

Learn to Code with JavaScript
Copyright © 2021 SitePoint Pty. Ltd.

Product Manager: Simon Mackie
Technical Editor: James Hibbard
English Editor: Ralph Mason
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information
herein. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable
for any damages to be caused either directly or indirectly by the instructions contained in this
book, or by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the
names only in an editorial fashion and to the benefit of the trademark owner with no intention of
infringement of the trademark.

Published by SitePoint Pty. Ltd.
Level 1, 110 Johnston St, Fitzroy

VIC Australia 3065
Web: www.sitepoint.com

Email: books@sitepoint.com
ISBN 978-1-925836-40-0 (print)

ISBN 978-1-925836-41-7 (ebook)
Printed and bound in the United States of America

i

About Darren Jones
Darren has enjoyed coding since learning how to program in BASIC on his first
Acorn Electron computer. Since then, he’s taught himself Ruby and JavaScript
and is the author of JavaScript: Novice to Ninja and Jump Start Sinatra. He also
produced the Getting Started With Ruby video tutorials for SitePoint Premium
and has written a number of articles on the SitePoint website. He was born in
the city of Manchester in the UK, where he still lives, and he teaches
Mathematics and Computing at a local high school. You can find him on
Twitter @daz41261.

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand
content for web professionals. Visit https://www.sitepoint.com/ to access our
blogs, books, newsletters, articles, and community forums. You’ll find a stack
of information on JavaScript, PHP, Ruby, mobile development, design, and
more.

1. https://twitter.com/daz4126

ii Learn to Code with JavaScript

https://twitter.com/daz4126
https://www.sitepoint.com/

Table of Contents

Preface.. xix

Who Should Read This Book? ... xx

Conventions Used ... xx

Supplementary Materials.. xxi

Chapter 1: Press Start ... 1

Programming ..2

Algorithms ..3

Pseudocode.. 6

A Brief History of Programming...7

JavaScript .. 8

The History of JavaScript.. 8

JavaScript Versions.. 10

Hello, World! Your First JavaScript Program........................ 11

The Console?... 11

JavaScript in the Browser..13

The Structure of a Web Page ..13

I Can Code a Rainbow...15

Table of Contents iii

A Programmer’s Mindset.. 18

Challenges .. 19

Summary.. 19

Chapter 2: Programming Basics....................21

Comments... 22

Programming Grammar.. 23

Statements .. 23

Blocks...24

Whitespace ... 25

Data Types ... 25

What Type Are You?.. 27

Operators..28

Variables...28

Declaring and Assigning Variables28

Constants ...30

Assignment...31

Unde!ned... 33

Naming Variables ... 33

Pop-up Interaction .. 35

iv Learn to Code with JavaScript

Alert Box ... 35

Prompt Box..36

Con!rm Box... 37

Hello name ...38

Challenges ..40

Summary.. 41

Chapter 3: Letters and Words......................... 42

Chars and Strings...43

Creating Strings in JavaScript...44

Escaping Values..45

Find the Char ..45

Finding Chars..47

How Long Is a String?...48

String Arithmetic ...49

Finding the Last Character in a String51

What’s In a Name? ... 52

Changing Cases .. 53

Trimming Space ..54

More Methods..55

Table of Contents v

Template Literals ...55

Mad Libs.. 57

Challenges ..59

Summary..59

Chapter 4: Numbers.. 61

Integers and Floats ...62

Numeric Literals ...63

Exponential Notation..64

When Is a Number Not a Number?...64

Arithmetic Operations..65

Varying Variables ...67

Increments ..69

How Old?..70

Calculations with Numbers and Strings71

Converting Between Strings and Numbers 72

Random Numbers ... 73

More Methods ...55

Challenges .. 77

Summary.. 77

vi Learn to Code with JavaScript

Chapter 5: Collections... 79

Arrays.. 80

Arrays in JavaScript...82

Adding Values to Arrays..83

Removing Values from Arrays..84

Finding the Length of an Array 86

Popping and Pushing..88

Shifting and Unshifting ..92

The Spread Operator ..94

Slicing and Splicing ...97

Finding If a Value Is in an Array................................... 100

Joining Array Items into a String101

Reversing the Order of Array Items102

Sorting Array Values ...102

More Methods..55

Multi-dimensional Arrays...103

Challenges ... 105

Summary... 106

Chapter 6: Logic.. 107

Table of Contents vii

Booleans ... 108

Logical Operators ..110

Guess Who? ..110

Negation (Logical NOT) ..111

Logical AND .. 113

Logical OR.. 115

Comparison... 116

Equality.. 116

Soft Equality.. 117

Hard Equality .. 118

Inequality.. 119

Greater Than and Less Than... 119

Flow Control ...120

If Statements .. 121

Else Statements ..123

The Ternary Operator ...124

What’s Your Favorite Animal? ..125

Switch Statements...127

Rock Paper Scissors ...129

Challenges ..132

viii Learn to Code with JavaScript

Summary..132

Chapter 7: Going Loopy 134

What’s a Loop?..135

In!nite Loops..137

While Loops ...138

Ten Green Bottles...138

Do–while Loops.. 141

For Loops ...143

Nested Loops ... 146

Challenges ... 150

Summary... 150

Chapter 8: Functions... 152

Functions in JavaScript ...155

De!ning a Function..156

Calling Functions ..156

Function Expressions..158

Arrow Functions ..159

Return Values ... 160

Table of Contents ix

Parameters and Arguments.. 161

Default Parameters .. 164

Random Integers ... 166

Assigning Return Values to Variables...................... 168

Callbacks .. 169

Sorting Arrays with a Callback 171

Choosing the Right Type of Function...................................173

Challenges .. 174

Summary.. 174

Chapter 9: Objects.. 176

Properties and Methods ...177

Creating Objects in JavaScript...179

Methods ... 180

Guess Again .. 181

Creating Objects from Variables182

Properties and Methods ...177

Calling Methods ..185

Adding More Properties and Methods 186

Changing Properties .. 186

x Learn to Code with JavaScript

Removing Properties ..187

Nested Objects..187

this .. 188

Roll the Dice .. 190

Challenges .. 191

Summary..192

Chapter 10: The Document Object

Model... 193

The Document Object Model ..195

Getting an Element ...197

Updating the HTML ... 198

Getting Multiple Elements ...200

Getting Elements by Tag Name201

Getting Elements by Their Class Name.................. 202

Query Selectors.. 203

Navigating the DOM Tree..204

Child Nodes..204

Parent Node...206

Creating Dynamic Markup.. 207

Table of Contents xi

Creating an Element .. 207

Adding Elements to the Page208

Building Elements Node by Node..............................210

Insert Before ... 211

Removing Elements from a Page...............................213

Replacing Elements on a Page....................................214

Getting and Setting Attributes...215

Getting an Element’s Attributes215

Setting an Element’s Attributes...................................216

The className Property..216

The classList Property..217

Doing It with Style..218

Being Classy..219

A Simple To-do List.. 220

Challenges ... 223

Summary... 224

Chapter 11: The Main Event..............................225

Event-based Programming.. 226

Event Listeners ..227

xii Learn to Code with JavaScript

Event Handlers ..227

Click Events ... 229

Clicking Elements ... 230

The Event Object ..231

Forms.. 232

Submitting a Form .. 233

Preventing Default Behavior .. 236

Keyboard Events ... 237

Live Input... 239

Mouse Events..240

Mouse Move...240

Mouse Over ...241

Mouse Up and Down ... 243

Removing Event Listeners .. 245

Simple To-do List .. 247

Event Delegation ... 250

Challenges ... 252

Summary... 252

Chapter 12: Going Loopy Over Arrays...254

Table of Contents xiii

Spreading Strings ... 255

Array Iteration Methods ... 257

forEach.. 258

Map..261

Reduce ... 265

Filter ... 267

Guess Who Filter ...268

Find .. 270

Every ..271

Some ..271

Iterating over Objects ..272

Keys and Values... 273

To-do List Project...274

Challenges ... 278

Summary... 279

Chapter 13: Let’s Get Functional281

Named Parameters.. 282

The Rest Parameter ... 284

Recursive Functions .. 284

xiv Learn to Code with JavaScript

Scope..286

Hoisting..290

Functions That Return Functions ...291

Closures... 293

Closure Countdown! ..296

Functional Programming... 297

Pure Functions ..298

Pure Array Updates..300

Higher-order Functions .. 303

Challenges ...305

Summary...305

Chapter 14: Getting Classy...............................307

Copying Objects in JavaScript ..308

Object-oriented Programming..313

Encapsulation...314

Polymorphism..315

Inheritance...316

Classes..317

Classes in JavaScript ..318

Table of Contents xv

Classy Components..321

Inheritance in JavaScript.. 323

The Pet Unicorn Game ... 326

Challenges ... 330

Summary..331

Chapter 15: It’s About Time..............................332

The UNIX Epoch .. 333

Times and Dates.. 333

Getter Methods .. 335

Setter Methods... 338

What Day Will It Be? ..340

Timing Functions... 342

setTimeout.. 342

Asynchronous Programming .. 344

Intervals ... 347

Stopwatch ... 349

Animation.. 353

Jumping Frog... 353

Cookie Grabber Game.. 356

xvi Learn to Code with JavaScript

Challenges ... 362

Summary... 363

Chapter 16: End Of Line364

Coding Best Practice... 365

Coding Tools .. 365

Style Guides ...366

Version Control ... 367

Testing ..368

Going Further with JavaScript...368

Advanced JavaScript ...368

Libraries.. 370

Node.js...371

Learn Another Language .. 372

Always Learning ...374

Carry On Coding ...374

Web Applications .. 375

Game Development... 378

Mobile App Development ... 379

Desktop App Development..380

Table of Contents xvii

Internet of Things..380

Challenges ...380

Summary..381

xviii Learn to Code with JavaScript

Preface
I still remember my first ever computer: it was an Acorn Electron, and I loved
using it to play games such as Sphinx Adventure (a text-based adventure),
Starship Command (a hard-as-nails shoot-em-up) and Chuckie Egg (pure
platform action). But the real fun started when I realized that I could write my
own code in a language called BASIC. My initial thoughts were that it had been
named ironically, as it appeared to be anything but basic. It had line numbers
that went up in multiples of ten and strange-sounding commands such as GOTO,
REM and CLS that just looked like gobbledygook at first. But with lots of practice
(and many mistakes), it started to make sense and I became fascinated by how
the code allowed me to control what the computer did. I would spend hours
copying code examples out of magazines (yes, it was that long ago!) and then
play around making my own modifications. It was this experimentation and
tinkering with code that helped me understand how it worked. I had been well
and truly bitten by the coding bug.

My enjoyment of coding comes from the fact that it requires you to follow the
precise rules of the programming language while also encouraging you to
think creatively to achieve your desired outcome. The essence of coding is
turning the abstract into the practical. When I set about writing this book, my
aim was to introduce the basic concepts of coding and back the theory up
with plenty of practical examples. Each chapter ends with coding challenges
that will help consolidate your understanding. I encourage you to really dig into
these challenges by not only trying to complete them, but also trying to
extend them with your own modifications.

It was always games that I wanted to program, and I’ve tried to make as many
of the challenges in the book as fun as possible, both to code and to play. And
by the end of the book, you’ll have coded a couple of fully playable games.
You’ll also have the foundations in place for creating interactive websites and
be on the right path to writing full-scale applications.

Programming is a creative endeavor; it’s fundamentally about creating things.

Preface xix

You need your code to be precise and concise, but you also need to inject it
with some flair to make it come alive. This mix of precision and ingenuity is
what continues to make coding enjoyable for me, many years after starting
out on my Acorn Electron. My hope is that this book will inspire you to start
coding and that you’ll continue to enjoy it for a long time after you’ve finished
it.

Who Should Read This Book?
This book is for people with no prior programming experience who would like
to learn how to code. We use JavaScript in this book to teach you, so at the
end you'll have a good understanding of JavaScript, but you can apply the
principles you’ve learned to other programing languages, too.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout
this book to signify different types of information. Look out for the following
items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will
be displayed:

function animate() {

⋮
new_variable = "Hello";

}

xx Learn to Code with JavaScript

Some lines of code should be entered on one line, but we’ve had to wrap them
because of page constraints. An ➥ indicates a line break that exists for
formatting purposes only, and should be ignored:

URL.open("https://www.sitepoint.com/responsive-web-

➥design-real-user-testing/?responsive1");

Tips, Notes, and Warnings

Supplementary Materials
https://www.sitepoint.com/community/ are SitePoint’s forums, for help on
any tricky problems.
books@sitepoint.com is our email address, should you need to contact us
to report a problem, or for any other reason.

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the
topic at hand. Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up.

Preface xxi

https://www.sitepoint.com/community/

Press Start
Chapter

1

1 Learn to Code with JavaScript

So you want to learn to program? You’ve made a good decision. Programming
is a fantastic skill to learn, and it’s great fun. It can be used to build the next
generation of apps, hack a Raspberry Pi or Arduino, write the latest
blockbuster games—and a ton of other things. In fact, once you learn how to
program, the only limit is your imagination.

In this chapter, we’ll briefly survey the history of programming, look into what a
computer program actually is, and then introduce the JavaScript
programming language, which we’ll be using to learn how to program.

We’ll also be jumping right in and getting started with some programming,
writing not one, but two programs in JavaScript!

Here’s what this chapter will cover:

what programming actually is
algorithms and pseudocode
a brief history of programming
an introduction to the JavaScript language
“Hello, World!”—your first JavaScript program
JavaScript in the web browser
“I Can Code a Rainbow”—your second JavaScript program
the mindset of a programmer

We’ll also finish the chapter with some programming challenges to help you to
test your newfound skills—as we’ll do at the end of every chapter in this book.

Programming
Programming is about making computers do what you want them to do. A
computer program is basically a series of instructions that tell your computer
how to perform a task. Unfortunately, computers don’t speak the same
language as us.

For example, you can’t just write “change the color of the circle to blue” and
expect the computer to understand. A programming language acts as an

Press Start 2

intermediary: it’s a language that can be understood by both computers and
humans.

Learning to program is a bit like learning a foreign language, except computers
can be very picky about grammar (even more so than my French teacher was!).
You need to make sure you get everything in the right place, and the syntax
needs to be just right. Computers are powerful, and you can get them to do
some truly impressive stuff, but they’ll also fall to pieces if just one bracket is
out of place!

Writing a program is basically just writing a set of instructions for a computer
to follow. The problem is, they have to be very precise instructions. Any slight
ambiguity, and the computer will do something completely different from
what you had in mind—or it might even crash.

Algorithms

The word algorithm is used quite frequently these days. You might have heard
of the “Instagram algorithm” or the “Google search algorithm”. But what
exactly is an algorithm? The word “algorithm” is a Latinization of the name of a
Persian mathematician, Al-Khwarizmi, who wrote the first algebraic textbook
and liked to explain his methods using a step-by-step approach.

3 Learn to Code with JavaScript

1

2

3

4

5

6

7

8

9

10

1-1. Al-Khwarizmi

This led to the word algorithm being used to describe any step-by-step
method. It should be clear what to do at each step and what each step does.
For example, here’s an algorithm for making a cup of tea:

Boil water in a kettle.

Get a cup.

Get a teabag.

Put the teabag in the cup.

When the kettle has boiled, pour the water into the cup.

Leave it to brew for two minutes.

Take the teabag out of the cup.

Get milk.

Add milk to the tea.

Stir the tea.

Press Start 4

1-2. Making tea

Those instructions seem fairly basic and straightforward, but there are quite a
few assumptions made, and some steps are a bit ambiguous. How do you boil
a kettle? Where do you get the cup and teabag from? How much water should
I pour into the cup? These questions are left unanswered. This is usually okay,
as most people are familiar with the process of making tea, but someone who
had never seen a cup of tea being made might struggle to follow some of the

Milk after Tea

I realize my instruction to add milk after the tea is made might be
controversial. If you think milk should be added ;rst, I’m sorry, but
you’ll just have to accept that you’re wrong on this one.

5 Learn to Code with JavaScript

steps (although I accept that it might be very hard to find such a person).

Pseudocode

Pseudocode is pretend code you can write to illustrate what a program does
without having to worry about the complexities of an actual programming
language. It still follows the conventions and structure of a program and uses
precise commands, but without the specifics of a language.

For example, the instruction “display a message on the screen” might be
written in pseudocode as display(message) , whereas in the Python
programming language it would be written as print(message) . Notice that the
Python code uses the very specific notation of print , which is the command
it uses to display messages on the screen. Other languages use different
commands to basically do the same thing.

The example of making a cup of tea could be written in pseudocode like so:

boil(water,250ml) in kettle

get(cup) from cupboard

get(teabag) from box

put(teabag) in cup

when(kettle boils)

{ pour(water, 250ml) in cup }

wait(2 mins)

remove(teabag) from cup

get(milk, 20ml)

add(milk, 20 ml) to tea

stir(tea)

A programmer who knows a how to program in a specific language should be
able to follow a pseudocode example and then write it in their language of
choice. Pseudocode is useful for planning out a program before you start
coding, and it also makes it easier to share ideas between programmers who
use different programming languages.

Press Start 6

A Brief History of Programming
The earliest computers were programmed using punched cards to represent a
binary number system, the number system that computers use. The binary
system is made up entirely of 1s and 0s that loosely translate to “on” and “off”.
On the cards, a hole represented 1 and no hole 0 . After this, people started
to develop languages that could be used to “speak” to the computer.

1-3. Early computers used punched tape to store data

The first computer programs were written in machine code and assembly
language. These are low-level programming languages that are closely
associated with a computer’s hardware. This means they can be difficult
languages to program in because they involve writing abstract code that’s
heavily tied to a computer’s architecture. In fact, it’s rare to find anyone who
programs in machine code or assembly nowadays, but those who do will work
closely with a computer’s hardware—for example, writing device drivers, or
working on embedded systems.

High-level programming languages use abstractions that make the code

7 Learn to Code with JavaScript

easier for humans to read and write. Programs are written in a language such
as Swift, C# or Java, which is then compiled into machine code and executed.
The programs written using these languages are very fast, making high-level
languages suited to writing games and professional business software where
speed is important.

Scripting languages are another type of high-level language, but they’re
interpreted, instead of compiled, which means that they’re translated into
machine code when the program runs, rather than beforehand. This means
that they’re often slower than compiled languages, although interpreters are
becoming more sophisticated, making some interpreted languages almost as
fast as compiled languages. Some common scripting languages that you
might hear about are Python, Ruby and, of course, JavaScript.

JavaScript
The language we’ll be learning in this book is JavaScript, often referred to as
the language of the Web. Pretty much every web browser can run JavaScript,
making it one of the most popular programming languages in the world.

JavaScript is a great language to use when learning how to program. It has a
low barrier to entry: all you need to be able to program in JavaScript is a web
browser. It’s easy to get started, and the basics are easy to pick up. It’s also a
flexible and expressive language that can create a variety of powerful
programs.

JavaScript is a scripting language that’s interpreted and compiled at runtime.
This means that it requires an engine to interpret and run a program. This is
usually done by a web browser, but there are JavaScript engines that can run
programs without a browser. JavaScript is also a dynamic language, which
means that elements of a program can change while it’s running, unlike a
compiled language such as C++.

The History of JavaScript

The World Wide Web started life as a bunch of pages linked by hyperlinks.

Press Start 8

Users soon wanted more interaction with these pages, so Netscape (an early
browser vendor) asked one of their employees, Brendan Eich, to develop a
new language for their Navigator browser. He came up with a prototype
scripting language called Mocha in just ten days. The new language was
renamed LiveScript, but was then hastily rebranded as JavaScript so that it
could benefit from the publicity that Sun Microsystems’ Java language was
attracting at the time.

The name “JavaScript” has often caused some unfortunate confusion, with
JavaScript often thought of as “Java lite”, even though the two languages are
completely unrelated.

JavaScript made its debut in 1995 and ushered in an exciting new era of being
able to program a web browser to do stuff. (Unfortunately, in the early days,
the most common use was to create pop-up ads and spinning logos!)

By 2005, sites such as Google Maps and Gmail started to appear, and they
demonstrated that JavaScript was capable of creating rich internet
applications that looked and behaved like native desktop applications. This
progress has continued at pace, and almost every website today will use
JavaScript in some way. JavaScript has also found its way into a variety of
other things such as smartphone apps, wearables and databases.

1-4. Google Maps showed that JavaScript could be used to create advanced web applications

9 Learn to Code with JavaScript

JavaScript Versions

In 1996, a decision was made to standardize JavaScript with the help of the
European Computer Manufacturers Association, who would host the
standard. This standardized language was called ECMAScript to avoid
infringing on the “Java” trademark. This caused even more name-based
confusion, but eventually ECMAScript was used to refer to the specification,
and JavaScript was used to refer to the language itself. This is still the case,
although there’s constant debate about changing the name. One suggestion is
to officially rename JavaScript just as “JS”—which it is often called anyway
(just as Michael Jordan is often referred to as “MJ”).

When JavaScript was standardized in 1997, the specification was known as
ECMAScript version 1. In 2015, it was decided to publish a new specification
every year, with the version named after the year it was published. As a result
of this change, ECMAScript version 6 was renamed ES2015 when it was
published, and since then there’s been a new version of JavaScript every year.
In this book, we’ll use the most up-to-date version of JavaScript, but it’s always
worth keeping up to date with the latest additions and changes to the
language each year.

In this book, we’ll assume you’re using a modern browser that’s capable of
running the latest version of JS. (Try to update to the latest version of
whichever is your favorite browser.)

Backward Compatibility

An important concept in the development of the JavaScript
language is that of backward compatibility. This means that all old
code must work the same way when interpreted by an engine
running a new speci;cation. (It’s a bit like saying that a PlayStation 5
must still be able to run any games created for all the previous
PlayStations). This is to prevent JavaScript from “breaking the Web”
by making drastic changes that would mean old, legacy code used
on some websites might not run as expected in modern browsers.

Press Start 10

That’s enough talk about JavaScript. Let’s write your first program!

Hello, World! Your First JavaScript Program
It’s a tradition when learning programming languages to start with a Hello,
World! program. This is a simple program that outputs the phrase “Hello,
World!” to announce your arrival to the world of programming.

We’re going to stick to this tradition and write a Hello, World! program in
JavaScript. It will be a single statement that logs the phrase “Hello, World!” to
the console.

The Console?

A console is basically a command prompt used to run code. You can enter a
snippet of code and it will be evaluated and the output logged to the screen. A
console is a great way to test and experiment with code. You can get JS
consoles to run in your computer terminal as well as JS console apps for
smartphones and tablets. There are also many websites that run a console in
the browser, and most browsers also have a built-in console as well.

In this book, we’ll mostly use the online https://jsconsole.com as our console.
I’d recommend that you use it to try running the code snippets that appear
throughout this book to get a feel for how they work. It’s always better to get a
feel for typing in the code rather than just reading it. And it also means you can
experiment with the code by making changes and checking the results.

Another option for a console is to use the one built into your browser. To open
it, simply follow the instructions below, depending on your browser:

Firefox: hold Shift + Ctrl + J (or Option +⌘ + J on a Mac) or press F12
Safari: hold Option +⌘ + C (note that you need to enable the Developer

Menu in preferences first)
Chrome: hold Shift + Ctrl + J (or Option +⌘ + J on a Mac) or press F12
Edge/Internet Explorer: press F12

11 Learn to Code with JavaScript

https://jsconsole.com/

Once you open the console in your browser, it will act exactly the same as
jsconsole.com. The image below shows Chrome’s built-in console.

1-5. Chrome's built-in console

Okay, let’s write our first program. Go to jsconsole.com or open up your
browser’s console and type the following code, then press the Enter key:

console.log('Hello, World!');

If everything went to plan, you should see “Hello, World!” displayed on the
screen—just as in the screenshot below.

Enter? Return?

I told you to press the Enter key on your keyboard above. Just to be

clear, on most PC keyboards you’ll see an Enter key towards the

right-hand side. (Sometimes it will just be an arrow symbol: ↵.) On

Mac keyboards you’ll mostly see a return key instead. For

simplicity, I’ll just refer to it as Enter from here on.

Press Start 12

1-6. Hello, World!

Congratulations! You’ve just written your first JavaScript program! It might not
look like much, but a wise person once said that every programmer’s journey
begins with a single line of code—or something like that, anyway!

JavaScript in the Browser
I said earlier that JavaScript is an interpreted language and needs a host
environment to run. Because of its origins, the main environment that
JavaScript runs in is the browser, although it can be run in other environments
as well.

By far the most common use of JavaScript is still to make web pages
interactive. Because of this, we should have a look at what makes up a web
page before we go any further.

The Structure of a Web Page

Nearly all web pages are made up of three key ingredients: HTML, CSS, and
JavaScript. HTML is used to mark up the content of the page, CSS is the
presentation layer that dictates what the page will look like, and JavaScript
adds the interactivity that makes the page do stuff. Together, these three
technologies are known as the three layers of the Web. It’s possible to add
CSS and JavaScript in HTML, but it’s good practice to keep the code for each
layer separate.

13 Learn to Code with JavaScript

We won’t be focusing on the HTML and CSS parts of a web page in this book,
as we’re here to learn how to program. Some HTML and CSS will occasionally
be required, though, to provide the graphical elements that our programs will
need to interact with.

To save you spending a long time setting up and coding web pages, we’ll be
using the CodePen1 website for many of the examples in this book. This site
sets everything up for you so that you only need to add any HTML, CSS and JS
code to create a functioning web page. It also keeps the three layers of the
Web separate in three sections at the top of the editor, as you can see in the
screenshot below.

1-7. The CodePen editor separates HTML, CSS and JS into three distinct sections

CodePen also offers a console. At various points throughout this book, you’ll
find it convenient to enter JavaScript code in the JS section of CodePen and
then see how that code performs behind the scenes by opening the CodePen
console. You can access it by clicking the Console tab at the bottom left of the
CodePen interface.

1. https://codepen.io

Press Start 14

https://codepen.io/

Let’s try writing our second program.

I Can Code a Rainbow
We’re going to finish this chapter with a second JavaScript program that will
run in the browser. This example is much more complicated than the previous
one and includes a lot of concepts that will be covered in more depth in later
chapters, so don’t worry if you don’t fully understand everything that’s going
on at this stage! The idea is to show you what JavaScript is capable of doing
and interactively introduce some of the important concepts that will be
covered in the upcoming chapters.

Head over to the CodePen website and start a new Pen.

Add the following to the HTML section:

<button id='button'>click me</button>

This will display a button with an ID of button . The ID attribute is a useful way
for our JavaScript program to identify, and manipulate, certain elements on
the page. It should look similar to the one in the image below.

Online Editors and Working Offline

There are many other options for running JavaScript code alongside
HTML and CSS. Just search for “online JavaScript editor” to see
more online options. It’s also possible to work of<ine (that is, just on
your computer) by writing the code in a text editor and opening it up
in a browser. See “HTML5 Template: A Basic Boilerplate for Any
Project”2 for instructions on how to set this up.

2. https://www.sitepoint.com/a-basic-html5-template/

15 Learn to Code with JavaScript

https://www.sitepoint.com/a-basic-html5-template/
https://www.sitepoint.com/a-basic-html5-template/

1-8. Click Me

The actual JavaScript code goes in the JS section. Add the following lines of
code:

const button = document.getElementById('button');

const colors = ['red','orange','yellow','green','blue','rebeccapurple','violet'];

function change() {

document.body.style.background = colors[Math.floor(7*Math.random())];

}

button.addEventListener('click', change);

The first line of our program creates a variable called button . (We cover
variables in Chapter 2.)

We then use the document.getElementById function to find the HTML element
with the ID of button . This is the button element we created in the HTML
section. This is assigned to the variable button , so from now on, whenever we
refer to button , the program knows we’re talking about that button. (Finding
HTML elements is covered in Chapter 10.)

Press Start 16

We now create another variable called colors that’s assigned to an array
containing a list of strings that represent different colors of the rainbow. (We
cover strings in Chapter 3 and arrays in Chapter 5.)

Then we create a function called change . (We cover functions in Chapter 8.)
This sets the background color of the web page’s body element to one of the
colors in the colors array. (Changing the look of a page is covered in Chapter
10.)

The change function also uses a random number to pick a color at random
from the array. (Numbers, including generating random numbers, are covered
in Chapter 4.)

The program ends with an event handler, which listens out for when the
button is clicked. When this happens, it runs the function we just defined.
(Events and how to handle them are covered in Chapter 11.)

Try clicking on the button a few times. If everything’s working correctly, the
background should change to every color of the rainbow!

1-9. I Can Code a Rainbow

You can see my code on CodePen3.

17 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/PoGgVKB

A Programmer’s Mindset
Before we finish the chapter, we need to have a word about programming
style. Obviously the point of writing a computer program is to make it do what
it’s supposed to do, but the style of the program is also important. Your code
should be clear and concise, and also be consistent in the way it follows
conventions—from the names you choose for variables to the amount of
whitespace you leave between blocks of code. Your code should also be easy
to read and include comments that explain what the code does.

You should always be looking to improve your code to make it more efficient
and easier to follow. This process is called refactoring, and should be done
regularly so that your code stays up to date and doesn’t become stale.

An important principle in programming is the rule “Don’t Repeat Yourself”, or
DRY. This means that you should always be looking to avoid repeating lots of
code. Following this principle will help make your code more flexible and easier
to maintain and update. (It’s always easier to change one bit of code than
hundreds!) If this sounds a bit like programmers are lazy, then you’re
absolutely right! A good programmer will always be looking to write code that
does the job in the most efficient and elegant way possible. Less code means
less chance of bugs, and it’s easier to maintain.

A good program doesn’t just appear instantly. It starts as a plan, and grows
organically into its finished state. Developing a program involves a lot of

Rebecca Purple

rebeccapurple is the of;cial name for the color with a hex code of

#663399 . It’s named after the daughter of the web designer Eric

Meyer, who tragically died, aged just six years old. This was her
favorite color and it was added to the of;cial list of CSS colors as a
tribute to her.

3. https://codepen.io/SitePoint/pen/PoGgVKB

Press Start 18

1

2

3

4

problem solving, and sometimes you’ll take some wrong turns and get stuck.
This is normal, and you should be prepared to make changes and adapt. A
good plan and well-commented code that follows the DRY principle will stop
your code becoming a complex mess that’s impossible to follow and
comprehend.

Challenges
Try writing pseudocode to describe some common tasks such as
brushing your teeth or riding a bike.

Write pseudocode that will find the largest number in a list of numbers.

Try logging some different messages to the console using
console.log() . You can see my code on CodePen4.

Add some more colors to the array in the “I Can Code a Rainbow”
program. You can see my code on CodePen5.

Summary
An algorithm is a set of step-by-step instructions that complete a specific
task.
Pseudocode is used to write programs without using a specific
programming language.
JavaScript was created in 1995 and is considered to be the language of the
Web.
JavaScript’s main environment is the browser, but it can also run in other
environments.
Each version of JavaScript has to be backward compatible with older
versions.
Code should be easy to read and regularly refactored to keep it running
smoothly.

4. https://codepen.io/SitePoint/pen/eYdoxGN
5. https://codepen.io/SitePoint/pen/VwKNgMM

19 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/eYdoxGN
https://codepen.io/SitePoint/pen/VwKNgMM

Remember the DRY principle when coding. Don’t Repeat Yourself!

In the next chapter, we’re going to start looking at some programming
fundamentals. Let’s get going!

Press Start 20

Programming
Basics

Chapter

2

21 Learn to Code with JavaScript

In the last chapter, we were introduced to programming and we even got our
hands dirty writing a few programs.

In this chapter, we’re going to look at some of the basics of programming and
write some more programs.

We’ll cover the following topics:

commenting your code
programming grammar
data types
variables
pop-up boxes

Comments
The first task on your journey to becoming a programmer is learning how to
“comment” your code. Comments in programming are similar to marginal
notes in a book: they’re notes that explain the purpose and rationale of the
code. This may seem a strange place to start, because comments are ignored
by the programming language. They don’t do anything. Despite this,
comments are extremely important. Well-commented code is the hallmark of
a skilled programmer. Comments make it easier for anybody reading your
code to understand what’s going on—including you! Believe me, you’ll be
thankful you commented your code when you come back to read it after a few
weeks. You don’t need to write an essay, though, but just enough so that it’s
clear what the code is supposed to do.

How to add comments varies between programming languages. In JavaScript,
there are two types of comment:

Single-line comments start with // and finish at the end of the line:

// this is a short comment

Programming Basics 22

Multi-line comments start with /* and finishing with */ :

/* This is a longer comment
anything here will be ignored
This is a useful place to put notes
*/

It’s good practice to write comments in your code, but make sure that the
comments are useful and not just describing what’s fairly obvious from the
code itself. For example, the following comment doesn’t really add anything
that isn’t obvious from the code itself:

// log the message to the console

console.log(message);

It’s useful to think of comments as notes to your future self, to remind you
about what your thinking process was when you wrote that particular piece of
code. For example, here’s a comment explaining that the code is activated by a
user clicking the left arrow key:

// user has clicked on the left arrow key so move left

character.style.left = left - speed + 'px';

Programming Grammar
As I mentioned in the last chapter, a programming language is similar to a
spoken language, in that each has its own grammatical rules and quirks. In this
section, we’re going to take a look into how a programming language is
written, with some specific JavaScript examples.

Statements

A program is made up of a series of statements. For example, here are two
statements in pseudocode:

23 Learn to Code with JavaScript

store response to 'Please enter your name.' as name

print name to screen

In JavaScript, this would be:

const name = prompt('Please enter your name.');

alert(name);

Blocks

A block is a series of statements that are collected together. Different
programming languages have various ways of collecting statements inside
blocks. Some do it by using keywords to signify the start and end of blocks,
while others use indentation to signify a block. JavaScript uses curly braces to
enclose a block of code, as can be seen in the example below:

{

// this is a block containing a comment and two statements

const name = prompt('Please enter your name.');

alert(message);

}

Note that blocks don’t need to be terminated by a semicolon.

Ending Lines with Semicolons

I ;nished each line above with a semicolon. Strictly speaking, it isn’t
necessary to end a statement with a semicolon when it’s on its own
line, but it’s considered to be good practice, and it’s what I’ll be
doing throughout this book. I’d encourage you to do the same so it
becomes habit. Believe me, it will be useful by the time you’re
writing larger, more complex programs!

If you have more than one statement per line, you do need to
separate them with a semicolon. But it makes your code neater and
more readable to have each statement on its own line.

Programming Basics 24

Whitespace

Whitespace (such as spaces, tabs, and new lines) is used to separate different
parts of your code. JavaScript allows you to use as much whitespace as
required to format your code so that it’s neat and easy to read. The
whitespace is basically all ignored by the program itself. Examples of this
include using spaces to indent nested code, and multiple lines to separate
blocks of code. In fact, this is highly recommended, since good code should be
easy to follow.

In some languages, whitespace is used as part of the program. For example,
Python explicitly uses new lines to start a new statement, and it uses spaces
at the start of a line to start a new block of code.

Data Types

Every value in a programming language has a type that describes the data it
contains. This determines how the language will interpret and use the value.
The data type determines what values it can take and what it can do.

Primitive data types, or just primitives, are implemented at the lowest level
of a programming language, essentially making them the basic building blocks
of any program. Primitives are immutable, which means they can’t be changed
or altered. Most languages include some variation of the following primitive
data types:

Character (or char): a single character such as letters, numbers or
symbols—such as T , 3 , @
String: a collection of characters inside quote marks—such as 'Hello' ,
"123!"

Integer: a whole number that can be positive or negative—such as 7 ,
-100 , 0

Float: numbers with a fractional part, usually expressed as a decimal—such
as 2.5 , 3.14159 , -7.0

Boolean: a Boolean value can either be “true” or “false”

25 Learn to Code with JavaScript

JavaScript doesn’t have a char primitive data type, but it does have “strings”
(which we’ll cover in the next chapter), and a char could be represented by a
single-character string.

JavaScript doesn’t differentiate between integers and floats either. It just has
a single primitive data type of Number , which we’ll cover in Chapter 4.

Booleans are one of the primitives included in JavaScript, and we’ll go through
them in Chapter 6.

Composite data types are made up, or composed, of primitive data types in a
structured format. JavaScript has two main composite data types: “arrays”
(which we’ll cover in Chapter 5), and “objects” (which we’ll introduce in Chapter
9). Both of these composite data types are mutable, which means they can be
updated after they’ve been created.

symbol, bigint and undefined

JavaScript also has three other primitive values: symbol , bigint

and undefined . We won’t be covering symbol and bigint in this

book, as they don’t tend to get used as much as the other primitive
values. However, undefined is brie<y covered later in this chapter,

since you’ll probably see it every now and then in your code. You can
read more about all the different primitive data types used in
JavaScript in the Mozilla docs1.

Map and Set

JavaScript also has two other composite data types2 called “Map”
and “Set”, but we won’t be covering them in this book.

1. https://developer.mozilla.org/en-US/docs/Glossary/Primitive
2. https://javascript.info/map-set

Programming Basics 26

https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://javascript.info/map-set

What Type Are You?

Let’s do some coding to explore the different types that JavaScript uses.
There’s a special operator called typeof that can be used to find out what
data type a value is. You simply enter typeof , followed by the value, and its
type will be returned.

If a value isn’t one of the primitive data types, JavaScript will return either
object or function . (These will both be covered in later chapters.)

Let’s open up the console again to do some tests. (Reminder: once you’ve
typed the first line—such as typeof 'hello' —press the Enter key to get the

result, << 'string' .) Try entering the following code—one line at a time—to
investigate the type of various expressions:

typeof 'hello'; // see Chapter 3

<< 'string'

typeof 10; // see Chapter 4

<< 'number'

typeof true; // see Chapter 6

<< 'boolean'

typeof { name: 'JavaScript' }; // see Chapter 9

<< 'object'

typeof [1, 2, 3]; // this is an array, covered in Chapter 5

// it's also considered an object

<< 'object'

typeof function(){ }; // this is an empty function

// more interesting functions are covered in Chapter 8

<< 'function'

Try a few more of your own, until you’re confident about what constitutes a
string, number and Boolean value.

27 Learn to Code with JavaScript

Operators

An operator applies an operation to a value, which is known as the operand. A
unary operator only requires one operand. typeof is an example of a
JavaScript operator that we’ve already used:

typeof 'hello';

<< 'string'

The operator is typeof and the string 'hello' is the operand.

A binary operator requires two operands. For instance:

3 + 5

The operator is + and the numbers 3 and 5 are the operands.

There’s also a ternary operator that’s used to evaluate logical statements and
requires three operands. This is covered in Chapter 6.

Variables
Variables are used in programming languages to refer to a value stored in
memory. They give us a convenient way to refer to different values in a
program. They can be thought of as labels that point to different values.
Variables are a useful way of dealing with long expressions, as they save us
from typing these expressions over and over again.

Declaring and Assigning Variables

In most programming languages, variables have to be declared before they
can be used. That is, they need to be explicitly referred to in the code, and
possibly assigned a value.

In a strongly typed language, the type of the variable has to be declared with

Programming Basics 28

the variable. For example, if we were going to use the variable name for the
string 'Homer Simpson' , we might use the following code in a strongly typed
language:

let name:string = "Homer Simpson";

This not only sets the variable name to point to the string 'Homer Simpson' ,
but also declares that this variable will be a string. This will result in an error if
you try to assign the variable to another value that is not a string later in the
program.

Weakly typed programming languages don’t insist on explicitly stating what
type a variable is when it’s declared. The type is said to be implicit from the
actual value that’s assigned to it, although you could theoretically assign the
variable to a different type later in the program without any problems. In a
weakly typed language, the following code might be used to set the variable
name to be the string 'Homer Simpson' :

name = "Homer Simpson";

This still has the same effect of pointing the variable name to the string
'Homer Simpson' , but it doesn’t explicitly say that this variable is a string,

since this is implicit in the fact that it has been assigned to a string.

29 Learn to Code with JavaScript

JavaScript is a weakly typed language, so you don’t need to specify the type of
a variable when you declare it. This might seem to be a benefit at first,
although it can make debugging a program difficult when it isn’t clear what
type a variable should be.

Constants

Many languages also include constants, which work in a similar way to
variables, except that their value never changes. It’s common practice to use
all capital letters for constants. An example is the value of the constant pi (the
ratio of the circumference and diameter of a circle):

Duck Typing

A common concept used by dynamic programming
languages—such as Ruby and Python—is that of duck typing. This
is based on the phrase “If it walks like a duck and quacks like a duck,
then it’s a duck”.

The essence of this phrase is that there’s no need to worry about
the type of a value or object. If it does what it’s supposed to do, it
doesn’t matter what type it is. The focus is on checking that the
output of the code works as expected, rather than on the type of
input.

TypeScript

TypeScript3 is an extension of JavaScript that provides the option
to specify the type of variables explicitly when they’re
declared—effectively making it a strongly typed version of
JavaScript. It also adds some other features, and is designed to
make building large-scale applications in JavaScript easier.

3. https://www.typescriptlang.org

Programming Basics 30

https://www.typescriptlang.org/

PI = 3.14159;

JavaScript originally used the keyword var to declare all variables. More
modern versions of JavaScript have introduced the keywords const and
let — const to declare variables that can’t be reassigned to a new value, and
let to declare variables that will change during the program. You might still

see var used in some code examples, and it works in almost the same way as
using let 4.

Assignment

Assignment is the process of assigning a value to a constant or variable. Most
languages use the = operator to do this.

Let’s try declaring and assigning some variables in JavaScript, using the
console.

This example shows how we would declare a variable called name and assign
the value 'JavaScript' to it. Copy the following code into the console:

Constants in JavaScript

Despite the introduction of the keyword const , it’s important to

note that JavaScript still doesn’t support constants in the strictest
sense. Even though you can’t alter the value of a variable created
using const , if that variable contains an array or an object, you can

change its properties and values (because they are mutable). We’ll
cover this in more detail in later chapters, so there’s no need to
worry about it yet. For now, you can assume that the value of any
variables declared using const can’t be changed.

4. The biggest difference between var and let is to do with block scope, which is

discussed in Chapter 13

31 Learn to Code with JavaScript

const name = 'JavaScript';

The variable name now has a value of 'JavaScript' , so any reference to the
variable name will behave in exactly the same way as the string
'JavaScript' . We can see this by checking the type of the variable name:

typeof name;

<< 'string'

To see the value of a variable, simply type its name into the console and press
return:

name;

<< 'JavaScript';

Using const means that you can’t reassign the variable name to another
value. You’ll get an error message if you try. We can see this if we try to
reassign the value of name to 'JS' :

name = 'JS';

<< TypeError: Assignment to constant variable.

As you can see, we get an error message and the name variable is still
pointing to the string 'JavaScript' :

name;

<< 'JavaScript'

It may seem like a restriction to use const , but it actually helps make your
programs more predictable if values can’t change, and it helps to avoid any
bugs caused by unexpected changes in assignment.

Now let’s try declaring and assigning a value to a variable that can change. The
next example shows how we would declare the variable score and assign it a
value of 0 :

Programming Basics 32

let score = 0;

The value of the variable score would initially start as 0 , but it would be able
to change throughout the program.

Variables that have been declared using the let keyword can be reassigned
to another value at any point later in the program. This is done by simply
assigning them to a new value. For example, we could update the score

variable to a value of 5 like so:

score = 5;

Note that you don’t need to use let when you reassign a variable. It’s only
needed when you’re declaring it for the first time.

Unde!ned

undefined is a primitive data type that JavaScript assigns to any variable that
hasn’t been explicitly assigned a value. It’s basically JavaScript’s way of saying
“I can’t find a value for this”. For example, try declaring a new variable called
score in the console, but don’t assign a value to it:

let score;

Now take a look at that variable. You’ll see that JavaScript has assigned it a
value of undefined :

score;

<< undefined

Naming Variables

When naming constants and variables, you should try to give them sensible
names that describe what the variable represents. For example,

33 Learn to Code with JavaScript

characterSpeed is a better variable name than ac12 .

In JavaScript, variable names can start with any uppercase or lowercase letter,
an underscore (_), or dollar character ($). They can also contain numbers,
but they can’t start with them.

Here are some valid variable name examples:

$name

_answer

firstName

last_name

address_line1

Variable names are case sensitive, so ANSWER , Answer and answer are all
different variables.

When using multiple words for constant and variable names, there are two
conventions that can be used:

camelCase starts with a lowercase letter and then the first letter of each
new word is capitalized:

firstNameAndLastName

underscore separates each new word with an underscore:

first_name_and_last_name

JavaScript’s built-in functions use the camelCase notation, and this is probably
the best convention to follow when naming the variables in your code. The
most important thing to remember is to be consistent.

Programming Basics 34

Pop-up Interaction
JavaScript provides three different types of pop-up dialog boxes that provide
some simplistic interaction between the browser and the user.

Alert Box

An alert box can be used to display a message. The user has to click a button
to remove it.

Here’s an example that will display the message “Hello” in a dialog box:

alert('Hello');

2-1. Alert pop up

You can also use alert() to display the value of a variable:

Symbols in Variable Names

It’s generally not a good idea to use symbols such as $ and _ at

the beginning of your variable names, as a number of JavaScript
libraries do this, which could end up making things really confusing.
(A library is code written by someone else, for a speci;c purpose,
which you can use along with your own code.)

35 Learn to Code with JavaScript

const message = 'HELLO THERE!';

alert(message);

2-2. Alert pop up with a variable

Prompt Box

A prompt box allows the user to enter a response, which can then be stored in
a variable. In the following example, the user is asked to enter their name and
store their response in a variable called name :

const name = prompt('What is your name?');

2-3. Prompt pop-up box

Whatever is entered in the prompt box will now be stored in the variable

Programming Basics 36

name . We can type name into the console to see that it now holds the value
that was entered into the prompt box.

2-4. Answer to prompt is stored as a variable

Con!rm Box

A confirm box allows the user to confirm or cancel a request. The response
can be stored in a variable as true if the user clicks “okay” or false if they
click “cancel”.

For example, the following code could be used to confirm if a user gives
consent to use their personal data:

const permission = confirm('Do you give consent for us to steal all of your

➥personal data?');

37 Learn to Code with JavaScript

2-5. Confirm pop-up box

The response will be stored in the variable permission , which can be seen by
typing this into the console.

2-6. Permission denied!

In practice, most users find these pop-up boxes annoying, and their use is
definitely not recommended in most practical situations. But they do give us a
convenient way to provide some interactivity and get information from a
user—at least until we learn about more advanced techniques later in this
book.

Hello name

Now that we’ve learned all about variables and how to use pop-up boxes to
collect information from a user and store it in a variable, let’s try writing some
code that will deliver a personalized greeting to a user.

Open up CodePen and add the following code in the JS section:

Programming Basics 38

// ask the user for their name

const name = prompt('Please enter your name.');

// say hello

alert('Hello');

// then personalize it!

alert(name);

Hopefully the comments explain what’s happening in each line of the code: we
use a prompt box to ask for the user’s name, then we use an alert box to say
hello, followed by a second alert box that personalizes the greeting.

Try running the code. You should see something similar to this:

Auto-updating Preview

CodePen has a feature called “Auto-Updating preview” that
constantly runs the code as you write it. This can get annoying if
your code contains pop-up boxes, as you need to close them to
continue coding … and they won’t stop popping up! There’s an easy
;x for this: when in a Pen, just click on the Settings tab (top right) >
Behavior and turn off Auto-Updating preview. You’ll then get a
Run button that you can press to run your code once you’ve
;nished writing it all.

39 Learn to Code with JavaScript

1

2

2-7. DAZ is entered in the prompt, with a message then saying Hello DAZ!

You can see my code on CodePen5.

Challenges
Add comments to the “I Can Code a Rainbow” program from the last
chapter to explain what happens in each step. You can see my code on

CodePen6.

Find out the type of the following values. Can you guess them in
advance?

42
'Twenty20'
'123'
-68
true
FALSE
'true'
0

5. https://codepen.io/SitePoint/pen/NWRQKgy
6. https://codepen.io/SitePoint/pen/VwKoZMj

Programming Basics 40

https://codepen.io/SitePoint/pen/NWRQKgy
https://codepen.io/SitePoint/pen/VwKoZMj
https://codepen.io/SitePoint/pen/VwKoZMj

3

You can see my code on CodePen7.

Use a prompt or confirm box to collect some information from the user
and store it in a suitably named variable. Then use an alert box to display

a message that uses the variable in some way. You can see my code on
CodePen8.

Summary
Comments are ignored by the program, but make your program easier to
read and understand.
Primitive types are the basic building blocks of a program.
Primitive types in JavaScript include strings, numbers and Booleans.
Composite data types are structured collections of primitive data types.
Composite data types in JavaScript include arrays and objects.
Variables point to values stored in memory and are declared using the
const , let or var keywords.

Values are assigned to variables using the = operator.
The value of any variables declared using const can’t be changed.
You can reassign values to variables declared using let or var .
Alert, prompt and confirm boxes can be used to add some interaction
between a web page and the user.

In the next chapter, we’ll be looking more closely at how strings are used to
display letters and words.

7. https://codepen.io/SitePoint/pen/KKgOPXx
8. https://codepen.io/SitePoint/pen/ZEpgzXw

41 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/KKgOPXx
https://codepen.io/SitePoint/pen/ZEpgzXw
https://codepen.io/SitePoint/pen/ZEpgzXw

Letters and
Words

Chapter

3

Letters and Words 42

In this chapter, we’ll be looking at how letters and words are represented and
used in programming languages. We’ll also look at how JavaScript represents
them using strings. We’re going to cover the following:

chars and strings
strings in JavaScript
escaping values
finding characters
string length
string arithmetic
string methods
template literals and interpolation

Chars and Strings
As we saw in the previous chapter, most programming languages have
primitive data types of char (a single character) and strings (a collection of
characters). In fact, you can almost think of a string as a collection of
characters joined together by a piece of string:

3-1. Chars on a string

JavaScript only has a primitive data type of String, but this can be used to
represent both single characters as well as words and longer blocks of text.
Here are a few examples of some strings:

'M'

'@'

`Hello`

"Easy as 1,2,3"

`What The F*!#?`

43 Learn to Code with JavaScript

"A long time ago, in a galaxy far, far away."

' '

''

Strings can be used to represent words, paragraphs of text and even markup
such as HTML. Nearly all data that’s entered by a user will initially be stored as
a string.

Creating Strings in JavaScript

It’s really easy to create a string. You simply write it in quotation marks. Open
up a console and try entering the following string:

'Hello';

<< "Hello"

This is called a string literal, because a literal representation of the value is
written out in the code. You can use double or single quote marks to create a
string literal. Try the following example in the console:

"I'm also a string literal."

<< "I'm also a string literal."

Double quote marks are useful if you want to use single quote marks as
apostrophes in the string. If you were to use single quotes around the string
above, the apostrophe would terminate the string, causing an error, as can be
seen in the following code:

'Don't do this.'

Empty Strings

The last example is just an empty string, with nothing inside it, not
even a space. This is still considered a string.

Letters and Words 44

<< SyntaxError { Unexpected token, expected ; (1:19) }

But using double quote marks will fix it:

"That's the way to do it."

<< "That's the way to do it."

Escaping Values

It’s also possible to escape quotation marks. This is done by placing a
backslash before the apostrophe so that it appears as an apostrophe inside
the string instead of terminating the string. Try entering the following into the
console:

'It\'s okay if you escape the apostrophe.'

<< "It's okay if you escape the apostrophe."

The backslash can be used to insert special whitespace into strings, such as
the following:

\n : end of line
\r : carriage return
\t : tab

If you want to actually write a backslash, you need to escape it with another
backslash:

"This is a backslash \\"

<< "This is a backslash \"

Find the Char

Even though JavaScript doesn’t have a char data type, it can still separate each
string into individual characters.

45 Learn to Code with JavaScript

You can find out a particular character in a string by using the charAt()

method. We can apply methods to strings using dot notation. This involves
writing a dot followed by the method we want to use. For example, the
following code will tell us which character is at position 1 in the string
'Hello' . Try entering it into a console:

'Hello'.chartAt(1);

<< "e"

In this example, the number 1 in the parentheses is used to indicate the
position of the character we want to know about.

The result above tells us that the character “e” is at position 1. If you’re
wondering why it isn’t “H”, this is because the first character in a string is
classed as being at position 0. (You’ll find that counting usually starts at zero in
programming!)

3-2. Find the char

There’s also a shortcut notation for referring to individual characters in a string
using square brackets. For example, the following code will tell us the first
letter of the string:

'Hello'[0];

<< "H"

Letters and Words 46

This notation gives us a convenient way of referencing each individual
character inside a string.

Finding Chars

If you want to find where a certain character or substring appears in a string,
we can use the indexOf() method. This will return the position of the first
occurrence of a character in the string. In the following example, we use it to
find that the character “l” first appears at position 2 (remember that counting
starts at zero, so this means it’s the third character in the string):

'Hello'.indexOf('l');

<< 2

If a character doesn’t appear in the string, -1 will be returned:

'Hello'.indexOf('z');

<< -1

If we want the last occurrence of a character or substring, we can use the
lastIndexOf() method instead. For example, this shows us that the character

“l” last appears at position 3 in the string 'Hello' :

'Hello'.lastIndexOf('l');

<< 3

If we only need to know if a string contains a certain character, we can use the
includes() method. This will return the Boolean values of true or false ,

depending on whether the character is in the string or not, as can be seen in
the code examples below:

'Hello'.includes('e');

<< true

'Hello'.includes('z');

<< false

47 Learn to Code with JavaScript

We can also check to see if a string starts with a certain character. To do so,
we can use the startsWith() method. Be careful, though, as it’s case-
sensitive:

'Hello'.startsWith('H');

<< true

'Hello'.startsWith('h');

<< false

And we can use the similar endsWith() method to check if a string ends with
a particular character:

'Hello'.endsWith('O');

<< false

'Hello'.endsWith('o');

<< true

How Long Is a String?

Every string has a length property that tells us how many characters it
contains. This property is also accessed using the dot notation we used with
the charAt() method. For example, the following code will tell us how many
characters are in the string 'Hello' :

'Hello'.length;

<< 5

You can also assign a string to a variable and then apply the dot notation to the
variable:

const myString = "Hello, is it me you're looking for?";

myString.length;

<< 35

Letters and Words 48

As you can see, this tells us that there are 35 characters in the string that has
been assigned to the myString variable.

All properties of primitive data types are immutable. This means that they
can’t be changed, so it’s impossible to change the length property of a string
by reassigning it to another value. You can try, but your efforts will be futile:

myString.length = 36; // try to change the length property

<< 36

Although it looks like the length property of the myString variable has been
changed to 36, this isn’t the case. We can see this by having another look at
the value of the length property:

myString.length; // check to see if it's changed

<< 35

String Arithmetic

Most programming languages let you add two strings together to produce a
longer string. JavaScript is no exception and even makes it look just like a
mathematical calculation by using the + symbol! Try the following example in
a console:

'Java' + 'Script';

<< "JavaScript"

As you can see, the result combines the two strings together into a single
string. This is known as string concatenation.

49 Learn to Code with JavaScript

3-3. Concatenation

Watch out, though. Concatenation doesn’t insert spaces for you, so the
following code won’t quite work as you might expect it to:

'Hello' + 'World';

<< "HelloWorld"

To add a space, you could either add a space to the end of the first word or to
the beginning of the second, like so:

'Hello ' + 'World';

<< "Hello World"

'Hello' + ' World';

<< "Hello World"

You could also add a string containing a single space in the middle, like so:

'Hello' + ' ' + 'World';

<< "Hello World"

Letters and Words 50

Finding the Last Character in a String

There are times when we’ll want to know what the last character of a string is.
That’s easy enough if we know what the string is. For example, we can find the
last character of the string 'Hello' using the following code:

'Hello'[4];

<< "o"

Remember that counting starts at zero, so the fifth letter “o” is at position 4. If
we want to find the last character of the string 'Goodbye' , we can use the
following code:

'Goodbye'[6];

<< "e"

So the value we place in the square brackets changes depending on the
length of the string.

As said, this is all fine if we know the value of the string. But in real life, we
often won’t know the value of the string. For example, the string value might
be collected from a user via a form, or created on the fly during the operation
of the program.

Thankfully, we can use the length property to help us find the last character
of a string, as we’ll see next.

The concat() Method

There’s also a method called concat that will also concatenate two

strings:

'Java'.concat('Script');

<< "JavaScript"

51 Learn to Code with JavaScript

What’s In a Name?

Let’s try writing some code that will ask a user for their name and then tell
them the first and last letter of their name.

At the end of the last chapter, we learned how we can collect information from
a user using a prompt box and store it in a variable. Our first line of code will
create a prompt box, asking for their name:

const name = prompt('What is your name?');

If you enter the code above into a console, you should see something similar
to the following appear on your screen.

3-4. What is your name?

Enter your name into the text box and click OK. Whatever you entered will
now be stored in the variable name as a string. (You can check this is the case
by typing name into the console, then pressing Enter.)

Now let’s create an alert box that will show off our string manipulation skills:

alert('Hello ' + name + '. The first letter of your name is ' + name[0] + ' and

Letters and Words 52

➥the last letter is ' + name[name.length -1]);

If you run this code, you should get something similar to what’s pictured
below.

3-5. The first and last letter of your name is …

Notice how we found the last letter of the name variable using
name[name.length - 1] . This works out the length of the string (remember,

we don’t know how long it is until the user enters their name) and then
subtracts 1 (to take account of the fact that the position of characters starts
at zero).

You can see my code on CodePen1.

Changing Cases

It’s possible to change the case of a string to all uppercase letters or all
lowercase letters. To demonstrate this, let’s assign the string 'JavaScript' to
the variable name in the console:

1. https://codepen.io/SitePoint/pen/NWbKdJV

53 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/NWbKdJV

const name = 'JavaScript';

Now we can return a string of all uppercase letters using the toUpperCase()

method:

name.toUpperCase();

<< 'JAVASCRIPT'

Or we can return a string of all lowercase letters using the toLowerCase()

method:

name.toLowerCase();

<< 'javascript'

Trimming Space

The trim() method can be used to remove any whitespace from the
beginning and end of a string. This is useful when users entering information
into a form inadvertently add spaces at the beginning or end. The example
below shows that the spaces at the beginning and end of the string are
removed, but the space in the middle is preserved:

' Hello World '.trim();

The More Things Change …

These two methods don’t actually change the string stored in the
name variable. They just return a value with the case changed. If

you check the value of the name variable, it should still be the same

as when we declared it:

name;

<< 'JavaScript'

Letters and Words 54

<< 'Hello World'

It will even get rid of any tabs or carriage returns, as can be seen in the
following example:

' \t\t JavaScript! \r'.trim(); // escaped tabs and carriage returns

➥are also removed
<< 'JavaScript!'

If you only want to remove the whitespace from the beginning or just from the
end, there are more specific methods for doing just that:

' Hello World '.trimStart(); // removes whitespace from the beginning of

➥a string
<< 'Hello World '

' Hello World '.trimEnd(); // removes whitespace from the end of a string

<< ' Hello World'

More Methods

There are loads more things that strings can do. A full list of properties and
methods can be found on the Mozilla Developer Network2.

Template Literals
Template literals are special types of strings in JavaScript that use the
backtick character (`) to delineate the string, as shown in the example below:

`Hello!`;

One advantage of using template literals is that you can then use both types
of quote mark within the string:

2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/String

55 Learn to Code with JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String

`She said, "It's Me!"`

More importantly than this, though, they also allow interpolation of JavaScript
code. This means that a piece of code can be inserted inside a template literal
and the result will be displayed in the resulting string.

In the example below, we use interpolation to insert a variable called name

into a template literal:

const name = `World`;

`Hello ${ name }!`;

<< "Hello World!"

Notice that the variable is replaced with the value of “World” in the resulting
string.

To use interpolation, a JavaScript expression needs to be placed inside curly
braces with a $ character in front of them: ${ // JS expression here } .

The expression is then evaluated, and the result is interpolated (that is,
placed) into the resulting string. It doesn’t just have to be a variable that goes
inside the curly braces; you can use any code. In the example below, we also
use the toUppercase() method:

const name = `World`;

`Hello ${ name.toUpperCase() }!`;

<< 'Hello WORLD!'

Template literals can also contain line breaks (by just pressing Enter), which

are all converted into a line feed character (\n). Try entering the example
below with some line breaks in the middle:

`This is the start ...

.... and this is the end`

Letters and Words 56

<< 'This is the start ...\n\n\n.... and this is the end'

If you instead try to insert line breaks by just pressing Enter in a normal string,

you’ll get an error:

"This is the start ...

.... and this is the end"

<< SyntaxError { Unterminated string constant (1:14) }

If you want to place a backtick inside a template literal, it needs to be escaped
in the usual way, using a backslash:

`This character, \`, is a backtick`

<< 'This character, `, is a backtick'

Template literals can be thought of as superpowered strings, as they behave
in the same way as normal string literals, but with the extra superpower of
string interpolation. For this reason, it’s not uncommon to see backticks used
to create all strings in modern JS code.

Mad Libs

We’ll use the power of template literals to finish this chapter with a simple
Mad Libs game. Mad Libs is a fun party game where you choose random
words that get inserted into a predefined sentence, often with humorous or
just plain crazy results! The adult game Cards Against Humanity uses a similar
concept. (Feel free to change the code to be more like this, if that’s how you
roll!)

Fire up CodePen and add the following code into the JS section:

// ask the user for some words....

const animal = prompt('Please enter an animal.');

const color = prompt('Please enter a color.');

57 Learn to Code with JavaScript

const verb = prompt('Please enter a verb.');

const job = prompt('Please enter a job.');

This uses prompt boxes to ask different questions and store the user’s
responses in relevant variables. Now we need to create the actual Mad Lib.
We’ll use a template literal to insert the variables we’ve just created into a
string that’s assigned to the variable madlib :

// create the Mad Lib

const madlib = `The ${animal} wanted to be a ${job}, but turned a funny shade of

➥${color} after trying to ${verb}!`

Last of all, we need to show our hilarious creation to the user, using an alert
box:

// Show the Mad Lib

alert(madlib);

Try running the code and see what sort of wacky sentences you can come up
with. Below is a screenshot of my effort.

3-6. Mad Libs

You can see my CodePen code here3.

Letters and Words 58

https://codepen.io/SitePoint/pen/rNWByjm

1

2

3

4

Challenges
Now that we’ve been introduced to strings and seen a little bit of what they
can do, it’s time for some coding challenges.

Use a prompt box to ask for a user’s name and then use a template literal
to insert their name into a personalized “hello” message in an alert box.

You can see my code on CodePen4.

Now try changing the code so that it tells the user how many letters
their name contains. You can see my code on CodePen5.

Try changing the Mad Libs code to ask for more words and create a
funnier result. You must be able to do better than mine!

Try writing some code that asks for a user’s name, then tells them their
“swappy name” by swapping the first and last letter around. So if I enter

“Daz” as my name into the prompt box, the alert box should say, “Hello Daz,
your swappy name is Zad.” (Note: this is harder than it sounds at first. You
should probably investigate the slice() method for this challenge.) You can
see my code on CodePen6.

Summary
Strings are collections of characters that are used to show blocks of text in
JavaScript.
Special values can be escaped by placing a backslash (\) in front of them.
Strings have various properties and methods that provide information
about them.
The length property tells us how many characters there are in a string.
Strings can be concatenated (joined together) using the + operator.

3. https://codepen.io/SitePoint/pen/rNWByjm
4. https://codepen.io/SitePoint/pen/KKNPWWz
5. https://codepen.io/SitePoint/pen/LYbPWWm
6. https://codepen.io/SitePoint/pen/ZEBzeKL

59 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/KKNPWWz
https://codepen.io/SitePoint/pen/LYbPWWm
https://codepen.io/SitePoint/pen/ZEBzeKL
https://codepen.io/SitePoint/pen/ZEBzeKL

Template literals are like superpowered strings, allowing JavaScript code to
be inserted into a string.

Now that we’ve learned all about strings, it’s time to learn all about numbers in
the next chapter.

Letters and Words 60

Numbers
Chapter

4

61 Learn to Code with JavaScript

In Chapter 3, we learned all about strings. Now it’s time to learn about
numbers! In this chapter, we’re going to cover the following:

integers and floats
numeric literals
exponential notation
arithmetical operations
varying variables
converting between numbers and strings
random numbers

Integers and Floats
Numbers can be classified into various types.

Numbers can be integers, which are whole numbers, such as 3, -4 or 0.

4-1. Integers

Numbers can also be floating-point numbers—often referred to as just reals,
decimals or floats. These include all numbers that have fractional or decimal

Numbers 62

parts, such as 1.5, -3.8 or pi.

4-2. Floats

Most programming languages will have separate primitive data types for
integers and floats, but JavaScript doesn’t distinguish between them and just
calls them both “numbers”, as we can see if we use the typeof operator:

typeof 42; // this is an integer

<< 'number'

typeof 3.14159; // this is a floating-point decimal

<< 'number'

Numeric Literals
A numeric literal is a sequence of digits that form a decimal number and don’t
start with a leading zero. Creating a numeric literal in JavaScript is as simple as
just writing the number in the console:

63 Learn to Code with JavaScript

3;

<< 3

-4.67;

<< -4.67

Exponential Notation
Numbers can also be represented in exponential notation, which is shorthand
for “multiply by 10 to the power of” (you may have heard this referred to as
“scientific notation” or “standard form”). The following example shows how to
write 1 multiplied by 10 to the power of 6, which is a million:

1e6;

<< 1000000

The next example returns 2 multiplied by 10 to the power of 3, or 1000:

2E3;

<< 2000

Fractional decimal values can be created by using a negative index. The
following example returns 2.5 multiplied by 10 to the power of negative 3,
which is the same as 2.5 multiplied by 0.001:

2.5e-3;

<< 0.0025

When Is a Number Not a Number?
NaN is a special error value that’s short for “Not a Number”. It’s used when an

operation is attempted and the result isn’t numerical, like if you try to multiply
a string by a number, for example:

Numbers 64

'hello' * 5;

<< NaN

Here’s a little JavaScript joke, just for some light relief. Let’s see what data
type NaN is. Enter the following code in a console:

typeof NaN;

<< 'number'

Somewhat ironically, given that NaN stands for “Not a Number”, JavaScript
treats NaN as … a number!

Arithmetic Operations
Most programming languages can carry out all the usual arithmetic
operations—just like pocket calculator! Calculations can be set out as you’d
expect, and they often use the operators and symbols we’re familiar with.
JavaScript is no exception. Let’s try doing some math in the console.

Addition uses the + operator, as you’d expect:

5 + 4.3;

<< 9.3

This example shows that you can mix integers and floats in calculations.

Subtraction uses the - operator, and there are no problems dealing with
negative numbers:

6 - 11;

>> -5

Multiplication uses the * operator:

6 * 7;

65 Learn to Code with JavaScript

<< 42

Division uses the / operator, as if it was a fraction:

3/7;

<< 0.42857142857142855

This answer should actually be a recurring decimal, but JavaScript will
truncate the answer (usually with a slight rounding error at the end).

Exponentiation can be carried out using the ** operator. The following code
will return 2 to the power of 3:

2**3;

<< 8

The same rules of precedence of arithmetic will be used in calculations, so
exponents are calculated first, then multiplication and division are performed
before addition and subtraction. But you can use parentheses to change the
order that operations are performed in. In the example below, the sum in the
parentheses is completed first, then the division and finally the addition:

(8-5) + 6/3;

<< 5

You can also calculate the remainder of a division using the % operator. The
following calculation will return the remainder when 23 is divided by 6:

23%6;

<< 5

The answer of 5 is returned because 6 divides into 23 three times, with a
remainder of 5. The operator only returns the remainder.

Why would this ever be useful? Well, it comes in handy quite often in
programming when anything repeats over and over again. For example, we can

Numbers 66

use it to find out what day it will be a million days from now using the following
code (recall that 1e6 is a million in exponential notation):

1e6%7;

<< 1

This means that when 7 divides into a million there’s a remainder of 1. What
does that have to do with what day it is? Well, since there are 7 days in a week,
and they keep repeating over and over every week, that means that even
though the calculation hasn’t told us how many full weeks are in a million days,
it has told us that there will be a remainder of 1 day left over, so in a million
days, it will be the same day as tomorrow!

Varying Variables
If a variable has been assigned a numerical value, it can be modified using
different operators. For example, say we’re making a game that keeps track of
the number of points you’ve scored in a variable called score . First of all, we’d
initialize the score to zero. Fire up a console and follow along with these
examples:

let score = 0;

<< 0

One way of increasing the score would be to just add a value to it like so:

score = score + 10;

<< 10

This will increase the value held in the score variable by 10 .

The notation can seem strange at first, as the left-hand and right-hand sides
are not equal, but remember that the = symbol is used for assignment, and
we’re assigning the score variable to its current value plus another 10.

There’s a shorthand for doing this, called the compound assignment

67 Learn to Code with JavaScript

operator, += :

score += 10;

<< 20

There are equivalent compound assignment operators for all the arithmetical
operators that we saw in the previous section. For example, you can decrease
the score by 5 like so:

score -= 5;

<< 15

The following code will multiply the value of score by 2—or, in other words,
double it:

score *= 2;

<< 30

You can also divide the current value of score by a value. This code will divide
it by 3:

score /= 3;

<< 10

You can also raise the value of score to a power. The following code will raise
the value of score to the power of 2, which is the same as squaring it:

score **=2;

<< 100

You can also use the remainder operator. The following code will change the
value of score to the remainder if its current value was divided by 7:

score %= 7;

<< 2

Numbers 68

Increments
If you only want to increment a value by 1, you can use the increment operator,
++ . This goes either directly before the variable (prefix operator) or after it

(postfix operator). Try entering the following code into the console to see how
these work:

let points = 5;

points++;

<< 5

++points;

<< 7

So what’s going on here? Both operators increase the value of points by 1,
even though it doesn’t immediately look like the first one has changed
anything. The difference is when the increment takes place in relation to the
value that’s returned.

In the first operation, points++ returns the original value of score , 5, then
increases it to 6, whereas ++points increases the value by 1, then returns the
new value of 7.

There’s also a -- operator that works in the same way. The following example
will return 7, then decrease the value of points by one to 6:

points--;

<< 7

And the following example will reduce the value of points by one first, then
return that value:

--points;

<< 5

69 Learn to Code with JavaScript

How Old?
Now that we’ve learned about different calculations and changing variables,
it’s time to do some coding. We’re going to write a short program that will ask
the user for their age and then convert this from years into in seconds.

Create a new Pen on CodePen and enter the following in the JS section (and
since we’re using prompt and alert boxes, don’t forget to turn off Auto-
Updating Preview in Settings > Behavior):

const ageInYears = prompt('How old are you (in years)?');

This will store the user’s answer in a variable called ageInYears . Now let’s
convert that into seconds:

const ageInSeconds = ageInYears * 365.25 * 24 * 60 * 60;

There are approximately 31,557,600 seconds in a year, but we don’t need to
bother remembering that. All we need to do is multiply by 365.25, which is the
approximate number of days in a year (the 0.25 is a slight overestimate and is
the reason why we have leap years) to convert it into days, then multiply by 24
to convert into hours, then by 60 to convert into minutes and finally by 60
again to convert it into seconds.

Finally, let’s use an alert box to inform the user of the result:

alert(`That means you have been alive for at least ${ageInSeconds} seconds!!`);

Click on Run to see it in action. It should look something like this:

Numbers 70

4-3. Your age in seconds

You can see my code on CodePen1.

Calculations with Numbers and Strings
Is it possible to add a number and string together? It seems a ridiculous
question, but JavaScript will try its best to answer the question, as can be seen
in the example below:

2 + 'two';

<< "2two"

What has happened here? The number 2 has been turned into the string
'2' , and this has been concatenated with the string 'two' like we saw in the

last chapter. This process is called type coercion, and it occurs when the
operands of an operator are of different types. JavaScript will attempt to
convert one of the operands to an equivalent value of the other operand’s
type. For example, if you try to multiply a string and a number together,
JavaScript will attempt to coerce the string into a number and then multiply
them together:

1. https://codepen.io/SitePoint/pen/XWNWYeY

71 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/XWNWYeY

'2' * 8;

<< 16

This may seem useful at first, but the process is not always logical or
consistent and can cause a lot of confusion. For example, if you try to add a
string and a number together, JavaScript will convert the number to a string
and then concatenate the two strings:

'2' + 8;

<< '28'

JavaScript is trying to be useful, but in actual fact, type coercion makes it very
difficult to spot errors in your code.

The best approach is to take control of the situation and be very explicit about
the types of values you’re working with and avoid using values of different
types in operations. Let’s take a look at how to do this in the next section.

Converting Between Strings and Numbers
We can convert numbers to strings using the Number constructor. This will
convert the string form of a number into a number literal, as can be seen in the
example below:

Number('23');

<< 23

If the string can’t be converted into a number, NaN is returned:

Number('hello');

<<< NaN

To change a number literal into a string literal representation of that number,
we use the String constructor, as can be seen in the example below:

Numbers 72

String(3);

<< '3'

The most common use for these conversions comes from the fact that
anything entered by the user in a prompt box or form is collected as a string,
even if the value entered is a number. For this reason, use of the Number()

method is recommended to ensure any variables that you intend to be
numbers are in fact represented by numbers.

For example, the code we used earlier to calculate the number of seconds the
user had been alive relied on type coercion to make it work. This is because
the ageInYears variable would be stored as a string. It was only when we
multiplied it by 365.25 that JavaScript would have converted it to a number in
the background, and we were lucky that, in this case, it worked out as we’d
hoped.

It would be better if we forced the ageInYears variable to be stored as a
number from the start by updating the first line of code to the following:

const ageInYears = Number(prompt('How old are you (in years)?'));

By wrapping Number() around the prompt, we ensure that the value entered
is stored as a number and will behave as expected.

Random Numbers
Every programming language provides a way of generating random numbers.
These are always useful when coding, particularly when it comes to adding
some element of chance to games!

73 Learn to Code with JavaScript

JavaScript can generate random numbers using the Math.random() method.
This will generate a number between 0 (inclusive) and 1 (exclusive). Try
entering the following code in a console:

Math.random();

<< 0.7881970851344265

Hopefully you didn’t get the same value as I did—because it’s a random
number!

But a random decimal value isn’t always what we want. In fact, most of the
time we will want a random integer.

We can fix this by first of all multiplying the result of Math.random by a value,
in order to increase the upper limit. For example, if we multiply by 6, then it will
return a random number between 0 and 6 (but not including 6), as can be seen
in this example:

6 * Math.random();

<< 4.280981240354013

Now all we need to do is use the Math.ceil() method to get rid of the
decimal part. This is similar to the Math.floor() method that we saw in the I
Can Code a Rainbow program in Chapter 1. But Math.ceil rounds the value

Random … ish

It’s actually very dif;cult to produce a truly random number, so what
programming languages produce are technically only pseudo-
random numbers. Various factors are often used as a “seed” to
generate the number—such as the time, or the position of the
mouse pointer. Although these are deterministic (that is, not strictly
random), when taken together they make it very dif;cult to
replicate the same conditions, making the numbers effectively
random.

Numbers 74

up to the next biggest integer, while also removing the decimal part of the
number. For example, the following code will round up to 5:

Math.ceil(4.280981240354013);

<< 5

This means that the following code will generate a random number between 1
and 6:

Math.ceil(6 * Math.random());

<< 4

If this reminds you of rolling a dice, that’s no coincidence. We’re going to finish
this chapter by writing some code to mimic the rolling of a dice.

Open up a new Pen on CodePen and enter the following code in the JS section:

const sides = prompt('How many sides does the dice have?');

This will store the number that the user enters in a variable called sides . Now
let’s add an alert message to get the user to “roll” the dice:

alert('Press Enter or click close to roll the dice...');

Next comes the code to create the random number:

const number = Math.ceil(sides*Math.random());

This is similar to the code we used earlier, but we’re multiplying
Math.random() by the number of sides the user specified. This will produce a

random decimal number between zero and one less than the number of sides.
Applying Math.ceil will round that number up to the next integer, effectively
making it a random number between 1 and the number of sides.

Now we just need to tell the user what the number was (again we’re using a

75 Learn to Code with JavaScript

template literal to insert the number directly into a string):

alert(`The dice landed on the number ${number}`);

Click Run to test this. It should look something like this:

4-4. Roll the dice

You can see my code on CodePen2.

More Methods
There are loads more things that numbers can do. A full list of properties and
methods can be found on the Mozilla Developer Network3.

The Math object also has a large number of properties and methods that you
might find useful. Again, you can see them all on the Mozilla Developer
Network4.

2. https://codepen.io/SitePoint/pen/dyOyKab
3. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Number
4. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Math

Numbers 76

https://codepen.io/SitePoint/pen/dyOyKab
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math

1

2

3

4

Challenges
Create a prompt box that asks the user for their age. Then tell them how
old they’ll be in 25 years. (Note that you might run into some problems

with type coercion here, since the numbers entered in the prompt box are
actually stored as strings.) You can see my code on CodePen5.

Write some code that will use prompt boxes to ask the user for two
numbers, then show an alert box that displays the result of multiplying

those two numbers together. You can see my code on CodePen6.

Can you write some code to split a bill for a meal? You’ll need to use a
prompt box to ask how much the meal was, and another to ask how

many people it needs splitting between. Then an alert box needs to say how
much each person has to pay. For this challenge, you’ll need to think about the
units and rounding. Bonus points if you can add an extra question that adds a
tip as a percentage! You can see my code on CodePen7.

Write some code that will produce a random number between two
values. For example, can you write some code that will return a random

number between 5 and 10 inclusive? You can see my code on CodePen8.

Summary
Numbers can be integers such as 2 or floats (decimals) such as 7.8,
although JavaScript doesn’t differentiate between them and just has a
single primitive data type of Number .
Numbers can be written in exponential notation such as 5e6 for five
million.
The arithmetic operations +, -, *, / and % can be applied to any two
numbers.

5. https://codepen.io/SitePoint/pen/VwmwdRY
6. ttps://codepen.io/SitePoint/pen/PoboaLb
7. https://codepen.io/SitePoint/pen/WNoNKeX
8. https://codepen.io/SitePoint/pen/ExNxpYJ

77 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/VwmwdRY
https://codepen.io/SitePoint/pen/PoboaLb
https://codepen.io/SitePoint/pen/WNoNKeX
https://codepen.io/SitePoint/pen/ExNxpYJ

It’s possible to change strings to numbers and vice versa.
If you try to perform operations between a string and a number, JavaScript
will attempt to convert the type to complete the operation. This can cause
some inconsistent and unexpected results!
A random number between 0 and 1 is returned by the Math.random()

method.

Now that we’ve learned about strings and numbers, it’s time to look at how
JavaScript deals with collections of values.

Numbers 78

Collections
Chapter

5

79 Learn to Code with JavaScript

So far, we’ve met primitive data types such as strings, numbers and Booleans.
But what if we want to store a whole collection of values in a single variable?
For example, we might have a list of prices that we want store in the same
place. Composite data types can be used to collect primitive values in a
structured way.

Programming languages use a variety of different data structures to store
values, but one of the most common is an array.

In this chapter, we’ll be covering the following:

creating arrays
adding values to arrays
removing values from arrays
the spread operator
multi-dimensional arrays

Arrays
An array is an ordered list of values. For example, consider the following
shopping list:

Apple
Banana
Cupcake

This could be represented as the following array:

['Apple', 'Banana', 'Cupcake']

Collections 80

5-1. A fruity array

Each value in the array has a numerical index that shows its position in the
array. In the example above, 'Apple' has an index of 0 (remember that
computers start counting at zero!), 'Banana' has an index of 1, and
'Cupcake' has an index of 2.

5-2. A fruity array with indices

Arrays can contain any type of value, such as numbers:

[2, 3, 5, 7, 11]

Or strings:

['Dog', 'Cat', 'Rabbit']

Or Booleans:

[false, true, true, false, true]

In most languages, including JavaScript, you’re not restricted to using the
same types of items inside arrays either. This array contains a variety different

81 Learn to Code with JavaScript

data types:

[null, 1, 'two', true]

Arrays in JavaScript
Now that we’ve been introduced to arrays, let’s try coding some of them in
JavaScript! To create an array literal, you simply write the values, separated by
commas, inside a pair of square brackets. For example, we can create the
shopping list example that we met earlier by entering the following in a
console:

const shopping = ['Apple', 'Banana', 'Cupcake'];

To access a specific value in an array, we write its position in the array in
square brackets. (This is known as its index.) For example, the following code
will return the first item in the array:

shopping[0];

<< 'Apple'

(I hope you’ve remembered by now that the first item has an index of zero!)

If we wanted to see the value at index 2 of the array (the third item in the
shopping list), we’d use the following code:

shopping[2];

<< 'Cake'

If an element in an array is empty, undefined is returned, as can be seen if we
try to see what’s at index 5:

shopping[5]; // there's nothing at position 5

<< undefined

Collections 82

Adding Values to Arrays

If we want to add a new item to an array that we’ve already created, we can
simply assign the value to the position that we want it to go in, using index
notation. For example, the following code will add 'Donut' at position 3 in the
array (which is the fourth item in the shopping list, remember):

shopping[3] = 'Donut';

We can take a look at the contents of the shopping array by simply typing its
name into the console:

shopping;

<< ['Apple', 'Banana', 'Cake', 'Donut']

5-3. The updated shopping list

Each item in an array can be treated like a variable. You can change the value
using the assignment operator = . For example, we can change the value at
position 2 from 'Cake' to 'Carrot' using the following code:

shopping[2] = 'Carrot';

Let’s check that this change has been made:

shopping;

<< ['Apple', 'Banana', 'Carrot', 'Donut']

83 Learn to Code with JavaScript

5-4. A carrot added to the shopping list, in place of the cupcake

You can use the index notation to add new items to any position in an array. For
example, the following code will add 'Eggplant' at position 5:

shopping[5] = 'Eggplant';

When we take a look at the shopping array in the console now, we can see
that the sixth item (with an index of 5) has been filled with the string
'Eggplant' . This has left a gap in the array at position 4, so this unused

position in the array is filled by the value undefined :

shopping;

<< ['Apple', 'Banana', 'Carrot', 'Donut', undefined, 'Eggplant']

5-5. A longer shopping list, with one item undefined

Removing Values from Arrays

The delete operator can be used to remove an item from an array. For
example, if we decide that we really shouldn’t be buying donuts, we could
remove the value 'Donut' from our shopping array using the following code:

Collections 84

delete shopping[3];

<< true

This removes the donut directly from its place in the list, leaving an empty slot
in the array, as shown in the diagram below.

5-6. A visual representation of an item being deleted from the array

Now, if we take a look at the shopping array, we can see that the string Donut

(with an index of 3), has indeed been removed … and a value of undefined has
been left in its place:

shopping;

<< ['Apple', 'Banana', 'Carrot', undefined, undefined, 'Eggplant']

85 Learn to Code with JavaScript

5-7. The updated shopping list

Watch out for this, as it can even trip up experienced programmers. The value
that was in position 3 ('Donut') has been deleted from the array, but the
space that it occupied is still there, and it now contains a value of undefined .
This means that the array still has the same number of elements, and the
position can still be referenced as an index, but it will just return undefined :

shopping[3];

<< undefined

Finding the Length of an Array

Every array has a length property that tells us how many items it contains.
For example, we can find the number of items in the shopping array using the
following code:

shopping.length;

<< 6

Notice that the length is 6 because the positions that contain undefined are
also counted when calculating the length of the array.

The value of the length property can be placed inside square brackets as
part of the index to find the last item in an array. For example, the following
code tells us the last item on our shopping list:

const length = shopping.length;

shopping[length - 1];

Collections 86

<< 'Eggplant'

This tells us that 'Eggplant' is the last item in the array, but notice that we
have to subtract 1 from the length property. This is because the index starts
at 0, so the last item in the array will have an index of one less than the array’s
actual length.

The length property of an array isn’t fixed, which means that you can
dynamically change the length of an array by adding or removing items. In fact,
the length property is mutable, which means you can change it directly, like
so:

shopping.length = 8;

<< 8

This will make the length of our shopping array 8 instead of 6. If we take a
look at the array, we can see that the extra slots are now empty:

shopping;

<< ['Apple', 'Banana', 'Carrot', undefined, undefined, 'Eggplant', undefined,

➥undefined]

5-8. Our list now with a length of 8

If we change the length of the array to a value shorter than its current length,
all the extra elements will be removed completely. The following code will
keep the first three items in the array and remove all the rest:

shopping.length = 3;

<< 3

Now if we check the contents of the array, we can see that only the first three

87 Learn to Code with JavaScript

items remain:

shopping;

<< ['Apple', 'Banana', 'Carrot']

5-9. A shorter shopping list

Popping and Pushing

Arrays have methods called pop and push that can be used to remove or add
items.

The pop() method removes the last item from an array. To see it in action,
let’s create a new shopping list array:

No Second Chances

Once you make an array shorter by editing its length property, any
items that are removed are lost for good. If you try to change the
length back to 8, it will just add undefined into all the extra spaces

rather than ;lling them with the values that were there before:

shopping.length = 8;

<< ['Apple', 'Banana', 'Carrot', undefined, undefined, undefined,

➥undefined, undefined,]

For this reason, be very careful not to lose any values you’ll need
later when changing the length of an array.

Collections 88

const shopping = ['Apple', 'Banana', 'Carrot', 'Donut', 'Eggplant']

5-10. A new list of five items

We can remove the last item in the array using the pop() method, which will
“pop” the last item out of the array, as shown in the diagram below.

5-11. Popping the last item out of the array

The code below shows how the method is applied to the shopping array:

shopping.pop();

<< 'Eggplant'

89 Learn to Code with JavaScript

The method returns the last item of the array and also updates the array so
that it no longer contains the item. If we take a look at the shopping array,
we’ll see that it no longer contains the string 'Eggplant' :

shopping;

<< ['Apple', 'Banana', 'Carrot', 'Donut']

5-12. Our array sans Eggplant

If we instead want to add a new value to the end of an array, we can use the
push() method. For example, it can be used to add a cupcake to the end of

the shopping array, as illustrated in the diagram below.

Collections 90

5-13. A cupcake pushed onto the end

We would use the following code to do this in the console:

shopping.push('Cupcake');

<< 5

The method returns the new length of the array, which is 5, as the array now
contains 5 items. We can check that 'Cupcake' has been added by just typing
shopping in the console:

shopping;

<< ['Apple', 'Banana', 'Carrot', 'Donut', 'Cupcake']

91 Learn to Code with JavaScript

5-14. The cupcake has been added to the list

Shifting and Unshifting

The shift() method is similar to pop , the difference being that it removes
the first item in the array:

shopping.shift();

<< 'Apple'

Notice that it returns the value of the first item that has been removed from
the array.

5-15. How the shift method works

Collections 92

The unshift() method is similar to the push() method, but it adds a new
item to the beginning of the array. For example, we could add 'Avocado' to
the beginning of our shopping array using the following code:

shopping.unshift('Avocado');

<< 5

5-16. Adding an item to the start of the array with unshift()

The return value is the length of the array after the new item has been added.
We can have a quick check to confirm that it has indeed been added:

shopping;

<< ['Avocado', 'Banana', 'Carrot', 'Donut', 'Cupcake']

93 Learn to Code with JavaScript

5-17. The shopping list with the added avocado

The Spread Operator

The spread operator is an ellipsis of three dots (...) placed in front of an
array that sits inside another array. It spreads out all the elements of the array
into separate values.

If you think of an array as being like a box full of values, then the spread
operator is the equivalent of emptying the contents of the box into another
box.

To see the spread operator in action, try creating an array in the console:

const arrayA = [1,2,3];

This creates an array called arrayA that contains three elements.

Now, say we wanted to place all three elements from arrayA into a new array
called arrayB . We might try doing something like this:

const arrayB = [arrayA];

Unfortunately, all we’ve done is place the whole of arrayA into arrayB . This is
the equivalent of putting a box of values inside another box. This can be seen
by the fact that arrayB only contains just one element, as we can see if we
look at the length property:

arrayB.length;

Collections 94

<< 1

If we take a look at the contents of arrayB , we can see that the one item it
contains is an array that matches arrayA (this is called a “nested array”, which
we’ll discuss later in the chapter). This is because all the elements are still
grouped together inside arrayA :

arrayB;

<< [[1,2,3]]

If we apply the spread operator to arrayA when it’s placed inside another
array, arrayC , it will unpack all the elements out and treat them as three
separate values:

const arrayC = [...arrayA];

Now if we look at the length of arrayC , we can see that is does indeed
contain three separate elements:

arrayC.length;

<< 3

And if we take a look at the contents of arrayC , we can see that it contains
the same elements as arrayA :

arrayC;

<< [1,2,3]

The spread operator can be used to merge the elements of two or more
arrays together in a new array. To see this in action, let’s create three different
arrays containing different types of food:

const fruit = ['Pineapple', 'Melon'];

const savory = ['Burger', 'Fries'];

const sweets = ['Cookie', 'Popcorn'];

95 Learn to Code with JavaScript

We can now merge these three arrays into one array called food by placing
them all inside a new array and applying the spread operator to each array so
that all the elements are unpacked from their arrays into separate values:

const food = [...fruit, ...savory, ...sweets];

<< undefined

We can check this has worked by taking a look at the food variable:

food;

<< ['Pineapple', 'Melon', 'Burger', 'Fries', 'Cookie', 'Popcorn']

5-18. A visual of our new, combined array

As you can see, all the items have been spread out of their original array
containers and placed separately inside the new food array.

If the spread operator hadn’t been used, the items in the new array would still
have been enclosed inside their original arrays, as can be seen in the code
below:

const food = [fruit, savory, sweets];

<< [['Pineapple', 'Melon'], ['Burger', 'Fries'], ['Cookie', 'Popcorn']]

The spread operator can also be used to add new items to an array. For
example, if we wanted to add 'Coffee' to the end of the food array, instead
of using the push() method, we could use the following code:

food = [...food, 'Coffee'];

Collections 96

In this example, the spread operator unpacks all the items out of the food

array and places them inside the new array as separate items.

And instead of using the unshift() method to add the string 'Coconut' to
the beginning of the array, we could use the following code instead:

food = ['Coconut', ...food];

In fact, you could add 'Coconut' to the front of the array and 'Coffee' to the
end in a single step using the following code:

food = ['Coconut', ...food, 'Coffee'];

We can see the result of this operation by taking a look at the contents of the
array:

food;

<< ['Coconut', 'Pineapple', 'Melon', 'Burger', 'Fries', 'Cookie', 'Popcorn',

➥'Coffee']

5-19. A visual of our new food array

Slicing and Splicing

The slice() method creates a subarray, effectively chopping out a slice of an
original array starting at one position and finishing at another. For example, if
we wanted to find the third and fourth items in our food array, we would use
the following code:

food.slice(2,4);

<< ['Melon', 'Burger']

97 Learn to Code with JavaScript

The first number in the parentheses tells us the index to start the slice at, and
the second number tells us the index that the slice goes up to, without
including that item. So in the example above, the slice will start at 'Melon' ,
which has an index of 2, and then include all the items up to, but not including,
the item with an index of 4, 'Fries' .

This operation is non-destructive, so no items are actually removed from the
array, as we can see if we take a look at the food array:

food;

<< ['Coconut', 'Pineapple', 'Melon', 'Burger', 'Fries', 'Cookie', 'Popcorn',

➥'Coffee']

The splice() method removes items from an array and then inserts new
items in their place. For example, the following code removes the string
'Melon' and replaces it with 'Mango' :

food.splice(2, 1, 'Mango');

<< ['Melon']

The first number in the parentheses tells us the index at which to start the
splice. In the example we started at index 2, which is the third item in the array
('Melon').

The second number tells us how many items to remove from the array. In the
example, this was just the one item.

The next value is then inserted into the array at the place where the items
were removed from. In this case, the string 'Mango' is inserted into the array
at index 2.

Notice that the splice() method returns the items removed from the array
as a new array, so in the example, it returned the array ['Melon'] .

Splicing permanently changes the value of the array, as we can see below:

Collections 98

food;

<< ['Coconut', 'Pineapple', 'Mango', 'Burger', 'Fries', 'Cookie', 'Popcorn',

➥'Coffee']

5-20. No more melon!

The splice() method is a particularly flexible method, as it can be used to
insert or remove values from an array. Be careful, though: it’s a destructive
method, which means that it changes the array permanently.

To insert values into an array at a specific index without removing any items,
we simply indicate that zero items are to be removed:

food.splice(4,0,'Pizza');

<< []

An empty array is returned (because nothing was removed), but the new value
of 'Pizza' has been inserted at index 4, which we can see if we look at the
food array:

food;

<< ['Coconut', 'Pineapple', 'Mango', 'Burger', 'Pizza', 'Fries', 'Cookie',

➥'Popcorn', 'Coffee']

5-21. Pizza added to the feast

We saw earlier that we can use the delete operator to remove an item from
an array. Unfortunately, this leaves a value of undefined in its place. If you

99 Learn to Code with JavaScript

want to remove a value completely, you can use the splice() method with a
length of 1 and without specifying any values to add. For example, if we want
to remove 'Burger' (at index 3) from our food array, we could use the
following code:

food.splice(3,1);

<< ['Burger']

As you can see, the value that is removed will be returned as an array
containing that value.

If we now look at the food array, we can see that the string 'Burger' has
been removed completely, without leaving any empty spaces:

food;

<< ['Coconut', 'Pineapple', 'Mango', 'Pizza', 'Fries', 'Cookie', 'Popcorn',

➥'Coffee']

5-22. Burger off

Finding If a Value Is in an Array

We can find out if an array contains a particular value using the indexOf()

method to find the first occurrence of a value in an array. If the item is in the
array, it will return the index of the first occurrence of that item:

food.indexOf('Pizza');

<< 3

If the item isn’t in the array, it will return -1 :

Collections 100

food.indexOf('Burger');

<< -1

Arrays also have the includes() method. This returns a Boolean value
depending on whether the array contains a particular element or not:

food.includes('Pizza');

<< true

food.includes('Burger');

<< false

You can also add an extra parameter to indicate which index to start the
search from. For example, the following code starts searching for the string
'Coconut' from index 1 (the second item in the array) onwards, so returns

false, as the string appears before then:

food.includes('Coconut', 1);

<< false

Joining Array Items into a String

The join() method can be used to turn the array into a string that comprises
all the items in the array, separated by commas:

food.join();

<< 'Pineapple,Melon,Fries,Bread,Cookie,Popcorn'

You can choose another separator instead of a comma by placing it inside the
parentheses. Let’s try using an ampersand with a space on either side:

food.join(' & ');

<< 'Pineapple & Melon & Fries & Bread & Cookie & Popcorn'

101 Learn to Code with JavaScript

Reversing the Order of Array Items

We can reverse the order of an array using the reverse() method. For
example, if we use it on the food array, we’ll get the following:

food.reverse();

<< ['Coffee', 'Popcorn', 'Cookie', 'Fries', 'Pizza', 'Mango', 'Pineapple',

➥'Coconut']

5-23. Backward food

Note that this changes the order of the array permanently.

Sorting Array Values

We can sort the items of an array into order using the sort() method. Calling
this method on the food array will rearrange the array items into alphabetical
order:

food.sort();

<< ['Coconut', 'Coffee', 'Cookie', 'Fries', 'Mango', 'Pineapple', 'Pizza',

➥'Popcorn']

5-24. Sorted food

Note that this also changes the order of the array permanently.

Collections 102

More Methods

There are loads more things that arrays can do. A full list of properties and
methods can be found on the Mozilla Developer Network1. Take a look and see
if you can find any interesting ones and try using them in the console.

Multi-dimensional Arrays
You can create an array of arrays, known as a multi-dimensional array, by
placing multiple arrays inside a container array. This could be used to create a
coordinate system, for example:

const coordinates = [[1,3],[4,2]];

<< [[1,3],[4,2]]

To access the values in a multidimensional array, we use two indices—one to
refer to the item’s place in the outer array, and one to refer to its place in the
inner array:

Alphabetical Numbers

Strings are sorted in alphabetical order by default, but so are
numbers! This means that numbers are sorted by their ;rst digit,
rather than numerically. For example, 9 will come after 10 , so

you’ll get crazy results like those shown below:

[5, 9, 10].sort();

<< [10, 5, 9]

Don’t worry, though. This can be ;xed using something called a
“callback”, which we’ll be covering later in the book.

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Array

103 Learn to Code with JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

coordinates[0][0]; // The first value of the first array

<< 1

coordinates[1][0]; // The first value of the second array

<< 4

coordinates[0][1]; // The second value of the first array

<< 3

coordinates[1][1]; // The second value of the second array

<< 2

The structure of the two-dimensional array can be seen in the image below.

5-25. A two-dimensional array

The spread operator that we met earlier can be used to “flatten” multi-
dimensional arrays. Flattening an array involves removing all nested arrays by
taking all the values out of their arrays and placing them on the same level in
the parent array. You can see in the example below that just placing the
summer and winter arrays inside a container array will create a nested array,

but if we use the spread operator when placing the arrays inside the container
array, we get a flat array that only contains their contents:

const summer = ['Jun', 'Jul', 'Aug'];

const winter = ['Dec', 'Jan', 'Feb'];

const nested = [summer, winter];

<< [['Jun', 'Jul', 'Aug'], ['Dec', 'Jan', 'Feb']]

Collections 104

1

2

3

4

const flat = [...summer, ...winter];

<< ['Jun', 'Jul', 'Aug', 'Dec', 'Jan', 'Feb']

JavaScript also has the flat() method, which will flatten an array without the
need for the spread operator, as can be seen below:

[['Jun', 'Jul', 'Aug'], ['Dec', 'Jan', 'Feb']].flat();

<< ['Jun', 'Jul', 'Aug', 'Dec', 'Jan', 'Feb']

A summary of creating and manipulating arrays can be found in this post on
SitePoint2.

Challenges
Create a variable called shoppingList that starts as an empty array.
Experiment using pop , push , shift , unshift and splice , along with

the spread operator, to add and remove items from the list. You can see my
code on CodePen3.

Use three prompt boxes to ask the user for three different words and
then place them in an array. Use an alert box to display the array. You can

see my code on CodePen4.

Use a prompt box to ask the user to enter a word. Then use the a
combination of the split , reverse() and join() methods to write

the word backwards. For example, “hello” would become “olleh”. (Hint: provide
an empty string as the parameter to the split() and join() methods.) You
can see my code on CodePen5.

Write a snippet of code that asks the user for a list of comma-separated
names in a prompt and that then creates an alert that displays the

2. https://www.sitepoint.com/quick-tip-create-manipulate-arrays-in-javascript/
3. https://codepen.io/SitePoint/pen/BaQNzyz
4. https://codepen.io/SitePoint/pen/bGBdexY
5. https://codepen.io/SitePoint/pen/poNJbOZ

105 Learn to Code with JavaScript

https://www.sitepoint.com/quick-tip-create-manipulate-arrays-in-javascript/
https://www.sitepoint.com/quick-tip-create-manipulate-arrays-in-javascript/
https://codepen.io/SitePoint/pen/BaQNzyz
https://codepen.io/SitePoint/pen/BaQNzyz
https://codepen.io/SitePoint/pen/bGBdexY
https://codepen.io/SitePoint/pen/poNJbOZ

names in alphabetical order. You can see my code on CodePen6.

Summary
Arrays are an ordered list of values.
An array literal is written using square brackets containing comma-
separated values—such as [2,3,5,7] .
Arrays can contain any type of value—even other arrays!
The index is used to reference a specific item in an array. For example,
myArray[0] refers to the first item in myArray .

Multi-dimensional arrays are arrays that contain other arrays.
Arrays have many methods that can be used to add, remove and
manipulate items in the array.
The spread operator is used by placing an ellipsis of three dots in front of
an array. It has the effect of taking all the values out of the array and listing
them as separate values inside a new array.

Now that we’ve learned about different types of data and collections of data,
it’s time to move on and learn how to control the flow of the program using
logic, which we’ll be covering in the next chapter.

6. https://codepen.io/SitePoint/pen/abBOZae

Collections 106

https://codepen.io/SitePoint/pen/abBOZae

Logic
Chapter

6

107 Learn to Code with JavaScript

In previous chapters, we looked at the primitive values of strings and numbers.
Now let’s take a closer look at Booleans, another primitive data type, and find
out how we can use them to control the flow of a program.

In this chapter, we’ll be covering the following:

Booleans
logical operators
comparison
flow control
if–else statements
a favorite animal quiz
switch statements
a rock paper scissors game

Booleans
In Chapter 2, we saw that Booleans are one of the primitive data types used by
programming languages. There are only two Boolean values, true and
false . They’re named after George Boole, an English mathematician who

worked in the field of algebraic logic. Boolean values are fundamental in the
logical statements that make up a computer program.

6-1. George Boole

Every value in a programming language has an inherent Boolean value of

Logic 108

either true or false . Most are true , and these are known as truthy values.
A few of them are false, and these are known as falsy values.

In JavaScript, you can use the Boolean function to find out if a value is truthy
or falsy:

Boolean('hello');

<< true

Boolean(42);

<< true

Boolean(0);

<< false

There are only nine falsy values in JavaScript, and these are listed below:

// double quoted empty string literal

""

// single quoted empty string literal

''

// empty template literal

``

// zero

0

// negative zero (considered different to 0 by JavaScript!)

-0

// Not a Number is falsy

NaN

// this one is obvious ...

false

// null is falsy

null

109 Learn to Code with JavaScript

// undefined is also falsy

undefined

Other languages will have different falsy values (for example, in Python an
empty array is falsy) and some have a lot fewer falsy values than others (Ruby
has just just two, for example).

The fact that empty strings evaluate to false in JavaScript can cause a number
of problems if you’re not careful, so watch out for them.

To learn more about truthy and falsy values, see “Truthy and Falsy: When All is
Not Equal in JavaScript”1.

Logical Operators
Logical operators can be used to combine two or more statements to
produce a compound statement that returns a Boolean value.

Guess Who?

Guess Who?2 is a popular family game that involves trying to guess a person
by asking “yes” or “no” questions about their appearance. We’re going to
consider a smaller version of the game to demonstrate some logical
operators.

Our smaller game only has four characters: Alfie, Betty, Gemma and Del.

1. "http://www.sitepoint.com/javascript-truthy-falsy/
2. https://en.wikipedia.org/wiki/Guess_Who%3F

Logic 110

http://www.sitepoint.com/javascript-truthy-falsy/
http://www.sitepoint.com/javascript-truthy-falsy/
https://en.wikipedia.org/wiki/Guess_Who?

6-2. The four characters in our Guess Who? game

Each character has two particular characteristics: they either wear a hat or
they don’t, and they either wear glasses or they don’t.

For example, if I asked “Who is wearing glasses?”, the answer would be “Betty
and Del”.

6-3. Who is wearing glasses?

Negation (Logical NOT)

Negation returns the opposite of a value’s Boolean value. So truthy values will
return false , and falsy values will return true .

For example, if I was playing the Guess Who? game, the question “Who is NOT

111 Learn to Code with JavaScript

wearing glasses?” is a negation of the question “Who IS wearing glasses?”
The word “NOT” is acting as the negation operator, and the answer is “Alfie
and Gemma”.

6-4. Who is not wearing glasses?

If I asked “Who is NOT wearing a hat”, this would be the negation of all the
people who are wearing a hat, and the answer would be “Alfie and Del”.

6-5. Who is not wearing a hat?

In JavaScript, negation is achieved by placing the logical NOT operator (!) in
front of a value. This can be thought of in the same way as placing the word
“NOT” in front of a statement. A truthy value will always negate to false , and
a falsy value will always negate to true . We can see this by trying the

Logic 112

following examples in the console:

!true; // negating true returns false

<< false

!0; // 0 is falsy, so negating it returns true

<< true

!'hello'; // all non-empty strings are truthy

<< false

Double negation (!!) is a shortcut that can be used to find out if a value is
truthy or falsy, as it effectively “negates the negation”, changing a value back
to its original Boolean value, as can be seen in the code below:

!!''; // empty strings are falsy

<< false

!!"hello"; // all non-empty strings are truthy

<< true

!!3; // all non-zero numbers are truthy

<< true

!!0; // zero is falsy

<< false

Double negation has the same effect as using the Boolean() function that we
saw earlier in the chapter.

Logical AND

To see an example of the AND operator, let’s play the Guess Who? game
again. If I asked “Who is wearing glasses AND a hat?”, the result would be
“Betty”.

113 Learn to Code with JavaScript

6-6. Who is wearing a hat and glasses?

In this case, the word “AND” is acting as the logical operator. The logical AND
operator acts on two or more values and returns true if all the values are
truthy and false if any of them are falsy.

In JavaScript, && is used as the logical AND operator. The value that gets
returned is the last truthy value if they are all truthy, or the first falsy value if
some of them are falsy. This can be seen in the code example below:

'hello' && 42;

<< 42

Both the string 'hello' and the number 42 are truthy values, so the last
value, 42 , is returned.

The next statement returns false because it’s the first falsy value in the
statement:

true && false; // returns false because it is falsy

<< false

Logic 114

Logical OR

Let’s go back to playing the Guess Who? game to demonstrate the logical OR
operator.

If we asked “Who is wearing glasses OR a hat?”, this would include all the
people wearing glasses, a hat, or both, so the answer is “Betty, Gemma and
Del”.

6-7. Who is wearing glasses or a hat?

In this example, the word “OR” is acting as the logical operator.

The logical OR operator acts on two or more values and returns true if any of
the values are truthy and false if all the values are false.

In JavaScript, || is used as the logical OR operator. The value that’s returned
is the first truthy value if any of them are true, or the last falsy value if all of
them are false.

You can see this in the code examples below. If both expressions are truthy,
the first is returned:

'hello' || 'goodbye';

<< 'hello'

115 Learn to Code with JavaScript

This returns 'hello' , as it’s the first truthy value in the compound statement
in which both values are truthy.

If only one of the values is truthy, it will be this value that’s returned, as can be
seen in the next example:

'all' || 0; // it's all or nothing!

<< 'all'

In the last example, both values are falsy, so the last value is returned:

false || 0;

<< 0

Comparison
We often need to compare values when programming, and there’s a number
of ways to do this.

Equality

The equality operator can be used to check if two values are equal to each
other. Most programming languages use the double-equals operator (==) to
check for equality.

For example, if we wanted to know if the variable answer is 42, we could write:

answer == 42;

This would return true if the answer was 42 and false if it wasn’t.

Why double-equals and not a single equals sign? Well, remember back in
Chapter 2 we learned that the single equals sign was used for assignment.
This means that the following code will assign the value of 42 to the variable
answer , rather than check if they are equal:

Logic 116

answer = 42;

Assigning values instead of checking for equality is a common mistake that
can often catch out rookie programmers.

Soft Equality

JavaScript does things a little differently from other languages. It has the
double-equals operator (==), known as soft equality, or the triple-equals
operator (===), known as hard equality.

What’s the difference between hard and soft equality? Well, it’s all to do with
how strict JavaScript is when it comes to deciding whether or not two values
are equal.

Consider the following example. Let’s say we want to check if the variable
answer is equal to the value of 42. We could check it using soft equality:

answer == 42;

<< true

This looks fine, because the value of the variable answer is indeed 42, but the
following code highlights a problem with soft equality:

answer == '42';

<< true

As you can see, JavaScript is returning true when we’re checking if the
variable answer is equal to the string '42' , when its value is actually the
number 42 .

This is an important difference: the string '42' is not the same as the number
42 , as they’re completely different data types, but when soft equality is used,

JavaScript doesn’t take into account the data type and will attempt to coerce
the two values to the same type when performing the comparison. This can

117 Learn to Code with JavaScript

lead to some very strange results. For example, it will say that a string
containing whitespace is the same as the number zero, as you can see in the
code example below:

" " == 0;

<< true

The next example shows that the Boolean false is considered the same as
the string "0" if soft equality is used:

false == "0";

<< true

As you can see, the soft equality operator gives some strange results (and
these aren’t the only examples).

Because of this, the soft equality should never be used to check if two values
are actually equal.

Hard Equality

JavaScript uses a triple-equals (===) to test for hard equality. This will only
return true if the two values are equal and are of the same data type. This can
be seen in the example below, which checks if the variable answer is equal to
the number 42 and string '42' :

answer === 42;

<< true

answer === '42';

<< false

As you can see, hard equality reports that the variable answer is equal to the
number 42 , but not the string '42' .

You should always use hard equality when you want to test if two values are

Logic 118

equal. This will avoid the problems caused by type coercion when using soft
equality.

If you want to check whether a number represented by a string is equal to a
number, you should convert it to a number yourself explicitly rather than
relying on type coercion to do it in the background. For example, the following
code could be used to convert the string '42' into the number 42 :

answer === Number('42');

<< true

This comes in handy when you’re dealing with a value entered by a user that
you expect to be a number, since most programming languages will treat user-
entered data as a string.

Inequality

We can check if two values are not equal using the inequality operator.
There’s a soft inequality operator (!=) and a hard inequality operator (!==).
These work in a similar way to the soft and hard equality operators:

16 != '16'; // type coercion makes these equal

<< false

16 !== '16';

<< true

As with equality, you should use the hard inequality operator, as this will give
more reliable results unaffected by type coercion.

Greater Than and Less Than

We can check if a value is greater than another using the > operator. The
following code can be used to check if the variable answer (that has a value of
42) is greater than 10:

119 Learn to Code with JavaScript

answer > 10;

<< true

You can also use the “less than” operator (<) in a similar way to check if
answer is less than 50:

answer < 50;

<< true

If you want to check if a value is greater than, less than or equal to another
value, you can use the >= and <= operators. The following code will check if
answer is less than or equal to 42:

answer <= 42;

<< true

These operators can also be used with strings, which will be alphabetically
ordered to check if one string is “less than” the other:

'apples' < 'bananas';

>> true

Be careful, though, as the results are case-sensitive, and uppercase letters are
considered to be “less than” lowercase letters:

'apples' < 'Bananas';

>> false

Flow Control
In the previous section, we looked at how to compare statements, such as
checking if two values are equal to each other. In this section, we’re going to
control the flow of a program by running different blocks of code depending
on whether a statement is true or false. This is a bit like reaching a fork in the
road in a program, where you can decide which direction your code will go in.

Logic 120

This will help to make our programs much more interesting, as they can start
to have different results depending on what happens.

If Statements

An if statement can be used to run a block of code only if a certain condition
returns true. For example, say that you wanted check if you’re tired. If you are
tired, the plan is to go to sleep. This can be illustrated in the following diagram:

6-8. Are you tired?

In pseudocode, this could be written as follows:

if you are tired then go to sleep.

In JavaScript, the code would look like this:

if (tired) {

sleep();

}

The code inside the block will only run if the condition in the parentheses is
true. If the condition is not a Boolean value, it will be converted to a Boolean,
depending on whether or not it’s truthy or falsy.

121 Learn to Code with JavaScript

Let’s try writing some conditional code by writing the following in a console:

let energy = 10;

if (energy < 3) {

alert('ZZZ...');

}

The alert box will only be displayed if energy < 3 evaluates to true , so only if
the value of the energy variable is less than 3. Since the energy variable was
assigned the value of 10, this means that nothing will happen.

Try changing the value of the energy variable to a value below 3 in the
console, and then enter the if block again. This time, the alert box will show like
in the image below:

6-9. ZZZ...

Obviously, in a real program we wouldn’t be manually changing the variables
like this. They would usually depend on user input or some other conditions in
the program. But don’t worry—we’ll get to some more practical examples

Logic 122

soon!

Else Statements

What if you want to do something else if the condition isn’t true? That’s just
what an else statement is for.

For example, let’s say you want to sleep if you’re tired, but otherwise you want
to go for a run. This can be illustrated in the diagram below:

6-10. Sleep or run?

In pseudocode, this could be written as:

if you are tired then go to sleep

else go for a run

In JavaScript, it would be written as:

if(tired){

sleep();

} else {

run();

}

123 Learn to Code with JavaScript

The else keyword adds an alternative block of code that is only executed if
the original condition isn’t true. This means only one of the blocks of code will
run.

Let’s write an if–else statement in the console:

let energy = 10;

if (energy < 3) {

alert('ZZZ....');

} else {

alert('Time to start running!');

}

This code should produce an alert similar to the one shown in the image below.

6-11. Time to start running!

The Ternary Operator

The ternary operator (?) is a shorthand way of writing an if–else statement.
It takes three operands, a condition and two blocks of code, in the following
format:

condition ? code to run if condition is true : code to run if condition is false

Logic 124

The following code shows how to write the previous if–else statement using
the ternary operator:

energy < 5 ? alert('ZZZ...') : alert('Time to start running!');

As you can see, the ternary operator can make your code more succinct (this
code is now just a single line), but it can also make the code harder to read, so
think carefully before using it.

What’s Your Favorite Animal?
To demonstrate conditional statements, we’re going to try coding an
interactive quiz, not unlike one that you might find in a trashy magazine. You
know the ones: they ask you a series of true or false questions and then tell
you who you’re going to marry. Well, in our quiz, we’re going to use some
conditional logic to determine your favorite animal.

The diagram below shows how it might be presented in a magazine.

6-12. Favorite animal

Luckily, we have a built-in way of asking true or false questions—the confirm

125 Learn to Code with JavaScript

box! We’ll use confirm boxes to ask the question and return a value of true or
false to each question. Open up a new Pen on CodePen and enter the
following code:

const big = confirm('Is it a big animal?');

const livesInWater = confirm('Does it live in water?');

This will create two variables, big and livesInWater , which will contain
true or false depending on what the user answers. We can process these

using a combination of if and else statements and logical operators to find
out the user’s favorite animal. Add the following code to your Pen:

if(big && livesInWater){

alert('Your favorite animal is a whale!');

}

This code will only run if the user answered yes to both questions, since we
combined the variables using the AND operator (&&). We can now add some
else statements to cover the other options:

else if(big && !livesInWater){

alert('Your favorite animal is an elephant!');

}

This corresponds to answering yes to the animal being big, but no to it living in
water. We’re using negation here to indicate that the variable livesInWater

should be false . Basically, writing !big is the equivalent of saying “does not
live in water”.

We can do a similar thing to describe the alternative of answering no to being
big, but yes to living in water:

else if(!big && livesInWater){

alert('Your favorite animal is a fish!');

}

Logic 126

Finally, we need to describe the situation of choosing no to both options. This
requires both variables to be negated:

else if(!big && !livesInWater){

alert('Your favorite animal is a mouse!');

}

Note that because there was only one option left, we didn’t actually need the
last condition. We could have just written the following instead:

else {

alert('Your favorite animal is a mouse!');

}

You can see my code on CodePen3.

Switch Statements

The previous coding example showed that you can string multiple if and
else statements together to make a logical decision tree.

Here’s another example that could be used to produce a grade based on a test
score:

const legs = Number(prompt('How many legs does your favorite animal have?'));

if (legs === 0) {

alert('Your favorite animal is a fish!');

} else if (legs === 2) {

alert('Your favorite animal is a penguin!');

} else if(legs === 4){

alert('Your favorite animal is an elephant!');

} else if(legs === 8){

alert('Your favorite animal is an octopus!');

} else {

alert(`I'm not sure what animal has that many legs!`);

}

3. https://codepen.io/SitePoint/pen/PobqrMj

127 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/PobqrMj

The switch operator provides an alternative notation and can make your code
easier to follow when there are lots of conditions to test, as in this example.

The example above can be rewritten using a switch statement like so:

const legs = Number(prompt('How many legs does your favorite animal have?'));

switch (legs) {

case 0:

alert('Your favorite animal is a fish!');

break;

case 2:

alert('Your favorite animal is a penguin!');

break;

case 4:

alert('Your favorite animal is an elephant!');

break;

case 8:

alert('Your favorite animal is an octopus!');

break;

default:

alert(`I'm not sure what animal has that many legs!`);

}

The value you’re comparing goes in parentheses after the switch operator. A
case keyword is then used for each possible value that can occur (0, 2, 4 and

8 in the example above). After each case statement is the code that should
run if that case occurs.

The default keyword is used at the end for any code than needs to be run if
none of the cases are true. In the example below, this gives the unfortunate
message that you failed the test if you don’t get a score of 10, 9 or 8.

You can see my code on CodePen4.

4. https://codepen.io/SitePoint/pen/KKNpOPB

Logic 128

https://codepen.io/SitePoint/pen/KKNpOPB

Rock Paper Scissors
Let’s try another coding project on CodePen. This time, we’ll try to create an
interactive version of the classic game Rock Paper Scissors, where you play
against the computer. This will give us a chance to use what we’ve learned in
this chapter to determine who wins the game.

To get started, let’s ask the player what their choice is. Open up a new Pen and
add the following code to the JS section:

const player = prompt('Choose rock, paper or scissors').toLowerCase().trim();

This uses a prompt box to ask the user to enter “rock”, “paper” or “scissors”.

We also “clean” their answer using the toLowerCase() and trim() methods.
This makes sure their answer is all lowercase and removes any extra
whitespace. This string is stored in the variable player .

Next, we need to program the computer’s choice. The optimal strategy in rock
paper scissors is to play at random, so we can base the computer’s choice on a
random number. Let’s create that random number now. Add the following
code:

const number = Math.ceil(3*Math.random());

This uses the Math.ceil() and Math.random() methods that we met in
Chapter 4 to choose a random number between 1 and 3 and store it in the
variable number . We now need to use this number to select the computer’s

Taking a break

It’s important to ;nish each case block with the break keyword,

as this stops any more of the case blocks being executed. Without a
break statement, the program will “fall through” and continue to

evaluate subsequent case blocks.

129 Learn to Code with JavaScript

choice. We’re going to use a switch block to do this. Add the following code:

let computer;

switch(number){

case 1:

computer = 'rock'; break;

case 2:

computer = 'paper'; break;

case 3:

computer ='scissors';

}

First of all, this declares a variable called computer that will be used to store
the computer’s choice. Then we create a switch statement that takes the
random number we chose earlier and then assigns the value of “rock” to the
variable computer if it’s 1, “paper” if it’s 2, and “scissors” if it’s 3.

We now have a variable called player and another called computer . Both of
these contain a string of 'rock' , 'paper' or 'scissors' , representing the
player’s and computer’s choice respectively. Our next job is to decide who wins
based on these values. The easiest result to test for is a draw, since this
happens if the player and computer variables are the same. Add the
following code to take care of this:

if (player === computer){

alert(`It was a draw, we both chose ${player}`);

}

Notice how we’re using a template literal and string interpolation to feed back
the choice that they both made.

Next, we’ll look at all the options that result in the player winning. There are
three ways that this can happen:

player chooses “rock” and computer chooses “scissors”
player chooses “paper” and computer chooses “rock”

Logic 130

player chooses “scissors” and computer chooses “paper”

All these options can be represented using logical AND and OR operators. This
can be seen in the following code, which we need to add to our program:

else if(player==='rock' && computer==='scissors'

||

player==='paper' && computer==='rock'

||

player==='scissors' && computer==='paper'){

alert(`You win! ${player} always beats ${computer}!`)

Last of all, we need to account for the outcome of the computer winning.
There are also three ways this can happen, but the good news is that, since
this is a zero-sum game, these are the only outcomes left, so we can just finish
with the following else statement:

else {

alert(`You lose! ${player} will never beat ${computer}!`);

}

This just simply tells the player they lost and what the two choices were.

Try running the code and playing a few rounds against the computer. Hopefully
you’ll do better than I did!

6-13. Rock paper scissors

You can see my code on CodePen5.

131 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/XWNbvdL

1

2

3

Challenges
Write some code that will ask a question and then check to see if the
answer provided by the user is correct. It should then provide feedback

to say if they were right or wrong in an alert box. You can see my code on
CodePen.

Write a “higher or lower” game. The computer should pick a random
number between 1 and 10, then ask the user if the next number will be

higher using a confirm box. The computer should then choose another
random number between 1 and 10 and tell the user if they were right or wrong.
You can see my code on CodePen6.

Write some code that picks two numbers at random and then asks the
user to multiply them together. Use an alert box to tell the user if they’ve

got the answer right or wrong. You can see my code on CodePen7.

Summary
Booleans are primitive values that can only be true or false .
All values have an inherent Boolean value of true or false .
Truthy values are values that have a Boolean value of true . Most values
are truthy.
Falsy values have a Boolean value of false . The values that are falsy vary
in different languages. There are nine falsy values in JavaScript.
Negation makes truthy values false and falsy values true. Double negation
returns a value’s Boolean value.
Logical operators such as AND and OR can be used to combine multiple
statements.
Values can be compared to see if they’re equal, greater than or less than
other values.
A conditional statement can be used to control the flow of a program

5. https://codepen.io/SitePoint/pen/XWNbvdL
6. https://codepen.io/SitePoint/pen/NWbqQRz
7. https://codepen.io/SitePoint/pen/qBqderZ

Logic 132

https://codepen.io/SitePoint/pen/jOVPgrv
https://codepen.io/SitePoint/pen/jOVPgrv
https://codepen.io/SitePoint/pen/NWbqQRz
https://codepen.io/SitePoint/pen/qBqderZ

based on a condition.
The ternary operator is a concise way of writing an if–else statement in a
single line of code.
A switch statement can be used when there are multiple options.

In the next chapter, we’ll be going loopy over loops.

133 Learn to Code with JavaScript

Going Loopy
Chapter

7

Going Loopy 134

Computers are great at carrying out repetitive tasks over and over again. They
never get bored and will follow the instructions exactly every time. Loops are a
way of getting a program to repeat a piece of code according to certain
conditions.

In this chapter, we’ll cover:

what a loop is
infinite loops
while loops
do–while loops
for loops
nested loops

What’s a Loop?
A loop is a piece of code that will continue to run until a certain condition is
met.

To illustrate this, here’s a diagram that shows the countdown to a rocket
blastoff as a loop.

135 Learn to Code with JavaScript

7-1. Rocket countdown loop

As you can see, we start at 10, say the number out loud, subtract one from the
number and then check to see if we’ve reached zero. If we haven’t reached
zero, we loop back and repeat the process over again, so we continue to say
the number out loud, then subtract 1 until we get to zero. Once this happens,
we break out of the loop and the rocket can blast off!

We’ll look at the various different ways to code loops in this chapter. As usual,
we’ll be demonstrating the code in JavaScript, although the principles are very
similar in most other programming languages.

Going Loopy 136

In1nite Loops
It’s important that the condition to stop a loop is met at some point.
Otherwise, your code will get stuck in an infinite loop that could possibly crash
the program or make it “hang”.

Consider the loop shown in the following diagram. It’s very similar to the last
example, but with one slight change. Can you spot it and explain why it means
the loop will never end?

7-2. An infinite loop

137 Learn to Code with JavaScript

The problem in this example is that the number goes up by one every time it
runs through the loop, so it will never reach zero and therefore will never break
out of the loop and stop. Whenever you write a loop, you need to make sure
there’s a way for it to finish running.

While Loops
The first type of loop we’ll look at is a while loop. This will repeatedly run a
block of code while a certain condition is true.

The pseudocode for a while loop might look something like this:

while (some condition is true) {

do something

}

The program will continue to “do something” as long as the condition set in
the parentheses remains true. Usually, the block of code will do something
that has an effect on the condition being true, so eventually it won’t be true
and the loop will end.

Ten Green Bottles

A classic demonstration of a loop is to get the computer to “sing” the lyrics to
the popular Ten Green Bottles1 song.

The following diagram shows how this could be done using a while loop.

1. https://www.youtube.com/watch?v=Ak7kedzR8bg

Going Loopy 138

https://www.youtube.com/watch?v=Ak7kedzR8bg

7-3. How a while loop works

We start by initializing the number of bottles to be 10 before entering the main
loop. There’s a check to see if there are more than zero bottles at the start of
every loop and if there are, the loop continues. Otherwise, it breaks out and
stops.

Let’s try writing this code in JavaScript. Open up a console and enter the
following code:

let bottles = 10;

This will initialize a variable called bottles to 10. This represents the number

139 Learn to Code with JavaScript

of bottles remaining on the wall. Any variables that are used in a while loop
must be declared and initialized before the loop is run. Otherwise, there’ll be
an error when they’re referred to in the loop.

Now let’s write the loop:

while (bottles > 0){

console.log(`There were ${bottles} green bottles, hanging on a wall. And if

➥one green bottle should accidentally fall, there'd be ${bottles-1} green
➥bottles hanging on the wall.`);
bottles--;

}

The loop starts with the while keyword, which is followed by the condition in
parentheses that the bottles variable has to be greater than zero. The loop
will continue to execute for as long as this condition is true. This basically
means “keep repeating the block of code, as long as the number of bottles is
greater than zero”.

The block of code uses console.log to log a template literal that uses string
interpolation to show the number of bottles remaining. The output will appear
in the console. The decrement operator (--) is then used to decrease the
bottles variable by one.

7-4. The Ten Green Bottles results shown in the console

Going Loopy 140

You can see my code on CodePen2. (Click the Console tab on the bottom left
to see the results in the CodePen console.)

Do–while Loops
A do–while loop is similar to a while loop. The only difference is that the
condition comes after the block of code. In pseudocode, it might look
something like this:

do {

// do something

} while(condition)

The key difference between a while loop and a do–while loop is that, in the
do–while loop the do block of code comes first, meaning that it will always run
at least once, regardless of whether the condition is true or not.

The following diagram shows how the Ten Green Bottles song can be
implemented using a do–while loop.

2. https://codepen.io/SitePoint/pen/poNgevL?editors=1112

141 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/poNgevL?editors=1112

7-5. How a do–while loop works

As you can see, it’s very similar to the diagram for the while loop, except that
the condition has been moved to the end of the loop.

Let’s try writing this in JavaScript. Enter the following code in a console:

let bottles = 10;

do {

console.log(`There were ${bottles} green bottles, hanging on a wall. And if one

➥ green bottle should accidentally fall, there'd be ${bottles-1} green bottles
➥ hanging on the wall.`);
bottles--;

Going Loopy 142

} while (bottles > 0)

This code is very similar to the previous example and has exactly the same
results.

You can see my code on CodePen3.

For Loops
For loops are one of the most common type of loops and can be found in most
programming languages. They take the following form:

for (initialization ; condition ; update) {

// do something

}

Three things get set inside the parentheses:

The initialization code is run before the loop starts and is usually employed
to initialize any variables that are used in the loop.
The condition has to be satisfied for the loop to continue.
The update code is what to do after each iteration of the loop, and it is
typically used to update any values.

This process is illustrated in the following diagram.

3. https://codepen.io/SitePoint/pen/VwmepaL

143 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/VwmepaL

7-6. How a for loop works

For the Ten Green Bottles song, we would have to initialize the number of
bottles to 10. The condition would be that this number has to be more than
zero and the update code would be to reduce the number of bottles by 1. This
is shown in the diagram below.

Going Loopy 144

7-7. A Ten Green Bottles for loop

Let’s try writing this in JavaScript. Enter the following code in the console:

for (let bottles = 10 ; bottles > 0 ; bottles--) {

console.log(`There were ${bottles} green bottles, hanging on a wall. And if one

➥ green bottle should accidentally fall, there'd be ${bottles-1} green bottles
➥ hanging on the wall`);

}

This initializes the variable bottles to 10, then sets the condition to be
bottles > 0 , and uses the decrement operator bottles-- to reduce the

value of the bottles variable by one after every loop.

You can see my code on CodePen4.

The results should be exactly the same as before. In fact, you may have

4. https://codepen.io/SitePoint/pen/ZEBQeem

145 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/ZEBQeem

noticed that it’s possible to use a while loop, a do–while loop, or a for loop to
achieve exactly the same results.

A for loop is generally considered clearer (and is definitely more popular
looking at code examples around the Web), probably because all the details of
the loop (the initialization, condition, and update code) are all in one place and
kept out of the actual code block.

Nested Loops
You can place a loop inside another loop to create a nested loop. These have
an inner loop that runs all the way through before the next step of the outer
loop occurs. This can be seen visually in the diagram below.

Going Loopy 146

7-8. How a nested loop works

As you can see, the inner loop runs all the way through for every step of the
outer loop. Once the inner loop has run all the way through, the variables for
the outer loop are updated and it runs the inner loop all the way through again.
This continues until the condition has been met for the outer loop to stop.

Let’s write a program that creates a set of multiplication tables, going from a

147 Learn to Code with JavaScript

“one times” table up to a “twelve times” table. That is, 1 x 1 = 1, 1 x 2 = 2, 1 x 3 =
3 … all the way up to 12 x 12 = 144.

To achieve this, we want the outer loop to set the first number to 1 and then
use the inner loop to multiply it by a second number that will go from 1 to 12 in
each step. After we’ve multiplied 1 by every number, we’ll increase the first
number to 2 in the outer loop and multiply this by all the numbers from 1 to 12
in the inner loop, and so on, until we get to 12 multiplied by 12.

Enter the following code in the console:

// outer loop

for(let i=1 ; i<13 ; i++){

// inner loop

for(let j=1 ; j<13 ; j++){

console.log(`${j} multiplied by ${i} is ${i*j}`);

}

}

The outer loop increases the variable i from 1 to 12. For every step of the
outer loop, the inner loop increases the variable j from 1 to 12. So the first
iteration starts with i = 1 and j = 1 and logs the following output to the
console:

Loop Variables

We’ve created two variables in the code above, i and j . In loops,

it’s traditional to use a single letter for these “counter” variable
names. Why? Because it’s nice and neat! But you could use any
variable name (as we did for our Ten Green Bottles for loop), of any
length. But why write longer variable names than you need to?

It’s important to note that you need to use a different letter for the
variable in each nested loop, so that they don’t get confused. In this
example, we’re using i in the outer loop and j in the inner loop.

Going Loopy 148

<< 1 multiplied by 1 is 1

In the next step, we’re still inside the inner loop, so i remains as 1, but j

increases to 2, giving this:

<< 1 multiplied by 2 is 2

j continues to increase until it reaches 12. After this, the program breaks out
of the inner loop and returns to the outer loop, where i is updated from 1 to
2. It then re-enters the inner loop and j is initialized back to 1 and begins
counting up to 12 again. This continues until the last iteration produces this
line:

<< 12 multiplied by 12 is 144

Run this in the console. You should see an output in the console similar to that
pictured below.

7-9. Multiplication table

You can see my code on CodePen5.

5. https://codepen.io/SitePoint/pen/eYBJvMo

149 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/eYBJvMo

1

2

3

Challenges
Write a loop that counts from 1 to 100 and checks if the number is a
multiple of 3 or 5. If it’s a multiple of 3, it should log “Fizz” to the console.

If it’s a multiple of 5, it should log “Buzz” to the console. If it’s a multiple of 3
and 5, it should log “FizzBuzz” to the console, and if it’s a multiple of neither, it
should just log the number to the console. The initial output should look
something like this:

<< 1, 2, Fizz, 4, Buzz, Fizz, 7, 8, Fizz, Buzz, 11, Fizz, 13, 14,
➥ FizzBuzz, ...

Hint: you’ll need to use the modulus operator (%) for this challenge. We
discussed the modulus operator in Chapter 3. You can see my code on
CodePen6.

In the last chapter, we wrote some code for a higher or lower game, but
it only gave the user one go at guessing higher or lower. Write some

code that allows the user to keep guessing until they get it wrong. It should
also tell them how many times they managed to guess correctly at the end of
the game. You can see my code on CodePen7.

In the last chapter, we wrote a times table question game (challenge 3).
Modify the code so that it asks five questions and keeps score of how

many the user gets right. You can see my code on CodePen8.

Summary
A loop is a block of code that runs over and over again until a certain
condition is met.
An infinite loop is a loop that never stops, as it’s impossible to meet the
condition for breaking out of the loop.

6. https://codepen.io/SitePoint/pen/NWbxpzM
7. https://codepen.io/SitePoint/pen/yLVeMEG
8. https://codepen.io/SitePoint/pen/wvoJjdQ

Going Loopy 150

https://codepen.io/SitePoint/pen/NWbxpzM
https://codepen.io/SitePoint/pen/NWbxpzM
https://codepen.io/SitePoint/pen/yLVeMEG
https://codepen.io/SitePoint/pen/wvoJjdQ

A while loop will continue to run as long as a particular condition is true.
A do–while loop will also run while a condition is true, but the condition
comes at the end, rather than the beginning of the loop.
A for loop sets the initial value, a condition for stopping, and increment at
the start, and then runs a block of code until the condition is met. After
every loop, the increment instruction is carried out.
Nested loops can be formed by running a loop within another loop. The
inner loop runs all the way through for every pass of the outer loop.

In the next chapter, we’ll be learning all about functions—which are a
fundamental part of any programming language!

151 Learn to Code with JavaScript

Functions
Chapter

8

Functions 152

So far, we’ve learned quite a bit about coding, and if you’ve been completing
the challenges, you’ve already put together some small bits of code. Wouldn’t
it be great if we could save those bits of code and run them at any time in a
program? That’s what we can use functions for!

In this chapter, we’ll cover:

defining functions
calling a function
return values
parameters and arguments
callbacks
choosing the right type of function

A function is a block of code that’s almost like a small, self-contained mini
program. They can help to reduce repetition and make code easier to follow.

Functions are a perfect application of the DRY principle (“don’t repeat
yourself”). We should always be trying to not repeat ourselves, thus cutting
down on the amount of code we write. We do this all the time in real life. For
example, we might say we’re going to “bake a cake”, which is far easier than
saying we’re going to “get all the ingredients, mix them together, put them in
the oven for 20 minutes and then wait for it to cool …” That would take you a
long time! By understanding what’s meant by the phrase “bake a cake”, we
don’t have to repeat the whole recipe and instructions for actually making it
every time.

It works the same with programming. A block of code that we want to reuse
can be wrapped into a function. Then, whenever we want to complete that
same task, we just need to call on that function, instead of rewriting lots of
lines of code every time.

Another good thing about functions is that you can pass data to them, get
them to do something with that data, and then have them output the results.
One way of thinking about this is to imagine the function as a machine that we
put values into. The machine does something to those values and then

153 Learn to Code with JavaScript

outputs some new values.

8-1. A representation of input and output

In the cake example, the input is the ingredients, the process is the mixing and
baking, and the output is the cake itself.

8-2. A cakey version of input and output

An example of a function might be one that doubles a number. The input
would be a number, the process would be multiplying this number by 2, and

Functions 154

the output would be the answer.

8-3. Doubling a number

Functions in JavaScript
Functions are an essential part of any programming language. They’re the
fundamental building blocks of most JavaScript programs, which makes
understanding them an essential skill to master.

Subroutines, Procedures and Functions

A named block of code is known as a subroutine. If the code just
performs a task, it should technically be called a procedure. It’s only
if the block of code outputs (or returns) a value that it’s called a
function.

Some languages, such as Ruby, differentiate between procedures
and functions and will use a different syntax to create them.
JavaScript doesn’t do this, and only uses functions to create named
blocks of code.

JavaScript functions will return a value of undefined if a return

value is not explicitly speci;ed.

155 Learn to Code with JavaScript

De!ning a Function

The most common way to define a function in Javascript is to use a function
declaration like the one shown below. Try writing the following in the console:

function hello(){

alert('Hello, World!');

}

This creates a function called hello . The code block that describes what the
function does is inside the curly braces. This code will create an alert box that
displays the message “Hello, World!”

Defining the function doesn’t actually do anything, though. In order to actually
run the code inside the function, you have to “call” it.

Calling Functions

Calling a function will run the block of code inside the function’s body. To call
the hello() function that we defined above, just type the following in the
console and press Enter:

hello();

This should produce an alert box like the one shown below.

Functions 156

8-4. Hello, World!

The function can be called over and over again just by typing its name
followed by parentheses (try it … until you get bored of having to keep closing
those alert boxes!).

This is one of the advantages of using functions: there’s no need to keep
writing repetitive blocks of code. Another advantage is that all the
functionality is kept in one place. So if you want to change part of it, you only
need to update the one piece of code in the function declaration. For example,
if the alert box is really starting to annoy us, we can just edit the hello()

function to be this instead:

function hello(){

console.log('Hello, World!');

}

Now the message will be logged to the console every time the function is
called, rather than displayed in those annoying pop-up alert boxes. Imagine if
this code had been used hundreds of times throughout our program: it would
be such a pain having to change every instance of it. By using functions, we
only have to change the code in one place, and every instance of it will be
updated. This a perfect example of the DRY principle in action.

157 Learn to Code with JavaScript

Function Expressions

Another way of defining a function is to create a function expression. This
assigns an “anonymous function” to a variable, as you can see in the example
below:

const goodbye = function(){

alert('Goodbye, World!');

};

An anonymous function is created using the same function declaration we
used earlier, but it doesn’t have a name assigned to it. Instead, the function is
assigned to a variable that’s used to refer to the function. In the example
above, the variable is called goodbye .

A function expression is called in the same way as a function declaration—by
writing the name of the variable it was assigned to, followed by parentheses:

goodbye();

Assignment and Semicolons

Notice also that the example above ends with a semicolon. This
;nishes the assignment statement, whereas a normal function
declaration ends in a block (semicolons are not placed at the end of
a block).

Functions 158

8-5. Goodbye, World!

Arrow Functions

Arrow functions were only added to JavaScript in 2015, and they look very
different from the other ways of writing functions. They use a less verbose
syntax, making them quicker to write, and they’re identified by the “arrow”
symbol (=>) that gives them their name.

Arrow functions are always anonymous, so if you want to refer to them, you
must assign them to a variable, like we did with function expressions. The
example below shows how to create an arrow function that’s assigned to the
variable hola :

const hola = () => alert('Hola, Mundo!');

The arrow function starts with the parentheses and arrow, () => . Everything
after that is the code that will run when the function is called. Notice that this
code doesn’t need to be put inside any curly braces (as long as it’s only one

Calling vs Referencing a Function

It’s important to remember that you need parentheses to call a
function. If you forget to add the parentheses, you’re just
referencing the actual function, rather than calling it.

159 Learn to Code with JavaScript

line of code), which makes the function appear much more concise.

Arrow functions are called in exactly the same way as any other function: just
write its name—and don’t forget to add those parentheses at the end:

hola();

8-6. Hola, Mundo!

Return Values
Functions always return (or output) a value. This can can be specified in the
body of the function using the return keyword.

For example, the following function will return the string 'Howdy, World!' :

function howdy(){

return 'Howdy, World!';

}

Return values can be any type of value—even functions! (This is covered in
later chapters.)

Functions 160

When using arrow functions, you don’t even need to explicitly use the return

keyword if the body of the function is just one line of code. If this is the case,
the result of that code is the return value. For example, the howdy function
above could be written using arrow notation like so:

const howdy = () => 'Howdy, World!';

Short, one-line functions like this are good candidates for using arrow
functions.

Parameters and Arguments
Parameters and arguments are terms that are often used interchangeably to
represent values that are provided for the function as an input. There’s a

Returning Undefined

If a return value isn’t explicitly stated, it will return undefined by

default. This is because a function must return a value in order to be
considered a function. You’ll often see undefined appear in the

console after calling a function that in essence is just a procedure
and doesn’t need to return a value. The alert function that we’ve

been using is an example of this.

8-7. The alert function returns unde;ned

161 Learn to Code with JavaScript

subtle difference though: the parameters of a function are set when the
function is defined, whereas the arguments of a function are provided when it
is called.

To see an example of a function that uses parameters, let’s create a function
that squares numbers. In the example that follows, the square function
accepts a single parameter, n , which is the number to be squared. In the body
of the function, the name of the parameter acts just like a variable. We
multiply this value by itself and return the result:

function square(n){

return n*n;

}

When we call this function, we need to provide an argument, which takes the
place of the parameter in the definition and is the number to be squared:

square(4.5);

<< 20.25

When defining arrow functions with a single parameter, the parameters come
before the arrow and the main body of the function comes after. For example,
the square function can be written like so:

const square = n => n*n;

Notice that arrow functions don’t need parentheses around the parameter,
making them even more succinct.

You can use as many parameters as you like when defining functions. For
example, the following function finds the mean of any three numbers by
adding them together and dividing the result by three:

function mean(a,b,c){

return (a+b+c)/3;

Functions 162

}

Let’s run that in the console:

mean(8, 3, 4);

<< 5

When using more than one parameter with arrow functions, you need to place
them in parentheses, so the mean function would be written in arrow notation
like this:

mean = (a,b,c) => (a+b+c)/3;

If a parameter isn’t provided as an argument when the function is called, the
function will still be called, but the missing argument will be given a value of
undefined . For example, if we tried to call the mean function with only two

arguments, it would return NaN , which is the result of trying to add a number
to undefined . Try entering the example below in the console to see this:

mean(1,2);

<< NaN

8-8. The third argument of the mean function is missing, resulting in NaN

If too many arguments are provided when a function is called, the function will
work as normal and the extra arguments will just be ignored. The example
below will return the mean of 1,2 and 3 and ignore the arguments of 4 and 5:

163 Learn to Code with JavaScript

mean(1,2,3,4,5);

<< 2

Default Parameters

JavaScript provides a convenient way to specify default parameters for a
function. These are values that will be used by the function if no arguments
are provided when it’s called. To specify a default parameter, you simply assign
the default value to it in the function definition. For example, the following
function accepts a parameter that’s then added to the end of the string
'Hello ' . The parameter is given a default value of 'World' :

function hello(name='World') {

alert(`Hello, ${name}!`);

}

Now if we call this function without any arguments, it will default to using
'World' as the name argument:

hello();

<< 'Hello, World!'

If you don’t want to use 'World' as the argument, you can just override this
default value by specifying a different value as the argument. For example,
how about saying hello to the universe?

hello('Universe');

<< 'Hello, Universe!'

Default parameters should always come after non-default parameters.
Otherwise, you’d just have to enter default values when you call the function
anyway. Consider the following function that calculates the discounted price
in a store:

Functions 164

function discount(price, amount=10) {

return price*(100-amount)/100;

}

This function takes two arguments: the price of an item, and the percentage
discount to be applied. The store’s most common discount is 10%, so this is
provided as a default value. This means that the amount argument can be
omitted in most cases and a 10% discount will still be applied. For example,
you could calculate the sale price of an item that was $20 with a 10% discount
by using the following code:

discount(20);

<< 18

Note that we didn’t have to specify that the discount was 10%.

If a different discount needed to be applied, the amount argument can be
provided. In the following example, an item that was $15 is discounted by 20%:

discount(15, 20);

<< 12

This will fail to work, however, if the parameters are defined in reverse order,
like in the example below:

function discount(amount=10, price) {

return price*(100-amount)/100;

}

Now if we try to use the function with just one argument, the function won’t
work, because price hasn’t been set:

discount(20);

<< NaN

This set amount to 20, but there was no argument provided for price , so the

165 Learn to Code with JavaScript

calculation could not be completed and NaN was returned.

It will still work, if both values are entered, however:

discount(10,20);

<< 18

This somewhat defeats the object of having default parameters! The golden
rule to remember here is to always put default parameters after all the other
parameters.

Random Integers

We met the Math.random() method in the Numbers chapter (Chapter 4),
which creates a random decimal between 0 and 1. We often need a random
integer value in programs. In fact, we used the following code to choose a
random number between 1 and 10 in the higher or lower game from the last
chapter:

Math.ceil(Math.random()*10);

It’s a useful exercise to abstract this code into a “helper” function that you can
use whenever you want to generate a random integer.

In the code above, the value of 10 gives the upper bound of the range of
numbers, so we could make this a parameter of the function. This would allow
us to choose the upper bound when we call the function. The function might
look like this, written as a function declaration:

randomInt(n){

return Math.ceil(Math.random()*n);

}

This will return a random integer between 1 and the number provided as an
argument. For example, we can generate a random number between 1 and 6
using the following code:

Functions 166

randomInt(6);

<< 3

It would also be useful if we could add an optional lower bound to this
function. A lot of the time, when we require a random integer, the lower bound
will be 1, so we’ll set 1 as the default value:

randomInt(upper,lower=1){

return Math.floor(Math.random()*(upper-lower+1)+lower);

}

This will now return a random integer between the lower and upper values
provided as arguments. For example, the following code will return a random
integer between 4 and 7:

randomInt(7,4);

<< 5

Because we’ve given the lower bound a default value of 1, we can use it as
before with a single argument to generate a random number between 1 and
10:

randomInt(10);

<< 9

But it’s slightly annoying that we have to provide the arguments as upper
bound followed by lower bound. This is because any default parameters have
to come last. However, there’s a trick for getting around this!

If the second argument isn’t provided, it’s given a value of undefined . We can
check for this and assign the values of the upper and lower bound accordingly:

function randomInt(lower,upper){

if(upper===undefined){

upper = lower;

lower = 1;

167 Learn to Code with JavaScript

}

return Math.floor(Math.random()*(upper-lower+1)+lower)

}

This code uses an if block to check if the second argument was provided, by
checking if it has a value of undefined . If this is the case, we set the upper
bound to equal the argument provided (stored in the variable lower) and then
set lower to be our default value of 1.

Now we can provide the arguments in a more logical order:

randomInt(4,7);

<< 6

You can see my code on CodePen1.

Assigning Return Values to Variables

An important concept in JavaScript is that functions are considered to be
first-class objects. This means that they behave like all the other data types:
they can be be assigned to variables and can even be used by other functions.

We can also assign the return value of a function call to a variable. To see this
in action, try running the following code in the console:

const function hello(){

return 'Hello, World!';

}

const message = hello();

<< 'Hello, World!'

The variable message now points to the return value of the hello() function,
which is the string 'Hello, World!' , as can be seen if we run the following
code to display the value of the variable:

1. https://codepen.io/SitePoint/pen/GRNZRQV

Functions 168

https://codepen.io/SitePoint/pen/GRNZRQV

message;

<< 'Hello, World!'

This might all seem to be a lot of work and a bit pointless: why not just assign
the string to the variable directly? The answer is that we can create more
complex functions that have different return values depending on certain
conditions. This technique will then allow us to assign different values to
variables depending on the outcome of a function.

For example, say we wanted to check a person was over 18. We could write a
function that accepted their age as an argument and returned true if they
were over 18, or false if they weren’t. It might look something like this:

userIsChild = function(age){

if(age<18){

return true;

} else {

return false;

}

}

Then, later in the program, we might want to restrict the access of some parts
of the site to children using a variable called restrictedAccess that’s true if
the user enters an age under 18. We could use the following code to do this:

const restrictedAccess = userIsChild(age);

The variable restrictedAccess will now be true or false based on the return
value of the userIsChild function.

Callbacks
A function that’s passed as an argument to another function is known as a
callback. The callback can then be called from within the body of the function
that it’s an argument of. Being able to call different functions from within
functions makes functions even more flexible.

169 Learn to Code with JavaScript

To see an example of this, let’s look at the following function called bake . This
is a JavaScript example of the baking analogy we used for functions at the
start of the chapter. It accepts a string of ingredients as a parameter and then
logs some messages to the console. Try entering the following in the console:

function bake(ingredients,callback){

console.log(`Mix together ${ingredients}...`);

console.log('Bake in the oven...');

}

Try calling the function with an argument like the one in the example below:

bake('flour, water & sugar');

<< "Mix together flour, water & sugar..."

<< "Bake in the oven...'

We can improve this function by adding a callback as a second parameter. This
is a function that’s called from within the bake function and allows us to add
some extra information. Update the bake function by entering the code
below into the console:

function bake(ingredients,callback){

console.log(`Mix together ${ingredients}`);

console.log('Bake in the oven');

callback();

}

Now we can call the bake function with a callback that logs another message
to the console. In the example below, the callback is an anonymous arrow

Overwriting a Function Declaration

You can overwrite a function declaration by declaring it again later in
the code, but this won’t work if you’ve assigned a function
expression to a variable using const .

Functions 170

function:

bake('flour, water & sugar', () => console.log('Add icing on top...'));

<< "Mix together flour, water & sugar..."

<< "Bake in the oven...'

<< "Add icing on top..."

The callback doesn’t have to be an anonymous function that’s defined in the
function call. We can define a named function and then provide the name as
an argument. For example, enter the following function in the console:

function eat(){

console.log('Eat every last crumb!');

}

Again, this just logs another message to the console, which isn’t very exciting,
but fine for demonstration purposes. Let’s try providing this function as an
argument to the bake function:

bake('flour,water & sugar', eat);

<< "Mix together flour, water & sugar..."

<< "Bake in the oven...'

<< "Eat every last crumb!"

Notice that the callback isn’t followed by parentheses when it’s provided as an
argument. This is because it’s called later, in the body of the function.

Callbacks are used extensively in many JavaScript functions, and we’ll see
much more of them later in the book. In fact, we’ll finish the chapter with a
practical example that solves a problem we encountered earlier in the book.

Sorting Arrays with a Callback

In the Arrays chapter (Chapter 5), we saw that arrays have a sort() method
that sorts the items in the array into alphabetical order. This is fine for strings,
but you might recall that it doesn’t work so well for numbers:

171 Learn to Code with JavaScript

[1,3,12,5,23,18,7].sort();

<< [1, 12, 18, 23, 3, 5, 7]

The reason for this is that the numbers are converted into strings and then
placed in alphabetical order, so '12' comes before '3' because it starts
with a '1' .

So how do you sort an array of numerical values? The answer involves
providing a callback as an argument to the sort() method. This callback tells
the method how to compare any two values in the array. Let’s call them a and
b . The callback function should return the following:

a negative value if a comes before b

0 if a and b are equal
a positive value if a comes after b

An easy way to sort values numerically is to use subtraction: a-b . This will
return a negative value if b is bigger than a , zero if a and b are equal, or
positive if a is bigger than b . We can do this by adding an anonymous arrow
callback function as the second argument, like so:

[1,3,12,5,23,18,7].sort((a,b) => a-b);

<< [1, 3, 5, 7, 12, 18, 23]

The results returned by the callback function help the sort() method
understand whether an item is bigger or smaller than another, so that it can
then order the items numerically.

Sorted!

Functions 172

Choosing the Right Type of Function
In this chapter, we’ve covered three different ways of creating functions.
There are some subtle differences between them that will be covered in more
detail later in this book. Function declarations are very similar to how functions
are declared in other languages, whereas function expressions behave just
like any other value assigned to a variable, rather than being a special feature
of the language.

Arrow functions look very different from function declarations and
expressions, and they can also produce different results in some situations,
meaning they’re not always suitable as a like-for-like replacement. They can be
quicker to write, since they don’t need curly braces around the body of the
function and the return keyword isn’t needed if it’s only a single line of code.
These advantages make arrow functions particularly popular for quick, one-
line functions, and you’ll see quite a few examples later in the book. Many of
the advantages of arrow functions tend to disappear, however, once the body

Sorting Through sort()

In programming, you’ll often come across tricky situations that
require sophisticated solutions. Thankfully, others have walked this
path before you, and there are ready-made solutions to almost any
problem. The solution used above to sort numbers is a small
example: it’s a snippet of code that’s been worked out by others
needing to do the same thing. You don’t actually need to
understand how it works. Still, it never hurts to dig more deeply into
the workings of JavaScript, so if you want a more in-depth
explanation of how the sort() method works, check out these two

articles:

“Sophisticated Sorting in JavaScript”2

“How to Sort an Array of Objects in JavaScript”3

2. https://www.sitepoint.com/sophisticated-sorting-in-javascript/
3. https://www.sitepoint.com/sort-an-array-of-objects-in-javascript/

173 Learn to Code with JavaScript

https://www.sitepoint.com/sophisticated-sorting-in-javascript/
https://www.sitepoint.com/sort-an-array-of-objects-in-javascript/

1

2

3

of the function becomes longer than one line.

Which method you choose can often be as much about personal taste as
about which is best suited to the situation at hand. By the time you’ve reached
the end of this book, you’ll hopefully be well equipped to choose the best type
of function to use in any particular situation.

Challenges
Now that you’ve learned how to define and call functions, it’s time to have a go
at creating some functions. Here are some challenges to help develop your
programming skills.

Write a function called lastChar that accepts a string as an argument
and returns the last letter of the string. For example,

lastChar('JavaScript') should return 't' . You can see my code on
CodePen4.

Write a function called reverse that accepts a string and returns the
string written backwards. For example, reverse('JavaScript') should

return 'tpircSavaJ' . Applying the function twice should return the original
value, so reverse(reverse('JavaScript')) should return 'JavaScript' . You
can see my code on CodePen5.

Write some functions that will add and remove some items from a list.
The list should be stored as an array and add('apples') should add the

string 'apples' to the array and remove('apples') should remove 'apples'

from the array. You can see my code on CodePenhttps://codepen.io/SitePoint/
pen/JjbXjem.

Summary
Functions can be defined using the function declaration, or by creating a

4. https://codepen.io/SitePoint/pen/OJbNJay
5. https://codepen.io/SitePoint/pen/poNyoQw

Functions 174

https://codepen.io/SitePoint/pen/OJbNJay
https://codepen.io/SitePoint/pen/OJbNJay
https://codepen.io/SitePoint/pen/poNyoQw
https://codepen.io/SitePoint/pen/JjbXjem

function expression by assigning an anonymous function to a variable.
Arrow functions are a shorthand notation that can used for writing short,
one-line, anonymous functions.
All functions return a value. If this isn’t explicitly stated, the function will
return undefined .
A parameter is a value that’s written in the parentheses of a function
declaration and can be used like a variable inside the function’s body.
An argument is a value that’s provided to a function when it’s called.
The return value of a function can be assigned to a variable.
A callback is a function that’s provided as an argument to another function
and can be called from within the body of that function.

Functions are a really important part of any programming language. But so are
“objects”—and we’ll be learning about them in the next chapter!

175 Learn to Code with JavaScript

Objects
Chapter

9

Objects 176

Objects are abstract data types used in programming. They can be used to
represent real-world objects such as people, animals or places, as well as
more abstract concepts such as bank account details, dates or file structures.

In some languages, such as Ruby, practically everything is an object. There are
no primitive values, just objects. Even the number zero is an object. A large
number of languages, such as Java, are class-based languages. These involve
creating classes that act as a blueprint for creating all the objects in that class.
For example, a Car class might specify that all Car objects will have an
engine, four wheels and a choice of color.

JavaScript is not a class-based language (although you can define classes if
you want to, as we’ll see later in the book). It allows you to create objects
quickly and easily without the need for defining a class first.

In this chapter, we’ll be covering the following topics:

properties and methods
creating object literals
object properties
object methods
nested objects
this

Properties and Methods
Objects can have properties and methods. Properties are information about
the object and methods are actions that the object can perform.

For example, we could represent an octopus using the following object model.

Octopus

177 Learn to Code with JavaScript

Properties

Methods

9-1. An octopus

Name: “Octavius”
Legs: 8
Swim
Walk
Regrow leg (yes, they can really do that!)

Objects are often used to keep any related information and functionality
together in the same place. For example, if you were writing some code
involving a square, you might create a “square” object with the following
properties and methods.

Square

Objects 178

Properties
Methods

9-2.

Length: 5
Perimeter = 4 * Length
Area = Length * Length

Creating Objects in JavaScript
Object literals are a distinguishing feature of the JavaScript language, as they
allow objects to be created quickly without the need for defining a class, which
is common in many other languages. An object literal is a self-contained set of
related values. Properties can be of almost any data type, such as numbers,
strings, Booleans, arrays, or even other objects. If a property is a function, then
it’s known as a method.

To create an object literal in JavaScript, simply enter a pair of curly braces. The
following example creates an empty object that’s assigned to the variable
myObject :

const myObject = {};

You don’t have to start with an empty object. You can place the properties and
methods inside the curly braces. The following code could be used to
represent information about a square:

179 Learn to Code with JavaScript

const square = {

sides: 4,

length: 5,

perimeter: 20,

area: 25

}

Each property has a key and an associated value. In the example above, the
first property has a key of sides and its value is 4. Each key–value pair is
separated by a comma.

Methods

Methods look similar to the other properties, but are defined as a function.
The following code shows how we would create an object literal to represent a
duck with a quack() method:

Trailing Commas

Notice above how the last key–value pair doesn’t end with a
comma. These days, this “trailing comma” is optional, but before
ECMAScript 5, a trailing comma would have thrown an error. As long
as your code doesn’t need to work in older browsers (which is an
important consideration), including a trailing comma can be useful if
you’re likely to add further key–value pairs to your object later on,
because it means you don’t have to remember to add the comma
later. As a general rule, I won’t be using trailing commas in this book.

Objects 180

9-3. A duck

const duck = {

name: 'Quacky',

legs: 2,

quack: function() {

alert('QUACK! QUACK!');

}

};

There’s also an alternative notation for describing methods that omits the
function keyword and just places parentheses after the method name:

const duck = {

name: 'Quacky',

legs: 2,

quack() {

alert('QUACK! QUACK!');

}

};

This way of writing methods was only introduced into JavaScript quite
recently, but has become popular due to it requiring less typing.

Guess Again

Remember the four characters from our mini game of Guess Who? in Chapter

181 Learn to Code with JavaScript

6?

9-4. Guess Who?

We could create objects to represent each of them. Each object would contain
properties describing their name and Boolean values to indicate if they’re
wearing glasses and a hat or not. For example, the following object would
represent Alfie:

const alfie = {

name: 'Alfie',

picture: ' ',

glasses: no,

hat: no

}

Creating Objects from Variables

We can also create objects using variables that already exist, as can be seen in
the example below:

const name = 'Dumbo';

const legs = 4;

const fly = () => console.log('Fly, fly away!');

const elephant = { name, legs, fly };

Objects 182

9-5. An elephant

Notice that if the variables have already been declared and assigned to values
or functions, you only have to place the variable names inside the object literal
and it will assign the properties and methods to match the variables.

This is an example of object property shorthand syntax1 that makes it easier
to create an object with property and method names that are the same as
variables and functions that already exist. The long-hand version would
involve some pointless repetition when creating the elephant object:

const elephant = {

name: name,

legs: legs,

fly: fly

}

Properties and Methods
You can access the properties of an object using the dot notation that we’ve
already seen in previous chapters. The example below shows how we can
access the name property of the elephant object:

1. https://alligator.io/js/object-property-shorthand-es6/

183 Learn to Code with JavaScript

https://alligator.io/js/object-property-shorthand-es6/

elephant.name;

<< "Dumbo"

You can also access an object’s properties using bracket notation. The
property is represented by a string inside square brackets, so it needs to be
placed inside single or double quotation marks:

elephant['name'];

<< "Dumbo"

The dot notation for accessing properties is by far the most common, but
bracket notation can come in handy if the name of the property is stored as a
string. For example, if you had a variable called info that was equal to the
string 'name' , the following code would be equivalent to writing
elephant.name :

const info = 'name';

elephant[info]

<< "Dumbo"

This wouldn’t work if you used elephant.info because JavaScript would try
to find a property called info .

In most other cases, though, you should stick to using the dot notation.

If you try to access a property that doesn’t exist, undefined will be returned:

elephant.arms;

<< undefined

The in operator can be used to check whether an object has a particular
property. So, for example, we can check if the elephant object has properties
called arms or legs using the following code:

'arms' in elephant;

Objects 184

<< false

'legs' in elephant;

<< true

Calling Methods

Methods are just like functions, so we call them in the same way. We can refer
to the object’s method using the dot or bracket notation, just like with
properties, but with parentheses at the end, so we would use the following
code to call the fly method:

elephant.fly()

<< "Fly, fly away!"

9-6. “Fly, fly away!”

You can also use the square bracket notation to call methods:

elephant['fly']();

<< "Fly, fly away!"

185 Learn to Code with JavaScript

Adding More Properties and Methods

Objects are mutable by default, which means that their properties and
methods can be changed or removed and new properties and methods can be
added, even if they were declared using const .

New properties and methods can be added to objects at any time in a
program. This is done by simply assigning a value to the new property. For
example, if we wanted to add a new ears property to our elephant object,
we would do it like so:

elephant.ears = 2;

<< 2

If we look at the elephant object, we can see that it has the ears property:

elephant;

<< { name: 'Dumbo',

legs: 4,

ears: 2,

fly: [Function: fly] }

Changing Properties

You can change the value of an object’s properties at any time using
assignment. For example, we can change the value of the name property like
this:

Frozen Objects

It’s possible to freeze an object and make it immutable. We won’t be
going into that here, but you can can read more about it on the
Mozilla Developer Network2 site.

2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Object/freeze

Objects 186

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

elephant.name = 'Elmer';

<< 'Elmer'

We can check the update has taken place by taking a look at the object:

elephant;

<< { name: 'Elmer',

legs: 4,

ears: 2,

fly: [Function: fly] }

Removing Properties

Any property can be removed from an object using the delete operator. For
example, if we wanted to remove the fly method from the elephant object
(because Elmer can’t fly, of course!), we would enter the following:

delete elephant.fly;

<< true

Now if we take a look at the elephant object, we can see that Elmer can no
longer fly:

elephant;

<< { name: 'Elmer',

legs: 4,

ears: 2 }

Nested Objects

It’s even possible for an object to contain other objects. These are known as
nested objects.

Here’s an example of an object that contains a group of nested objects. Each
nested object represents a different shape. The container object has been

187 Learn to Code with JavaScript

assigned to the variable shapes :

const shapes = {

triangle: { sides: 3 },

square: { sides: 4 },

pentagon: { sides: 5 },

hexagon: { sides: 6 },

octagon: { sides: 8 },

megagon: { sides: 10e6 },

}

9-7. Shapes

The values in nested objects can be accessed by referencing each property
name in order using either dot or bracket notation:

shapes.triangle.sides;

<< 3

shapes['megagon']['sides'];

<< 1000000

You can even mix the different notations (but please don’t do this if you can
help it!):

shapes.hexagon['sides'];

<< 6

this

The keyword this can be used inside an object to refer to the object itself.
It’s often used in methods to gain access to the object’s properties.

Objects 188

To see an example of when we might use this , consider the example of the
square object we saw earlier:

const square = {

sides: 4,

length: 5,

perimeter: 20,

area: 25

}

The problem with this object is that all the information about the square is
hard-coded as properties. This isn’t necessary, since we can use methods to
calculate the perimeter and area based on the values of the sides and
length properties. We can use this to gain access to those properties. Try

entering the following code in the console:

const square = {

sides: 4,

length: 5,

perimeter() { return this.sides * this.length },

area() { return this.length * this.length }

}

The perimeter and area properties have now been changed to methods
that return the desired value. Inside the body of these methods there are
references to other properties of the object: this.sides is the equivalent to
writing square.sides , and is the number 4.

If we call these methods, they should give us the same results as when the
corresponding properties were hard-coded earlier:

square.perimeter();

<< 20

square.area();

<< 25

Using methods in this way makes the object much more flexible. If we change

189 Learn to Code with JavaScript

the value of the length property, the perimeter and area will also change to
reflect this:

square.length = 8;

<< 8

square.perimeter();

<< 32

square.area();

<< 64

Roll the Dice
Let’s finish the chapter with a coding project. We’ll create a dice object that
has a sides property and a roll() method that returns a number between 1
and the number of sides.

Here’s the code to create our dice object:

const dice = {

sides: 6,

roll() {

return Math.ceil(Math.random()*this.sides);

}

}

This object has a sides property that tells us that the dice has six sides. It
also has a roll() method that will return a random number between 1 and 6.

Inside the roll() method, we use this.sides to refer to the value of the
object’s sides property instead of simply hard-coding the value 6. This will
make the object more flexible: if we later decide to change the number of
sides, we’ll only have to change the sides property and won’t need to update
the roll function.

We also use the random() and ceil() methods of the Math object, which

Objects 190

1

we met in Chapter 4, to return a number between 1 and the number of sides.

Let’s take it for a spin:

dice.roll();

<< 5

dice.roll();

<< 3

Now let’s try changing the number of sides by modifying the sides property:

dice.sides = 20;

<< 20

Now the roll() method will return a random number between 1 and 20
instead, without us having to modify it:

dice.roll();

<< 12

dice.roll();

<< 18

Challenges
Create objects that describe some of your favorite things. For example,
you could create some objects that model your favorite sports stars and

provide properties such as speed , power and agility . Or you could create
some objects that represent products for sale on an ecommerce site,
including properties such as description , price and rating . Have a play
around in the console and practice reading and updating the properties and
calling the methods. Top Trumps3 cards could be a good inspiration for this
challenge, as each card contains a large amount of information about their
subject.

3. https://en.wikipedia.org/wiki/Top_Trumps

191 Learn to Code with JavaScript

https://en.wikipedia.org/wiki/Top_Trumps

2

3

4

Write objects that represent Betty, Gemma and Del in the Guess Who?
game. You can see my code on CodePen4.

Create a circle object that has a radius property and calculates the
circumference and area. Hint: you might need to use the Math.PI

constant for this challenge. You can see my code on CodePen5.

Create a list object that has an array property called items and an add

and remove() method that can be used to add items to the list. For
example, list.add('Apples') should add Apples to the list.items array.
Hint: you could use the functions you created in challenge 3 in the last chapter
as methods. You can see my code on CodePen6.

Summary
Objects have properties that contain information about the object, and
methods that are actions the object can perform.
Object literals in JavaScript are a collection of key–value pairs placed inside
curly braces ({}) and separated by commas.
Properties can be strings, numbers, Booleans or arrays.
Methods are stored as functions.
An object’s properties and methods can be accessed using either dot
notation or square bracket notation.
Objects are mutable, which means that their properties and methods can
be changed or removed (even if they’re created using const).
Nested objects can be created by placing objects inside objects.
The keyword this can be used in properties and methods to refer to the
object itself.

Now that we’ve learned about all the basics of programming, it’s time to look
at how our code can interact with the browser environment.

4. https://codepen.io/SitePoint/pen/GRNqQPQ
5. https://codepen.io/SitePoint/pen/KKNMQbY
6. https://codepen.io/SitePoint/pen/gOLMvqe

Objects 192

https://codepen.io/SitePoint/pen/GRNqQPQ
https://codepen.io/SitePoint/pen/KKNMQbY
https://codepen.io/SitePoint/pen/gOLMvqe

The
Document

Object Model

Chapter

10

193 Learn to Code with JavaScript

So far, we’ve mainly been interacting with our code in the console or by using
pop-up boxes. Since the advent of the computer monitor, computer programs
have been able to provide some kind of graphical user interface (GUI) to allow
users to interact with programs. For example, operating systems such as
Windows or iOS provide GUIs that allow you to interact with your computer or
device.

10-1. Windows is a computer operating system that includes a GUI

Most programming languages will have a library that allows you to create a
GUI. In a browser, we can use HTML and CSS to create a GUI for the user to
interact with.

The Document Object Model, or DOM for short, allows us to access the
elements of a web page from within our code. It provides tools for adding and
removing elements, and for updating the content and style of a page.

The DOM is language agnostic, which means that it can be used in any
programming language, although JavaScript is the language it’s most
associated with. We’ll be focusing on using JavaScript to access the DOM in
this chapter.

The Document Object Model 194

We’ll be covering the following topics:

an introduction to the DOM
getting elements
navigating the DOM
getting and setting an element’s attributes
updating the DOM by creating dynamic markup
changing the CSS of an element

The Document Object Model
The Document Object Model represents an HTML document as a network of
connected nodes that form a tree-like structure.

The DOM treats everything on a web page as a node. It represents HTML tags
as element nodes and any text inside the tags as text nodes. All these nodes
are connected to make a node-tree that describes the overall structure of the
web page.

To demonstrate this, let’s take a look at the following short snippet of HTML
code:

<h1 id='greeting'>Hello, World!</h1>

This can be represented as the node-tree diagram shown below.

195 Learn to Code with JavaScript

10-2. The Hello, World! DOM

The <h1> tag contains everything, so this appears as an element node
(represented by purple ovals in the diagram) at the top of the node tree. The
word “Hello” is text, so this is a child text node (represented by green
rectangles in the diagram). The element is inside the <h1> tag, so it’s a
child element node. This makes the <h1> element node a parent node of
these child nodes. The text inside the tags is a text child node of the
 element node.

In the browser, it would look like this:

The Document Object Model 196

10-3. Our Hello, World! heading, as displayed in a browser

Being able to visualize the HTML markup as a node tree will make navigating
the DOM a much easier experience.

Getting an Element
The DOM provides a useful method called getElementById that returns a
reference to the element with a particular ID attribute.

HTML Document vs the DOM

When you visit a web page, your browser ;rst downloads the page
document with all its HTML, text, images and so on. The browser
then creates a representation (or mental model, if you like) of that
document, which is the Document Object Model. Then the browser
uses that DOM to display the web page on your device. JavaScript
allows changes to be made to the web page, but those changes are
made to the DOM, rather than to the original, hard-coded HTML.
You’ll see evidence of this later in the chapter.

Inspecting the DOM

Browsers actually let you view the Document Object Model of a
web page, and you can even play around with it in all sorts of ways.
(It’s a bit like looking under the hood of a car.) If you right-click
anywhere on a web page, you’ll see an option to “inspect” the page.
That will display the DOM, along with all sorts of other developer
tools. The DOM will look similar to the original HTML, but not exactly
the same—especially if JavaScript has modi;ed it.

197 Learn to Code with JavaScript

For example, we can get a reference to the <h1> heading element in the
previous example using its id of greeting .

Let’s try this out on CodePen. Open a new Pen and add the following code into
the HTML section:

<h1 id='greeting'>Hello, World!</h1>

We can now get a reference to the <h1> element by adding the following
code to the JS section:

const hello = document.getElementById('greeting');

If no element exists with the ID provided, null is returned. We can see what
gets returned by typing the name of the variable we assigned the element to
(hello) into the console:

hello;

<< "<h1 id='greeting'>Hello, World!</h1>"

As you can see, the variable hello now points to the HTML element with the
ID of greeting . Now that we have a reference to that element in our code, it
means we can do things with it!

Updating the HTML
The easiest way to update the HTML on a page is to use the innerHTML

property. This will return all the HTML that’s enclosed inside that element’s
tags as a string. We can see this by entering the following code into the
console:

hello.innerHTML;

<< "Hello, World!"

The great thing about the innerHTML property is that it’s also writable, so it

The Document Object Model 198

gives us a convenient way to insert a chunk of HTML inside an element.

To demonstrate this, let’s add some JavaScript code into the JS section on
CodePen to give a more personalized greeting. First of all, let’s make sure we
have a reference to the heading:

const hello = document.getElementById('greeting');

Next, we’ll use a prompt box to ask the user for their name and store it in the
variable name :

const name = prompt('What is your name?');

Last of all, we’ll replace the innerHTML property with our own personalized
greeting, which uses the name variable that we’ve just collected from the
user:

hello.innerHTML = `Hello, ${name}!`;

Notice that we’ve used a template literal to produce the HTML. These are
incredibly useful when creating chunks of HTML to dynamically insert into a
web page, as they allow variables to be inserted directly into them.

If everything went to plan, you should see something like this (but hopefully
with your name!):

10-4. This is getting personal

199 Learn to Code with JavaScript

You can see my code on CodePen.1

Getting Multiple Elements
Let’s have a look at how to select more than one element at once. Create a
new Pen on CodePen and add the following code into the HTML section:

<ul id='food'>

<li class='fruit'> Apple

<li class='fruit'> Banana

<li class='veg'> Carrot

This should create a list of items that looks something like this:

10-5. Our new food list

The DOM tree for this snippet of HTML is shown in the diagram below:

1. https://codepen.io/SitePoint/pen/oNYzYBX

The Document Object Model 200

https://codepen.io/SitePoint/pen/oNYzYBX

10-6. Our food list DOM tree

As we’ve already seen, we can gain access to the element using the
following code:

const food = document.getElementById('food');

But how do we access a group of elements, such as the list items? Luckily, the
DOM also provides a few methods that allow us to access groups of elements.

Getting Elements by Tag Name

We can use getElementsByTagName() to return a collection of all the elements
with the tag name provided as an argument. For example, we can get all the
list items (HTML tag of) in the document using this code:

const items = document.getElementsByTagName('li');

201 Learn to Code with JavaScript

The variable items now contains a collection of all the list-item elements. You
can access each item in the collection using the square bracket index notation
that we’ve previously seen used with strings and arrays. For example, entering
the following code into the console will return the first item in the collection:

items[0];

<< "<li class='fruit'> Apple"

We can also find out how many elements are in the collection using the
length property:

items.length;

<< 3

Getting Elements by Their Class Name

We can also use the getElementsByClassName() method to return a collection
of all elements that have a particular class name. For example, the following
code will return a collection of all elements with the class of fruit :

const fruit = document.getElementsByClassName('fruit');

The variable fruit contains a collection of the two elements that have a
class of fruit , as we can see by entering the following into the console:

fruit.length;

<< 2

fruit[0];

<< "<li class ='fruit'> Apples"

fruit[1];

<< "<li class='fruit'> Banana"

Note that, if there are no elements with the given class, a collection will still be
returned, but it will contain no items and have a length of 0.

The Document Object Model 202

Query Selectors

Another way to get elements in the DOM it to use query selectors. The nice
thing about these is that they allow you to use CSS notation to target specific
elements.

The document.querySelector() method allows you to use CSS notation to find
the first element in the document that matches the CSS selector provided.

For example, instead of using document.getElementById to get a reference to
the element with an ID of food , we could use the following code:

const food = document.querySelector('#food');

The document.querySelectorAll() method also uses CSS notation, but
returns a list of all the elements in the document that match the CSS query
selector.

For example, the following two statements are identical and return the same
node list:

document.getElementsByClassName('fruit')`;

document.querySelectorAll('.fruit');

Query selectors are powerful methods that can emulate all the previous
methods, as well as allowing more fine-grained control over which element

Get Element vs Get Elements

Did you notice that you can only get one element by ID
(document.getElementById) but multiple elements by class name
(document.getElementsByClassName)? An easy way to remember

this is that you’re only allowed to use a particular ID once per HTML
document, while you can use a particular class name multiple times
in the same document.

203 Learn to Code with JavaScript

nodes are returned, as they allow you to specify precise items on a page. For
example, CSS pseudo-selectors can be used to pinpoint a particular element.

The following code, for example, will return only the last list item in the food

list:

const carrot = document.querySelector('ul#food li:last-child');

<< "<li class='veg'> Carrot"

Navigating the DOM Tree
DOM nodes have a number of properties and methods for navigating around
the document tree. Once you have a reference to an element, you can walk
along the document tree to find other nodes.

Let’s have a look at a couple of the more useful ones.

Child Nodes

You can get a collection of all the child elements of an element using the
children property. In our food list example, food.children will return a node

list of all the child elements of the element that has an ID of food .
These are highlighted in the diagram below.

CSS Selectors

You do have to know a bit about CSS selectors to be able to use this
method! If you’re not quite up to speed with them, or just need a
refresher, you might want to check out SitePoint’s “CSS Selectors”2

guide, or have a read of CSS Master3, by Tiffany Brown.

2. http://www.sitepoint.com/web-foundations/css-selectors/
3. https://www.sitepoint.com/premium/books/css-master-2nd-editio

The Document Object Model 204

http://www.sitepoint.com/web-foundations/css-selectors/
https://www.sitepoint.com/premium/books/css-master-2nd-edition

10-7. Highlighting the three list items that are children of the unordered list

The code below shows how we can get access to a node list containing the
three child elements:

food.children.length;

<< 3

food.children[0];

<< "<li class='fruit'> Apple"

Before we go on, let’s create some references to these child nodes in our
program. Add the following code to the JS section of your Pen:

const apple = food.children[0];

const banana = food.children[1];

const carrot = food.children[2];

(Here’s what your Pen should look like now4, if you’re following along.)

4. https://codepen.io/SitePoint/pen/QWGGbWg

205 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/QWGGbWg

Parent Node

The parentNode property returns the parent node of an element.

The following code returns the food node because it’s the parent of the
apple node:

apple.parentNode;

<< "<ul id='food'>

<li class='fruit'> Apple

<li class='fruit'> Banana

<li class='veg'> Carrot

"

This relationship can be seen in the diagram below:

10-8. The parent node of the apple element is the unordered list element

The Document Object Model 206

Creating Dynamic Markup
So far, we’ve looked at how to gain access to different elements of a web page
and find out information about them. But the real power of the DOM is its
ability to dynamically update the markup, like we did earlier in the chapter with
the innerHTML property.

In this section, we’re going to learn how to create new elements and add them
to the page, update elements that already exist, and remove any unwanted
elements from the page.

Creating an Element

The document object has a createElement() method that takes a tag name
as a parameter and returns that element. For example, we could create a new
item for our food list as a DOM fragment in memory by writing the following in
the console:

const melon = document.createElement('li');

At the moment, this element is empty. To add some content, we’ll use the
innerHTML property to add the HTML content:

melon.innerHTML = ` Melon`;

Add the two lines above to your Pen.

207 Learn to Code with JavaScript

Adding Elements to the Page

If you’ve updated your Pen, you’ll see that nothing has changed yet. Now that
we’ve learned how to create HTML elements, we need to learn how to put
them on the page. There are a number of methods to allow you to insert nodes
into the DOM.

Let’s firstly look at appendChild() . Every DOM node has an appendChild()

method that will add another node (given as an argument) as a child node. The
following example will add the melon element we created above to the end of
the food list:

Adding Text with textContent

There’s also a textContent property that can be used to add text to

an element, but you can’t use any HTML elements in it. For example,
this would be ;ne:

melon.textContent = ' Melon';

But if you tried to add the tags around the emoji, it wouldn’t

parse the HTML:

// this code won't parse the tags ...

melon.textContent = ' Melon';

As you can see in the image below, the tags just get displayed as
text on the web page, which usually isn’t what we want.

10-9. HTML won’t be parsed by textContent

The Document Object Model 208

food.appendChild(melon);

The following diagram shows where the new element we created will be
inserted into the list.

10-10. The arrow shows where the new child will be appended

And the next image shows that the melon is now part of the list.

10-11. Our updated list

209 Learn to Code with JavaScript

(Here’s the live Pen5 of what’s pictured above.)

Building Elements Node by Node

An alternative to using innerHTML to populate the content of an element is to
build each node individually and then use the appendChild() method to put
them all together.

To demonstrate this, let’s create a new list element that matches the node
tree shown below.

10-12. Our broccoli node tree

5. https://codepen.io/SitePoint/pen/rNWWVxr

The Document Object Model 210

https://codepen.io/SitePoint/pen/rNWWVxr

We’ll need to create a node for each node in the diagram, then put them all
together. We’ve already seen the document.createElement() method that’s
used to create element nodes (the purple ovals in the diagram). There’s also a
document.createTextNode() method that we can use to create the text nodes

(the green rectangles in the diagram).

Let’s create the nodes now. Add the following to the JS section of your Pen:

const broccoli = document.createElement('li');

const text = document.createTextNode('Broccoli');

const span = document.createElement('span');

const emoji = document.createTextNode(' ');

This will create all the nodes and assign variables to them. Now we can put
them together to form the list item:

span.appendChild(emoji);

broccoli.appendChild(span)

broccoli.appendChild(text);

Next, we need to insert this new list item into the HTML.

Insert Before

The appendChild() method is useful, as you’ll often want to add a new
element to the bottom of a list. But what if you want to place a new element in
between two existing elements?

The insertBefore() method will place a new element before another
element in the markup. It’s important to note that this method is called on the
parent node. It takes two parameters: the first is the new node to be added,
and the second is the node that you want it to go before. (It’s helpful to
remember that the order of the parameters is the order they’ll appear in the
markup.) For example, we can place our new broccoli element before the
apple element with the following line of code:

211 Learn to Code with JavaScript

food.insertBefore(broccoli,apple);

10-13. Inserting the broccoli list item before the apple list item

As you can see, this will place the broccoli element at the top of the list, before
the apple.

10-14. Broccoli is now at the top of the list

And here’s our updated Pen6.

Somewhat annoyingly, there’s no insertAfter() method, so you need to

6. https://codepen.io/SitePoint/pen/ZEBBGBj

The Document Object Model 212

https://codepen.io/SitePoint/pen/ZEBBGBj

ensure that you have access to the correct elements to place an element
exactly where you want it.

Removing Elements from a Page

An element can be removed from a page using the remove() method. This
method is called on the node to be removed. It returns a reference to the
removed node. For example, if we wanted to remove the carrot element, we
would use the following code:

carrot.remove();

<< "<li class='veg'> Carrot"

As you can see in the diagram below, the carrot is no longer there:

10-15. The carrot list item has been removed

213 Learn to Code with JavaScript

Replacing Elements on a Page

The replaceChild() method can be used to replace one node with another.
It’s called on the parent node and has two parameters: the new node, and the
node that’s to be replaced. For example, if we wanted to change the content of
the third list item (you can eat too many bananas), we could replace the text
node with a new one, like so:

const lemon = document.createElement('li');

lemon.innerHTML = ` Lemon`;

food.replaceChild(lemon,banana);

As you can see in the image below, the lemon has replaced the banana in our
list.

Gone but Not Gone

Let’s remind ourselves here about the difference between the
original HTML and the DOM. This is what your updated Pen should
look like now7. The carrot item has been removed from the
rendered view (that is, what you see in the browser). But notice that
the original carrot code is still there in the HTML. JavaScript has
removed the carrot list item from the Document Object Model, but
not from the actual HTML.

7. https://codepen.io/SitePoint/pen/WNoovOX

The Document Object Model 214

https://codepen.io/SitePoint/pen/WNoovOX
https://codepen.io/SitePoint/pen/WNoovOX

10-16. Replacing an element

Here’s our updated Pen8.

Getting and Setting Attributes
All HTML elements have a large number of possible attributes, such as class ,
id , src , and href . The DOM has a number of methods that can be used to

get or set these attributes.

Getting an Element’s Attributes

The getAttribute() method returns the value of the attribute provided as an
argument. For example, we can find out the class of the apple element by
entering the following code into the console:

apple.getAttribute('class');

<< "fruit"

If an element doesn’t have the given attribute, it returns null . For example, if
we enter the following code into the console, we can see that the broccoli

8. https://codepen.io/SitePoint/pen/rNWWVdP

215 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/rNWWVdP

element doesn’t have a src attribute (we didn’t add one when we created the
element earlier):

broccoli.getAttribute('src');

<< null

Setting an Element’s Attributes

The setAttribute() method can change the value of an element’s attributes.
It takes two arguments: the attribute that you wish to change, and the new
value of that attribute.

For example, if we want to add the class of veg to the broccoli element, we
can use the following code in the console:

broccoli.setAttribute('class', 'veg');

The className Property

As we’ve seen, we can modify the class name of an element using the
setAttribute() method. There’s also a className property that allows the

class of an element to be set directly. In addition, it can be used to find out the
value of the class attribute:

Multiple Classes and setAttribute

Using the setAttribute() method will overwrite the current value.

When used to update the class attribute, this will overwrite all the

classes that an element has. It’s usually much better to use the
classList property to update the class attribute, which we’ll cover

later.

The Document Object Model 216

apple.className;

<< "fruit"

We can also use it to set the class attribute of an element. For example, the
melon element that we created earlier also doesn’t have a class attribute, so

let’s fix that now:

melon.className = 'fruit';

<< "fruit"

The classList Property

The classList property is a list of all the classes an element has. It also has a
number of methods that can be used to modify the class of an element.

The add() method can be used to add a class to an element without
overwriting any classes that already exist. For example, we could add a class of
fruit to the lemon element that we created earlier with the following code:

lemon.classList.add('fruit');

The remove() method will remove a specific class from an element. For
example, we could remove the class of fruit that we just added with the
following code:

lemon.classList.remove('fruit');

Multiple Classes and className

As with setAttribute above, changing the className property of

an element by assignment will also overwrite all other classes that
have already been set on the element. This problem can be avoided
by using the classList property instead, which we’ll cover next.

217 Learn to Code with JavaScript

The contains() method will check to see if an element has a particular class:

apple.classList.contains('fruit');

<< true

apple.classList.contains('veg');

<< false

Doing It with Style
Every element node has a style property. This can be used to dynamically
modify the presentation of any element on a web page.

To see an example of this, try adding the following code to the JS section of
your Pen:

apple.style.border = "red 2px solid";

<< "red 2px solid"

Here’s the updated Pen9. A red border has been added around the apple list
element.

10-17. Styling an element

9. https://codepen.io/SitePoint/pen/QWGGxbp

The Document Object Model 218

https://codepen.io/SitePoint/pen/QWGGxbp

Being Classy

While it can be useful to edit the styles of elements on the fly, it can get messy
if you want to change a large number of styles all at once.

Usually, a better alternative is to dynamically change the class of an element
and have different styles for each class in the CSS.

For example, if we wanted to add a red border around the apple element (to
highlight it for some reason), we could either do it in the way we saw earlier, or
we could add a class of highlighted to the apple element:

apple.classList.add('highlighted');

Then add the following to the CSS section:

.highlighted {

border: red 2px solid;

}

Here’s our Pen updated with that code10.

Another advantage of using this method is that it gives us more flexibility if we
decide later on to change how we highlight elements. We might want to use a

Hyphens in CSS Property Names

Any CSS property names that are separated by hyphens must be
written in camelCase notation when referenced in JavaScript. So,
the hyphen is removed and the next letter is capitalized. This is
because JavaScript doesn’t allow hyphens in property names.

For example, the CSS property background-color becomes

backgroundColor , and font-size becomes fontSize .

10. https://codepen.io/SitePoint/pen/yLVVEqq

219 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/yLVVEqq

blue background and bold text instead of a red border, for example. All we’d
need to do is change the code for the highlighted class in the CSS, rather
than having to dig around in the JavaScript code to change the style property
of every single element that needed highlighting. Using classes to update the
style of elements is a much more DRY approach.

A Simple To-do List
We’re going to finish this chapter by writing some code that will create a to-do
list and allow us to add items to it and cross them off when they’re done. All of
this will be done using dynamic HTML, created with JavaScript. Open up a new
Pen on CodePen to get started.

Let’s start off by creating the list element, adding this code to the JS section:

const list = document.createElement('ul');

document.body.appendChild(list);

This creates an unordered list () and appends it to the <body> tag of the
document. You won’t see anything rendered yet, because the list is
empty—but it is there! (If you inspect the DOM, you’ll see the empty
 code there now.)

Next, we’ll write a function for adding tasks. Add the following code to the JS
section:

function add(item){

const li = document.createElement('li');

li.innerHTML = item;

list.appendChild(li);

}

This function will create a list item () tag and then append it as a child to
the element we just created. The content of the list item will be
whatever is provided to the function as an argument, so add('Read a book')

will append the following HTML to the list element:

The Document Object Model 220

Read a book

Open up the console in CodePen and add a few tasks to the list:

add('Bake cake');

add('Sing song');

add('Read book');

As you press Enter, you should see each item appear on the screen.

10-18. Adding content dynamically

Now let’s write a function that will toggle a class of complete to an item. If the
item doesn’t have a class of complete , it will be added, and if it already has the
class, it will be removed:

function toggle(item){

221 Learn to Code with JavaScript

item.classList.toggle('complete');

}

We’ll also need to add some code to the CSS section to style the items that
have a class of complete so that they appear to have been crossed out:

.complete{

text-decoration: line-through;

}

Open up the console again and let’s see if this works. The function accepts an
argument of the actual element we want to cross out, so we can try crossing
out the first and last items in the list with the following code:

toggle(list.firstChild);

toggle(list.lastChild);

Each time you press Enter, you should see the relevant item get crossed out

on the page.

The Document Object Model 222

1

10-19. Toggling a class

You can see my code on CodePen11.

Obviously it’s frustrating having to interact with the list through the console,
but at least we’ve shown that it’s possible to add and edit content dynamically
using JavaScript. In the next chapter, we’ll look at making this more interactive
without the need for the console.

Challenges
Create some dynamic HTML in a new Pen, including at least a heading
and paragraph of text, using just JavaScript. There should be nothing at

all in the HTML section on CodePen. You can see my code on CodePen12.

11. https://codepen.io/SitePoint/pen/qBqqKwE
12. https://codepen.io/SitePoint/pen/zYooaXQ

223 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/qBqqKwE
https://codepen.io/SitePoint/pen/zYooaXQ

2 Add a function called destroy to the to-do list that we just wrote. It
should remove a task from the list that’s provided as an argument. So,

for example, destroy(list.lastChild) should remove the last item in the list.
You can see my code on CodePen13.

Summary
The Document Object Model is a way of representing a page of HTML as a
tree of nodes.
The DOM has a number of methods that can be used to access elements
on a page.
The DOM provides a number of methods that can be used to navigate
around the DOM tree.
An element’s attributes can be accessed using the getAttribute()

method and updated using the setAttribute() method.
The innerHTML property can be used to quickly insert raw HTML into an
element.
The createElement() and createTextNode() methods can be used to
create dynamic markup.
Markup can be added to the page using the appendChild() and
insertBefore() methods.

Elements can be replaced using the replaceChild() method and removed
using the remove() method.
The CSS properties of an element can be changed by updating the style

property.

Now that we’ve learned how to navigate and dynamically update the markup
of a web page, it’s time to start interacting with it. In the next chapter, we’ll be
learning how to handle events.

13. https://codepen.io/SitePoint/pen/jOVVKoK

The Document Object Model 224

https://codepen.io/SitePoint/pen/jOVVKoK

The Main
Event

Chapter

11

225 Learn to Code with JavaScript

In the last chapter, we were introduced to the DOM and how it allows us to
interact with the elements of a web page. In this chapter, we’ll be looking at
how events provide the link between user interactions and our program.
That’s right—this chapter is where your code starts to become fully interactive
and the fun really begins!

In this chapter, we’ll cover the following topics:

event-based programming
event listeners
click events
the event object
submitting forms
mouse events
keyboard events
removing event listeners
event delegation

Event-based Programming
Imagine boiling some water in a pan. The only way to tell if the water has
boiled is to keep checking at regular intervals. This is annoying, since you have
to keep stopping what you’re doing to check, and there’s also the chance that
you might miss the point when the water boils and it will boil over, making a
mess.

The better approach is to use a kettle that whistles when the water boils. This
means you can go off and do something else, safe in the knowledge that you’ll
be alerted as soon as the water has boiled.

The Main Event 226

11-1. A kettle will whistle when it boils

Event-based programming is a style of coding that reacts to events in a similar
way to how you react to the whistle on the kettle. The events in a program are
usually user actions, such as pressing a key, moving the mouse or tapping the
screen, but they can also be other things, such as a timer, a notification, or a
change in the state of the application.

Event Listeners

An event listener is triggered when an event happens. Event listeners work in
a similar way to the whistle on the kettle. Instead of the program having to
constantly check to see if an event has occurred, the event listener sits in the
background until the event happens and then lets the program know so it can
respond immediately. This allows the program to continue with other tasks
while waiting for the event to happen.

Event Handlers

An event handler is a set of instructions on what to do when an event
happens. In the kettle example above, this would be the instructions on what
to do when the kettle has boiled—namely, to take it off the hob and make
some tea!

The diagram below shows this process, starting with an event that triggers

227 Learn to Code with JavaScript

the event listener, which then informs the event handler and results in an
action.

11-2. An event leading to action!

In programming, an event handler usually takes the form of a callback function
that’s called when the event listener is triggered. For example, you might want
a pop-up notification to appear when a user clicks on a button. This would be
achieved by setting an event listener that’s triggered when the user clicks the
button. The event handler would then call function that displays the
notification. This function would be called every time the event listener is
triggered, which means that the message will appear every time the button is
pressed. This sequence is shown in the diagram below.

11-3. A mouse click leading to a pop-up message

The Main Event 228

JavaScript is an event-based language, and we’ll be looking at at some
examples of common browser events in the rest of the chapter.

Click Events
In JavaScript, we can attach an event listener to an element of the page by
calling the addEventListener() method on the element. To demonstrate this,
we’ll attach an event listener to the document object that represents the
whole page. This will fire and call the event handler function when the user
clicks on the page. The click event occurs when a user clicks with the
mouse, presses the Enter key or spacebar, or taps the screen, making it an

all-round event covering many types of interaction. Open up a new Pen on
CodePen and enter the following code in the JS section:

document.addEventListener('click',bang);

This event listener accepts two arguments: the first is the event to listen for
(click in this example), and the second is the event handler (which is a
callback function named bang in this example). So, this event listener will
listen out for a click event and call the bang function whenever a click
occurs.

Note that parentheses are not placed after the bang function when it’s used
as the argument to an event listener. Otherwise, the function would actually be
called when the event listener is set, instead of when the event happens!

Before we can test this out, we need to define the bang function. Add the
following code beneath the event listener:

function bang(){

document.body.style.background = 'yellow';

document.body.innerHTML = `<h1>BANG!!!</h1>`;

}

This function uses some of the DOM methods we saw in the last chapter. First
of all, it changes the background of the body to yellow using the style

229 Learn to Code with JavaScript

property. Then it updates the inner HTML with a heading element that says
“BANG!!!”

But this function won’t get called until a click event is fired. Give it a go: as
soon as you click anywhere on the page, you’ll see the bang message.

You can see my code on CodePen1.

Clicking Elements

The event listener in the last example was a global event listener that was
listening out for clicks on the whole page. We can also attach event listeners
to specific elements on the page. These will only fire when the event occurs to
those elements.

To see an example of this, we’ll create a button that changes the page’s
background color when it’s clicked. Open up a new Pen on CodePen and add
the following code in the HTML section:

<button id='red'>Red</button>

This adds a button to the page. The following code will give us a reference to
that button in the JS section:

const redButton = document.getElementById('red');

Now that we have a reference to the button, we can attach an event listener to
it:

redButton.addEventListener('click', e => document.body.style.background = 'red');

This is listening for a click event, just like in the last example, but the second
parameter, instead of being the name of a function, is an anonymous function
that’s defined directly inside the event listener. This is useful for short

1. https://codepen.io/SitePoint/pen/wvoJvpy

The Main Event 230

https://codepen.io/SitePoint/pen/wvoJvpy

functions, and arrow functions are a good choice to use for them, since it’s just
a one-liner that’s used to change the style of the body background to red.

You can see my code on CodePen2.

The eagle-eyed among you might be thinking, “But what’s that letter e doing
there?” If you spotted that, well done. This is a parameter to the function and
is a reference to the event object, which we should probably look at in more
detail.

The Event Object

Whenever an event happens, the function that’s called is automatically passed
an event object as a parameter. The event object contains a large amount of
information about the event, stored as properties. For example, the target

property points to the element that triggered the event.

Let’s add another button to our example so we can take a closer look at the
event object. Add the following line of code to the HTML section:

<button id='green'>Green</button>

This gives us another button to play around with. Now in the JS section, add
the following code to give us a reference to that button:

const greenButton = document.getElementById('green');

Let’s add an event handler for this button in the JS section:

greenButton.addEventListener('click', e => document.body.style.background =

➥ e.target.textContent);

2. https://codepen.io/SitePoint/pen/VwmpwXm

231 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/VwmpwXm

This is very similar to the event listener we attached to the red button, except
instead of hard-coding the color that we want to set the background to, we’ve
set it to be e.target.textContent . The target property points to the
element that triggered the event when it was clicked, so the greenButton

element in this case. The textContent property refers to the text inside this
element, which is “Green”.

If you try clicking on the button, it will change the CSS background-color

property of the page to whatever text is inside the button element. Try
changing the text to another color and you’ll see that the background color
updates to this color. This is another example of DRY code, since we only need
to specify the color in one place.

You can see my code on CodePen3.

The event object has a lot more properties and methods that are summarized
on the Mozilla Developer Network4 site.

Forms
Forms are a very common method of interacting with a web page and can be
found on many sites.

Traditionally, when a form is submitted, it’s sent to a server where the
information is processed using a “back-end” language such as Python or Ruby.
However, it’s possible to stop the form being sent to the server and to instead
use JavaScript on the “front end” to process the information.

To e or Not to e?

The function parameter doesn’t have to be e . It just makes sense

to use e since it’s short for “event”.

3. https://codepen.io/SitePoint/pen/wvoJvmm
4. https://developer.mozilla.org/en-US/docs/Web/API/Event#Properties

The Main Event 232

https://codepen.io/SitePoint/pen/wvoJvmm
https://developer.mozilla.org/en-US/docs/Web/API/Event%23Properties
https://developer.mozilla.org/en-US/docs/Web/API/Event%23Properties

Submitting a Form

Let’s start with a simple form that contains one input field and a button for
submitting the form. Open up a new Pen on CodePen and add the following
code in the HTML section:

<p>Enter your name in the box below:</p>

<form name='myForm'>

<input type='text' name='myName'>

<button type='submit'>Submit</button>

</form>

<div id='hello'></div>

This should produce an input box with a Submit button next to it. Note that
the button has a type attribute of submit : this will trigger a submit event
when it’s pressed. We’ve also added an empty <div> element at the bottom
of the code with an ID of hello , which can’t be seen on the screen because
it’s currently empty. We’ll be using this as a container to hold the output after
the form has been submitted.

11-4. A form for submitting a name

First of all, we need some references to these elements. Add the following

233 Learn to Code with JavaScript

code to the JS section:

const form = document.forms.myForm;

The DOM provides a convenient way of accessing any forms on a web page
using document.forms , which will return a collection of all the forms on the
page. If you add the name of the form, it will return the form with that name
(note that our form has a name attribute of myForm in the HTML code).

Next, add the following JavaScript code:

const hello = document.getElementById('hello');

This gives us a reference to that empty <div> element with the ID of hello

in the HTML.

Next, we’ll add an event listener to the form:

form.addEventListener('submit',sayHello);

This will call the sayHello function when the form is submitted. So let’s write
that function next:

function sayHello(e){

hello.textContent = `Hello, ${form.myName.value}!`;

}

This function updates the textContent property of the hello div with a
template literal. Notice that, inside the template literal, there’s a reference to
form.myName.value . This returns a string that matches what’s inside the
<input> field, because the <input> tag has a name attribute of myName . So,

if you write “JavaScript” inside the input box, the hello div will contain the
following message: “Hello, JavaScript!”

The Main Event 234

Try entering your name in the input field and either pressing Enter or clicking

the Submit button to submit the form.

Unfortunately, you’ll probably get an error message something like this:

11-5. Bad path

This is because forms have a default behavior that means they get submitted
to a server. In this case, it has tried to submit to /boomboom/v2/index.html ,
which is a page on CodePen’s server that we don’t have access to. Hence, the
error message. Don’t worry, though, as this is easy to fix.

Referencing a Form Element

Any elements inside a form can be referenced as a property of the
form element using their name attribute. In the example above,

form.myName is a reference to the <input> element inside the

form, because it has a name attribute of myName .

235 Learn to Code with JavaScript

Preventing Default Behavior

Some elements on a web page have default behaviors that are built into the
browser. As we’ve just seen, forms get sent to the server by default when
they’re submitted.

Luckily, the event object has a method called preventDefault that will stop
any default behavior from happening when an event occurs. We can use it in
our sayHello function to stop the form from being submitted to the server.
Update the function so that it looks like the following:

function sayHello(e){

e.preventDefault();

hello.textContent = `Hello ${form.myName.value}!`;

}

Now try submitting the form again and it should look something like this:

A Form’s action Attribute

Forms have an action attribute that can be used to specify the

page you want to submit them to on the server. If this isn’t speci;ed,
the form will try to submit itself to the page it’s on by default. This is
what happened in this case (since we didn’t specify an action

attribute), but CodePen won’t let us submit forms to their server!

The Main Event 236

11-6. The result of submitting the form now

You can see my code on CodePen5.

Keyboard Events
There are two main events that relate to a user pressing a key. These are
keydown , when a key is pressed, and keyup , when it’s released.

The event object for these events contains two properties that can tell us
which key was pressed:

The code property returns a string that relates to the actual physical key
that was pressed.
The key property returns the actual output that will appear on the page.
This can be influenced by special keys being held, such as shift or alt,

the keyboard layout settings, and locale settings (such as currency keys).

For example, if you press the spacebar, the code property will be Space , but
the key property will be (an empty space, which is what it produces).

5. https://codepen.io/SitePoint/pen/RwopwdL

237 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/RwopwdL

You can see the codes that each key produces by adding the following code in
the JS section of CodePen:

document.addEventListener('keydown',e => document.body.innerHTML = `<div>e.code:

➥ ${e.code}</div><div>e.key: ${e.key}</div>`);

This will fire every time a key is pressed anywhere in the document and update
the innerHTML property of the page body to show the value of e.code and
e.key . Try pressing some keys, such as the arrow keys, the alt key, or a letter

key while holding down shift, and notice what gets returned.

11-7. Exploring key codes

Here’s my code on CodePen6.

6. https://codepen.io/SitePoint/pen/ZEBeEgz

The Main Event 238

https://codepen.io/SitePoint/pen/ZEBeEgz

Deciding whether to use the key or code property depends on whether
you’re interested in knowing the actual key that was pressed, or the output of
pressing the key, so you need to think about this when writing your code.

Live Input

To see an example of how we can use keyboard events, let’s build a live input
bar that updates the output in real time. Open up a new Pen on CodePen and
add the following to the HTML section:

<input id='input'>

<div id='output'></div>

This creates an input element to type into and an empty <div> to display the
output. Both of these have id attributes so that we can access them from
within our code. Let’s add this now to the JS section:

const input = document.getElementById('input');

const output = document.getElementById('output');

Finally, all we need to do is attach an event listener to the input element:

input.addEventListener('keyup', e => output.textContent = input.value);

This contains an anonymous function that will be called when the keyup

event is fired. The reason for using keyup instead of keydown is because the
character on the key appears inside the input field between these two events,
so when the keydown event fires, the character isn’t there, but it will be by the
time the keyup event fires. This is important, because the function inserts
whatever’s in the input field into the output div by overwriting the
textContent property.

Try typing something into the input field. You should see the text appear
underneath every time you press a key.

239 Learn to Code with JavaScript

11-8. Live input

You can see my code on CodePen7.

Mouse Events
There’s a number of events that relate to the mouse pointer and its
interactions with elements on the page.

Mouse Move

Every time the mouse pointer moves, the mousemove event fires. To see an
example of this, we’ll write some code that tells us the coordinates of the
mouse pointer whenever it moves.

Open up a new Pen on CodePen and start by adding the following event
listener in the JS section:

document.addEventListener('mousemove',showCoords);

This will call the showCoords function whenever the mouse pointer moves

7. https://codepen.io/SitePoint/pen/vYyxEBe

The Main Event 240

https://codepen.io/SitePoint/pen/vYyxEBe

anywhere on the page. Let’s write that function now:

function showCoords(event){

document.body.textContent = `(${event.x},${event.y})`;

}

This function updates the textContent property of the document body to
contain the coordinates of the mouse pointer. The x and y properties of the
event object tell us the horizontal and vertical position of the mouse pointer
respectively. We can use a template literal to insert these values into the text
content of the document’s body every time the mouse moves. Try moving
your mouse pointer around on the page and you should see its exact
coordinates displayed in the top left corner.

11-9. Tracking the coordinates of the mouse as it moves

You can see my code on CodePen8.

Mouse Over

The mouseover event is fired when the mouse pointer moves over an element.

8. https://codepen.io/SitePoint/pen/ExNWaxK

241 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/ExNWaxK

To see this in action, let’s create a little game called Find the Bomb. Open up a
new Pen on CodePen and enter the following code in the JS section:

const bomb = document.createElement('div');

bomb.textContent = ' ';

bomb.style.position = 'absolute';

bomb.style.top = Math.floor(200*Math.random()) + 'px';

bomb.style.left = Math.floor(200*Math.random())+'px';

bomb.style.fontSize = '64px';

document.body.appendChild(bomb);

This uses a lot of what we learned in the last chapter to create a <div>

element that contains a bomb emoji as its text content. It then sets the
position property to absolute , which allows us to set the position of the
bomb relative to the left side and top of the page using the left and top

properties respectively. We then set these properties to a random number,
using what we learned in Chapter 4. Last of all, we use the appendChild()

method to place the bomb on the page. It should appear at a random position
every time the code is run.

Next, we need to add the event listener:

bomb.addEventListener('mouseover', e => {

document.body.style.background = 'red';

document.body.innerHTML = '<h1>BOOOOOOM!!!</h1>';

});

This listens out for the mouseover event. The second parameter is an
anonymous function that will be called when the mouse pointer goes over the
bomb.

Have a go and see what happens!

The Main Event 242

11-10. This game is the bomb!

You can see my code on CodePen9.

Mouse Up and Down

The mousedown event fires when the left mouse button is pressed down and
the mouseup event fires when it’s released. This event can be attached to a
particular element, so the event will only fire when the mouse pointer is over
the element.

We can combine these events with the mousemove event to implement a very
simple drag-and-drop interface. Open up a new Pen on CodePen and enter the
following code in the HTML section:

<div id='star'> </div>

This is simply a <div> element containing a star emoji (you can choose any
emoji you like!), which is the element that we’ll be moving around the page.

Add the following code to the CSS section next:

9. https://codepen.io/SitePoint/pen/RwopNPx

243 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/RwopNPx

#star{

font-size: 64px;

position: absolute;

}

This makes the element a bit bigger and sets the position property to
absolute , which means that its position can be changed using the left and
top properties. This is essential for the drag and drop to work.

11-11. A star is born

Next, we’ll move on to the JavaScript code. Add the following to the JS
section:

const star = document.querySelector('#star');

Our first line gets a reference to the star element, using a query selector. Next
we need to add a couple of event handlers to this element:

star.addEventListener('mousedown', start);

star.addEventListener('mouseup', stop);

This will call the function start when the mouse button is pressed down on

The Main Event 244

the star and will call the stop function when the mouse button is released.
Let’s write the start function first:

function start(e) {

document.addEventListener('mousemove', move);

}

This just adds an event listener to the whole page. This is listening for the
mousemove event and it calls the move function. Let’s write that next:

function move(e){

star.style.left = `${e.x}px`;

star.style.top = `${e.y}px`;

}

The move function is what makes the dragging possible. It simply sets the
position of the star (star.style.left and star.style.top) to equal the
position of the mouse pointer that’s stored in the event object properties of
x and y . (The event object is assigned to the parameter e in the code

above.) Note that a template literal is used so that px can be added to the end
(the units are measured in pixels).

This will result in the star following the mouse pointer around the screen. We
want this behavior to stop when the mouse button is released and the stop

function is called. To make it stop, we need to remove the mousemove event
listener.

Removing Event Listeners

An event listener can be removed using the removeEventListener() method.
This will remove an event listener that matches the same parameters.

245 Learn to Code with JavaScript

We want to remove the following event listener that we added earlier:

document.addEventListener('mousemove', move);

This means that the stop function should be the following:

function stop(){

document.removeEventListener('mousemove', move);

}

This will remove the event listener, so the position of the star will stop
matching the position of the mouse and so stop moving. If the user clicks on
the star again, the event listener will be added once more and the dragging will
start again.

Try dragging and dropping the star around the page. It should look something
like this:

Naming addEventListener Functions

You shouldn’t use anonymous functions as an argument to
addEventListener if you want to remove the event listener later in

the program. This is because there needs to be a reference to the
same function name in the arguments of removeEventListener .

The Main Event 246

11-12. A moving experience

You can see my code on CodePen10.

Simple To-do List
We’re going to finish the chapter by putting a few of the things we’ve learned
together to build a slightly more sophisticated to-do list app than we built
previously. It will allow you to add items to the list and strike them out by
clicking on them—this time without having to mess with the console.

To get started, open up a new Pen on CodePen and enter the following into
the HTML section:

Just a Basic Example

This is a very basic implementation of drag-and-drop behavior, so it
might be a bit jumpy when you try using it, depending on which
browser you use. A more robust version is provided in the
Challenges section at the end of the chapter.

10. https://codepen.io/SitePoint/pen/BaQWyKq

247 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/BaQWyKq

<form name='addTask'>

<input type='text' name='newTask'>

<button type='submit'>ADD</button>

</form>

<ul id='list'>

This is almost identical to the HTML code we used earlier in the chapter for
our form input example11. It creates a form with a single input box and submit
button. There’s also an empty unordered list element () That we’ll
dynamically place the items into when the program is running.

Now for the code to get it working! First of all, we need to get some JavaScript
references to the HTML elements:

const list = document.getElementById('list');

const form = document.forms.addTask;

This gives us a reference to the form element and that empty element.

Now let’s focus on adding the items to the list. To do that, we’ll need to attach
an event listener to the form:

form.addEventListener('submit',addTask);

This will call the addTask function when the form is submitted. All we need to
do now is write the add function:

function addTask(e){

e.preventDefault();

const task= document.createElement('li');

task.textContent = form.newTask.value;

list.appendChild(task);

}

The first thing this function does is stop the form from submitting to the

11. https://codepen.io/SitePoint/pen/RwopwdL

The Main Event 248

https://codepen.io/SitePoint/pen/RwopwdL

server using the preventDefault() method. After this, we use some of the
DOM methods we learned in the last chapter to create a new list item ()
element that’s assigned to the variable task . Next, we make the
textContent property equal the text that was entered into the form field,

which is stored in form.newTask.value . Last of all, we use the appendChild()

method to add this new element to the bottom of the list element.

Try adding a task in the input field, and if everything has gone to plan, it should
look something like this:

11-13. Adding a task

Now all we need to do is make it possible to strike the items out when they’re
clicked on. Let’s add an event listener to deal with clicking on the items:

list.addEventListener('click',strikeTask);

You might have noticed that I’ve added the event listener to the list element
rather than the individual list items.

If we were to attach click event listeners to all the tags, we’d need a
separate event listener for each element. We’d also have to keep adding new

249 Learn to Code with JavaScript

event listeners on the fly every time a new item was added. This could lead to
a huge number of event listeners all containing identical code and basically
doing the same thing—which is not very DRY at all!

Event Delegation

The DRY way to deal with this is to use event delegation. This attaches the
event listener to the parent element instead of each individual list item.
The event will still fire when one of the child elements is clicked on, and we can
then use the target property of the event object to identify the actual
element that was clicked on.

Let’s see this in action. Add the following code to the bottom of the JS section:

function strikeTask(e){

alert(e.target.textContent);

}

This is the strikeTask function that fires when the list is clicked on. For now,
it includes an alert to show the text content of the element that was clicked on
and identified using event.target . Try adding some items and then click on
one of them. You should see something like this:

11-14. Toggling a task

The Main Event 250

Now that we’re sure it’s working, let’s update the code so that it crosses out
the item instead. Update the strike function like so:

function strikeTask(e){

e.target.classList.toggle('complete');

}

This uses a method of the classList property that every element has, called
toggle . This will add a class if the element doesn’t have it, and remove the

class if it already has it. This means that clicking on an item will either add a
class of complete or remove it if it’s already there. This on its own doesn’t do
anything, but now we can add some CSS to style any elements that have a
class of complete with the following code:

.complete {

text-decoration: line-through;

}

Now if you try adding some items and clicking on them, you should be able to
strike them out to your heart’s content, as you can see below.

11-15. Striking out completed tasks

You can see my code on CodePen12.

12. https://codepen.io/SitePoint/pen/JjbWoWN

251 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/JjbWoWN

1

2

3

Challenges
The drag-and-drop example we created in this chapter is quite a simple
implementation. A more robust version can be seen here13. Take a look

at the code and see if you can understand what’s going on. It also uses touch
events14.

Can you update the simple to-do list code so that the add function
clears the input box and gives it focus after an item has been added,

instead of the text just remaining there? (Hint: you might want to look up the
focus() method that form elements have.) You can see my solution here15.

Instead of crossing out the items in the simple to-do list, can you change
the functionality so that it removes the items when they’re clicked on?

(Hint: you could use the remove() method that we covered in the last chapter.)
You can see my solution here16.

Summary
Events occur when a user interacts with a web page.
An event listener is attached to an element and then invokes a callback
function when the event occurs.
The event object is passed to the callback function as an argument, and
contains a number of properties and methods relating to the event.
There are many types of events, including click events, mouse events and
keyboard events.
Forms also have a submit event that can be used to intercept a form
before it has been submitted.
You can remove an event using the removeEventListener() method.
The default behavior of elements can be prevented using the
preventDefault() function.

13. https://codepen.io/SitePoint/pen/vYyxExR
14. https://developer.mozilla.org/en-US/docs/Web/API/Touch_events
15. https://codepen.io/SitePoint/pen/KKNWwmP
16. https://codepen.io/SitePoint/pen/JjbWoNN

The Main Event 252

https://codepen.io/SitePoint/pen/vYyxExR
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events
https://developer.mozilla.org/en-US/docs/Web/API/Touch_events
https://codepen.io/SitePoint/pen/KKNWwmP
https://codepen.io/SitePoint/pen/JjbWoNN

Event delegation is when an event listener is added to a parent element to
capture events that happen to multiple child elements in order to avoid
adding an event listener for every single child element.

Now that we’ve covered events, we can make our code much more interactive.
In the next few chapters, we’re going to be taking our coding skills to the next
level with some more advanced skills.

253 Learn to Code with JavaScript

Going Loopy
Over Arrays

Chapter

12

Going Loopy Over Arrays 254

You’re now a good three quarters of the way through this book and well on
your way to learning how to code. In fact, you already know enough to be able
to write some short programs.

Now that you’ve learned the basics, it’s time to dive a bit deeper into some
more advanced topics in the last quarter of the book. The last few chapters
will focus on some of the more specific parts of JavaScript—although a lot of
the overarching concepts will still apply in other languages.

In this chapter, we’re going to learn about how to iterate over collections such
as arrays and objects. We’ll be covering the following:

spreading strings
array iteration
JavaScript array iteration methods: forEach , map , reduce , filter ,
find , every , some

iterating over objects

Spreading Strings
We met the spread operator (...) way back in Chapter 5. It can be used in
JavaScript to spread out the items of an array when the array is placed inside
another array.

The spread operator can also be used to spread out all the characters of a
string inside an array. Each character of the string becomes an individual item
in the array:

[..."Hello"];

<< ["H", "e", "l", "l", "o"]

This can be a very useful technique, as it allows us to use array methods on a
string. For example, we could reverse a string with the following code:

[..."Hello"].reverse().join('');

255 Learn to Code with JavaScript

1

2

3

4

<< "olleH"

The code above uses chaining, which is the process of applying one method
after another in a chain of method calls. Each subsequent method is called on
the return value of the previous method. In the example above, the spread
operator returns an array, then we immediately call the reverse() method on
this array that returns another array, and then we immediately call the join()

method on this array, which returns the final string. The following code
snippets break down what’s happening in each step of the chain:

The string starts as this:

"Hello";

Then the spread operator is applied and returns the following array:

[..."Hello"];
<< ["H", "e", "l", "l", "o"]

Then the reverse() method is called to return the following array:

[..."Hello"].reverse();
<< ["o","l","l","e","H"]

Finally, the join() method is called on the array to change it back to a
string:

[..."Hello"].reverse().join('');
"olleH"

Each of those steps happens one after the other without returning any of the
intermediate values, so all we see is the final return value.

One particular benefit of using the spread operator on strings is that we can

Going Loopy Over Arrays 256

use iteration methods on them. So, what are iterators?

Array Iteration Methods
Array iteration methods are methods that allow you to loop over an array and
apply an operation to every item in the array. Every application of the
operation to an item in the array is called an iteration.

12-1. Iterators

JavaScript includes a number of array iteration methods that use callbacks to
provide the instructions about what to do in each iteration. These methods
always leave the original array unchanged, but often return a new array or
value.

Efficient Arrow Functions

You’ll notice that arrow functions are frequently used to declare the
callbacks in the following examples. They’re good candidates here,
because they’re short, can be written in a single line, and have an
implicit return value.

257 Learn to Code with JavaScript

forEach

The forEach() method iterates over every item in an array and calls a
callback function on every iteration. The callback function takes three
parameters:

the value of the current item in the array
the index of the current item in the array
a reference to the array itself

If the method doesn’t use the index or array references, they don’t need to be
specified. (Often only the value of the current item is provided as an
argument.)

The following code shows an example that logs some information about every
item in the array to the console. It iterates over each item in the array and logs
a statement to the console for each item in the array. Try entering the
following code (available in this Pen1.) into the console:

[' ',' ',' '].forEach(

(item,index,array) => console.log(`Item at position ${index} is ${item} (there

➥ are ${array.length} items in total).`)
);

On the first iteration, the value of item is " ", the value of index is 0 and the
value of array is [' ',' ', ']. This logs the following string to the console:

"Item at position 0 is (there are 3 items in total)."

On the second iteration, the value of item is " ", the value of index is 1, and
the value of array is [' ',' ', ']. This logs the following string to the console:

"Item at position 1 is (there are 3 items in total)."

1. https://codepen.io/SitePoint/pen/MWbpXMQ

Going Loopy Over Arrays 258

https://codepen.io/SitePoint/pen/MWbpXMQ

On the final iteration, the value of item is " ", the value of index is 1, and the
value of array is [' ',' ', ']. This logs the following string to the console:

"Item at position 2 is (there are 3 items in total)."

This is summarized in the table below:

Iteration item index array console.log

1 " " 0 [' ',' ', '] "Item at position 0 is (there are 3
items in total)."

2 " " 1 [' ',' ', '] "Item at position 1 is (there are 3
items in total)."

3 " " 2 [' ',' ', '] "Item at position 2 is (there are 3
items in total)."

An Array of Cards

We can use the forEach() method to quickly create an array that represents
a deck of cards. We’ll do it by iterating over an array that represents the suits,
and another that represents the value of each card in a suit. (You can copy the
code for the following example from CodePen2.)

Open up a console and declare the following variables:

const suits = ['♠','♦','♣',' '];

const values = ['Ace',2,3,4,5,6,7,8,9,10,'Jack','Queen','King'];

const deck = [];

The first variable suits is an array that contains string representations of
each of the suits. The variable values is an array that contains a string
representation of each of the card values. The variable deck is an empty array
that will eventually hold the full deck of cards.

2. https://codepen.io/SitePoint/pen/ZEBejzo

259 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/ZEBejzo

Now that we have these arrays set up, we can iterate over the suits array
and the values array to combine the elements into a single card that can be
placed into the deck array using the push() method:

suits.forEach(suit =>

values.forEach(value =>

deck.push(`${value} of ${suit}`);

)

);

The first forEach iterates over the suits array. For every iteration, the
anonymous callback function is called, with the parameter suit representing
the current item in the suits array. The second forEach then iterates over
the values array and uses the parameter value to represent each item in
that array. We then use a template literal to interpolate the suit and value of
the card to create a string that’s pushed into the deck array.

For example, on the first iteration, the value of suit is the first item in the
suits array, ♠ , and the value of value is the first item in the values array,
Ace . This results in the string Ace of ♠ being pushed into the deck array.

This iterates over every value of the values array before moving on to the
next value in the suits array. Some of the steps are shown in the table below:

Iteration suit value returned string

1 " " "Ace" "Ace of "

2 " " 2 "2 of "

3 " " 3 "3 of "

...

13 " " "King" "King of "

14 " " "Ace" "Ace of "

...

52 " " "King" "King of "

Going Loopy Over Arrays 260

The final result is that the deck array contains all these strings:

deck;

<< ["Ace of ♠", "2 of ♠", "3 of ♠", "4 of ♠", "5 of ♠", "6 of ♠", "7 of ♠",

➥ "8 of ♠", "9 of ♠", "10 of ♠", "Jack of ♠", "Queen of ♠", "King of ♠",
➥ "Ace of ♦", "2 of ♦", "3 of ♦", "4 of ♦", "5 of ♦", "6 of ♦", "7 of ♦",
➥ "8 of ♦", "9 of ♦", "10 of ♦", "Jack of ♦", "Queen of ♦", "King of ♦",
➥ "Ace of ♣", "2 of ♣", "3 of ♣", "4 of ♣", "5 of ♣", "6 of ♣", "7 of ♣",
➥ "8 of ♣", "9 of ♣", "10 of ♣", "Jack of ♣", "Queen of ♣", "King of ♣",
➥ "Ace of ", "2 of ", "3 of ", "4 of ", "5 of ", "6 of ", "7 of ",

➥ "8 of ", "9 of ", "10 of ", "Jack of ", "Queen of ", "King of "]

You can see my code on CodePen3.

Map

The map() method also iterates over an array and uses a callback function as
a parameter that’s called on each item in the array. In contrast to forEach ,
map returns a new array that replaces each value with the return value of the

callback function.

The callback to the map() method has the same three parameters as the
forEach() method:

the value of the current item in the array
the index of the current item in the array
a reference to the array itself

To demonstrate this, try the following code/4 in the console:

[" "," "," "].map((value,index,array) => ' ');

<< [" "," "," "]

The callback function is an anonymous arrow function with parameters of
value , index and array . The return value is just the string ' ' , so every

3. https://codepen.io/SitePoint/pen/ZEBejzo
4. https://codepen.io/SitePoint/pen/gOLWxWv

261 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/ZEBejzo
https://codepen.io/SitePoint/pen/gOLWxWv

item in the array is mapped to a smiley face!

In this case, the callback doesn’t need to use the item , index or array

parameters, so they don’t actually need to be there. The following callback
also works with a single parameter of x :

[1,2,3].map(x => ' ');

<< [, ,]

12-2. Mapping smiley faces

The return value can be based on the arguments provided to the callback. In
the following example, every number in the array is mapped to the square of
itself in a new array:

[1,2,3].map(n => n*n);

<< [1, 4, 9]

Going Loopy Over Arrays 262

12-3. Mapping numbers to their own squared values

You can use any name for the parameters. In the example above, we use n to
represent each item in the array. Since the callback function only relies on the
value of each item, we only needed to provide this parameter.

A particularly good use of the map() method is to add HTML tags to blocks of
text. For example, the following code takes an array of items and then returns
each item inside tags:

['Apple','Banana','Carrot'].map(item =>

`${item}`);

<< ["Apple", "Banana", "Carrot"]

The parameter item represents each string in the array on each iteration. The
return value of the callback is a template literal that uses string interpolation
to insert the string inside tags.

12-4. Adding tags using map

263 Learn to Code with JavaScript

We can then chain the join() method with an empty string argument to the
end to concatenate all the items into a single string of HTML:

['Apple','Banana','Carrot'].map(item =>

`${item}`).join('');

<< "AppleBananaCarrot"

This can then be inserted into a element to make an unordered list
based on the contents of the array. Let’s try doing this on CodePen. Start with
an empty element in the HTML section:

<ul id='list'>

Now we’ll get a reference to that element in the JS section:

const list = document.getElementById('list');

Now all we need to do is update the innerHTML property of this element with
our string of HTML:

list.innerHTML = ['Apple','Banana','Carrot'].map(item =>

`${item}`).join('');

This renders a list of items in the document, based on the items in the array:

Going Loopy Over Arrays 264

12-5. Rendering an array as an HTML list

You can see my code on CodePen/5.

Reduce

The reduce() method is another method that iterates over each value of an
array, calling a callback function each time. The main difference is that, instead
of returning an array, it combines each result from the callback into a single
value.

The callback to the reduce() method describes how to combine each value
of the array to produce a cumulative running total and has four parameters:

An accumulator that stores the running total. The final value of this will be
returned by the method.
The value of the current item in the array.
The index of the current item in the array.
A reference to the array itself.

Most of the time, only the first two parameters are used, and any that aren’t

5.

265 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/poNPrrm

used don’t need to be referenced.

The following example adds up all the numbers in the array and returns the
total:

[1,2,3].reduce(

(acc,value) => acc + value

);

<< 6

12-6. Adding up numbers with reduce

In the example above, the value of acc starts as 1 (the first item in the array).
After every iteration, the value of the item in the array is added to the value of
acc . So in the next iteration, 2 is added to acc to make it 3. Then in the last

iteration, 3 is added to acc . Once every item in the array has been added
together, the final value of acc , which is 6, is returned.

By making a small change to the calculation in the callback function, we can
multiply all the numbers together instead:

[1,2,3].reduce(

(acc,value) => acc * value

);

<< 6

Going Loopy Over Arrays 266

The reduce() method also accepts an optional second argument that comes
after the callback and allows us to set the initial value of the accumulator. For
example, the following method adds all of the numbers in the array together
(getting 6), then adds that result to 10 before returning 16:

[1,2,3].reduce(

(acc,value) => acc + value

,10);

<< 16

Filter

The filter() method tests each item in an array to see if they match certain
conditions defined in a callback function. Any items that return a truthy value
in the callback are then returned as a new array.

For example, we can filter an array of numbers to leave just the numbers
bigger than 2 using the following code:

[1, 2, 3, 4].filter(x => x > 2);

<< [3,4]

In each iteration, the callback checks to see if the item in the array,
represented by the parameter x , is greater than 2. If it is, the callback returns
true and the value is left in the new array that’s returned. This process can be

seen in the diagram below.

Adding vs Multiplying

It’s only a coincidence that the answer is the same when we added
and multiplied the numbers together. (Try using an array with
different numbers to see.)

267 Learn to Code with JavaScript

12-7. Filtering out numbers that aren’t greater than 2

The filter() method provides a useful way of finding all the truthy values
from an array:

[0, 1, '0', false, true, 'hello'].filter(Boolean);

<< [1, '0', true, 'hello']

This uses the fact that the Boolean function will return the Boolean
representation of a value, so only truthy values will return true and be
returned by the filter() method.

To find all the falsy values, the following filter can be used:

[0, 1, '0', false, true, 'hello'].filter(x => !x);

<< [0, false]

This uses the not operator (!) to return the complement of a value’s Boolean
representation. This means that any falsy values will return true and be
returned by the filter.

Guess Who Filter

Way back in Chapter 6, we played the Guess Who? game with these four
characters:

Going Loopy Over Arrays 268

12-8. The Guess Who? characters

In Chapter 9, we created objects to represent each of them:

const alfie = {

name: 'Alfie',

glasses: false,

hat: false

};

const betty = {

name: 'Betty',

glasses: true,

hat: true

};

const gemma = {

name: 'Gemma',

glasses: false,

hat: true

};

const del = {

name: 'Del',

glasses: true,

hat: false

};

We can place these objects into an array called people like so:

const people = [alfie,betty,gemma,del];

Now we can have some fun with this array by using the filter() method to

269 Learn to Code with JavaScript

play Guess Who?:

people.filter(person => person.glasses && person.hat);

<< [{ name: 'Betty', glasses: true, hat: true}]

The filter above returns the object representing Betty because she wears
glasses and a hat. If we want to find the person not wearing a hat and not
wearing glasses, we could use the negation operator inside the callback
instead:

people.filter(person => !person.glasses && !person.hat);

<< [{ name: 'Alfie', glasses: false, hat: false}]

By changing the conditions in the callback, you can filter the array in different
ways. Try changing these conditions to see if you can return each person.

You can see my code on CodePen/6.

Find
The find() method works in a similar way to the filter() method, but it
returns the first value that matches the criteria defined in the callback. For
example, the following code returns the first number that’s greater than 2:

[1, 2, 3, 4].find(x => x > 2);

<< 3

The following code finds the first programming language that begins with the
letter “J”:

['C','C++','Ruby','Python','JavaScript','Swift','Java'].find(word => word.

➥startsWith('J'));
<< "JavaScript"

We can use this to find people in our people array from the Guess Who?

6.

Going Loopy Over Arrays 270

https://codepen.io/SitePoint/pen/vYymJrp

game that match the given criteria. The following example finds the first
person who wears glasses, but not a hat:

people.find(person => person.glasses && !person.hat).name;

<< "Del"

Notice that, because the find() method returns the first matching
element—which in this case is an object—we can chain the property of name

on the end so that only the value of this property is returned, rather than the
whole object.

Every
The every() method iterates over each item in an array and returns true if
every item in the array matches the criteria defined in the callback. For
example, the following code checks if all the words in the array are longer than
a single character:

['C','C++','Ruby','Python','JavaScript','Swift','Java'].every(word => word.

➥length > 1);
<< false

Some

The some() method is very similar to the every() method. It also iterates
over each item in an array until a given condition defined in the callback
returns true . Once this happens, the iteration stops and the method returns
true . If it reaches the end of the array without any of the items returning
true , it returns false . It’s a useful way to find out if at least one item in an

array fits certain criteria.

For example, the following code checks if any of the words are longer than
seven characters:

271 Learn to Code with JavaScript

['C','C++','Ruby','Python','JavaScript','Swift','Java'].some(word => word.

➥length > 7);
<< true

A useful summary of array iteration methods can be found in “The Array
Iterators Cheatsheet for JavaScript”7.

There are some good examples of chaining iteration methods together in
“Filtering and Chaining in Functional JavaScript”8.

Iterating over Objects
Objects are collections, just like arrays, and it’s also possible to iterate over an
object’s properties.

For example, consider the following rectangle object that’s similar to the
square object we created back in Chapter 9:

const rectangle = {

height: 4,

length: 5,

perimeter() { return 2 * (this.height + this.length); },

area() { return this.length * this.height; }

}

We can loop through all the properties of an object using a for–in loop that
iterates over every key in the object. Try entering the following code into a
console (you’ll need to define the rectangle object first):

for(const prop in rectangle) {

console.log(`${prop}: ${rectangle[prop]}`);

}

<< height: 4

7. https://levelup.gitconnected.com/the-array-iterators-cheatsheet-
javascript-9d0cfa03f4
8. https://www.sitepoint.com/filtering-and-chaining-in-functional-javascript/

Going Loopy Over Arrays 272

https://levelup.gitconnected.com/the-array-iterators-cheatsheet-javascript-9d0cfa03f4
https://levelup.gitconnected.com/the-array-iterators-cheatsheet-javascript-9d0cfa03f4
https://www.sitepoint.com/filtering-and-chaining-in-functional-javascript/

<< length: 5

<< perimeter: function (){ return 2 * (this.height + this.length) };

<< area: function { return this.length * this.height }

In this example, the variable prop is used to reference each property name in
each step of the iteration. We can then use rectangle[prop] to look up the
value of that property. In the example, we’ve simply used console.log to log
the property and its value to the console using a template literal.

Keys and Values

JavaScript also provides a set of methods that return an array containing all
the properties and values of an object. This means that we can then use any
array methods, such as the array iteration methods we’ve learned about in this
chapter.

The Object.keys() method returns an array of all the keys of the object that’s
provided as an argument:

Object.keys(rectangle);

<< ["height","length","perimeter","area"]

As you can see, the key of each property is listed as a string in the array that’s
returned.

The Object.values() method works in the same way, but returns an array of
the values of each property instead:

Object.values(rectangle);

<< [4,5, perimeter(), area()]

Each value in the array is the same as its original data type—so numbers and
functions in this case.

The Object.entries() method returns an array of key–value pairs. These
key–value pairs are returned as sub-arrays inside the array:

273 Learn to Code with JavaScript

Object.entries(rectangle);

<< [["height",4],["length",5],["perimeter",function()],["area",function()]]

Because these methods return an array, we can use chaining to immediately
call one of the iteration methods we covered earlier in the chapter. For
example, we could use the forEach() method to log the properties and their
values to the console:

Object.entries(rectangle).forEach(subArray =>console.log(`${subArray[0]}:

➥ ${subArray[1]}`));
<< "height: 4"

"length: 5"

"perimeter: function perimeter() {return 2 * (this.height + this.length);}"

"area: function area() {return this.length * this.height;}"

This uses a parameter called subArray to refer to each sub-array in the
Object.entries array. We then use index notation to refer to each item in the

sub-array, so subArray[0] refers to the property name and subArray[1]

refers to the property value. This is fine, but using index notation like this
makes the code difficult to follow.

We can make it easier to read by explicitly naming each item in the sub-array
when we define the callback, like so:

Object.entries(rectangle).forEach(([prop,value])=>console.log(`${prop}:

➥ ${value}`));

This allows us to refer to the first item in the sub-array as prop and the
second item as value , which makes the code much more readable. This
process is known as destructuring9.

To-do List Project
In the last chapter, we used events to produce a working to-do list. The
problem with this was that the to-do items were added directly to the web

9. https://www.sitepoint.com/es6-destructuring-assignment/

Going Loopy Over Arrays 274

https://www.sitepoint.com/es6-destructuring-assignment/

page and never stored anywhere in the program. This can be an issue if the
program wants to know the state of the to-do list at any point. This concept is
known as state management. One way to manage the state of the to-do list is
to store the tasks in an array. This means that, at any point in the program, we
can use the array to find any of the tasks, or calculate how many tasks there
are needing to be completed. And the good news is that, if you’ve been
following along with all the challenges, you’ll already have some add and
remove functions for arrays from back in Chapter 8.

We’re going to update the to-do list code on CodePen10 so that it includes
some state management.

Our first job is to create an array to store the tasks in. Add the following code
to the top of the JS section:

const tasks = [];

Next, we need to change the function that adds a task. This is the addTask

function that’s called when the form is submitted:

function addTask(e){

e.preventDefault();

tasks.push(form.item.value);

}

This code now adds tasks to the tasks array when the form is submitted,
instead of writing them onto the page.

Forking Pens

CodePen has a Fork option (bottom right) that allows you to make a
copy of a Pen and make changes without affecting the original
code. This is useful when you want to make some major changes to
your code.

10. https://codepen.io/SitePoint/pen/JjbWoNN

275 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/JjbWoNN

When a user clicks on a task, it’s removed from the page using the
removeTask function. We need to update this function so that it removes the

task from the array instead:

function removeTask(e){

const index = tasks.indexOf(e.target.textContent);

if(index>-1){

tasks.splice(index,1);

}

}

This code should now work, but if you try to add a task, nothing will appear.
However, if you take a look at the tasks variable in CodePen’s built-in console
(click on the Console button in the bottom-left corner), you should see that
the array has some items in it:

tasks;

<< ["Bake Cake","Read Book"]

Now all we need to do is take the tasks from this array and display them in the
browser. We’re going to create a function called renderList that will take the
array of tasks and render them in the document. First of all, we’ll use map to
wrap each task inside tags:

tasks.map(task => `${task}`);

This will return the following array:

["Bake Cake","Read Book"]

If we chain join('') to the end, we can concatenate all the HTML into a
single string:

tasks.map(task => `${task}`)).join('');

This will return the following string of HTML:

Going Loopy Over Arrays 276

"Bake CakeRead Book"

This can now be inserted into the DOM—by updating the innerHTML property
of the list element (an empty element that’s already in the HTML):

list.innerHTML = tasks.map(task => `${task}`).join('');

This code now needs placing inside a render function that wraps each item in
the task array in tags using map , joins them together as a single string
of HTML, and then inserts this into the list element. We’ll also add a couple of
lines to clear the text in the input field and give it focus:

function render(){

list.innerHTML = tasks.map(task => `${task}`).join('');

form.item.value = '';

form.item.focus();

}

Finally, we need to call the render function whenever the array is
updated—which is after the addTask or removeTask functions are called.
Update these functions so they call renderList after updating the array:

function addTask(e){

e.preventDefault();

tasks.push(form.item.value);

render();

}

function removeTask(e){

const index = tasks.indexOf(e.target.textContent);

if(index>-1){

tasks.splice(i,1);

}

render();

}

Now if you try to add tasks, they should appear in a list, and clicking on a task
will remove it. This is no different from what it did before, but what’s changed

277 Learn to Code with JavaScript

1

is all in the background: we can now keep track of all tasks that have been
created from within the program by accessing the tasks array. This means
we can keep track of how many tasks still need completing by looking at the
return value of the tasks.length() method. Let’s add some code that will
display this underneath the list of tasks. First of all, add an empty <div>

element to the bottom of the HTML section:

<div id='count'></div>

We’ll also need to add a reference to this in the JS section:

const count = document.getElementById('count');

Next, add the following line of code to the render function so that it includes
a line that updates the count div:

count.textContent = `${tasks.length} task${tasks.length==1?'':'s'} left to complete.`

This uses a template literal to update the textContent property with the
number of tasks and also uses a ternary operator to use “task” instead of
“tasks” if there’s only one task in the list.

Try adding and removing some tasks. You should see the count update as they
appear in the list.

You can see my code on CodePen11.

Challenges
Write a function that accepts an array of strings as an argument and
uses map to return a new array of the same words written in uppercase.

Can you get it to return an array with all the words written backwards? You can
see my code on CodePen12.

11. https://codepen.io/SitePoint/pen/poNwvRq
12. https://codepen.io/SitePoint/pen/jOVwEBQ

Going Loopy Over Arrays 278

https://codepen.io/SitePoint/pen/poNwvRq
https://codepen.io/SitePoint/pen/jOVwEBQ

2

3

Write a spanner function that accepts a string and returns a string, with
each individual character wrapped in a tag using the map() and

join() methods. For example, spanner('Hello') should return the string
"Hello" .

You can see my code on CodePen13.

Extend the spanner function you created in challenge 2 to create a
coloredLetters function that colors each letter in a different color. It

should accept a string and array of colors as parameters and then add a
style attribute to each tag. You can see my code on CodePen14.

Summary
The spread operator can be applied to strings to spread them into an array
containing each character as a separate item.
Iteration methods loop through every value in a collection and apply an
operation to each value.
JavaScript has a number array methods that apply a callback to every item
in the array.
The forEach() method applies the code in the callback for every item in
the array.
The map() method returns a new array by applying the code in the
callback to every item in the array.
The reduce() method returns a single value by applying an accumulator
function defined in the callback to every value in the array—for example,
adding up all the values in the array.
The filter() method returns a new array containing only the values from
the original array that match the criteria defined in the callback.
The find() method returns the first item in an array that matches the
criteria given in the callback.
The every() method returns true if every item in the array matches the
criteria given in the callback. Otherwise, it returns false .
The some() method returns true if any item in the array matches the

13. https://codepen.io/SitePoint/pen/LYbLEyZ
14. https://codepen.io/SitePoint/pen/KKNBVjO

279 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/LYbLEyZ
https://codepen.io/SitePoint/pen/KKNBVjO

criteria given in the callback. It returns false if none of the items in the
array match the criteria.
You can iterate over objects using a for–in loop that will give you access to
each property in the object.
The Object.keys() , Object.values() and Object.entries() methods
will return an array of an object’s keys, values, or key–value pairs
respectively.

In the next chapter, we’ll be getting functional with functions.

Going Loopy Over Arrays 280

Let’s Get
Functional

Chapter

13

281 Learn to Code with JavaScript

We covered functions back in Chapter 8, but now it’s time to dig a bit deeper
and look at some more advanced topics specific to JavaScript.

In this chapter, we’ll be covering the following:

named parameters
the rest operator
hoisting
scope
recursive functions
closures
functional programming
pure functions

Named Parameters
When a function has quite a few parameters, it can be difficult to remember
what order to write the arguments in when you call the function. For example,
consider this function that returns a styled <div> element:

function heading(text,color,size,bgcolor){

return `<h1 style='color:${color};background-color:${bgcolor};font-size:

➥${size}>${text}</h1>`
}

This uses positional parameters, which means that when the function is
called, the position the argument is placed in determines which parameter it’s
assigned to in the function. So, if you wanted a heading of “Hello, World!”, sized
to 48px, colored red on a blue background, you’d write the following:

heading('Hello, World!','red','48px','blue');

It might get difficult to remember the order those parameters are listed in
when you come to call the function, which could lead to the colors getting
mixed up or even worse, trying to assign a font size of red !

Let’s Get Functional 282

A number of languages use named parameters to get round this problem.
With these, you can assign the value of each argument by name, instead of
relying on its position. This means the arguments can be listed in any order,
like so:

heading(color = 'red',bgcolor = 'blue',text ='Hello, World!',size = '48px'});

Unfortunately, JavaScript doesn’t support named parameters—strictly
speaking—so the example above wouldn’t work. The good news is that it’s
possible to mimic them by using an object as a parameter, so that the object’s
properties act like named parameters.

The following example shows how this can be done with the example above.
The function needs rewriting, with the parameters listed as the properties of
an object literal:

function heading({text,color,size,bgcolor}){

return `<h1 style='color:${color};background-color:${bgcolor};font-size:

➥${size}>${text}</h1>`
}

Now the function can be called, providing an object as argument, with values
provided for the named properties:

heading({color: 'red',bgcolor: 'blue',text:'Hello, World!',size: '48px'});

<< "<h1 style='color:red;background-color:blue;font-size:48px''>Hello, World!

➥</h1>"

Notice that the order of the properties in the argument object isn’t the same
as their order in the object provided as a parameter to the function. The
advantage of this method is that you don’t have to remember the order to
write the arguments. Another advantage is that it makes your code easier to
follow, since each argument has a descriptive label that explains what it
represents.

This technique is useful when a function has a large amount of parameters,

283 Learn to Code with JavaScript

particularly if some of them are optional.

You can see this example on CodePen1.

The Rest Parameter
There are times when we don’t know how many arguments will be provided to
a function. The easiest way to deal with a varying number of arguments is to
use the rest parameter. This consists of three dots placed in front of the last
parameter in a function declaration. It will collect all the arguments together in
an array.

Try entering the following function into the console. This function accepts any
number of arguments and uses the rest parameter to collect them all together
in an array called numbers . It then applies the reduce() method that we saw
in the last chapter to this array and returns the sum of all the numbers that
were entered as an argument:

function add(...numbers){

return numbers.reduce((acc,n) => acc + n);

}

Now try calling the function for different numbers of arguments, like in the
examples below:

add(2,3);

<< 5

add(1,2,3,4,5);

<< 15

Recursive Functions
A recursive function is one that calls itself! This might sound a bit crazy, but

1. https://codepen.io/SitePoint/pen/NWbgBGN

Let’s Get Functional 284

https://codepen.io/SitePoint/pen/NWbgBGN

it’s perfectly possible to place a self-referential function call inside the body of
the function. The function calls itself until a certain condition is met. It’s a
useful tool when iterative processes are involved.

A common example is a function that calculates the factorial2 of a number:

function factorial(n) {

if (n === 0) {

return 1;

} else {

return n * factorial(n - 1);

}

}

This function will return 1 if 0 is provided as an argument (0 factorial is 1),
otherwise it will multiply the argument by the result of invoking itself with an
argument of one less. The function will continue to call itself until finally the
argument is 0 and 1 is returned. The best way to see what’s happening is with
an example:

factorial(3);

<< 6

This will multiply 3 by the return value of factorial(2) , which will multiply 2
by the return value of factorial(1) , which will multiply 1 by the return value
of factorial(0) , which is 1. Working backwards gives 1 * 1 * 2 * 3 . This
can be seen in the diagram below:

2. http://en.wikipedia.org/wiki/Factorial

285 Learn to Code with JavaScript

http://en.wikipedia.org/wiki/Factorial

13-1. Recursive factorial function calls

Recursive functions can be used for operations similar to those performed by
the loops we saw in Chapter 7. They are particularly useful when implementing
divide and conquer algorithms3. You can read more about recursive functions
in “Recursion in Functional JavaScript”4.

Scope
The concept of a variable’s “scope” is important in any programming language.
The scope of a variable or function refers to the parts of the program where

3. https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
4. Recursion in Functional JavaScript

Let’s Get Functional 286

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://www.sitepoint.com/recursion-functional-javascript/

they can be accessed. Most languages have some form of lexical scope,
which means the scope of a variable is based on where it appears in the code.
Often placing a variable inside a block will restrict its scope to that block. A
few languages, such as Perl and other Lisp-style languages, use dynamic
scope, which means the scope of a variable can change while the program is
running.

Global scope covers the entire the program. Any variable or function that can
be accessed anywhere in the program is said to have global scope.

Local scope refers to a function or variable that’s only available inside a
particular code block. Any function or variable defined inside a block can only
be accessed inside that particular block, when they’re “in scope”.

To demonstrate this, let’s try defining some variables in the console. First of
all, define a variable in the global scope by simply defining it in the main body
of the program:

const global = 'Hello, Global Scope!';

Now, we can create a local scope by creating a function called local . Inside
the body of this function, we’ll declare a variable called secret :

function local(){

const secret = 'Hello from the local scope.';

}

The diagram below shows the scope of each variable. global was declared in
the global scope and can be accessed anywhere inside that scope (including
from within the local scope). secret was defined inside the local scope of the
local function and can only be accessed from within that scope.

287 Learn to Code with JavaScript

13-2. Global and local scope

If we try to log the value of the variable global to the console, we can see we
have access to it:

console.log(global);

<< Hello, Global Scope!

However, if we try to access the variable secret , we get an error message,
saying it can’t be found:

console.log(secret);

<< ReferenceError: "Can't find variable secret"

This is because the variable secret is only available from inside the body of
the local function. The last command was made from the global scope,
where we don’t have access to the local scope of the function.

Let’s Get Functional 288

To see that we can get access to the variable secret from within the scope of
the local function, let’s redefine the function to log the secret variable to
the console:

function local(){

const secret = 'Hello from the local scope.';

console.log(secret);

}

Now if we call the local function, we can see that it does indeed have access
to the secret variable:

local();

<< Hello from the local scope.

However, we only have access to this variable while the code inside the
function is running. Once the function has been called, any variables defined
inside its scope can’t be accessed.

Although it would seem a good idea to keep everything in the global scope, it’s
actually considered bad practice. In fact, it’s good practice to keep all variable
declarations out of the global scope. This is to avoid naming collisions, where
variables or functions have the same name and get mixed up with each other.
This might not seem like a problem at the moment, but it becomes more of an
issue if you’re working with someone else’s code (either as part of a team or
using an external code library), since you won’t know which variable names are
already being used. By keeping variables and functions in their own scope, we
make it much easier to keep track of what they do.

289 Learn to Code with JavaScript

Hoisting
Functions that are defined using a function declaration are automatically
hoisted to the top of a program’s scope. This means that they can be called
before they’ve been defined. For example, in the following code, the function
hoist() can be called before it’s actually defined:

// function is called at the start of the code

hoist();

// ...

// ... lots more code here

// ...

// function definition is at the end of the code

function hoist(){

Block Scope

All variables in JavaScript have local scope inside functions, but
variables only have block scope if they’re declared using const

and let . If a variable is declared using var , it can be accessed

outside the scope of the block it was de;ned in.

If you try entering the following code into the console, it won’t work,
because the variable message only has scope inside the block, so it

can’t be accessed outside the curly braces:

if(name==="JavaScript"){

const message = "Hello ${name}!";

}

console.log(message);

<< ReferenceError: "Can't find variable: message"

If var is used instead of const , this code will run without an error.

Alternatively, console.log(message) could be placed inside the

block.

Let’s Get Functional 290

console.log('Hoist Me!');

}

This can be quite useful, as it means that all function definitions can be placed
together, possibly at the end of a program, rather than every function having
to be defined before it’s used.

An error will be thrown if you attempt to refer to a variable before it has been
declared using const and let . For this reason, you should try to declare any
variables at the beginning of a block so that hoisting isn’t necessary.

This means that a function expression (where an anonymous function is
assigned to a variable) can’t be called before it has been declared, unlike a
function declaration.

This is probably the biggest difference between function declarations and
function expressions, and it may influence your decision regarding which one
to use. Some people like the fact that using function expressions means
you’re required to define all functions and assign them to variables prior to
using them, while others prefer to have the option to keep all their functions in
one place as function declarations. You can read more about the differences in
“Quick Tip: Function Expressions vs Function Declarations”5.

Functions That Return Functions
We’ve already seen that functions can accept another function as an
argument (a callback), but they can also return another function.

The example below shows a function called returnHello() that returns a
“Hello, World!” function:

function returnHello() {

return function() {

5. https://www.sitepoint.com/function-expressions-vs-declarations/

291 Learn to Code with JavaScript

https://www.sitepoint.com/function-expressions-vs-declarations/

console.log('Hello, World!');

}

}

When the returnHello() function is called, all it does is return another
function:

returnHello()

<< function returnHello() {

return function() {

console.log('Hello World!');

}

}

Alternatively, arrow functions can be used to make the declaration look neater
(although it’s harder to see what’s happening):

returnHello = () => () => console.log('Hello, World!');

The expression after the first arrow is its return value, which is another arrow
function: () => console.log('Hello, World!') . So when returnHello is
called, it returns this function.

To make use of the function that’s returned, we need to assign it to a variable:

const hello = returnHello();

Now we can call the function that was returned by placing parentheses after
the variable that it was assigned to:

hello();

<< Hello, World!

This might seem a bit pointless, but let’s now take it a step further and use this

Let’s Get Functional 292

technique to create a generic function that returns a function for creating a
fragment of HTML using a particular tag that’s provided as an argument:

const html = tag => text => `<${tag}>${text}</${tag}>`

We now use this function to create a function that creates an <h1> element:

const h1El = html('h1');

<< text => `<${tag}>${text}</${tag}>`

Now this function can be used to return some strings of headings:

h1El('Hello, World!');

<< "<h1>Hello, World!</h1>"

If we also want a function for creating paragraphs, we can use the generic
element function to return one for us:

paraEl = element('p');

<< text => `<${tag}>${text}</${tag}>`

Then we use this function to create a paragraph fragment:

paraEl('The quick, brown fox jumped over the lazy dog.');

<< "<p>The quick, brown fox jumped over the lazy dog.</p>"

We can also chain the two function calls together to create a function and use
it in a single call:

html('h2')('Hello, World!');

<< "<h2>Hello, World!</h2>"

Closures
Closures are one of JavaScript’s most powerful features, and they rely on the

293 Learn to Code with JavaScript

concept of scope and functions returning other functions.

To demonstrate the concept, let’s go back to this function that we saw earlier
in the chapter when discussing the concept of scope:

function local(){

const secret = 'Top Secret!';

console.log(secret);

}

This function contains a variable called secret which, as we saw, only exists
within the scope of the function.

A closure is formed when a function can access variables that are declared
outside its scope. In our example, we can add an anonymous function that
references the secret variable:

function local() {

const secret = 'Top Secret!';

function () {

console.log(secret);

}

}

The anonymous function is said to form a “closure” over the secret variable
because, although the variable isn’t defined inside the body of the function,
the function can still access it. This on its own isn’t so special, since we could
already access the secret variable from within the local function.

However, if we return the anonymous function, we’ll keep access to the
secret variable outside the scope of the local function:

function local() {

const secret = 'Top Secret!';

return function () {

Let’s Get Functional 294

console.log(secret);

}

}

The function that’s returned will retain access to the secret variable even
after the local function has been called. This forms a closure over the
secret variable.

To make use of the closure, we need to assign a variable to the return value of
the local() function:

const notSoSecret = local();

The variable notSoSecret now points to the anonymous function that’s
returned by the local() function. This function now has access to the
secret variable that was declared in the local function outside the scope of

that function. We can see this is the case by calling the notSoSecret function:

notSoSecret();

<< "Top Secret!"

Thanks to the closure, we now have access to the secret variable in the
global scope!

The diagram below shows how the anonymous function forms a closure over
the secret variable, returning it into the global scope.

295 Learn to Code with JavaScript

13-3. How a closure works

Closure Countdown!

Closures not only have access to variables declared in a parent function’s
scope, but they can also change the value of these variables. This allows us to
do things like create a countdown function that decreases a variable every
time it’s called. Enter the following code into the console:

function countdown(start){

let i = start;

return function() {

return i--;

}

}

This function declares a variable i and assigns it the value of the number
provided as an argument. It then returns a function that forms a closure

Let’s Get Functional 296

around the variable i , which means it can access the value of i and can also
change the value of i . It does this using the -- operator to decrease the
value of i by 1 every time it’s called.

We can create a counter by assigning the return value of the counter()

function to a variable:

const count = countdown(3);

The variable count now points to a function that has full access to the
variable i that was created in the scope of the counter() function. Every
time we call the count() function, it will return the value of i and then
decrease it by 1:

count();

<< 3

count();

<< 2

count();

<< 1

Functional Programming
Functional programming is a style of programming that has become very
popular in recent years, partly due to purely functional languages such as
Clojure6, Scala7, and Erlang8. JavaScript has always supported functional-
style programming, because functions are first-class objects. The techniques
we’ve covered in this chapter—such as using anonymous functions as
arguments, returning values to other functions, and creating closures—are all

6. https://clojure.org
7. https://www.scala-lang.org
8. Erlang

297 Learn to Code with JavaScript

https://clojure.org/
https://www.scala-lang.org/
https://www.erlang.org/

fundamental elements of functional programming.

Pure Functions

A key aspect of functional programming is its use of pure functions. A pure
function is one that adheres to the following rules:

The return value of a pure function should only depend on the values
provided as arguments; it doesn’t rely on values from somewhere else in
the program.
There are no side effects: a pure function doesn’t change any values or
data elsewhere in the program. It only makes non-destructive data
transformations and returns new values, rather than altering any of the
underlying data.
A pure function has referential transparency. Given the same arguments, it
will always return the same result.

In order to follow these rules, any pure function must have:

At least one argument: otherwise, the return value must depend on
something other than the arguments of the function, breaking the first
rule.
A return value: otherwise, there’s no point in the function (unless it has
changed something else in the program, in which case, it has broken the
“no side effects” rule).

Pure functions help to make functional programming code more concise and
predictable than in other programming styles. Referential transparency makes
pure functions easy to test, as they can be relied on to return the same values
when the same arguments are provided. Another benefit is that any return
values can be saved in memory, since they’re always the same, making the
function more efficient. The absence of any side effects tends to reduce the
amount of bugs that can creep into your code, because there are no surprise
dependencies. Pure functions only rely on any values provided as arguments.

Let’s take a look at how not to write a pure function. The next example shows

Let’s Get Functional 298

an impure function that returns the value of adding two values together:

let number = 42;

let result = 0;

function impureAdd(x) {

result = number + x;

}

impureAdd(10);

result;

<< 52

The function impureAdd() is an impure function, as it breaks the rules
outlined above. It requires the value number , which is defined outside the
function. It has the side effect of changing the value of result (also defined
outside the program), and it will return a different value if the value of the
variable number is different.

Here’s an example of a pure function that achieves the same result:

const number = 42;

function pureAdd(x,y) {

return x + y;

}

result = pureAdd(number,10);

<< 52

The pureAdd function requires two arguments to add together, so the
variable number has to be passed to it as an argument. This is an example of a
non-destructive data transformation, as the value stored in the variable,
number , remains the same after it has been passed through the function as an

argument. There are no side effects to this function; it simply returns the

299 Learn to Code with JavaScript

result of adding the two numbers together. This return value is then assigned
to the variable result , instead of the function updating the value of the
variable directly. This function will also always return the same value given the
same inputs.

Functional programming uses pure functions as the building blocks of a
program. The functions perform a series of operations without changing any
underlying data in the program. Each function forms an abstraction that
should perform a single task, while encapsulating the details of its
implementation inside the body of the function. This means that a program
becomes a sequence of expressions based on the return values of pure
functions. The emphasis is placed on using function composition to combine
pure functions together to complete more complex tasks.

You can read more about function composition in “Function Composition:
Building Blocks for Maintainable Code”9.

Pure Array Updates
In previous chapters of this book, we used the push() method to add values
to an array. For example, our to-do list app contains the following addTask

function:

function addTask(item){

list.push(item);

A Benefit of const

Using const to declare variables will help to avoid destructive data

transformations, since any primitive values can’t be changed
(although variables that are assigned to arrays or objects using
const can still be mutated, so it’s not a complete solution).

9. https://www.sitepoint.com/function-composition-building-blocks-for-maintainable-
code/

Let’s Get Functional 300

https://www.sitepoint.com/function-composition-building-blocks-for-maintainable-code/
https://www.sitepoint.com/function-composition-building-blocks-for-maintainable-code/

}

A couple of things make this an impure function. It relies on the variable list ,
which exists outside the function body, and the push() method is a
destructive transformation, meaning that the value of the array is changed.

We can purify this function by adding the array that the item is to be added to
as a parameter. That way, the function isn’t accessing any variables outside its
scope. We can also return a new array that includes all the items from the old
array, using the spread operator, and the new item added on the end, like so:

function addTask(task,list){

return [...list,task];

}

The removeTask function is also impure:

function removeTask(task){

const index = list.indexOf(task);

if(index>-1){

list.splice(i,1);

}

return list;

}

This is because our code, once again, is referencing the list variable from
outside the function, and the splice() method is mutating the list array
(that is, it’s making a permanent change to it). We can fix this by adding list

as a parameter and using the filter() method instead to remove the item:

function removeTask(task,list){

return list.filter(x => x !== task);

}

This will return an array containing all the tasks that aren’t equal to the item
provided as an argument, effectively removing the task from the array.

301 Learn to Code with JavaScript

To test these out, let’s create a short list of tasks in the console:

let tasks = ['Bake cake','Read book','Sing song'];

Make sure you’ve defined the new pure functions in the console or in the JS
section of CodePen, then try entering the following code in the console:

function addTask(task,list){

return [...list,task];

}

function removeTask(task,list){

return list.filter(x => x !== task);

}

Now let’s test out the addTask function by adding the string 'Learn to

code' to the tasks array:

addTask('Learn to code',tasks);

<< ["Bake cake","Read book","Sing song","Learn to code"]

As you can see, the function returns a new array with the string 'Learn to

code' added to the end. But the function hasn’t changed the value of the
tasks variable, as we can see if we check its value:

tasks;

<< ["Bake cake","Read book","Sing song"]

Now let’s check that the removeTask function works:

removeTask('Read book',tasks);

<< ["Bake cake","Sing song"]

This has returned a new array that doesn’t contain the string 'Read book' .
Once again, the original tasks variable hasn’t been changed:

Let’s Get Functional 302

tasks;

<< ["Bake cake","Read book","Sing song"]

Higher-order Functions

Higher-order functions are functions that accept another function as an
argument, or return another function as a result, or both.

Closures are used extensively in higher-order functions, as they allow us to
create a generic function that can be used to then return more specific
functions based on its arguments. This is done by creating a closure around a
function’s arguments that keeps them “alive” in a return function. For example,
consider the following multiplier function:

function multiplier(x){

return function(y){

Updating an Array Value with Pure Functions

If you actually did want to update the value of the tasks array, you

could still use pure functions to do this, by assigning the tasks

variable to the return value of the function call.

For example, if you wanted to update the tasks array with the

string 'Sing song' removed, you could use the following code:

tasks = removeTask('Sing song',tasks);

<< ["Bake cake","Read book"]

We could then con;rm that this has indeed updated the tasks

array:

tasks;

<< ["Bake cake","Read book"]

303 Learn to Code with JavaScript

return x*y;

}

}

The multiplier function returns another function that traps the value of the
argument x in a closure. This is then available to be used by the returned
function.

We can now use this generic multiplier function to create more specific
functions, as can be seen in the example below:

doubler = multiplier(2);

This creates a new function called doubler that multiplies an argument by
two:

doubler(10);

<< 20

The multiplier() function is an example of a higher-order function. This
means that we can use it to build other, more specific functions by using
different arguments. For example, an argument of 3 can be used to create a
tripler() function that multiplies its arguments by 3:

tripler = multiplier(3);

tripler(10);

<< 30

This is one of the core tenets of functional programming: it allows generic,
higher-order functions to be used to return more specific functions based on
specific parameters.

A neat trick to use with higher-order functions is to chain arguments together.
The following example will multiply 3 and 5 together:

Let’s Get Functional 304

1

2

3

multiplier(3)(5);

<< 15

This works because multiplier(3) returns an anonymous function and we
immediately call it with an argument of 5 by adding the parentheses on the
end.

Challenges
Write a recursive function that sings the Ten Green Bottles song that we
programmed using various loops in Chapter 7. It should take the number

of bottles as a parameter, sing one verse, then call itself to sing it again. For
example, greenBottles(10) would sing the song, starting at 10 green bottles.
You can see my code on CodePen10.

Create a higher-order function called exponent that returns another
function that will calculate numbers to the power of the argument

provided. For example, exponentBase2 = exponent(2) should result in a
function called exponentBase2 that will return 2 to the power of the argument
provided, so exponentBase2(3) will return 8. You should also be able to write
exponent(2)(3) and also get 8. You can see my code on CodePen11.

Update the to-do list app so that the add and remove functions are
pure functions. You can see my code on CodePen12.

Summary
Named parameters can be reproduced in JavaScript using an object as the
parameter. This allows the arguments to be provided as properties of the
object in any order.
The rest parameter allows any number of values to be provided to a
function as an array.

10. https://codepen.io/SitePoint/pen/LYbLgLO
11. https://codepen.io/SitePoint/pen/NWbgOgZ
12. https://codepen.io/SitePoint/pen/ExNXdvW

305 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/LYbLgLO
https://codepen.io/SitePoint/pen/NWbgOgZ
https://codepen.io/SitePoint/pen/ExNXdvW

Recursive functions are functions that continually call themselves until a
certain condition is reached.
The scope of a variable determines where and how that variable can be
accessed.
Functions declared using the function keyword are hoisted to the top of
the scope, meaning they can be called even before they’ve been defined.
Variables should be declared before they’re referred to.
A closure is formed when a function accesses a variable that has been
declared in the surrounding scope of the function. By returning the
function, we can maintain access to the variable outside the scope it was
declared in.
Functional programming is a style of programming that combines pure
functions that perform a single task in order to perform more complex
tasks.
Pure functions shouldn’t reference anything outside the scope of the
function that has not been supplied as an argument, and they shouldn’t
cause side effects by changing anything outside the scope of the function.
They should have referential transparency, which means that, given the
same arguments, they should return the same value.
Higher-order functions accept functions as arguments and return
functions. They can be chained together to complete more complex
operations.

In the next chapter, we’ll be taking a deeper look into objects and object-
oriented programming.

Let’s Get Functional 306

Getting
Classy

Chapter

14

307 Learn to Code with JavaScript

We first encountered objects in Chapter 9. In this chapter, we’re going to take
a more in-depth look at object-oriented programming and how you can use
JavaScript to create classes. We’ll be covering the following topics:

copying objects in JavaScript
object-oriented programming
encapsulation
polymorphism
inheritance
classes in JavaScript
extends
a Pet Unicorn project

Copying Objects in JavaScript
An important concept in JavaScript is that objects are assigned by reference.
This means that, if two variables are assigned to the same object, both
variables will point to the same object in memory.

For example, imagine you’re creating a weather app and the variable monday

is pointing to a sunny image object. If you assign the variable tuesday to the
same image object using the code const tuesday = monday , both variables
will be pointing to the same image object, as can be seen in the diagram below.

Getting Classy 308

14-1. Copying by reference

If you then update the image object that tuesday is pointing to, it will also
change the image object that monday is pointing to, as can be seen in the
diagram below, where tuesday is changed to a rainy image object.

14-2. Updating by reference

This means that any changes you make to either variable will affect the other,

309 Learn to Code with JavaScript

making it impossible to change monday without changing tuesday .

To demonstrate the problems this can cause, let’s create some objects to
model the three bears from the Goldilocks story1.

First of all, let’s create an object that describes Papa Bear and assign it to the
variable papa in the console:

const papa = {

name: 'Papa Bear',

type: 'bear',

color: 'brown',

food: 'porridge',

size: 'large'

};

Now, if we wanted to create another object to represent Mama Bear, we could
start with a copy of the papa object, since a number of the properties are the
same. We can then update the properties that need changing.

A common mistake is to think that this copy of the papa object can be made
like so:

const mama = papa;

The variable mama will have all of the same properties as the papa object. The
problem is that we haven’t actually copied the papa object; the variables

Console Issues

At the time of writing, jsonsole.com doesn’t support some of the
code that’s used in this example. For this reason, I’d recommend
using the console on CodePen instead. (It’s located at the bottom
left of the CodePen interface.)

1. https://en.wikipedia.org/wiki/Goldilocks_and_the_Three_Bears

Getting Classy 310

https://en.wikipedia.org/wiki/Goldilocks_and_the_Three_Bears

mama and papa both reference exactly the same object!

We can see this if we try to make a change to the name property of mama :

mama.name = 'Mama Bear';

Now if we check the value of the name property of the papa object, we’ll
discover a problem:

papa.name;

<< 'Mama Bear'

Changing the name property of mama has resulted in the name property of
papa changing as well. This happens because the variables mama and papa

both point to the same object in memory. Any changes made to either variable
will affect the other.

The solution to this problem is to apply the spread operator to the object we
want to copy. You’ll need to restart the console and define the papa object
again before entering the following code to make a copy of the papa object:

const mama = {...papa}

This creates a brand new object literal and spreads the properties of the papa

object out inside it. This means that the variable mama is pointing to a brand
new object in memory. Any changes made to it will not affect the papa object,
as we can see if we update the name and size properties:

mama.name = 'Mama Bear';

<< "Mama Bear"

mama.size = 'medium';

<< "medium"

Now if we take a look at the two objects, we can see that the mama object has
been updated, but the papa object hasn’t changed:

311 Learn to Code with JavaScript

papa;

<< {

name: 'Papa Bear',

type: 'bear',

color: 'brown',

food: 'porridge',

size: 'large'

}

mama;

<<

{

name: 'Mama Bear'

type: 'bear',

color: 'brown',

food: 'porridge',

size: 'medium'

}

Copying an object and updating some properties can be accomplished in one
step by adding the new property at the end of the object literal. Let’s do this by
making another copy of the papa object to represent Baby Bear:

Shallow and Deep Copies

The code above makes a shallow copy of the papa object. This

means that only the ;rst level of properties is copied. If any of the
properties contained nested objects, these objects would still be
copied by reference. A deep copy involves making a copy of every
property, including nested objects.

Making a deep copy of an object can get tricky, and I’d recommend
using a well-tested solution, such as the _.cloneDeep 2 method

used by the Lodash library3.

2. https://lodash.com/docs/4.17.15#cloneDeep
3. https://lodash.com

Getting Classy 312

https://lodash.com/docs/4.17.15%23cloneDeep
https://lodash.com/

const baby = {...papa, name: 'Baby Bear', size: 'small'};

In this example, we’ve copied the papa object, then updated the name and
size properties inside the same object. This works because any properties

with the same name will overwrite any previously defined properties.

We can check that this has worked by taking a look at the baby object:

baby;

<< {

name: 'Baby Bear'

type: 'bear',

color: 'brown',

food: 'porridge',

size: 'small'

}

Just right!

Object-oriented Programming
Object-oriented programming (OOP for short) is a style of programming that
encapsulates related pieces of code in objects that maintain state throughout
the life of the program. The objects can then be reused or easily modified as
required. Many modern languages such as Java, C++, Ruby and Python are
object oriented.

Three key concepts in OOP are:

Copying Arrays and Functions

In JavaScript, arrays are a special type of object, so the same
problems occur when using arrays: they’re copied by reference, and
using the spread operator only makes a shallow copy.

Functions are also only copied by reference, so any changes made
will affect all references to the function.

313 Learn to Code with JavaScript

encapsulation
polymorphism
inheritance

I’m going to use the example of a coffee machine to illustrate how each of
these concepts can be applied in a programming environment. In many ways,
a coffee machine can be thought of as an object, since it has properties such
as speed, strength, and capacity, and it also has methods or actions it can
perform, such as brewing, switching on, and switching off.

Encapsulation

When the coffee machine is turned on, it makes some noises and then, a few
minutes later, it produces a steaming cup of hot coffee. You don’t need to
know how the machine works in order to make the perfect cup of coffee; you
just press on. This demonstrates the concept of encapsulation: the inner
workings are kept hidden inside the object and only the essential
functionalities are exposed to the end user, such as the on button. In OOP, this
involves keeping all the programming logic inside an object and making
methods available to implement the functionality, without the outside world
needing to know how it’s done.

Getting Classy 314

14-3. Encapsulation

Polymorphism

The on button starts a process of brewing in the coffee machine. If there was
such thing as a beer machine, it would also have an on button that started the
process of brewing. Even though both machines have a process called
“brewing”, the results of that process are very different: one produces coffee
and the other beer. This demonstrates the concept of polymorphism, where
the same process produces different results in different objects. In OOP, this
means that various objects can share the same method, but implement them
in different ways.

315 Learn to Code with JavaScript

14-4. Polymorphism

Inheritance

Imagine a super coffee machine that’s a new, improved model capable of
making three cups of coffee at once. Even though it has some extra features,
it still uses many of the same parts as the original coffee machine. This
demonstrates the concept of inheritance, where the features of one object
are taken and then new features are added. In OOP, this means that we can
take an object that already exists and inherit all its properties and methods.
We can then improve on its functionality by adding new properties and
methods.

Getting Classy 316

14-5. Inheritance

Classes
Most object-oriented languages, such as Java and Ruby, use classes to define
a blueprint for an object. Objects are then created as an instance of that class
and inherit all the properties and methods of the class. In the coffee machine
example, the CoffeeMachine class would represent the design, and each
machine that’s made on the production line, as well as any other models of
coffee machine, would be instances of that class.

317 Learn to Code with JavaScript

Classes in JavaScript

Back in the Objects chapter (Chapter 9), we created the dice object shown
below:

const dice = {

sides: 6,

roll() {

return Math.ceil(Math.random()*this.sides)

}

}

Imagine you’re creating an online role-playing game, not unlike Dungeons and
Dragons4. It will require lots of dice with different numbers of sides to be used.
Instead of creating a separate object for each dice, we can create a Dice

class that can be used to create many copies of this object.

To create this class, enter the following code into the console:

class Dice {

constructor(sides=6) {

this.sides = sides;

Classes vs Prototypes

JavaScript didn’t originally have classes built into the language. But
it’s always allowed the use of existing object literals, rather than
classes, as the blueprint for creating similar objects. It’s therefore
known as a prototype-based language. In the coffee machine
example, this might involve building an actual prototype machine
and then using this prototype as the basis for making all the other
machines. JavaScript does now support classes, as we’ll see in the
next section, but it still uses the same prototypal inheritance model
in the background.

4. https://en.wikipedia.org/wiki/Dungeons_%26_Dragons

Getting Classy 318

https://en.wikipedia.org/wiki/Dungeons_&_Dragons
https://en.wikipedia.org/wiki/Dungeons_&_Dragons

}

roll() {

return Math.ceil(Math.random()*this.sides);

}

}

All JavaScript classes have a function called constructor . (If you don’t
explicitly write it, it will be created in the background.) This function is called
every time a new instance of the class is created.

The keyword this represents the object that will be returned by the class. In
the Dice class above, we use it to make the sides property equal the
argument that’s provided to the constructor function, or 6, if no argument is
provided. It also adds a method called roll() that returns a random number
from 1 up to the number of sides the dice has.

We can now create an instance of the Dice class using the new operator:

redDice = new Dice();

<< Dice {sides: 4}

This calls the constructor function defined in the Dice class and returns an
object that was assigned to the variable redDice , which is said to be an
instance of the Dice class. This is an object with a sides property and
roll() method.

Class Naming Convention

By convention, the names of class declarations are usually
capitalized in class-based programming languages.

319 Learn to Code with JavaScript

14-6. The Dice class

We can confirm this using the instanceof operator:

redDice instanceof Dice;

<< true

Each new object that’s created in this way will have a sides property and
roll() method from the class definition, and they’re known as instances of

the Dice class. For example, we can create a four-sided blue dice using the
following code:

blueDice = new Dice(4);

<< Dice {sides: 4}

Getting Classy 320

You can read more about ES6 Classes in “Object-oriented JavaScript: A Deep
Dive into ES6 Classes”5.

Classy Components
One use of classes is to create reusable HTML components. This allows you to
define a block of HTML in a single class and then reuse it multiple times in a
program.

For example, let’s create a class called Notice and use it to create a <div>

element that displays a message on a web page.

Open up a new Pen on CodePen and enter the following code in the JS section:

class Notice {

constructor(message='Hello, World!') {

this.element = document.createElement('div');

Parentheses

The parentheses aren’t required when instantiating a new object
using the new operator. The following code would also achieve the

same result:

greenDice = new Dice;

<< Dice {sides: 6}

The parentheses are required, however, if any arguments are
provided. For example, if we want to create another Dice object

with 20 sides, we would have to add 20 as an argument, like so:

whiteDice = new Dice(20);

<< Dice {sides: 20}

5. https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/

321 Learn to Code with JavaScript

https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/
https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/

this.element.textContent = message;

this.css = 'background:silver;border:3px gray solid;color:gray;font:18px

➥ sans-serif;padding:8px;margin:10px';
this.element.style.cssText = this.css;

}

render(element) {

element.appendChild(this.element);

}

}

The constructor function of this class creates a <div> element and then
sets the textContent property to be the same as message , which is provided
as an argument when creating a new instance. It also sets the CSS properties
using the style.cssText property that allows you to set multiple CSS
properties in a single string.

Each instance of the Notice class also has a render() method that’s used to
render the element on the page. This uses the appendChild() method that we
saw in the DOM chapter (Chapter 10) to append the element to an element
that’s provided as an argument to the method.

Let’s try testing out this class to create a Notice component. Add the
following line of code to the bottom of the JS section:

welcome = new Notice;

This creates a reference to the <div> element that’s returned by the
constructor function. We can now insert this into the page using its render

method. Add the following line of code to the bottom of the JS section:

welcome.render(document.body);

This will append the element to the body of the document, and should look
something like this:

Getting Classy 322

14-7. Notice component class

You can see my code on CodePen6.

Inheritance in JavaScript

Now that we have our class for creating notice components, we can create
some different types of notices based on this class, but more specific. For
example, we could create Warning , Success and Info notices that are all
based on the generic notice element we created in the previous section.

We can use the concept of inheritance to ensure that our new notices inherit
all the properties and methods of the Notice class. This means that the
Warning , Success and Notice classes will inherit all their properties and

methods from the parent Notice class, as can be seen in the diagram below.

14-8. Inheritance

In JavaScript, a class inherits from another class using the extends keyword.
Add the following code to the bottom of JS section in your Pen to see how this

6. https://codepen.io/SitePoint/pen/jOVLBKv

323 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/jOVLBKv

works:

class Warning extends Notice {

constructor(message='WARNING!') {

super(message);

}

}

This creates a new class called Warning that inherits all the properties and
methods of the Notice class. The super keyword references the parent
class (Notice in this example) and is used to access the properties and
methods of the parent class.

We don’t want the Warning class to be exactly the same as the Notice class,
though. (What would be the point in that?) We need to update some of the
style properties to change how it looks. Update the class definition to include
the following code:

class Warning extends Notice {

constructor(message='WARNING!') {

super(message);

this.element.style.background = 'pink';

this.element.style.color = 'red';

this.element.style.borderColor = 'red';

}

}

These extra lines of code update the style properties to change the colors of
the background, border and text.

To check that this has worked, let’s create an instance of the Warning class
and insert it into the document:

const warning = new Warning('Warning!');

warning.render(document.body);

This should append the warning notice to the body of the page, placing it

Getting Classy 324

underneath the notice that’s already there, as can be seen in the image below.

14-9. The Warning class inherits from the Notice class

We can use a similar process to create two more classes for success and info
notices by adding the following code:

class Success extends Notice {

constructor(message='Success!') {

super(message);

this.element.style.background = 'palegreen';

this.element.style.color = 'green';

this.element.style.borderColor = 'green';

}

}

class Info extends Notice {

constructor(message='Information') {

super(message);

this.element.style.background = 'powderblue';

this.element.style.color = 'blue';

this.element.style.borderColor = 'blue';

}

}

These classes extend the Notice class in the same way that the Warning

class did, but they use different colors and default messages. We can test
these out and add them to the page using the following code:

success = new Success;

success.render(document.body);

325 Learn to Code with JavaScript

info = new Info;

info.render(document.body);

The page should now look similar to the screenshot below.

14-10. Notice component class and children

You can see my code on CodePen7.

The Pet Unicorn Game
We’re going to finish this chapter by creating a virtual pet game, based on the
classic Tamagotchi toys9. This game will involve the player looking after a pet
unicorn. The player gets to name their pet unicorn and then needs to decide
when to feed it, play with it, and put it to bed.

Custom HTML Elements

It’s possible to go a step further than we did in this example and
create your own custom HTML elements8.

7. https://codepen.io/SitePoint/pen/GRNvmdY
8. https://dev.to/barakplasma/introduction-to-custom-html-elements-136c
9. https://en.wikipedia.org/wiki/Tamagotchi

Getting Classy 326

https://codepen.io/SitePoint/pen/GRNvmdY
https://dev.to/barakplasma/introduction-to-custom-html-elements-136c
https://en.wikipedia.org/wiki/Tamagotchi

The game will use a Unicorn class to instantiate an object that represents a
pet unicorn. The object will have properties that keep track of how the unicorn
is feeling, and methods that allow the player to interact with their pet unicorn.
This game will run entirely in the console by entering the methods manually.

The Unicorn class will need the following properties:

name : for referring to the unicorn
food : for keeping track of how much food the unicorn has in its belly
fun : for recording how much fun the unicorn is having
energy : for keeping track of how much energy the unicorn has

The Unicorn class will also need the following methods:

eat : this will increase the value of food , since eating will put food in the
unicorn’s belly, but it will decrease the value of fun , since standing around
eating can be a bit dull.
sleep : this will increase the value of energy , since sleeping provides the

unicorn with some rest, but the value of food will decrease as the food is
digested. It will also decrease the value of fun , since sleeping can be a bit
boring.
play : this will increase the value of fun , because playing is fun, but it will

decrease the value of energy , because it can be hard work!

Let’s create the constructor function that will be used to instantiate a new
instance of the Unicorn class. It should define the properties outlined above.
Open a new Pen on CodePen and add the following class definition to the JS
section:

class Unicorn {

constructor(name='Sparkles'){

this.name = name;

this.food = 3;

this.fun = 3;

this.energy = 5;

327 Learn to Code with JavaScript

console.log(`Your new pet unicorn, ${this.name}, is born!`);

}

}

This defines the constructor function that will be called when a new Unicorn

object is created. The function has a name parameter that has a default value
of 'Sparkles' . This is used to set the name property. We also set the food ,
fun and energy properties to their initial values of 3, 3 and 5 respectively. A

message is also logged to the console to inform the player that their pet
unicorn has been born.

Next, we need to define the eat , play() and sleep() methods. These will
need to update the relevant properties and also provide some feedback in the
console to let the player know that something has happened. We won’t give
details about how the actual values of the properties have changed, though, as
these are encapsulated inside the object (and we don’t want to give away the
internal workings of the game too much!).

Let’s start with the eat() method. This should be placed right after the
constructor function, but still inside the class block:

eat(){

console.log(`${this.name} gobbles up some glitter.`);

this.food += 3;

this.fun -= 1;

this.timeGoesBy();

}

This logs a message to the console to tell the user that their pet has eaten
something. It then increases the food property by 3 to indicate that some
food has been eaten and decreases the fun property by 1 because any time
spent eating means less time playing. At the end of the method, we call
another method called timeGoesBy . This method will simulate time passing in
the game and check to see if any of the unicorn’s property values have
dropped too low. We’ll write this method soon, but first we have to add the
play() and sleep() methods. Add these underneath the eat() method:

Getting Classy 328

play(){

console.log(`${this.name} frolics in the meadow.`);

this.fun +=2;

this.energy -=2;

this.timeGoesBy();

}

sleep(){

console.log(`${this.name} falls asleep, dreaming of stars & rainbows.`);

this.energy += 5;

this.fun -= 2;

this.food -= 3;

this.timeGoesBy();

}

These both follow a similar pattern to the eat() method: log a message to
the console, update the properties, then call the timeGoesBy() method. Let’s
add that method now:

timeGoesBy(){

if(this.energy < 0){

this.dies('exhaustion');

}

if(this.food < 0){

this.dies('starvation');

}

if(this.fun < 0){

this.dies('boredom');

}

}

This method uses an if statement to check if any of the unicorn’s properties
of energy , food and fun have dropped below zero. If this is the case, the
unicorn will unfortunately die. When this happens, we call the dies() method,
passing an argument that describes the reason why the unicorn died. We need
to write this method next:

dies(reason){

console.log(`${this.name} died of ${reason}.`);

329 Learn to Code with JavaScript

1

}

This method accepts an argument that’s a string describing the reason the
unicorn died. It then logs a message to the console to tell the user that their
pet unicorn has died, along with the reason why.

Try creating a new pet unicorn in the console on CodePen. Try calling the
different methods and see how long you can keep your unicorn alive. The
console log below shows the output of my feeble attempt:

pet = new Unicorn;

<< "Your new pet unicorn, Sparkles, is born!"

pet.play();

<< "Sparkles frolics in the meadow."

pet.play();

<< "Sparkles frolics in the meadow."

pet.eat();

<< "Sparkles gobbles up some glitter."

pet.play();

<< "Sparkles frolics in the meadow."

"Sparkles died of exhaustion."

The moral of the story is to remember to give your pet some rest!

You can see my code on CodePen10.

Challenges
Add a random element to the Pet Unicorn game that changes the
properties by slightly different amounts every time a method is called.

For example, instead of the sleep() method increasing energy by 5, it could
increase it by 4, 5 or 6. You can see my code on CodePen11.

10. https://codepen.io/SitePoint/pen/vYyJmVa
11. https://codepen.io/SitePoint/pen/zYodwyw

Getting Classy 330

https://codepen.io/SitePoint/pen/vYyJmVa
https://codepen.io/SitePoint/pen/zYodwyw

2 Add a graphical interface to the Pet Unicorn game. This could involve
the following features: an input box that allows the user to enter the

name of a unicorn to create it; a picture of a unicorn with its name that appears
in the document when the object is instantiated updates about how the pet is
feeling in the document, instead of using console.log ; and buttons that are
pressed to perform each action of eat , sleep and play .

You can see my code on CodePen12.

Summary
Objects are copied by reference in JavaScript. To make a hard copy of an
object, you need to use the spread operator.
Object-oriented programming (OOP) is a programming concept that
involves keeping code in objects.
Encapsulation means that the inner workings of an object are kept away
from the users.
Polymorphism means that objects can share the same methods, but
implement them in different ways.
Inheritance means that a class can inherit all the properties and methods
from a parent class and then add their own, more specific properties and
methods, or change some of the properties and methods from those of the
parent class.
You can create classes in JavaScript using the class keyword. The class
describes the properties and methods that each instance of that class will
have.
The constructor function defined in the class is called whenever a new
instance of a class is created using the new keyword.

In the next chapter, we’ll be learning about how to code with time and dates.

12. https://codepen.io/SitePoint/pen/ZEBJKwp

331 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/ZEBJKwp

It’s About
Time

Chapter

15

It’s About Time 332

Working with times and dates can be tricky in programming languages. For
this reason, most languages have some sort of built-in Date object that helps
to make the process easier. JavaScript is no exception, and we’ll be taking a
look at how that works in this chapter. We’ll be covering the following:

the UNIX epoch
times and dates
timing functions
asynchronous programming
animation
a Cookie Grabber game

The UNIX Epoch
The UNIX epoch1 is an arbitrary date of January 1, 1970, which is used in
programming as a reference point in time from which to measure dates. This
allows dates to be expressed as an integer that represents the number of
seconds since the epoch. As you can imagine, this produces some very large
numbers, and there’s a potential problem looming in 20382 when the number
of seconds since the epoch will be greater than 2,147,483,647, which is the
maximum value that some programming languages can deal with. Fortunately,
JavaScript will be fine, as it can handle bigger values than this.

Times and Dates
Date objects contain information about dates and times. Each object
represents a single moment in time.

In JavaScript, we can use a constructor function to create a new date object
using the new operator. Try entering the following code in the console:

const today = new Date();

1. https://en.wikipedia.org/wiki/Epoch_(computing)
2. http://en.wikipedia.org/wiki/Year_2038_problem

333 Learn to Code with JavaScript

https://en.wikipedia.org/wiki/Epoch_(computing)
http://en.wikipedia.org/wiki/Year_2038_problem

The variable today now points to a Date object. To see what the date is, we
can use the toString() method that all objects have:

today.toString();

<< 'Mon Dec 07 2020 17:40:51 GMT+0000 (GMT)'

If an argument isn’t supplied, the date will default to the current date and time
based on the system clock and time zone setting. This means that it can be
manipulated and shouldn’t be relied on as an accurate representation of the
actual date.

It’s possible to create Date objects for any date by supplying it as an
argument to the constructor function. This can be written as a string in a
variety of forms, as can be seen in the examples of different holiday dates
below:

const christmas = new Date('2021-12-25');

// date format is YYYY-MM-DD

christmas.toString();

<< "Sat Dec 25 2021 00:00:00 GMT+0000 (GMT)"

const chanukah = new Date('28 November 2021');

// First day of Chanukah

chanukah.toString();

<< "Sun Nov 28 2021 00:00:00 GMT+0000 (GMT)"

const eid = new Date('Wednesday, May 12, 2021');

// Eid-al-Fitr

eid.toString();

<< "Wed May 12 2021 00:00:00 GMT+0100 (BST)"

As you can see, the string passed to the Date constructor can be in a variety
of formats. However, in order to be more consistent, I’d recommend that you
provide each part of the date as a separate argument. The parameters that
can be provided are as follows:

new Date(year,month,day,hour,minutes,seconds,milliseconds);

It’s About Time 334

Here’s an example:

const halloween = new Date(2021, 9, 31);

halloween.toString();

<< "Sun Oct 31 2021 00:00:00 GMT+0100 (BST)"

An alternative is to use a timestamp, which is a single integer argument that
represents the number of milliseconds since the epoch (January 1, 1970):

const diwali = new Date(1635984000000);

diwali.toString();

<< "Thu Nov 04 2021 00:00:00 GMT+0000 (GMT)"

Getter Methods

The properties of date objects aren’t able to be viewed or changed directly by
assignment. Instead, they have a number of methods, known as getter
methods, that return information about the date object, such as the month
and year.

Once you’ve created a date object, it will have access to all the getter
methods. There are two versions of most methods: one that returns the
information in local time, and the other that uses Coordinated Universal Time
(UTC). The getTime() , getTimezoneOffset() and getYear() methods don’t
have UTC equivalents.

Counting the Months

Slightly confusingly, the numerical value for months starts at zero,
so January is 0, February is 1, and so on up to December, which is 11.

335 Learn to Code with JavaScript

The getDay() and getUTCDay() methods are used to find the day of the week
that the date falls on. They return a number, starting at 0 for Sunday, up to 6
for Saturday. The code below shows us that Diwali is on a Thursday (day 4) in
2021:

diwali.getDay();

<< 4

The getDate() and getUTCDate() methods return the day of the month for
the date object. (Note that these values start counting from 1, not 0, so they
return the actual day of the month.) The code below shows us that Diwali is on
the 4th in 2021:

diwali.getDate();

<< 4

The getMonth() and getUTCMonth() methods can be used to find the month
of the date object. It returns an integer, but remember to count from 0! The
code below shows us that Diwali is in November (month 10) in 2021:

diwali.getMonth();

<< 10

The getFullYear() and getUTCFullYear() methods return the year of the
date object. There’s also a getYear() method, but it isn’t Y2K4 compliant, so

UTC vs GMT

UTC is the primary time standard by which the world regulates
clocks. It was formalized in 1960 and is much the same as
Greenwich Mean Time (GMT). The main difference is that UTC is a
standard that’s de;ned by the scienti;c community, unlike GMT.
(You can read about why it’s called “UCT” and not “CUT” on
Wikipedia3.)

3. https://en.wikipedia.org/wiki/Coordinated_Universal_Time

It’s About Time 336

https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://en.wikipedia.org/wiki/Year_2000_problem

shouldn’t be used, as it returns nonsensical results for dates after the year
2000, as can be seen in the code below:

diwali.getYear();

<< 121

This can be fixed if we use the getFullYear() method instead:

diwali.getFullYear();

<< 2021

There are also getHours() , getUTCHours() , getMinutes() , getUTCMinutes() ,
getSeconds() , getUTCSeconds , getMilliseconds() , and
getUTCMilliseconds() methods that will return the hours, minutes, seconds

and milliseconds since midnight.

The getTime() method returns a timestamp representing the number of
milliseconds since the epoch:

diwali.getTime();

<< 1635984000000

This can be useful for incrementing dates by a set amount of time. For
example, a day can be represented by 1000 * 60 * 60 * 24 milliseconds. The
following example uses this to subtract a day from the date of Christmas in
order to find the date of Christmas Eve:

const christmasEve = new Date(christmas.getTime() - 1000 * 60 * 60 * 24);

christmasEve.toString();

<< "Fri Dec 24 2021 00:00:00 GMT+0000 (GMT)"

The getTimezoneOffset() method returns the difference, in minutes, between
the local time on the computer and UTC. For example, my time zone is
currently the same as UTC, so it returns 0:

4. https://en.wikipedia.org/wiki/Year_2000_problem

337 Learn to Code with JavaScript

new Date().getTimezoneOffset();

<< 0

You can see more examples of Date get methods on the W3Schools site5.

Setter Methods

Most of the getter methods covered in the previous section have equivalent
setter methods. These are methods that can be used to change the value of
the date held in a Date object. Each of the methods takes an argument
representing the value to which you update the date. The methods return the
timestamp of the updated date object.

As an example, we can change the value of the date stored in the diwali

variable so that it contains the date of Diwali in 2022, which is on Monday,
October 24, 2022:

diwali.setDate(24);

<< 1637712000000

diwali.setMonth(9);

<< 1635030000000

diwali.setFullYear(2022);

<< 1666566000000

Note that the values returned by these functions is the timestamp
representing the number of milliseconds since the epoch. To see the actual
date, we need to use the toString() method:

diwali.toString();

<< "Mon Oct 24 2022 00:00:00 GMT+0100 (BST)"

There are also setHours() , setUTCHours() , setMinutes() , setUTCMinutes() ,
setSeconds() , setUTCSeconds , setMilliseconds() and

5. https://www.w3schools.com/js/js_date_methods.asp

It’s About Time 338

https://www.w3schools.com/js/js_date_methods.asp

setUTCMilliseconds() methods that can be used to edit the time portion of a
Date object.

Alternatively, if you know the date as a timestamp, you can use the setTime()

method:

diwali.setTime(1666566000000);

<< 1666566000000

You can see more examples of Date set methods on the W3Schools site6.

Time Zone Milliseconds

The number of milliseconds required in the timestamp might be
slightly different for you, depending on your time zone.

Date and Time Support

Working with dates and time zones can be tricky. But there will soon
be a new Temporal object7 that aims to ;x some of the issues with

the Date object. (You can learn more about it in “An Introduction to

the JavaScript Temporal API”8.)

If you’re writing code that uses lots of times and dates, it might be
worth using an external library such as date-fns9, which provides a
number of methods to make it easier to work with dates. You can
read more about using it in “Learn date-fns: A Lightweight
JavaScript Date Library”10.

6. https://www.w3schools.com/js/js_date_methods_set.asp
7. https://tc39.es/proposal-temporal/docs/
8. https://www.sitepoint.com/javascript-temporal-api-introduction/
9. https://date-fns.org
10. https://www.sitepoint.com/date-fns-javascript-date-library/

339 Learn to Code with JavaScript

https://www.w3schools.com/js/js_date_methods_set.asp
https://tc39.es/proposal-temporal/docs/
https://www.sitepoint.com/javascript-temporal-api-introduction/
https://www.sitepoint.com/javascript-temporal-api-introduction/
https://date-fns.org/
https://www.sitepoint.com/date-fns-javascript-date-library/
https://www.sitepoint.com/date-fns-javascript-date-library/

What Day Will It Be?

Now that we’ve learned all about how to work with the Date object, let’s build
a small application to tell you what day it will be in a set number of days.

Open up a new Pen on CodePen and add the following HTML:

<form name='myForm'>

<input type='number' name='number' value='1'>

<button type='submit'>Submit</button>

</form>

<div id='output'></div>

This is a form that asks users to enter a number of days. We’ll tell them what
day it will be after that number of days. Note that, even though the <input>

element has a type attribute of number (which is good practice), it will still be
submitted as a string.

Now let’s add some JavaScript to work out what day it will be. First of all, we’ll
declare some variables that refer to the <form> element and the <div> that
will contain the output. Add the following code to the JS section:

const form = document.forms.myForm;

const output = document.getElementById('output');

We also need to add an array that contains the names of each day of the week.
This will match the name of a day to the corresponding number returned by
the getDay() method, so dayNames[0] will be 'Sunday' , dayNames[1] will be
'Monday' , and so on. Add the following line of code to the JS section:

const dayNames = ['Sunday','Monday','Tuesday','Wednesday','Thursday','Friday',

➥'Saturday'];

Next, we need to write a function that will calculate and display the day of the
week. Add the following function to the end of the JS section:

It’s About Time 340

function nameThatDay(e){

e.preventDefault();

const numberOfDays = Number(form.number.value);

const milliseconds = numberOfDays * 24 * 60 * 60 * 1000;

const timestamp = Date.now() + milliseconds;

const day = new Date(timestamp).getDay();

output.textContent = `In ${numberOfDays} days, it will be ${dayNames[day]}.`

}

This function starts by preventing the default behavior of the form, so it won’t
be submitted to a server. It then takes the value that was entered in the form
and converts it to a number, stored in the variable numberOfDays . This value is
converted into milliseconds by multiplying it by the number of milliseconds in
a single day. We then add this to the number of milliseconds since the epoch
to produce a timestamp that can be used as an argument to the new Date()

constructor function to create a new Date object. We can then call the
getDay() method to return which day of the week this date is on. We then

use the dayNames array as a lookup table to find the corresponding day name
string using this value as an index.

Finally, we need to add an event listener that will call the nameThatDay

function when the form is submitted. Add the following line of code to the end
of the JS section:

form.addEventListener('submit',nameThatDay);

Now that everything is in place, try using the form to see what day it will be in a
thousand days (it should be the same day as it was yesterday).

341 Learn to Code with JavaScript

15-1. What Day Is It?

You can see my code on CodePen11.

Timing Functions
JavaScript provides a couple of useful methods that enable us to schedule
when a function is called, or to call a function at regular intervals. These can be
useful for causing a delay before something happens, or displaying a timer on
the screen.

setTimeout

The setTimeout() method accepts a callback function as its first parameter
and a number of milliseconds as its second parameter. The callback function
that’s provided as the first argument will be called after the time given as the
second argument.

To see this in action, try entering the following code into a console. It should
show an alert box after seven seconds. This is because the first argument is
an anonymous arrow function that displays the alert box, and the second
argument is 7000 milliseconds, or 7 seconds:

11. https://codepen.io/SitePoint/pen/BaQdbQB

It’s About Time 342

https://codepen.io/SitePoint/pen/BaQdbQB

setTimeout(() => alert("Time's Up!"), 7000);

<< 1

Notice that the method returns an integer. This is an ID used to reference that
particular timeout. It can also cancel the timeout using the clearTimeout()

method. Try calling the code again, making a note of the number that’s
returned:

setTimeout(() => alert("Time's Up!"), 7000);

<< 2

Now quickly enter the following code before the alert pops up, making sure
you enter the number that was returned previously (it might not be 2 in your
case!):

clearTimeout(2);

<< undefined

If you’re quick enough, and use the correct ID, the callback will be canceled
and the alert will never appear.

Instead of trying to remember the value that’s returned when the timeout is
set, it’s easier to assign a variable to the return value, like in the code example
below:

const timer = setTimeout(() => alert("Time's Up!"), 7000);

<< 3

This variable can then be used to clear the timeout later:

clearTimeout(timer);

<< undefined

343 Learn to Code with JavaScript

Asynchronous Programming
A synchronous program is one that processes each line of code in the order it
appears. The problem with this approach is that, if a particular part of the
program takes a long time to complete, it will hold up the rest of the program.
This means that time-consuming events such as the completion of a file
download, getting data from a database, or loading a game will block anything
else from happening.

One solution is to start a new thread to run different parts of the program.
This means that if a process is taking a long time in one thread, other threads
can be used for other tasks. The problem with multi-threaded programs is that
it can be difficult to keep track of what’s happening in each thread, especially
if the results of one thread are needed in another.

Another solution is to write asynchronous code, which runs out of order, or
asynchronously. Instead of waiting for an operation to finish, a callback (or
promise) is created, and the rest of the program continues to run. This
ensures that waiting for a process to complete doesn’t hold up the execution
of other parts of the program. Once the task is complete, the promise is said
to be resolved and the callback returns the result back to the program.

The diagram below shows how a long process blocks the rest of the code
from running when run synchronously, compared to a non-blocking,
asynchronous approach.

It’s About Time 344

15-2. Blocking and non-blocking code

JavaScript runs in a single-threaded environment, so it can only process one
piece of code at a time, so asynchronous programming is an essential tool to
ensure there aren’t any processes blocking the the rest of the program from
running.

We can demonstrate the asynchronous nature of JavaScript by using the
setTimeout() method to fake a time-consuming process. The following code

places a three-second timeout between two messages that get logged to the
console. The timeout is taking the place of a slow operation—such as
downloading a file. Try entering the code into the console, but try guessing
what the output will be before you press return:

345 Learn to Code with JavaScript

console.log('Hello');

setTimeout(() => { console.log('File Downloaded!'); }, 3000);

console.log('World');

Did you guess correctly?

If the program ran synchronously, the following would happen:

“Hello” would be logged to the console
there’d be a three-second delay
“File Downloaded!” would be logged to the console
“World” would be logged to the console

This is a blocking approach, since the three-second wait is blocking the
execution of the rest of the program until the callback has been resolved.

JavaScript is a non-blocking language, so the callback doesn’t block the rest
of the program happening. This is what actually happens:

“Hello” is logged to the console
a three-second timeout starts, but the program continues
“World” is logged to the console
after three seconds, “File Downloaded!” is logged to the console

It’s important to keep in mind that JavaScript is single-threaded, so only one
task can be processed at a time. This means that, even if a task only takes a
small amount of time to complete, the callback still has to wait for the rest of
the program to finish running before it can run. In fact, even if we change the
delay to zero, the order in which the strings are logged to the console won’t
change. Try the following code in the console to see:

console.log('Hello');

setTimeout(() => { console.log('File Downloaded!'); }, 0);

console.log('World');

Notice the result of the callback is still logged to the console last, despite the

It’s About Time 346

timeout being set to zero milliseconds (the equivalent of an instant file
download). You might think this means the callback will happen immediately,
but a callback always has to wait for the any other functions to be resolved
before it can be processed.

Intervals
The setInterval() method works in a similar way to setTimeout , except that
it will repeatedly call the callback function at regular intervals, based on the
number of milliseconds provided as the second argument.

The previous example used an anonymous function, but it’s also possible to
use a named function like so:

Delay and Sleep

Most programming languages have a delay or sleep function

that will stop the <ow of the program. For example, the following
Ruby code uses the built-in sleep() method to pause the

execution of the code for three seconds:

print 'Hello'

sleep 3

print 'World!'

This will show “Hello”, then pause for three seconds before
displaying “World!”

Even though this looks similar to the way setTimeout works, it’s not

exactly the same, as the asynchronous nature of JavaScript means
that the program doesn’t stop running.

“Delay, Sleep, Pause, & Wait in JavaScript”12 explains how to create
a sleep-like function in JavaScript.

12. https://www.sitepoint.com/delay-sleep-pause-wait/

347 Learn to Code with JavaScript

https://www.sitepoint.com/delay-sleep-pause-wait/

function hello(){ console.log('Hello, World!'); }

Now we can set up the interval and assign it to a variable:

const interval = setInterval(hello,1000);

<< 1

This should show the message “Hello, World!” in the console every second
(1,000 milliseconds).

To stop this, we can use the clearInterval() method and the variable
interval as an argument (this is because the setInterval() method returns

its ID, so this will be assigned to the variable interval):

clearInterval(interval);

The setInterval() method is particularly useful for coding games that
require a “game loop” to run at a set interval. (In fact, we’ll be using it to code a
game at the end of this chapter!)

requestAnimationFrame

There’s also another method called requestAnimationFrame 13 that

can be used for animations and to run a game loop. It doesn’t allow
you to specify the time interval, but calls a callback approximately
60 times per second. You can read more about it and programming
games in JavaScript in HTML5 Games: Novice to Ninja14, an
excellent book by Earle Castledine.

13. https://developer.mozilla.org/en-US/docs/Web/API/window/
requestAnimationFrame
14. https://www.sitepoint.com/premium/books/html5-games-novice-to-ninja/

It’s About Time 348

https://developer.mozilla.org/en-US/docs/Web/API/window/requestAnimationFrame
https://www.sitepoint.com/premium/books/html5-games-novice-to-ninja/

Stopwatch

We can use the setInterval() method to implement a simple stopwatch in
the browser. Open up a new Pen on CodePen and add the following HTML:

<div id='stopwatch'>00:00</div>

<button id='start'>Start</button>

<button id='stop' disabled>Stop</button>

<button id='reset'>Reset</button>

This includes a <div> element that’s used to display the starting time of
'00:00' , as well as three buttons that will be used to control the stopwatch.

(Note that the Stop button starts with an attribute of disabled to prevent it
from being clicked.)

A little bit of CSS will help to make the watch look more authentic. Add the
following code to the CSS section:

#stopwatch{

border: black 3px solid;

width: 200px;

text-align: center;

color: black;

font: 64px monospace;

padding: 30px;

margin: 0;

}

Now we need to actually make the stopwatch work. First of all, we need to get
some references to the elements in the HTML. Add the following code to the
JS section:

const stopwatch = document.getElementById('stopwatch');

const startButton = document.getElementById('start');

const stopButton = document.getElementById('stop');

const resetButton = document.getElementById('reset');

let time = 0;

349 Learn to Code with JavaScript

The first four variables correspond to the four elements in the HTML section.
The last variable, time , will be used to keep track of the running time on the
stopwatch. Since it will constantly be changing, it needs declaring using the
let keyword.

Now we need to write a function to start the stopwatch called start . Add the
following function definition to the JS section:

function start(){

timer = setInterval(function(){

time++;

// hundredths of second

let hundredths = time%100;

if(hundredths<10){

hundredths = '0'+hundredths;

}

// seconds

let seconds = (time - hundredths)/100;

if(seconds<10){

seconds = '0'+seconds;

}

// display time

stopwatch.textContent = `${seconds}:${hundredths}`;

},10);

startButton.disabled = true;

stopButton.disabled = false;

}

This is a long function, but at its heart is the setInterval() method that calls
an anonymous function every ten milliseconds, or every one hundredth of a
second, indicated by the second argument of 10.

This anonymous function increments the value of the time variable by 1
using the ++ operator. After this, the function parses this value to separate
the time into seconds and hundredths of a second. It does this by using the %

operator to find the remainder when time is divided by 100, which is how
many hundredths of a second are left over. There’s also an if statement that
checks to see if either value is less than 9. If it is, it adds a zero to the front, so

It’s About Time 350

that the watch always displays two digits.

To get an idea of what’s happening here, it might be best to show an example.
Say that the value of time is 543, which means that 543 hundredths of a
second have elapsed. The value of hundredths will be 543%100 , which is 43
(the remainder when it’s divided by 100, or the last two digits). To find the
value of seconds , we subtract the value of hundredths from time to get 500,
then divide by 100 to convert from hundredths of a second to seconds and
get 5. Because this value is lower than 9, we’ll append a zero to the front, to
give it a value of '05' . Note that this changes the type of seconds from a
number to a string, but since we’re eventually going to use string interpolation
to display these values on the page, it doesn’t matter if they’re strings or
numbers.

Finally, we update the textContent of the stopwatch element with the
formatted time.

Right at the end of the function, there are some lines that disable the Start
button and enable the Stop button, so the user can stop the timer running.
Let’s add a function to make that happen. Add the following function to the JS
section:

function stop(){

clearInterval(timer);

stopButton.disabled = true;

startButton.disabled = false;

}

The stop function simply clears the interval called timer that was set in the
start function. This will stop everything happening: the value of time will

stop increasing and the textContent property of the stopwatch element
won’t get updated. We also disable the Stop button and enable the Start
button.

Last of all, we need a function to reset the stopwatch back to zero. Add the
following code to the end of the JS section:

351 Learn to Code with JavaScript

function reset(){

time = 0;

stopwatch.textContent = '00:00';

}

This resets the time variable back to zero and resets the display on the
stopwatch back to '00:00' by updating the textContent property.

The last thing we need to do is hook each of these functions up to their
respective buttons by creating an event listener for each of them. To do this,
add the following code to the end of the JS section:

startButton.addEventListener('click',start);

stopButton.addEventListener('click',stop);

resetButton.addEventListener('click',reset);

Now the buttons should start, stop and reset the stopwatch. Give it a try. It
should look something like this:

15-3. The finished stopwatch

You can see my code on CodePen15.

15. https://codepen.io/SitePoint/pen/XWNaQrP

It’s About Time 352

https://codepen.io/SitePoint/pen/XWNaQrP

Animation
CSS provides a plethora of ways to animate elements using various
transformations. You can read more about them in these recommended
books:

CSS Master, 2nd Edition16

CSS Animation 10117

CSS Animation: De-Animating the Undead Horde18

JavaScript can be used to make these animations more interactive. Let’s take
a look at a simple example to see how it works.

Jumping Frog

We’re going to use CSS animation to create a jumping frog effect. To start
with, we need an element for our frog to go in the HTML section:

<div id='frog'> </div>

Now let’s add some CSS to get the frog into position:

#frog{

font-size: 64px;

position: absolute;

top: 100px;

}

This just makes the frog a bit bigger and gives it an absolute position on the
page. To use CSS animations, we need to create a @keyframes rule that
describes each frame of the animation. Add the following to the CSS section:

16. https://www.sitepoint.com/premium/books/css-master-2nd-edition/
17. https://www.sitepoint.com/premium/books/css-animation-101/
18. https://www.sitepoint.com/premium/books/css-animation-de-animating-the-
undead-horde/

353 Learn to Code with JavaScript

https://www.sitepoint.com/premium/books/css-master-2nd-edition/
https://www.sitepoint.com/premium/books/css-animation-101/
https://www.sitepoint.com/premium/books/css-animation-de-animating-the-undead-horde/

@keyframes jump {

to{transform: translateY(-100px)}

}

This @keyframes rule only describes the end state of the animation, which is a
vertical translation of 100px upwards (negative values move up in the Y
direction). To make it come back down again, we’ll use the animation-

direction property with a value of alternate . This plays the animation
forwards, then backwards, producing a jumping effect. Add the following lines
of code to the #frog selector’s styles:

animation-name: jump;

animation-duration: 700ms;

animation-iteration-count: infinite;

animation-direction: alternate;

You should see the frog jumping up and down like this:

15-4. Our jumping frog

(Here’s a Pen showing what we’ve done so far19.)

We can use JavaScript to add some interactivity to this animation by adding an
event handler to the frog element that will run the animation when a click

19. https://codepen.io/SitePoint/pen/eYBEomK

It’s About Time 354

https://codepen.io/SitePoint/pen/eYBEomK

occurs instead of just repeatedly running it. First of all, remove the animation
properties from the CSS section and add the following code to the JS section:

const frog = document.getElementById('frog');

document.addEventListener('click',e => frog.style.animation = 'jump 700ms 2

➥ alternate')

This event listener will fire when the user clicks anywhere on the page, and it
will call an anonymous arrow function to update the style.animation

property of the frog element. We’ve also used the animation shorthand
property to write all the properties in a single line. Now the frog will only jump
if you click on the page. And it will only jump once: any further clicks won’t
make the frog budge at all. The reason for this is that, once the
style.animation property is set, it will only run the animation once. Updating

the style property again with the same value won’t make it run again. To make
it work again, we need to remove those styles once the animation has finished.
Luckily, there’s an event listener for that exact situation: animationend . Add
the following code to the end of the JS section:

frog.addEventListener('animationend',e => frog.style.animation = 'none');

This removes the animation styles once the animation has finished. Any
further clicks will add the styles back in and the frog will jump again. Give it a
try. It should look something like this:

355 Learn to Code with JavaScript

15-5. Click to jump

There are two other event listeners for CSS animations that you might find
useful:

animationstart : this will fire when the animation starts
animationiteration : this will fire at the start of every iteration of an

animation, except for the first

You can see my code on CodePen20.

Cookie Grabber Game
Our final project is a game based on the fairground classic Whack-A-Mole21,
although this will be a more animal-friendly version that involves “grabbing”
cookies that randomly appear on the screen by clicking on them.

We’ll use the setInterval() method to make a countdown timer that puts
the player under pressure to grab as many cookies as possible.

To start with, let’s set up a new Pen with the following HTML:

20. https://codepen.io/SitePoint/pen/gOLxyaM
21. https://en.wikipedia.org/wiki/Whac-A-Mole

It’s About Time 356

https://codepen.io/SitePoint/pen/gOLxyaM
https://en.wikipedia.org/wiki/Whac-A-Mole

<div id='info'>Score: 0 Time: 20

</div>

<div id='game'></div>

This is just two <div> elements: one for placing information about the score
and time remaining, and the other for the main game.

Next, let’s move on to the CSS section and add some styles:

#game {

padding: 30px;

border: 3px solid pink;

position: relative;

width: 200px;

height: 200px;

}

.cookie{

font-size: 32px;

position: absolute;

cursor: grab;

}

#info{

font: 24px sans-serif;

}

#score,#clock{

color: pink;

}

Most of this is setting the size and colors of the the various elements of the
game. You should now be able to see the main game area on the screen.

357 Learn to Code with JavaScript

15-6. Cookie Grabber game area

Finally, let’s move on to the JS section and code the actual game mechanics.
First of all, we need to get a reference to the elements in the HTML section.
They all have IDs, so we can use getElementById :

const game = document.getElementById('game');

const clock = document.getElementById('clock');

const scoreboard = document.getElementById('score');

Next, we want to declare and initialize the variables to track the time and
score:

let time = 20;

let score = 0;

In the next step, we start the main part of the game by using the
setInterval() method to call a gameLoop function every 500 milliseconds:

timer = setInterval(gameLoop,500);

It’s About Time 358

The gameLoop function contains the main game logic. Every time it’s called, it
needs to add a cookie to the game area, update the time variable, and also
check to see if the time has run out. Let’s create that function now:

function gameLoop(){

addCookie();

time--;

clock.textContent = time;

// check to see if time has run out

if(time <= 0){

clearInterval(timer);

game.removeEventListener('click',grab);

game.innerHTML = '';

}

}

We’re using another function called addCookie to add a cookie to the game
area, and we’ll write that next. We reduce the time variable using the
decrement operator (--), and then update the textContent property of the
element that displays the time, represented by the clock variable. Finally, we
check to see if time has reached, or gone below, zero. If it has, we stop the
timer using the clearInterval() method with an argument of timer , which
will point to whatever number was returned when the interval was created. We
also remove the event listener that’s used for “grabbing” cookies. (We haven’t
created this yet, so don’t worry if you don’t recognize it!) Last of all, we remove
any cookies that haven’t been grabbed by setting the innerHTML property of
game to be an empty string, which has the effect of clearing the game area.

Our next job is to write the addcookie function. This needs to create an
element with a class of cookie and place it at a random position in the game
area. Add the following code to the end of the JS section:

function addCookie(){

const cookie = document.createElement('div');

cookie.textContent = ' ';

cookie.className = 'cookie';

cookie.style.top = `${randomInt(200)}px`;

359 Learn to Code with JavaScript

cookie.style.left = `${randomInt(200)}px`;

game.appendChild(cookie);

}

This creates an empty <div> element and assigns it to the variable cookie .
We then update the textContent property to be a cookie emoji. We then set
the className property to be cookie . This is so that it picks up the styles we
set in the CSS section, and we’ll also be using it later to identify that a cookie
has been clicked on. The code to place the cookie in a random position uses
the style.top and style.left properties that act like coordinates from the
top left corner of the game div. We then use the randomInt helper function
that we created in Chapter 8 to choose a random integer between 1 and 200
(the width of the game area) to set both these properties. Finally, we use the
appendChild DOM method to add this element as a child of the game

element. This means that any cookies created will appear at a random position
inside the game area.

Next, we need to add the player interaction. When the player clicks on a
cookie, we want them to “grab” it. We could attach an event listener to each
cookie we create to listen for click events, but it’s much easier to use event
delegation and attach the event listener to the game element instead. Add the
following code to the end of the JS section:

game.addEventListener('click',grab);

This will fire the grab function every time the player clicks anywhere inside
the game area. This means that we need to write the grab function and also
check to see if a cookie has been clicked on. Add the following function
declaration to the bottom of the JS section:

function grab(event){

if(event.target.className === 'cookie'){

score ++;

scoreboard.textContent = score;

event.target.remove();

}

It’s About Time 360

}

This looks at the target property of the event object that’s passed to any
event handler. This property returns the element that was actually clicked on.
This means we can then check to see if the object has a class of cookie . If it
does, we increase the score by 1 using the increment operator (++), update
the textContent of the scoreboard element so that it shows the new score,
and then remove the element that was clicked on from the DOM. This means
that, if the player clicks on a cookie, their score will increase by 1 and the
cookie will “disappear”!

Last of all, we need to include the randomInt helper function that we used to
create the random integers. Because function declarations are hoisted, we
can place this out of the way, at the bottom of our code:

function randomInt(lower,upper){

if(upper===undefined){

upper = lower;

lower = 1;

}

return Math.floor(Math.random()*(upper-lower+1)+lower)

}

And that’s it! Have a go running the code and see how many cookies you can
grab. It should look something like this:

361 Learn to Code with JavaScript

1

2

3

15-7. Playing Cookie Grabber

You can see my code on CodePen22.

Challenges
Design a form that allows a user to enter their date of birth and find out
the day on which they were born. For example, entering “1/1/2000”

(January 1, 2000) should return “Saturday”. You can see my code on CodePen.

Create a Tabata exercise23 timer. This should count down in alternating
rounds of 20 seconds of work and ten seconds of rest for eight rounds.

The timer should indicate whether it’s currently work or rest. For bonus points,
add Start, Stop and Reset buttons. You can see my code on CodePen24.

Improve the Cookie Grabber game by adding some extra features. A few
suggestions might include: adding a button for users to press to start

22. https://codepen.io/SitePoint/pen/abByxNM
23. https://www.active.com/fitness/articles/what-is-tabata-training
24. https://codepen.io/SitePoint/pen/qBqXwNz

It’s About Time 362

https://codepen.io/SitePoint/pen/abByxNM
https://codepen.io/SitePoint/pen/wvoqZWd
https://www.active.com/fitness/articles/what-is-tabata-training
https://codepen.io/SitePoint/pen/qBqXwNz

the game; making the cookies appear at random frequencies; making the
cookies a random size when they appear, with the number of points they’re
worth inversely proportional to their size (the smaller the cookie, the harder it
is to grab, so the more points you get!)

Can you think of any more? You can see my code on CodePen25.

Summary
The UNIX epoch is an arbitrary date of January 1, 1970, that computer
languages use as a reference point to measure how much time has
elapsed.
Most programming languages have a Date object that allows you to store
dates and times in various formats.
The setTimeout() method calls a callback after a number of milliseconds
provided as an argument.
Asynchronous programming means that code can be executed out of
order. It stops long processes blocking the flow of code while the program
is waiting for them to complete.
The setInterval() method repeatedly calls a callback every time a given
time interval has passed.
JavaScript can be used to add interactivity to CSS animations.

We’ve now reached the end of the last practical chapter in this book. But
there’s still one more chapter to go—one that will hopefully inspire you on to
the next phase of your coding journey.

25. https://codepen.io/SitePoint/pen/ExNvJgr

363 Learn to Code with JavaScript

https://codepen.io/SitePoint/pen/ExNvJgr

End Of Line
Chapter

16

End Of Line 364

Just because you’ve nearly finished this book doesn’t mean your coding
journey is coming to an end. On the contrary, it’s only just beginning. As the
saying goes: as one code block closes, another opens …

The aim of this final chapter is to give you some ideas and inspiration about
where you go next. We’ll be taking a look at the following topics:

coding best practice
going further with JavaScript
learning a new language
always learning
things to build

Coding Best Practice
Now that you can code with confidence, it’s time to set up your coding
environment and learn some best practices that can help you take your coding
to the next level.

Coding Tools

CodePen has been useful for writing the code examples in this book and
instantly seeing the results, but now it’s time for you to set up your own coding
environment. Your first job is find an editor to write your code in.

There are a large number of text editors available, but you won’t go far wrong
with VS Code1, Sublime Text2 or Atom3. All of these are full-featured text
editors, including syntax highlighting, tabs, file browsing and code completion.
Atom was even built using HTML, CSS and JavaScript!

You can find out more about setting up VS Code by reading Visual Studio
Code: End-to-End Editing and Debugging Tools for Web Developers4, by

1. https://code.visualstudio.com
2. https://www.sublimetext.com
3. https://atom.io
4. https://www.sitepoint.com/premium/books/visual-studio-code-end-to-end-editing-

365 Learn to Code with JavaScript

https://code.visualstudio.com/
https://www.sublimetext.com/
https://atom.io/
https://www.sitepoint.com/premium/books/visual-studio-code-end-to-end-editing-and-debugging-tools-for-web-developers/
https://www.sitepoint.com/premium/books/visual-studio-code-end-to-end-editing-and-debugging-tools-for-web-developers/

Bruce Johnson.

16-1. VS Code features syntax highlighting as well as many other features

If you use the Chrome web browser or ChromeOS, there’s also the option to
use Text5 and Caret6, both of which are very good options.

Style Guides

Another good practice is to follow a coding style guide. These are usually
written by teams of developers to ensure they agree on how they write code.
The style guides used by Google7 and Airbnb8 are both publicly available.
Following the standards outlined in a style guide will help improve the quality
of the code you write and help to keep your coding style consistent, as shown
in “Why I Use a JavaScript Style Guide and Why You Should Too”9.

and-debugging-tools-for-web-developers/
5. https://chrome.google.com/webstore/detail/text/
mmfbcljfglbokpmkimbfghdkjmjhdgbg
6. https://chrome.google.com/webstore/detail/caret/
fljalecfjciodhpcledpamjachpmelml
7. https://google.github.io/styleguide/jsguide.html
8. https://github.com/airbnb/javascript

End Of Line 366

https://chrome.google.com/webstore/detail/text/mmfbcljfglbokpmkimbfghdkjmjhdgbg
https://chrome.google.com/webstore/detail/caret/fljalecfjciodhpcledpamjachpmelml
https://google.github.io/styleguide/jsguide.html
https://github.com/airbnb/javascript
https://www.sitepoint.com/why-use-javascript-style-guide/

You can also use linting10 tools that will highlight any style errors in your code
and help ensure that any code you write follows the style guidelines you’ve
specified. Try pasting some of your code into the JSLint online tool11 for a
report on its quality.

Version Control

Version control software allows you to track all the changes that are made to
your code, because every version of your code is kept and can be recalled at
any time.

One of the most popular tools for source control management is Git12, written
by Linus Torvalds, the creator of Linux. Git enables you to roll back to a
previous version of your code. You can also branch your code to test new
features without changing the current stable codebase. Git is a distributed
source control system, which means that many people can fork a piece of
code, develop it independently, then merge any of their changes back into the
main codebase. It also means that if you make a mistake, you can roll back to
the last working version of the code.

Git uses the command line to issue commands, but there’s a large number of
GUI front ends that can be installed to give a visual representation of the code,
including the excellent GitHub Desktop13.

There are also various online services that can host Git repositories, including
GitHub14, GitLab15 and Bitbucket16.

As you write more complex code, your life will be made much easier by

9. https://www.sitepoint.com/why-use-javascript-style-guide/
10. https://www.sitepoint.com/comparison-javascript-linting-tools/
11. https://jslint.com
12. http://git-scm.com/
13. https://desktop.github.com
14. https://github.com/
15. https://gitlab.com
16. https://bitbucket.org/

367 Learn to Code with JavaScript

https://www.sitepoint.com/comparison-javascript-linting-tools/
https://jslint.com/
http://git-scm.com/
https://desktop.github.com/
https://github.com/
https://gitlab.com/
https://bitbucket.org/

integrating Git into your everyday workflow. You can find out more about Git in
Jump Start Git17, by Shaumik Daityari.

Testing

As you start to write more code, you should try to get into the habit of testing
it. And by that, I don’t just mean trying it out a few times to see if it works.
Testing is an integral part of the development process and involves writing
code that tests your code as you write it. Errors and bugs are a part of coding,
and testing helps to identify and deal with them quickly.

Test-driven development (TDD) is the process of writing tests before you
even write any code. The idea is that you decide what you want your code to
do, write a test for it, and then write the code to make it pass the test. It might
seem strange at first, but it helps to ensure that your code does what it’s
supposed to do.

A good place to get started with JavaScript testing is with “A Beginner’s Guide
to Testing Functional JavaScript”18. Popular test libraries include Jasmine19,
Mocha20 and Jest21.

Going Further with JavaScript
This book has focused on using JavaScript to teach the fundamentals of
programming. If you’ve enjoyed what we’ve covered so far, the good news is
that there’s still lots more to learn.

Advanced JavaScript

We’ve covered the basics of JavaScript in this book, but there’s much more to
learn. A good place to start would be to learn about web APIs (application

17. https://www.sitepoint.com/premium/books/jump-start-git-2nd-edition/
18. https://www.sitepoint.com/testing-functional-javascript/
19. https://jasmine.github.io
20. https://mochajs.org
21. https://jestjs.io

End Of Line 368

https://www.sitepoint.com/premium/books/jump-start-git-2nd-edition/
https://www.sitepoint.com/testing-functional-javascript/
https://www.sitepoint.com/testing-functional-javascript/
https://jasmine.github.io/
https://mochajs.org/
https://jestjs.io/

programming interfaces). Some highlights include: the Canvas API, which can
be used to create 2– and 3–D drawings; the Fetch API, for making HTTP
requests and retrieving data from other servers; the Web Storage API and
cookies, which both allow you to store data on the user’s computer; and the
WebSocket API, which allows multiple users to access the same site
simultaneously.

There’s also more to learn about asynchronous programming and JavaScript’s
event loop, including promises and the async and await keywords.
JavaScript also has maps22 and sets23, which are different types of data
structures.

JavaScript modules involve separating your code into separate files that can
be reused in different projects. You can also import external libraries written
by other people to add extra functionality to your code. Have a read of
“Understanding ES6 Modules”24 to find out more.

One area that we didn’t touch upon in this book, but which is very useful to
learn, is regular expressions (or regex, for short). These are patterns that
describe the structure of a string, and they’re implemented in almost every
programming language. They can be used to search strings and perform “find
and replace” type operations. Regular expressions can look a little strange at
first, and they’re something of a dark art that could easily fill a whole book!
They’re certainly useful when it comes to manipulating large portions of text.
These are some useful resources to help you learn more about regular
expressions:

Regular-Expressions.info25

regex10126

22. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Map
23. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Set
24. https://www.sitepoint.com/understanding-es6-modules/
25. https://www.regular-expressions.info/
26. https://regex101.com/

369 Learn to Code with JavaScript

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Set
https://www.sitepoint.com/understanding-es6-modules/
https://www.regular-expressions.info/
https://regex101.com/

Mastering Regular Expressions27 (a comprehensive book)

JavaScript is a language that’s constantly evolving, with new features added to
the language every year. If you’re keen to find out about its newest features,
you should read JavaScript: The New Toys28, by T.J. Crowder.

The talk “JavaScript: Who, What, Where, Why and Next”29, by Laurie Voss,
details the current state of JavaScript and where trends are heading in the
future.

Libraries

A JavaScript library is a piece of code providing methods that make it easier
to achieve common tasks. JavaScript is an extremely flexible language that
can accomplish most programming tasks. That said, not all undertakings are
as easy to carry out as they should be. A library will abstract functionality into
easier-to-use functions and methods. These can then be used to complete
common tasks without having to use lots of repetitive code. A good example
of this is date-fns30 (a library we met in the previous chapter), which makes
working with dates much more manageable.

jQuery31 is perhaps the most famous of all JavaScript libraries. It provides
numerous methods for making DOM manipulation, event handling and API
calls easier to implement. It’s not as popular as it once was, as “vanilla”
JavaScript can now do many of the things that jQuery was often used for, but
it’s still used by a large number of websites. You can’t go wrong with jQuery:
Novice to Ninja: New Kicks And Tricks32, by Earle Castledine, if you want to
learn anything about using jQuery.

27. https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
28. https://www.sitepoint.com/premium/books/javascript-the-new-toys/
29. https://www.sitepoint.com/premium/tech-talks/web-directions-code-
leaders-2019/javascript-who-what-where-why-and-next
30. https://date-fns.org
31. https://jquery.com
32. https://www.sitepoint.com/premium/books/jquery-novice-to-ninja-new-kicks-and-
tricks

End Of Line 370

https://www.oreilly.com/library/view/mastering-regular-expressions/0596528124/
https://www.sitepoint.com/premium/books/javascript-the-new-toys/
https://www.sitepoint.com/premium/tech-talks/web-directions-code-leaders-2019/javascript-who-what-where-why-and-next
https://date-fns.org/
https://jquery.com/
https://www.sitepoint.com/premium/books/jquery-novice-to-ninja-new-kicks-and-tricks
https://www.sitepoint.com/premium/books/jquery-novice-to-ninja-new-kicks-and-tricks

Lodash33 is a popular library of utility functions that provide additional
functionality to the language. Lodash provides access to a number of well-
tested utility functions that will save you writing your own implementation and
effectively reinventing the wheel, so it’s often worth considering.

Having said that, writing your own library of helper functions is also a useful
exercise that can help to improve your coding skills. This involves creating a
set of functions that you regularly use in projects. One example would be the
randomInt function that we used in a number of the coding challenges

towards the end of this book.

Node.js

JavaScript was originally thought of as a front-end programming language for
the browser. Node.js fundamentally changed the JavaScript landscape when it
was released in 2009, as it meant that JavaScript could be run on a computer
or server without the need for a browser. This means that JavaScript can now
be used to write server-side code and interact with the file system.

If you install Node.js, you’ll be able to run JavaScript without using your
browser and have access to the Node REPL (read-eval-print loop), which is a
command-line JavaScript console on your own computer. It also gives you
access to a large repository of Node packages that provide a wide range of
functionality using the Node Package Manager34. Many of these packages
are tools that help to automate your workflow and compile your JavaScript
code before deploying it.

Node.js can also be used to build server-side applications and dynamic
websites that interact with back-end databases. The asynchronous nature of
JavaScript makes it suited for real-time update applications with lots of
concurrent users, as it’s able to quickly deal with requests in a non-blocking
way.

33. https://lodash.com
34. https://www.npmjs.com

371 Learn to Code with JavaScript

https://lodash.com/
https://www.npmjs.com/

If you want to learn more about Node.js, a good place to start is “What Is Node
and When Should I Use It?”35, and Your First Week With Node.js36.

Learn Another Language
Now that you’ve learned the basics of programming using JavaScript, you
should find it much easier to pick up another language. There’s a vast choice
of languages out there for you to try.

If you enjoyed learning about object-oriented programming, you might want
to try learning Ruby40 or Python41. You can get started by reading The Python
Apprentice42.

You might want to try learning a classical language that needs compiling, such
as Java43, C#44 or Swift45.

Deno

The creator of Node.js, Ryan Dahl, has created a new project called
Deno37, which he claims ;xes a number of problems that Node.js
has.

“Node.js vs Deno: What You Need to Know”38, by Nilson Jacques,
provides a useful comparison of Node.js and Deno, and Craig
Buckler’s TechExeter talk “A First Look at Deno”39 provides a useful
introduction.

35. https://www.sitepoint.com/an-introduction-to-node-js/
36. https://www.sitepoint.com/premium/books/your-first-week-with-node-js-2nd-
edition/
37. https://deno.land
38. https://www.sitepoint.com/node-vs-deno/
39. https://www.sitepoint.com/premium/tech-talks/techexeter-2020/a-first-look-at-
deno
40. http://www.ruby-lang.org/en/
41. https://www.python.org
42. https://www.sitepoint.com/premium/books/the-python-apprentice/

End Of Line 372

https://www.sitepoint.com/an-introduction-to-node-js/
https://www.sitepoint.com/an-introduction-to-node-js/
https://www.sitepoint.com/premium/books/your-first-week-with-node-js-2nd-edition/
https://deno.land/
https://www.sitepoint.com/node-vs-deno/
https://www.sitepoint.com/premium/tech-talks/techexeter-2020/a-first-look-at-deno
http://www.ruby-lang.org/en/
https://www.python.org/
https://www.sitepoint.com/premium/books/the-python-apprentice/
https://www.sitepoint.com/premium/books/the-python-apprentice/
https://www.oracle.com/uk/java/
https://docs.microsoft.com/en-us/dotnet/csharp/
https://swift.org/

If you want to learn more about functional programming, you could try
learning Haskell46, Elixir47, Erlang48, Scala49, or Clojure50.

There are also other scripting languages such as Lua51 or Bash52. Go53 is a
modern, dynamic language that has many similarities to JavaScript, and
TypeScript54 is a superset of JavaScript that adds a number of features. In
particular, it’s a strongly typed language (meaning that you have to declare the
type of variables, as we discussed in Chapter 2).

A relatively new language that has proven to be very popular is Rust55. It’s a
low-level language, similar to C++, and it can be used to write system-level,
high-performance code. “Rust Tutorial: An Introduction to Rust for JavaScript
Devs”56 is a good introduction for people who know how JavaScript works.

And then there are the truly wacky languages, such as Ook57 that only has
three commands: Ook. , Ook? and Ook! , ArnoldC58, a language made up
entirely of Arnold Schwarzenegger quotes, and Tabloid59, with code that
reads like a tabloid newspaper!

One thing’s for sure: you’re probably not going to run out of languages to learn,

43. https://www.oracle.com/uk/java/
44. https://docs.microsoft.com/en-us/dotnet/csharp/
45. https://swift.org
46. https://www.haskell.org
47. https://elixir-lang.org
48. https://www.erlang.org
49. https://www.scala-lang.org
50. https://clojure.org
51. https://www.lua.org
52. https://en.wikipedia.org/wiki/Bash_(Unix_shell)
53. https://golang.org
54. https://www.typescriptlang.org
55. https://www.rust-lang.org
56. https://www.sitepoint.com/rust-tutorial-introduction-javascript-devs/
57. https://www.dangermouse.net/esoteric/ook.html
58. https://github.com/lhartikk/ArnoldC
59. https://tabloid.vercel.app

373 Learn to Code with JavaScript

https://www.haskell.org/
https://elixir-lang.org/
https://www.erlang.org/
https://www.scala-lang.org/
https://clojure.org/
https://www.lua.org/
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://golang.org/
https://www.typescriptlang.org/
https://www.rust-lang.org/
https://www.sitepoint.com/rust-tutorial-introduction-javascript-devs/
https://www.sitepoint.com/rust-tutorial-introduction-javascript-devs/
https://www.dangermouse.net/esoteric/ook.html
https://github.com/lhartikk/ArnoldC
https://tabloid.vercel.app/

and they’ll all help to increase your understanding of coding concepts and give
you an appreciation of the various programming paradigms.

Always Learning
The world of coding is fast-moving, and it’s getting faster every year. You need
to ensure you keep up to date with recent developments and best practices.
Here are some suggestions of how you can keep your knowledge current:

read the many books and articles on SitePoint
watch video tutorials
follow programmers on social media
read blog posts and listen to podcasts such as Syntax60 and JavaScript
Jabber61

join a local or online user group
attend conferences or local meetups
watch online tech talks (there are many available on SitePoint Premium62

Carry On Coding
You can learn all the theory you want, but the only way you’ll actually get
better is by actually coding. By putting ideas into practice and solving real
problems, you’ll really start to get a feel for coding. Here are some ideas of
things you could build using your JavaScript coding skills.

The following ideas are intended to get your creative juices flowing and, I trust,
spark an idea for a project. It’s by no means a complete list of what you can do
with JavaScript, as the possibilities are endless and only limited by your
imagination.

60. https://syntax.fm/
61. https://dev.to/jsjabber
62. https://www.sitepoint.com/premium/library/tech-talks/

End Of Line 374

https://syntax.fm/
https://dev.to/jsjabber
https://dev.to/jsjabber
https://www.sitepoint.com/premium/library/tech-talks/

Web Applications

JavaScript was originally created to help make websites interactive. But since
those humble beginnings it has developed into a powerful language that’s
capable of producing some of the most sophisticated web applications such
as Gmail, Netflix and Uber. The combination of HTML, CSS and JavaScript can
be used to create an interactive website or online application that can then be
hosted online with little effort.

Basic websites can be built using just HTML and CSS, though they’ll often use
JavaScript to add some extra interaction and DOM updates. Sophisticated
web applications, on the other hand, will usually involve a back-end server that
hosts a database along with a front end that includes the HTML, CSS and
JavaScript. They’ll usually also host their own API that other sites can use to
interact with the data stored in their database. Each of these layers makes up
what’s known as the development stack. Full-stack development involves
working on each part of the stack.

375 Learn to Code with JavaScript

16-2. The development stack. Each stack communicates with the others.

JavaScript can now be used to write code for both the front end of an
application and the back end that runs on the server. It can even be used to
interact with databases. This makes JavaScript a useful one-stop-shop
language for writing full-stack applications. If you take your JavaScript skills to
the next level, you’ll be fully equipped to develop serious, high-performance
web applications.

Progressive web apps (PWAs) are web applications that use local storage to

End Of Line 376

make them appear more like a native application. They load quicker and
appear snappier to use, without the need for a constant network connection.
In his talk “Planning Your Progressive Web App”63, Jason Grigsby goes
through some of the key things to think about when building a progressive
web app.

Many modern websites and apps interact with third-party applications using
online APIs to share and interact with data. This is often stored as JSON
(JavaScript Object Notation)64, which is a string representation of the object
literals we met in Chapter 9. It’s a lightweight data format that allows data to
be serialized in a human-readable form. Although it was derived from
JavaScript objects, most modern programming languages include methods
for generating and parsing data in JSON format.

One method of production that’s becoming increasingly popular is the
Jamstack. This is a stack that’s made up of JavaScript, APIs and Markup
(JAM). The idea is to build websites with HTML, CSS and JavaScript and to use
APIs to fetch data from web services. Phil Hawksworth did a talk at Pixel
Pioneers65 explaining how it works.

In his “JavaScript Saves the World”66 talk, Asim Hussain provides some useful
tips on how to make web applications more efficient, which results in a better
experience for users and is both cost effective and good for the planet.

Many modern web applications need to keep track of data—whether it’s data
they fetch from external web services or data generated by the user. This
means that the web page needs to be able to keep track of any changes to the
data and update the user interface (UI) accordingly. There are several
frameworks that aim to make it easier to produce interactive UIs and help with

63. https://www.sitepoint.com/premium/tech-talks/web-directions-code-2019/
planning-your-progressive-web-app
64. http://www.json.org
65. https://www.sitepoint.com/premium/tech-talks/pixel-pioneers/jamstack-silly-
name-serious-stuff
66. https://www.sitepoint.com/premium/tech-talks/dotjs-2019/javascript-saves-the-
world

377 Learn to Code with JavaScript

https://www.sitepoint.com/premium/tech-talks/web-directions-code-2019/planning-your-progressive-web-app
http://www.json.org/
http://www.json.org/
https://www.sitepoint.com/premium/tech-talks/pixel-pioneers/jamstack-silly-name-serious-stuff
https://www.sitepoint.com/premium/tech-talks/pixel-pioneers/jamstack-silly-name-serious-stuff
https://www.sitepoint.com/premium/tech-talks/dotjs-2019/javascript-saves-the-world

state management.

The big players are React67 and Vue68. Both of these take their own unique
approach to the same goal of creating components that update themselves as
the user interacts with them, or as the data changes. There’s no shortage of
online tutorials for both React and Vue, and both have good introductory
tutorials on their websites, so it’s worth having a play around with both of
them to see which one you prefer using.

There’s also Svelte69, which is a lighter option that takes a slightly different
approach from React and Vue and might be more suitable for smaller projects.
The tutorial on their website is an excellent place to get started.

A good place to start would be the to-do list app that we created in this book.
You could try to develop it into a full-featured web application.

Why not try building the next online sensation?

Game Development

Most online games used to be written using Flash, but JavaScript is the go-to
language for building modern browser-based games. The development of
WebGL and browser GPUs means that fast, rendered 3D games in the
browser are a realistic possibility. Modern online classics such as HexGL70,
World’s Biggest PAC-MAN71 and Swooop72 show what can be run in the
browser. These are great examples of what can be done, but games don’t have
to be overly complex: the success of Flappy Bird73 shows that a good idea
that’s well implemented can be incredibly popular.

67. https://reactjs.org
68. https://vuejs.org
69. https://svelte.dev
70. https://hexgl.bkcore.com
71. https://worldsbiggestpacman.com/
72. https://s3-eu-west-1.amazonaws.com/apps.playcanvas.com/R2axJfsc/index.html
73. https://flappybird.io/

End Of Line 378

https://reactjs.org/
https://vuejs.org/
https://svelte.dev/
https://hexgl.bkcore.com/
https://worldsbiggestpacman.com/
https://s3-eu-west-1.amazonaws.com/apps.playcanvas.com/R2axJfsc/index.html
https://flappybird.io/

16-3. HexGL

If you’re interested in writing an HTML5 game, then HTML5 Games: Novice To
Ninja74, by Earle Castledine, is the perfect place to start.

Why not try writing the next blockbuster game?

Mobile App Development

Android and iOS don’t use JavaScript as their native programming language.
However, it’s still possible to build an application using HTML, CSS and
JavaScript and then use tools such as Ionic75, Cordova76 or PhoneGap77 to
convert your code into native code that can be run on the Android and iOS
platforms.

Why not try writing the next big mobile app?

74. https://www.sitepoint.com/premium/books/html5-games-novice-to-ninja
75. https://ionicframework.com
76. https://cordova.apache.org/
77. https://phonegap.com/

379 Learn to Code with JavaScript

https://www.sitepoint.com/premium/books/html5-games-novice-to-ninja
https://www.sitepoint.com/premium/books/html5-games-novice-to-ninja
https://ionicframework.com/
https://cordova.apache.org/
https://phonegap.com/

Desktop App Development

Electron78 is an open-source library that allows you to build desktop
applications using HTML, CSS and JavaScript. It uses Chromium (the open-
source version of Google Chrome) and Node.js to create applications that can
run on Windows, macOS and Linux.

Electron was developed by GitHub when they built their Atom text editor.
Since then, Electron has become a popular option for developers who want to
create a desktop version of a web app. It has been used to create desktop
applications such as WhatsApp, Microsoft Teams and Slack.

Why not try writing the next big desktop app? You can make a start with
Electron’s Quick Start Guide79.

Internet of Things
JavaScript is becoming the language of choice for communicating with the
“Internet of Things”80. This includes a range of devices, from watches and
virtual-reality headgear to home assistants and even drones! JavaScript is
often the language that’s used to write code for this ever-growing list of
electronic devices. Why not try writing some custom code for your latest
wearable or home device?

Challenges
This chapter has provided a lot of ideas about what you could do next, but the
huge number of suggestions above may well be causing you some choice
paralysis! So the aim of the following challenges is to focus you on the key
things to do next. If you complete each challenge, you’ll be well on the way to
becoming a rounded developer:

78. https://electron.atom.io
79. https://www.electronjs.org/docs/tutorial/quick-start
80. http://en.wikipedia.org/wiki/Internet_of_Things

End Of Line 380

https://electron.atom.io/
https://www.electronjs.org/docs/tutorial/quick-start
http://en.wikipedia.org/wiki/Internet_of_Things

1

2

3

4

5

6

7

8

Install a text editor.

Install Node.js.

Use npm to install React.

Build a web app using React. (There are lots of tutorials for doing this on

SitePoint81.)

Install Git and use it for version control.

Push your app to GitHub.

Build another React app that fetches and displays data from another

website.

Repeat …

Summary
Set up your coding environment by installing a text editor to write your
code in.
A style guide will help to ensure that your code is written in a consistent
style and is easy to read.
Tests will help to keep your code free from bugs and errors.
Version control such as Git can help to manage any changes to your code.
There’s still more JavaScript for you to learn, including web APIs and
modules.
JavaScript libraries such as jQuery, Lodash and date-fns provide methods
for making development easier.
Node.js lets you run JavaScript without a browser and develop server-side
applications.
There are lots of other programming languages that you can learn.
JavaScript frameworks such as React, Vue and Svelte help to create user
interfaces that update in response to changes in the underlying data.
JavaScript can now be used to program every part of the web development

81. https://www.sitepoint.com/javascript/react/

381 Learn to Code with JavaScript

https://www.sitepoint.com/javascript/react/
https://www.sitepoint.com/javascript/react/

stack, making it the perfect language for full-stack development.
You can use JavaScript to build websites, web applications, games, phone
apps or desktop apps.
Your programming skills can be used to control just about anything around
the home, thanks to the Internet of Things.
Keep your knowledge up to date by reading books and articles, listening to
podcasts, watching videos and following developers on social media.
Keep writing lots of code and building things!

That brings us to the end of the chapter and the book. I hope you’ve enjoyed
learning how to code, and I hope this chapter has inspired you to take your
coding to the next level. Whatever you decide to do, the most important thing
to remember is to keep coding. The more you code, the better you’ll get.
Coding is about solving problems and creating things. So what are you waiting
for? Get coding! The only limit is your imagination!

End Of Line 382

	Learn to Code with JavaScript
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About Darren Jones
	About SitePoint
	Table of Contents
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!

	Supplementary Materials

	Press Start
	
	Programming
	Algorithms
	Milk after Tea

	Pseudocode

	A Brief History of Programming
	JavaScript
	The History of JavaScript
	JavaScript Versions
	Backward Compatibility

	Hello, World! Your First JavaScript Program
	The Console?
	Enter? Return?

	JavaScript in the Browser
	The Structure of a Web Page
	Online Editors and Working Offline

	I Can Code a Rainbow
	Rebecca Purple

	A Programmer’s Mindset
	Challenges
	Summary

	Programming Basics
	
	Comments
	Programming Grammar
	Statements
	Ending Lines with Semicolons

	Blocks
	Whitespace
	Data Types
	symbol, bigint and undefined
	Map and Set

	What Type Are You?
	Operators

	Variables
	Declaring and Assigning Variables
	Duck Typing
	TypeScript

	Constants
	Constants in JavaScript

	Assignment
	Undefined
	Naming Variables
	Symbols in Variable Names

	Pop-up Interaction
	Alert Box
	Prompt Box
	Confirm Box
	Hello name
	Auto-updating Preview

	Challenges
	Summary

	Letters and Words
	
	Chars and Strings
	Empty Strings
	Creating Strings in JavaScript
	Escaping Values
	Find the Char
	Finding Chars
	How Long Is a String?
	String Arithmetic
	The concat() Method

	Finding the Last Character in a String
	What’s In a Name?
	Changing Cases
	The More Things Change …

	Trimming Space
	More Methods

	Template Literals
	Mad Libs

	Challenges
	Summary

	Numbers
	
	Integers and Floats
	Numeric Literals
	Exponential Notation
	When Is a Number Not a Number?
	Arithmetic Operations
	Varying Variables
	Increments
	How Old?
	Calculations with Numbers and Strings
	Converting Between Strings and Numbers
	Random Numbers
	Random … ish

	More Methods
	Challenges
	Summary

	Collections
	
	Arrays
	Arrays in JavaScript
	Adding Values to Arrays
	Removing Values from Arrays
	Finding the Length of an Array
	No Second Chances

	Popping and Pushing
	Shifting and Unshifting
	The Spread Operator
	Slicing and Splicing
	Finding If a Value Is in an Array
	Joining Array Items into a String
	Reversing the Order of Array Items
	Sorting Array Values
	Alphabetical Numbers

	More Methods

	Multi-dimensional Arrays
	Challenges
	Summary

	Logic
	
	Booleans
	Logical Operators
	Guess Who?
	Negation (Logical NOT)
	Logical AND
	Logical OR

	Comparison
	Equality
	Soft Equality
	Hard Equality
	Inequality
	Greater Than and Less Than

	Flow Control
	If Statements
	Else Statements
	The Ternary Operator

	What’s Your Favorite Animal?
	Switch Statements
	Taking a break

	Rock Paper Scissors
	Challenges
	Summary

	Going Loopy
	
	What’s a Loop?
	Infinite Loops
	While Loops
	Ten Green Bottles

	Do–while Loops
	For Loops
	Nested Loops
	Loop Variables

	Challenges
	Summary

	Functions
	
	Subroutines, Procedures and Functions

	Functions in JavaScript
	Defining a Function
	Calling Functions
	Function Expressions
	Assignment and Semicolons
	Calling vs Referencing a Function

	Arrow Functions

	Return Values
	Returning Undefined

	Parameters and Arguments
	Default Parameters
	Random Integers
	Assigning Return Values to Variables

	Callbacks
	Overwriting a Function Declaration
	Sorting Arrays with a Callback
	Sorting Through sort()

	Choosing the Right Type of Function
	Challenges
	Summary

	Objects
	
	Properties and Methods
	Creating Objects in JavaScript
	Trailing Commas
	Methods
	Guess Again
	Creating Objects from Variables

	Properties and Methods
	Calling Methods
	Adding More Properties and Methods
	Frozen Objects

	Changing Properties
	Removing Properties
	Nested Objects

	this
	Roll the Dice
	Challenges
	Summary

	The Document Object Model
	
	The Document Object Model
	HTML Document vs the DOM
	Inspecting the DOM

	Getting an Element
	Updating the HTML
	Getting Multiple Elements
	Getting Elements by Tag Name
	Getting Elements by Their Class Name
	Get Element vs Get Elements

	Query Selectors
	CSS Selectors

	Navigating the DOM Tree
	Child Nodes
	Parent Node

	Creating Dynamic Markup
	Creating an Element
	Adding Text with textContent

	Adding Elements to the Page
	Building Elements Node by Node
	Insert Before
	Removing Elements from a Page
	Gone but Not Gone

	Replacing Elements on a Page

	Getting and Setting Attributes
	Getting an Element’s Attributes
	Setting an Element’s Attributes
	Multiple Classes and setAttribute

	The className Property
	Multiple Classes and className

	The classList Property

	Doing It with Style
	Hyphens in CSS Property Names
	Being Classy

	A Simple To-do List
	Challenges
	Summary

	The Main Event
	
	Event-based Programming
	Event Listeners
	Event Handlers

	Click Events
	Clicking Elements
	The Event Object
	To e or Not to e?

	Forms
	Submitting a Form
	Referencing a Form Element
	A Form’s action Attribute

	Preventing Default Behavior

	Keyboard Events
	Live Input

	Mouse Events
	Mouse Move
	Mouse Over
	Mouse Up and Down
	Removing Event Listeners
	Naming addEventListener Functions
	Just a Basic Example

	Simple To-do List
	Event Delegation

	Challenges
	Summary

	Going Loopy Over Arrays
	
	Spreading Strings
	Array Iteration Methods
	Efficient Arrow Functions
	forEach
	An Array of Cards

	Map
	Reduce
	Adding vs Multiplying

	Filter
	Guess Who Filter

	Find
	Every
	Some

	Iterating over Objects
	Keys and Values

	To-do List Project
	Forking Pens

	Challenges
	Summary

	Let’s Get Functional
	
	Named Parameters
	The Rest Parameter
	Recursive Functions
	Scope
	Block Scope

	Hoisting
	Functions That Return Functions
	Closures
	Closure Countdown!

	Functional Programming
	Pure Functions
	A Benefit of const

	Pure Array Updates
	Updating an Array Value with Pure Functions
	Higher-order Functions

	Challenges
	Summary

	Getting Classy
	
	Copying Objects in JavaScript
	Console Issues
	Shallow and Deep Copies
	Copying Arrays and Functions

	Object-oriented Programming
	Encapsulation
	Polymorphism
	Inheritance

	Classes
	Classes vs Prototypes
	Classes in JavaScript
	Class Naming Convention
	Parentheses

	Classy Components
	Inheritance in JavaScript
	Custom HTML Elements

	The Pet Unicorn Game
	Challenges
	Summary

	It’s About Time
	
	The UNIX Epoch
	Times and Dates
	Counting the Months
	Getter Methods
	UTC vs GMT

	Setter Methods
	Time Zone Milliseconds
	Date and Time Support

	What Day Will It Be?

	Timing Functions
	setTimeout

	Asynchronous Programming
	Delay and Sleep

	Intervals
	requestAnimationFrame
	Stopwatch

	Animation
	Jumping Frog

	Cookie Grabber Game
	Challenges
	Summary

	End Of Line
	
	Coding Best Practice
	Coding Tools
	Style Guides
	Version Control
	Testing

	Going Further with JavaScript
	Advanced JavaScript
	Libraries
	Node.js
	Deno

	Learn Another Language
	Always Learning
	Carry On Coding
	Web Applications
	Game Development
	Mobile App Development
	Desktop App Development

	Internet of Things
	Challenges
	Summary

