enabling User Experience with Components78

For this scenario, we will load it in the template of the main application component:

1.	 Open the app.component.html file of the Angular application we are currently working

on and replace its content with the following:

<app-product-list></app-product-list>

After you add the preceding snippet, you will notice that you get the following error in

the editor:

Figure 4.2: Template error

The previous error is caused because ProductsModule does not yet expose the product

list component through its public API.

2.	 Open the products.module.ts file and add the ProductListComponent class in the

exports array of the @NgModule decorator:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { ProductListComponent } from './product-list/product-list.
component';

@NgModule({

 declarations: [

 ProductListComponent

],

 imports: [

 CommonModule

],

 exports: [ProductListComponent]

Chapter 4 79

})

export class ProductsModule { }

3.	 Run the following command to start the Angular application:

ng serve

After the application has been built successfully, navigate to http://localhost:4200 to preview

it. The web page displays the following text:

product-list works!

The displayed text is the content of the component template that exists inside the product-list.

component.html file. The Angular CLI creates a default HTML template when creating a new

component that consists of an HTML paragraph element containing the component selector:

<p>product-list works!</p>

In the following sections, we will see how to use the Angular template syntax and interact with

the template through the TypeScript class. We will start exploring how to display dynamic data

defined in the TypeScript class of the component.

Displaying data from the component class
We have already stumbled upon interpolation to display a property value from the component

class to the template:

{{title}}

Angular converts the title component property into text and displays it on the screen. An alter-

native way to perform interpolation is to bind the title property to the innerText property of

the span HTML element, a method called property binding:

In the preceding snippet, we bind to the Document Object Model (DOM) property of an ele-

ment, not an HTML attribute, as it looks at first sight. The property inside square brackets is

called the target property and is the property of the DOM element into which we want to bind.

The variable on the right is called the template expression and corresponds to the title property

of the component.

Enabling User Experience with Components80

To better understand how the Angular templating mechanism works, we need first to understand

how Angular interacts with attributes and properties. It defines attributes in HTML to initialize

a DOM property, then uses data binding to interact directly with the property.

To set the attribute of an HTML element, we use the attr. syntax through property binding. For

example, to set the aria-label accessibility attribute of an HTML element, we would write the

following:

<p [attr.aria-label]="myText"></p>

In the preceding snippet, myText is a property in the corresponding Angular component. Remem-

ber that property binding interacts with the properties of Angular components. Therefore, if we

wanted to set the value of the innerText property directly to the HTML, we would write the text

value surrounded by single quotes:

In this case, the value passed to the innerText property is static text, not a component property.

Property binding in the Angular framework is convenient for displaying data and styling purposes.

Styling the component
Styles in a web application can be applied either using the class or style attribute of an HTML

element:

<p class="star"></p>

<p style="color: greenyellow"></p>

The Angular framework provides two types of property binding to set both of them dynami-

cally, class binding and style binding. We can apply a single class to an HTML element using

the following syntax:

<p [class.star]="isLiked"></p>

When we open a web page in a browser, it parses the HTML content of the page and

converts it into a tree structure, the DOM. Each HTML element of the page is con-

verted to an object called a node, which represents part of the DOM. A node defines

a set of properties and methods representing the object API. The innerText is such

a property and is used to set the text inside of an HTML element.

Chapter 4 81

In the preceding snippet, the star class will be added to the paragraph element when

the isLiked expression is true. Otherwise, it will be removed from the element. If we want to

apply multiple classes simultaneously, we can use the following syntax:

<p [class]="currentClasses"></p>

The currentClasses variable is a component property. The value of an expression that is used

in a class binding can be one of the following:

•	 A space-delimited string of class names such as 'star active'.

•	 An object with keys as the class names and values as boolean conditions for each key. A

class is added to the element when the value of the key, with its name, evaluates to true.

Otherwise, the class is removed from the element:

currentClasses = {

  star: true,

  active: false

};

Instead of styling our elements using CSS classes, we can set styles directly to them. Like the class

binding, we can apply single or multiple styles simultaneously using a style binding. A single style

can be set to an HTML element using the following syntax:

<p [style.color]="'greenyellow'"></p>

In the preceding snippet, the paragraph element will have a greenyellow color. Some styles can

be expanded further in the binding, such as the width of the paragraph element, which we can

define along with the measurement unit:

<p [style.width.px]="100"></p>

The paragraph element will be 100 pixels long. If we need to toggle multiple styles at once, we

can use the object syntax:

<p [style]="currentStyles"></p>

The currentStyles variable is a component property. The value of an expression that is used in

a style binding can be one of the following:

•	 A string with styles separated by a semicolon such as 'color: greenyellow; width: 

100px'.

Enabling User Experience with Components82

•	 An object where its keys are the names of styles and the values are the actual style values:

currentStyles = {

  color: 'greenyellow',

  width: '100px'

};

Class and style bindings are powerful features that Angular provides out of the box. Together with

the CSS styling configuration that we can define in the @Component decorator, it gives endless

opportunities for styling Angular components. An equally compelling feature is the ability to read

data from a template into the component class.

Getting data from the template
In the previous section, we learned how to use property binding to display data from the compo-

nent class. Real-world scenarios usually involve bidirectional data flow through components. To

get data from the template back to the component class, we use a technique called event binding.

Consider the following HTML snippet:

<button (click)="onClick()">Click me</button>

An event binding listens for DOM events on the target HTML element and responds to those events

by calling corresponding methods in the component class. In the preceding case, the component

calls the onClick method when the user clicks the button. The event inside parentheses is called

the target event and is the event we are currently listening to. Event binding in Angular supports

all native DOM events found at https://developer.mozilla.org/docs/Web/Events.

The expression on the right is called the template statement and corresponds to the onClick meth-

od of the component class.

The interaction of a component template with its corresponding TypeScript class is summarized

in the following diagram:

Figure 4.3: Component-template interaction

https://developer.mozilla.org/docs/Web/Events

Chapter 4 83

The same principle we follow for interacting with the component template and class can be used

when we want to communicate between components.

Component inter-communication
In a nutshell, Angular components expose a public API that allows them to communicate with

other components. This API encompasses input properties, which we use to feed the component

with data. It also exposes output properties we can bind event listeners to, thereby getting timely

information about changes in the state of the component.

Let’s look at how Angular solves the problem of injecting data into and extracting data from

components through quick and easy examples in the following sections.

Passing data using an input binding
We will expand our products module and create a new component that will display the details

of a product, such as a name and a price. Data representing the specific product details will be

dynamically passed from the product list component.

We will start by creating and configuring the component to display product details:

1.	 Run the following Angular CLI command inside the src\app\products folder of the project

to create the new Angular component:

ng generate component product-detail

2.	 Open the product-detail.component.ts file of the new component and import the Input

artifact from the @angular/core npm package:

import { Component, Input } from '@angular/core';

The Input artifact is an Angular property decorator that is used when we want to pass

data from one component down to another component.

3.	 Define a name property in the ProductDetailComponent class that uses the Input decorator

and initialize it to an empty string:

@Input() name = '';

For now, we will only pass and display the name of the product. To follow along with

code samples, copy the CSS styles from the styles.css file of the GitHub repository,

as defined in the Technical requirements section.

Enabling User Experience with Components84

4.	 Now, open the product-detail.component.html file and add the following code to dis-

play the name of a product:

<h2>Product Details</h2>

<h3>{{name}}</h3>

In the preceding template, we use the Angular interpolation syntax to convert the name

property to text and display it on the page.

We have already completed most of the work; we now need to pass the value of the name input

property from the product list component so that it can be adequately displayed in the product

detail component:

1.	 Open the product-list.component.ts file and create a selectedProduct property in

the ProductListComponent class:

selectedProduct = '';

2.	 Open the product-list.component.html file and replace its content with the following

HTML template:

<h2>Product List</h2>

 <li (click)="selectedProduct = 'Webcam'">Webcam

 <li (click)="selectedProduct = 'Microphone'">Microphone

 <li (click)="selectedProduct = 'Wireless Keyboard'">Wireless
Keyboard

In the preceding code, we have created a list of products using an unordered list HTML

element. When the user clicks on a product, the selectedProduct property is set accord-

ingly through the binding in the click event of the element.

3.	 Now, add the following snippet after the list of products to load the product details com-

ponent:

<app-product-detail [name]="selectedProduct"></app-product-detail>

In the preceding snippet, we use property binding to bind the value of

the selectedProduct property into the name input property of the product detail com-

ponent. This approach is called input binding.

Chapter 4 85

If we now run the application, we should see the following product list:

Figure 4.4: Product list

Notice that the product details section is displayed, although we have not selected a product yet.

We will learn how to solve that in the following chapter using Angular built-in directives.

Clicking on a product from the list should display the product name under the Product Details

section:

Figure 4.5: Product details

That’s it! We have successfully passed data from one component to another. In the following

section, we’ll learn how to listen for events in a component and respond to them.

Listening for events using an output binding
We learned that input binding is used when we want to pass data between components. This

method is applicable in scenarios where we have two components, one that acts as the parent

component and the other as the child. What if we want to communicate the other way around,

from the child component to the parent? How do we notify the parent component about specific

actions that occur in the child component?

There are cases where we want to pass a static text or a value that we are sure will

never change. In these cases, we can omit the square brackets of the input binding

as follows:

<app-product-detail name="Webcam"></app-product-detail>

Enabling User Experience with Components86

Consider a scenario where the product details component should have a button to add the current

product to a shopping cart. The shopping cart would be a property of the product list component.

How would the product detail component notify the product list component that the button was

clicked? Let’s see how we would implement this functionality in our application:

1.	 Open the product-detail.component.ts file and import the Output and EventEmitter

artifacts from the @angular/core npm package:

import { Component, Input, Output, EventEmitter } from '@angular/
core';

The Output artifact is an Angular property decorator that is used when we want to create

events that will be triggered from one component up to another. The EventEmitter class

is used to emit those events.

2.	 Define a new component property that uses the Output decorator and is initialized to a

new EventEmitter object:

@Output() bought = new EventEmitter();

3.	 In the same TypeScript file, create the following method:

buy() {

 this.bought.emit();

}

The buy method calls the emit method on the bought output event we created in the

previous step. The emit method emits an event and notifies any component currently

listening to the event.

4.	 Now, add a <button> element in the component template and bind the buy method to

its click event:

<h2>Product Details</h2>

<h3>{{name}}</h3>

<button (click)="buy()">Buy Now</button>

5.	 We are almost there! Now, we need to wire up the binding in the product list component so

that the two components can communicate. Open the product-list.component.ts file

and create the following method:

onBuy() {

 window.alert('You just bought ${this.selectedProduct}!');

}

Chapter 4 87

In the preceding snippet, we use the native alert method of the browser window to

display a dialog to the user.

6.	 Finally, modify the selector of the product detail component in the product-list.

component.html file:

<app-product-detail [name]="selectedProduct" (bought)="onBuy()"></
app-product-detail>

In the preceding snippet, we use event binding to bind the onBuy method of

ProductListComponent into the bought output property of the product detail component.

This approach is called output binding.

Select a product from the list and click on the Buy Now button in the currently running applica-

tion. You should see something like the following:

Figure 4.6: Alert window

You can see an overview of the component communication mechanism that we have already

discussed in the following diagram:

Figure 4.7: Component inter-communication

The output event of the product details component does nothing more and nothing less than

emitting an event to the parent component. However, we can use it to pass arbitrary data through

the emit method, as we will learn in the following section.

Enabling User Experience with Components88

Emitting data through custom events
The emit method of an EventEmitter property can accept any data to pass up to the parent compo-

nent. The proper way is initially to define the data type that can be passed to the EventEmitter prop-

erty.

Currently, the product list component already knows the selected product. So, it already knows

the product that the user bought. Let’s assume this was not the case, and the product list com-

ponent could only know the selected product after the user clicks on the Buy Now button. We

would use generics of the EventEmitter class to declare the type of data that would be passed

into the product list component:

@Output() bought = new EventEmitter<string>();

The buy method of the ProductDetailComponent class would then call the emit method, passing

a string value:

buy() {

 this.bought.emit(this.name);

}

The data would be available in the template of the product list component through an $event 

object:

<app-product-detail [name]="selectedProduct" (bought)="onBuy($event)"></
app-product-detail>

The $event object is a reserved keyword in Angular that contains the payload data of an

event emitter from an output binding. Additionally, the signature of the onBuy method in the

ProductListComponent class should change accordingly:

onBuy(name: string) {

 window.alert('You just bought ${name}!');

}

Input and output bindings are a great way to communicate between components using the public

API. There are cases, though, where we want to access a property or a method of a component

directly using local template reference variables.

Chapter 4 89

Local reference variables in templates
We have seen how we can bind data to our templates using interpolation with the double curly

braces syntax. Besides this, we often spot named identifiers prefixed by a hash symbol (#) in the

elements belonging to our components or even regular HTML elements. These reference identifiers,

namely template reference variables, are used to refer to the components flagged with them in

our template views and then access them programmatically. Components can also use them to

refer to other elements in the DOM and access their properties.

We have learned how components communicate by listening to emitted events using event binding

or passing data through input binding. But what if we could inspect the component in depth, or at

least its exposed properties and methods, and access them without going through the input and

output bindings? Setting a local reference on the component itself opens the door to its public API.

We can declare a template reference variable for the product detail component in the product-

list.component.html file as follows:

<app-product-detail

 #product

 [name]="selectedProduct"

 (bought)="onBuy()"

></app-product-detail>

From that moment, we can access the members of the component directly and even bind it in

other locations of the template, such as displaying the product name:

{{product.name}}

This way, we do not need to rely on the input and output properties and can manipulate the

value of such properties.

 The public API of a component consists of all public and protected members of

the TypeScript class.

The local reference variable approach is used when we do not have control over the

child component to add input or output binding properties.

Enabling User Experience with Components90

We have mainly explained how the component class interacts with its template or other compo-

nents, but we have barely been concerned about their styling.

Encapsulating CSS styling
We can define CSS styling within our components to better encapsulate our code and make it

more reusable. In the Creating our first component section, we learned how to define CSS styles

for a component using an external CSS file through the styleUrls property, or by defining CSS

styles inside the TypeScript component file with the styles property.

The usual rules of CSS specificity govern both ways:

https://developer.mozilla.org/docs/Web/CSS/Specificity

CSS management and specificity become a breeze on browsers that support Shadow DOM, thanks

to scoped styling. CSS styles apply to the elements contained in the component, but they do not

spread beyond their boundaries.

On top of that, Angular embeds style sheets at the head of a document so that they may affect

other elements of our application. To prevent this from happening, we can set up different levels

of view encapsulation.

View encapsulation is how Angular needs to manage CSS scoping within the component

for both Shadow DOM-compliant browsers and those without support. It can be changed

by setting the encapsulation property of the @Component decorator in one of the follow-

ing ViewEncapsulation enumeration values:

•	 Emulated: This is the default option and entails an emulation of native scoping in Shadow

DOM, by sandboxing the CSS rules under a specific selector that points to a component.

This option is preferred to ensure that component styles do not leak outside the compo-

nent and are not affected by other external styles.

•	 Native: Uses the native Shadow DOM encapsulation mechanism of the renderer that

works only on browsers that support Shadow DOM.

•	 None: Template or style encapsulation is not provided. The styles are injected as they were

added into the <head> element of the document.

We will explore the Emulated and None options due to their extended support, using an example:

1.	 Open the product-detail.component.css file and add a CSS style to change the color

of the <h2> element:

https://developer.mozilla.org/docs/Web/CSS/Specificity

Chapter 4 91

h2 {

 border: 2px dashed black;

}

2.	 Run the application using the ng serve command and notice that the Product Details

caption has a black dashed border around it:

Figure 4.8: Default view encapsulation

The Product List section, which is also an <h2> element, was not affected by the style

because the default encapsulation scopes all CSS styles defined to the specific component.

3.	 Now, open the product-detail.component.ts file and set the component encapsulation

to None:

import { Component, Input, Output, EventEmitter, ViewEncapsulation }
from '@angular/core';

@Component({

 selector: 'app-product-detail',

 templateUrl: './product-detail.component.html',

 styleUrls: ['./product-detail.component.css'],

 encapsulation: ViewEncapsulation.None

})

4.	 The browser refreshes our application, and the resulting page now looks like the following:

Figure 4.9: No view encapsulation

Enabling User Experience with Components92

In the preceding image, the CSS style has leaked up to the component tree and has affect-

ed the <h2> element of the product list component. The Product List section is now also

surrounded by a dashed border.

The encapsulation of the Angular component can solve many issues when styling our compo-

nents. However, it should be used with caution because, as we already learned, CSS styles may

leak into parts of the application and produce unwanted effects.

Another property of the @Component decorator that is not widely used but is very powerful is the

change detection strategy.

Deciding on a change detection strategy
Change detection is the mechanism that Angular uses internally to detect changes that occur

in component properties and reflect these changes to the view. It is triggered on specific events

such as when the user clicks on a button, an asynchronous request is completed, or a setTimeout

and setInterval method is executed. Angular monkey patches these event types by overwriting

their default behavior, using a library called Zone.js.

Every component has a change detector that detects whether a change has occurred in its prop-

erties by comparing the current value of a property with the previous one. If there are differenc-

es, it applies the change to the component template. In the product detail component, when

the name input property changes as a result of an event that we mentioned earlier, the change

detection mechanism runs for this component and updates the template accordingly.

However, there are cases where this behavior is not desired, such as components that render a

large amount of data. In that scenario, the default change detection mechanism is insufficient

because it may introduce performance bottlenecks in the application. We could alternatively

use the changeDetection property of the @Component decorator, which dictates the selected

strategy the component will follow for change detection. Let’s explore a scenario where we can

use a change detection mechanism:

1.	 Open the product-detail.component.ts file and create a getter property that returns

the current product name and prints a message in the browser console:

get productName(): string {

 console.log('Get ${this.name}');

 return this.name;

}

Chapter 4 93

2.	 Open the product-detail.component.html file and use the interpolation syntax to display

the productName property in a element:

{{productName}}

3.	 Run the application using the ng serve command, select a product from the list, and notice

the console output of your browser. You will notice that it displays the console message

from the getter property twice per product selection. The preceding behavior is caused

by the fact that change detection is also triggered twice – once when the component is

initialized and again when the name property changes due to user selection.

4.	 Modify the @Component decorator of the product detail component by setting the

changeDetection property to ChangeDetectionStrategy.OnPush:

import { Component, Input, Output, EventEmitter,
ChangeDetectionStrategy } from '@angular/core';

@Component({

 selector: 'app-product-detail',

 templateUrl: './product-detail.component.html',

 styleUrls: ['./product-detail.component.css'],

 changeDetection: ChangeDetectionStrategy.OnPush

})

The preceding change will trigger the change detection mechanism only when the refer-

ence of the name input property changes.

5.	 After the browser refreshes the application, try to select some products from the list, and

you will notice that the console message now appears once per selection.

The change detection strategy is a mechanism that allows us to modify the way our components

detect changes in their data, significantly improving performance in large-scale applications. The

change detection strategy concludes our journey on how we can configure a component, but the

Angular framework does not stop there. It also allows us to hook into specific times in the lifecycle

of a component, as we’ll learn in the following section.

Introducing the component lifecycle
Lifecycle events are hooks that allow us to jump into specific stages in the lifecycle of a component

and apply custom logic. They are optional to use but might be of valuable help if you understand

how to use them.

Enabling User Experience with Components94

Some hooks are considered best practices, while others help debug and understand what hap-

pens in an Angular application. A hook comes with an interface that defines a method we need to

implement. The Angular framework ensures the hook is called, provided we have implemented

this method in the component.

The most basic lifecycle hooks of an Angular component are:

•	 OnInit: This is called when a component is initialized

•	 OnDestroy: This is called when a component is destroyed

•	 OnChanges: This is called when values of input binding properties in the component

change

•	 AfterViewInit: This is called when Angular initializes the view of the current component

and its child components

All of the previous lifecycle hooks are available from the @angular/core npm package of the

Angular framework.

We will explore each one through an example in the following sections. Let’s start with the OnInit

hook, which is the most basic lifecycle event of a component.

Performing component initialization
The OnInit lifecycle hook implements the ngOnInit method, which is called during the com-

ponent initialization. At this stage, all input bindings and data-bound properties have been set

appropriately, and we can safely use them. Using the component constructor to access them

may be tempting, but their values would not have been set at that point. We will understand the

previous concept using the following example:

1.	 Open the product-detail.component.ts file and add a constructor that logs the value

of the name property in the browser console:

Defining the interface in the component is not obligatory, but it is considered a

good practice. Angular cares only about whether we have implemented the actual

method or not.

A full list of all the supported lifecycle hooks is available in the official Angular doc-

umentation at https://angular.io/guide/lifecycle-hooks.

https://angular.io/guide/lifecycle-hooks

Chapter 4 95

constructor() {

 console.log('Name is ${this.name} in the constructor');

}

2.	 Import the OnInit artifact from the @angular/core npm package:

import { Component, Input, OnInit, Output, EventEmitter } from '@
angular/core';

3.	 Add the OnInit artifact in the list of the ProductDetailComponent class implemented

interfaces:

export class ProductDetailComponent implements OnInit

4.	 Add the following method in the ProductDetailComponent class to log the same infor-

mation with step 1:

ngOnInit(): void {

 console.log('Name is ${this.name} in the ngOnInit');

}

5.	 Open the product-list.component.ts file and set an initial value to the selectedProduct

property:

selectedProduct = 'Microphone';

6.	 Run the application using the ng serve command and inspect the output of the console

in the browser:

Figure 4.10: Console output

The first log message from the constructor contains an empty string as the value of the

name property. The preceding behavior is because when the undefined value is converted

to a string using the text interpolation syntax, it is automatically converted to an empty

string. In the second log message, the value of the name property is displayed correctly.

Constructors should be relatively empty and devoid of logic other than setting initial variables.

Adding business logic inside a constructor makes it challenging to mock it in testing scenarios.

Enabling User Experience with Components96

Another good use of the OnInit hook is when we need to initialize a component with data from

an external source, such as an Angular service, as we will learn in Chapter 6, Managing Complex

Tasks with Services.

The Angular framework provides hooks for all stages of the lifecycle of a component, from ini-

tialization to destruction.

Cleaning up component resources
The interface we use to hook on the destruction event of a component is the OnDestroy lifecycle

hook, which implements the respective ngOnDestroy method:

import { Component, OnDestroy } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent implements OnDestroy {

 title = 'my-app';

 ngOnDestroy(): void {

 }

}

A component is destroyed when it is removed from the DOM tree of a web page due to the fol-

lowing reasons:

•	 Using structural directives, which we will learn about in Chapter 5, Enrich Applications

Using Pipes and Directives

•	 Navigating away from a component using the Angular router, which we will learn about

in Chapter 9, Navigate through Application with Routing

We usually perform a cleanup of component resources inside the ngOnDestroy method, such as

the following:

•	 Resetting timers and intervals

Chapter 4 97

•	 Unsubscribing from observable streams, which we will learn about in Chapter 7, Being

Reactive Using Observables and RxJS

We have already learned to pass data down to a component using an input binding. The Angular

framework provides the OnChanges lifecycle hook, which we can use to inspect when the value

of such a binding has changed.

Detecting input binding changes
The OnChanges lifecycle hook is called when Angular detects that the value of an input data

binding has changed. We will use it in the product detail component to learn how it behaves

when we select a different product from the list:

1.	 Import the OnChanges and SimpleChanges artifacts in the product-detail.component.

ts file:

import { Component, Input, Output, EventEmitter, OnChanges,
SimpleChanges } from '@angular/core';

2.	 Modify the definition of the ProductDetailComponent class so that it implements the

OnChanges interface:

export class ProductDetailComponent implements OnChanges

3.	 Implement the ngOnChanges method that is defined in the OnChanges interface. It

accepts an object of type SimpleChanges as a parameter that contains one key for

each input property that changes. Each key points to another object with the proper-

ties currentValue and previousValue, which denote the new and the old value of the

input property, respectively:

ngOnChanges(changes: SimpleChanges): void {

 const product = changes['name'];

 const oldValue = product.previousValue;

 const newValue = product.currentValue;

 console.log('Product changed from ${oldValue} to ${newValue}');

}

The previous snippet tracks the name input property for changes and logs old and new

values in the browser console window.

Enabling User Experience with Components98

4.	 To inspect the application, run the ng serve command, select a product from the list, and

notice the output in the console:

Figure 4.11: Console output

In the preceding image, look closely at the first and third lines. In the latter, we can see when

the log message selected the Wireless Keyboard product from the list. You will also notice an

additional log message in the first line, stating that the product was changed from undefined to

an empty string. Why is that?

The OnChanges lifecycle event is triggered once the value is first set and in all subsequent changes

that occur through the binding mechanism. Initially, the oldValue is undefined since the prop-

erty has not been set yet. The newValue is the first value we set in the property – in our case, an

empty string that comes from the initial value of the selectedProduct property of the product

list component. To eliminate the unnecessary log, we can check whether this is the first change

using the isFirstChange method:

ngOnChanges(changes: SimpleChanges): void {

 const product = changes['name'];

 if (!product.isFirstChange()) {

 const oldValue = product.previousValue;

 const newValue = product.currentValue;

 console.log('Product changed from ${oldValue} to ${newValue}');

 }

}

If we refresh the browser now, we can see the correct message in the console window.

The last lifecycle event of an Angular component we will explore in the following section is the

AfterViewInit hook.

Accessing child components
The AfterViewInit lifecycle hook of an Angular component is called when both of the following

have been completed:

•	 The HTML template of the component has been initialized

•	 The HTML templates of all child components have been initialized

Chapter 4 99

We can explore how the AfterViewInit event works using the product list and product detail

components:

1.	 Open the product-list.component.ts file and import the AfterViewInit and ViewChild

artifacts from the @angular/core npm package:

import { AfterViewInit, Component, ViewChild } from '@angular/core';

2.	 Add a new import statement to import the ProductDetailComponent class:

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

3.	 Create the following productDetail property in the ProductListComponent class:

@ViewChild(ProductDetailComponent) productDetail:
ProductDetailComponent | undefined;

In the preceding snippet, we defined the property type as ProductDetailComponent or

undefined. The latter is needed because the Angular framework operates in strict mode

by default. In strict mode, Angular makes sure that we use strong typing in our Angular

applications as much as possible. Strong typing detects bugs early before deployment

and helps us to avoid defects in our applications.

We have already learned how to query a component class from an HTML template using

local reference variables. Alternatively, we can use the @ViewChild decorator to query a

child component from the parent component class. The @ViewChild decorator is an Angu-

lar property decorator that accepts the type of component we want to query as a parameter.

4.	 Modify the definition of the ProductListComponent class so that it implements the

AfterViewInit interface:

export class ProductListComponent implements AfterViewInit

5.	 The AfterViewInit interface implements the ngAfterViewInit method, which we can

use to access the productDetail property:

ngAfterViewInit(): void {

 if (this.productDetail) {

 console.log(this.productDetail.name);

 }

}

Enabling User Experience with Components100

In the preceding method, we first check if the productDetail property has been set because

we have already declared it as undefined. When we query the productDetail property,

we get an instance of a ProductDetailComponent class. We can then access any member

of its public API, such as the name property.

The AfterViewInit event concludes our journey through the lifecycle of Angular components.

Component lifecycle hooks are a useful feature of the framework, and you will use them a lot for

developing Angular applications.

Summary
In this chapter, we explored the structure of Angular components and the different ways to create

them. We learned how to create a standalone component or register it with an Angular module.

We discussed how to isolate the component’s HTML template in an external file to ease its future

maintainability. Also, we saw how to do the same with any style sheet we wanted to bind to the

component, in case we did not want to bundle the component styles inline. We also learned how

to use the Angular template syntax and interact with the component template. Similarly, we went

through how components communicate in a bidirectional way using property and event bindings.

We were guided through the options available in Angular for creating powerful APIs for our

components, so that we can provide high levels of interoperability between components, config-

uring their properties by assigning either static values or managed bindings. We also saw how a

component can act as a host component for another child component, instantiating the former’s

custom element in its template, and laying the ground for larger component trees in our appli-

cations. Output parameters give the layer of interactivity we need by turning our components

into event emitters, so that they can adequately communicate with any parent component that

might eventually host them in an agnostic fashion.

Template references paved the way for us to create references in our custom elements, which we

can use as accessors to their properties and methods from within the template in a declarative

fashion. An overview of the built-in features for handling CSS view encapsulation in Angular

gave us some additional insights into how we can benefit from Shadow DOM’s CSS scoping on

a per-component basis. Finally, we learned how important change detection is in an Angular

application and how we can customize it to improve its performance further.

We also took a tour of the component lifecycle and learned how we can execute custom logic using

built-in Angular lifecycle hooks. We still have much more to learn regarding template manage-

ment in Angular, mostly concerning two concepts you will use extensively in your journey with

Angular, directives and pipes, which we cover in the next chapter.

Chapter 4 101

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

5
Enrich Applications Using Pipes
and Directives

In the previous chapter, we built several components that rendered data on the screen with the

help of input and output properties. We’ll leverage that knowledge in this chapter to take our

components to the next level using Angular pipes and directives. Pipes allow us to digest and

transform the information we bind in our templates. Directives allow us to conduct more am-

bitious functionalities, such as manipulating the DOM or altering the appearance and behavior

of HTML elements.

In this chapter, we will learn about the following concepts:

•	 Introducing directives

•	 Transforming elements using directives

•	 Manipulating data with pipes

•	 Building custom pipes

•	 Building custom directives

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular pipes

and directives. You can find the related source code in the ch05 folder of the following GitHub

repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Enrich Applications Using Pipes and Directives104

Introducing directives
Angular directives are HTML attributes that extend the behavior or the appearance of a standard

HTML element. When we apply a directive to an HTML element or even an Angular component,

we can add custom behavior to it or alter its appearance. There are three types of directives:

•	 Components: They are directives with an associated template

•	 Structural directives: They add or remove elements from the DOM

•	 Attribute directives: They modify the appearance of or define a custom behavior for a

DOM element

Angular provides us with a set of built-in directives that we can use in our components to cover

most use cases. Angular built-in directives are part of the CommonModule. So, we need to import

CommonModule when we want to use them.

We will explore the most popular directives in the following sections.

Transforming elements using directives
The Angular framework includes a set of ready-made structural directives that we can start using

straight away in our applications:

•	 ngIf: Adds or removes a portion of the DOM tree based on an expression

•	 ngFor: Iterates through a list of items and binds each item to a template

•	 ngSwitch: Switches between templates within a specific set and displays each one de-

pending on a condition

We will describe each one of them in the following sections.

Displaying data conditionally
The ngIf directive adds or removes an HTML element in the DOM based on the evaluation of an

expression. If the expression evaluates to true, the element is inserted into the DOM. Otherwise,

the element is removed from the DOM.

The Angular CLI imports CommonModule by default when we create a new Angular

module, as we learned in Chapter 3, Organizing Application into Modules.

Chapter 5 105

Do you recall from the previous chapter that the product details component was loaded even

if there was no product selected? We can now fix that issue by binding the *ngIf directive to a

conditional expression in the product-detail.component.html file:

<div *ngIf="name">

 <h2>Product Details</h2>

 <h3>{{name}}</h3>

 <button (click)="buy()">Buy Now</button>

</div>

The product detail component in the preceding HTML template is rendered on the screen when

the name property has a value. Otherwise, it is removed completely.

Someone could reasonably point out that we could bind to the hidden property of the <div>

element instead:

<div [hidden]="!name">

 <h2>Product Details</h2>

 <h3>{{name}}</h3>

 <button (click)="buy()">Buy Now</button>

</div>

The difference is that the *ngIf directive adds or removes elements from the DOM tree whereas the

hidden property hides or displays existing elements in the DOM tree. The former is recommend-

ed when dealing with a large amount of data, such as lists with hundreds of items or elements

that contain advanced presentation logic in their child elements. In such cases, it performs better

because Angular does not need to keep data or elements in memory, runtime, as it does with

the hidden property.

You have probably noticed the asterisk (*) character in front of ngIf. The asterisk indicates a

structural directive, and it is syntactic sugar that acts as a shortcut for a more complicated one.

Angular embeds the HTML element marked with the *ngIf directive into an ng-template ele-

ment, which is used later to render the actual content on the screen. The ng-template is neither

added to the DOM tree nor rendered on screen. Instead, it acts as a wrapper to group other HTML

elements. These elements are not rendered automatically on the screen, but structural directives

trigger them. Consider a scenario where we want to display a default message when there is no

selected product from the list. We need to modify the product-list.component.html file:

<h2>Product List</h2>

Enrich Applications Using Pipes and Directives106

 <li (click)="selectedProduct = 'Webcam'">Webcam

 <li (click)="selectedProduct = 'Microphone'">Microphone

 <li (click)="selectedProduct = 'Wireless Keyboard'">Wireless Keyboard</
li>

<app-product-detail

 *ngIf="selectedProduct"

 [name]="selectedProduct"

 (bought)="onBuy()">

</app-product-detail>

<p *ngIf="!selectedProduct">No product selected!</p>

If you run the application and preview it on your browser, you will see that the message is dis-

played when we have not selected a product from the list yet:

Figure 5.1: Product list

The approach of using multiple *ngIf statements has some drawbacks:

•	 It is error-prone because it is easy to make mistakes when composing them

•	 The syntax is not readable

•	 It goes against the Don’t Repeat Yourself (DRY) principle

Alternatively, we can use a <ng-template> element to compose an if-else statement in the

template of our component:

<h2>Product List</h2>

 <li (click)="selectedProduct = 'Webcam'">Webcam

 <li (click)="selectedProduct = 'Microphone'">Microphone

 <li (click)="selectedProduct = 'Wireless Keyboard'">Wireless Keyboard</
li>

Chapter 5 107

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [name]="selectedProduct"

 (bought)="onBuy()">

</app-product-detail>

<ng-template #noProduct>

 <p>No product selected!</p>

</ng-template>

We have added another statement in the template expression of the *ngIf directive, which is

the else statement of the if-else syntax. It is separated from the first one using a semicolon.

The else statement refers to a noProduct variable that is activated if the condition of the *ngIf di-

rective is not satisfied. The noProduct variable is a template reference variable, as we learned

in Chapter 4, Enabling User Experience with Components, that points to an <ng-template> element

containing a paragraph element. The paragraph element is displayed on the screen only when

the else statement is activated.

The ngIf directive is useful for displaying particular pieces of the user interface. It is common to

combine it with the ngFor directive when we want to display multiple pieces of data.

Iterating through data
The ngFor directive allows us to loop through a collection of items and render a template for

each one, where we can define convenient placeholders to interpolate item data. Each rendered

template is scoped to the outer context, where the loop directive is placed so that we can access

other bindings. We can think of ngFor as the for loop for HTML templates.

The product list component we already use displays a list of products using static data on the

HTML template. In a real-world scenario, data is dynamic and comes from different sources, such

as a backend server or the local storage of the browser.

You can chain multiple statements in a template expression by separating them

using semicolons.

Enrich Applications Using Pipes and Directives108

We can use the ngFor directive to display the product list in a more scalable way:

1.	 Open the product-list.component.ts file and create a products array in the

ProductListComponent class:

products = ['Webcam', 'Microphone', 'Wireless keyboard'];

2.	 Modify the unordered list element in the product-list.component.html file so that it

displays a element for each item from the products array:

 <li *ngFor="let product of products" (click)="selectedProduct =
product">

 {{product}}

In the preceding code, we use the *ngFor directive and turn each item fetched from

the products array into a product variable called the template input variable. We ref-

erence the template variable in our HTML by binding its value using Angular interpo-

lation syntax. Finally, we bind to the click event of the element only once, so the

selectedProduct property is set to the clicked item.

The application output should be the same as before because we did not make any actual chang-

es. We refactored the code using the ngFor directive to make it more manageable and scalable.

However, the capabilities of the ngFor directive expand beyond displaying a list of data.

The ngFor directive can observe changes in the underlying collection and add, remove, or sort the

rendered templates as items are added, removed, or reordered in the collection. It is also possible

to keep track of other useful properties as well. We can use the extended version of the *ngFor

directive using the following syntax:

 <li *ngFor="let product of products; let variable=property">

The variable is a template input variable that we can reference later in our template. The property

can have the following values:

•	 index: Indicates the index of the item in the array, starting at 0 (number)

•	 first/last: Indicates whether the current item is the first or last item in the array

(boolean)

•	 even/odd: Indicates whether the index of the item in the array is even or odd (Boolean)

Chapter 5 109

In the following snippet, Angular assigns the value of the index property to the i input variable.

The i variable is later used in the template to display each product as a numbered list:

 <li *ngFor="let product of products; let i=index">

 {{i+1}}. {{product}}

During the execution of ngFor, data may change, elements may be added or removed, and the

whole list may even be replaced. Angular must take care of these changes by creating/removing

elements to sync changes to the DOM tree. This is a process that can become very slow and ex-

pensive and will eventually result in the poor performance of your application.

Angular deals with variations within a collection by keeping DOM elements in memory. Internally,

it uses something called object identity to keep track of every item in a collection. We can, how-

ever, use a specific property of the iterable items instead of the internal Angular object identity

using the trackBy property:

 <li *ngFor="let product of products; trackBy: trackByProducts">

 {{product}}

The trackBy property defines the trackByProducts method that is declared in the compo-

nent class and accepts two parameters: the index of the current product and the actual product

name. It returns the unique product name that we want to use as the object identity:

 trackByProducts(index: number, name: string): string {

 return name;

}

We use ngIf and ngFor most of the time during Angular development. Another structural directive

that is not so commonly used is the ngSwitch directive.

Switching through templates
We learned that structural directives such as ngIf and ngFor are prefixed with an asterisk.

The ngSwitch directive is an exception to this rule. It is used to switch between templates and

display each one depending on a defined value.

Enrich Applications Using Pipes and Directives110

You can think of ngSwitch as like an ordinary switch statement that we use in other programming

languages. It consists of a set of other directives:

•	 [ngSwitch]: Defines the property that we want to check when applying the directive

•	 *ngSwitchCase: Adds or removes a template from the DOM tree depending on the value

of the property defined in the [ngSwitch] statement

•	 *ngSwitchDefault: Adds a template to the DOM tree if the value of the property defined

in the [ngSwitch] directive does not meet any *ngSwitchCase statement

We will learn how to use the directive by adding the following <div> element to the product-

detail.component.html file:

<div *ngIf="name">

 <h2>Product Details</h2>

 <h3>{{name}}</h3>

 <div [ngSwitch]="name">

 <p *ngSwitchCase="'Webcam'">

 Product is used for video

 </p>

 <p *ngSwitchCase="'Microphone'">

 Product is used for audio

 </p>

 <p *ngSwitchDefault>Product is for general use</p>

 </div>

 <button (click)="buy()">Buy Now</button>

</div>

The [ngSwitch] directive evaluates the name property of the component. When it finds a match,

it activates the appropriate *ngSwitchCase statement. If the value of the name property does not

match any *ngSwitchCase statement, the *ngSwitchDefault statement is activated.

Directives transform HTML elements by affecting their structure, behavior, and display. On the

other hand, pipes transform data and template bindings.

Manipulating data with pipes
Pipes allow us to transform the outcome of our expressions at the view level. They take data as

input, transform it into the desired format, and display the output in the template.

Chapter 5 111

The syntax of a pipe is pretty simple, consisting of the pipe name following the expression we

want to transform, separated by a pipe symbol (|). Pipes are usually used with interpolation

in Angular templates and can be chained to each other. Angular has a wide range of pipe types

already baked into it.

Before moving on to explore some of the built-in Angular pipes, we will make a change to our

Angular working application to demonstrate their use better. The products array in the product

list component is currently an array of string values. We will convert it into an array of product

objects using interfaces:

1.	 Run the following Angular CLI command inside the src\app\products folder to create

a product interface:

ng generate interface product

2.	 Open the product.ts file that was generated from the command we ran in the previous

step and modify its content as follows:

export interface Product {

 name: string;

 price: number;

}

3.	 Open the product-detail.component.ts file and add the following import statement:

import { Product } from '../product';

4.	 Rename the input property binding to product and also change its type:

@Input() product: Product | undefined;

5.	 Also, modify the ngOnChanges method to accommodate the new type:

ngOnChanges(changes: SimpleChanges): void {

You might be surprised that we define an interface for our model entity

rather than a class. This is perfectly fine when the model does not feature

any business logic requiring the implementation of methods or data trans-

formation in a constructor or setter/getter function. When the latter is not

required, an interface suffices since it provides the static typing we require

in a simple and lightweight fashion.

Enrich Applications Using Pipes and Directives112

 const product = changes['product'];

 if (!product.isFirstChange()) {

 const oldValue = product.previousValue.name;

 const newValue = product.currentValue.name;

 console.log('Product changed from ${oldValue} to ${newValue}');

 }

}

6.	 Open the product-detail.component.html file and modify its content as follows:

<div *ngIf="product">

 <h2>Product Details</h2>

 <h3>{{product.name}}</h3>

 <div [ngSwitch]="product.name">

 <p *ngSwitchCase="'Webcam'">

 Product is used for video

 </p>

 <p *ngSwitchCase="'Microphone'">

 Product is used for audio

 </p>

 <p *ngSwitchDefault>Product is for general use</p>

 </div>

 <button (click)="buy()">Buy Now</button>

</div>

Now that we have refactored the product detail component, we need to make similar changes to

the product list component:

1.	 Open the product-list.component.ts file and add the following import statement:

import { Product } from '../product';

2.	 Change the type of the selectedProduct and products properties to accommodate the

new interface:

selectedProduct: Product | undefined;

products: Product[] = [

 {

 name: 'Webcam',

 price: 100

 },

Chapter 5 113

 {

 name: 'Microphone',

 price: 200

 },

 {

 name: 'Wireless keyboard',

 price: 85

 }

];

3.	 Modify the ngAfterViewInit and onBuy methods so that there are no errors due to the

new Product type:

ngAfterViewInit(): void {

 if (this.productDetail) {

 console.log(this.productDetail.product);

 }

}

onBuy() {

 window.alert('You just bought ${this.selectedProduct?.name}!');

}

4.	 Finally, open the product-list.component.html file and modify it accordingly:

<h2>Product List</h2>

 <li *ngFor="let product of products" (click)="selectedProduct =
product">

 {{product.name}}

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [product]="selectedProduct"

 (bought)="onBuy()">

</app-product-detail>

<ng-template #noProduct>

 <p>No product selected!</p>

</ng-template>

Enrich Applications Using Pipes and Directives114

If you run the application using the ng serve command, it should still work as before. We can

now start learning about the various Angular built-in pipes:

•	 uppercase/lowercase: They transform a string into a particular case. Experiment with

the following snippet in the product-list.component.html file to display the product

name in uppercase and lowercase letters, respectively:

{{product.name | uppercase}}

{{product.name | lowercase}}

•	 percent: This formats a number as a percentage. For example, the output of <p>{{0.1234

| percent}}</p> will be 12%.

•	 currency: This formats a number as a local currency. We can override local settings and

change the symbol of the currency, passing the currency code as a parameter to the pipe.

Open the product-detail.component.html file and add the following element

after the product name to display the price of the selected product in euros:

{{product.price | currency:'EUR'}}

If you click on the Microphone product from the list, it should display the following data

in the Product Details section:

Figure 5.2: Product details

•	 slice: This subtracts a subset (slice) of a collection or string. It accepts a starting index,

where it will begin slicing the input data, and optionally an end index as parameters. When

the end index is specified, the item at that index is not included in the resulting array. If

the end index is omitted, it falls back to the last index of the data.

Chapter 5 115

The following snippet displays the second and the third product from the products array

of the product list component:

 <li *ngFor="let product of products | slice:1:3">

 {{product.name}}

•	 date: This formats a date or a string as a particular date format. The time zone of the for-

matted output is in the local time zone of the end user’s machine. The following snippet

displays the component property today as a date:

<p>{{today | date}}</p>

The today property is an object that has been initialized using the Date constructor:

today = new Date();

The default usage of this pipe displays the date according to the local settings of the user’s

machine. Still, we can pass additional formats that Angular has already baked in as param-

eters. For example, to display the date in a full date format, we write the following snippet:

<p>{{today | date:'fullDate'}}</p>

•	 json: This is probably the most straightforward in its definition; it takes an object as an

input and outputs it in JSON format. Experiment with this pipe by adding the following

snippet in the product-detail.component.html file:

<p>{{product | json}}</p>

The preceding snippet will display the properties of the product component property in

JSON format, replacing single quotes with double quotes. So, why do we need this? The

main reason is debugging; it’s an excellent way to see what a complex object contains

and print it nicely on the screen.

The slice pipe transforms immutable data. The transformed list is always

a copy of the original data even when it returns all items.

Enrich Applications Using Pipes and Directives116

•	 async: This is used when we manage data that is handled asynchronously by our com-

ponent class, and we need to ensure that our views promptly reflect the changes. We will

learn more about this pipe later in Chapter 8, Communicating with Data Services over HTTP,

where we will use it to fetch and display data asynchronously.

•	 keyvalue: This converts an object into a collection of key-value pairs where the key of

each item represents the object property and the value is its actual value. The keyvalue

pipe is really handy when we want to iterate over object properties using the ngFor di-

rective. Suppose that the products property in the ProductListComponent class was the

following object:

products = {

 'Webcam': 100,

 'Microphone': 200,

 'Wireless keyboard': 85

};

The *ngFor directive in the template of the product list component should be modified

accordingly to display the name of each product:

 <li *ngFor="let product of products | keyvalue">

 {{product.key}}

Built-in pipes and directives are sufficient for most use cases. In other cases, we must apply com-

plex transformations to our data or templates. The Angular framework provides a mechanism

to create unique customized pipes and directives. We’ll learn how to generate custom pipes in

the following sections.

Building custom pipes
We have already seen what pipes are and what their purpose is in the overall Angular ecosystem.

Next, we are going to dive deeper into how we can build a pipe to provide custom transformations

to data bindings. In the following section, we will create a pipe that sorts our list of products by

name.

Remember to always use the json pipe when interpolating an object. If you

fail, you will see the famous [object Object] on the screen when trying

to use it.

Chapter 5 117

Sorting data using pipes
To create a new pipe, we use the generate command of the Angular CLI, passing the word pipe

and its name as parameters:

ng generate pipe sort

When we run the preceding command in the src\app\products folder, it will create the sort.

pipe.ts file and its corresponding unit test file, sort.pipe.spec.ts. It will also register the pipe

with the associated ProductsModule in the products.module.ts file:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { ProductListComponent } from './product-list/product-list.
component';

import { ProductDetailComponent } from './product-detail/product-detail.
component';

import { SortPipe } from './sort.pipe';

@NgModule({

 declarations: [

 ProductListComponent,

 ProductDetailComponent,

 SortPipe

],

 imports: [

 CommonModule

],

 exports: [ProductListComponent]

})

export class ProductsModule { }

A pipe is added in the declarations array of an Angular module similar to an Angular component

because it also needs a compilation context to execute. However, pipe files are not created inside

a dedicated folder, but rather inside the folder where we run the generate command.

A pipe is a TypeScript class marked with the @Pipe decorator that implements the PipeTransform in-

terface as defined in the sort.pipe.ts file:

import { Pipe, PipeTransform } from '@angular/core';

Enrich Applications Using Pipes and Directives118

@Pipe({

 name: 'sort'

})

export class SortPipe implements PipeTransform {

 transform(value: unknown, ...args: unknown[]): unknown {

 return null;

 }

}

The only required property in the @Pipe decorator is the name of the pipe. A pipe must implement

the transform method of the PipeTransform interface that accepts two parameters:

•	 value: The input data that we want to transform

•	 args: An optional list of arguments we can provide to the transformation method, each

separated by a colon

The Angular CLI helped us by scaffolding an empty transform method. We now need to modify

it to satisfy our business needs.

The pipe will operate on a list of Product objects, so we need to make the necessary adjustments

to the types provided:

1.	 Add the following import statement to import the Product interface:

import { Product } from './product';

2.	 Change the type of the value parameter to Product[] since we want to sort a list

of Product objects.

3.	 Remove the args parameter since we want to sort explicitly by the product name.

4.	 Change the return type of the method to Product[] since the sorted list will only con-

tain Product objects, and modify it so that it returns an empty array by default.

Angular has configured the transform method to use a particular type called unknown,

which works similarly to any. A variable of the unknown type can have a value of any

type. The main difference is that TypeScript will not let us apply arbitrary operations

to unknown values, such as calling a method, unless we perform type-checking first.

Chapter 5 119

The resulting sort.pipe.ts file should now look like the following:

import { Pipe, PipeTransform } from '@angular/core';

import { Product } from './product';

@Pipe({

 name: 'sort'

})

export class SortPipe implements PipeTransform {

 transform(value: Product[]): Product[] {

 return [];

 }

}

We are now ready to implement the sorting algorithm of our method. We use the native sort meth-

od of the array prototype that sorts items alphabetically by default. We provide a custom com-

parator function to the sort method that overrides the default functionality and performs the

sorting logic that we want to achieve:

transform(value: Product[]): Product[] {

 if (value) {

 return value.sort((a: Product, b: Product) => {

 if (a.name < b.name) {

 return -1;

 } else if (b.name < a.name) {

 return 1;

 }

 return 0;

 });

 }

 return [];

}

Enrich Applications Using Pipes and Directives120

It is worth noting that the transform method checks whether there is input data first before

proceeding to the sorting process. Otherwise, it returns an empty array. This mitigates cases

where the collection is set asynchronously, or the component that consumes the pipe does not

set the collection at all.

That’s it! We have successfully created our first pipe. We just need to call it from our component

template to see it in action. Open the product-list.component.html file and add the pipe in the

statement of the *ngFor directive:

 <li *ngFor="let product of products | sort" (click)="selectedProduct =
product">

 {{product.name}}

If we run the application using the ng serve command, we will notice that the product list is

now sorted by name alphabetically:

Figure 5.3: Product list sorted by name

We should mention that when using pipes with other properties of the ngFor directive, such

as index, the pipe must be placed after the declaration of the array:

 <li *ngFor="let product of products | sort; let i=index"
(click)="selectedProduct = product">

 {{product.name}}

For more information about the Array.prototype.sort method, refer to  https://
developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/

Array/sort.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/sort

Chapter 5 121

The @Pipe decorator contains another significant property that we can set, which is directly re-

lated to the way that pipes react in the change detection mechanism of the Angular framework.

Change detection with pipes
There are two categories of pipes: pure and impure. All pipes are considered pure by default unless

we set them to false explicitly using the pure property in the @Pipe decorator:

@Pipe({

 name: 'sort',

 pure: false

})

Why would we do that in the first place? Well, there are situations where this might be necessary.

Angular executes pure pipes when there is a change to the reference of the input variable. For

example, if the products array in the ProductListComponent class is assigned to a new value,

the pipe will correctly reflect that change. However, if we add a new product to the array using

the native push method, the pipe will not be triggered because the object reference of the array

does not change.

Another example is when we have created a pure pipe that operates on a single object. Similarly, if

the reference of the value changes, the pipe executes correctly. If a property of the object changes,

the pipe cannot detect the change.

A word of caution, however—pipes that are impure call the transform method every time the

change detection cycle is triggered. So, this might be bad for performance. Alternatively, you could

leave the pure property unset and try to cache the value or work with reducers and immutable

data to solve this in a better way, like the following:

this.products= [

 ...this.products,

 {

 name: 'Headphones',

 price: 55

 }

];

In the preceding snippet, we create a new reference of the products array by appending a new

item to the reference of the existing array.

We have already learned that Angular pipes need a compilation context from a respective Angular

module. However, we can create pipes that can stand independently without a module.

Enrich Applications Using Pipes and Directives122

Creating standalone pipes
We have already learned about standalone components in Chapter 4, Enabling User Experience with

Components. Similarly, we can create Angular pipes that are not registered with an Angular module

and are standalone. To create a standalone pipe using the Angular CLI, we pass the standalone

option in the generate command as follows:

ng generate pipe filter --standalone

The preceding command will create the appropriate pipe files but will not modify any Angular

module. The filter.pipe.ts TypeScript file of the generated pipe looks like the following:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({

 name: 'filter',

 standalone: true

})

export class FilterPipe implements PipeTransform {

 transform(value: unknown, ...args: unknown[]): unknown {

 return null;

 }

}

The @Pipe decorator contains an additional standalone property that indicates whether the pipe

is standalone or not.

We can consume a standalone pipe in an Angular module by adding it to the imports array of

the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent

],

Remember that you should never add a standalone pipe to the declarations array

of an Angular module because that would register it with that module.

Chapter 5 123

 imports: [

 BrowserModule,

 FilterPipe

],

 providers: [],

 bootstrap: [AppComponent]

})

Creating custom pipes allows us to transform our data in a particular way according to our needs.

If we also want to transform template elements, we must create custom directives.

Building custom directives
Custom directives encompass a vast world of possibilities and use cases, and we would need an

entire book to showcase all the intricacies and possibilities they offer. In a nutshell, they allow

you to attach advanced behaviors to elements in the DOM or modify their appearance.

If a directive has a template attached, then it becomes a component. In other words, components

are Angular directives with a view. This rule comes in handy when we want to decide whether

we should create a component or a directive for our needs. If we need a template, we create a

component; otherwise, we make it a directive.

As we have already learned, directives mainly fall into two categories: structural and attribute. In

the following sections, we will showcase how to create a directive for each category from scratch.

Displaying dynamic data
We have all found ourselves in a situation where we want to add copyrighted information to our

applications. Ideally, we want to use this information in various parts of our application, on a

dashboard, or an about page. The content of the information should also be dynamic. The year

or range of years (it depends on how you want to use it) should update dynamically according to

the current date. Our first intention is to create a component, but what about making it a directive

instead? This way, we could attach the directive to any element we want and not bother with a

particular template. So, let’s begin!

We will use the generate command of the Angular CLI to create a copyright directive. We pass

the word directive and the name of the directive as parameters:

ng generate directive copyright

Enrich Applications Using Pipes and Directives124

The preceding command will create the directive file, copyright.directive.ts, along with the

accompanying unit test file, copyright.directive.spec.ts, and register it with the main ap-

plication module, app.module.ts:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { ProductsModule } from './products/products.module';

import { CopyrightDirective } from './copyright.directive';

@NgModule({

 declarations: [

 AppComponent,

 CopyrightDirective

],

 imports: [

 BrowserModule,

 ProductsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

A directive is added in the declarations array of an Angular module, similar to an Angular com-

ponent. Directive files are created inside the folder where we run the generate command, similar

to pipes. In this case, all related directive files are created inside the src\app folder of our Angular

project.

A directive is a TypeScript class marked with the @Directive decorator that contains a selector

property as defined in the copyright.directive.ts file:

import { Directive } from '@angular/core';

@Directive({

 selector: '[appCopyright]'

})

export class CopyrightDirective {

Chapter 5 125

 constructor() { }

}

The selector can be any valid CSS selector and works similarly to the component selector. The

only difference is that we surround it in square brackets. Be aware, though, that we use it without

them in an HTML template, such as:

<p appCopyright></p>

The custom logic of our directive is summarized inside the constructor:

import { Directive, ElementRef } from '@angular/core';

@Directive({

 selector: '[appCopyright]'

})

export class CopyrightDirective {

 constructor(el: ElementRef) {

 const currentYear = new Date().getFullYear();

 const targetEl: HTMLElement = el.nativeElement;

 targetEl.classList.add('copyright');

 targetEl.textContent = 'Copyright ©${currentYear} All Rights
Reserved.';

 }

}

We use the ElementRef class to access and manipulate the underlying HTML element attached

to the directive. The nativeElement property contains the actual native HTML element.

We use a custom prefix in attribute directives to minimize the risk of conflict with an

HTML native attribute or another directive from a third-party library. As we learned

in Chapter 4, Enabling User Experience with Components, the prefix can be customized

using the Angular CLI when creating the Angular application.

Enrich Applications Using Pipes and Directives126

We apply the following transformations to that element:

•	 We add the copyright class using the add method of the classList property. The class

is defined in the styles.css file that exists in the src\app folder:

.copyright {

 background-color: lightgray;

 padding: 10px;

 font-family: Verdana, Geneva, Tahoma, sans-serif;

}

•	 We change the text of the element by modifying the textContent property.

The ElementRef is an Angular built-in service. To use a service in a component or a directive, we

need to inject it into the constructor, as we will learn in Chapter 6, Managing Complex Tasks

with Services.

When creating directives, it is important to think about reusable functionality that doesn’t neces-

sarily relate to a particular feature. The topic chosen previously was copyrighted information, but

we could build other functionalities such as tooltips and collapsible or infinite scrolling features

with relative ease. In the following section, we will build another attribute directive that explores

the options available further.

Property binding and responding to events
The Angular framework provides two helpful decorators that we can use in our directives to

enhance their functionality:

•	 @HostBinding: This binds a value to the property of the native host element

•	 @HostListener: This binds to an event of the native host element

The native host element is the element where our directive takes action. The preceding decora-

tors are similar to the property and event binding we learned about in Chapter 4, Enabling User

Experience with Components.

The native input HTML element can support different types, including simple text, radio buttons,

and numeric values. When we use the latter, the input adds two arrows inline, up and down, to

control its value. It is this feature of the input element that makes it look incomplete. If we type

a non-numeric character, the input still renders it.

Chapter 5 127

We will create an attribute directive that rejects non-numeric values to solve this problem:

1.	 Run the following Angular CLI command to create a new directive named numeric:

ng generate directive numeric

2.	 Open the numeric.directive.ts file and import the two decorators that we are going

to use:

import { Directive, HostBinding, HostListener } from '@angular/
core';

3.	 Define a currentClass property using the @HostBinding decorator to bind to the class

property of the input element:

@HostBinding('class') currentClass = '';

4.	 Define an onKeyPress method using the @HostListener decorator to bind to the keypress

native event of the input element:

@HostListener('keypress', ['$event']) onKeyPress(event:
KeyboardEvent) {

 const charCode = event.key.charCodeAt(0);

 if (charCode > 31 && (charCode < 48 || charCode > 57)) {

 this.currentClass = 'invalid';

 event.preventDefault();

 } else {

 this.currentClass = 'valid';

 }

}

When the user presses a key inside the input element, Angular knows to call the onKeyPress meth-

od because we have registered it with the @HostListener decorator. The @HostListener decorator

accepts two parameters:

•	 eventName: The name of the triggered event

•	 args: A list of arguments to pass in the appropriate method upon triggering the event

In our case, we pass the keypress event name and the $event argument, respectively. The

$event is the current event object that triggered the event, which is of the KeyboardEvent type

and contains the keystrokes entered by the user.

Enrich Applications Using Pipes and Directives128

Every time the user presses a key, we extract it from the $event object, convert it into a Unicode

character using the charCodeAt method of the string prototype, and check it against non-numeric

code. If the character is non-numeric, we call the preventDefault method of the $event object

to cancel the user action and roll back the input element to its previous state. At the same time,

we set the respective class to the input element, valid if the key is numeric and invalid if it is

not. Both classes are defined in the styles.css file of the src\app folder:

.valid {

 border-bottom: solid green;

}

.invalid {

 border-bottom: solid red;

}

Everything is now in place, and our directive looks and works great! We can validate its usage by

adding it to an input element in an HTML template, such as:

<input appNumeric />

We can only type numeric values and the validity of each value is indicated by an appropriate color.

Let’s summarize this section on creating attribute directives by learning how we can use them

to load an Angular component dynamically.

Creating components dynamically
As we have learned in Chapter 4, Enabling User Experience with Components, the Angular frame-

work knows how and where to load a component using its selector. When we run the ng serve

command, the Angular compiler traverses the application component tree and tries to identify

every component selector in HTML. It does that by matching tags that are unknown HTML ele-

ments with Angular components through the selector. The compiler throws an error if a match

cannot be found.

The main reason the Angular compiler cannot match a selector with a component is that we

have not registered it with a module, or it is not standalone. In all the examples we have seen,

the component selectors matched with an Angular component directly. However, there are cases

where we would like to load Angular components at runtime that are not known beforehand.

Chapter 5 129

The Angular framework can load a component dynamically without adding its selector to an

HTML template. However, we need to have an anchor so that Angular knows where to place the

HTML template of the component. We can define an HTML element that will serve as the host

of the dynamically created component. We will also attach an attribute directive to the anchor

HTML element that will do most of the heavy lifting to create and add the component to the

HTML template. We will explore how to work with dynamically created components by loading

the details of a product that is not on our product list:

1.	 Run the following Angular CLI command inside the src\app\products folder:

ng generate directive productHost

The preceding command creates the product-host.directive.ts and product-host.

directive.spec.ts files, although we passed the productHost as the directive name.

When we pass camel case names in the generate command, the Angular CLI converts

the names of the generated files to kebab case.

2.	 Open the product-list.component.html file and add the following HTML snippet:

<h3>Offers</h3>

<ng-template appProductHost></ng-template>

In the preceding snippet, the <ng-template> component will host the dynamically created

product detail component.

3.	 Open the product-host.directive.ts file and modify the import statements as follows:

import { Directive, OnInit, ViewContainerRef } from '@angular/core';

import { ProductDetailComponent } from './product-detail/product-
detail.component';

The ViewContainerRef artifact will give us access to the view container that will host the

dynamically created component.

4.	 Modify the ProductHostDirective class by implementing the ngOnInit method of the

OnInit interface:

export class ProductHostDirective implements OnInit {

 constructor(private vc: ViewContainerRef) { }

Enrich Applications Using Pipes and Directives130

 ngOnInit(): void {

 const productRef = this.
vc.createComponent(ProductDetailComponent);

 productRef.setInput('product', {

 name: 'Optical mouse',

 price: 130

 });

 }

}

In the preceding code, we inject the ViewContainerRef Angular service into the

constructor to make it available to our directive. Then, we call its createComponent

method, passing the type of the ProductDetailComponent class as a parameter to create a

product detail component. Finally, we use the setInput method in the created component

reference to pass a value to the input property binding of the product detail component.

5.	 Run the application using the ng serve command, and you should see the dynamically

created component in the Offers section:

Figure 5.4: Dynamically created component

Creating components during runtime is important when we do not want to load a component

upfront or when we do not know the location in which it will be loaded beforehand.

We have already seen various use cases for attribute directives. In the following section, we will

get our hands dirty with structural directives that are not so widely used.

Chapter 5 131

Toggling templates dynamically
A typical scenario in enterprise Angular applications is that users should have access to certain

application parts according to their role. You may think that we could use the ngIf built-in direc-

tive for this. It would be valid for a simple case, but usually, checking a role involves calling some

service to get the current user and extracting their role. We will learn about services in Chapter

6, Managing Complex Tasks with Services. For now, we could create a more specific structural di-

rective:

1.	 Run the following Angular CLI command to create a permissions directive:

ng generate directive permission

2.	 Import the Input, TemplateRef, ViewContainerRef, and OnInit artifacts from the

@angular/core npm package:

import { Directive, Input, TemplateRef, ViewContainerRef, OnInit }
from '@angular/core';

3.	 Similarly to components, we can use an @Input decorator in a directive if we want to

pass data to our directive. Open the permission.directive.ts file and use the @Input

decorator to pass the list of available roles that are eligible to access the host element.

The role of the current user is hardcoded inside the directive for the sake of simplicity:

@Input() appPermission: string[] = [];

private currentRole = 'agent';

4.	 We can use the directive in any HTML template as follows:

<div *appPermission="['admin', 'agent']"></div>

The name of the input property must have the same name as the selector of the directive.

Notice the use of the asterisk in front of the directive. If you omit it, the Angular frame-

work throws an error.

If we want to add another input property, we should name it differently. The @Input dec-

orator accepts an optional parameter that is the name with which the property is exposed

to the public API:

@Input('anotherProperty') propertyName;

The directive should use the propertyName variable for internal purposes, whereas com-

ponents that use the directive should use anotherProperty.

Enrich Applications Using Pipes and Directives132

5.	 We now need to add the business logic that adds or removes the embedded view of the

host element in the DOM according to the roles that we pass in the input property:

export class PermissionDirective implements OnInit {

 @Input() appPermission: string[] = [];

 private currentRole = 'agent';

 constructor(private tmplRef: TemplateRef<any>, private vc:
ViewContainerRef) { }

 ngOnInit(): void {

 if (this.appPermission.indexOf(this.currentRole) === -1) {

 this.vc.clear();

 } else {

 this.vc.createEmbeddedView(this.tmplRef);

 }

 }

}

In the preceding code, we inject the TemplateRef and ViewContainerRef services to help

us. The TemplateRef represents the Angular-generated ng-template element of the em-

bedded view. The ViewContainerRef is the container used to insert the embedded view,

which is adjacent to the host element.

The ngOnInit method first checks whether the currentRole belongs to the list of roles we

pass as an input parameter. If it does not, it calls the clear method of ViewContainerRef to

remove the host element from the DOM. Otherwise, it calls the createEmbeddedView

method to create an embedded view of the host element inside the view container and

adds it to the DOM.

You can now test the directive by adding it to an HTML template, toggling the current role, and

watching how the directive performs when adding/removing elements from the DOM.

In a real-world scenario, we would not hardcode the current role into the directive

but use an Angular service to fetch it. The service would probably access the local

storage of the browser or call an API method to a backend.

Chapter 5 133

We have already learned that Angular pipes can be standalone without needing a respective

module. Similarly, we can create standalone directives without registering them with an Angular

module.

Creating standalone directives
To create a standalone Angular directive using the Angular CLI, we use the generate command for

creating directives, and we pass the standalone option after the directive name as a parameter:

ng generate directive autofocus --standalone

The preceding command will create the autofocus directive file and its accompanying unit test

but will not interact with an Angular module. The autofocus.directive.ts TypeScript file of

the directive looks like the following:

import { Directive } from '@angular/core';

@Directive({

 selector: '[appAutofocus]',

 standalone: true

})

export class AutofocusDirective {

 constructor() { }

}

The @Directive decorator sets the standalone property to indicate that the directive is a stand-

alone one.

We can consume a standalone directive in an Angular module by adding it to the imports array

of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent

Remember that you should never add a standalone directive to the declarations

array of an Angular module because that would register it with that module.

Enrich Applications Using Pipes and Directives134

],

 imports: [

 BrowserModule,

 AutofocusDirective

],

 providers: [],

 bootstrap: [AppComponent]

})

When we combine standalone directives and pipes with standalone components, we get a clear

and flexible way to structure and build our Angular applications.

Summary
Now that we have reached this point, it is fair to say that you have met almost every Angular

artifact for building Angular components, which are indeed the wheels and the engine of all An-

gular applications. In the forthcoming chapters, we will see how we can design our application

architecture better, manage dependency injection throughout our components tree, consume

data services, and leverage the new Angular router to show and hide components when required.

Nevertheless, this chapter is the backbone of Angular development, and we hope you enjoyed

it as much as we did when writing about pipes and directives. Now, get ready to take on new

challenges—in the next chapter, we will discover how to use data services to manage complex

tasks in our components.

6
Managing Complex Tasks with
Services

We have reached a point in our journey where we can successfully develop more complex appli-

cations by nesting components within other components in a sort of component tree. However,

bundling all our business logic into a single component is not the way to go. Our application

might become unmaintainable very soon.

In this chapter, we’ll investigate the advantages that Angular’s dependency management mech-

anism can bring to the game to overcome such problems. We will learn how to use the Angular

Dependency Injection (DI) mechanism to declare and consume our dependencies across the

application with minimum effort and optimal results. By the end of this chapter, you will be

able to create an Angular application that is correctly structured to enforce the Separation of

Concerns (SoC) pattern using services.

We will learn the following concepts about Angular services:

•	 Introducing the Angular DI

•	 Creating our first Angular service

•	 Providing dependencies across the application

•	 Injecting services in the component tree

•	 Overriding providers in the injector hierarchy

Managing Complex Tasks with Services136

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular services.

You can find the related source code in the ch06 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Introducing Angular DI
DI is an application design pattern we also come across in other languages, such as C# and Java.

As our applications grow and evolve, each code entity will internally require instances of other

objects, better known as dependencies. Passing such dependencies to the consumer code entity

is known as an injection, and it also entails the participation of another code entity, called the

injector. The injector is responsible for instantiating and bootstrapping the required dependen-

cies to be ready for use when injected into a consumer. The consumer knows nothing about how

to instantiate its dependencies and is only aware of the interface they implement to use them.

Angular includes a top-notch DI mechanism to expose required dependencies to any Angular ar-

tifact of an Angular application. Before delving deeper into this subject, let’s look at the problem

that DI in Angular is trying to address.

In Chapter 5, Enrich Applications with Pipes and Directives, we learned how to display a list of ob-

jects using the ngFor directive. We used a static list of Product objects that were declared in the

ProductListComponent class, as shown here:

products: Product[] = [

 {

 name: 'Webcam',

 price: 100

 },

 {

 name: 'Microphone',

 price: 200

 },

 {

 name: 'Wireless keyboard',

 price: 85

 }

];

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Chapter 6 137

The previous approach has two main drawbacks:

•	 In real-world applications, we rarely work with static data. It usually comes from a back-

end API or some other service.

•	 The list of products is tightly coupled with the component. Angular components are re-

sponsible for the presentation logic and should not be concerned with how to get data.

They only need to display it in the HTML template. Thus, they should delegate business

logic to services to handle such tasks.

In the following section, we’ll learn how to avoid these obstacles using Angular services. We will

create an Angular service that will return the list of products by itself. Thus, we will effectively

delegate business logic tasks away from the component. Remember: the component should only

be concerned with presentation logic.

Creating our first Angular service
To create a new Angular service, we use the generate command of the Angular CLI while passing

the name of the service as a parameter:

ng generate service products

Running the preceding command in the src\app\products folder will create the products ser-

vice that consists of the products.service.ts file and its accompanying unit test file, products.

service.spec.ts. However, the command will not modify the products module as someone

would expect. Why is that?

Angular services are available application-wide by default and are not tied to any Angular module.

We created the service inside the products folder to keep it together logically with the rest of the

products feature. It will contain the business logic for the products feature, and it will be easier

to change it if refactoring is necessary.

We usually name a service after the functionality that it represents. Every service has a business

context or domain that operates. When it starts to cross boundaries between different contexts,

this is an indication that you should break it into different services. A products service should be

concerned with products. Similarly, customers should be managed by a separate customers service.

An Angular service is a TypeScript class marked with the @Injectable decorator. The decorator

identifies the class as an Angular service that can be injected into other Angular artifacts such as

components, directives, or even other services. It accepts an object as a parameter with a single

property named providedIn.

Managing Complex Tasks with Services138

An Angular service, by default, is not registered with a specific module like components, directives,

and pipes. Instead, it is registered with an injector – the root injector of the Angular application

as defined in the products.service.ts file:

import { Injectable } from '@angular/core';

@Injectable({

 providedIn: 'root'

})

export class ProductsService {

 constructor() { }

}

Our service does not contain any implementation. Let’s add some logic so that our component

can use it:

1.	 Add the following statement to import the Product interface:

import { Product } from './product';

2.	 Create the following getProducts method in the ProductsService class:

getProducts(): Product[] {

 return [

 {

 name: 'Webcam',

 price: 100

 },

 {

 name: 'Microphone',

 price: 200

 },

 {

 name: 'Wireless keyboard',

 price: 85

 }

];

}

Chapter 6 139

3.	 Open the product-list.component.ts file and modify the products property so that it

is initialized to an empty array:

products: Product[] = [];

4.	 Import the ProductsService class that we created in step 1:

import { AfterViewInit, Component, ViewChild } from '@angular/core';

import { ProductDetailComponent } from '../product-detail/product-
detail.component';

import { Product } from '../product';

import { ProductsService } from '../products.service';

5.	 Create a component property called productService and give it a type of ProductsService:

selectedProduct: Product | undefined;

@ViewChild(ProductDetailComponent) productDetail:
ProductDetailComponent | undefined;

products: Product[] = [];

private productService: ProductsService;

6.	 Instantiate the property using the new keyword in the component’s constructor:

constructor() {

 this.productService = new ProductsService();

}

7.	 Import the OnInit interface from the @angular/core npm package:

import { AfterViewInit, Component, OnInit, ViewChild } from '@
angular/core';

8.	 Add the OnInit interface to the list of implemented interfaces of the ProductListComponent

class:

export class ProductListComponent implements OnInit, AfterViewInit {

9.	 Call the getProducts method of productService inside the ngOnInit method and assign

the return value to the products component property:

ngOnInit(): void {

 this.products = this.productService.getProducts();

}

Managing Complex Tasks with Services140

Run the application using the ng serve command to verify that the list of products is still shown

correctly on the page:

Figure 6.1: Product list

Awesome! We have successfully wired up our component with the service, and our application

looks great. Well, it seems this is the case, but it’s not. There are some problems with the actual

implementation. If the ProductsService class must change, maybe to accommodate for another

dependency, ProductListComponent should also change the implementation of its constructor.

Thus, it is evident that the product list component is tightly coupled to the implementation

of ProductsService. It prevents us from altering, overriding, or neatly testing the service if re-

quired. It also entails that a new ProductsService object is created every time we render a product

list component, which might not be desired in specific scenarios, such as when we expect to use

an actual singleton service.

Dependency injection systems try to solve these issues by proposing several patterns, and the con-

structor injection pattern is the one enforced by Angular. We could remove the productService

component property and inject the service directly into the constructor as follows:

constructor(private productService: ProductsService) {}

The component does not need to know how to instantiate the service. On the other hand, it expects

such a dependency to be available before it is instantiated so that it can be injected through its

constructor. This approach is easier to test as it allows us to override or mock it up if we wish.

When we create a new Angular service, the Angular CLI registers this service with the root injector

of the application by default. In the following section, we’ll learn about the internals of the DI

mechanism and how the root injector works.

Providing dependencies across the application
The Angular framework offers an actual injector that can introspect the tokens used to annotate

the parameters in the constructor of an Angular artifact.

Chapter 6 141

It returns a singleton instance of the type represented by each dependency so that we can use it

straight away in the implementation of our class. The injector maintains a list of all dependencies

that an Angular application needs. When a component or other artifact wants to use a depen-

dency, the injector first checks to see if it has already created an instance of this dependency. If

not, it creates a new one, returns it to the component, and keeps a copy for further use. The next

time the same dependency is requested, it returns the copy previously created. But how does the

injector know which dependencies an Angular application needs?

When we create an Angular service, we use the providedIn property of the @Injectable deco-

rator to define how it is provided to the application. That is, we create a provider for this service.

A provider is a recipe containing guidelines on creating a specific service. During application

startup, the framework is responsible for configuring the injector with providers of services so

that it knows how to create one upon request. An Angular service is configured with the root

injector when created with the CLI, by default. The root injector creates singleton services that

are globally available through the application.

In Chapter 3, Organizing Application into Modules, we learned that the @NgModule decorator has a

providers property where we can register services. Registering a service in this way is the same as

configuring the service with providedIn: 'root' when the Angular module is imported directly

from the main application module. The main difference between them is that the providedIn

syntax is tree shakable.

When you provide a service using the @NgModule decorator, the Angular compiler cannot say if

the service is used somewhere in this module. So, it includes the service in the application bun-

dle a priori. Thus, it is preferable to use the @Injectable decorator over the @NgModule one. You

should always register services with the root injector unless you want to satisfy a particular case.

The root injector is not the only injector in an Angular application. Lazy-loaded modules and

components have their own injectors too. The injectors of an Angular application are hierarchical.

Whenever an Angular component defines a token in its constructor, the injector searches for a

type that matches that token in the pool of registered providers.

Tree shaking is the process of finding dependencies that are not used in an application

and removing them from the final bundle. In the context of Angular, the Angular

compiler can detect Angular services that are not used and delete them, resulting

in a smaller bundle.

Managing Complex Tasks with Services142

If no match is found, it delegates the search to the parent component’s provider and keeps bub-

bling the component injector tree. Should the provider lookup finish with no match, it returns

to the injector of the component that requested the provider and bubbles up the module injector

hierarchy until it reaches the root injector. If no match is found, Angular throws an exception.

The following diagram shows how the Angular DI mechanism works:

Figure 6.2: The injector tree

When a component asks for a dependency, the application enters a process that is divided into

two phases, known as passes:

•	 1st pass: It searches through the injectors of all the parent components up through the

component tree. If it finds the dependency, it stops and returns an instance to the com-

ponent that requested it. Otherwise, it proceeds to the 2nd pass.

Chapter 6 143

•	 2nd pass: It searches through the injectors of all the parent modules, including the root

injector of the application. If the dependency is not found, an error is thrown. Otherwise,

it returns an instance of the dependency on the component.

Components create their injectors, so they are immediately available to their child components.

We’ll learn about this in detail in the following section.

Injecting services in the component tree
The @Component decorator has a providers property similar to the @NgModule decorator to regis-

ter services with a component injector. A service that registers with the component injector can

serve two purposes:

•	 It can be shared with its child components

•	 It can create multiple copies of the service every time the component that provides the

service is rendered

In the following sections, we’ll learn how to apply each approach.

Sharing dependencies through components
A service provided through the component injector can be shared among the child components of

the parent component injector, and it is immediately available for injection at their constructors.

Child components reuse the same instance of the service from the parent component. Let’s walk

our way through an example to understand this better:

1.	 Create a new component named favorites inside the src\app\products folder:

ng generate component favorites

2.	 Add the favorites component in the product-list.component.html file:

<h2>Product List</h2>

 <li *ngFor="let product of products | sort"
(click)="selectedProduct = product">

 {{product.name}}

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [product]="selectedProduct"

Managing Complex Tasks with Services144

 (bought)="onBuy()">

</app-product-detail>

<ng-template #noProduct>

 <p>No product selected!</p>

</ng-template>

<h2>Favorites</h2>

<app-favorites></app-favorites>

3.	 Open the product-list.component.ts file and add the ProductsService class to the

providers property of the @Component decorator:

@Component({

 selector: 'app-product-list',

 templateUrl: './product-list.component.html',

 styleUrls: ['./product-list.component.css'],

 providers: [ProductsService]

})

4.	 Modify the favorites.component.ts file to get the list of products from ProductsService:

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

@Component({

 selector: 'app-favorites',

 templateUrl: './favorites.component.html',

 styleUrls: ['./favorites.component.css']

})

export class FavoritesComponent implements OnInit {

 products: Product[] = [];

 constructor(private productService: ProductsService) { }

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

Chapter 6 145

5.	 Finally, open the favorites.component.html file and replace its content with the fol-

lowing HTML template:

 <li *ngFor="let product of products | slice:1:3">

 {{product.name}}

In the preceding template, we use the *ngFor directive to display the product list. Our

favorite products will be a subset of the initial product list. So, we apply the slice pipe

to display only the last two products.

When running the application using ng serve, you should see the following output:

Figure 6.3: Favorite product list

Let’s explain what we did in the previous example in more detail. We injected ProductsService

into the constructor of FavoritesComponent, but we did not provide it through its injector. So,

how was the component aware of how to create an instance of the ProductsService class and use

it? It didn’t. When we added the favorites component to the ProductListComponent template,

we made it a direct child of this component, thus giving it access to all its provided services. In

a nutshell, FavoritesComponent can use ProductsService out of the box because it is already

provided through its parent component, ProductListComponent.

So, even if ProductsService was initially registered with the root injector, we could also regis-

ter it with the injector of ProductListComponent. In the next section, we’ll investigate how it is

possible to achieve such behavior.

Managing Complex Tasks with Services146

Root and component injectors
We have already learned that when we create an Angular service using the Angular CLI, the service

is provided in the application’s root injector by default. How does this differ when providing a

service through the injector of a component?

Services provided with the application root injector are available throughout the whole application.

When a component wants to use such a service, it only needs to inject it through its constructor,

nothing more. Now, if the component provides the same service through its injector, it will get an

instance of the service that is entirely different from the one from the root injector. The previous

technique is called service scope limiting because we limit the scope of the service to a specific

part of the component tree:

Figure 6.4: Service scope limiting

The previous diagram shows that ProductsService can be provided through two injectors: the

application root injector and ProductListComponent. The FavoritesComponent class injects

ProductsService into its constructor to use it. As we have already seen, FavoritesComponent

is a child component of ProductListComponent.

Chapter 6 147

According to the application injector tree we saw in the Providing dependencies across the applica-

tion section, it will first ask the injector of its parent component, ProductListComponent, about

providing the service. The ProductListComponent class indeed provides ProductsService, so it

creates a new instance of the service and returns it to FavoritesComponent.

Now, consider that another component in our application, called CmpA, wants to use

ProductsService. Since it is not a child component of ProductListComponent and does not

contain any parent component that provides the required service, it will finally reach the appli-

cation root injector. Luckily, ProductsService is also registered with the root injector. The root

injector checks if it has already created an instance for that service. If not, it creates a new one,

called productService, and returns it to CmpA. It also keeps productService in the local pool of

services for later use.

Suppose another component called CmpB wants to use ProductsService and asks the application

root injector. The root injector knows it has already created the productService instance when

CmpA requested it and returns it immediately to the CmpB component.

Sandboxing components with multiple instances
When we provide a service through the component injector and inject it into the component’s con-

structor, a new instance is created every time the component is rendered on the page. It can come

in handy in cases such as when we want to have a local cache service for each component. We will

explore this scenario by transforming our Angular application so that the product list displays a

quick view of each product using an Angular service:

1.	 Run the following command inside the src\app\products folder to create a new Angular

component for the product view:

ng generate component product-view

2.	 Open the product-view.component.ts file and declare an @Input property named id so

we can pass a unique identifier of the product we want to display:

import { Component, Input } from '@angular/core';

@Component({

 selector: 'app-product-view',

 templateUrl: './product-view.component.html',

 styleUrls: ['./product-view.component.css']

})

Managing Complex Tasks with Services148

export class ProductViewComponent {

 @Input() id = -1;

}

3.	 Run the following Angular CLI command inside the src\app\products\product-view

folder to create an Angular service that will be dedicated to the product view component:

ng generate service product-view

The location where we create a service is not related to the injector that provides it. It

is just a visual representation so that we can quickly identify where it is used. If we had

created the service in the folder of the products module, we might have deduced that it

is available to the whole module.

4.	 Open the product-view.service.ts file and remove the parameter object from the @

Injectable decorator because we will provide it later in the product view component.

5.	 Inject ProductsService into the constructor of the ProductViewService class:

import { Injectable } from '@angular/core';

import { ProductsService } from '../products.service';

@Injectable()

export class ProductViewService {

 constructor(private productService: ProductsService) { }

}

The preceding technique is called service-in-a-service because we inject one Angular

service into another.

6.	 Create a method named getProduct that takes an id property as a parameter. The meth-

od will call the getProducts method of ProductsService and will search through the

product list based on the index of the array. If it finds the product, it will keep it in a local

variable named product:

import { Injectable } from '@angular/core';

import { ProductsService } from '../products.service';

import { Product } from '../product';

@Injectable()

export class ProductViewService {

Chapter 6 149

 private product: Product | undefined;

 constructor(private productService: ProductsService) { }

 getProduct(id: number): Product | undefined {

 const products = this.productService.getProducts();

 if (!this.product) {

 this.product = products[id];

 }

 return this.product;

 }

}

We have already created the essential Angular artifacts for working with the product view com-

ponent. All we need to do now is connect them and wire them up to the product list:

1.	 Inject ProductViewService in the constructor of the ProductViewComponent and im-

plement the ngOnInit method from the OnInit interface:

import { Component, Input, OnInit } from '@angular/core';

import { ProductViewService } from './product-view.service';

@Component({

 selector: 'app-product-view',

 templateUrl: './product-view.component.html',

 styleUrls: ['./product-view.component.css'],

 providers: [ProductViewService]

})

export class ProductViewComponent implements OnInit {

 @Input() id = -1;

 We set the product property only if it has not been set already. We will see later

why it is important to do so.

Managing Complex Tasks with Services150

 constructor(private productviewService: ProductViewService) { }

 ngOnInit(): void {

 }

}

2.	 Create a name component property to keep the product name that we will fetch from

ProductViewService:

name = '';

3.	 Modify the ngOnInit method so that it calls the getProduct  method

of ProductViewService as follows:

ngOnInit(): void {

 const product = this.productviewService.getProduct(this.id);

 if (product) {

 this.name = product.name;

 }

}

In the preceding snippet, we pass the id component property to the getProduct method

as a parameter and assign the returned value to the name property.

4.	 We now only need to display the name property in the component template. Open the

product-view.component.html file and replace its content with the following HTML

template:

{{name}}

5.	 Finally, open the product-list.component.html file and modify the unordered list ele-

ment to use the product view component:

 <li *ngFor="let product of products | sort; let i=index"
(click)="selectedProduct = product">

 <app-product-view [id]="i"></app-product-view>

Chapter 6 151

In the preceding snippet, we use the index property of the ngFor directive to access the

index of the current product in the list. We then pass the index to the app-product-view

component as an id so that it can fetch and display the related product name.

If we run our application with the ng serve command, we will see the following output:

Figure 6.5 – Product list

Each product view component rendered creates a dedicated sandboxed ProductViewService

instance for its purpose. The instance cannot be shared by any other component instance and

cannot be changed except by the component that provides it.

Try to provide ProductViewService in ProductListComponent instead of ProductViewComponent;

you will see that only one product is rendered multiple times. In this case, only one service instance

is shared among the child components. Why is that? Recall the business logic of the getProduct

method from the ProductViewService class:

getProduct(id: number): Product | undefined {

 const products = this.productService.getProducts();

 if (!this.product) {

 this.product = products[id];

 }

 return this.product;

}

In the preceding method, the product property is set initially when we provide the service inside

ProductListComponent. Since we have only one instance of the service, the value of the property

will remain the same while we render the product view component multiple times.

You may notice that the product list is not sorted, although we use the sort pipe.

The preceding behavior is caused by the fact that the index property is applied to

the products array directly and not to its sorted version. To overcome this behavior,

we should sort the array directly in the TypeScript class of the component before

using it in the ngFor directive.

Managing Complex Tasks with Services152

With that, we learned how dependencies are injected into the component hierarchy and how pro-

vider lookup is performed by bubbling the request upward in the component tree. However, what

if we want to constrain such injection or lookup actions? We’ll see how to do so in the next section.

Restricting DI down the component tree
In the previous sections, we saw how ProductListComponent registered ProductsService, making

it immediately available to all the child components. A component may contain child components

at different levels. That is, its child components can have other child components, and so on.

Sometimes, we might need to restrict dependency access to components located next to a spe-

cific component in the hierarchy. We can do that by registering the service in the viewProviders

property of the @Component decorator:

@Component({

 selector: 'app-product-list',

 templateUrl: './product-list.component.html',

 styleUrls: ['./product-list.component.css'],

 viewProviders: [ProductsService]

})

In the preceding snippet, we define that ProductsService should only be accessible by the injec-

tors of the components located in the view of ProductListComponent, and its children.

Restricting provider lookup
Just like restricting DI, we can only constrain dependency lookup to the next upper level. To do so,

we need to apply the @Host decorator to those dependency parameters whose provider lookup

we want to restrict:

import { Component, Host, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

@Component({

 selector: 'app-favorites',

 templateUrl: './favorites.component.html',

 styleUrls: ['./favorites.component.css']

})

export class FavoritesComponent implements OnInit {

Chapter 6 153

 products: Product[] = [];

 constructor(@Host() private productService: ProductsService) { }

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

In the preceding example, the injector of FavoritesComponent will look for the ProductsService

class at the component providers. If it does not provide the service, it will not bubble up the injec-

tor hierarchy; instead, it will stop and throw an exception. We can configure the injector so that

it does not throw an error if we decorate the service with the @Optional decorator:

import { Component, Host, OnInit, Optional } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

@Component({

 selector: 'app-favorites',

 templateUrl: './favorites.component.html',

 styleUrls: ['./favorites.component.css']

})

export class FavoritesComponent implements OnInit {

 products: Product[] = [];

 constructor(@Host() @Optional() private productService: ProductsService)
{ }

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

Managing Complex Tasks with Services154

The @Host and @Optional decorators define at what level the injector searches for dependencies.

There are two other decorators additional to them, called @Self and @SkipSelf. When using the

@Self decorator, the injector looks for dependencies in the injector of the current component. On

the contrary, the @SkipSelf decorator instructs the injector to skip the local injector and search

further up in the injector hierarchy.

So far, we have learned how the Angular DI framework uses classes as dependency tokens to work

out the type required and return it from any providers available in the injector hierarchy. However,

there are cases where we might need to override the instance of a class or provide types that are

not actual classes, such as primitive types.

Overriding providers in the injector hierarchy
We have already learned how to use the providers property in an Angular decorator:

@Component({

 selector: 'app-product-list',

 templateUrl: './product-list.component.html',

 styleUrls: ['./product-list.component.css'],

 providers: [ProductsService]

})

The preceding syntax is called class provider syntax and is shorthand for the provide object

literal syntax shown below:

@Component({

 selector: 'app-product-list',

 templateUrl: './product-list.component.html',

 styleUrls: ['./product-list.component.css'],

 providers: [

 { provide: ProductsService, useClass: ProductsService }

]

})

The provide object literal syntax consists of two properties:

•	 provide: This is the token that’s used to configure the injector. It is the actual class that

consumers of the dependency inject into their constructors.

Chapter 6 155

•	 useClass: This is the actual implementation the injector will provide to the consumers.

The property name will differ according to the implementation type provided. The type

can be a class, a value, or a factory function. In this case, we use the useClass name be-

cause we are providing a class.

Let’s have a look at some examples to get an overview of how to use the provide object literal syntax.

Overriding service implementation
We have already learned that a component could share its dependencies with its child components.

Consider the FavoritesComponent, where we used the slice pipe to display a list of favorite prod-

ucts in its template. What if it needs to get data through a trimmed version of ProductsService

and not directly from the service instance of ProductListComponent? We could create a new

favorites service that would extend the ProductsService class and filter out data using the

native slice method of the array instead of the pipe. The favorites.service.ts file would look

like the following:

import { Injectable } from '@angular/core';

import { ProductsService } from './products.service';

import { Product } from './product';

@Injectable({

 providedIn: 'root'

})

export class FavoritesService extends ProductsService {

 constructor() {

 super();

 }

 override getProducts(): Product[] {

 return super.getProducts().slice(1, 3);

 }

}

Some things that should be pointed out in the preceding service are:

•	 We use the extends keyword to indicate that ProductsService is the base class of

FavoritesService.

Managing Complex Tasks with Services156

•	 The constructor calls the super method to execute any business logic inside the base

class constructor.

•	 The getProducts method is marked with the override keyword to indicate that the im-

plementation of the method replaces the corresponding method of the base class.

We could then provide the new service in the decorator of FavoritesComponent using

the useClass syntax. The favorites.component.ts file should look like the following:

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

import { FavoritesService } from '../favorites.service';

@Component({

 selector: 'app-favorites',

 templateUrl: './favorites.component.html',

 styleUrls: ['./favorites.component.css'],

 providers: [

 { provide: ProductsService, useClass: FavoritesService }

]

})

export class FavoritesComponent implements OnInit {

 products: Product[] = [];

 constructor(private productService: ProductsService) { }

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

Notice that we did not need to change anything except for providing the new service. The remain-

ing TypeScript code is the same as before. To see it in action, remember to remove the slice pipe

from the favorites.component.html file before running the application.

The useClass property essentially overwrote the initial implementation of the ProductsService

class for the favorites component. Alternatively, we can go the extra mile and use a function to

return a specific object instance we need, as we will learn in the following section.

Chapter 6 157

Providing services conditionally
In the example of the previous section, we used the useClass syntax to replace the implementa-

tion of the injected ProductsService class. Alternatively, we could create a factory function that

decides whether it will return an instance of the FavoritesService or ProductsService class ac-

cording to a condition. The function would reside in a simple TypeScript file named favorites.ts:

import { FavoritesService } from './favorites.service';

import { ProductsService } from './products.service';

export function favoritesFactory(isFavorite: boolean) {

 return () => {

 if (isFavorite) {

 return new FavoritesService();

 }

 return new ProductsService();

 };

}

We could then modify the providers property in the decorator of FavoritesComponent so that

the favorites.component.ts file would look like this:

import { Component, OnInit } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

import { favoritesFactory } from '../favorites';

@Component({

 selector: 'app-favorites',

 templateUrl: './favorites.component.html',

 styleUrls: ['./favorites.component.css'],

 providers: [

 { provide: ProductsService, useFactory: favoritesFactory(true) }

]

})

export class FavoritesComponent implements OnInit {

 products: Product[] = [];

Managing Complex Tasks with Services158

 constructor(private productService: ProductsService) { }

 ngOnInit(): void {

 this.products = this.productService.getProducts();

 }

}

It is worth noting that if one of the services also injected other dependencies, the previous

syntax would not suffice. For example, if the FavoritesService class was dependent on the

ProductViewService class, we should add it to the deps property of the provide object literal

syntax:

@Component({

 selector: 'app-favorites',

 templateUrl: './favorites.component.html',

 styleUrls: ['./favorites.component.css'],

 providers: [

 {

 provide: ProductsService,

 useFactory: favoritesFactory(true),

 deps: [ProductViewService]

 }

]

})

We could then use it in the factory function of the favorites.ts file as follows:

import { FavoritesService } from './favorites.service';

import { ProductsService } from './products.service';

import { ProductViewService } from './product-view/product-view.service';

export function favoritesFactory(isFavorite: boolean) {

 return (productViewService: ProductViewService) => {

 if (isFavorite) {

 return new FavoritesService(productViewService);

 }

 return new ProductsService();

Chapter 6 159

 };

}

We have already learned how to provide an alternate class implementation for an Angular service.

What if the dependency we want to provide is not a class but a string or an object? We can use

the useValue syntax to accomplish this task.

Transforming objects in Angular services
It is common to keep application settings in a constant object in real-world applications. How

could we use the useValue syntax to provide these settings in our components? Suppose that our

application settings are defined in an app.config.ts file inside the src\app folder:

export interface AppConfig {

 title: string;

 version: number;

}

export const appSettings: AppConfig = {

 title: 'My application',

 version: 1.0

};

You may think we could provide these settings as { provide: AppConfig, useValue: appSettings

}, but this will throw an error because AppConfig is an interface, not a class. Interfaces are syn-

tactic sugar in TypeScript that are thrown away during compilation. Instead, we should provide

an InjectionToken object:

import { InjectionToken } from '@angular/core';

export interface AppConfig {

 title: string;

 version: number;

}

export const appSettings: AppConfig = {

 title: 'My application',

 version: 1.0

};

export const APP_CONFIG = new InjectionToken<AppConfig>('app.config');

Managing Complex Tasks with Services160

We could then provide it in the main application component using the providers property of the

@Component decorator and start using it in the AppComponent class:

import { Component, Inject } from '@angular/core';

import { APP_CONFIG, appSettings, AppConfig } from './app.config';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css'],

 providers: [

 { provide: APP_CONFIG, useValue: appSettings }

]

})

export class AppComponent {

 title = 'my-app';

 constructor(@Inject(APP_CONFIG) config: AppConfig) {}

}

To inject an InjectionToken object in an Angular component or other artifacts, we need to use

the @Inject decorator. It accepts an InjectionToken object as a parameter and declares an ob-

ject that matches the interface specified as generic when the token was created. In the preceding

snippet, the @Inject decorator takes the APP_CONFIG token as a parameter and creates an object

of AppConfig type.

Note that although the AppConfig interface did not have a significant role in the injection process,

we need it to provide typing on the configuration object.

The Angular DI is a powerful and robust mechanism that allows us to manage the dependencies

of our applications efficiently. The Angular team has put much effort into making it simple to

use and removed the burden from the developer’s side. As we have seen, the combinations are

plentiful, and how we will use them depends on the use case.

The useValue syntax is particularly useful when testing Angular applications. We

will use it extensively when we learn about unit testing in Chapter 12, Unit Test an

Angular Application.

Chapter 6 161

Summary
The Angular DI implementation is the backbone of the Angular framework. Angular components

delegate complex tasks to Angular services, which are heavily based on Angular DI.

In this chapter, we learned what Angular DI is and how we can start leveraging it by creating

Angular services. We explored different ways of injecting Angular services into components. We

saw how to share services between components, isolate services in components, and define de-

pendency access through the component tree.

Finally, we investigated how to override Angular services by replacing the service implementation

or transforming existing objects into services.

In the next chapter, we will learn what reactive programming is and how we can use observables

in the context of an Angular application.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

7
Being Reactive Using
Observables and RxJS

Handling asynchronous information is a common task in our everyday lives as developers. Re-

active programming is a programming paradigm that helps us consume, digest, and transform

asynchronous information using data streams. RxJS is a JavaScript library that provides methods

to manipulate data streams using observables.

Angular provides an unparalleled toolset to help us when it comes to working with asynchro-

nous data. Observable streams are at the forefront of this toolset, giving developers a rich set of

capabilities when creating Angular applications. The core of the Angular framework is lightly

dependent on RxJS. Other Angular packages, such as the router and the HTTP client, are more

tightly coupled with observables.

In this chapter, we will learn about the following concepts:

•	 Strategies for handling asynchronous information

•	 Reactive programming in Angular

•	 The RxJS library

•	 Subscribing to observables

•	 Unsubscribing from observables

Technical requirements
The chapter contains various code samples to walk you through the concept of observables and

RxJS. You can find the related source code in the ch07 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Being Reactive Using Observables and RxJS164

Strategies for handling asynchronous information
We manage data asynchronously in different forms, such as consuming data from a backend API

or reading contents from the local filesystem. Consuming information from an API is a typical

operation in our daily development workflow. We consume data over HTTP all the time, such

as when authenticating users by sending out credentials to an authentication service. We also

use HTTP when fetching the latest tweets in our favorite Twitter widget. Modern mobile devices

have introduced a unique way of consuming remote services. They defer requests and response

consumption until mobile connectivity is available. Responsivity and availability have become

a big deal.

Although internet connections are high-speed nowadays, response time is always involved when

serving such information. Thus, as we will see in the following sections, we put in place mecha-

nisms to handle states in our applications transparently for the end user.

Shifting from callback hell to promises
Sometimes, we might need to build functionalities in our application that change its state asyn-

chronously once some time has elapsed. We must introduce code patterns such as the callback

pattern to handle this deferred change in the application state.

In a callback, the function that triggers asynchronous action accepts another function as a pa-

rameter. The function is called when the asynchronous operation has been completed. Let’s see

how to use a callback through an example:

1.	 First, run the following Angular CLI command to create a new Angular application:

ng new my-app --defaults

In the preceding command, the --defaults option instructs the Angular CLI to create

the Angular project with default values for routing and styling.

2.	 Open the app.component.ts file and create a setTitle property to change the title prop-

erty of the component. Notice that it returns an arrow function because we are going to

use it as a callback to another method:

private setTitle = () => {

 this.title = 'Learning Angular';

}

Chapter 7 165

3.	 Next, create a changeTitle method that calls another method, named, by conven-

tion, callback, after 2 seconds:

private changeTitle(callback: Function) {

 setTimeout(() => {

 callback();

 }, 2000);

}

4.	 Finally, add a constructor in the component and call the changeTitle method, passing

the setTitle property as a parameter:

constructor() {

 this.changeTitle(this.setTitle);

}

In the preceding snippet, we use the setTitle property without parentheses because we

pass function signatures and not actual function calls when we use callbacks.

If we run the Angular application using the ng serve command, we see that the title property

changes after 2 seconds. The problem with the pattern we just described is that the code can

become confusing and cumbersome as we introduce more nested callbacks.

Consider the following scenario where we need to drill down into a folder hierarchy to access

photos on a device:

getRootFolder(folder => {

 getAssetsFolder(folder, assets => {

 getPhotos(assets, photos => {});

 });

});

We depend on the previous asynchronous call and the data it brings back before we can do the

next call. We must execute a method inside a callback that executes another method with a

callback. The code quickly ends up looking horrible and complicated, which leads to a situation

known as callback hell.

We can avoid callback hell using promises. Promises introduce a new way of envisioning asyn-

chronous data management by conforming to a neater and more solid interface. Different asyn-

chronous operations can be chained at the same level and even be split and returned from other

functions.

Being Reactive Using Observables and RxJS166

To better understand how promises work, let’s refactor our previous callback example:

1.	 Create a new method in the AppComponent class named onComplete that returns

a Promise object. A promise can either be resolved or rejected. The resolve parameter

indicates that the promise was completed successfully and optionally returns a result:

private onComplete() {

 return new Promise<void>(resolve => {

 });

}

2.	 Introduce a timeout of 2 seconds in the promise so that it resolves after this time has

elapsed:

private onComplete() {

 return new Promise<void>(resolve => {

 setTimeout(() => {

 resolve();

 }, 2000);

 });

}

3.	 Now, replace the changeTitle call in the constructor with the promise-based method.

To execute a method that returns a promise, we invoke the method and chain it with

the then method:

constructor() {

 this.onComplete().then(this.setTitle);

}

We do not notice any significant difference if we rerun the Angular application. The real value

of promises lies in the simplicity and readability afforded to our code. We could now refactor the

previous folder hierarchy example accordingly:

getRootFolder()

 .then(getAssetsFolder)

 .then(getPhotos);

The chaining of the then method in the preceding code shows how we can line up one asyn-

chronous call after another. Each previous asynchronous call passes its result in the upcoming

asynchronous method.

Chapter 7 167

Promises are compelling, but why do we need another paradigm? Sometimes we might need to

produce a response output that follows a more complex digest process or even cancel the whole

process. We cannot accomplish such behavior with promises because they are triggered as soon

as they’re instantiated. In other words, promises are not lazy. On the other hand, the possibility

of tearing down an asynchronous operation after it has been fired but not completed yet can

become quite handy in specific scenarios. Promises allow us to resolve or reject an asynchronous

operation, but sometimes we might want to abort everything before getting to that point.

On top of that, promises behave as one-time operations. Once they are resolved, we cannot ex-

pect to receive any further information or state change notification unless we rerun everything

from scratch. Moreover, we sometimes need a more proactive implementation of asynchronous

data handling, which is where observables come into the picture. To summarize the limitations

of promises:

•	 They cannot be canceled.

•	 They are immediately executed.

•	 They are one-time operations; there is no easy way to retry them.

•	 They respond with only one value.

Observables in a nutshell
An observable is an object that maintains a list of dependents, called observers, and informs

them about state and data changes by emitting events asynchronously. To do so, the observable

implements all the machinery it needs to produce and emit such events. It can be fired and can-

celed at any time, regardless of whether it has emitted the expected data already.

Observers need to subscribe to an observable to be notified and react to reflect the state change.

This pattern, known as the observer pattern, allows concurrent operations and more advanced

logic. These observers, also known as subscribers, keep listening to whatever happens in the

observable until it is destroyed. We can see all this with more transparency in an actual example:

1.	 Replace setTimeout with setInterval in the onComplete method that we covered pre-

viously:

private onComplete() {

 return new Promise<void>(resolve => {

 setInterval(() => {

 resolve();

 }, 2000);

Being Reactive Using Observables and RxJS168

 });

}

The promise will now resolve repeatedly every 2 seconds.

2.	 Modify the setTitle property to append the current timestamp in the title property

of the component:

private setTitle = () => {

 const timestamp = new Date().getMilliseconds();

 this.title = 'Learning Angular (${timestamp})';

}

3.	 Run the Angular application, and you will notice that the timestamp is set only once after 2

seconds and never changes again. The promise resolves itself, and the entire asynchronous

event terminates at that very moment. It is not the desired behavior for our application

so let’s fix it using observables!

4.	 Import the Observable artifact from the rxjs npm package:

import { Observable } from 'rxjs';

5.	 Create a component property named title$ that creates an Observable object. The con-

structor of an observable accepts an observer object as a parameter. The observer is an

arrow function that contains the business logic that will be executed when someone uses

the observable. Call the next method of the observer every 2 seconds to indicate a data

or application state change:

title$ = new Observable(observer => {

 setInterval(() => {

 observer.next();

 }, 2000);

});

6.	 Modify the constructor of the component to use the newly created title$ property:

constructor() {

 this.title$.subscribe(this.setTitle);

}

When we define an observable variable, we tend to append the $ sign to the

variable name. It is a convention that we follow to identify observables in

our code efficiently and quickly.

Chapter 7 169

We use the subscribe method to register to the title$ observable and get notified of any

changes. If we do not call this method, the setTitle method will never execute.

If you run the application, you will notice that the timestamp now changes every 2 seconds. Con-

gratulations! You have entered the world of observables and reactive programming!

Observables return a stream of events, and our subscribers receive prompt notifications of those

events so that they can act accordingly. They do not perform an asynchronous operation and

terminate (although we can configure them to do so) but start a stream of ongoing events to

which we can subscribe.

That’s not all, however. This stream can combine many operations before hitting observers sub-

scribed to it. Just as we can manipulate arrays with methods such as map or filter to transform

them, we can do the same with the stream of events emitted by observables. It is a pattern known

as reactive programming, and Angular makes the most of this paradigm to handle asynchronous

information.

Reactive programming in Angular
The observer pattern stands at the core of what we know as reactive programming. The most

basic implementation of a reactive script encompasses several concepts that we need to become

familiar with:

•	 An observable

•	 An observer

•	 A timeline

•	 A stream of events

•	 A set of composable operators

Sound daunting? It isn’t. The big challenge here is to change our mindset and learn to think re-

actively, which is the primary goal of this section.

 An observable will not do anything unless a subscriber subscribes to it.

Reactive programming entails applying asynchronous subscriptions and transfor-

mations to observable streams of events.

Being Reactive Using Observables and RxJS170

Let’s explain it through a more descriptive example. Think about an interaction device such as a

keyboard. It has keys that the user presses. Each one of those keystrokes triggers a specific key-

board event, such as keyUp. The keyUp event features a wide range of metadata, including—but

not limited to—the numeric code of the specific key the user pressed at a given moment. As the

user continues hitting keys, more keyUp events are triggered and piped through an imaginary

timeline that should look like the following diagram:

Figure 7.1: Timeline of keystroke events

The timeline is a continuous stream of data where the keyUp event can happen at any time; after

all, the user decides when to press those keys. Recall the example with observables from the pre-

vious section. That code could notify an observer that every 2 seconds, another value was emitted.

What’s the difference between that code and our keyUp events? Nothing. We know how often

a timer interval is triggered. In the case of keyUp events, we don’t know because it is not under

our control. But that is the only difference, which means keyUp events can also be considered

observables. Let’s try to explain it further by implementing a key logger in our app:

1.	 Create a new Angular component with the name key-logger:

ng generate component key-logger

2.	 Open the key-logger.component.html file and replace its content with the following

HTML template:

<input type="text" #keyContainer>

You pressed: {{keys}}

In the preceding template, we added an <input> HTML element and attached the

keyContainer template reference variable.

Chapter 7 171

We also display a keys component property representing all the keyboard keys the user

has pressed.

3.	 Open the key-logger.component.ts file and import the OnInit, ViewChild, and

ElementRef artifacts from the @angular/core npm package:

import { Component, ElementRef, OnInit, ViewChild } from '@angular/
core';

4.	 Create the following properties in the KeyLoggerComponent class:

@ViewChild('keyContainer', { static: true }) input: ElementRef |
undefined;

keys = '';

The input property is used to query the <input> HTML element using the keyContainer

template reference variable. The second parameter of the @ViewChild decorator is an object

with a static property. The static property indicates whether the element we want to

query will be available during component initialization. In our case, the <input> element

is already present on the DOM, so we set its value to true. However, there are cases where

an HTML element is not present initially, such as when using the NgIf directive to add it

conditionally. In that case, instead of setting its value to false, we can remove the second

parameter of the @ViewChild decorator completely.

5.	 Add the following import statement to import the fromEvent artifact from the rxjs npm

package:

import { fromEvent } from 'rxjs';

The RxJS library has a variety of helpful artifacts, called operators, that we can use with

observables. One of them is the fromEvent operator, which creates an observable from

the DOM event of a native HTML element.

6.	 Implement the ngOnInit method from the OnInit interface to listen for keyup events in

the <input> element and keep pressed keys in the keys property:

export class KeyLoggerComponent implements OnInit {

A template reference variable can be added to any HTML element, not just

components.

Being Reactive Using Observables and RxJS172

 @ViewChild('keyContainer', { static: true }) input: ElementRef |
undefined;

 keys = '';

 ngOnInit(): void {

 const logger$ = fromEvent<KeyboardEvent>(this.input?.
nativeElement, 'keyup');

 logger$.subscribe(evt => this.keys += evt.key);

 }

}

Notice that we get access to the native HTML input element through

the nativeElement property of the template reference variable. The result of using the 

@ViewChild decorator is an ElementRef object, which is a wrapper over the actual HTML

element.

7.	 Open the app.component.html file and replace its content with the following HTML tem-

plate:

{{title}} app is running!

<div>

 <app-key-logger></app-key-logger>

</div>

Run the application using the ng serve command and start pressing keys to verify the use of the

key logger that we have just created:

Figure 7.2: Key logger output

An essential aspect of observables is using operators and chaining observables together, en-

abling rich composition. Observable operators look like array methods when we want to use

them. For example, a map operator for observables is used similarly to the map method of an array.

In the following section, we will learn about the RxJS library, which provides these operators,

and learn about some of them through examples.

Chapter 7 173

The RxJS library
As mentioned previously, Angular comes with a peer dependency on RxJS, the JavaScript flavor

of the ReactiveX library that allows us to create observables out of a large variety of scenarios,

including the following:

•	 Interaction events

•	 Promises

•	 Callback functions

•	 Events

In this sense, reactive programming does not aim to replace asynchronous patterns, such as prom-

ises or callbacks. All the way around, it can leverage them as well to create observable sequences.

RxJS has built-in support for a wide range of composable operators to transform, filter, and com-

bine the resulting event streams. Its API provides convenient methods for observers to subscribe

to these streams so that our components can respond accordingly to state changes or input in-

teraction. Let’s see some of these operators in action in the following sections.

Creating observables
We have already learned how to create an observable from a DOM event using the fromEvent op-

erator. Two other popular operators concerned with observable creation are the of and from op-

erators.

The of operator is used to create an observable from values such as numbers:

import { of } from 'rxjs';

const values = of(1, 2, 3);

values.subscribe(value => console.log(value));

The previous snippet will print the numbers 1, 2, and 3 in the console window in sequence.

The from operator is used to convert an array or a promise to an observable:

import { from } from 'rxjs';

const values = from([1, 2, 3]);

values.subscribe(value => console.log(value));

Being Reactive Using Observables and RxJS174

The from operator is also very useful when converting promises or callbacks to observables. We

could wrap the onComplete method in the constructor of the AppComponent class as follows:

constructor() {

 const complete$ = from(this.onComplete());

 complete$.subscribe(this.setTitle);

}

Besides creating observables, the RxJS library also contains a couple of handy operators to ma-

nipulate and transform data emitted from observables.

Transforming observables
We have already learned how to create a numeric-only directive in Chapter 5, Enrich Applications

using Pipes and Directives. We will now use RxJS operators to accomplish the same thing in our

key logger component:

1.	 Open the key-logger.component.ts file and import the tap operator from the rxjs npm

package:

import { fromEvent, tap } from 'rxjs';

2.	 Refactor the ngOnInit method as follows:

ngOnInit(): void {

 const logger$ = fromEvent<KeyboardEvent>(this.input?.
nativeElement, 'keyup');

 logger$.pipe(

 tap(evt => this.keys += evt.key)

).subscribe();

}

The pipe operator is used to link and combine multiple operators separated by commas.

We can think of it as a recipe that defines the operators that should be applied to an ob-

servable. One of them is the tap operator, which is used when we want to do something

with the data emitted without modifying it.

 The from operator is an excellent way to start migrating from promises to observ-

ables in your Angular application if you have not done so already!

Chapter 7 175

3.	 We want to exclude non-numeric values that the logger$ observable emits. We already

get the actual key pressed from the evt property, but it returns alphanumeric values. It

would not be efficient to list all non-numeric values and exclude them manually. Instead,

we will use the map operator to get the actual Unicode value of the key. It behaves similarly

to the map method of an array as it returns an observable with a modified version of the

initial data. Import the map operator from the rxjs npm package:

import { fromEvent, map, tap } from 'rxjs';

4.	 Add the following snippet above the tap operator in the ngOnInit method:

map(evt => evt.key.charCodeAt(0)),

5.	 We can now add the filter operator, which operates similarly to the filter method of

an array to exclude non-numeric values. Import the filter operator from the rxjs npm

package:

import { filter, fromEvent, map, tap } from 'rxjs';

6.	 Add the following snippet after the map operator in the ngOnInit method:

filter(code => (code > 31 && (code < 48 || code > 57)) === false),

In the preceding snippet, we omit the return statement from the arrow function. It is a

shorthand syntax that requires writing the arrow function in one line without brackets.

7.	 The observable currently emits Unicode character codes. We need to convert them back

to actual keyboard characters to display them on the HTML template. Refactor the tap

operator to accommodate this change:

tap(digit => this.keys += String.fromCharCode(digit))

As a final touch, we will add an input binding in the component to toggle the numeric-only fea-

ture on and off, conditionally:

1.	 Add the Input artifact in the import statement of the @angular/core npm package:

import { Component, ElementRef, OnInit, ViewChild, Input } from '@
angular/core';

2.	 Add a numeric input property in the KeyLoggerComponent class:

@Input() numeric = false;

Being Reactive Using Observables and RxJS176

3.	 Refactor the filter operator in the ngOnInit method so that it takes into account the

numeric property:

filter(code => {

 if (this.numeric) {

 return (code > 31 && (code < 48 || code > 57)) === false;

 }

 return true;

})

The logger$ observable will filter non-numeric values only if the numeric input property

is true.

The ngOnInit method should finally look like the following:

ngOnInit(): void {

 const logger$ = fromEvent<KeyboardEvent>(this.input?.nativeElement,
'keyup');

 logger$.pipe(

 map(evt => evt.key.charCodeAt(0)),

 filter(code => {

 if (this.numeric) {

 return (code > 31 && (code < 48 || code > 57)) === false;

 }

 return true;

 }),

 tap(digit => this.keys += String.fromCharCode(digit))

).subscribe();

}

We have already seen RxJS operators manipulating observables that return primitive data types

such as numbers, strings, and arrays. However, there are additional operators that we can use to

work with observables that also return observables as values.

Higher-order observables
Observables that operate on other observables of observables are called higher-order observ-

ables. Higher-order observables have an inner observable that contains the actual values we are

interested in using. We can use specific RxJS operators to flatten the inner observable and extract

its values. The most used flattened operators in Angular development are the switchMap and

mergeMap operators.

Chapter 7 177

The switchMap operator takes an observable as a source and applies a given function to each

item, returning an inner observable for each one. The operator returns an output observable with

values emitted from each inner observable. As soon as an inner observable emits a new value, the

output observable stops receiving values from the other inner observables.

We will now investigate how switchMap is usually used in Angular applications. Remember the

ProductsService and ProductViewService classes in the previous chapter? We will now con-

vert them to use observables instead of plain arrays and learn how to combine them using the

switchMap operator.

Let’s get started:

1.	 Open the products.service.ts file and import the of and Observable artifacts from

the rxjs npm package:

import { Injectable } from '@angular/core';

import { Observable, of } from 'rxjs';

import { Product } from './product';

2.	 Extract the products array into a separate service property to enhance code readability:

private products = [

 {

 name: 'Webcam',

 price: 100

 },

 {

 name: 'Microphone',

If you want to follow along with the source code of this chapter, make sure that you

copy the products folder from the source code of Chapter 6, Managing Complex

Tasks with Services, in the src\app folder of your current project. Otherwise, you can

continue from where you left off with your project in the previous chapter.

In this chapter, we will work with the product list and product view components

for simplicity and repeatability. However, the products module also contains other

components and services that must be modified to reflect the use of observables in

the codebase. We encourage you to make these changes yourselves. The source code

described in the Technical requirements section has been trimmed down to compile

successfully without those components and services.

Being Reactive Using Observables and RxJS178

 price: 200

 },

 {

 name: 'Wireless keyboard',

 price: 85

 }

];

3.	 Modify the getProducts method so that it returns the products property:

getProducts(): Observable<Product[]> {

 return of(this.products);

}

In the preceding snippet, we use the of operator to create a new observable from the

products array.

4.	 Open the product-view.service.ts file and add the following import statement:

import { Observable, of, switchMap } from 'rxjs';

5.	 Modify the getProduct method to return an observable of a Product object:

getProduct(id: number): Observable<Product> {

 return this.productService.getProducts().pipe(

 switchMap(products => {

 if (!this.product) {

 this.product = products[id];

 }

 return of(this.product);

 })

);

}

In the preceding method, there are a lot of RxJS mechanics involved. We call the getProducts

method of the ProductsService class, which returns an observable of products. We also

use the pipe operator to chain the observable of products with the observable returned

from the switchMap operator. The switchMap operator creates a new inner observable

for each product emitted from the source observable, using the of operator. Finally, the

getProduct method returns the output observable that results from the pipe operator.

Chapter 7 179

As the name implies, the switchMap operator cancels any current inner observable that is active

and switches to a new one when the source observable emits a new value. If we would like to

wait for all inner observables to complete, we could use the mergeMap operator from RxJS. The

mergeMap operator, as the name implies, merges values from all inner observables into one. The

only change we must make to start using the mergeMap operator is to modify the product-view.

service.ts accordingly:

import { Injectable } from '@angular/core';

import { Observable, of, mergeMap } from 'rxjs';

import { ProductsService } from '../products.service';

import { Product } from '../product';

@Injectable()

export class ProductViewService {

 private product: Product | undefined;

 constructor(private productService: ProductsService) { }

 getProduct(id: number): Observable<Product> {

 return this.productService.getProducts().pipe(

 mergeMap(products => {

 if (!this.product) {

 this.product = products[id];

 }

 return of(this.product);

 })

);

 }

}

We have started using observables in our Angular services using the RxJS library. However, our

application is now broken because our Angular components did not reflect that change. We need

to adjust them so they can interact with the new observable-based services and get data using

observable streams.

Being Reactive Using Observables and RxJS180

Subscribing to observables
We have already learned that an observer needs to subscribe to an observable in order to start

getting emitted data. Our products and product-view services currently emit product data using

observables. We must modify their respective components to subscribe and get these data:

1.	 Open the product-list.component.ts file and create a getProducts method in the

ProductListComponent class:

private getProducts() {

 this.productService.getProducts().subscribe(products => {

 this.products = products;

 });

}

In the preceding method, we subscribe to the getProducts method of the ProductsService

class because it returns an observable instead of a plain products array. The products

array is returned inside the subscribe method, where we set the products component

property to the array emitted from the observable.

2.	 Modify the ngOnInit method so that it calls the newly created getProducts method:

ngOnInit(): void {

 this.getProducts();

}

We could have added the body of the getProducts method inside the ngOnInit method

directly, but we did not. Component life cycle event methods should be as clear and concise

as possible. Always try to extract their logic in a separate method for clarity.

3.	 Open the product-view.component.ts file and create a getProduct method in the

ProductViewComponent class:

private getProduct() {

 this.productviewService.getProduct(this.id).subscribe(product => {

 if (product) {

 this.name = product.name;

 }

 });

}

Chapter 7 181

Similarly to step 1, we subscribe to the getProduct method of the ProductViewService

class and set the name component property inside the subscribe method.

4.	 We also need to modify the ngOnInit method so that it calls the getProduct method:

ngOnInit(): void {

 this.getProduct();

}

5.	 Open the app.module.ts file and import ProductsModule:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { KeyLoggerComponent } from './key-logger/key-logger.
component';

import { ProductsModule } from './products/products.module';

@NgModule({

 declarations: [

 AppComponent,

 KeyLoggerComponent

],

 imports: [

 BrowserModule,

 ProductsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

6.	 Add the product list component in the app.component.html file:

{{title}} app is running!

If you are working with the Angular project you created in the previous chap-

ter, skip steps 5 and 6.

Being Reactive Using Observables and RxJS182

<div>

 <app-key-logger></app-key-logger>

</div>

<app-product-list></app-product-list>

Run the application using the ng serve command, and you should see the product list displayed

on the page successfully:

Figure 7.3: Product list

As depicted in the previous image, we have achieved the same result of displaying the product

list as in Chapter 6, Managing Complex Tasks with Services, but using observables. It may not be

evident at once, but we have set the foundation for working with the Angular HTTP client that is

based on observables. In Chapter 8, Communicating with Data Services over HTTP, we will explore

the HTTP client in more detail.

When we subscribe to observables, we are prone to potential memory leaks if we do not clean

them up on time. In the following section, we will learn about different ways to accomplish that.

Unsubscribing from observables
When we subscribe to an observable, we create an observer that listens for changes in a data stream.

The observer watches the stream continuously while the subscription remains active. When a

subscription is active, it reserves memory in the browser and consumes certain resources. If we

do not tell the observer to unsubscribe at some point and clean up any resources, the subscription

to the observable will possibly lead to a memory leak.

An observer usually needs to unsubscribe when the Angular component that has

created the subscription needs to be destroyed.

Chapter 7 183

Some of the most well-known techniques to use when we are concerned with unsubscribing

from observables are the following:

•	 Unsubscribe from an observable manually.

•	 Use the async pipe in a component template.

Let’s see both techniques in action in the following sections.

Destroying a component
A component has life cycle events we can use to hook on and perform custom logic, as we learned

in Chapter 4, Enabling User Experience with Components. One of them is the ngOnDestroy event,

which is called when the component is destroyed and no longer exists.

Recall ProductListComponent and ProductViewComponent, which we used earlier in our examples.

They subscribe to the appropriate methods of ProductsService and ProductViewService upon

component initialization. When components are destroyed, the reference of the subscriptions

stays active, which may lead to unpredictable behavior. We need to manually unsubscribe when

components are destroyed to clean up any resources properly:

1.	 Open the product-list.component.ts file and add the following import statement:

import { Subscription } from 'rxjs';

2.	 Create the following property in the ProductListComponent class:

private productsSub: Subscription | undefined;

3.	 Assign the productsSub property to the subscription in the getProducts method:

private getProducts() {

 this.productsSub = this.productService.getProducts().
subscribe(products => {

 this.products = products;

 });

}

4.	 Import the OnDestroy lifecycle hook from the @angular/core npm package:

import { AfterViewInit, Component, OnDestroy, OnInit, ViewChild }
from '@angular/core';

5.	 Add OnDestroy to the implemented interface list of the ProductListComponent class.

Being Reactive Using Observables and RxJS184

6.	 Implement the ngOnDestroy method as follows:

ngOnDestroy(): void {

 this.productsSub?.unsubscribe();

}

The unsubscribe method removes an observer from the active listeners of a subscription

and cleans up any reserved resources.

That’s a lot of boilerplate code to unsubscribe from a single subscription. It may quickly become

unreadable and unmaintainable if we have many subscriptions. Can we do better than this? Yes,

we can!

We can use a particular type of observable called Subject, which extends an Observable object

as it is both an observer and an observable. It can emit values to multiple observers, whereas

an Observable object unicasts only to one observer at a time. We have already met such an object

before in Chapter 4, Enabling User Experience with Components. The EventEmitter class from the

@angular/core npm package that we used in the output binding of a component is a Subject.

Other cases that a Subject can be used for are the following:

•	 To pass data between components using observables

•	 To implement a mechanism with search as you type features

We will explore the way of unsubscribing from observables using a Subject in the product view

component:

1.	 Open the product-view.component.ts file and add the following import statement:

import { Subject, takeUntil } from 'rxjs';

The takeUntil artifact is an RxJS operator that unsubscribes from an observable when it

completes. The Subject artifact is also part of the rxjs npm package.

2.	 Create a productSub property in the ProductViewComponent class and initialize it with

an instance of the Subject class:

private productSub = new Subject<void>();

3.	 Modify the getProduct method to use the takeUntil operator:

private getProduct() {

 this.productviewService.getProduct(this.id).pipe(

 takeUntil(this.productSub)

Chapter 7 185

).subscribe(product => {

 if (product) {

 this.name = product.name;

 }

 });

}

In the preceding method, we use the pipe operator to chain the takeUntil operator with

the subscription from the getProduct method of the ProductViewService class. The

takeUntil operator accepts a parameter of the subscription that waits for completion.

4.	 Import the OnDestroy lifecycle hook from the @angular/core npm package:

import { Component, Input, OnDestroy, OnInit } from '@angular/core';

5.	 Add OnDestroy to the implemented interface list of the ProductViewComponent class.

6.	 Implement the ngOnDestroy method so that it completes the productSub:

ngOnDestroy(): void {

 this.productSub.next();

 this.productSub.complete();

}

Before completing a subject, we must call its next method to emit any last values to its

subscribers.

That’s it! We have now converted our subscription in a more declarative way that is more readable.

But the problem of maintainability still exists. Our components are now unsubscribing from their

observables manually. We can solve that using a special-purpose Angular pipe, the async pipe,

which allows us to unsubscribe automatically with less code.

Using the async pipe
The async pipe is an Angular built-in pipe that is used in conjunction with observables, and its

role is two-fold. It helps us to type less code, and it saves us from having to set up and tear down a

subscription. It automatically subscribes to an observable and unsubscribes when the component

is destroyed. We will use it to simplify the code of the product list component:

1.	 Open the product-list.component.ts file and import the Observable artifact from the

rxjs npm package:

import { Subscription, Observable } from 'rxjs';

Being Reactive Using Observables and RxJS186

2.	 Convert the products component property to an observable:

products$: Observable<Product[]> | undefined;

3.	 Assign the getProducts method of the ProductsService class to the products$ compo-

nent property:

private getProducts() {

 this.products$ = this.productService.getProducts();

}

The body of the getProducts method has now been reduced to one line and has become

more readable.

4.	 Open the product-list.component.html file and modify the unordered list element to

use the async pipe:

<h2>Product List</h2>

 <li

 *ngFor="let product of (products$ | async)! | sort; let i=index"

 (click)="selectedProduct = product">

 <app-product-view [id]="i"></app-product-view>

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [product]="selectedProduct"

 (bought)="onBuy()">

</app-product-detail>

<ng-template #noProduct>

 <p>No product selected!</p>

</ng-template>

Feel free to remove any unused code related to the old productsSub property

to improve the component furthermore.

Chapter 7 187

In the preceding template, we use the non-null assertion operator to type-cast the result

of passing the products$ observable through the async pipe. The non-null assertion oper-

ator tricks the TypeScript compiler into ignoring null and undefined values in template

expressions. In strict mode, the async pipe assumes that the observable passed through

it may be null, which comes against our declaration of the products$ property.

That’s it! We do not need to subscribe or unsubscribe from the observable manually anymore!

The async pipe takes care of everything for us.

Summary
It takes much more than a single chapter to cover in detail all the great things we can do with

the RxJS library. The good news is that we have covered all the tools and classes we need for

basic Angular development. We learned what reactive programming is and how it can be used

in Angular. We saw how to apply reactive techniques such as observables to interact with data

streams. We explored the RxJS library and how we can use some of its operators to manipulate

observables. We learned different ways of subscribing and unsubscribing from observables in

Angular components.

The rest is just left to your imagination, so feel free to go the extra mile and put all of this knowledge

into practice in your Angular applications. The possibilities are endless, and you have assorted

strategies to choose from, ranging from promises to observables. You can leverage the incredible

functionalities of the reactive operators and build amazing reactive experiences for your Angular

applications.

As we have already highlighted, the sky’s the limit. However, we still have a long and exciting

road ahead. Now that we know how to consume asynchronous data in our components, let’s

discover how we can benefit from the power of the RxJS library when we want to communicate

over HTTP. In the next chapter, we will learn how to use the Angular built-in HTTP client and

consume data from a remote endpoint.

8
Communicating with Data
Services over HTTP

A real-world scenario for enterprise Angular applications is to connect to remote services and APIs

to exchange data. The built-in Angular HTTP client provides out-of-the-box support for commu-

nicating with services over HTTP. The interaction of an Angular application with the HTTP client

is based on RxJS observable streams, giving developers a rich set of capabilities for data access.

There are many possibilities to describe what you can do to connect to APIs through HTTP. In this

book, we will only scratch the surface. Still, the insights covered in this chapter will give you all

you need to connect your Angular applications to HTTP services in no time, leaving all you can

do with them up to your creativity.

In this chapter, we will explore the following concepts:

•	 Communicating data over HTTP

•	 Introducing the Angular HTTP client

•	 Setting up a backend API

•	 Handling CRUD data in Angular

•	 Authentication and authorization with HTTP

Technical requirements
The chapter contains various code samples to walk you through the concept of the Angular HTTP

client. You can find the related source code in the ch08 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition.

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Communicating with Data Services over HTTP190

Communicating data over HTTP
Before we dive deeper into describing the Angular built-in HTTP client and how to use it to com-

municate with servers, let’s talk about native HTTP implementations first. Currently, if we want

to communicate with a server over HTTP using JavaScript, we can use the fetch API. It contains

all the necessary methods to connect with a server and start exchanging data. You can see an

example of how to fetch data in the following code:

fetch(url)

 .then(response => {

 return response.ok ? response.text() : '';

 })

 .then(result => {

 if (result) {

 console.log(result);

 } else {

 console.error('An error has occured');

 }

 });

Although the fetch API is promise-based, the promise that returns is not rejected in case of error.

Instead, the request is unsuccessful when the ok property is not present in the response object. If

the request to the remote URL completes, we can use the text() method of the response object

to return the response text inside a new promise. Finally, in the second then callback, we display

either the response text or a specific error message to the browser console.

We have already learned that observables are more flexible for managing asynchronous operations.

You are probably wondering how we can apply this pattern to an asynchronous scenario, such as

consuming information from an HTTP service. You have so far become used to submitting asyn-

chronous requests to AJAX services and then passing the response to a callback or a promise. Now,

we will handle the call by returning an observable. The observable will emit the server response

as an event in the context of a stream, which can be funneled through RxJS operators to digest

the response better.

To learn more details about the fetch API, check out the official documentation

at https://developer.mozilla.org/docs/Web/API/fetch.

https://developer.mozilla.org/docs/Web/API/fetch

Chapter 8 191

Let’s try to convert the previous example with the fetch API to an observable. We use the Observable

class constructor that we learned to wrap the fetch call in an observable stream. We replace

the log method of the console with the appropriate observer object methods:

const request$ = new Observable(observer => {

 fetch(url)

 .then(response => {

 return response.ok ? response.text() : '';

 })

 .then(result => {

 if (result) {

 observer.next(result);

 observer.complete();

 } else {

 observer.error('An error has occured');

 }

 });

});

In the preceding snippet, the next method emits the response data back to subscribers as soon

as they arrive. The complete method notifies them that no other data will be available in the

stream. In the case of an error, the error method alerts subscribers that an error has occurred.

That’s it! You have now built your custom HTTP client. Of course, this isn’t much. Our custom

HTTP client only handles a GET operation to get data from a remote endpoint. We are not han-

dling many other operations of the HTTP protocol, such as POST, PUT, and DELETE. It was, how-

ever, essential to realize all the heavy lifting the HTTP client in Angular is doing for us. Another

important lesson is how easy it is to take any asynchronous API and turn it into an observable

one that fits nicely with the rest of our asynchronous concepts. So, let’s continue with Angular’s

implementation of an HTTP service.

Introducing the Angular HTTP client
The built-in HTTP client of the Angular framework is a separate Angular library that resides

in the @angular/common npm package under the http namespace. The Angular CLI installs

this package by default when creating a new Angular project. To start using it, we need to im-

port HttpClientModule in the main application module, app.module.ts:

import { NgModule } from '@angular/core';

Communicating with Data Services over HTTP192

import { BrowserModule } from '@angular/platform-browser';

import { HttpClientModule } from '@angular/common/http';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

The HttpClientModule class provides various Angular services we can use to handle asynchro-

nous HTTP communication. The most basic is the HttpClient service, which provides a robust

API and abstracts all operations required to handle asynchronous connections through various

HTTP methods. Its implementation was considered carefully to ensure that developers feel at

ease while developing solutions that take advantage of this class.

In a nutshell, instances of the HttpClient service have access to various methods to perform

common HTTP request operations, such as GET, POST, PUT, and every existing HTTP verb. In this

book, we are interested in the most basic ones:

•	 get: This performs a GET operation to fetch data.

•	 post: This performs a POST operation to add new data.

•	 put/patch: This performs a PUT/PATCH operation to update existing data.

•	 delete: This performs a DELETE operation to remove existing data.

The previous HTTP operations constitute the primary operations for Create Read Update Delete

(CRUD) applications. All the previous methods of the Angular HTTP client return an observable

data stream. Angular components can use the RxJS library to subscribe to those methods and

interact with a remote API. In the following section, we will explore how to use these methods

and communicate with a remote API.

Chapter 8 193

Setting up a backend API
A web CRUD application usually connects to a server and uses an HTTP backend API to perform

operations on data. It fetches existing data, updates it, creates new data, or deletes it. In a re-

al-world scenario, you will most likely interact with a real backend API service through HTTP.

There are cases, though, where we do not have access to a real backend API:

•	 We may work remotely, and the server is only accessible through a VPN connection to

which we do not have access.

•	 We want to set up a quick prototype for demo purposes.

•	 Available HTTP endpoints are not yet ready for consumption from the backend devel-

opment team, a common problem when working in a large team of different types of

developers.

To overcome all the previous obstacles during development, we can use a fake server such as

the Fake Store API. The Fake Store API is a backend REST API available online that you can use

when you need fake data for an e-commerce or e-shop web application. It can manage products,

shopping carts, and users that are available in the JSON format. It exposes the following main

endpoints:

•	 products: This manages a set of product items.

•	 cart: This manages the shopping cart of a user.

•	 user: This manages a collection of application users.

•	 login: This handles user authentication.

All operations that modify data in the previous endpoints do not persist data in the database.

However, they return an indication if the operation was successful. All GET operations in the

previous endpoints return a predefined collection of data.

You can read more about the service at https://fakestoreapi.com.

In this chapter, we will work only with the products and login endpoints. However,

we will revisit the cart endpoint later in the book.

https://fakestoreapi.com

Communicating with Data Services over HTTP194

Handling CRUD data in Angular
CRUD applications are widespread in the Angular world, particularly in the enterprise sector.

You will hardly find any web application that does not follow this pattern. Angular does a great

job supporting this type of application by providing the HttpClient service. In this section, we

will explore the Angular HTTP client by interacting with the products endpoint of the Fake

Store API. In particular, we will create an Angular CRUD application to manage products from

our products module in Chapter 7, Being Reactive Using Observables and RxJS. Let’s get started by

scaffolding our application:

1.	 Create a new Angular application using the following Angular CLI command:

ng new my-app --defaults

2.	 Copy the global CSS styles from the code samples of Chapter 6, Managing Complex Tasks

with Services, inside the styles.css file of the current Angular project.

3.	 Copy the products folder from Chapter 7, Being Reactive using Observables and RxJS, in the

src\app folder of the current Angular project.

4.	 Open the product-list.component.ts file and remove the providers property from the @

Component decorator. The application root injector already provides the ProductsService

class.

5.	 Open the product-list.component.html file and modify the unordered list element so

that it does not use the <app-product-view> component:

<h2>Product List</h2>

 <li *ngFor="let product of (products$ | async)! | sort"
(click)="selectedProduct = product">

 {{product.name}}

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [product]="selectedProduct"

 (bought)="onBuy()">

</app-product-detail>

<ng-template #noProduct>

 <p>No product selected!</p>

</ng-template>

Chapter 8 195

6.	 Open the app.module.ts file and import the products module:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppComponent } from './app.component';

import { ProductsModule } from './products/products.module';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 ProductsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

7.	 Open the app.component.html file and replace its content with the following HTML tem-

plate:

<app-product-list></app-product-list>

If we run the application using the ng serve command, we should see the product list displayed

on the page correctly:

Figure 8.1: Product list

As we can see from the previous image, our application still displays static data. We need to modify

it so that it gets product data from the Fake Store API.

Communicating with Data Services over HTTP196

Fetching data through HTTP
The product list component uses the products service to fetch and display product data. Data are

currently hardcoded into the products property of the ProductsService class. In this section, we

will modify our Angular application to work with live data from the Fake Store API:

1.	 Open the app.module.ts file and import the Angular module of the HTTP client:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { HttpClientModule } from '@angular/common/http';

import { AppComponent } from './app.component';

import { ProductsModule } from './products/products.module';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule,

 ProductsModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

2.	 Now, open the products.service.ts file and import the HttpClient class and the map

RxJS operator:

import { Injectable } from '@angular/core';

import { map, Observable, of } from 'rxjs';

import { HttpClient } from '@angular/common/http';

import { Product } from './product';

Chapter 8 197

3.	 Create the following interface after the import statements:

interface ProductDTO {

 title: string;

 price: number;

}

The preceding interface conforms to the product object model of the Fake Store API. It

will act as an intermediate for transforming the response object from the API into our

Product interface. The Product interface defined in the product.ts file contains a name

property instead of a title that the API requires. The suffix DTO comes from Data Transfer

Object (DTO) and is often used to indicate that the interface is part of the backend API

specification model.

4.	 Create the following property in the ProductsService class that represents the API prod-

ucts endpoint:

private productsUrl = 'https://fakestoreapi.com/products';

5.	 Inject HttpClient in the constructor of the ProductsService class:

constructor(private http: HttpClient) { }

6.	 Modify the getProducts method so that it uses the HttpClient service to get the list of

products:

getProducts(): Observable<Product[]> {

 return this.http.get<ProductDTO[]>(this.productsUrl).pipe(

 map(products => products.map(product => {

 return {

 name: product.title,

 price: product.price

 }

 }))

);

}

Collaborating with the backend team that develops the API early in a project

and agreeing on the structure of the models you exchange will avoid creating

intermediate interfaces.

Communicating with Data Services over HTTP198

In the preceding method, we use the get method of the HttpClient class and pass the

products endpoint of the API as a parameter. We also define the ProductDTO[] as a ge-

neric type in the get method to indicate that the response from the API contains a list of

ProductDTO objects. To transform the response from the API into a list of Product objects

that our components understand, we use the map operator of the RxJS library.

If we run the application using the ng serve command, we should see a list of products from the

API similar to the following:

Figure 8.2: Product list from the Fake Store API

If you click on a product from the list, you will notice that the product details are shown correctly:

You can now remove the products property of the ProductsService class.

Chapter 8 199

Figure 8.3: Product details

The product details component continues to work as expected because we pass the selected

product as an input property from the product list:

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [product]="selectedProduct"

 (bought)="onBuy()">

</app-product-detail>

We will change the previous behavior and get the product details directly from the API using an

HTTP GET request:

1.	 The Fake Store API contains an endpoint method that we can use to get details for a specific

product based on its ID. We do not currently have an ID property in our product model,

so first, let’s add one in the product.ts file:

export interface Product {

 id: number;

 name: string;

 price: number;

}

2.	 Open the products.service.ts file and modify the ProductDTO interface to include the

id property:

interface ProductDTO {

 id: number;

 title: string;

 price: number;

}

Communicating with Data Services over HTTP200

3.	 Create the following helper method to transform a ProductDTO object into a Product

object because we will need it often inside the service:

private convertToProduct(product: ProductDTO): Product {

 return {

 id: product.id,

 name: product.title,

 price: product.price

 };

}

4.	 Refactor the getProducts method to use the newly created convertToProduct helper

method:

getProducts(): Observable<Product[]> {

 return this.http.get<ProductDTO[]>(this.productsUrl).pipe(

 map(products => products.map(product => {

 return this.convertToProduct(product);

 }))

);

}

5.	 Create a new getProduct method that accepts the product id as a parameter and initiates

a GET request to the API based on that id:

getProduct(id: number): Observable<Product> {

 return this.http.get<ProductDTO>('${this.productsUrl}/${id}').
pipe(

 map(product => this.convertToProduct(product))

)

}

The preceding method uses the get method of the HttpClient service. It accepts the

products endpoint followed by the product id as a parameter. It also defines the ProductDTO

interface as generic because the result from the backend API will be a ProductDTO object.

We need to adjust the product detail component to get product details through the previous

method instead of the input binding. We will still use input binding for passing the product id

from the product list to the product detail component:

Chapter 8 201

1.	 Open the product-detail.component.ts file and import the Observable and

ProductsService artifacts:

import { Observable } from 'rxjs';

import { ProductsService } from '../products.service';

2.	 Create the following properties in the ProductDetailComponent class:

@Input() id = -1;

product$: Observable<Product> | undefined;

The id component property will be used to pass the id of the selected product from the

list. The product$ property will be used to call the getProduct method from the service.

3.	 Inject ProductsService in the constructor of the ProductDetailComponent class:

constructor(private productService: ProductsService) { }

4.	 Modify the ngOnChanges method as follows:

ngOnChanges(): void {

 this.product$ = this.productService.getProduct(this.id);

}

We assign the value of the getProduct method from ProductsService to the product$

component property every time a new id is passed using the input binding. We do not

want to subscribe to the getProduct observable because we will use the async pipe in

the component template that will do it for us automatically.

5.	 Open the product-detail.component.html file and replace its content with the following

HTML template:

<div *ngIf="product$ | async as product">

 <h2>Product Details</h2>

 <h3>{{product.name}}</h3>

 {{product.price | currency:'EUR'}}

 <p>

 <button (click)="buy()">Buy Now</button>

 </p>

</div>

Communicating with Data Services over HTTP202

In the preceding template, we have removed the NgSwitch directive and used the async

pipe inside the *ngIf directive. The async pipe subscribes to the product$ observable

and saves the result in the product template variable.

6.	 Finally, open the product-list.component.html and bind the id of the selectedProduct

property to the id input binding of the app-product-detail component:

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [id]="selectedProduct.id"

 (bought)="onBuy()">

</app-product-detail>

If we run the application using the ng serve command and select a product from the list, we will

get an output like the following:

Figure 8.4: Product details

We have already learned how to get a list of items and a single item from a backend API and cov-

ered the Read part of a CRUD operation. In the following section, we cover the remaining ones

mainly concerned with modifying data.

Modifying data through HTTP
Modifying data in a CRUD application usually refers to adding new data and updating or deleting

existing data. To demonstrate how to implement such functionality in an Angular application

using the HttpClient service, we will make the following changes to our application:

•	 Create an Angular component to add new products.

•	 Modify the product detail component to change the price of an existing product.

•	 Add a button in the product detail component for deleting an existing product.

We will start with the component for adding new products.

Chapter 8 203

Adding new products
To add a new product through our application, we need to send the name and price of a new prod-

uct into the Fake Store API. Before implementing the required functionality for adding products, we

must refactor the ProductListComponent class in the product-list.component.ts file as follows:

export class ProductListComponent implements OnInit {

 selectedProduct: Product | undefined;

 products: Product[] = [];

 constructor(private productService: ProductsService) {}

 ngOnInit(): void {

 this.getProducts();

 }

 onBuy() {

 window.alert('You just bought ${this.selectedProduct?.name}!');

 }

 private getProducts() {

 this.productService.getProducts().subscribe(products => {

 this.products = products;

 });

 }

}

You may ask yourself why we are doing this. The async pipe is best suited for read-only data. In

this case, we want to modify the product list by adding a new product or removing an existing

one later. Plain arrays are best suited in this scenario because we can easily manipulate them

using standard array functions.

You may also notice that we no longer unsubscribe from the getProducts observable when the

component is destroyed. The Angular built-in HTTP client does a great job of unsubscribing

automatically in most cases. However, it is advisable to always unsubscribe from observables in

your components.

Communicating with Data Services over HTTP204

We must also change the product-list.component.html file so that the unordered list element

iterates over the products array:

<h2>Product List</h2>

 <li *ngFor="let product of products | sort" (click)="selectedProduct =
product">

 {{product.name}}

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [id]="selectedProduct.id"

 (bought)="onBuy()">

</app-product-detail>

<ng-template #noProduct>

 <p>No product selected!</p>

</ng-template>

We can now start building the feature for adding new products to our application:

1.	 Open the products.service.ts file and add the following addProduct method:

addProduct(name: string, price: number): Observable<Product> {

 return this.http.post<ProductDTO>(this.productsUrl, {

 title: name,

 price: price

 }).pipe(

 map(product => this.convertToProduct(product))

);

}

In the preceding method, we use the post method of the HttpClient class and pass the

products endpoint of the API, along with the details of a new product as parameters. The

generic type defined in the post method indicates that the returned product from the API

is a ProductDTO object. We transform the returned product into a Product type using the

convertToProduct method.

Chapter 8 205

2.	 Run the following Angular CLI command inside the src\app\products folder to create

a new component:

ng generate component product-create

3.	 Open the product-create.component.ts file and import the following artifacts:

import { Component, EventEmitter, Output } from '@angular/core';

import { Product } from '../product';

import { ProductsService } from '../products.service';

4.	 Add the following property in the ProductCreateComponent class using the @Output dec-

orator:

@Output() added = new EventEmitter<Product>();

We will use the preceding property to emit an event back to the product list component

containing the new product we created.

5.	 Inject ProductsService into the constructor of the component class:

constructor(private productsService: ProductsService) {}

6.	 Add the following createProduct method in the component class:

createProduct(name: string, price: number) {

 this.productsService.addProduct(name, price).subscribe(product =>
{

 this.added.emit(product);

 });

}

The preceding method accepts the name and price of a product as parameters. It calls

the addProduct method of the ProductsService class and then emits the newly created

product using the added output event.

7.	 Open the product-create.component.html file and replace its content with the following

HTML template:

<div>

 <label for="name">Name</label>

 <input id="name" #name />

</div>

<div>

Communicating with Data Services over HTTP206

 <label for="price">Price</label>

 <input id="price" #price />

</div>

<div>

 <button (click)="createProduct(name.value, price.
valueAsNumber)">Create</button>

</div>

In the preceding template, we bind the createProduct method to the click event of the

Create button. We pass the value of each <input> element using the respective template

reference variables, name, and price. The value of the price variable is converted to a

number using the valueAsNumber property because it is in string format by default.

8.	 Open the styles.css file and add the following CSS styles to give a nice look and feel to

our new component:

input {

 font-size: 14px;

 border-radius: 4px;

 padding: 8px;

 margin-bottom: 16px;

 border: 1px solid #BDBDBD;

}

label {

 font-size: 12px;

 font-weight: bold;

 margin-bottom: 4px;

 display: block;

}

We have already created the component for adding new products. All we have to do now is con-

nect it with the product list component so that when a new product is created, it is also added

to the product list:

1.	 Open the product-list.component.ts file and create the following method in the

ProductListComponent class:

onAdd(product: Product) {

 this.products.push(product);

}

Chapter 8 207

The preceding method adds a new product to the list. It will be called when a new product

is added through the product create component.

2.	 Open the product-list.component.html file and add the following HTML content:

<app-product-create (added)="onAdd($event)"></app-product-create>

In the preceding snippet, we add the product create component for adding new products

and bind the onAdd component method to the added event. The $event object represents

the newly added product.

If we now run our Angular application using the ng serve command, we should see the compo-

nent for adding new products at the end of the page:

Figure 8.5: Create a product

To experiment, try to add a new product by filling in its details, clicking on the Create button, and

verifying that the new product has been added to the list.

The next feature we will add to our CRUD application is to modify data by changing the price of

an existing product.

Updating product price
The price of a product in an e-commerce application may need to change at some point. We need

to provide a way for our users to update that price through our application:

1.	 Open the products.service.ts file and add a new method for updating a product:

updateProduct(id: number, price: number): Observable<void> {

Do not try to select a new product from the list. Remember that any new data sent

to the Fake Store API are not persisted in the database.

Communicating with Data Services over HTTP208

 return this.http.patch<void>('${this.productsUrl}/${id}', { price
});

}

In the preceding method, we use the patch method of the HttpClient service to send the

details of the product that we want to modify to the API. Alternatively, we could use the

put method of the HTTP client. The patch method should be used when we want to update

only a subset of an object, whereas the put method interacts with all object properties.

We do not want to update the product name in this case, so we use the patch method.

Both methods accept the API endpoint and the object we want to update as parameters.

The return type of the updateProduct method is set to Observable<void> because we

are not currently interested in the result of the HTTP request. We only need to know if it

was successful or not.

2.	 Open the product-detail.component.ts file and add the following method:

changePrice(product: Product, price: number) {

 this.productService.updateProduct(product.id, price).subscribe(()
=> {

 alert('The price of ${product.name} was changed!');

 });

}

The preceding method accepts an existing product and its new price as parameters. It calls

the updateProduct method of the ProductsService class and displays an alert message

if the product is updated successfully.

3.	 Open the product-detail.component.html file and add an <input> and a <button> el-

ement after the element:

<div *ngIf="product$ | async as product">

 <h2>Product Details</h2>

 <h3>{{product.name}}</h3>

 {{product.price | currency:'EUR'}}

 <input placeholder="New price" #price/>

 <button (click)="changePrice(product, price.
valueAsNumber)">Change</button>

 <p>

 <button (click)="buy()">Buy Now</button>

 </p>

</div>

Chapter 8 209

The <input> element is used to enter the new price of the product and defines the price

template reference variable. The click event of the <button> element is bound to the

changePrice method that passes the current product object and the numeric value of

the price variable.

4.	 Finally, open the product-detail.component.css file and add the following CSS styles:

input {

 margin-left: 5px;

}

The preceding styles will give space between the element that displays the current

price and the <input> element that accepts the new one.

5.	 Run the ng serve command to start the Angular application and select a product from

the list. The product detail component should look like the following:

Figure 8.6: Product details

6.	 Enter a price in the New price input box and click the Change button. You should see an

alert dialog containing the product name and stating that the price has changed:

Figure 8.7: Change price alert

Communicating with Data Services over HTTP210

We can now modify a product by changing its price.

The next and final step of our CRUD application will be to delete an existing product.

Removing a product
Deleting a product from an e-shop application is not very common. However, we need to provide

the functionality in case users enter wrong or invalid data and want to delete them afterward. In

our application, deleting an existing product will be available from the product details component:

1.	 Open the products.service.ts file and add the following method:

deleteProduct(id: number): Observable<void> {

 return this.http.delete<void>('${this.productsUrl}/${id}');

}

The preceding method uses the delete method of the HttpClient service and passes the

products endpoint, together with the product id we want to delete in the API.

Similarly to the updateProduct method, we are not interested in the result of the API

call. So, the signature of the method indicates that it returns Observable<void> as a type.

2.	 Open the product-detail.component.ts file and create a new output property in the

ProductDetailComponent class:

@Output() deleted = new EventEmitter();

The preceding property will be used to notify the product list component that the select-

ed product has been deleted. The product list component will then be responsible for

removing the product from the list.

3.	 In the same component class, create the following method:

remove(product: Product) {

 this.productService.deleteProduct(product.id).subscribe(() => {

 this.deleted.emit();

 });

}

If you select the product again from the list, you will notice that the price has not

been updated. Remember that any modifications to existing data sent to the Fake

Store API are not persisted in the database.

Chapter 8 211

The preceding method calls the deleteProduct method of the ProductsService class

and emits the deleted output event.

4.	 Open the product-detail.component.html file, create a <button> element, and bind its

click event to the remove component method:

<div *ngIf="product$ | async as product">

 <h2>Product Details</h2>

 <h3>{{product.name}}</h3>

 {{product.price | currency:'EUR'}}

 <input placeholder="New price" #price/>

 <button (click)="changePrice(product, price.
valueAsNumber)">Change</button>

 <p>

 <button (click)="buy()">Buy Now</button>

 <button class="delete" (click)="remove(product)">Delete</button>

 </p>

</div>

5.	 Add an appropriate style for the new button in the product-detail.component.css file:

.delete {

 background-color: lightcoral;

 color: white;

 margin-left: 5px;

}

6.	 Open the product-list.component.ts file and add the following method:

onDelete() {

 this.products = this.products.filter(product => product !== this.
selectedProduct);

 this.selectedProduct = undefined;

}

The preceding method will be called when the product detail component indicates that

the selected product was deleted. It filters out the deleted product from the list and sets

the selectedProduct to undefined so that there is no selected product on the page.

Communicating with Data Services over HTTP212

7.	 Open the product-list.component.html file and bind the onDelete component method

to the deleted event of the app-product-detail component:

<app-product-detail

 *ngIf="selectedProduct; else noProduct"

 [id]="selectedProduct.id"

 (deleted)="onDelete()"

 (bought)="onBuy()">

</app-product-detail>

If we run the application using the ng serve command and select a product from the list, we

should see something like the following:

Figure 8.8: Product details

The product detail component now has a Delete button. When we click the button, the application

deletes the product from the backend and hides it from the list.

The e-shop application we have built so far provides a Buy Now button that we can use to add a

product to a cart. The button does not do much yet, but we will implement the full cart function-

ality in the following chapters. However, we should ensure that the feature will only be available

to authenticated users.

If you reload your browser, you will notice that the product is still displayed on the

list. Remember that any modifications to existing data sent to the Fake Store API

are not persisted in the database.

In an Angular enterprise application, the product management feature must also

be protected from unauthorized users. In this case, we would implement a more

granular authorization scheme with user roles, where administrators would only

be allowed to change and add products. We will not implement this feature, but we

encourage you to experiment by yourselves.

Chapter 8 213

The following section will teach us how to perform authentication and authorization in an An-

gular application.

Authentication and authorization with HTTP
The Fake Store API provides an endpoint for authenticating users with a username and a password.

It contains a login method that accepts a username and a password as parameters and returns

an authentication token. We will use the authentication token in our application to differentiate

between a logged-in user and a guest.

We will explore the following authentication and authorization topics in this section:

•	 Authenticating with a backend API

•	 Authorizing users for certain features

•	 Authorizing HTTP requests using interceptors

Let’s get started with how to authenticate with the Fake Store API.

Authenticating with backend API
In Angular real-world applications, we usually consider authentication as an application feature.

So, we will create a new Angular module that will handle authentication in our application. The

module will contain an Angular component, allowing the user to log in to and log out of the

application. An Angular service will be responsible for communicating with the Fake Store API

and handling all authentication tasks.

Let’s get started by setting up the new Angular module:

1.	 Run the following command to create a new auth module:

ng generate module auth

2.	 Navigate inside the src\app\auth folder and run the following command to create a new

Angular service:

ng generate service auth

The username and password are provided by a predefined pool of users at https://

fakestoreapi.com/users.

https://fakestoreapi.com/users
https://fakestoreapi.com/users

Communicating with Data Services over HTTP214

3.	 Open the auth.service.ts file and add the following import statements:

import { HttpClient } from '@angular/common/http';

import { Observable, tap } from 'rxjs';

The tap artifact is an RxJS operator we use when we want to handle the emitted data from

an observable without modifying it.

4.	 Create a private property for the authentication token in the AuthService class and inject

the HttpClient service in the constructor:

export class AuthService {

 private token = '';

 constructor(private http: HttpClient) { }

}

We mark the property as private because we do not want sensitive data to be accessible

outside the AuthService class.

5.	 Create a login method to allow users to log in to the Fake Store API:

login(): Observable<string> {

 return this.http.post<string>('https://fakestoreapi.com/auth/
login', {

 username: 'david_r',

 password: '3478*#54'

 }).pipe(tap(token => this.token = token));

}

The preceding method initiates a POST request to the API, using the login endpoint and

passing predefined values for username and password. The observable returned from the

POST request is passed to the tap operator, which sets the token received from the API

to the token service property.

6.	 Create a logout method that resets the token property:

logout() {

 this.token = '';

}

Chapter 8 215

We have already set up the business logic for authenticating users in our Angular application.

In the following section, we will learn how to start using it and control authorization access in

the application.

Authorizing user access
First, we will create an authentication component that will allow our users to log in to and log

out of the application:

1.	 Run the following command inside the src\app\auth folder to create a new Angular

component:

ng generate component auth –export

The preceding Angular CLI command will create the auth component and export it from

the auth module so that other Angular modules can use it.

2.	 Open the auth.component.ts file and inject AuthService:

import { Component } from '@angular/core';

import { AuthService } from '../auth.service';

@Component({

 selector: 'app-auth',

 templateUrl: './auth.component.html',

 styleUrls: ['./auth.component.css']

})

export class AuthComponent {

 constructor(public authService: AuthService) { }

}

In the preceding scenario, we use the public access modifier to inject AuthService because

we want it to be accessible from the component template.

Although we can use an Angular service directly in a component template,

limiting its content inside the component class is considered a best practice.

In this scenario, we follow the former for simplicity.

Communicating with Data Services over HTTP216

3.	 Open the auth.component.html file and replace its content with the following HTML

template:

<button

 [hidden]="authService.isLoggedIn"

 (click)="authService.login().subscribe()"

>Login</button>

<button

 [hidden]="!authService.isLoggedIn"

 (click)="authService.logout()"

>Logout</button>

The preceding template contains two <button> elements for login/logout purposes. Each

button is displayed conditionally according to the value of the isLoggedIn property of

the AuthService class.

4.	 Open the auth.service.ts file and create the isLoggedIn getter property:

get isLoggedIn() { return this.token !== ''; }

According to the preceding property, a user is considered authenticated when a token is

set in the application.

5.	 Open the product-detail.component.ts file and import the AuthService artifact:

import { AuthService } from '../../auth/auth.service';

6.	 Inject AuthService in the constructor of the ProductDetailComponent:

constructor(private productService: ProductsService, public
authService: AuthService) { }

7.	 Open the product-detail.component.html file and use the ngIf directive to display the

Buy Now button conditionally:

<div *ngIf="product$ | async as product">

 <h2>Product Details</h2>

 <h3>{{product.name}}</h3>

 {{product.price | currency:'EUR'}}

 <input placeholder="New price" #price/>

 <button (click)="changePrice(product, price.
valueAsNumber)">Change</button>

 <p>

Chapter 8 217

 <button *ngIf="authService.isLoggedIn" (click)="buy()">Buy Now</
button>

 <button class="delete" (click)="remove(product)">Delete</button>

 </p>

</div>

In the preceding template, we used the ngIf directive, not the hidden attribute, because

we want the button to be completely removed from the DOM.

8.	 Import the auth module into the main application module file, app.module.ts:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { HttpClientModule } from '@angular/common/http';

import { AppComponent } from './app.component';

import { ProductsModule } from './products/products.module';

import { AuthModule } from './auth/auth.module';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule,

 ProductsModule,

 AuthModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

9.	 Open the app.component.html file and add the auth component to the template:

<app-auth></app-auth>

<app-product-list></app-product-list>

Congratulations! You have gone a long way in adding basic authentication and authorization

patterns to your Angular application.

Communicating with Data Services over HTTP218

It is common in enterprise applications to perform authorization in the business logic layer while

communicating with the backend API. The backend API often requires certain method calls to

pass the authentication token in each request through headers. We will learn how to work with

HTTP headers in the following section.

Authorizing HTTP requests
The Fake Store API does not require authorization while communicating with its endpoints. How-

ever, consider that we are working with a backend API that expects all HTTP requests to contain

an authentication token using HTTP headers. A common pattern in web applications is to include

the token in an Authorization header. We can use HTTP headers in an Angular application by

importing the HttpHeaders artifact from the @angular/common/http namespace and modifying

our methods accordingly:

getProducts(): Observable<Product[]> {

 const options = {

 headers: new HttpHeaders({ Authorization: 'myAuthToken' })

 };

 return this.http.get<ProductDTO[]>(this.productsUrl, options).pipe(

 map(products => products.map(product => {

 return this.convertToProduct(product);

 }))

);

}

For simplicity, we are using a hardcoded value for the authentication token. In a real-world sce-

nario, we may get it from the local storage of the browser or some other means.

All HttpClient methods accept an optional object as a parameter for passing additional options

to an HTTP request. Request options can be an HTTP header, as in our case, or even query param-

eters. To set a header, we use the headers key of the options object and create a new instance of

the HttpHeaders class as a value. The HttpHeaders object is a key-value pair that defines custom

HTTP headers.

Now imagine what will happen if we need to pass the authentication token in all remaining

methods of the ProductsService class. We should go to each of them and write the same code

repeatedly. Our code could quickly become cluttered and difficult to test. Luckily, the Angular built-

in HTTP client has another feature we can use to help us in such a situation called interceptors.

Chapter 8 219

An HTTP interceptor is an Angular service that intercepts HTTP requests and responses that pass

through the Angular built-in HTTP client. It can be used in the following scenarios:

•	 When we want to pass custom HTTP headers in every request, such as an authentication

token.

•	 When we want to display a loading indicator while we wait for a response from the server.

•	 When we want to provide a logging mechanism for every HTTP communication.

We can create an interceptor using the generate command of the Angular CLI. The following

command will create an Angular interceptor named auth:

ng generate interceptor auth

Angular interceptors must be registered with an Angular module to use them. To register an

interceptor with a module, import the HTTP_INTERCEPTORS injection token from the @angular/

common/http namespace and add it to the providers array of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 HttpClientModule,

 ProductsModule,

 AuthModule

],

 providers: [

 { provide: HTTP_INTERCEPTORS, useClass: AuthInterceptor, multi: true }

],

 bootstrap: [AppComponent]

})

In the preceding snippet, we provide AuthInterceptor in the main application module, AppModule.

An HTTP interceptor must be provided in the same Angular module that im-

ports HttpClientModule.

Communicating with Data Services over HTTP220

The provided object literal contains a key named multi that takes a boolean value. We set it to true

to indicate that the HTTP_INTERCEPTORS injection token can accept multiple service instances.

Using the multi option does not require the providedIn property in the @Injectable decorator

of the service to be present. It also enables us to combine multiple interceptors, each satisfying

a particular need. But how can they cooperate and play nicely altogether?

As we can see from the auth.interceptor.ts file, the interceptor is an Angular service that im-

plements the HttpInterceptor interface:

import { Injectable } from '@angular/core';

import {

 HttpRequest,

 HttpHandler,

 HttpEvent,

 HttpInterceptor

} from '@angular/common/http';

import { Observable } from 'rxjs';

@Injectable()

export class AuthInterceptor implements HttpInterceptor {

 constructor() {}

 intercept(request: HttpRequest<unknown>, next: HttpHandler):
Observable<HttpEvent<unknown>> {

 return next.handle(request);

 }

}

It implements the intercept method of the HttpInterceptor interface that accepts the following

parameters:

•	 request: An HttpRequest object that indicates the current request

•	 next: An HttpHandler object that denotes the next interceptor in the chain

The purest form of an interceptor is to delegate requests to the next interceptor using

the handle method. Thus, it is evident that the order in which we import interceptors in our

Angular module matters. In the following diagram, you can see how interceptors process HTTP

requests and responses according to their import order:

Chapter 8 221

Figure 8.9: Execution order of Angular interceptors

Now that we have covered the basics of interceptors, we will use the one we created earli-

er to set the authentication header for the backend API. Modify the intercept method of the

AuthInterceptor class as follows:

intercept(request: HttpRequest<unknown>, next: HttpHandler):
Observable<HttpEvent<unknown>> {

 const authReq = request.clone({

 setHeaders: { Authorization: 'myAuthToken' }

 });

 return next.handle(authReq);

}

In the preceding method, we use the clone method to modify the existing request because HTTP

requests are immutable by default. Similarly, due to the immutable nature of HTTP headers, we

use the setHeaders method to update them.

Angular interceptors have many uses, and authorization is one of the most basic. Passing authenti-

cation tokens during HTTP requests is a common scenario in enterprise web applications. However,

the token may expire and become useless according to its configuration from the backend server.

By default, the last interceptor before sending the request to the server is a particular

service named HttpBackend.

Communicating with Data Services over HTTP222

In this case, the auth interceptor should take this into account and communicate with the

HttpClient to initiate a request and get a new token. While it is tempting to inject HttpClient into

the interceptor, it generally should be avoided unless you know what you are doing. You should

be very careful because you may end up with cyclic dependencies.

Summary
Enterprise web applications must exchange information with a backend API almost daily. The

Angular framework enables applications to communicate with an API over HTTP using the built-

in HTTP client. In this chapter, we explored the essential parts of the Angular HTTP client.

We learned how to move away from the traditional fetch API and use observables to communi-

cate over HTTP. We explored the basic parts of a CRUD application using the Fake Store API as

our backend. We investigated how to implement authentication and authorization in Angular

applications. Finally, we learned what Angular interceptors are and how we can use them to

authorize HTTP calls.

Now that we know how to consume data from a backend API in our components, we can further

improve the user experience of our application. In the next chapter, we will learn how to load

our components through navigation using the Angular router.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

9
Navigating through Application
with Routing

In previous chapters, we did a great job of separating concerns and adding different layers of

abstraction to increase the maintainability of an Angular application. However, we have barely

concerned ourselves with the user experience that we provide throughout the application.

Currently, our user interface is bloated, with components scattered across a single screen. We

need to provide a better navigational experience and a logical way to intuitively change the

application’s view. Now is the right time to incorporate routing and split the different areas of

interest into pages, interconnected by a grid of links and URLs.

So, how do we deploy a navigation scheme between components of an Angular application? We

use the Angular router, which was built with componentization in mind, and create custom links

for our components to react to.

In this chapter, we will do the following:

•	 Introduce the Angular router

•	 Create an Angular application with routing

•	 Create feature routing modules

•	 Pass parameters to routes

•	 Enhance navigation with advanced features

Navigating through Application with Routing224

Technical requirements
The chapter contains various code samples to walk you through the concept of routing in the An-

gular framework. You can find the related source code in the ch09 folder of the following GitHub

repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Introducing the Angular router
In traditional web applications, when we wanted to change from one view to another, we needed

to request a new page from the server. The browser would create a URL for the view and send it to

the server. The browser would then reload the page as soon as the client received a response. It was

a process that resulted in round trip time delays and a bad user experience for our applications:

Figure 9.1: Routing in traditional web applications

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Chapter 9 225

Modern web applications using JavaScript frameworks such as Angular follow a different approach.

They handle changes between views or components on the client side without bothering the

server. They contact the server only once during bootstrapping to get the main HTML file. Any

subsequent URL changes are intercepted and handled by the router on the client. These types of

applications are called Single-Page Applications (SPAs) because they do not cause a full reload

of a page:

Figure 9.2: SPA architecture

The Angular framework provides the @angular/router npm package, which we can use to nav-

igate between different components in an Angular application. Adding routing in an Angular

application involves the following steps:

1.	 Specify the base path for the Angular application.

2.	 Use an appropriate Angular module from the @angular/router package.

3.	 Configure different routes for the Angular application.

4.	 Decide where to render components upon navigation.

In the following sections, we will learn the basics of Angular routing before diving deeper into

hands-on examples.

Navigating through Application with Routing226

Specifying a base path
As we have already seen, modern and traditional web applications react differently when a URL

changes inside the application. The architecture of each browser plays an essential part in this

behavior. Older browsers initiate a new request to the server when the URL changes. Modern

browsers, also known as evergreen browsers, can change the URL and the history of the browser

when navigating in different views without sending a request to the server, using a technique

called pushState.

An Angular application must set the base HTML tag in the index.html file to enable pushState

routing:

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>MyApp</title>

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

 <app-root></app-root>

</body>

</html>

The href attribute informs the browser about the path it should follow when attempting to load

external resources, such as media or CSS files, once it goes deeper into the URL hierarchy.

The Angular CLI automatically adds the tag when creating a new Angular application and sets

the href value to the application root, /. If your application resides in a different folder than the

src\app, you should name it after that folder.

HTML5 pushState allows in-app navigation without causing a full reload of a page

and is supported by all modern browsers.

Chapter 9 227

Importing the router module
The Angular router library contains RouterModule, an Angular module that we need to import

into our application to start using the routing features:

import { RouterModule } from '@angular/router';

We import RouterModule in the main application module, AppModule, using the forRoot method:

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 RouterModule.forRoot(routes)

],

 providers: [],

 bootstrap: [AppComponent]

})

The forRoot pattern is used when a module defines services and other declarable artifacts such as

components and pipes. If we try to import it normally, we will end up with multiple instances of

the same service, thereby violating the singleton pattern. It works similarly to when we provide

a service to the root injector of the application.

The forRoot method of RouterModule returns an Angular module that contains a set of Angular

artifacts related to routing:

•	 Services to perform common routing tasks such as navigation

•	 Directives that we can use in our components to enrich them with navigation logic

It accepts a single parameter, which is the route configuration of the application.

Configuring the router
The routes variable that we pass in the forRoot method is a list of Routes objects that specify

what routes exist in the application and what components should respond to a specific route. It

can look like the following:

const routes: Routes = [

 { path: 'products', component: ProductListComponent },

Navigating through Application with Routing228

 { path: '**', component: PageNotFoundComponent }

];

Each route definition object contains a path property, which is the URL path of the route, and

a component property that defines which component will be loaded when the application navi-

gates to that path.

Navigation in an Angular application can occur either manually by changing the browser URL

or by navigating using in-app links. In the first scenario, the browser will cause the application

to reload, while the second will instruct the router to navigate along a route path in the appli-

cation code. In our case, when the browser URL contains the /products path, the router creates

an instance of ProductListComponent and displays its template on the page. On the contrary,

when the application navigates to /products by code, the router follows the same procedure and

additionally updates the URL of the browser.

If the user tries to navigate to a URL that does not match any route, Angular activates a custom type

of route called a wildcard. The wildcard route has a path property with two asterisks and matches

any URL. The component property is usually an application-specific PageNotFoundComponent or

the main component of the application.

Rendering components
One of the directives the Angular router makes available in an Angular application is router-

outlet. It is used as an Angular component and a placeholder for components activated with

routing.

Typically, the main component of an Angular application is used only for providing the main

layout of the application and orchestrating all other components. We should write it once, forget

it, and not modify it when we want to add a new feature to our application. So, a typical example

of the app.component.html file is the following:

<app-header></app-header>

<router-outlet></router-outlet>

<app-footer></app-footer>

 The value of a path property should not contain a leading /.

Chapter 9 229

In the preceding HTML template, the <app-header> and <app-footer> elements are layout com-

ponents. The <router-outlet> element is where all other components will be rendered using rout-

ing. In reality, these components are rendered as a sibling element of the router-outlet directive.

We have already covered the basics and provided a minimal router setup. In the next section, we

will look at a more realistic example and further expand our knowledge of the routing module

and how it can help us.

Creating an Angular application with routing
Whenever we have created a new Angular application through the course of this book so far, the

Angular CLI has asked us whether we wanted to add routing, and we have always replied no. Well,

it is time to respond positively and enable routing to our Angular application! In the following

sections, we will put into practice all the basics that we have learned about routing:

•	 Scaffolding an Angular application with routing

•	 Adding route configuration to our Angular application

•	 Navigating to application routes

At the end of this section, we will have built a simple application with complete routing capabilities.

Scaffolding an Angular application with routing
We will use the Angular CLI to create a new Angular application from scratch. Run the follow-

ing Angular CLI command to create a new Angular application named my-app:

ng new my-app --routing --style=css

The preceding command uses runtime options to skip the interactive workflow of the Angular CLI

that asks questions about the application we want to build. It uses the following command-line

options:

•	 --routing: Imports the Angular router to configure navigation for our application

•	 --style=css: Configures our application to use CSS for component styling

The previous Angular CLI command generates roughly the same files as usual but with one ex-

ception, the app-routing.module.ts file:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

const routes: Routes = [];

Navigating through Application with Routing230

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule { }

The app-routing.module.ts file is the routing module of the main application module. The An-

gular CLI names the routing module file after the actual module, appending the -routing suffix.

It is a convention that helps us to quickly identify whether a module has routing enabled and

what the respective routing module is. The name of the TypeScript class of the routing module

also follows a similar convention.

The preceding file exports the AppRoutingModule class, an Angular module used to configure and

enable the router in our application. It imports RouterModule using the forRoot method, as we

have already learned in the previous section. It also re-exports RouterModule so that components

of other modules that import AppRoutingModule have access to router services and directives. By

default, AppModule imports AppRoutingModule in the app.module.ts file, so all the components

of our application are enabled with routing capabilities:

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Chapter 9 231

We mentioned in the previous section that AppModule imports RouterModule directly. We could

have followed that approach for a minimal route configuration, but we suggest creating a separate

routing module for the following reasons:

•	 We can change the route configuration of the application anytime, independent of the

Angular module that imports it.

•	 We can easily test the Angular module without enabling routing. Routing is difficult to

manage in unit tests.

•	 From the existence of a routing module, we can quickly understand that an Angular mod-

ule supports routing.

Routing modules are used not only in the main application module but also in feature modules,

as we will learn in the following section.

Configuring routing in our application
When we start designing the architecture of an Angular application with routing, it is easier to

think about its main features as links that users can click to access. Products and shopping carts

are basic features of the e-shop application we are currently building. Adding links and configur-

ing them to activate certain features of an Angular application is part of the route configuration

of the application.

To set up the route configuration of our application, we need to follow the steps below:

1.	 Run the following command to create a new Angular component named cart:

ng generate component cart

2.	 Run the following command to create a new Angular component named products:

ng generate component products

3.	 Open the app-routing.module.ts file and add the following import statements:

import { CartComponent } from './cart/cart.component';

import { ProductsComponent } from './products/products.component';

4.	 Add two route definition objects in the routes variable:

const routes: Routes = [

 { path: 'products', component: ProductsComponent },

 { path: 'cart', component: CartComponent }

];

Navigating through Application with Routing232

In the preceding snippet, the products route will activate ProductsComponent, and

the cart route will activate CartComponent.

5.	 Open the app.component.html file and replace its content with the following HTML tem-

plate:

Products

Cart

<router-outlet></router-outlet>

In the preceding template, we use two router directives to perform navigation in our

application, the router-outlet directive we have already seen and the routerLink. We

apply the routerLink directive to anchor HTML elements, and we assign the route path in

which we want to navigate as a value. Notice that the path should start with / as opposed

to the path property in the route definition object.

6.	 Open the styles.css file and add the following CSS styles:

a {

 color: #1976d2;

 text-decoration: none;

 margin: 5px;

}

a:hover {

 opacity: 0.8;

}

We are now ready to preview our Angular application. Run the ng serve command and click on

the Products link. The application should display the template of ProductsComponent. It should

also update the URL of the browser to match the path of the route.

Now try to do the opposite. Navigate to the root path at http://localhost:4200 and append

the /products path at the end of the URL. The application should behave the same as before:

Chapter 9 233

Figure 9.3: Products route

Congratulations! Your Angular application now supports in-app navigation. We have barely

scratched the surface of routing in Angular. There are many router features for us to investigate

waiting in the following sections. For now, let’s try to move our components to a separate feature

module so that we can manage it independently of the main application module.

Creating feature routing modules
At this point, we have set up the route configuration so that routing works the way it should.

However, this approach doesn’t scale so well. As our application grows, more and more routes

may be added to the routing module of the main application module. To overcome this problem,

we should create a separate feature module for our components that will also have a dedicated

routing module. We already created the products module in the previous chapter. We will use

it in our application so that any product-related functionality is contained inside that module:

1.	 Copy the global CSS styles from the code samples of Chapter 8, Communicating with Data

Services over HTTP, inside the styles.css file of the current Angular project.

2.	 Delete the src\app\products folder from the current Angular CLI project.

Navigating through Application with Routing234

3.	 Copy the products and auth folders from Chapter 8, Communicating with Data Services

over HTTP, into the src\app folder of the current Angular project.

4.	 Remove any references to the ProductsComponent class from the app.module.ts file and

import ProductsModule and HttpClientModule:

import { HttpClientModule } from '@angular/common/http';

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { CartComponent } from './cart/cart.component';

import { ProductsModule } from './products/products.module';

@NgModule({

 declarations: [

 AppComponent,

 CartComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 ProductsModule,

 HttpClientModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

5.	 Open the app-routing.module.ts file and modify the products path so that it loads

ProductListComponent:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { CartComponent } from './cart/cart.component';

import { ProductListComponent } from './products/product-list/
product-list.component';

Chapter 9 235

const routes: Routes = [

 { path: 'products', component: ProductListComponent },

 { path: 'cart', component: CartComponent }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule { }

If we run the Angular application using the ng serve command and click on the Products link,

it should show the product list from the Fake Store API:

Figure 9.4: Product list

Navigating through Application with Routing236

The route configuration for the products feature is still tied to the main application module. We

will move the configuration into its own routing module inside the src\app\products folder:

1.	 Navigate to the src\app\products folder and create a new products-routing.module.

ts file:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { ProductListComponent } from './product-list/product-list.
component';

const routes: Routes = [

 { path: 'products', component: ProductListComponent }

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule]

})

export class ProductsRoutingModule { }

In the previous snippet, you may have noticed that we do not import RouterModule using

the forRoot method as we did before. Instead, we use the forChild method to import

it. The forChild method is used when we want to register routes in a feature module.

You should call the forRoot method only in the routing module of the main application

module.

2.	 Open the products.module.ts file and add the following import statement:

import { ProductsRoutingModule } from './products-routing.module';

3.	 Add the ProductsRoutingModule class in the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 ProductListComponent,

 ProductDetailComponent,

 SortPipe,

 ProductViewComponent,

 ProductCreateComponent

],

Chapter 9 237

 imports: [

 CommonModule,

 ProductsRoutingModule

],

 exports: [ProductListComponent]

})

4.	 Open the app-routing.module.ts file and remove the route definition object of the

products path.

5.	 Open the app.module.ts file and change the location of ProductsModule in the @NgModule

decorator so that it is imported before AppRoutingModule:

@NgModule({

 declarations: [

 AppComponent,

 CartComponent

],

 imports: [

 BrowserModule,

 ProductsModule,

 AppRoutingModule,

 HttpClientModule

],

 providers: [],

 bootstrap: [AppComponent]

})

The order that we import routing modules does matter. The router selects a route with

a first-match-wins strategy. We place feature routing modules, which contain more spe-

cific routes, before the main application routing module, which contains more generic

routes. Thus, we want to force the router to search through our specific route paths and

then fall back to an application-specific one.

If we run the Angular application using the ng serve command, we will see that it is working

as before. We have not introduced any new features or done anything fancy, but we have paved

the way to separating our route configurations effectively. The router combines the routes of our

feature module, ProductsModule, with those of the main application module, AppModule. Thus,

we can continue to work with routing in our feature module without modifying the main route

configuration.

Navigating through Application with Routing238

Currently, the route configuration of our application is pretty straightforward. However, there

are scenarios that we need to take into account when working with routing in a web application,

such as the following:

•	 Do we want to display a specific view when we bootstrap our application?

•	 What will happen if we try to navigate to a non-existing route path?

In the following section, we will explore how to handle the last case so that we do not break our

application.

Handling unknown route paths
We have already come across the concept of unknown routes in the Introducing the Angular rout-

er section. We set up a wildcard route to display PageNotFoundComponent when our application

tries to navigate to a route path that does not exist. Now it is time to add that component for real:

1.	 Use the generate command of the Angular CLI to create a new component named page-

not-found:

ng generate component page-not-found

Our application will display the newly generated component when navigating to an un-

known route path.

2.	 Open the page-not-found.component.html file and replace its content with a meaningful

HTML template:

<h3>Ooops!</h3>

<p>The requested page was not found</p>

3.	 Open the app-routing.module.ts file and add the following import statement:

import { PageNotFoundComponent } from './page-not-found/page-not-
found.component';

4.	 Add a new route definition object in the routes variable. Set the path property to double

asterisks and the component property to the new component that we created:

const routes: Routes = [

 { path: 'cart', component: CartComponent },

 { path: '**', component: PageNotFoundComponent }

];

Chapter 9 239

If we run our application using the ng serve command and navigate to an unknown path, our

application will display the following output:

Figure 9.5: Page not found route

Try to navigate to the root path of the application, http://localhost:4200, and you will notice

that the template of PageNotFoundComponent is still visible on the screen. We have accidentally

broken our application! How did this happen?

The href attribute of the base tag in the index.html file is the location at which an Angular ap-

plication starts, as we learned in the Introducing the Angular router section.

It is better to define the wildcard route in the app-routing.module.ts file. The

wildcard route applies to the whole application, and thus it is not tied to a specific

feature. Additionally, the wildcard route must be the last entry in the route list be-

cause the application should only reach it if there are no matching routes.

When the router encounters an unknown route, it navigates to the wildcard route,

but the browser still points to the invalid URL.

Navigating through Application with Routing240

The Angular CLI sets the value of href to / by default when creating a new Angular application.

We have also learned that a route does not contain / in its path property. So, when our applica-

tion bootstraps, it loads in an empty route path. According to our route configurations, we have

not defined such a path. Thus, the router falls back to the wildcard route. We need to define a

default route for our Angular application, which brings us to the first scenario we described: how

to define a default route path when our application bootstraps.

Setting a default path
We set the path property of a route to an empty string to indicate that the route is the default one

for an Angular application. In our case, we want the default route path to display the product

list. Open the products-routing.module.ts file and add a new route definition object at the end

of the existing routes:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { ProductListComponent } from './product-list/product-list.
component';

const routes: Routes = [

 { path: 'products', component: ProductListComponent },

 { path: '', redirectTo: '/products', pathMatch: 'full' }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class ProductsRoutingModule { }

In the preceding snippet, we tell the router to redirect to the /products path when the application

navigates to the default route. The pathMatch property tells the router how to match the URL to

the route path property. In this case, the router redirects to the /products path only when the

URL matches the root path, which is the empty string.

If we run the application, we will notice that when the browser URL points to the root path of our

application, we are redirected to the products path, and the product list is displayed on the screen.

Chapter 9 241

We added the empty route path after all other routes because, as we have already learned, the

order of the routes is important. We want more specific routes before less specific ones. In the

following diagram, you can see the order in which the router resolves paths in our application:

Figure 9.6: Route path resolve process

We have already learned how to navigate our application using the routerLink directive. It is the

preferred way when using anchor elements in a component template. However, in a real-world

application, we also use buttons for navigation. In the following section, we will learn how to

navigate to a route path imperatively using a <button> element.

Navigating imperatively to a route
When we navigate to a wildcard route, the template of the component property is displayed on

the screen. However, as we have seen, the address bar of the browser stays on the invalid URL.

So, we need to provide a way for the user to escape from this route:

1.	 Open the page-not-found.component.html file and add a <button> HTML element:

<h3>Ooops!</h3>

<p>The requested page was not found</p>

<button (click)="goHome()">Home</button>

In the preceding HTML template, we have added an event binding to the click event

of the <button> element that points to the goHome component method, which does not

exist yet.

Navigating through Application with Routing242

2.	 Open the page-not-found.component.ts file and add the following import statement:

import { Router } from '@angular/router';

3.	 Inject the Router service in the constructor of the PageNotFoundComponent class:

constructor(private router: Router) { }

4.	 Add the following goHome method:

goHome() {

 this.router.navigate(['/']);

}

In the preceding method, we call the navigate method of the Router service to navigate

into the root path of the application. It accepts a link parameters array containing the

destination route path we want to navigate.

It is worth noting that the link parameters array syntax can also be used with the routerLink di-

rective. For example, we could have written the app.component.html file as follows:

<a [routerLink]="['/products']">Products

<a [routerLink]="['/cart']">Cart

<router-outlet></router-outlet>

Until now, we have relied on the address bar of the browser to indicate which route path is active

at any given time. We could improve the user experience by using CSS styling, as we will learn

in the following section.

Decorating router links with styling
The module of the Angular router exports the routerLinkActive directive, which we can use to

change the style of a route when it is active. It works similarly to the class binding we learned

about in Chapter 4, Enabling User Experience with Components. It accepts a list of class names or a

single class that is added when the link is active and removed when it becomes inactive.

It is perfectly fine to use imperative navigation with an anchor element and

a routerLink directive with a <button> element. However, using them, as sug-

gested in this book, is more semantically correct in HTML. The routerLink direc-

tive modifies the behavior of the target element and adds an href attribute, which

targets only anchor elements.

Chapter 9 243

To use it in our Angular application, we need first to create a class for active links in the styles.

css file:

.active {

 color: black;

}

We can then add the routerLinkActive directive to both links in the app.component.html file

and set it with the active class name:

Products

Cart

<router-outlet></router-outlet>

Now, when we click on a link in our application, its color turns to black to denote that the link

is active.

We have already learned that we can navigate to a route with a static path value. In the next

section, we will learn how to do this when the path changes dynamically using route parameters.

Passing parameters to routes
A common scenario in enterprise web applications is to have a list of items and when you click

on one of them, the page changes the current view and displays details of the selected item. The

previous approach resembles a master-detail browsing functionality, where each generated URL

on the master page contains the identifiers required to load each item on the detail page.

We can represent the previous scenario with two routes navigating to different components. One

component is the list of items, and the other is the details of an item. So, we need to find a way

to create and pass dynamic item-specific data from one route to the other.

We are tackling double trouble here: creating URLs with dynamic parameters at runtime and

parsing the value of these parameters. No problem: the Angular router has our back, and we will

see how with a real example.

Building a detail page using route parameters
The product list in our application currently displays a list of products. When we click on a prod-

uct, the product details appear below the list. We need to refactor the previous workflow so that

the component responsible for displaying product details is rendered on a different page from

the list. We will use the Angular router to redirect the user to the new page upon clicking on a

product from the list.

Navigating through Application with Routing244

Currently, the product list component passes the id of the selected product via input binding.

Input binding cannot be used if the component is activated with routing. We will use the Angular

router to pass the product id as a route parameter:

1.	 Open the products-routing.module.ts file and add a new route definition:

import { NgModule } from '@angular/core';

import { RouterModule, Routes } from '@angular/router';

import { ProductDetailComponent } from './product-detail/product-
detail.component';

import { ProductListComponent } from './product-list/product-list.
component';

const routes: Routes = [

 { path: 'products', component: ProductListComponent },

 { path: 'products/:id', component: ProductDetailComponent },

 { path: '', redirectTo: '/products', pathMatch: 'full' }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class ProductsRoutingModule { }

The colon character denotes id as a route parameter in the new route definition object. If

a route has more than one parameter, we separate them with /. The parameter name is

important when we want to consume its value in our components, as we will learn later.

2.	 Open the product-list.component.html file and modify its HTML content so that it uses

the new route definition:

 <li *ngFor="let product of products | sort">

 <a [routerLink]="['/products', product.id]">{{product.name}}

<app-product-create (added)="onAdd($event)"></app-product-create>

Chapter 9 245

The preceding version of the product-list.component.html file is much different from

the previous one because we have removed the notion of the selected product. The product

list does not need to keep the selected product in its local state because we are navigating

away from the list upon selecting a product.

We have added an anchor element inside the element and attached the routerLink di-

rective to it. The routerLink directive uses property binding to set its value in a link pa-

rameters array. We pass the id of the product template reference variable as a second

parameter in the array. The routerLink directive requires property binding when dealing

with dynamic routes. It will create an href attribute that contains the /products path,

followed by the value of its id property.

3.	 Open the product-detail.component.ts file and import the OnInit, ActivatedRoute,

and switchMap artifacts:

import { Component, OnInit, Input, Output, EventEmitter, OnChanges }
from '@angular/core';

import { ActivatedRoute } from '@angular/router';

import { Observable, switchMap } from 'rxjs';

The Angular router exports the ActivatedRoute service, which we can use to retrieve

information about the currently active route, including any parameters.

4.	 Inject the ActivatedRoute service into the constructor of the ProductDetailComponent

class:

constructor(

 private productService: ProductsService,

 public authService: AuthService,

 private route: ActivatedRoute

) { }

5.	 Add the OnInit interface to the list of implemented interfaces of the ProductDetailComponent

class:

export class ProductDetailComponent implements OnInit, OnChanges {

6.	 Create the following ngOnInit method:

ngOnInit(): void {

 this.product$ = this.route.paramMap.pipe(

 switchMap(params => {

Navigating through Application with Routing246

 return this.productService.getProduct(Number(params.
get('id')));

 })

);

}

The ActivatedRoute service contains the paramMap observable, which we can use

to subscribe and get route parameter values. We use the switchMap RxJS operator to

pipe the id parameter from the paramMap observable to the getProduct method of the

ProductsService class.

It is also worth noting the following:

•	 The paramMap observable returns an object of the ParamMap type. We can use the get meth-

od of the ParamMap object and pass the name of the parameter we defined in the route

configuration to access its value.

•	 We convert the value of the id parameter to a number because route parameter values

are always strings.

If we run the application using the ng serve command and click on a product from the list, the

application navigates us to the Product Details page:

Figure 9.7: Product Details page

In the previous example, we used the paramMap property to get route parameters as an observable.

So, ideally, our component could be notified of new values during its lifetime. But the component

is destroyed each time we want to select a different product from the list, and so is the subscription

to the paramMap observable. So, what’s the point of using it after all?

The router can reuse the instance of a component as soon as it remains rendered on the screen

during consecutive navigations. We can achieve this behavior using child routes, as we will learn

in the following section.

Chapter 9 247

Reusing components using child routes
Using child routes is a perfect solution when we want to have a landing page component that

will provide routing to other components in a feature module. It should contain a <router-

outlet> element in which child routes will be loaded. Suppose that we want to define the layout

of our Angular application like the following:

Figure 9.8: Master-detail layout

The scenario described in the previous diagram requires the product list component to contain

a <router-outlet> element that will render the product details component when the related

route is activated.

The product details component is not destroyed when we navigate from one product to another.

Instead, it remains in the DOM tree, and its ngOnInit method is called once, the first time we

select a product. When we select a new product from the list, the paramMap observable emits the

id of the new product. The new product is fetched using the ProductsService class, and the

component template is refreshed to reflect the new changes.

The route configuration of the products module, in this case, would be as follows:

const routes: Routes = [

The product details component is rendered in the router-outlet of the product

list component and not in the router-outlet of the main application component.

Navigating through Application with Routing248

 {

 path: 'products',

 component: ProductListComponent,

 children: [

 { path: ':id', component: ProductDetailComponent },

]

 },

 { path: '', redirectTo: '/products', pathMatch: 'full' }

];

We use the children property of a route definition object to define child routes, which contain a list

of route definition objects. Notice also that we removed the word products from the path property

of the product route. We wanted to clarify that it is a child of the products route and should be

accessed using the /products/:id path.

We must also change the routerLink directive of the anchor elements in the product-list.

component.html file so that our application will work correctly:

<a [routerLink]="['./', product.id]">{{product.name}}

Notice that we replaced /products with ./. What is this strange syntax? It is called relative nav-

igation and tells the router to navigate to a specific route relative to the current activated route.

It is the opposite of the current syntax we have used so far, absolute navigation.

For example, the ./ path indicates to navigate relative to the current level, which is /products,

in our case. If the route we wanted to navigate was one level above the products route, we would

have used ../ as a path. You can think of it as navigating between folders using the command

line. The same syntax applies to imperative navigation also:

this.router.navigate(['./', product.id], { relativeTo: this.route });

In this case, we pass an additional object after the link parameters array that defines

the relativeTo property pointing to the current activated route.

Relative navigation is considered a better choice over absolute navigation because

it is easier to refactor. It decouples hardcoded links by defining paths relative to the

current route. Imagine moving a bunch of components around, and suddenly all your

hardcoded paths are wrong. Navigation inside a feature module works as expected,

even if you decide to change the parent route.

Chapter 9 249

We have learned how to take advantage of the paramMap observable in Angular routing. In the

following section, we will discuss an alternative approach using route snapshots.

Taking a snapshot of route parameters
Currently, in our application when we select a product from the list, the product list compo-

nent is removed from the DOM tree, and the product details component is added. To select a

different product, we need to click on either the Products link or the back button of our browser.

Consequently, the product details component is removed from the DOM, and the product list

component is added. So, we are in a situation where only one component is displayed on the

screen at any time.

When the product details component is destroyed, so is its ngOnInit method and the subscription

to the paramMap observable. So, we do not benefit from using observables at this point. Alterna-

tively, we could use the snapshot property of the ActivatedRoute service to get values for route

parameters as follows:

ngOnInit(): void {

 const id = this.route.snapshot.params['id'];

 this.product$ = this.productService.getProduct(id);

}

The snapshot property always represents the current value of a route parameter, which also

happens to be the initial value. It contains the params property, an object of route parameter

key-value pairs, which we can access as we would access a plain object in TypeScript.

So far, we have dealt with routing parameters in the form products/:id. We use these parame-

ters when we want to route to a component that requires the parameter to work correctly. In our

case, the product details component requires the id parameter to get details of a specific product.

However, there is another type of route parameter that is considered optional, as we will learn

in the following section.

If you are sure your component will not be reused, you should use the snapshot

approach since it is also more readable.

Navigating through Application with Routing250

Filtering data using query parameters
Query parameters are considered optional because they aim to provide optional services such as

sorting or filtering data. Some examples are as follows:

•	 /products?sortOrder=asc: Sorts a list of products in ascending order

•	 /products?page=3&pageSize=10: Splits a list of products into pages of 10 records and

gets the third page

Query parameters are recognized in a route by the ? character. We can combine multiple query

parameters by chaining them with an ampersand (&) character. The ActivatedRoute service

contains a queryParamMap observable that we can subscribe to in order to get query parameter

values. It returns a ParamMap object, similar to the paramMap observable, which we can query to

get parameter values. For example, to retrieve the value of a sortOrder query parameter, we

would use it as follows:

ngOnInit(): void {

 this.route.queryParamMap.subscribe(params => {

 console.log(params.get('sortOrder'));

 });

}

The queryParamMap property is also available when working with snapshot routing to get query

parameter values.

Now that we have learned how to pass parameters during navigation, we have covered all the es-

sential information we need to start building Angular applications with routing. In the following

sections, we will focus on advanced practices that enhance the user experience when using in-app

navigation in our Angular applications.

Enhancing navigation with advanced features
So far, we have covered basic routing, with route parameters as well as query parameters. The

Angular router is quite capable, though, and able to do much more, such as the following:

•	 Controlling access to a route

•	 Preventing navigation away from a route

•	 Prefetching data to improve the UX

•	 Lazy-loading routes to speed up the response time

In the following sections, we will learn about all these techniques in more detail.

Chapter 9 251

Controlling route access
When we want to prevent unauthorized access to a particular route, we use a specific Angular

concept called a guard. An Angular guard can be of the following types:

•	 canActivate: Controls whether a route can be activated.

•	 canActivateChild: Controls access to child routes of a route.

•	 canDeactivate: Controls whether a route can be deactivated. Deactivation happens when

we navigate away from a route.

•	 canLoad: Controls access to a route that loads a lazy-loaded module.

•	 canMatch: Controls access to the same route path based on application conditions.

To create a guard that will allow access to a route depending on whether the user is authenticated

or not, we will run the following steps:

1.	 Create a file named auth.guard.ts inside the src\app\auth folder.

2.	 Add the following import statements at the top of the file:

import { inject } from '@angular/core';

import { CanActivateFn, Router } from '@angular/router';

import { AuthService } from './auth.service';

3.	 Create an authGuard function:

export const authGuard: CanActivateFn = () => {

 const authService = inject(AuthService);

 const router = inject(Router);

 if (authService.isLoggedIn) { return true; }

 return router.parseUrl('/');

};

In the preceding function, we use the inject method to inject the AuthService and Router

services into the function. The inject method behaves the same as if we have inject-

ed both services into the constructor of a TypeScript class. We then check the value of

the isLoggedIn property. If it is true, the application can navigate to the specified route.

Otherwise, we use the parseUrl method of the Router service to navigate to the root

path of the Angular application. The parseUrl method returns a UrlTree object, which

effectively cancels the previous navigation and redirects the user to the URL passed in

the parameter.

Navigating through Application with Routing252

4.	 Open the app-routing.module.ts file and add the following import statement:

import { authGuard } from './auth/auth.guard';

5.	 Add the authGuard function in the canActivate array of the cart route:

const routes: Routes = [

 {

 path: 'cart',

 component: CartComponent,

 canActivate: [authGuard]

 },

 { path: '**', component: PageNotFoundComponent }

];

Only authenticated users can now access the shopping cart. If you run the application using the

ng serve command and click on the Cart link, you will notice that nothing happens.

To be able to access the shopping cart, we need to restore the login functionality from Chapter 8,

Communicating with Data Services over HTTP:

1.	 Open the app.module.ts file and add the following import statement:

import { AuthModule } from './auth/auth.module';

2.	 Add the AuthModule class in the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent,

 CartComponent,

 PageNotFoundComponent

],

 imports: [

 BrowserModule,

When you try to access the shopping cart from the product list, you always remain

on the same page. This seems to be because the redirection that occurs due to the

authentication guard does not have any effect when you are already in the redirected

route. Select a product from the list before clicking the Cart link to understand how

the guard works.

Chapter 9 253

 ProductsModule,

 AppRoutingModule,

 HttpClientModule,

 AuthModule

],

 providers: [],

 bootstrap: [AppComponent]

})

3.	 Open the app.component.html file and add the <app-auth> component at the top of the

file:

<app-auth></app-auth>

Products

Cart

<router-outlet></router-outlet>

If we run the application now, we can use the Login button to authenticate with the API and

access the cart functionality.

Preventing navigation away from a route
Guards are used not only to prevent access to a route but also to prevent navigation away from

it. A guard that controls if a route can be deactivated is a function of the CanDeactivateFn type.

We will learn how to use it by implementing a guard that notifies the user of pending products

in the cart:

1.	 Create a file named checkout.guard.ts inside the src\app folder.

2.	 Add the following import statements at the top of the file:

import { CanDeactivateFn } from '@angular/router';

import { CartComponent } from './cart/cart.component';

3.	 Create the following checkoutGuard function:

export const checkoutGuard: CanDeactivateFn<CartComponent> = () => {

 const confirmation = confirm('You have pending items in your cart.
Do you want to continue?');

 return confirmation;

};

Navigating through Application with Routing254

In the preceding function, we set the type of the CanDeactivateFn  func-

tion to CartComponent because we want to check whether the user navigates away from

this component only.

We then use the global confirm method to display a confirmation dialog before navigating

away from the cart component.

4.	 Open the app-routing.module.ts file and add the following import statement:

import { checkoutGuard } from './checkout.guard';

5.	 A route definition object contains a canDeactivate array similar to canActivate. Add the

checkoutGuard function to the canDeactivate array of the cart route:

const routes: Routes = [

 {

 path: 'cart',

 component: CartComponent,

 canActivate: [authGuard],

 canDeactivate: [checkoutGuard]

 },

 { path: '**', component: PageNotFoundComponent }

];

For such a simple scenario, we could have written the logic of the checkoutGuard function

inline and avoided the creation of the checkout.guard.ts file:

{

 path: 'cart',

 component: CartComponent,

 canActivate: [authGuard],

 canDeactivate: [() => confirm('You have pending items in your
cart. Do you want to continue?')]

}

In a real-world scenario, you may need to create a generic guard to support

additional components.

Chapter 9 255

Run the application using the ng serve command and click the Cart link after you have logged

in. If you then click on the Products link or press the back button of the browser, you should see

the following dialog:

Figure 9.9: Pending items dialog

If you click the Cancel button, the navigation is canceled, and the application remains in its

current state. If you click the OK button, you will be redirected to the root path of the application.

Prefetching route data
You may have noticed that when you select a product from the list and navigate to the product

details component, there is a delay in displaying the product details data. It is reasonable since we

are making an HTTP request to the backend API. However, there is flickering in the user interface,

which is bad for the user experience. Thankfully, the Angular router can help us to fix that. We

can use a resolver to prefetch the details of a product so that they are available when activating

the route and displaying the component.

Let’s create a route resolver for our product details component:

1.	 Create a file named product-detail.resolver.ts inside the src\app\products folder.

2.	 Add the following import statements at the top of the file:

import { inject } from '@angular/core';

import { ActivatedRouteSnapshot, ResolveFn } from '@angular/router';

import { Product } from './product';

import { ProductsService } from './products.service';

A resolver can be handy when we want to handle possible errors before activating a

route. In our case, it would be more appropriate not to navigate to the product de-

tails component if the id we pass as a route parameter does not exist in the backend.

Navigating through Application with Routing256

3.	 Create the following productDetailResolver function:

export const productDetailResolver: ResolveFn<Product> = (route:
ActivatedRouteSnapshot) => {

 const productService = inject(ProductsService);

 const id = Number(route.paramMap.get('id'));

 return productService.getProduct(id);

};

A resolver is a function of the ResolveFn<T> type, where T is the resolved data type. It

can return resolved data either synchronously or asynchronously. In our case, since we

are communicating with a backend API using the HTTP client, we need to return an ob-

servable of a Product object.

The productDetailResolver function injects the ProductsService class, gets the value

of the id route parameter, and converts it into a number. It then calls the getProduct

method of the ProductsService class, passing the id as a parameter.

4.	 Open the products-routing.module.ts file and add the following import statement:

import { productDetailResolver } from './product-detail.resolver';

5.	 Add a resolve property to the route definition object that activates ProductDetailComponent:

const routes: Routes = [

 { path: 'products', component: ProductListComponent },

 {

 path: 'products/:id',

 component: ProductDetailComponent,

 resolve: {

 product: productDetailResolver

 }

 },

 { path: '', redirectTo: '/products', pathMatch: 'full' }

];

The resolve property is an object that contains a unique name as a key and the TypeScript

class of the resolver as a value. The name of the key is important because we will use that

in our components to access the resolved data.

Chapter 9 257

6.	 Open the product-detail.component.ts file and import the of operator from the rxjs

npm package:

import { Observable, of, switchMap } from 'rxjs';

7.	 Modify the ngOnInit method so that it subscribes to the data property of the

ActivatedRoute service:

ngOnInit(): void {

 this.product$ = this.route.data.pipe(

 switchMap(data => of(data['product']))

);

}

In the preceding snippet, the data observable emits an object where the value of the re-

quested product exists in the product key of the object. Notice that we use the switchMap

operator to return the product in a new observable.

If you run the application now, you will notice no flickering when navigating to the product

details component, and data are displayed at once. However, you may notice a slight delay upon

selecting the product from the list. It is the delay introduced by the HTTP request to the backend

API that originates from the resolver.

Lazy-loading routes
At some point, our application may grow in size, and the amount of data we put into it may also

grow. The result is that the application may take a long time to start initially, or certain parts can

take a long time to start. To overcome these problems, we can use a technique called lazy loading.

Lazy loading means that we don’t load all parts of our application initially. When we refer to parts,

we mean Angular modules. Application modules can be separated into chunks that are only loaded

when needed. There are many advantages of lazy loading a module in an Angular application:

•	 Feature modules can be loaded upon request from the user.

•	 Users that visit certain areas of your application can significantly benefit from this tech-

nique.

•	 We can add more features in a lazy-loaded module without affecting the overall appli-

cation bundle size.

Navigating through Application with Routing258

To understand how lazy loading in Angular works, we will create a new module with a component

that displays information about our e-shop application:

1.	 Run the following command to create an Angular module with routing enabled:

ng generate module about --routing

2.	 Create a component named about-info inside the src\app\about folder:

ng generate component about-info

3.	 Open the about-routing.module.ts file and add the following import statement:

import { AboutInfoComponent } from './about-info/about-info.
component';

4.	 Add a new route definition object in the routes variable to activate AboutInfoComponent:

const routes: Routes = [

 { path: '', component: AboutInfoComponent }

];

In the preceding snippet, we set the path property to an empty string so that the route is

activated by default.

5.	 Add a new anchor element to the app.component.html file that links to the newly created

route:

<app-auth></app-auth>

Products

Cart

About Us

<router-outlet></router-outlet>

6.	 Finally, open the app-routing.module.ts file and add a new route definition object:

const routes: Routes = [

 {

 path: 'cart',

 component: CartComponent,

 canActivate: [authGuard],

 canDeactivate: [checkoutGuard]

 },

 {

Chapter 9 259

 path: 'about',

 loadChildren: () => import('./about/about.module').then(m =>
m.AboutModule)

 },

 { path: '**', component: PageNotFoundComponent }

];

The loadChildren property of a route definition object is used to lazy load Angular mod-

ules. It returns an arrow function that uses a dynamic import statement to lazy load the

module. The import function accepts the relative path of the module we want to import,

returning a promise object that contains the TypeScript class of the Angular module we

want to load.

Run the application using the ng serve command and open the browser’s developer tools. Click

the About Us link, and inspect the requests in the Network tab:

Figure 9.10: Lazy-loaded module

The application initiates a new request to the src_app_about_about_module_ts.js file, which is

the bundle of the about module. The Angular framework creates a new bundle for each module

that is lazy-loaded and does not include it in the main application bundle.

If you navigate away and click on the About Us link again, you will notice that the application

does not make a new request to load the module. As soon as a lazy-loaded module is requested,

it is kept in memory and can be used for subsequent requests.

A word of caution, however. As we learned in Chapter 6, Managing Complex Tasks with Services, an

Angular service is registered with the root injector of the application using the providedIn prop-

erty of the @Injectable decorator.

We did not import AboutModule in the main application module. Otherwise, it would

have been loaded twice, eagerly from the main application module and lazily from

the about route.

Navigating through Application with Routing260

Lazy-loaded modules create a separate injector that is an immediate child of the root application

injector. If you use an Angular service registered with the root application injector in a lazy-loaded

module, you will end up with a separate service instance in both cases. So, we must be cautious

as to how we use services in lazy-loaded modules.

Lazy-loaded modules are standard Angular modules, so we can control their access using guards.

Protecting a lazy-loaded module
We can control unauthorized access to a lazy-loaded module similar to how we can do so in

eagerly loaded ones. However, our guards need to implement a different interface for this case,

the CanLoad interface.

We will extend our authentication guard for use with lazy-loaded modules.

1.	 Open the auth.guard.ts file and import CanLoadFn from the @angular/router npm

package:

import { CanActivateFn, CanLoadFn, Router } from '@angular/router';

2.	 Add the CanLoadFn type to the authGuard function:

export const authGuard: CanActivateFn | CanLoadFn = () => {

 const authService = inject(AuthService);

 const router = inject(Router);

 if (authService.isLoggedIn) { return true; }

 return router.parseUrl('/');

};

3.	 As with all previous guards, we must register the authGuard function with the lazy-load-

ed route using the canLoad array of the route definition object. Open the app-routing.

module.ts file and add the authGuard function in the canLoad array of the about route:

{

 path: 'about',

 loadChildren: () => import('./about/about.module').then(m =>
m.AboutModule),

 canLoad: [authGuard]

}

Chapter 9 261

If we now run the application and click on the About Us link, we will notice that we cannot nav-

igate to the About page unless we are authenticated.

We have already learned about standalone components in Chapter 4, Enabling User Experience

with Components. Standalone components are not registered with an Angular module but can be

lazy loaded, as we will see in the following section.

Lazy loading components
We have already learned how to create standalone components, pipes, and directives in Angu-

lar applications. Before the standalone option, it was cumbersome and complicated to load a

component dynamically. It required many lines of code and advanced Angular techniques from

the developer’s perspective. However, with the introduction of standalone APIs from Angular,

developers now have a powerful tool at their disposal to satisfy even the most complex business

needs in their Angular applications.

The Angular router can lazy load not only Angular modules but also standalone components. The

route definition object contains a loadComponent property, similar to loadChildren for modules,

allowing us to pass an Angular component for lazy loading. We will learn more by converting our

about component into a standalone one and lazy loading it:

1.	 Open the about-info.component.ts file and add the standalone property in the

@Component decorator:

import { Component } from '@angular/core';

@Component({

 selector: 'app-about-info',

 templateUrl: './about-info.component.html',

 styleUrls: ['./about-info.component.css'],

 standalone: true

})

export class AboutInfoComponent {}

2.	 Open the about.module.ts file and remove any occurrences of the AboutInfoComponent

class:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { AboutRoutingModule } from './about-routing.module';

Navigating through Application with Routing262

@NgModule({

 imports: [

 CommonModule,

 AboutRoutingModule

]

})

export class AboutModule { }

We need to remove it specifically from the declarations array of the @NgModule decorator.

Otherwise, it will not be a standalone component.

3.	 Open the app-routing.module.ts file and modify the about route so that it uses the

loadComponent property to lazily load AboutInfoComponent:

{

 path: 'about',

 loadComponent: () => import('./about/about-info/about-info.
component').then(c => c.AboutInfoComponent)

}

Run the application using the ng serve command and click the About Us link. The component is

still loaded on the page, but a different chunk appears in the Network tab of the browser console:

Figure 9.11: Lazy-loaded component

The application initiates a new request to the src_app_about_about-info_about-info_

component_ts.js file this time. Everything related to lazy loading we saw in the module example

also applies here.

Chapter 9 263

Summary
We have now uncovered the power of the Angular router, and we hope you have enjoyed this jour-

ney into the intricacies of this library. One of the things that shines in the Angular router is the vast

number of options and scenarios we can cover with such a simple but powerful implementation.

We have learned the basics of setting up routing and handling different types of parameters. We

have also learned about more advanced features, such as child routing. Furthermore, we have

learned how to protect our routes from unauthorized access. Finally, we have shown the full

power of routing and how you can improve response time with lazy loading and prefetching.

In the next chapter, we will beef up our application components to showcase the mechanisms

underlying web forms in Angular and the best strategies to grab user input, with form controls.

10
Collecting User Data with Forms

Web applications use forms when it comes to collecting data from the user. Use cases vary from

allowing users to log in, filling in payment information, booking a flight, or even performing a

search. Form data can later be persisted on local storage or be sent to a server using a backend

API. A form usually has the following characteristics that enhance the user experience of a web

application:

•	 Can define different kinds of input fields

•	 Can set up different kinds of validations and display validation errors to the user

•	 Can support different strategies for handling data if the form is in an error state

The Angular framework provides two approaches to handling forms: template-driven and reac-

tive. Neither approach is considered better than the other; you have to go with the one that suits

your scenario the best. The main difference between the two approaches is how they manage data:

•	 Template-driven forms are easy to set up and add to an Angular application, but they do

not scale well. They operate solely on the component template to create elements and

configure validation rules; thus, they are not easy to test. They also depend on the change

detection mechanism of the framework.

•	 Reactive forms are more robust when it comes to scaling and testing and when they are

not interacting with the change detection cycle. They operate in the component class to

manage input controls and set up validation rules. They also manipulate data using an

intermediate form model, maintaining their immutable nature. This technique is for you

if you use reactive programming techniques extensively or if your Angular application

comprises many forms.

Collecting User Data with Forms266

In this chapter, we will focus mainly on reactive forms due to their wide popularity in the Angular

community. More specifically, we will cover the following topics:

•	 Introducing forms to web apps

•	 Data binding with template-driven forms

•	 Using reactive patterns in Angular forms

•	 Validating controls in a reactive way

•	 Modifying forms dynamically

•	 Manipulating form data

•	 Watching state changes and being reactive

Technical requirements
The chapter contains various code samples to walk you through the concept of creating and man-

aging forms in Angular. You can find the related source code in the ch10 folder of the following

GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Introducing forms to web apps
A form in a web application consists of a <form> HTML element that contains some <input> el-

ements for entering data and a <button> element for handling that data. The form can retrieve

data and either save it locally or send it to a server for further manipulation. The following is a

simple form that is used for logging a user in to a web application:

<form>

 <div>

 <input type="text" name="username" placeholder="Username">

 </div>

 <div>

 <input type="password" name="password" placeholder="Password">

 </div>

 <button type="submit">Login</button>

</form>

The preceding form has two <input> elements: one for entering the username and another for

entering the password. The type of the password field is set to password so that the content of

the input control is not visible while typing.

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Chapter 10 267

The type of the <button> element is set to submit so that the form can collect data by clicking on

the button or pressing Enter on any input control. We could have added another button with a re-

set type to clear form data. Notice that an HTML element must reside inside the <form> element to

be part of it. The following screenshot shows what the form looks like when rendered on a page:

Figure 10.1: Login form

Web applications can significantly enhance the user experience by using forms that provide fea-

tures such as autocomplete in input controls or prompting to save sensitive data. Now that we have

understood what a web form looks like, let’s learn how all that fits into the Angular framework.

Data binding with template-driven forms
Template-driven forms are one of two different ways of integrating forms with Angular. It is

an approach that is not widely embraced by the Angular community for the reasons described

previously. Nevertheless, it can be powerful in cases where we want to create small and sim-

ple forms for our Angular application. Template-driven forms can stand out when used with

the ngModel directive to provide two-way data binding in our components.

We learned about data binding in Chapter 4, Enabling User Experience with Components, and how

we can use different types to read data from an HTML element or component and write data to it.

In this case, binding is either one way or another, which is also called one-way binding. We can

combine both ways and create a two-way binding that can read and write data simultaneously.

Template-driven forms provide the ngModel directive, which we can use in our components to

get this behavior. Before we can start using Angular forms, we need to configure our Angular ap-

plication by importing FormsModule, an appropriate built-in Angular module for working with

template-driven forms:

1.	 Run the following command to create a new Angular application:

ng new my-app --routing --style=css

The preceding command will create an Angular application that enables routing and uses

CSS for component styling.

Collecting User Data with Forms268

2.	 Copy the contents of the src\app folder from the source code of Chapter 9, Navigate through

Application with Routing, in the src\app folder of the current Angular project. Replace any

files if needed.

3.	 Copy the styles.css file from the source code of Chapter 9, Navigate through Application

with Routing, in the src folder of the current Angular project and replace it.

4.	 Open the products.module.ts file and add the following import statement:

import { FormsModule } from '@angular/forms';

We add template-driven forms to an Angular application by importing FormsModule from

the @angular/forms npm package.

5.	 Add FormsModule in the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 ProductListComponent,

 ProductDetailComponent,

 SortPipe,

 ProductViewComponent,

 ProductCreateComponent

],

 imports: [

 CommonModule,

 ProductsRoutingModule,

 FormsModule

],

 exports: [ProductListComponent]

})

We have already established the infrastructure in our Angular application to start using Angular

forms. We will now create our first form for changing the product price in the product details

component:

1.	 Open the product-detail.component.html file and modify the <input> element as fol-

lows:

<input placeholder="New price" name="price" [(ngModel)]="product.
price" />

Chapter 10 269

In the preceding snippet, we bind the price property of the product template variable to

the ngModel directive of the <input> element.

The name attribute is required in the <input> element so that Angular can create a unique

form control internally to distinguish it.

2.	 Modify the <button> element as follows:

<button type="submit">Change</button>

In the preceding snippet, we removed the click event from the <button> element because

our form will be responsible for updating the price. We also added the submit type to

indicate that the form submission can happen by clicking the button.

3.	 Surround the <input> and <button> elements with a <form> element:

<form (ngSubmit)="changePrice(product, product.price)">

 <input placeholder="New price" name="price" [(ngModel)]="product.
price" />

 <button type="submit">Change</button>

</form>

In the preceding snippet, we bind the changePrice method to the ngSubmit event of

the form. The binding will trigger the execution of the changePrice method if we press

Enter inside the input box or click the button. The ngSubmit event is part of the Angular

FormsModule and hooks on the native submit event of an HTML form.

4.	 Open the product-detail.component.css file and add the following CSS style to target

the form element:

form {

 display: inline;

}

5.	 Run the application using the ng serve command and select a product from the list.

The syntax of the ngModel directive is known as a banana in a box, which is

a memory rule for you to be able to remember how to type it. We create it

in two steps. First, we create the banana by surrounding ngModel in paren-

theses (). Then, we put the banana in a box by surrounding it with square

brackets [()]. Remember, it’s called banana in a box, not box in a banana.

Collecting User Data with Forms270

6.	 You will notice that the current product price is already displayed inside the input box. Try

to change the price, and you will notice that the current price of the product also changes:

Figure 10.2: Two-way binding

The behavior of our application depicted in the preceding image is the magic behind

two-way binding and ngModel. While we type inside the input box, the ngModel directive

updates the value of the product price. The new price is directly reflected in the template

because we use Angular interpolation syntax to display its value.

In our case, updating the current product price while entering a new one is a bad user experience.

The user should be able to view the current price of the product at all times. We will modify the

product details component so that the price is displayed correctly:

1.	 Open the product-detail.component.ts file and create a price property inside the

ProductDetailComponent class:

price: number | undefined;

2.	 Open the product-detail.component.html file and replace the bindings in the <input>

and <form> elements to use the new component property:

<form (ngSubmit)="changePrice(product, price!)">

 <input placeholder="New price" name="price" [(ngModel)]="price" />

 <button type="submit">Change</button>

</form>

The syntax of a banana in a box that we use for the ngModel directive is not ran-

dom. Under the hood, ngModel is a directive that contains an @Input binding

named ngModel and an @Output binding named ngModelChange. It imple-

ments a particular interface called ControlValueAccessor that is used to

create custom controls for forms. By convention, when a directive or a com-

ponent contains both bindings that start with the same name, but the output

binding ends in Change, the property can be used as a two-way binding.

Chapter 10 271

In the preceding snippet, we use the non-null assertion operator in the form binding

because the price property has been declared as number | undefined.

If we run the application and try to enter a new price inside the New price input box, we will

notice that the current price displayed does not change. The functionality of changing the price

also works correctly as before.

We have seen how template-driven forms can come in handy when creating small and simple

forms. In the next section, we dive deeper into the alternative approach offered by the Angular

framework: reactive forms.

Using reactive patterns in Angular forms
Reactive forms, as the name implies, provide access to web forms in a reactive manner. They are

built with reactivity in mind, where input controls and their values can be manipulated using

observable streams. They also maintain an immutable state of form data, making them easier to

test because we can be sure that the state of the form can be modified explicitly and consistently.

Reactive forms have a programmatic approach to creating form elements and setting up validation

rules. We set everything up in the component class and merely point out our created artifacts

in the template.

The Angular key classes involved in this approach are the following:

•	 FormControl: Represents an individual form control, such as an <input> element.

•	 FormGroup: Represents a collection of form controls. The <form> element is the top-

most FormGroup in the hierarchy of a reactive form.

•	 FormArray: Represents a collection of form controls, just like FormGroup, but can be mod-

ified at runtime. For example, we can add or remove FormControl objects dynamically

as needed.

All these classes are available from the @angular/forms  npm package.

The FormControl and FormGroup classes inherit from AbstractControl, which contains a lot of

interesting properties. We can use these properties to render the UI differently based on what

status a particular control or group has. We might want to differentiate UI-wise between a form

we have never interacted with and one we have. It could also be interesting to know whether we

have interacted with a particular control. As you can imagine, there are many scenarios where it

is interesting to know a specific status. We will explore all these properties using the FormControl

and FormGroup classes.

Collecting User Data with Forms272

In the next section, we will explore how to work with reactive forms in Angular using our com-

ponent for creating new products.

Interacting with reactive forms
The Angular application we have built contains a component to add new products for our e-shop.

When we built the component in the previous chapter, you may have noticed that the name and

price input controls were not cleared upon creating a product. Implementing such functionality

would be complex because we would need to access the native <input> elements inside the

component class. However, Angular forms provide a helpful and convenient API that we can use

to accomplish this task. We will learn how to use reactive forms by integrating them into the

product create component:

1.	 Open the products.module.ts file and import ReactiveFormsModule from the @angular/

forms npm package:

import { FormsModule, ReactiveFormsModule } from '@angular/forms';

The Angular forms library provides ReactiveFormsModule, which we can use to start

creating reactive forms in our Angular application.

2.	 Add ReactiveFormsModule in the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 ProductListComponent,

 ProductDetailComponent,

 SortPipe,

 ProductViewComponent,

 ProductCreateComponent

],

 imports: [

 CommonModule,

 ProductsRoutingModule,

 FormsModule,

 ReactiveFormsModule

],

 exports: [ProductListComponent]

})

Chapter 10 273

3.	 Open the product-create.component.ts file and add the following import statement:

import { FormControl, FormGroup } from '@angular/forms';

4.	 Define the following productForm property in the ProductCreateComponent class:

productForm = new FormGroup({

 name: new FormControl('', { nonNullable: true }),

 price: new FormControl<number | undefined>(undefined, {
nonNullable: true })

});

5.	 The constructor of the FormGroup class accepts an object that contains key-value

pairs of FormControl instances. The key denotes a unique name for the form control

that FormGroup can use to keep track of, while the value is an instance of FormControl.

6.	 The constructor of the FormControl class accepts the default value of the input control as

the first parameter. For the name form control, we pass an empty string so that we do not

set any value initially. For the price form control that should accept numbers as values,

we set it initially to undefined.

7.	 The second parameter passed in the FormControl instance is an object that sets the

nonNullable property to indicate that the form control does not accept null values.

8.	 After we have created the form group and its controls, we need to associate them with the

respective HTML elements in the template. Open the product-create.component.html

file and surround the component template with the following <form> element:

<form [formGroup]="productForm">

 <div>

 <label for="name">Name</label>

 <input id="name" #name />

 </div>

 <div>

 <label for="price">Price</label>

 <input id="price" #price />

 </div>

ProductsModule imports both FormsModule and ReactiveFormsModule 

in the previous example. There is no harm in doing this. You can use them

simultaneously in an Angular application, and everything will work fine.

Collecting User Data with Forms274

 <div>

 <button (click)="createProduct(name.value, price.
valueAsNumber)">Create</button>

 </div>

</form>

In the preceding template, we use the formGroup  directive, exported from

ReactiveFormsModule, to connect a FormGroup instance to a <form> element.

9.	 ReactiveFormsModule also exports the formControlName directive, which we use to con-

nect a FormControl instance to an <input> element. Modify the <input> elements of the

form as follows:

<div>

 <label for="name">Name</label>

 <input id="name" formControlName="name" />

</div>

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" />

</div>

In the preceding snippet, we set the value of the formControlName directive to the name

of the FormControl instance.

Currently, we access the name and price template variables in the binding of the button click

event. In reactive forms, this is not the case since the form model is the source of truth. So, we need

to get input control values from the FormGroup or FormControl classes. The FormGroup class ex-

poses the controls property, which we can use to get a specific FormControl instance:

1.	 Open the product-create.component.ts file and create the following getter properties:

get name() { return this.productForm.controls.name }

get price() { return this.productForm.controls.price }

2.	 Modify the createProduct method so that it uses the newly created properties:

createProduct() {

 this.productsService.addProduct(this.name.value, Number(this.
price.value)).subscribe(product => {

 this.productForm.reset();

Chapter 10 275

 this.added.emit(product);

 });

}

The FormControl class contains various properties, such as the value of the associated

input control. In the preceding method, we also use the reset method of the productForm

property to reset the form in its initial values.

3.	 Open the product-create.component.html file and modify its content so that the

createProduct method is called on form submission:

<form [formGroup]="productForm" (ngSubmit)="createProduct()">

 <div>

 <label for="name">Name</label>

 <input id="name" formControlName="name" />

 </div>

 <div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" />

 </div>

 <div>

 <button type="submit">Create</button>

 </div>

</form>

If we run the application, we will see that the functionality of adding a new product still works

as expected. The Name and Price fields are also cleared upon creating a new product.

Click the Create button without entering any values in the input fields and observe what happens

in the Network tab inside the developer tools of your browser. The application will try to create

a product with an empty name and price set to 0. It is a situation that we should avoid in a re-

al-world scenario. We should be aware of the status of a form control and take action accordingly.

In the next section, we’ll investigate different properties that we can check to get the status of a

form control and provide feedback to the user according to that status.

The FormGroup class also contains a value property, which we can use to

access form control values as a single object. We usually use this property

when posting whole entities in a backend API.

Collecting User Data with Forms276

Providing form status feedback
The Angular framework sets the following CSS classes automatically in a form control according

to the current status of the control:

•	 ng-untouched: Indicates that we have not interacted with the control yet

•	 ng-touched: Indicates that we have interacted with the control

•	 ng-dirty: Indicates that we have set a value to the control

•	 ng-pristine: Indicates that the control does not have a value yet

•	 ng-valid: Indicates that the value of the control is valid

•	 ng-invalid: Indicates that the value of the control is not valid

Each class name has a similar property in the form model. The property name is the same as the

class name without the ng- prefix. We could try to leverage both and provide a unique experience

with our forms.

Suppose we would like to display a highlighted border in an input control when interacting with

that control for the first time. We should define a global CSS style in the styles.css file, such

as the following:

input.ng-touched {

 border: 3px solid lightblue;

}

We can also combine some of the CSS classes according to the needs of our application. Suppose

we would like to display a green border when an input control has a value and a red one when

it does not have any at all. The red border should be visible only if we initially entered a value

in the input control and deleted it immediately afterward. We should create the following CSS

rules in the styles.css file:

input.ng-dirty.ng-valid {

 border: 2px solid green;

}

input.ng-dirty.ng-invalid {

 border: 2px solid red;

}

Chapter 10 277

We must add a validation rule to our input elements for the preceding classes to work. We can

use many built-in Angular validators, as we will learn later in this chapter. In this case, we will

use the required validator, which indicates that an input control must have a value to be val-

id. To apply it, add the required attribute to both <input> elements in the product-create.

component.html file:

<form [formGroup]="productForm" (ngSubmit)="createProduct()">

 <div>

 <label for="name">Name</label>

 <input id="name" formControlName="name" required />

 </div>

 <div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" required />

 </div>

 <div>

 <button type="submit">Create</button>

 </div>

</form>

Later, in the Validating controls in a reactive way section, we will learn how to apply a validator to

a FormControl instance directly.

Run the application using the ng serve command and follow these steps to check the applied

CSS rules:

1.	 Click on the Name field and then on the Price field. The former should now display a

light blue border.

2.	 Enter some text into the Name field and click outside the input control. Notice that it has

a green border.

3.	 Remove the text from the Name field and click outside the input control. The border should

now turn red.

4.	 Repeat all previous steps for the Price field.

We can now understand what happens when the status of an input control changes and notify

users visually about that change. In the next section, we’ll learn that the status of a form can

be spawned across many form controls and groups at different levels.

Collecting User Data with Forms278

Creating nesting form hierarchies
We have already seen how to create a form with two input controls. The product create form is a

simple form that needs one FormGroup and two FormControls. There are use cases in enterprise

applications that require more advanced forms that involve creating nested hierarchies of form

groups. Consider the following form, which is used to add product information along with basic

details:

Figure 10.3: New product form

The preceding form may look like a single one, but if we take a better look at the component class,

we will see that it consists of two FormGroup instances, one nested inside the other:

productForm = new FormGroup({

 name: new FormControl('', {

 nonNullable: true

 }),

 price: new FormControl<number | undefined>(undefined, {

 nonNullable: true

Chapter 10 279

 }),

 info: new FormGroup({

 category: new FormControl(''),

 description: new FormControl(''),

 image: new FormControl('')

 })

});

The productForm property is the parent form group, while info is its child. A parent form group

can have as many children form groups as it wants. If we take a look at the component template,

we will see that the child form group is defined differently from the parent one:

<form formGroupName="info">

 <h2>Product information</h2>

 <div>

 <label for="category">Category</label>

 <input id="category" formControlName="category" />

 </div>

 <div>

 <label for="descr">Description</label>

 <input id="descr" formControlName="description" />

 </div>

 <div>

 <label for="photo">Photo URL</label>

 <input id="photo" formControlName="image" />

 </div>

</form>

In the preceding HTML template, we use the formGroupName directive to bind the inner form el-

ement to the info property.

You may have expected to bind it directly to the productForm.info property, but

this will not work. The Angular framework is pretty smart because it understands

that info is a child form group of productForm. It can deduce this information

because the form element related to info is inside the form element that binds to

the productForm property.

Collecting User Data with Forms280

The status of a child form is shared with its parent in a nested form hierarchy. In our case, when

the info form becomes invalid, its parent form, productForm, will also be invalid. The change of

status is not the only thing that bubbles up to the parent form. The value of the child form also

propagates up the hierarchy, thereby maintaining a consistent form model:

Figure 10.4: Status and value propagation in nested forms hierarchy

Nested hierarchies add a useful feature for Angular forms to the developer’s toolchain when orga-

nizing large form structures. The status and value of each form propagate through the hierarchy

to provide stability to our models.

So far, we have been using the constructor of FormGroup and FormControl classes to create an

Angular form. However, it constitutes a lot of noise, especially in forms that contain many con-

trols. In the following section, we will learn how to create Angular forms using an Angular service.

Creating elegant reactive forms
The Angular forms library exposes a service called FormBuilder that we can use to simplify form

creation. We will learn how to use it by converting the form we created in the product create

component:

1.	 Open the product-create.component.ts file and import the FormBuilder artifact from

the @angular/forms npm package:

import { FormBuilder, FormControl, FormGroup } from '@angular/
forms';

Chapter 10 281

2.	 Inject FormBuilder in the constructor of the ProductCreateComponent class:

constructor(private productsService: ProductsService, private
builder: FormBuilder) {}

3.	 Convert the productForm property as follows:

productForm: FormGroup<{

 name: FormControl<string>,

 price: FormControl<number | undefined>

}> | undefined;

4.	 Create the following buildForm method:

private buildForm() {

 this.productForm = this.builder.nonNullable.group({

 name: this.builder.nonNullable.control(''),

 price: this.builder.nonNullable.control<number |
undefined>(undefined, {})

 });

}

We use the group method of the FormBuilder service to group form controls together.

We also use its control method to create the form controls. Notice that we also use the

nonNullable property to indicate that the form and its controls are not nullable.

5.	 Make sure you use the non-null assertion operator in all references of the productForm

property because it does not have an initial value anymore.

Using the FormBuilder service to create Angular forms, we don’t have to deal with the FormGroup

and FormControl data types explicitly, although that is what is being created under the hood.

We have already seen how to define validation rules in a template by triggering a change of status

using CSS styling. In the next section, we will learn how to define them in the component class and

give visual feedback using appropriate messages.

Validating controls in a reactive way
We have already learned how to apply validation to the template of a form. We used the required at-

tribute in the Using reactive patterns in Angular forms section to indicate that an input control needs

to have a value. In reactive forms, the source of truth is our form model, so we need to be able to

define validation rules when building the FormGroup instance.

Collecting User Data with Forms282

To add validation rules, we use the second parameter of the FormControl constructor:

1.	 Open the product-create.component.ts file and import the Validators artifact from

the @angular/forms npm package:

import { FormControl, FormGroup, Validators } from '@angular/forms';

2.	 Modify the declaration of the productForm property so that each FormControl instance

passes Validators.required as a second parameter:

productForm = new FormGroup({

 name: new FormControl('', {

 nonNullable: true,

 validators: Validators.required

 }),

 price: new FormControl<number | undefined>(undefined, {

 nonNullable: true,

 validators: Validators.required

 })

});

3.	 The Validators class contains almost the same validator rules that are available for tem-

plate-driven forms, such as the required validator. We can combine multiple validators

by adding them to an array. To configure the price form control so that its value is at least

1, we use the Validators.min method:

productForm = new FormGroup({

 name: new FormControl('', {

 nonNullable: true,

 validators: Validators.required

 }),

 price: new FormControl<number | undefined>(undefined, {

 nonNullable: true,

 validators: [Validators.required, Validators.min(1)]

When we add a validator using the constructor of FormControl, we can

remove the respective HTML attribute from the HTML template. However,

it is recommended to keep it for accessibility purposes so that screen readers

can understand how the form control should be validated.

Chapter 10 283

 })

});

4.	 We can now use the status of validation rules and react to their changes. To disable

the <button> element when the form is not valid, we need to bind the status of the form

to the disabled button property in the product-create.component.html file:

<div>

 <button type="submit" [disabled]="!productForm.valid">Create</
button>

</div>

5.	 We can also display specific messages to the user upon changing the validity of each

control:

<div>

 <label for="name">Name</label>

 <input id="name" formControlName="name" required />

 The name is not valid

</div>

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" required />

 The price is not valid

</div>

6.	 It would be nice, though, if we could display different messages depending on the

validation rule. We could display a more specific message when the price is less than

1. The FormControl class contains the hasError method, which accepts the validation

property as a parameter and checks if the control has set the particular validation error:

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" required />

 The price is required

Collecting User Data with Forms284

 The price should be greater than 1

</div>

The Angular framework provides a set of built-in validators that we can use in our forms. A vali-

dator is a function that returns either a ValidationErrors object or null when the control does

not have any errors. According to the scenario, a validator can also return a value synchronously

or asynchronously. In the following section, we will learn how to create a custom synchronous

validator.

Building a custom validator
Sometimes, default validators won’t cover all the scenarios we might encounter in an Angular

application. It is easy to write a custom validator and use it in an Angular reactive form. In our case,

we will build a validator to check whether the price of a product is in a predefined amount range.

We have already learned that a validator is a function that needs to return a ValidationErrors ob-

ject with the error specified or a null value. Let’s define such a function in a file named price-

range.directive.ts inside the src\app\products folder:

import { AbstractControl, ValidationErrors, ValidatorFn } from '@angular/
forms';

export function priceRangeValidator(): ValidatorFn {

 return (control: AbstractControl<number>): ValidationErrors | null => {

 const inRange = control.value > 1 && control.value < 10000;

 return inRange ? null : { outOfRange: true };

 };

}

The validator is a function that returns another function called the configured validator function.

It accepts the form control object to which it will be applied as a parameter. If the value of the

control does not fall into a defined price range, it returns a validation error object. Otherwise, it

returns null.

The key of the validation error object specifies a descriptive name for the validator error. It is a

name we can later check with the hasError method of the control to find out if it has any errors.

The value of the validation error object can be any arbitrary value that we can pass in the error

message.

Chapter 10 285

To use our new validator, all we must do is import it into our product create component and add

it to the price FormControl instance:

productForm = new FormGroup({

 name: new FormControl('', {

 nonNullable: true,

 validators: Validators.required

 }),

 price: new FormControl<number | undefined>(undefined, {

 nonNullable: true,

 validators: [Validators.required, priceRangeValidator()]

 })

});

We can now modify the price field in the product-create.component.html file to display an

appropriate error message if that specific error occurs:

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" required />

 The price is required

 The price is out of range

</div>

Angular forms are not only about checking statuses but also about setting values. In the next

section, we’ll learn how to programmatically set values in a form.

Modifying forms dynamically
So far, we have used the FormGroup and FormControl classes extensively throughout this chapter.

However, we have not seen what FormArray is all about.

 We removed the min validator from the price control because it is already checked

from the functionality of our price range validator.

Collecting User Data with Forms286

Consider the scenario where we have added some products to the shopping cart of our e-shop

application and want to update their quantities before checking out the order.

Currently, our application does not have any functionality for a shopping cart, so we will now

add one:

1.	 Create a new service to manage the shopping cart by running the following Angular CLI

command in the src\app\cart folder:

ng generate service cart

2.	 Open the cart.service.ts file and add the following import statement:

import { Product } from '../products/product';

3.	 Create a cart property in the CartService class and initialize it to an empty array:

export class CartService {

 cart: Product[] = [];

 constructor() { }

}

The preceding cart property will be an intermediate local cache for storing selected prod-

ucts before checking out.	

4.	 Add the following method to add a product to the cart:

addProduct(product: Product) {

 this.cart.push(product);

}

5.	 Open the product-detail.component.ts file and add the following import statement:

import { CartService } from '../../cart/cart.service';

6.	 Inject CartService in the ProductDetailComponent class:

constructor(

 private productService: ProductsService,

 public authService: AuthService,

 private route: ActivatedRoute,

 private cartService: CartService

) { }

Chapter 10 287

7.	 Modify the buy method to call the addProduct method of the CartService class:

buy(product: Product) {

 this.cartService.addProduct(product);

}

8.	 Finally, open the product-detail.component.html file and modify the Buy Now button:

<button *ngIf="authService.isLoggedIn" (click)="buy(product)">Buy
Now</button>

Now that we have implemented the basic functionality for storing the selected products that

users want to buy, we need to modify the cart component for displaying the cart items:

1.	 Open the cart.component.ts file and add the following import statements:

import { FormArray, FormControl, FormGroup } from '@angular/forms';

import { Product } from '../products/product';

import { CartService } from './cart.service';

2.	 Create the following properties in the CartComponent class:

cartForm = new FormGroup({

 products: new FormArray<FormControl<number>>([])

});

cart: Product[] = [];

In the preceding snippet, we created a FormGroup object containing a products property.

We set the value of the products property to an instance of the FormArray class. The con-

structor of the FormArray class accepts a list of FormControl instances with type number as

a parameter. For now, the list is empty since the cart does not have any products initially.

3.	 We have also created a cart property to store the details of the current shopping cart.

4.	 Inject CartService in the constructor of the CartComponent class:

constructor(private cartService: CartService) { }

5.	 Import the OnInit interface from the @angular/core npm package:

import { Component, OnInit } from '@angular/core';

6.	 Add the OnInit interface to the list of implemented interfaces of the CartComponent class:

export class CartComponent implements OnInit {

Collecting User Data with Forms288

7.	 Add the following ngOnInit method:

ngOnInit(): void {

 this.cart = this.cartService.cart;

 this.cart.forEach(() => {

 this.cartForm.controls.products.push(

 new FormControl(1, { nonNullable: true })

);

 });

}

In the preceding method, we get the cart property from the CartService class and store

it in the cart component property. We iterate through the products of the shopping cart

and add the respective FormControl instances in the FormArray. We set the value of each

form control to 1 to indicate that the cart contains one piece from each product by default.

8.	 Open the cart.component.html file and replace its HTML template with the following

content:

<h2>My Cart</h2>

<div [formGroup]="cartForm">

 <div

 formArrayName="products"

 *ngFor="let product of cartForm.controls.products.controls; let
i=index">

 <label>{{cart[i].name}}</label>

 <input type="number" [formControlName]="i" />

 </div>

</div>

In the preceding template, we use the *ngFor directive to iterate over the controls prop-

erty of the products form array and create an <input> element for each one. We use

the index keyword of the *ngFor directive to give a dynamically created name to each

form control using the formControlName binding. We have also added a label that displays

the product name from the cart component property. The product name is fetched using

the index of the current product in the array.

Chapter 10 289

9.	 Open the app.module.ts file and add the following import statements:

import { ReactiveFormsModule } from '@angular/forms';

import { CommonModule } from '@angular/common';

10.	 Add ReactiveFormsModule and CommonModule in the imports array of the @NgModule

decorator:

@NgModule({

 declarations: [

 AppComponent,

 CartComponent,

 PageNotFoundComponent

],

 imports: [

 BrowserModule,

 ProductsModule,

 AppRoutingModule,

 HttpClientModule,

 AuthModule,

 ReactiveFormsModule,

 CommonModule

],

 providers: [],

 bootstrap: [AppComponent]

})

To see the cart component in action, run the application using the ng serve command. Add

some products to the cart by navigating to their details page and clicking the Buy Now button.

Do not forget to log in using the Login button because the functionality that adds

a product to the cart is available only to authenticated users.

Collecting User Data with Forms290

After you have added some products to the cart, click the Cart link to view your shopping cart. It

should look like the following:

Figure 10.5: Shopping cart

The real power of the FormArray class is that it can be used not only with FormControl instances

but also with more complicated structures and other form groups.

With the FormArray, we have completed our knowledge range about the most basic building

blocks of an Angular form. In the next section, we’ll learn how to use the reactive forms API and

set values programmatically to an Angular form.

Manipulating form data
The FormGroup class contains two methods that we can use to change the values of a form pro-

grammatically:

•	 setValue: Replaces values in all the controls of the form

•	 patchValue: Updates values in specific controls of the form

The setValue method accepts an object as a parameter that contains key-value pairs for all form

controls. If we want to fill in the details of a product in the product create component program-

matically, we should use the following snippet:

this.productForm.setValue({

 name: 'New product',

 price: 150

});

Chapter 10 291

In the preceding snippet, each key of the object passed in the setValue method must match the

name of each control in the form. If we omit one, Angular will throw an error.

If, on the contrary, we want to fill in some of the details of a product, we can use the patchValue meth-

od:

this.productForm.patchValue({

 price: 150

});

The setValue and patchValue methods of the FormGroup class help us set data in a form. Another

interesting aspect of reactive forms is that we can also be notified when these values change, as

we will see in the following section.

Watching state changes and being reactive
We have already learned how to create forms programmatically and specify all our fields and

their validations in the code. A reactive form can listen to changes in the form controls when they

happen and react accordingly. A suitable reaction could be to disable/enable a control, provide a

visual hint, or do something else according to your needs.

How can we make this happen? A FormControl instance contains two observable proper-

ties: statusChanges and valueChanges. The first one notifies us when the status of the control

changes, such as going from invalid to valid. On the other hand, the second one notifies us when

the value of the control changes. Let’s explore this one in more detail, using an example.

The Price field in the form of the product create component contains a custom validator to check

if the price is within a valid range. From an end-user point of view, it would be better to display

a hint about this validation as soon as the user has started entering values in the field:

1.	 First, add a  element in the product-create.component.html file to contain an

appropriate hint message:

<div>

 <label for="price">Price</label>

 <input id="price" formControlName="price" required />

 The price is required

 The price is out of range

Collecting User Data with Forms292

 Price should be between 1 and 10000

</div>

The hint will be displayed according to the showPriceRangeHint property of the com-

ponent.

2.	 Open the product-create.component.ts file and import the OnInit artifact:

import { Component, OnInit, EventEmitter, Output } from '@angular/
core';

3.	 Add the OnInit artifact in the list of the ProductCreateComponent class implemented

interfaces:

export class ProductCreateComponent implements OnInit {

4.	 Create the showPriceRangeHint property in the ProductCreateComponent class:

showPriceRangeHint = false;

5.	 Create the following ngOnInit method to subscribe to the valueChanges property of

the price form control:

ngOnInit(): void {

 this.price.valueChanges.subscribe(price => {

 if (price) {

 this.showPriceRangeHint = price > 1 && price < 10000;

 }

 });

}

In the preceding method, we check if the price entered is within a valid range and set the

showPriceRangeHint property appropriately.

Chapter 10 293

Of course, there is more that we can do with the valueChanges observable. For example, we

could check if the product name is already reserved by sending it to a backend server, but this

code shows off the reactive nature. Hopefully, this has conveyed how you can take advantage of

the reactive nature of forms and respond accordingly.

Summary
In this chapter, we have learned that Angular provides two different flavors for creating forms –

template-driven and reactive forms – and that neither approach can be said to be better than the

other. We have merely focused on reactive forms because of their many advantages and learned

how to build them. We have also covered the different types of validations and now know how to

create our custom validations. We also learned how to fill our forms with values and get notified

when they change.

In the next chapter, we will learn how to skin our application to look more beautiful with the

help of Angular Material. Angular Material has many components and styling ready for you to

use in your projects. So, let’s give your Angular project the love it deserves.

The valueChanges and statusChanges properties in a FormControl instance are

standard observable streams. Do not forget to unsubscribe from them when the

component is destroyed.

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

11
Introduction to Angular Material

When developing a web application, you must decide how to create your UI. It should use prop-

er contrasting colors, have a consistent look and feel, be responsive, and work well on different

devices and browsers. In short, there are many things to consider regarding UI and UX. Un-

doubtedly, most developers consider creating the UI/UX a daunting task and, therefore, turn to

UI frameworks that do much of the heavy lifting. Some frameworks are used more than others,

namely the following:

•	 Bootstrap

•	 Tailwind CSS

However, there is a new kid on the block—Angular Material—based on Google’s Material Design

techniques. In this chapter, we will explain what Material Design is and how Angular Material

implements its principles, and we will also look at some of its core components. In this chapter,

we will be doing the following:

•	 Introducing Material Design

•	 Introducing Angular Material

•	 Adding core UI controls

•	 Introducing the Angular CDK

Technical requirements
The chapter contains various code samples to walk you through the concept of Angular Material.

You can find the related source code in the ch11 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Introduction to Angular Material296

Introducing Material Design
Material Design is a design language that Google developed in 2014. Google states that its new de-

sign language is based on paper and ink. The creators of Material Design explained their goal in

the following way:

They further explained their goals as follows:

•	 Develop a single underlying system that allows for a unified experience across platforms

and device sizes.

•	 Mobile precepts are fundamental, but touch, voice, mouse, and keyboard are all first-class

input methods.

The purpose of a design language is to have the user deal with how the UI and user interaction

should look and feel across devices. Material Design is based on three main principles:

•	 Material is the metaphor: It is inspired by the physical world with different textures and

mediums, such as paper and ink.

•	 Bold, graphic, and intentional: It is guided by different print design methods, such as

typography, grids, and color, to create an immersive experience for the user.

•	 Motion provides meaning: Elements are displayed on the screen by creating animations

and interactions that reorganize the environment.

All in all, it can be said that there is much theory behind the design language, and there is proper

documentation on the topic should you wish to delve further. You can find more information

at the official documentation site, https://material.io.

Now, this is probably very interesting if you are a designer. But we are web developers—why

should we bother looking at this at all? Every time Google sets out to build something, it becomes

big, and while not everything stays big forever, there is sufficient muscle behind it to indicate that

Material Design will be around for quite a while. Google has extensively used it in their products,

such as Firebase, Gmail, and Google Analytics.

We challenged ourselves to create a visual language for our users that synthesizes

the classic principles of good design with the innovation and possibility of tech-

nology and science.

https://material.io

Chapter 11 297

But of course, a design language by itself isn’t that interesting, at least not for a developer, which

brings us to the following section, where we will learn about the most known implementation

based on Material Design principles, the Angular Material library.

Introducing Angular Material
The Angular Material library was developed to implement Material Design for the Angular frame-

work. It promotes itself with the following features:

•	 Sprint from zero to app: The intention is to make it easy for you as an application devel-

oper to hit the ground running. The amount of effort in setting it up should be minimal.

•	 Fast and consistent: Performance has been a significant focus point, and it is guaranteed

to work well on all major browsers.

•	 Versatile: Many themes should be easy to customize, and there is also great support for

localization and internationalization.

•	 Optimized for Angular: The fact that the Angular team has built it means that support

for Angular is a big priority.

The library is split into the following parts:

•	 Components: There are a ton of UI components in place to help you be successful, such

as different kinds of input, buttons, layout, navigation, modals, and different ways to

show tabular data.

•	 Themes: The library comes with a set of preinstalled themes, but there is also a theming

guide if you want to create your own at https://material.angular.io/guide/theming.

•	 Icons: Material Design comes with over 900 icons, so you will likely find exactly the

icon you need. You can browse through the full collection at https://fonts.google.com/

icons?selected=Material+Icons.

We have already covered all the basic theory about Angular Material, so let’s put it into practice

in the following section by integrating it with an Angular application.

Adding Angular Material to your application
The Angular Material library is an npm package. To install it, we need to manually execute the npm

install command and import several Angular modules into our Angular application. Luckily, the

Angular team has automated these interactions by creating the necessary schematics to install

it using the Angular CLI.

https://material.angular.io/guide/theming
https://fonts.google.com/icons?selected=Material+Icons
https://fonts.google.com/icons?selected=Material+Icons

Introduction to Angular Material298

We can use the ng add Angular CLI command to install Angular Material in an existing Angular

application:

ng add @angular/material

Initially, the Angular CLI will find the latest stable version of the Angular Material library and

prompt us to download it.

After the download completes successfully, it will ask us whether we want to use a prebuilt theme

for our Angular application or a custom one. Accept the default value Indigo/Pink and press Enter:

Figure 11.1 : Theme selection

After selecting a theme, the Angular CLI will ask if we want to set up global typography styles in

our application. Typography refers to how the text is arranged in our application. Angular Material

typography is based on Material Design guidelines and uses the Roboto Google font for styling.

We want to keep our application as simple as possible, so accept the default value, No, by press-

ing Enter:

Figure 11.2 : Set up typography

The next question is about animations. We want our application to display a beautiful animation

when we click on a button or open a modal dialog. It isn’t strictly required, but we want some

cool animations. Accept the default value, Include and enable animations, by pressing Enter:

Figure 11.3: Set up animations

 In this book we work with Angular Material 15 which is compatible with Angular

15. If the version that prompts you is different, you should run the command ng add

@angular/material@15 to install the latest Angular Material 15 to your system.

Chapter 11 299

The Angular CLI will start installing and configuring Angular Material into our application. It

will scaffold and import all necessary artifacts so we can start working with Angular Material

immediately. After the process is finished, we can begin adding controls from the Angular Material

library into our application.

Adding Angular Material controls
To start using a UI control from the Angular Material library, such as a button or a checkbox,

we need to import its corresponding module. Let’s see how this is done by adding a button control

in the main component of an Angular application:

1.	 Open the app.module.ts file and add the following import statement to use Angular

Material buttons:

import { MatButtonModule } from '@angular/material/button';

We do not import directly from @angular/material because every module has a dedicated

namespace. The button controls can be found in the @angular/material/button name-

space.

2.	 Add MatButtonModule in the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 MatButtonModule

],

 providers: [],

 bootstrap: [AppComponent]

})

3.	 Open the app.component.html file and replace its content with the following HTML tem-

plate:

<button mat-button>I am an Angular Material button</button>

Introduction to Angular Material300

In the preceding template, we added a <button> element and attached the mat-button di-

rective to it. The mat-button directive, in essence, modifies the <button> element so that

it resembles and behaves as a Material Design button.

That’s it! We now have a simple Angular application that is decorated with Material Design. But

there is more—much more. For instance, we can apply several colors to the button we created

according to the selected theme, which is the topic of the following section.

Theming Angular Material components
As we saw in the previous section, the Angular Material library comes with four built-in themes:

•	 Indigo/Pink

•	 Deep Purple/Amber

•	 Pink/Blue-Gray

•	 Purple/Green

When we add Angular Material to an Angular CLI project, the Indigo/Pink theme is the default

one. We can always change the selected theme by modifying the included CSS stylesheet in

the angular.json configuration file:

"styles": [

 "/@angular/material/prebuilt-themes/indigo-pink.css",

 "src/styles.css"

]

Each theme consists of a set of color palettes, the most common ones being the following:

•	 Primary

•	 Accent

•	 Warn

So, if we want to apply the primary palette to our button, we would modify the HTML template

as follows:

<button mat-button color="primary">

 I am an Angular Material button

</button>

Theming in Angular Material is so extensive that we can use existing CSS variables to create

custom themes, a topic that is out of the scope of this book.

Chapter 11 301

To continue our magical journey through the land of styling with Angular Material, we will discuss

some of the essential core components in the next section.

Adding core UI controls
Angular Material consists of many components of different types. Some of the most basic ones are:

•	 Buttons: These are what they sound like – buttons you can push. But there are several

different types that you can use, such as icon buttons, raised buttons, and more.

•	 Form controls: These are any control that we use to collect data from a form, such as

autocomplete, checkbox, input, radio button, and drop-down list.

•	 Navigation: These are controls used to perform navigation, such as a menu, a sidenav,

or a toolbar.

•	 Layout: These are controls that define how data is arranged on a page, such as a list, a

card, or tabs.

•	 Popups/modals: These are overlay windows that block any user interaction until they

are dismissed in any way.

•	 Tables: These are controls that are used to display data in a tabular way. What kind of ta-

ble you need depends on whether your data is massive, needs pagination, needs to be

sorted, or all of these.

•	 Integration controls: These are controls that integrate external services in an Angular

Material application like Google Maps and YouTube.

 In the following sections, we will explore each category in more detail.

Buttons
We have already learned how to create a simple button with Angular Material. There are, however,

a lot more button types, namely the following:

•	 mat-raised-button: A button displayed with a shadow to indicate its raised state. A vari-

ation of this button is mat-flat-button, which is the same button but without a shadow.

•	 mat-stroked-button: A button with a border.

•	 mat-icon-button: A button that displays an icon only, without text.

•	 mat-fab: A rounded button with an icon. A variation of this type is mat-mini-fab, which

displays a smaller button.

•	 mat-button-toggle: A button with on/off capabilities that indicates whether it has been

pressed or not.

Introduction to Angular Material302

In the following snippet, you can see how to use each button type:

<button mat-raised-button>Raised button</button>

<button mat-flat-button>Flat button</button>

<button mat-stroked-button>Stroked button</button>

<button mat-icon-button>

 <mat-icon>favorite</mat-icon>

</button>

<button mat-fab>

 <mat-icon>delete</mat-icon>

</button>

<mat-button-toggle-group>

 <mat-button-toggle value="left">

 <mat-icon>format_align_left</mat-icon>

 </mat-button-toggle>

 <mat-button-toggle value="center">

 <mat-icon>format_align_center</mat-icon>

 </mat-button-toggle>

 <mat-button-toggle value="right">

 <mat-icon>format_align_right</mat-icon>

 </mat-button-toggle>

</mat-button-toggle-group>

There are some things to note in setting up the buttons in the preceding snippet:

•	 To use a mat-icon button, we must import MatIconModule from the @angular/material/

icon namespace and add a <mat-icon> element inside the button. The content of a <mat-

icon> element is text that indicates which icon to display. Each icon on the Material Design

website contains an image and a piece of descriptive text. We need to insert the appropriate

text inside the <mat-icon> element to use a specific image.

•	 A <mat-icon> element is also the basis for the mat-fab and mat-mini-fab buttons, but it

can also be used with other button types. Use your imagination to create great buttons.

•	 To use a <mat-button-toggle> element, we need to import MatButtonToggleModule from

the @angular/material/button-toggle namespace. A <mat-button-toggle> element

is rarely used standalone; instead, it is combined with other buttons of the same type in

a <mat-button-toggle-group> element.

Chapter 11 303

The resulting output is shown in the following image:

Figure 11.4: Angular Material button types

Buttons are a fundamental element of the Angular Material library. In the following section, we

will learn about some Angular Material controls suitable for forms.

Form controls
As we learned in Chapter 10, Collecting User Data with Forms, form controls are about collecting

input data in different ways and taking further action, such as sending data to a backend API

over HTTP.

There are quite a few controls in the Angular Material library of varying types, namely the fol-

lowing:

•	 Autocomplete: Enables the user to start typing in an input field and be presented with

a list of suggestions while typing. It helps to narrow down the possible values that the

input can take.

•	 Checkbox: A classic checkbox that represents a state either checked or unchecked.

•	 Date picker: Allows the user to select a date in a calendar.

•	 Input: A classic input control enhanced with meaningful animation while typing.

•	 Radio button: A classic radio button enhanced with animations and transitions while

editing to create a better user experience.

•	 Select: A drop-down control that prompts the user to select one or more items from a list.

•	 Slider: Enables the user to increase or decrease a value by pulling a slider button to either

the right or the left.

•	 Slide toggle: A switch the user can slide to set either on or off.

In the following sections, we will look at some of the previous form controls in more detail using

the source code of Chapter 10, Collecting User Data with Forms.

In this chapter, we will not use the global CSS styles from the styles.css file as we

did in previous chapters because we will use Angular Material styling. Additionally,

we will apply Angular Material components to selected parts in our e-shop appli-

cation. However, we encourage you to convert the whole application by yourself.

Introduction to Angular Material304

Input
The input field is a classic input control on which we can set different validation rules. We can

easily add the ability to display errors in the input field nicely and reactively. To learn how to use

the input control, we will use it in the form of our product’s create component:

1.	 Open the products.module.ts file and add the following import statements:

import { MatButtonModule } from '@angular/material/button';

import { MatFormFieldModule } from '@angular/material/form-field';

import { MatInputModule } from '@angular/material/input';

2.	 Add the MatButtonModule, MatFormFieldModule, and MatInputModule classes in the

imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 ProductListComponent,

 ProductDetailComponent,

 SortPipe,

 ProductViewComponent,

 ProductCreateComponent

],

 imports: [

 CommonModule,

 ProductsRoutingModule,

 FormsModule,

 ReactiveFormsModule,

 MatButtonModule,

 MatFormFieldModule,

 MatInputModule

],

 exports: [ProductListComponent]

})

Chapter 11 305

3.	 Open the product-create.component.html file and modify the <input> elements as

follows:

<div>

 <mat-form-field>

 <input formControlName="name" placeholder="Name" required
matInput />

 <mat-error>The name is not valid</mat-error>

 </mat-form-field>

</div>

<div>

 <mat-form-field>

 <input formControlName="price" placeholder="Price" required
matInput />

 <mat-error>The price is required</mat-error>

 <mat-hint>

 Price should be between 1 and 10000

 </mat-hint>

 </mat-form-field>

</div>

In the preceding HTML snippet, we use the matInput directive to indicate that <input>

elements are Angular Material input controls. We surround them in a <mat-form-field>

element and add <mat-error> and <mat-hint> elements to display error and hint mes-

sages respectively. A <mat-error> element is displayed by default when a validation rule

is violated. A <mat-hint> element is always displayed in input controls.

4.	 Add the mat-raised-button directive to the <button> element so that it is styled as an

Angular Material button:

<div>

 <button mat-raised-button color="primary" type="submit"
[disabled]="!productForm.valid">Create</button>

</div>

Introduction to Angular Material306

If we run the application using the ng serve command, the product creation form should look

like the following:

Figure 11.5: Product creation form

In the following section, we will learn how to combine an input control with an autocomplete

control to suggest values to the user.

Autocomplete
The idea with autocomplete is to help the user narrow down the possible values that an input

field can have. In a regular input field, you would type something and hope a validation tells you

whether what you have entered is correct. With autocomplete, you are presented with a list of

values you are most likely to want as you type, and at any point, you can decide to stop typing

and select an item from the list. It is a time saver, as you don’t have to type the entire item’s name,

and it also enhances accuracy because typing is often error-prone.

To learn how autocomplete works, we will provide a list of existing product names in the name

input control so that users do not add a product that already exists:

1.	 Open the products.module.ts file and add the following import statement:

import { MatAutocompleteModule } from '@angular/material/
autocomplete';

2.	 Add MatAutocompleteModule in the imports array of the @NgModule decorator:

@NgModule({

 declarations: [

 ProductListComponent,

 ProductDetailComponent,

 SortPipe,

Chapter 11 307

 ProductViewComponent,

 ProductCreateComponent

],

 imports: [

 CommonModule,

 ProductsRoutingModule,

 FormsModule,

 ReactiveFormsModule,

 MatButtonModule,

 MatFormFieldModule,

 MatInputModule,

 MatAutocompleteModule

],

 exports: [ProductListComponent]

})

3.	 Open the product-create.component.ts file and add the following property in the

ProductCreateComponent class:

products: Product[] = [];

4.	 Assign the getProducts method of the ProductsService class to the newly created prop-

erty inside the ngOnInit method:

this.productsService.getProducts().subscribe(products => {

 this.products = products;

});

5.	 Open the product-create.component.html file and add the following HTML snippet

right after the first <mat-form-field> element:

<mat-autocomplete #productsAuto="matAutocomplete">

 <mat-option *ngFor="let product of products" [value]="product.
name">

 {{product.name}}

 </mat-option>

</mat-autocomplete>

The <mat-autocomplete> element contains a set of <mat-option> elements that represent

the list of suggested values. We use the NgFor directive to iterate over the list of products.

Introduction to Angular Material308

We also define a productsAuto  template reference variable and bind it

to matAutocomplete so we can reference it later in the input field. This way, when the

input control is focused, it will trigger the autocomplete control to display the suggested

product names.

6.	 Modify the <input> element for the product name to connect it with the autocomplete

control:

<input formControlName="name" placeholder="Name"
[matAutocomplete]="productsAuto" required matInput />

If we run our application with the ng serve command and focus on the Name input, a drop-down

list will appear that contains the suggested values from the autocomplete control:

Figure 11.6: Autocomplete control

We are halfway there. Currently, the autocomplete control displays all suggested values. Ideally, we

would like to filter them as we type. Specifically, we want to display products whose names start

with the text we type in the input control. To accomplish that task, we can use the valueChanges

observable and subscribe to get notified when the user types in the input control. As soon as the

observable emits a new value, we can filter the product list according to that value:

1.	 Add the following import statement in the product-create.component.ts file:

import { map, Observable } from 'rxjs';

2.	 Create the following Observable property in the ProductCreateComponent class:

products$: Observable<Product[]> | undefined;

Chapter 11 309

3.	 Assign the products$ property to the valueChanges observable in the ngOnInit method

as follows:

this.products$ = this.name.valueChanges.pipe(

 map(name => this.products.filter(product => product.name.
startsWith(name)))

);

4.	 Now we need to change our template so that the <mat-option> element iterates over

the products$ observable using the async pipe:

<mat-autocomplete #productsAuto="matAutocomplete">

 <mat-option *ngFor="let product of products$ | async"
[value]="product.name">

 {{product.name}}

 </mat-option>

</mat-autocomplete>

If we run the application and start typing the character Me in the input control, we can see that

it displays all products whose name starts with Me as suggested values:

Figure 11.7: Autocomplete filtering

We could have implemented a more advanced filtering mechanism, such as a case-insensitive

search, through all the names or a live search. Imagine that, instead of filtering a local array, we

sent a request to a backend API and got live results. The possibilities are endless. The only limit

is your imagination in crafting good user experiences with autocomplete control.

In the following section, we will learn how to add a select component in the form for selecting

multiple product categories.

Introduction to Angular Material310

Select
The select component works similarly to the native <select> element defined in the HTML

standard. It displays a drop-down element with a list of options that users can choose. It allows

selecting only one option at a time by default, but it can also be configured for multiple selections,

as we will see in this example.

We will add a select component in the ProductCreate component to add multiple categories

to a new product:

1.	 Open the products.module.ts file and add the following import statement:

import { MatSelectModule } from '@angular/material/select';

2.	 Add the MatSelectModule class in the imports array of the @NgModule decorator:

imports: [

 CommonModule,

 ProductsRoutingModule,

 FormsModule,

 ReactiveFormsModule,

 MatButtonModule,

 MatFormFieldModule,

 MatInputModule,

 MatAutocompleteModule,

 MatSelectModule

]

3.	 Open the product-create.component.ts file and add a categories property in the

ProductCreateComponent class:

categories = ['Hardware', 'Computers', 'Clothing', 'Software'];

4.	 To display the category list in the component template, open the product-create.

component.html file and add the following snippet after the <div> element of the price

field:

<div>

 <mat-form-field>

 <mat-label>Categories</mat-label>

 <mat-select multiple>

Chapter 11 311

 <mat-option *ngFor="let category of categories"
[value]="category">

 {{category}}

 </mat-option>

 </mat-select>

 </mat-form-field>

</div>

In the preceding snippet, we use a <mat-select> element with the multiple directive

attached to it. We iterate over the categories property and create a <mat-option> ele-

ment for each category item.

If we run the application using the ng serve command, we will see that our form has a new con-

trol called Categories. If we click on it, it displays a list of product categories that we can select:

Figure 11.8: Multi-select control

In the following section, we will explore using a checkbox control from the Angular Material library.

Checkbox
The checkbox is a tristate control and can have checked, unchecked, or undetermined values. To

use it, we first need to import MatCheckboxModule from the @angular/material/checkbox name-

space and then add a <mat-checkbox> element to a component template:

<mat-checkbox color="primary" [checked]="isChecked">Check me</mat-
checkbox>

In the previous snippet, we added a property binding to the checked property of the checkbox

control to indicate whether it is checked using the isChecked component property.

Introduction to Angular Material312

We will finally complete our walkthrough using the form controls of the Angular Material library

by looking at the date-picker control in the following section.

Date picker
We can do much more with a date-picker control than just selecting a date from a pop-up calen-

dar. We can disable date ranges, format the date, show it yearly and monthly, and so on. In this

chapter, we will only learn how to get up and running with it.

To use a date-picker control, we first need to import the following modules:

•	 MatDatepickerModule from the @angular/material/datepicker namespace.

•	 MatNativeDateModule from the @angular/material/core namespace. It provides parsing

and formatting utilities for dates, and it is based on the native Date object implementation.

A date-picker control in Angular Material must be used in conjunction with an input control, like

the autocomplete control that we saw earlier:

<input matInput type="text" placeholder="Production date" />

The idea is that the input control triggers the date-picker control to be displayed. To cre-

ate a date-picker control, we need to add a <mat-datepicker-toggle> element and a <mat-

datepicker> element inside a <mat-form-field> element:

<mat-form-field>

 <input matInput type="text" placeholder="Production date" />

 <mat-datepicker-toggle matSuffix [for]="picker"></mat-datepicker-toggle>

 <mat-datepicker #picker></mat-datepicker>

</mat-form-field>

The <mat-datepicker-toggle> element is a button with a calendar icon on it. It is positioned

at the end of the input control, as defined by the matSuffix directive, and displays the calendar

popup when clicked by the user. The <mat-datepicker> element defines a picker template refer-

ence variable that we can use to associate it both with the input field and the <mat-datepicker-

toggle> element:

<input matInput type="text" placeholder="Production date"
[matDatepicker]="picker" />

You can see how a Datepicker looks in the product creation form when it is opened:

Chapter 11 313

Figure 11.9: Production date control

The date picker is a form control used extensively in enterprise Angular applications. In the fol-

lowing section, we will learn about navigation techniques in Angular Material.

Navigation
There are different ways of navigating in an Angular application, such as clicking on a link or a

menu item. Angular Material offers the following components for this type of interaction:

•	 Menu: A pop-up list where you can choose from a predefined set of options.

•	 Sidenav: A component that acts as a menu docked to the left or the right of the page. It can

be presented as an overlay over the application while dimming the application content.

•	 Toolbar: A standard toolbar that is a way for the user to reach commonly used actions.

In this section, we will demonstrate how to use the Toolbar component. However, we encourage

you to keep exploring by learning how to use the menu and the sidenav components on the official

Angular Material documentation website.

To create a toolbar for the main links of our e-shop application, we will go through the following

steps:

1.	 Open the app.module.ts file and add the following import statement:

import { MatToolbarModule } from '@angular/material/toolbar';

Introduction to Angular Material314

2.	 Add the MatToolbarModule class in the imports array of the @NgModule decorator:

imports: [

 BrowserModule,

 BrowserAnimationsModule,

 MatButtonModule,

 MatIconModule,

 MatButtonToggleModule,

 ProductsModule,

 AppRoutingModule,

 HttpClientModule,

 AuthModule,

 ReactiveFormsModule,

 CommonModule,

 MatCheckboxModule,

 MatToolbarModule

]

3.	 Open the app.component.html file and modify the HTML content as follows:

<mat-toolbar color="primary">

 My e-shop

 <a mat-flat-button color="primary" routerLink="/
products">Products

 <a mat-flat-button color="primary" routerLink="/cart">Cart

 <a mat-flat-button color="primary" routerLink="/about">About Us</
a>

 <app-auth></app-auth>

</mat-toolbar>

<router-outlet></router-outlet>

In the preceding template, we added the main application links and the authentication

component inside a <mat-toolbar> element. The element with the spacer class

name is used to align content at the right end of the toolbar.

4.	 Open the app.component.css file and add the following CSS style:

.spacer {

 flex: 1 1 auto;

}

Chapter 11 315

5.	 Open the auth.module.ts file and import MatButtonModule:

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import { MatButtonModule } from '@angular/material/button';

import { AuthComponent } from './auth/auth.component';

@NgModule({

 declarations: [

 AuthComponent

],

 imports: [

 CommonModule,

 MatButtonModule

],

 exports: [

 AuthComponent

]

})

export class AuthModule { }

6.	 Now, open the auth.component.html file and add the mat-raised-button directive in

the Login and Logout buttons:

<button mat-raised-button

 [hidden]="authService.isLoggedIn"

 (click)="authService.login().subscribe()"

>Login</button>

<button mat-raised-button

 [hidden]="!authService.isLoggedIn"

 (click)="authService.logout()"

>Logout</button>

If we run the application using the ng serve command, we will see the new toolbar of our ap-

plication at the top of the page:

Figure 11.10: Application toolbar

Introduction to Angular Material316

The toolbar component is fully customizable, and we can adjust it according to the application’s

needs. We can add icons and even create toolbars with content in multiple rows. Now that you

know the basics of creating a simple toolbar, you can explore further possibilities.

Layout
When we refer to the layout, we discuss how we place content in our templates. Angular Material

gives us different components for this purpose:

•	 List: Visualizes the content as a list of items. It can be enriched with links and icons and

even multiline.

•	 Grid list: Helps us arrange the content in blocks. We only need to define the number of

columns, and the component will fill out the visual space.

•	 Card: Wraps content and adds a box shadow. We can define a header for it as well.

•	 Tabs: Divides up the content into different tabs.

•	 Stepper: Divides up the content into wizard-like steps.

•	 Expansion panel: Works in a similar way to an accordion. It enables us to place the con-

tent in a list-like way with a title for each item. Items can only be expanded one at a time.

In the following sections, we will cover the list and grid-list components.

List
The list control is built up by a <mat-list> element that contains a set of <mat-list-item> el-

ements:

<mat-list>

 <mat-list-item *ngFor="let product of products">

 {{product.name}}

 </mat-list-item>

</mat-list>

To use a <mat-list> element, we first need to import MatListModule from the @angular/

material/list namespace. We can create simple lists, such as the previous snippet, or more

advanced lists by enriching them with a multi-select functionality:

<mat-selection-list>

 <mat-list-option *ngFor="let product of products">

 {{product.name}}

Chapter 11 317

 </mat-list-option>

</mat-selection-list>

In the previous snippet, we use the <mat-selection-list> flavor of the list element that con-

tains <mat-list-option> elements. A <mat-list-option> element is a list item with a label and

a checkbox that we can check to select the item:

Figure 11.11: Selection list

The list control of the Angular Material library has a rich set of capabilities, and the combinations

we can use are endless.

Grid list
A grid list is similar to a list control, but the content is arranged in a list of rows and columns

while ensuring that it fills out the page viewport.

It is an excellent fit if you want maximum freedom to decide how to display content. To use it,

we must first import MatGridListModule from the @angular/material/grid-list namespace.

The component consists of a <mat-grid-list> element and several <mat-grid-tile> elements:

<mat-grid-list cols="3" rowHeight="100px" gutterSize="50">

 <mat-grid-tile *ngFor="let product of products">

 {{product.name}}

 </mat-grid-tile>

</mat-grid-list>

We can set the number of columns and the height of each row by using the cols and rowHeight prop-

erties, respectively. We can also define the space between rows by setting the gutterSize property

measured in pixels.

The viewport of a page is defined as the area of the page that is visible to the user.

It varies according to the device that we use for browsing the content. For example,

the viewport on mobile devices is smaller than on desktop.

Introduction to Angular Material318

In the previous snippet, we use the NgFor directive to iterate over a list of products and display

one tile for each one. The output should look like the following:

Figure 11.12: Grid list

The <mat-grid-tile> element also contains the following properties:

•	 colspan: Decides how many columns the tile should take

•	 rowspan: Indicates how many rows the tile should take

We encourage you to explore the preceding properties and the remaining card and tab compo-

nents to learn more.

Popups and modal dialogs
There are different ways to capture the user’s attention in a web application. One of them is to

show a pop-up dialog over the content of the page and prompt the user to act accordingly. An-

other way is displaying information about a part of the page when the user hovers over that part.

Angular Material offers three different components for handling such cases:

•	 Dialog: A modal pop-up dialog that displays itself on top of the page content.

•	 Tooltip: A piece of text that is displayed when we hover over a specific area.

•	 Snackbar: An information message displayed at the bottom of a page and is visible for a

short time. Its purpose is to notify the user of the result of an action, such as saving a form.

In this chapter, we will focus on the dialog component, which is widely used in Angular applica-

tions. In the following section, we learn how to create a simple dialog.

Creating a simple dialog
The dialog component is quite powerful and can easily be customized and configured. It is an

ordinary Angular component and uses custom directives that force it to behave like a dialog. To

explore the capabilities of the Angular Material dialog, we will change the price of an existing

product using a prompt dialog:

Chapter 11 319

1.	 Open the products.module.ts file and add the following import statement:

import { MatDialogModule } from '@angular/material/dialog';

2.	 Add MatDialogModule in the imports array of the @NgModule decorator:

imports: [

 CommonModule,

 ProductsRoutingModule,

 FormsModule,

 ReactiveFormsModule,

 MatButtonModule,

 MatFormFieldModule,

 MatInputModule,

 MatAutocompleteModule,

 MatDatepickerModule,

 MatNativeDateModule,

 MatSelectModule,

 MatListModule,

 MatGridListModule,

 MatDialogModule

]

3.	 Run the following Angular CLI command in the src\app\products folder to create a new

Angular component:

ng generate component price

The preceding command will create an Angular component that will be the host for our

dialog.

4.	 Open the price.component.ts file and add a price property in the PriceComponent class:

import { Component } from '@angular/core';

@Component({

 selector: 'app-price',

 templateUrl: './price.component.html',

 styleUrls: ['./price.component.css']

})

Introduction to Angular Material320

export class PriceComponent {

 price: number | undefined;

}

5.	 Open the price.component.html file and replace its content with the following HTML

template:

<h1 mat-dialog-title>Change product price</h1>

<mat-dialog-content>

 <mat-form-field>

 <input matInput [(ngModel)]="price" />

 </mat-form-field>

</mat-dialog-content>

<mat-dialog-actions>

 <button mat-raised-button color="primary" [mat-dialog-
close]="price">Save</button>

 <button mat-button mat-dialog-close>Cancel</button>

</mat-dialog-actions>

The component template contains various directives and elements

that MatDialogModule exports and that we can use. The mat-dialog-title directive

defines the title of the dialog, and <mat-dialog-content> is the actual content of the

dialog. The <mat-dialog-actions> element defines the actions the dialog can perform

and usually wraps button elements.

We use the mat-dialog-close directive on a button element to indicate that the dialog

will be closed when that button is clicked. In our case, we use it twice. In the first case, we

use it as a property binding and set it to a value that is finally passed back to the caller of

the dialog. In the second case, we close the dialog right away.

6.	 A dialog must be triggered to be displayed on a page. Open the product-detail.component.

ts file and add the following import statements:

import { MatDialog } from '@angular/material/dialog';

import { PriceComponent } from '../price/price.component';

7.	 Import the filter RxJS operator from the rxjs npm package:

import { filter, Observable, of, switchMap } from 'rxjs';

Chapter 11 321

8.	 Inject the MatDialog service in the constructor of the ProductDetailComponent class:

constructor(

 private productService: ProductsService,

 public authService: AuthService,

 private route: ActivatedRoute,

 private cartService: CartService,

 private dialog: MatDialog

) { }

9.	 Modify the changePrice method as follows:

changePrice(product: Product) {

 this.dialog.open(PriceComponent).afterClosed().pipe(

 filter(price => !!price),

 switchMap(price => this.productService.updateProduct(product.id,
price))

).subscribe(() => {

 alert('The price of ${product.name} was changed!');

 });

}

In the preceding method, we use the MatDialog service to display the price component.

The MatDialog service accepts the type of component class representing the dialog as a

parameter.

The open method of the MatDialog service returns an afterClosed observable proper-

ty that we can subscribe to, which will enable us to be notified when the dialog closes.

The observable emits any value that is sent back from the dialog. Note that we check

whether a value is returned from the dialog using the filter RxJS operator because the

Cancel button does not return a value at all.

10.	 Finally, open the product-detail.component.html file and replace its content with the

following HTML template:

<div *ngIf="product$ | async as product">

 <h2>Product Details</h2>

 <h3>{{product.name}}</h3>

 {{product.price | currency:'EUR'}}

 <button mat-raised-button color="primary"
(click)="changePrice(product)">Change</button>

Introduction to Angular Material322

 <p>

 <button mat-button *ngIf="authService.isLoggedIn"
(click)="buy(product)">Buy Now</button>

 <button mat-raised-button color="primary" class="delete"
(click)="remove(product)">Delete</button>

 </p>

</div>

Run the application using the ng serve command, select a product from the list, and click the

Change button. The following dialog will appear on the screen:

Figure 11.13: Change price dialog

You may have noticed that the input field for entering the new price is empty. In the following

section, we will learn how to pass data in the dialog and display the current price as a placeholder

inside the input control.

Configuring a dialog
In a real-world scenario, you will probably need to create a reusable component for displaying

a dialog in an Angular project. Even better, the component may end up in an Angular library as

a package. Therefore, you should configure the dialog component to accept data dynamically.

In the current Angular project, we would like to display the current price of the product when

the user wants to change it using the price dialog:

1.	 Open the price.component.ts file and import MAT_DIALOG_DATA from the @angular/

material/dialog namespace and Inject from the @angular/core library:

import { Component, Inject } from '@angular/core';

import { MAT_DIALOG_DATA } from '@angular/material/dialog';

Chapter 11 323

2.	 Inject MAT_DIALOG_DATA in the constructor of the PriceComponent class in the following

way:

export class PriceComponent {

 price: number | undefined;

 constructor(@Inject(MAT_DIALOG_DATA) public data: number) {}

}

The MAT_DIALOG_DATA is not an Angular service, so we cannot inject it normally as we do

with services. It is an injection token, and we use the @Inject decorator to inject it, as we

learned in Chapter 6, Managing Complex Tasks with Services. The data variable will contain

any data we pass to the dialog when we call its open method.

3.	 Open the price.component.html file and bind the data property to the placeholder

property of the <input> element:

<input matInput [(ngModel)]="price" [placeholder]="data.toString()"
/>

4.	 Open the product-detail.component.ts file and set the data property in the dialog

configuration object, which is the second parameter of the open method:

changePrice(product: Product) {

 this.dialog.open(PriceComponent, {

 data: product.price

 }).afterClosed().pipe(

 filter(price => !!price),

 switchMap(price => this.productService.updateProduct(product.id,
price))

).subscribe(() => {

 alert('The price of ${product.name} was changed!');

 });

}

We have already seen how to return data from the dialog to the caller component using the mat-

dialog-close directive. In the following section, we will learn how to accomplish the same task

programmatically from the component class.

Introduction to Angular Material324

Getting data back from a dialog
Instead of using the mat-dialog-close directive to close a dialog declaratively, we could use

the MatDialogRef service. MatDialogModule exports the MatDialogRef service that contains

a close method we can use in the price.component.ts file:

import { Component, Inject } from '@angular/core';

import { MatDialogRef, MAT_DIALOG_DATA } from '@angular/material/dialog';

@Component({

 selector: 'app-price',

 templateUrl: './price.component.html',

 styleUrls: ['./price.component.css']

})

export class PriceComponent {

 price: number | undefined;

 constructor(

 @Inject(MAT_DIALOG_DATA) public data: number,

 private dialogRef: MatDialogRef<PriceComponent>

) {}

 save() {

 this.dialogRef.close(this.price);

 }

}

The close method accepts a single parameter that defines the data we want to send back to the

caller.

We should also modify the Save button in the price.component.html file accordingly:

<button mat-raised-button color="primary" (click)="save()">Save</button>

When we inject the MatDialogRef service, we also set its type to PriceComponent,

the same as the dialog component itself.

Chapter 11 325

Dialogs are a great feature of Angular Material that can give powerful capabilities to your Angular

applications. In the following section, we will explore how to display tabular data in your Angular

applications with data tables.

Data table
We can visualize data in an Angular component in different ways. An efficient way of getting a

quick overview is by displaying it in a tabular format with rows and columns. However, we might

need to sort data by column to find the information we are looking for. Also, the amount of data

might be so large that it needs to be shown in parts by page. Angular Material addresses all these

issues by offering the following components:

•	 Table: Lays out data in rows and columns with headers

•	 Sort table: Allows you to sort data in a table

•	 Paginator: Allows you to slice up data in pages that we can navigate

In the following sections, we learn more about each component in detail

Table
The table component allows us to display our data in columns and rows. To create a table, we first

need to import MatTableModule from the @angular/material/table namespace.

An Angular Material table is a standard HTML <table> element that contains specific Angu-

lar directives to conform to the Material Design guidelines. To create the table initially, we use

the mat-table directive:

<table mat-table [dataSource]="products"></table>

The dataSource property of the mat-table directive defines the data we want to display on the

table. It can be any data that can be enumerated, such as an array. In our case, we bind it to

the products array that we declared in our component class, along with the columnNames property,

which indicates the column names of the table:

columnNames = ['name', 'price'];

The names of columns match the properties of a Product object and are used twice in the table el-

ement—once to define the header row of the table that displays the names of the columns and

the second time to define the actual rows that contain data:

<tr mat-header-row *matHeaderRowDef="columnNames"></tr>

<tr mat-row *matRowDef="let row; columns: columnNames;"></tr>

Introduction to Angular Material326

Finally, we use an <ng-container> element for each column to display the header and data cells:

<ng-container matColumnDef="name">

 <th mat-header-cell *matHeaderCellDef>Name</th>

 <td mat-cell *matCellDef="let product">

 <a [routerLink]="['/products', product.id]">{{product.name}}

 </td>

</ng-container>

<ng-container matColumnDef="price">

 <th mat-header-cell *matHeaderCellDef>Price</th>

 <td mat-cell *matCellDef="let product">{{product.price | currency}}</td>

</ng-container>

The <ng-container> element uses the matColumnDef directive to set the name of the specific

column, as defined in the columnNames component property.

It contains a <th> element with a mat-header-cell directive that indicates the header of the

cell and a <td> element with a mat-cell directive for the data of the cell. The <td> element uses

the matCellDef directive to create a local template variable for the current row data we can bind

to later.

The <ng-container> element is a unique-purpose element used to group elements

with similar functionality. It does not interfere with the styling of the child elements,

nor is it rendered on the screen.

The value of matColumnDef must match with a value from the columnNames com-

ponent property; otherwise, the application will throw an error that it cannot find

the name of the defined column.

Chapter 11 327

If we run the application, the output should be the following:

Figure 11.14: Table control

You did great! You managed to create a beautiful table in no time using Angular Material.

Sort table
At this point, we have created a nice-looking table, but it lacks a pretty standard functionality—

sorting. We would typically expect that if we click the header, it will sort data into ascending and

descending order, respectively, and it will be able to recognize common data types, such as text

and numbers, and sort them properly. The good news is that Angular Material can help us to

achieve this behavior.

Introduction to Angular Material328

We need to use the appropriate Angular Material directives for the job:

1.	 Open the products.module.ts file and import MatSortModule from the @angular/

material/sort namespace. Add it also in the imports array of the @NgModule decorator.

2.	 MatSortModule exports a variety of directives that we can use to sort a table. Open the

product-list.component.html file and add the matSort and matSortDisableClear di-

rectives to the <table> element and the mat-sort-header directive to each header cell:

<table mat-table [dataSource]="products" matSort
matSortDisableClear>

 <ng-container matColumnDef="name">

 <th mat-header-cell *matHeaderCellDef mat-sort-header>Name</th>

 <td mat-cell *matCellDef="let product">

 <a [routerLink]="['/products', product.id]">{{product.name}}</
a>

 </td>

 </ng-container>

 <ng-container matColumnDef="price">

 <th mat-header-cell *matHeaderCellDef mat-sort-header>Price</th>

 <td mat-cell *matCellDef="let product">{{product.price |
currency}}</td>

 </ng-container>

 <tr mat-header-row *matHeaderRowDef="columnNames"></tr>

 <tr mat-row *matRowDef="let row; columns: columnNames;"></tr>

</table>

In the preceding snippet, we add the matSortDisableClear directive because sorting by

default contains three states: ascending, descending, and the original ordering. The last

one clears the ordering, which is why we disable it.

3.	 Use the @ViewChild decorator inside the ProductListComponent class to get a reference

to the matSort directive that we defined earlier:

@ViewChild(MatSort) sort: MatSort | null = null;

4.	 To use sorting, wrap the data in a MatTableDataSource instance and set the sort property

of that instance to the MatSort property that we defined previously:

private getProducts() {

 this.productService.getProducts().subscribe(products => {

 this.products = new MatTableDataSource(products);

Chapter 11 329

 this.products.sort = this.sort;

 });

}

Sorting a table is a feature you may need when writing Angular applications. The sorting config-

uration looks simple as soon as you have a simple table model.

Pagination
So far, our table is starting to look quite good. As well as displaying data, it can even be sorted.

We are aware, though, that in most cases, the data for a table is usually quite long, which means

that the user either has to scroll up and down or browse the data page by page. We can solve the

latter problem with the help of the pagination element. To use it, we need to do the following:

1.	 Open the products.module.ts file and import MatPaginatorModule from the @angular/

material/paginator namespace. Add it also in the imports array of the @NgModule dec-

orator.

2.	 Open the product-list.component.html file and add a <mat-paginator> element im-

mediately after the <table> element. Set the pageSize property to display five rows each

time. Also, set the pageSizeOptions property so that the user can change the page size:

<mat-paginator [pageSize]="5" [pageSizeOptions]="[5,10,15]"></mat-
paginator>

3.	 Open the product-list.component.ts file and use the @ViewChild decorator inside the

ProductListComponent class to get a reference to the <mat-paginator> element that we

created:

@ViewChild(MatPaginator) paginator: MatPaginator | null = null;

4.	 Set the paginator property of the products property to the MatPaginator property that

we defined previously:

private getProducts() {

 this.productService.getProducts().subscribe(products => {

 this.products = new MatTableDataSource(products);

 this.products.sort = this.sort;

 this.products.paginator = this.paginator;

 });

}

Introduction to Angular Material330

If we run the application, we will notice that the table now displays five products at a time;

however, we can navigate through all of the pages using the paginator control that is shown at

the bottom of the table:

Figure 11.15: Table with pagination

The paginator component also displays the total length of our data, even if we did not set it

explicitly. Well, we did when we set the paginator property of the data source to the paginator

element. It is smart enough to understand how to handle the data by itself.

In this section, we learned about some of the core components of the Angular Material library

and how we can leverage them to create compelling and engaging user interfaces. We covered UI

controls that span various uses, such as navigation, layout, popups, and form controls.

In the next section, we will learn how to integrate other Google products in an Angular application,

such as the YouTube player and Google Maps.

Integration controls
The Angular Material library contains two special-purpose controls that integrate external Google

products into an Angular application: Google Maps and YouTube.

To start using the Google Maps control, we first need to install it from npm as a separate library:

npm install @angular/google-maps

 In this book we work with Angular Material 15 which is compatible with Angular

15. If the version of Google Maps that you installed is different, you should run the

command npm install @angular/google-maps@15 to install the latest Google

Maps 15 to your system.

Chapter 11 331

The Google Maps control works properly only if we import the Maps JavaScript API in an Angular

application. To import the API, we need to add the following snippet in the <head> element of the

index.html file replacing the YOUR_API_KEY variable with a valid Maps API key:

<script src="https://maps.googleapis.com/maps/api/js?key=YOUR_API_KEY"></
script>

The components we need for creating a map in an Angular application are exposed in

GoogleMapsModule, which is part of the @angular/google-maps npm package and must be im-

ported into an Angular module of our application.

To display an instance of Google Maps in our Angular application, walk through the following

steps:

1.	 Run the following Angular CLI command to create a new component:

ng generate component map

2.	 Open the map.component.ts file and create the following properties in the MapComponent

class:

position: google.maps.LatLngLiteral = {

 lat: 38.480052,

 lng: 22.494062

};

options: google.maps.MapOptions = {

 center: { lat: 39.0742, lng: 21.8243 },

 zoom: 6

};

In the preceding snippet, the options property will be used to define the map center and

the zoom level. The position property will be used to locate a map marker in the specified

latitude and longitude coordinates inside the map.

3.	 Open the map.component.html file and replace its content with the following HTML tem-

plate:

<google-map [options]="options">

 <map-marker [position]="position"></map-marker>

</google-map>

Introduction to Angular Material332

In the preceding template, we use the <google-map> element to define a map control with

specific options. Inside the map, we add a <map-marker> element to add a map marker

in the specified position.

The map we created is a basic one with a single marker. The Google Maps API in Angular Material

has much more capabilities that we encourage you to check out.

Another external application that we can embed in an Angular application is the YouTube player.

To start using it, we must first install it from the npm registry with the following command:

npm install @angular/youtube-player

The Angular Material component used to add YouTube player in an Angular component is available

from the YouTubePlayerModule class. It can be imported from the @angular/youtube-player

npm package and should be imported into an Angular module of our application.

We can then use the <youtube-player> element, passing a video ID as a parameter:

<youtube-player videoId="YOUR_VIDEO_ID"></youtube-player>

The ID of the video can be found in the v parameter of a YouTube video URL, such as https://

www.youtube.com/watch?v=VoIDrdjgpR8.

Finally, we add the ngOnInit method in the app.component.ts file to load the YouTube API once:

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent implements OnInit {

 title = 'my-app';

 In this book we work with Angular Material 15 which is compatible with Angular 15.

If the version of the YouTube player that you installed is different, you should run

the command npm install @angular/youtube-player@15 to install the latest

YouTube player 15 to your system.

https://www.youtube.com/watch?v=VoIDrdjgpR8
https://www.youtube.com/watch?v=VoIDrdjgpR8

Chapter 11 333

 ngOnInit(): void {

 const tag = document.createElement('script');

 tag.src = 'https://www.youtube.com/iframe_api';

 document.body.appendChild(tag);

 }

}

In the next section, we will learn about the backbone of the Angular Material library, the Angular

CDK, and how we can use it to create custom controls that adhere to Material Design guidelines.

Introducing the Angular CDK
The Angular CDK is the core of the Angular Material library. It is a collection of tools that im-

plement similar interaction patterns; however, they are not tied to any presentation style, such

as Material Design. The behavior of Angular Material components has been designed using the

Angular CDK. The Angular CDK is so abstract that you can use it to create custom components.

You should seriously consider it if you are a UI library author.

The capabilities of the Angular CDK are enormous and certainly cannot fit in a single chapter. For

the sake of demonstration, we are going to describe two elements of the library:

•	 Clipboard: Provides a copy-paste functionality with the system clipboard

•	 Drag and drop: Provides drag-and-drop features in elements

Angular CDK elements are imported from the @angular/cdk npm package. Each element must

be imported from its module, which resides in a different namespace, similar to the Angular

Material components.

Clipboard
We can easily create a copy-to-clipboard button using the cdkCopyToClipboard directive. All we

have to do is import ClipboardModule from the @angular/cdk/clipboard namespace and attach

the directive to a button element, such as in the following HTML template:

<mat-form-field>

 <textarea matInput [(ngModel)]="content" placeholder="Enter some text
and click the Copy button"></textarea>

</mat-form-field>

<button mat-flat-button [cdkCopyToClipboard]="content">

Introduction to Angular Material334

 <mat-icon>content_copy</mat-icon>

 Copy

</button>

We set the value of the directive to the content property in the respective component class:

import { Component } from '@angular/core';

@Component({

 selector: 'app-copy-text',

 templateUrl: './copy-text.component.html',

 styleUrls: ['./copy-text.component.css']

})

export class CopyTextComponent {

 content = '';

}

It is the actual content that is going to be copied to the clipboard once we click the Copy button.

Drag and drop
A powerful application of the drag-and-drop functionality is when using lists in an Angular ap-

plication, which we do in most cases! To use it, we must first import DragDropModule from the 

@angular/cdk/drag-drop namespace. The drag-and-drop component of Angular CDK is spread

across various directives that we can apply to a <mat-list> element:

<mat-list cdkDropList>

 <mat-list-item cdkDrag *ngFor="let product of products">

 {{product.name}}

 </mat-list-item>

</mat-list>

The cdkDropList directive indicates that the <mat-list> element is a container for items that can

be dragged. The cdkDrag directive indicates that the <mat-list-item> element can be dragged.

We have also applied a bit of styling to identify the items as draggable:

mat-list-item {

 cursor: move;

 border: 1px lightgray solid;

}

Chapter 11 335

If we run the application using the ng serve command, we will notice that even if we can drag

an item from the list, the application will not respect the movement of the item when we drop it.

The drag-and-drop component does not have reordering baked in, but we must implement it on

our own. We can use the cdkDropListDropped event binding to achieve that:

<mat-list cdkDropList (cdkDropListDropped)="reorder($event)">

 <mat-list-item cdkDrag *ngFor="let product of products">

 {{product.name}}

 </mat-list-item>

</mat-list>

When we drag a <mat-list-item> element and drop it, the reorder component method will be

called, as defined in the products.component.ts file:

reorder(event: CdkDragDrop<Product[]>) {

 moveItemInArray(this.products, event.previousIndex, event.currentIndex);

}

It accepts a CdkDragDrop event of the Product[] type. Although the Angular CDK cannot reorder

items by itself, it gives us the necessary artifacts to perform reordering efficiently. We use the

built-in moveItemInArray method from the @angular/cdk/drag-drop namespace, which per-

forms reordering out of the box. It accepts three parameters: the array we want to sort, the index

of the current item that we drag it from, and the new index that we will drop in.

Summary
In this chapter, we looked at Material Design, a design language with paper and ink in mind.

Next, we put most of our focus on Angular Material, the Material Design implementation meant

for Angular, and how it consists of different components. We looked at a hands-on explanation

of how to install it, set it up, and use some of its core components and themes. We also learned

about the core of Angular Material, the Angular CDK, and demonstrated some of its style-aware

components.

Hopefully, you will have read this chapter and found that you now grasp Material Design in

general and Angular Material in particular, and can determine whether it is a good match for

your next Angular application.

Web applications must be testable to ensure they are functional and in accordance with the appli-

cation requirements. In the next chapter, we will learn how to apply different testing techniques

in the context of Angular web applications.

12
Unit Test an Angular Application

In the previous chapters, we have gone through many aspects of how to build an Angular enterprise

application from scratch. But how can we ensure that an application can be maintained in the

future without much hassle? A comprehensive automated testing layer can become our lifeline

once our application begins to scale up and we have to mitigate the impact of bugs.

Testing, specifically unit testing, is meant to be carried out by the developer as the project is being

developed. However, we will briefly cover all the intricacies of testing an Angular application in

this chapter now that our knowledge of the framework is mature.

In this chapter, we will learn how to use testing tools to perform proper unit testing of our Angular

application artifacts. In more detail, we will learn about the following:

•	 Why do we need tests?

•	 The anatomy of a unit test

•	 Introducing unit tests in Angular

•	 Testing components

•	 Testing services

•	 Testing pipes

•	 Testing directives

•	 Testing forms

Technical requirements
The chapter contains various code samples to walk you through the concept of unit testing in

Angular. You can find the related source code in the ch12 folder of the following GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition.

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Unit Test an Angular Application338

Why do we need tests?
What is a unit test? You can skip to the next section if you’re already familiar with unit testing

and test-driven development. If not, let’s say that unit tests are part of an engineering philoso-

phy for efficient and agile development processes. They add a layer of automated testing to the

application code before it is developed. The core concept is that a piece of code is accompanied

by its test, both of which are built by the developer who works on that code. First, we design

the test against the feature we want to deliver, checking the accuracy of its output and behavior.

Since the feature is still not implemented, the test will fail, so the developer’s job is to build the

feature to pass the test.

Unit testing is quite controversial. While test-driven development is beneficial for ensuring code

quality and maintenance over time, not everybody undertakes unit testing in the daily develop-

ment workflow. Why is that? Building tests while we develop our code can sometimes feel like

a burden. Especially when the test results become larger than the functionality it aims to test.

However, the arguments in favor of testing outnumber the arguments against it:

•	 Building tests contributes to better code design. Our code must conform to the test re-

quirements and not the other way around. If we try to test an existing piece of code and

we find ourselves blocked at some point, the chances are that the code is not well designed

and requires some rethinking. On the other hand, building testable features can help with

the early detection of side effects.

•	 Refactoring tested code is a lifeline against introducing bugs in later stages. Development

is meant to evolve with time, and with every refactor, the risk of introducing a bug is high.

Unit tests are an excellent way to ensure that we catch bugs at an early stage, either when

introducing new features or updating existing ones.

•	 Building tests is an excellent way to document our code. It becomes a priceless resource

when someone unfamiliar with the code base takes over the development endeavor.

These are only a few arguments, but you can find countless resources on the web about the ben-

efits of testing your code. If you do not feel convinced yet, give it a try; otherwise, let’s continue

with our journey and look at the overall form of a test.

The anatomy of a unit test
There are many different ways to test a piece of code. In this chapter, we will look at the anatomy

of a test—the different parts it’s made of. To test any code, we need a framework for writing the

test and a runner to run it on.

Chapter 12 339

The test framework should provide utility functions for building test suites containing one or

several test specs. As a result, unit testing involves the following concepts:

•	 Test suite: A suite that creates a logical grouping for many tests. A suite, for example, can

contain all the tests for a specific feature.

•	 Test spec: The actual unit test.

We will use Jasmine, a popular test framework, which is also used by default in Angular CLI

projects. Here is how a unit test looks in Jasmine:

describe('Calculator', () => {

 it('should add two numbers', () => {

 expect(1+1).toBe(2);

 });

});

The describe method defines a test suite and accepts a name and an arrow function as parameters.

The arrow function is the body of the test suite and contains several unit tests. The it method

defines a single unit test. It accepts a name and an arrow function as parameters.

Each test spec validates a specific functionality of the feature described in the suite name and de-

clares one or several expectations in its body. Each expectation takes a value, called the expected

value, which is compared against an actual value using a matcher function. The function checks

whether the expected and actual values match accordingly, called an assertion. The test frame-

work passes or fails the spec depending on the result of such assertions. In the previous exam-

ple, 1+1 will return the actual value that is supposed to match the expected value, 2, declared in

the toBe matcher function.

Suppose that the previous code contains another mathematical operation that needs to be tested.

It would make sense to group both operations under one suite:

describe('Calculator', () => {

 it('should add two numbers', () => {

 expect(1+1).toBe(2);

 });

The Jasmine framework contains various matcher functions according to user-spe-

cific needs, as we will see later in the chapter.

Unit Test an Angular Application340

 it('should subtract two numbers', () => {

 expect(1-1).toBe(0);

 });

});

So far, we have learned about test suites and how to use them to group tests according to their

functionality. Furthermore, we have learned about invoking the code we want to test and affirming

that it does what it should do. There are, however, more concepts involved in unit tests that are

worth knowing about, namely the setup and teardown functionalities.

A setup functionality is something that prepares your code before you start running the tests.

It’s a way to keep your code clean to focus on invoking the code and checking the assertions. A

teardown functionality is the opposite of a setup functionality. It is responsible for tearing down

what we initially set up, which is involved in activities such as cleaning up resources. Let’s see

what this looks like in practice with a code example:

describe('Calculator', () => {

 let total: number;

 beforeEach(() => total = 1);

 it('should add two numbers', () => {

 total = total + 1;

 expect(total).toBe(2);

 });

 it('should subtract two numbers', () => {

 total = total - 1;

 expect(total).toBe(0);

 });

 afterEach(() => total = 0);

});

The beforeEach method is used for the setup functionality and runs before every unit test. In this

example, we set the value of the total variable to 1 before each test. The afterEach method is

used to run tear-down logic. After each test, we reset the value of the total variable to 0.

Chapter 12 341

It is evident that the test only has to care about invoking application code and asserting the

outcome, which makes tests cleaner; however, tests tend to have much more setup going on in

a real-world application. Most importantly, the beforeEach method tends to make it easier to

add new tests, which is great. At the end of the day, we want well-tested code; the easier it is to

write and maintain such code, the better for our software.

Now that we have covered the basics of a unit test, let’s see how we can implement them in the

Angular framework context.

Introducing unit tests in Angular
In the previous section, we familiarized ourselves with unit testing and its general concepts, such

as test suites, test specs, and assertions. It is time to venture into unit testing with Angular, armed

with that knowledge. Before we start writing tests for Angular, though, let’s have a look at the

tooling that the Angular framework and the Angular CLI provide us with to make unit testing a

pleasant experience:

•	 Jasmine: We have already learned that this is the testing framework

•	 Karma: The test runner for running our unit tests

•	 Angular testing utilities: A set of helper methods that assist us in setting up our unit tests

and writing our assertions in the context of the Angular framework

When we use the Angular CLI, we do not have to do anything to configure Jasmine and Karma

in an Angular application. Unit testing works out of the box as soon as we create a new Angular

CLI project. Most of the time, we will interact with the Angular testing utilities.

Angular testing utilities help us to create a testing environment that makes writing tests for our

Angular artifacts easy. It consists of the TestBed class and various helper methods that can be

found under the @angular/core/testing namespace. As this chapter progresses, we will learn

what these are and how they can help us test various artifacts. For now, let’s have a look at the

most commonly used concepts so that you are familiar with them when we look at them in more

detail later on:

•	 TestBed: A class that is the most crucial concept. It essentially creates a testing mod-

ule that behaves like an ordinary Angular module. When we test an Angular artifact,

we detach it from the Angular module it resides in and attach it to this testing module.

The TestBed class contains the configureTestingModule method we use to set up the

test module as needed.

Unit Test an Angular Application342

•	 ComponentFixture: A wrapper class around an Angular component instance. It allows us

to interact with the component and its corresponding HTML element.

•	 DebugElement: A wrapper around the DOM element of the component. It is an abstraction

that operates cross-platform so that our tests are platform-independent.

Now that we know our testing environment and the frameworks and libraries used, we can start

writing our first unit tests in Angular. We will embark on this great journey from the most fun-

damental building block in Angular, the component.

Testing components
You may have noticed that every time we used the Angular CLI to scaffold a new Angular appli-

cation or generate an Angular artifact, it created some test files for us.

Test files in the Angular CLI contain the word spec in their filename. The filename of a test is the

same as the Angular artifact that it is testing, followed by the suffix .spec.ts. For example, the

test file for the main component of an Angular application, app.component.ts, would be app.

component.spec.ts and would reside in the same path as the component file.

When we scaffold a new Angular application, the Angular CLI automatically creates a test for the

main component, AppComponent. At the beginning of the file, there is a beforeEach statement

that is used for setup purposes:

beforeEach(async () => {

 await TestBed.configureTestingModule({

 declarations: [

 AppComponent

],

 }).compileComponents();

});

It uses the configureTestingModule method of the TestBed class and passes an object as a pa-

rameter. The properties of the object are almost the same as those of the @NgModule decorator.

We should think about an Angular artifact and its corresponding test as one thing.

When we change the logic of the artifact, we may need to modify the unit test as well.

Placing unit test files with their Angular artifacts makes it easier for us to remember

and edit them. It also helps us when we need to do some refactoring to our code,

such as moving artifacts (not forgetting to move the unit test).

Chapter 12 343

We can take our knowledge of configuring an Angular module and apply that to set up a testing

module. We can specify a declarations array that contains the component we want to test.

Additionally, we can define tear-down options for the module using the teardown property. The

teardown property contains an object of the ModuleTeardownOptions type that can set the fol-

lowing properties:

•	 destroyAfterEach: It creates a new instance of the module at each test to eliminate any

bugs that happen due to the incomplete cleanup of HTML elements.

•	 rethrowErrors: It throws any errors that occur when the module is destroyed.

Finally, we call the compileComponents method, and the setup is completed.

The first unit test verifies whether we can create a new instance of AppComponent using

the createComponent method:

it('should create the app', () => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.componentInstance;

 expect(app).toBeTruthy();

});

The result of the createComponent method is a ComponentFixture instance of the AppComponent type

that can give us the component instance using the componentInstance property. We also use

the toBeTruthy matcher function to check whether the resulting instance is valid.

As soon as we have access to the component instance, we can query any of its public properties

and methods:

it('should have as title 'my-app'', () => {

 const fixture = TestBed.createComponent(AppComponent);

 const app = fixture.componentInstance;

 expect(app.title).toEqual('my-app');

});

The compileComponents method, as per its name, compiles components configured

in the testing module. During the compilation process, it inlines external CSS files

and templates. We will not use this method for the rest of this chapter because the

Angular CLI does it for us under the hood; however, do not forget that Angular testing

utilities can be used with build tools other than the Angular CLI.

Unit Test an Angular Application344

In the previous test, we checked whether the title component property is set to my-app using

another matcher function, toEqual.

As we have learned, a component consists of a TypeScript class and a template file. So testing

it only from the class perspective, as in the previous test, is not sufficient. We should also test

whether the class interacts correctly with the DOM:

it('should render title', () => {

 const fixture = TestBed.createComponent(AppComponent);

 fixture.detectChanges();

 const compiled = fixture.nativeElement as HTMLElement;

 expect(compiled.querySelector('.content span')?.textContent).
toContain('my-app app is running!');

});

In the preceding test, we create a component similar to what we did before, and we call the

detectChanges method of the ComponentFixture. The detectChanges method triggers the An-

gular change-detection mechanism, forcing the data bindings to be updated. It executes the

ngOnInit life cycle event of the component the first time it is called and the ngOnChanges in sub-

sequent calls so that we can query the DOM element of the component using the nativeElement

property. In this example, we check the textContent of the HTML element that corresponds to

the title property.

To run tests, we use the ng test command of the Angular CLI. It will start the Karma test runner,

fetch all unit test files, execute them, and open a browser to display the results of each test. The

Angular CLI uses the Google Chrome browser by default. The output will look like this:

Many developers favor class testing over DOM testing and rely on end-to-end

(E2E) testing, which is slower and performs poorly. E2E tests often validate the

integration of an application with a backend API and are easy to break. Thus, per-

forming DOM unit testing in your Angular applications is recommended.

Chapter 12 345

Figure 12.1: Test execution output

In the previous figure, we can see the result of each test at the top of the page. We can also see

how Karma visually groups each test by suite. In our case, the only test suite is AppComponent.

Now let’s make one of our tests fail. Open the app.component.ts file, change the value of

the title property to my-new-app, and save the file. Karma will re-execute our tests and display

the results on the page:

Figure 12.2: Test failure

Unit Test an Angular Application346

In some cases, it is not very convenient to read the output of tests in the browser. Alternatively,

we can inspect the console window that we used to run the ng test command, which contains

a trimmed version of the test results:

Figure 12.3: Console test output

We’ve gained quite a lot of insight just by looking at the test of AppComponent that the Angular CLI

automatically created for us. In the following section, we will look at a more advanced scenario

for testing a component with dependencies.

Testing with dependencies
In a real-world scenario, components are not usually as simple as AppComponent. They will almost

certainly be dependent on one or more services. We have different ways of dealing with testing

in such a situation. One thing is clear, though: if we are testing the component, then we should

not test the service as well. So when we set up such a test, the dependency should not be the real

thing. There are different ways of dealing with that when it comes to unit testing; no solution is

strictly better than another:

•	 Stubbing: This is the method of telling the dependency injector to inject a stub of the

dependency that we provide instead of the real thing.

•	 Spying: This is the method of injecting the actual dependency but attaching a spy to the

method that we call in our component. We can then either return mock data or let the

method call through.

Karma runs in watch mode, so we do not need to execute the Angular CLI test com-

mand every time we make a change.

Using stubbing over spying is preferable when a dependency is complicated. Some

services inject other services into their constructor, so using the real dependency in

a test requires you to compensate for other dependencies.

Chapter 12 347

Regardless of the approach, we ensure that the test does not perform unintended actions, such

as talking to a filesystem or attempting to communicate via HTTP; we are testing the component

in complete isolation.

Replacing the dependency with a stub
Replacing a dependency with a stub means that we completely replace the dependency with a

fake one. We can create a fake dependency in the following ways:

•	 Create a constant variable that contains properties and methods of the real dependency

•	 Create a mock definition of the actual class of the dependency

The approaches are not so different. In this section, we will look at the first one. Feel free to explore

the second one at your own pace. Consider the following stub.component.ts component file:

import { Component, OnInit } from '@angular/core';

import { StubService } from '../stub.service'

@Component({

 selector: 'app-stub',

 template: '{{msg}}'

})

export class StubComponent implements OnInit {

 msg = '';

 constructor(private stub: StubService) { }

 ngOnInit() {

 this.msg = !this.stub.isBusy

 ? this.stub.name + ' is available'

 : this.stub.name + ' is on a mission';

 }

}

It injects StubService, which contains just two public properties. Providing a stub for this service

is pretty straightforward, as shown in the following example:

const serviceStub: Partial<StubService> = {

Unit Test an Angular Application348

 name: 'Boothstomper'

};

We have declared the service as Partial because we want only to set the name property initially.

We can now use the object-literal syntax to inject the stub service in our testing module:

await TestBed.configureTestingModule({

 declarations: [StubComponent],

 providers: [

 { provide: StubService, useValue: serviceStub }

]

});

The msg component property relies on the value of the isBusy service property. Therefore, we

need to get a reference to the service in the test suite and provide alternate values for this prop-

erty in each test. We can get the injected instance of StubService using the inject method of

the TestBed class:

beforeEach(async () => {

 await TestBed.configureTestingModule({

 declarations: [StubComponent],

 providers: [

 { provide: StubService, useValue: serviceStub }

]

 });

 fixture = TestBed.createComponent(StubComponent);

 component = fixture.componentInstance;

 msgDisplay = fixture.nativeElement.querySelector('span');

 service = TestBed.inject(StubService);

});

We pass the real StubService as a parameter to the inject method, not the stubbed

version we created. Modifying the value of the stub will not affect the injected ser-

vice since our component uses an instance of the real service. The inject method

asks the root injector of the application for the requested service. If the service was

provided from the component injector, we would need to get it from the component

injector using fixture.debugElement.injector.get(StubService).

Chapter 12 349

We can now write our tests to check whether the msg component property behaves correctly

during data binding:

describe('status', () => {

 it('should be on a mission', () => {

 service.isBusy = true;

 fixture.detectChanges();

 expect(msgDisplay.textContent).toContain('is on a mission');

 });

 it('should be available', () => {

 service.isBusy = false;

 fixture.detectChanges();

 expect(msgDisplay.textContent).toContain('is available');

 });

});

Stubbing a dependency is not always viable, especially when the root injector does not provide

it. A service can be provided at the component injector level. Providing a stub using the pro-

cess we saw earlier doesn’t have any effect. So how do we tackle such a scenario? We use the

overrideComponent method of the TestBed class:

await TestBed.configureTestingModule({

 declarations: [StubComponent],

})

.overrideComponent(StubComponent, {

 set: {

 providers: [

 { provide: StubService, useValue: serviceStub }

]

 }

});

The overrideComponent method accepts two parameters: the type of component that provides the

service and an override metadata object. The metadata object contains the set property, which is

used to provide services to the component.

Stubbing a dependency is very simple, but it is not always possible, as we will see in the following

section.

Unit Test an Angular Application350

Spying on the dependency method
The previously mentioned approach, using a stub, is not the only way to isolate logic in a unit test.

We don’t have to replace the entire dependency—only the parts our component uses. Replacing

certain parts means we point out specific methods on the dependency and assign a spy to them.

A spy can answer what you want it to answer, but you can also see how many times it was called

and with what arguments. So a spy gives you much more information about what is happening.

There are two ways to set up a spy in a dependency:

•	 Inject the actual dependency and spy on its methods.

•	 Use the Jasmine createSpyObj method to create a fake instance of the dependency. We

can then spy on the methods of this dependency as we would with the real one.

Let’s see how to set up the first case. Consider the following spy.component.ts file , which uses

the Title service of the Angular framework:

import { Component, OnInit } from '@angular/core';

import { Title } from '@angular/platform-browser';

@Component({

 selector: 'app-spy',

 template: '{{caption}}'

})

export class SpyComponent implements OnInit {

 caption = '';

 constructor(private title: Title) { }

 ngOnInit() {

 this.title.setTitle('My Angular app');

 this.caption = this.title.getTitle();

 }

}

Chapter 12 351

We do not have any control over the Title service since it is built into the framework. It may

have dependencies that we do not know about. The easiest and safest way to use it in our tests

is by spying on its methods. We inject it in the testing module using the providers array of the

@NgModule decorator and then use it in our test like this:

it('should set the title', () => {

 const title = TestBed.inject(Title);

 const spy = spyOn(title, 'setTitle');

 fixture.detectChanges();

 expect(spy).toHaveBeenCalledWith('My Angular app');

});

We use the Jasmine spyOn method, which accepts two parameters: the object and its specific

method to spy. Note that we use it before calling the detectChanges method since we want to

attach the spy before triggering the ngOnInit life cycle hook. The expect statement then validates

that the setTitle method was called with the correct argument.

Our component also uses another method of the Title service—the getTitle method—to get

the document title. We can leverage the second case, which we defined before, to spy on the

method and return mock data:

1.	 First, we need to define the Title service as a spy object:

let titleSpy: jasmine.SpyObj<Title>;

2.	 Then, we use the createSpyObj method to initialize the spy object, passing two param-

eters: the name of the service and an array of the method names that the component

currently uses:

titleSpy = jasmine.createSpyObj('Title', ['getTitle', 'setTitle']);

3.	 Finally, we attach a spy to the getTitle method and return a custom title using the Jas-

mine returnValue method:

titleSpy.getTitle.and.returnValue('My title');

The Title service is used to interact with the title of the HTML document of an An-

gular application and can be imported from the @angular/platform-browser npm

package.

Unit Test an Angular Application352

As soon as we add the titleSpy variable in the providers array of the testing module, we can

use it in our tests. The resulting test suite should look like the following:

describe('with spy object', () => {

 let titleSpy: jasmine.SpyObj<Title>;

 beforeEach(() => {

 titleSpy = jasmine.createSpyObj('Title', ['getTitle', 'setTitle']);

 titleSpy.getTitle.and.returnValue('My title');

 TestBed.configureTestingModule({

 declarations: [SpyComponent],

 providers: [

 { provide: Title, useValue: titleSpy }

]

 });

 fixture = TestBed.createComponent(SpyComponent);

 component = fixture.componentInstance;

 });

 it('should get the title', () => {

 fixture.detectChanges();

 expect(fixture.nativeElement.textContent).toContain('My title');

 });

});

Very few services are well-behaved and straightforward, such as the Title service, in the sense

that they are synchronous. Most of the time, they are asynchronous and can return observables

or promises. In the following section, we will learn how to test asynchronous dependencies.

Testing asynchronous services
Angular testing utilities provide two artifacts to tackle asynchronous testing scenarios:

•	 waitForAsync: An asynchronous approach to unit test asynchronous services. It is com-

bined with the whenStable method of ComponentFixture.

•	 fakeAsync: A synchronous approach to unit test asynchronous services. It is used in com-

bination with the tick function.

Chapter 12 353

Both approaches provide roughly the same functionality; they only differ in how we use them.

Let’s see how we can use each by looking at an example. Consider the following async.component.

ts file:

import { Component, OnInit } from '@angular/core';

import { Observable } from 'rxjs';

import { AsyncService } from '../async.service';

@Component({

 selector: 'app-async',

 template: '

 <p *ngFor="let hero of data$ | async">

 {{hero}}

 </p>

 '

})

export class AsyncComponent implements OnInit {

 data$: Observable<string[]> | undefined;

 constructor(private asyncService: AsyncService) { }

 ngOnInit() {

 this.data$ = this.asyncService.getData();

 }

}

It injects the AsyncService from the async.service.ts file and calls its getData method inside

the ngOnInit method. As we can see, the getData method returns an observable of strings. It also

introduces a slight delay so that the scenario looks asynchronous:

getData(): Observable<string[]> {

 return of(heroes).pipe(delay(500));

}

The unit test queries the native element of the component and checks whether the NgFor directive

loops through the data$ observable correctly:

it('should get data with waitForAsync', waitForAsync(async() => {

 fixture.detectChanges();

 await fixture.whenStable();

Unit Test an Angular Application354

 fixture.detectChanges();

 const heroDisplay: HTMLElement[] = fixture.nativeElement.
querySelectorAll('p');

 expect(heroDisplay.length).toBe(5);

}));

We wrap the body of the test inside the waitForAsync method, and initially, we call

the detectChanges method to trigger the ngOnInit lifecycle hook. Furthermore, we call

the whenStable method, which returns a promise, which is resolved immediately when

the data$ observable is complete. When the promise is resolved, we call detectChanges once

more to trigger data binding and query the DOM accordingly.

An alternative synchronous approach would be to use the fakeAsync method and write the same

unit test as follows:

it('should get data with fakeAsync', fakeAsync(() => {

 fixture.detectChanges();

 tick(500);

 fixture.detectChanges();

 const heroDisplay: HTMLElement[] = fixture.nativeElement.
querySelectorAll('p');

 expect(heroDisplay.length).toBe(5);

}));

In the previous snippet, we wrapped the test body in a fakeAsync method and replaced

the whenStable method with the tick function. The tick function advances the time by 500 ms,

the virtual delay we introduced in the getData method of AsyncService.

Testing components with asynchronous services can sometimes become a nightmare. Still, each

of the described approaches can significantly help us in this task; however, components are not

only about services but also input and output bindings. In the following section, we will learn

how to test the public API of a component.

The whenStable method is also used when we want to test a component that con-

tains a template-driven form. The asynchronous nature of this method makes it

preferrable to use reactive forms in our Angular applications.

Chapter 12 355

Testing with inputs and outputs
So far, we have learned how to test components with simple properties and tackle synchronous

and asynchronous dependencies. But there is more to a component than that. As we learned

in Chapter 4, Enabling User Experience with Components, a component has a public API consisting

of inputs and outputs that should be tested as well.

Since we want to test the public API of a component, it makes sense to test how it interacts when

hosted from another component. Testing such a component can be done in two ways:

•	 We can verify that our input binding is correctly set

•	 We can verify that our output binding triggers correctly and that what it emits is received

Suppose that we have the following bindings.component.ts file with an input and output bind-

ing:

import { Component, Input, Output, EventEmitter } from '@angular/core';

@Component({

 selector: 'app-bindings',

 template: '

 <p>{{title}}</p>

 <button (click)="liked.emit()">Like!</button>

 '

})

export class BindingsComponent {

 @Input() title = '';

 @Output() liked = new EventEmitter();

}

Before we start writing our tests, we should create a test host component that is going to use the

component under test:

@Component({

 template: '<app-bindings [title]="testTitle" (liked)="isFavorite =
true"></app-bindings>'

})

export class TestHostComponent {

 testTitle = 'My title';

 isFavorite = false;

}

Unit Test an Angular Application356

In the setup phase, we declare both components in the testing module but notice that

the ComponentFixture is of the TestHostComponent type:

let component: TestHostComponent;

let fixture: ComponentFixture<TestHostComponent>;

beforeEach(async () => {

 await TestBed.configureTestingModule({

 declarations: [

 BindingsComponent,

 TestHostComponent

]

 });

 fixture = TestBed.createComponent(TestHostComponent);

 component = fixture.componentInstance;

 fixture.detectChanges();

});

We follow this approach because we want to test BindingsComponent when used with a host

component, not by itself. Our unit tests will validate the behavior of BindingsComponent when

interacting with TestHostComponent.

The first test checks whether the input binding to the title property has been applied correctly:

it('should display the title', () => {

 const titleDisplay: HTMLElement = fixture.nativeElement.
querySelector('p');

 expect(titleDisplay.textContent).toEqual(component.testTitle);

});

The second test validates whether the isFavorite property is wired up correctly with

the liked output event:

it('should emit the liked event', () => {

 const button: HTMLButtonElement = fixture.nativeElement.
querySelector('button');

 button.click();

 expect(component.isFavorite).toBeTrue();

});

Chapter 12 357

In the previous test, we query the DOM for the <button> element using the nativeElement prop-

erty of ComponentFixture and then click on it for the output event to emit. Alternatively, we could

have used the debugElement property to find the button and use its triggerEventHandler method

to click on it:

it('should emit the liked event using debugElement', () => {

 const buttonDe = fixture.debugElement.query(By.css('button'));

 buttonDe.triggerEventHandler('click');

 expect(component.isFavorite).toBeTrue();

});

In the preceding test, we use the query method, which accepts a predicate function as a param-

eter. The predicate uses the css method of the By class to locate an element by its CSS selector.

The triggerEventHandler method accepts the event name we want to trigger as a parameter;

in this case, it is the click event.

We could have avoided a lot of code if we had only tested the BindingsComponent, and it would

still have been valid. But we would have missed the opportunity to test it as a real-world scenario.

The public API of a component is intended to be used by other components, so we should test it

in this way.

Currently, the button we use in the template of the BindingsComponent is a native HTML <button>

element. If the button was an Angular Material button component, we could use an alternate

approach for interacting with it, which is the topic of the following section.

Testing with a component harness
The Angular CDK library we learned about in Chapter 11, Introduction to Angular Material, contains

a set of utilities that allow a test to interact with a component over a public testing API. Angular

CDK testing utilities enable us to access Angular Material components without relying on their

internal implementation by using a component harness. The process of testing an Angular com-

ponent using a harness consists of the following parts:

•	 @angular/cdk/testing: The npm package that contains infrastructure for interacting

with a component harness.

As we learned in the Introducing unit tests in Angular section, the debugElement is

framework agnostic. If you are sure that your tests will only run in a browser, you

should go with the nativeElement property.

Unit Test an Angular Application358

•	 Testing environment: The environment in which the component harness test will be

loaded. The Angular CDK contains built-in testing environments for unit testing with

Karma and end-to-end testing with Protractor. The Angular CDK also provides a rich set

of tools that allow developers to create custom testing environments.

•	 Harness loader: A class used to load a component harness inside a unit test.

•	 Component harness: A class that gives the developer access to the instance of a compo-

nent in the browser DOM.

To learn how to use component harnesses, we will convert the <button> element of the

BindingsComponent into an Angular Material button:

import { Component, Input, Output, EventEmitter } from '@angular/core';

@Component({

 selector: 'app-bindings',

 template: '

 <p>{{title}}</p>

 <button mat-button (click)="liked.emit()">Like!</button>

 '

})

export class BindingsComponent {

 @Input() title = '';

 @Output() liked = new EventEmitter();

}

We have already learned how to add the Angular Material library and use the button component

in Chapter 11, Introduction to Angular Material. To start using a component harness from the Angu-

lar CDK, we need to import the following artifacts from the @angular/cdk/testing namespace:

import { TestbedHarnessEnvironment } from '@angular/cdk/testing/testbed';

import { HarnessLoader } from '@angular/cdk/testing';

The TestbedHarnessEnvironment class represents the testing environment for running unit tests

with Karma. The HarnessLoader class will be used later to create a harness loader instance. We

also need to add the following import statement:

import { MatButtonHarness } from '@angular/material/button/testing';

The MatButtonHarness class is the component harness for the Angular Material button compo-

nent. Almost all components of the Angular Material library have a corresponding component

harness that we can use.

Chapter 12 359

After we have finished importing all the necessary artifacts, we can use the

TestbedHarnessEnvironment to create a harness loader:

loader = TestbedHarnessEnvironment.loader(fixture);

The loader method of the testing environment accepts the ComponentFixture instance of the

current component as a parameter and returns a HarnessLoader object. The abstraction that an

Angular CDK harness provides is based on the concept that it operates on the component fixture,

which is an abstraction layer on top of the actual DOM element.

After we have created a harness loader, we can use it to start writing our unit tests:

it('should emit the liked event using harness', async () => {

 const buttonHarness = await loader.getHarness(MatButtonHarness);

 await buttonHarness.click();

 expect(component.isFavorite).toBeTrue();

});

In the preceding test, we surround the body of the test inside an async function because compo-

nent harnesses are promise based. We use the getHarness method of the harness loader to load

the specific harness for the button component. Finally, we call the click method of the button

component harness to trigger the button click event.

The component harness is a powerful Angular CDK tool that ensures we interact with components

during testing in an abstract and safe way.

We have gone through many ways to test a component with a dependency. Now it is time to learn

how to test the dependency by itself.

If you are a component library author, the Angular CDK provides all the necessary

tools for creating harnesses for your UI components.

We do not need to call the detectChanges method because the Angular CDK com-

ponent harnesses trigger change detection automatically.

Unit Test an Angular Application360

Testing services
As we learned in Chapter 6, Managing Complex Tasks with Services, a service can inject other services.

Testing a standalone service is pretty straightforward: we get an instance from the injector and

then start to query its public properties and methods.

There are three different types of testing that we can perform in a service:

•	 Testing a synchronous operation, such as a method that returns a simple array

•	 Testing an asynchronous operation, such as a method that returns an observable

•	 Testing services with dependencies, such as a method that makes HTTP requests

In the following sections, we will go through each of them in more detail.

Testing a synchronous method
When we create an Angular service using the Angular CLI, it also creates a corresponding test

file. When we created the async service, the Angular CLI created the following async.service.

spec.ts file:

import { TestBed } from '@angular/core/testing';

import { AsyncService } from './async.service';

describe('AsyncService', () => {

 let service: AsyncService;

 beforeEach(() => {

 TestBed.configureTestingModule({});

 service = TestBed.inject(AsyncService);

 });

 it('should be created', () => {

 expect(service).toBeTruthy();

 });

});

We are only interested in testing the public API of a service, which is the interface

that components and other artifacts use. Private symbols do not have any value

in being tested because they represent the internal implementation of the service.

Chapter 12 361

The AsyncService is not initially dependent on anything. It is also provided with the root injector

of the Angular application, so it passes an empty object to the configureTestingModule method.

We can get an instance of the service that we test using the inject method of the TestBed class.

The first test that we can write is pretty straightforward as it calls the setData method and in-

spects its result:

it('should set data', () => {

 const result = service.setData('Fake hero');

 expect(result.length).toBe(6);

});

Writing a test for synchronous methods is usually relatively easy; however, things are different

when we want to test an asynchronous method.

Testing an asynchronous method
The second test is a bit tricky because it involves an observable. We need to subscribe to

the getData method and inspect the value as soon as the observable is complete:

it('should get data', (done: DoneFn) => {

 service.getData().subscribe(heroes => {

 expect(heroes.length).toBe(5);

 done();

 });

});

The Karma test runner does not know when an observable will complete, so we provide

the done method to signal that the observable has been completed, and we can now assert

the expect statement.

Testing services with dependencies
Testing services with dependencies is similar to testing components with dependencies. Every

different method we saw in the Testing components section can be applied in the same way; how-

ever, we follow a different approach when testing a service that injects the HttpClient service.

When a service is provided from an injector other than the root, we should add it to

the providers array of the testing module, as we did with the components.

Unit Test an Angular Application362

Consider the following methods from the products.service.ts file that we have already used

in previous chapters:

getProducts(): Observable<Product[]> {

 return this.http.get<ProductDTO[]>(this.productsUrl).pipe(

 map(products => products.map(product => {

 return this.convertToProduct(product);

 }))

);

}

addProduct(name: string, price: number): Observable<Product> {

 return this.http.post<ProductDTO>(this.productsUrl, {

 title: name,

 price: price

 }).pipe(

 map(product => this.convertToProduct(product))

);

}

Angular testing utilities provide two artifacts for mocking HTTP requests in unit tests: the Http

ClientTestingModule, which replaces the real HttpClientModule, and the HttpTestingContr

oller, which mocks the HttpClient service. We can import both from the @angular/common/

http/testing namespace:

beforeEach(() => {

 TestBed.configureTestingModule({

 imports: [HttpClientTestingModule]

 });

 service = TestBed.inject(ProductsService);

 httpTestingController = TestBed.inject(HttpTestingController);

});

Our tests should not make a real HTTP request. They only need to validate that it will be made

with the correct options. The following is the first test that validates the getProducts method:

it('should get products', () => {

 service.getProducts().subscribe();

 const req = httpTestingController.expectOne('https://fakestoreapi.com/
products');

Chapter 12 363

 expect(req.request.method).toBe('GET');

});

We create a fake request using the expectOne method of the HttpTestingController that takes

a URL as an argument. The expectOne method creates a mock request object and asserts that

only one request is made to the specific URL. After we have created our request, we can validate

that its method is GET.

We follow a similar approach when testing the addProduct method, except that we need to make

sure that the body of the request contains the correct data:

it('should add a product', () => {

 service.addProduct('Fake product', 100).subscribe();

 const req = httpTestingController.expectOne('https://fakestoreapi.com/
products');

 expect(req.request.method).toBe('POST');

 expect(req.request.body).toEqual({

 title: 'Fake product',

 price: 100

 });

 });

After each test, we make sure that no unmatched requests are pending using the verify method

inside an afterEach block:

afterEach(() => {

 httpTestingController.verify();

});

In the following section, we continue our journey through the testing world by learning how to

test a pipe.

Testing pipes
As we learned in Chapter 5, Enrich Applications Using Pipes and Directives, a pipe is a TypeScript

class that implements the PipeTransform interface. It exposes a transform method, which is

usually synchronous, which means it is straightforward to test. The list.pipe.ts file contains

a pipe that converts a comma-separated string into a list:

import { Pipe, PipeTransform } from '@angular/core';

Unit Test an Angular Application364

@Pipe({

 name: 'list'

})

export class ListPipe implements PipeTransform {

 transform(value: string): string[] {

 return value.split(',');

 }

}

Writing a test for it is simple. The only thing that we need to do is to instantiate an instance

of ListPipe and verify the outcome of the transform method with some mock data:

import { ListPipe } from './list.pipe';

describe('ListPipe', () => {

 it('create an instance', () => {

 const pipe = new ListPipe();

 expect(pipe).toBeTruthy();

 });

 it('should return an array', () => {

 const pipe = new ListPipe();

 expect(pipe.transform('A,B,C')).toEqual(['A', 'B', 'C']);

 });

});

It is worth noting that Angular testing utilities are not involved when testing a pipe. We create

an instance of the pipe class, and we can start calling methods. Pretty simple!

Angular directives are Angular artifacts that we may not create very often since the built-in col-

lection that the framework provides is more than enough; however, if we create custom directives,

we should also test them. We will learn how to accomplish this task in the following section.

Testing directives
Directives are usually quite straightforward in their overall shape, being components with no view

attached. The fact that directives usually work with components gives us a very good idea of how

to proceed when testing them.

Chapter 12 365

Consider the copyright.directive.ts file that we created in Chapter 5, Enrich Applications using

Pipes and Directives:

import { Directive, ElementRef } from '@angular/core';

@Directive({

 selector: '[appCopyright]'

})

export class CopyrightDirective {

 constructor(el: ElementRef) {

 const currentYear = new Date().getFullYear();

 const targetEl: HTMLElement = el.nativeElement;

 targetEl.classList.add('copyright');

 targetEl.textContent = 'Copyright ©${currentYear} All Rights
Reserved.';

 }

}

A directive is usually used in conjunction with a component, so it makes sense to unit test it while

using it on a component. Let’s create a test host component and add it to the declarations array

of the testing module along with the directive under test:

@Component({

 template: ''

})

class TestHostComponent { }

We can now write our tests that check whether the  element contains the copyright class

and displays the current year in its textContent property:

describe('CopyrightDirective', () => {

 let container: HTMLElement;

 beforeEach(() => {

 const fixture = TestBed.configureTestingModule({

 declarations: [

 CopyrightDirective,

 TestHostComponent

Unit Test an Angular Application366

]

 })

 .createComponent(TestHostComponent);

 container = fixture.nativeElement.querySelector('span');

 });

 it('should have copyright class', () => {

 expect(container.classList).toContain('copyright');

 });

 it('should display copyright details', () => {

 expect(container.textContent).toContain(new Date().getFullYear().
toString());

 });

});

This is how simple it can be to test a directive. The key takeaways are that you need a component

to place the directive on and that you implicitly test the directive using the component.

We will end our testing journey by looking at how to test Angular forms.

Testing forms
As we saw in Chapter 10, Collecting User Data with Forms, forms are an integral part of an Angular

application. It is rare for an Angular application not to at least have a simple form, such as a

search form. We have already learned that reactive forms are better than template-driven forms

in many ways and are easier to test, so in this section, we will focus on only testing reactive forms.

Consider the following search.component.ts file:

import { Component } from '@angular/core';

import { FormControl, FormGroup, Validators } from '@angular/forms';

@Component({

 selector: 'app-search',

 template: '

 <form [formGroup]="searchForm" (ngSubmit)="search()">

 <input type="text" placeholder="Username"
formControlName="searchText">

Chapter 12 367

 <button type="submit" [disabled]="searchForm.invalid">Search</
button>

 </form>

 '

})

export class SearchComponent {

 get searchText() {

 return this.searchForm.controls.searchText;

 }

 searchForm = new FormGroup({

 searchText: new FormControl('', Validators.required)

 });

 search() {

 if(this.searchForm.valid) {

 console.log('You searched for: ' + this.searchText.value)

 }

 }

}

In the preceding component, we can write our unit tests to verify that:

•	 The searchText property can be set correctly

•	 The Search button is disabled when the form is invalid

•	 The console.log method is called when the form is valid and the user clicks the Search

button

To test a reactive form, we first need to import ReactiveFormsModule into the testing module, as

we would in an Angular module:

TestBed.configureTestingModule({

 imports: [ReactiveFormsModule],

 declarations: [SearchComponent]

});

For the first test, we need to assert whether the value propagates to the searchText form control

when we type something into the input control:

it('should set the searchText', () => {

Unit Test an Angular Application368

 const input: HTMLInputElement = fixture.nativeElement.
querySelector('input');

 input.value = 'Angular';

 input.dispatchEvent(new CustomEvent('input'));

 expect(component.searchText.value).toBe('Angular');

});

We use the querySelector method of the nativeElement property to find the <input> element

and set its value. But this alone will not be sufficient for the value to propagate to the form control.

The Angular framework will not know whether the value of the <input> element has changed

until we trigger the input DOM event to that element. We are using the dispatchEvent method

to trigger the event, which accepts a single method as a parameter that points to an instance of

the CustomEvent class.

Now that we are sure that the searchText form control is wired up correctly, we can use it to

write the remaining tests:

it('should disable search button', () => {

 component.searchText.setValue('');

 expect(button.disabled).toBeTrue();

});

it('should log to the console', () => {

 const spy = spyOn(console, 'log');

 component.searchText.setValue('Angular');

 fixture.detectChanges();

 button.click();

 expect(spy).toHaveBeenCalledWith('You searched for: Angular');

});

Note that in the second test, we set the value of the searchText form control, and then we

call the detectChanges method for the button to be enabled. Clicking on the button triggers

the submit event of the form, and we can finally assert the expectation of our test.

Chapter 12 369

In cases where a form has many controls, it is not convenient to query them inside our tests. Al-

ternatively, we can create a Page object that takes care of querying HTML elements and spying

on services:

class Page {

 get searchText() { return this.query<HTMLInputElement>('input'); }

 get submitButton() { return this.query<HTMLButtonElement>('button'); }

 private query<T>(selector: string): T {

 return fixture.nativeElement.querySelector(selector);

 }

}

We can then create an instance of the Page object in the beforeEach statement and access its prop-

erties and methods in our tests.

As we have seen, the nature of reactive forms makes them very easy to test since the form model

is the single source of truth.

Summary
We are at the end of our testing journey, and it’s been a long but exciting one. In this chapter, we

saw the importance of introducing unit testing in our Angular applications, the basic shape of a

unit test, and the process of setting up Jasmine for our tests.

We also learned how to write robust tests for our components, directives, pipes, and services. We

also discussed how to test Angular reactive forms.

This unit testing chapter has almost completed the puzzle of building a complete Angular appli-

cation. Only the last piece remains, which is important because web applications are ultimate-

ly destined for the web. Therefore, in the next chapter, we will learn how to produce a production

build for an Angular application and deploy it to share with the rest of the world!

Unit Test an Angular Application370

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

13
Bringing an Application to
Production

A web application should typically run on the web and be accessible by anyone and from anywhere.

It needs two essential ingredients: a web server hosting the application and a production build to

deploy it to that server. In this chapter, we will focus on the second part of the recipe. But what

do we mean by production build?

In a nutshell, a production build of a web application is an optimized version of the application

code that is smaller, faster, and more performant. Primarily, it is a process that takes all the code

files of the application, applies optimization techniques, and converts them to a single bundle file.

In the previous chapters, we went through many parts involved in building an Angular application.

We need just one last piece to connect the dots and make our application available for anyone to

use, which is to build it and deploy it to a web server.

In this chapter, we will learn about the following concepts:

•	 Building an Angular application

•	 Limiting the application bundle size

•	 Optimizing the application bundle

•	 Deploying an Angular application

Bringing Application to Production372

Technical requirements
The code samples described in this chapter can be found in the ch13 folder of the following

GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Building an Angular application
To build an Angular application, we use the following command of the Angular CLI:

ng build

The build process boots up the Angular compiler, which primarily collects all TypeScript and

HTML files of our application code and converts them into JavaScript. CSS stylesheet files such as

SCSS are converted into pure CSS files. The build process ensures the fast and optimal rendering

of our application in the browser.

An Angular application contains various TypeScript files not generally used during runtime, such

as unit tests or tooling helpers. How does the compiler know which files to collect for the build

process? It reads the files property of the tsconfig.app.json file, which indicates the main

entry point of the Angular application:

/* To learn more about this file see: https://angular.io/config/tsconfig.
*/

{

 "extends": "./tsconfig.json",

 "compilerOptions": {

 "outDir": "./out-tsc/app",

 "types": []

 },

 "files": [

 "src/main.ts"

],

 "include": [

 "src/**/*.d.ts"

]

}

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Chapter 13 373

From that point, it can go through all the components, services, and other Angular artifacts that

our application needs. The output of the ng build command looks like the following:

Figure 13.1: Build output

The preceding image displays the JavaScript and CSS files generated from building the Angular

application, namely:

•	 main: The actual application code that we have written

•	 polyfills: Feature polyfills for older browsers

•	 runtime: Angular code that is needed for our application to run

•	 styles: Global CSS styles of our application

The Angular compiler outputs the resulting JavaScript files into a dist\appName folder, where

appName is the application name. In addition to the Initial Chunk Files from the preceding image,

it contains the following files:

•	 3rdpartylicenses.txt: A text file that contains software licenses for any libraries used

in the application, including the Angular framework

•	 favicon.ico: The icon of the Angular application

•	 index.html: The main HTML file of the Angular application

The ng build command of the Angular CLI can be run in two modes: development and produc-

tion. By default, it is run in production mode. To run it in development mode, we should run the

following Angular CLI command:

ng build --configuration=development

Bringing Application to Production374

The preceding command will have an output that looks like the following:

Figure 13.2: Development build output

In the preceding image, you may notice that the names of the Initial Chunk Files do not contain

hash numbers, as in the case of a production build. In production mode, the Angular CLI performs

various optimization techniques on the application code so that the final output is suitable for

hosting in a web server and a production environment. The hash number added to each file en-

sures that the cache of a browser will quickly invalidate them upon deploying a newer version

of the application.

When we ran the ng build command of the Angular CLI in development mode, we used the

--configuration option. The --configuration option allows us to run an Angular application in

different environments. We will learn how to define Angular environments in the following section.

Building for different environments
An organization may want to build an Angular application for multiple environments that require

different variables, such as a backend API endpoint and application local settings. A common

use case is a staging environment for testing the application before deploying it to production.

The Angular CLI enables us to define different configurations for each environment and build our

application with each one. We can execute the ng build command while passing the configura-

tion name as a parameter using the following syntax:

ng build --configuration=name

We can also pass a configuration in other Angular CLI commands, such as ng serve

and ng test.

Chapter 13 375

The first thing we need to do when working with environments is to create a src\environments

folder in the Angular project and add an environment.ts file. The environment.ts file is the

default environment of the application, which is used during development.

We can create additional environment files named environment.env.ts by convention,

where env is a distinct name for the environment we want to add. For the staging environment,

the filename would be environment.staging.ts.

Each environment file exports an environment object:

export const environment = {

 apiUrl: 'https://my-default-url'

};

We need to import the default environment to access an environment property in our Angular

application. To use the apiUrl property in the main application component, we must do the

following:

import { Component } from '@angular/core';

import { environment } from '../environments/environment';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'my-app';

 apiUrl = environment.apiUrl;

}

After creating the environment file, we must define the appropriate configuration in

the angular.json file. It contains an architect property that defines basic CLI commands such

as serve, build, and test. Each command may contain a configuration for each environment in

a configurations property.

The same properties of the exported object must be defined in all environment files.

Bringing Application to Production376

To add a new configuration for the staging environment, we add the following in the configurations

property of the build command:

"staging": {

 "fileReplacements": [

 {

 "replace": "src/environments/environment.ts",

 "with": "src/environments/environment.staging.ts"

 }

]

}

In the preceding snippet, the fileReplacements property defines the environment file that will

replace the default one while executing the build command in the staging environment. If

we run the ng build --configuration=staging command, the Angular CLI will replace the 

environment.ts file with the environment.staging.ts file in the application bundle.

Not all libraries in an Angular application can be imported as a JavaScript module, as most of the

Angular first-party libraries are. In the following section, we will learn how to import libraries

that need the global window object.

Building for the window object
An Angular application may use a library like jQuery that must be attached to the window object.

Other libraries, such as Bootstrap, have fonts, icons, and CSS files that must be included in the

application bundle.

In all the preceding cases, we need to tell the Angular CLI about their existence so that it can

include them in the final bundle.

The angular.json configuration file contains an options object in the build configuration that

we can use to define such files:

"options": {

 "outputPath": "dist/my-app",

 "index": "src/index.html",

 "main": "src/main.ts",

 "polyfills": [

 "zone.js"

],

 "tsConfig": "tsconfig.app.json",

Chapter 13 377

 "assets": [

 "src/favicon.ico",

 "src/assets"

],

 "styles": [

 "src/styles.css"

],

 "scripts": []

}

The options object contains the following properties that we can use:

•	 assets: Contains static files of an Angular application such as icons, fonts, and transla-

tions. The Angular CLI includes the favicon.ico file and the assets folder by default.

•	 styles: Contains external CSS stylesheet files. The global CSS stylesheet file of the appli-

cation is included by default.

•	 scripts: Contains external JavaScript files.

As we add more and more features to an Angular application, the final bundle will grow bigger

at some point. In the following section, we’ll learn how to mitigate such an effect using budgets.

Limiting the application bundle size
As developers, we always want to build impressive applications with cool features for the end

user. As such, we end up adding more and more features to our Angular application – sometimes

according to the specifications and at other times to provide additional value to users. However,

adding new functionality to an Angular application will cause it to grow in size, which may not

be acceptable at some point. To overcome this problem, we can use Angular CLI budgets.

Budgets are thresholds that we can define in the angular.json configuration file and make sure

that the size of our application does not exceed those thresholds. To set budgets, we can use

the budgets property of the production configuration in the build command:

"budgets": [

 {

 "type": "initial",

 "maximumWarning": "500kb",

 "maximumError": "1mb"

 },

Bringing Application to Production378

 {

 "type": "anyComponentStyle",

 "maximumWarning": "2kb",

 "maximumError": "4kb"

 }

]

The Angular CLI does a pretty good job of defining default budgets for us when creating a new

Angular CLI project.

We can define a budget for different types, such as the whole Angular application or some parts

of it. The threshold of a budget can be defined as bytes, kilobytes, megabytes, or a percentage of

it. The Angular CLI displays a warning or throws an error when the size is reached or exceeds the

defined value of the threshold.

To better understand it, let’s describe the previous default example:

•	 A warning is shown when the size of the Angular application exceeds 500 KB and an error

when it goes over 1 MB.

•	 A warning is shown when the size of any component style exceeds 2 KB and an error

when it goes over 4.

To see all available options you can define when configuring budgets in an Angular applica-

tion, check out the guide on the official documentation website at https://angular.io/guide/

build#configuring-size-budgets.

Budgets are great to use when we want to provide an alert mechanism in case our Angular appli-

cation grows significantly. However, they are just a level of information and precaution. In the

following section, we will learn how to minimize our bundle size.

Optimizing the application bundle
As we learned in the Building an Angular application section, the Angular CLI performs optimization

techniques when we build an Angular application. The optimization process that is performed in

the application code includes modern web techniques and tools, including the following:

•	 Minification: Converts multiline source files into a single line, removing white space and

comments. It is a process that enables browsers to parse them faster later on.

•	 Uglification: Renames properties and methods to a non-human-readable form so that

they are difficult to understand and use for malicious purposes.

https://angular.io/guide/build#configuring-size-budgets
https://angular.io/guide/build#configuring-size-budgets

Chapter 13 379

•	 Bundling: Concatenates all source files of the application into a single file, called the bun-

dle.

•	 Tree-shaking: Removes unused files and Angular artifacts, such as components and ser-

vices, resulting in a smaller bundle.

•	 Font optimization: Inlines external font files in the main HTML file of the application

without blocking render requests. It currently supports Google Fonts and Adobe Fonts

and requires an internet connection to download them.

•	 Build cache: Caches the previous build state and restores it when we run the same build,

decreasing the time taken to build the application.

As we can see, the Angular CLI does a tremendous job for us regarding build optimization. How-

ever, suppose the size of the final bundle remains considerably large. In that case, we can use

the lazy-load module technique we have already seen in Chapter 9, Navigate through Application

with Routing.

In a nutshell, we can use the Angular router to load Angular modules upon request when we are

sure they will not be used at application startup. Thus, we dramatically reduce the initial bundle

size because the Angular CLI creates one small bundle for each lazy-loaded module when building

the application. For example, if we build the Angular application in Chapter 9, Navigate through

Application with Routing, with the ng build command, the output will look like this:

Figure 13.3 : Build output with lazy-loaded module

In the preceding image, we can see that the Angular CLI has created a lazy chunk file named about-

about-module, which is the bundle of the about module that is lazy-loaded by the router. If we

had defined the module to be eagerly loaded, the lazy chunk file would not have been created,

and it would have been included in the main bundle.

Bringing Application to Production380

The lazy-load technique also improves the launch time of an Angular application because a smaller

bundle can be parsed faster from a browser.

When we have applied all previous optimizations but the final bundle remains large, the last-re-

sort technique is using an external tool called source-map-explorer. It analyzes our application

bundle and displays all Angular artifacts and libraries we use in a visual representation. To start

using it, do the following:

1.	 Install the source-map-explorer npm package from the terminal:

npm install source-map-explorer --save-dev

2.	 Build your Angular application and enable source maps:

ng build --source-map

3.	 Run the source-map-explorer binary against the main bundle file:

node_modules/.bin/source-map-explorer dist/my-app/main.*.js

It will open up a visual representation of the application bundle in the browser:

A good practice when we design an Angular application is to keep the bundle size

as small as possible and plan accordingly. Consider which of the modules are not

going to be used during startup and make them lazy-loaded. A good case for this

is the menu links of a website. You can define one module for each link and load it

lazily. As soon as you progress, if a module finally needs to be immediately available,

make it eagerly loaded. In this way, you will always start with the smallest bundle

size available.

Chapter 13 381

Figure 13.4: Source map explorer output

We can then interact with it and inspect it to understand why our bundle is still too large. Some

causes may be the following:

•	 A library is included twice in the bundle.

•	 A library that cannot be tree-shaked is included but is not currently used.

Bringing Application to Production382

The last step after we build our Angular application is to deploy it to a web server, as we will learn

in the following section.

Deploying an Angular application
If you already have a web server that you want to use for your Angular application, you can copy

the contents of the output folder to a path in that server. If you want to deploy it in another folder

other than the root, you can change the href attribute of the <base> tag in the main HTML file

in the following ways:

•	 Passing the --base-href option in the ng build command:

ng build --base-href=/mypath/

•	 Setting the baseHref property in the build command of the angular.json file:

"options": {

 "outputPath": "dist/my-app",

 "index": "src/index.html",

 "main": "src/main.ts",

 "baseHref": "/mypath/",

 "polyfills": [

 "zone.js"

],

 "tsConfig": "tsconfig.app.json",

 "assets": [

 "src/favicon.ico",

 "src/assets"

],

 "styles": [

 "src/styles.css"

],

 "scripts": []

}

If you do not want to deploy it to a custom server, you can use the Angular CLI tooling to deploy

it in one of the following supported hosting providers:

•	 Firebase: https://firebase.google.com/docs/hosting

•	 Vercel: https://vercel.com/solutions/angular

https://firebase.google.com/docs/hosting
https://vercel.com/solutions/angular

Chapter 13 383

•	 Netlify: https://www.netlify.com

•	 GitHub: https://pages.github.com

•	 npm: https://npmjs.com

•	 Amazon: https://aws.amazon.com/s3/?nc2=h_ql_prod_st_s3

The Angular community maintains npm packages for each of the previous hosting provid-

ers. You can find more details on how to install and use them at https://angular.io/guide/

deployment#automatic-deployment-with-the-cli.

Summary
We finally took the last step toward completing our magical journey in the Angular framework.

The deployment of an Angular application is the simplest and the most crucial part of the whole

journey because it finally makes your awesome application available to the end user. Web appli-

cations are all about delivering experiences to the end user at the end of the day.

In this chapter, we learned how to build an Angular application and make it ready for production.

We also investigated different ways to optimize the final bundle and learned how to deploy an

Angular application into a custom server, manually and automatically, for other hosting providers.

In the next chapter, which is also the final chapter of the book, we will learn how to handle ap-

plication errors and debug Angular applications.

https://www.netlify.com
https://pages.github.com
https://npmjs.com
https://aws.amazon.com/s3/?nc2=h_ql_prod_st_s3
https://angular.io/guide/deployment#automatic-deployment-with-the-cli
https://angular.io/guide/deployment#automatic-deployment-with-the-cli

14
Handling Errors and
Application Debugging

Application errors are an integral part of the lifetime of a web application. They can occur either

during runtime or while developing the application. Runtime errors may happen due to an HTTP

request that failed or an incomplete HTML form. Development errors usually happen when we

do not properly use a programming language or framework according to its semantics. In both

cases, we need a mechanism for debugging the application to investigate and fix the error.

In this chapter, we will learn how to handle different types of errors in an Angular application

and understand errors that come from the framework itself. We will learn how to debug and

profile an Angular application using Angular DevTools. We will explore the following concepts

in more detail:

•	 Handling application errors

•	 Demystifying framework errors

•	 Debugging Angular applications

Technical requirements
The code samples described in this chapter can be found in the ch14 folder of the following

GitHub repository:

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

https://www.github.com/PacktPublishing/Learning-Angular-Fourth-Edition

Handling Errors and Application Debugging386

Handling application errors
The most usual runtime errors in an Angular application come from the interaction with an HTTP

API. Entering the wrong login credentials or sending data in the wrong format can result in an

HTTP error. An Angular application can handle HTTP errors in the following ways:

•	 Explicitly during the execution of a particular HTTP request

•	 Globally in the global error handler of the application

•	 Centrally using an HTTP interceptor

In the following section, we will explore how to handle an HTTP error in a specific HTTP request.

Catching HTTP request errors
Handling errors in HTTP requests typically requires manually inspecting the information re-

turned in the error response object. RxJS provides the catchError operator to simplify that. In

conjunction with the pipe operator, it can catch potential errors that may occur when initiating

an HTTP request:

getProducts(): Observable<Product[]> {

 return this.http.get<ProductDTO[]>(this.productsUrl).pipe(

 map(products => products.map(product => {

 return this.convertToProduct(product);

 })),

 catchError((error: HttpErrorResponse) => {

 console.error(error);

 return throwError(() => error);

 })

);

}

The signature of the catchError operator contains the actual HttpErrorResponse object that

is returned from the server. After catching the error, we use the throwError operator, which re-

throws the error as an observable. In this way, we ensure that the execution will continue and

complete gracefully without causing a potential memory leak.

In a real-world scenario, we would probably create a helper method to log the error in a more

solid tracking system and return something meaningful according to the cause of the error. The

helper method would be used in every HTTP call of a service:

Chapter 14 387

private handleError(error: HttpErrorResponse) {

 switch(error.status) {

 case HttpStatusCode.InternalServerError:

 console.error('Server error:', error.error);

 break;

 case HttpStatusCode.BadRequest:

 console.error('Request error:', error.error);

 break;

 default:

 console.error('Unknown error:', error.error);

 }

 return throwError(() => error);

}

The preceding method logs a different message in the browser console according to the status

of the error. It uses a switch statement to differentiate between internal server errors and bad

requests. For any other errors, it falls back to the default statement, which logs a generic message

in the console. The HttpErrorResponse and HttpStatusCode artifacts can be imported from the

@angular/common/http namespace. The HttpStatusCode is an enumeration that contains a list

of all HTTP status codes.

The handleError method currently manages HTTP errors that originate only from the HTTP

response. However, other errors can occur in an Angular application from the client side, such

as a request that did not reach the server due to a network error or an exception thrown in an

RxJS operator. To handle any of the previous errors, we should modify the handleError method

as follows:

private handleError(error: HttpErrorResponse) {

 switch(error.status) {

 case 0:

 console.error('Client error:', error.error);

 break;

 case HttpStatusCode.InternalServerError:

 console.error('Server error:', error.error);

 break;

 case HttpStatusCode.BadRequest:

 console.error('Request error:', error.error);

 break;

Handling Errors and Application Debugging388

 default:

 console.error('Unknown error:', error.error);

 }

 return throwError(() => error);

}

In the preceding snippet, an error with status 0 indicates that it is an error that occurred in the

client.

We can then add the handleError method to an HTTP call as follows:

getProducts(): Observable<Product[]> {

 return this.http.get<ProductDTO[]>(this.productsUrl).pipe(

 map(products => products.map(product => {

 return this.convertToProduct(product);

 })),

 catchError(this.handleError)

);

}

Error handling in HTTP requests could be combined with a mechanism that retries a given HTTP

call a specific amount of times before handling the error. There is an RxJS operator for nearly

everything, even one for retrying HTTP requests. It accepts the number of retries where the par-

ticular request has to be executed until it completes successfully:

getProducts(): Observable<Product[]> {

 return this.http.get<ProductDTO[]>(this.productsUrl).pipe(

 map(products => products.map(product => {

 return this.convertToProduct(product);

 })),

 retry(2),

 catchError(this.handleError)

);

}

The point is that with the catchError operator, we can capture the error; how we handle it de-

pends on the scenario. In our case, we created a handleError method for all HTTP calls in a

service. In a real-world scenario, we would like to follow the same approach of error handling

in other Angular services of an application. Creating one method for each service would not be

convenient and does not scale well.

Chapter 14 389

Alternatively, we could utilize the global error handler that Angular provides to handle errors in

a central place. We will learn how to create a global error handler in the following section.

Creating a global error handler
The Angular framework provides the ErrorHandler class for handling errors globally in an An-

gular application. The default implementation of the ErrorHandler class prints error messages

in the browser console window. To create a custom error handler for our application, we need

to sub-class the ErrorHandler class and provide our tailored implementation for error logging:

1.	 Create a file named app-error-handler.ts in the src\app folder of an Angular application.

2.	 Add the following import statements:

import { HttpErrorResponse, HttpStatusCode } from '@angular/common/
http';

import { ErrorHandler, Injectable } from '@angular/core';

3.	 Create a TypeScript class that implements the ErrorHandler interface:

@Injectable()

export class AppErrorHandler implements ErrorHandler {}

The AppErrorHandler class must be decorated with the @Injectable() decorator because

we will need to provide it later in the main application module.

4.	 Implement the handleError method from the ErrorHandler interface as follows:

handleError(error: any): void {

 const err = error.rejection || error;

 if (err instanceof HttpErrorResponse) {

 switch(err.status) {

 case 0:

 console.error('Client error:', error.error);

 break;

 case HttpStatusCode.InternalServerError:

 console.error('Server error:', error.error);

 break;

 case HttpStatusCode.BadRequest:

 console.error('Request error:', error.error);

 break;

 default:

Handling Errors and Application Debugging390

 console.error('Unknown error:', error.error);

 }

 } else {

 console.error('Application error:', err)

 }

}

5.	 In the preceding method, we check if the error object contains a rejection property. Er-

rors that originate from the Zone.js library, which is responsible for the change detection

in Angular, encapsulate the actual error inside that property.

6.	 After extracting the error in the err variable, we check to see if it is an HTTP error using the

HttpErrorResponse type. Any errors thrown from HTTP calls using the throwError RxJS

operator will eventually be caught in this check. All other errors are treated as application

errors that occur client side.

7.	 Open the app.module.ts file and import the ErrorHandler artifact from the @angular/

core npm package:

import { NgModule, ErrorHandler } from '@angular/core';

8.	 Import the custom error handler we created in the app-error-handler.ts file:

import { AppErrorHandler } from './app-error-handler';

9.	 Register the AppErrorHandler class as the global error handler of the application by adding

it to the providers array of the @NgModule decorator:

providers: [

 { provide: ErrorHandler, useClass: AppErrorHandler }

]

One of the most common HTTP errors in a web enterprise application is the 401 Unauthorized

response error. We will learn how to handle this specific error in the following section.

Responding to 401 Unauthorized error
The 401 Unauthorized error in an Angular application can occur in the following cases:

•	 The user does not provide the correct credentials while logging in to the application.

•	 The authentication token provided when the user logged in to the application has expired.

Chapter 14 391

A good place to handle the 401 Unauthorized error is inside an HTTP interceptor responsible for

authentication. In Chapter 8, Communicating with Data Services over HTTP, we learned how to

create an authentication interceptor for passing the authorization token to every HTTP request.

The AuthInterceptor class in the auth.interceptor.ts file should be modified as follows:

export class AuthInterceptor implements HttpInterceptor {

 constructor(private authService: AuthService) {}

 intercept(request: HttpRequest<unknown>, next: HttpHandler):
Observable<HttpEvent<unknown>> {

 const authReq = request.clone({

 setHeaders: { Authorization: 'myAuthToken' }

 });

 return next.handle(authReq).pipe(

 catchError((error: HttpErrorResponse) => {

 if (error.status === HttpStatusCode.Unauthorized) {

 this.authService.logout();

 return EMPTY;

 } else {

 return throwError(() => error);

 }

 })

);

 }

}

The interceptor will call the logout method of the AuthService class when a 401 Unauthorized

error occurs and return an EMPTY observable to stop emitting data from the handle observable.

In all other errors, it will use the throwError operator to bubble up the error to the global error

handler. As we have already seen, the global error handler will examine the returned error and

take action according to the status code.

As we saw in the global error handler that we created in the previous section, some errors are

unrelated to the interaction with the HTTP client. There are application errors that occur on the

client side, and we will learn how to understand them in the following section.

Handling Errors and Application Debugging392

Demystifying framework errors
Application errors that originate client-side in an Angular application can have many causes. One

of them is the interaction of our source code with the Angular framework. Developers like to try

new things and approaches while building our applications. Sometimes things will go well, but

other times they may cause errors in our application.

The Angular framework provides a mechanism for reporting some of these common errors with

the following format:

NGWXYZ: {Error message}.<Link>

The preceding error format is analyzed as follows:

•	 NG: Indicates that it is an Angular error to differentiate between other errors originating

from TypeScript and the browser.

•	 W: A single-digit number that indicates the type of the error. 0 represents a runtime error,

and all other numbers from 1 to 9 represent a compiler error.

•	 X: A single-digit number that indicates the category of the framework runtime area, such

as change detection, dependency injection, and template.

•	 YZ: A two-digit code that is used for indexing the specific error.

•	 {Error message}: The actual error message.

•	 <Link>: A link to the Angular documentation that provides more information about the

specified error.

Error messages that conform to the preceding format are displayed in the browser console as

they happen. Let’s see an error example using the ExpressionChangedAfterChecked error, the

most famous error in Angular applications:

1.	 Open the app.component.ts file and import the AfterViewInit artifact from the

@angular/core npm package:

import { AfterViewInit, Component } from '@angular/core';

2.	 Implement the ngAfterViewInit method in the AppComponent class and change the title

property inside the method body:

Chapter 14 393

export class AppComponent implements AfterViewInit {

 title = 'my-app';

 ngAfterViewInit(): void {

 this.title = 'Learning Angular';

 }

}

3.	 Open the app.component.html file and add an <h1> element to display the value of the

title property:

<h1>{{title}}</h1>

4.	 Run the ng serve command and navigate at http://localhost:4200 using your browser.

5.	 Initially, everything looks to work correctly. The value of the title is displayed on the page

correctly. Open the browser developer tools and select the Console tab. You should see

the following output:

Figure 14.1: Console output

6.	 If we investigate the message, we will notice that changing the value of the title prop-

erty from my-app to Learning Angular caused the error. Angular also points us to the

specific place of the HTML template that caused the issue, as we can see from the line at

AppComponent_Template (app.component.html:1:5).

Handling Errors and Application Debugging394

7.	 Clicking on the https://angular.io/errors/NG0100 link will redirect us to the appro-

priate error guide in the Angular documentation:

Figure 14.2: Error guide

The preceding error guide contains a detailed explanation of the specific error. It also

describes how to fix the problem in our application code.

https://angular.io/errors/NG0100

Chapter 14 395

Sometimes, errors in an Angular application are difficult to spot and fix. We must debug the ap-

plication to find and fix them in those cases. We will learn how to debug an Angular application

in the following section.

Debugging Angular applications
We can debug an Angular application using standard debugging techniques for web applications

or the tooling that the Angular framework provides out of the box. Both approaches should

work the same, and the choice depends on the use case. In this section, we will learn about the

following debugging methods:

•	 Use the console object to print data and messages to the browser console.

•	 Use the browser developer tools to add breakpoints in the application source code and

inspect it.

•	 Use the Angular DevTools extension for debugging and profiling.

We will start by learning how to use the console object for debugging purposes.

Using the Console API
The console object is the most commonly used Web API for debugging. It is a very fast way to

print data and inspect values in the browser console. To inspect the value of an object in an An-

gular component, we can use the debug or log method, passing the object we want to inspect

as a parameter.

We have already used the console object in several chapters of this book for demonstration pur-

poses. However, it is considered an old-fashioned approach, and a codebase with many console.

log methods is not readable. An alternate way is to use breakpoints in our source code, as we will

learn in the following section.

Adding breakpoints in source code
We can add breakpoints inside the source code from the browser developer tools and inspect

the state of an Angular application. When an Angular application runs and hits a breakpoint, it

will pause and wait. During that time, we can investigate and inspect several values involved in

the current execution context. We will see how to add breakpoints in Google Chrome using an

example:

1.	 Run the ng serve command to start the Angular application.

Handling Errors and Application Debugging396

2.	 Open Google Chrome and navigate to http://localhost:4200.

3.	 Press the F12 keyboard key to open the developer tools.

4.	 Select the Sources tab and then the webpack:// option from the Page tab.

5.	 Open the app.component.ts file that exists inside the src\app folder.

6.	 Left-click with your mouse on line 12 to add a breakpoint:

Figure 14.3 : Sources tab

7.	 Refresh the browser, and you will notice that the Chrome debugger hits the breakpoint

and pauses the application execution:

Figure 14.4: Chrome debugger

Chapter 14 397

8.	 We can now inspect various aspects of our component and use the buttons in the debugger

toolbar to control the debugging session.

The Angular team has created a tool that complements the debug process with breakpoints, as

we will learn in the following section.

Using Angular DevTools
Angular DevTools is a browser extension created and maintained by the Angular team. It allows

us to debug and profile Angular applications directly in the browser. It is currently supported by

Google Chrome and Mozilla Firefox and can be downloaded from the following browser stores:

•	 Google Chrome: https://chrome.google.com/webstore/detail/angular-developer-

tools/ienfalfjdbdpebioblfackkekamfmbnh

•	 Mozilla Firefox: https://addons.mozilla.org/en-GB/firefox/addon/angular-

devtools

To open the extension, open the browser developer tools and select the Angular tab. It contains

two additional tabs:

•	 Components: Displays the component tree of the Angular application

•	 Profiler: Allows us to profile and inspect the Angular application

The Components tab allows us to preview the components and directives of an Angular applica-

tion and interact with them. If we select a component from the tree representation, we can view

its properties and metadata on the right-hand side:

Figure 14.5: Component preview

https://chrome.google.com/webstore/detail/angular-developer-tools/ienfalfjdbdpebioblfackkekamfmbnh
https://chrome.google.com/webstore/detail/angular-developer-tools/ienfalfjdbdpebioblfackkekamfmbnh
https://addons.mozilla.org/en-GB/firefox/addon/angular-devtools
https://addons.mozilla.org/en-GB/firefox/addon/angular-devtools

Handling Errors and Application Debugging398

From the Components tab, we can also look up the respective HTML element in the DOM or

navigate to the actual source code of the component or directive. Clicking the < > button will

take us to the TypeScript file of the current component in the Sources tab:

Figure 14.6: Sources tab

We can then add breakpoints in the source code and debug our application.

Double-clicking a selector from the tree representation of the Components tab will navigate us

to the Elements tab and highlight the individual HTML element in the DOM:

Figure 14.7: Elements tab

Chapter 14 399

Finally, one of the most useful features of the component tree is that we can alter the value of a

component property and inspect how the component template behaves:

Figure 14.8: Change component state

In the preceding image, you can see that when we changed the value of the title property to De-

bugging Angular, the change was also reflected in the component template.

Another useful feature of the Angular DevTools is the Profiler. The profiler allows us to profile

and inspect an Angular application in terms of performance. We can use it to examine how an

application behaves during the change detection mechanism and check for any bottlenecks.

We can access the Angular DevTools profiler from the Profiler tab. To start profiling an Angular

application, we must do the following:

1.	 Click the Record button represented by the circle dot.

Start using the Angular application normally as a user and focus on those parts that seem

to have performance issues.

2.	 Click the Record button once again to stop the profiler recording.

Handling Errors and Application Debugging400

When the profiler stops recording, it creates a graph of bars representing the change detection

cycles of the application. The height of each bar indicates the amount of time spent in the cycle.

Selecting a bar will display the components and directives involved during that cycle:

Figure 14.9: Change detection cycle graph

In the preceding image, we see that it also displays statistics about the selected change detection

cycle, such as the time spent and the source that triggered the cycle.

If we click on a specific component, we will see a detailed view, including how much time was

spent in the change detection cycle and its parent components in the tree hierarchy:

Chapter 14 401

Figure 14.10: Component details

Angular DevTools, along with the Angular CLI, is a tool that should not be overlooked by any

developer that works with the Angular framework. The Angular CLI allows the developer to

scaffold, test, and build an Angular application. Angular DevTools provides added value in this

workflow by allowing developers to detect and investigate development issues.

Summary
Handling errors during runtime or development is crucial for every Angular application. The

knowledge of how to debug an application for detecting issues and problems is essential for

every Angular developer.

In this chapter, we learned how to handle errors that occur during the runtime of an Angular

application, such as HTTP or client-side errors. We also learned how to understand and fix appli-

cation errors thrown by the Angular framework. Finally, we explored different ways of debugging

an Angular application, from the Console API to the more sophisticated Angular DevTools.

Our journey with the Angular framework ends with this chapter. However, the possibilities of

what we can do are endless. The Angular framework is updated with new features in each release,

giving web developers a powerful tool for their toolchains. We were delighted to have you on

board, and we hope this book has broadened your idea of what an excellent framework such as

Angular can offer!

Handling Errors and Application Debugging402

Join our community on Discord
Join our community’s Discord space for discussions with the author and other readers:

https://packt.link/LearningAngular4e

https://packt.link/LearningAngular4e

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://packt.com
http://www.packt.com

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Responsive Web Design with HTML5 and CSS, Fourth Edition

Benjamin Frain

ISBN: 9781803242712

•	 Use media queries, including detection for touch/mouse and color preference

•	 Learn HTML semantics and author accessible markup

•	 Facilitate different images depending on screen size or resolution

•	 Write the latest color functions, mix colors, and choose the most accessible ones

•	 Use SVGs in designs to provide resolution-independent images

•	 Create and use CSS custom properties, making use of new CSS functions including ‘clamp’,

‘min’, and ‘max’

•	 Add validation and interface elements to HTML forms

•	 Enhance interface elements with filters, shadows, and animations

https://www.packtpub.com/product/responsive-web-design-with-html5-and-css-fourth-edition/9781803242712

Other Books You May Enjoy406

JavaScript from Beginner to Professional

Laurence Svekis, Maaike Putten, Rob Percival

ISBN: 9781800562523

•	 Use logic statements to make decisions within your code

•	 Save time with JavaScript loops by avoiding writing the same code repeatedly

•	 Use JavaScript functions and methods to selectively execute code

•	 Connect to HTML5 elements and bring your own web pages to life with interactive content

•	 Make your search patterns more effective with regular expressions

•	 Explore concurrency and asynchronous programming to process events efficiently and

improve performance

•	 Get a head start on your next steps with primers on key libraries, frameworks, and APIs

https://www.packtpub.com/product/javascript-from-beginner-to-professional/9781800562523?_ga=2.264681679.1752435864.1676381161-1060321437.1657688636

Other Books You May Enjoy 407

Django 4 By Example, Fourth Edition

Antonio Melé

ISBN: 9781801813051

•	 Learn Django essentials, including models, ORM, views, templates, URLs, forms, authen-

tication, signals and middleware

•	 Implement different modules of the Django framework to solve specific problems

•	 Integrate third-party Django applications into your project

•	 Build asynchronous (ASGI) applications with Django

•	 Set up a production environment for your projects

•	 Easily create complex web applications to solve real use cases

https://www.packtpub.com/product/django-4-by-example-fourth-edition/9781801813051

Other Books You May Enjoy408

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Learning Angular, Fourth Edition, we’d love to hear your thoughts! If you pur-

chased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1803240601
https://packt.link/r/1803240601

Index

Symbols
401 Unauthorized error

handling 390, 391

A
absolute navigation 248
Adobe Fonts 379
advanced types, TypeScript

Partial type 54
Record type 54
Union type 55

AfterViewInit lifecycle hook 98, 100
Angular 2

characteristics 3
cross-platform 3
first-party libraries 4
onboarding 4
reactive programming 169-172
testing utilities 341
tooling 4
unit test 341
URL 2
users 4

Angular 15 3

Angular application
building 372-374
building, for different

environments 374, 375
building, for window object 376
components 12
creating 8-10
creating, with routing module 229
debugging 395
deploying 382, 383
modules 12
routing module, configuring 231-233
scaffolding, with routing module 229-231
structure 11
template syntax 13, 14

Angular CDK 333
clipboard 333, 334
drag and drop 334

Angular CLI 4
commands 7
installing 6

Angular CLI 15 6
Angular CLI workspace

prerequisites 5
project, creating 8-10
setting up 5

Index410

Angular component 12
properties 73
structure 73

Angular Dependency
Injection (DI) 135, 136, 160

working 142
Angular DevTools 4, 397

for Google Chrome 397
for Mozilla Firefox 397
using 397-401

Angular Essentials extension 15
Angular Evergreen extension 18, 19
Angular guard 251

canActivate 251
canActivateChild 251
canDeactivate 251
canLoad 251
canMatch 251

Angular HTTP client 191, 192
AngularJS 2
Angular key classes 271
Angular Language Service extension 15, 16
Angular Material 295, 297

adding, to application 297, 298
components, theming 300
controls, adding 299, 300
core UI controls, adding 301
library 297

Angular modules 12, 60
adding, in main module 64, 65
advantages 60
application features, adding 63
built-in modules, leveraging 69
core module 68
creating 62, 63
eager-loaded modules 68

feature modules, exposing 65-68
lazy-loaded modules 68
organizing, by type 68, 69
shared module 68

Angular router 225
base path, specifying 226
component, rendering 228
configuring 227, 228
router module, importing 227

Angular service 137
creating 138-140
objects, transforming 159, 160

Angular Service Worker 3
Angular Snippets extension 17
Angular Universal 3
Angular upgrade guide

reference link 7
any type 29
AppComponent 61
application bundle

optimizing 378-382
size, limiting 377

application errors, handling 386
401 Unauthorized error 390, 391
global error handler, creating 389, 390
HTTP request errors 386-388

application features
grouping, into modules 63

AppModule TypeScript class 62
app-root tag 12
Array.prototype.sort method

reference link 120
array type 28
arrow functions, TypeScript 35, 36
assertion 339

Index 411

asynchronous information handling
strategies 164

callback pattern, using 164, 165
promises, using 165, 166

asynchronous testing scenarios
fakeAsync 352
waitForAsync 352

authentication, with HTTP 213
backend API, authenticating with 213, 214

Authorization header 218
authorization, with HTTP 213

HTTP requests, authorizing 218-221
user access, authorizing 215-218

B
backend API

authenticating, with 213, 214
setting up 193

boolean type 28
Bootstrap 376
bootstrapping 13
bootstrap property 61
breakpoints

adding, in Google Chrome 395-397
BrowserAnimationsModule 69
BrowserModule 61, 69
budgets 377
built-in modules

leveraging 69

C
callback hell 165
callback pattern 164
change detection 92

using 92, 93

class decorators, TypeScript 48
extending 49, 50

classes, TypeScript 40
anatomy 40
class inheritance 47
constructor 41
constructor parameters,

with accessors 42, 43
members 41
methods 42
property accessors 42
static members 42

class provider syntax 154
command-line options

--routing 229
--style=css 229

CommonModule 69
compilation context 75
component

architecture 72
creating 72
dependencies, sharing through 143-145
registering, with modules 74, 75
sandboxing, with multiple

instances 147-151
standalone component, creating 75, 76

ComponentFixture wrapper class 342
component harness 357

using 358
component injector 146
component inter-communication 83

data emitting, through custom events 88
data passing, with input binding 83-85
event listening, with output binding 85-87
template reference variables 89

Index412

component lifecycle 93, 94
child components, accessing 98-100
hooks 94
initialization, performing 94, 95
input binding changes, detecting 97, 98
resources, cleaning up 96

component testing 342-346
with component harness 357-359
with dependencies 346
with inputs and outputs 355-357

component testing, with dependencies 346
asynchronous services, testing 352-354
dependency method, spying 350-352
dependency, replacing with stub 347-349

component tree
services, injecting in 143

Console object 395
using 395

const keyword 27
constructor injection pattern 140
controls

validating, in reactive way 281-283
core module 68
core UI controls, Angular Material

buttons 301-303
data tables 301, 325
form controls 301, 303
integration controls 301, 330-333
layout 301, 316
navigation 301, 313-315
popups and modals 301, 318

Create Read Update Delete (CRUD) 192
CRUD data, handling 194, 195

data fetching, through HTTP 196-202
data modifying, through HTTP 202

product price, updating 207-210
products, adding 203-207
products, removing 210-212

CSS 5
CSS styling

encapsulating 90- 92
custom directives

building 123
components, creating dynamically 128-130
dynamic data, displaying 123-125
events, responding to 126, 127
property binding 126, 127
templates, toggling dynamically 131, 132

custom pipes
building 116

custom types 29
custom validator

building 284, 285

D
data

communicating, over HTTP 190, 191
manipulating, with pipes 110-116
sorting, with pipes 117-121

data binding
one-way binding 267
two-way binding 267
with template-driven forms 267-270

data immutability 28

data table, Angular Material 325
pagination 329, 330
sorting 327, 328
table component 325-327

Data Transfer Object (DTO) 197
DebugElement wrapper 342

Index 413

debugging, Angular application 395
Angular DevTools, using 397-401
breakpoints, adding in source code 395-397
Console API, using 395

declarations property 61
decorators 3
decorators, TypeScript 48

class decorators 48
method decorators 52
parameter decorators 53
property decorators 50-52

dependencies 136
providing, across applications 140-143
sharing, through components 143-145

Dependency Injection (DI) 136
restricting 152

detail page
building, with route parameters 243-246

directives 104
attribute directives 104
components 104
structural directives 104
testing 364, 365
used, for transforming elements 104

Document Object Model (DOM) 79

E
eager-loaded modules 68
ECMAScript 5 24
ECMAScript 6 24
EditorConfig 18
element transformation, with directives 104

data, displaying conditionally 104, 105
iterating, through data 107-109
switching, through templates 109, 110

end-to-end (E2E) testing 344
enum type 30
event binding 82
evergreen browsers 226
expected value 339
ExpressionChangedAfterChecked error 392

F
Fake Store API 193

authenticating 213
reference link 193

feature modules 62
feature routing module

creating 233-237
default path, setting 240, 241
route path, handling 238-240
route path imperatively, navigating 241, 242
router links, decorating with

CSS styling 242, 243
fetch API 190
first-party library 4
form controls, Angular Material 303

autocomplete 306-309
checkbox 311, 312
date picker 312
input field 304-306
select component 310, 311

forms 266
data, manipulating 290, 291
in web apps 266, 267
modifying, dynamically 285-290
reactive forms 271
state changes, viewing 291-293
template-driven forms 267
testing 366-368

Index414

FormsModule 69
framework errors

demystifying 392-395
functions, TypeScript 31

arrow functions 35, 36
default parameters 33, 34
function overloading 34, 35
optional parameters 32, 33
parameters 32
rest parameters 34
type annotation 31, 32

G
generics, TypeScript 37, 38
Git 6
global error handler

handling 389, 390
Google Fonts 379

H
higher-order observables 176-179
@HostListener decorator 127
HTML 5
HTTP

data, communicating over 190, 191
HttpBackend service 221
HttpClientModule 69
HTTP headers 218
HTTP interceptor 219
HTTP request errors

handling 386-388

I
imports property 61

in-app navigation
enhancing, with advanced feature 250
lazy loading 257-259
navigation away, preventing from

route 253-255
route access, controlling 251-253
route data, prefetching 255-257

injection 136
injector 136
input binding 84
integration controls, Angular

Material 330-333
interceptors 218
interfaces, TypeScript 43

defining 43
implementing 43-47

interpolation 14
Ionic Framework 3

J
Jasmine 339, 341
JavaScript framework 2
jQuery 376

K
Karma 341
keyUp 170

L
layout, Angular Material

card 316
components 316
expansion panel 316
grid list 316-318
list 316, 317

Index 415

stepper 316
tabs 316

lazy-loaded modules 68
lazy loading 257

advantages 257
components 261, 262
module, protecting 260, 261
working, in Angular 258, 259

Less preprocessor 8
let keyword 27
lifecycle hooks, Angular component

AfterViewInit 94
OnChanges 94
OnDestroy 94
OnInit 94
reference link 94

link parameters array 242

M
matcher function 339
Material Design 296

principles 296
URL 296

material icon theme 18
method decorators, TypeScript 52
modules

components, registering with 74, 75
modules, TypeScript 55

N
NgModule 61
ngSwitch directive 109

[ngSwitch] 110
*ngSwitchCase 110
*ngSwitchDefault 110

Node.js 5
non-null assertion operator 187
npm 6
nullish coalescing, TypeScript 40
number type 28
Nx Console 17, 18

O
object identity 109
Object-Oriented Programming (OOP) 24
objects

transforming, in Angular services 159, 160
observables 163-169

creating 173, 174
example 167, 168
subscribing 180-182
transforming 174-176
unsubscribing 182

observables, unsubscribing
async pipe, using 185-187
component, destroying 183-185

observer pattern 167
observers 167
OnChanges lifecycle hook 97, 98
OnDestroy lifecycle hook 96
OnInit lifecycle hook 94
operators 171
optimization process, application bundle

bundling 379
cache building 379
font optimization 379
minification 378
tree-shaking 379
uglification 378

Index416

optional chaining, TypeScript 39
output binding 87

P
parameter decorators, TypeScript 53
Partial type, TypeScript 54
pipes

change, detecting with 121
data, manipulating with 111-116
data, sorting with 117-121
standalone pipes, creating 122
testing 363, 364

popups and modal dialogs, Angular Material
318

data, returning from dialog 324
dialog 318
dialog, configuring 322, 323
simple dialog, creating 318-321
snackbar 318
tooltip 318

preprocessors 5
prerequisites, Angular CLI

Git 6
Node.js 5
npm 6

Progressive Web Applications (PWA) 3
promises 165

limitations 167
property binding 79
property decorators, TypeScript 50-52
Protractor 358
provide object literal syntax 154

provide property 154
useClass property 155

provider 141
overriding, in injector hierarchy 154

provider lookup
restricting 152-154

providers property 61
pushState 226

R
reactive forms 271

elegant reactive forms, creating 280, 281
form status feedback, providing 276, 277
interacting with 272-275
nesting form hierarchies, creating 278-280
testing 367

ReactiveFormsModule 69
reactive programming 163

in Angular 169-172
Record type, TypeScript 54
relative navigation 248
Rename Angular Component extension 20
required validator 277
resolver 255
root injector 138, 146, 147
route parameters

components, reusing with child
routes 247, 248

data, filtering with query parameter 250
passing 243
snapshot 249
used, for building detail page 243-246

RouterModule 69
routing module

configuring, in Angular application 231-233
used, for creating Angular application 229

Index 417

used, for scaffolding Angular
application 229-231

RxJS library 163, 173
higher-order observables 176-179
observables, creating 173, 174
observables, transforming 174-176

S
SCSS preprocessor 8
Separation of Concerns (SoC) pattern 135
service implementation

overriding 155, 156
service-in-a-service 148
services 61

injecting, in component tree 143
providing, conditionally 157, 158

service scope limiting 146
services, testing 360

asynchronous method, testing 361
synchronous method, testing 360
with dependencies 361-363

Shadow DOM 90
shared module 68
Single-Page Applications (SPAs) 225
source-map-explorer tool 380
spread parameter, TypeScript 36
spying method 346
standalone components

creating 75, 76

standalone directives
creating 133, 134

standalone pipes
creating 122

statusChanges property 291
strict mode 99

string type 26
structural directives

ngFor 104
ngIf 104
ngSwitch 104
using 96

stubbing method 346
subscribers 167

T
target event 82
target property 79
template 12

component, styling 80, 81
component template, loading 77, 78
data, displaying from component

class 79, 80
data, obtaining from template 82
interacting with 77

template-driven forms
data binding with 267-270

template expression 79
template input variable 108
template reference variables 89
template statement 82
template strings, TypeScript 37
ternary operator 40
TestBed class 341
types 26

any type 29
array 28
boolean 28
const keyword 27
custom types 29
declared variables 27

Index418

enum 30
let keyword 27
number 28
string 26
type inference 31
variables 27
void 31

TypeScript 2
advanced types 54
benefits 24
classes 40
decorators 48
execution flow 31
features 36
functions 31
generics 37, 38
history 24
interfaces 43-47
lambdas 31
modules 55
nullish coalescing 40
official wiki documentation 25
optional chaining 39
resources 25
spread parameter 36
template strings 37
types 26
URL 25

U
Union type, TypeScript 55
unit testing, Angular 341

anatomy 338-340
components, testing 342-346
directives, testing 364-366
forms, testing 366-368
need for 338

pipes, testing 363, 364
services, testing 360
test spec 339
test suite 339

V
valueChanges property 291
variables 27
View encapsulation 90
views 72
void type 31
VS Code 15

Angular Evergreen extension 19
Angular Language Service extension 15, 16
Angular Snippets extension 17
EditorConfig 18
material icon theme 18
Nx Console 17, 18
Rename Angular Component extension 20

W
wildcard route 228

Z
Zone.js 92, 390

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803240602

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781803240602

	Cover
	Copyright
	Table of Contents
	Preface
	Chapter 1: Building Your First Angular Application
	Technical requirements
	What is Angular?
	Why choose Angular?
	Cross-platform
	Tooling
	Onboarding
	Who uses Angular?

	Setting up the Angular CLI workspace
	Prerequisites
	Node.js
	npm
	Git

	Installing the Angular CLI
	CLI commands
	Creating a new project

	Structure of an Angular application
	Components
	Modules
	Template syntax

	VS Code tooling
	Angular Language Service
	Angular Snippets
	Nx Console
	Material icon theme
	EditorConfig
	Angular Evergreen
	Rename Angular Component

	Summary

	Chapter 2: Introduction to TypeScript
	The history of TypeScript
	The benefits of TypeScript
	Introducing TypeScript resources
	The official website
	The official wiki documentation

	Types
	String
	Declaring variables
	The let keyword
	The const keyword

	Number
	Boolean
	Array
	Dynamic typing with no type
	Custom types
	Enum
	Void
	Type inference

	Functions, lambdas, and execution flow
	Annotating types in functions
	Function parameters in TypeScript
	Optional parameters
	Default parameters
	Rest parameters
	Function overloading

	Arrow functions

	Common TypeScript features
	Spread parameter
	Template strings
	Generics
	Optional chaining
	Nullish coalescing

	Classes, interfaces, and inheritance
	Anatomy of a class
	Constructor parameters with accessors
	Interfaces
	Class inheritance

	Decorators
	Class decorators
	Extending a class decorator

	Property decorators
	Method decorators
	Parameter decorator

	Advanced types
	Partial
	Record
	Union

	Modules
	Summary

	Chapter 3: Organizing Application into Modules
	Technical requirements
	Introducing Angular modules
	Creating our first module
	Group application features into modules
	Add a module in the main module
	Exposing feature modules
	Organizing modules by type

	Leveraging Angular built-in modules
	Summary

	Chapter 4: Enabling User Experience with Components
	Technical requirements
	Creating our first component
	The structure of an Angular component
	Registering components with modules
	Creating standalone components

	Interacting with the template
	Loading the component template
	Displaying data from the component class
	Styling the component
	Getting data from the template

	Component inter-communication
	Passing data using an input binding
	Listening for events using an output binding
	Emitting data through custom events

	Local reference variables in templates

	Encapsulating CSS styling
	Deciding on a change detection strategy
	Introducing the component lifecycle
	Performing component initialization
	Cleaning up component resources
	Detecting input binding changes
	Accessing child components

	Summary

	Chapter 5: Enrich Applications Using Pipes and Directives
	Technical requirements
	Introducing directives
	Transforming elements using directives
	Displaying data conditionally
	Iterating through data
	Switching through templates

	Manipulating data with pipes
	Building custom pipes
	Sorting data using pipes
	Change detection with pipes
	Creating standalone pipes

	Building custom directives
	Displaying dynamic data
	Property binding and responding to events
	Creating components dynamically
	Toggling templates dynamically
	Creating standalone directives

	Summary

	Chapter 6: Managing Complex Tasks with Services
	Technical requirements
	Introducing Angular DI
	Creating our first Angular service
	Providing dependencies across the application
	Injecting services in the component tree
	Sharing dependencies through components
	Root and component injectors
	Sandboxing components with multiple instances
	Restricting DI down the component tree
	Restricting provider lookup

	Overriding providers in the injector hierarchy
	Overriding service implementation
	Providing services conditionally
	Transforming objects in Angular services

	Summary

	Chapter 7: Being Reactive Using Observables and RxJS
	Technical requirements
	Strategies for handling asynchronous information
	Shifting from callback hell to promises
	Observables in a nutshell

	Reactive programming in Angular
	The RxJS library
	Creating observables
	Transforming observables
	Higher-order observables

	Subscribing to observables
	Unsubscribing from observables
	Destroying a component
	Using the async pipe

	Summary

	Chapter 8: Communicating with Data Services over HTTP
	Technical requirements
	Communicating data over HTTP
	Introducing the Angular HTTP client
	Setting up a backend API
	Handling CRUD data in Angular
	Fetching data through HTTP
	Modifying data through HTTP
	Adding new products
	Updating product price
	Removing a product

	Authentication and authorization with HTTP
	Authenticating with backend API
	Authorizing user access
	Authorizing HTTP requests

	Summary

	Chapter 9: Navigating through Application with Routing
	Technical requirements
	Introducing the Angular router
	Specifying a base path
	Importing the router module
	Configuring the router
	Rendering components

	Creating an Angular application with routing
	Scaffolding an Angular application with routing
	Configuring routing in our application

	Creating feature routing modules
	Handling unknown route paths
	Setting a default path
	Navigating imperatively to a route
	Decorating router links with styling

	Passing parameters to routes
	Building a detail page using route parameters
	Reusing components using child routes
	Taking a snapshot of route parameters
	Filtering data using query parameters

	Enhancing navigation with advanced features
	Controlling route access
	Preventing navigation away from a route
	Prefetching route data
	Lazy-loading routes
	Protecting a lazy-loaded module
	Lazy loading components

	Summary

	Chapter 10: Collecting User Data with Forms
	Technical requirements
	Introducing forms to web apps
	Data binding with template-driven forms
	Using reactive patterns in Angular forms
	Interacting with reactive forms
	Providing form status feedback
	Creating nesting form hierarchies
	Creating elegant reactive forms

	Validating controls in a reactive way
	Building a custom validator

	Modifying forms dynamically
	Manipulating form data
	Watching state changes and being reactive
	Summary

	Chapter 11: Introduction to Angular Material
	Technical requirements
	Introducing Material Design
	Introducing Angular Material
	Adding Angular Material to your application
	Adding Angular Material controls
	Theming Angular Material components

	Adding core UI controls
	Buttons
	Form controls
	Input
	Autocomplete
	Select
	Checkbox
	Date picker
	Navigation

	Layout
	List
	Grid list

	Popups and modal dialogs
	Creating a simple dialog
	Configuring a dialog
	Getting data back from a dialog

	Data table
	Table
	Sort table
	Pagination

	Integration controls

	Introducing the Angular CDK
	Clipboard
	Drag and drop

	Summary

	Chapter 12: Unit Test an Angular Application
	Technical requirements
	Why do we need tests?
	The anatomy of a unit test
	Introducing unit tests in Angular
	Testing components
	Testing with dependencies
	Replacing the dependency with a stub
	Spying on the dependency method
	Testing asynchronous services

	Testing with inputs and outputs
	Testing with a component harness

	Testing services
	Testing a synchronous method
	Testing an asynchronous method
	Testing services with dependencies

	Testing pipes
	Testing directives
	Testing forms
	Summary

	Chapter 13: Bringing an Application to Production
	Technical requirements
	Building an Angular application
	Building for different environments
	Building for the window object

	Limiting the application bundle size
	Optimizing the application bundle
	Deploying an Angular application
	Summary

	Chapter 14: Handling Errors and Application Debugging
	Technical requirements
	Handling application errors
	Catching HTTP request errors
	Creating a global error handler
	Responding to 401 Unauthorized error

	Demystifying framework errors
	Debugging Angular applications
	Using the Console API
	Adding breakpoints in source code
	Using Angular DevTools

	Summary

	Packt page
	Other Books You May Enjoy
	Index

