
M A N N I N G

Dylan Scott
Viktor Gamov
Dave Klein
Foreword by Jun Rao



Kafka in Action



ii



Kafka in Action

DYLAN SCOTT
VIKTOR GAMOV

AND DAVE KLEIN
FOREWORD BY JUN RAO

M A N N I N G
SHELTER ISLAND



For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of 
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book 
was correct at press time. The author and publisher do not assume and hereby disclaim any 
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether 
such errors or omissions result from negligence, accident, or any other cause, or from any usage 
of the information herein.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editors: Raphael Villela, Nickie Buckner
PO Box 761 Review editor: Aleksandar Dragosavljević  
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Frances Buran
Proofreader: Katie Tennant

Technical proofreaders: Felipe Esteban Vildoso Castillo,
 Mayur Patil, Sumant Tambe,

Valentin Crettaz, and William
Rudenmalm

Typesetter and cover designer: Marija Tudor

ISBN 9781617295232
Printed in the United States of America

www.manning.com


Dylan: I dedicate this work to Harper, who makes me so proud every day, and to Noelle, 
who brings even more joy to our family every day. I would also like to dedicate this book to 

my parents, sister, and wife, who are always my biggest supporters.

Viktor: I dedicate this work to my wife, Maria, for her support during the process of 
writing this book. It’s a time-consuming task, time that I needed to carve out here and 

there. Without your encouragement, nothing would have ever happened. I love you. Also, 
I would like to dedicate this book to (and thank) my children, Andrew and Michael, for 
being so naïve and straightforward. When people asked where daddy is working, they 

would say, “Daddy is working in Kafka.”

Dave: I dedicate this work to my wife, Debbie, and our children, Zachary, Abigail, 
Benjamin, Sarah, Solomon, Hannah, Joanna, Rebekah, Susanna, Noah, Samuel, 

Gideon, Joshua, and Daniel. Ultimately, everything I do, I do for the honor of 
my Creator and Savior, Jesus Christ.



vi
 



brief contents
PART 1 GETTING STARTED ..........................................................  1

1 ■ Introduction to Kafka 3
2 ■ Getting to know Kafka 17

PART 2 APPLYING KAFKA ..........................................................  41
3 ■ Designing a Kafka project 43
4 ■ Producers: Sourcing data 66
5 ■ Consumers: Unlocking data 87
6 ■ Brokers 111
7 ■ Topics and partitions 129
8 ■ Kafka storage 144
9 ■ Management: Tools and logging 158

PART 3 GOING FURTHER ........................................................  179
10 ■ Protecting Kafka 181
11 ■ Schema registry 197
12 ■ Stream processing with Kafka Streams and ksqlDB 209

 
 
 
 
 

vii



BRIEF CONTENTSviii
 
 
 
 
 
 
 
 
 
 
 
 



contents
foreword xv
preface xvi
acknowledgments xviii
about this book xx
about the authors xxiii
about the cover illustration xxiv

PART 1 GETTING STARTED ............................................... 1

1 Introduction to Kafka 3
1.1 What is Kafka? 4
1.2 Kafka usage 8

Kafka for the developer 8 ■ Explaining Kafka to your 
manager 9

1.3 Kafka myths 10
Kafka only works with Hadoop® 10 ■ Kafka is the same as other 
message brokers 11

1.4 Kafka in the real world 11
Early examples 12 ■ Later examples 13 ■ When Kafka might 
not be the right fit 14

1.5 Online resources to get started 15
References 15
ix



CONTENTSx
2 Getting to know Kafka 17
2.1 Producing and consuming a message 18
2.2 What are brokers? 18
2.3 Tour of Kafka 23

Producers and consumers 23 ■ Topics overview 26
ZooKeeper usage 27 ■ Kafka’s high-level architecture 28
The commit log 29

2.4 Various source code packages and what they do 30
Kafka Streams 30 ■ Kafka Connect 31 ■ AdminClient 
package 32 ■ ksqlDB 32

2.5 Confluent clients 33
2.6 Stream processing and terminology 36

Stream processing 37 ■ What exactly-once means 38

References 39

PART 2 APPLYING KAFKA ........................................... 41

3 Designing a Kafka project 43
3.1 Designing a Kafka project 44

Taking over an existing data architecture 44 ■ A first change 44
Built-in features 44 ■ Data for our invoices 47

3.2 Sensor event design 49
Existing issues 49 ■ Why Kafka is the right fit 51
Thought starters on our design 52 ■ User data requirements 53
High-level plan for applying our questions 54 ■ Reviewing our 
blueprint 57

3.3 Format of your data 57
Plan for data 58 ■ Dependency setup 59

References 64

4 Producers: Sourcing data 66
4.1 An example 67

Producer notes 70

4.2 Producer options 70
Configuring the broker list 71 ■ How to go fast (or go safer) 72
Timestamps 74



CONTENTS xi
4.3 Generating code for our requirements 76
Client and broker versions 84

References 85

5 Consumers: Unlocking data 87
5.1 An example 88

Consumer options 89 ■ Understanding our coordinates 92

5.2 How consumers interact 96
5.3 Tracking 96

Group coordinator 98 ■ Partition assignment strategy 100

5.4 Marking our place 101
5.5 Reading from a compacted topic 103
5.6 Retrieving code for our factory requirements 103

Reading options 103 ■ Requirements 105

References 108

6 Brokers 111
6.1 Introducing the broker 111
6.2 Role of ZooKeeper 112
6.3 Options at the broker level 113

Kafka’s other logs: Application logs 115 ■ Server log 115
Managing state 116

6.4 Partition replica leaders and their role 117
Losing data 119

6.5 Peeking into Kafka 120
Cluster maintenance 121 ■ Adding a broker 122
Upgrading your cluster 122 ■ Upgrading your clients 122
Backups 123

6.6 A note on stateful systems 123
6.7 Exercise 125

References 126

7 Topics and partitions 129
7.1 Topics 129

Topic-creation options 132 ■ Replication factors 134



CONTENTSxii
7.2 Partitions 134
Partition location 135 ■ Viewing our logs 136

7.3 Testing with EmbeddedKafkaCluster 137
Using Kafka Testcontainers 138

7.4 Topic compaction 139
References 142

8 Kafka storage 144
8.1 How long to store data 145
8.2 Data movement 146

Keeping the original event 146 ■ Moving away from a batch 
mindset 146

8.3 Tools 147
Apache Flume 147

Red Hat® Debezium™ 149 ■ Secor 149 ■ Example use case for 
data storage 150

8.4 Bringing data back into Kafka 151
Tiered storage 152

8.5 Architectures with Kafka 152
Lambda architecture 153 ■ Kappa architecture 154

8.6 Multiple cluster setups 155
Scaling by adding clusters 155

8.7 Cloud- and container-based storage options 155
Kubernetes clusters 156

References 156

9 Management: Tools and logging 158
9.1 Administration clients 159

Administration in code with AdminClient 159 ■ kcat 161
Confluent REST Proxy API 162

9.2 Running Kafka as a systemd service 163
9.3 Logging 164

Kafka application logs 164 ■ ZooKeeper logs 166

9.4 Firewalls 166
Advertised listeners 167



CONTENTS xiii
9.5 Metrics 167
JMX console 167

9.6 Tracing option 170
Producer logic 171 ■ Consumer logic 172 ■ Overriding 
clients 173

9.7 General monitoring tools 174
References 176

PART 3 GOING FURTHER .........................................  179

10 Protecting Kafka 181
10.1 Security basics 183

Encryption with SSL 183 ■ SSL between brokers and clients 184
SSL between brokers 187

10.2 Kerberos and the Simple Authentication and Security 
Layer (SASL) 187

10.3 Authorization in Kafka 189
Access control lists (ACLs) 189 ■ Role-based access control 
(RBAC) 190

10.4 ZooKeeper 191
Kerberos setup 191

10.5 Quotas 191
Network bandwidth quota 192 ■ Request rate quotas 193

10.6 Data at rest 194
Managed options 194

References 195

11 Schema registry 197
11.1 A proposed Kafka maturity model 198

Level 0 198 ■ Level 1 199 ■ Level 2 199 ■ Level 3 200

11.2 The Schema Registry 200
Installing the Confluent Schema Registry 201 ■ Registry 
configuration 201

11.3 Schema features 202
REST API 202 ■ Client library 203



CONTENTSxiv
11.4 Compatibility rules 205
Validating schema modifications 205

11.5 Alternative to a schema registry 207
References 208

12 Stream processing with Kafka Streams and ksqlDB 209
12.1 Kafka Streams 210

KStreams API DSL 211 ■ KTable API 215 ■ GlobalKTable 
API 216 ■ Processor API 216 ■ Kafka Streams setup 218

12.2 ksqlDB: An event-streaming database 219
Queries 220 ■ Local development 220 ■ ksqlDB 
architecture 222

12.3 Going further 223
Kafka Improvement Proposals (KIPs) 223 ■ Kafka projects you 
can explore 223 ■ Community Slack channel 224

References 224

appendix A Installation 227

appendix B Client example 234

index 239



xv

foreword
Beginning with its first release in 2011, Apache Kafka® has helped create a new cate-
gory of data-in-motion systems, and it’s now the foundation of countless modern event-
driven applications. This book, Kafka in Action, written by Dylan Scott, Viktor Gamov,
and Dave Klein, equips you with the skills to design and implement event-based appli-
cations built on Apache Kafka. The authors have had many years of real-world experi-
ence using Kafka, and this book’s on-the-ground feel really sets it apart. 

 Let’s take a moment to ask the question, “Why do we need Kafka in the first place?”
Historically, most applications were built on data-at-rest systems. When some interest-
ing events happened in the world, they were stored in these systems immediately, but
the utilization of those events happened later, either when the user explicitly asked for
the information, or from some batch-processing jobs that would eventually kick in.  

 With data-in-motion systems, applications are built by predefining what they want to
do when new events occur. When new events happen, they are reflected in the applica-
tion automatically in near-real time. Such event-driven applications are appealing
because they allow enterprises to derive new insights from their data much quicker.
Switching to event-driven applications requires a change of mindset, however, which
may not always be easy. This book offers a comprehensive resource for understanding
event-driven thinking, along with realistic hands-on examples for you to try out.

 Kafka in Action explains how Kafka works, with a focus on how a developer can
build end-to-end event-driven applications with Kafka. You’ll learn the components
needed to build a basic Kafka application and also how to create more advanced appli-
cations using libraries such as Kafka Streams and ksqlDB. And once your application is
built, this book also covers how to run it in production, including key topics such as
monitoring and security. 

 I hope that you enjoy this book as much as I have. Happy event streaming!

 —JUN RAO, CONFLUENT COFOUNDER



preface
One of the questions we often get when talking about working on a technical book is,
why the written format? For Dylan, at least, reading has always been part of his pre-
ferred learning style. Another factor is the nostalgia in remembering the first practical
programming book he ever really read, Elements of Programming with Perl by Andrew L.
Johnson (Manning, 2000). The content was something that registered with him, and
it was a joy to work through each page with the other authors. We hope to capture
some of that practical content regarding working with and reading about Apache
Kafka.

 The excitement of learning something new touched each of us when we started to
work with Kafka for the first time. In our opinion, Kafka was unlike any other message
broker or enterprise service bus (ESB) that we had used before. The speed to get
started developing producers and consumers, the ability to reprocess data, and the
pace of independent consumers moving quickly without removing the data from
other consumer applications were options that solved pain points we had seen in past
development and impressed us most as we started looking at Kafka.

 We see Kafka as changing the standard for data platforms; it can help move batch
and ETL workflows near real-time data feeds. Because this foundation is likely a shift
from past data architectures that many enterprise users are familiar with, we wanted to
take a user with no prior knowledge of Kafka and develop their ability to work with
Kafka producers and consumers, and perform basic Kafka developer and administra-
tive tasks. By the end of this book, we hope you will feel comfortable digging into
more advanced Kafka topics such as cluster monitoring, metrics, and multi-site data
replication with your new core Kafka knowledge. 
xvi



PREFACE xvii
 Always remember, this book captures a moment in time of how Kafka looks today.
It will likely change and, hopefully, get even better by the time you read this work. We
hope this book sets you up for an enjoyable path of learning about the foundations of
Apache Kafka.



acknowledgments
DYLAN: I would like to acknowledge first, my family: thank you. The support and love
shown every day is something that I can never be thankful enough for—I love you all.
Dan and Debbie, I appreciate that you have always been my biggest supporters and
number one fans. Sarah, Harper, and Noelle, I can’t do justice in these few words to
the amount of love and pride I have for you all and the support you have given me. To
the DG family, thanks for always being there for me. Thank you, as well, JC.

 Also, a special thanks to Viktor Gamov and Dave Klein for being coauthors of this
work! I also had a team of work colleagues and technical friends that I need to men-
tion that helped motivate me to move this project forward: Team Serenity (Becky
Campbell, Adam Doman, Jason Fehr, and Dan Russell), Robert Abeyta, and Jeremy
Castle. And thank you, Jabulani Simplisio Chibaya, for not only reviewing, but for your
kind words.

 VIKTOR: I would like to acknowledge my wife and thank her for all her support.
Thanks also go to the Developer Relations and Community Team at Confluent: Ale
Murray, Yeva Byzek, Robin Moffatt, and Tim Berglund. You are all doing incredible
work for the greater Apache Kafka community!

 DAVE: I would like to acknowledge and thank Dylan and Viktor for allowing me to
tag along on this exciting journey.

 The group would like to acknowledge our editor at Manning, Toni Arritola, whose
experience and coaching helped make this book a reality. Thanks also go to Kristen
Watterson, who was the first editor before Toni took over, and to our technical editors,
Raphael Villela, Nickie Buckner, Felipe Esteban Vildoso Castillo, Mayur Patil, Valentin
Crettaz, and William Rudenmalm. We also express our gratitude to Chuck Larson for
the immense help with the graphics, and to Sumant Tambe for the technical proof-
read of the code.
xviii



ACKNOWLEDGMENTS xix
 The Manning team helped in so many ways, from production to promotion—a
helpful team. With all the edits, revisions, and deadlines involved, typos and issues can
still make their way into the content and source code (at least we haven’t ever seen a
book without errata!), but this team certainly helped to minimize those errors.

 Thanks go also to Nathan Marz, Michael Noll, Janakiram MSV, Bill Bejeck, Gunnar
Morling, Robin Moffatt, Henry Cai, Martin Fowler, Alexander Dean, Valentin Crettaz
and Anyi Li. This group was so helpful in allowing us to talk about their work, and pro-
viding such great suggestions and feedback.

 Jun Rao, we are honored that you were willing to take the time to write the fore-
word to this book. Thank you so much!

 We owe a big thank you to the entire Apache Kafka community (including, of
course, Jay Kreps, Neha Narkhede, and Jun Rao) and the team at Confluent that
pushes Kafka forward and allowed permission for the material that helped inform this
book. At the very least, we can only hope that this work encourages developers to take
a look at Kafka.

 Finally, to all the reviewers: Bryce Darling, Christopher Bailey, Cicero Zandona,
Conor Redmond, Dan Russell, David Krief, Felipe Esteban Vildoso Castillo, Finn
Newick, Florin-Gabriel Barbuceanu, Gregor Rayman, Jason Fehr, Javier Collado
Cabeza, Jon Moore, Jorge Esteban Quilcate Otoya, Joshua Horwitz, Madhanmohan
Savadamuthu, Michele Mauro, Peter Perlepes, Roman Levchenko, Sanket Naik,
Shobha Iyer, Sumant Tambe, Viton Vitanis, and William Rudenmalm—your sugges-
tions helped make this a better book.

 It is likely we are leaving some names out and, if so, we can only ask you to forgive
us for our error. We do appreciate you.



about this book
We wrote Kafka in Action to be a guide to getting started practically with Apache Kafka.
This material walks readers through small examples that explain some knobs and con-
figurations that you can use to alter Kafka’s behavior to fulfill your specific use cases.
The core of Kafka is focused on that foundation and is how it is built upon to create
other products like Kafka Streams and ksqlDB. Our hope is to show you how to use
Kafka to fulfill various business requirements, to be comfortable with it by the end of
this book, and to know where to begin tackling your own requirements.

Who should read this book?

Kafka in Action is for any developer wanting to learn about stream processing. While
no prior knowledge of Kafka is required, basic command line/terminal knowledge is
helpful. Kafka has some powerful command line tools that we will use, and the user
should be able to at least navigate at the command line prompt.

 It might be helpful to also have some Java language skills or the ability to recognize
programming concepts in any language for the reader to get the most out of this
book. This will help in understanding the code examples presented, which are mainly
in a Java 11 (as well as Java 8) style of coding. Also, although not required, a general
knowledge of a distributed application architecture would be helpful. The more a
user knows about replications and failure, the easier the on-ramp for learning about
how Kafka uses replicas, for example.

How this book is organized: A roadmap

This book has three parts spread over twelve chapters. Part 1 introduces a mental
model of Kafka and a discussion of why you would use Kafka in the real world:
xx



ABOUT THIS BOOK xxi
 Chapter 1 provides an introduction to Kafka, rejects some myths, and provides
some real-world use cases.

 Chapter 2 examines the high-level architecture of Kafka, as well as important
terminology.

Part 2 moves to the core pieces of Kafka. This includes the clients as well as the cluster
itself:

 Chapter 3 looks at when Kafka might be a good fit for your project and how to
approach designing a new project. We also discuss the need for schemas as
something that should be looked at when starting a Kafka project instead of
later.

 Chapter 4 looks at the details of creating a producer client and the options you
can use to impact the way your data enters the Kafka cluster.

 Chapter 5 flips the focus from chapter 4 and looks at how to get data from
Kafka with a consumer client. We introduce the idea of offsets and reprocessing
data because we can utilize the storage aspect of retained messages.

 Chapter 6 looks at the brokers’ role for your cluster and how they interact with
your clients. Various components are explored, such as a controller and a
replica.

 Chapter 7 explores the concepts of topics and the partitions. This includes how
topics can be compacted and how partitions are stored.

 Chapter 8 discusses tools and architectures that are options for handling data
that you need to retain or reprocess. The need to retain data for months or
years might cause you to evaluate storage options outside your cluster.

 Chapter 9 finishes part 2 by reviewing the necessary logs, metrics, and adminis-
trative duties to help keep your cluster healthy.

Part 3 moves us past looking at the core pieces of Kafka and on to options for improv-
ing a running cluster:

 Chapter 10 introduces options for strengthening a Kafka cluster by using SSL,
ACLs, and features like quotas.

 Chapter 11 digs into the Schema Registry and how it is used to help data evolve,
preserving compatibility with previous and future versions of datasets. Although
this is seen as a feature most used with enterprise-level applications, it can be
helpful with any data that evolves over time.

 Chapter 12, the final chapter, looks at introducing Kafka Streams and ksqlDB.
These products are at higher levels of abstraction, built on the core you studied
in part 2. Kafka Streams and ksqlDB are large enough topics that our introduc-
tion only provides enough detail to help you get started on learning more
about these Kafka options on your own.



ABOUT THIS BOOKxxii
About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, the source code is formatted in a fixed-width font
like this to separate it from ordinary text. In many cases, the original source code
has been reformatted; we’ve added line breaks and reworked indentation to accom-
modate the available page width in the book. In some cases, even this was not enough,
and listings include line-continuation markers (➥). Code annotations accompany
many of the listings, highlighting important concepts.

 Finally, it’s important to note that many of the code examples aren’t meant to
stand on their own; they’re excerpts containing only the most relevant parts of what is
currently under discussion. You’ll find all the examples from the book and the accom-
panying source code in their complete form in GitHub at https://github.com/Kafka
-In-Action-Book/Kafka-In-Action-Source-Code and the publisher’s website at www
.manning.com/books/kafka-in-action. You can also get executable snippets of code
from the liveBook (online) version of this book at https://livebook.manning.com/
book/kafka-in-action.

liveBook discussion forum

Purchase of Kafka in Action includes free access to liveBook, Manning’s online reading
platform. Using liveBook’s exclusive discussion features, you can attach comments to
the book globally or to specific sections or paragraphs. To access the forum, go to
https://livebook.manning.com/#!/book/kafka-in-action/discussion. You can also
learn more about Manning’s forums and the rules of conduct at https://livebook
.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the authors, whose contribution to the forum remains voluntary (and unpaid). We
suggest you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources

The following online resources will evolve as Kafka changes over time. These sites can
also be used for past version documentation in most cases:

 Apache Kafka documentation—http://kafka.apache.org/documentation.html
 Confluent documentation—https://docs.confluent.io/current
 Confluent Developer portal—https://developer.confluent.io

https://github.com/Kafka-In-Action-Book/Kafka-In-Action-Source-Code
https://github.com/Kafka-In-Action-Book/Kafka-In-Action-Source-Code
http://kafka.apache.org/documentation.html
https://docs.confluent.io/current
https://developer.confluent.io
www.manning.com/books/kafka-in-action
https://livebook.manning.com/#!/book/kafka-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/book/kafka-in-action
https://livebook.manning.com/book/kafka-in-action
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://docs.confluent.io/current
https://developer.confluent.io


about the authors
DYLAN SCOTT is a software developer with over ten years of experience in Java and Perl.
After starting to use Kafka like a messaging system for a large data migration, Dylan
started to dig further into the world of Kafka and stream processing. He has used vari-
ous techniques and queues including Mule, RabbitMQ, MQSeries, and Kafka.

 Dylan has various certificates that show experience in the industry: PMP, ITIL, CSM,
Sun Java SE 1.6, Oracle Web EE 6, Neo4j, and Jenkins Engineer. 

 
VIKTOR GAMOV is a Developer Advocate at Confluent, the company that makes an
event-streaming platform based on Apache Kafka. Throughout his career, Viktor
developed comprehensive expertise in building enterprise application architectures
using open source technologies. He enjoys helping architects and developers design
and develop low-latency, scalable, and highly available distributed systems.

 Viktor is a professional conference speaker on distributed systems, streaming data,
JVM, and DevOps topics, and is a regular at events including JavaOne, Devoxx,
OSCON, QCon, and others. He is the coauthor of Enterprise Web Development (O’Reilly
Media, Inc.).

 Follow Viktor on Twitter @gamussa, where he posts there about gym life, food,
open source, and, of course, Kafka!

 
DAVE KLEIN spent 28 years as a developer, architect, project manager (recovered),
author, trainer, conference organizer, and homeschooling dad, until he recently
landed his dream job as a Developer Advocate at Confluent. Dave is marveling in, and
eager to help others explore, the amazing world of event streaming with Apache
Kafka.
xxiii



about the cover illustration
The figure on the cover of Kafka in Action is captioned “Femme du Madagascar” or
“Madagascar Woman.” The illustration is taken from a nineteenth-century edition of
Sylvain Maréchal’s four-volume compendium of regional dress customs, published in
France. Each illustration is finely drawn and colored by hand. The rich variety of
Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. Whether on city streets, in small towns, or in the countryside, it
was easy to identify where they lived and what their trade or station in life was just by
their dress.

 Dress codes have changed since then, and the diversity by region and class, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

 
 
 
 
 
 

xxiv



Part 1

Getting started

In part 1 of this book, we’ll look at introducing you to Apache Kafka and start
to look at real use cases where Kafka might be a good fit to try out:

 In chapter 1, we give a detailed description of why you would want to use
Kafka, and we dispel some myths you might have heard about Kafka in
relation to Hadoop.

 In chapter 2, we focus on learning about the high-level architecture of
Kafka as well as the various other parts that make up the Kafka ecosystem:
Kafka Streams, Connect, and ksqlDB.

When you’re finished with this part, you’ll be ready to get started reading and
writing messages to and from Kafka. Hopefully, you’ll have picked up some key
terminology as well.



2 CHAPTER 



Introduction to Kafka
As many developers are facing a world full of data produced from every angle, they
are often presented with the fact that legacy systems might not be the best option
moving forward. One of the foundational pieces of new data infrastructures that
has taken over the IT landscape is Apache Kafka®.1 Kafka is changing the standards
for data platforms. It is leading the way to move from extract, transform, load
(ETL) and batch workflows (in which work was often held and processed in bulk at
one predefined time) to near-real-time data feeds [1]. Batch processing, which was
once the standard workhorse of enterprise data processing, might not be some-
thing to turn back to after seeing the powerful feature set that Kafka provides. In

This chapter covers
 Why you might want to use Kafka

 Common myths of big data and message systems

 Real-world use cases to help power messaging, 
streaming, and IoT data processing

1 Apache, Apache Kafka, and Kafka are trademarks of the Apache Software Foundation.
3



4 CHAPTER 1 Introduction to Kafka
fact, you might not be able to handle the growing snowball of data rolling toward
enterprises of all sizes unless something new is approached.

 With so much data, systems can get easily overloaded. Legacy systems might be
faced with nightly processing windows that run into the next day. To keep up with this
ever constant stream of data or evolving data, processing this information as it hap-
pens is a way to stay up to date and current on the system’s state.

 Kafka touches many of the newest and the most practical trends in today’s IT fields
and makes its easier for daily work. For example, Kafka has already made its way into
microservice designs and the Internet of Things (IoT). As a de facto technology for
more and more companies, Kafka is not only for super geeks or alpha-chasers. Let’s
start by looking at Kafka’s features, introducing Kafka itself, and understanding more
about the face of modern-day streaming platforms.

1.1 What is Kafka?
The Apache Kafka site (http://kafka.apache.org/intro) defines Kafka as a distributed
streaming platform. It has three main capabilities:

 Reading and writing records like a message queue
 Storing records with fault tolerance
 Processing streams as they occur [2]

Readers who are not as familiar with queues or message brokers in their daily work
might need help when discussing the general purpose and flow of such a system. As a
generalization, a core piece of Kafka can be thought of as providing the IT equivalent
of a receiver that sits in a home entertainment system. Figure 1.1 shows the data flow
between receivers and end users.

 As figure 1.1 shows, digital satellite, cable, and Blu-ray™ players can connect to a
central receiver. You can think of those individual pieces as regularly sending data in a
format that they know about. That flow of data can be thought of as nearly constant
while a movie or CD is playing. The receiver deals with this constant stream of data
and converts it into a usable format for the external devices attached to the other end
(the receiver sends the video to your television and the audio to a decoder as well as to
the speakers). So what does this have to do with Kafka exactly? Let’s look at the same
relationship from Kafka’s perspective in figure 1.2.

 Kafka includes clients to interface with other systems. One such client type is called
a producer, which sends multiple data streams to the Kafka brokers. The brokers serve a
similar function as the receiver in figure 1.1. Kafka also includes consumers, clients that
can read data from the brokers and process it. Data does not have to be limited to only
a single destination. The producers and consumers are completely decoupled, allow-
ing each client to work independently. We’ll dig into the details of how this is done in
later chapters.

 As do other messaging platforms, Kafka acts (in reductionist terms) like a middle-
man for data coming into the system (from producers) and out of the system (for con-
sumers or end users). The loose coupling can be achieved by allowing this separation

http://kafka.apache.org/intro


5What is Kafka?
between the producer and the end user of the message. The producer can send what-
ever message it wants and still have no clue about if anyone is subscribed. Further, Kafka
has various ways that it can deliver messages to fit your business case. Kafka’s message
delivery can take at least the following three delivery methods [3]:

Producers and sources of data

End consumers of the data

Flow of data Flow of data

VCR Blu-ray Satellite

Speaker 1 TV Speaker 2

Flow of data Flow of data

Receiver

Controls and 
handles data

Figure 1.1 Producers, receivers, 
and data flow overview

The source of data like the satellite, 
DVD, or Blu-ray player are called 
producers in Kafka.

The receiver is where Kafka
manages the message data and
allows producers and consumers
to act in a decoupled manner.

The TV and stereos that
use the data are called
consumers in Kafka. 

Our Kafka In Action Kafka cluster

DVD 2 ProducerDVD 1 Producer DVD 3 Producer

TV 2 consumerTV 1 consumer Stereo consumer

Figure 1.2 Kafka’s flow from producers to consumers



6 CHAPTER 1 Introduction to Kafka
 At-least-once semantics—A message is sent as needed until it is acknowledged.
 At-most-once semantics—A message is only sent once and not resent on failure.
 Exactly-once semantics—A message is only seen once by the consumer of the

message.

Let’s dig into what those messaging options mean. Let’s look at at-least-once semantics
(figure 1.3). In this case, Kafka can be configured to allow a producer of messages to
send the same message more than once and have it written to the brokers. If a mes-
sage does not receive a guarantee that it was written to the broker, the producer can
resend the message [3]. For those cases where you can’t miss a message, say that some-
one has paid an invoice, this guarantee might take some filtering on the consumer
end, but it is one of the safest delivery methods.

Figure 1.3 At-least-once message flow

At-most-once semantics (figure 1.4) is when a producer of messages might send a mes-
sage once and never retry. In the event of a failure, the producer moves on and
doesn’t attempt to send it again [3]. Why would someone be okay with losing a mes-
sage? If a popular website is tracking page views for visitors, it might be okay with miss-
ing a few page view events out of the millions it processes each day. Keeping the
system performing and not waiting on acknowledgments might outweigh any cost of
lost data.

 Kafka added the exactly-once semantics, also known as EOS, to its feature set in ver-
sion 0.11.0. EOS generated a lot of mixed discussion with its release [3]. On the one
hand, exactly-once semantics (figure 1.5) are ideal for a lot of use cases. This seemed
like a logical guarantee for removing duplicate messages, making them a thing of the
past. But most developers appreciate sending one message and receiving that same
message on the consuming side as well.

The broker sees two messages 
at least once (or only one if
there is a failure).

If a message from a producer has a
failure or is not acknowledged, the 
producer resends the message.

Consumers get as many messages 
as the broker receives. Consumers 
might see duplicate messages. 



7What is Kafka?
Another discussion that followed the release of EOS was a debate on if exactly once
was even possible. Although this goes into deeper computer science theory, it is help-
ful to be aware of how Kafka defines their EOS feature [4]. If a producer sends a mes-
sage more than once, it will still be delivered only once to the end consumer. EOS has
touchpoints at all Kafka layers—producers, topics, brokers, and consumers—and will
be briefly tackled later in this book as we move along in our discussion for now.

 Besides various delivery options, another common message broker benefit is that if
the consuming application is down due to errors or maintenance, the producer does

The broker sees one 
message at most (or 
zero if there is a failure).

If a message from a producer
has a failure or is not acknowledged,
the producer does not resend 
the message.

Consumers see the messages
that the broker receives. If there 
is a failure, the consumer never 
sees that message.

Figure 1.4 At-most-once message flow

The broker only 
allows one message.

Consumers only 
see the message 
once.

There’s a lot more to exactly-once
semantics that we’ll discuss later.

If a message from a producer 
fails or is not acknowledged, 
the producer resends the 
message.

Figure 1.5 Exactly-once message flow



8 CHAPTER 1 Introduction to Kafka
not need to wait on the consumer to handle the message. When consumers start to
come back online and process data, they should be able to pick up where they left off
and not drop any messages. 

1.2 Kafka usage
With many traditional companies facing the challenges of becoming more and more
technical and software driven, one question is foremost: how will they be prepared for
the future? One possible answer is Kafka. Kafka is noted for being a high-performance,
message-delivery workhorse that features replication and fault tolerance as a default.

 With Kafka, enormous data processing needs are handled with Kafka in produc-
tion [5]. All this with a tool that was not at its 1.0 version release until 2017! However,
besides these headline-grabbing facts, why would users want to start looking at Kafka?
Let’s look at that answer next.

1.2.1 Kafka for the developer

Why would a software developer be interested in Kafka? Kafka usage is exploding, and
the developer demand isn’t being met [6]. A shift in our traditional data processing way
of thinking is needed. Various shared experiences or past pain points can help devel-
opers see why Kafka could be an appealing step forward in their data architectures.

 One of the various on-ramps for newer developers to Kafka is to apply things they
know to help them with the unknown. For example, Java® developers can use Spring®

concepts, and Dependency Injection (DI) Spring for Kafka (https://projects.spring.io/
spring-kafka) has already been through a couple of major release versions. Supporting
projects, as well as Kafka itself, have a growing tool ecosystem all their own.

 As a common developer, most programmers have likely confronted the challenges
of coupling. For example, you want to make a change to one application, but you
might have many other applications directly tied to it. Or, you start to unit test and see
a large number of mocks you have to create. Kafka, when applied thoughtfully, can
help in these situations.

 Take, for example, an HR system that employees would use to submit paid vacation
leaves. If you are used to a create, read, update, and delete (CRUD) system, the submis-
sion of time off would likely be processed by not only payroll but also project burndown
charts for forecasting work. Do you tie the two applications together? What if the pay-
roll system goes down? Should that impact the availability of the forecasting tooling?

 With Kafka, we will see the benefits of being able to decouple some of the applica-
tions that we have tied together in older designs. (We will look more in-depth at
maturing our data model in chapter 11.) Kafka, however, can be put into the middle
of the workflow [7]. Your interface to data becomes Kafka instead of numerous APIs
and databases.

 Some say that there are better and simpler solutions. What about using ETL to at
least load the data into databases for each application? That would only be one inter-
face per application and easy, right? But what if the initial source of data is corrupted

https://projects.spring.io/spring-kafka
https://projects.spring.io/spring-kafka


9Kafka usage
or outdated? How often do you look for updates and allow for lag or consistency? And
do those copies ever get out of date or diverge so far from the source that it would be
hard to run that flow again and get the same results? What is the source of truth?
Kafka can help avoid these issues.

 Another interesting topic that might add credibility to the use of Kafka is how
much it “dogfoods” itself. For example, when we dig into consumers in chapter 5, we
will see how Kafka uses topics internally to manage consumers’ offsets. After the
release of v0.11, exactly-once semantics for Kafka also uses internal topics. The ability
to have many data consumers using the same message allows many possible outcomes.

 Another developer question might be, why not learn Kafka Streams, ksqlDB,
Apache Spark™ Streaming, or other platforms and skip learning about core Kafka?
The number of applications that use Kafka internally is indeed impressive. Although
abstraction layers are often nice to have (and sometimes close to being required with
so many moving parts), we believe that Kafka itself is worth learning.

 There is a difference in knowing that Kafka is a channel option for Apache
Flume™ and understanding what all of the config options mean. Although Kafka
Streams can simplify examples you might see in this book, it is interesting to note
how successful Kafka was before Kafka Streams was even introduced. Kafka’s base is
fundamental and will, hopefully, help you see why it is used in some applications and
what happens internally. If you want to become an expert in streaming, it is import-
ant to know the underlying distributed parts of your applications and all the knobs
you can turn to fine-tune your applications. From a purely technical viewpoint, there
are exciting computer science topics applied in practical ways. Perhaps the most
talked about is the notion of distributed commit logs, which we will discuss in depth
in chapter 2, and a personal favorite, hierarchical timing wheels [8]. These examples
show you how Kafka handles an issue of scale by applying an interesting data struc-
ture to solve a practical problem.

 We would also note that the fact that it’s open source is a positive for digging into
the source code and having documentation and examples just by searching the inter-
net. Resources are not just limited to internal knowledge based solely on a specific
workplace. 

1.2.2 Explaining Kafka to your manager

As is often the case, sometimes members of the C-suite will hear the word Kafka and
be more confused by the name than care about what it does. It might be nice to
explain the value found in this product. Also, it is good to step back and look at the
larger picture of what the real added value is for this tool.

 One of Kafka’s most important features is the ability to take volumes of data and
make it available for use by various business units. Such a data backbone that makes
information coming into the enterprise available to all the multiple business areas
allows for flexibility and openness on a company-wide scale. Nothing is prescribed,
but increased access to data is a potential outcome. Most executives also know that



10 CHAPTER 1 Introduction to Kafka
with more data than ever flooding in, the company wants insights as fast as possible.
Rather than pay for data to get old on disk, its value can be derived as it arrives. Kafka
is one way to move away from a daily batch job that limits how quickly that data can be
turned into value. Fast data seems to be the newer term, hinting that real value focuses
on something different from the promises of big data alone.

 Running on a Java virtual machine JVM® should be a familiar and comfortable
place for many enterprise development shops. The ability to run on premises is a cru-
cial driver for some whose data requires on-site oversight. And the cloud and man-
aged platforms are options as well. Kafka can scale horizontally, and not depend on
vertical scaling alone, which might eventually reach an expensive peak.

 Maybe one of the most important reasons to learn about Kafka is to see how start-
ups and others in their industry can overcome the once prohibitive cost of computing
power. Instead of relying on a bigger and beefier server or a mainframe that can cost
millions of dollars, distributed applications and architectures put competitors quickly
within reach with, hopefully, less financial outlay. 

1.3 Kafka myths
When you start to learn any new technology, it is often natural to try to map existing
knowledge to new concepts. Although that technique can be used in learning Kafka,
we wanted to note some of the most common misconceptions that we have run into in
our work so far. We’ll cover those in the next sections.

1.3.1 Kafka only works with Hadoop®

As mentioned, Kafka is a powerful tool that is often used in various situations. How-
ever, it seemed to appear on radars when used in the Hadoop ecosystem and might
have first appeared for users as a tool as part of a Cloudera™ or Hortonworks™ suite.
It isn’t uncommon to hear the myth that Kafka only works with Hadoop. What could
cause this confusion? One of the causes is likely the various tools that use Kafka as part
of their products. Spark Streaming and Flume are examples of tools that use Kafka (or
did at one point) and could be used with Hadoop as well. The dependency (depend-
ing on the version of Kafka) on Apache ZooKeeper™ is also a tool that is often found
in Hadoop clusters and might tie Kafka further to this myth.

 One other fundamental myth that often appears is that Kafka requires the Hadoop
Distributed Filesystem (HDFS). That is not the case. Once we start to dig into how
Kafka works, we will see that Kafka’s speed and techniques used to process events
would likely be much slower with a NodeManager in the middle of the process. Also,
the block replication, usually a part of HDFS, is not done in the same way. One such
example is that in Kafka, replicas are not recovered by default. Whereas both products
use replication in different ways, the durability that is marketed for Kafka might be
easy to group under the Hadoop theme of expecting failure as a default (and thus
planning for overcoming it) and is a similar overall goal between Hadoop and Kafka. 



11Kafka in the real world
1.3.2 Kafka is the same as other message brokers

Another big myth is that Kafka is just another message broker. Direct comparisons of
the features of various tools (such as Pivotal’s RabbitMQ™ or IBM’s MQSeries®) to
Kafka often have asterisks (or fine print) attached and are not always fair to the best use
cases of each. Some tools over time have gained or will gain new features just as Kafka
has added the exactly-once semantics. And default configurations can be changed to
mirror features closer to other tools in the same space. In general, the following lists
some of the most exciting and standout features that we will dig into in a bit:

 The ability to replay messages by default
 Parallel processing of data

Kafka was designed to have multiple consumers. What that means is that one applica-
tion reading a message from the message broker doesn’t remove it from other applica-
tions that might want to consume it as well. One effect of this is that a consumer who
has already seen the message can again choose to read it (and other messages as well).
With some architecture models like lambda (discussed in chapter 8), programmer mis-
takes are expected just as much as hardware failures. Imagine consuming millions of
messages, and you forget to use a specific field from the original message. In some
queues, that message is removed or sent to a duplicate or replay location. However,
Kafka provides a way for consumers to seek specific points and read messages again
(with a few constraints) by just seeking an earlier position on the topic.

 As touched on briefly, Kafka allows for parallel processing of data and can have
multiple consumers on the same topic. Kafka also has the concept of consumers being
part of a consumer group, which will be covered in depth in chapter 5. Membership
in a group determines which consumers get which messages and what work has been
done across that group of consumers. Consumer groups act independently of any
other group and allow for multiple applications to consume messages at their own
pace with as many consumers as they require working together. Processing can hap-
pen in various ways: consumption by many consumers working on one application or
consumption by many applications. No matter what other message brokers support,
let’s now focus on the robust use cases that have made Kafka one of the options devel-
opers turn to for getting work done. 

1.4 Kafka in the real world
Applying Kafka to practical use is the core aim of this book. One of the things to note
about Kafka is that it’s hard to say it does one specific function well; it excels in many
specific uses. Although we have some basic ideas to grasp first, it might be helpful to
discuss at a high level some of the cases that Kafka has already been noted for in real-
world use cases. The Apache Kafka site lists general areas where Kafka is used in the
real world that we explore in the book. [9].



12 CHAPTER 1 Introduction to Kafka
1.4.1 Early examples

Some users’ first experience with Kafka (as was mine) was using it as a messaging tool.
Personally, after years of using other tools like IBM® WebSphere® MQ (formerly MQ
Series), Kafka (which was around version 0.8.3 at the time) seemed simple to use to
get messages from point A to point B. Kafka forgoes using popular protocols and stan-
dards—like the Extensible Messaging and Presence Protocol (XMPP), Java Message
Service (JMS) API (now part of Jakarta EE), or the OASIS® Advanced Message Queu-
ing Protocol (AMQP)—in favor of a custom TCP binary protocol. We will dig in and
see some complex uses later.

 For an end user developing with a Kafka client, most of the details are in the con-
figuration, and the logic becomes relatively straightforward (for example, “I want to
place a message on this topic”). Having a durable channel for sending messages is also
why Kafka is used.

 Oftentimes, memory storage of data in RAM will not be enough to protect your
data; if that server dies, the messages are not persisted across a reboot. High availabil-
ity and persistent storage are built into Kafka from the start. Apache Flume provides a
Kafka channel option because the replication and availability allow Flume events to be
made immediately available to other sinks if a Flume agent (or the server it is running
on) crashes [10]. Kafka enables robust applications to be built and helps handle the
expected failures that distributed applications are bound to run into at some point.

 Log aggregation (figure 1.6) is useful in many situations, including when trying to
gather application events that were written in distributed applications. In the figure,

Kafka acts as a logical central point
for all of the server logs and stores
that information on the brokers.

Various server logs are
gathered into Kafka.

Kafka serves the aggregate view
to each application (assuming each
application is part of its own group).

Kafka in Action 
Kafka cluster

kinaction_audit
application

Error-trending
application

Figure 1.6 Kafka log aggregation



13Kafka in the real world
the log files are sent as messages into Kafka, and then different applications have a sin-
gle logical topic to consume that information. With Kafka’s ability to handle large
amounts of data, collecting events from various servers or sources is a key feature.
Depending on the contents of the log event itself, some organizations use it for audit-
ing and failure-detection trending. Kafka is also used in various logging tools (or as an
input option).

 How do all of these log file entries allow Kafka to maintain performance without
causing a server to run out of resources? The throughput of small messages can some-
times overwhelm a system because the processing of each method takes time and over-
head. Kafka uses batching of messages for sending data as well as for writing data.
Writing to the end of a log helps too, rather than random access to the filesystem. We
will discuss more on the log format of messages in chapters 7. 

1.4.2 Later examples

Microservices used to talk to each other with APIs like REST, but they can now lever-
age Kafka to communicate between asynchronous services with events [11]. Microser-
vices can use Kafka as the interface for their interactions rather than specific API calls.
Kafka has placed itself as a fundamental piece for allowing developers to get data
quickly. Although Kafka Streams is now a likely default for many when starting work,
Kafka had already established itself as a successful solution by the time the Streams
API was released in 2016. The Streams API can be thought of as a layer that sits on top
of producers and consumers. This abstraction layer is a client library that provides a
higher-level view of working with your data as an unbounded stream.

 In the Kafka 0.11 release, exactly-once semantics was introduced. We will cover
what that means in practice later, once we get a more solid foundation. However,
users running end-to-end workloads on top of Kafka with the Streams API may bene-
fit from hardened delivery guarantees. Streams make this use case easier than it has
ever been to complete a flow without the overhead of any custom application logic,
ensuring that a message was only processed once from the beginning to the end of
the transaction.

 The number of devices for the Internet of Things (figure 1.7) will only increase
with time. With all of those devices sending messages, sometimes in bursts when they
get a Wi-Fi or cellular connection, something needs to be able to handle that data
effectively. As you may have gathered, massive quantities of data are one of the critical
areas where Kafka shines. As we discussed previously, small messages are not a prob-
lem for Kafka. Beacons, cars, phones, homes, etc.—all will be sending data, and some-
thing needs to handle the fire hose of data and make it available for action [12].

 This are just a small selection of examples that are well-known uses for Kafka. As
we will see in future chapters, Kafka has many practical application domains. Learning
the upcoming foundational concepts is essential to see how even more practical appli-
cations are possible. 



14 CHAPTER 1 Introduction to Kafka
1.4.3 When Kafka might not be the right fit

It is important to note that although Kafka has been used in some interesting use
cases, it is not always the best tool for the job at hand. Let’s investigate some of the
uses where other tools or code might shine.

 What if you only need a once-monthly or even once-yearly summary of aggregate
data? Suppose you don’t need an on-demand view, quick answer, or even the ability to
reprocess data. In these cases, you might not need Kafka running throughout the
entire year for those tasks alone (notably, if that amount of data is manageable to pro-
cess at once as a batch). As always, your mileage may vary: different users have differ-
ent thresholds on what is a large batch.

 If your main access pattern for data is a mostly random lookup of data, Kafka
might not be your best option. Linear read and writes are where Kafka shines and will
keep your data moving as quickly as possible. Even if you have heard of Kafka having
index files, they are not really what you would compare to a relational database having
fields and primary keys from which indexes are built.

 Similarly, if you need the exact ordering of messages in Kafka for the entire topic,
you will have to look at how practical your workload is in that situation. To avoid any
unordered messages, care should be taken to ensure that only one producer request
thread is the maximum and, simultaneously, that there is only one partition in the
topic. There are various workarounds, but if you have vast amounts of data that
depend on strict ordering, there are potential gotchas that might come into play once
you notice that your consumption is limited to one consumer per group at a time.

Your Kafka cluster is
designed to work well
with lots of data and
small messages.

Door alarm sensor

Water meter events

 We will have our 
own IOT example 

in chapter 3!

Kafka brokers

Temperature
gauge reading 

When sensors or
beacons get a Wi-Fi or
cellular signal, they’ll
report their events,
which might be a lot!

Internet of Things

Figure 1.7 The Internet of Things (IoT)



15References
 One of the other practical items that come to mind is that large messages are an
exciting challenge. The default message size is about 1 MB [13]. With larger messages,
you start to see memory pressure increase. In other words, the lower number of mes-
sages you can store in page cache could become a concern. If you are planning on
sending huge archives around, you might want to see if there is a better way to man-
age those messages. Keep in mind that although you can probably achieve your end
goal with Kafka in the previous situations (it’s always possible), it might not be the first
choice to reach for in your toolbox. 

1.5 Online resources to get started
The community around Kafka has been one of the best (in our opinion) for making
documentation available. Kafka has been a part of Apache (graduating from the Incu-
bator in 2012) and keeps the current documentation at the project website at https://
kafka.apache.org.

 Another great resource for information is Confluent® (https://www.confluent.io/
resources). Confluent was founded by the original Kafka’s creators and is actively
influencing the future direction of the work. They also build enterprise-specific fea-
tures and support for companies to help develop their streaming platform. Their
work helps support the Kafka open source nature and has extended to presentations
and lectures that have discussed production challenges and successes.

 As we start to dig into more APIs and configuration options in later chapters, these
resources will be a useful reference if further details are needed, rather than listing
them all in each chapter. In chapter 2, we will discover more details in which we can
use specific terms and start to get to know Apache Kafka in a more tangible and
hands-on way. 

Summary
 Apache Kafka is a streaming platform that you can leverage to process large

numbers of events quickly.
 Although Kafka can be used as a message bus, using it only as that ignores the

capabilities that provide real-time data processing.
 Kafka may have been associated with other big data solutions in the past, but

Kafka stands on its own to provide a scalable and durable system. Because it
uses the same fault tolerant and distributed system techniques, Kafka fills the
needs of a modern data infrastructure’s core with its own clustering capabilities.

 In instances of streaming a large number of events like IoT data, Kafka handles
data fast. As more information is available for your applications, Kafka provides
results quickly for your data that was once processed offline in batch mode.

References
1 R. Moffatt. “The Changing Face of ETL.” Confluent blog (September 17, 2018).

https://www.confluent.io/blog/changing-face-etl/ (accessed May 10, 2019).

https://kafka.apache.org
https://kafka.apache.org
https://www.confluent.io/resources
https://www.confluent.io/resources
https://www.confluent.io/blog/changing-face-etl/


16 CHAPTER 1 Introduction to Kafka
2 “Introduction.” Apache Software Foundation (n.d.). https://kafka.apache.org/
intro (accessed May 30, 2019).

3 Documentation. Apache Software Foundation (n.d.). https://kafka.apache
.org/documentation/#semantics (accessed May 30, 2020).

4 N. Narkhede. “Exactly-once Semantics Are Possible: Here’s How Apache Kafka
Does It.” Confluent blog (June 30, 2017). https://www.confluent.io/blog/
exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it (accessed
December 27, 2017).

5 N. Narkhede. “Apache Kafka Hits 1.1 Trillion Messages Per Day – Joins the
4 Comma Club.” Confluent blog (September 1, 2015). https://www.confluent
.io/blog/apache-kafka-hits-1-1-trillion-messages-per-day-joins-the-4-comma-club/
(accessed October 20, 2019).

6 L. Dauber. “The 2017 Apache Kafka Survey: Streaming Data on the Rise.” Con-
fluent blog (May 4, 2017). https://www.confluent.io/blog/2017-apache-kafka
-survey-streaming-data-on-the-rise/ (accessed December 23, 2017).

7 K. Waehner. “How to Build and Deploy Scalable Machine Learning in Produc-
tion with Apache Kafka.” Confluent blog (September 29, 2017) https://
www.confluent.io/blog/build-deploy-scalable-machine-learning-production-
apache-kafka/ (accessed December 11, 2018).

8 Y. Matsuda. “Apache Kafka, Purgatory, and Hierarchical Timing Wheels.” Con-
fluent blog (October 28, 2015). https://www.confluent.io/blog/apache-kafka
-purgatory-hierarchical-timing-wheels (accessed December 20, 2018).

9 “Use cases.” Apache Software Foundation (n.d.). https://kafka.apache.org/
uses (accessed May 30, 2017).

10 “Flume 1.9.0 User Guide.” Apache Software Foundation (n.d.). https://
flume.apache.org/FlumeUserGuide.html (accessed May 27, 2017).

11 B. Stopford. “Building a Microservices Ecosystem with Kafka Streams and
KSQL.” Confluent blog (November 9, 2017). https://www.confluent.io/blog/
building-a-microservices-ecosystem-with-kafka-streams-and-ksql/ (accessed May
1, 2020).

12 “Real-Time IoT Data Solution with Confluent.” Confluent documentation.
(n.d.). https://www.confluent.io/use-case/internet-of-things-iot/ (accessed May
1, 2020).

13 Documentation. Apache Software Foundation (n.d.). https://kafka.apache.org/
documentation/#brokerconfigs_message.max.bytes (accessed May 30, 2020).

https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://kafka.apache.org/documentation/#semantics
https://kafka.apache.org/documentation/#semantics
https://kafka.apache.org/documentation/#semantics
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it
https://www.confluent.io/blog/exactly-once-semantics-are-possible-heres-how-apache-kafka-does-it
https://www.confluent.io/blog/apache-kafka-hits-1-1-trillion-messages-per-day-joins-the-4-comma-club/
https://www.confluent.io/blog/apache-kafka-hits-1-1-trillion-messages-per-day-joins-the-4-comma-club/
https://www.confluent.io/blog/apache-kafka-hits-1-1-trillion-messages-per-day-joins-the-4-comma-club/
https://www.confluent.io/blog/2017-apache-kafka-survey-streaming-data-on-the-rise/
https://www.confluent.io/blog/build-deploy-scalable-machine-learning-production-apache-kafka/
https://www.confluent.io/blog/build-deploy-scalable-machine-learning-production-apache-kafka/
https://www.confluent.io/blog/build-deploy-scalable-machine-learning-production-apache-kafka/
https://www.confluent.io/blog/apache-kafka-purgatory-hierarchical-timing-wheels
https://www.confluent.io/blog/apache-kafka-purgatory-hierarchical-timing-wheels
https://www.confluent.io/blog/apache-kafka-purgatory-hierarchical-timing-wheels
https://kafka.apache.org/
https://kafka.apache.org/
https://flume.apache.org/FlumeUserGuide.html
https://flume.apache.org/FlumeUserGuide.html
https://www.confluent.io/blog/building-a-microservices-ecosystem-with-kafka-streams-and-ksql/
https://www.confluent.io/blog/building-a-microservices-ecosystem-with-kafka-streams-and-ksql/
https://www.confluent.io/use-case/internet-of-things-iot/
https://kafka.apache.org/documentation/#brokerconfigs_message.max.bytes
https://kafka.apache.org/documentation/#brokerconfigs_message.max.bytes
https://kafka.apache.org/documentation/#brokerconfigs_message.max.bytes


Getting to know Kafka
Now that we have a high-level view of where Kafka shines and why one would use it,
let’s dive into the Kafka components that make up the whole system. Apache Kafka
is a distributed system at heart, but it is also possible to install and run it on a single
host. That gives us a starting point to dive into our sample use cases. As is often the
case, the real questions start flowing once the hands hit the keyboard. By the end of
this chapter, you will be able to send and retrieve your first Kafka message from the
command line. Let’s get started with Kafka and then spend a little more time dig-
ging into Kafka’s architectural details.

NOTE Visit appendix A if you do not have a Kafka cluster to use or are inter-
ested in starting one locally on your machine. Appendix A works on updating

This chapters covers
 The high-level architecture of Kafka

 Understanding client options

 How applications communicate with a broker

 Producing and consuming your first message

 Using Kafka clients with a Java application
17



18 CHAPTER 2 Getting to know Kafka
the default configuration of Apache Kafka and on starting the three brokers we
will use in our examples. Confirm that your instances are up and running before
attempting any examples in this book! If any examples don’t seem to work,
please check the source code on GitHub for tips, errata, and suggestions.

2.1 Producing and consuming a message
A message, also called a record, is the basic piece of data flowing through Kafka. Mes-
sages are how Kafka represents your data. Each message has a timestamp, a value, and
an optional key. Custom headers can be used if desired as well [1]. A simple example
of a message could be something like the following: the machine with host ID
“1234567” (a message key) failed with the message “Alert: Machine Failed” (a message
value) at “2020-10-02T10:34:11.654Z” (a message timestamp). Chapter 9 shows an exam-
ple of using a custom header to set a key-value pair for a tracing use case.

 Figure 2.1 shows probably the most important and common parts of a message
that users deal with directly. Keys and values will be the focus of most of our discussion
in this chapter, which require analysis when designing our messages. Each key and
value can interact in its own specific ways to serialize or deserialize its data. The details
of how to use serialization will start to come into focus when covering producing mes-
sages in chapter 4.

Figure 2.1 Kafka messages are made up of a key and a value (timestamp and optional 
headers are not shown).

Now that we have a record, how do we let Kafka know about it? You will deliver this
message to Kafka by sending it to what are known as brokers. 

2.2 What are brokers?
Brokers can be thought of as the server side of Kafka [1]. Before virtual machines and
Kubernetes®, you may have seen one physical server hosting one broker. Because
almost all clusters have more than one server (or node), we will have three Kafka serv-
ers running for most of our examples. This local test setup should let us see the out-
put of commands against more than one broker, which will be similar to running with
multiple brokers across different machines.

 For our first example, we will create a topic and send our first message to Kafka
from the command line. One thing to note is that Kafka was built with the command

Kafka record

Key Value
Not required

Where the
content of your
data goesInteracts with

• key.serializer
• key.deserializer

Interacts with
• value.serializer
• value.deserializer



19What are brokers?
line in mind. There is no GUI that we will use, so we need to have a way to interact
with the operating system’s command line interface. The commands are entered into
a text-based prompt. Whether you use vi, Emacs, Nano, or whatever, make sure that it
is something you feel comfortable editing with.

NOTE Although Kafka can be used on many operating systems, it is often
deployed in production on Linux, and command line skills will be helpful
when using this product.

To send our first message, we will need a place to send it. To create a topic, we will run
the kafka-topics.sh command in a shell window with the --create option (listing
2.1). You will find this script in the installation directory of Kafka, where the path
might look like this: ~/kafka_2.13-2.7.1/bin. Note that Windows users can use the .bat
files with the same name as the shell equivalent. For example, kafka-topics.sh has
the Windows equivalent script named kafka-topics.bat, which should be located
in the <kafka_install_directory>/bin/windows directory.

NOTE The references in this work to kinaction and ka (like used in
kaProperties) are meant to represent different abbreviations of Kafka in
Action and are not associated with any product or company.

bin/kafka-topics.sh --create --bootstrap-server localhost:9094
--topic kinaction_helloworld --partitions 3 --replication-factor 3

You should see the output on the console where you just ran the command: Created
topic kinaction_helloworld. In listing 2.1, the name kinaction_helloworld is used
for our topic. We could have used any name, of course, but a popular option is to fol-
low general Unix/Linux naming conventions, including not using spaces. We can
avoid many frustrating errors and warnings by not including spaces or various special
characters. These do not always play nicely with command line interfaces and
autocompletion.

 There are a couple of other options whose meaning may not be clear just yet, but
to keep moving forward with our exploration, we will quickly define them. These top-
ics will be covered in greater detail in chapter 6.

 The --partitions option determines how many parts we want the topic to be split
into. For example, because we have three brokers, using three partitions gives us one

Shell helper
If you are a command line user and want a shortcut to autocomplete commands   (and
to help with the available arguments), check out a Kafka autocomplete project at http:/
/mng.bz/K48O. If you are a Zsh user, you may also want to check out and install
Kafka’s Zsh-completion plugin from https://github.com/Dabz/kafka-zsh -completions.

Listing 2.1 Creating the kinaction_helloworld topic

https://github.com/Dabz/kafka-zsh-completions
http://mng.bz/K48O
http://mng.bz/K48O


20 CHAPTER 2 Getting to know Kafka
partition per broker. For our test workloads, we might not need this many, based on
data needs alone. However, creating more than one partition at this stage lets us see
how the system works in spreading data across partitions. The --replication-factor
also is set to three in this example. In essence, this says that for each partition, we want
to have three replicas. These copies are a crucial part of our design to improve reli-
ability and fault tolerance. The --bootstrap-server option points to our local Kafka
broker. This is why the broker should be running before invoking this script. For our
work right now, the most important goal is to get a picture of the layout. We will dig
into how to best estimate the numbers we need in other use cases when we get into
the broker details later.

 We can also look at all existing topics that have been created and make sure that
our new one is on the list. The --list option is what we can reach for to achieve this
output. Again, we run the next listing in the terminal window.

bin/kafka-topics.sh --list --bootstrap-server localhost:9094

To get a feel for how our new topic looks, listing 2.3 shows another command that we
can run to give us a little more insight into our cluster. Note that our topic is not like a
traditional single topic in other messaging systems: we have replicas and partitions.
The numbers we see next to the labels for the Leader, Replicas, and Isr fields are the
broker.ids that correspond to the value for our three brokers that we set in our con-
figuration files. Briefly looking at the output, we can see that our topic consists of
three partitions: Partition 0, Partition 1, and Partition 2. Each partition was repli-
cated three times as we intended on topic creation.

bin/kafka-topics.sh --bootstrap-server localhost:9094 \
--describe --topic kinaction_helloworld

Topic:kinaction_helloworld PartitionCount:3 ReplicationFactor:3 Configs:
Topic: kinaction_helloworld Partition: 0 Leader: 0 Replicas: 0,1,2 Isr: 0,1,2
Topic: kinaction_helloworld Partition: 1 Leader: 1 Replicas: 1,2,0 Isr: 1,2,0
Topic: kinaction_helloworld Partition: 2 Leader: 2 Replicas: 2,0,1 Isr: 2,0,1

The output from listing 2.3 shows in the first line a quick data view of the total count
of partitions and replicas that this topic has. The following lines show each partition
for the topic. The second line of output is specific to the partition labeled 0 and so
forth. Let’s zoom in on partition 0, which has its replica copy leader on broker 0. This
partition also has replicas that exist on brokers 1 and 2. The last column, Isr, stands
for in-sync replicas. In-sync replicas show which brokers are current and not lagging
behind the leader. Having a partition replica copy that is out of date or behind the
leader is an issue that we will cover later. Still, it is critical to remember that replica

Listing 2.2 Verifying the topic

Listing 2.3 Describing the topic kinaction_helloworld

--describe lets us look 
at the details of the 
topic we pass in.



21What are brokers?
health in a distributed system is something that we will want to keep an eye on. Figure
2.2 shows a view if we look at the one broker with ID 0.

 For our kinaction_helloworld topic, note how broker 0 holds the leader replica
for partition 0. It also holds replica copies for partitions 1 and 2 for which it is not the
leader replica. In the case of its copy of partition 1, the data for this replica will be cop-
ied from broker 1.

NOTE When we reference a partition leader in the image, we are referring to
a replica leader. It is important to know that a partition can consist of one or
more replicas, but only one replica will be a leader. A leader’s role involves
being updated by external clients, whereas nonleaders take updates only
from their leader.

Now once we have created our topic and verified that it exists, we can start sending
real messages! Those who have worked with Kafka before might ask why we took the
preceding step to create the topic before sending a message. There is a configuration
to enable or disable the autocreation of topics. However, it is usually best to control
the creation of topics as a specific action because we do not want new topics to ran-
domly show up if someone mistypes a topic name once or twice or to be recreated due
to producer retries.

Partition 0 leader

Broker 0 only reads and writes for
partition 0. The rest of the replicas
get their copies from other brokers.

Topic kinaction_helloworld is actually 
made up of the leaders of each partition. 
In our case, that involves each broker 
holding a partition leader.

Partition 1 replica
Follower for broker 1 leader

Partition 2 replica
Follower for broker 2 leader

Broker 0
Broker 2

Broker 1

Broker 0

+

Figure 2.2 View of one broker



22 CHAPTER 2 Getting to know Kafka
 To send a message, we will start a terminal tab or window to run a producer as a con-
sole application to take user input [2]. The command in listing 2.4 starts an interactive
program that takes over the shell; you won’t get your prompt back to type more com-
mands until you press Ctrl-C to quit the running application. You can just start typing,
maybe something as simple as the default programmer’s first print statement with a pre-
fix of kinaction (for Kafka In Action) as the following listing demonstrates. We use
kinaction_helloworld in the vein of the “hello, world” example found in the book,
The C Programming Language [3].

bin/kafka-console-producer.sh --bootstrap-server localhost:9094 \
--topic kinaction_helloworld

Notice in listing 2.4 that we reference the topic that we want to interact with using a
bootstrap-server parameter. This parameter can be just one (or a list) of the cur-
rent brokers in our cluster. By supplying this information, the cluster can obtain the
metadata it needs to work with the topic.

 Now, we will start a new terminal tab or window to run a consumer that also runs as
a console application. The command in listing 2.5 starts a program that takes over the
shell as well [2]. On this end, we should see the message we wrote in the producer
console. Make sure that you use the same topic parameter for both commands; oth-
erwise, you won’t see anything.

bin/kafka-console-consumer.sh --bootstrap-server localhost:9094 \
--topic kinaction_helloworld --from-beginning

The following listing shows an example of the output you might see in your console
window.

bin/kafka-console-consumer.sh --bootstrap-server localhost:9094 \
--topic kinaction_helloworld --from-beginning

kinaction_helloworld
...

As we send more messages and confirm the delivery to the consumer application, we
can terminate the process and eliminate the --from-beginning option when we restart
it. Notice that we didn’t see all of the previously sent messages. Only those messages
produced since the consumer console was started show up. The knowledge of which
messages to read next and the ability to consume from a specific offset are tools we will
leverage later as we discuss consumers in chapter 5. Now that we’ve seen a simple exam-
ple in action, we have a little more background to discuss the parts we utilized. 

Listing 2.4 Kafka producer console command

Listing 2.5 Kafka consumer command

Listing 2.6 Example consumer output for kinaction_helloworld



23Tour of Kafka
2.3 Tour of Kafka
Table 2.1 shows the major components and their roles within the Kafka architecture.
In the following sections, we’ll dig into each of these items further to get a solid foun-
dation for the following chapters.

2.3.1 Producers and consumers

Let’s pause for a moment on
the first stop on our tour: pro-
ducers and consumers. Fig-
ure 2.3 highlights how
producers and consumers dif-
fer in the direction of their
data in relation to the cluster.

 A producer is a tool for
sending messages to Kafka
topics [1]. As mentioned in
our use cases in chapter 1, a
good example is a log file that
is produced from an applica-
tion. Those files are not a part of the Kafka system until they are collected and sent to
Kafka. When you think of input (or data) going into Kafka, you are looking at a pro-
ducer being involved somewhere internally.

 There are no default producers, per se, but the APIs that interact with Kafka use
producers in their own implementation code. Some entry paths into Kafka might
include using a separate tool such as Flume or even other Kafka APIs such as Connect
and Streams. WorkerSourceTask, inside the Apache Kafka Connect source code (from
version 1.0), is one example where a producer is used internally of its implementation.
It provides its own higher-level API. This specific version 1.0 code is available under an
Apache 2 license (https://github.com/apache/kafka/blob/trunk/LICENSE) and is
viewable on GitHub (see http://mng.bz/9N4r). A producer is also used to send mes-
sages inside Kafka itself. For example, if we are reading data from a specific topic and
want to send it to a different topic, we would also use a producer.

Table 2.1 The Kafka architecture

Component Role

Producer Sends messages to Kafka

Consumer Retrieves messages from Kafka

Topics Logical name of where messages are stored in the broker

ZooKeeper ensemble Helps maintain consensus in the cluster

Broker Handles the commit log (how messages are stored on the disk)

Producer: source of
data or messages being
sent to Kafka 

We will both produce 
and consume from 
our kinaction topics.

Consumer: data 
pulled from Kafka by 
consumers or sinks 

Figure 2.3 Producers vs. consumers

https://github.com/apache/kafka/blob/trunk/LICENSE
http://mng.bz/9N4r


24 CHAPTER 2 Getting to know Kafka

.

 To get a feel for what our own producer will look like, it might be helpful to look at
code similar in concept to WorkerSourceTask, which is the Java class that we men-
tioned earlier. Listing 2.7 shows our example code. Not all of the source code is listed
for the main method, but what is shown is the logic of sending a message with the stan-
dard KafkaProducer. It is not vital to understand each part of the following example.
Just try to get familiar with the producer’s usage in the listing.

Alert alert = new Alert(1, "Stage 1", "CRITICAL", "Stage 1 stopped");
ProducerRecord<Alert, String> producerRecord =

new ProducerRecord<Alert, String>
("kinaction_alert", alert, alert.getAlertMessage());

producer.send(producerRecord,
new AlertCallback());

producer.close();

To send data to Kafka, we created a ProducerRecord in listing 2.7. This object lets us
define our message and specify the topic (in this case, kinaction_alert) to which we
want to send the message. We used a custom Alert object as our key in the message.
Next, we invoked the send method to send our ProducerRecord. While we can wait
for the message, we can also use a callback to send asynchronous messages but still
handle any errors. Chapter 4 provides this entire example in detail.

 Figure 2.4 shows a user interaction that could start the process of sending data into
a producer. A user on a web page that clicks might cause an audit event that would be
produced in a Kafka cluster.

Figure 2.4 Producer example for user event

Listing 2.7 A producer sending messages

The ProducerRecord holds 
each message sent into Kafka

Makes the actual call 
to send to our brokers

Callbacks can be used for 
asynchronous sending of messages.

2. Send1. User-generated event

Audit click event

User Client/program
application

Kafka

Producer client

3. On completion, 
asynchronous

Message brokers 

Kafka



25Tour of Kafka
In contrast to a producer, a consumer is a tool for retrieving messages from Kafka [1].
In the same vein as producers, if we are talking about getting data out of Kafka, we
look at consumers as being involved directly or indirectly. WorkerSinkTask is another
class inside the Apache Kafka Connect source code from version 1.0 that shows the
use of a consumer that is parallel with the producer example from Connect as well
(see http://mng.bz/WrRW). Consuming applications subscribe to the topics that they
are interested in and continuously poll for data. WorkerSinkTask provides a real
example in which a consumer is used to retrieve records from topics in Kafka. The fol-
lowing listing shows the consumer example we will create in chapter 5. It displays con-
cepts similar to WorkerSinkTask.java.

...
consumer.subscribe(List.of("kinaction_audit"));
while (keepConsuming) {

var records = consumer.
poll(Duration.ofMillis(250));

for (ConsumerRecord<String, String> record : records) {
log.info("kinaction_info offset = {}, kinaction_value = {}",

record.offset(), record.value());

OffsetAndMetadata offsetMeta =
new OffsetAndMetadata(++record.offset(), "");

Map<TopicPartition, OffsetAndMetadata> kaOffsetMap = new HashMap<>();
kaOffsetMap.put(new TopicPartition("kinaction_audit",

record.partition()), offsetMeta);

consumer.commitSync(kaOffsetMap);
}

}
...

Listing 2.8 shows how a consumer object calls a subscribe method, passing in a list of
topics that it wants to gather data from (in this case, kinaction_audit). The con-
sumer then polls the topic(s) (see figure 2.5) and handles any data brought back as
ConsumerRecords.

Figure 2.5 Consumer example flow

Listing 2.8 Consuming messages

The consumer subscribes to 
the topics that it cares about.

Messages are 
returned from 
a poll of data.

User application

3. Data is available for 
    applications to use (show 
    in a dashboard, for example).

Polling continues as long as
the consumer client runs.

Kafka
(contains our data)

1. Subscribe

2. Poll

Consumer client 
reading 

kinaction_audit

Message brokers 

Kafka

http://mng.bz/WrRW


26 CHAPTER 2 Getting to know Kafka
The previous code listings 2.7 and 2.8 show two parts of a concrete use case example as
displayed in figures 2.4 and 2.5. Let’s say that a company wants to know how many users
clicked on their web page for a new factory command action. The click events generated
by users would be the data going into the Kafka ecosystem. The data’s consumers would
be the factory itself, which would be able to use its applications to make sense of the data.

 Putting data into Kafka and out of Kafka with code like the previous (or even with
Kafka Connect itself) allows users to work with the data that can impact their business
requirements and goals. Kafka does not focus on processing the data for applications:
the consuming applications are where the data really starts to provide business value.
Now that we know how to get data into and out of Kafka, the next area to focus on is
where it lands in our cluster. 

2.3.2 Topics overview

Topics are where most users start to think about the logic of what messages should go
where. Topics consist of units called partitions [1]. In other words, one or more parti-
tions can make up a single topic. As far as what is actually implemented on the com-
puter’s disk, partitions are what Kafka works with for the most part.

NOTE A single partition replica only exists on one broker and cannot be split
between brokers.

Figure 2.6 shows how each partition replica leader exists on a single Kafka broker
and cannot be divided smaller than that unit. Think back to our first example, the

kinaction_helloworld topic. If you’re looking
for reliability and want three copies of the data,
the topic itself is not one entity (or a single file)
that is copied; instead, it is the various partitions
that are replicated three times each.

NOTE The partition is even further bro-
ken up into segment files written on the
disk drive. We will cover these files’
details and their location when we talk
about brokers in later chapters. Although
segment files make up partitions, you will
likely not interact directly with them, and
this should be considered an internal
implementation detail.

One of the most important concepts to under-
stand at this point is the idea that one of the par-
tition copies (replicas) will be what is referred to
as a leader. For example, if you have a topic made
up of three partitions and a total of three copies
of each partition, every partition will have an

The topic kinaction_helloworld is made 
up of three partitions that will likely be
spread out among different brokers. 

Partition 0 Partition 1 Partition 2

Brokers

Topic: kinaction_helloworld

Figure 2.6 Partitions make up topics.



27Tour of Kafka
elected leader replica. That leader will be one of the copies of the partition, and the
other two (in this case, not shown in figure 2.6) will be followers, which update their
information from their partition replica leader [1]. Producers and consumers only
read or write from the leader replica of each partition it is assigned to during scenarios
where there are no exceptions or failures (also known as a “happy path” scenario). But
how does your producer or consumer know which partition replica is the leader? In
the event of distributed computing and random failures, that answer is often influ-
enced with help from ZooKeeper, the next stop on our tour. 

2.3.3 ZooKeeper usage

One of the oldest sources of feared added complexity in the Kafka ecosystem might be
that it uses ZooKeeper. Apache ZooKeeper (http://zookeeper.apache.org/) is a dis-
tributed store that provides discovery, configuration, and synchronization services in a
highly available way. In versions of Kafka since 0.9, changes were made in ZooKeeper
that allowed for a consumer to have the option not to store information about how far
it had consumed messages (called offsets). We will cover the importance of offsets in
later chapters. This reduced usage did not get rid of the need for consensus and coor-
dination in distributed systems, however.

As you already saw, our cluster for Kafka includes more than one broker (server). To
act as one correct application, these brokers need to not only communicate with each
other, they also need to reach an agreement. Agreeing on which one is the replica
leader of a partition is one example of the practical application of ZooKeeper within
the Kafka ecosystem. For a real-world comparison, most of us have seen examples of
clocks getting out of sync and how it becomes impossible to tell the correct time if
multiple clocks are showing different times. The agreement can be challenging across
separate brokers. Something is needed to keep Kafka coordinated and working in
both success and failure scenarios.

ZooKeeper removal
To simplify the requirements of running Kafka, there was a proposal for the replace-
ment of ZooKeeper with its own managed quorum [4]. Because this work was not yet
complete at the time of publication, with an early access release version 2.8.0, Zoo-
Keeper is still discussed in this work. Why is ZooKeeper still important?

This book covers version 2.7.1, and you are likely to see older versions in production
that will use ZooKeeper for a while, until the changes are fully implemented. Also,
although ZooKeeper will be replaced by the Kafka Raft Metadata mode (KRaft), the
concepts of needing coordination in a distributed system are still valid, and under-
standing the role that ZooKeeper plays currently will, hopefully, lay the foundation of
that understanding. Although Kafka provides fault tolerance and resilience, some-
thing has to provide coordination, and ZooKeeper enables that piece of the overall
system. We will not cover the internals of ZooKeeper in detail but will touch on how
Kafka uses it throughout the following chapters.

http://zookeeper.apache.org/


28 CHAPTER 2 Getting to know Kafka
 One thing to note for any production use case is that ZooKeeper will be an ensem-
ble, but we will run just one server in our local setup [5]. Figure 2.7 shows the Zoo-
Keeper cluster and how Kafka’s interaction is with the brokers and not the clients.
KIP-500 refers to this usage as the “current” cluster design [4].

Figure 2.7 ZooKeeper interaction

TIP If you are familiar with znodes or have experience with ZooKeeper
already, one good place to start looking at the interactions inside Kafka’s
source code is ZkUtils.scala.

Knowing the fundamentals of the preceding concepts increases our ability to make a
practical application with Kafka. Also, we will start to see how existing systems that use
Kafka are likely to interact to complete real use cases. 

2.3.4 Kafka’s high-level architecture

In general, core Kafka can be thought of as Scala application processes that run on a
Java virtual machine (JVM). Although noted for being able to handle millions of mes-
sages quickly, what is it about Kafka’s design that makes this possible? One of Kafka’s
keys is its usage of the operating system’s page cache (as shown in figure 2.8). By avoid-
ing caching in the JVM heap, the brokers can help prevent some of the issues that
large heaps may have (for example, long or frequent garbage collection pauses) [6].

 Another design consideration is the access pattern of data. When new messages
flood in, it is likely that the latest messages are of more interest to many consumers,
which can then be served from this cache. Serving from a page cache instead of a disk
is likely faster in most cases. Where there are exceptions, adding more RAM helps
more of your workload to fall into the page cache.

 As mentioned earlier, Kafka uses its own protocol [7]. Using an existing protocol
like AMQP (Advanced Message Queuing Protocol) was noted by Kafka’s creators as

ZooKeeper ensemble with three instances/processes

Interchange 
information 

Note that in recent client versions,
the only real interactions with ZooKeeper
are with message brokers. Clients no 
longer store offsets in ZooKeeper. 

Our specific 
cluster for 

Kafka In Action

Note: In our local setup, we only use 
one ZooKeeper process, not three.



29Tour of Kafka
having too large a part in the impacts on the actual implementation. For example,
new fields were added to the message header to implement the exactly-once semantics
of the 0.11 release. Also, that same release reworked the message format to compress
messages more effectively. The protocol could change and be specific to the needs of
the creators of Kafka.

 We are almost at the end of our tour. There’s just one more stop—brokers and the
commit log. 

 

2.3.5 The commit log

One of the core concepts to help you
master Kafka’s foundation is to under-
stand the commit log. The concept is
simple but powerful. This becomes
clearer as you understand the signifi-
cance of this design choice. To clarify,
the log we are talking about is not the
same as the log use case that involved
aggregating the output from loggers
from an application process such as the
LOGGER.error messages in Java.

 Figure 2.9 shows how simple the con-
cept of a commit log can be as messages
are added over time [8]. Although there
are more mechanics that take place,
such as what happens when a log file
needs to come back from a broker fail-
ure, this basic concept is a crucial part of
understanding Kafka. The log used in
Kafka is not just a detail that is hidden in

No caching in
the JVM heap!

Kafka can process millions
of messages quickly because
it relies on the page cache
instead of the JVM heap.

Kafka 
application 

process

Stored in
RAM

Transparent cache
from disk

Hard drive
Figure 2.8 The operating 
system’s page cache

Here you see messages
being received and added.

As each new message comes
in, it’s added to the end of the log.

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

6 6

7

Example of adding two messages (7 and 8) to a 
topic, such as kinaction_alert (see chapter 4)

Figure 2.9 Commit log



30 CHAPTER 2 Getting to know Kafka
other systems that might use something similar (like a write-ahead log for a database).
It is front and center, and its users employ offsets to know where they are in that log.

 What makes the commit log special is its append-only nature in which events are
always added to the end. The persistence as a log itself for storage is a major part of
what separates Kafka from other message brokers. Reading a message does not
remove it from the system or exclude it from other consumers.

 One common question then becomes, how long can I retain data in Kafka? In var-
ious companies today, it is not rare to see that after the data in Kafka commit logs hits
a configurable size or time retention period, the data is often moved into a perma-
nent store. However, this is a matter of how much disk space you need and your pro-
cessing workflow. The New York Times has a single partition that holds less than 100 GB
[9]. Kafka is made to keep its performance fast even while keeping its messages.
Retention details will be covered when we talk about brokers in chapter 6. For now,
just understand that log data retention can be controlled by age or size using configu-
ration properties. 

2.4 Various source code packages and what they do
Kafka is often mentioned in the titles of various APIs. There are also certain compo-
nents that are described as standalone products. We are going to look at some of these
to see what options we have. The packages in the following sections are APIs found in
the same source code repository as Kafka core, except for ksqlDB [10].

2.4.1 Kafka Streams

Kafka Streams has grabbed a lot of attention compared to core Kafka itself. This API is
found in the Kafka source code project’s streams directory and is mostly written in
Java. One of the sweet spots for Kafka Streams is that no separate processing cluster is
needed. It is meant to be a lightweight library to use in your application. You aren’t
required to have cluster or resource management software like Apache Hadoop to
run your workloads. However, it still has powerful features, including local state with
fault tolerance, one-at-a-time message processing, and exactly-once support [10]. The
more you move throughout this book, the more you will understand the foundations
of how the Kafka Streams API uses the existing core of Kafka to do some exciting and
powerful work.

 This API was made to ensure that creating streaming applications is as easy as pos-
sible, and it provides a fluent API, similar to Java 8’s Stream API (also referred to as a
domain-specific language, or DSL). Kafka Streams takes the core parts of Kafka and
works on top of those smaller pieces by adding stateful processing and distributed
joins, for example, without much more complexity or overhead [10].

 Microservice designs are also being influenced by this API. Instead of data being
isolated in various applications, it is pulled into applications that can use data
independently. Figure 2.10 shows a before and after view of using Kafka to



31Various source code packages and what they do
implement a microservice system (see the YouTube video, “Microservices Explained
by Confluent” [11]).

 Although the top part of figure 2.10 (without Kafka) relies on each application
talking directly to other applications at multiple interfaces, the bottom shows an
approach that uses Kafka. Using Kafka not only exposes the data to all applications
without some service munging it first, but it provides a single interface for all applica-
tions to consume. The benefit of not being tied to each application directly shows how
Kafka can help loosen dependencies between specific applications. 

Figure 2.10 Microservice design

2.4.2 Kafka Connect

Kafka Connect is found in the core Kafka Connect folder and is also mostly written in
Java. This framework was created to make integrations with other systems easier [10].
In many ways, it can be thought to help replace other tools such as the Apache project
Gobblin™ and Apache Flume. If you are familiar with Flume, some of the terms used
will likely seem familiar.

 Source connectors are used to import data from a source into Kafka. For example,
if we want to move data from MySQL® tables to Kafka’s topics, we would use a Connect
source to produce those messages into Kafka. On the other hand, sink connectors are
used to export data from Kafka into different systems. For example, if we want messages

Microservices process 
and hold the data.

Kafka

Microservices leveraging Kafka

Microservice interactions

kinaction_ServiceBkinaction_ServiceA

kinaction_ServiceC

kinaction_ServiceA

kinaction_ServiceD

kinaction_ServiceB

kinaction_ServiceC kinaction_ServiceD

Using Kafka Streams, you can share 
data, while processing is independent. 



32 CHAPTER 2 Getting to know Kafka
in some topic to be maintained long term, we would use a sink connector to consume
those messages from the topic and place them somewhere like cloud storage. Figure
2.11 shows this data flow from the database to Connect and then finally to a storage
location in the cloud similar to a use case talked about in the article “The Simplest Use-
ful Kafka Connect Data Pipeline in the World…or Thereabouts – Part 1” [12].

As a note, a direct replacement of Apache Flume features is probably not the inten-
tion or primary goal of Kafka Connect. Kafka Connect does not have an agent per
Kafka node setup and is designed to integrate well with stream-processing frameworks
to copy data. Overall, Kafka Connect is an excellent choice for making quick and sim-
ple data pipelines that tie together common systems. 

2.4.3 AdminClient package

Kafka introduced the AdminClient API recently. Before this API, scripts and other
programs that wanted to perform specific administrative actions would either have to
run shell scripts (which Kafka provides) or invoke internal classes often used by those
shell scripts. This API is part of the kafka-clients.jar file, which is a different JAR than
the other APIs discussed previously. This interface is a great tool that will come in
handy the more involved we become with Kafka’s administration [10]. This tool also
uses a similar configuration that producers and consumers use. The source code can
be found in the org/apache/kafka/clients/admin package. 

2.4.4 ksqlDB

In late 2017, Confluent released a developer preview of a new SQL engine for Kafka
that was called KSQL before being renamed to ksqlDB. This allowed developers and
data analysts who used mostly SQL for data analysis to leverage streams by using the
interface they have known for years. Although the syntax might be somewhat familiar,
there are still significant differences.

A source connector 
streams table updates 
to Kafka topics.

MySQL
Connect is using a producer 
and consumer to move data.

Our alert trend data in 
chapter 3 might be a 

reason to look at this flow.

Connect

A sink connector exports data from 
Kafka topics to storage (maybe in the 
cloud) for later use or offline analysis.

Cloud 
storage

Figure 2.11 Connect use case



33Confluent clients

’s 
t 
 Most queries that relational database users are familiar with involve on-demand or
one-time queries that include lookups. The mindset shift to a continuous query over a
data stream is a significant shift and a new viewpoint for developers. As with the Kafka
Streams API, ksqlDB is making it easier to use the power of continuous data flows.
Although the interface for data engineers will be a familiar SQL-like grammar, the
idea that queries are continuously running and updating is where use cases like dash-
boards on service outages would likely replace applications that once used point-in-
time SELECT statements. 

2.5 Confluent clients
Due to Kafka’s popularity, the choice of which language to interact with Kafka usually
isn’t a problem. For our exercises and examples, we will use the Java clients created by
the core Kafka project itself. There are many other clients supported by Confluent
as well [13].

 Since all clients are not the same feature-wise, Confluent provides a matrix of
supported features by programming language at the following site to help you out:
https://docs.confluent.io/ current/clients/index.html. As a side note, taking a look at
other open source clients can help you develop your own client or even help you learn
a new language. 

 Because using a client is the most likely way you will interact with Kafka in your
applications, let’s look at using the Java client (listing 2.9). We will do the same
produce-and-consume process that we did when using the command line earlier. With
a bit of additional boilerplate code (not listed here to focus on the Kafka-specific parts
only), you can run this code in a Java main method to produce a message.

public class HelloWorldProducer {
public static void main(String[] args) {

Properties kaProperties =
new Properties();

kaProperties.put("bootstrap.servers",
"localhost:9092,localhost:9093,localhost:9094");

kaProperties.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

kaProperties.put("value.serializer",
"org.apache.kafka.common.serialization.StringSerializer");

try (Producer<String, String> producer =
new KafkaProducer<>(kaProperties))

ProducerRecord<String, String> producerRecord =
new ProducerRecord<>("kinaction_helloworld",

Listing 2.9 Java client producer

The producer takes a map 
of name-value items to 
configure its various options.

This property can take 
a list of Kafka brokers.

Tells the message
key and value wha
format to serialize

Creates a producer instance. 
Producers implement the 
closable interface that’s 
closed automatically by the 
Java runtime.

https://docs.confluent.io/ current/clients/index.html


34 CHAPTER 2 Getting to know Kafka
null, "hello world again!");

producer.send(producerRecord);
}

}
}

The code in listing 2.9 is a simple producer. The first step to create a producer
involves setting up configuration properties. The properties are set in a way that any-
one who has used a map will be comfortable using.

 The bootstrap.servers parameter is one essential configuration item, and its pur-
pose may not be apparent at first glance. This is a list of your Kafka brokers. The list does
not have to be every server you have, though, because after the client connects, it will
find the information about the rest of the cluster’s brokers and not depend on that list.

 The key.serializer and value.serializer parameters are also something to
take note of in development. We need to provide a class that will serialize the data as it
moves into Kafka. Keys and values do not have to use the same serializer.

 Figure 2.12 displays the flow that happens when a producer sends a message. The
producer we created takes in the configuration properties as an argument in the con-
structor we used. With this producer, we can now send messages. The ProducerRecord
contains the actual input that we want to send. In our examples, kinaction_helloworld
is the name of the topic that we sent. The next fields are the message key followed by
the message value. We will discuss keys more in chapter 4, but it is enough to know that
these can, indeed, be a null value, which makes our current example less complicated.

Represents 
our message

Sends the record 
to the Kafka broker

Producer record sent to topic 
kinaction_helloworld

The call to send has already figured out 
which partition the producer record will be written to, 
although it is not defined in your client code explicitly. 
In this example, it is assigned to partition 1.

Kafka

Partition 1 Partition 2Partition 0

JVM

Thread-safe 
Kafka producer

Send Key Value

Null hello world again!

Figure 2.12
Producer flow



35Confluent clients
The message we send as the last argument is something different from the first mes-
sage we sent with our console producer. Do you know why we want to make sure the
message is different? We are working with the same topic with both producers, and
because we have a new consumer, we should be retrieving the old message we pro-
duced before in our Java client-initiated message. Once our message is ready, we asyn-
chronously send it using the producer. In this case, because we are only sending one
message, we close the producer, which waits until previously sent requests complete
and then shuts down gracefully.

 Before running these Java client examples, we’ll need to make sure we have the
entry in the following listing in our pom.xml file [14]. We will use Apache Maven™ in
all of the examples in this book.

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.7.1</version>

</dependency>

Now that we have created a new message, let’s use our Java client as in the following
listing to create a consumer that can see the message. We can run the code inside a
Java main method and terminate the program after we are done reading messages.

public class HelloWorldConsumer {

final static Logger log =
LoggerFactory.getLogger(HelloWorldConsumer.class);

private volatile boolean keepConsuming = true;

public static void main(String[] args) {
Properties kaProperties = new Properties();
kaProperties.put("bootstrap.servers",

"localhost:9092,localhost:9093,localhost:9094");
kaProperties.put("group.id", "kinaction_helloconsumer");
kaProperties.put("enable.auto.commit", "true");
kaProperties.put("auto.commit.interval.ms", "1000");
kaProperties.put("key.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");
kaProperties.put("value.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");

HelloWorldConsumer helloWorldConsumer = new HelloWorldConsumer();
helloWorldConsumer.consume(kaProperties);
Runtime.getRuntime().

addShutdownHook(new Thread(helloWorldConsumer::shutdown));
}

Listing 2.10 Java client POM entry

Listing 2.11 Java client consumer

Properties are set the 
same way as producers.



36 CHAPTER 2 Getting to know Kafka
private void consume(Properties kaProperties) {
try (KafkaConsumer<String, String> consumer =

new KafkaConsumer<>(kaProperties)) {
consumer.subscribe(

List.of(
"kinaction_helloworld"

)
);

while (keepConsuming) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofMillis(250));

for (ConsumerRecord<String, String> record :
records) {
log.info("kinaction_info offset = {}, kinaction_value = {}",

record.offset(), record.value());
}

}
}

}

private void shutdown() {
keepConsuming = false;

}
}

One thing that jumps out is that we have an infinite loop in listing 2.11. It seems weird
to do that on purpose, but we want to handle an infinite stream of data. The con-
sumer is similar to the producer in taking a map of properties to create a consumer.
However, unlike the producer, the Java consumer client is not thread safe [15]. We
will need to take that into account as we scale past one consumer in later sections. Our
code is responsible for ensuring that any access is synchronized: one simple option is
having only one consumer per Java thread. Also, whereas we told the producer where
to send the message, we now have the consumer subscribe to the topics it wants. A
subscribe command can subscribe to more than one topic at a time.

 One of the most important sections to note in listing 2.11 is the poll call on the con-
sumer. This is what is actively trying to bring messages to our application. No messages,
one message, or many messages can all come back with a single poll, so it is important
to note that our logic should account for more than one result with each poll call.

 Finally, we can Ctrl-C the consumer program when we retrieve the test messages and
be done for now. As a note, these examples rely on many configuration properties that
are enabled by default. We will have a chance to dig into them more in later chapters. 

2.6 Stream processing and terminology
We are not going to challenge distributed systems theories or certain definitions that
could have various meanings, but rather look at how Kafka works. As you start to think
of applying Kafka to your work, you will be presented with the following terms and
can, hopefully, use the following descriptions as a lens through which to view your
processing mindset.

The consumer tells Kafka what 
topics it’s interested in.

Polls for new messages 
as they come in

To see the result, prints
each record that we

consume to the console



37Stream processing and terminology
Figure 2.13 Kafka overview

Figure 2.13 provides a high-level view of what Kafka does. Kafka has many moving
parts that depend on data coming into and out of its core to provide value to its users.
Producers send data into Kafka, which works as a distributed system for reliability and
scale, with logs, which are the basis for storage. Once data is inside the Kafka ecosys-
tem, consumers can help users utilize that data in their other applications and use
cases. Our brokers make up the cluster and coordinate with a ZooKeeper cluster to
maintain metadata. Because Kafka stores data on disk, the ability to replay data in case
of an application failure is also part of Kafka’s feature set. These attributes allow Kafka
to become the foundation of powerful stream-processing applications.

2.6.1 Stream processing

Stream processing seems to have various definitions throughout various projects. The
core principle of streaming data is that data will keep arriving and will not end [16].
Also, your code should be processing this data all the time and not wait for a request

Messages can be replayed
from the beginning of the
log and consumed again.

Message brokers (cluster) +
Expanded

One of the brokers
will be a controller.

Producer clients

Data in
(to partition)

Examples
• Databases
• IOT events
• Browser/user web events
• Logs

JVM application-message broker

Kafka core

Flushed to disk

• Logs are append only.
• New entries added to the end.
• No database storage, just disk.
• Each log is made up of entries
  labeled with offset numbers.

OS page cache (memory)

ZooKeeper ensemble

Consumer clients

Data out
(from partition

Replay

Examples
• HDFS
• S3
• Web applications
• Metrics
• Analytics engines

Topic

Partition 0

0 1 2 3 4

ZooKeeper used for distributed 
configuration and management



38 CHAPTER 2 Getting to know Kafka
or time frame with which to run. As we saw earlier, an infinite loop in our code hinted
at this constant flow of data that does not have a defined endpoint.

 This approach does not batch data and then process it in groups. The idea of a
nightly or monthly run is also not a part of this workflow. If you think of a never-ending
waterfall, the same principles apply. Sometimes there is a massive amount of data to
transit and sometimes not that much, but it continuously flows between destinations.

 Figure 2.14 shows that the Kafka Streams API depends on core Kafka. While event
messages continue to come into the cluster, a consumer application can provide the
end user with updated information continuously rather than wait for a query to pull a
static snapshot of the events. No more refreshing the web page after 5 minutes for
users to see the latest events!

2.6.2 What exactly-once means

One of the most exciting and maybe most discussed features in Kafka is its exactly-
once semantics. This book will not discuss the theory behind those views; however, we
will touch on what these semantics mean for Kafka’s everyday usage.

 One important thing to note is that the easiest way to maintain exactly-once is to
stay within Kafka’s walls (and topics). Having a closed system that can be completed as
a transaction is why using the Streams API is one of the easiest paths to exactly-once.
Various Kafka Connect connectors also support exactly-once and are great examples
of bringing data out of Kafka because it won’t always be the final endpoint for all data
in every scenario. 

Summary
 Messages represent your data in Kafka. Kafka’s cluster of brokers handles this

data and interacts with outside systems and clients.

Current data is shown, which 
is not a query from static data. 

As events keep coming
into Kafka, the Streams
API continually processes 
the data.

Kafka
Streams

Kafka

Event messages

Kafka topics and 
producers/consumers are 

leveraged by the Streams API.

In chapter 5, when 
we discuss alerts, 

this updated view would 
help us see the latest alerts.

End user view

www.

Figure 2.14
Stream process



39References
 Kafka’s use of a commit log helps in understanding the system overall.
 Messages appended to the end of a log frame how data is stored and how it can

be used again. By being able to start at the beginning of the log, applications
can reprocess data in a specific order to fulfill different use cases.

 Producers are clients that help move data into the Kafka ecosystem. Populating
existing information from other data sources like databases into Kafka can help
expose data that was once siloed in systems that provided a data interface for
other applications.

 Consumer clients retrieve messages from Kafka. Many consumers can read the
same data at the same time. The ability for separate consumers to start reading
at various positions also shows the flexibility of consumption possible from
Kafka topics.

 Continuously flowing data between destinations with Kafka can help us rede-
sign systems that used to be limited to batch or time-delayed workflows.

References
1 “Main Concepts and Terminology.” Apache Software Foundation (n.d.). https://

kafka.apache.org/documentation.html#intro_concepts_and_terms (accessed
May 22, 2019).

2 “Apache Kafka Quickstart.” Apache Software Foundation (2017). https://kafka
.apache.org/quickstart (accessed July 15, 2020).

3 B. Kernighan and D. Ritchie. The C Programming Language, 1st ed. Englewood
Cliffs, NJ, USA: Prentice Hall, 1978.

4 KIP-500: “Replace ZooKeeper with a Self-Managed Metadata Quorum.” Wiki for
Apache Kafka. Apache Software Foundation (July 09, 2020). https://cwiki
.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+
with+a+Self-Managed+Metadata+Quorum (accessed August 22, 2020).

5 “ZooKeeper Administrator’s Guide.” Apache Software Foundation. (n.d.).
https://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html (accessed
June 10, 2020).

6 “Kafka Design: Persistence.” Confluent documentation (n.d.). https://docs.con-
fluent.io/platform/current/kafka/design.html#persistence (accessed November
19, 2020).

7 “A Guide To The Kafka Protocol: Some Common Philosophical Questions.” Wiki
for Apache Kafka. Apache Software Foundation (n.d.). https://cwiki.apache.org/
confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToThe
KafkaProtocol-SomeCommonPhilosophicalQuestions (accessed August 21,
2019).

8 “Documentation: Topics and Logs.” Apache Software Foundation (n.d.). https://
kafka.apache.org/23/documentation.html#intro_topics (accessed May 25,
2020).

https://kafka.apache.org/documentation.html#intro_concepts_and_terms
https://kafka.apache.org/documentation.html#intro_concepts_and_terms
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html
https://docs.confluent.io/platform/current/kafka/design.html#persistence
https://docs.confluent.io/platform/current/kafka/design.html#persistence
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-SomeCommonPhilosophicalQuestions
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-SomeCommonPhilosophicalQuestions
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-SomeCommonPhilosophicalQuestions
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol#AGuideToTheKafkaProtocol-SomeCommonPhilosophicalQuestions
https://kafka.apache.org/23/documentation.html#intro_topics
https://kafka.apache.org/23/documentation.html#intro_topics


40 CHAPTER 2 Getting to know Kafka
9 B. Svingen. “Publishing with Apache Kafka at The New York Times.” Confluent
blog (September 6, 2017). https://www.confluent.io/blog/publishing-apache
-kafka-new-york-times/ (accessed September 25, 2018).

10 “Documentation: Kafka APIs.” Apache Software Foundation (n.d.). https://
kafka.apache.org/documentation.html#intro_apis (accessed June 15, 2021).

11 “Microservices Explained by Confluent.” Confluent. Web presentation (August
23, 2017). https://youtu.be/aWI7iU36qv0 (accessed August 9, 2021).

12 R. Moffatt. “The Simplest Useful Kafka Connect Data Pipeline in the World…or
Thereabouts – Part 1.” Confluent blog (August 11, 2017). https://www.confluent
.io/blog/simplest-useful-kafka-connect-data-pipeline-world-thereabouts-part-1/
(accessed December 17, 2017).

13 “Kafka Clients.” Confluent documentation (n.d.). https://docs.confluent.io/
current/clients/index.html (accessed June 15, 2020).

14 “Kafka Java Client.” Confluent documentation (n.d.). https://docs.confluent
.io/clients-kafka-java/current/overview.html (accessed June 21, 2021).

15 “Class KafkaConsumer<K,V>.” Apache Software Foundation (November 09,
2019). https://kafka.apache.org/24/javadoc/org/apache/kafka/clients/con
sumer/KafkaConsumer.html (accessed November 20, 2019).

16 “Streams Concepts.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/streams/concepts.html (accessed June 17, 2020).

https://docs.confluent.io/ current/clients/index.html
https://docs.confluent.io/ current/clients/index.html
https://docs.confluent.io/ current/clients/index.html
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://kafka.apache.org/documentation.html#intro_apis
https://kafka.apache.org/documentation.html#intro_apis
https://youtu.be/aWI7iU36qv0
https://docs.confluent.io/clients-kafka-java/current/overview.html
https://docs.confluent.io/clients-kafka-java/current/overview.html
https://docs.confluent.io/clients-kafka-java/current/overview.html
https://kafka.apache.org/24/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/24/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/24/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html
https://docs.confluent.io/platform/current/streams/concepts.html
https://docs.confluent.io/platform/current/streams/concepts.html
https://docs.confluent.io/platform/current/streams/concepts.html
https://www.confluent.io/blog/simplest-useful-kafka-connect-data-pipeline-world-thereabouts-part-1/
https://www.confluent.io/blog/simplest-useful-kafka-connect-data-pipeline-world-thereabouts-part-1/
https://www.confluent.io/blog/simplest-useful-kafka-connect-data-pipeline-world-thereabouts-part-1/


Part 2

Applying Kafka

In part 2, we will build on our mental model of Kafka that we developed in
part 1 by putting our knowledge into action. We will look at the foundations of
Kafka and start with the fundamental subjects of producer and consumer clients.
Even if you only plan to develop Kafka Streams or ksqlDB applications, part 2 is
still worth your time. The core pieces discussed in this part will underlay most
higher-level libraries and abstractions in the Kafka ecosystem:

 In chapter 3, we begin designing a sample project and learn how to apply
Kafka to it. While schemas are covered in more detail in chapter 11, our
project requirements show this need early on in our data project designs.

 In chapter 4, we go into detail about how we can use producers to move
data into Kafka. We discuss important configuration options and their
impact on our data sources.

 In chapter 5, we dig into the consumption of data from Kafka by using
consumers. Parallels and differences are drawn between consumer clients
and the producers from chapter 4.

 In chapter 6, we start to look at the brokers’ role in our clusters. This
chapter covers roles for both leaders and controllers as well as their rela-
tionship to our clients.

 In chapter 7, we look at how topics and partitions fit together to provide
the data we depend on. Compacted topics are also introduced.

 In chapter 8, we explore tools and architectures that are options for han-
dling data that we need to retain or reprocess.

 In chapter 9, which finishes part 2, we review essential logs and metrics to
help with administrative duties to keep our clusters healthy.

Following part 2, you should have a solid understanding of the core pieces of
Kafka and how to use these pieces in your use cases. Let’s get started!



42 CHAPTER 



Designing a Kafka project
In our previous chapter, we saw how we can work with Kafka from the command line
and how to use a Java client. Now, we will expand on those first concepts and look at
designing various solutions with Kafka. We will discuss some questions to consider as
we lay out a strategy for the example project we’ll start in this chapter. As we begin
to develop our solutions, keep in mind that, like most projects, we might make
minor changes along the way and are just looking for a place to jump in and start
developing. After reading this chapter, you will be well on your way to solving real-
world use cases while producing a design to facilitate your further exploration of
Kafka in the rest of this book. Let’s start on this exciting learning path!

This chapters covers
 Designing a real-world Kafka project

 Determining which data format to use

 Existing issues impacting data usage

 Deciding when data transformation takes place

 How Kafka Connect helps us start a data-
streaming path
43



44 CHAPTER 3 Designing a Kafka project
3.1 Designing a Kafka project
Although new companies and projects can use Kafka as they get started, that is not the
case for all Kafka adopters. For those of us who have been in enterprise environments
or worked with legacy systems (and anything over five years old is probably considered
legacy these days), in reality, starting from scratch is not a luxury we always have. How-
ever, one benefit of dealing with existing architectures is that it gives us a list of pain
points, that we can address. The contrast also helps us to highlight the shift in think-
ing about the data in our work. In this chapter, we will work on a project for a com-
pany that is ready to shift from their current way of handling data and apply this new
hammer named Kafka.

3.1.1 Taking over an existing data architecture

Let’s look at some background to give us our fictional example inspired by Kafka’s
ever-growing usage. One topic by Confluent mentioned in chapter 1 (https://
www.confluent.io/use-case/internet-of-things-iot/) and also an excellent article by
Janakiram MSV, titled “Apache Kafka: The Cornerstone of an Internet-of-Things Data
Platform,” includes Kafka’s use of sensors [1]. Using the topic of sensors as a use case,
we will dig into a fictional example project.

 Our new fictional consulting company has just won a contract to help re-architect
a plant that works on e-bikes and manages them remotely. Sensors are placed
throughout the bike that continuously provide events about the condition and status
of the internal equipment they are monitoring. However, so many events are gener-
ated that the current system ignores most of the messages. We have been asked to help
the site owners unlock the potential in that data for their various applications to uti-
lize. Besides this, our current data includes traditional relational database systems that
are large and clustered. With so many sensors and an existing database, how might we
create our new Kafka-based architecture without impacting manufacturing?

3.1.2 A first change

One of the best ways to start our task is probably not with a big-bang approach—all
our data does not have to move into Kafka at once. If we use a database today and
want to kick the tires on the streaming data tomorrow, one of the easiest on-ramps
starts with Kafka Connect. Although it can handle production loads, it does not have
to out of the gate. We will take one database table and start our new architecture while
letting the existing applications run for the time being. But first, let’s get into some
examples to gain familiarity with Kafka Connect. 

3.1.3 Built-in features

The purpose of Kafka Connect is to help move data into or out of Kafka without writ-
ing our own producers and consumers. Connect is a framework that is already part of
Kafka, which makes it simple to use previously built pieces to start your streaming
work. These pieces are called connectors, and they were developed to work reliably with
other data sources [2].

https://www.confluent.io/use-case/internet-of-things-iot/
https://www.confluent.io/use-case/internet-of-things-iot/


45Designing a Kafka project
 If you recall from chapter 2, some of the producer and consumer Java client real-
world code that we used as examples showed how Connect abstracts those concepts
away by using them internally with Connect. One of the easiest ways to start is by look-
ing at how Connect can take a typical application log file and move it into a Kafka
topic. The easiest option to run and test Connect on your local machine is standalone
mode. Scaling can come later if we like what we can do in standalone mode! In the
folder where you installed Kafka, locate the following files under the config directory:

 connect-standalone.properties
 connect-file-source.properties

Peeking inside the connect-standalone.properties file, you should see some configura-
tion keys and values that should look familiar from some of the properties we used to
make our own Java clients in chapter 2. Knowing the underlying producers and con-
sumer clients can help us understand how Connect uses that same configuration to
complete its work by listing items such as bootstrap.servers.

 In our example, we’ll take data from one data source and put that into Kafka so that
we can treat data as being sourced from a Kafka file. Using the file connect-file-
source.properties, included with your Kafka installation as an example template, let’s
create a file called alert-source.properties and place the text from listing 3.1 inside as the
contents of our file. This file defines the configurations that we need to set up the file
alert.txt and to specify the data be sent to the specific topic kinaction_alert_connect.
Note that this example is following steps similar to the excellent Connect Quickstart
guide at https://docs.confluent.io/3.1.2/connect/quickstart.html if you need more
reference material. To learn even more detailed information, we recommend watching
the excellent presentation of Randall Hauch (Apache Kafka committer and PMC) from
the Kafka Summit (San Francisco, 2018) located at http://mng.bz/8WeD.

 With configurations (and not code), we can get data into Kafka from any file.
Because reading from a file is a common task, we can use Connect’s prebuilt classes.
In this case, the class is FileStreamSource [2]. For the following listing, let’s pretend
that we have an application that sends alerts to a text file.

name=alert-source
connector.class=FileStreamSource
tasks.max=1
file=alert.txt
topic=kinaction_alert_connect

The value of the topic property is significant. We will use it later to verify that mes-
sages are pulled from a file into the specific kinaction_alert_connect topic. The file
alert.txt is monitored for changes as new messages flow in. And finally, we chose 1 for
the value of tasks.max because we only really need one task for our connector and, in
this example, we are not worried about parallelism.

Listing 3.1 Configuring Connect for a file source

Specifies the class that 
interacts with our source file

For standalone mode, 1 is a 
valid value to test our setup.Monitors this 

file for changes
Names the topic where

this data will be sent

https://docs.confluent.io/3.1.2/connect/quickstart.html
http://mng.bz/8WeD


46 CHAPTER 3 Designing a Kafka project
NOTE If you are running ZooKeeper and Kafka locally, make sure that you
have your own Kafka brokers still running as part of this exercise (in case you
shut them down after the previous chapter).

Now that we have done the needed configuration, we need to start Connect and send
in our configurations. We can start the Connect process by invoking the shell script
connect-standalone.sh, including our custom configuration file as a parameter
to that script. To start Connect in a terminal, run the command in the following listing
and leave it running [2].

bin/connect-standalone.sh config/connect-standalone.properties \
alert-source.properties

Moving to another terminal window, create a text file named alert.txt in the directory
in which we started the Connect service and add a couple of lines of text to this file
using your text editor; the text can be anything you want. Now let’s use the console-
consumer command to verify that Connect is doing its job. For that, we’ll open
another terminal window and consume from the kinaction_alert_connect topic,
using the following listing as an example. Connect should ingest this file’s contents
and produce the data into Kafka [2].

bin/kafka-console-consumer.sh \
--bootstrap-server localhost:9094 \
--topic kinaction_alert_connect --from-beginning

Before moving to another connector type, let’s quickly talk about the sink connector
and how it carries Kafka’s messages back out to another file. Because the destination
(or sink) for this data is another file, we want to look at the connect-file-sink.proper-
ties file. A small change is shown in listing 3.4 as the new outcome is written to a file
rather than read from a file as we did previously. We’ll declare FileStreamSink to
define a new role as a sink. The topic kinaction_alert_connect is the source of our
data in this scenario. Placing the text from the following listing in a new file called
alert-sink.properties sets up our new configuration [2].

name=alert-sink
connector.class=FileStreamSink
tasks.max=1
file=alert-sink.txt
topics=kinaction_alert_connect

Listing 3.2 Starting Connect for a file source

Listing 3.3 Confirming file messages made it into Kafka

Listing 3.4 Configuring Connect for a file source and a sink

An out-of-the-box class to which we delegate 
the work of interacting with our file

For standalone mode, 1 is a 
valid value to test our setup.

The destination file for 
any messages that make 
it into our Kafka topic

Names the topic that
the data comes from



47Designing a Kafka project
If the Connect instance is still running in a terminal, we’ll need to close that terminal
window or stop the process by pressing Ctrl-C. Then we’ll restart it with the file-source
and file-sink property files. Listing 3.5 shows how to restart Connect with both our cus-
tom alert source and sink properties [2]. The end result should be data flowing from
a file into Kafka and back out to a separate destination.

bin/connect-standalone.sh config/connect-standalone.properties \
alert-source.properties alert-sink.properties

To confirm that Connect is using our new sink, open the sink file we used in our con-
figuration, alert-sink.txt, and verify that you can see the messages that were in the
source file and that these were sent to the Kafka topic. 

3.1.4 Data for our invoices

Let’s look at another requirement, dealing with our invoices for bike orders. Connect
easily lets those with in-depth knowledge of creating custom connectors share them
with others (to help those of us who may not be experts in these systems). Now that we
have used a connector (listings 3.4 and 3.5), it should be relatively simple to integrate
a different connector because Connect standardizes interaction with other systems.

 To use Connect in our manufacturing example, let’s look at applying an existing
source connector that streams table updates from a local database to a Kafka topic.
Again, our goal is not to change the entire data processing architecture at once.
Instead, we’ll show how we can bring in updates from a table-based database applica-
tion and develop our new application in parallel while letting the other system exist
as is. Note that this example is following steps similar to the guide at https://
docs.confluent.io/kafka-connect-jdbc/current/source-connector/index.html, if you
need more reference material.

 Our first step is to set up a database for our local examples. For ease of use and to
get started quickly, we’ll use connectors from Confluent for SQLite. If you can run
sqlite3 in your terminal and get a prompt, then you are already set. Otherwise, use
your favorite package manager or installer to get a version of SQLite that works on
your operating system.

TIP Check out the Commands.md file in the source code for this chapter to
find installation instructions for the Confluent command line interface (CLI)
as well as the JDBC connector using confluent-hub. The rest of the examples
reference commands in the Confluent-installed directory only and not in the
Kafka-installed directory.

To create a database, we will run sqlite3 kafkatest.db from the command line. In
this database, we will then run the code in listing 3.6 to create the invoices table and to
insert some test data in the table. As we design our table, it is helpful to think of how we

Listing 3.5 Starting Connect for a file source and a sink

https://docs.confluent.io/kafka-connect-jdbc/current/source-connector/index.html
https://docs.confluent.io/kafka-connect-jdbc/current/source-connector/index.html


48 CHAPTER 3 Designing a Kafka project
will capture changes into Kafka. Most use cases will not require us to capture the entire
database but only changes after the initial load. A timestamp, sequence number, or ID
can help us determine which data has changed and needs to be sent to Kafka. In the
following listing, the ID or modified columns could be our guide for Connect to let
Kafka know which data was modified in the table [3].

CREATE TABLE invoices(
id INT PRIMARY KEY NOT NULL,
title TEXT NOT NULL,
details CHAR(50),
billedamt REAL,
modified TIMESTAMP DEFAULT (STRFTIME('%s', 'now')) NOT NULL

);

INSERT INTO invoices (id,title,details,billedamt) \
VALUES (1, 'book', 'Franz Kafka', 500.00 );

By creating a file in the location etc/kafka-connect-jdbc/kafkatest-sqlite.properties,
and after making slight changes to our database table name, we can see how additional
inserts and updates to the rows cause messages to be sent into Kafka. Refer to the source
code for chapter 3 in the Git repository to find more detailed setup instructions for
finding and creating the JDBC connector files in the Confluent installation directory.
It is not part of the Apache Kafka distribution like the file connector. Also, if the mod-
ified timestamp format gives an error, make sure to check out other options in the
source code with this chapter.

 Now that we have a new configuration, we need to start Connect to pass it kafka-
test-sqlite.properties. 

confluent-hub install confluentinc/kafka-connect-jdbc:10.2.0
confluent local services connect start 
...
# See Commands.md for other steps
confluent local services connect connector config jdbc-source 
--config etc/kafka-connect-jdbc/kafkatest-sqlite.properties

Listing 3.7 shows how you can launch Connect with the Confluent CLI tool. The stand-
alone connnect script, connect-standalone.sh, could have also been used [3].
Although the power of Kafka Connect is great for moving existing database tables to
Kafka, our sensors (which are not database backed) are going to require a different
technique.

Listing 3.6 Creating the invoices table

Listing 3.7 Starting Connect for a database table source

Creates an invoices table

Sets an incremental ID so Connect
knows which entries to capture

Inserts test data 
into our table

We are using our new
database properties file.



49Sensor event design
3.2 Sensor event design
Because there are no existing connectors for our state-of-the-art sensors, we can
directly interact with their event system through custom producers. The ability to
hook into and write our producers to send data into Kafka is where we will look at the
requirements in the following sections.

 Figure 3.1 shows that there is a critical path of stages that need to work together.
One of the steps is an additional quality check sensor. This sensor can be skipped to
avoid processing delays if it goes down for maintenance or failure. Sensors are
attached to all of the bikes’ internal steps (represented by gears in figure 3.1), and
they send messages to the clustered database machines that exist in the current sys-
tem. There is also an administration console used remotely to update and run com-
mands against the sensors already built into the system.

Figure 3.1 Factory setup

3.2.1 Existing issues

Let’s start by discussing some of the issues that have come up in most of our previous
use cases. The need for data to exist and to be available to users is a deep and chal-
lenging problem. Let’s look at how we can deal with two of those challenges: data silos
and recoverability.

Currently, we have the sensors send their
events for storage to a clustered database
solution. This is one of the main parts of
our data design that we want to change!

In the line, each gear
represents a major step
in our process. Each step
has a sensor attached.

We can dismiss this quality 
check in the line.

Critical path

>–

An admin console issues 
commands to the sensors. 



50 CHAPTER 3 Designing a Kafka project
DEALING WITH DATA SILOS

In our factory, the data and the processing are owned by an application. If others want
to use that data, they would need to talk to the application owner. And what are the
chances that the data is provided in a format that can be easily processed? Or what if it
does not provide the data at all?

 The shift from traditional “data thinking” makes the data available to everyone in
its raw source. If you have access to the data as it comes in, you do not have to worry
about the application API exposing it to specific formats or after custom transforma-
tions. And what if the application providing the API parses the original data incor-
rectly? To untangle that mess might take a while if we have to recreate the data from
changes to the original data source. 

RECOVERABILITY

One of the excellent perks of a distributed system like Kafka is that failure is an
expected condition: it’s planned for and handled! However, along with system blips,
we also have the human element in developing applications. If an application has a
defect or a logic issue that destroys our data, what would be our path to correct it?
With Kafka, that can be as simple as starting to consume from the beginning topic as
we did with the console consumer flag --from-beginning in chapter 2. Additionally,
data retention makes it available for use again and again. The ability to reprocess data
for corrections is powerful. But if the original event is not available, it might be hard
to retrofit the existing data.

 Because events are only produced once from the sensor source for a specific
instance, the message broker can play a crucial part in our consumption pattern. If
the message in a queuing system is removed from the broker after a subscriber reads
the message, as in version 1.0 of the application in figure 3.2, it is gone from the sys-
tem. If a defect in an application’s logic is found after the fact, analysis would be
needed to see if data can be corrected using what was left over from the processing of
that original event because it will not be fired again. Fortunately, Kafka brokers allow
for a different option.

 Beginning with version 1.1, the application can replay those messages already con-
sumed with the new application logic. Our new application code that fixed a logic
mistake from version 1.0 can process all the events again. The chance to process
our events again makes it easier to enhance our applications without data loss or
corruption.

 The replay of data can also show us how a value changes over time. It might be ben-
eficial to draw a parallel between replaying the Kafka topic and the idea of a write-ahead
log (WAL). With a WAL, we can tell what a value used to be and the changes that hap-
pened over time because modifications to values are written in the log before they are
applied. WALs are commonly found in database systems and help a system recover if an
action fails during a transaction. If you follow the events from the beginning to the end,
you would see how data moves from its initial value to its current value. 



51Sensor event design
WHEN SHOULD DATA BE CHANGED?
Whether data is coming from a database or a log event, our preference is to get the data
into Kafka first; then the data will be available in its purest form. But each step before
it is stored in Kafka is an opportunity for the data to be altered or injected with various
formatting or programming logic errors. Keep in mind that hardware, software, and
logic can and will fail in distributed computing, so it’s always great to get data into Kafka
first, which gives you the ability to replay data if any of those failures occur. 

3.2.2 Why Kafka is the right fit

Does Kafka even make sense in our fictional sensor use case? Of course, this is a book
about Kafka, right? However, let’s quickly try to pinpoint a couple of compelling rea-
sons to give Kafka a try.

 One thing that has been made clear by our clients is that their current database is
getting expensive to scale vertically. By vertical scaling, we mean increasing things like
CPU, RAM, and disk drives in an existing machine. (To scale dynamically, we would
look at adding more servers to our environment.) With the ability to horizontally scale
our cluster, we can hope to get more overall benefits for our buck. Although the servers
that we run our brokers on might not be the cheapest machines money can buy, 32 GB
or 64 GB of RAM on these servers can handle production loads [4].

Source of data
(events are fired
one time)

Kafka replays all the messages 
because nothing was removed 
and can be seen in version 1.1.

Version 1.0 consumption
removed in the event that 
a message is lost 

Version 1.0

00110
01010

3 2 1

10 2 3

0

Version 1.1

Version 1.0

www.

www.

www.

Figure 3.2 Looking at a developer coding mistake



52 CHAPTER 3 Designing a Kafka project
 The other item that probably jumped out at you is that we have events being pro-
duced continuously. This should sound similar to the definition of stream processing
that we talked about earlier. The constant data feed won’t have a defined end time or
stopping point, so our systems should be ready to handle messages constantly.
Another interesting point to note is that our messages are usually under 10 KB for our
example. The smaller the message size and the amount of memory we can offer to
page caches, the better shape we are in to keep our performance healthy.

 During this requirements review for our scenario, some security-minded develop-
ers might have noticed there’s no built-in disk encryption for the brokers (data at
rest). However, that isn’t a requirement for the current system. We will first focus on
getting our system up and running and then worry about adding security at a later
point in our implementation.

3.2.3 Thought starters on our design

One thing to note is which features are available for specific Kafka versions. Although
we use a recent version for our examples (at the time of this writing, version 2.7.1),
some developers might not have control over the current broker and client versions
they are using due to their existing infrastructures. For this reason, it is good to keep
in mind when some of the features and APIs we might use made their debut. Table 3.1
highlights some of the past major features but is not inclusive of all versions [5].

Another thing to note as we focus on clients in the next few chapters is the feature-
improved client compatibility. Broker versions since 0.10.0 can work with newer client
versions. This is important because we can now try new versions of clients by upgrad-
ing them first, and the brokers can remain at their version until we decide that we
want to upgrade them. This comes in handy as you work through this material if you
are running against a cluster that already exists.

 Now that we have decided to give Kafka a try, this might be a good time to decide
how we want our data to exist. The following questions are intended to make us think
about how we want to process our data. These preferences impact various parts of our
design, but our main focus here is on figuring out the data structure; we will cover the

Table 3.1 Past Kafka version milestones

Kafka version Feature

2.0.0 ACLS with prefix support and hostname verification (default for SSL)

1.0.0 Java 9 support and JBOD disk failure improvements

0.11.0.0 Admin API

0.10.2.0 Improved client compatibility

0.10.1.0 Time-based search

0.10.0.0 Kafka streams, timestamps, and rack awareness

0.9.0.0 Various security features (ACLS, SSL), Kafka Connect, and a new consumer client



53Sensor event design
implementation in later chapters. This list is not meant to be complete, but it is a
good starting point in planning our design:

 Is it okay to lose any messages in the system? For example, is one missed event about
a mortgage payment going to ruin your customer’s day and their trust in your
business? Or is it a minor issue such as your social media account RSS feed miss-
ing a post? Although the latter is unfortunate, would it be the end of your cus-
tomer’s world?

 Does your data need to be grouped in any way? Are the events correlated with other
events that are coming in? For example, are we going to be taking in account
changes? In that case, we’d want to associate the various account changes with
the customer whose account is changing. Grouping events up front might also
prevent the need for applications to coordinate messages from multiple con-
sumers while reading from the topic.

 Do you need data delivered in a specific order? What if a message gets delivered in an
order other than when it occurred? For example, you get an order-canceled
notice before the actual order. Because product ends up shipping due to order
alone, the customer service impact is probably good enough reason to say that
the ordering is indeed essential. Or course, not everything will need exact
ordering. For example, if you are looking at SEO data for your business, the
order is not as important as making sure that you can get a total at the end.

 Do you only want the last value of a specific item, or is the history of that item important?
Do you care about how your data has evolved? One way to think about this looks
at how data is updated in a traditional relational database table. It is mutated in
place (the older value is gone and the newer value replaces it). The history of
what that value looked like a day ago (or even a month ago) is lost.

 How many consumers are you going to have? Will they all be independent of each
other, or will they need to maintain some sort of order when reading the mes-
sages? If you are going to have a lot of data that you want to consume as quickly
as possible, that will inform and help shape how you break up your messages on
the tail end of your processing.

Now that we have a couple of questions to ask for our factory, let’s try to apply these to
our actual requirements. We will use a chart to answer each scenario. We will learn
how to do this in the following section. 

3.2.4 User data requirements

Our new architecture needs to provide a couple of specific key features. In general, we
want the ability to capture messages even if the consuming service is down. For exam-
ple, if one of the consumer applications is down in our remote plant, we want to make
sure that it can later process the events without dropping messages entirely. Addition-
ally, when the application is out of maintenance or comes back up after a failure, we
want it to still have the data it needs. For our example use case, we also want the status
from our sensors as either working or broken (a sort of alert), and we want to make
sure we can see if any part of our bike process could lead to total failure.



54 CHAPTER 3 Designing a Kafka project
 Along with the preceding information, we also want to maintain a history of the
sensors’ alert status. This data could be used in determining trends and in predicting
failures from sensor data before actual events lead to broken equipment. We also want
to keep an audit log of any users that push updates or queries directly against the sen-
sors. Finally, for compliance reasons, we want to know who did what administration
actions on the sensors themselves. 

3.2.5 High-level plan for applying our questions

Let’s focus closer on our requirements to create an audit log. Overall, it seems like
everything that comes in from the management API will need to be captured. We want
to make sure that only users with access permissions are able to perform actions
against the sensors, and we should not lose messages, as our audit would not be com-
plete without all the events. In this case, we do not need any grouping key because
each event can be treated as independent.

 The order does not matter inside our audit topic because each message will have a
timestamp in the data itself. Our primary concern is that all the data is there to process.
As a side note, Kafka itself does allow messages to be sorted by time, but the message
payload can include time. However, this specific use case does not warrant this usage.

 Figure 3.3 shows how a user would generate two audit events from a web adminis-
tration console by sending a command to sensor 1 and another to sensor 3. Both com-
mands should end up as separate events in Kafka. To make this a little clearer, table
3.2 presents a rough checklist of things we should consider regarding data for each

Process step 1
sensor

Process step 2
sensor

Kafka brokers
Process step 1 audit event

Process step 3 audit event

Console for admin apps

www.

>–

Audit events are sent for sensors 
in step 1 and step 3. Commands 
were sent to those sensors only 
from the admin console and will 
be captured in Kafka.

Two software update events
are logged for the sensor 
updates: one for step 1 and 
one for step 3.

Process step 3
sensor

Figure 3.3 Audit use case



55Sensor event design
requirement. This at-a-glance view
will help us when determining the
configuration options we want to use
for our producer clients.

 In this audit producer, we are
concerned with making sure that no
data is lost and that consuming appli-
cations do not have any worries
about data being ordered or coordi-
nated. Furthermore, the alert trend
of our status requirements deals with
each process in the bike’s system with a goal of spotting trends. It might be helpful to
group this data using a key. We have not addressed the term key in depth, but it can be
thought of as a way to group related events.

 We will likely use the bikes’ part ID names at each stage of the internal system
where the sensor is installed because they will be unique from any other name. We
want to be able to look across the key at all of the events for a given stage to spot these
trends over time. By using the same key for each sensor, we should be able to consume
these events easily. Because alert statuses are sent every 5 seconds, we are not con-
cerned about missing a message, as the next one should arrive shortly. If a sensor
sends a “Needs Maintenance” message every couple of days, that is the type of infor-
mation we want to have to spot trends in equipment failure.

 Figure 3.4 shows a sensor watching each stage of the process. Those equipment alert
events go into Kafka. Although not an immediate concern for our system, Kafka does
enable us to pull that data into other data storage or processing system like Hadoop.

Table 3.2 Audit checklist

Kafka feature Concern?

Message loss Yes

Grouping No

Ordering No

Last value only No

Independent consumer Yes

Kafka brokersHadoop HDFS

Sensor trend events by stage 
go into Kafka. These events 
can be moved to permanent 
storage for analysis. 

www.

Process step 1 Process step 2 Process step 3

Figure 3.4 Alert trend use case



56 CHAPTER 3 Designing a Kafka project
Table 3.3 highlights that our goal is
to group the alert results by stage and
that we are not concerned about los-
ing a message from time to time.
    As for alerting on statuses, we also
want to group by a key, which is the
process stage. However, we do not
care about past states of the sensor but
rather the current status. In other
words, the current status is all we care
about and need for our requirements.

The new status replaces the old, and we do not need to maintain a history. The word
replace here is not entirely correct (or not what we are used to thinking). Internally,
Kafka adds the new event that it receives to the end of its log file like any other message
it receives. After all, the log is immutable and can only be appended to at the end of the
file. How does Kafka make what appears to be an update happen? It uses a process
called log compaction, which we will dig into in chapter 7.

 Another difference we have with this requirement is the consumer usage assigned
to specific alert partitions. Critical alerts are processed first due to an uptime require-
ment in which those events need to be handled quickly. Figure 3.5 shows an example
of how critical alerts could be sent to Kafka and then consumed to

Table 3.3 Audit checklist

Kafka feature Concern?

Message loss No

Grouping Yes

Ordering No

Last value only No

Independent consumer Yes

Operators will see
the current status
in a dashboard
web page.

Critical path

This sensor on the critical
path is noting a failure for
that component. 

Kafka brokers

Figure 3.5 Alert use case



57Format of your data
populate an operator’s display to get
attention quickly. Table 3.4 reinforces
the idea that we want to group an alert
to the stage it was created in and that
we want to know the latest status only.

 Taking the time to plan out our
data requirements will not only help
us clarify our application require-
ments but, hopefully, validate the use
of Kafka in our design. 

3.2.6 Reviewing our blueprint

One of the last things to think about is how we want to keep these groups of data orga-
nized. Logically, the groups of data can be thought of in the following manner:

 Audit data
 Alert trend data
 Alert data

For those of you already jumping ahead, keep in mind that we might use our alert trend
data as a starting point for our alerts topic; you can use one topic as the starting point
to populate another topic. However, to start our design, we will write each event type
from the sensors to their logical topic to make our first attempt uncomplicated and easy
to follow. In other words, all audit events end up on an audit topic, all alert trend events
end up on a alert trend topic, and our alert events on an alert topic. This one-to-one
mapping makes it easier to focus on the requirements at hand for the time being. 

3.3 Format of your data
One of the easiest things to skip, but critical to cover in our design, is the format of
our data. XML and JSON are pretty standard formats that help define some sort of
structure to our data. However, even with a clear syntax format, there can be informa-
tion missing in our data. What is the meaning of the first column or the third one?
What is the data type of the field in the second column of a file? The knowledge of
how to parse or analyze our data can be hidden in applications that repeatedly pull
the data from its storage location. Schemas are a means of providing some of this
needed information in a way that can be used by our code or by other applications
that may need the same data.

 If you look at the Kafka documentation, you may have noticed references to
another serialization system called Apache Avro. Avro provides schema definition sup-
port as well as schema storage in Avro files [6]. In our opinion, Avro is likely what you
will see in Kafka code that you might encounter in the real world and why we will
focus on this choice out of all the available options. Let’s take a closer look at why this
format is commonly used in Kafka.

Table 3.4 Audit checklist

Kafka feature Concern?

Message loss No

Grouping Yes

Ordering No

Last value only Yes

Independent consumer No



58 CHAPTER 3 Designing a Kafka project
3.3.1 Plan for data

One of the significant gains of using Kafka is that the producers and consumers are
not tied directly to each other. Further, Kafka does not do any data validation by
default. However, there is likely a need for each process or application to understand
what that data means and what format is in use. By using a schema, we provide a way
for our application’s developers to understand the structure and intent of the data.
The definition doesn’t have to be posted in a README file for others in the organiza-
tion to determine data types or to try to reverse-engineer from data dumps.

 Listing 3.8 shows an example of an Avro schema defined as JSON. Fields can be
created with details such as name, type, and any default values. For example, looking
at the field daysOverDue, the schema tells us that the days a book is overdue is an int
with a default value of 0. Knowing that this value is numeric and not text (such as one
week) helps to create a clear contract for the data producers and consumers.

{
"type" : "record",
"name" : "kinaction_libraryCheckout",
...
"fields" : [{"name" : "materialName",

"type" : "string",
"default" : ""},

{"name" : "daysOverDue",
"type" : "int",
"default" : 0},

{"name" : "checkoutDate",
"type" : "int",
"logicalType": "date",
"default" : "-1"},

{"name" : "borrower",
"type" : {

"type" : "record",
"name" : "borrowerDetails",
"fields" : [

{"name" : "cardNumber",
"type" : "string",
"default" : "NONE"}

]},
"default" : {}

}
]

}

By looking at the example of the Avro schema in listing 3.8, we can see that questions
such as “Do we parse the cardNumber as a number or a string (in this case, string)” are
easily answered by a developer looking at the schema. Applications could automatically

Listing 3.8 Avro schema example

JSON-defined 
Avro schema

Maps directly 
to a field name

Defines a field
with a name, type,

and default value
Provides the 
default value



59Format of your data
use this information to generate data objects for this data, which helps to avoid parsing
data type errors.

 Schemas can be used by tools like Apache Avro to handle data that evolves. Most of
us have dealt with altered statements or tools like Liquibase to work around these
changes in relational databases. With schemas, we start with the knowledge that our
data will probably change.

 Do we need a schema when we are first starting with our data designs? One of the
main concerns is that if our system’s scale keeps getting larger, will we be able to con-
trol the correctness of data? The more consumers we have could lead to a burden on
the testing that we would need to do. Besides the growth in numbers alone, we might
not even know all of the consumers of that data. 

3.3.2 Dependency setup

Now that we have discussed some of the advantages of using a schema, why would we
look at Avro? First of all, Avro always is serialized with its schema [7]. Although not a
schema itself, Avro supports schemas when reading and writing data and can apply rules
to handle schemas that change over time. Also, if you have ever seen JSON, it is pretty
easy to understand Avro. Besides the data, the schema language itself is defined in JSON
as well. If the schema changes, you can still process data [7]. The old data uses the
schema that existed as part of its data. On the other hand, any new formats will use the
schema present in their data. Clients are the ones who gain the benefit of using Avro.

 Another benefit of looking at Avro is the popularity of its usage. We first saw it used
on various Hadoop efforts, but it can be used in many other applications. Confluent
also has built-in support for most parts of their tooling [6]. Bindings exist for many
programming languages and should not be hard to find, in general. Those who have
past “bad” experiences and prefer to avoid generated code can use Avro dynamically
without code generation.

 Let’s get started with using Avro by adding it to our pom.xml file as the following
listing shows [8]. If you are not used to pom.xml or Maven, you can find this file in
our project’s root directory.

<dependency>
<groupId>org.apache.avro</groupId>
<artifactId>avro</artifactId>
<version>${avro.version}</version>

</dependency>

Because we are already modifying the POM file, let’s go ahead and include a plugin
that generates the Java source code for our schema definitions. As a side note, you can
also generate the sources from a standalone Java JAR, avro-tools, if you do not want to
use a Maven plugin. For those who do not prefer code generation in their source code
projects, this is not a hard requirement [9].

Listing 3.9 Adding Avro to pom.xml

Adds this entry as a dependency 
to the project’s pom.xml file



60 CHAPTER 3 Designing a Kafka project
 Listing 3.10 shows how to add the avro-maven-plugin to our pom.xml as suggested
by the Apache Avro Getting Started with Java documentation site [8]. The code in this
listing omits the configuration XML block. Adding the needed configuration also lets
Maven know that we want to generate source code for the Avro files found in the
source directory we list and to output the generated code to the specified output
directory. If you like, you can change the source and output locations to match your
specific project structure.

<plugin>
<groupId>org.apache.avro</groupId>
<artifactId>avro-maven-plugin</artifactId>
<version>${avro.version}</version>
<executions>

<execution>
<phase>generate-sources</phase>
<goals>

<goal>schema</goal>
</goals>
...

</execution>
</executions>

</plugin>

Let’s start defining our schema by thinking about the data types we want to use, begin-
ning with our alert status scenario. To start, we’ll create a new file named kinaction
_alert.avsc with a text editor. The following listing shows the schema definition. We
will name our Java class Alert as we will interact with it after the generation of source
code from this file.

{
...
"type": "record",
"name": "Alert",
"fields": [

{
"name": "sensor_id",
"type": "long",
"doc": "The unique id that identifies the sensor"

},
{

"name": "time",
"type": "long",
"doc":

"Time alert generated as UTC milliseconds from epoch"
},
{

Listing 3.10 Adding the Avro Maven plugin to pom.xml

Listing 3.11 Alert schema: kinaction_alert.avsc

Sets the artifact ID needed in 
our pom.xml as a plugin

Configures the 
Maven phase

Configures the 
Maven goal

Names the 
created Java class

Defines the data types and 
documentation notes



61Format of your data

cy 
"name": "status",
"type": {

"type": "enum",
"name": "AlertStatus",
"symbols": [
"Critical",
"Major",
"Minor",
"Warning"

]
},
"doc":
"Allowed values sensors use for current status"

}
]

}

In listing 3.11, which shows a definition of alerts, one thing to note is that "doc" is not
a required part of the definition. However, there is certainly value in adding details
that will help future producer or consumer developers understand what the data
means. The hope is to stop others from inferring our data’s meaning and to be more
explicit about the content. For example, the field "time" always seems to invoke
developer anxiety when seen. Is it stored in a string format? Is time zone information
included? Does it include leap seconds? The "doc" field can provide that information.
A namespace field, not shown in listing 3.11, turns into the Java package for the gener-
ated Java class. You can view the full example in the source code for the book. The var-
ious field definitions include the name as well as a type.

 Now that we have the schema defined, let’s run the Maven build to see what we are
working with. The commands mvn generate-sources or mvn install can generate
the sources in our project. This should give us a couple of classes, Alert.java and
AlertStatus.java, that we can now use in our examples.

 Although we have focused on Avro itself, the remaining part of the setup is related
to the changes we need to make in our producer and consumer clients to use the
schema that we created. We can always define our own serializer for Avro, but we
already have an excellent example provided by Confluent. Access to the existing
classes is accomplished by adding the kafka-avro-serializer dependency to our
build [10]. The following listing shows the pom.xml entry that we’ll add. This is
needed to avoid having to create our own Avro serializer and deserializer for the keys
and values of our events.

<dependency>
<groupId>io.confluent</groupId>
<artifactId>kafka-avro-serializer</artifactId>
<version>${confluent.version}</version>

</dependency>

Listing 3.12 Adding the Kafka serializer to pom.xml

Adds this entry as a dependen
in the project’s pom.xml file



62 CHAPTER 3 Designing a Kafka project
If you are using Maven to follow along, make sure that you place the Confluent reposi-
tory in your pom file. This information is needed to let Maven know where to get spe-
cific dependencies [11].

<repository>
<id>confluent</id>
<url>https://packages.confluent.io/maven/</url>

</repository>

With the build set up and our Avro object ready to use, let’s take our example producer,
HelloWorldProducer, from the last chapter and slightly modify the class to use Avro.
Listing 3.13 shows the pertinent changes to the producer class (not including imports).
Notice the use of io.confluent.kafka.serializers.KafkaAvroSerializer as the
value of the property value.serializer. This handles the Alert object that we created
and sent to our new kinaction_schematest topic.

 Before, we could use a string serializer, but with Avro, we need to define a specific
value serializer to tell the client how to deal with our data. The use of an Alert object
rather than a string shows how we can utilize types in our applications as long as we can
serialize them. This example also makes use of the Schema Registry. We will cover more
details about the Schema Registry in chapter 11. This registry can have a versioned his-
tory of schemas to help us manage schema evolution.

public class HelloWorldProducer {

static final Logger log =
LoggerFactory.getLogger(HelloWorldProducer.class);

public static void main(String[] args) {
Properties kaProperties = new Properties();
kaProperties.put("bootstrap.servers",

"localhost:9092,localhost:9093,localhost:9094");
kaProperties.put("key.serializer",

"org.apache.kafka.common.serialization.LongSerializer");
kaProperties.put("value.serializer",

"io.confluent.kafka.serializers.KafkaAvroSerializer");
kaProperties.put("schema.registry.url",

"http://localhost:8081");

try (Producer<Long, Alert> producer =
new KafkaProducer<>(kaProperties)) {
Alert alert =

new Alert(12345L,
Instant.now().toEpochMilli(),
Critical);

log.info("kinaction_info Alert -> {}", alert);

Listing 3.13 Producer using Avro serialization

Sets value.serializer to
the KafkaAvroSerializer

class for our custom
Alert value

Creates a 
critical alert



63Format of your data
ProducerRecord<Long, Alert> producerRecord =
new ProducerRecord<>("kinaction_schematest",

alert.getSensorId(),
alert);

producer.send(producerRecord);
}

}
}

The differences are pretty minor. The type changes for our Producer and Producer-
Record definitions, as do the configuration settings for the value.serializer.

 Now that we have produced messages using Alert, the other changes would be on
the consumption side of the messages. For a consumer to get the values produced to
our new topic, it will have to use a value deserializer; in this case, KafkaAvroDeserial-
izer [10]. This deserializer works to get back the value that was serialized by the pro-
ducer. This code can also reference the same Alert class generated in the project.
The following listing shows the significant changes for the consumer class Hello-
WorldConsumer.

public class HelloWorldConsumer {

final static Logger log =
LoggerFactory.getLogger(HelloWorldConsumer.class);

private volatile boolean keepConsuming = true;

public static void main(String[] args) {
Properties kaProperties = new Properties();
kaProperties.put("bootstrap.servers", "localhost:9094");
...
kaProperties.put("key.deserializer",

"org.apache.kafka.common.serialization.LongDeserializer");
kaProperties.put("value.deserializer",

"io.confluent.kafka.serializers.KafkaAvroDeserializer");
kaProperties.put("schema.registry.url", "http://localhost:8081");

HelloWorldConsumer helloWorldConsumer = new HelloWorldConsumer();
helloWorldConsumer.consume(kaProperties);

Runtime.getRuntime()
.addShutdownHook(

new Thread(helloWorldConsumer::shutdown)
);

}

private void consume(Properties kaProperties) {

try (KafkaConsumer<Long, Alert> consumer =
new KafkaConsumer<>(kaProperties)) {
consumer.subscribe(

Listing 3.14 Consumer using Avro serialization

Sets value.serializer to
the KafkaAvroSerializer

class due to the
Alert usage

KafkaConsumer typed 
to handle Alert values



64 CHAPTER 3 Designing a Kafka project
List.of("kinaction_schematest")
);

while (keepConsuming) {
ConsumerRecords<Long, Alert> records =
consumer.poll(Duration.ofMillis(250));

for (ConsumerRecord<Long, Alert> record :
records) {

log.info("kinaction_info offset = {}, kinaction_value = {}",
record.offset(),
record.value());

}
}

}
}

private void shutdown() {
keepConsuming = false;

}
}

As with the producer, the consumer client does not require many changes due to the
power of updating the configuration deserializer and Avro! Now that we have some
ideas about the what we want to accomplish and our data format, we are well equipped
to tackle the how in our next chapter. We will cover more schema-related topics in
chapter 11 and move on to a different way to handle our object types in the example
project in chapters 4 and 5. Although the task of sending data to Kafka is straightfor-
ward, there are various configuration-driven behaviors that we can use to help us sat-
isfy our specific requirements. 

Summary
 Designing a Kafka solution involves understanding our data first. These details

include how we need to handle data loss, ordering of messages, and grouping
in our use cases.

 The need to group data determines whether we will key the messages in Kafka.
 Leveraging schema definitions not only helps us generate code, but it also helps

us handle future data changes. Additionally, we can use these schemas with our
own custom Kafka clients.

 Kafka Connect provides existing connectors to write to and from various data
sources.

References
1 J. MSV. “Apache Kafka: The Cornerstone of an Internet-of-Things Data Plat-

form” (February 15, 2017). https://thenewstack.io/apache-kafka-cornerstone
-iot-data-platform/ (accessed August 10, 2017).

2 “Quickstart.” Confluent documentation (n.d.). https://docs.confluent.io/
3.1.2/connect/quickstart.html (accessed November 22, 2019).

Updates ConsumerRecord 
to handle Alert values

https://docs.confluent.io/3.1.2/connect/quickstart.html
https://docs.confluent.io/3.1.2/connect/quickstart.html
https://thenewstack.io/apache-kafka-cornerstone-iot-data-platform/
https://thenewstack.io/apache-kafka-cornerstone-iot-data-platform/
https://thenewstack.io/apache-kafka-cornerstone-iot-data-platform/


65References
3 “JDBC Source Connector for Confluent Platform.” Confluent documentation
(n.d.). https://docs.confluent.io/kafka-connect-jdbc/current/source-connec
tor/index.html (accessed October 15, 2021).

4 “Running Kafka in Production: Memory.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/kafka/deployment.html#memory
(accessed June 16, 2021).

5 “Download.” Apache Software Foundation (n.d.). https://kafka.apache.org/
downloads (accessed November 21, 2019).

6 J. Kreps. “Why Avro for Kafka Data?” Confluent blog (February 25, 2015).
https://www.confluent.io/blog/avro-kafka-data/ (accessed November 23, 2017).

7 “Apache Avro 1.8.2 Documentation.” Apache Software Foundation (n.d.).
https://avro.apache.org/docs/1.8.2/index.html (accessed November 19, 2019).

8 “Apache Avro 1.8.2 Getting Started (Java)): Serializing and deserializing without
code generation.” Apache Software Foundation (n.d.). https://avro.apache
.org/docs/1.8.2/gettingstartedjava.html#download_install (accessed Novem-
ber 19, 2019).

9 “Apache Avro 1.8.2 Getting Started (Java): Serializing and deserializing without
code generation.” Apache Software Foundation (n.d.). https://avro.apache
.org/docs/1.8.2/gettingstartedjava.html#Serializing+and+deserializing+without
+code+generation (accessed November 19, 2019).

10 “Application Development: Java.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/app-development/index.html#java
(accessed November 20, 2019).

11 “Installation: Maven repository for jars.” Confluent documentation (n.d.).
https://docs.confluent.io/3.1.2/installation.html#maven-repository-for-jars
(accessed November 20, 2019).

https://docs.confluent.io/3.1.2/installation.html#maven-repository-for-jars
https://docs.confluent.io/platform/current/app-development/index.html#java
https://docs.confluent.io/platform/current/app-development/index.html#java
https://avro.apache.org/docs/1.8.2/gettingstartedjava.html#Serializing+and+deserializing+without+code+generation
https://avro.apache.org/docs/1.8.2/gettingstartedjava.html#Serializing+and+deserializing+without+code+generation
https://avro.apache.org/docs/1.8.2/gettingstartedjava.html#Serializing+and+deserializing+without+code+generation
https://avro.apache.org/docs/1.8.2/gettingstartedjava.html#Serializing+and+deserializing+without+code+generation
https://avro.apache.org/docs/1.8.2/gettingstartedjava.html#download_install
https://avro.apache.org/docs/1.8.2/gettingstartedjava.html#download_install
https://avro.apache.org/docs/1.8.2/gettingstartedjava.html#download_install
https://avro.apache.org/docs/1.8.2/index.html
https://www.confluent.io/blog/avro-kafka-data/
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://docs.confluent.io/platform/current/kafka/deployment.html#memory
https://docs.confluent.io/kafka-connect-jdbc/current/source-connector/index.html
https://docs.confluent.io/kafka-connect-jdbc/current/source-connector/index.html
https://docs.confluent.io/kafka-connect-jdbc/current/source-connector/index.html


Producers: Sourcing data
In the previous chapter, we looked at the requirements that an organization might
have regarding their data. Some design decisions we made have practical impacts
on how we send data to Kafka. Let’s now enter the world of an event-streaming plat-
form through the portal gate of a Kafka producer. After reading this chapter, you
will be well on your way to solving fundamental requirements of a Kafka project by
producing data in a couple of different ways.

 The producer, despite its importance, is only one part of this system. In fact, we
can change some producer configuration options or set these at the broker or
topic level. We will discover those options as we get further along, but getting data
into Kafka is our first concern in this chapter.

This chapters covers
 Sending messages and the producer

 Creating our own producer serializers and 
partitioners

 Examining configuration options to solve a 
company’s requirements
66



67An example
4.1 An example
The producer provides the way to push data into the Kafka system for our example
project. As a refresher, figure 4.1 illustrates where producers fit into Kafka.

Figure 4.1 Kafka producers

Looking at figure 4.1, let’s focus on the top-left corner (the producer clients), which
shows examples of data being produced into Kafka. This data could be the IoT events
we are using in our fictional company. To make the idea of producing data more con-
crete, let’s imagine a practical example that we might have written for one of our proj-
ects. Let’s look at an application that takes user feedback on how a website is working
for its customers.

Messages can be replayed
from the beginning of the
log and consumed again.

Message brokers (cluster) +
Expanded

One of the brokers
will be a controller.

Producer clients

Data in
(to partition)

We will focus 
on our alert 
producers in 
this chapter.

Examples
• Databases
• IOT events
• Browser/user web events
• Logs

JVM application-message broker

Kafka core

Flushed to disk

• Logs are append only.
• New entries added to the end.
• No database storage, just disk.
• Each log is made up of entries
  labeled with offset numbers.

OS page cache (memory)

ZooKeeper ensemble

Consumer clients

Data out
(from partition)

Replay

Examples
• HDFS
• S3
• Web applications
• Metrics
• Analytics engines

Topic

Partition 0

0 1 2 3 4

ZooKeeper used for 
distributed configuration 
and management



68 CHAPTER 4 Producers: Sourcing data
 Currently, the user submits a form on the website that generates email to a support
account or chatbot. Every now and then, one of our support staff checks the inbox to
see what suggestions or issues customers have encountered. Looking to the future, we
want to keep this information coming to us but in a way that allows the data to be
more accessible than in an email inbox. If we instead send this message into a Kafka
topic, we could produce more robust and varied replies, rather than just reactive
email responses to customers. The benefit of flexibility comes from having the event
in Kafka for any consuming applications to use.

 Let’s first look at what using email as part of our data pipeline impacts. Looking at
figure 4.2, it might be helpful to focus on the format that the data is stored in once a
user submits a form with feedback on our website.

Figure 4.2 Sending data in email

A traditional email uses Simple Mail Transfer Protocol (SMTP), and we will see that
reflected in how the email event itself is presented and sometimes stored. We can use
email clients like Microsoft® Outlook® to retrieve the data quickly, but rather than just
reading email, how else can we pull data out of that system for other uses? Copy and
paste are common manual steps, as well as email-parsing scripts. (Parsing scripts
includes using a tool or programming language and libraries or frameworks to get the

User submits feedback form

Application generates email

Data stored in mail server
like Microsoft Exchange

SMTP protocol

User access of data
with email client or ...

Data extraction with scripts Manual data extraction
with copy and paste 

HTML form

User:

Issue:

Data format

Delivered
to:

Received
by:

MIME
version:

User



69An example
parsing correct.) In comparison, although Kafka uses its own protocol, it does not
impose any specific format for our message data. We should be able to write the data
in whatever format we choose.

NOTE In the previous chapter, we looked at the Apache Avro format as one
of the common formats that the Kafka community uses. Protobuf and JSON
are also widely popular [1].

Another usage pattern that comes to mind is to treat notifications of customer issues
or website outages as temporary alerts that we can delete after replying to the cus-
tomer. However, this customer input might serve more than one purpose. What if we
are able to look for trends in outages that customers report? Does the site always slow
to a crawl after sale coupon codes go out in mass-marketing emails? Could this data
help us find features that our users are missing from our site? Do 40% of our user
emails involve having trouble finding the Privacy settings for their account? Having
this data present in a topic that can be replayed or read by several applications with
different purposes can add more value to the customer than an automated support or
bot email that is then deleted.

 Also, if we have retention needs, those would be controlled by the teams running
our email infrastructure versus a configuration setting we can control with Kafka. Look-
ing again at figure 4.3, notice that the application has an HTML form but writes to a

User submits feedback form

Data stored in Kafka brokers

Application produces
message to Kafka

Kafka protocol

Access with ConnectAccess with ksqlDBAccess with
custom consumer

HTML form

User:

Issue:

Data format

{  User:

   Timestamp:

   Issue:

}

User
Format 
determined 
by you.

Figure 4.3 Sending data to Kafka



70 CHAPTER 4 Producers: Sourcing data
Kafka topic, not to an email server. With this approach, we can extract the information
that is important for us in whatever format we need, and it can be used in many ways.
Consuming applications can use schemes to work with the data and not be tied to a sin-
gle protocol format. We can retain and reprocess these messages for new use cases
because we control the retention of those events. Now that we have looked at why we
might use a producer, let’s quickly check out some details of a producer interacting with
the Kafka brokers.

4.1.1 Producer notes

The producer’s job includes fetching metadata about the cluster [2]. Because produc-
ers can only write to the replica leader of the partition they are assigned to, the meta-
data helps the producer determine which broker to write to as the user might have
only included a topic name without any other details. This is nice because the pro-
ducer’s end user does not have to make a separate call to get that information. The
end user, however, needs to have at least one running broker to connect to, and the
Java client library figures out the rest.

 Because this distributed system is designed to account for momentary errors such as
a network blip, the logic for retries is already built in. However, if the ordering of the
messages is essential, like for our audit messages, then besides setting the retries to a
number like 3, we also need to set the max.in.flight.requests.per.connection
value to 1 and set acks (the number of brokers that send acknowledgments back) to
all [3] [4]. In our opinion, this is one of the safest methods to ensure that your pro-
ducer’s messages arrive in the order you intend [4]. We can set the values for both acks
and retries as configuration parameters. 

 Another option to be aware of is using an idempotent producer. The term idempo-
tent refers to how sending the same message multiple times only results in producing
the message once. To use an idempotent producer, we can set the configuration prop-
erty enable.idempotence=true [5]. We will not be using the idempotent producer in
our following examples.

 One thing we do not have to worry about is one producer getting in the way of
another producer’s data. Thread safety is not an issue because data will not be over-
written but handled by the broker itself and appended to the broker’s log [6]. Now
it is time to look at how to enable the values like max.in.flight.requests.per
.connection in code. 

4.2 Producer options
One of the things that was interesting when we started working with sending data into
Kafka was the ease of setting options using the Java clients that we will specifically
focus on in this book. If you have worked with other queue or messaging systems, the
other systems’ setups can include things like providing remote and local queues lists,
manager hostnames, starting connections, connection factories, sessions, and more.



71Producer options
Although far from being set up totally hassle free, the producer works from the con-
figuration on its own to retrieve much of the information it needs, such as a list of all
of our Kafka brokers. Using the value from the property bootstrap.servers as a start-
ing point, the producer fetches metadata about brokers and partitions that it uses for
all subsequent writes.

 As mentioned earlier, Kafka allows you to change key behaviors just by changing
some configuration values. One way to deal with all of the producer configuration key
names is to use the constants provided in the Java class ProducerConfig when devel-
oping producer code (see http://mng.bz/ZYdA) and by looking for the Importance
label of “high” in the Confluent website [7]. However, in our examples, we will use the
property names themselves for clarity.

 Table 4.1 lists some of the most crucial producer configurations that support our
specific examples. In the following sections, we'll look at what we need to complete
our factory work.

4.2.1 Configuring the broker list

From our examples of writing messages to Kafka, it is clear that we have to tell the pro-
ducer which topic to send messages to. Recall that topics are made up of partitions,
but how does Kafka know where a topic partition resides? We, however, do not have to
know the details of those partitions when we send messages. Perhaps an illustration
will help clarify this conundrum. One of the required configuration options for pro-
ducers is bootstrap.servers. Figure 4.4 shows an example of a producer that has
only broker 0 in its list of bootstrap servers, but it will be able to learn about all three
brokers in the cluster by starting with one only.

 The bootstrap.servers property can take many or just one initial broker as in fig-
ure 4.4. By connecting to this broker, the client can discover the metadata it needs,
which includes data about other brokers in the cluster as well [8].

 
 
 
 
 

Table 4.1 Important producer configurations

Key Purpose

acks Number of replica acknowledgments that a producer requires before 
success is established

bootstrap.servers One or more Kafka brokers to connect for startup

value.serializer The class that’s used for serialization of the value

key.serializer The class that’s used for serialization of the key

http://mng.bz/ZYdA


72 CHAPTER 4 Producers: Sourcing data
Figure 4.4 Bootstrap servers

This configuration is key to helping the producer find a broker to talk to. Once the
producer is connected to the cluster, it can obtain the metadata it needs to get the
details (such as where the leader replica for the partition resides on disk) we did not
previously provide. Producer clients can also overcome a failure of the partition
leader they are writing to by using the information about the cluster to find a new
leader. You might have noticed that ZooKeeper’s information is not part of the config-
uration. Any metadata the producer needs will be handled without the producer cli-
ent having to provide ZooKeeper cluster details. 

4.2.2 How to go fast (or go safer)

Asynchronous message patterns are one reason that many use queue-type systems, and
this powerful feature is also available in Kafka. We can wait in our code for the result
of a producer send request, or we can handle success or failure asynchronously with
callbacks or Future objects. If we want to go faster and not wait for a reply, we can still
handle the results at a later time with our own custom logic.

 Another configuration property that applies to our scenario is the acks key, which
stands for acknowledgments. This controls how many acknowledgments the producer
needs to receive from the partition leader’s followers before it returns a completed
request. The valid values for this property are all, -1, 1, and 0 [9].

 Figure 4.5 shows how a message with ack set to 0 behaves. Setting this value to 0 will
probably get us the lowest latency but at the cost of safety. Additionally, guarantees are
not made if any broker receives the message and, also, retries are not attempted [9]. As
a sample use case, say that we have a web-tracking platform that collects the clicks on a
page and sends these events to Kafka. In this situation, it might not be a big deal to lose
a single link press or hover event. If one is lost, there is no real business impact.

 In essence, the event in figure 4.5 was sent from the producer and forgotten. The
message might have never made it to the partition. If the message did, by chance,
make it to the leader replica, the producer will not know if any follower replica copies
were successful.

1. Producer connects
    to bootstrap servers

2. Metadata sent back to producer letting
    it know its leader resides on Broker 2,
    which it did not know about at first.
    Kafka knows about its other brokers. 

Producer

Controller

Broker 0 Broker 1

Our alert producers 
connect to our servers 
since they are local on 

different ports on localhost.

Broker 2



73Producer options
What we would consider the opposite setting to that used previously would be acks
with values all or -1. The values all or -1 are the strongest available option for this
configuration setting. Figure 4.6 shows how the value all means that a partition
leader’s replica waits on the entire list of its in-sync replicas (ISRs) to acknowledge
completion [9]. In other words, the producer will not get an acknowledgment of suc-
cess until after all replicas for a partition are successful. It is easy to see that it won’t be
the quickest due to the dependencies it has on other brokers. In many cases, it is

1. The producer writes
   to the leader of the
   partition.

2. The leader doesn’t wait
    to find out if the write
    was successful.

3. Because we do not know if the leader
   write was successful, we are not aware 
   of the state of any replica copies and if 
   they were successful or not.

This is not what 
we want for our 
kinaction_audit 

producer.

Figure 4.5 The property acks equals 0.

3. The producer receives 
    notification when all of 
    the replicas are updated.

2. The leader waits for all
    brokers to reply with
    success or failure.

1. The producer writes
    to the leader of the
    partition.

Leader brokerWe use acks=all for our 
kinaction_audit producer.

Figure 4.6 The property 
acks equals all.



74 CHAPTER 4 Producers: Sourcing data
worth paying the performance price in order to prevent data loss. With many brokers
in a cluster, we need to be aware of the number of brokers the leader has to wait on.
The broker that takes the longest to reply is the determining factor for how long until
a producer receives a success message.

 Figure 4.7 shows the impact of setting the acks value to 1 and asking for an
acknowledgment. An acknowledgment involves the receiver of the message (the
leader replica of the specific partition) sending confirmation back to the producer.
The producer client waits for that acknowledgment. However, the followers might not
have copied the message before a failure brings down the leader. If that situation
occurs before a copy is made, the message never appears on the replica followers for
that partition [9]. Figure 4.7 shows that while the message was acknowledged by the
leader replica and sent to the producer, a failure of any replica to make a copy of the
message would appear as if the message never made it to the cluster.

Figure 4.7 The property acks equals 1.

NOTE This is closely related to the ideas of at-most and at-least semantics that
we covered in chapter 1 [10]. The acks setting is a part of that larger picture. 

4.2.3 Timestamps

Recent versions of the producer record contain a timestamp on the events you send. A
user can either pass the time into the constructor as a Java type long when sending a
ProducerRecord Java object or the current system time. The actual time that is used in

3. Before the leader that has success
    has time to copy the message to any
    follower replicas, the leader fails. This
    means that the message could be
    lost to the remaining brokers.

4. These brokers never see
    the message even though
    it was seen by the leader.

2. The partition leader replies 
    that the message has made 
    a successful call.

1. The producer writes
    to the leader of the
    partition.

Our other producers 
might use this setting.



75Producer options
the message can stay as this value, or it can be a broker timestamp that occurs when
the message is logged. Setting the topic configuration message.timestamp.type to
CreateTime uses the time set by the client, whereas setting it to LogAppendTime uses
the broker time [11].

 Why would you want to choose one over the other? You might want to use the cre-
ated time in order to have the time that a transaction (like a sales order) takes place
rather than when it made its way to the broker. Using the broker time can be useful
when the created time is handled inside the message itself or an actual event time is
not business or order relevant.

 As always, timestamps can be tricky. For example, we might get a record with an
earlier timestamp than that of a record before it. This can happen in cases where a
failure occurred and a different message with a later timestamp was committed before
the retry of the first record completed. The data is ordered in the log by offsets and
not by timestamp. Although reading timestamped data is often thought of as a con-
sumer client concern, it is also a producer concern because the producer takes the
first steps in ensuring message order.

 As discussed earlier, this is also why max.in.flight.requests.per.connection is
important when considering whether you want to allow retries or many inflight
requests at a time. If a retry happens and other requests succeed on their first attempt,
earlier messages might be added after the later ones. Figure 4.8 provides an example
of when a message can get out of order. Even though message 1 was sent first, it does
not make it into the log in an ordered manner because retries were enabled.

 As a reminder, with Kafka versions before 0.10, timestamp information is not avail-
able as that feature was not included in earlier releases. We can still include a time-
stamp, though, but we would need to store it in the value of the message itself. 

Figure 4.8 Retry impact on order

Leader partition broker

Producer

Message 1

Message 2

Message 1 retry

We used this retry logic to determine if we 
need ordering with our alert events from 
chapter 3 and for topic kinaction_audit.

1. Message 1 is sent
   and fails.

2. Message 2 is sent
   and succeeds.

3. Message 1 is resent and
   appended to the leader 
   log after message 2.



76 CHAPTER 4 Producers: Sourcing data
Another option when using a producer is to create producer interceptors. These were
introduced in KIP-42 (Kafka Improvement Proposal). Its main goal was to help sup-
port measuring and monitoring [12]. In comparison to using a Kafka Streams work-
flow to filter or aggregate data, or even creating different topics specifically for
modified data, the usage of these interceptors might not be our first choice. At pres-
ent, there are no default interceptors that run in the life cycle. In chapter 9, we will
show a use case for tracing messages from producer clients to consumer clients with
interceptors adding a trace ID. 

4.3 Generating code for our requirements
Let’s try to use the information we gathered about how producers work on our own
solutions. We’ll start with the audit checklist that we designed in chapter 3 for use with
Kafka in our e-bike factory. As noted in chapter 3, we want to make sure that we do not
lose any audit messages when operators complete commands against the sensors. One
requirement was that there was no need to correlate (or group together) any events.
Another requirement was to make sure we don’t lose any messages. The following list-
ing shows how we would start our producer configuration and how to make sure that
we are safe for message acknowledgment by setting acks to all.

public class AuditProducer {

...
private static final Logger log = LoggerFactory.getLogger
(AuditProducer.class);Properties kaProperties = new Properties();

kaProperties.put( "bootstrap.servers",
"localhost:9092,localhost:9093,localhost:9094");

kaProperties.put("acks", "all");
kaProperties.put("retries", "3");
kaProperties.put("max.in.flight.requests.per.connection", "1");
...

Notice that we did not have to touch anything except the configuration we send to the
producer to address the concern of message loss. The acks configuration change is a
small but powerful feature that has a significant impact on if a message arrives or not.
Because we do not have to correlate (group) any events together, we are not using a
key for these messages. However, there is a foundational part that we want to change
in order to wait for the result before moving on. The following listing shows the get
method, which is how we can bring about waiting for the response to complete syn-
chronously before moving on in the code. Note that the following listing was

Listing 4.1 Configuring the audit producer

Creates properties as before
for our configuration

Sets acks to all to get 
the strongest guarantee

Lets the client retry in case of
failure so we don’t have to

implement our own failure logic



77Generating code for our requirements
informed by examples located at: https://docs.confluent.io/2.0.0/clients/producer
.html#examples.

RecordMetadata result =
producer.send(producerRecord).get();

log.info("kinaction_info offset = {}, topic = {}, timestamp = {}",
result.offset(), result.topic(), result.timestamp());

  producer.close();

Waiting on the response directly in a synchronous way ensures that the code is han-
dling each record’s results as they come back before another message is sent. The
focus is on delivering the messages without loss, more than on speed!

 So far, we have used a couple of prebuilt serializers in earlier chapters. For plain
text messages, our producer uses a serializer called StringSerializer. And when we
talked about Avro in chapter 3, we reached for the class io.confluent.kafka
.serializers.KafkaAvroSerializer. But what if we have a specific format we want to
produce? This often happens when trying to work with custom objects. We’ll use seri-
alization to translate data into a format that can be transmitted, stored, and then
retrieved to achieve a clone of our original data. The following listing shows the code
for our Alert class.

public class Alert implements Serializable {

private final int alertId;
private String stageId;
private final String alertLevel;
private final String alertMessage;

public Alert(int alertId,
String stageId,
String alertLevel,
String alertMessage) {

this.alertId = alertId;
this.stageId = stageId;
this.alertLevel = alertLevel;
this.alertMessage = alertMessage;

}

public int getAlertId() {
return alertId;

}

public String getStageId() {
return stageId;

}

Listing 4.2 Waiting for a result

Listing 4.3 Alert class

Waits on the response 
from the send call

Holds the alert’s ID,
level, and messages

https://docs.confluent.io/2.0.0/clients/producer.html#examples
https://docs.confluent.io/2.0.0/clients/producer.html#examples
https://docs.confluent.io/2.0.0/clients/producer.html#examples


78 CHAPTER 4 Producers: Sourcing data
public void setStageId(String stageId) {
this.stageId = stageId;

}

public String getAlertLevel() {
return alertLevel;

}

public String getAlertMessage() {
return alertMessage;

}
}

Listing 4.3 shows code that we use to create a bean named Alert to hold the informa-
tion we want to send. Those familiar with Java will notice that the listing is nothing
more than getters and setters and a constructor for the Alert class. Now that there is a
format for the Alert data object, it is time to use it in making a simple alert Serial-
izer called AlertKeySerde as the following listing shows.

public class AlertKeySerde implements Serializer<Alert>,
Deserializer<Alert> {

public byte[] serialize(String topic, Alert key) {
if (key == null) {

return null;
}
return key.getStageId()

.getBytes(StandardCharsets.UTF_8);
}

public Alert deserialize
(String topic, byte[] value) {
//could return Alert in future if needed
return null;

}

//...
}

In listing 4.5, we use this custom class only as the key serializer for the moment, leav-
ing the value serializer as a StringSerializer. It is interesting to note that we can seri-
alize keys and values with different serializers on the same message. But we should be
mindful of our intended serializers and the configuration values for both. The code
implements the Serializer interface and only pulls out the field stageId to use as a
key for our message. This example should be straightforward because the focus is on
the technique of using a serde. Other options for serdes that are often used are JSON
and Avro implementations.

NOTE If you see or hear the term serde, it means that the serializer and deseri-
alizer are both handled by the same implementation of that interface [13].

Listing 4.4 Our Alert serializer

Sends the topic and the 
Alert object to our method

Converts objects to 
bytes (our end goal)

The rest of the interface methods do 
not need any logic at this point.



79Generating code for our requirements
However, it is still common to see each interface defined separately. Just
watch when you use StringSerializer versus StringDeserializer; the dif-
ference can be hard to spot!

Another thing to keep in mind is that knowing how to deserialize the values involves
the consumers in relation to how the values were serialized by the producer. Some
sort of agreement or coordinator is needed for the data formats for clients even
though Kafka does not care what data it stores on the brokers.

 Another goal of our design for the factory was to capture the alert trend status of
our stages to track their alerts over time. Because we care about the information for
each stage (and not all sensors at a time), it might be helpful to think of how we are
going to group these events. In this case, as each stage ID is unique, it makes sense
that we can use that ID as a key. The following listing shows the key.serializer prop-
erty that we’ll set, as well as sending a CRITICAL alert.

public class AlertTrendingProducer {

private static final Logger log =
LoggerFactory.getLogger(AlertTrendingProducer.class);

public static void main(String[] args)
throws InterruptedException, ExecutionException {

Properties kaProperties = new Properties();
kaProperties.put("bootstrap.servers",

"localhost:9092,localhost:9093,localhost:9094");
kaProperties.put("key.serializer",
  AlertKeySerde.class.getName());
kaProperties.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");

try (Producer<Alert, String> producer =
new KafkaProducer<>(kaProperties)) {

Alert alert = new Alert(0, "Stage 0", "CRITICAL", "Stage 0 stopped");
ProducerRecord<Alert, String> producerRecord =

new ProducerRecord<>("kinaction_alerttrend",
alert, alert.getAlertMessage());

RecordMetadata result = producer.send(producerRecord).get();
log.info("kinaction_info offset = {}, topic = {}, timestamp = {}",

result.offset(), result.topic(), result.timestamp());
}

}
}

In general, the same key should produce the same partition assignment, and nothing
will need to be changed. In other words, the same stage IDs (the keys) are grouped

Listing 4.5 Alert trending producer

Tells our producer client 
how to serialize our custom 
Alert object into a key

Instead of null for the second
parameter, uses the actual object

we want to populate the key



80 CHAPTER 4 Producers: Sourcing data
together just by using the correct key. We will keep an eye on the distribution of the size
of the partitions to note if they become uneven in the future, but for now, we will go
along with this. Also, note that for our specific classes that we created in the manuscript,
we are setting the class properties in a different way to show a different option. Instead
of hardcoding the entire path of the class, you can use something like AlertKey-
Serde.class.getName() or even AlertKeySerde.class for the value of the property.

 Our last requirement was to have alerts quickly processed to let operators know
about any critical outages so we can group by the stage ID in this case as well. One rea-
son for doing this is that we can tell if a sensor failed or recovered (any state change)
by looking at only the last event for that stage ID. We do not care about the history of
the status checks, only the current scenario. In this case, we also want to partition our
alerts.

 So far in our examples of writing to Kafka, the data was directed to a topic with no
additional metadata provided from the client. Because the topics are made up of par-
titions that sit on the brokers, Kafka provides a default way to send messages to a spe-
cific partition. The default for a message with no key (which we used in the examples
thus far) was a round-robin assignment strategy prior to Kafka version 2.4. In versions
after 2.4, messages without keys use a sticky partition strategy [14]. However, some-
times we have specific ways that we want our data to be partitioned. One way to take
control of this is to write our own unique partitioner class.

 The client also has the ability to control what partition it writes to by configuring a
unique partitioner. One example to think about is the alert levels from our sensor-
monitoring service that was discussed in chapter 3. Some sensors’ information might
be more important than others; these might be on the critical path of our e-bike,
which would cause downtime if not addressed. Let’s say we have four levels of alerts:
Critical, Major, Minor, and Warning. We could create a partitioner that places the dif-
ferent levels in different partitions. Our consumer clients would always make sure to
read the critical alerts before processing the others.

 If our consumers keep up with the messages being logged, critical alerts probably
would not be a huge concern. However, listing 4.6 shows that we could change the
partition assignment with a class to make sure that our critical alerts are directed to a
specific partition (like partition 0). (Note that other alerts could end up on partition
0 as well due to our logic, but that critical alerts will always end up there.) The logic
mirrors an example of the DefaultPartitioner used in Kafka itself [15].

public int partition(final String topic
# ...

    int criticalLevelPartition = findCriticalPartitionNumber(cluster, topic);

Listing 4.6 Partitioner for alert levels

AlertLevelPartitioner needs 
to implement the partition 
method for its core logic.



81Generating code for our requirements
return isCriticalLevel(((Alert) objectKey).getAlertLevel()) ?
      criticalLevelPartition :
        findRandomPartition(cluster, topic, objectKey);

}
//...

By implementing the Partitioner interface, we can use the partition method to send
back the specific partition we want our producer to write to. In this case, the value of the
key ensures that any CRITICAL event makes it to a specific place, partition 0 can be imag-
ined to be sent back from the method findCriticalPartitionNumber, for example. In
addition to creating the class itself, listing 4.7 shows how we need to set the configura-
tion key, partitioner.class, for our producer to use the specific class we created. The
configuration that powers Kafka is used to leverage our new class.

Properties kaProperties = new Properties();
//...
kaProperties.put("partitioner.class",

AlertLevelPartitioner.class.getName());

This example, in which a specific partition number is always sent back, can be
expanded on or made even more dynamic. We can use custom code to accomplish the
specific logic of our business needs.

 Listing 4.8 shows the configuration of the producer to add the partitioner.class
value to use as our specific partitioner. The intention is for us to have the data avail-
able in a specific partition, so consumers that process the data can have access to the
critical alerts specifically and can go after other alerts (in other partitions) when they
are handled.

public class AlertProducer {
public static void main(String[] args) {

Properties kaProperties = new Properties();
kaProperties.put("bootstrap.servers",

"localhost:9092,localhost:9093");
kaProperties.put("key.serializer",

AlertKeySerde.class.getName());
kaProperties.put("value.serializer",

"org.apache.kafka.common.serialization.StringSerializer");
kaProperties.put("partitioner.class",

AlertLevelPartitioner.class.getName());

try (Producer<Alert, String> producer =
new KafkaProducer<>(kaProperties)) {

Listing 4.7 Configuring the partitioner class

Listing 4.8 Alert producer

Critical alerts should end up
the partition returned from
findCriticalPartitionNumber

Updates the producer configuration 
to reference and use the custom 
partitioner AlertLevelPartitioner

Reuses the Alert 
key serializer

Uses the property partitioner.class 
to set our specific partitioner class



82 CHAPTER 4 Producers: Sourcing data
Alert alert = new Alert(1, "Stage 1", "CRITICAL", "Stage 1 stopped");
ProducerRecord<Alert, String>

producerRecord = new ProducerRecord<>
("kinaction_alert", alert, alert.getAlertMessage());

producer.send(producerRecord,
new AlertCallback());

}
}

}

One addition we see in listing 4.8 is how we added a callback to run on completion.
Although we said that we are not 100% concerned with message failures from time to
time, due to the frequency of events, we want to make sure that we do not see a high
failure rate that could be a hint at application-related errors. The following listing
shows an example of implementing a Callback interface. The callback would log a
message only if an error occurs. Note that the following listing was informed by exam-
ples located at https://docs.confluent.io/2.0.0/clients/producer.html#examples.

public class AlertCallback implements Callback {

private static final Logger log =
LoggerFactory.getLogger(AlertCallback.class);

public void onCompletion
(RecordMetadata metadata,
Exception exception) {

if (exception != null) {
log.error("kinaction_error", exception);

} else {
log.info("kinaction_info offset = {}, topic = {}, timestamp = {}",

metadata.offset(), metadata.topic(), metadata.timestamp());
}

}
}

Although we will focus on small samples in most of our material, we think that it is
helpful to look at how to use a producer in a real project as well. As mentioned earlier,
Apache Flume can be used alongside Kafka to provide various data features. When we
use Kafka as a sink, Flume places data into Kafka. You might (or might not) be famil-
iar with Flume, but we are not interested in its feature set for this. We want to see how
it leverages Kafka producer code in a real situation.

 In the following examples, we reference Flume version 1.8 (located at https://
github.com/apache/flume/tree/flume-1.8, if you want to view more of the complete
source code). The following listing shows a configuration snippet that would be used
by a Flume agent.

Listing 4.9 Alert callback

This is the first time we’ve used 
a callback to handle the 
completion or failure of a send.

Implements the Kafka 
Callback interface

The completion can 
have success or failure.

https://github.com/apache/flume/tree/flume-1.8
https://github.com/apache/flume/tree/flume-1.8
https://docs.confluent.io/2.0.0/clients/producer.html#examples


83Generating code for our requirements

 

a1.sinks.k1.kafka.topic = kinaction_helloworld
a1.sinks.k1.kafka.bootstrap.servers = localhost:9092
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.compression.type = snappy

Some configuration properties from listing 4.10 seem familiar: topic, acks, boot-
strap.servers. In our previous examples, we declared the configurations as proper-
ties inside our code. However, listing 4.10 shows an example of an application that
externalizes the configuration values, which is something we could do on our projects
as well. The KafkaSink source code from Apache Flume, found at http://mng.bz/JvpZ,
provides an example of taking data and placing it inside Kafka with producer code. The
following listing is a different example of a producer using a similar idea, taking a con-
figuration file like that in listing 4.10 and loading those values into a producer instance.

...
Properties kaProperties = readConfig();
String topic = kaProperties.getProperty("topic");
kaProperties.remove("topic");

try (Producer<String, String> producer =
new KafkaProducer<>(kaProperties)) {

ProducerRecord<String, String> producerRecord =
new ProducerRecord<>(topic, null, "event");

producer.send(producerRecord,
new AlertCallback());

}

private static Properties readConfig() {
Path path = Paths.get("src/main/resources/kafkasink.conf");

Properties kaProperties = new Properties();
try (Stream<String> lines = Files.lines(path))

lines.forEachOrdered(line ->
determineProperty(line, kaProperties));

} catch (IOException e) {
System.out.println("kinaction_error" + e);

}
return kaProperties;

}

private static void determineProperty
(String line, Properties kaProperties) {
if (line.contains("bootstrap")) {

kaProperties.put("bootstrap.servers", line.split("=")[1]);
} else if (line.contains("acks")) {

kaProperties.put("acks", line.split("=")[1]);
} else if (line.contains("compression.type")) {

kaProperties.put("compression.type", line.split("=")[1]);
} else if (line.contains("topic")) {

Listing 4.10 Flume sink configuration

Listing 4.11 Reading the Kafka producer configuration from a file

Our familiar producer.send 
with a callback

Reads an external file 
for configuration

Parses configuration properties
and sets those values

http://mng.bz/JvpZ


84 CHAPTER 4 Producers: Sourcing data
kaProperties.put("topic", line.split("=")[1]);
}
...

}

Although some code is omitted in listing 4.11, the core Kafka producer pieces might
be starting to look familiar. Setting the configuration and the producer send method
should all look like the code we wrote in this chapter. And now, hopefully, you have
the confidence to dig into which configuration properties were set and what impacts
they will have.

 One exercise left for the reader would be to compare how AlertCallback.java
stacks up to the Kafka Sink callback class SinkCallback, located in the source code at
http://mng.bz/JvpZ. Both examples uses the RecordMetadata object to find more
information about successful calls. This information can help us learn more about
where the producer message was written, including the partition and offset within that
specific partition.

 It is true that you can use applications like Flume without ever having to dig into its
source code and still be successful. However, we think that if you want to know what is
going on internally or need to do some advanced troubleshooting, it is important to
know what the tools are doing. With your new foundational knowledge of producers,
it should be apparent that you can make powerful applications using these techniques
yourself.

4.3.1 Client and broker versions

One important thing to note is that Kafka broker and client versions do not always
have to match. If you are running a broker that is at Kafka version 0.10.0 and the Java
producer client you are using is at 0.10.2, the broker will handle this upgrade in the
message version [16]. However, because you can does not mean you should do it in all
cases. To dig into more of the bidirectional version compatibility, take a peek at
KIP-97 (http://mng.bz/7jAQ).

 We crossed a significant hurdle by starting to get data into Kafka. Now that we are
deeper into the Kafka ecosystem, we have other concepts to conquer before we are
done with our end-to-end solution. The next question is, how can we start to pull this
data back out so our other applications can consume it? We now have some ideas
about how we get data into Kafka, so we can start to work on learning more about mak-
ing that data useful to other applications by getting it out in the correct ways. Con-
sumer clients are a vital part of this discovery and, as with producers, there are various
configuration-driven behaviors that we can use to help us satisfy different require-
ments for consumption. 

Summary
 Producer clients provide developers a way to get data into Kafka.
 A large number of configuration options are available to control client behavior

without custom code.

http://mng.bz/JvpZ
http://mng.bz/7jAQ


85References
 Data is stored on the brokers in what is known as partitions.
 The client can control which partition the data gets written to by providing

their own logic with the Partitioner interface.
 Kafka generally sees data as a series of bytes. However, custom serializers can be

used to deal with specific data formats.

References
1 J. Kreps. “Why Avro for Kafka Data?” Confluent blog (February 25, 2015).

https://www.confluent.io/blog/avro-kafka-data/ (accessed November 23, 2017).
2 “Sender.java.” Apache Kafka. GitHub (n.d.). https://github.com/apache/kafka/

blob/299eea88a5068f973dc055776c7137538ed01c62/clients/src/main/java/
org/apache/kafka/clients/producer/internals/Sender.java (accessed August
20, 2021).

3 “Producer Configurations: Retries.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/installation/configuration/producer
-configs.html#producerconfigs_retries (accessed May 29, 2020).

4 “Producer Configurations: max.in.flight.requests.per.connection.” Confluent
documentation (n.d.). https://docs.confluent.io/platform/current/installa
tion/configuration/producer-configs.html#max.in.flight.requests.per.connec
tion (accessed May 29, 2020).

5 “Producer Configurations: enable.idempotence.” Confluent documentation
(n.d.). https://docs.confluent.io/platform/current/installation/configuration
/producer-configs.html#producerconfigs_enable.idempotence (accessed May
29, 2020).

6 “KafkaProducer.” Apache Software Foundation (n.d.). https://kafka.apache
.org/10/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
(accessed July 7, 2019).

7 “Producer Configurations.” Confluent documentation (n.d.). https://docs.con
fluent.io/platform/current/installation/configuration/producer-configs.html
(accessed May 29, 2020).

8 “Producer Configurations: bootstrap.servers.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/installation/configuration/
producer-configs.html #bootstrap.servers (accessed May 29, 2020).

9 “Producer Configurations: acks.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/installation/configuration/producer
-configs.html#acks (accessed May 29, 2020).

10 “Documentation: Message Delivery Semantics.” Apache Software Foundation
(n.d.). https://kafka.apache.org/documentation/#semantics (accessed May 30,
2020).

11 “Topic Configurations: message.timestamp.type.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/installation/configuration/topic-
configs.html#topicconfigs_message.timestamp.type (accessed July 22, 2020).

https://www.confluent.io/blog/avro-kafka-data/
https://github.com/apache/kafka/blob/299eea88a5068f973dc055776c7137538ed01c62/clients/src/main/java/org/apache/kafka/clients/producer/internals/Sender.java
https://github.com/apache/kafka/blob/299eea88a5068f973dc055776c7137538ed01c62/clients/src/main/java/org/apache/kafka/clients/producer/internals/Sender.java
https://github.com/apache/kafka/blob/299eea88a5068f973dc055776c7137538ed01c62/clients/src/main/java/org/apache/kafka/clients/producer/internals/Sender.java
https://github.com/apache/kafka/blob/299eea88a5068f973dc055776c7137538ed01c62/clients/src/main/java/org/apache/kafka/clients/producer/internals/Sender.java
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_retries
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_retries
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_retries
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#max.in.flight.requests.per.connection
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#max.in.flight.requests.per.connection
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#max.in.flight.requests.per.connection
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#max.in.flight.requests.per.connection
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_enable.idempotence
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_enable.idempotence
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#producerconfigs_enable.idempotence
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html
https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html#topicconfigs_message.timestamp.type
https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html#topicconfigs_message.timestamp.type
https://kafka.apache.org/documentation/#semantics
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#acks
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#acks
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#acks
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#bootstrap.servers
https://docs.confluent.io/platform/current/installation/configuration/producer-configs.html#bootstrap.servers


86 CHAPTER 4 Producers: Sourcing data
12 KIP-42: “Add Producer and Consumer Interceptors,” Wiki for Apache Kafka,
Apache Software Foundation. https://cwiki.apache.org/confluence/display/
KAFKA/KIP-42%3A+Add+Producer+and+Consumer+Interceptors (accessed
April 15, 2019).

13 “Kafka Streams Data Types and Serialization.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/streams/developer-guide/data
types.html (accessed August 21, 2021).

14 J. Olshan. “Apache Kafka Producer Improvements with the Sticky Partitioner.”
Confluent blog (December 18, 2019). https://www.confluent.io/blog/apache
-kafka-producer-improvements-sticky-partitioner/ (accessed August 21, 2021).

15 “DefaultPartitioner.java,” Apache Software Foundation. GitHub (n.d.). https://
github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/
kafka/clients/producer/internals/DefaultPartitioner.java (accessed March 22,
2020).

16 C. McCabe. “Upgrading Apache Kafka Clients Just Got Easier.” Confluent blog
(July 18, 2017). https://www.confluent.io/blog/upgrading-apache-kafka-clients
-just-got-easier/ (accessed August 21, 2021).

https://www.confluent.io/blog/upgrading-apache-kafka-clients-just-got-easier/
https://www.confluent.io/blog/upgrading-apache-kafka-clients-just-got-easier/
https://www.confluent.io/blog/upgrading-apache-kafka-clients-just-got-easier/
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/clients/producer/internals/DefaultPartitioner.java
https://www.confluent.io/blog/apache-kafka-producer-improvements-sticky-partitioner/
https://www.confluent.io/blog/apache-kafka-producer-improvements-sticky-partitioner/
https://www.confluent.io/blog/apache-kafka-producer-improvements-sticky-partitioner/
https://docs.confluent.io/platform/current/streams/developer-guide/datatypes.html
https://docs.confluent.io/platform/current/streams/developer-guide/datatypes.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-42%3A+Add+Producer+and+Consumer+Interceptors
https://cwiki.apache.org/confluence/display/KAFKA/KIP-42%3A+Add+Producer+and+Consumer+Interceptors


Consumers:
Unlocking data
In our previous chapter, we started writing data into our Kafka system. However, as
you know, that is only one part of the story. Consumers get the data from Kafka and
provide those values to other systems or applications. Because consumers are cli-
ents that exist outside of brokers, they can be written in various programming lan-
guages just like producer clients. Take note that when we look at how things work
in this chapter, we will try to lean towards the defaults of the Java consumer client.
After reading this chapter, we will be on our way to solving our previous business
requirements by consuming data in a couple of different ways.

This chapters covers
 Exploring the consumer and how it works

 Using consumer groups to coordinate reading 
data from topics

 Learning about offsets and how to use them

 Examining various configuration options that 
change consumer behavior
87



88 CHAPTER 5 Consumers: Unlocking data
5.1 An example
The consumer client is the program that subscribes to the topic or topics that interest
them [1]. As with producer clients, the actual consumer processes can run on sepa-
rate machines and are not required to run on a specific server. In fact, most consumer
clients in production settings are on separate hosts. As long as the clients can connect
to the Kafka brokers, they can read messages. Figure 5.1 reintroduces the broad scope
of Kafka and shows consumers running outside the brokers to get data from Kafka.

 Why is it important to know that the consumer is subscribing to topics (pulling
messages) and not being pushed to instead? The power of processing control shifts to
the consumer in this situation. Figure 5.1 shows where consumer clients fit into the
overall Kafka ecosystem. Clients are responsible for reading data from topics and

Messages can be replayed
from the beginning of the
log and consumed again.

Message brokers (cluster) +
Expanded

One of the brokers
will be a controller.

Producer clients

Data in
(to partition)

Like our 
kinaction_alert 

producer

Like our 
kinaction_alert 

consumer

Examples
• Databases
• IOT events
• Browser/user web events
• Logs

JVM application-message broker

Kafka core

Flushed to disk

• Logs are append only.
• New entries added to the end.
• No database storage, just disk.
• Each log is made up of entries
  labeled with offset numbers.

OS page cache (memory)

ZooKeeper ensemble

Consumer clients

Data out
(from partition)

Replay

Examples
• HDFS
• S3
• Web applications
• Metrics
• Analytics engines

Topic

Partition 0

0 1 2 3 4

ZooKeeper used for 
distributed configuration 
and management

Figure 5.1 Overview of Kafka consumer clients



89An example
making it available to application (like metrics dashboards or analytics engines) or
storing it in other systems. Consumers themselves control the rate of consumption.

 With consumers in the driver’s seat, if a failure occurs and the consumer applica-
tions come back online, they can start pulling again. There’s no need to always have
the consumers up and running to handle (or miss) notifications. Although you can
develop applications that are capable of handling this constant data flow or even a
buildup of back pressure due to volume, you need to know that you are not a listener
for the brokers; consumers are the ones pulling the data. For those readers that have
used Kafka before, you might know that there are reasons why you probably will not
want to have your consumers down for extended periods. When we discuss more
details about topics, we will look at how data might be removed from Kafka due to size
or time limits that users can define.

5.1.1 Consumer options

In our discussion, you will notice a couple of properties that are related to the ones
that were needed for the producer clients as well. We always need to know the brokers
we can attempt to connect to on client startup. One minor “gotcha” is to make sure
you use the deserializers for the keys and values that match the serializers you pro-
duced the message with. For example, if you produce using a StringSerializer but
try to consume using the LongDeSerializer, you will get an exception that you will
need to fix.

 Table 5.1 lists some of the configuration values that we should know as we start
writing our own consumers [2]. 

One way to deal with all of the consumer configuration key names is to use the con-
stants provided in the Java class ConsumerConfig (see http://mng.bz/oGgy) and
by looking for the Importance label of “high” in the Confluent website (http://
mng.bz/drdv). However, in our examples, we will use the property names themselves
for clarity. Listing 5.1 shows four of these keys in action. The values for the configura-
tions in table 5.1 determine how our consumer interacts with the brokers as well as
other consumers.

Table 5.1 Consumer configuration

Key Purpose

bootstrap.servers One or more Kafka brokers to connect on startup

value.deserializer Needed for deserialization of the value

key.deserializer Needed for deserialization of the key

group.id A name that’s used to join a consumer group

client.id An ID to identify a user  (we will use this in chapter 10)

heartbeat.interval.ms Interval for consumer’s pings to the group coordinator

http://mng.bz/drdv
http://mng.bz/drdv
http://mng.bz/oGgy


90 CHAPTER 5 Consumers: Unlocking data
 We will now switch to reading from a topic with one consumer as we did in chapter
2. For this example, we have an application similar to how Kafka could have started in
LinkedIn, dealing with user activity events (mentioned in chapter 1) [3]. Let’s say that
we have a specific formula that uses the time a user spends on the page as well as the
number of interactions they have, which is sent as a value to a topic to project future
click rates with a new promotion. Imagine that we run the consumer and process all of
the messages on the topic and that we are happy with our application of the formula
(in this case, multiplying by a magic number).

 Listing 5.1 shows an example of looking at the records from the topic kinaction
_promos and printing a value based on the data from each event. This listing has many
similarities to the producer code that we wrote in chapter 4, where properties are used
to determine the behavior of the consumer. This use of deserializers for the keys and
values is different than having serializers for producers, which varies depending on
the topic we consume.

NOTE Listing 5.1 is not a complete code listing but is meant to highlight spe-
cific consumer lines. Remember, a consumer can subscribe to multiple topics,
but in this instance, we are only interested in the kinaction_promos topic.

In the listing, a loop is also used to poll the topic partitions that our consumer is
assigned in order to process messages. This loop is toggled with a Boolean value. This
sort of loop can cause errors, especially for beginner programmers! Why this loop then?
Part of the streaming mindset encompasses events as a continuous stream, and this is
reflected in the logic. Notice that this example uses 250 for the value of the poll dura-
tion, which is in milliseconds. This timeout indicates how long the call blocks a main
application thread by waiting, but it can return immediately when records are ready for
delivery [4]. This value is something that you can fine-tune and adjust, based on the
needs of your applications. The reference (and more details) for the Java 8 style of
using addShutdownHook we use in the following listing can be seen at https://docs
.confluent.io/platform/current/streams/developer-guide/write-streams.html.

...
private volatile boolean keepConsuming = true;

public static void main(String[] args) {
Properties kaProperties = new Properties();
kaProperties.put("bootstrap.servers",

"localhost:9092,localhost:9093,,localhost:9094");
kaProperties.put("group.id",

"kinaction_webconsumer");
kaProperties.put("enable.auto.commit", "true");
kaProperties.put("auto.commit.interval.ms", "1000");
kaProperties.put("key.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");
kaProperties.put("value.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");

Listing 5.1 Promotion consumer

Defines group.id. (We’ll
discuss this with

consumer groups.)

Defines 
deserializers for 
the key and values

https://docs.confluent.io/platform/current/streams/developer-guide/write-streams.html
https://docs.confluent.io/platform/current/streams/developer-guide/write-streams.html
https://docs.confluent.io/platform/current/streams/developer-guide/write-streams.html


91An example
WebClickConsumer webClickConsumer = new WebClickConsumer();
webClickConsumer.consume(kaProperties);

Runtime.getRuntime()
.addShutdownHook(

new Thread(webClickConsumer::shutdown)
);

}

private void consume(Properties kaProperties) {
try (KafkaConsumer<String, String> consumer =

new KafkaConsumer<>(kaProperties)) {
consumer.subscribe(

List.of("kinaction_promos")
);

while (keepConsuming) {
ConsumerRecords<String, String> records =
consumer.poll(Duration.ofMillis(250));

for (ConsumerRecord<String, String> record : records) {
log.info("kinaction_info offset = {}, key = {}",

 record.offset(),
 record.key());

log.info("kinaction_info value = {}",
Double.parseDouble(record.value()) * 1.543);

}
}

}
}

private void shutdown() {
keepConsuming = false;

}
}

After generating a value for every message in the topic in listing 5.1, we find out that
our modeling formula isn’t correct! So what should we do now? Attempt to recalcu-
late the data we have from our end results (assuming the correction would be harder
than in the example) and then apply a new formula?

 This is where we can use our knowledge of consumer behavior in Kafka to replay
the messages we already processed. By having the raw data retained, we do not have to
worry about trying to recreate the original data. Developer mistakes, application logic
mistakes, and even dependent application failures can be corrected because the data
is not removed from our topics once it is consumed. This also explains how time
travel, in a way, is possible with Kafka.

 Let’s switch to looking at how to stop our consumer. You already saw where you used
Ctrl-C to end your processing or stopped the process on the terminal. However, the
proper way includes calling a close method on the consumer [23].

Passes the properties 
into the KafkaConsumer 
constructor

Subscribes to one topic, 
kinaction_promos

Uses a loop to poll 
for topic records



92 CHAPTER 5 Consumers: Unlocking data
 Listing 5.2 shows a consumer that runs on a thread and a different class controls
shutdown. When the code in listing 5.2 is started, the thread runs with a consumer
instance. By calling the public method shutdown, a different class can flip the Boolean
and stop our consumer from polling for new records. The stopping variable is our
guard, which decides whether to continue processing or not. Calling the wakeup
method also causes a WakeupException to be thrown that leads to the final block clos-
ing the consumer resource correctly [5]. Listing 5.2 used https://kafka.apache.org/
26/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
as a reference documentation.

public class KinactionStopConsumer implements Runnable {
private final KafkaConsumer<String, String> consumer;
private final AtomicBoolean stopping =

new AtomicBoolean(false);
...

public KinactionStopConsumer(KafkaConsumer<String, String> consumer) {
this.consumer = consumer;

}

public void run() {
try {

consumer.subscribe(List.of("kinaction_promos"));
while (!stopping.get()) {

ConsumerRecords<String, String> records =
consumer.poll(Duration.ofMillis(250));

...
}

} catch (WakeupException e) {
if (!stopping.get()) throw e;

} finally {
consumer.close();

}
}

public void shutdown() {
stopping.set(true);
consumer.wakeup();

}
}

As we move on to the next topic, to go further, we need to understand offsets and how
they can be used to control how consumers will read data. 

5.1.2 Understanding our coordinates

One of the items that we have only talked about in passing so far is the concept of off-
sets. We use offsets as index positions in the log that the consumer sends to the broker.

Listing 5.2 Closing a consumer

The variable stopping 
determines whether to 
continue processing.

The client shutdown hook 
triggers WakeupException.

Stops the client and informs 
the broker of the shutdown

Calls shutdown from a different 
thread to stop the client properly

https://kafka.apache.org/26/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/26/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html


93An example
This lets the log know which messages it wants to consume and from where. If you
think back to our console consumer example, we used the flag --from-beginning.
This sets the consumer’s configuration parameter auto.offset.reset to earliest
behind the scenes. With that configuration, you should see all the records for that
topic for the partitions you are connected to, even if they were sent before you started
the console consumer. The top part of figure 5.2 shows reading from the start of the
log every time you run in this mode.

Figure 5.2 Kafka offsets [6]

If you don’t add the option auto.offset.reset, the default is latest. Figure 5.2
shows this mode as well. In this case, you will not see any messages from the producer
unless you send them after you start the consumer. This option says to disregard pro-
cessing the messages that already are in the topic partition your consumer is reading
from; we only want to process what comes in after the consumer client starts polling
the topic. You can think of this as an infinite array that has an index starting at 0. How-
ever, there are no updates allowed for an index. Any changes need to be appended to
the end of the log.

 Note that offsets always increase for each partition. Once a topic partition has seen
offset 0, even if that message is removed at a later point, the offset number is not used
again. Some of you might have run into the issue of numbers that keep increasing
until they hit the upper bound of a data type. Each partition has its own offset
sequence, so the hope is that the risk will be low.

 For a message written to a topic, what are the coordinates to find the message?
First, we would find the partition within the topic that it was written to, and then we
would find the index-based offset. As figure 5.3 shows, consumers usually read from
the consumer’s partition leader replica. This consumer leader replica could be differ-
ent from any producer’s leader replica due to changes in leadership over time; how-
ever, they are generally similar in concept.

 

Spot 0 Spot 1 Spot 2

From beginning, reads
starting at 0

Spot 3

Spot 0 Spot 1 Spot 2
Latest reads start on next 
message. Offset numbers
do not change.

Spot 4Spot 3

Example kinaction_alert offset numbers



94 CHAPTER 5 Consumers: Unlocking data
Figure 5.3 Partition leaders

Also, when we talk about partitions, it is okay to have the same offset number across
partitions. The ability to tell messages apart needs to include the details of which par-
tition we are talking about within a topic, as well as the offset.

 As a side note, if you do need to fetch from a follower replica due to an issue like
network latency concerns (for example, having a cluster that stretches across data cen-
ters), KIP-392 introduced this ability in version 2.4.0 [7]. As you are starting out with
your first clusters, we recommend starting with the default behavior and only reaching
for this feature as it becomes necessary to impart a real impact. If you do not have
your cluster across different physical sites, you likely will not need this feature at the
current time.

 Partitions play an important role in how we can process messages. Although the
topic is a logical name for what your consumers are interested in, they will read from
the leader replicas of their assigned partitions. But how do consumers figure out
which partition to connect to? And not just which partition, but where does the leader
exist for that partition? For each group of consumers, a specific broker takes on the
role of being a group coordinator [8]. The consumer client talks to this coordinator
in order to get a partition assignment along with other details it needs in order to con-
sume messages.

 The number of partitions also comes into play when talking about consumption.
Some consumers will not get any work with more consumers than partitions. An exam-
ple would be four consumers and only three partitions. Why might you be okay with
that? In some instances, you might want to make sure that a similar rate of consumption
occurs if a consumer dies unexpectedly. The group coordinator is not only in charge of
assigning which consumers read which partitions at the beginning of group startup but

Partition 1

0 1 2 43

Topic: 3 partitions, 2 replicas 

Each partition has its own log
sequence. Consumers will only
read from partition leaders.

Partition 2

0 1 2 3

Partition 3 We will read from 
kinaction_alert later in 

this chapter from its leader.0 1

Broker

Partition 1 leader

P2 copy

Broker

Partition 2 leader

P3 copy

Broker

Partition 3 leader

P1 copy



95An example
also when consumers are added or fail and exit the group [8]. And, in an instance
where there are more partitions than consumers, consumers handle more than one
partition if needed.

 Figure 5.4 shows a generic view of how four consumers read all of the data on the
brokers where the subscribed topic has partition leader replicas spread evenly, with
one on each of the three brokers. In this figure, the data is roughly the same size,
which might not always be the case. One consumer sits ready without work because
each partition leader replica is handled by one consumer only.

Figure 5.4 An extra Kafka consumer

Because the number of partitions determines the amount of parallel consumers you
can have, some might ask why you don’t always choose a large number such as 500
partitions. This quest for higher throughput is not free [9]. This is why you need to
choose what best matches the shape of your data flow.

 One key consideration is that many partitions might increase end-to-end latency. If
milliseconds count in your application, you might not be able to wait until a partition
is replicated between brokers [9]. This is key to having in-sync replicas, and it is done
before a message is available for delivery to a consumer. You would also need to make
sure that you watch the memory usage of your consumers. If you do not have a 1-to-1
mapping of partitions to consumers, each consumer’s memory requirements can
increase as it is assigned more partitions [9].

 If you run across older documentation for Kafka, you might notice consumer cli-
ent configurations for Apache ZooKeeper. Unless one is using an old consumer client,

Data Data

Data

Java consumer 2Java consumer 1

This consumer reads 
one section of the 
total data.

This consumer reads 
one section of the 
total data.

This consumer reads 
one section of the
total data.

This consumer sits 
ready but does not 
read any data.

+ poll()
+ subscribe()

+ poll()
+ subscribe()

Java consumer 3

Our examples in this book usually 
only have 3 partitions, so 4 consumers 

would have 1 be without work.

Java consumer 6

+ poll()
+ subscribe()+ poll()

+ subscribe()



96 CHAPTER 5 Consumers: Unlocking data
Kafka does not have consumers rely directly on ZooKeeper. Although consumers used
ZooKeeper to store the offsets that they consume to a certain point, now the offsets
are often stored inside a Kafka internal topic [10]. As a side note, consumer clients do
not have to store their offsets in either of these locations, but this will likely be the
case. If you want to manage your own offset storage you can! You can either store it in
a local file, in cloud storage with a provider like AWS™, or a database. One of the
advantages of moving away from ZooKeeper storage was to reduce the clients’ depen-
dency on ZooKeeper. 

5.2 How consumers interact
Why is the concept of consumer groups paramount? Probably the most important rea-
son is that scaling is impacted by either adding customers to or removing consumers
from a group. Consumers that are not part of the same group do not share the same
coordination of offset knowledge.

 Listing 5.3 shows an example of a group named kinaction_team0group. If you
instead make up a new group.id (like a random GUID), you will start a new consumer
with no stored offsets and with no other consumers in your group [11]. If you join an
existing group (or one that had offsets stored already), your consumer can share work
with others or can even resume where it left off reading from any previous runs [1].

Properties kaProperties = new Properties();
kaProperties.put("group.id", "kinaction_team0group");

It is often the case that you will have many consumers reading from the same topic. An
important detail to decide on if you need a new group ID is whether your consumers are
working as part of one application or as separate logic flows. Why is this important?

 Let’s think of two use cases for data that come from a human resource system. One
team wonders about the number of hires from specific states, and the other team is
more interested in the data for the impact on travel budgets for interviews. Would any-
one on the first team care about what the other team is doing or would either of the
teams want to consume only a portion of the messages? Likely not! How can we keep
this separation? The answer is to assign a separate group.id to each application. Each
consumer that uses the same group.id as another consumer will be considered to be
working together to consume the partitions and offsets of the topic as one logical
application. 

5.3 Tracking
Going through our usage patterns so far, we have not talked too much about how we
keep a record of what each client has read. Let’s briefly talk about how some message
brokers handle messages in other systems. In some systems, consumers do not record

Listing 5.3 Consumer configuration for consumer group

group.id determines 
consumer behavior 
with other consumers.



97Tracking
what they have read. They pull the message and then it does not exist on a queue after
acknowledgment. This works well for a single message that needs to have exactly one
application process it. Some systems use topics in order to publish the message to
all those that are subscribers. And often, future subscribers will have missed this mes-
sage entirely because they were not actively part of the receiver list when the event
happened.

 Figure 5.5 shows non-Kafka message broker scenarios, including how messages are
often removed after consumption. It also shows a second pattern where a message
might come from the original source and then be replicated to other queues. In sys-
tems where the message would be consumed and not available for more than one con-
sumer, this approach is needed so that separate applications each get a copy.

Figure 5.5 Other broker scenarios

You can imagine that the copies grow in number as an event becomes a popular
source of information. Rather than have entire copies of the queue (besides those for
replication or failover), Kafka can serve multiple applications from the same partition
leader replica.

 Kafka, as we mentioned in the first chapter, is not limited to having only one con-
sumer. Even if a consuming application does not exist when a message is first created
on a topic, as long as Kafka retains the message in its log, then it can still process the

The only message 
available to read is 3. 

For each consumer to get the
same message, some systems
fan out with copies of the data.

Producer

Queue

Read once and acknowledge

0 1 2 3

Multiple consumers want the same message.

Queue 0

0 1 2

Producer

Queue 1

0 1 2

Queue 2

0 1 2

Consumer 0

Our kinaction_alert topic 
messages are not removed.

Consumer

Consumer 1

Consumer 2



98 CHAPTER 5 Consumers: Unlocking data
data. Because messages are not removed from other consumers or delivered once,
consumer clients need a way to keep a record of where they have read in the topic. In
addition, because many applications can read the same topic, it is important that the
offsets and partitions are specific to a certain consumer group. The key coordinates to
let your consumer clients work together is a unique blend of the following: group,
topic, and partition number.

5.3.1 Group coordinator

As mentioned earlier, the group coordinator works with the consumer clients to keep
a record of where inside the topic that specific group has read [8]. The partition’s
coordinates of a topic and group ID make it specific to an offset value.

 Looking at figure 5.6, notice that we can use the offset commits as coordinates to
find out where to read from next. For example, in the figure, a consumer that is part
of a group called kinaction_teamoffka0 and is assigned partition 0 would be ready to
read offset 3 next.

Figure 5.6 Coordinates

Figure 5.7 shows a scenario where the same partitions of interest exist on three
separate brokers for two different consumer groups, kinaction_teamoffka0 and
kinaction_teamsetka1. The consumers in each group will get their own copy of the
data from the partitions on each broker. They do not work together unless they are
part of the same group. Correct group membership is important for each group to
have their metadata managed accurately.

Partition 0

Three partitions

0 1 2 3

Group ID kinaction_teamoffka0
last read:

This offset information tells you where you
are and what to consume next!

Partition 0, offset 2
Partition 1

0 1 2 3

Partition 1, offset 1
Partition 2

0 1 2

Partition 2, offset 1

Topic: kinaction_alert



99Tracking
Figure 5.7 Consumers in separate groups [12]

As a general rule, only one consumer per consumer group can read one partition. In
other words, whereas a partition might be read by many consumers, it can only be read
by one consumer from each group at a time. Figure 5.8 highlights how one consumer
can read two partitions leader replicas, where the second consumer can only read the
data from a third partition leader [8]. A single partition replica is not to be divided or
shared between more than one consumer with the same ID.

Figure 5.8 Kafka consumers in a group

Data Data

Data

Java consumer 2: 
kinaction_teamoffka0

Java consumer 1: 
kinaction_teamoffka0

Java consumer 3: 
kinaction_teamoffka0

Java consumer 5: 
kinaction_teamsetka1

Java consumer 4: 
kinaction_teamsetka1

Java consumer 6: 
kinaction_teamsetka1

Multiple consumers can 
read the same data because 
they have different 
consumer IDs.

Consumers from different groups 
ignore each other, getting their 
own copy of the data.

+ poll()
+ subscribe()

+ poll()
+ subscribe()

+ poll()
+ subscribe()

+ poll()
+ subscribe()

+ poll()
+ subscribe()

+ poll()
+ subscribe()

Data Data

Data

Java consumerJava consumer

Two consumers reading a 3-partition 
kinaction_alert topic would have 

one consumer reading 2 partitions.
This consumer reads one 
section of the total data.

This consumer reads two 
sections of the total data.

+ poll()
+ subscribe()

+ poll()
+ subscribe()



100 CHAPTER 5 Consumers: Unlocking data
One of the neat things about being part of a consumer group is that when a consumer
fails, the partitions that it was reading are reassigned [8]. An existing consumer takes
the place of reading a partition that was once read by the consumer that dropped out
of the group.

 Table 5.1 listed heartbeat.interval.ms, which determines the amount of pings to
the group coordinator [13]. This heartbeat is the way that the consumer communi-
cates with the coordinator to let it know it is still replying in a timely fashion and work-
ing away diligently [8].

 Failure by a consumer client to send a heartbeat over a period of time can happen
in a couple of ways, like stopping the consumer client by either termination of the
process or failure due to a fatal exception. If the client isn’t running, it cannot send
messages back to the group coordinator [8]. 

5.3.2 Partition assignment strategy

One item that we will want to be aware of is how consumers get assigned to partitions.
This matters since it will help you figure out how many partitions each of your con-
sumers might be taxed with processing. The property partition.assignment.strat-
egy is what determines which partitions are assigned to each consumer [14]. Range
and RoundRobin are provided, as are Sticky and CooperativeSticky [15]. 

 The range assigner uses a single topic to find the number of partitions (ordered by
number) and then is broken down by the number of consumers. If the split is not even,
then the first consumers (using alphabetical order) get the remaining partitions [16].
Make sure that you employ a spread of partitions that your consumers can handle and
consider switching the assignment strategy if some consumer clients use all their
resources, though others are fine. Figure 5.9 shows how three clients will grab three out
of seven total partitions and end up with more partitions than the last client.

 The round-robin strategy is where the partitions are uniformly distributed down the
row of consumers [1]. Figure 5.9 is a modified figure from the article “What I have
learned from Kafka partition assignment strategy,” which shows an example of three
clients that are part of the same consumer group and assigned in a round-robin fash-

Range

Topic with 7 partitions

1 2 3 4 5 6 7

RoundRobin

Topic with 7 partitions

1 2 3 4 5 6 7

Client 2
(4, 5)

Client 1
(1, 2, 3)

Client 3
(6, 7)

Client 2
(2, 5)

Client 1
(1, 4, 7)

Client 3
(3, 6)

Figure 5.9 Partition assignments



101Marking our place
ion for one topic made of seven partitions [17]. The first consumer gets the first parti-
tion, the second consumer the second, and so on until the partitions run out.

 The sticky strategy was added in version 0.11.0 [18]. However, since we will use
range assigner in most of our examples internally and already looked at round-robin
as well, we will not dig into Sticky and CooperativeSticky.   

5.4 Marking our place
One of the important things to think about is your need for assuring that your applica-
tions read all messages from your topic. Is it okay to miss a few, or do you need each
message confirmed as it’s read? The real decision comes down to your requirements
and any trade-offs you are willing to make. Are you okay with sacrificing some speed in
order to have a safer method of seeing each message? These choices are discussed in
this section.

 One option is to use enable.auto.commit set to true, the default for consumer
clients [19]. Offsets are committed on our behalf. One of the nicest parts of this
option is that we do not have to make any other calls to commit the offsets that are
consumed.

 Kafka brokers resend messages if they are not automatically acknowledged due to
a consumer client failure. But what sort of trouble can we get into? If we process mes-
sages that we get from our latest poll, say, in a separate thread, the automatic commit
offset can be marked as being read even if everything is not actually done with those
specific offsets. What if we had a message fail in our processing that we would need to
retry? With our next poll, we could get the next set of offsets after what was already
committed as being consumed [8]. It is possible and easy to lose messages that look
like they have been consumed despite not being processed by your consumer logic.

 When looking at what you commit, notice that timing might not be perfect. If you
do not call a commit method on a consumer with metadata noting your specific offset
to commit, you might have some undefined behavior based on the timing of polls,
expired timers, or even your own threading logic. If you need to be sure to commit a
record at a specific time as you process it or a specific offset in particular, you should
make sure that you send the offset metadata into the commit method.

 Let’s explore this topic more by talking about using code-specific commits enabled
by enable.auto.commit set to false. This method can be used to exercise the most
management over when your application actually consumes a message and commits
it. At-least-once delivery guarantees can be achieved with this pattern.

 Let’s talk about an example in which a message causes a file to be created in Hadoop
in a specific location. As you get a message, you poll a message at offset 999. During pro-
cessing, the consumer stops because of an error. Because the code never actually com-
mitted offset 999, the next time a consumer of that same group starts reading from that
partition, it gets the message at offset 999 again. By receiving the message twice, the cli-
ent was able to complete the task without missing the message. On the flip side, you did
get the message twice! If for some reason your processing actually works and you



102 CHAPTER 5 Consumers: Unlocking data

e

achieve a successful write, your code has to handle the fact that you might have dupli-
cates.

 Now let’s look at some of the code that we would use to control our offsets. As we did
with a producer when we sent a message earlier, we can also commit offsets in a syn-
chronous or asynchronous manner. Listing 5.4 shows a synchronous commit. Looking
at that listing for commitSync, it is important to note that the commit takes place in a
manner that blocks any other progress in the code until a success or failure occurs [20].

consumer.commitSync();
#// Any code here will wait on line before

As with producers, we can also use a callback. Listing 5.5 shows how to create an asyn-
chronous commit with a callback by implementing the OffsetCommitCallback inter-
face (the onComplete method) with a lambda expression [21]. This instance allows for
log messages to determine our success or failure even though our code does not wait
before moving on to the next instruction.

public static void commitOffset(long offset,
int partition,
String topic,
KafkaConsumer<String, String> consumer) {

OffsetAndMetadata offsetMeta = new OffsetAndMetadata(++offset, "");

Map<TopicPartition, OffsetAndMetadata> kaOffsetMap = new HashMap<>();
kaOffsetMap.put(new TopicPartition(topic, partition), offsetMeta);

consumer.commitAsync(kaOffsetMap, (map, e) -> {
if (e != null) {

for (TopicPartition key : map.keySet()) {
log.info("kinaction_error: offset {}", map.get(key).offset());

}
} else {

for (TopicPartition key : map.keySet()) {
log.info("kinaction_info: offset {}", map.get(key).offset());

}
}

});
}

If you think back to chapter 4, this is similar to how we used asynchronous sends with
a callback for acknowledgments. To implement your own callback, you need to use
the interface OffsetCommitCallback. You can define an onComplete method defini-
tion to handle exceptions or successes as needed.

 Why would you want to choose synchronous or asynchronous commit patterns?
Keep in mind that your latency is higher if you wait for a blocking call. This time fac-

Listing 5.4 Waiting on a commit

Listing 5.5 Commit with a callback

commitSync waits for 
a success or fail.

A lambda that creates an 
OffsetCommitCallback instanc



103Retrieving code for our factory requirements
tor might be worth the delay if your requirements include needs for data consistency
[21]. These decisions help determine the amount of control you need to exercise
when informing Kafka which messages your logic considers as processed. 

5.5 Reading from a compacted topic
Consumers should be made aware of reading from a compacted topic. Kafka com-
pacts the partition log in a background process, and records with the same key might
be removed except for the last one. Chapter 7 will go further into how these topics
work, but in short, we need to update records that have the same key value. If you do
not need a history of messages, but rather just the last value, you might wonder how
this concept works with an immutable log that only adds records to the end. The
biggest “gotcha” for consumers that might cause an error is that when reading records
from a compacted topic, consumers can still get multiple entries for a single key [22]!
How is this possible? Because compaction runs on the log files that are on disk, com-
paction may not see every message that exists in memory during cleanup.

 Clients need to handle this case, where there is more than one value per key. We
should have the logic in place to handle duplicate keys and, if needed, ignore all but
the last value. To pique your interest about compacted topics, note that Kafka uses its
own compacted internal topic, called __consumer_offsets, which relates directly to
your consumer offsets themselves [23]. Compaction makes sense here because for a
specific combination of a consumer group, partition, and topic, only the latest value is
needed as it will have the latest offset consumed. 

5.6 Retrieving code for our factory requirements
Let’s try to use the information we gathered about how consumers work to see if we can
start working on our own solutions designed in chapter 3 for use with Kafka in our
e-bike factory but from the consumer client perspective. As noted in chapter 3, we want
to ensure that we do not lose any audit messages when operators complete commands
against the sensors. First, let’s look at the options we have in reading our offsets.

5.6.1 Reading options

Although there is no lookup of a message by a key option in Kafka, it is possible to
seek to a specific offset. Thinking about our log of messages being an ever increasing
array with each message having an index, we have a couple of options for this, includ-
ing starting from the beginning, going to the end, or finding offsets based on specific
times. Let’s take a look at these options.

 One issue that we might run into is that we want to read from the beginning of a
topic even if we have already done so. Reasons could include logic errors and a desire
to replay the entire log or a failure in our data pipeline after starting with Kafka. The
important configuration to set for this behavior is auto.offset.reset to earli-
est[24]. Another technique that we can use is to run the same logic but use a different
group ID. In effect, this means that the commit offset topics that Kafka uses internally



104 CHAPTER 5 Consumers: Unlocking data
will not be able to find an offset value but will be able to start at the first index found
because the commit offset topic does not have any data on the new consumer group.

 Listing 5.6 is an example of setting the property auto.offset.reset to
"earliest" to seek to a specific offset [24]. Setting a group ID to a random UUID
also helps to achieve starting with no offset history for a consumer group. This is the
type of reset we could use to look at kinaction_alerttrend with different code logic
to determine trends against all of the data in that topic.

Properties kaProperties = new Properties();
kaProperties.put("group.id",

UUID.randomUUID().toString());
kaProperties.put("auto.offset.reset", "earliest");

Sometimes you just want to start your logic from when the consumers start up and for-
get about past messages [24]. Maybe the data is already too old to have business value
in your topic. Listing 5.7 shows the properties you would set to get this behavior of
starting with the latest offset. If you want to make sure that you don’t find a previous
consumer offset and want to instead default to the latest offset Kafka has for your sub-
scriptions, using a UUID isn’t necessary except for testing. If we are only interested
about new alerts coming into our kinaction_alert topic, this might be a way for a
consumer to see only those alerts.

Properties kaProperties = new Properties();
kaProperties.put("group.id",

UUID.randomUUID().toString());
kaProperties.put("auto.offset.reset", "latest");

One of the trickier offset search methods is offsetsForTimes. This method allows you
to send a map of topics and partitions as well as a timestamp for each in order to get a
map back of the offset and timestamp for the given topics and partitions [25]. This
can be useful in situations where a logical offset is not known, but a timestamp is
known. For example, if you have an exception related to an event that was logged, you
might be able to use a consumer to determine the data that was processed around
your specific timestamp. Trying to locate an audit event by time might be used for our
topic kinaction_audit to locate commands happening as well.

 As listing 5.8 shows, we have the ability to retrieve the offset and timestamps per a
topic or partition when we map each to a timestamp. After we get our map of meta-
data returned from the offsetsForTimes call, we then can seek directly to the offset
we are interested in by seeking to the offset returned for each respective key.

Listing 5.6 Earliest offset

Listing 5.7 Latest offset

Creates a group ID for 
which Kafka does not 
have a stored offset

Uses the earliest offset 
retained in our logs

Creates a group ID for 
which Kafka does not 
have a stored offset

Uses the latest 
record offset



105Retrieving code for our factory requirements
 

...
Map<TopicPartition, OffsetAndTimestamp> kaOffsetMap =
consumer.offsetsForTimes(timeStampMapper);
...
// We need to use the map we get
consumer.seek(partitionOne,

kaOffsetMap.get(partitionOne).offset());

One thing to be aware of is that the offset returned is the first message with a time-
stamp that meets your criteria. However, due to the producer resending messages on
failures or variations in when timestamps are added (by consumers, perhaps), times
might appear out of order.

 Kafka also gives you the ability to find other offsets as can be referenced in the con-
sumer Javadoc [26]. With all of these options, let’s see how they apply to our use case. 

5.6.2 Requirements

One requirement for our audit example was that there is no need to correlate (or
group together) any events across the individual events. This means that there are no
concerns on the order or need to read from specific partitions; any consumer reading
any partition should be good. Another requirement was to not lose any messages. A
safe way to make sure that our logic is executed for each audit event is to specifically
commit the offset per record after it is consumed. To control the commit as part of
the code, we can set enable.auto.commit to false.

 Listing 5.9 shows an example of leveraging a synchronous commit after each
record is processed for the audit feature. Details of the next offset to consume in rela-
tion to the topic and partition of the offset that was just consumed are sent as a part of
each loop through the records. One "gotcha" to note is that it might seem odd to add
1 to the current offset, but the offset sent to your broker is supposed to be your future
index. The method commitSync is called and passed the offset map containing the off-
set of the record that was just processed [20].

...
kaProperties.put("enable.auto.commit", "false");

try (KafkaConsumer<String, String> consumer =
new KafkaConsumer<>(kaProperties)) {

consumer.subscribe(List.of("kinaction_audit"));

while (keepConsuming) {
var records = consumer.poll(Duration.ofMillis(250));
for (ConsumerRecord<String, String> record : records) {
// audit record process ...

Listing 5.8 Seeking to an offset by timestamps

Listing 5.9 Audit consumer logic

Finds the first offset greater or 
equal to that timeStampMapper

Seeks to the first offset 
provided in kaOffsetMap

Sets autocommit 
to false



106 CHAPTER 5 Consumers: Unlocking data

s 
OffsetAndMetadata offsetMeta =
new OffsetAndMetadata(++record.offset(), "");

Map<TopicPartition, OffsetAndMetadata> kaOffsetMap =
new HashMap<>();

kaOffsetMap.put(
new TopicPartition("kinaction_audit",

record.partition()), offsetMeta);

consumer.commitSync(kaOffsetMap);
}

}
}

...

Another goal of the design for our e-bike factory was to capture our alert status and
monitor the alert trend over time. Even though we know our records have a key that is
the stage ID, there is no need to consume one group at a time or worry about the
order. Listing 5.10 shows how to set the key.deserializer property so the consumer
knows how to deal with the binary data that was stored in Kafka when we produced
the message. In this example, AlertKeySerde is used for the key to deserialize.
Because message loss isn’t a huge concern in our scenario, allowing autocommit of
messages is good enough in this situation.

...
kaProperties.put("enable.auto.commit", "true");
kaProperties.put("key.deserializer",

AlertKeySerde.class.getName());
kaProperties.put("value.deserializer",

"org.apache.kafka.common.serialization.StringDeserializer");

KafkaConsumer<Alert, String> consumer =
new KafkaConsumer<Alert, String>(kaProperties);

consumer.subscribe(List.of("kinaction_alerttrend"));

while (true) {
ConsumerRecords<Alert, String> records =
consumer.poll(Duration.ofMillis(250));
for (ConsumerRecord<Alert, String> record : records) {

// ...
}

}
...

Another large requirement is to have any alerts quickly processed to let operators
know about critical issues. Because the producer in chapter 4 used a custom Parti-
tioner, we will assign a consumer directly to that same partition to alert us to critical
issues. Because a delay in case of other alerts is not desirable, the commit will be for
each offset in an asynchronous manner.

Listing 5.10 Alert trending consumer

Adding a record to the 
current offset determine
the next offset to read.

Allows for a topic 
and partition key 
to be related to a 
specific offsetCommits 

the offsets

Uses autocommit as lost 
messages are not an issue

AlertKeySerde 
key deserializer



107Retrieving code for our factory requirements
 Listing 5.12 shows the consumer client logic focused on critical alerts assigning
themselves to the specific topic and partition that is used for producing alerts when
the custom partitioner class AlertLevelPartitioner is used. In this case, it is parti-
tion 0 and topic kinaction_alert. 

 We use TopicPartition objects to tell Kafka which specific partitions we are inter-
ested in for a topic. Passing the TopicPartition objects to the assign method takes
the place of allowing a consumer to be at the discretion of a group coordinator assign-
ment [27].

 For listing 5.11, each record that comes back from the consumer poll, an asynchro-
nous commit is used with a callback. A commit of the next offset to consume is sent to
the broker and should not block the consumer from processing the next record, per
our requirements. The options in the following listing seem to satisfy our core design
requirements from chapter 3.

kaProperties.put("enable.auto.commit", "false");

KafkaConsumer<Alert, String> consumer =
new KafkaConsumer<Alert, String>(kaProperties);

TopicPartition partitionZero =
new TopicPartition("kinaction_alert", 0);

consumer.assign(List.of(partitionZero));

while (true) {
ConsumerRecords<Alert, String> records =

consumer.poll(Duration.ofMillis(250));
for (ConsumerRecord<Alert, String> record : records) {

// ...
commitOffset(record.offset(),
record.partition(), topicName, consumer);

}
}

...
public static void commitOffset(long offset,int part, String topic,

KafkaConsumer<Alert, String> consumer) {
OffsetAndMetadata offsetMeta = new OffsetAndMetadata(++offset, "");

Map<TopicPartition, OffsetAndMetadata> kaOffsetMap =
new HashMap<TopicPartition, OffsetAndMetadata>();

kaOffsetMap.put(new TopicPartition(topic, part), offsetMeta);

OffsetCommitCallback callback = new OffsetCommitCallback() {
...
};
consumer.commitAsync(kaOffsetMap, callback);

}

Listing 5.11 Alert consumer

Uses TopicPartition 
for critical messages

Consumer assigns itself 
the partition rather than 
subscribing to the topic

Commits each record 
asynchronously

The asynchronous commit 
uses the kaOffsetMap and 
callback arguments.



108 CHAPTER 5 Consumers: Unlocking data
Overall, the consumer can be a complex piece of our interactions with Kafka. Some
options can be done with property configurations alone, but if not, you can use your
knowledge of topics, partitions, and offsets to navigate your way to the data you need. 

Summary
 Consumer clients provide developers with a way to get data out of Kafka. As

with producer clients, consumer clients have a large number of available config-
uration options we can set rather than using custom coding.

 Consumer groups allow more than one client to work as a group to process
records. With grouping, clients can process data in parallel.

 Offsets represent the position of a record in the commit log that exists on a bro-
ker. By using offsets, consumers can control where they want to start reading data.

 An offset can be a previous offset that consumers have already seen, which gives
us the ability to replay records.

 Consumers can read data in a synchronous or an asynchronous manner.
 If asynchronous methods are used, the consumer can use code in callbacks to

run logic once data is received.

References
1 S. Kozlovski. “Apache Kafka Data Access Semantics: Consumers and Member-

ship.” Confluent blog (n.d.). https://www.confluent.io/blog/apache-kafka-data
-access-semantics-consumers-and-membership (accessed August 20, 2021).

2 “Consumer Configurations.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/installation/configuration/consumer-
configs.html (accessed June 19, 2019).

3 N. Narkhede. “Apache Kafka Hits 1.1 Trillion Messages Per Day – Joins the 4
Comma Club.” Confluent blog (September 1, 2015). https://www.confluent.io/
blog/apache-kafka-hits-1-1-trillion-messages-per-day-joins-the-4-comma-club/
(accessed October 20, 2019).

4 “Class KafkaConsumer<K,V>.” Kafka 2.7.0 API. Apache Software Foundation
(n.d.). https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/con
sumer/KafkaConsumer.html#poll-java.time.Duration- (accessed August 24,
2021).

5 “Class WakeupException.” Kafka 2.7.0 API. Apache Software Foundation (n.d.).
https://kafka.apache.org/27/javadoc/org/apache/kafka/common/errors/
WakeupException.html (accessed June 22, 2020).

6 “Documentation: Topics and Logs.” Confluent documentation (n.d.). https://
docs.confluent.io/5.5.1/kafka/introduction.html#topics-and-logs (accessed
October 20, 2021).

7 “KIP-392: Allow consumers to fetch from closest replica.” Wiki for Apache
Kafka. Apache Software Foundation (November 05, 2019). https://cwiki
.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+
fetch+from+closest+replica (accessed December 10, 2019).

https://www.confluent.io/blog/apache-kafka-data-access-semantics-consumers-and-membership
https://www.confluent.io/blog/apache-kafka-data-access-semantics-consumers-and-membership
https://www.confluent.io/blog/apache-kafka-data-access-semantics-consumers-and-membership
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html
https://www.confluent.io/blog/apache-kafka-hits-1-1-trillion-messages-per-day-joins-the-4-comma-club/
https://www.confluent.io/blog/apache-kafka-hits-1-1-trillion-messages-per-day-joins-the-4-comma-club/
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#poll-java.time.Duration-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#poll-java.time.Duration-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#poll-java.time.Duration-
https://kafka.apache.org/27/javadoc/org/apache/kafka/common/errors/WakeupException.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/common/errors/WakeupException.html
https://docs.confluent.io/5.5.1/kafka/introduction.html#topics-and-logs
https://docs.confluent.io/5.5.1/kafka/introduction.html#topics-and-logs
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica


109References
8 J. Gustafson. “Introducing the Kafka Consumer: Getting Started with the New
Apache Kafka 0.9 Consumer Client.” Confluent blog (January 21, 2016). https://
www.confluent.io/blog/tutorial-getting-started-with-the-new-apache-kafka-0-9-
consumer-client/ (accessed June 01, 2020).

9 J. Rao. “How to choose the number of topics/partitions in a Kafka cluster?”
Confluent blog (March 12, 2015). https://www.confluent.io/blog/how-choose-
number-topics-partitions-kafka-cluster/ (accessed May 19, 2019).

10 “Committing and fetching consumer offsets in Kafka.” Wiki for Apache Kafka.
Apache Software Foundation (March 24, 2015). https://cwiki.apache.org/
confluence/pages/viewpage.action?pageId=48202031 (accessed December 15,
2019).

11 “Consumer Configurations: group.id.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/installation/configuration/consumer-
configs.html#consumerconfigs_group.id (accessed May 11, 2018).

12 “Documentation: Consumers.” Apache Software Foundation (n.d.). https://
kafka.apache.org/23/documentation.html#intro_consumers (accessed Decem-
ber 11, 2019).

13 “Consumer Configurations: heartbeat.interval.ms.” Confluent documentation
(n.d.). https://docs.confluent.io/platform/current/installation/configuration/
consumer-configs.html#consumerconfigs_heartbeat.interval.ms (accessed May
11, 2018).

14 “Consumer Configurations: partition.assignment.strategy.” Confluent docu-
mentation (n.d.). https://docs.confluent.io/platform/current/installation/
configuration/consumer-configs.html#consumerconfigs_partition.assignment
.strategy (accessed December 22, 2020).

15 S. Blee-Goldman. “From Eager to Smarter in Apache Kafka Consumer Rebal-
ances.” Confluent blog (n.d.). https://www.confluent.io/blog/cooperative
-rebalancing-in-kafka-streams-consumer-ksqldb/ (accessed August 20, 2021).

16 “RangeAssignor.java.” Apache Kafka GitHub (n.d.). https://github.com/
apache/kafka/blob/c9708387bb1dd1fd068d6d8cec2394098d5d6b9f/clients/
src/main/java/org/apache/kafka/clients/consumer/RangeAssignor.java
(accessed August 25, 2021).

17 A. Li. “What I have learned from Kafka partition assignment strategy.” Medium
(December 1, 2017). https://medium.com/@anyili0928/what-i-have-learned-
from-kafka-partition-assignment-strategy-799fdf15d3ab (accessed October 20,
2021).

18 “Release Plan 0.11.0.0.” Wiki for Apache Kafka. Apache Software Foundation
(June 26, 2017). https://cwiki.apache.org/confluence/display/KAFKA/
Release+Plan+0.11.0.0 (accessed December 14, 2019).

19 “Consumer Configurations: enable.auto.commit.” Confluent documentation
(n.d.). https://docs.confluent.io/platform/current/installation/configuration/
consumer-configs.html#consumerconfigs_enable.auto.commit (accessed May
11, 2018).

https://medium.com/@anyili0928/what-i-have-learned-from-kafka-partition-assignment-strategy-799fdf15d3ab
https://medium.com/@anyili0928/what-i-have-learned-from-kafka-partition-assignment-strategy-799fdf15d3ab
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster/
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster/
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=48202031
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=48202031
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=48202031
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_group.id
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_group.id
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_group.id
https://kafka.apache.org/23/documentation.html#intro_consumers
https://kafka.apache.org/23/documentation.html#intro_consumers
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_heartbeat.interval.ms
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_heartbeat.interval.ms
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_heartbeat.interval.ms
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_partition.assignment.strategy
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_partition.assignment.strategy
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_partition.assignment.strategy
https://www.confluent.io/blog/cooperative-rebalancing-in-kafka-streams-consumer-ksqldb/
https://www.confluent.io/blog/cooperative-rebalancing-in-kafka-streams-consumer-ksqldb/
https://www.confluent.io/blog/cooperative-rebalancing-in-kafka-streams-consumer-ksqldb/
https://cwiki.apache.org/confluence/display/KAFKA/Release+Plan+0.11.0.0
https://cwiki.apache.org/confluence/display/KAFKA/Release+Plan+0.11.0.0
https://docs.confluent.io/platform/current/installation/configuration/ consumer-configs.html#consumerconfigs_enable.auto.commit
https://docs.confluent.io/platform/current/installation/configuration/ consumer-configs.html#consumerconfigs_enable.auto.commit
https://docs.confluent.io/platform/current/installation/configuration/ consumer-configs.html#consumerconfigs_enable.auto.commit
https://github.com/apache/kafka/blob/c9708387bb1dd1fd068d6d8cec2394098d5d6b9f/clients/src/main/java/org/apache/kafka/clients/consumer/RangeAssignor.java
https://github.com/apache/kafka/blob/c9708387bb1dd1fd068d6d8cec2394098d5d6b9f/clients/src/main/java/org/apache/kafka/clients/consumer/RangeAssignor.java
https://github.com/apache/kafka/blob/c9708387bb1dd1fd068d6d8cec2394098d5d6b9f/clients/src/main/java/org/apache/kafka/clients/consumer/RangeAssignor.java


110 CHAPTER 5 Consumers: Unlocking data
20 Synchronous Commits. Confluent documentation (n.d.). https://docs.confluent
.io/3.0.0/clients/consumer.html#synchronous-commits (accessed August 24,
2021).

21 Asynchronous Commits. Confluent documentation (n.d.). https://docs.conflu
ent.io/3.0.0/clients/consumer.html#asynchronous-commits (accessed August
24, 2021).

22 Kafka Design. Confluent documentation (n.d.). https://docs.confluent.io/
platform/current/kafka/design.html (accessed August 24, 2021).

23 Kafka Consumers. Confluent documentation (n.d.). https://docs.confluent.io/
3.0.0/clients/consumer.html (accessed August 24, 2021).

24 “Consumer Configurations: auto.offset.reset.” Confluent documentation
(n.d.). https://docs.confluent.io/platform/current/installation/configuration
/consumer-configs.html#consumerconfigs_auto.offset.reset (accessed May 11,
2018).

25 offsetsForTimes. Kafka 2.7.0 API. Apache Software Foundation (n.d.).
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/
Consumer.html#offsetsForTimes-java.util.Map- (accessed June 22, 2020).

26 seek. Kafka 2.7.0 API. Apache Software Foundation (n.d.). https://
kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Consumer
.html#seek-org.apache.kafka.common.TopicPartition-long- (accessed June 22,
2020).

27 assign. Kafka 2.7.0 API. Apache Software Foundation (n.d.). https://
kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Kafka
Consumer.html#assign-java.util.Collection- (accessed August 24, 2021).

https://docs.confluent.io/3.0.0/clients/consumer.html#synchronous-commits
https://docs.confluent.io/3.0.0/clients/consumer.html#synchronous-commits
https://docs.confluent.io/3.0.0/clients/consumer.html#synchronous-commits
https://docs.confluent.io/3.0.0/clients/consumer.html#asynchronous-commits
https://docs.confluent.io/3.0.0/clients/consumer.html#asynchronous-commits
https://docs.confluent.io/3.0.0/clients/consumer.html#asynchronous-commits
https://docs.confluent.io/platform/current/kafka/design.html
https://docs.confluent.io/platform/current/kafka/design.html
https://docs.confluent.io/platform/current/kafka/design.html
https://docs.confluent.io/3.0.0/clients/consumer.html
https://docs.confluent.io/3.0.0/clients/consumer.html
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_auto.offset.reset
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_auto.offset.reset
https://docs.confluent.io/platform/current/installation/configuration/consumer-configs.html#consumerconfigs_auto.offset.reset
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Consumer.html#offsetsForTimes-java.util.Map-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Consumer.html#offsetsForTimes-java.util.Map-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Consumer.html#seek-org.apache.kafka.common.TopicPartition-long-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Consumer.html#seek-org.apache.kafka.common.TopicPartition-long-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Consumer.html#seek-org.apache.kafka.common.TopicPartition-long-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#assign-java.util.Collection-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#assign-java.util.Collection-
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#assign-java.util.Collection-


Brokers
So far in our discussions, we have dealt with Kafka from the view of an application
developer interacting from external applications and processes. However, Kafka is a
distributed system that deserves attention in its own right. In this chapter, let’s look
at the parts that make the Kafka brokers work.

6.1 Introducing the broker
Although we have focused on the client side of Kafka so far, our focus will now shift
to another powerful component of the ecosystem: brokers. Brokers work together
with other brokers to form the core of the system.

This chapters covers
 The role of brokers and their duties

 Evaluating options for certain broker 
configuration values

 Explaining replicas and how they stay up to 
date
111



112 CHAPTER 6 Brokers
 As we start to discover Kafka, those who are familiar with big data concepts or who
have worked with Hadoop before might see familiar terminologies such as rack aware-
ness (knowing which physical server rack a machine is hosted on) and partitions. Kafka
has a rack awareness feature that makes replicas for a partition exist physically on sep-
arate racks [1]. Using familiar data terms should make us feel at home as we draw new
parallels between what we’ve worked with before and what Kafka can do for us. When
setting up our own Kafka cluster, it is important to know that we have another cluster
to be aware of: Apache ZooKeeper. This then is where we’ll begin. 

6.2 Role of ZooKeeper
ZooKeeper is a key part of how the brokers work and is a requirement to run Kafka.
Because Kafka needs to be running and exist before the brokers do, we will start our
discussion there.

NOTE As mentioned in chapter 2, to simplify the requirements of running
Kafka, there was a proposal for the replacement of ZooKeeper with its own
managed quorum [2]. Because this work was not yet complete at the time of
publication, ZooKeeper is discussed in this work. But look for an early access
release of the managed quorum, arriving in version 2.8.0.

As ZooKeeper needs to have a minimum number in order to elect leaders and reach a
decision, this cluster is indeed important for our brokers [3]. ZooKeeper itself holds
information such as topics in our cluster [4].  ZooKeeper helps the brokers by coordi-
nating assignments and notifications [5].

 With all of this interaction with the brokers, it is important that we have Zoo-
Keeper running before starting our brokers. The health of the ZooKeeper cluster
impacts the health of our Kafka brokers. For instance, if our ZooKeeper instances are
damaged, topic metadata and configuration could be lost.

 Usually, we won’t need to expose the details (IP addresses and ports) of our Zoo-
Keeper cluster to our producer and consumer applications. Certain legacy frame-
works we use might also provide a means of connecting our client application with
our ZooKeeper cluster. One example of this is version 3.1.x of Spring Cloud Stream,
which allowed us to set the zkNodes property [6]. The value defaulted to localhost
and should be left alone in most cases to avoid a ZooKeeper dependency. The
zkNodes property is marked as deprecated, but you never know if you will encounter
older code for maintenance, so you want to keep an eye out for it. Why is this not
needed currently and in the future? Besides the fact that Kafka will not always require
ZooKeeper, it is also important for us to avoid unnecessary external dependencies in
our applications. In addition, it gives us fewer ports to expose if we are working with
firewalls for Kafka and our client to communicate directly.

 Using the Kafka tool zookeeper-shell.sh, which is located in the bin folder of
our Kafka installation, we can connect to a ZooKeeper host in our cluster and look at
how the data is stored [7]. One way to find the paths that Kafka uses is to look at the



113Options at the broker level
class ZkData.scala [8]. In this file, you will find paths like /controller, /controller
_epoch, /config, and /brokers, for example. If we look at the /brokers/topics path,
we will see a list of the topics that we have created. At this point, we should, hopefully,
at least have the kinaction_helloworld topic in the list.

NOTE We can also use a different Kafka tool, kafka-topics.sh, to see the list
of topics, getting the same results! Commands in the following listings con-
nect to ZooKeeper and Kafka, respectively, for their data but do so with a dif-
ferent command interface. The output should include the topic we created in
chapter 2, [kinaction_helloworld].

bin/zookeeper-shell.sh localhost:2181
ls /brokers/topics

# OR
bin/kafka-topics.sh --list \

➥ --bootstrap-server localhost:9094

Even when ZooKeeper no longer helps to power Kafka, we might need to work with
clusters that have not migrated yet, and we will likely see ZooKeeper in documenta-
tion and reference material for quite a while. Overall, being aware of the tasks that
Kafka used to rely on ZooKeeper to perform and the shift to handling those inside a
Kafka cluster with internal metadata nodes provides insight into the moving pieces of
the entire system.

 Being a Kafka broker means being able to coordinate with the other brokers as
well as talking to ZooKeeper. In testing or working with proof-of-concept clusters, we
might have only one broker node. However, in production, we will almost always have
multiple brokers.

 Turning away from ZooKeeper for now, figure 6.1 shows how brokers exist in a
cluster and how they are home to Kafka’s data logs. Clients will be writing to and read-
ing from brokers to get information into and out of Kafka, and they will demand bro-
ker attention [9]. 

6.3 Options at the broker level
Configuration is an important part of working with Kafka clients, topics, and brokers.
If you looked at the setup steps to create our first brokers in appendix A, we modified
the server.properties file there, which we then passed as a command line argument to
the broker startup shell script. This file is a common way to pass a specific configuration
to a broker instance. For example, the log.dirs configuration property in that file
should always be set to a log location that makes sense for your setup.

Listing 6.1 Listing our topics

Connects to our local 
ZooKeeper instanceLists all the topics 

with the ls command

Using kafka-topics, 
connects to ZooKeeper 
and lists the topics



114 CHAPTER 6 Brokers
This file also deals with configurations related to listeners, log locations, log retention,
ZooKeeper, and group coordinator settings [10]. As with the producer and consumer
configurations, look for the Importance label of “high” in the documentation at http:/
/mng.bz/p9p2.

 The following listing provides an example of what happens when we have only one
copy of our data and the broker it is on goes down. This can happen when we allow
the broker defaults and do not pick them with purpose. To begin, make sure that your
local test Kafka cluster is running with three nodes, and create a topic like listing 6.2
presents.

Messages can be replayed
from the beginning of the
log and consumed again.

Message brokers (cluster) +
Expanded

One of the brokers
will be a controller.

Producer clients

Data in
(to partition)

Like our 
kinaction_alert 

producer

Like our 
kinaction_alert 

consumer

Examples
• Databases
• IOT events
• Browser/user web events
• Logs

JVM application-message broker

Kafka core

Flushed to disk

• Logs are append only.
• New entries added to the end.
• No database storage, just disk.
• Each log is made up of entries
  labeled with offset numbers.

OS page cache (memory)

ZooKeeper ensemble

Consumer clients

Data out
(from partition)

Replay

Examples
• HDFS
• S3
• Web applications
• Metrics
• Analytics engines

Topic

Partition 0

0 1 2 3 4

ZooKeeper used for 
distributed configuration 
and management

Figure 6.1 Brokers

http://mng.bz/p9p2
http://mng.bz/p9p2


115Options at the broker level
 

bin/kafka-topics.sh --create \
--bootstrap-server localhost:9094 \
--topic kinaction_one_replica

bin/kafka-topics.sh --describe --bootstrap-server localhost:9094 \
--topic kinaction_one_replica

Topic: one-replica PartitionCount: 1 ReplicationFactor: 1 Configs:
Topic: kinaction_one_replica Partition: 0 

Leader: 2 Replicas: 2 Isr: 2

When we run the commands in listing 6.2 to create and describe the topic
kinaction_one_replica, we’ll see that there is only one value in the fields Partition,
Leader, Replicas, and Isr (in-sync replicas). Further, the broker uses the same ID
value. This means that the entire topic depends on that one broker being up and
working.

 If we terminate the broker with ID 2 in this example and then try to consume a mes-
sage for that topic, we would get a message such as “1 partitions have leader brokers
without a matching listener.” Because there are no replica copies for the topic’s parti-
tion, there is no easy way to keep producing or consuming that topic without recovering
that broker. Although this is just one example, it illustrates the importance that broker
configuration can have when users create their topics manually as in listing 6.2.

 Another important configuration property to define sets the location for our appli-
cation logs and errors during normal operation. Let’s look at this next.

6.3.1 Kafka’s other logs: Application logs

As with most applications, Kafka provides logs for letting us know what is going on
inside the application. In the discussion that follows, the term application logs refers to
the logs that we usually think of when working with any application, whether debug-
ging or auditing. These application logs are not related to the record logs that form
the backbone of Kafka’s feature set.

 The location where these application logs are stored is also entirely different than
those for records. When we start a broker, we will find the application log directory in
the Kafka base installation directory under the folder logs/. We can change this loca-
tion by editing the config/log4j.properties file and the value for kafka.logs.dir [11]. 

6.3.2 Server log

Many errors and unexpected behaviors can be traced back to configuration issues on
startup. The server log file, server.log, is where we would look if there is a startup error
or an exception that terminates the broker. It seems to be the most natural place to

Listing 6.2 Listing our topics

Creates a topic with only one 
partition and one replica

Describes the kinaction_one_replica
topic with all the data located

on the broker with ID 2



116 CHAPTER 6 Brokers
check first for any issues. Look (or use the grep command) for the heading Kafka-
Config values.

 If you are overwhelmed when you first look at the directory that holds this file,
note that you will likely see other files like controller.log (if the broker was ever in that
role) and older dated files with the same name. One tool that you can use for log rota-
tion and compression is logrotate (https://linux.die.net/man/8/logrotate), but
there are many other tools available as well to manage older server logs.

 Something else to mention in regard to these logs is that they are located on each
broker. They are not aggregated by default into one location. Various platforms might
do this on our behalf, or we can gather them with a tool like Splunk™ (https://
www.splunk.com/). It is especially important to know when we are trying to analyze
logs to gather them when using something like a cloud environment in which the bro-
ker instance might not exist. 

6.3.3 Managing state

As we discussed in chapter 2, each partition has a single leader replica. A leader
replica resides on a single broker at any given time. A broker can host the leader
replica of multiple partitions, and any broker in a cluster can host leader replicas.
Only one broker in the cluster, however, acts as the controller. The role of the control-
ler is to handle cluster management [12]. The controller also performs other admin-
istrative actions like partition reassignment [13]. 

 When we consider a rolling upgrade of a cluster, shutting down and restarting one
broker at a time, it is best to do the controller last [14]. Otherwise, we might end up
restarting the controller multiple times.

 To figure out which broker is the current controller, we can use the zookeeper-shell
script to look up the ID of the broker, as listing 6.3 shows. The path /controller exists
in ZooKeeper, and in the listing, we run one command to look at the current value.
Running that command for my cluster showed my broker with ID 0 as the controller.

bin/zookeeper-shell.sh localhost:2181
get /controller

Figure 6.2 shows all of the output from ZooKeeper, including the brokerid value,
"brokerid":0. If we migrate or upgrade this cluster, we would upgrade this broker
last due to this role.

 We will also find a controller log file with the name controller.log that serves as an
application log on broker 0 in this case. This log file can be important when we look at
broker actions and failures. 

 
 

Listing 6.3 Listing the current controller

Connects to your 
ZooKeeper instanceUses get against 

the controller path

https://www.splunk.com/
https://www.splunk.com/
https://linux.die.net/man/8/logrotate


117Partition replica leaders and their role
Figure 6.2 Example controller output

6.4 Partition replica leaders and their role
As a quick refresher, topics are made up of partitions, and partitions can have replicas
for fault tolerance. Also, partitions are written on the disks of the Kafka brokers. One
of the replicas of the partition will have the job of being the leader. The leader is in
charge of handling writes from external producer clients for that partition. Because the
leader is the only one with newly written data, it also has the job of being the source of
data for the replica followers [15]. And because the ISR list is maintained by the leader,
it knows which replicas are up to date and have seen all the current messages. Replicas
act as consumers of the leader partition and will fetch the messages [15].

 Figure 6.3 shows a three-node cluster with broker 3 as its leader and broker 2 and
broker 1 as its followers, using kinaction_helloworld as a topic that might have been

Broker 1

Follower

Partition 2

Broker 1 fetches from leader

ISR = [3, 2, 1]

Broker 2

Follower

Partition 2

Broker 2 fetches from leader

Broker 3

Leader for 
kinaction_helloworld

Partition 2

Figure 6.3 Leader



118 CHAPTER 6 Brokers
created in this manner. Broker 3 holds the leader replica for partition 2. As the leader,
broker 3 handles all of the reads and writes from external producers and consumers.
It also handles requests it receives from broker 2 and broker 1 as they pull new mes-
sages into their copies. The ISR list [3,2,1] includes the leader in the first position
(3) and then the remaining followers (2,1), who stay current with their copies of the
messages from the leader.

 In some cases, a broker that fails may have hosted the leader replica for a partition.
In figure 6.4, the previous example in figure 6.3 experiences a failure. Because broker
3 is not available, a new leader is elected. Figure 6.4 shows the new leader broker 2.
Once a follower, it was elected as a leader replica to keep Kafka serving and receiving
data for that partition. The ISR list is now [2,1] with the first position reflecting the
new leader replica hosted on broker 2.

NOTE In chapter 5 we discussed a Kafka Improvement Proposal, KIP-392,
which allows consumer clients to fetch from the closest replica [16]. Reading
from a preferred follower rather than the leader replica is something that
might make sense if our brokers span physical data centers. However, when
discussing leaders and followers in this book, unless stated otherwise, we will
focus on the default leader read and write behaviors.

In-sync replicas (ISRs) are a key piece to really understanding Kafka. For a new topic,
a specific number of replicas are created and added to the initial ISR list [17]. This
number can be either from a parameter or, as a default, from the broker configuration.

 One of the details to note with Kafka is that replicas do not heal themselves by
default. If you lose a broker on which one of your copies of a partition exists, Kafka
does not (currently) create a new copy. We mention this because some users are used

Broker 1

Follower

Partition 2

ISR = [3, 2, 1] [2, 1]

Broker 3

Leader

Partition 2

Broker 1 reads from broker 2

Broker 2

Follower New leader for 
kinaction_helloworld

Partition 2

Broker 3 fails and broker 2 
becomes the new leader.

Broker 2 fetches from leader

Broker 1 fetches from leader Figure 6.4 New 
leader elected



119Partition replica leaders and their role
to filesystems like HDFS that maintain their replication number (self-heal) if a block is
seen as corrupted or failed. An important item to look at when monitoring the health
of our systems is how many of our ISRs are indeed matching our desired number.

 Why is watching this number so important? It is good to keep aware of how many
copies you have before it hits 0! Let’s say that we have a topic that is only one partition
and that partition is replicated three times. In the best-case scenario, we would have
two copies of the data that is in our lead partition replica. This, of course, means that
the follower replicas are caught up with the leader. But what if we lose another ISR?

 It is also important to note that if a replica starts to get too far behind in copying
messages from the leader, it can be removed from the ISR list. The leader notices if a
follower is taking too long and drops it from its list of followers [17]. Then the leader
continues to operate with a new ISR list. The result of this “slowness” to the ISR list is
the same as in figure 6.4, in which a broker failed.

6.4.1 Losing data

What if we have no ISRs and lose our lead replica due to a failure? When unclean
.leader.election.enable is true, the controller selects a leader for a partition even
if it is not up to date so that the system keeps running [15]. The problem with this is
that data could be lost because none of the replicas have all the data at the time of the
leader’s failure.

Figure 6.5 Unclean leader election

Figure 6.5 shows data loss in the case of a partition with three replicas. In this case,
both brokers 3 and 2 failed and are not online. Because unclean leader election was
enabled, broker 1 is made the new leader even though it is not in sync with the other
brokers. Broker 1 never sees message 3, so it cannot present that data to clients. At the
cost of missing data, this option allows us to keep serving clients. 

Broker 1

Follower

Partition 2

Message 1

Message 2

In sync but both fail

Broker 2

Follower Leader

Partition 2

Unclean leader for 
kinaction_helloworld. 
Message 3 never 
made it to broker 1.

Message 1

Message 2

Message 3

Message 1

Message 2

Message 3

Broker 3

Leader

Partition 2



120 CHAPTER 6 Brokers
6.5 Peeking into Kafka
There are many tools we can use to capture and view data from our applications. We
will look at Grafana® (https://grafana.com/) and Prometheus® (https://prometheus
.io/) as examples of tools that can be used to help set up a simple monitoring stack
that can be used for Confluent Cloud [18].1 We’ll use Prometheus to extract and store
Kafka’s metrics data. Then we’ll send that data to Grafana to produce helpful graphi-
cal views. To fully understand why we are setting up all of the following tools, let’s
quickly review the components and the work each one does (figure 6.6).

Figure 6.6 Graph flow

In figure 6.6, we use JMX to look inside the Kafka applications. The Kafka exporter
takes the JMX notifications and exports them into the Prometheus format. Prometheus
scrapes the exporter data and stores the metrics data. Various tools can then take the
information from Prometheus and display that information in a visual dashboard.

 There are many Docker™ images and Docker Compose files that bundle all of
these tools, or you can install each tool to a local machine in order to explore this pro-
cess in greater detail.

 For the Kafka exporter, an outstanding option is available at https://github.com/
danielqsj/kafka_exporter. We prefer the simplicity of this tool because we can just run
it and give it one or a list of Kafka servers to watch. It might work well for your use
cases as well. Notice that we will get many client and broker-specific metrics because
there are quite a few options that we might want to monitor. Even so, this is not a com-
plete list of the metrics available to us.

 Figure 6.7 shows a query against a local data store, such as a local instance of Pro-
metheus, that gathers metrics from our Kafka exporter tool. As we discussed about
partitions, Kafka replicas do not heal themselves automatically, so one of the things we

1 The Grafana Labs Marks are trademarks of Grafana Labs, and are used with Grafana Labs’ permission. We
are not affiliated with, endorsed or sponsored by Grafana Labs or its affiliates.

Prometheus 
data store

Scrapes

Info from topics 
like kinaction_alert

Data source

dashboard

UI charts

Kafka brokers

JMX exporter
1

JMX exporter
2

https://grafana.com/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://github.com/danielqsj/kafka_exporter
https://github.com/danielqsj/kafka_exporter


121Peeking into Kafka
want to monitor is under-replicated partitions. If this number is greater than 0, we
might want to look at what is going on in the cluster to determine why there is a
replica issue. We might display the data from this query in a chart or dashboard, or we
can, potentially, send an alert.

Figure 6.7 Metric query example

As noted, the Kafka exporter does not expose every JMX metric. To get more JMX
metrics, we can set the JMX_PORT environment variable when starting our Kafka pro-
cesses [19]. Other tools are available that use a Java agent to produce the metrics to an
endpoint or port, which Prometheus can scrape.

 Listing 6.4 shows how we would set the variable JMX_PORT when starting a broker
[19]. If we already have a broker running and do not have this port exposed, we will
need to restart the broker to affect this change. We may also want to automate the set-
ting of this variable to ensure that it is enabled on all future broker restarts.

JMX_PORT=$JMX_PORT bin/kafka-server-start.sh \

➥ config/server0.properties

6.5.1 Cluster maintenance

As we consider moving to production, we will want to configure more than one server.
Another item to note is that various pieces of the ecosystem such as Kafka and Connect
clients, Schema Registry, and the REST Proxy do not usually run on the same servers as
the brokers themselves. Although we might run all of these on a laptop for testing (and
we can run this software on one server), for safety and efficiency, we definitely don’t
want all of these processes running on a single server when we handle production work-
loads. To draw a parallel to similarities with tools from the Hadoop ecosystem, Kafka
scales well horizontally with more servers. Let’s look at adding a server to a cluster. 

Listing 6.4 Starting a broker with a JMX port

kafka_topic_partition_under_replicated_partition

Metric name: Data
store

kafka_topic_partition_under_replicated_partition{instance=“localhost:9308”,job=“kafka_exporter”,partition=“0”,topic=kinaction_helloworld)0

Value: 0

Query

Results

Alert

Dashboard

Adds the JMX_PORT variable 
when starting the cluster



122 CHAPTER 6 Brokers
6.5.2 Adding a broker

Beginning with a small cluster is a great way to start, as we can always add brokers to
grow our footprint. To add a Kafka broker to our cluster, we just start a new Kafka bro-
ker with a unique ID. This ID can either be created with the configuration broker.id
or with broker.id.generation.enable set to true [10]. That is pretty much it. But,
there is something to be aware of in this situation—the new broker will not be assigned
to any partitions! Any topic partitions that we create before adding a new broker still
persist on the brokers that existed at the time of their creation [20]. If we are okay with
the new broker only handling new topics, then we don’t need to do anything else. 

6.5.3 Upgrading your cluster

As with all software, updates and upgrades are a part of life. Not all systems can be
brought down simultaneously and upgraded due to production workloads or business
impact. One technique that can be used to avoid downtime for our Kafka applications
is the rolling restart [14]. This means just upgrading one broker at a time. Figure 6.8
shows each broker being upgraded one at a time before moving on to the next broker
for our cluster.

Figure 6.8 Rolling restart

An important broker configuration property for rolling restarts is controlled.shut-
down.enable. Setting this to true enables the transfer of partition leadership before a
broker shuts down [21]. 

6.5.4 Upgrading your clients

As mentioned in chapter 4, although Kafka does its best to decouple the clients from
the broker, it’s beneficial to know the versions of clients with respect to brokers. This
bidirectional client compatibility feature was new in Kafka 0.10.2, and brokers version
0.10.0 or later support this feature [22]. Clients can usually be upgraded after all of the
Kafka brokers in a cluster are upgraded. As with any upgrade, though, take a peek at
the version notes to make sure newer versions are compatible. 

Broker 0
upgraded

Broker 1
being

upgraded

Broker 2
old version

Status: Online Status: Offline Status: Online

The first 
broker 
completes 
and is back 
online.

Waiting for second broker 
to complete before next
broker upgrade. 
Our 3 brokers for our 
Kafka in Action cluster 
would be online and 
offline at different times.



123A note on stateful systems
6.5.5 Backups

Kafka does not have a backup strategy like one would use for a database; we don’t take
a snapshot or disk backup per se. Because Kafka logs exist on disk, why not just copy
the entire partition directories? Although nothing is stopping us from doing that, one
concern is making a copy of all of the data directories across all locations. Rather than
performing manual copies and coordinating across brokers, one preferred option is
for a cluster to be backed by a second cluster [23]. Between the two clusters, events
are then replicated between topics. One of the earliest tools that you might have seen
in production settings is MirrorMaker. A newer version of this tool (called Mirror-
Maker 2.0) was released with Kafka version 2.4.0 [24]. In the bin subdirectory of the
Kafka install directory, we will find a shell script named kafka-mirror-maker as well as a
new MirrorMaker 2.0 script, connect-mirror-maker.

 There are also some other open source as well as enterprise offerings for mirroring
data between clusters. Confluent Replicator (http://mng.bz/Yw7K) and Cluster Link-
ing (http://mng.bz/OQZo) are also options to be aware of [25]. 

6.6 A note on stateful systems
Kafka is an application that definitely works with stateful data stores. In this book, we
will work on our own nodes and not with any cloud deployments. There are some great
resources, including Confluent’s site on using the Kubernetes Confluent Operator API
(https://www.confluent.io/confluent-operator/) as well as Docker images available to
do what you need done. Another interesting option is Strimzi™ (https://github.com/
strimzi/strimzi-kafka-operator), if you are looking at running your cluster on Kuberne-
tes. At the time of this writing, Strimzi is a Cloud Native Computing Foundation®

(https://www.cncf.io/) sandbox project. If you are familiar with these tools, it might be
a quick way for you to kick the tires on a proof of concept (PoC) setup if you find some
interesting projects out in the Docker Hub. There is not, however, a one-size-fits-all
mandate for our infrastructure.

 One benefit of Kubernetes that stands out is its ability to create new clusters
quickly and with different storage and service communication options that Gwen Sha-
pira explores further in her paper, “Recommendations for Deploying Apache Kafka
on Kubernetes” [26]. For some companies, giving each product its own cluster might
be easier to manage than having one huge cluster for the entire enterprise. The ability
to spin up a cluster quickly rather than adding physical servers can provide the quick
turnaround products need.

 Figure 6.9 shows a general outline of how Kafka brokers can be set up in Kuberne-
tes with an operator pod, similar to how the Confluent and Strimzi operators might
work. The terms in the figure are Kubernetes-specific, and we do not provide much
explanation here because we do not want to shift the focus away from learning about
Kafka itself. We, rather, provide a general overview. Note that this is how a cluster could
work, not a specific setup description.

http://mng.bz/Yw7K
http://mng.bz/OQZo
https://www.confluent.io/confluent-operator/
https://github.com/strimzi/strimzi-kafka-operator
https://github.com/strimzi/strimzi-kafka-operator
https://www.cncf.io/


124 CHAPTER 6 Brokers
The Kubernetes operator is its own pod that lives inside of the Kubernetes cluster. As
well, each broker is in its own pod as a part of a logical group called a StatefulSet. The
purpose of the StatefulSet is to manage the Kafka pods and help guarantee ordering
and an identity for each pod. If the pod that hosts a broker (the JVM process) with ID
0 fails, for example, a new pod is created with that identity (and not a random ID) and
attaches to the same persistent storage volume as before. Because these volumes hold
the messages of the Kafka partitions, the data is maintained. This statefulness helps
overcome the sometimes short lives of containers. Each ZooKeeper node would also
be in its own pod and part of its own StatefulSet.

 For those who are new to Kubernetes or are anxious about the transition to such a
platform, one migration strategy that can be helpful is to run Kafka clients and appli-
cations on a Kubernetes cluster before the Kafka brokers. Besides being stateless, run-
ning our clients in this manner can help us get a feel for Kubernetes at the start of our
learning path. However, we should not neglect the need to understand Kubernetes
well in order to run Kafka on top of this platform.

 One developer team of four that one of the authors worked with recently focused
half of the team on Kubernetes and half on running Kafka. Of course, this ratio might
not be what every team encounters. The developer time required to focus on Kuber-
netes depends on your team and overall experience. 

Mock Kafka in Action Kubernetes cluster

Operator
pod

Kafka StatefulSet

Container
pod

Claim

Broker 0

Persistent
volume

Container
pod

Claim

Broker 1

Persistent
volume

Container
pod

Claim

Broker 2

Persistent
volume

Manages components

ZooKeeper StatefulSet

Container
pod

Claim

ZooKeeper 0

Persistent
volume

Container
pod

Claim

ZooKeeper 1

Persistent
volume

Container
pod

Claim

ZooKeeper 2

Persistent
volume

These 3 brokers would replace 
our local 3 instances we are 
using for our examples.

Figure 6.9 Kafka on Kubernetes



125Exercise
6.7 Exercise
Because it can be hard to apply some of our new learning in a hands-on manner and
because this chapter is heavier on commands than code, it might be helpful to have a
quick exercise to explore a different way to discover the metric under-replicated parti-
tions rather than the exporter we saw earlier. Besides using something like a dash-
board to see this data, what command line options can we use to discover this
information?

 Let’s say that we want to confirm the health of one of our topics named kin-
action_replica_test. We created this topic with each partition having three replicas.
We want to make sure we have three brokers listed in the ISR list in case there is ever a
broker failure. What command should we run to look at that topic and see its current
status? Listing 6.5 shows an example describing that topic [27]. Notice that the
ReplicationFactor is 3 and the Replicas list shows three broker IDs as well. How-
ever, the ISR list only shows two values when it should show three!

$ bin/kafka-topics.sh --describe --bootstrap-server localhost:9094 \
--topic kinaction_replica_test

Topic:kinaction_replica_test PartitionCount:1 ReplicationFactor:3 Configs:
Topic: kinaction_replica_test Partition: 0

Leader: 0 Replicas: 1,0,2 Isr: 0,2

Although we can notice the under-replicated partitions issue by looking at the details
of the command output, we could have also used the --under-replicated-parti-
tions flag to see any problems quickly [27]. Listing 6.6 shows how to use this flag,
which quickly filters out the hard-to-see ISR data and only outputs under-replicated
partitions to the terminal.

bin/kafka-topics.sh --describe --bootstrap-server localhost:9094 \
--under-replicated-partitions

Topic: kinaction_replica_test Partition: 0

➥ Leader: 0 Replicas: 1,0,2 Isr: 0,2

Listing 6.6 shows that when using the --describe flag, we do not have to limit the
check for under-replicated partitions to a specific topic. We can run this command to
display issues across topics and to quickly find issues on our cluster. We will explore

Listing 6.5 Describing the topic replica: a test for ISR count

Listing 6.6 Using the under-replicated-partitions flag

Note the topic parameter
and the describe flag in use.

Topic-specific information about leader, 
partition, and replicas

Note the under-replicated-
partition flag in use.

The ISR only lists 
two brokers!



126 CHAPTER 6 Brokers
more of the out-of-the-box tools included with Kafka when we talk about administra-
tion tools in chapter 9.

TIP When using any of the commands in this chapter, it is always a good idea
to run the command without any parameters and read the command options
that are available for troubleshooting.

As we examined more about Kafka in this chapter, we’ve come to realize we are run-
ning a complex system. However, there are various command line tools as well as met-
rics to help us monitor the health of our cluster. In our next chapter, we will continue
to use commands to complete specific tasks for this dynamic system throughout its
lifetime.

Summary
 Brokers are the centerpiece of Kafka and provide the logic with which external

clients interface with our applications. Clusters provide not only scale but also
reliability.

 We can use ZooKeeper to provide agreement in a distributed cluster. One
example is to elect a new controller between multiple available brokers.

 To help manage our cluster, we can set configurations at the broker level, which
our clients can override for specific options.

 Replicas allow for a number of copies of data to span across a cluster. This helps
in the event a broker fails and cannot be reached.

 In-sync replicas (ISRs) are current with the leader’s data and that can take over
leadership for a partition without data loss.

 We can use metrics to help produce graphs to visually monitor a cluster or alert
on potential issues.

References
1 “Post Kafka Deployment.” Confluent documentation (n.d.). https://docs.con-

fluent.io/platform/current/kafka/post-deployment.html#balancing-replicas-
across-racks (accessed September 15, 2019).

2 “KIP-500: Replace ZooKeeper with a Self-Managed Metadata Quorum.” Wiki for
Apache Kafka. Apache Software Foundation (July 09, 2020). https://
cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+Zoo-
Keeper+with+a+Self-Managed+Metadata+Quorum (accessed August 22, 2020).

3 F. Junqueira and N. Narkhede. “Distributed Consensus Reloaded: Apache Zoo-
Keeper and Replication in Apache Kafka.” Confluent blog (August 27, 2015).
https://www.confluent.io/blog/distributed-consensus-reloaded-apache-zoo-
keeper-and-replication-in-kafka/ (accessed September 15, 2019).

4 “Kafka data structures in Zookeeper [sic].” Wiki for Apache Kafka. Apache Soft-
ware Foundation (February 10, 2017). https://cwiki.apache.org/confluence/
display/KAFKA/Kafka+data+structures+in+Zookeeper (accessed January 19,
2020).

https://docs.confluent.io/platform/current/kafka/post-deployment.html#balancing-replicas-across-racks
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://cwiki.apache.org/confluence/display/KAFKA/KIP-500%3A+Replace+ZooKeeper+with+a+Self-Managed+Metadata+Quorum
https://www.confluent.io/blog/distributed-consensus-reloaded-apache-zookeeper-and-replication-in-kafka/
https://www.confluent.io/blog/distributed-consensus-reloaded-apache-zookeeper-and-replication-in-kafka/
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+data+structures+in+Zookeeper
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+data+structures+in+Zookeeper


127References
5 C. McCabe. “Apache Kafka Needs No Keeper: Removing the Apache Zoo-
Keeper Dependency.” Confluent blog. (May 15, 2020). https://www.confluent
.io/blog/upgrading-apache-kafka-clients-just-got-easier (accessed August 20, 2021).

6 Apache Kafka Binder (n.d.). https://docs.spring.io/spring-cloud-stream
-binder-kafka/docs/3.1.3/reference/html/spring-cloud-stream-binder-kafka
.html#_apache_kafka_binder (accessed July 18, 2021).

7 “CLI Tools for Confluent Platform.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/installation/cli-reference.html (accessed
August 25, 2021).

8 “ZkData.scala.” Apache Kafka GitHub. https://github.com/apache/kafka/
blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/core/src/main/scala/
kafka/zk/ZkData.scala (accessed August 27, 2021).

9 “A Guide To The Kafka Protocol.” Wiki for Apache Kafka. Apache Software
Foundation (June 14, 2017). https://cwiki.apache.org/confluence/display/
KAFKA/A+Guide+To+The+Kafka+Protocol (accessed September 15, 2019).

10 “Kafka Broker Configurations.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/installation/configuration/broker-configs
.html (accessed August 21, 2021).

11 “Logging.” Confluent documentation (n.d.). https://docs.confluent.io/platform/
current/kafka/post-deployment.html#logging (accessed August 21, 2021).

12 “Controller.” Confluent documentation (n.d.). https://docs.confluent.io/
platform/current/kafka/post-deployment.html#controller (accessed August
21, 2021).

13 “Kafka Controller Internals.” Wiki for Apache Kafka. Apache Software Founda-
tion (January 26, 2014). https://cwiki.apache.org/confluence/display/
KAFKA/Kafka+Controller+Internals (accessed September 15, 2019).

14 “Post Kafka Deployment.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/kafka/post-deployment.html#rolling-restart
(accessed July 10, 2019).

15 “Replication.” Confluent documentation (n.d.). https://docs.confluent.io/plat-
form/current/kafka/design.html#replication (accessed August 21, 2021).

16 “KIP-392: Allow consumers to fetch from closest replica.” Wiki for Apache
Kafka. Apache Software Foundation (November 5, 2019). https://cwiki.apache
.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+
from+closest+replica (accessed December 10, 2019).

17 N. Narkhede. “Hands-free Kafka Replication: A lesson in operational simplicity.”
Confluent blog (July 1, 2015). https://www.confluent.io/blog/hands-free-kafka
-replication-a-lesson-in-operational-simplicity/ (accessed October 02, 2019).

18 “Observability Overview and Setup.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/tutorials/examples/ccloud-observability/
docs/observability-overview.html (accessed August 26, 2021).

https://www.confluent .io/blog/upgrading-apache-kafka-clients-just-got-easier
https://www.confluent .io/blog/upgrading-apache-kafka-clients-just-got-easier
https://www.confluent .io/blog/upgrading-apache-kafka-clients-just-got-easier
https://docs.spring.io/spring-cloud-stream-binder-kafka/docs/3.1.3/reference/html/spring-cloud-stream-binder-kafka.html#_apache_kafka_binder
https://docs.spring.io/spring-cloud-stream-binder-kafka/docs/3.1.3/reference/html/spring-cloud-stream-binder-kafka.html#_apache_kafka_binder
https://docs.spring.io/spring-cloud-stream-binder-kafka/docs/3.1.3/reference/html/spring-cloud-stream-binder-kafka.html#_apache_kafka_binder
https://docs.spring.io/spring-cloud-stream-binder-kafka/docs/3.1.3/reference/html/spring-cloud-stream-binder-kafka.html#_apache_kafka_binder
https://docs.confluent.io/platform/current/installation/cli-reference.html
https://docs.confluent.io/platform/current/installation/cli-reference.html
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/core/src/main/scala/kafka/zk/ZkData.scala
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/core/src/main/scala/kafka/zk/ZkData.scala
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/core/src/main/scala/kafka/zk/ZkData.scala
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
https://cwiki.apache.org/confluence/display/KAFKA/A+Guide+To+The+Kafka+Protocol
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html
https://docs.confluent.io/platform/current/kafka/post-deployment.html#logging
https://docs.confluent.io/platform/current/kafka/post-deployment.html#logging
https://docs.confluent.io/platform/current/kafka/post-deployment.html#controller
https://docs.confluent.io/platform/current/kafka/post-deployment.html#controller
https://docs.confluent.io/platform/current/kafka/post-deployment.html#controller
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Internals
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Controller+Internals
https://docs.confluent.io/platform/current/kafka/post-deployment.html#rolling-restart
https://docs.confluent.io/platform/current/kafka/post-deployment.html#rolling-restart
https://docs.confluent.io/platform/current/kafka/post-deployment.html#rolling-restart
https://docs.confluent.io/platform/current/kafka/design.html#replication
https://docs.confluent.io/platform/current/kafka/design.html#replication
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://www.confluent.io/blog/hands-free-kafka-replication-a-lesson-in-operational-simplicity/
https://www.confluent.io/blog/hands-free-kafka-replication-a-lesson-in-operational-simplicity/
https://www.confluent.io/blog/hands-free-kafka-replication-a-lesson-in-operational-simplicity/
https://docs.confluent.io/platform/current/tutorials/examples/ccloud-observability/docs/observability-overview.html
https://docs.confluent.io/platform/current/tutorials/examples/ccloud-observability/docs/observability-overview.html
https://docs.confluent.io/platform/current/tutorials/examples/ccloud-observability/docs/observability-overview.html


128 CHAPTER 6 Brokers
19 “Kafka Monitoring and Metrics Using JMX”. Confluent documentation. (n.d.).
https://docs.confluent.io/platform/current/installation/docker/operations/
monitoring.html (accessed June 12, 2020).

20 “Scaling the Cluster (Adding a node to a Kafka cluster).” Confluent documen-
tation (n.d.). https://docs.confluent.io/platform/current/kafka/post-deploy
ment.html#scaling-the-cluster-adding-a-node-to-a-ak-cluster (accessed August
21, 2021).

21 “Graceful shutdown.” Apache Software Foundation (n.d.). https://kafka.apache
.org/documentation/#basic_ops_restarting (accessed May 11, 2018).

22 C. McCabe. “Upgrading Apache Kafka Clients Just Got Easier.” Confluent blog.
(July 18, 2017). https://www.confluent.io/blog/upgrading-apache-kafka-cli-
ents-just-got-easier (accessed October 02, 2019).

23 “Backup and Restoration.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/kafka/post-deployment.html#backup-and
-restoration (accessed August 21, 2021).

24 Release Notes, Kafka Version 2.4.0. Apache Software Foundation (n.d.). https://
archive.apache.org/dist/kafka/2.4.0/RELEASE_NOTES.html (accessed May
12, 2020).

25 “Multi-DC Solutions.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/multi-dc-deployments/index.html#multi-dc-solutions
(accessed August 21, 2021).

26 G. Shapira. “Recommendations_for_Deploying_Apache_Kafka_on_Kuberne-
tes.” White paper (2018). https://www.confluent.io/resources/recommenda-
tions-for-deploying-apache-kafka-on-kubernetes (accessed December 15, 2019).

27 “Replication tools.” Wiki for Apache Kafka. Apache Software Foundation (Feb-
ruary 4, 2019). https://cwiki.apache.org/confluence/display/kafka/replica-
tion+tools (accessed January 19, 2019).

https://docs.confluent.io/platform/current/installation/docker/operations/monitoring.html
https://docs.confluent.io/platform/current/installation/docker/operations/monitoring.html
https://docs.confluent.io/platform/current/kafka/post-deployment.html#scaling-the-cluster-adding-a-node-to-a-ak-cluster
https://docs.confluent.io/platform/current/kafka/post-deployment.html#scaling-the-cluster-adding-a-node-to-a-ak-cluster
https://docs.confluent.io/platform/current/kafka/post-deployment.html#scaling-the-cluster-adding-a-node-to-a-ak-cluster
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://kafka.apache.org/documentation/#basic_ops_restarting
https://www.confluent.io/blog/upgrading-apache-kafka-clients-just-got-easier
https://www.confluent.io/blog/upgrading-apache-kafka-clients-just-got-easier
https://docs.confluent.io/platform/current/kafka/post-deployment.html#backup-and-restoration
https://docs.confluent.io/platform/current/kafka/post-deployment.html#backup-and-restoration
https://docs.confluent.io/platform/current/kafka/post-deployment.html#backup-and-restoration
https://docs.confluent.io/platform/current/kafka/post-deployment.html#backup-and-restoration
https://archive.apache.org/dist/kafka/2.4.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/2.4.0/RELEASE_NOTES.html
https://docs.confluent.io/platform/current/multi-dc-deployments/index.html#multi-dc-solutions
https://docs.confluent.io/platform/current/multi-dc-deployments/index.html#multi-dc-solutions
https://docs.confluent.io/platform/current/multi-dc-deployments/index.html#multi-dc-solutions
https://www.confluent.io/resources/recommendations-for-deploying-apache-kafka-on-kubernetes
https://www.confluent.io/resources/recommendations-for-deploying-apache-kafka-on-kubernetes
https://cwiki.apache.org/confluence/display/kafka/replication+tools
https://cwiki.apache.org/confluence/display/kafka/replication+tools


Topics and partitions
In this chapter, we will look further into how we might store our data across topics
as well as how to create and maintain topics. This includes how partitions fit into
our design considerations and how we can view our data on the brokers. All of this
information will help us as we also look at how to make a topic update data rather
than appending it to a log.

7.1 Topics
To quickly refresh our memory, it is important to know that a topic is a non-
concrete concept rather than a physical structure. It does not usually exist on only
one  broker.  Most  applications  consuming  Kafka  data view that data as being in a

This chapters covers
 Creation parameters and configuration options

 How partitions exist as log files

 How segments impact data inside partitions

 Testing with EmbeddedKafkaCluster

 Topic compaction and how data can be retained
129



130 CHAPTER 7 Topics and partitions
single topic; no other details are needed
for them to subscribe. However, behind
the topic name are one or more parti-
tions that actually hold the data [1].
Kafka writes the data that makes up a
topic in the cluster to logs, which are
written to the broker filesystems.

 Figure 7.1 shows partitions that make
up one topic named kinaction

_helloworld. A single partition’s copy is
not split between brokers and has a phys-
ical footprint on each disk. Figure 7.1
also shows how those partitions are made
up of messages that are sent to the topic.

 If writing to a topic is so simple in
getting-started examples, why do we
need to understand the role and pieces
that make up a topic? At the highest
level, this impacts how our consumers
get to the data. Let’s say that our com-
pany is selling spots for a training class
using a web-based application that sends the events of user actions into our Kafka clus-
ter. Our overall application process could generate droves of events. For example,
there would be an event for the initial search on the location, one for the specific
training being selected by the customer, and a third for classes that are confirmed.
Should the producing applications send all of this data to a single topic or several top-
ics? Is each message a specific type of event, and should each remain separated in dif-
ferent topics? There are adjustments with each approach and some things to consider
that will help us determine the best method to take in every situation.

 We see topic design as a two-step process. The first looks at the events we have. Do
they belong in one topic or more than one? The second considers each topic. What is
the number of partitions we should use? The biggest takeaway is that partitions are a
per-topic design question and not a cluster-wide limitation or mandate. Although we
can set a default number of partitions for topic creation, in most cases, we should con-
sider how the topic will be used and what data it will hold.

 We should have a solid reason to pick a specific number of partitions. Jun Rao
wrote a fantastic article titled “How to choose the number of topics/partitions in a
Kafka cluster?” on the Confluent blog about this very subject [2]! Let’s say that we
want to have a partition for each server as a generic rule. However, because we have
one partition on each server does not mean producers will write evenly among them.
To do so, we would have to ensure that each partition leader is spread out in that man-
ner and stays that way.

Topic: kinaction_helloworld

Brokers

Partition 1 Partition 2Partition 0

The topic kinaction_helloworld is made 
up of three partitions that will likely be 
spread out among different brokers.

Figure 7.1 Example topic with partitions



131Topics
 We also need to get familiar with our data. Let’s take a look at a list of items to
think about, both in general and in this training class scenario:

 Data correctness
 The volume of messages of interest per consumer
 How much data you will have or need to process

Data correctness is at the top of most data concerns in real-world designs. This term
could be considered vague, so our defintion is explained here as our opinion. With
regard to topics, this involves making sure that events that must be ordered end up in
the same partition and, thus, the same topic. Although we can place events by our
consumers in an order based on a timestamp, it is more trouble (and error prone) to
handle cross-topic event coordination than it is worth, in our opinion. If we use keyed
messages and need those in order, we should care about partitions and any future
changes to those partitions [1].

 For data correctness with our three previous example events, it might be helpful to
place the events with a message key (including the student ID) in two separate topics
for the actual booked and confirmed/billed events. These events are student-specific,
and this approach would be helpful to ensure that confirmation of a class occurs for
that specific student. The search events themselves, however, may not be of interest or
need to be ordered for a specific student if, for example, our analytics team is looking
for the most popular searched cities rather than student information.

 Next, we should consider the volume of messages of interest per consumer. For our
theoretical training system, let’s look at the number of events as we consider the topic
placement. The search events themselves would far outnumber the other events. Let’s
say that a training location near a large city gets 50,000 searches a day but only has
room for 100 students. Traffic on most days produces 50,000 search events and fewer
than 100 actual booked training events. Will our confirmation team have an applica-
tion that would want to subscribe to a generic event topic in which it uses or cares
about less than 1% of the total messages? Most of the consumer’s time would be, in
effect, filtering out the mass of events to process only a select few.

 Another point to account for is the quantity of data we will be processing. Will the
number of messages require multiple consumers to be running in order to process
within the time constraints required by our applications? If so, we have to be aware of
how the number of consumers in a group is limited by the partitions in our topic [2].
It is easier at this point to create more partitions than we think we might require. Hav-
ing more capacity for consumers to grow allows us to increase in volume without hav-
ing to deal with repartitioning data. However, it is important to know that partitions
are not an unlimited free resource, as talked about in Rao’s article that we mentioned
earlier. It also means having more brokers to migrate in case of a broker failure, which
could be a potential headache in the making.

 It’s best to find a happy medium and to go with that as we design our systems. Fig-
ure 7.2 shows how our design might be best suited to two topics for the three event



132 CHAPTER 7 Topics and partitions
types we used in our scenario. As always, more requirements or details can change our
future implementations.

 A last thing to consider when deciding on the number of partitions for a topic is
that reducing that number is not currently supported [3]. There may be ways to do
this, but it is definitely not advised! Let’s take a moment to think about why this would
not be desirable.

 When consumers subscribe to a topic, they really are attached to a partition. The
removal of a partition could lose its current position when or if a consumer starts
reading from a reassigned partition. This is where we need to make sure our keyed
messages and consuming clients can follow any changes we make at the broker level.
We impact consumers with our actions. Now that we’ve discussed topic design, let’s
dig a little deeper into the options that we can set when creating topics. We touched
on these briefly when we created topics to produce messages in chapter 3, so we’ll dive
a bit deeper here.

7.1.1 Topic-creation options

Kafka topics have a couple of core options that must be set in order to create a topic.
Although we have created topics since chapter 2 (with our kinaction_helloworld
topic), we need to make sure we dig into the basic parameters that were glossed over.
For these parameters, it’s best to treat these decisions with thought and care and be
intentional [4].

 Another important decision to make at creation time is if you will ever need to
delete a topic. Because this operation is significant, we want to make sure it cannot
happen without a logical confirmation. For this, Kafka requires us to enable the
delete.topic.enable option. If this is switched to true, we will be able to successfully
delete the topic and it will then be removed [5].

 It is nice to know that Kafka scripts have good usage documentation in general. We
recommend running the command kafka-topics.sh first to see what various actions
you can attempt. The following listing shows an incomplete command to get help.

Topics
Partition count

driven by analytics workload 
for search topic

Partitions
driven by keys and workload

Search type events
Search messages...

Customer 1
Customer 1

Partition X

Customer 2

Booking details

Customer 1:
Customer 2:
Customer 3:
Customer 1:

Book now!

Rates:

Location: Book/reserve

Billing

Key Value

Figure 7.2 Example training event topic design



133Topics
 

bin/kafka-topics.sh

In the output that we’ll see, one obvious command stands out: --create. Adding that
parameter helps us get further information related to the create action itself (for
example, “Missing required argument "[topic]"”). The following listing shows our
still incomplete generic command built a little further.

bin/kafka-topics.sh --create

Why spend time even talking about these steps, as some users are familiar with manual
(man) pages as part of their Linux® work? Even though Kafka does not present data
about how to use the tooling in that manner, this command is available before you
have to search on Google.

 Once we have a name that does not have over 249 characters (it’s been attempted
before), we can create our topic [6]. For our examples, we’ll create kinaction
_topicandpart with a replication factor of 2 and with two partitions. The next listing
shows the syntax to use in the command prompt [3].

bin/kafka-topics.sh
--create --bootstrap-server localhost:9094 \
--topic kinaction_topicandpart \
--partitions 2 \
--replication-factor 2

After we create our topic, we can describe that topic to make sure our settings look
correct. Notice in figure 7.3 how our partition and replication factor match the com-
mand we just ran.

Figure 7.3 Describing a topic with two partitions

In our opinion, another option that is good to take care of at the broker level is to set
auto.create.topics.enable to false [7]. Doing this ensures that we create our

Listing 7.1 Listing our topic options

Listing 7.2 Listing our topic options with --create

Listing 7.3 Creating another topic

Runs the generic Kafka 
topic-related command

Lists command-specific errors 
and the help documentation

Adds the create option 
to our command

Names our topic

Ensures that we have two 
copies of our dataCreates our topic 

with two partitions



134 CHAPTER 7 Topics and partitions
topics on purpose and not from a producer sending a message to a topic name that
was mistyped and never actually existed before a message was attempted. Although
not tightly coupled, usually producers and consumers do need to know the correct
topic name of where their data should live. This automatic topic creation can cause
confusion. But while testing and learning Kafka, autocreated topics can be helpful.
For a concrete example, if we run the command

kafka-console-producer.sh --bootstrap-server localhost:9094 --topic notexisting

without that topic existing, Kafka creates that topic for us. And if we run

kafka-topics.sh --bootstrap-server localhost:9094 --list

we would now have that topic in our cluster.
 Although we usually focus on not removing data from production environments, as

we continue in our own exploration of topics, we might run across some mistakes. It’s
good to know that we can indeed remove a topic if needed [3]. When we do that, all
the data in the topic is removed. This is not something we would do unless we’re ready
to get rid of that data for good! Listing 7.4 shows how to use the kafka-topic command
we used before, but this time to delete a topic named kinaction_topicandpart [3].

bin/kafka-topics.sh --delete --bootstrap-server localhost:9094
--topic kinaction_topicandpart

Note that the --delete option is passed to our Kafka topics command. After running
this command, you will not be able to work with this topic for your data as before. 

7.1.2 Replication factors

For practical purposes, we should plan on having the total number of replicas less
than or equal to the number of brokers. In fact, attempting to create a topic with the
number of replicas being greater than the total number of brokers results in an error:
InvalidReplicationFactorException [8]. We may imagine why this is an error.
Imagine, we only have two brokers, and we want three replicas of a partition. One of
those replicas would exist on one broker and two on the other broker. In this case, if
we lost the broker that was hosting two of the replicas, we would be down to only one
copy of the data. Losing multiple replicas of your data at once is not the ideal way to
provide recovery in the face of failure. 

7.2 Partitions
Moving on from dealing with Kafka commands at a (mostly) topic level, let’s start to
look deeper at partitions. From a consumer standpoint, each partition is an
immutable log of messages. It should only grow and append messages to our data
store. Although this data does not grow forever in practice, thinking of the data as

Listing 7.4 Deleting a topic

Removes topic 
kinaction_topicandpart



135Partitions
being added to rather than modified in place is a good mental model to maintain.
Also, consumer clients cannot directly delete messages. This is what makes it possible
to replay messages from a topic, which is a feature that can help us in many scenarios.

7.2.1 Partition location

One thing that might be helpful is to look at how the data is stored on our brokers. To
start, let’s find the location of the log.dirs (or log.dir) directory. Its location can be
found by looking for log.dirs in your server.properties file if you followed along from
appendix A. Under that directory, we should be able to see subfolders with a topic
name and a partition number. If we pick one of those folders and look inside, we will
see a couple of different files with these extensions: .index, .log, and .timeindex. Fig-
ure 7.4 shows how a single partition (in this case, 1) in our test topic looks by issuing a
directory listing (ls).

Figure 7.4 Partition directory listing

Sharp-eyed readers might see the file named leader-epoch-checkpoint and maybe even
files with a .snapshot extension (not shown above) in their own directory. The leader-
epoch-checkpoint file and snapshot files are those that we will not spend time looking at.

 The files with the .log extension are where our data payload is stored. Other
important information in the log file includes the offset of the message as well as the
CreateTime field. Why the need for any other files then? Because Kafka is built for
speed, it uses the .index and .timeindex files to store a mapping between the logical
message offset and a physical position inside the index file [9]. 

 As shown so far, partitions are made up of many files. In essence, this means that
on a physical disk, a partition is not one single file but is rather split into several seg-
ments [10]. Figure 7.5 shows how multiple segments might make up a partition.

Partition for kinaction_topicandpart

Segment files

kinaction_topicandpart 
filename lengths are 
shortened for this example.

10.log
10.index
10.timeindex

Segment files

Current segment
files

Related to an
inactive segment

7.log
7.index
7.timeindex

Partition made up of
one to many segments

Each segment has multiple
similarly named files.

Figure 7.5 Segments 
make up a partition.



136 CHAPTER 7 Topics and partitions
An active segment is the file to which new messages are currently written [11]. In our
illustration, 10.log is where messages are being written in the partition directory.
Older segments are managed by Kafka in various ways in which the active segment will
not be; this includes being governed for retention based on the size of the messages
or time configuration. These older segments (like 7.log in figure 7.5) can be eligible
for topic compaction, which we will touch on later in this chapter.

 To recap what we now know about segments, we know why we might have multiple
files with the same name in a partition directory but with an .index, .timeindex, or .log
extension. For example, if we have 4 segments, we would have a set of 4 files, each with
one of the previous 3 extensions, for a total of 12 files. If we only see 1 of each file
extension, we only have 1 segment. 

7.2.2 Viewing our logs

Let’s try to take a peek at a log file to see the messages we have produced for our topic
so far. If we open it in a text editor, we will not see those messages in a human-
readable format. Confluent has a script that we can use to look at those log segments
[12]. Listing 7.5 shows us passing the command to awk and grep to look at a segment
log file for partition 1 of the topic kinaction_topicandpart.

bin/kafka-dump-log.sh --print-data-log \
--files /tmp/kafkainaction/kafka-logs-0/

➥ kinaction_topicandpart-1/*.log \
| awk -F: '{print $NF}' | grep kinaction

By using the --files option, which is required, we chose to look at a segment file.
Assuming the command is successful, we should see a list of messages printed to the
screen. Without using awk and grep, you would also see offsets as well as other related
metadata like compression codecs. This is definitely an interesting way to see how
Kafka places messages on the broker and the data it retains around those messages.
The ability to see the actual messages is empowering as it really helps you see the log
in action that drives Kafka.

 Looking at figure 7.6, we can see a payload in text that is a little easier to read than
when we tried to cat the log file directly. For example, we can see a message in the
segment file with the payload kinaction_helloworld. Hopefully, you will have more
valuable data!

Figure 7.6 Viewing a log segment

Listing 7.5 Looking at a dump of a log segment

Prints data that cannot be 
viewed easily with a text editor

Passes a file 
to read



137Testing with EmbeddedKafkaCluster
As for the large number in the log filename, it is not random. The segment name
should be the same as the first offset in that file. 

 One of the impacts of being able to see this data is that we now have to be con-
cerned with who else can see it. Because data security and access controls are common
concerns with most data that holds values, we will look at ways you can secure Kafka
and topics in chapter 10. Facts about the segment log and index files are details that
we would not normally rely on in our applications. However, knowing how to look at
these logs might be helpful when understanding how our logs really exist.

 It helps to imagine Kafka as a living and complex system (it is distributed, after all)
that might need some care and feeding from time to time. In this next section, we will
tackle testing our topic. 

7.3 Testing with EmbeddedKafkaCluster
With all of the configuration options we have, it might be nice to test them as well.
What if we could spin up a Kafka cluster without having a real production-ready clus-
ter handy? Kafka Streams provides an integration utility class called EmbeddedKafka-
Cluster that serves as a middle ground between mock objects and a full-blown cluster.
This class provides an in-memory Kafka cluster [13]. Although built with Kafka
Streams in mind, we can use it to test our Kafka clients.

 Listing 7.6 is set up like the tests found in the book Kafka Streams in Action by William
P. Bejeck Jr., for example, his KafkaStreamsYellingIntegrationTest class [14]. That
book and his following book, Event Streaming with Kafka Streams and ksqlDB, show more
in-depth testing examples. We recommend checking those out, including his sugges-
tion of using Testcontainers (https://www.testcontainers.org/). The following listing
shows testing with EmbeddedKafkaCluster and JUnit 4.

@ClassRule
public static final EmbeddedKafkaCluster embeddedKafkaCluster

= new EmbeddedKafkaCluster(BROKER_NUMBER);

private Properties kaProducerProperties;
private Properties kaConsumerProperties;

@Before
public void setUpBeforeClass() throws Exception {

embeddedKafkaCluster.createTopic(TOPIC,
PARTITION_NUMBER, REPLICATION_NUMBER);

kaProducerProperties = TestUtils.producerConfig(
embeddedKafkaCluster.bootstrapServers(),
AlertKeySerde.class,
StringSerializer.class);

kaConsumerProperties = TestUtils.consumerConfig(
embeddedKafkaCluster.bootstrapServers(),
AlertKeySerde.class,
StringDeserializer.class);

}

Listing 7.6 Testing with EmbeddedKafkaCluster

Uses JUnit-specific annotation 
to create the cluster with a 
specific number of brokers

Sets the consumer 
configuration to point to the 
embedded cluster brokers

https://www.testcontainers.org/
https://www.testcontainers.org/
https://www.testcontainers.org/
https://www.testcontainers.org/


138 CHAPTER 7 Topics and partitions
@Test
public void testAlertPartitioner() throws InterruptedException {

AlertProducer alertProducer = new AlertProducer();
try {

alertProducer.sendMessage(kaProducerProperties);
} catch (Exception ex) {

fail("kinaction_error EmbeddedKafkaCluster exception"

➥ + ex.getMessage());
}

AlertConsumer alertConsumer = new AlertConsumer();
ConsumerRecords<Alert, String> records =

alertConsumer.getAlertMessages(kaConsumerProperties);
TopicPartition partition = new TopicPartition(TOPIC, 0);
List<ConsumerRecord<Alert, String>> results = records.records(partition);
assertEquals(0, results.get(0).partition());

}

When testing with EmbeddedKafkaCluster, one of the most important parts of the
setup is to make sure that the embedded cluster is started before the actual testing
begins. Because this cluster is temporary, another key point is to make sure that the
producer and consumer clients know how to point to this in-memory cluster. To dis-
cover those endpoints, we can use the method bootstrapServers() to provide the
needed configuration to the clients. Injecting that configuration into the client
instances is again up to your configuration strategy, but it can be as simple as setting
the values with a method call. Besides these configurations, the clients should be able
to test away without the need to provide mock Kafka features!

 The test in listing 7.6 verifies that the AlertLevelPartitioner logic was correct.
Using that custom partitioner logic with a critical message should have landed the alert
on partition 0 with our example code in chapter 4. By retrieving the messages for Topic-
Partition(TOPIC, 0) and looking at the included messages, the message partition
location was confirmed. Overall, this level of testing is usually considered integration
testing and moves you beyond just a single component under test. At this point, we have
tested our client logic together with a Kafka cluster, integrating more than one module.

NOTE Make sure that you reference the pom.xml changes in the source code
for chapter 7. There are various JARs that were not needed in previous chap-
ters. Also, some JARs are only included with specific classifiers, noting that
they are only needed for test scenarios.

7.3.1 Using Kafka Testcontainers

If you find that you are having to create and then tear down your infrastructure, one
option that you can use (especially for integration testing) is Testcontainers (https://
www.testcontainers.org/modules/kafka/). This Java library uses Docker and one of a
variety of JVM testing frameworks like JUnit. Testcontainers depends on Docker
images to provide you with a running cluster. If your workflow is Docker-based or a
development technique your team uses well, Testcontainers is worth looking into to
get a Kafka cluster set up for testing.

Calls the client without
any changes, which is

clueless of the underlying
cluster being embedded

Asserts that the embedded 
cluster handled the message 
from production to consumption

https://www.testcontainers.org/modules/kafka/
https://www.testcontainers.org/modules/kafka/


139Topic compaction
NOTE One of the coauthors of this book, Viktor Gamov, maintains a reposi-
tory (https://github.com/gAmUssA/testcontainers-java-module-confluent-
platform) of integration testing Confluent Platform components (including
Kafka, Schema Registry, ksqlDB). 

7.4 Topic compaction
Now that we have a solid foundation on topics being made up of partitions and parti-
tions being made up of segments, it is time to talk about the details of log compaction.
With compaction, the goal is not to expire messages but rather to make sure that the lat-
est value for a key exists and not to maintain any previous state. As just referenced, com-
paction depends on a key being part of the messages and that key not being null [10]. 

 The configuration option that we used to create a compacted topic is
cleanup.policy=compact [15]. This differs from the default configuration value that
was set to delete before our override. In other words, we have to choose to create a
compacted topic or the topic won’t exist in that way. The following listing adds the
configuration option needed for this new compacted topic.

bin/kafka-topics.sh --create --bootstrap-server localhost:9094 \
--topic kinaction_compact --partitions 3 --replication-factor 3 \
--config cleanup.policy=compact

One of the easiest comparisons for how a compacted topic presents data can be seen
in how code would update an array’s existing field rather than appending more data.
Let’s say that we want to keep a current membership status for an online membership.
A user can only be in one state at a time, either a Basic or a Gold membership. At first,
a user enrolls in the Basic plan, but over time, upgrades to the Gold plan for more fea-
tures. Although this is still an event that Kafka stores, in our case, we only want the
most recent membership level for a specific customer (our key). Figure 7.7 shows an
example using three customers.

Figure 7.7 Compaction in general

Listing 7.7 Creating a compacted topic

Creates the topic like
any other topic

Creates our topic type 
to be compacted

Log segment: Precompaction

ValueKey

Customer 0

Customer 1

Customer 0

Customer 2
...

Customer 1

Offset

0

1

2

3
...

100

Compacted topic

Value

Gold

Basic

Basic

Key

Customer 0

Customer 2

Customer 1

Offset

Basic

Gold

Gold

Basic
...

Basic

2

3

100

https://github.com/gAmUssA/testcontainers-java-module-confluent-platform
https://github.com/gAmUssA/testcontainers-java-module-confluent-platform


140 CHAPTER 7 Topics and partitions
After compaction is done, the latest customer 0 update (in our example) is all that
exists in the topic. A message with offset 2 replaces the old value of Basic (message
offset 0) for customer 0 with Gold. Customer 1 has a current value of Basic because
the latest key-specific offset of 100 updates the previous offset 1 Gold state. As
customer 2 only has one event, that event carries over to the compacted topic without
any changes.

 Another real-world example of why one would want to use a compacted topic is
Kafka’s internal topic, __consumer_offsets. Kafka does not need a history of offsets
that a consumer group consumes; it just needs the latest offset. By storing the offsets
in a compacted topic, the log, in effect, gets an updated view of the current state of its
world.

 When a topic is marked for compaction, we can view a single log in a couple of dif-
ferent states: compacted or not. For older segments, duplicate values for each key
should have been reduced to just one value once compaction is completed. The active
segment messages are those that have not yet been through compaction [11]. Multi-
ple values can exist for a message for a specific key until all the messages are cleaned.
Figure 7.8 illustrates how a pointer is used to show which messages have been pro-
cessed with compaction and which messages have yet to be visited [16].

Figure 7.8 Compaction cleaning

Looking closely at the offsets in figure 7.8, we can see that there are gaps in the
cleaned segment offset numbers. Because duplicate key messages are left with the lat-
est value only, we might have some offset numbers removed from the segment file, for
example, offset 2 was removed. In the active sections, we will likely see the ever-
increasing offset numbers that we are used to, without random jumping numbers.

 Let’s now switch to a subscriber who wanted to delete their account. By sending an
event with the subscriber key, like Customer 0, with a message value of null, this

Offset 0-Customer 0

This compaction is similar to the 
kinaction_alert topic compaction 

we used with a different key.

Already cleaned marker

Offset Key

Compacted topic

Value

Offset 1-Customer 1
The duplicate
keys have
been removed.

Basic
.
.
.

Basic
Null

Customer 2
.
.
.

Customer 1
Customer 0

3
.
.
.

100
101



141Topic compaction
message will be treated as a delete. This message is considered a tombstone [10]. If
you have used other systems like Apache HBase™, the notion is similar. Figure 7.9
shows that the null value does not remove a message but is served like any other mes-
sage [10].

Figure 7.9 Compaction for a deleted value

With delete rules that an application may or may not have to deal with, Kafka can help
us fulfill those data requirements with its core feature set.

 Throughout this chapter, we have looked at the various details of topics, partitions,
and segments. Although broker-specific, they can indeed impact our clients. Because
we have experience now with how Kafka stores some of its own data, we are going to
spend some time in our next chapter discussing how we can store our data. This
includes longer-term storage options for data. 

Summary
 Topics are non-concrete rather than physical structures. To understand the

topic’s behavior, a consumer of that topic needs to know about the number of
partitions and the replication factors in play.

 Partitions make up topics and are the basic unit for parallel processing of data
inside a topic.

 Log file segments are written in partition directories and are managed by the
broker.

 Testing can be used to help validate partition logic and may use an in-memory
cluster.

 Topic compaction is a way to provide a view of the latest value of a specific
record. 

Delete with null

ValueKey

Customer 0
Customer 1
Customer 0
Customer 2

...
Customer 1
Customer 0

Offset

0
1
2
3
...

100
101

Value

Basic
...

Basic
Null

Key

Customer 2
...

Customer 1
Customer 0

Offset

Customer 0 isn’t 
deleted immediately.

Basic
Gold
Gold
Basic

...
Basic
Null

3
...

100
101

Log segment: Precompaction Compacted topic



142 CHAPTER 7 Topics and partitions
References
1 “Main Concepts and Terminology.” Confluent documentation (n.d.). https://

docs.confluent.io/platform/current/kafka/introduction.html#main-concepts-
and-terminology (accessed August 28, 2021).

2 J. Rao. “How to choose the number of topics/partitions in a Kafka cluster?”
(March 12, 2015). Confluent blog. https://www.confluent.io/blog/how-choose
-number-topics-partitions-kafka-cluster/ (accessed May 19, 2019).

3 “Documentation: Modifying topics.” Apache Software Foundation (n.d.).
https://kafka.apache.org/documentation/#basic_ops_modify_topic (accessed
May 19, 2018).

4 “Documentation: Adding and removing topics.” Apache Software Foundation
(n.d.). https://kafka.apache.org/documentation/#basic_ops_add_topic
(accessed December 11, 2019).

5 “delete.topic.enable.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/installation/configuration/broker-configs.html#broker
configs_delete.topic.enable (accessed January 15, 2021).

6 Topics.java. Apache Kafka GitHub. https://github.com/apache/kafka/blob/
99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/clients/src/main/java/org/
apache/kafka/common/internals/Topic.java (accessed August 27, 2021).

7 “auto.create.topics.enable.” Apache Software Foundation (n.d.). https://docs.
confluent.io/platform/current/installation/configuration/broker-configs
.html#brokerconfigs_auto.create.topics.enable (accessed December 19, 2019).

8 AdminUtils.scala. Apache Kafka GitHub. https://github.com/apache/kafka/
blob/d9b898b678158626bd2872bbfef883ca60a41c43/core/src/main/scala/
kafka/admin/AdminUtils.scala (accessed August 27, 2021).

9 “Documentation: index.interval.bytes.” Apache Kafka documentation. https://
kafka.apache.org/documentation/#topicconfigs_index.interval.bytes (accessed
August 27, 2021).

10 “Log Compaction.” Confluent documentation (n.d.). https://docs.confluent.io/
platform/current/kafka/design.html#log-compaction (accessed August 20,
2021).

11 “Configuring The Log Cleaner.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/kafka/design.html#configuring-the-log
-cleaner (accessed August 27, 2021).

12 “CLI Tools for Confluent Platform.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/installation/cli-reference.html (accessed
August 25, 2021).

13 EmbeddedKafkaCluster.java. Apache Kafka GitHub. https://github.com/
apache/kafka/blob/9af81955c497b31b211b1e21d8323c875518df39/streams/
src/test/java/org/apache/kafka/streams/integration/utils/EmbeddedKafka
Cluster.java (accessed August 27, 2021).

https://docs.confluent.io/platform/current/kafka/introduction.html#main-concepts-and-terminology
https://docs.confluent.io/platform/current/kafka/introduction.html#main-concepts-and-terminology
https://docs.confluent.io/platform/current/kafka/introduction.html#main-concepts-and-terminology
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster/
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster/
https://www.confluent.io/blog/how-choose-number-topics-partitions-kafka-cluster/
https://kafka.apache.org/documentation/#basic_ops_modify_topic
https://kafka.apache.org/documentation/#basic_ops_add_topic
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_delete.topic.enable
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_delete.topic.enable
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_delete.topic.enable
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_delete.topic.enable
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/clients/src/main/java/org/apache/kafka/common/internals/Topic.java
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/clients/src/main/java/org/apache/kafka/common/internals/Topic.java
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/clients/src/main/java/org/apache/kafka/common/internals/Topic.java
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_auto.create.topics.enable
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_auto.create.topics.enable
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_auto.create.topics.enable
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_auto.create.topics.enable
https://github.com/apache/kafka/blob/d9b898b678158626bd2872bbfef883ca60a41c43/core/src/main/scala/kafka/admin/AdminUtils.scala
https://github.com/apache/kafka/blob/d9b898b678158626bd2872bbfef883ca60a41c43/core/src/main/scala/kafka/admin/AdminUtils.scala
https://github.com/apache/kafka/blob/d9b898b678158626bd2872bbfef883ca60a41c43/core/src/main/scala/kafka/admin/AdminUtils.scala
https://kafka.apache.org/documentation/#topicconfigs_index.interval.bytes
https://kafka.apache.org/documentation/#topicconfigs_index.interval.bytes
https://docs.confluent.io/platform/current/kafka/design.html#log-compaction
https://docs.confluent.io/platform/current/kafka/design.html#log-compaction
https://docs.confluent.io/platform/current/kafka/design.html#log-compaction
https://docs.confluent.io/platform/current/kafka/design.html#configuring-the-log-cleaner
https://docs.confluent.io/platform/current/kafka/design.html#configuring-the-log-cleaner
https://docs.confluent.io/platform/current/kafka/design.html#configuring-the-log-cleaner
https://docs.confluent.io/platform/current/installation/cli-reference.html
https://docs.confluent.io/platform/current/installation/cli-reference.html
https://github.com/apache/kafka/blob/9af81955c497b31b211b1e21d8323c875518df39/streams/src/test/java/org/apache/kafka/streams/integration/utils/EmbeddedKafkaCluster.java
https://github.com/apache/kafka/blob/9af81955c497b31b211b1e21d8323c875518df39/streams/src/test/java/org/apache/kafka/streams/integration/utils/EmbeddedKafkaCluster.java
https://github.com/apache/kafka/blob/9af81955c497b31b211b1e21d8323c875518df39/streams/src/test/java/org/apache/kafka/streams/integration/utils/EmbeddedKafkaCluster.java


143References
14 W. P. Bejeck Jr. Kafka Streams in Action. Shelter Island, NY, USA: Manning, 2018.
15 “cleanup.policy.” Confluent documentation (n.d.). https://docs.confluent.io/

platform/current/installation/configuration/topic-configs.html#topicconfigs
_cleanup.policy (accessed November 22, 2020).

16 “Log Compaction Basics.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/kafka/design.html#log-compaction-basics
(accessed August 20, 2021).

https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html#topicconfigs_cleanup.policy
https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html#topicconfigs_cleanup.policy
https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html#topicconfigs_cleanup.policy
https://docs.confluent.io/platform/current/kafka/design.html#log-compaction-basics
https://docs.confluent.io/platform/current/kafka/design.html#log-compaction-basics
https://docs.confluent.io/platform/current/kafka/design.html#log-compaction-basics


Kafka storage
So far we have thought of our data as moving into and out of Kafka for brief peri-
ods of time. Another decision to consider is where our data should live long term.
When you use databases like MySQL or MongoDB®, you may not always think
about if or how that data expires. Rather, you know that the data is (likely) going to
exist for the majority of your application’s entire lifetime. In comparison, Kafka’s
storage logically sits somewhere between the long-term storage solutions of a data-
base and the transient storage of a message broker, especially if we think of message
brokers holding onto messages until they are consumed by a client, as it often is in
other message brokers. Let’s look at a couple of options for storing and moving
data in our Kafka environment.

This chapters covers
 How long to retain data

 Data movement into and out of Kafka

 Data architectures Kafka enables

 Storage for cloud instances and containers
144



145How long to store data
8.1 How long to store data
Currently, the default retention limit for data in Kafka topics is seven days, but we can
easily configure this by time or data size [1]. But can Kafka hold data itself for a period
of years? One real-world example is how the New York Times uses Kafka. The content in
their cluster is in a single partition that was less than 100 GB at the time of writing [2].
If you recall from our discussion in chapter 7 about partitions, you know that all of
this data exists on a single broker drive (as do any replica copies on their own drives)
as partitions are not split between brokers. Because storage is considered to be rela-
tively cheap and the capacity of modern hard drives is way beyond hundreds of giga-
bytes, most companies would not have any size issues with keeping that data around. Is
this a valid use of Kafka or an abuse of its intended purpose and design? As long as
you have the space for your planned growth on a disk for future use, you might have
found a good pattern for handling your specific workload.

 How do we configure retention for brokers? The main considerations are the size
of the logs and the length of time the data exists. Table 8.1 shows some of the broker
configuration options that are helpful for retention [3].

How do we disable log retention limits and allow them to stay forever? By setting both
log.retention.bytes and log.retention.ms to –1, we can effectively turn off data
deletion [4].

 Another thing to consider is how we can get similar retention for the latest values
by using keyed events with a compacted topic. Although we can still remove data
during compaction cleaning, the most recent keyed messages will always be in the log.
This is a good way to retain data in use cases where we do not need every event (or his-
tory) of how a key changed state from the current value.

 What if we want our data to stick around for a while, but simply do not have the disk
space to hold our data on brokers? Another option for long-term storage is to move the

Table 8.1 Broker retention configuration

Key Purpose

log.retention.bytes The largest size threshold in bytes for deleting a log.

log.retention.ms The length in milliseconds a log will be maintained before being 
deleted.

log.retention.minutes Length before deletion in minutes. log.retention.ms is used as 
well if both are set.

log.retention.hours Length before deletion in hours. log.retention.ms and 
log.retention.minutes would be used before this value if 
either of those are set.



146 CHAPTER 8 Kafka storage
data outside of Kafka and not retain it internally to the Kafka brokers themselves.
Before data is removed by retention from Kafka, we could store the data in a database,
in a Hadoop Distributed File System (HDFS™), or upload our event messages into
something like cloud storage. All of these paths are valid options and could provide
more cost-effective means of holding onto our data after our consumers process it. 

8.2 Data movement
Almost all companies seem to have a need for transforming the data that they receive.
Sometimes, it is specific to an area within the company or due to third-party integra-
tions. A popular term that many people use in this data transformation space is ETL
(extract, transform, load). We can use tooling or code to take data in its original for-
mat, transform the data, and then place it into a different table or data store. Kafka
can play a key role in these data pipelines.

8.2.1 Keeping the original event

One thing that we would like to note is our preference for event formats inside of
Kafka. Although open to debate and your use case requirements, our preference is to
store messages in the original format in a topic. Why keep the original message and
not format it immediately before placing it into a topic? Having the original message
makes it easier to go back and start over if you inadvertently messed up your transform
logic. Instead of having to try to figure out how to fix your mistake on the altered data,
you can always just go back to the original data and start again. We know that most of
us usually have that experience when trying to format a date or the first time we run a
regular expression. Sometimes you need a couple of shots at formatting the data the
way you want.

 Another plus for getting the entire original message is that data you don’t use
today might be used in the future. Let’s say the year is 1995, and you are getting a field
from a vendor called mobile. Your business will never need that field, right? Once you
see the need to launch your first text marketing campaign, you’ll be thanking your
past self that you kept that original, “useless” data.

 Although the mobile field might be a trivial example for some, it is interesting to
think about usage for data analysis. What if your models start to see trends on data
that you once thought wouldn’t matter? By retaining all the data fields, you might be
able to go back to that data and find insights you never expected. 

8.2.2 Moving away from a batch mindset

Does the general topic of ETL or data pipelines bring terms to mind such as batch, end
of day, monthly, or even yearly? One of the shifts from the data transformation processes
of the past is the idea that you can continuously stream your data into various systems
without delay. With Kafka, for example, you can keep the pipeline running in near-
real time, and you can use its stream-processing platform to treat your data as an
infinite series of events.



147Tools
 We mention this as a reminder that Kafka can help enable a shift in the way you
think of your data altogether. You do not have to wait for a nightly job to run and
update a database. You also do not have to wait for a nightly window with less traffic to
do intensive ETL tasks; you can do these as they stream into your system and have
pipelines that are constantly working for your applications in real time. Let’s take a
look at tools available that might help you use your pipelines in the future or make
better use of your pipelines today. 

8.3 Tools
Data movement is a key to many systems, Kafka included. Although you can stay inside
the open source Kafka and Confluent offerings like Connect, which was discussed in
chapter 3, there are other tools that might fit your infrastructure or are already avail-
able in your tool suite. Depending on your specific data source or sinks, the options
mentioned in the following sections might help you achieve your goals. Note that
although some tools in this section include sample configuration and commands,
more setup (not shown) might be required before you can run these commands on
your local machines. Hopefully, this section gives you enough information to pique
your interest and allow you to start exploring on your own.

8.3.1 Apache Flume

If you were first introduced to Kafka through work in the big data space, it is a strong
possibility that you might have used Flume in relation to your cluster. If you have ever
heard the term Flafka, you have definitely used this Kafka and Flume integration.
Flume can provide an easier path for getting data into a cluster and relies more on
configuration than on custom code. For example, if you want to ingest data into your
Hadoop cluster and already have support from a vendor on these various pieces,
Flume is a solid option to get data into your Kafka cluster.

 Figure 8.1 shows an example of how a Flume agent runs on a node as its own pro-
cess. It watches the files local to that server and then uses the configuration for the
agent that you provided to send data to a sink.

Figure 8.1 Flume agent

Log server

Flume agent

Memory channel

Kafka cluster

Sink destination

Topic: 
kinaction_flumetopic 

partition

Source:
/var/log/kafkainactionlogs

log line 1
log line 2
log line 3

...



148 CHAPTER 8 Kafka storage

s 
a 
 
 

Let’s take a look again at integrating log files (our source of data) using a Flume agent
into a Kafka topic (our data sink). Listing 8.1 shows a sample configuration file that
we could use to set up a local Flume agent to watch a directory for changes [5]. The
changes are placed in a Kafka topic, titled kinaction_flumetopic. To imagine this
example, here’s a comparison: it is like using a cat command on a file in a directory
to read the file and send the result to a specific Kafka topic.

ag.sources = logdir
ag.sinks = kafkasink
ag.channels = c1

#Configure the source directory to watch
ag.sources.logdir.type = spooldir
ag.sources.logdir.spoolDir = /var/log/kafkainactionlogs
...
ag.sinks.kafkasink.channel = c1
ag.sinks.kafkasink.type = org.apache.flume.sink.kafka.KafkaSink
ag.sinks.kafkasink.kafka.topic = kinaction_flumetopic
...
# Bind both the sink and source to the same channel
ag.sources.logdir.channels = c1
ag.sinks.kafkasink.channel = c1

Listing 8.1 shows how we could configure a Flume agent running on a server. You
should notice that the sink configuration looks a lot like the properties we have used
before in our Java client producer code.

 It is also interesting to note that Flume can use Kafka as not only a source or as a
sink, but also as a channel. Because Kafka is seen as a more reliable channel for
events, Flume can use Kafka to deliver messages between various sources and sinks.

 If you are reviewing Flume configurations and see Kafka mentioned, be sure to
notice where and how it is actually used. The following listing shows the Flume agent
configuration we can use to provide a reliable channel between various sources and
sinks that Flume supports [5].

ag.channels.channel1.type =

➥ org.apache.flume.channel.kafka.KafkaChannel
ag.channels.channel1.kafka.bootstrap.servers =

➥ localhost:9092,localhost:9093,localhost:9094
ag.channels.channel1.kafka.topic = kinaction_channel1_ch
ag.channels.channel1.kafka.consumer.group.id =

➥ kinaction_flume

Listing 8.1 Flume configuration for watching a directory

Listing 8.2 Flume Kafka channel configuration

Defines custom names for the 
source, sink, and channel

Specific spooldir source lets 
Flume know which directory 
to watch for log entries.

This section define
our topic and Kafk
cluster information
where we want our
data to end up.

Attaches the source to the 
sink by the defined channel

Flume uses the KafkaChannel 
class as the Kafka channel type.

Provides our servers 
to connect to

The topic that 
holds the data 
between source 
and sink

Provides a consumer group to avoid 
collisions with other consumers 



149Tools
8.3.2 Red Hat® Debezium™

Debezium (https://debezium.io) describes itself as a distributed platform that helps
turn databases into event streams. In other words, updates to our database can be
treated as events! If you have a database background (or not), you may have heard of
the term change data capture (CDC). As the name implies, the data changes can be
tracked and used to react to those changes. At the time of writing this chapter, Debezium
supports MySQL, MongoDB, PostgreSQL®, Microsoft SQL Server™, Oracle, and IBM
Db2. Cassandra™ and Vitess™ are in an incubating status as well [6]. Please see the cur-
rent list of connectors at https://debezium.io/documentation/reference/connectors/.

 Debezium uses connectors and Kafka Connect to record the events our applica-
tion consumes from Kafka as a normal client. Figure 8.2 shows an example of Debe-
zium when it is registered as a connector in regard to Kafka Connect.

Figure 8.2 Kafka Connect and Debezium used with a MySQL database

In our scenario, a developer uses a command line interface (CLI) and deletes a user
against the MySQL database instance that is being monitored for changes. Debezium
captures the event written to the database’s internal log, and that event goes through
the connector service and feeds into Kafka. If a second event, such as a new user, is
inserted into the database, a new event is captured.

 As an additional note, although not Kafka-specific, there are other examples of
using techniques like CDC to provide timely events or changes to your data that might
help you draw a parallel to what Debezium is aiming for overall. 

8.3.3 Secor

Secor (https://github.com/pinterest/secor) is an interesting project from Pinterest
that has been around since 2014. It aims to help persist Kafka log data to a variety of
storage options, including S3 and Google Cloud Storage™ [7]. The options for

Kafka Connect
process

bin log

Delete event

Client CLI

     : Delete from users
       where users = 1,000

Insert event

MySQL 

Kafka cluster

Debezium MySQL
{delete event}

{insert event}

https://debezium.io
https://debezium.io/documentation/reference/connectors/
https://github.com/pinterest/secor


150 CHAPTER 8 Kafka storage
output are also various, including sequence, Apache ORC™, and Apache Parquet™
files as well as other formats. As always, one major benefit of projects having source
code in a public repository is that we can see how other teams have implemented
requirements that might be similar to ours.

 Figure 8.3 shows how Secor would act as a consumer of a Kafka cluster, much like
any other application. Having a consumer added to a cluster for data backup is not a
big deal. It leverages the way Kafka has always handled multiple readers of the events.

Figure 8.3 Secor acting as a consumer and placing data into storage.

Secor runs as a Java process and can be fed our specific configurations. In effect, it
acts as another consumer of our existing topic(s) to gather data to end up in a specific
destination like an S3 bucket. Secor does not get in the way of our other consumers,
and it allows us to have a copy of our events so that they are not lost once Kafka reten-
tion removes data from its logs.

 Invoking Secor should be familiar to those who are used to working with JARs in a
Java environment. We can pass arguments with the standard -D parameters to the
Secor application. In this instance, the most important file to update is the properties
file with the configuration options. This file lets us fill in the details about our specific
cloud storage bucket, for example. 

8.3.4 Example use case for data storage

Let’s look at an example of how moving data out of Kafka for storage could be used at
a later time. First, to clarify, we will break down our usage of the same data between
two different areas. One area is working with the data in an operational manner as it
comes into Kafka.

 Operational data is the events that are produced by our day-to-day operations. We
can think of an event to order an item from a website as an example. A purchase event
triggers our application into motion and does so in a low-latency way. The value of this
data to our real-time applications might warrant keeping the data for a couple of days

Producer clients

Secor
Java process

Application 1
consumer

Application 2
consumer

Events

Kafka cluster

Broker
1

Broker
2

Broker
3

S3

Secor acts as another consumer of your cluster.
kinaction_alerttrend is one topic to consider 
moving data to for longer-term keeping.



151Bringing data back into Kafka
until the order is completed and mailed. After this timeframe, the event may become
more important for our analytical systems.

 Analytical data, while based on that same operational data, is usually used more to
make business decisions. In traditional systems, this is where processes like a data
warehouse, an online analytical processing system (OLAP), and Hadoop shine. That
event data can be mined using different combinations of fields in our events in differ-
ent scenarios to find insights into sales data, for instance. If we notice that sales of
cleaning supplies always spike before a holiday, we might use that data to generate bet-
ter sale options for our business in the future. 

8.4 Bringing data back into Kafka
One of the most important things to note is that just because our data has left Kafka
does not mean that it can’t be put back in again. Figure 8.4 shows an example of data
that lived out its normal lifespan in Kafka and was archived in cloud storage like S3.
When a new application logic change required the older data be reprocessed, we did
not have to create a client to read from both S3 and Kafka. Rather, using a tool like
Kafka Connect, we can load that data from S3 back into Kafka! The interface stays the
same from the point of view of our applications. Although it might not seem obvious
at first glance why we would want to do such a thing, let’s consider a situation in which
we find value in moving our data back into Kafka after we have processed it and the
retention period has passed.

 Imagine a team working on trying to find patterns in data that they collected
throughout years of handling events. In our example, there are terabytes of data. To
serve operational real-time data collection, this data was moved from Kafka into HDFS
after real-time consumers dealt with the messages. Does our application logic now
have to pull from HDFS directly? Why not just pull it back into Kafka, and our applica-
tion can process the data as it had before? Loading data into Kafka again is a valid way
of reprocessing data that may have aged out of our system. Figure 8.4 shows another
example of how we can move data back into Kafka.

Figure 8.4 Moving data back into Kafka

Kafka New topic

Application rerun

Application
logic

Kafka Connect
S3Older data moved to

external data store like 
kinaction_alerttrend data

Loaded from S3 store

New logic



152 CHAPTER 8 Kafka storage
After some time, events are not available to the applications due to data retention con-
figurations within Kafka. However, we have a copy of all previous events in an S3
bucket. Let’s say that we have a new version of our previous application and would
prefer to go through all of the previous data events as in our previous application.
However, because those events are not in Kafka, do we pull them from S3 now? Do we
want our application logic to pull from various sources or just to have one interface
(that being Kafka)? We can create a new topic in our existing Kafka cluster and load
the data from S3 with Kafka Connect, placing the data into a new Kafka topic. Our
application can then run against Kafka, processing events without having to change
any processing logic.

 The thought process is really to keep Kafka as the interface of our application and
not have to create multiple ways to pull data into processing. Why create and maintain
custom code to pull from different locations when we can use an existing tool like
Connect to move the data to or from Kafka? Once we have our data in that one inter-
face, we can process it the same.

NOTE Keep in mind this technique only applies to data that has been
removed from Kafka. If you still have the total timeline of data that you need
in Kafka, you can always seek to the earlier offsets.

8.4.1 Tiered storage

A newer option from the Confluent Platform version 6.0.0 on is called Tiered Storage.
In this model, local storage is still the broker itself, and remote storage is introduced
for data that is older (and stored in a remote location) and controlled by time config-
uration (confluent.tier.local.hotset.ms) [8]. 

8.5 Architectures with Kafka
Although there are various architectural patterns that view your data as events when
building your products, such as model-view-controller (MVC), peer-to-peer (P2P), or
service-oriented architecture (SOA) to name a few, Kafka can change the way you
think about your entire architectural design. Let’s take a peek at a couple of architec-
tures that could be powered by Kafka (and to be fair, other streaming platforms).
This will help us get a different perspective on how we might design systems for our
customers.

 The term big data is used in reference to some of these discussions. It is important
to note that the amount of data and the need to process that data in a timely manner
were the drivers that led to some of these system designs. However, these architectures
are not limited to fast data or big data applications only. By hitting the limits of spe-
cific traditional database technologies, new views on data evolved. Let’s look at two of
them in the following sections.



153Architectures with Kafka
8.5.1 Lambda architecture

If you have ever researched or worked with data applications that have included needs
for both batch processing and operational workloads, you might have seen references
to lambda architecture. The implementation of this architecture can start with Kafka
as well, but it is a little more complex.

 The real-time view of the data is combined with a historical view to serve end users.
The complexity of merging these two data views should not be ignored. For the
authors, it was a challenge to rebuild the serving table. Also, you are likely going to
have to maintain different interfaces for your data as you work with the results from
both systems.

 The book Big Data, written by Nathan Marz with James Warren, discusses the
lambda architecture more fully and goes into details about the batch, serving, and
speed layers [9]. Figure 8.5 shows an example of how taking customer orders can be
thought of in a batch and a real-time way. The customer totals from the previous days
can be integrated with orders happening during the day into a combined data view to
end users.

Figure 8.5 Lambda architecture

Taking the concepts from figure 8.5 and to get a feel for this architecture, let’s look at
each layer at a high level. These layers are discussed in Big Data by Marz:

 Batch—This layer is similar to the way batch processing with MapReduce occurs
in a system like Hadoop. As new data is added to your data stores, the batch layer
continues to precompute the view of the data that already lives in the system.

 Speed—This layer is similar in concept to the batch layer except it produces
views from recent data.

 Serving—This layer updates the views it sends to consumers after each update to
the batch views.

Customer batch

Customer
D total

This could also be shown by trends in 
kinaction_alerttrend being shown as trends 

from months before and combined
 with new events happening today. 

Customer
E total

Combined view

Customer A total
Customer B total
Customer C total

Customer A-C
Customer D
Customer E

Overnight batch
totals

Real-time
totals



154 CHAPTER 8 Kafka storage
For the end user, the lambda architecture unites data from the serving layer and the
speed layer to answer requests with a complete view of all recent and past data. This
real-time streaming layer is the most obvious place for Kafka to play a role, but it can
also be used to feed the batch layer. 

8.5.2 Kappa architecture

Another architectural pattern that can leverage the power of Kafka is kappa architec-
ture. This architecture was proposed by the co-creator of Kafka, Jay Kreps [10]. Think
about wanting to maintain a system that impacts your users without disruption. One
way to do this is to switch out your updated views like in lambda. Another way to do
this is by running the current system in parallel to the new one and cutting over once
the new version is ready to serve traffic. Part of this cutover is of course making sure
that the data that is being served by the older version will be reflected correctly in the
newer version.

 You only regenerate the user-facing data when you need to. There is no need to
merge old and new data, which is an ongoing process for some lambda implementa-
tions. It does not have to be a continuous job, but rather invoked when you need an
application logic change. Also, there’s no need to change your interface to your data.
Kafka can be used by both your new and old application code at the same time. Figure
8.6 shows how customer events are used to create a view without using a batch layer.

 Figure 8.6 shows customer events from the past and present being used directly to
create a view. Imagine the events being sourced from Kafka and then using Kafka
Streams or ksqlDB to read all the events in near-real time and creating a view for end

Live view

Customer totals

Customer
events 0

to X

Running total
logic

Past
events

New 
events

No batch
totals, just

events

Custom customer
event

For example, 
kinaction_alerttrend data 

not being batched
but replayed if needed

Custom customer
event

Figure 8.6 Kappa architecture



155Cloud- and container-based storage options
users. If a change is ever needed to how customer events are processed, a second
application can be created with different logic (like a new ksqlDB query), using the
same data source (Kafka) as before. There is no need to have a batch layer (and man-
age it) as there is only streaming logic used for making your end user views. 

8.6 Multiple cluster setups
Most of our topics and discussions so far have been from the viewpoint of our data in
one cluster. But Kafka scales well, and it is not unheard of to reach hundreds of bro-
kers for a single cluster. However, a one-size cluster does not fit all infrastructures.
One of the concerns we run into when talking about cluster storage is where you serve
your data in relation to your end user clients. In this section, we will talk about scaling
by adding clusters rather than by adding brokers alone.

8.6.1 Scaling by adding clusters

Usually, the first things to scale would be the resources inside your existing cluster.
The number of brokers is the first option that makes a straightforward path to growth.
Netflix®’s multicluster strategy is a captivating take on how to scale Kafka clusters [11].
Instead of using only the broker number as the way to scale the cluster, they found
they could scale by adding clusters themselves!

 This design brings to mind the idea of Command Query Responsibility Segrega-
tion (CQRS). For more details on CQRS, check out Martin Fowler’s site at https://
martinfowler.com/bliki/CQRS.html, specifically the idea of separating the load of
reading data from that of writing data [12]. Each action can scale in an independent
manner without limiting other actions. Although CQRS is a pattern that can add com-
plexity to our systems, it is interesting to note how this specific example helps manage
the performance of a large cluster by separating the load of producers sending data
into Kafka from the sometimes much larger load of consumers reading the data. 

8.7 Cloud- and container-based storage options
Although we talked about Kafka log directories in chapter 6, we did not address the
types of instances to use in environments that provide more short-lived storage. For
reference, Confluent shared a study on deployments with AWS considerations in
which they looked at the storage type trade-offs [13].

 Another option is to look at Confluent Cloud (https://www.confluent.io/
confluent-cloud/). This option allows you to worry less about the underlying storage
used across cloud providers and how it is managed. As always, remember that Kafka
itself keeps evolving and reacting to the needs that users run into as daily challenges.
KIP-392 shows an item that was accepted at the time of this writing, which seeks to
help address the issues of a Kafka cluster spanning data centers. The KIP is titled
“Allow consumers to fetch from the closest replica” [14]. Be sure to check out recent
KIPs (Kafka Improvement Proposals) from time to time to see how Kafka evolves in
exciting ways.

https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://www.confluent.io/confluent-cloud/
https://www.confluent.io/confluent-cloud/


156 CHAPTER 8 Kafka storage
8.7.1 Kubernetes clusters

Dealing with a containerized environment, we might run into challenges similar to
what we would in the cloud. If we hit a poorly configured memory limit on our broker,
we might find ourselves on an entirely new node without our data unless the data per-
sists correctly. If we are not in a sandbox environment in which we can lose the data,
persistent volume claims may be needed by our brokers to ensure that our data sur-
vives any restarts, failures, or moves. Although the broker instance container might
change, we should be able to claim the previous persistent volume.

 Kafka applications will likely use the StatefulSet API in order to maintain the iden-
tity of each broker across failures or pod moves. This static identity also helps us claim
the same persistent volumes that were used before our pod went down. There are
already Helm® charts (https://github.com/confluentinc/cp-helm-charts) to help us
get started with a test setup as we explore Kubernetes [15]. Confluent for Kubernetes
helps as well with our Kubernetes management [16].

 The scope of Kubernetes is relatively large to cover in our discussion, but the key
concerns are present regardless of our environment. Our brokers have an identity in
the cluster and are tied to the data that each is related to. To keep the cluster healthy,
those brokers need the ability to identify their broker-managed logs across failures,
restarts, or upgrades. 

Summary
 Data retention should be driven by business needs. Decisions to weigh include

the cost of storage and the growth rate of our data over time.
 Size and time are the basic parameters for defining how long data is retained

on disk.
 Long-term storage of data outside of Kafka is an option for data that might

need to be retained for long periods. Data can be reintroduced as needed by
producing the data into a cluster at a later time.

 The ability of Kafka to handle data quickly and also replay data can enable
architectures such as the lambda and kappa architectures.

 Cloud and container workloads often involve short-lived broker instances. Data
that needs to be persisted requires a plan for making sure newly created or
recovered instances can utilize that data across all instances.

References
1 “Kafka Broker Configurations.” Confluent documentation (n.d.). https://

docs.confluent.io/platform/current/installation/configuration/broker-con-
figs.html#brokerconfigs_log.retention.hours (accessed December 14, 2020).

2 B. Svingen. “Publishing with Apache Kafka at The New York Times.” Confluent
blog (September 6, 2017). https://www.confluent.io/blog/publishing-apache-
kafka-new-york-times/ (accessed September 25, 2018).

https://github.com/confluentinc/cp-helm-charts
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_log.retention.hours 
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_log.retention.hours 
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_log.retention.hours 
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/
https://www.confluent.io/blog/publishing-apache-kafka-new-york-times/


157References
3 “Kafka Broker Configurations.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/installation/configuration/broker-configs
.html (accessed December 14, 2020).

4 “Kafka Broker Configurations: log.retention.ms.” Confluent documentation
(n.d.). https://docs.confluent.io/platform/current/installation/configura-
tion/broker-configs.html#brokerconfigs_log.retention.ms (accessed December
14, 2020).

5 “Flume 1.9.0 User Guide: Kafka Sink.” Apache Software Foundation (n.d.).
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#kafka
-sink (accessed October 10, 2019).

6 “Connectors.” Debezium documentation (n.d.). https://debezium.io/docu-
mentation/reference/connectors/ (accessed July 20, 2021).

7 “Pinterest Secor.” Pinterest. GitHub. https://github.com/pinterest/secor/
blob/master/README.md (accessed June 1, 2020).

8 “Tiered Storage.” Confluent documentation (n.d.). https://docs.confluent.io/
platform/current/kafka/tiered-storage.html (accessed June 2, 2021).

9 N. Marz and J. Warren. Big Data: Principles and best practices of scalable real-time
data systems. Shelter Island, NY, USA: Manning, 2015.

10 J. Kreps. “Questioning the Lambda Architecture.” O’Reilly Radar (July 2, 2014).
https://www.oreilly.com/radar/questioning-the-lambda-architecture/ (accessed
October 11, 2019).

11 A. Wang. “Multi-Tenant, Multi-Cluster and Hierarchical Kafka Messaging Ser-
vice.” Presented at Confluent’s Kafka Summit, San Francisco, USA, 2017 Pre-
sentation [online]. https://www.confluent.io/kafka-summit-sf17/multitenant
-multicluster-and-hieracrchical-kafka-messaging-service/.

12 M. Fowler. “CQRS” (July 14, 2011). https://martinfowler.com/bliki/CQRS.html
(accessed December 11, 2017).

13 A. Loddengaard. “Design and Deployment Considerations for Deploying
Apache Kafka on AWS.” Confluent blog (July 28, 2016). https://www.conflu-
ent.io/blog/design-and-deployment-considerations-for-deploying-apache-kafka
-on-aws/ (accessed June 11, 2021).

14 KIP-392: “Allow consumers to fetch from closest replica.” Wiki for Apache
Kafka. Apache Software Foundation (November 05, 2019). https://
cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers
+to+fetch+from+closest+replica (accessed December 10, 2019).

15 cp-helm-charts. Confluent Inc. GitHub (n.d.). https://github.com/conflu
entinc/cp-helm-charts (accessed June 10, 2020).

16 “Confluent for Kubernetes.” Confluent documentation (n.d.). https://
docs.confluent.io/operator/2.0.2/overview.html (accessed August 16, 2021).

https://docs.confluent.io/operator/2.0.2/overview.html
https://docs.confluent.io/operator/2.0.2/overview.html
https://github.com/confluentinc/cp-helm-charts
https://github.com/confluentinc/cp-helm-charts
https://github.com/confluentinc/cp-helm-charts
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fetch+from+closest+replica
https://www.confluent.io/blog/design-and-deployment-considerations-for-deploying-apache-kafka-on-aws/
https://www.confluent.io/blog/design-and-deployment-considerations-for-deploying-apache-kafka-on-aws/
https://www.confluent.io/blog/design-and-deployment-considerations-for-deploying-apache-kafka-on-aws/
https://martinfowler.com/bliki/CQRS.html
https://www.confluent.io/kafka-summit-sf17/multitenant-multicluster-and-hieracrchical-kafka-messaging-service/
https://www.confluent.io/kafka-summit-sf17/multitenant-multicluster-and-hieracrchical-kafka-messaging-service/
https://www.confluent.io/kafka-summit-sf17/multitenant-multicluster-and-hieracrchical-kafka-messaging-service/
https://www.oreilly.com/radar/questioning-the-lambda-architecture/
https://docs.confluent.io/platform/current/kafka/tiered-storage.html
https://docs.confluent.io/platform/current/kafka/tiered-storage.html
https://github.com/pinterest/secor/blob/master/README.md
https://github.com/pinterest/secor/blob/master/README.md
https://debezium.io/documentation/reference/connectors/
https://debezium.io/documentation/reference/connectors/
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#kafka-sink
https://flume.apache.org/releases/content/1.9.0/FlumeUserGuide.html#kafka-sink
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_log.retention.ms
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html#brokerconfigs_log.retention.ms
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html
https://docs.confluent.io/platform/current/installation/configuration/broker-configs.html


Management:
Tools and logging
We have spent some time discussing brokers in depth in chapter 6 and client con-
cerns throughout the earlier chapters. We saw some development practices that
can be applied in most situations, but there will always be environments where spe-
cial handling is required. The best way to keep a cluster moving along is to under-
stand the data that is flowing through it and to monitor that activity at run time.
Although operating Apache Kafka may not be the same as writing and running Java
applications per se, it still requires monitoring log files and being aware of what is
happening with our workloads.

This chapters covers
 Scripting administration client options

 Examining REST APIs, tools, and utilities

 Managing Kafka and ZooKeeper logs

 Finding JMX metrics

 Advertised listeners and clients

 Tracing using interceptors with headers
158



159Administration clients
9.1 Administration clients
So far, we have performed most of our cluster management activities with the com-
mand line tools that come with Kafka. And, in general, we need to be comfortable
with a shell environment to set up and install Kafka. However, there are some helpful
options we can use to branch out from these provided scripts.

9.1.1 Administration in code with AdminClient

One useful tool to look at is the AdminClient class [1]. Although the Kafka shell
scripts are great to have at hand for quick access or one-off tasks, there are situations
such as automation where the Java AdminClient really shines. The AdminClient is in
the same kafka-clients.jar that we used for the producer and consumer clients. It can
be pulled into a Maven project (see the pom.xml from chapter 2,) or it can be found
in the share/ or libs/ directory of the Kafka installation.

 Let’s look at how we can execute a command we have used before to create a new
topic but this time with AdminClient. The following listing shows how we ran this
from the command line in chapter 2.

bin/kafka-topics.sh
--create --topic kinaction_selfserviceTopic \
--bootstrap-server localhost:9094 \
--partitions 2 \
--replication-factor 2

Though this command line example works fine, we don’t want it to be called every
time someone needs a new topic. Instead, we’ll create a self-service portal that other
developers can use to create new topics on our development cluster. The form for our
application takes a topic name and the numbers for partitions and replicas. Figure 9.1
shows an example of how this application might be set up for end users. Once the
user submits the web form, the AdminClient Java code runs, creating a new topic.

 In this example, we could add logic to make sure that naming conventions for new
topics fit a certain pattern (if we had such a business requirement). This is a way to
maintain more control over our cluster rather than users working from the command
line tools. To start, we need to create a NewTopic class. The constructor for this class
takes three arguments:

 Topic name
 The number of partitions
 The number of replicas

Listing 9.1 Creating the kinaction_selfserviceTopic topic from the command line

Uses the kafka-topic.sh 
script to create a new topic

Includes our custom integers for the number 
of partitions and replicas for our topic



160 CHAPTER 9 Management: Tools and logging

ject 
wo 
plicas
Figure 9.1 Self-service Kafka web application

Once we have this information, we can use the AdminClient object to complete the
work. AdminClient takes a Properties object that contains the same properties we’ve
used with other clients, like bootstrap.servers and client.id. Note that the class
AdminClientConfig (http://mng.bz/8065) holds constants for configuration values
such as BOOTSTRAP_SERVERS_CONFIG as a helper for those names. Then we’ll call the
method createTopics on the client. Notice that the result, topicResult, is a Future
object. The following listing shows how to use the AdminClient class to create a new
topic called kinaction_selfserviceTopic.

NewTopic requestedTopic =
new NewTopic("kinaction_selfserviceTopic", 2,(short) 2);

AdminClient client =
AdminClient.create(kaProperties);

CreateTopicsResult topicResult =
client.createTopics(

List.of(requestedTopic));
topicResult.values().

    get("kinaction_selfserviceTopic").get();

At this time, there is no synchronous API, but we can make a synchronous call by
using the get() function. In our case, that would mean starting with the topicResult
variable and evaluating the Future object that was returned for the specific topic.

Listing 9.2 Using AdminClient to create a topic

End user submits 
a web form

Application server

Create topics

Custom application 
uses AdminClient 
and NewTopic 

Self service

New topic request:

Browser

Name:

Partitions:

Replicas:

Submit

New topic 
kinaction_selfserviceTopic created

Kafka cluster

NewTopic

Custom
application

Creates a NewTopic ob
with the topic name, t
partitions, and two re

Creates an AdminClient, the 
client interface to the cluster

Invokes createTopics on the 
client to return a Future object

Shows how to get a specific 
Future for the topic 
kinaction_selfserviceTopic

http://mng.bz/8065


161Administration clients
Because this API is still evolving, the following list of client administrative tasks that
can be accomplished with AdminClient highlights only a few common functions that
are available at the time of writing [1]:

 Change configurations
 Create/delete/list access control lists (ACLs)
 Create partitions
 Create/delete/list topics
 Describe/list consumer groups
 Describe clusters

AdminClient is a great tool for building a user-facing application for those who
wouldn’t normally need or want to use the Kafka shell scripts. It also provides a way to
control and monitor what is being done on the cluster. 

9.1.2 kcat

kcat (https://github.com/edenhill/kcat) is a handy tool to have on your workstation,
especially when connecting remotely to your clusters. At this time, it focuses on being
a producer and consumer client that can also give you metadata about your cluster. If
you ever want to quickly work with a topic and don’t have the entire Kafka toolset
downloaded to your current machine, this executable helps you avoid the need to
have those shell or bat scripts.

 The following listing shows how to quickly get data into a topic using kcat [2].
Compare this with the kafka-console-producer script that we used in chapter 2.

kcat -P -b localhost:9094 \
-t kinaction_selfserviceTopic

// vs. the shell script we used before
bin/kafka-console-producer.sh --bootstrap-server localhost:9094 \

--topic kinaction_selfserviceTopic

In listing 9.3, notice that the -P argument is passed to kcat to enable producer mode,
which helps us send messages to the cluster. We use the -b flag to pass in our broker
list and -t to pass the name of our target topic. Because we may also want to test the
consumption of these messages, let’s look at how we can use kcat as a consumer (list-
ing 9.4). As before, listing 9.4 shows the comparison between running the kcat com-
mand versus the kafka-console-consumer command. Notice also that although the
-C flag enables consumer mode, the broker information is sent with the same parame-
ter as in the producer mode [2].

Listing 9.3 Using a kcat producer

Sends a broker and topic 
name from our cluster to 
write messages to that topic

A reminder of the same 
functionality as the console 
producer command

https://github.com/edenhill/kcat


162 CHAPTER 9 Management: Tools and logging
 

kcat -C -b localhost:9094 \
-t kinaction_selfserviceTopic

// vs. the shell script we used before
bin/kafka-console-consumer.sh --bootstrap-server localhost:9094 \

--topic kinaction_selfserviceTopic

Having a quick way to test our topics and gather metadata on our cluster makes this
small utility nice to have in our toolbox. But by this point, you might be wondering if
there are any other tools that we can use that are not command line driven. And the
good news is yes, there are! For those that like REST, there is Confluent’s REST Proxy. 

9.1.3 Confluent REST Proxy API

Sometimes the users of our cluster might prefer to use APIs that are RESTful because
it is a common way to work between applications, either due to preference or ease of
use. Also, some companies with strict firewall rules about ports might express caution
with opening more ports like those we’ve used so far for broker connections (for exam-
ple, 9094) [3]. One good option is to use the Confluent REST Proxy API (figure 9.2).
This proxy is a separate application that would likely be hosted on its own server for pro-
duction usage, and its functionality is similar to the kcat utility we just discussed.

Figure 9.2 The Confluent REST Proxy looks up topics.

At the time of this writing, the administration functions are limited to querying the
state of your cluster. The Confluent documentation lists administration options as
future supported features, however [4]. To use the REST proxy and to test drive it,
let’s start it up as the following listing shows. For this to work, we need to already have
ZooKeeper and Kafka instances running before we start the proxy.

Listing 9.4 Using a kcat consumer

Sends a broker and topic 
name from our cluster to read 
messages from that topic

A reminder of the same 
functionality as the console 
consumer command

Kafka REST
proxy server

Kafka cluster

HTTP request

JSON response
to client

Topic list returned: 
kinaction_alerttrend

Kafka protocol

End user
REST call



163Running Kafka as a systemd service
 

bin/kafka-rest-start.sh \
etc/kafka-rest/kafka-rest.properties

Because we’re already familiar with listing topics, let’s look at how that can be done
with the REST Proxy using a command like curl to hit an HTTP endpoint as in the
following listing [5]. Because this is a GET request, we can also copy http:/./localhost
:8082/topics into a browser and see the result.

curl -X GET \
-H "Accept: application/vnd.kafka.v2+json" \
localhost:8082/topics

// Output:
["__confluent.support.metrics","_confluent-metrics",

➥ "_schemas","kinaction_alert"]

Using a tool like curl allows us to control the header we send with the request. Accept
in listing 9.6 allows us to tell our Kafka cluster what format and version we are using, spec-
ifying v2 as the API version and the JSON format that pertains to our metadata requests.

NOTE Because this is an evolving API, keep up with the “Confluent REST
Proxy API Reference” at http://mng.bz/q5Nw as newer versions come out
with more features. 

9.2 Running Kafka as a systemd service
One decision we need to make concerning running Kafka is how to perform broker
starts and restarts. Those who are used to managing servers as Linux-based services
with a tool like Puppet (https://puppet.com/) may be familiar with installing service
unit files and can likely use that knowledge to create running instances with systemd.
For those not familiar with systemd: it initializes and maintains components through-
out the system [6]. One common way to define ZooKeeper and Kafka are as unit files
used by systemd.

 Listing 9.7 shows part of an example service unit file that starts a ZooKeeper ser-
vice when the server starts. It also restarts ZooKeeper after an abnormal exit. In prac-
tice, this means something like a kill -9 command against the process ID (PID) that
triggers a restart of the process. If you installed the Confluent tar during your setup
(refer to appendix A if needed), there is an example service file located in the lib/
systemd/system/confluent-zookeeper.service path. The “Using Confluent Platform
systemd Service Unit Files” documentation at (http://mng.bz/7lG9) provides details
on using these files. The unit file in the listing should look familiar to how we have
started ZooKeeper so far in our examples.

Listing 9.5 Starting up a REST Proxy

Listing 9.6 A cURL call to the REST Proxy for a topic list

Run this command from the installed 
Kafka folder to start the REST endpoint.

Specifies a format 
and versionOur target, the endpoint /topics, lists the 

topics we’ve created and Kafka’s internal topics.

Sample output of 
the curl command

http://mng.bz/q5Nw
https://puppet.com/
http://mng.bz/7lG9


164 CHAPTER 9 Management: Tools and logging
 

...
[Service]
...
ExecStart=/opt/kafkainaction/bin/zookeeper-server-start.sh 

➥ /opt/kafkainaction/config/zookeeper.properties

ExecStop=
/opt/kafkainaction/bin/zookeeper-server-stop.sh

Restart=on-abnormal
...

There is also an example file for the Kafka service in the Confluent tar in the lib/
systemd/system/confluent-kafka.service path. The next listing shows that because our
unit files are defined, we can now manage the services with systemctl commands [6].

sudo systemctl start zookeeper
sudo systemctl start kafka

If you are using the example files that came when downloading the Confluent bundle,
once you unzip the folder, check inside the root folder, ../lib/systemd/system, to see
examples of service files that you can use for other services. Some of these include
Connect, the Schema Registry, and the REST API, to name a few. 

9.3 Logging
Besides Kafka’s event logs that hold our event data, other items that we need to
remember are the application logs, which Kafka produces as part of being a running
program. The logs addressed in this section are not the events and messages from
Kafka servers but the output of the operation of Kafka itself. And we cannot forget
about ZooKeeper either!

9.3.1 Kafka application logs

Although we might be used to one log file for an entire application, Kafka has multi-
ple log files that we might be interested in or need to access for troubleshooting. Due
to multiple files, we might have to look at modifying different Log4j appenders to
maintain the necessary views of our operations.

Listing 9.7 ZooKeeper unit file

Listing 9.8 Kafka startup with systemctl

Which Kafka appender?
The kafkaAppender is not the same thing as the KafkaAppender itself (http://mng
.bz/5ZpB). To use KafkaLog4jAppender as our appender, we would need to update
the following line as well as include dependencies for the clients and appender JARs

Captures the start command to run
ZooKeeper (similar to what we

manually ran to start ZooKeeper)

Shuts down the 
ZooKeeper instanceRuns ExecStart if an error 

condition causes a failure

Starts the 
ZooKeeper serviceStarts the 

Kafka service

http://mng.bz/5ZpB
http://mng.bz/5ZpB
http://mng.bz/5ZpB


165Logging

e 

p, 
e 
By default, the server logs are continually added to the directory as new logs are pro-
duced. No logs are removed, however, and this might be the preferred behavior if
these files are needed for auditing or troubleshooting. If we want to control the num-
ber and size, the easiest way is to update the file log4j.properties before we start the
broker server. The following listing sets two important properties for kafkaAppender:
MaxFileSize and MaxBackupIndex [7].

log4j.appender.kafkaAppender.MaxFileSize=500KB
log4j.appender.kafkaAppender.MaxBackupIndex=10

Note that modifying kafkaAppender changes only how the server.log file is treated. If
we want to apply different file sizes and backup file numbers for various Kafka-related
files, we can use the appender to log a filename table to determine which appenders
to update. In table 9.1, the appender name in the left column is the logging key,
which affects how the log files on the right are stored on the brokers [8].

of the same version instead of the value org.apache.log4j.ConsoleAppender
class:

log4j.appender.kafkaAppender=
org.apache.kafka.log4jappender.KafkaLog4jAppender

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-log4j-appender</artifactId>
<version>2.7.1</version>

</dependency>

This is an interesting take on putting our log files directly into Kafka. Some solutions
parse the log files themselves and then send them to Kafka.

Listing 9.9 Kafka server log retention

Table 9.1 Appender to log pattern

Appender name Log filename

kafkaAppender server.log

stateChangeAppender state-change.log

requestAppender kafka-request.log

cleanerAppender log-cleaner.log

controllerAppender controller.log

authorizerAppender kafka-authorizer.log

Defines the file size to determin
when to create a new log file

Sets the number of older files to kee
which helps if we want more than th
current log for troubleshooting



166 CHAPTER 9 Management: Tools and logging
Changes to the log4j.properties file require the broker to be restarted, so it is best to
determine our logging requirements before starting our brokers for the first time, if
possible. We could also change the value with JMX, but the value would not be per-
sistent across broker restarts.

 Although we focused on Kafka logs in this section, we need to address our Zoo-
Keeper logs as well. Because ZooKeeper runs and logs data just like our brokers, we
will need to be mindful of logging output for those servers as well. 

9.3.2 ZooKeeper logs

Depending on how we installed and chose to manage ZooKeeper, we may also need to
modify its logging configuration. The default configuration for ZooKeeper does not
remove log files, but our Kafka install may have added that feature for us. If you fol-
lowed the setup of our local ZooKeeper node from appendix A, these values can be
set in the file config/zookeeper.properties. Either way, it is a good idea to make sure
that the retention of the ZooKeeper application logs are controlled by the following
configuration values and are what we need for troubleshooting:

 autopurge.purgeInterval—The interval, in hours, in which a purge is trig-
gered. This must be set above 0 for cleanup to occur [9].

 autopurge.snapRetainCount—This contains the number of recent snapshots
and the related transaction logs in the dataDir and dataLogDir locations [9].
Once we exceed the number, the older log files are deleted. Depending on our
needs, we might want to keep more or fewer. For example, if the logs are only
used for troubleshooting, we would need lower retention than if they are
needed for audit scenarios.

 snapCount—ZooKeeper logs its transactions to a transaction log. Setting this
value determines the amount of transactions that are logged to one file. If there
are issues with total file sizes, we might need to set this number less than the
default (100,000) [10].

There are other solutions to log rotation and cleanup that we might consider beyond
Log4j. For example, logrotate is a helpful tool that enables options such as log rota-
tion and compression of logs files.

 Log file maintenance is an important administration duty. However, there are
other tasks that we need to consider as we start to roll out a new Kafka cluster. One of
these tasks is making sure that clients can connect to our brokers. 

9.4 Firewalls
Depending on our network configurations, we might need to serve clients that exist
inside the network or those out of the network where the Kafka brokers are set up [3].
Kafka brokers can listen on multiple ports. For example, the default for a plain text
port is 9092. An SSL port at 9093 can also be set up on that same host. Both of these
ports might need to be open, depending on how clients connect to our brokers.



167Metrics
 In addition, ZooKeeper includes port 2181 for client connections. Port 2888 is
used by follower ZooKeeper nodes to connect to the leader ZooKeeper node, and
port 3888 is also used between ZooKeeper nodes to communicate [11]. If connecting
remotely for JMX or other Kafka services (such as the REST Proxy), remember to
account for any exposure of that port to other environments or users. In general, if we
use any command line tools that require a port on the end of the hostname for Zoo-
Keeper or Kafka servers, we need to make sure that these ports can be reached, espe-
cially if a firewall is in place.

9.4.1 Advertised listeners

One error when connecting that often appears like a firewall issue is using the lis-
teners and advertised.listeners properties. Clients need to use the correct host-
name, if given, to connect, so it will need to be a reachable hostname, however the
rules are set up. For example, let’s look at listeners versus advertised.listeners
where those values might not be the same.

 Let’s imagine we are connecting to a broker and can get a connection when the cli-
ent starts, but not when it attempts to consume messages. How is this behavior that
appears inconsistent possible? Remember that when a client starts, it connects to any
broker to get metadata about which broker to connect to. The initial connection from
the client uses the information that is located in the Kafka listeners configuration.
What it gives back to the client to connect to next is the data in Kafka’s advertised
.listeners [12]. This makes it likely that the client will connect to a different host to
do its work.

 Figure 9.3 shows how the client uses one hostname for the first connection
attempt, then uses a different hostname on its second connection. This second host-
name was given to the client from its initial call as the new location to connect to.

 An important setting to look at is inter.broker.listener.name, which determines
how the brokers connect across the cluster to each other [12]. If the brokers cannot
reach each other, replicas fail and the cluster will not be in a good state, to say the least!
For an excellent explanation of advertised listeners, check out the article by Robin Mof-
fatt, “Kafka Listeners – Explained,” if you want to dig into more details [12]. Figure 9.3
was inspired by Robin Moffatt's diagrams on that site as well [12]. 

9.5 Metrics
In chapter 6, we looked at an example of setting up a way to see some JMX metrics
from our application. The ability to see those metrics is the first step. Let’s take a peek
at finding some that are likely to highlight areas of concern.

9.5.1 JMX console

It is possible to use a GUI to explore the exposed metrics and get an idea of what is avail-
able. VisualVM (https://visualvm.github.io/) is one example. Looking at the available
JMX metrics can help us discover points of interest in which we might choose to add

https://visualvm.github.io/


168 CHAPTER 9 Management: Tools and logging
alerts. When installing VisualVM, be sure to go through the additional step of installing
the MBeans Browser. 

 As noted in chapter 6, we must have JMX_PORT defined for each broker we want to
connect to. This can be done with the environment variable in the terminal like so:

Network 1

Scenario 1: no advertised listeners. Producer client 
starts and requests metadata from bootstrap server.

Network 2

Client

????

Successful connection
as URL resolves for 
both networks

Returns internal 
listener name

Kafka cluster

Broker
0

Broker
X

Connection fails as it can’t
resolve network 2 address. 

Network 1

Scenario 2: advertised listeners with URL resolved by
both networks. Producer client requests metadata.

Network 2

Client

Successful
connection

Returns public advertised listener 
resolvable by both networks.

Kafka cluster

Broker
0

Broker
X

Successful
connection

X

Bootstrap
server

Bootstrap
server

Figure 9.3 Kafka’s advertised listeners compared to listeners



169Metrics

E
th
export JMX_PORT=49999 [13]. Make sure that you correctly scope it to be separate for
each broker as well as each ZooKeeper node.

 KAFKA_JMX_OPTS is also another option to look at for connecting remotely to Kafka
brokers. Make sure to note the correct port and hostname. Listing 9.10 shows an
example that sets KAFKA_JMX_OPTS with various arguments [13]. It uses port 49999
and the localhost as the hostname. In the listing, the other parameters allow us to con-
nect without SSL and to not have to authenticate.

KAFKA_JMX_OPTS="-Djava.rmi.server.hostname=127.0.0.1
-Dcom.sun.management.jmxremote.local.only=false
-Dcom.sun.management.jmxremote.rmi.port=49999
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false"

Let’s take a look at a key broker metric and how to locate the value we need with the
help of figure 9.4, which shows how to use a small MBeans representation to see the
value of UnderReplicatedPartitions. Using a name such as

kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions

we can drill down what looks like a folder structure starting with kafka.server.

Listing 9.10 Kafka JMX options

Sets the hostname for 
the localhost RMI server

Allows remote connections
xposes
is port

for JMX
Turns off authentication 
and SSL checks

MBeans

kafka.server

We can drill down to find out 
if topic kinaction_alert 
has underreplicated 
partitions, for example.

ReplicaManager

UnderReplicatedPartitions

Type

Value

0 0

kafka.network

RequestChannel

RequestQueueSize

Type

Value Figure 9.4
UnderReplicated-
Partitions and 
RequestQueueSize 
locations



170 CHAPTER 9 Management: Tools and logging
Continuing on, we can then find the type ReplicaManager with the name attribute
UnderReplicatedPartitions. RequestQueueSize is also shown in figure 9.4 as another
example of finding a value [14]. Now that you know how to browse to specific values,
let’s go into detail about some of the most important things to look at on our servers.

 If you use Confluent Control Center or Confluent Cloud, most of these metrics
are used in the built-in monitoring. The Confluent Platform suggests setting alerts on
the following top three values to start with: UnderMinIsrPartitionCount, Under-
ReplicatedPartitions, UnderMinIsr [14]. 

 Let’s dig into a different monitoring option in the next section by looking at how
we might leverage interceptors. 

9.6 Tracing option
The built-in metrics that we looked at so far can give us a great snapshot of current
health, but what if we want to trace a single message through the system? What can we
use to see a produced message and its consumed status? Let’s talk about a simple but
straightforward model that might work for our requirements.

 Let’s say that we have a producer in which each event has a unique ID. Because
each message is important, we do not want to miss any of these events. With one cli-
ent, the business logic runs as normal and consumes the messages from the topic. In
this case, it makes sense to log the ID of the event that was processed to a database or
flat file. A separate consumer, let’s call it an auditing consumer in this instance,
fetches the data from the same topic and makes sure that there are no IDs missing
from the processed entries of the first application. Though this process can work well,
it does require adding logic to our application, and so it might not be the best choice.

 Figure 9.5 shows a different approach using Kafka interceptors. In practice, the
interceptor that we define is a way to add logic to the producer, consumer, or both by
hooking into the normal flow of our clients, intercepting the record, and adding our
custom data before it moves along its normal path. Our changes to the clients are con-
figuration-driven and help keep our specific logic out of the clients for the most part.

 Let’s revisit the concept of interceptors that we touched on briefly in chapter 4,
when introducing what producer interceptors could do for our messages. By adding
an interceptor on both the producer and consumer clients that we are using, we can

Send

Producer client

Sends initial
message

OnSend

kinactionTraceId 
added at this step Kafka

OnConsume

kinactionTraceId 
read at this step

Poll

Consumer

Adds header trace ID
to each record and 
then logs to standard 
out (stdout)

Called before the consumer
poll method. You look for
and log your trace ID header 
to standard out (stdout).

Consumes your
record, header
and all!

Figure 9.5 Interceptors for tracing



171Tracing option

 

separate the monitoring logic from the application logic. The crosscutting concern of
monitoring can, hopefully, be more encapsulated by this approach.

9.6.1 Producer logic

It is also interesting to note that we can have more than one interceptor, so we don’t
have to include all of our logic in one class; we can add and remove others later. The
order in which we list the classes is important as that is the order in which the logic
runs. The first interceptor gets the record from the producer client. If the interceptor
modifies the record, other interceptors in the chain after the change would not see
the same exact record as the first interceptor received [15].

 Let’s start with looking at the Java interface ProducerInterceptor. We’ll add this
new interceptor to our Alert producer that we used in chapter 4. We will create a new
class called AlertProducerMetricsInterceptor to add logic around alerts being pro-
duced, as in listing 9.11. Implementing the interface, ProducerInterceptor, allows us
to hook into the producer’s interceptor lifecycle. The logic in the onSend method is
called by the send() method from the normal producer client we have used so far
[15]. In the listing, we’ll also add a header called kinactionTraceId. Using a unique
ID helps to confirm on the consumption side that we are seeing the same message at
the end of its life cycle that was produced in the beginning of this step.

public class AlertProducerMetricsInterceptor
implements ProducerInterceptor<Alert, String> {

final static Logger log =
LoggerFactory.getLogger(AlertProducerMetricsInterceptor.class);

public ProducerRecord<Alert, String>
onSend(ProducerRecord<Alert, String> record) {
Headers headers = record.headers();
String kinactionTraceId = UUID.randomUUID().toString();
headers.add("kinactionTraceId",

kinactionTraceId.getBytes());
log.info("kinaction_info Created kinactionTraceId: {}", kinactionTraceId);
return record;

}

public void onAcknowledgement(
RecordMetadata metadata, Exception exception)

{
if (exception != null) {

log.info("kinaction_error " + exception.getMessage());
} else {

log.info("kinaction_info topic = {}, offset = {}",
metadata.topic(), metadata.offset());

}
}

// rest of the code omitted
}

Listing 9.11 AlertProducerMetricsInterceptor example

Implements Producer-
Interceptor to hook into 
the interceptor lifecycle

The producer client send 
method calls onSend.

Adds a custom header 
to the record to carry the
generated ID across Kafka

Returns the modified record 
that includes our new header

Calls onAcknowledgement 
when a record is acknowledged 
or an error occurs



172 CHAPTER 9 Management: Tools and logging
We also have to modify our existing AlertProducer class to register the new intercep-
tor. We need to add the property interceptor.classes to the producer configura-
tion with a value of the full package name of our new class: AlertProducer-
MetricsInterceptor. Although we used the property name for clarity, remember that
we can use the constant provided by the ProducerConfig class. In this case, we would
use ProducerConfig.INTERCEPTOR_CLASSES_CONFIG [15]. The following listing shows
this required modification.

Properties kaProperties = new Properties();
...
kaProperties.put("interceptor.classes",

AlertProducerMetricsInterceptor.class.getName());

Producer<Alert, String> producer =
new KafkaProducer<Alert, String>(kaProperties);

Overall, in this example, we have one interceptor that logs a unique ID for each pro-
duced message. We add this ID as a header to the record so that when a consumer
pulls this message, a corresponding consumer interceptor logs the ID that it has pro-
cessed. The goal is to provide our own end-to-end monitoring that is outside of Kafka.
By parsing the application logs, we will see messages like the following listing shows,
which came from our AlertProducerMetricsInterceptor class.

kinaction_info Created kinactionTraceId:
603a8922-9fb5-442a-a1fa-403f2a6a875d

kinaction_info topic = kinaction_alert, offset = 1

9.6.2 Consumer logic

Now that we have completed setting up an interceptor for sending a message, we need
to see how to implement similar logic on the consumer end of our system. We want to
validate that we can see the same header value that we added with the producer inter-
ceptor on the consumption end. The following listing shows an implementation of
ConsumerInterceptor to help retrieve this header [16].

public class AlertConsumerMetricsInterceptor
implements ConsumerInterceptor<Alert, String> {

public ConsumerRecords<Alert, String>
onConsume(ConsumerRecords<Alert, String> records) {

if (records.isEmpty()) {
return records;

} else {

Listing 9.12 AlertProducer with interceptor configuration

Listing 9.13 The alert interceptor output

Listing 9.14 AlertConsumerMetricsInterceptor example

Sets our interceptors 
(the value can be 1 or a 
comma-separated list).

The producer interceptor 
adds our logged value. 

Implements Consumer-
Interceptor so Kafka 
recognizes our interceptor



173Tracing option
for (ConsumerRecord<Alert, String> record : records) {
Headers headers = record.headers();
for (Header header : headers) {

if ("kinactionTraceId".equals(
header.key())) {

log.info("KinactionTraceId is: " + new String(header.value()));
}

}
}

}
return records;

}
}

In a fashion similar to our producer, in this listing, we used a consumer-specific inter-
face, ConsumerInterceptor, to make our new interceptor. We looped through all the
records and their headers to find any that had our custom kinactionTraceId as the
key and sent them to standard output. We also modified our existing AlertConsumer
class to register our new interceptor. The property name interceptor.classes needs
to be added to the consumer configuration with a value of the full package name of
our new class: AlertConsumerMetricsInterceptor. The following listing shows this
required step.

public class AlertConsumer {

Properties kaProperties = new Properties();
...
kaProperties.put("group.id",

"kinaction_alertinterceptor");
kaProperties.put("interceptor.classes",

AlertConsumerMetricsInterceptor.class.getName());

...
}

We can include a comma-separated list if we have more than one class we need to use
[16]. Although we used the property name for clarity, remember that we can use the
constant provided by the ConsumerConfig class. In this case, we would use Consumer-
Config.INTERCEPTOR_CLASSES_CONFIG [16]. Although we can see the usage of an
intercep-tor on both ends of our flow, there is also another way to add functionality to
client code—overriding clients. 

9.6.3 Overriding clients

If we control the source code for clients that other developers will use, we can subclass
an existing client or create our own that implements the Kafka producer/consumer
interfaces. At the time of writing, the Brave project (https://github.com/openzipkin/
brave) has an example of one such client that works with tracing data.

Listing 9.15 AlertConsumer with interceptor configuration

Loops through each 
record’s headers

Logs the custom
header to

standard output

Returns the records to continue 
with callers from our interceptor

Uses a new group.id to 
ensure starting with our 
current offsets (and not one 
from a previous group.id)

Required property name 
to add our custom 
interceptor and class value

https://github.com/openzipkin/brave
https://github.com/openzipkin/brave


174 CHAPTER 9 Management: Tools and logging
 For those not familiar with Brave, it is a library meant to help add instrumentation
for distributed tracing. It has the ability to send this data to something, for example,
like a Zipkin server (https://zipkin.io/), which can handle the collection and search
of this data. If interested, please take a peek at the TracingConsumer class (http://
mng.bz/6mAo) for a real-world example of adding functionality to clients with Kafka.

 We can decorate both the producer and consumer clients to enable tracing (or any
custom logic), but we’ll focus on the consumer client in the following stub example.
The code in listing 9.16 is a section of pseudo code to add custom logic to the normal
Kafka consumer flow. Developers wanting to consume messages with the custom logic
can use an instance of KInActionCustomConsumer, which includes a reference to a reg-
ular consumer client named normalKafkaConsumer (in the custom consumer client
itself) in this listing. The custom logic is added to provide needed behavior while still
interacting with the traditional client. Your developers work with your consumer,
which handles the normal client behind the scenes.

final class KInActionCustomConsumer<K, V> implements Consumer<K, V> {
...

final Consumer<K, V> normalKafkaConsumer;

@Override
public ConsumerRecords<K, V> poll(

final Duration timeout)
{

//Custom logic here
// Normal Kafka consumer used as normal
return normalKafkaConsumer.poll(timeout);

}
...
}

This listing only shows a comment indicating where your logic would go, but your users
are abstracted from using the normal client methods if desired while still running any
custom code such as checking for duplicate data submissions or logging tracing data
from headers. The added behavior is not getting in the way of the normal client. 

9.7 General monitoring tools
Because Kafka is a Scala™ application, it has the ability to use JMX and the Yammer
Metrics library [17]. This library is used to provide JMX metrics on various parts of the
application, and we have already seen some options we can evaluate. But as Kafka
usage has expanded, there are some tools out there that leverage not only JMX met-
rics, but also administration-related commands and various other techniques to pro-
vide easy-to-manage clusters. Of course, the following section does not have a
complete list of options, and the features of those listed might change over time. Nev-
ertheless, let’s take a look at a few options that you might want to explore.

Listing 9.16 Custom consumer client

Uses the normal Kafka consumer 
client in our custom consumer

Consumers still call the interface 
methods they are used to.

Adds our custom 
logic where needed

Uses the normal Kafka consumer 
client to provide its normal duties

https://zipkin.io/
http://mng.bz/6mAo
http://mng.bz/6mAo


175General monitoring tools
 The Cluster Manager for Apache Kafka, or CMAK (https://github.com/yahoo/
CMAK), once known as the Kafka Manager, is an interesting project that focuses on
managing Kafka as well as being a UI for various administrative activities, and was
shared from Yahoo™! One key feature is its ability to manage multiple clusters. Other
features include inspection of our overall cluster state and the ability to generate and
run partition reassignment. This tool can also deal with authenticating users with
LDAP, which might be helpful depending on product requirements for a project [18].

 Cruise Control (https://github.com/linkedin/cruise-control) was created by
developers at LinkedIn. Because they have thousands of brokers across their clusters,
they have experience running Kafka clusters and have helped codify and automate
dealing with some of Kafka’s pain points over the years. A REST API can be used as
well as the option to use a UI, so we have a couple of ways to interact with this tool.
Some of the most interesting features to us are how Cruise Control can watch our clus-
ter and can generate suggestions on rebalancing based on workloads [19].

 Confluent Control Center (https://docs.confluent.io/current/control-center/
index.html) is another web-based tool that can help us monitor and manage our clus-
ters. But one item to note is that it currently is a commercial feature that would need
an enterprise license for a production setup. If you already have a subscription to the
Confluent platform, there is no reason not to check it out. This tool uses dashboards
and can help identify message failures, network latency, and other external connectors.

 Overall, Kafka provides us with many options to not only manage but also monitor
our cluster. Distributed systems are difficult, and the more experience you gain, the
more your monitoring skills and practices will improve. 

Summary
 Besides the shell scripts that are packaged with Kafka, an administrative client

also exists to provide API access to important tasks such as creating a topic.
 Tools such as kcat and the Confluent REST Proxy API allow ways for developers

to interact with the cluster.
 Although Kafka uses a log for client data at its core, there are still various logs

specific to the operation of the broker that we need to maintain. We need to
address managing these logs (and ZooKeeper logs) to provide details for trou-
bleshooting when needed.

 Understanding advertised listeners can help explain behavior that at first
appears inconsistent for client connections. 

 Kafka uses JMX for metrics. You can see metrics from clients (producers and
consumers) as well as from brokers.

 We can use producer and consumer interceptors to implement crosscutting
concerns. One such example would be adding tracing IDs for monitoring mes-
sage delivery.

https://github.com/linkedin/cruise-control
https://docs.confluent.io/current/control-center/index.html
https://docs.confluent.io/current/control-center/index.html


176 CHAPTER 9 Management: Tools and logging
References
1 “Class AdminClient.” Confluent documentation (n.d.). https://docs.confluent

.io/5.3.1/clients/javadocs/index.html?org/apache/kafka/clients/admin/
AdminClient.html (accessed November 17, 2020).

2 “kcat.” GitHub. https://github.com/edenhill/kcat/#readme (accessed August
25, 2021).

3 “Kafka Security & the Confluent Platform.” Confluent documentation (n.d.).
https://docs.confluent.io/2.0.1/kafka/platform-security.html#kafka-security-
the-confluent-platform (accessed August 25, 2021).

4 “Confluent REST APIs: Overview: Features.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/kafka-rest/index.html#features
(accessed February 20, 2019).

5 “REST Proxy Quick Start.” Confluent documentation (n.d.). https://docs.con-
fluent.io/platform/current/kafka-rest/quickstart.html (accessed February 22,
2019).

6 “Using Confluent Platform systemd Service Unit Files.” Confluent documenta-
tion (n.d.). https://docs.confluent.io/platform/current/installation/scripted-
install.html#overview (accessed January 15, 2021).

7 “Class RollingFileAppender.” Apache Software Foundation (n.d.). https://
logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender
.html (accessed April 22, 2020).

8 log4j.properties. Apache Kafka GitHub (March 26, 2020). https://github
.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/
config/log4j.properties (accessed June 17, 2020).

9 “Running ZooKeeper in Production.” Confluent documentation (n.d.). https:/
/docs.confluent.io/platform/current/zookeeper/deployment.html#running-
zk-in-production (accessed July 23, 2021).

10 “ZooKeeper Administrator’s Guide.” Apache Software Foundation (n.d.).
https://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html (accessed
June 10, 2020).

11 “ZooKeeper Getting Started Guide.” Apache Software Foundation (n.d.).
https://zookeeper.apache.org/doc/r3.1.2/zookeeperStarted.html (accessed
August 19, 2020).

12 R. Moffatt. “Kafka Listeners – Explained.” Confluent blog (July 1, 2019). https:/
/www.confluent.io/blog/kafka-listeners-explained/ (accessed June 11, 2020).

13 “Kafka Monitoring and Metrics Using JMX.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/installation/docker/operations/
monitoring.html (accessed June 12, 2020).

14 “Monitoring Kafka: Broker Metrics.” Confluent documentation (n.d.). https://
docs.confluent.io/5.4.0/kafka/monitoring.html#broker-metrics (accessed May
1, 2020).

https://docs.confluent.io/5.3.1/clients/javadocs/index.html?org/apache/kafka/clients/admin/AdminClient.html
https://docs.confluent.io/5.3.1/clients/javadocs/index.html?org/apache/kafka/clients/admin/AdminClient.html
https://docs.confluent.io/5.3.1/clients/javadocs/index.html?org/apache/kafka/clients/admin/AdminClient.html
https://docs.confluent.io/5.3.1/clients/javadocs/index.html?org/apache/kafka/clients/admin/AdminClient.html
https://github.com/edenhill/kcat/#readme
https://docs.confluent.io/2.0.1/kafka/platform-security.html#kafka-security-the-confluent-platform
https://docs.confluent.io/2.0.1/kafka/platform-security.html#kafka-security-the-confluent-platform
https://docs.confluent.io/platform/current/kafka-rest/index.html#features
https://docs.confluent.io/platform/current/kafka-rest/quickstart.html
https://docs.confluent.io/platform/current/kafka-rest/quickstart.html
https://docs.confluent.io/platform/current/installation/scripted-install.html#overview
https://docs.confluent.io/platform/current/installation/scripted-install.html#overview
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
https://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
https://docs.confluent.io/5.4.0/kafka/monitoring.html#broker-metrics
https://docs.confluent.io/5.4.0/kafka/monitoring.html#broker-metrics
https://docs.confluent.io/platform/current/installation/docker/operations/monitoring.html
https://docs.confluent.io/platform/current/installation/docker/operations/monitoring.html
https://www.confluent.io/blog/kafka-listeners-explained/
https://www.confluent.io/blog/kafka-listeners-explained/
https://zookeeper.apache.org/doc/r3.1.2/zookeeperStarted.html
https://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html
https://docs.confluent.io/platform/current/zookeeper/deployment.html#running-zk-in-production
https://docs.confluent.io/platform/current/zookeeper/deployment.html#running-zk-in-production
https://docs.confluent.io/platform/current/zookeeper/deployment.html#running-zk-in-production
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/config/log4j.properties
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/config/log4j.properties
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/config/log4j.properties
https://github.com/apache/kafka/blob/99b9b3e84f4e98c3f07714e1de6a139a004cbc5b/config/log4j.properties


177References
15 “Interface ProducerInterceptor.” Apache Software Foundation (n.d.). https://
kafka.apache.org/27/javadoc/org/apache/kafka/clients/producer/Producer
Interceptor.html (accessed June 1, 2020).

16 “Interface ConsumerInterceptor.” Apache Software Foundation (n.d.). https://
kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/Consumer
Interceptor.html (accessed June 1, 2020).

17 “Monitoring.” Apache Software Foundation (n.d.). https://kafka.apache.org/
documentation/#monitoring (accessed May 1, 2020).

18 Yahoo CMAK README.md. GitHub (March 5, 2020). https://github.com/
yahoo/CMAK/blob/master/README.md (accessed July 20, 2021).

19 README.md. LinkedIn Cruise Control for Apache Kafka GitHub (June 30,
2021). https://github.com/linkedin/cruise-control/blob/migrate_to_kafka_2
_4/README.md (acces-sed July 21, 2021).

https://github.com/linkedin/cruise-control/blob/migrate_to_kafka_2_4/README.md
https://github.com/linkedin/cruise-control/blob/migrate_to_kafka_2_4/README.md
https://github.com/linkedin/cruise-control/blob/migrate_to_kafka_2_4/README.md
https://github.com/yahoo/CMAK/blob/master/README.md
https://github.com/yahoo/CMAK/blob/master/README.md
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/ConsumerInterceptor.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/ConsumerInterceptor.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/consumer/ConsumerInterceptor.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/producer/ProducerInterceptor.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/producer/ProducerInterceptor.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/producer/ProducerInterceptor.html


178 CHAPTER 9 Management: Tools and logging



Part 3

Going further

Part 3 focuses on how to further our use of Kafka beyond what part 2 covered
as the core pieces of Kafka. In this part, we go further than just having a Kafka
cluster that we can read and write data to. We add more security, data schemas,
and look at other Kafka products.

 In chapter 10, we look at strengthening a Kafka cluster by using SSL,
ACLs, and options like quotas.

 In chapter 11, we dig into the Schema Registry and how it is used to help
data evolve in compatible ways.

 In chapter 12, we look at Kafka Streams and ksqlDB.

These pieces are all part of the Kafka ecosystem and are higher levels of abstrac-
tion built on the core subjects you studied in part 2. At the end of this part,
you’ll be ready to dig into even more advanced Kafka topics on your own and,
even better, you’ll be able to use Kafka in your day-to-day workflow.



180 CHAPTER 



Protecting Kafka
This chapter focuses on keeping our data secured so that only those that need to
read from or write to it have access. Because security is a huge area to cover, in this
chapter, we will talk about some basic concepts to get a general background on the
options we have in Kafka. Our goal in this chapter is not to set up security, but to
learn some different options that you can talk with your security team on research-
ing in the future and get familiar with the concepts. This will not be a complete
guide to security in general, but sets the foundation for you. We will discuss practi-
cal actions you can take in your own setup, and we will look at the client impact, as
well as brokers and ZooKeeper, to make our cluster more secure.

 Your data might not need those protections we discuss, but knowing your data is
key to deciding if you need the trade-offs of managing access. If you are handling

This chapters covers
 Security basics and related terminology

 SSL between a cluster and clients

 Access control lists (ACLs)

 Network bandwidth and request rate quotas to 
limit demands on resources
181



182 CHAPTER 10 Protecting Kafka
anything related to personal information or financial data, like date of birth or credit
card numbers, then you will likely want to look at most of the security options discussed
in this chapter. However, if you are only handling generic information such as market-
ing campaigns, or you are not tracking anything of a secure nature, then you might not
need this protection. If this is the case, then your cluster would not need to introduce
features like SSL. We start with an example of fictional data that we want to protect.

 Let’s imagine that we have a goal to find the location of a prize by taking part in a
treasure hunt. As a competition-wide exercise, we have two teams, and we do not want
the other team to access our own team’s work. Starting out, each team picks their own
topic names and shares that name with their team members only. (Without knowing
which topic name to write to and read from, your data is out of the view of the other
team.) Each team begins by sending their clues to what they assume is their own private
topic. Over time, members of the teams might start to wonder about the progress of the
other team and whether they have any clues that the other team doesn’t. This is when
the trouble starts. Figure 10.1 shows the topic setup for Team Clueful and Team Clueless.

Figure 10.1 Treasure hunt topics

One tech-savvy competitor, who coincidentally has used Kafka before, reaches for his
command line tools to find the topics (the other team’s as well as his own). After get-
ting a list of topics, the competitor now knows his rival’s topic. Let’s say that this team
member of Team Clueless looks at Team Clueful’s topic, --topic kinaction
_clueful_secrets. With great happiness, all it took was a consumer console com-
mand to list all the data that Team Clueful has been working on so far in the competi-
tion! But the bad actor does not stop there.

 In order to throw Team Clueful off the trail, the actor also writes false information
into the channel. Now Team Clueful has bad data in their topic, which is hindering
their clue-solving progress! Because they are not sure who really wrote the messages
on their topic, Team Clueful now has to determine which are the false messages and,

Topics

kinaction_clueful_secrets

At this point, nothing but team behavior is
stopping the teams from reading each topic. 
Each team can read and write to each topic.

Kafka cluster Team Clueful

Writes

Reads

kinaction_clueless_secretsTeam Clueless

Writes

Reads



183Security basics
in doing so, will lose valuable time that they could be using to work on figuring out
the grand-prize location.

 How could we avoid the situation Team Clueful finds itself in? Is there a way that
only those clients that have permission would be able to read from or write to our top-
ics? There are two parts to our solution. The first part is how to encrypt our data. The
next is how to find out who a person is in our system; not only who they are, but also
making sure that the claimed identity of the user is verified. Once we verify a user, we
need to know what they are permitted do in our system. We will dive deeper into these
topics as we look at a few solutions provided with Kafka.

10.1 Security basics
In regard to computer application security, you will likely encounter encryption,
authentication, and authorization at some point in your work. Let’s take a closer look
at this terminology (see http://mng.bz/o802 for more detail of the following terms if
needed).

 Encryption does not mean that others might not see your messages, but that if they
do, they will not be able to derive the original content that you are protecting. Many
people will think of how they are encouraged to use a site that is secure (HTTPS) for
online shopping on a Wi-Fi® network. Later, we are going to enable SSL (Secure Sock-
ets Layer) for our communication, not between a website and our computer, but
between our clients and brokers! As a general note, as we work through this chapter,
the label “SSL” is the property name you will see in our examples and explanations
even though TLS is the newer protocol version [1].

 Moving along, let’s talk about authentication. To verify the identity of a user or an
application, we need to have a way to authenticate that user: authentication is the pro-
cess of proving that a user or application is indeed who they claim to be. If you wanted
to sign up for a library card, for example, does the library issue a card to anyone with-
out making sure the user is who they say they are? In most cases, the library would con-
firm the person’s name and address with something like a government-issued ID and
a utility bill. This process is intended to ensure that someone cannot easily claim
another identity to use for their own purposes. If someone claims your identity to bor-
row books and never returns them, sending the fines your way, you can easily see a
drawback of not confirming the user’s claim.

 Authorization, on the other hand, focuses on what the user can do. Continuing with
our library example, a card issued to an adult might provide different permissions
than if it was given to a user considered to be a child. And access to online publica-
tions might be limited to only terminals inside the library for each cardholder.

10.1.1 Encryption with SSL

So far, all of our brokers in this book have supported plaintext [1]. In effect, there has
been no authentication or encryption over the network. Knowing this, it might make
sense to review one of the broker server configuration values. If you look at any of
your current server.properties files (see appendix A for your setup location of the

http://mng.bz/o802


184 CHAPTER 10 Protecting Kafka
config/server0.properties file, for example), you will find an entry like listeners =
PLAINTEXT:localhost//:9092. That listener is, in effect, providing a mapping of a
protocol to a specific port on the broker. Because brokers support multiple ports, this
entry allows us to keep the PLAINTEXT port up and running, so we can test adding SSL
or other protocols on a different port. Having two ports helps to make our transition
smoother when we shift away from plaintext [2]. Figure 10.2 shows an example of
using plaintext versus SSL.

At this point, we are starting with a cluster without any security baked in. (Luckily, we
can add various pieces to our cluster as we harden it against other teams.) Setting up
SSL between the brokers in our cluster and our clients is one place to start [1]. No
extra servers or directories are needed. No client coding changes are required, as the
changes are configuration driven.

 We don’t know how advanced other users are when it comes to listening to our
traffic on the same Wi-Fi network with security tools, so we know that we might not
want to send plaintext from our brokers to our clients. Although the setup in the fol-
lowing section is needed for Kafka security, readers who have set up SSL or HTTPS in
the past (and especially with Java) will find this approach similar to other client/
server trust arrangements. 

10.1.2 SSL between brokers and clients

In our previous examples of writing clients and connecting to Kafka, we have not used
SSL for connections. However, now we are going to look at turning it on for the

Third party can see 
your traffic content.

Third party can see
but not understand
your traffic.

?? ?

Client

Plaintext message
“secret is plaintext”

Not readable

The data in topic 
kinaction_clueful_secrets 

did not use SSL.

Client
with SSL

Kafka cluster

Figure 10.2 Plaintext vs. SSL



185Security basics
communication between our clients and our cluster to encrypt our network traffic
with SSL. Let’s walk through the process and see what we are going to need to accom-
plish in order to get our cluster updated with this feature.

NOTE The commands in this chapter are specific and will not work the same
on all operating systems (or even across different server domain names listed
for broker setup) without modification. The important thing is to follow
along with the general concepts. Moreover, other tools (like OpenSSL®) can
be switched out, so your setup and commands might be different. But once
you get the concepts, head to Confluent’s site at http://mng.bz/nrza for even
more resources and guides. Confluent’s documents that provided direction
for any examples are referenced throughout this chapter and should be refer-
enced to help you actually implement the topics we only cover at a high level
in order to introduce the following concepts.

WARNING A security professional should be consulted for the correct way to
set up your own environment. Our commands are meant as a guide for get-
ting familiar and for learning, not as a production level of security. This is not
a complete guide. Use it at your own risk!

One of our first steps is to create a key and certificate for our brokers [3]. Because you
should already have Java on your machine, one option is to use the keytool utility,
which is part of the Java installation. The keytool application manages a keystore of
keys and trusted certificates [4]. The important part to note is the storage. In this chap-
ter, the term broker0 is included in some filenames to identify one specific broker, not
one that is meant for every broker. It might be good to think of a keystore as a data-
base where our JVM programs can look up this information for our processes when
needed [4]. At this point, we are also going to generate a key for our brokers as in the
following listing [3]. Note that manning.com is used as an example in the following
listings and is not intended to be used for readers following along.

keytool -genkey -noprompt \
-alias localhost \
-dname "CN=ka.manning.com,OU=TEST,O=TREASURE,L=Bend,S=Or,C=US" \
-keystore kafka.broker0.keystore.jks \
-keyalg RSA \
-storepass changeTreasure \
-keypass changeTreasure \
-validity 999

After running this command, we will have created a new key and stored it in the key-
store file kafka.broker0.keystore.jks. Because we have a key that (in a way) identifies our
broker, we need something to signal that we don’t have just any certificate issued by a
random user. One way to verify our certificates is by signing them with a CA (certificate

Listing 10.1 SSL key generation for a broker

Names the keystore that holds 
our newly generated key

Uses a password so 
that the store cannot 
be changed without it

http://mng.bz/nrza


186 CHAPTER 10 Protecting Kafka
authority). You might have heard of CAs offered by Let’s Encrypt® (https://letsen
crypt.org/) or GoDaddy® (https://www.godaddy.com/), to name a few sources. The
role of a CA is to act as a trusted authority that certifies the ownership and identity of
a public key [3]. In our examples, however, we are going to be our own CA to avoid any
need of verifying our identity by a third party. Our next step is to create our own CA, as
the following listing shows [3].

openssl req -new -x509 \
-keyout cakey.crt -out ca.crt \
-days 999 \
-subj '/CN=localhost/OU=TEST/O=TREASURE/L=Bend/S=Or/C=US' \
-passin pass:changeTreasure -passout pass:changeTreasure

This generated CA is now something that we want to let our clients know that they
should trust. Similar to the term keystore, we will use a truststore to hold this new
information [3].

 Because we generated our CA in listing 10.2, we can use it to sign our certificates
for our brokers that we have already made. First, we export the certificate that we gen-
erated in listing 10.2 for each broker from the keystore, sign that with our new CA,
and then import both the CA certificate and signed certificate back into the keystore
[3]. Confluent also provides a shell script that can be used to help automate similar
commands (see http://mng.bz/v497) [3]. Check out the rest of our commands in the
source code for the book in the section for this chapter.

NOTE While running the commands in these listings, your operating system
or tool version may have a different prompt than that passed. It will likely
have a user prompt appear after running your command. Our examples try to
avoid these prompts.

As part of our changes, we also need to update the server.properties configuration file
on each broker, as the following listing shows [3]. Note that this listing only shows
broker0 and only part of the file.

...
listeners=PLAINTEXT://localhost:9092,

➥ SSL://localhost:9093
ssl.truststore.location=

➥ /opt/kafkainaction/private/kafka

➥ .broker0.truststore.jks
ssl.truststore.password=changeTreasure
ssl.keystore.location=

➥ /opt/kafkainaction/kafka.broker0.keystore.jks
ssl.keystore.password=changeTreasure
ssl.key.password=changeTreasure
...

Listing 10.2 Creating our own certificate authority

Listing 10.3 Broker server properties changes

Creates a new CA, then produces 
key and certificate files

Adds the SSL broker port, leaving 
the older PLAINTEXT port

Provides the truststore location 
and password for our broker

Provides the keystore location 
and password for our broker

https://www.godaddy.com/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
http://mng.bz/v497


187Kerberos and the Simple Authentication and Security Layer (SASL)

r 
Changes are also needed for our clients. For example, we set the value security
.protocol=SSL, as well as the truststore location and password in a file called custom
-ssl.properties. This helps set the protocol used for SSL as well as points to our
truststore [3].

 While testing these changes, we can also have multiple listeners set up for our bro-
ker. This also helps clients migrate over time, as both ports can serve traffic before we
drop the older PLAINTEXT port for our clients [3]. The kinaction-ssl.properties file
helps our clients provide the information needed to interact with the broker that is
now becoming more secured!

bin/kafka-console-producer.sh --bootstrap-server localhost:9093 \
--topic kinaction_test_ssl \
--producer.config kinaction-ssl.properties

bin/kafka-console-consumer.sh --bootstrap-server localhost:9093 \
--topic kinaction_test_ssl \
--consumer.config kinaction-ssl.properties

One of the nicest features is that we can use the same configuration for both produc-
ers and consumers. As you look at the contents of this configuration file, one issue
that might spring to mind is the use of passwords in these files. The most straightfor-
ward option is to make sure that you are aware of the permissions around this file.
Limiting the ability to read as well as the ownership of the file is important to note
before placing this configuration on your filesystem. As always, consult your security
experts for better options that might be available for your environment. 

10.1.3 SSL between brokers

Another detail to research since we also have our brokers talking to each other is that
we might want to decide if we need to use SSL for those interactions. We can use
security.inter.broker.protocol = SSL in the server properties if we do not want to
continue using plaintext for communications between brokers and consider a port
change as well. More details can be found at http://mng.bz/4KBw [5]. 

10.2 Kerberos and the Simple Authentication and Security 
Layer (SASL)
If you have a security team that already has a Kerberos server, you likely have some
security experts to ask for help. When we first started working with Kafka, it was with a
part of a suite of big data tools that mostly used Kerberos. Kerberos is often found in
organizations as a method to provide single sign-on (SSO) that is secure.

 If you have a Kerberos server set up already, you need to work with a user with
access to that Kerberos environment to create a principal for each broker and also for
each user (or application ID) that will access the cluster. Because this setup might be
too involved for local testing, follow along with this discussion to see the format of Java

Listing 10.4 Using SSL configuration for command line clients

Lets our produce
know about the 
SSL details

Uses our SSL configuration 
for consumers

http://mng.bz/4KBw


188 CHAPTER 10 Protecting Kafka
Authentication and Authorization Service (JAAS) files, which is a common file type
for brokers and clients. There are great resources at http://mng.bz/QqxG if you want
to gain more details [6].

 JAAS files, with keytab file information, help to provide Kafka with the principal and
credentials that we will use. A keytab will likely be a separate file that has the principal
and encrypted keys. We can use this file to authenticate to the Kafka brokers without
requiring a password [7]. However, it is important to note that you need to treat your
keytab file with the same security and care that you would for any credential.

 To get our brokers set up, let’s look at some server property changes we’ll need to
make and an example JAAS configuration. To start, each broker will need its own key-
tab file. Our JAAS file will help our brokers find the keytab’s location on our server, as
well as declare the principal to use [7]. The following listing shows an example JAAS
file brokers would use on startup.

KafkaServer {
...

keyTab="/opt/kafkainaction/kafka_server0.keytab"
principal="kafka/kafka0.ka.manning.com@MANNING.COM";

};

We are going to add another port to test SASL_SSL before we remove the older ports
[7]. The following listing shows this change. Depending on what port you used to
connect to your brokers, the protocol is either PLAINTEXT, SSL, or SASL_SSL in this
example.

listeners=PLAINTEXT://localhost:9092,SSL://localhost:9093,

➥ SASL_SSL://localhost:9094

The setup for a client is similar [7]. A JAAS file is needed, as the following listing shows.

KafkaClient {
...

keyTab="/opt/kafkainaction/kafkaclient.keytab"
principal="kafkaclient@MANNING.COM";

};

We also need to update client configuration for the SASL values [3]. The client file is
similar to our kinaction-ssl.properties file used earlier, but this one defines the SASL
_SSL protocol. After testing that things are not broken on port 9092 or 9093, we can

Listing 10.5 Broker SASL JAAS file

Listing 10.6 Changing the broker SASL properties

Listing 10.7 Client SASL JAAS file

Sets up the Kafka 
broker JAAS file

Adds the SASL_SSL broker 
port, leaving the older ports

Adds the client SASL 
JAAS file entry

http://mng.bz/QqxG


189Authorization in Kafka
use our new configuration by validating the same result as before when we use our
new SASL_SSL protocol. 

10.3 Authorization in Kafka
Now that we have seen how to use authentication with Kafka, let’s take a look at how
we can start using that information to enable user access. For this discussion, we’ll
start with access control lists.

10.3.1 Access control lists (ACLs)

As a quick review, authorization is the process that controls what a user can do. One
way to enable authorization is with access control lists (ACLs). Although most Linux
users are familiar with permissions on a file they can control with a chmod command
(such as read, write, and execute), one drawback is that the permissions might not be
flexible enough for our needs. ACLs can provide permissions for multiple individuals
and groups as well as more types of permissions, and they are often used when we
need different levels of access for a shared folder [8]. One example is a permission to
let a user edit a file but not allow the same user to delete it (delete is a separate per-
mission altogether). Figure 10.3 shows Franz’s access to the resources for our hypo-
thetical team for our treasure hunt.

Figure 10.3 Access control lists (ACLs)

Kafka designed their authorizer to be pluggable, which allows users to make their own
logic if desired [8]. Kafka has a SimpleAclAuthorizer class that we will use in our
example. 

 Listing 10.8 shows adding the authorizer class and superuser Franz to the broker’s
server.properties file in order to use ACLs. An important item to note is that once we
configure an authorizer, we need to set ACLs, or only those considered superusers will
have access to any resources [8].

Produce

Franz

Consume

Principal is allowed or denied operation on resources.

User Franz is allowed
read/write on 
resource topic 
kinaction_clueful_secrets.

Produce

Franz

Consume

Topic: kinaction_clueful_secrets

Topic: kinaction_not_franzs



190 CHAPTER 10 Protecting Kafka
 

authorizer.class.name=

➥ kafka.security.auth.SimpleAclAuthorizer
super.users=User:Franz

Let’s see how to grant access to Team Clueful so that only that team produces and con-
sumes from their own topic, kinaction_clueful_secrets. For brevity, we use two
users in our example team, Franz and Hemingway. Because we have already created
the keytabs for the users, we know the principal information that we need. As you may
notice in the following listing, the operation Read allows consumers the ability to get
data from the topic [8]. The second operation, Write, allows the same principals to
produce data into the topic.

bin/kafka-acls.sh --authorizer-properties \
--bootstrap-server localhost:9094 --add \
--allow-principal User:Franz \
--allow-principal User:Hemingway \
--operation Read --operation Write \
--topic kinaction_clueful_secrets

The kafka-acls.sh CLI tool is included with the other Kafka scripts in our installa-
tion and lets us add, delete, or list current ACLs [8]. 

10.3.2 Role-based access control (RBAC)

Role-based access control (RBAC) is an option that the Confluent Platform supports.
RBAC is a way to control access based on roles [9]. Users are assigned to their role
according to their needs (such as a job duty, for example). Instead of granting every user
permissions, with RBAC, you manage the privileges assigned to predefined roles [9].
Figure 10.4 shows how adding a user to a role gives them a new permission assignment.

Listing 10.8 ACL authorizer and superusers

Listing 10.9 Kafka ACLs to read and write to a topic

Every broker configuration should 
include the SimpleAclAuthorizer.

Adds a superuser that can access all 
resources with or without ACLs

Identifies two users 
to grant permissions

Allows the named principals to both read 
from and write to the specific topic

User added. Nothing changes 
besides a user added to the role.

Franz

Users

Jay

Roles

Role: 
kinaction_clueful

_secrets

Permissions

User assignment

Permission
assignment

User assignment

Figure 10.4
Role-based access 
control (RBAC)



191Quotas
For our treasure hunting teams, it might make sense to have a specific role per team.
This might mirror how a team from marketing would have a role versus a team from
accounting. If some user changes departments, their role would be reassigned and
not their individual permissions. Because this is a newer option, which may change as
it matures and which is geared to the Confluent Platform environment, this is men-
tioned for awareness. We will not dig further into it here. 

10.4 ZooKeeper
Part of securing Kafka is looking at how we can secure all parts of our cluster, includ-
ing ZooKeeper. If we protect the brokers but not the system that holds that security-
related data, it is possible for those with knowledge to update security values without
much effort. To help protect our metadata, we will need to set the value zookeeper
.set.acl to true per broker, as shown in the following listing [10].

zookeeper.set.acl=true

10.4.1 Kerberos setup

Making sure that ZooKeeper works with Kerberos requires a variety of configuration
changes. For one, in the zookeeper.properties configuration file, we want to add those
values that let ZooKeeper know that SASL should be used for clients and which pro-
vider to use. Refer to http://mng.bz/Xr0v for more details if needed [10]. While we
were busy looking at the other options for setup so far in this chapter, some users on
our treasure hunt system were still up to no good. Let’s see if we can dig into the sub-
ject of quotas to help with that. 

10.5 Quotas
Let’s say that some users of our web application don’t have any issues with requesting
data repeatedly. Although this is often a good thing for end users that want to use a ser-
vice as much as they want without their progress being limited, our cluster may need
some protection from users who might use that to their advantage. In our example,
because we made it so the data was accessed by members of our team only, some users
on the opposing team thought of a new way to prevent members of our team from
working successfully. In effect, they are trying to use a distributed denial-of-service
(DDoS) attack against our system [11]!

 A targeted attack against our cluster can overwhelm our brokers and their sur-
rounding infrastructure. In practice, the other team is requesting reads from our top-
ics over and over while reading from the beginning of the topics each time they
request data. We can use quotas to prevent this behavior. One detail that’s important
to know is that quotas are defined on a per-broker basis [11]. The cluster does not
look across each broker to calculate a total, so a per-broker definition is needed. Fig-
ure 10.5 shows an example of using a request percentage quota.

Listing 10.10 ZooKeeper ACLs

Every broker configuration 
includes this ZooKeeper value.

http://mng.bz/Xr0v


192 CHAPTER 10 Protecting Kafka
Figure 10.5 Quotas

To set our own custom quotas, we need to know how to identify who to limit and the
limit we want to set. Whether we have security or not impacts what options we have for
defining who we are limiting. Without security, we are able to use the client.id prop-
erty. With security enabled, we can also add the user and any user and client.id
combinations as well [11]. There are a couple of types of quotas that we can look at
defining for our clients: network bandwidth and request rate quotas. Let’s take a look
at the network bandwidth option first.

10.5.1 Network bandwidth quota

Network bandwidth is measured by the number of bytes per second [12]. In our
example, we want to make sure that each client is respecting the network and not
flooding it to prevent others from using it. Each user in our competition uses a client
ID that is specific to their team for any producer or consumer requests from their cli-
ents. In the following listing, we’ll limit the clients using the client ID kinaction
_clueful by setting a producer_byte_rate and a consumer_byte_rate [13].

Client

fetching.wait.ms=0

Clients all with Client IDs from  
kinaction_clueless_secrets would get 
delays after too many fetches.

Each broker’s quotas are treated
separate from other brokers.

Broker delays reply

Kafka cluster

Broker 0

Quota client ID
request

percentage
200%

Broker 1

Quota client ID
request

percentage
200%

Broker 2

Quota client ID
request

percentage
200%

Constant polling

Client

fetching.wait.ms=0

Broker delays reply

Constant polling

Client

fetching.wait.ms=0

Broker delays reply

Constant polling

Client

fetching.wait.ms=0

Broker delays reply

Constant polling



193Quotas

 

 

bin/kafka-configs.sh --bootstrap-server localhost:9094 --alter \
--add-config 'producer_byte_rate=1048576,

➥ consumer_byte_rate=5242880' \
--entity-type clients --entity-name kinaction_clueful

We used the add-config parameter to set both the producer and consumer rate. The
entity-name applies the rule to our specific kinaction_clueful clients. As is often
the case, we might need to list our current quotas as well as delete them if they are no
longer needed. All of these commands can be completed by sending different argu-
ments to the kafka-configs.sh script, as the following listing shows [13].

bin/kafka-configs.sh --bootstrap-server localhost:9094 \
--describe \
--entity-type clients --entity-name kinaction_clueful

bin/kafka-configs.sh --bootstrap-server localhost:9094 --alter \
--delete-config

➥ 'producer_byte_rate,consumer_byte_rate' \
--entity-type clients --entity-name kinaction_clueful

The --describe command helps us get a look at the existing configuration. We can
then use that information to decide if we need to modify or even delete the configura-
tion by using the delete-config parameter.

 As we start to add quotas, we might end up with more than one quota applied to a
client. We need to be aware of the precedence in which various quotas are applied.
Although it might seem like the most restrictive setting (the lowest bytes allowed)
would be the highest for quotas, that is not always the case. The following is the order
in which quotas are applied with the highest precedence listed at the top [14]:

 User- and client.id-provided quotas
 User quotas
 client.id quotas

For example, if a user named Franz has a user-quota limit of 10 MB and a client.id
limit of 1 MB, the consumer he uses would be allowed 10 MB per second due to the
user-defined quota having higher precedence. 

10.5.2 Request rate quotas

The other quota to examine is request rate. Why the need for a second quota? Although
a DDoS attack is often thought of as a network issue, clients making lots of connec-
tions could still overwhelm the broker by making CPU-intensive requests. Consumer

Listing 10.11 Creating a network bandwidth quota for client kinaction_clueful

Listing 10.12 Listing and deleting a quota for client kinaction_clueful

Limits producers 
to 1 MB per second 
and consumers to 
5 MB per second

Names the entity for a client
with the client.id kinaction_clueful

Lists the existing configuration
of our client.id

Uses delete-config to remove 
those we just added



194 CHAPTER 10 Protecting Kafka
clients that poll continuously with a setting of fetch.max.wait.ms=0 are also a con-
cern that can be addressed with request rate quotas, as shown in figure 10.5 [15].

 To set this quota, we use the same entity types and add-config options as we did
with our other quotas [13]. The biggest difference is setting the configuration for
request_percentage. You’ll find a formula that uses the number of I/O threads and
the number of network threads at http://mng.bz/J6Yz [16]. In the following listing,
we set a request percentage of 100 for our example [13].

bin/kafka-configs.sh --bootstrap-server localhost:9094 --alter \
--add-config 'request_percentage=100' \
--entity-type clients --entity-name kinaction_clueful

Using quotas is a good way to protect our cluster. Even better, it lets us react to clients
that suddenly might start putting a strain on our brokers. 

10.6 Data at rest
Another thing to consider is whether you need to encrypt the data that Kafka writes to
disk. By default, Kafka does not encrypt the events it adds to its logs. There have been
a couple of Kafka Improvement Proposals (KIPs) that have looked at this feature, but
at the time of publication, you will still need to make sure you have a strategy that
meets your requirements. Depending on your business needs, you might want to only
encrypt specific topics or even specific topics with unique keys.

10.6.1 Managed options

If you use a managed option for your cluster, it might be best to check out what fea-
tures the service provides. Amazon’s Managed Streaming for Apache Kafka (https://
aws.amazon.com/msk/) is one example of a cloud provider that handles a large part
of your cluster management, including some security pieces. Having your brokers and
ZooKeeper nodes updated with automatically deployed hardware patches and related
upgrades addresses one major method of keeping issues at bay. The other benefit of
these updates is that you are not providing access to your cluster for even more devel-
opers. Amazon MSK also provides encryption for your data and with TLS between var-
ious components of Kafka [17].

 Additional management features that we covered in our examples in this chapter
included the ability to use SSL between your clients and cluster and ACLs. Confluent
Cloud (https://www.confluent.io/confluent-cloud/) also is an option that can be
deployed across various public cloud offerings. Support for data encryption at rest
and in motion as well as ACL support are also options that you should be aware of
when matching your security requirements to the actual provider.

Listing 10.13 Creating a network bandwidth quota for client kinaction_clueful

Allows producers 
a request rate 
quota of 100%Names the entity for our

client.id kinaction_clueful

http://mng.bz/J6Yz
https://aws.amazon.com/msk/
https://aws.amazon.com/msk/
https://www.confluent.io/confluent-cloud/


195References
 Sticking with the Confluent stack, Confluent Platform 5.3 has a commercial fea-
ture called secret protection (http://mng.bz/yJYB). When we looked at our SSL configu-
ration files earlier, we stored plaintext passwords in certain files. However, secret
protection is meant to address that issue by encrypting the secrets in the file and keep-
ing exposed values out of files as well [18]. Because this is a commercial offering, we
do not go into depth on how it works, but just be aware, there are options available. 

Summary
 Plaintext, although fine for prototypes, needs to be evaluated before produc-

tion usage.
 SSL (Secure Sockets Layer) can help protect your data between clients and bro-

kers and even between brokers.
 You can use Kerberos to provide a principal identity, allowing you to use Ker-

beros environments that already exist in an infrastructure.
 Access control lists (ACLs) help define which users have specific operations

granted. Role-based access control (RBAC) is also an option that the Confluent
Platform supports. RBAC is a way to control access based on roles.

 Quotas can be used with network bandwidth and request rate limits to protect
the available resources of a cluster. These quotas can be changed and fine-
tuned to allow for normal workloads and peak demand over time.

References
1 “Encryption and Authentication with SSL.” Confluent documentation (n.d.).

https://docs.confluent.io/platform/current/kafka/authentication_ssl.html
(accessed June 10, 2020).

2 “Adding security to a running cluster.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/kafka/incremental-security-upgrade.html
#adding-security-to-a-running-cluster (accessed August 20, 2021).

3 “Security Tutorial.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/security/security_tutorial.html (accessed June 10, 2020).

4 keytool. Oracle Java documentation (n.d.). https://docs.oracle.com/javase/8/
docs/technotes/tools/unix/keytool.html (accessed August 20, 2021).

5 “Documentation: Incorporating Security Features in a Running Cluster.” Apache
Software Foundation (n.d.). http://kafka.apache.org/24/documentation.html
#security_rolling_upgrade (accessed June 1, 2020).

6 V. A. Brennen. “An Overview of a Kerberos Infrastructure.” Kerberos Infrastruc-
ture HOWTO. https://tldp.org/HOWTO/Kerberos-Infrastructure-HOWTO/
overview.html (accessed July, 22, 2021).

7 “Configuring GSSAP.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/kafka/authentication_sasl/authentication_sasl_gssapi
.html (accessed June 10, 2020).

http://mng.bz/yJYB
https://tldp.org/HOWTO/Kerberos-Infrastructure-HOWTO/overview.html
https://tldp.org/HOWTO/Kerberos-Infrastructure-HOWTO/overview.html
http://kafka.apache.org/24/documentation.html#security_rolling_upgrade
http://kafka.apache.org/24/documentation.html#security_rolling_upgrade
http://kafka.apache.org/24/documentation.html#security_rolling_upgrade
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.confluent.io/platform/current/security/security_tutorial.html
https://docs.confluent.io/platform/current/security/security_tutorial.html
https://docs.confluent.io/platform/current/security/security_tutorial.html
https://docs.confluent.io/platform/current/kafka/incremental-security-upgrade.html#adding-security-to-a-running-cluster
https://docs.confluent.io/platform/current/kafka/incremental-security-upgrade.html#adding-security-to-a-running-cluster
https://docs.confluent.io/platform/current/kafka/incremental-security-upgrade.html#adding-security-to-a-running-cluster
https://docs.confluent.io/platform/current/kafka/authentication_ssl.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/authentication_sasl_gssapi.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/authentication_sasl_gssapi.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/authentication_sasl_gssapi.html
https://docs.confluent.io/platform/current/kafka/authentication_sasl/authentication_sasl_gssapi.html


196 CHAPTER 10 Protecting Kafka
8 “Authorization using ACLs.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/kafka/authorization.html (accessed June 10,
2020).

9 “Authorization using Role-Based Access.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/security/rbac/index.html (acces-
sed June 10, 2020).

10 “ZooKeeper Security.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/security/zk-security.html (accessed June 10, 2020).

11 “Quotas.” Confluent documentation (n.d.). https://docs.confluent.io/platform
/current/kafka/design.html#quotas (accessed August 21, 2021).

12 “Network Bandwidth Quotas.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/kafka/design.html#network-bandwidth-quotas
(accessed August 21, 2021).

13 “Setting quotas.” Apache Software Foundation (n.d.). https://kafka.apache
.org/documentation/#quotas (accessed June 15, 2020).

14 “Quota Configuration.” Confluent documentation (n.d.). https://docs.conflu
ent.io/platform/current/kafka/design.html#quota-configuration (accessed
August 21, 2021).

15 KIP-124 “Request rate quotas.” Wiki for Apache Kafka. Apache Software Foun-
dation (March 30, 2017). https://cwiki.apache.org/confluence/display/
KAFKA/KIP-124+-+Request+rate+quotas (accessed June 1, 2020).

16 “Request Rate Quotas.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/kafka/design.html#request-rate-quotas
(accessed August 21, 2021).

17 “Amazon MSK features.” Amazon Managed Streaming for Apache Kafka (n.d).
https://aws.amazon.com/msk/features/ (accessed July 23, 2021).

18 “Secrets Management.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/security/secrets.html (accessed August 21,
2021).

https://docs.confluent.io/platform/current/kafka/authorization.html
https://docs.confluent.io/platform/current/kafka/authorization.html
https://docs.confluent.io/platform/current/kafka/authorization.html
https://docs.confluent.io/platform/current/security/rbac/index.html
https://docs.confluent.io/platform/current/security/zk-security.html
https://docs.confluent.io/platform/current/security/zk-security.html
https://docs.confluent.io/platform/current/security/zk-security.html
https://docs.confluent.io/platform/current/kafka/design.html#quotas
https://docs.confluent.io/platform/current/kafka/design.html#quotas
https://docs.confluent.io/platform/current/kafka/design.html#quotas
https://docs.confluent.io/platform/current/kafka/design.html#network-bandwidth-quotas
https://docs.confluent.io/platform/current/kafka/design.html#network-bandwidth-quotas
https://docs.confluent.io/platform/current/kafka/design.html#network-bandwidth-quotas
https://kafka.apache.org/documentation/#quotas
https://kafka.apache.org/documentation/#quotas
https://kafka.apache.org/documentation/#quotas
https://docs.confluent.io/platform/current/kafka/design.html#quota-configuration
https://docs.confluent.io/platform/current/kafka/design.html#quota-configuration
https://docs.confluent.io/platform/current/kafka/design.html#quota-configuration
https://cwiki.apache.org/confluence/display/KAFKA/KIP-124+-+Request+rate+quotas
https://cwiki.apache.org/confluence/display/KAFKA/KIP-124+-+Request+rate+quotas
https://docs.confluent.io/platform/current/kafka/design.html#request-rate-quotas
https://docs.confluent.io/platform/current/kafka/design.html#request-rate-quotas
https://docs.confluent.io/platform/current/kafka/design.html#request-rate-quotas
https://aws.amazon.com/msk/features/
https://docs.confluent.io/platform/current/security/secrets.html
https://docs.confluent.io/platform/current/security/secrets.html
https://docs.confluent.io/platform/current/security/secrets.html


Schema registry
As you have discovered the various ways to use Apache Kafka, it might be an inter-
esting experiment to think about how you view Kafka the more you utilize it. As
enterprises (or even tools) grow, they can sometimes be modeled with maturity levels.
Martin Fowler provides a great explanation for this at https://martinfowler.com/
bliki/MaturityModel.html [1]. Fowler also has a good example that explains the
Richardson Maturity Model, which looks at REST [2]. For even further reference,
the original talk, “Justice Will Take Us Millions Of Intricate Moves: Act Three: The

This chapters covers
 Developing a proposed Kafka maturity model

 The value schemas can provide for your data 
as it changes

 Reviewing Avro and data serialization

 Compatibility rules for schema changes over 
time
197

https://martinfowler.com/bliki/MaturityModel.html
https://martinfowler.com/bliki/MaturityModel.html


198 CHAPTER 11 Schema registry
Maturity Heuristic” by Leonard Richardson can be found at https://www.crummy
.com/writing/speaking/2008-QCon/act3.html.1

11.1 A proposed Kafka maturity model
In the following sections, we focus our discussion on maturity levels specific to Kafka.
For a comparison, check out the Confluent white paper titled, “Five Stages to Stream-
ing Platform Adoption,” which presents a different perspective that encompasses five
stages of their streaming maturity model with distinct criteria for each stage [3]. Let’s
look at our first level (of course, as programmers we start with level 0).

 We use this exercise with a maturity model so that we can think about how Kafka
can be a powerful tool for one application or even evolve into the foundation for all of
your enterprise’s applications rather than as a simple message broker. The following
levels aren’t meant to be a step-by-step required path, but rather a way to think about
how you might start and then progress with Kafka. These steps are debatable, of
course, but we simply offer an example path.

11.1.1 Level 0

At this level, we use Kafka as an enterprise service bus (ESB) or publish/subscribe
(pub/sub) system. Events provide asynchronous communication between applica-
tions, whether we are replacing a different message broker like RabbitMQ or just start-
ing with this pattern.

 One example use case is a user submitting a text document to be converted into a
PDF. Once a user submits a document, the application stores the document and then
sends a message to a Kafka topic. A Kafka consumer then reads the message to deter-
mine which documents need to be converted into a PDF. In this example, the drive
might be offloaded to work with a backend system that a user knows will not send a
response right away. Figure 11.1 shows this message bus in action.

1 The act3.html website text is licensed under the Creative Commons License at https://creativecommons.org/
licenses/by-sa/2.0/legalcode.

PDF generation
at a later time

Request
response Consumer app

to PDF
Web UI

PDF

PDF

PDF

Kafka

Figure 11.1
Level 0 example

https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://www.crummy.com/writing/speaking/2008-QCon/act3.html
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://creativecommons.org/licenses/by-sa/2.0/legalcode


199A proposed Kafka maturity model
This level alone brings us the benefit of allowing us to decouple a system so that a fail-
ure of our frontend text submission system does not impact our backend system. Also,
we don’t need to rely on both to maintain successful simultaneous operations. 

11.1.2 Level 1

Batch processing can still be present in areas of our enterprise, but most data pro-
duced is now brought into Kafka. Whether with extract, transform, load (ETL) or
change data capture (CDC) processes, Kafka starts to gather events from more and
more systems in our enterprise. Level 1 allows us to have an operational, real-time
data flow and gives us the ability to feed data quickly into analytical systems.

 An example of this might be a vendor database that holds customer information. We
do not want our marketing folks to run complex queries that could slow down our pro-
duction traffic. In this case, we can use Kafka Connect to write the data from database
tables into Kafka topics that we can use on our terms. Figure 11.2 shows Kafka Connect
capturing data from a relational database and moving that data into a Kafka topic. 

Figure 11.2 Level 1 example

11.1.3 Level 2

We realize that data will change over time and that schemas are needed. Although our
producers and consumers might be decoupled, they still need a way to understand the
data itself. For this, we’ll take advantage of schemas and a schema registry. And even
though it would have been ideal to start with schemas, the reality is that this need
often presents itself a couple of application changes later, after initial deployments.

 One example for this level is changing the data structure of an event to receive
orders from our processing system. New data is added, but the new fields are optional,
and this works fine because our schema registry is configured to support backward
compatibility. Figure 11.3 shows our consumer’s need for schemas. We will look more
into these details as we progress through this chapter.

Pulls database
changes into
Kafka

Kafka connect

Serving customer
operational traffic

Vendor database

Other 
consumers

Marketing
consumer

Kafka



200 CHAPTER 11 Schema registry
Figure 11.3 Level 2 example

11.1.4 Level 3

Everything is an event stream that is infinite (never ending). Kafka is the system of our
enterprise for our event-based applications. In other words, we don’t have customers
waiting for recommendations or status reports that used to be produced by an over-
night batch-processing run. Customers are alerted in milliseconds of a change to their
account when an event happens, not in minutes. Instead of pulling data from other
data sources, applications pull data directly from your cluster. User-facing applications
can derive state and materialized views to customers depending on the needs of our
core Kafka infrastructure. 

11.2 The Schema Registry
As part of our work in this chapter, we will focus on level 2, looking at how we can plan
for data to change over time. Now that we have become good at sending data into and
out of Kafka, and despite a small mention of schemas in chapter 3, we left out some
important details. Let’s dive into what the Confluent Schema Registry provides for us.

 The Confluent Schema Registry stores our named schemas and allows us to main-
tain multiple versions [4]. This is somewhat similar to the Docker Registry in pur-
pose, which stores and distributes Docker images. Why is this storage needed?
Producers and consumers are not tied together, but they still need a way to discover
the schema involved in the data from all clients. Also, by having a remotely hosted
registry, users do not have to run their copy locally or attempt to build their own,
based on a list of schemas.

 While schemas can provide a sort of interface for applications, we can also use
them to prevent breaking changes [4]. Why should we care about data that is moving
fast through our system? Kafka’s storage and retention capabilities allow consumers to
go back to process older messages. These messages might be from months ago (or
longer), and our consumers need to handle these various data versions.

 For Kafka, we can use the Confluent Schema Registry. Confluent provides an
excellent option to consider as we look into how to take advantage of schemas. If you

Order 1
Field 0
Field 1

Order 1
Message

Order

Order 2
Message

Order 2
Field 0
Field 1

Field 2 Consumers need to know how to 
handle both message versions.

Same Kafka topic

Added, but optional

Consumer



201The Schema Registry
installed Kafka via the Confluent Platform before this chapter, you should have all the
tools available to explore further. If not, we discuss installing and setting up this regis-
try in the following sections.

11.2.1 Installing the Confluent Schema Registry

The Confluent Schema Registry is a community software offering as part of the Con-
fluent Platform [5]. The Schema Registry lives outside of Kafka Brokers, but itself uses
Kafka as its storage layer with the topic name _schemas [6]. It is vital not to delete this
topic accidentally!

Figure 11.4 Schema Registry infrastructure

When thinking about production usage, the Schema Registry should be hosted on a
server separate from our brokers, as figure 11.4 shows [6]. Because we deal with a dis-
tributed system and have learned to expect failures, we can provide multiple registry
instances. And because all nodes can handle lookup requests from clients and route
write requests to the primary node, the clients of the registry do not have to maintain
a list of specific nodes. 

11.2.2 Registry configuration

Similar to the other components of Kafka, you can set several configuration parame-
ters in a file. If you have installed Kafka, you’ll see the defaults located in the etc/
schema-registry/schema-registry.properties file. For the registry to be successful, it
needs to know which topic to store its schemas in and how to work with your specific
Kafka cluster.

 In listing 11.1, we use ZooKeeper to help complete the election of the primary
node. It’s important to note that because only the primary node writes to the Kafka

Schemas stored in Kafka 
like kinaction_alert

REST API Clients

Kafka

ReadsWrites

Schema Registry nodes

Primary



202 CHAPTER 11 Schema registry
topic. If your team is trying to move away from ZooKeeper dependencies, you can also
use a Kafka-based primary election (using the configuration kafkastore.bootstrap
.servers) [7].

listeners=http://localhost:8081
kafkastore.connection.url=localhost:2181
kafkastore.topic=_schemas
debug=true

Let’s go ahead and start the Schema Registry. We want to make sure that our Zoo-
Keeper and Kafka brokers are already started for our examples. After confirming that
they are up and running, we can use the command line to run the starting script for
the registry, as the following listing shows [8].

bin/schema-registry-start.sh \
./etc/schema-registry/schema-registry.properties

We can check that the process is still running or use jps to verify this because it is a Java
application, just like the brokers and ZooKeeper. Now that we have the registry running,
we need to look at how to use the system’s components. Because we now have a place
to store our data format in the registry, let’s revisit a schema that we used in chapter 3. 

11.3 Schema features
The Confluent Schema Registry contains the following important components. One is
a REST API (and the underlying application) for storing and fetching schemas. The
second is client libraries for retrieving and managing local schemas. In the following
sections, we’ll look a bit deeper into each of these two components, starting with the
REST API.

11.3.1 REST API

The REST API helps us manage the following resources: schemas, subjects, compatibility,
and config [9]. Of these resources, “subjects” might need some explanation. We can
create, retrieve, and delete versions and the subjects themselves. Let’s look at a topic
and its related subject for an application using a topic named kinaction_schematest.

 In our schema registry, we will have a subject called kinaction_schematest-value
because we are using the default behavior of basing the name on our current topic

Listing 11.1 Schema Registry configuration

Listing 11.2 Starting the Schema Registry

Serves our 
registry at 8081 Points to our 

ZooKeeper server

Uses the default topic for 
schema storage, but we 
can change that if needed

We can flip this debug 
flag to get or remove 
extra error information.

Runs the startup script in 
the install’s bin directory

Takes in a properties 
file that we can modify



203Schema features
name. If we were using a schema for the message key as well, we would also have a sub-
ject called kinaction_schematest-key. Notice that the key and value are treated as
different subjects [10]. Why is this? It ensures that we can version and change our
schemas independently because the key and value are serialized separately.

 To confirm the registry is started and to see it in action, let’s submit a GET against
the REST API using a tool like curl [9]. In the following listing, we list the current
configuration like the compatibility level.

curl -X GET http://localhost:8081/config

Also, we need to add a Content-Type header for our REST interactions with the
Schema Registry. In any following examples, like listing 11.7, we will use application/
vnd.schemaregistry.v1+json [9]. As with the schemas themselves, we’re planning for
API changes by declaring which API version we’ll use. This helps ensure that our clients
are using the intended version.

 While the REST API is great for administrators of the subjects and schemas, the cli-
ent library is where most developers will spend their time interacting with the Registry. 

11.3.2 Client library

Let’s drill into the producer client’s interaction with the Schema Registry. Think back
to our example in chapter 3 with a producer that is configured to use an Avro serial-
izer for our messages. We should already have a registry started locally, so now we need
to configure our producer client to use it (listing 11.4). With our use case from chap-
ter 3, we created a schema for an Alert object that is the value of our message. The
value.serializer property needs to be set to use the KafkaAvroSerializer in our
case. This class serializes the custom object using the Registry.

...
kaProperties.put("key.serializer",

➥ "org.apache.kafka.common.serialization.LongSerializer");
kaProperties.put("value.serializer",

➥ "io.confluent.kafka.serializers.KafkaAvroSerializer");
kaProperties.put("schema.registry.url",

➥ "http://localhost:8081");

Producer<Long, Alert> producer =
new KafkaProducer<Long, Alert>(kaProperties);

Alert alert = new Alert();
alert.setSensorId(12345L);
alert.setTime(Calendar.getInstance().getTimeInMillis());
alert.setStatus(alert_status.Critical);

Listing 11.3 Getting the Schema Registry configuration

Listing 11.4 Producer using Avro serialization

Lists all the configs in 
the Registry using REST

Sends Alert as a value and 
uses KafkaAvroSerializer

Points to the URL of our registry containing 
a versioned history of our schemas to help 
with schema validation and evolution



204 CHAPTER 11 Schema registry

r 
log.info("kinaction_info = {}, alert.toString());

ProducerRecord<Long, Alert> producerRecord =

➥ new ProducerRecord<Long, Alert>(
"kinaction_schematest", alert.getSensorId(), alert

);

producer.send(producerRecord);

NOTE Because we use the default TopicNameStrategy, the Schema Registry
registers the subject kinaction_schematest-value with our schema for
Alert. To use a different strategy, the producer client could set either of the
following configurations to override the value and key strategies: value
.subject.name.strategy and key.subject.name.strategy [10]. In this
case, we could have used an override to use an underscore to keep our topic
name from having a mix of dashes and underscores.

On the consumer side, once the client has successfully found the schema, it can now
understand the records it reads. Let’s look at using the same schema we produced for
a topic and retrieve it with a consumer to see if we can get that value back without
error, as the following listing exhibits [11].

kaProperties.put("key.deserializer",

➥ "org.apache.kafka.common.serialization.LongDeserializer");
kaProperties.put("value.deserializer",

➥ "io.confluent.kafka.serializers.KafkaAvroDeserializer");
kaProperties.put("schema.registry.url",

➥ "http://localhost:8081");
...

KafkaConsumer<Long, Alert> consumer =

➥ new KafkaConsumer<Long, Alert>(kaProperties);

consumer.subscribe(List.of("kinaction_schematest"));

while (keepConsuming) {
ConsumerRecords<Long, Alert> records =

➥ consumer.poll(Duration.ofMillis(250));
for (ConsumerRecord<Long, Alert> record : records) {

log.info("kinaction_info Alert Content = {},

➥ record.value().toString());
}

}

So far, we have worked on only one version of a schema with our producer and con-
sumer clients. However, planning for data changes can save you a lot of headaches.
Next, we’ll look at the rules that will help us think about the changes we can make and
their impact on our clients. 

Listing 11.5 Consumer using Avro deserialization

Uses KafkaAvroDeserialize
in a consumer config

Points to the URL 
of our registry

Subscribes to the same 
topic where we produced 
our schema messages



205Compatibility rules
11.4 Compatibility rules
One important thing to decide on is what compatibility strategy we plan to support. The
compatibility rules in this section are here to help direct our schemas as they change
over time. While it may seem like a large number of available types, it is nice to know
that, in general, those marked as transitive follow the same rules as those without that
suffix. The non-transitive types are only checked against the last version of the schema,
whereas transitive types are checked against all previous versions [12]. Here is a list
of types noted by Confluent: BACKWARD (the default type), BACKWARD_TRANSITIVE,
FORWARD, FORWARD_TRANSITIVE, FULL, FULL_TRANSITIVE, and NONE [12].

 Let’s look at what the BACKWARD type implies for our applications. Backward-com-
patible changes might involve adding non-required fields or removing fields [12].
Another critical aspect to consider when choosing the compatibility type is the order
in which we want clients to change. For example, we will likely want our consumer cli-
ents to upgrade first for the BACKWARD type [12]. Consumers will need to know how to
read the messages before new variations are produced.

 On the reverse end of the types, forward-compatible changes are the opposite of
backward. With the FORWARD type, we can add new fields and, opposite of the way we
updated for the BACKWARD type, we will likely want to update our producer clients
first [12].

 Let’s look at how we can change our schema for Alert to maintain backward com-
patibility. The following listing shows the addition of a new field, recovery_details,
with a default value of Analyst recovery needed to account for messages that do not
include a value for the new field.

{"name": "Alert",
...
"fields": [

{"name": "sensor_id", "type": "long",
"doc":"The unique id that identifies the sensor"},

...
{"name": "recovery_details", "type": "string",
"default": "Analyst recovery needed"}

]
}

Any older messages with version 1 of the schema will have a default value populated
for the field added later. This will be read by a consumer using Schema Registry ver-
sion 2 [12].

11.4.1 Validating schema modifications

If we have tests that exercise our API endpoints or even Swagger (https://swagger.io/),
it is important to think about how we can automate testing changes to our schemas. To
check and validate our schema changes, we have a couple of options:

Listing 11.6 Alert schema change

Creates a new field 
(recovery_details) 
in this instance

https://swagger.io/


206 CHAPTER 11 Schema registry

 

 Use the REST API compatibility resource endpoints
 Use a Maven plugin for JVM-based applications

Let’s look at an example REST call that will help us check our compatibility for a
schema change. Listing 11.7 shows how this is done [13]. As a side note, before check-
ing compatibility, we need to already have a copy of our older schema in the registry.
If one is not present and the call fails, check out the source code with this book for an
example.

curl -X POST -H "Content-Type: application/vnd.schemaregistry.v1+json" \
--data '{ "schema": "{ \"type\": \"record\", \"name\": \"Alert\", 

➥ \"fields\": [{ \"name\": \"notafield\", \"type\": \"long\" } ]}" }'  \
http://localhost:8081/compatibility/subjects/kinaction_schematest-value/

➥ versions/latest

{"is_compatible":false}

We can also use a Maven plugin if we are willing to use Maven and are already on a
JVM-based platform [14]. The following listing shows part of the pom.xml entry
needed for this approach, and the complete file can be found in the chapter’s source
code.

<plugin>
<groupId>io.confluent</groupId>
<artifactId>

kafka-schema-registry-maven-plugin
</artifactId>
<configuration>

<schemaRegistryUrls>
<param>http://localhost:8081</param>

</schemaRegistryUrls>
<subjects>

<kinaction_schematest-value>
             src/main/avro/alert_v2.avsc
            </kinaction_schematest-value>

</subjects>
<goals>

<goal>test-compatibility</goal>
</goals>

</configuration>
...
</plugin>

In essence, it takes the schemas located in your file path and connects to the Schema
Registry to check against the schemas already stored there. 

Listing 11.7 Checking compatibility with the Schema Registry REST API

Listing 11.8 Checking compatibility with the Schema Registry Maven plugin

Passes the schema
content on the
command line

Gives a compatible 
result as a Boolean

Coordinates that Maven needs 
to download this plugin

The URL to our 
Schema Registry

Lists the subjects to 
validate our schemas in 
the provided file path

We can invoke the Maven goal with mvn
schema-registry:test-compatibility.



207Alternative to a schema registry
11.5 Alternative to a schema registry
Because not all projects start with schemas or with data changes in mind, there are
some simple steps that we can take to work around data format changes. One such
option is to produce data on a different topic with a breaking change. After consum-
ers have consumed the old format, they can be updated if needed and then read from
another topic. This works well if we do not plan to reprocess our data. Figure 11.5
shows the switch to a new topic after reading all older messages from the first topic. In
the diagram, the text u1 means “update 1” and u2 means “update 2” to note the
changed logic.

Suppose we do plan on reprocessing the data across formats. In that case, we could
also create a new topic that exists to hold the transformed topic messages that existed
in the initial topic and, of course, any new messages from the update. Kafka Streams,
which we discuss in chapter 12, can help in this topic-to-topic transformation. 

Summary
 Kafka has many features that you can use for simple use cases or all the way up

to being the major system of an enterprise.
 Schemas help version our data changes.
 The Schema Registry, a Confluent offering apart from Kafka, provides a way to

work with Kafka-related schemas.
 As schemas change, compatibility rules help users know whether the changes

are backward, forward, or fully compatible.
 If schemas are not an option, different topics can be used to handle different

versions of data.

Retired after
consumption of
old messages

Producer u1 Topic u1 Consumer u1

Schema 1: kinaction_alert 

Producer u2 Topic u2 Consumer u2

Schema 2: Updated kinaction_alert

Figure 11.5
Alternative stream



208 CHAPTER 11 Schema registry
References
1 M. Fowler. “Maturity Model.” (August 26, 2014). https://martinfowler.com/

bliki/MaturityModel.html (accessed June 15, 2021).
2 M. Fowler. “Richardson Maturity Model.” (March 18, 2010). https://martin

fowler.com/articles/richardsonMaturityModel.html (accessed June 15, 2021).
3 L. Hedderly. “Five Stages to Streaming Platform Adoption.” Confluent white

paper (2018). https://www.confluent.io/resources/5-stages-streaming-platform
-adoption/ (accessed January 15, 2020).

4 “Schema Registry Overview.” Confluent documentation (n.d.). https://docs
.confluent.io/platform/current/schema-registry/index.html (accessed July 15,
2020).

5 “Confluent Platform Licenses: Community License.” Confluent documentation
(n.d.). https://docs.confluent.io/platform/current/installation/license.html#
community-license (accessed August 21, 2021).

6 “Running Schema Registry in Production.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/schema-registry/installation/
deployment.html#schema-registry-prod (accessed April 25, 2019).

7 “Schema Registry Configuration Options.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/schema-registry/installation/con
fig.html#schemaregistry-config (accessed August 22, 2021).

8 “Schema Registry and Confluent Cloud.” Confluent documentation (n.d.).
https://docs.confluent.io/cloud/current/cp-component/schema-reg-cloud-
config.html (accessed August 22, 2021).

9 “Schema Registry API Reference.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/schema-registry/develop/api.html
(accessed July 15, 2020).

10 “Formats, Serializers, and Deserializers.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/schema-registry/serdes-develop/
index.html (accessed April 25, 2019).

11 “On-Premises Schema Registry Tutorial.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/schema-registry/schema_registry
_onprem_tutorial.html (accessed April 25, 2019).

12 “Schema Evolution and Compatibility.” Confluent Platform. https://docs
.confluent.io/current/schema-registry/avro.html#compatibility-types
(accessed June 1, 2020).

13 “Schema Registry API Usage Examples.” Confluent documentation (n.d.).
https://docs.confluent.io/platform/current/schema-registry/develop/using
.html (accessed August 22, 2021).

14 “Schema Registry Maven Plugin.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/schema-registry/develop/maven-plugin
.html (accessed July 16, 2020).

https://martinfowler.com/bliki/MaturityModel.html
https://martinfowler.com/bliki/MaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://martinfowler.com/articles/richardsonMaturityModel.html
https://www.confluent.io/resources/5-stages-streaming-platform-adoption/
https://www.confluent.io/resources/5-stages-streaming-platform-adoption/
https://www.confluent.io/resources/5-stages-streaming-platform-adoption/
https://docs.confluent.io/platform/current/schema-registry/index.html
https://docs.confluent.io/platform/current/schema-registry/index.html
https://docs.confluent.io/platform/current/schema-registry/index.html
https://docs.confluent.io/platform/current/installation/license.html#community-license
https://docs.confluent.io/platform/current/installation/license.html#community-license
https://docs.confluent.io/platform/current/installation/license.html#community-license
https://docs.confluent.io/platform/current/schema-registry/installation/deployment.html#schema-registry-prod
https://docs.confluent.io/platform/current/schema-registry/installation/deployment.html#schema-registry-prod
https://docs.confluent.io/platform/current/schema-registry/installation/config.html#schemaregistry-config
https://docs.confluent.io/platform/current/schema-registry/installation/config.html#schemaregistry-config
https://docs.confluent.io/cloud/current/cp-component/schema-reg-cloud-config.html
https://docs.confluent.io/cloud/current/cp-component/schema-reg-cloud-config.html
https://docs.confluent.io/platform/current/schema-registry/develop/api.html
https://docs.confluent.io/platform/current/schema-registry/develop/api.html
https://docs.confluent.io/platform/current/schema-registry/serdes-develop/index.html
https://docs.confluent.io/platform/current/schema-registry/serdes-develop/index.html
https://docs.confluent.io/platform/current/schema-registry/schema_registry_onprem_tutorial.html
https://docs.confluent.io/platform/current/schema-registry/schema_registry_onprem_tutorial.html
https://docs.confluent.io/current/schema-registry/avro.html#compatibility-types
https://docs.confluent.io/current/schema-registry/avro.html#compatibility-types
https://docs.confluent.io/current/schema-registry/avro.html#compatibility-types
https://docs.confluent.io/platform/current/schema-registry/develop/using.html
https://docs.confluent.io/platform/current/schema-registry/develop/using.html
https://docs.confluent.io/platform/current/schema-registry/develop/maven-plugin.html
https://docs.confluent.io/platform/current/schema-registry/develop/maven-plugin.html
https://docs.confluent.io/platform/current/schema-registry/develop/maven-plugin.html


Stream processing with
Kafka Streams and ksqlDB
So far on our path in learning about Kafka, we’ve focused on the parts that help
make a complete event-streaming platform, including the Kafka brokers, producer
clients, and consumer clients. With this foundation, we can expand our toolset and
understand the next layer of the Kafka ecosystem—stream processing using Kafka
Streams and ksqlDB. These technologies offer abstractions, APIs, and DSLs
(domain-specific languages), based on the foundation that we have built on in the
previous chapters.

 This chapter introduces a simple banking application that processes funds as they
move in and out of the accounts. In our application, we will implement a Kafka
Streams topology to process the transaction requests submitted to the transaction-
request topic atomically.

This chapter covers
 Getting started with Kafka Streams

 Using basic Kafka Streams APIs

 Using state stores for persistent storage

 Enriching transaction streams
209



210 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB
NOTE Our business requirement states that we must check whether the funds
are sufficient for every request received before updating the account’s bal-
ance that’s being processed. As per our requirements, our application can’t
process two transactions simultaneously for the same account, which could
create a race condition in which we cannot guarantee we can enforce the bal-
ance check before withdrawing funds.

We will use Kafka’s inter-partition ordering guarantees to implement serializable
(ordered) processing of transactions for a particular account. We also have a data gen-
erator program that writes simulated transaction requests to the Kafka topic with a key
equal to the transaction’s account number. We can, therefore, ensure all transactions
will be processed by a single instance of our transaction service, no matter how many
applications are concurrently running. Kafka Streams won’t commit any message off-
set until it completes our business logic of managing a transaction request.

 We introduce the Processor API by implementing a transformer component from
Kafka Streams. This utility allows us to process events one by one while interacting
with a state store, another element of Kafka Streams that helps us persist our account
balance in a local instance of an embedded database, RocksDB. Finally, we will write a
second stream processor to generate a detailed transaction statement enriched with
account details. Rather than creating another Kafka Streams application, we will use
ksqlDB to declare a stream processor that will enrich our transactional data in real
time with our referential data coming from the account topic.

 This section aims to show how we can use an SQL-like query language to create
stream processors (with functionality similar to Kafka Streams) without compiling and
running any code. We’ll dig into the Kafka Streams API’s details after reviewing the
concepts of stream-processing applications.

12.1 Kafka Streams
In general, stream processing (or streaming) is a process or application you implement
that deals with an uninterrupted flow of data and performs work as soon as that data
arrives, as discussed in chapter 2. This application does not execute on a regular
schedule or even query a database for data. Views can be created from the data, but
we are not limited to a point-in-time view. Enter Kafka Streams!

 Kafka Streams is a library and not a standalone cluster [1]. Notice that this descrip-
tion includes the word library. This alone can help us create stream processing for our
applications. No other infrastructure is required besides the need to utilize an existing
Kafka cluster [2]. The Kafka Streams library is a part of our JVM-based application.

 Not having additional components makes this API one that can be easily tested
when starting with a new application. Though other frameworks might require more
cluster management components, Kafka Streams applications can be built and
deployed using any tool or platform that allows JVM-based applications to run.

NOTE Our application won’t run on the brokers of our cluster. For that rea-
son, we will run our application outside the Kafka cluster. This approach



211Kafka Streams
guarantees the separation of concerns in resource management for Kafka
brokers and stream processors.

The Streams API performs per-record or per-message processing [3]. You won’t want
to wait for a batch to form or delay that work if you’re concerned about your system
reacting to events as soon as they are received.

 As we consider how to implement our applications, one of the first questions that
comes to mind is choosing a producer/consumer client for the Kafka Streams library.
Although the Producer API is excellent for taking precise control of how our data gets
to Kafka and the Consumer API for consuming events, sometimes we might not want
to implement every aspect of the stream-processing framework ourselves. Instead of
using lower-level APIs for stream processing, we want to use an abstraction layer that
allows us to work with our topics more efficiently.

 Kafka Streams might be a perfect option if our requirements include data transfor-
mations with potentially complex logic consuming and producing data back into
Kafka. Streams offer a choice between a functional DSL and the more imperative Pro-
cessor API [2]. Let’s take a first look at the Kafka Streams DSL.

12.1.1 KStreams API DSL

The first API that we’re going to look at is the KStreams API. Kafka Streams is a data-
processing system designed around the concept of a graph, one that doesn’t have any
cycles in it [2]. It has a starting node and an ending node, and data flows from the
starting node to the ending node. Along the way, nodes (or processors) process and
transform the data. Let’s take a look at a scenario where we can model a data-process-
ing process as a graph.

 We have an application that gets transactions from a payment system. At the begin-
ning of our graph, we need a source for this data. Because we’re using Kafka as a data
source, a Kafka topic will be our starting point. This origin point is often referred to as
a source processor (or source node). This starts the processing; there aren’t any previous pro-
cessors. Our first example, therefore, is an existing service that captures transactions
from an external payment system and places transaction request events into a topic.

NOTE We will simulate this behavior with a simple data generator
application.

Domain-specific languages (DSLs)
DSLs are meant to provide a language that makes it easier to work with a specific
subject. SQL (used commonly with databases) and HTML (used for creating web
pages) are good examples of languages to consider using with DSLs (see https://
martinfowler.com/dsl.html). Although the official Kafka Streams documentation
refers to the high-level Kafka Streams API as a DSL, we like to refer to it as a fluent
API or, as Martin Fowler describes it, a fluent interface (see https://martin
fowler.com/bliki/FluentInterface.html).

https://martinfowler.com/dsl.html
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/dsl.html
https://martinfowler.com/dsl.html


212 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB
A transaction request event is needed to update the balance for a particular account.
The results of the transaction processor go into two Kafka topics: successful trans-
actions land in transaction-success and unsuccessful transactions land in
transaction-failure. Because this is the end of the road for our small application,
we will create a pair of sink processors (or sink nodes) to write to our success or failure
topics.

NOTE Some processor nodes may not have a connection to sink nodes. In
this case, those nodes create side effects elsewhere (e.g., printing information
to the console or writing data to the state stores) and do not require sending
data back to Kafka.

Figure 12.1 shows a DAG (directed acyclic graph) representation of how data flows.
Figure 12.2 shows you how this DAG maps out to the Kafka Streams topology.

Figure 12.1 DAG (directed acyclic graph) of our stream-processing application

Source
processor

Print
processor

To table
processor

Transform
processor

Filter
processor

Filter
processor

Transaction-
success sink

processor

Transaction-
failed sink
processor



213Kafka Streams
Figure 12.2 Topology for your transaction-processing application

Now that we have a map for a guide, let’s look at what this application looks like with
the DSL code. Unlike our earlier examples, when using this API, we don’t need to
reach a consumer directly to read our messages, but we can use a builder to start creat-
ing our stream. Listing 12.1 shows the creation of a source processor.

IMPORTANT At this point, we’re defining our topology, but not invoking it, as
processing hasn’t started yet.

In the listing, we use a StreamsBuilder object in order to create a stream from the
Kafka topic transaction-request. Our data source is transaction-request and is
the logical starting point for our processing.

change-log-2 change-log-1

funds store
"latest-

transactions"

"transaction-success"

"transaction-request"

TransactionProcessor

TransactionTransformer

"transaction-failed" 

Kafka topic

Legend

State store, RocksDB

transaction-processor-funds-store-changelog

transaction-processor-latest-transactions-changelog

change-log-1

change-log-2

Kafka streams instance



214 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB

y 
 

 

StreamsBuilder builder = new StreamsBuilder()

KStream<String, Transaction> transactionStream =
builder.stream("transaction-request",

Consumed.with(stringSerde, transactionRequestAvroSerde));

The next step is to add to our topology using the KStream that we created from the
source processor. The following listing shows this task.

final KStream<String, TransactionResult> resultStream =
transactionStream.transformValues(
() -> new TransactionTransformer()

);

resultStream
.filter(TransactionProcessor::success)
.to(this.transactionSuccessTopicName,
Produced.with(Serdes.String(), transactionResultAvroSerde));

resultStream
.filterNot(TransactionProcessor::success)
.to(this.transactionFailedTopicName,
Produced.with(Serdes.String(), transactionResultAvroSerde));

KafkaStreams kafkaStreams =

➥ new KafkaStreams(builder.build(), kaProperties);
kafkaStreams.start();
...
kafkaStreams.close();

Although we have only one processing node, which doesn’t involve reading and writing
data, it is easy to see how we could chain multiple nodes on our path. Looking over the
code in listing 12.2, you might notice the lack of direct usage of the following:

 A consumer client to read from the source topic as in chapter 5
 A producer client to send our messages at the end of the flow as in chapter 4

This layer of abstraction allows us to work on our logic rather than the details. Let’s
look at another practical example. Imagine we simply want to log transaction requests
in the console without processing them. The following listing shows the reading of
transaction events from the transaction-request topic.

Listing 12.1 Source topic DSL definition

Listing 12.2 Processor and sink topic definition

The starting point for 
building our topology

Builds a KStream object for
transaction-request to start our

processing from this topic

Continues building our topolog
using the stream created from
the previous source processor

Depending on the transaction success
criteria, our sink processor writes to

one of two topics: transaction-
success or transaction-failed.

Passes our topology and 
configuration to create a 
KafkaStreams object

Starts our stream application, which 
continues in the same way as if we had 
consumer clients polled in an infinite loopCloses the stream

to stop processing



 

215Kafka Streams

 

KStream<String, Transaction> transactionStream =
builder.stream("transaction-request",

 Consumed.with(stringSerde, transactionRequestAvroSerde));

transactionStream.print(Printed.<String, Transaction>toSysOut()
.withLabel("transactions logger"));

KafkaStreams kafkaStreams = new KafkaStreams(builder.build(), kaProperties);
kafkaStreams.cleanUp();
kafkaStreams.start();
...

This flow is so simple that we just write out the transactions to the console, but we
could have used an API call to send an SMS or email as well. Notice the added call to
cleanup() before starting the application. This method provides a way to remove the
local state stores for our application. Just remember to only do this before the start or
after closing the application.

 Despite the ease of use of KStreams, they are not the only way we can process our
data. The KTable API provides us with an alternative to always add events to our view
by representing data as updates instead. 

12.1.2 KTable API

Although a KStream can be thought of as event data always being appended to our
log, a KTable allows us to think about a log-compacted topic [2]. In fact, we can also
draw a parallel to a database table that deals with updates in place. Recall from work-
ing with compacted topics in chapter 7 that our data needs to have a key for this to
work. Without a key, the value to be updated won’t really make practical sense. Run-
ning the code in the following listing, we see that not every order event shows up.
Instead, we see only the distinct orders.

StreamsBuilder builder = new StreamsBuilder();

KTable<String, Transaction> transactionStream =
builder.stream("transaction-request",

Consumed.with(stringSerde, transactionRequestAvroSerde),
Materialized.as("latest-transactions"));

KafkaStreams kafkaStreams = new KafkaStreams(builder.build(), kaProperties);

What is familiar with this listing is the way we build the stream. We use a builder to cre-
ate the steps and then, once it is defined, we call start. Until that moment, nothing
processes in our application. 

Listing 12.3 Transaction tracker KStream

Listing 12.4 Transaction KTable

Sources our data from the topic 
transaction-request and uses a custom
Transaction object to hold our data

Prints the transactions
as we get them, so we
can more easily follow

along with the example

Cleans up the local data 
store, ensuring that we run 
without the past state

StreamsBuilder.table() creates 
a KTable from the topic 
transaction-request.

KTable records materialize locally in
the latest-transactions state store.



216 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB

 

 

12.1.3 GlobalKTable API

Although similar to KTable, the GlobalKTable is populated with data from all parti-
tions of a topic [2]. The foundational knowledge about topics and partitions pays off
when understanding these abstractions, as shown in how the KafkaStreams instances
consume each partition of a topic. Listing 12.5 is an example of using a join with a
GlobalKTable. Imagine a stream that gets updated with details about a mailed pack-
age for a customer. These events contain the customer ID, and we can then join on a
customer table to find their associated email and send a message.

...
StreamsBuilder builder = new StreamsBuilder();

final KStream<String, MailingNotif> notifiers =
builder.stream("kinaction_mailingNotif");

final GlobalKTable<String, Customer> customers =
builder.globalTable("kinaction_custinfo");

lists.join(customers,
(mailingNotifID, mailing) -> mailing.getCustomerId(),
(mailing, customer) -> new Email(mailing, customer))
.peek((key, email) ->

emailService.sendMessage(email));

KafkaStreams kafkaStreams = new KafkaStreams(builder.build(), kaProperties);
kafkaStreams.cleanUp();
kafkaStreams.start();
...

As shown in listing 12.5, we can build a new GlobalKTable using the method
globalTable. Whereas a table that is not global might not consume all the input
topic’s data due to multiple partitions, the global table consumes all partitions for
your running code [2].

NOTE The idea of a global table is to make the data available to our applica-
tion regardless of which partition it is mapped to.

Even though the Streams DSL has been excellent for quick use cases, sometimes we
might need more control as we send data along our logic paths. Developers can use
the Processor API alone or with the Streams DSL to provide even more options. 

12.1.4 Processor API

It’s important to note that when reviewing code for another streaming application or
even looking at getting into lower abstraction levels in our own logic, we might run
into examples from the Processor API. This is considered not as easy to use as the DSL

Listing 12.5 Mailing notification GlobalKTable

The notification stream listens 
for new messages about mailings 
to send to a customer.

GlobalKTable holds a list of Customer
information, including email.

The join method matches 
the customer that needs to
be notified with an email.



217Kafka Streams

Des
discussed in the previous sections, but it gives us more options and power over our
logic [2]. Let’s look at an example in the following listing, where we create a topology
and highlight the differences from our previous Streams applications.

import static org.apache.kafka.streams.Topology.AutoOffsetReset.LATEST;

public static void main(String[] args) throws Exception {
//...
final Serde<String> stringSerde = Serdes.String();
Deserializer<String> stringDeserializer = stringSerde.deserializer();
Serializer<String> stringSerializer = stringSerde.serializer();

Topology topology = new Topology();

topology = topology.addSource(LATEST,
"kinaction_source",
stringDeserializer,
stringDeserializer,
"kinaction_source_topic");

}
//...

First, we build our graph using the Topology object [4]. Setting the offset to LATEST
and listing our key and value deserializers should be familiar from when we set config-
uration properties for our client consumers in chapter 5. In listing 12.6, we named the
node kinaction_source, which reads from the topic kinaction_source_topic. Our
next step is to add a processing node, as the following listing shows.

topology = topology.addProcessor(
"kinactionTestProcessor",

() -> new TestProcessor(),
"kinaction_source");

Listing 12.7 shows that when we define a processing node, we give it a name
(kinactionTestProcessor, in this case) and associate the logic with the step. We also
list the nodes that will provide the data.

 To finish out our simple example, let’s look at listing 12.8. It shows how we define
two separate sinks to complete our topology. The sink is where we place our data at
the end of processing. The topic name and the key and value serializers should be
familiar from our earlier work with producer clients. As we did with the other parts of
the topology, we define kinactionTestProcessor as one of the nodes from which we
will get data in our flow.

Listing 12.6 Processor API source

Listing 12.7 Processor API processor node

Creates our flow with the 
Topology object

Sets the offset to LATEST
Names the node that we 
can refer to in later stepserializes

our key Deserializes 
our valueReads from this 

Kafka topic

Names our new 
processor node

Creates a processor instance 
from a ProcessorSupplier

One or a list of nodes 
sends data to this node.



S

218 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB

 

topology = topology.addSink(
"Kinaction-Destination1-Topic",

"kinaction_destination1_topic",
stringSerializer,
stringSerializer,
"kinactionTestProcessor");

topology = topology.addSink(
"Kinaction-Destination2-Topic",

"kinaction_destination2_topic",
stringSerializer,
stringSerializer,
"kinactionTestProcessor");

...

In our Processor code, we’re going to show how we can use logic to direct the flow of
our data. Our kinactionTestProcessor enables us to forward the flow, including the
key and value, to the sink named Kinaction-Destination2-Topic. Although this is
hardcoded in the following listing, we can use logic to determine when to send data to
the second sink.

public class KinactionTestProcessor
extends AbstractProcessor<String, String> {

@Override
public void process(String key, String value) {

context().forward(key, value,
To.child("Kinaction-Destination2-Topic"));

}
}

Even though it’s easy to see that the code is more verbose than our DSL examples, the
important thing is the control we now have in our logic that was not shown in our sim-
ple flow with the DSL API. If we want to control the schedule of when processing
occurs or even the commit time for results, we’ll need to dig into more complex Pro-
cessor API methods. 

12.1.5 Kafka Streams setup

While our example application only uses a single instance, streaming applications can
scale by increasing the number of threads and deploying more than one instance. As
with the number of instances of a consumer in the same consumer group, our applica-
tion’s parallelism is related to the number of partitions in its source topic [5]. For
example, if our starting input topic has eight partitions, we would plan to scale to
eight instances of our application. Unless we want to have an instance ready in case of
failure, we won’t have more instances because they won’t take any traffic.

Listing 12.8 Processor API processor sink

Listing 12.9 Processor custom code

Names a 
sink node Names the output 

topic we plan to use

erializes
our key

Serializes 
our value

Defines the node that feeds 
us data to write to the sink

Adds a second sink 
to our topology

Extends AbstractProcessor to 
implement the process 
method for our custom logic

Hardcoded value, but we 
can also direct the forward 
with additional logic



219ksqlDB: An event-streaming database
 When we think about our application’s design, it is crucial to mention the process-
ing guarantees that our use case requires. Kafka Streams supports at-least-once and
exactly-once processing semantics.

NOTE In version 2.6.0, exactly-once beta was introduced. This version enables
higher throughput and scalability by attempting to reduce resource utilization [6].

If your application logic depends on exactly-once semantics, having your Kafka
Streams application within the walls of the Kafka ecosystem helps ensure this possibil-
ity. As soon as you send data outside into external systems, you need to look at how
they achieve any promised delivery options. Whereas the Streams API can treat
retrieving topic data, updating the stores, and writing to another topic as one atomic
operation, external systems cannot. System boundaries become significant when they
impact your guarantees.

 As a reminder, with at-least-once delivery, it is crucial to note that although data
should not be lost, you might have to prepare for the situation where your messages are
processed more than once. At the time of writing, at-least-once delivery is the default
mode, so make sure you’re okay with addressing duplicate data in your application logic.

 Kafka Streams is designed with fault tolerance in mind. It does so in the ways that
we have seen before in our Kafka cluster. The state stores in use are backed by a repli-
cated Kafka topic that is partitioned. Due to Kafka’s ability to retain messages and
replay what happened before a failure, users can successfully continue without manu-
ally recreating their state. If you’re interested in continuing deeper into what Kafka
Streams can offer, we recommend Kafka Streams in Action (https://www.manning.com/
books/kafka-streams-in-action) by William P. Bejeck Jr. (Manning, 2018) because it
dives further into the details. 

12.2 ksqlDB: An event-streaming database
ksqlDB (https://ksqldb.io) is an event-streaming database. This product was first intro-
duced as KSQL, but the project underwent a name change in November 2019.  Apache
Kafka has developed various clients to help make our data work easier.

 ksqlDB exposes the power of Kafka to anyone who has ever used SQL. Suddenly,
no Java or Scala code is needed to use the topics and data inside our clusters. Another
primary driver is that as users worked with the entire application lifecycle, it was often
the case that Kafka provided a part of the flow and not the whole architecture needed.
Figure 12.3 shows an example of one way that we could utilize Kafka.

Figure 12.3 Example Kafka application flow

Order

Web user End user

Reporting UI

External
database

External
database

Kafka 
Connect

Moving data out of 
kinaction_alerttrend, 

for example

Kafka 
Connect

Kafka cluster

https://ksqldb.io
https://www.manning.com/books/kafka-streams-in-action
https://www.manning.com/books/kafka-streams-in-action


220 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB
Notice that to serve users, the data from Kafka is moved into an external data store.
For example, imagine an application that triggers an order in an e-commerce system.
An event is triggered for each stage of the order process and acts as a status for the
purchaser to know what is happening with their order in a report.

   Before ksqlDB, it was often the
case that the order events would be
stored in Kafka (and processed
with Kafka Streams or Apache
Spark) and then moved to the
external system using the Kafka
Connect API. The application
would then read from that database
the view created from the event
stream to show the user as a point-
in-time state. With the pull query
and connector management fea-
tures added to ksqlDB, developers
gained a path to remain within the
ecosystem to show users these mate-

rialized views. Figure 12.4 shows a high-level overview of how the Kafka ecosystem can
provide a more consolidated application without the need for external systems.We’ll
dig into the types of queries that ksqlDB supports, starting with the pull queries that we
just introduced.

12.2.1 Queries

Pull queries and push queries can help us build applications. Pull queries fit well when
used in a synchronous flow like request-and-response patterns [7]. We can ask for the
current state of the view that has been materialized by events that have arrived. The
query returns a response and is considered completed. Most developers are familiar
with this pattern and should know that the data is a point snapshot of their events
when the query was retrieved.

 Push queries, on the other hand, can work well when used in asynchronous patterns
[7]. In effect, we subscribe much like we did when using a consumer client. As new
events arrive, our code can respond with the necessary actions. 

12.2.2 Local development

Although we’ve tried to avoid bringing in extra technologies besides Kafka proper, the
easiest way to go with ksqlDB local is with Confluent’s Docker images. At https://
ksqldb.io/quickstart.html you can download images that include a complete Kafka
setup or just the ksqldb-server and ksqldb-cli files.

 If you’re using the Docker images, you can start those images with docker-compose
up. Now you should be able to use ksqldb-cli to create an interactive session from your
command terminal to your KSQL server. As users know, after you have your database

Event to
ksqlDB

Push/pull
queries

Web user

ksqlDB

Kafka cluster

End users

Reporting UI
Using connectors
and streams

Figure 12.4 ksqlDB example Kafka application flow

https://ksqldb.io/quickstart.html
https://ksqldb.io/quickstart.html


221ksqlDB: An event-streaming database
server, you need to define your data. For more information on running Kafka and
tools using Docker, see appendix A. The following listing shows the command we can
run in order to leverage Docker to start an interactive ksqlDB session [8].

docker exec -it ksqldb-cli \
ksql http://ksqldb-server:8088

> SET 'auto.offset.reset'='earliest';

Next, let’s look at an example of a situation where we can start to discover ksqlDB with
an extension of our transaction processor. Using existing data from processed transac-
tions, we’ll learn how we can generate a statement report. The statement report includes
extended (or enriched) information about the transaction’s account. We will achieve
this by joining successful transactions with account data. Let’s start with creating a
stream of a successful transactions from Kafka’s topic.

NOTE Because data was previously available in a Kafka topic from our Kafka
Streams application, we may need to reset the offset with the command SET
'auto.offset.reset' = 'earliest'; so ksqlDB will be able to work with the
existing data. We’ll need to run this command before we execute the CREATE
statement. Listing 12.11 shows our next step in the process, creating a stream
for transaction success that reads from the topic transaction-success.

CREATE STREAM TRANSACTION_SUCCESS (
numkey string KEY,
transaction STRUCT<guid STRING, account STRING,

amount DECIMAL(9, 2), type STRING,
currency STRING, country STRING>,

funds STRUCT<account STRING,
balance DECIMAL(9, 2)>,

success boolean,
errorType STRING

) WITH (
KAFKA_TOPIC='transaction-success',
VALUE_FORMAT='avro');

Because ksqlDB supports work with nested data, we used a nested type Transaction in
the TransactionResult class in our Kafka Streams example. Using the STRUCT key-
word, we defined a structure of a nested type. Additionally, ksqlDB integrates with the
Confluent Schema Registry and natively supports schemas in Avro, Protobuf, JSON,
and JSON-schema formats. Using this Schema Registry integration, ksqlDB can use
schemas to infer or discover stream or table structures in many cases. This is a tremen-
dous help for enabling effective collaboration between microservices, for example.

Listing 12.10 Creating an interactive session with ksqlDB

Listing 12.11 Creating a stream for successful transactions

Connects to the ksqlDB server to 
run commands from your terminal

Sets the offset reset policy to 
earliest, letting ksqlDB process data 
already available in Kafka topics

Tells ksqlDB about 
the record key

ksqlDB supports 
work with nested data.

Using the KAFKA_TOPIC attribute 
of the WITH clause, specifies 
which topic to read from

Integrates ksqlDB 
with schemas in Avro



222 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB
 As mentioned, we need to use comprehensive information about accounts. In con-
trast to the history of successful transactions, we are not interested in a complete his-
tory of account information changes. We just need to have a lookup of accounts by
account ID. For that purpose, we can use TABLE in ksqlDB. The following listing shows
how to do this.

CREATE TABLE ACCOUNT (number INT PRIMARY KEY)
WITH (KAFKA_TOPIC = 'account', VALUE_FORMAT='avro');

The next step is to populate our table. Despite the SQL statement in listing 12.13
looking similar to SQL statements you may have run in the past, we want to draw your
attention to a small but mighty difference. The use of EMIT CHANGES creates what we
had previously discussed as a push query. Instead of returning to our command
prompt, this stream runs in the background!

CREATE STREAM TRANSACTION_STATEMENT AS
SELECT *
FROM TRANSACTION_SUCCESS
LEFT JOIN ACCOUNT

ON TRANSACTION_SUCCESS.numkey = ACCOUNT.numkey
EMIT CHANGES;

To test our query, we need a new instance of the ksqldb-cli file to insert data into our
stream to continue producing test transactions. The Kafka Streams application pro-
cesses those transactions. In case of success, the Kafka Streams processor writes the
result to a transaction-success topic, where it will be picked up by ksqlDB and used
in TRANSACTION_SUCCESS and TRANSACTION_STATEMENT streams. 

12.2.3 ksqlDB architecture

By using the Docker images, we glossed over the architecture that is part of ksqlDB.
But it’s important to know that unlike the Streams API, ksqlDB requires additional
components to run. The main component is called the ksqlDB server [9]. This server is
responsible for running the SQL queries submitted to it and getting data to and from
our Kafka cluster. In addition to the query engine, a REST API also is provided. This
API is used by the ksqldb-cli file that we used in the examples [9].

 Another item that we should consider is one of the deployment modes. Called
headless, this mode prohibits developers from running queries through the command
line interface [10]. To configure this mode, we can either start the ksqlDB server with
the --queries-file command line argument or update the ksql-server.properties file

Listing 12.12 Creating a ksqlDB table

Listing 12.13 A transaction statement stream with account information

Chooses the account number field 
as a primary key for our table

Using the Avro schema, 
ksqlDB learns about fields 
in the account table.



223Going further

ich 
[10]. Of course, this means that a query file is also required. The following listing
shows how to start ksqlDB in headless mode [10].

bin/ksql-server-start.sh \
etc/ksql/ksql-server.properties --queries-file kinaction.sql

Now that we have used Kafka Streams and ksqlDB, how do we know which one to
reach for as we approach new tasks? Though not a read-eval-print loop (REPL)
directly, running some quick prototype tests and trials with ksqldb-cli might be a great
way to start new applications. Another key for ksqlDB is that users who are not run-
ning Java or Scala (JVM languages) can find the Kafka Streams feature set available
with this SQL option. Users looking to build microservices would likely find the
Streams API a better fit. 

12.3 Going further
Even though we just introduced Kafka Streams and ksqlDB, there are still many more
resources to help you continue your Kafka learning. The following sections look at a
few of those resources.

12.3.1 Kafka Improvement Proposals (KIPs)

While it might not seem like the most exciting option, following Kafka Improvement
Proposals (KIPs) is really one of the best ways to keep current with Kafka. Even
though not everything that gets proposed is implemented, it is interesting to see what
other users of Kafka think is worth exploring as use cases change over time.

 As we saw in chapter 5, KIP 392 (http://mng.bz/n2aV) was motivated by the need
for users to fetch data when the partition leader was in a nonlocal data center. If Kafka
existed only in on-premises data centers without separate data centers for disaster
recovery, the proposal might not have gained acceptance. Reviewing these new KIPs
allows everyone to understand the issues or features fellow Kafka users experience in
their day-to-day life. KIPs are important enough to be addressed and discussed in key-
notes such as the Kafka Summit 2019, where KIP 500 (http://mng.bz/8WvD) was pre-
sented. This KIP deals with the replacement of ZooKeeper. 

12.3.2 Kafka projects you can explore

In addition to Kafka source code, searching GitHub or GitLab public repositories for
real-world uses of Kafka can help you learn from those projects. Although not all code
is equal in quality, hopefully, the previous chapters have given you enough informa-
tion to understand how the required pieces fall into place. This book pointed out a
couple of projects that use Kafka in some part to help power software, and these have
made their source code publicly viewable on GitHub. One example was Apache
Flume (https://github.com/apache/flume). 

Listing 12.14 Starting ksqlDB in headless mode

Starts ksqlDB in a non-
interactive mode in wh
the CLI will not work

http://mng.bz/8WvD
https://github.com/apache/flume
http://mng.bz/n2aV


224 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB
12.3.3 Community Slack channel

If you like a more interactive way to gather information and a great place to search for
or ask questions, visit the Confluent Community page (https://www.confluent.io/
community/). You’ll find a Slack group with channels focusing on Kafka’s specific
parts, such as clients, Connect, and many other Kafka topics. The number of detailed
questions that others have posted (and that you can post) shows the breadth of expe-
riences users are willing to explore and share. There is also a community forum where
you can introduce yourself and meet other vibrant members.

 Throughout this chapter, you have expanded your knowledge to learn about the
further abstractions of KStreams and ksqlDB and how these relate to your core
knowledge of Kafka. As the Kafka ecosystem evolves and changes, or even adds
new products, we are confident that Kafka’s foundations presented here will help
you understand what is going on internally. Good luck on your continuing Kafka
learnings!

Summary
 Kafka Streams provides stream processing in applications with per-record (or

per-message) processing. It is an abstraction layer over the producer and con-
sumer clients.

 Kafka Streams offers a choice between a functional DSL (domain-specific lan-
guage) and the Processor API.

 Streams can be modeled as a topology using the Kafka Streams DSLs.
 ksqlDB is a database that exposes the power of Kafka to those who already know

SQL. ksqlDB queries run continuously and can help us quickly prototype
streaming applications.

 Kafka Improvement Proposals (KIPs) are a great way to see what changes are
being requested and implemented in future Kafka versions.

References
1 “Documentation: Kafka Streams.” Apache Software Foundation (n.d.). https://

kafka.apache.org/documentation/streams/ (accessed May 30, 2021).
2 “Streams Concepts.” Confluent documentation (n.d.). https://docs.confluent

.io/platform/current/streams/concepts.html (accessed June 17, 2020).
3 “Documentation: Kafka Streams: Core Concepts.” Apache Software Foundation

(n.d.). https://kafka.apache.org/26/documentation/streams/core-concepts
(accessed June 25, 2021).

4 “Kafka Streams Processor API.” Confluent documentation (n.d.). https://
docs.confluent.io/platform/current/streams/developer-guide/processor-api
.html#streams-developer-guide-processor-api (accessed August 22, 2021).

5 “Streams Architecture.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/streams/architecture.html (accessed June 17, 2020).

https://www.confluent.io/community/
https://www.confluent.io/community/
https://kafka.apache.org/documentation/streams/
https://kafka.apache.org/documentation/streams/
https://docs.confluent.io/platform/current/streams/concepts.html
https://docs.confluent.io/platform/current/streams/concepts.html
https://docs.confluent.io/platform/current/streams/concepts.html
https://kafka.apache.org/26/documentation/streams/core-concepts
https://docs.confluent.io/platform/current/streams/developer-guide/processor-api.html#streams-developer-guide-processor-api
https://docs.confluent.io/platform/current/streams/developer-guide/processor-api.html#streams-developer-guide-processor-api
https://docs.confluent.io/platform/current/streams/developer-guide/processor-api.html#streams-developer-guide-processor-api
https://docs.confluent.io/platform/current/streams/architecture.html
https://docs.confluent.io/platform/current/streams/architecture.html
https://docs.confluent.io/platform/current/streams/architecture.html


225References
6 “Documentation: Streams API changes in 2.6.0.” Apache Software Foundation.
https://kafka.apache.org/26/documentation/streams/upgrade-guide#streams
_api_changes _260 (accessed August 22, 2021).

7 “ksqlDB Documentation: Queries.” Confluent documentation (n.d.). https://
docs.ksqldb.io/en/latest/concepts/queries/ (accessed May 5, 2021).

8 “ksqlDB: Configure ksqlDB CLI.” Confluent documentation (n.d.). https://
docs.ksqldb.io/en/0.7.1-ksqldb/operate-and-deploy/installation/cli-config/
(accessed August 23, 2021).

9 “Installing ksqlDB.” Confluent documentation (n.d.). https://docs.confluent
.io/platform/current/ksqldb/installing.html (accessed June 20, 2020).

10 “Configure ksqlDB Server.” Confluent documentation (n.d.). https://docs
.ksqldb.io/en/latest/operate-and-deploy/installation/server-config/ (accessed
August 23, 2021).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://docs.ksqldb.io/en/latest/operate-and-deploy/installation/server-config/
https://docs.ksqldb.io/en/latest/operate-and-deploy/installation/server-config/
https://docs.ksqldb.io/en/latest/operate-and-deploy/installation/server-config/
https://kafka.apache.org/26/documentation/streams/upgrade-guide#streams_api_changes_260
https://kafka.apache.org/26/documentation/streams/upgrade-guide#streams_api_changes_260
https://docs.ksqldb.io/en/latest/concepts/queries/
https://docs.ksqldb.io/en/latest/concepts/queries/
https://docs.ksqldb.io/en/0.7.1-ksqldb/operate-and-deploy/installation/cli-config/
https://docs.ksqldb.io/en/0.7.1-ksqldb/operate-and-deploy/installation/cli-config/
https://docs.confluent.io/platform/current/ksqldb/installing.html
https://docs.confluent.io/platform/current/ksqldb/installing.html
https://docs.confluent.io/platform/current/ksqldb/installing.html


226 CHAPTER 12 Stream processing with Kafka Streams and ksqlDB
 
 
 
 
 
 
 
 
 
 



appendix A
Installation

Despite having a sophisticated feature set, the Apache Kafka installation process is
straightforward. Let’s look at setup concerns first.

A.1 Operating system (OS) requirements
Linux is the most likely home for Kafka, and that seems to be where many user sup-
port forums continue to focus their questions and answers. We’ve used macOS with
Bash (a default terminal before macOS Catalina) or zsh (the default terminal since
macOS Catalina). Though it’s totally fine to run Kafka on Microsoft® Windows® for
development, it’s not recommended in a production environment [1].

NOTE In a later section, we also explain installation using Docker (http://
docker.com). 

A.2 Kafka versions
Apache Kafka is an active Apache Software Foundation project, and over time, the
versions of Kafka are updated. Kafka releases have, in general, taken backward
compatibility seriously. If you want to use a new version, do so and update any parts
of the code marked as deprecated.

TIP Generally, Apache ZooKeeper and Kafka should not run on one phys-
ical server in a production environment if you want fault tolerance. For this
book, we wanted to make sure you focus on learning Kafka features instead
of managing multiple servers while you’re learning. 

A.3 Installing Kafka on your local machine
When some of the authors started using Kafka, one of the more straightforward
options was to create a cluster on a single node by hand. Michael Noll, in the article
“Running a Multi-Broker Apache Kafka 0.8 Cluster on a Single Node,” laid out the
steps in a clear manner, as reflected in this section’s setup steps [2].
227

http://docker.com
http://docker.com


228  APPENDIX A Installation
 Although written in 2013, this setup option is still a great way to see the details
involved and changes needed that might be missed in a more automated local setup.
Docker setup is also an option for local setup, provided later in this appendix if you
feel more comfortable with that.

 From our personal experience, you can install Kafka on a workstation with the fol-
lowing minimum requirements (however your results may vary from our preferences).
Then use the instructions in the following sections to install Java and Apache Kafka
(which includes ZooKeeper) on your workstation:

 Minimum number of CPUs (physical or logical): 2
 Minimum amount of RAM: 4 GB
 Minimum hard drive free space: 10 GB

A.3.1 Prerequisite: Java

Java is a prerequisite that you should install first. For the examples in this book, we use
the Java Development Kit (JDK) version 11. You can download Java versions from
https://jdk.dev/download/. We recommend using the SDKMAN CLI at http://sdk-
man.io to install and manage Java versions on your machine. 

A.3.2 Prerequisite: ZooKeeper

At the time of writing, Kafka also requires ZooKeeper, which is bundled with the Kafka
download. Even with the reduced dependency on ZooKeeper from the client side in
recent versions, Kafka needs a running installation of ZooKeeper to work. The
Apache Kafka distribution includes a compatible version of ZooKeeper; you don’t
need to download and install it separately. The required scripts to start and stop Zoo-
Keeper are also included in the Kafka distribution. 

A.3.3 Prerequisite: Kafka download

At the time of this book’s publication, Kafka version 2.7.1 (the version used in our
examples) was a recent release. The Apache® project has mirrors, and you can search
for the version to download in that way. To be automatically redirected to the nearest
mirror, use this URL: http://mng.bz/aZo7.

 After downloading the file, take a look at the actual binary filename. It might seem
a little confusing at first. For example, kafka_2.13-2.7.1 means the Kafka version is
2.7.1 (the information after the hyphen).

 To get the most out of the examples in this book while still making things easy to get
started, we recommend that you set up a three-node cluster on a single machine. This
is not a recommended strategy for production, however, but it will allow you to under-
stand critical concepts without the overhead of spending a lot of time on the setup.

NOTE Why bother to use a three-node cluster? Kafka’s various parts as a dis-
tributed system lend themselves to more than one node. Our examples simu-
late a cluster without the need for different machines in the hope of clarifying
what you are learning.

https://jdk.dev/download/
http://sdkman.io
http://sdkman.io
http://mng.bz/aZo7


229Installing Kafka on your local machine
After you install Kafka, you need to configure a three-node cluster. First, you need to
unpack the binary and locate the bin directory.

 Listing A.1 shows the tar command used to unpack the JAR file, but you might
need to use unzip or another tool, depending on your downloaded compression for-
mat [3]. It’s a good idea to include the Kafka scripts bin directory in your $PATH envi-
ronment variable. In this case, the commands are available without specifying a full
path to them.

$ tar -xzf kafka_2.13-2.7.1.tgz
$ mv kafka_2.13-2.7.1 ~/
$ cd ~/kafka_2.13-2.7.1
$ export PATH=$PATH:~/kafka_2.13-2.7.1/bin

NOTE For Windows users, you’ll find the .bat scripts under the bin/windows
folder with the same names as the shell scripts used in the following exam-
ples. You can use Windows Subsystem for Linux 2 (WSL2) and run the same
commands as you would use on Linux [1]. 

A.3.4 Starting a ZooKeeper server

The examples in this book use a single, local ZooKeeper server. The command in list-
ing A.2 starts a single ZooKeeper server [2]. Note that you’ll want to start ZooKeeper
before you begin any Kafka brokers. 

$ cd ~/kafka_2.13-2.7.1
$ bin/zookeeper-server-start.sh config/zookeeper.properties

A.3.5 Creating and configuring a cluster by hand

The next step is to create and configure a three-node cluster. To create your Kafka
cluster, you’ll set up three servers (brokers): server0, server1, and server2. We will
modify the property files for each server [2].

 Kafka comes with a set of predefined defaults. Run the commands in listing A.3 to
create configuration files for each server in your cluster [2]. We will use the default
server.properties file as a starting point. Then run the command in listing A.4 to open
each configuration file and change the properties file [2].

$ cd ~/kafka_2.13-2.7.1
$ cp config/server.properties config/server0.properties
$ cp config/server.properties config/server1.properties
$ cp config/server.properties config/server2.properties

Listing A.1 Unpacking the Kafka binary

Listing A.2 Starting ZooKeeper

Listing A.3 Creating multiple Kafka brokers

Adds the bin directory 
to your shell $PATH

After moving to your 
Kafka directory, makes 
three copies of the default 
server.properties file



230  APPENDIX A Installation
NOTE In our examples, we use vi as our text editor, but you can edit these
files with a text editor of your choice.

$ vi config/server0.properties

broker.id=0
listeners=PLAINTEXT://localhost:9092
log.dirs= /tmp/kafkainaction/kafka-logs-0

$ vi config/server1.properties

broker.id=1
listeners=PLAINTEXT://localhost:9093
log.dirs= /tmp/kafkainaction/kafka-logs-1

$ vi config/server2.properties
broker.id=2
listeners=PLAINTEXT://localhost:9094
log.dirs= /tmp/kafkainaction/kafka-logs-2

NOTE Each Kafka broker runs on its port and uses a separate log directory. It
is also critical that each configuration file has a unique ID for each broker
because each broker uses its own ID to register itself as a member of the clus-
ter. You will usually see your broker IDs start at 0, following a zero-based array-
indexing scheme.

After this, you can start each broker using the built-in scripts that are part of the initial
installation (along with the configuration files that you updated in listing A.4). If you
want to observe the Kafka broker output in the terminal, we recommend starting each
process in a separate terminal tab or window and leaving them running. The follow-
ing listing starts Kafka in a console window [2].

$ cd ~/kafka_2.13-2.7.1
$ bin/kafka-server-start.sh config/server0.properties
$ bin/kafka-server-start.sh config/server1.properties
$ bin/kafka-server-start.sh config/server2.properties

TIP If you close a terminal or your process hangs, do not forget about run-
ning the jps command [4]. That command will help you find the Java pro-
cesses you might need to kill.

Listing A.6 shows an example from one author’s machine where you can get the bro-
kers’ PIDs and ZooKeeper’s JVM process label (QuorumPeerMain) in the output from
the three brokers and the ZooKeeper instance. The process ID numbers for each
instance are on the left and will likely be different each time you run the start scripts.

Listing A.4 Configure server 0

Listing A.5 Starting Kafka in a console window

Updates id, port, and log 
directory for broker ID 0

Updates id, port, and log 
directory for broker ID 1

Updates id, port, and log 
directory for broker ID 2

After moving to your Kafka 
directory, starts each 
broker process (3 total)



231Confluent Platform
 

2532 Kafka
2745 Kafka
2318 Kafka
2085 QuorumPeerMain

Now that you know how to configure a local installation manually, let’s look at using
the Confluent Platform. Confluent Inc. (https://www.confluent.io/) offers the Con-
fluent Platform, a platform based on Apache Kafka. 

A.4 Confluent Platform
The Confluent Platform (find more at https://www.confluent.io/) is an enterprise-
ready packaging option that complements Apache Kafka with essential development
capabilities. It includes packages for Docker, Kubernetes, Ansible, and various others.
Confluent actively develops and supports Kafka clients for C++, C#/.NET, Python, and
Go. It also includes the Schema Registry, which we talk about in chapters 3 and 11.
Further, the Confluent Platform Community Edition includes ksqlDB. You learn
about stream processing with ksqlDB in chapter 12.

 Confluent also provides a fully managed, cloud-native Kafka service, which might
come in handy for later projects. A managed service provides Apache Kafka experi-
ence without requiring knowledge on how to run it. This is a characteristic that keeps
developers focused on what matters, which is coding. The Confluent version 6.1.1
download includes Apache Kafka version 2.7.1, which is used throughout this book.
You can follow easy installation steps from official Confluent documentation at http://
mng.bz/g1oV.

A.4.1 Confluent command line interface (CLI)

Confluent, Inc. also has command line tools to quickly start and manage its Confluent
Platform from the command line. A README.md on https://github.com/conflu
entinc/confluent-cli contains more details on the script usage and can be installed
with instructions from http://mng.bz/RqNR. The CLI is helpful in that it starts multi-
ple parts of your product as needed. 

A.4.2 Docker

Apache Kafka doesn’t provide official Docker images at this time, but Confluent does.
Those images are tested, supported, and used by many developers in production. In
the repository of examples for this book, you’ll find a docker-compose.yaml file with
preconfigured Kafka, ZooKeeper, and other components. To get all the components
up and running, issue the command docker-compose up -d in the directory with the
YAML file as the following listing shows.

NOTE If you are unfamiliar with Docker or don’t have it installed, check out
the official documentation at https://www.docker.com/get-started. You’ll find
instructions on installation at that site as well.

Listing A.6 jps output for ZooKeeper and three brokers

Kafka JVM process label 
and ID for each broker ZooKeeper JVM 

process label and ID

https://www.confluent.io/
https://www.confluent.io/
https://www.docker.com/get-started
http://mng.bz/RqNR
https://github.com/confluentinc/confluent-cli
https://github.com/confluentinc/confluent-cli
https://github.com/confluentinc/confluent-cli
http://mng.bz/g1oV
http://mng.bz/g1oV


232  APPENDIX A Installation
$ git clone \
https://github.com/Kafka-In-Action-Book/Kafka-In-Action-Source-Code.git

$ cd ./Kafka-In-Action-Source-Code
$ docker-compose up -d

Creating network "kafka-in-action-code_default" with the default driver
Creating Zookeeper... done
Creating broker2 ... done
Creating broker1 ... done
Creating broker3 ... done
Creating schema-registry ... done
Creating ksqldb-server ... done
Creating ksqldb-cli ... done

$ docker ps --format "{{.Names}}: {{.State}}"

ksqldb-cli: running
ksqldb-server: running
schema-registry: running
broker1: running
broker2: running
broker3: running
zookeeper: running

A.5 How to work with the book examples
You can use any IDE to open and run companion code for this book. Here are a few
suggestions for you:

 IntelliJ IDEA Community Edition (https://www.jetbrains.com/idea/download/)
 Apache Netbeans (https://netbeans.org)
 VS Code for Java (https://code.visualstudio.com/docs/languages/java)
 Eclipse STS (https://spring.io/tools)

A.5.1 Building from the command line

If you want to build from the command line, a few more steps are needed. The Java 11
examples in this book are built with Maven 3.6.3. You should be able to create the JAR
for each chapter when running from the root of the chapter directory in the folder
that contains the pom.xml file and issuing either ./mvnw verify or ./mvnw --proj-
ects KafkaInAction_Chapter2 verify from the root project level.

 We use the Maven Wrapper tool (http://mng.bz/20yo), so if you don’t have Maven
installed, either of the previous commands will download and run Maven for you. To
run a specific class, you will need to supply a Java class that contains a main method as
an argument after the path to your JAR. The following listing demonstrates how to
run a generic Java class from chapter 2.

NOTE You must use a JAR that has been built with all the dependencies to
run the command successfully.

Listing A.7 filename.sh for a Docker image

Clones a repository with 
book examples from GitHub

Starts Docker Compose in 
the examples directory

Observe the 
following output.

Validates that all components 
are up and running 

http://mng.bz/20yo
https://www.jetbrains.com/idea/download/
https://netbeans.org
https://code.visualstudio.com/docs/languages/java
https://spring.io/tools


233Troubleshooting
 

java -cp target/chapter2-jar-with-dependencies.jar \
replace.with.full.package.name.HelloWorldProducer

A.6 Troubleshooting
All of the source code for this book is at https://github.com/Kafka-In-Action-Book/
Kafka-In-Action-Source-Code. If you have problems running this book’s examples,
here are some general tips for troubleshooting:

 Make sure you have a cluster started before running the code and command line
examples in this book.

 If you do not shut down your cluster correctly, you might have an old process
holding on to a port that you want to use the next time you attempt to start up.
You can use tools like jps or lsof to help identify which processes are running
and which might need to be killed.

 You should start inside your installation directory when you run commands,
unless otherwise noted. If you are more comfortable with the command line, you
can complete your setups, such as adding environment variables and aliases.

 If you are having trouble with commands not being found, check the setup for
your installation directory. Do you have the files marked as executable? Does a
command like chmod -R 755 help? Is the installation bin folder part of your PATH
variable? If nothing else works, using the absolute path to the command should.

 Check the source code for each chapter for a Commands.md file. This is a file
that includes most commands used throughout a specific chapter. Look for the
README.md files for more notes as well. 

References
1 J. Galasyn. “How to Run Confluent on Windows in Minutes.” Confluent blog

(March 26, 2021). https://www.confluent.io/blog/set-up-and-run-kafka-on
-windows-and-wsl-2/ (accessed June 11, 2021).

2 M. G. Noll. “Running a Multi-Broker Apache Kafka 0.8 Cluster on a Single
Node.” (March 13, 2013). https://www.michael-noll.com/blog/2013/03/13/
running-a-multi-broker-apache-kafka-cluster-on-a-single-node/ (accessed July
20, 2021).

3 “Apache Kafka Quickstart.” Apache Software Foundation (n.d.). https://
kafka.apache.org/quickstart (accessed August 22, 2021).

4 README.md. Confluent Inc. GitHub (n.d.). https://github.com/conflu
entinc/customer-utilities (accessed August 21, 2021).

Listing A.8 Running the chapter 2 producer from the command line

https://www.confluent.io/blog/set-up-and-run-kafka-on-windows-and-wsl-2/
https://www.confluent.io/blog/set-up-and-run-kafka-on-windows-and-wsl-2/
https://www.confluent.io/blog/set-up-and-run-kafka-on-windows-and-wsl-2/
https://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
https://www.michael-noll.com/blog/2013/03/13/running-a-multi-broker-apache-kafka-cluster-on-a-single-node/
https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart
https://github.com/confluentinc/customer-utilities
https://github.com/confluentinc/customer-utilities
https://github.com/confluentinc/customer-utilities
https://github.com/Kafka-In-Action-Book/Kafka-In-Action-Source-Code
https://github.com/Kafka-In-Action-Book/Kafka-In-Action-Source-Code


appendix B
Client example

Although the code samples in this book focus on the Java Kafka clients, one of the
easiest ways to quickly draw parallels for new users might be to look at examples in
programming languages that they are more familiar with. The Confluent Platform
also has a list of included clients that it supports [1]. In this appendix, we’ll look at
Kafka Python clients and then provide some notes on testing your Java clients.

B.1 Python Kafka clients
For this example, we’ll look at the Confluent Python Client [2]. The benefit of
using a Confluent client is that you have a higher level of confidence that the cli-
ents are compatible, not only with Apache Kafka itself but also with the whole of
Confluent’s platform offerings. Let’s take a look at how to get started using Python
with two (one producer and one consumer) client examples. But first, a brief dis-
cussion on installing Python.

B.1.1 Installing Python

Assuming you are a Python user, you probably already have moved to Python 3 by
now. Otherwise, you will need to install librdkafka. If you are using Homebrew,
you can use the following command: brew install librdkafka [2].

 Next, you will need the client package that your code uses as a dependency. The
wheels package for Confluent Kafka can be installed with Pip using pip install
confluent-kafka [2]. With these prerequisites on your workstation, let’s look at
building a simple Python producer client. 

B.1.2 Python producer example

The following listing shows a simple Python producer client using confluent-kafka-
python [2]. It sends two messages to a topic called kinaction-python-topic.

 
 

234



235Python Kafka clients
 

from confluent_kafka import Producer

producer = Producer(
{'bootstrap.servers': 'localhost:9092'})

def result(err, message):
if err:

print('kinaction_error %s\n' % err)
else:

print('kinaction_info : topic=%s, and kinaction_offset=%d\n' %
(message.topic(), message.offset()))

messages = ["hello python", "hello again"]

for msg in messages:
producer.poll(0)
producer.produce("kinaction-python-topic",
value=msg.encode('utf-8'), callback=result)

producer.flush()

# Output
#kinaction_info: topic=kinaction-python-topic, and kinaction_offset=8

#kinaction_info: topic=kinaction-python-topic, and kinaction_offset=9

To use the Confluent package, you first need to make sure to import the dependency
confluent_kafka. You can then set up a Producer client with a set of configuration
values, including the address of the broker to connect to. In the listing, the result
callback is triggered to run some logic after each call to the produce method, whether
the call succeeds or fails. The sample code then iterates over the messages array to
send each message in turn. It then calls flush() to make sure that the messages are
actually sent to the broker as opposed to only being queued to be sent at a later time.
Finally, some sample output is printed to the console. Let’s now turn to the consum-
ing side and see how that works with Python. 

B.1.3 Python consumer

The following listing shows a sample Kafka consumer client using confluent-kafka-
python [3]. We will use it to read the messages produced by the Python Kafka pro-
ducer in listing B.1.

from confluent_kafka import Consumer

consumer = Consumer({
'bootstrap.servers': 'localhost:9094',
'group.id': 'kinaction_team0group',

Listing B.1 Python producer example

Listing B.2 Python consumer example

Imports the Confluent 
package first

Configures the producer client to 
connect to a specific Kafka broker

Acts as a callback for 
success and failure handling

The array containing 
the messages to send

Sends all messages 
to Kafka

Ensures that the messages are 
sent and not only buffered Sample output shows the metadata 

about the two sent messages

Imports the Confluent 
package first

Configures the consumer client to 
connect to a specific Kafka broker



236  APPENDIX B Client example
'auto.offset.reset': 'earliest'
})

consumer.subscribe(['kinaction-python-topic'])

try:
while True:

message = consumer.poll(2.5)

if message is None:
continue

if message.error():
print('kinaction_error: %s' % message.error())
continue

else:
print('kinaction_info: %s for topic: %s\n' %

(message.value().decode('utf-8'),
message.topic()))

except KeyboardInterrupt:
print('kinaction_info: stopping\n')

finally:
consumer.close()

# Output
# kinaction_info: hello python for topic: kinaction-python-topic

Similarly to the producer example in listing B.1, we first need to make sure that the
confluent_kafka dependency is declared. A Consumer client can then be set up with
configuration values, including the address of the broker to connect to. The con-
sumer client then subscribes to an array of topics it wants to consume messages from;
in this case, the single topic named kinaction-python-topic. And in the same way as
we did with the Java consumer client, we then use a never-ending loop in which the
consumer regularly polls Kafka for new messages. The sample output shows a success-
ful message as well as the offset of that message. In the event that the consumer is shut
down, the finally block attempts to gracefully close the client by leaving the con-
sumer group after committing any offsets consumed.

 The Python examples provided in this section are simple but aim at showing non-
Java developers that interacting with Kafka can be done with not only Python, but with
most programming languages. Just remember that not all clients support the same
level of features as the Java clients do. 

B.2 Client testing
Testing with EmbeddedKafkaCluster is briefly touched on in chapter 7. Now, we’ll
explore a few different alternatives to test Kafka code before deploying it to production.

B.2.1 Unit testing in Java

Unit testing focuses on checking a single unit of software. This isolated testing should,
ideally, not depend on any other components. But, how is it possible to test a Kafka cli-
ent class without connecting to an actual Kafka cluster?

Subscribes the consumer 
to a list of topics

Polls messages inside 
an infinite loop

Some cleanup 
to free resources Prints the consumed 

message to the console



237References
 If you are familiar with testing frameworks like Mockito (https://site.mockito.org/),
you might decide to create a mock producer object to stand in for the real one. Luck-
ily, the official Kafka client library already provides such a mock, named Mock-
Producer, that implements the Producer interface [4]. No real Kafka cluster is
needed to verify that the producer logic works! The mock producer also features a
clear method that can be called to clear the messages that have been recorded by the
mock producer so that other subsequent tests can be run [4]. Conveniently, the con-
sumer also has a mocked implementation to use as well [4]. 

B.2.2 Kafka Testcontainers

As also mentioned in chapter 7, Testcontainers (https://www.testcontainers.org/
modules/kafka/) are another option. Whereas the EmbeddedKafkaCluster option
depends on a process running the Kafka brokers and ZooKeeper nodes in memory,
Testcontainers depend on Docker images. 

References
1 “Kafka Clients.” Confluent documentation (n.d.). https://docs.confluent.io/

current/clients/index.html (accessed June 15, 2020).
2 confluent-kafka-python. Confluent Inc. GitHub (n.d.). https://github.com/

confluentinc/confluent-kafka-python (accessed June 12, 2020).
3 consumer.py. Confluent Inc. GitHub (n.d.). https://github.com/confluentinc/

confluent-kafka-python/blob/master/examples/consumer.py (accessed August
21, 2021).

4 MockProducer<K,V>. Kafka 2.7.0 API. Apache Software Foundation (n.d.).
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/producer/
MockProducer.html (accessed May 30, 2021).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://site.mockito.org/
https://www.testcontainers.org/modules/kafka/
https://www.testcontainers.org/modules/kafka/
https://docs.confluent.io/current/clients/index.html
https://docs.confluent.io/current/clients/index.html
https://github.com/confluentinc/confluent-kafka-python
https://github.com/confluentinc/confluent-kafka-python
https://github.com/confluentinc/confluent-kafka-python/blob/master/examples/consumer.py
https://github.com/confluentinc/confluent-kafka-python/blob/master/examples/consumer.py
https://github.com/confluentinc/confluent-kafka-python/blob/master/examples/consumer.py
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/producer/MockProducer.html
https://kafka.apache.org/27/javadoc/org/apache/kafka/clients/producer/MockProducer.html


238  APPENDIX B Client example
 
 
 



index
A

AbstractPartitionAssignor abstract class 101
acks property 83
ACLs (access control lists) 189–190
administration clients 159–163

AdminClient 159–161
Confluent REST Proxy API 162–163
kcat 161–162

advertised.listeners 167
Alert class 63, 77–78
Alert data object 78
Alert object 24, 62
Alert producer 171
Alert.java class 61
AlertConsumer class 173
AlertConsumerMetricsInterceptor class 173
AlertLevelPartitioner logic 138
AlertProducer class 172
AlertProducerMetricsInterceptor class 171–172
AlertStatus.java class 61
analytical data 151
Apache Flume 147–148
application logs 115, 164–166

brokers 115
Kafka logs 164–166
ZooKeeper logs 166

architectures 152–155
Kappa architecture 154–155
ksqlDB 222–223
Lambda architecture 153–154

assign method 107
at-least-once semantics 6
at-most-once semantics 6
audit log, sensor event design 54–57

authentication 183
authorization 183, 189–191

ACLs 189–190
RBAC 190–191

auto.offset.reset property 93, 104
autopurge.purgeInterval 166
autopurge.snapRetainCount 166

B

Bejeck, William P. Jr. 137
big data 152
Big Data (Marz) 153
--bootstrap-server option 20
bootstrap.servers parameter 34, 71, 83, 160
broker list 71–72
brokers 18–22

adding to cluster 122
backups 123
cluster maintenance 121
configurations 113–116

application logs 115
controller 116
server log 115–116

overview 111–112
partition replica leaders 117–119
upgrading clients 122
upgrading cluster 122
version, generating code for 84

C

Callback interface 82
CDC (change data capture) 149, 199
239



INDEX240
cleanup.policy 139
CLI (command line interface) 149

building from 232–233
Confluent Platform 231

client library, Schema Registry 203–204
client.id property 160, 192
clients

client testing 236–237
Kafka Testcontainers 237
unit testing in Java 236–237

overriding 173–174
upgrading 122
version, generating code for 84

clusters
adding broker to 122
cluster maintenance 121
creating and configuring by hand 229–231
multiple cluster setups 155
upgrading 122

commit log 29–30
compacted topics 139–141
compatibility 202
configurations

brokers 113–116
application logs 115
controller 116
server log 115–116

consumers 89–92
producers 70–76

broker list 71–72
timestamps 74–75

Schema Registry 201–202
Confluent Platform 231–232

CLI 47, 231
Docker 231–232

Confluent REST Proxy API 162–163
Confluent Schema Registry 201
confluent_kafka dependency 235–236
console-consumer command 46
consumer logic 172–173
__consumer_offsets topic 103, 140
ConsumerConfig class 89, 173
ConsumerInterceptor interface 173
ConsumerRecords 25
consumers 23–26

configurations 89–92
consumer interaction 96
coordinates 92–96
example 88–96
reading from compacted topic 103
retrieving code for factory requirements

103–108
reading options 103–105
requirements 105–108

tracking data 96–101
group coordinator 98–100
partition assignment strategy 100–101

controlled.shutdown.enable property 122
controllers 112, 116
coordinates 92–96
CQRS (Command Query Responsibility 

Segregation) 155
create action 133
CreateTime field 135
CRUD (create, read, update, and delete) 8
curl command 163

D

DAG (directed acyclic graph) 212
data loss, partition replica leaders and 119
data silos 50
data storage

architectures 152–155
Kappa architecture 154–155
Lambda architecture 153–154

data movement 146–147
batch mindset and 146–147
keeping original event 146

importing data back into Kafka 151–152
multiple cluster setups 155
retention 145–146
scaling 155
tiered storage 152
tools 147–151

Apache Flume 147–148
Red Hat Debezium 149
Secor 149–150

DDoS (distributed denial-of-service) 191
--delete option 134
delete-config parameter 193
delete.topic.enable option 132
--describe flag 125
designing Kafka projects

formatting data 57–64
data planning 58–59
dependency setup 59–64

sensor event design 49–57
audit log 54–57
data silos 50
organizing groups of data 57
recoverability 50
user data requirements 53–54
version features 52–53

DI Dependency Injection 8
directed acyclic graph (DAG) 212
distributed denial-of-service (DDoS) 191



INDEX 241
Docker 231–232
DSLs (domain-specific languages) 30, 209

E

EmbeddedKafkaCluster, testing partitions 
with 137–139

ensembles 28
ESB (enterprise service bus) 198
ETL (extract, transform, load) 3, 146, 199
Event Streaming with Kafka Streams and ksqlDB 

(Bejeck) 137
exactly-once semantics 6, 38

F

factory requirements, retrieving code for
reading options 103–105
requirements 105–108

fast data 10
FileStreamSource class 45
firewalls 166–167
formatting data

data planning 58–59
dependency setup 59–64

--from-beginning flag 93

G

GlobalKTable API 216
group coordinator 94, 98–100
group.id key 89

H

HDFS (Hadoop Distributed File System) 10, 146
headless mode 222

I

installing Kafka
book examples 232–233
Confluent Platform 231–232

CLI 231
Docker 231–232

on local machine 227–231
creating and configuring clusters by 

hand 229–231
Java 228
Kafka download 228–229
ZooKeeper 228–229

OS requirements 227
troubleshooting 233
versions 227

interceptor.classes property 172–173
invoice data, Kafka Connect 47
io.confluent.kafka.serializers.KafkaAvroSerializer 

class 77
ISRs (in-sync replicas) 20, 73, 115, 118

J

JAAS (Java Authentication and Authorization Ser-
vice) files 187

Java
as prerequisite for installing Kafka 228
clients 33–36
unit testing in 236–237

JMX console 167–170

K

Kafka
application logs 164–166
brokers 18–22
commit log 29–30
consumers 23–26
exactly-once semantics 38
high-level architecture 28–29
Java clients 33–36
myths about 10–11
online resources 15
overview 4–8
producers 23–26
producing and consuming messages 18
running as systemd service 163–164
source code packages 30–33

AdminClient package 32
Kafka Connect 31–32
Kafka Streams 30–31
ksqlDB 32–33

stream processing 36–38
topics 26–27
ZooKeeper usage 27–28

Kafka Improvement Proposals. See KIPs
Kafka Streams 30–31, 210–219

GlobalKTable API 216
KStreams API DSL 211–215
KTable API 215
Processor API 216–218
setup 218–219

Kafka Streams in Action (Bejeck) 137
Kafka Testcontainers

client testing 237
kafka-acls.sh CLI tool 190
kafka-console-consumer command 161
kafka-console-producer script 161



INDEX242
kafka-topics.sh command 19, 132
kafkaAppender: MaxFileSize property 165
KafkaConfig values 116
KafkaSink source code 83
Kappa architecture 154–155
kcat tool 161–162
Kerberos 187–189, 191
key.deserializer property 106
key.serializer property 79
keystore 186
keytab 188
kinaction_helloworld topic 19, 21, 26, 113, 132
kinaction_one_replica topic 115
kinaction_replica_test topic 125
KIPs (Kafka Improvement Proposals) 194, 223
ksqlDB 32–33, 219–223

architecture 222–223
local development 220–222
queries 220

KStreams API DSL 211–215
KTable API 215
Kubernetes clusters 156

L

Lambda architecture 153–154
leader 26
librdkafka command 234
listeners property 167
local development, ksqlDB 220–222
local machine, installing Kafka on 227–231

creating and configuring clusters by hand
229–231

prerequisites
Java 228
Kafka download 228–229
ZooKeeper 228

log compaction 56
log extension 135–136
log4j.properties 165
logging 164–166

Kafka logs 164–166
ZooKeeper logs 166
See also application logs

M

Marz, Nathan 153
maturity levels

Kafka maturity model 198–200
Level 0 198–199
Level 1 199
Level 2 199
Level 3 200

Schema Registry 200–202
alternative to 207
client library 203–204
compatibility rules 205–206
configuration 201–202
Confluent Schema Registry 201
REST API 202–203

max.in.flight.requests.per.connection value 70
message.timestamp.type topic configuration 75
mvn generate-sources command 61
mvn install command 61
myths about Kafka 10–11

Kafka is same as other message brokers 11
Kafka only works with Hadoop 10

N

network bandwidth quota 192–193
NONE type 205

O

OffsetCommitCallback interface 102
offsets 27, 92
offsetsForTimes method 104
org.apache.log4j.ConsoleAppender class 165

P

page cache 28
partition.assignment.strategy property 100
Partitioner interface 81
partitioner.class value 81
partitions 26, 134–137

Kafka Testcontainers 138–139
location 135–136
partition replica leaders 117–119
testing with EmbeddedKafkaCluster 137–139
viewing logs 136–137

--partitions option 19
Processor API 216–218
Producer interface 237
ProducerConfig class 172
ProducerInterceptor interface 171
ProducerRecord 24, 63, 74
producers 4, 23–26

configurations 70–76
broker list 71–72
timestamps 74

overview 67–70
Properties object 160
push queries 220, 222



INDEX 243
Python Kafka client example 234–236
consumers 235–236
producers 234–235

Q

--queries-file command line argument 222
queries, ksqlDB 220
QuorumPeerMain process label 230
quotas 191–194

network bandwidth quota 192–193
request rate quotas 193–194

R

range assigner 100
RBAC (role-based access control) 190–191
RecordMetadata object 84
records 18
recoverability, sensor event design 50
Red Hat Debezium 149
REPL (read–eval–print loop) 223
replica leader 21
Replicas field 20, 115
replication-factor parameter 132
request rate quotas 193–194
REST API 202–203
retention, data 145–146
round-robin strategy 100

S

SASL (Simple Authentication and Security 
Layer) 187–189

scaling, by adding clusters 155
Schema Registry 200–202

alternative to 207
client library 203–204
compatibility rules 205–206
configurations 201–202
Confluent Schema Registry 201
REST API 202–203

schema.registry.url property 62
_schemas topic name 201
Secor 149–150
security

authorization 189–191
ACLs 189–190
RBAC 190–191

basics 183–187
data management options 194–195
Kerberos 187–189
quotas 191–194

network bandwidth quota 192–193
request rate quotas 193–194

SASL 187–189
ZooKeeper 191

security.protocol 187
sensor event design 49–57

audit log 54–57
data silos 50
organizing groups of data 57
recoverability 50
user data requirements 53–54
version features 52–53

Serde 78
Serializer interface 78
server.log file 165
SimpleAclAuthorizer class 189
single sign-on. See SSO
SinkCallback class 84
Slack group channel 224
snapCount 166
source code packages

AdminClient package 32
Kafka Connect 31–32
Kafka Streams 30–31
ksqlDB 32–33

source processor 211
stateful systems, brokers and 123–124
stream processing 36–38

community Slack channel 224
Kafka Improvement Proposals 223
Kafka Streams 210–219

GlobalKTable API 216
KStreams API DSL 211–215
KTable API 215
Processor API 216–218
setup 218–219

ksqlDB 219–223
architecture 222–223
local development 220–222
queries 220

StreamsBuilder object 213
STRUCT keyword 221
subjects 202
systemctl commands 164
systemd service, running Kafka as 163–164

T

tar command 229
tiered data storage 152
.timeindex extension 135–136
timestamps 74–75
tools

administration clients 159–163
AdminClient 159–161



INDEX244
tools (continued)
Confluent REST Proxy API 162–163
kcat 161–162

advertised listeners 167
data storage 147–151

Apache Flume 147–148
Red Hat Debezium 149
Secor 149–150

firewalls 166–167
general monitoring tools 174–175
JMX console 167–170
running Kafka as systemd service 163–164

--topic clueful_secrets topic 182
topics 129–134

compaction 139–141
overview 26–27
reading from compacted topic 103
replication factors 134

Topology object 217
tracing option 170–174

consumer logic 172–173
overriding clients 173–174
producer logic 171–172

tracking data 96–101
group coordinator 98–100
partition assignment strategy 100–101

Transaction type 221
transaction-failure topic 212
transaction-request topic 209, 213–214
transaction-success topic 221–222
TransactionResult class 221

transactions-success topic 212
transitive types 205

U

UnderReplicatedPartitions name attribute 170

V

value.deserializer key 89
value.serializer parameter 34, 203

W

wakeup method 92
Warren, James 153
WorkerSinkTask class 25

Z

ZkData.scala class 113
zkNodes property 112
ZooKeeper 191

application logs 166
as prerequisite for installing Kafka 228
brokers 112–113
Kafka's use of 27–28
Kerberos setup 191
starting server 229

zookeeper.set.acl value 191



Kubernetes in Action, Second Edition
by Marko Lukša

ISBN 9781617297618  
775 pages (estimated), $59.99

Summer 2022 (estimated)

Algorithms and Data Structures for 
Massive Datasets
by Dzejla Medjedovic, Emin Tahirovic, 

and Ines Dedovic

ISBN 9781617298035
325 pages (estimated), $59.99

April 2022 (estimated)

Apache Pulsar in Action 
by David Kjerrumgaard

ISBN 9781617296888
400 pages, $49.99
December 2021

For ordering information, go to www.manning.com

RELATED MANNING TITLES



A new online reading experience

liveBook, our online reading platform, adds a new dimension to your Manning books, 

with features that make reading, learning, and sharing easier than ever. A liveBook 

version of your book is included FREE with every Manning book.

This next generation book platform is more than an online reader. It’s packed with 

unique features to upgrade and enhance your learning experience.

• Add your own notes and bookmarks

• One-click code copy

• Learn from other readers in the discussion forum

• Audio recordings and interactive exercises

• Read all your purchased Manning content in any browser, anytime, anywhere

As an added bonus, you can search every Manning book and video in liveBook—even 

ones you don’t yet own. Open any liveBook, and you’ll be able to browse the content and 

read anything you like.*

Find out more at www.manning.com/livebook-program.

*Open reading is limited to 10 minutes per book daily



Scott ●  Gamov ●  Klein
Foreword by Jun Rao

ISBN: 978-1-61729-523-2

T
hink of Apache Kafka as a high performance software bus 
that facilitates event streaming, logging, analytics, and 
other data pipeline tasks. With Kafka, you can easily build 

features like operational data monitoring and large-scale event 
processing into both large and small-scale applications.

Kafka in Action introduces the core features of Kafka, along 
with relevant examples of how to use it in real applications. In 
it, you’ll explore the most common use cases such as logging 
and managing streaming data. When you’re done, you’ll be 
ready to handle both basic developer- and admin-based tasks 
in a Kafka-focused team. 

What’s Inside
●  Kafka as an event streaming platform
●  Kafka producers and consumers from Java applications
●  Kafka as part of a large data project

For intermediate Java developers or data engineers. No prior 
knowledge of Kafka required.

Dylan Scott is a software developer in the insurance indus-
try. Viktor Gamov is a Kafka-focused developer advocate. At 
Confl uent, Dave Klein helps developers, teams, and enterprises 
harness the power of event streaming with Apache Kafka.

Register this print book to get free access to all ebook formats. 
Visit https://www.manning.com/freebook

$44.99 / Can $59.99  [INCLUDING eBOOK]

Kafka IN ACTION

SOFTWARE DEVELOPMENT/DATA

M A N N I N G

“Th e authors have had 
many years of real-world 

experience using Kafka, and 
this book’s on-the-ground 
  feel really sets it apart.”—From the foreword by Jun Rao

 Confl uent Cofounder 

“A surprisingly accessible 
introduction to a very 
complex technology. 
Developers will want 

 to keep a copy close by.” 
—Conor Redmond
InComm Payments

“A comprehensive and 
practical guide to Kafka 
 and the ecosystem.” 

—Sumant Tambe, Linkedin

“It quickly gave me insight 
into how Kafka works, 
and how to design and 

protect distributed 
message applications.” 

—Gregor Rayman, Cloudfarms

See first page


	Kafka in Action
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book?
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the authors
	about the cover illustration
	Part 1 Getting started
	1 Introduction to Kafka
	1.1 What is Kafka?
	1.2 Kafka usage
	1.2.1 Kafka for the developer
	1.2.2 Explaining Kafka to your manager

	1.3 Kafka myths
	1.3.1 Kafka only works with Hadoop®
	1.3.2 Kafka is the same as other message brokers

	1.4 Kafka in the real world
	1.4.1 Early examples
	1.4.2 Later examples
	1.4.3 When Kafka might not be the right fit

	1.5 Online resources to get started
	References

	2 Getting to know Kafka
	2.1 Producing and consuming a message
	2.2 What are brokers?
	2.3 Tour of Kafka
	2.3.1 Producers and consumers
	2.3.2 Topics overview
	2.3.3 ZooKeeper usage
	2.3.4 Kafka’s high-level architecture
	2.3.5 The commit log

	2.4 Various source code packages and what they do
	2.4.1 Kafka Streams
	2.4.2 Kafka Connect
	2.4.3 AdminClient package
	2.4.4 ksqlDB

	2.5 Confluent clients
	2.6 Stream processing and terminology
	2.6.1 Stream processing
	2.6.2 What exactly-once means

	References


	Part 2 Applying Kafka
	3 Designing a Kafka project
	3.1 Designing a Kafka project
	3.1.1 Taking over an existing data architecture
	3.1.2 A first change
	3.1.3 Built-in features
	3.1.4 Data for our invoices

	3.2 Sensor event design
	3.2.1 Existing issues
	3.2.2 Why Kafka is the right fit
	3.2.3 Thought starters on our design
	3.2.4 User data requirements
	3.2.5 High-level plan for applying our questions
	3.2.6 Reviewing our blueprint

	3.3 Format of your data
	3.3.1 Plan for data
	3.3.2 Dependency setup

	References

	4 Producers: Sourcing data
	4.1 An example
	4.1.1 Producer notes

	4.2 Producer options
	4.2.1 Configuring the broker list
	4.2.2 How to go fast (or go safer)
	4.2.3 Timestamps

	4.3 Generating code for our requirements
	4.3.1 Client and broker versions

	References

	5 Consumers: Unlocking data
	5.1 An example
	5.1.1 Consumer options
	5.1.2 Understanding our coordinates

	5.2 How consumers interact
	5.3 Tracking
	5.3.1 Group coordinator
	5.3.2 Partition assignment strategy

	5.4 Marking our place
	5.5 Reading from a compacted topic
	5.6 Retrieving code for our factory requirements
	5.6.1 Reading options
	5.6.2 Requirements

	References

	6 Brokers
	6.1 Introducing the broker
	6.2 Role of ZooKeeper
	6.3 Options at the broker level
	6.3.1 Kafka’s other logs: Application logs
	6.3.2 Server log
	6.3.3 Managing state

	6.4 Partition replica leaders and their role
	6.4.1 Losing data

	6.5 Peeking into Kafka
	6.5.1 Cluster maintenance
	6.5.2 Adding a broker
	6.5.3 Upgrading your cluster
	6.5.4 Upgrading your clients
	6.5.5 Backups

	6.6 A note on stateful systems
	6.7 Exercise
	References

	7 Topics and partitions
	7.1 Topics
	7.1.1 Topic-creation options
	7.1.2 Replication factors

	7.2 Partitions
	7.2.1 Partition location
	7.2.2 Viewing our logs

	7.3 Testing with EmbeddedKafkaCluster
	7.3.1 Using Kafka Testcontainers

	7.4 Topic compaction
	References

	8 Kafka storage
	8.1 How long to store data
	8.2 Data movement
	8.2.1 Keeping the original event
	8.2.2 Moving away from a batch mindset

	8.3 Tools
	8.3.1 Apache Flume
	8.3.2 Red Hat® Debezium™
	8.3.3 Secor
	8.3.4 Example use case for data storage

	8.4 Bringing data back into Kafka
	8.4.1 Tiered storage

	8.5 Architectures with Kafka
	8.5.1 Lambda architecture
	8.5.2 Kappa architecture

	8.6 Multiple cluster setups
	8.6.1 Scaling by adding clusters

	8.7 Cloud- and container-based storage options
	8.7.1 Kubernetes clusters

	References

	9 Management: Tools and logging
	9.1 Administration clients
	9.1.1 Administration in code with AdminClient
	9.1.2 kcat
	9.1.3 Confluent REST Proxy API

	9.2 Running Kafka as a systemd service
	9.3 Logging
	9.3.1 Kafka application logs
	9.3.2 ZooKeeper logs

	9.4 Firewalls
	9.4.1 Advertised listeners

	9.5 Metrics
	9.5.1 JMX console

	9.6 Tracing option
	9.6.1 Producer logic
	9.6.2 Consumer logic
	9.6.3 Overriding clients

	9.7 General monitoring tools
	References


	Part 3 Going further
	10 Protecting Kafka
	10.1 Security basics
	10.1.1 Encryption with SSL
	10.1.2 SSL between brokers and clients
	10.1.3 SSL between brokers

	10.2 Kerberos and the Simple Authentication and Security Layer (SASL)
	10.3 Authorization in Kafka
	10.3.1 Access control lists (ACLs)
	10.3.2 Role-based access control (RBAC)

	10.4 ZooKeeper
	10.4.1 Kerberos setup

	10.5 Quotas
	10.5.1 Network bandwidth quota
	10.5.2 Request rate quotas

	10.6 Data at rest
	10.6.1 Managed options

	References

	11 Schema registry
	11.1 A proposed Kafka maturity model
	11.1.1 Level 0
	11.1.2 Level 1
	11.1.3 Level 2
	11.1.4 Level 3

	11.2 The Schema Registry
	11.2.1 Installing the Confluent Schema Registry
	11.2.2 Registry configuration

	11.3 Schema features
	11.3.1 REST API
	11.3.2 Client library

	11.4 Compatibility rules
	11.4.1 Validating schema modifications

	11.5 Alternative to a schema registry
	References

	12 Stream processing with Kafka Streams and ksqlDB
	12.1 Kafka Streams
	12.1.1 KStreams API DSL
	12.1.2 KTable API
	12.1.3 GlobalKTable API
	12.1.4 Processor API
	12.1.5 Kafka Streams setup

	12.2 ksqlDB: An event-streaming database
	12.2.1 Queries
	12.2.2 Local development
	12.2.3 ksqlDB architecture

	12.3 Going further
	12.3.1 Kafka Improvement Proposals (KIPs)
	12.3.2 Kafka projects you can explore
	12.3.3 Community Slack channel

	References


	appendix A Installation
	A.1 Operating system (OS) requirements
	A.2 Kafka versions
	A.3 Installing Kafka on your local machine
	A.3.1 Prerequisite: Java
	A.3.2 Prerequisite: ZooKeeper
	A.3.3 Prerequisite: Kafka download
	A.3.4 Starting a ZooKeeper server
	A.3.5 Creating and configuring a cluster by hand

	A.4 Confluent Platform
	A.4.1 Confluent command line interface (CLI)
	A.4.2 Docker

	A.5 How to work with the book examples
	A.5.1 Building from the command line

	A.6 Troubleshooting

	appendix B Client example
	B.1 Python Kafka clients
	B.1.1 Installing Python
	B.1.2 Python producer example
	B.1.3 Python consumer

	B.2 Client testing
	B.2.1 Unit testing in Java
	B.2.2 Kafka Testcontainers

	References

	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

	Kafka in Action - back


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /CombiNumerals-Solid
    /HumanistMann521-BoldCondensed
    /Univers
    /Univers-Light
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




