

for Web Warriors
JavaScript

Australia • Brazil • Canada • Mexico • Singapore • United Kingdom • United States

Seventh Edition

Patrick Carey

Sasha Vodnik

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2022, 2015 Cengage Learning, Inc.

Unless otherwise noted, all content is © Cengage.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein
may be reproduced or distributed in any form or by any means, except as
permitted by U.S. copyright law, without the prior written permission of the
copyright owner.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706

or support.cengage.com.

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions.

Library of Congress Control Number: 2021909896

ISBN: 978-0-357-63800-2

Cengage
200 Pier 4 Boulevard
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

To learn more about Cengage platforms and services, register or access
your online learning solution, or purchase materials for your course,
visit www.cengage.com.

Notice to the Reader
Publisher does not warrant or guarantee any of the products described
herein or perform any independent analysis in connection with any of the
product information contained herein. Publisher does not assume, and
expressly disclaims, any obligation to obtain and include information other
than that provided to it by the manufacturer. The reader is expressly warned
to consider and adopt all safety precautions that might be indicated by the
activities described herein and to avoid all potential hazards. By following
the instructions contained herein, the reader willingly assumes all risks in
connection with such instructions. The publisher makes no representations or
warranties of any kind, including but not limited to, the warranties of fitness
for particular purpose or merchantability, nor are any such representations
implied with respect to the material set forth herein, and the publisher takes
no responsibility with respect to such material. The publisher shall not be
liable for any special, consequential, or exemplary damages resulting, in
whole or part, from the readers’ use of, or reliance upon, this material.

JavaScript for Web Warriors, Seventh Edition

Patrick Carey / Sasha Vodnik

SVP, Higher Education & Skills Product: Erin

Joyner

VP, Higher Education & Skills Product: Thais

Alencar

Product Director: Mark Santee

Associate Product Manager: Tran Pham

Product Assistant: Tom Benedetto

Learning Designer: Mary Convertino

Senior Content Manager: Michelle Ruelos

Cannistraci

Digital Delivery Lead: David O’Connor

Technical Editor: Danielle Shaw

Developmental Editor: Deb Kaufmann

Vice President, Product Marketing: Jason Sakos

Director, Marketing: Danae April

Marketing Manager: Mackenzie Paine

IP Analyst: Ashley Maynard

IP Project Manager: Nick Barrows

Production Service: SPi Global

Designer: Erin Griffin

Cover Image Source: NesaCera/ShutterStock.com

Printed in the United States of America
Print Number: 01 Print Year: 2021

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-300

Brief Contents

PRefaCe xi

ChaPteR 1 Introduction to JavaScript .. 1

ChaPteR 2 Working with Functions, Data Types, and Operators 37

Chapter 3 Building Arrays and Controlling Flow ... 77

Chapter 4 Debugging and Error Handling ...117

Chapter 5 Creating a Web App Using the Document Object Model163

Chapter 6 Enhancing and Validating Forms ..209

Chapter 7 Manipulating Data in Strings, Arrays, and Other Objects253

Chapter 8 Creating Customized Objects, Properties, and Methods309

Chapter 9 Managing State Information and Security ...363

Chapter 10 Programming with Event Objects and Third-Party APIs401

ChaPteR 11 Managing Data Requests with AJAX and Fetch449

ChaPteR 12 Introducing jQuery ...501

aPPeNdix a Installing and Configuring a Testing Server ..535

aPPeNdix B Working with HTML and CSS ..543

aPPeNdix C Solutions to Quick Checks ..Online

GLOSSarY 549
Index 561

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Contents

PRefaCe xi

ChaPteR 1

IntroductIon to JavaScrIpt 1
Exploring the JavaScript Language 1

Introducing Scripting Languages 2

JavaScript and ECMAScript 2

The DOM and the BOM 3

Understanding Client/Server Architecture 4

JavaScript and Client-Side Scripting 5

Understanding Server-Side Scripting 6

Should You Use Client-Side or Server-Side
Scripting? 6

Writing a JavaScript program 7
IDEs and Code Editors 7

The script Element 9

JavaScript Statements 9

Understanding JavaScript Objects 10

Using the write() Method 10

Case Sensitivity in JavaScript 13

Adding Comments to a JavaScript Program 13

Writing Basic JavaScript code 14
Using Variables 14

Assigning Variable Names 15

Declaring and Initializing Variables 15

Building Expressions with variables 17
Building an Expression 17

Modifying Variables 18

understanding Events 18
Working with Elements and Events 19

Referencing Web Page Elements 21

Structuring JavaScript code 22
Including a script Element for Each

Code Section 23

Placing the script Element 23

creating a JavaScript Source File 23
Referencing an External File 24

Using the async and defer Keywords 24

Connecting to a JavaScript File 25

Working with Libraries 26

validating Web pages 27
Summary 28
Key terms 29
review Questions 30
hands-On projects 31
Case projects 35

ChaPteR 2

WorkIng WIth FunctIonS,
data typES, and opEratorS 37
Working with Functions 38

Defining a Function 38

Writing a Function 39

Calling a Function 41

Returning a Value from a Function 41

Managing Events with Functions 42
Using Event Handlers 42

Events as Object Properties 43

Event Listeners 43

Events and Anonymous Functions 44

Applying a Function to an Event 44

using Built-in JavaScript Functions 45

understanding variable Scope 45
let and var Declaration Scopes 46

Local and Global Scope 46

Working with data types 48
Working with Numeric Values 48

Working with Boolean Values 49

Working with Strings 49

Escape Characters and Sequences 50

using operators to Build Expressions 51
Arithmetic Operators 52

Assignment Operators 53

Comparison Operators 54

Conditional Operators 55

Understanding Falsy and Truthy Values 55

Logical Operators 56

Special Operators 57

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CoNteNtS v

understanding operator precedence 57

using Expressions with Web Form
controls 59
Working with Input Control Values 59

Working with Checkboxes 61

Using the change Event with Web Form Controls 64

Locating Errors with the Browser
console 66
Accessing the Browser Console 66

Locating an Error in Your Program 67

Summary 68
Key terms 69
review Questions 70
hands-On projects 71
Case projects 76

Chapter 3

BuILdIng arrayS and
controLLIng FLoW 77
Storing data in arrays 77

Declaring and Initializing Arrays 78

Elements and Indexes 79

Creating an Array 79

Multidimensional Arrays 82

Exploring htML collections 83
Referencing an Element within a Collection 83

Searching through the DOM 84

viewing arrays and htML collections
with the console 85

Working with program Loops 86
The while Loop 86

The do while Loop 89

The for Loop 89

Writing a for Loop 91

Exploring array Methods for
generating Loops 94

adding decision Making to your code 96
The if Statement 96

The if else Statement 97

The else if Statements 97

Nested if and if else Statements 100

Conditional Statements and Browser Testing 101

The switch Statement 102

Managing program Loops and
conditional Statements 105
The break Statement 105

The continue Statement 105

Statement Labels 105

Summary 107
Key terms 107
review Questions 108
hands-On projects 109
Case projects 116

Chapter 4

dEBuggIng and Error
handLIng 117
Introduction to debugging 117

Load-Time Errors 118

Runtime Errors 119

Logic Errors 120

Starting debugging with the
Browser console 121

running Javascript in Strict Mode 125

tracing Errors to their Source 127
Tracing Errors with the window.alert()

Method 127

Tracing Errors with the Console Log 131

Using Comments to Locate Bugs 135

tracking program Flow with
debugging tools 136
Accessing your Browser’s Debugging Tools 136

Adding and Removing Break Points 137

Stepping through the Program Execution 140

Tracking Variables and Expressions 141

Examining the Call Stack 143

Managing Errors 145
Handling Exceptions with the try catch

Statement 145

Throwing an Exception 146

The try catch finally Statement 146

The error Parameter in the catch
Statement 147

Applying Exception Handling to a Program 147

customizing your Error handling 150
Catching Errors with the error Event 150

Error Handling Functions 151

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vi Contents

Summary 152
Key terms 153
review Questions 153
hands-On projects 154
Case projects 160

Chapter 5

crEatIng a WEB app uSIng
thE docuMEnt oBJEct
ModEL 163
designing a Web app 163

Introducing nodes 165
Nodes and the Document Object Model 166

Selecting Nodes with the
querySelectorAll() Method 168

Creating and Connecting Nodes 168

Elements Nodes and HTML Attributes 169

Nodes and Inline Styles 170

Creating a Document Fragment in an App 170

Viewing Elements within the Browser
Debugger 173

restructuring a node tree 177
Moving Nodes with the appendChild()

Method 177

Moving Nodes with the insertBefore()
Method 179

Cloning a Node 181

running timed commands 181
Repeating Commands at Specified Intervals 181

Stopping a Timed Command 182

Using Time-Delayed Commands 183

Working with popup Windows 184
System Dialog Boxes 184

Working with Browser Windows 185

Writing Content to a Browser Window 187

Limitations of Browser Windows 187

creating an overlay 188
Introducing the this Object 190

Removing a Node 191

Exploring the Browser object Model 193
The History Object 193

The location Object 194

The navigator Object 194

The screen Object 195

Summary 196
Key terms 197
review Questions 197
hands-On projects 199
Case projects 206

Chapter 6

EnhancIng and vaLIdatIng
ForMS 209
Exploring Forms and Form Elements 209

The Forms Collection 211

Working with Form Elements 211

Properties and Methods of input Elements 212

Navigating Between Input Controls 213

Working with Selection Lists 214

Working with option Buttons 217
Locating the Checked Option 217

Accessing the Option Label 220

Formatting data values in a Form 220
The toFixed() Method 220

Formatting Values Using a Locale String 221

responding to Form Events 223

Working with hidden Fields 225

Exploring Form Submission 227
Using the submit Event 227

Resetting a Form 227

validating Form data with JavaScript 228
Working with the Constraint Validation API 230

Exploring the ValidityState Object 231

Creating a Custom Validation Message 232

Responding to Invalid Data 233

Validating Data with Pattern Matching 235

Validating a Selection List 236

testing a Form Field against
a regular Expression 238

creating a custom validity check 240

Managing Form validation 241
Summary 243
Key terms 244
review Questions 244
hands-On projects 246
Case projects 252

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CoNteNtS vii

Chapter 7

ManIpuLatIng data In
StrIngS, arrayS, and othEr
oBJEctS 253
retrieving content from a text File 253

The file Object 255

The File Reader API 256

Working with text Strings 258
Searching for Substrings within a Text String 259

Modifying Text Strings 261

Extracting Characters and Substrings 263

Combining Text Strings 264

Comparing Text Strings 265

Introducing regular Expressions 266
Matching a Substring 266

Setting Regular Expression Flags 267

Defining Character Types and Character
Classes 268

Specifying Repeating Characters 270

Using Escape Sequences 272

Specifying Alternate Patterns and Grouping 273

programming with regular
Expressions 274
Regular Expression Methods 275

Replacing Text with Regular Expressions 276

Splitting a Text String into an Array 278

Referencing Substring Matches 279

Exploring array Methods 280
Reversing and Sorting an Array 281

Sorting with a Compare Function 284

Extracting and Inserting Array Items 286

Using Arrays as Data Stacks 287

Exploring the Math object 292
The Math Object 292

Math Object Properties 292

Applying a Math Method to an Array 293

Random Numbers and Random Sorting 294

Exploring the Date object 294
Extracting Information from Dates

and Times 295

Setting Date and Time Values 296

Exploring template Literals 297

Adding Placeholders to Template Literals 297

Tagging a Template Literal 297

Summary 299
Key terms 300
review Questions 300
hands-On projects 301
Case projects 308

Chapter 8

crEatIng cuStoMIzEd
oBJEctS, propErtIES, and
MEthodS 309
understanding object-oriented

programing 309
Reusing Software Objects 310

Understanding Encapsulation 310

creating an object Literal 312
Dot Operators and Bracket Notation 313

Creating a Custom Method 315

Creating an Object with the new Operator 317

Working with object classes 318
Understanding Object Classes 318

Object Constructors and Literals 318

Constructor Functions 319

Combining Object Classes 320

Working with object prototypes 327
The Prototype Object 327

Extending Built-in JavaScript Objects 329

Introducing closures 331
Lexical Scope 331

Closures and the Lexical Environment 332

Closures with for Loops 334

Working with public, private,
and privileged Methods 338

combining objects with prototype
chains 343
Creating a Prototype Chain 344

Using the Base Object 345

Using the apply()and call() Methods 346

data Storage with associative arrays 347
The for in and for of Loops 347

Storing Object data in JSON 349

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

viii Contents

Summary 351
Key terms 352
review Questions 353
hands-On projects 354
Case projects 362

Chapter 9

ManagIng StatE
InForMatIon and SEcurIty 363
understanding Sessions and State

Information 363

Sharing data Between Forms 365
Retrieving the Query String Text using the
Location object 367

Replacing URI Encoding Characters 368

Introducing Web Storage 371
The Web Storage API 371

Local Storage and Session Storage Objects 371

Storing data in Web Storage 372
Viewing Web Storage Items in your Browser 374

Retrieving Items with the getItem()
Method 374

Removing Items from Web Storage 376

Exploring Storage Events 377

Web Storage and the Same-Origin Policy 378

Introducing cookies 379
Cookies vs. Web Storage 379

The Structure of a Cookie 380

Writing data into a cookie 381
Setting the Cookie Expiration Date 382

Setting the Cookie Path 383

Setting the Cookie Domain 383

Defining Cookie Security 383

A Function to Write the Cookie Value 384

reading a cookie 385

deleting a cookie 386

Exploring Security Issues 386
Secure Coding with JavaScript 387

JavaScript Security Concerns 387

Using Third-Party Scripts 388

Summary 389
Key terms 389
review Questions 390

hands-On projects 391
Case projects 399

Chapter 10

prograMMIng WIth EvEnt
oBJEctS and thIrd-party
apIS 401
Working with Events as objects 402

The Event Object 402

Event Capturing and Bubbling 403

Exploring Mouse, touch, and pointer
Events 406
Exploring Touch Events 407

Managing Multiple Touchpoints 409

Using Pointer Events 409

programming a drag and drop action 410
Finding Event Coordinates 411

Dragging and Dropping an Element 413

Browser Tools for Touchscreen Emulation 415

Exploring the drag and drop apI 415
The HTML Drag and Drop API 416

Transferring Data with Drag and Drop 417

Working with keyboard Events 418

creating an Interactive Map 421
Getting Started with the Google Maps API 421

The map Object 423

Adding Map Pins 425

Mapping your position with
geolocation 426

adding directions to a Map 430
The route Object 430

Displaying the Driving Route 431

Introducing the device orientation apI 434

preparing an app for Mobile use 435
Testing Tools 435

Minimizing Download Size 435

Minifying Files 435

Summary 437
Key terms 437
review Questions 438
hands-On projects 439
Case projects 446

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CoNteNtS ix

ChaPteR 11

ManagIng data rEquEStS
with AJAX And Fetch 449
Introducing Server requests 450

Exploring http Messages 452
Understanding HTTP Messages 452

Introducing aJaX 454
The XMLHttpRequest Object 454

Managing a Response 456

viewing the Status of a request
and response 458

aJaX and callback hell 460

Introducing arrow Functions 461
Arrow Functions and Parameter Values 462

Exploring the promise object 464
Defining a Promise Object 464

Chaining Promises 465

Running Multiple Promises 466

using the Fetch apI 467
Managing Fetch Responses 467

Error Handling with Fetch 468

Using Fetch to Return a Search 469

Working with XML 472
Parsing XML Content 473

Working with an XML Node Tree 474

creating an autocomplete
Search Box 476
Working with JSON Data 477

Building the Suggestion Box 479

Working with third-party apIs 482
Requesting a Random GIF 482

Third-Party Endpoints 483

Exploring Security Issues with apIs 486
Working with CORS 486

Using JSONP 486

Using XHR with a Proxy 487

Summary 488

Key terms 488
review Questions 489
hands-On projects 490
Case projects 500

ChaPteR 12

IntroducIng jquEry 501
getting Started with jquery 501

Versions of jQuery 502

Loading jQuery 502

Is jQuery still Relevant? 503

Working with jquery Selectors 505
Selecting Elements from the DOM 506

Traversing the DOM with jQuery 507

Working with Attributes and CSS Properties 508

Changing the DOM Structure 509

handling Events with jquery 511

Working with Effects and animations 515
Chaining Effects 516

Creating Custom Effects with Animate 517

Controlling the Animation Queue 519

Exploring jquery plugins 520
Summary 524
Key terms 524
review Questions 525
hands-On projects 526
Case projects 533

aPPeNdix a

InStaLLIng and conFIgurIng
a tEStIng SErvEr 535

aPPeNdix B

working with htML And cSS 543
aPPeNdix C SolutioNS to
QuiCk CheCkS oNliNe

GLOSSarY 549

Index 561

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PrefaCe

JavaScript is a client-side scripting language that allows web page authors to develop interactive web pages
and sites. Although JavaScript is considered a programming language, it is also a critical part of web page
design and authoring. This is because the JavaScript language enables web developers to add functionality
directly to a web page’s elements. The language is relatively easy to learn, allowing non-programmers to quickly
incorporate JavaScript functionality into a web page. In fact, because it is used extensively in the countless
web pages that are available on the World Wide Web, JavaScript is arguably the most widely used program-
ming language in the world.

JavaScript, Seventh Edition, teaches web page development with JavaScript for students with little programming
experience. Although it starts with an overview of the components of web page development, students using
this book should have basic knowledge of web page creation, including familiarity with commonly used HTML
elements and CSS properties. This book covers the basics of ECMAScript Edition 11 (June, 2020), which is
supported by all modern browsers. This book also covers advanced topics including object-oriented program-
ming, the Document Object Model (DOM), touch and mobile interfaces, and Fetch. The HTML documents in
this book are written to HTML5 standards, with some XHTML-compatible element syntax. After completing
this course, you will be able to use JavaScript to build professional quality web applications.

The Approach
This book introduces a variety of techniques, focusing on what you need to know to start writing JavaScript
programs. In each chapter, you perform tasks that let you use a particular technique to build JavaScript
programs. The step-by-step tasks are guided activities that reinforce the skills you learn in the chapter and
build on your learning experience by providing additional ways to apply your knowledge in new situations.
In addition to step-by-step tasks, each chapter includes objectives, short quizzes, a summary, key terms with
definitions, review questions, and reinforcement exercises that highlight major concepts and let you practice
the techniques you’ve learned.

Course Overview
The examples and exercises in this book will help you achieve the following objectives:

❯❯ Use JavaScript with HTML elements

❯❯ Work with JavaScript variables and data types and learn how to use the operations that can be
performed on them

❯❯ Add functions and control flow within your JavaScript programs

❯❯ Trace and resolve errors in JavaScript programs

❯❯ Write JavaScript code that controls the web browser through the browser object model

❯❯ Use JavaScript to make sure data was entered properly into form fields and to perform other types of
preprocessing before form data is sent to a server

❯❯ Create JavaScript applications that use object-oriented programming techniques

❯❯ Manipulate data in strings and arrays

❯❯ Save state information using hidden form fields, query strings, cookies, and Web Storage

❯❯ Incorporate touchscreen support and mobile capabilities in web applications

❯❯ Dynamically update web applications with Ajax and Fetch

❯❯ Build a web application using the jQuery library

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PrefaCexii

JavaScript, Seventh Edition, presents twelve chapters that cover specific aspects of JavaScript programming. Chapter 1
discusses basic concepts of the World Wide Web, reviews HTML documents, and covers the basics of how to add
JavaScript to web pages. How to write basic JavaScript code, including how to use variables, data types, expressions,
operators, and events, is also discussed in Chapter 1. This early introduction of key JavaScript concepts gives you a
framework for better understanding more advanced concepts and techniques later in this book, and allows you to work
on more comprehensive projects from the start. Chapter 2 covers functions, data types, and how to build expressions.
Chapter 3 explains how to store data in arrays and how to use structured logic in control structures and statements.
Chapter 4 provides a thorough discussion of debugging techniques, including how to use the browser consoles inte-
grated into all modern browsers. Chapter 5 teaches how to manipulate the structure of a web document by creating
element nodes and web page overlays. Chapter 6 explains how to use JavaScript to make sure data was entered prop-
erly into form fields and how to perform other types of preprocessing before form data is sent to a server. Chapter 7
covers advanced topics in manipulating data in text strings, arrays, and JSON. Chapter 8 presents object-oriented
programming concepts, including coverage of object classes and closures. Chapter 9 explains how to save state infor-
mation using hidden form fields, query strings, cookies, and Web Storage, and also briefly discusses JavaScript security
issues. Chapter 10 covers supporting touch and pointer events in a web application, as well as using data provided
by mobile device hardware and optimizing a web app for mobile users. Chapter 11 introduces the basics of how to
use Ajax and Fetch to dynamically update portions of a web page with server-side data. Chapter 12 introduces using
the jQuery library to simplify common programming tasks in JavaScript. Appendix A provides detailed instructions
on installing the XAMPP web server on a local machine. Appendix B gives a brief refresher on the basics of HTML,
XHTML, and CSS. Appendix C, which is online, lists answers for all Quick Checks.

What’s New in This Edition?
The seventh edition includes the following important new features:

❯❯ New coverage of JavaScript topics from ES6 including the let and const keywords, template literals, and
arrow function syntax.

❯❯ Expanded coverage of important programming topics including regular expressions, multidimensional arrays,
closures, function expressions, array functions, and sorting callback functions.

❯❯ Expanded coverage of object-oriented programming techniques, including the creation of object classes, object
prototypes, and prototype chains.

❯❯ New and expanded coverage of the Event model, event bubbling and capturing, event objects, pointer events,
keyboard events, and the Drag and Drop API.

❯❯ New coverage of the Fetch API and JavaScript promises.

❯❯ Expanded coverage of jQuery coding techniques and using the jQuery UI library.

❯❯ Twelve new chapter cases with code written to the latest JavaScript standards and covering such tasks as creating a
Lightbox Slideshow, developing an interactive Poker Game, using JavaScript string methods to create a Word Cloud
app, creating an interactive route map with the Google Maps API, and retrieving newsfeed data for an online blog.

❯❯ Four new case projects with each chapter and a fifth debugging project that tests the student’s ability to locate
and fix programming errors.

❯❯ Expanded coverage of browser developer tools for debugging and managing network connections and data.

❯❯ Updated page design makes it easier to follow steps and locate important information to use as a study guide or
reference book.

Features
Each chapter in JavaScript, Seventh Edition, includes the following features:

❯❯ Chapter Objectives: Each chapter begins with a list of the important concepts presented in the chapter. This list
provides you with a quick reference to the contents of the chapter as well as a useful study aid.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRefaCe xiii

❯❯ Figures and Tables: Plentiful full-color screenshots allow you to check your screen after each change. Tables
consolidate important material for easy reference.

❯❯ Code Examples: Numerous code examples throughout each chapter are presented in any easy-to-read font.

❯❯ Key Terms: The first use of key terms are printed in bold and orange font to draw your attention to important
definitions.

These elements provide additional helpful information on specific techniques and concepts.Note

These boxes provide guidance for navigating the world of work.

Skills at Work

These boxes highlight guidelines for real- world implementation of various topics.

Best Practices

These boxes explain principles underlying the subject of each chapter or section.

Programming Concepts

These notes highlight common mistakes that a new programmer might make with the tasks and
concepts introduced in the chapter and provide suggestions for locating and fixing those errors.

Common
Mistakes

❯❯ Quick Check: Several Quick Checks are included in each chapter. These Quick Checks, consisting of two to
five questions, help ensure you understand the major points introduced in the chapter. Appendix C (provided
online) gives answers to each chapter’s Quick Check questions.

❯❯ Summary: These brief overviews revisit the ideas covered in each chapter, providing you with a helpful study
guide.

❯❯ Key Terms List: These lists compile all new terms introduced in the chapter, creating a convenient reference
covering a chapter’s important concepts.

❯❯ Review Questions: At the end of each chapter, a set of twenty review questions reinforces the main ideas
introduced in the chapter. These questions help you determine whether you have mastered the concepts
presented in the chapter.

❯❯ Hands-On Projects: Although it is important to understand the concepts behind every technology, no amount
of theory can improve on real-world experience. To this end, each chapter includes four detailed Hands-On
Projects that provide you with practice implementing technology skills in real-world situations. Each project is a
standalone project, giving you a wide variety of topics and difficulty levels.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PrefaCexiv

❯❯ Debugging Challenge: Each chapter includes one Debugging Challenge project in which you are given code that
contains errors preventing it from running or running correctly. Here you can practice the important skill of
interpreting other people’s code and repairing it.

❯❯ Case Projects: These end-of-chapter projects are designed to help you apply what you have learned to open-
ended situations, both individually and as a member of a team. They give you the opportunity to independently
synthesize and evaluate information, examine potential solutions, and make decisions about the best way to
solve a problem.

MindTap
In addition to the readings, the MindTap includes the following:

❯❯ Course Orientation: Custom videos and readings prepare students for the material and coding experiences they
will encounter in their course.

❯❯ Coding Snippets: These short, ungraded coding activities are embedded in the MindTap Reader and provide
students an opportunity to practice new programming concepts “in-the-moment”. The coding Snippets help
transition the student from conceptual understanding to application of JavaScript code.

Instructor and Student Resources
Additional instructor and student resources for this product are available online. Instructor assets include an Instruc-
tor’s Manual, Solutions and Answer Guide, Solutions Files, Teaching Online Guide, PowerPoint® slides, and a test bank
powered by Cognero®. Student assets include data sets for the Hands-On Projects and Case Projects. Sign up or sign
in at www.cengage.com to search for and access this product and its online resources.

Read This Before You Begin
The following information will help you prepare to use this textbook.

Data files
To complete the steps, exercises, and projects in this book, you will need data files that have been created specifically
for this book. The data files are available in the Student Resources. Note that you can use a computer in your school
lab or your own computer to complete the steps, exercises, and projects in this book.

Using Your own Computer
You can use a computer in your school lab or your own computer to complete the chapters. To use your own computer,
you will need the following:

❯❯ A modern web browser, including the current versions of Chrome, Edge, Firefox, or Safari.

❯❯ A code-based HTML editor, such as Aptana Studio, Visual Studio Code, Notepad11, Eclipse, Adobe
Dreamweaver, or Atom.

❯❯ A web server (for Chapter 11) such as Apache HTTP Server or Microsoft Internet Information Services and PHP.
Appendix A contains instructions on how to install a web server and PHP.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRefaCe xv

Acknowledgements
Creating the Seventh Edition of JavaScript has truly been a team effort. Special thanks to Michelle Ruelos Cannistraci,
Mary Convertino, Tran Pham, Erin Griffin, and Troy Dundas at Cengage, to developmental editor Deb Kaufmann, and to
quality assurance and technical editor Danielle Shaw. Thanks also to the production team of copyeditors, proofreaders,
and compositors at SPi Global.

And many thanks to the reviewers who provided valuable feedback: Thomas Brown, Forsyth Technical Community
College; Tonya Melvin Bryant, Coastal Carolina University; and Pranshu Gupta, DeSales University.

(Patrick): This book is dedicated to my special girls: Abbey, Nicola, Sonia, Catherine, and most of all, Joan.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1

JavaScript is a programming language that adds complex interactive features to a website. Among its many
applications, JavaScript can be used to validate data on web forms, generate new content in response to
user actions, and store data that will persist from one web session to the next. JavaScript is an increasingly
important tool for the website designer and programmer to create useful and powerful web applications.

This chapter introduces the basics of JavaScript and its role in developing interactive websites. You will
create a JavaScript program for use in a web page and explore browser tools for evaluating your code.

Exploring the JavaScript Language
Before discussing the details of JavaScript, this chapter will examine how JavaScript fits in with the develop-
ment of the web as the primary source of sharing content and commerce across the globe. JavaScript had its
origins in the mid-1990s with the creation of the World Wide Web or web, which was developed to share data
across a network of linked documents. In its early years, the web was primarily used for academic research
and did not require much more than the ability to share text and graphic images between researchers.

The business world quickly recognized that the web could be a powerful tool for online commerce
including the process of validating customer data. When JavaScript first appeared in 1995, it was used to
handle as much of that validation as possible to speed up customer transactions. But what is JavaScript
and how does it compare to other languages?

Chapter 1

When you complete this chapter, you will be able to:

❯❯ Explain the history of JavaScript and scripting languages and how each has been
developed for its current use

❯❯ Write content into a web page using JavaScript

❯❯ Add JavaScript code to a web page

❯❯ Create and apply JavaScript variables

❯❯ Work with event handlers within a web page

❯❯ Connect to an external JavaScript File

Introduction to
JavaScript

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 2

Introducing Scripting Languages
In discussing computer languages, especially those associated with website design, this book focuses on three general
types of languages: programming languages, scripting languages, and markup languages.

A programming language is a set of instructions directing the actions of the computer or computer device. Before
these instructions can be performed, they need to be compiled, a process by which those instructions are transformed
into machine code that can be understood by the computer or computer device. The compiling is done by a program
called a compiler. Thus, before you can work with a programming language, you need to have a working environment
to build the code, test the code, and compile it. Examples of programming language include Java, C, C11, and C#. The
browser that interacts with the web was created and compiled using a programming language like C11. This book
will not examine those languages except in terms of how they might interact with JavaScript.

A scripting language belongs to a subcategory of programming languages that do not require compiling but instead
are run directly from a program or script. Scripting languages need to be interpreted, in which the code is read line-
by-line by an interpreter that scans the code for errors even as it runs. A JavaScript interpreter is built into every web
browser, so to create a JavaScript program you only need a text editor to write the code and a web browser to run it.
Examples of scripting languages include JavaScript, PHP, Perl, and Python.

Finally, a markup language is a language that defines the content, structure, and appearance of a document. Common
markup languages include HTML (Hypertext Markup Language) used to define the content and structure of your web
page and CSS (Cascading Style Sheets) used to define how that web page will appear on a specified device. This book
focuses on the connections between HTML and CSS, which define the content and appearance of your web pages, and
JavaScript, which provides tools for interacting with those pages (see Figure 1-1). These chapters assume that you
already possess a basic knowledge of HTML and CSS.

Figure 1-1 The roles of HTML, CSS, and JavaScript
in web development

HTML

Content and
structure

CSS

Layout and
design

JavaScript

Interactive features
and customized apps

JavaScript and eCMaScript
The version of JavaScript discussed in this book is not the same as the one introduced in 1995. Over the years the
scope and power of the language has grown to meet the needs of an ever-changing market that includes an increas-
ing variety of devices from desktop computers to mobile phones. Who determines what JavaScript is and how it will
develop is an important part of its story.

In the beginning, JavaScript was developed for the Netscape browser by the Netscape developer Brendan Eich. Shortly
thereafter, JavaScript was supported by Microsoft’s Internet Explorer browser in a slightly different form called JScript.
One major headache for developers in the late 1990s was reconciling the differences between JavaScript and JScript
as well as keeping up with the changes to the language as each browser sought to add features and tools the other
browser lacked. Unlike a programming language such as C, at the time there was no single set of governing standards
for JavaScript. Its growth was as unpredictable as the web itself.

Therefore in 1997, JavaScript was submitted to the European Computer Manufacturers Association (ECMA) as a pro-
posal for a standardized scripting language that would work across a wide range of devices and browsers. A technical
committee composed of developers from the major browser manufacturers was tasked with the goal of developing

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring thE JavaScript languagE 3

a set of standards for the language. The specification for this scripting language is called ECMAScript or ECMA-262.
JavaScript is just one implementation of the ECMAScript standard, but it is the most important.

Every year a different version or edition of ECMAScript is released. Within a few years of release, most browsers will
implement the changes in that edition, so while web programmers need to keep apprised of the changes in the most
recent ECMAScript edition, they also need to write their code to conform to current browsers and older browser ver-
sions. Figure 1-2 describes the most recent editions of ECMAScript at the time of this writing.

You can do a search on the web for the current support of different ECMAScript editions by desktop and
mobile browsers.Note

ECMASCript Edition dAtE iSSuEd FEAturES

 6th Edition (ES6) June 2015 Added new syntax for complex applications, included iterators and for . . . of loops, arrow functions,
variable declarations using let and const

 7th Edition (ES7) June 2016 Added block-scoping of variables, exponentiation operator, and support for asynchronous execution

 8th Edition (ES8) June 2017 Added support for async/await constructions

 9th Edition (ES9) June 2018 Included rest/spread operators for variables, asynchronous iteration, and additions to regular expressions

10th Edition (ES10) June 2019 Added features to object prototypes and changes to Array sorting

11th Edition (ES11) June 2020 Added an optional object chaining operator for array and functions

Figure 1-2 Editions of ECMAScript

the DOM and the BOM
Though they are often talked about as being identical, JavaScript is more than just ECMAScript. ECMAScript is the
scripting language, but it does not tell you how to interact with the contents of a website or the browser. The full
implementation of JavaScript is built on three foundations:

❯❯ ECMAScript, which is the core of the programming language, providing the syntax, keywords, properties,
methods, and general structure for writing code.

❯❯ The Document Object Model (DOM), which describes how to access the contents of the web page and user
actions within that page.

❯❯ The Browser Object Model (BOM), which describes how to access the features and behaviors of the browser
itself.

The Document Object Model and the Browser Object Model are examples of an Application Programming Interface
(API), which is a set of procedures that access an application such as a web page or a web browser. Just as the speci-
fications for ECMAScript have developed and changed through the years, the specifications for the DOM and the BOM
have also grown in response to the need for a robust and powerful scripting language for the web.

The specifications for the DOM are managed by the World Wide Web Consortium (W3C), the same group managing the
development of HTML and CSS. Figure 1-3 describes the different versions of the DOM that have been released over
the years. Note that the DOM is used by programming languages other than JavaScript.

Unlike the Document Object Model, there is no formal set of standards for the Browser Object Model. Each browser is
different and implements its own version of the BOM, but the BOM is largely the same from one browser to the next
because it is to everyone’s advantage to adhere to a common standard.

Now that you have had a short overview of JavaScript and its history, let’s turn to how JavaScript works with your
computer or mobile device and the computers that host the sites on the web you frequently visit.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 4

Understanding Client/Server architecture
To be successful in web development, you need to understand the basics of client/server architecture. There are many
definitions of the terms “client” and “server”. In traditional client/server architecture, the server is a device or applica-
tion from which a client requests information. A server fulfills a request for information by managing the request or
serving the requested information to the client—hence the term, “client/server.” A system consisting of a client and a
server is known as a two-tier system.

One of the primary roles of the client, or front end, in a two-tier system is the presentation of an interface to the user.
The user interface gathers information from the user, submits it to a server, or back end, then receives, formats, and
presents the results returned from the server. The main responsibilities of a server are usually data storage, manage-
ment, and communicating with external services. On client/server systems, heavy processing, such as calculations,
usually takes place on the server. As devices that are used to access web pages—such as computers, tablets, and
mobile phones—have become increasingly powerful, however, many client/server systems have placed increasing
amounts of the processing responsibilities on the client. In a typical client/server system, a client computer might
contain a front end that is used for requesting information from a database on a server. The server locates records
that meet the client request, performs some sort of processing, such as calculations on the data, and then returns the
information to the client. The client computer can also perform some processing, such as building the queries that
are sent to the server or formatting and presenting the returned data. Figure 1-4 illustrates the design of a two-tier
client/server system.

Figure 1-4 A two-tier client/server system

Server response

Client request

Client

Server

doM dAtE FEAturES

DOM Level 0 1995 Provided a basic interface to access the contents of a web page using the initial version of JavaScript

DOM Level 1 October 1998 Added a way of mapping the content of a web page to JavaScript keywords, functions, properties, and methods

DOM Level 2 December 2000 Added an interface to events occurring within the web page, the contents of CSS style sheets, and the ability to
transverse and manipulate the hierarchical structure of the web page content

DOM Level 3 April 2004 Added support for methods to load and save web documents, validate web forms, and provides the ability to work
with keyboard objects and events

DOM Level 4 November 2015 An ongoing “living standard” that is updated to reflect the events and actions occurring within the document model
based on the evolving needs of the market and mobile devices

Figure 1-3 Versions of the Document Object Model

The web is built on a two-tier client/server system, in which a web browser (the client) requests documents from a
web server. The web browser is the client user interface. You can think of the web server as a repository for web pages.
After a web server returns the requested document, the web browser (as the client user interface) is responsible for
formatting and presenting the document to the user. The requests and responses through which a web browser and
web server communicate occur via Hypertext Transfer Protocol (HTTP), which is the main system used on the web
for exchanging data. For example, if a web browser requests the URL http://www.cengage.com, the request is made
with HTTP because the URL specifies the HTTP protocol. The web server then returns to the web browser an HTTP
response containing the response header and the HTML for the Cengage home page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring thE JavaScript languagE 5

After you start adding databases and other types of applications to a web server, the client/ server system evolves into
what is known as a three-tier client architecture. A three-tier client/server system—also known as a multitier client/
server system or n-tier client/server system—consists of three distinct pieces: the client tier, the processing tier, and
the data storage tier. The client tier, or user interface tier, is still the web browser. However, the database portion of
the two-tier client/server system is split into a processing tier and the data storage tier. The processing tier, or middle
tier, handles the interaction between the web browser client and the data storage tier. (The processing tier is also
sometimes called the processing bridge.) Essentially, the client tier makes a request of a database on a web server. The
processing tier performs any necessary processing or calculations based on the request from the client tier, and then
reads information from or writes information to the data storage tier. The processing tier also handles the return of any
information to the client tier. Note that the processing tier is not the only place where processing can occur. The web
browser (client tier) still renders web page documents (which requires processing), and the database or application
in the data storage tier might also perform some processing.

Two-tier client/server architecture is a physical arrangement in which the client and server are two
separate computers. Three-tier client/server architecture is more conceptual than physical, because the
storage tier can be located on the same server.

Note

Figure 1-5 A three-tier client/server system

Processing tier

Can be the same computer

Client tier

Handles user interface
display (the web browser)
and submits requests
to the processing tier

Handles interaction
between the web
browser client and the
data storage tier

Stores data in a database
and returns requests
presented by the
processing tier

Data storage tier

Figure 1-5 illustrates the design of a three-tier client/server system.

JavaScript and Client-Side Scripting
HTML was not originally intended to control the appearance of pages in a web browser. When HTML was first devel-
oped, web pages were static—that is, they couldn’t change after the browser rendered them. However, after the web
grew beyond a small academic and scientific community, people began to recognize that greater interactivity and bet-
ter visual design would make the web more useful. As commercial applications of the web grew, the demand for more
interactive and visually appealing websites also grew.

HTML could be used to produce only static documents. You can think of a static web page written in HTML as being
approximately equivalent to a printed book; you can read it or move around in it, but the content is fixed.

What JavaScript provides that HTML needed is client-side scripting in which the scripting language runs on a local
browser (on the client tier) instead of on a web server (on the processing tier). In this way, web pages can respond
dynamically to user actions without putting extra strain on the operations of the server.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 6

Figure 1-6 How a web server processes a server-side script

web server

web server software

web server
returns HTML

Client requests
a PHP script

web browser

The scripting engine
within the web server
interprets and executes
the server-side scripting
code and translates the
results into HTML

Many people think that JavaScript is a simplified version of the Java programming language, or is
related to Java in some other way. However, the languages are entirely different. Java is an advanced
programming language that was created by Sun Microsystems and is considerably more difficult to
master than JavaScript. Although Java can be used to create programs that can run from a web page,
Java programs are usually external programs that execute independently of a browser. In contrast,
JavaScript programs always run within a web page and control the browser.

Note

For security reasons, the JavaScript programming language cannot be used outside of specific environments. The
most common environment where JavaScript is run is a web browser. For example, to prevent malicious scripts from
stealing information, such as your email address or the credit card information you use for an online transaction, or
from causing damage by changing or deleting files, JavaScript allows manipulation only of select files associated with
the browser, and then with strict limitations. Another helpful limitation is the fact that JavaScript cannot run system
commands or execute programs on a client. The ability to read and write cookies and a few other types of browser
storage is the only type of access to a client that JavaScript has. Web browsers, however, strictly govern their storage
and do not allow access to stored information from outside the domain that created it. This security also means that
you cannot use JavaScript to interact directly with web servers that operate at the processing tier. Although program-
mers can employ a few tricks (such as forms and query strings) to allow JavaScript to interact indirectly with a web
server, if you want true control over what’s happening on the server, you need to use a server-side scripting language.

Understanding Server-Side Scripting
Server-side scripting refers to programming using a scripting language that is executed from a web server. Some of the
more popular server-side scripting languages are PHP, ASP.NET, Python, and Ruby. One of the primary reasons for using
a server-side scripting language is to develop an interactive website that communicates with a database. Server-side
scripting languages work in the processing tier and have the ability to handle communication between the client tier
and the data storage tier. At the processing tier, a server-side scripting language usually prepares and processes the
data in some way before submitting it to the data storage tier. Some of the more common uses of server-side scripting
languages include shopping carts, search engines, discussion forums, and multiplayer games.

Without JavaScript, a server-side scripting language can’t access or manipulate the user’s web browser. In fact, a server-
side scripting language cannot run on a client tier at all. Instead, a server-side scripting language exists and executes
solely on a web server, where it performs various types of processing or accesses databases. When a client requests a
server-side script, the script is interpreted and executed by the scripting engine within the web server software. After
the script finishes executing, the web server software translates the results of the script (such as the result of a calcu-
lation or the records returned from a database) into HTML, which it then returns to the client. In other words, a client
will never see the serverside script, only the HTML that the web server software returns from the script. Figure 1-6
illustrates how a web server processes a server-side script.

Should You Use Client-Side or Server-Side Scripting?
An important question in the design of any client/server system is deciding how much processing to place on the client
and how much to place on the server. In the context of website development, you must decide whether to use client-
side JavaScript or a server-side script. This is an important consideration that can greatly affect the performance of

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing a JavaScript program 7

your program. In some cases, the decision is simple. If you want to control the web browser, you must use JavaScript.
If you want to access a database on a web server, you must use a server-side script. However, there are tasks that
both languages can accomplish, such as validating forms and manipulating cookies. Furthermore, both languages can
perform the same types of calculations and data processing.

A general rule of thumb is to allow the client to handle the user interface processing and light processing, such as data
validation, but have the web server perform intensive calculations and data storage. This division of labor is especially
important when dealing with clients and servers over the web. Unlike with clients on a private network, it’s not pos-
sible to know in advance the computing capabilities of each client on the web. You cannot assume that each client
(browser) that accesses your client/server application (website) has the necessary power to perform the processing
required by an application. For this reason, intensive processing should be performed on the server.

Because servers are usually much more powerful than client computers, your first instinct might be to let the server
handle all processing and only use the client to display a user interface. Although you do not want to overwhelm cli-
ents with processing they cannot handle, it is important to perform as much processing as possible on the client for
several reasons:

❯❯ Distributing processing among multiple clients creates applications that are more powerful, because the
processing power is not limited to the capabilities of a single computer. Client devices—including computers,
tablets, and smartphones—become more powerful every day. Thus, it makes sense to use a web application to
harness some of this power and capability. A web application is a program that is executed on a server but is
accessed through a web page loaded in a client browser.

❯❯ Local processing on client computers minimizes transfer times across the Internet and creates faster
applications. If a client had to wait for all processing to be performed on the server, a web application could be
painfully slow over a low-bandwidth Internet connection.

❯❯ Performing processing on client computers decreases the amount of server resources needed by application
providers, decreasing costs for infrastructure and power use.

Now that you have seen how JavaScript fits within the client/server structure, in the next section you will explore how
to start applying JavaScript to your own web pages.

Quick Check 1

1. How does a scripting language like JavaScript differ from a programming language like c#?

2. What are the three core foundations upon which JavaScript is built?

3. In client/server architecture, what is a client? What is a server?

Writing a JavaScript Program
Before you start writing JavaScript you must first choose an application in which to create your programs. You can
work with IDEs or code editors.

IDes and Code editors
You have a lot of choices for creating your own JavaScript programs. Like HTML and CSS, writing JavaScript code
requires only a basic text editor but you can also use an Integrated Development Environment (IDE) to manage all
of the facets of website development, including the writing and testing of JavaScript code. Popular IDEs include the
following:

❯❯ Microsoft Visual Studio (https://visualstudio.microsoft.com)

❯❯ Komodo IDE (https://www.activestate.com/products/komodo-ide)

❯❯ Aptana Studio (http://www.aptana.com)

❯❯ NetBeans (https://netbeans.org)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 8

If you find an IDE to be either too expensive (though there are very good free IDEs available on the web) or containing
too much overhead for your projects, you might be better suited with a code editor that simply manages the writing
of HTML, CSS, and JavaScript code within a graphical interface. These editors include a number of features that make
coding easier, including numbering the lines of code in a document and color coding text based on meaning—for
instance, displaying JavaScript keywords in one color and user-defined text and values in another. Several good free
code editors are available online, including the following:

❯❯ Visual Studio Code (https://code.visualstudio.com)

❯❯ Notepad11 (https://notepad-plus-plus.org)

❯❯ Brackets (http://brackets.io)

❯❯ Atom (https://atom.io)

The HTML, CSS, and JavaScript code samples displayed in this book are based on a code editor that uses color to
distinguish different parts of the code. Your code editor might use a different coloring scheme, but that will not affect
the code because HTML, CSS, and JavaScript are saved as basic text.

In this chapter, you will add JavaScript code to a web page for Tinley Xeriscapes, a landscaping company that special-
izes in plants that need minimal watering. A designer has created a new layout for the company’s website, and they
would like you to incorporate JavaScript to enhance the functionality of one of the site’s pages. Figure 1-7 shows a
preview of the completed web page incorporating the functionality you will create in this chapter.

Figure 1-7 Completed Tinley Xeriscapes Plants page using JavaScript
U.S. Department of Agriculture

Rollover effect
created with a CSS

pseudo-class
Picture changes to

show a plant when its
name is clicked in the

list on the left

Open the HTML file for this web page now.

to open the tinley xeriscapes page:

1. Use your code editor to go to the js01 c chapter folder of your data files.

2. Open the js01_txt.html file in your code editor.

3. Within the head section of the HTML file, enter your name and the date in the Author and Date lines.

4. Save the file as js01.html.

Next, begin writing the code of your first JavaScript program.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing a JavaScript program 9

the script element
JavaScript can be added to a web page by embedding the code within the following script element:

<script>

 statements

</script>

where statements are the individual lines of code in the JavaScript program. The following script element contains
a single JavaScript statement displaying an alert window with the text message “Hello World”:

<script>

 window.alert("Hello World");

</script>

When the browser encounters a script element, it stops loading the page and processes the statements enclosed
within the script. In this case, the browser would stop loading the page to display the “Hello World” message. Once the
script is run, the browser continues to process the remaining content in the HTML file. Add a script element now
within the opening and closing <figcaption> tags in the HTML file for the Tinley Xeriscapes page.

to add the script element to the page:

1. Scroll down to the article element in the js01.html file within your code editor.

2. After the opening <figcaption> tag, type:

<script>

</script>

indenting the opening and closing tags to make your code easier to read. See Figure 1-8.

Figure 1-8 Adding a script element

The script element encloses
JavaScript code within an HTML �le

3. Save your changes to the file.

Next you will learn general rules for writing statements in JavaScript.

JavaScript Statements
The individual lines of code, or statements, that make up a JavaScript program in a document are contained within the
script element. The following script contains a single statement that writes the text “Plant choices” to a web browser
window, using the write() method of the Document object, which you will study shortly:

document.write("<p>Plant choices</p>");

Notice that the preceding statement ends in a semicolon. Many programming languages, including C11 and Java,
require you to end all statements with a semicolon. JavaScript statements are not required to end in semicolons. Semi-
colons are strictly necessary only when you want to separate statements that are written on a single line. However, it is
considered good JavaScript programming practice to end every statement with a semicolon whether strictly required
or not. This is the convention that will be used in this book.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 10

Understanding JavaScript Objects
Before you can use script elements to create a JavaScript program, you need to learn some basic terminology that
is commonly used in JavaScript programming in particular, and in other programming languages in general. In addition
to being an interpreted scripting language, JavaScript is considered an object-based programming language. An object
is programming code and data that can be treated as an individual unit or component. For example, you might create a
carLoan object that calculates the number of payments required to pay off a car loan. The carLoan object may also
store information such as the principal loan amount and the interest rate. Individual statements used in a computer
program are often grouped into logical units called procedures, which perform specific tasks. For example, a procedure
may contain a group of statements that calculate the sales tax based on the sales total. The procedures associated
with an object are called methods. A property is a piece of data, such as a color or a name, which is associated with
an object. In the carLoan object example, the programming code that calculates the number of payments required
to pay off the loan is a method. The principal loan amount and the interest rate are properties of the carLoan object.

To incorporate an object and an associated method in JavaScript code, type the object’s name, followed by a period,
followed by the method. For example, the following code references the carLoan object, followed by a period, fol-
lowed by a method named calcPayments(), which calculates the number of payments required to pay off the loan:

carLoan.calcPayments();

For many methods, you also need to provide some more specific information, called an argument, between the paren-
theses. Some methods require numerous arguments, whereas others don’t require any. Providing one or more argu-
ments for a method is referred to as passing arguments. For example, the calcPayments() method may require an
argument that specifies the number of months until the loan is paid off. In that case, the JavaScript statement would
look like this:

carLoan.calcPayments(60);

You use an object’s properties in much the same way you use a method, by appending the property name to the object
with a period. However, a property name is not followed by parentheses. One of the biggest differences between meth-
ods and properties is that a property does not actually do anything; you only use properties to store data. You assign
a value to a property using an equal sign, as in the following example:

carLoan.interest = .0349;

Objects are one of the fundamental building blocks of JavaScript, as well as many other programming languages.
You can think of an object as anything you want to be able to work with in your programs. Some objects, such as
the Document object, are part of a document by definition. You can also create other objects that are necessary for
the programs you want to create. Every object can have methods, which are actions that can be performed on it.
Every object also has properties; each property is a different piece of information about the object. Understanding
the relationship between objects, properties, and methods is an important part of building a strong foundation in
JavaScript.

Programming Concepts Objects, Properties, and Methods

The next part of this chapter focuses on the write() method as a way of helping you understand how to program
with JavaScript.

Using the write() Method
Almost everything within the web page and the web browser is an object and is thus part of the Document Object Model
or the Browser Object Model. One of the most commonly used objects in the Document Object Model is the Document
object, which represents the entire content of the web page. Any text, graphics, or other information displayed in the

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing a JavaScript program 11

page is part of the Document object. You can write new content to the web page with the write() method of the
 Document object. For example, you could use the write() method to write content containing custom information
such as a user’s name or address.

Understand that the only reason to use the write() method is to add new text to a web page while it is being loaded
by the browser. For example, if your web page incorporates constantly changing data such as stock quotes from a web
server, you might use the write() method to add the stock data to the page. If you simply want to display text in a
web browser when the document is first rendered, there is no need to use anything but standard HTML elements. The
procedures for dynamically gathering information are a little too complicated for this introductory chapter. However,
in this chapter you will use the write() method to display text in a web browser when the document is first rendered
in order to learn the basics of JavaScript programming.

Different methods require different kinds of arguments. For example, the write() method of the Document object
requires a text string as an argument. A text string, or literal string, is text that is contained within double or single
quotation marks. The text string argument of the write() method specifies the text that the Document object uses
to create new text on a web page. For example, document.write("Plant choices"); writes the text “Plant
choices” in the web page (without the quotation marks). Note that you must place literal strings on a single line. If you
include a line break within a literal string, you receive an error message.

By convention, the first letter of the name of a built-in object is capitalized when writing
about the language, but typed in all lowercase in actual JavaScript code. For this reason, it
is the Document object, but the document.write() and document.writeln() methods in
JavaScript code. Be sure to enter object names in all lowercase in your programs.

Common
Mistakes

Programmers often talk about code that “writes to” or “prints to” a web browser window. For example,
you might say that a piece of code writes a text string to the web browser window. This is just another
way of saying that the code displays the text string in the web browser window.

Note

The write() method performs essentially the same function that you perform when you manually add text to the
body of a standard web document. Whether you add text to a document by using standard elements, such as the p
element, or by using the write() method, the text is added according to the order in which the statements appear
in the HTML file.

The following code contains a script that prints some text in a web browser by using the write() method of the
Document object.

<script>

 document.write("<p>Plant choices
");

 document.write("for <a href=↵
 'http://planthardiness.ars.usda.gov'>↵
 hardiness zones 5a-6b</p>");

</script>

The bent arrow symbol (↵) at the end of a line of code indicates the code is broken in this book because
of space limitations. When you enter code in your editor from code samples in this book, you should not
press the Enter or Return keys at the end of a line that finishes with ↵. You must continue typing the code
that follows on the same line.

Note

Use the document.write() method now to write content to the Tinley Xeriscapes web page. To make the text
easier to enter, you will use several document.write() statements. Pay close attention to the use of both single
and double quotes within the text strings.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 12

to apply the document.write() method:

1. Return to the js01.html file in your code editor.

2. Between the opening and closing <script> tags, add the following statements as shown in Figure 1-9:

document.write("<p>Plant choices for ");

document.write("");

document.write("hardiness zones");

document.write(" 5a - 6b </p>");

Figure 1-9 Applying the document.write() method

The document.write() method
writes content into the web page

HTML tags and content
written to the web page

Figure 1-10 Content generated using the document.write() method

Content written into the page using
the document.write() method

The document.write() method is a quick and easy way of writing content in your web page; however it is not
without its problems. In general, using document.write() slows down your system’s performance and load time
as the browser must recreate the entire Document Object Model to incorporate the new content. NEVER use the
document.write() method after the browser has finished loading the web page because it will overwrite the
entire web page. A good rule of thumb is to use document.write() only for small snippets of content and only
placed within a script embedded in the HTML file itself.

Best Practices Using the document.write() Method

3. Save your changes to the file and then refresh or reload the s01.html file in your web browser. As shown in
Figure 1-10, the page should now display the content created by the four document.write() statements.

4. Click the hardiness zones link from the inserted content and verify that your browser loads a Plant Hardiness
Zone map.

5. Return to the js01.html file in your browser.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing a JavaScript program 13

Case Sensitivity in JavaScript
JavaScript is a case-sensitive language, interpreting differences in capitalization as differences in meaning. Within
JavaScript code, object names must always be all lowercase. This can be a source of some confusion, because in writ-
ten explanations about JavaScript, the names of objects are sometimes referred to with an initial capital letter. For
example, the Document object referred to with an uppercase D. However, you must use a lowercase d when referring
to the Document object in a script, as in the code document.write("Plant choices");. Using a capital D, as in
the statement Document.write("Plant choices");, causes an error message because the JavaScript interpreter
cannot recognize an object named Document with an uppercase D.

Similarly, the following statements will also cause errors:

DOCUMENT.write("Plant choices");

Document.Write("Plant choices");

document.WRITE("Plant choices");

Although HTML5 is not technically a case-sensitive language, it’s considered good coding practice to
write all HTML5 code in lowercase as well.Note

adding Comments to a JavaScript program
Just like in an HTML document, it’s considered a good programming practice to add comments to any JavaScript code
you write. Comments are lines of code that are not processed by browsers, which you use to add notes about your
code. Comments are commonly used for specifying the name of the program, your name and the date you created the
program, notes to yourself, or instructions to future programmers who may need to modify your work. When you are
working with long scripts, comments make it easier to decipher how a program is structured.

JavaScript supports two kinds of comments: line comments and block comments. A line comment occupies only a
single line or part of a line. To create a line comment, you add two slashes (//) before the text you want to use as a
comment. The // characters instruct JavaScript interpreters to ignore all text following the slashes on the same line.
You can place a line comment either at the end of a line of code or on its own line. Block comments hide multiple lines
of code. You create a block comment by adding /* to the first line that you want included in the block, and you close a
comment block by typing */ after the last character in the block. Any text or lines between the opening /* characters
and the closing */ characters are ignored by JavaScript interpreters.

A JavaScript block comment uses the same syntax as a comment in CSS, as well as in other programming
languages including C11 and Java.Note

Next, you will add comments to the js01.html file.

to add JavaScript comments to the js01.html file:

1. Return to the js01.html file in your code editor.

2. Add the following block comment directly after the opening <script> tag:

/*

 Information on available plants

 including link to USDA website

*/

3. Position the insertion pointer after the semicolon at the end of the last statement containing the
document.write() method, and type the following line comment:

// hardiness zones for Chicago and surrounding area

See Figure 1-11.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 14

Figure 1-11 Adding JavaScript comments

JavaScript line comment

JavaScript block comment

JavaScript programmers generally work in teams with other programmers, especially on larger projects. This means
that as a programmer, you’ll be regularly reading and making changes to code that other programmers wrote; in
addition, other team members will be changing and extending code that you created. When working as part of a
team of programmers, it’s important to use comments to document the code you write. Including a comment before
each section of code to explain its purpose can help other team members understand the structure of your code.
In addition, including comments makes it easier for everyone on the team to find and fix bugs, because they can
compare the explanation of what a section should do, found in the comment, with the code that follows.

Skills at Work Using Comments for Team Projects

Quick Check 2

1. What HtML element is used to embed JavaScript code within an HtML file?

2. provide the JavaScript command to write the HtML content <h1>Plant Types</h1> to the web page
document.

3. provide the code to write the text, “Major page Heading” as JavaScript block comment.

4. provide the code to write the text, “Major page Heading” as a JavaScript line comment.

4. Save your changes to the file and then reopen js01.html in your web browser. Verify that the JavaScript com-
ments are not displayed in the browser and that the content generated by the document.write() statements
has not changed.

Writing Basic JavaScript Code
So far, you’ve created a basic JavaScript program that stores comments and writes text to a web page. By incorporating
a few additional JavaScript concepts into your program, you can make it flexible enough to apply to different situations,
and responsive to user interaction.

Using Variables
The values a program stores in computer memory are commonly called variables. Technically speaking, though, a
variable is actually a specific location in the computer’s memory. Data stored in a specific variable often changes. You
can think of a variable as similar to a storage locker—a program can put any value into it and then retrieve the value

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing BaSic JavaScript codE 15

later for use in calculations. To use a variable in a program, you first write a statement that creates the variable and
assigns it a name. For example, you may have a program that creates a variable named curTime and then stores the
current time in that variable. Each time the program runs, the current time is different, so the value varies.

Programmers often talk about “assigning a value to a variable,” which is the same as storing a value in a variable.
For example, a shopping cart program might include variables that store customer names and purchase totals. Each
variable will contain different values at different times, depending on the name of the customer and the items that
customer is purchasing.

assigning Variable Names
The name you assign to a variable is called an identifier. You must observe the following rules and conventions when
naming a variable in JavaScript:

❯❯ Identifiers must begin with an uppercase or lowercase ASCII letter, dollar sign ($), or underscore (_).

❯❯ You can use numbers in an identifier but not as the first character.

❯❯ You cannot include spaces in an identifier.

❯❯ You cannot use reserved words for identifiers.

Reserved words (also called keywords) are special words that are part of the JavaScript language syntax. As just noted,
reserved words cannot be used for identifiers. Figure 1-12 lists some of the JavaScript reserved words.

abstract char double finally in null super try

arguments class else float instanceof package switch typeof

await const enum for int private synchronized var

boolean continue eval function interface protected this void

break debugger export goto let public throw volatile

byte default extends if long return throws while

case delete FALSE implements native short transient with

catch do final import new static TRUE yield

Figure 1-12 JavaScript reserved keywords

Variable names, like JavaScript keywords are case sensitive. Therefore, the variable name curTime is a completely
different variable name than curtime, CurTime, or CURTIME. If a script doesn’t perform as you expect, be sure you
are using the correct case when referring to any variables in your code.

It’s best practice to use camel case, which is a method of capitalization that uses a lowercase letter for
the first letter of the first word in a variable name, with subsequent words starting with an initial cap, as in
myVariableName.

Note

Declaring and Initializing Variables
Before you can use a variable, you should declare it, which creates the variable for storing data and objects. Option-
ally, the variable can be initialized, which assigns it an initial value. Variables are declared and initialized using either
the let keyword or the var keyword in the following statements:

let variable = value;

var variable = value;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 16

where variable is the name of the variable and value is the initial value of the variable. The equal sign in the dec-
laration statement is called an assignment operator because it assigns the value on the right side of the expression
to the variable on the left side of the expression. The value you assign to a variable can be a literal string enclosed
within quotation marks or a numeric value. The following statements use the let keyword to create variables named
taxRate and taxClass with initial values of 0.05 and “sales”.

let taxRate = 0.05;

let taxClass = "sales";

The difference between let and var lies with the scope of the variable being declared. Scope is a topic that will be
discussed in the next chapter. The var keyword is the older standard; let was not introduced until ES6 in 2015.

Another way of declaring a variable is with the following const keyword:

const variable = value;

Unlike variables declared with var and let, variables declared with const store a constant value that cannot be
changed.

In addition to assigning literal strings and numeric values to a variable, you can also assign the value of one variable
to another. In the following code, the first statement declares the salesTotal variable without assigning it an initial
value, the second statement declares the curOrder variable with an initial value of 47.58, and the third statement
assigns the value of the curOrder variable to the salesTotal variable.

let salesTotal;

let curOrder = 47.58;

salesTotal = curOrder;

You can declare multiple variables in a statement using a single let, var, or const keyword followed by a series of
variable names and assigned values separated by commas. The following statement creates three variables using a
single let keyword:

let orderNumber = "R0218", salesTotal = 47.58, curOrder;

Notice that both the orderNumber and salesTotal variables are declared and initialized, while the curOrder
variable is only declared with no initial value.

The main section of the Tinley Xeriscapes Plants page should display an image that changes depending on which
plant name is clicked from a list of names on the page’s left margin. To begin creating this effect, you will add
JavaScript statements declaring three variables storing the file names of three images matching the plant names
on the list.

to declare variables for three plant images:

1. Return to the js01.html file in your code editor.

2. Directly before the closing </script> tag, press Enter and type the following JavaScript statements containing
the file names of three plant images:

//define variables containing plant file names

let blanket = "blanket.jpg";

let bluestem = "bluestem.jpg";

let rugosa = "rugosa.jpg";

See Figure 1-13.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Building ExprESSionS With variaBlES 17

3. Save your changes to the file.

The default HTML code for the page has an img element to display plant images, but it sets the src attribute to # so
that the default is to not display any image. Later you will write JavaScript statements to replace the src attribute
value with one of the variable values you defined in this script so that the image changes in response to user actions.

Building Expressions with Variables
Just as with any text string or numeric value, the value of a variable can be written into a web page using the
document.write() method. For example, the following statement displays the value of the salesTotal variable:

document.write(salesTotal);

Thus, if a value 47.58 has been stored in the salesTotal variable, that value will be written to the page.

Building an expression
You can combine variables with text strings or numeric values using expressions. An expression is a literal value or
variable, or a combination of literal values, variables, operators, and other expressions, that can be evaluated by a
JavaScript interpreter to produce a result. Expressions are written using operands and operators.

Operands are the variables and literals contained in the expression. A literal is a value such as a text string or a num-
ber. Operators, such as the addition operator (1) and multiplication operator (*), are symbols used in expressions
to manipulate operands. You have already seen several simple expressions that combine operators and operands as
in the following statement:

salesTotal = 47.58;

which uses the assignment operator (5) to equate the salesTotal variable with a value of 47.58.

Figure 1-13 Declaring JavaScript variables

Variables containing the �le names
of three plant images

Inline image that will
display plant images id of the plant image

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 18

You can use the addition operator (1) with the document.write() method to combine a literal text string with a
variable containing a numeric value. For instance, to give some context to the salesTotal value, you could modify
the document.write() statement to place the variable within an HTML paragraph using the expression:

document.write("<p>Your sales total is $" + salesTotal +".</p>");

resulting in the following HTML code written to the web page:

<p>Your sales total is $47.58.</p>

You can also use the addition operator to perform arithmetic operations involving variables that contain numeric val-
ues. The following code declares two variables, assigning them numeric values. The third statement declares another
variable and assigns to it the sum of the two variables.

let salesTotal = 47.58;

let shippingCost = 10;

let totalCost = salesTotal + shippingCost;

document.write("<p>Your total cost is $" + totalCost + "</p>";

The result is the generation of the following HTML code:

<p>Your total cost is $57.58</p>

Notice that this script uses the addition operator (1) to both add numeric values and to combine text strings. If you
combine a text string and numeric value, JavaScript will treat both values as strings and will combine them rather than
adding them. The following expression:

5 + "2"

will return the text string "52" and not the value 7.

Modifying Variables
You can change a variable’s value at any point in a script by using an expression to assign it a new value. The following
code declares a variable named totalSales, assigns it an initial value of 0 and then uses the addition operator to
increase by the sum of the item1Sales, item2Sales, and item3Sales variables.

let totalSales = 0;

let item1Sales = 50, item2Sales = 75, item3Sales = 40;

totalSales = item1Sales + item2Sales + item3Sales;

document.write("<p>Total sales = $" + totalSales + "</p>");

The following HTML code is then written to the web page:

<p>Total sales = $165</p>

It is only necessary to declare the salesTotal variable once using either the var or let keywords. If you declare
the variable using the const keyword, you cannot modify it after its initial value is set.

Understanding Events
By default, scripts are executed when the code is encountered by the browser as it loads the page content. You can
choose other events to initiate the execution of a script. An event is a specific circumstance (such as an action per-
formed by a user or an action performed by the browser) that is monitored by JavaScript and that your script can
respond to in some way. JavaScript events allow users to interact with your web pages. The most common events are

To assign a value to a variable, the value must be on the right side of the assignment operator and the
variable on the left, as in the expression firstName = "Graham";. Reversing the order, as in the code
"Graham" = firstName;, could produce an error in your script.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

undErStanding EvEntS 19

actions that users perform. For example, when a user clicks a form button, a click event is generated. You can think of
an event as a trigger that runs specific JavaScript code in response to a given situation. User-generated events, however,
are not the only kinds of events monitored by JavaScript. Events that are not direct results of user actions, such as the
load event, are also monitored. The load event, which is triggered automatically by a web browser, occurs when a
document finishes loading in a web browser. Figure 1-14 lists some JavaScript events and explains what triggers them.

EVEnt KEYBoArd triGGEr MouSE triGGEr touCHSCrEEn triGGEr
blur An element, such as a radio button,

becomes inactive

change The value of an element, such as a text box,
changes

click A user presses a key when an element is
selected

A user clicks an element once A user touches an element and then stops
touching it

error An error occurs when a document or image
is being loaded

focus An element, such as a command button,
becomes active

keydown A user presses a key

keyup A user releases a key

load A document or image loads

mouseout A user moves the mouse pointer off an
element

A user stops touching an element

mouseover A user moves the mouse pointer over an
element

A user touches an element

reset A form’s fields are reset to its default values

select A user selects text

submit A user submits a form

touchend A user removes finger or stylus from the
screen

touchmove A finger or stylus already touching the
screen moves on the screen

touchstart A user touches a finger or stylus to the
screen

unload A document unloads

Figure 1-14 JavaScript events

Note that not all events happen with all devices. For instance, keydown and keyup are triggered only by a keyboard,
and touchend, touchmove, and touchstart take place only on a touchscreen device. For this reason, it’s important
to choose trigger events that make your scripts available to users on all devices. You’ll explore different methods of
doing this as you build your JavaScript skills.

Working with elements and events
Events are associated with HTML elements. The events that are available to an element vary. The click event, for
example, is available for a number of elements, including the a element and form controls created with the input
element. In comparison, the body element does not have a click event, but it does have a load event, which occurs
when a web page finishes loading, and an unload event, which occurs when a user goes to a different web page.

When an event occurs, your script executes any code that responds to that specific event on that specific element.
This code is known as the event handler. There are a few different ways to specify an event handler for a particular

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 20

event. One way is to include event handler code as an attribute of the element that initiates the event. For example,
you can add an attribute that listens for a click to an li element in the navigation bar, and specify JavaScript code as
the attribute value, such as code that changes the display attribute of the related submenu so it’s visible. The syntax
of an event handler within an opening tag is as follows:

<element onevent="JavaScript code">

The attribute name you use to specify an event handler combines the prefix on with the name of the event itself. For
example, the attribute name for the click event is onclick, and the attribute name for the load event is onload.
Figure 1-15 various HTML elements and some of their associated event-related attributes.

Figure 1-16 Alert dialog box
Source: © Microsoft Corporation

The JavaScript code for an event handler attribute is contained within the quotation marks following the attribute
name. The following code uses the input element to create a submit button.

<input type="submit" onclick="window.alert('Thanks for your↵
 order! We appreciate your business.')" />

This input element includes an onclick attribute that executes an event handler using the JavaScript window.
alert() method, in response to a click event (which occurs when the mouse button is clicked or a user touches
a touchscreen). The window.alert() method displays a dialog box with an OK button. You pass the window.
alert() method a literal string containing the text you want to display. The syntax for the alert() method is
window.alert(message);. The value of the literal string or variable is then displayed in the alert dialog box, as
shown in Figure 1-16.

ELEMEnt EVEnt-rELAtEd AttriButES
a onfocus, onblur, onclick, ondblclick, onmousedown, onmouseup, onmouseover,

onmousemove, onmouseout, onkeypress, onkeydown, onkeyup, ontouchstart, ontouchend

img onclick, ondblclick, onmousedown, onmouseup, onmouseover, onmousemove,
onmouseout, onkeypress, onkeydown, onkeyup, ontouchstart, ontouchmove, ontouchend

body onload, onunload, onclick, ondblclick, onmousedown, onmouseup, onmouseover,
onmousemove, onmouseout, onkeypress, onkeydown, onkeyup

form onsubmit, onreset, onclick, ondblclick, onmousedown, onmouseup, onmouseover,
onmousemove, onmouseout, onkeypress, onkeydown, onkeyup

input tabindex, accesskey, onfocus, onblur, onselect, onchange, onclick, ondblclick,
onmousedown, onmouseup, onmouseover, onmousemove, onmouseout, onkeypress,
onkeydown, onkeyup, ontouchstart, ontouchmove, ontouchend

textarea onfocus, onblur, onselect, onchange, onclick, ondblclick, onmousedown,
onmouseup, onmouseover, onmousemove, onmouseout, onkeypress, onkeydown, onkeyup,
ontouchstart, ontouchmove, ontouchend

select onfocus, onblur, onchange, ontouchstart, ontouchend

Figure 1-15 HTML elements and some of their associated events

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

undErStanding EvEntS 21

Notice that the event handler code specified as an attribute value—the window.alert() method—is contained
within double quotation marks. Also notice that the literal string being passed is contained in single quotation marks.
This is because the window.alert() method itself is already enclosed in double quotation marks. To ensure that
browsers don’t mistake the opening quote for the literal string as the closing quote for the value of the onclick event
handler, JavaScript requires single quotes around the literal string.

The window.alert() method is the only statement being executed in the preceding event handler code. You can,
however, include multiple JavaScript statements in event handler code, as long as semicolons separate the statements.
For example, to include two statements in the event handler example—a statement that creates a variable and another
statement that uses the window.alert() method to display the variable—you would type the following:

<input type="submit"

 onclick = "let msg = 'Thanks for your order! We appreciate your business.';

 window.alert(msg);" />

referencing Web page elements
The Document Object Model allows you to reference any element on a web page by its id assigned using the HTML
id attribute. For instance, the following HTML code creates an input element with the id value firstName:

<input type="text" id="firstName" />

To look up an element by its id value in your JavaScript code, use the getElementById() method of the Document
object. For instance, to create a variable named fName that references the element with the id value firstName, use

let fName = document.getElementById("firstName");

Specific properties of an element can then be appended to the element reference. This allows you to retrieve informa-
tion about an element or change the values assigned to its attributes. For example, suppose you have a web page that
contains an input element with the id value firstName. You could change the value of the input element using
this statement:

document.getElementById("firstName").value = value;

As an alternative, using the fName variable created above to reference the element with the id value firstName,
you could use this code:

fName.value = value;

Next, you will add event handlers to the three li elements containing plant names in the aside element of the
js01.html file. When a user’s mouse pointer moves over one of these li elements, the src value of the img ele-
ment with the id value plantImg will change to display the image of the plant.

to add event handlers to the plants.htm file:

1. Return to the js01.html file in your code editor.

2. Within the aside element, in the opening tag for the first li element, add the following event handler:

onclick="document.getElementById('plantImg').src = blanket"

3. In the opening tag for the second li element, add the following event handler:

onclick="document.getElementById('plantImg').src = rugosa"

4. In the opening tag for the third li element, add the following event handler:

onclick="document.getElementById('plantImg').src = bluestem"

Figure 1-17 shows the revised code in the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 22

Structuring JavaScript Code
You can place the script element just about anywhere in a document. However, there are a number of factors to
consider in deciding the best location for the script element. In addition, there are rules to keep in mind regarding
the organization of that code.

Figure 1-18 Web page after clicking Hedge Rose
U.S. Department of Agriculture

Quick Check 3

1. What are the three JavaScript keywords for declaring a variable?

2. What is the difference between declaring and initializing a variable?

3. What is returned by expression "100" 1 10?

4. What is an event handler for?

Figure 1-17 Changing the source of an inline image using JavaScript

References the element
with the id “plantImg”

Changes the source of that image
to the value of the bluestem variable

Script that is run in response
to the onclick event handler

onclick event handler runs the script
when the list item is clicked by the use

5. Save the file, refresh or reload it in your web browser, and then click each plant name on the left side of the page.
The picture of each flower should be displayed in the main section of the web page when you click its name.
If the page doesn’t load, or if you receive error messages, make sure that you typed all the JavaScript code in
the correct case. (Remember that JavaScript is case sensitive.) Figure 1-18 shows the web page after clicking
Hedge Rose.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

crEating a JavaScript SourcE FilE 23

Including a script element for each Code Section
A single HTML file can contain several script elements. The following document fragment includes two separate
script sections. The script sections create the information that is displayed beneath the h2 heading elements.

<h2>Sales Total</h2>

<script>

 let salesTotal = 47.58;

 document.write("<p>Your sales total is $" + salesTotal + "</p>");

</script>

<h2>Sales Total with Shipping</h2>

<script>

 let shipping = 10;

 let totalCost = salesTotal + shipping;

 document.write("<p>Your sales total plus shipping is $" ↵
 + totalCost + "</p>");

</script>

Figure 1-19 shows the output.

Figure 1-19 Output of a
document with two script sections

Statements in one script section are accessible to subsequent script sections. For example, the salesTotal vari-
able was declared in the first script, but its value was still accessible to the second script. For the purposes of your
programs, you can think of the two scripts as being “connected” even if they are separated by HTML code.

placing the script element
Because of this connected nature, scripts can be placed anywhere within the HTML file. However, if the script contains
the document.write() method, it should be placed where that content is to be written. You must use care when
placing the script. Remember that part of loading the page is creating the Document Object Model that maps the entire
page content. If your script references a part of the page that has not yet been loaded, an error will result. Thus, many
developers will place scripts at the end of the document to ensure that the entirety of the page has been loaded into
the DOM. You cannot use the document.getElementById() method to reference a page object until after that
page object has been loaded into the DOM; otherwise, your browser will report an error.

All of this assumes that you are embedding your JavaScript commands within the HTML file. There is another option:
placing your JavaScript statements in an external file.

Creating a JavaScript Source File
As you develop larger and more complex applications, you will want to move your code out of the HTML file into its
own separate file known as a JavaScript source file. Like HTML and CSS files, a JavaScript source file is a text file that
can be created using a basic text editor, though a code editor is often preferred. JavaScript source files are saved with
a .js extension. They contain only JavaScript code and do not contain any HTML or CSS code unless that content is
written using JavaScript statements like the document.write() method.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 24

referencing an external File
To attach a web page to a JavaScript source file, insert the following script element within the HTML file:

<script src="url"></script>

where url is the file name and location of the JavaScript file. The following script element loads the code contained
within the report.js file into the web page:

<script src="report.js"></script>

The script element can be used either for embedding JavaScript code or accessing external JavaScript code, but it
cannot do both at the same time. If you wish to embed some JavaScript commands to supplement commands stored
in a JavaScript source file, you will need to insert a second script element for that purpose.

Using the async and defer Keywords
As with an embedded script, commands stored in an external file are loaded when the browser initially encounters the
script element in the HTML file. Once again, this can cause errors if commands in the script reference page content
that has not yet been loaded by the browser. You can modify when the external script file is accessed and loaded by
adding the async or defer attribute to the opening <script> tag. The async attribute tells the browser to parse
the HTML and JavaScript code together, only pausing to process the script before returning to the HTML file. The
defer attribute tells the browser to hold off processing the script until after the page has been completely parsed
and loaded. See Figure 1-20.

Figure 1-20 Loading HTML and JavaScript code

The browser pauses loading the HTML �le when it encounters the script elements,
continuing only when the entire script is loaded and processed.

<script>

pausing only to process the script.
The browser loads the HTML �le and external script �le together,<script async>

has been completely loaded by the browser.
The browser loads and processes the script only after the HTML �le<script defer>

HTML

JavaScript

HTML

JavaScript

HTML

JavaScript

The async and defer attributes are ignored for embedded scripts so that any JavaScript code embedded within the
HTML file will always be read and executed as soon as it is encountered within the HTML file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

crEating a JavaScript SourcE FilE 25

As you grow in your understanding and mastery of JavaScript, you will put your code in an external file as opposed to
embedding that code within the HTML file. There are several reasons for this:

❯❯ The code can be shared among multiple pages.

❯❯ Because the code is shared among multiple pages, it only needs to be downloaded once, which is a great benefit
for users on mobile connections.

❯❯ Team members can more easily share code for joint projects.

❯❯ The HTML file will be neater and cleaner because your HTML elements will not be combined with JavaScript codes.

❯❯ It is easier to manage your website if each file focuses on a single task: HTML files for document content and
structure, CSS files for page design and layout, and JavaScript files for interactive features and specialized tasks.
Team members would then be responsible only for those files within their area of expertise.

Future chapters of this book will rely more on external JavaScript files and less on embedded code.

Connecting to a JavaScript File
To see how an external JavaScript file can be used to create the effects shown in this chapter, you will connect to a
file containing commands to write page content and add onclick event handlers to the list items on the page. The
content of this file is shown in Figure 1-21.

Figure 1-21 An external JavaScript file

Commands declaring JavaScript variables

Commands to apply
event handlers to three

web page elements

Commands to add
HTML code to

a page element

Some of the statements in this file will be familiar to you, such as the first three statements to declare the blanket,
rugosa, and bluestem variables. The rest of the file uses commands that will be new to you to create event handlers
and write page content. Do not worry about completely understanding the code at this point. The next chapter will
discuss these new commands and concepts in more detail.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 26

Create a connection to this JavaScript file now.

to connect to an external JavaScript file:

1. Open the js01_txt.html file in your code editor. Enter your name and the date in the head section of the file.

2. Directly above the closing </head> tag insert the following <script> tag to connect the page to the js01b.js
file as shown in Figure 1-22.

<script src="js01b.js" defer></script>

Libraries can contain massive amounts of code. Because every extra line of code increases the amount
of time a web page takes to download, web developers generally create customized versions of libraries
that they use, so a library file downloaded for a site contains only those parts of the library that the site
actually uses.

Note

3. Save the file as js01b.html and close your code editor.

4. Open js01b.html in your web browser.

5. Verify that the hyperlink for hardiness zones appears on the page and that clicking the hardiness zones links
opens the appropriate page.

6. Return to the js01b.html file in your browser and verify that clicking the list of plants on the left margin displays
the corresponding plant time.

Once you have created a link to an external JavaScript file, you should not have to modify the HTML file again unless
you need to change the content or structure of the document. However, all future programming changes can be made
in JavaScript file.

Working with Libraries
In addition to storing scripts for multiple pages in the same website, sometimes JavaScript source files store especially
useful generic scripts used on many different websites. These files, known as libraries, are often developed by a single
programmer or a team of programmers and distributed online. Many libraries are developed to solve a problem on
one website and turn out to be useful for other sites as well. Programmers often make libraries available for free reuse.

After downloading a .js file containing a library that you want to use on a web page, you incorporate it into your HTML
code just as you would any other JavaScript source file: by creating a script element in the head section and using
the src attribute to specify the file name of the library.

A handful of libraries are commonly used to perform a variety of functions on large, complex websites. For instance,
Node.js and jQuery contain tools for creating and managing large web applications. Another library, Modernizr, is
widely used to enable web authors to deliver a consistent design and functionality across different browsers, browser
versions, and platforms.

Figure 1-22 Connecting to an external JavaScript file

Name of external
JavaScript �le

Defer loading the JavaScript �le
until after the HTML �le is loaded

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

validating WEB pagES 27

Validating Web Pages
When you use a web browser to open an HTML document that does not conform to the rules and requirements of the lan-
guage, the browser simply ignores the errors and renders the web page as best it can. A document that conforms to these
rules is said to be well formed. A web browser cannot tell whether an HTML document is well formed; instead, to ensure
that a web page is well formed and that its elements are valid, you need to use a validating parser. A validating parser is
a program that checks whether a web page is well formed and whether the document conforms to a specific language
definition known as a DTD. The term validation refers to the process of verifying that your document is well formed and
checking that the elements in your document are correctly written according to the element definitions in a specific DTD.
If you do not validate a document and it contains errors, most web browsers will probably ignore the errors and render the
page anyway. However, validation can help you spot errors in your code. Even the most experienced web page authors fre-
quently introduce typos or some other types of errors into a document that prevent the document from being well formed.

Various web development tools, including Dreamweaver, offer validation capabilities. In addition, several validating
services can be found online. One of the best available is W3C Markup Validation Service, a free service that validates
HTML as well as other markup languages. The W3C Markup Validation Service is located at http://validator.w3.org/.
The service allows you to validate a web page by entering its URL, by uploading a document from your computer, or
by copying and pasting code.

If you’re working with XHTML instead of HTML, JavaScript can present a challenge to creating valid documents. This
is because some JavaScript statements contain symbols such as the less-than symbol (<) symbol, the greater-than
symbol (>), and the ampersand (&). This is not a problem with HTML documents, because the statements in a script
element are interpreted as character data instead of as markup. A section of a document that is not interpreted as
markup is referred to as character data, or CDATA. If you were to validate an HTML document containing a script sec-
tion, the document would validate successfully because the validator would ignore the script section and not attempt
to interpret the text and symbols in the JavaScript statements as HTML elements or attributes. By contrast, in XHTML
documents, the statements in script elements are treated as parsed character data, or PCDATA, which identifies a
section of a document that is interpreted as markup. Because JavaScript code in an XHTML document is treated as
PCDATA, if you attempt to validate an XHTML document that contains a script section, it will fail the validation. To
avoid this problem, you can do one of two things. One option is to move your code into a source file, which prevents
the validator from attempting to parse the JavaScript statements. Alternatively, if you prefer to keep the JavaScript
code within the document, you can enclose the code within a script element within a CDATA section, which marks
sections of a document as CDATA. The syntax for including a CDATA section on a web page is as follows:

<![CDATA[

statements to mark as CDATA

]]>

For instance, the following code snippet shows the body section of a web document containing JavaScript code that
is enclosed within a CDATA section.

<body>

 <script type="text/javascript">

 <![CDATA[

 document.write("<h1>Order Confirmation</h1>");

 document.write("<p>Your order has been received.</p>");

 document.write("<p>Thank you for your business!</p>");

]]>

 </script>

</body>

Though you can make XHTML documents valid using a CDATA section, the simplest and most direct option is to put
all your JavaScript in an external file. Website apps constructed in this way can work with both HTML and XHTML
documents with little or no modification.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 28

Summary
❯❯ A programming language needs to be compiled to transform program code into machine code. A scripting
language does not require a compiler but instead is read line-by-line by an interpreter that scans the code for
errors even as it runs. A markup language is a language that defines the content, structure, and appearance of a
document.

❯❯ JavaScript is a scripting language based on the standards of ECMAScript, which is constantly developed and
adapted to meet the needs of modern browsers and devices.

❯❯ JavaScript is built on three foundations: the scripting language ECMAScript, the Document Object Model (DOM)
that describes how to access the contents and actions within a web page, and the Browser Object Model (BOM)
that describes how to access the features and behaviors of the browser.

❯❯ The specifications of the DOM are maintained by the World Wide Web Consortium (W3C), which also is
responsible for the development of standards for HTML and CSS. The specifications of the BOM are determined by
each browser, but a common set of standards have been adopted by all browsers to make coding more accessible.

❯❯ JavaScript programs can be created by a basic text editor or by a code editor for more sophisticated applications.

❯❯ In traditional client/server architecture, the server is usually some sort of database from which a client requests
information. A system consisting of a client and a server is known as a two-tier system. The web is built on a two-
tier client/server system, in which a web browser (the client) requests documents from a web server. A three-tier,
or multitier, client/server system consists of three distinct pieces: the client tier, the processing tier, and the data
storage tier.

❯❯ JavaScript is a client-side scripting language that allows web page authors to develop interactive web pages and
sites. Client-side scripting refers to a scripting language that runs on a local browser (on the client tier) instead of
on a web server (on the processing tier).

❯❯ Server-side scripting refers to a scripting language that is executed from a web server.

❯❯ A general rule of thumb is to allow the client to handle the user interface processing and light processing, such as
data validation, but have the web server perform intensive calculations and data storage.

❯❯ The script element tells a web browser that the scripting engine must interpret the commands it contains. The
individual lines of code, or statements, that make up a JavaScript program in a document are contained within the
script element.

❯❯ An object is programming code and data that can be treated as an individual unit or component. The procedures
associated with an object are called methods. A property is a piece of data, such as a color or a name, which is
associated with an object.

❯❯ You can write content to a web page with the write() method of the Document object.

❯❯ JavaScript is a case-sensitive language, meaning that it interprets differences in capitalization as differences in
meaning.

Quick Check 4

1. Why should you place scripts at the end of an HtML document’s body section?

2. How do you incorporate the contents of a JavaScript source file into an HtML document?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

KEy tErmS 29

Key Terms
Application Programming Interface

(API)

argument

assignment operator

back end

block comment

Browser Object Model (BOM)

camel case

Cascading Style Sheets (CSS)

character data (CDATA)

client

client-side scripting

code editor

comments

compiled

compiler

declare

Document Object Model (DOM)

ECMA-262

ECMAScript

European Computer Manufacturers
Association (ECMA)

event

event handler

expression

front end

Hypertext Markup Language (HTML)

Hypertext Transfer Protocol (HTTP)

identifier

initialize

Integrated Development
Environment (IDE)

interpreter

JavaScript

JavaScript source file

JScript

keywords

library

line comment

literal

literal string

machine code

markup language

method

middle tier

multitier client/server system

n-tier client/server system

object

operand

operator

parsed character data (PCDATA)

passing arguments

procedure

processing tier

programming language

property

reserved words

script

scripting language

server

server-side scripting

statement

static

text string

three-tier client/server system

two-tier system

validating parser

validation

variables

web

web application

well formed

World Wide Web

World Wide Web Consortium (W3C)

❯❯ Comments are nonprinting lines that you place in your code to contain various types of remarks, including the
name of the program, your name, and the date you created the program, notes to yourself, or instructions to future
programmers who may need to modify your work.

❯❯ The values a program stores in computer memory are commonly called variables.

❯❯ Reserved words (also called keywords) are special words that are part of the JavaScript language syntax.

❯❯ An expression is a literal value or variable or a combination of literal values, variables, operators, and other
expressions that can be evaluated by the JavaScript interpreter to produce a result.

❯❯ An event is a specific circumstance (such as an action performed by a user, or an action performed by the
browser) that is monitored by JavaScript and that your script can respond to in some way. Code that executes in
response to a specific event is called an event handler.

❯❯ The script element can be placed anywhere within an HTML document. The loading and parsing of the HTML
is interrupted to load and parse JavaScript commands unless the defer or async attribute is added to the
<script> tag (for external JavaScript files).

❯❯ You can save JavaScript code in an external file called a JavaScript source file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 30

Review Questions
1. A programming language like Java requires a(n)

_________________.
a. interpreter
b. Document Object Model
c. compiler
d. Browser Object Model

2. HTML is an example of a _________________.
a. programming language
b. machine language
c. scripting language
d. markup language

3. The syntax specifications for JavaScript are defined
in _________________.
a. HTML
b. the Document Object Model
c. the Browser Object Model
d. ECMAScript

4. JavaScript is built upon ________________.
a. ECMAScript
b. the Document Object Model
c. the Browser Object Model
d. ECMAScript, the Document Object Model, and the

Browser Object Model

5. The specifications for the Document Object Model
are determined by _________________.
a. each browser alone
b. each device alone
c. the World Wide Web Consortium (W3C)
d. the European Computer Manufacturers Association

(ECMA)

6. Which of the following is not a language used by
web developers?
a. JavaScript
b. HTML
c. CSS
d. machine code

7. A system consisting of a client and a server is
known as a _________________.
a. mainframe topology
b. double-system architecture
c. two-tier system
d. wide area network

8. What is usually the primary role of a client?
a. locating records that match a request
b. heavy processing, such as calculations
c. data storage
d. the presentation of an interface to the user

9. Which of the following functions does the processing
tier not handle in a three-tier client/server system?
a. processing and calculations
b. reading and writing of information to the data

storage tier
c. the return of any information to the client tier
d. data storage

10. Which of the following uses the correct case?
a. Document.write()
b. document.write()
c. document.Write()
d. Document.Write()

11. Which of the following is not a valid identifier?
a. $InterestRate
b. 2QInterest Rate
c. interestRate
d. _interestRate

12. When you assign a specific value to a variable on
its creation, you _________________ it.
a. declare
b. call
c. assign
d. initialize

13. Code that tells a browser what to do in response to
a specific event on a specific element is called a(n)
_________________.
a. method
b. event handler
c. response
d. procedure

14. Which method displays a dialog box with an OK
button?
a. document.write()
b. document.writeln()
c. window.alert()
d. window.popup()

15. Which of the following is not a JavaScript keyword
used to declare a variable?
a. variable
b. var
c. let
d. const

16. What potential problems can occur if you load a
script prior to the page being entirely loaded by the
browser?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on proJEctS 31

Hands-On Projects
Hands-On Project 1-1

In this project you will use document.write() statements in a script section to add financial planning tips
to a web page, creating the web page shown in Figure 1-23.

Figure 1-23 Completed Project 1-1

17. How can you make the browser not parse and
load an external script file until after the page has
loaded?

18. When should you use an external JavaScript file
instead of embedding your JavaScript code within
the HTML file?

19. Provide the JavaScript code to write the text
“Copyright 2023” as a line comment. Provide the
code to write the same text as a block comment.

20. What is a library?

Do the following:

1. Use your code editor to open project01-01_txt.html from the js01 c project01 folder. Enter your name and
the date in the comment section of the document head.

2. Save the file as project01-01.html.

3. Within the article element, directly below the h2 element, enter the opening and closing tags of a script
element on separate lines.

4. Within the script insert a JavaScript line comment containing the text create ordered list.

5. Below the line comment, insert multiple document.write() commands to write the following HTML code for
an ordered list:

 Reduce spending on non-necessities.

 Use extra money to pay off debt,

 starting with highest-interest credit cards.

 Continue paying off debts until you are debt free.

 Put a fixed percent of your pay aside every payday.

6. Save your work and open project01-01.html in your web browser. Verify the content of the page resembles that
shown in Figure 1-23.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 32

Hands-On Project 1-2

In this project, you will create a web page that uses variables to display information about high-speed Internet
plans offered by an Internet service provider. The completed page is shown in Figure 1-24.

Figure 1-24 Completed Project 1-2

Do the following:

1. Use your code editor to open project01-02_txt.html and project01-02_txt.js from the js01 c project02
folder. Enter your name and the date in the comment section of each document and save them as
project01-02.html and project01-02.js, respectively.

2. Below the comment section in the project01-02.js file, declare the following variables with indicated initial values:

service1Name 5 “Basic”, service2Name 5 “Express”, service3Name 5 “Extreme”,
service4Name 5 “Ultimate”, service1Speed 5 “0 Mbps”, service2Speed 5 “100
Mbps”, service3Speed 5 “500 Mbps”, and service4Speed 5 “1 Gig”.

3. Save your changes to the file.

4. Return to the project01-02.html file in your code editor. Directly above the closing </head> tag, insert a
script element to load the project01-02.js source file. Do not add either the async or defer attributes to the
script so that the code in the external file is loaded immediately as the web page is parsed by the browser.

5. Go to the first table row of the tbody section of the web table. Within the first <td> tag, insert a script to write
the value of the service1Name variable. Within the second <td> tag, insert another script to write the value
of the service1Speed variable.

6. Repeat Step 5 for the two cells in each of the next three table rows in the tbody section, writing the values
of service2Name and service2Speed variables through the service4Name and service4Speed
variables.

7. Save your work and then open project01-02.html in your web browser. Verify that the content of the page
resembles that shown in Figure 1-24.

Hands-On Project 1-3

In this project, you will explore how to write text to a specific element in your web page in response to the
onclick event handler. To complete the exercise, you will apply the following JavaScript expression:

document.getElementById('id').innerHTML = 'text';

where id is the value of the id attribute for the page element and text is the text of the content to be written
into the element. You will use this expression to enhance a web form by displaying the message “Thank you for
your order” when the user clicks the Submit button. Figure 1-25 shows the completed web page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on proJEctS 33

Do the following:

1. Use your code editor to open project01-03_txt.html from the js01 c project03 folder. Enter your name and
the date in the comment section of the document and save it as project01-03.html.

2. Scroll down to the bottom of the file and locate the input element for the Submit button.

3. Add an onclick event handler to the <input> tag that changes the innerHTML value of the page element
with the id “submitMsg” to the text message Thank you for your order. (Note: The entire JavaScript expression
should be enclosed within a set of double quotation marks, but the id and the text message should be enclosed
within single quotes.)

4. Save your changes to the file and then open project01-03.html in your web browser. Click the Submit button and
verify that the text “Thank you for your order” appears on the bottom of the page.

Hands-On Project 1-4

In this chapter you learned how to dynamically change an image using the getElementById('id').src
expression along with the onclick event handler. In this project you will use the onclick event handler to
automatically fill delivery address input boxes with preassigned values using the expression:

document.getElementById('id').value = variable;

where id is the value of the id attribute of a web form element and variable is the variable value to write
into the element. A preview of the completed project is shown in Figure 1-26.

Do the following:

1. Use your code editor to open project01-04_txt.html and project01-04_txt.js from the js01 c project04
folder. Enter your name and the date in the comment section of each document and save them as
project01-04.html and project01-04.js, respectively.

2. Go to the project01-04.js file in your code editor. Below the comment section declare the following variables and
initial values: homeStreet 5 “1 Main St.”, homeCity 5 “Sicilia”, homeState 5 “MA”, homeCode 5 “02103”,
workStreet 5 “15 Oak Ln.”, workCity 5 “Central City”, workState 5 “MA”, workCode 5 “02104”.

Figure 1-25 Completed Project 1-3

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 IntroductIon to JavaScrIpt 34

3. Close the file, saving your changes.

4. Go to the project01-04.html file in your code editor. Directly below the closing </head> tag insert a script
element accessing the project01-04.js file. Do not include the defer or async attributes so that the code in the
external file loads as the HTML is loaded.

5. Directly below the closing </div> tag for the Home address, insert a script element. Within the script, insert
commands to write the following two lines of HTML code:

homeStreet

homeCity, homeState homeCode

where homeStreet, homeCity, homeState, and homeCode are the variables you defined in Step 2. (Hint:
You will have to use the add operator (1) to combine the variables with the literal text strings in these two
lines of code.)

6. Directly below the closing </div> tag for the Work address, insert another script element. Within the script,
insert commands the write the following two lines:

workStreet

workCity, workState workCode

where workStreet, workCity, workState, and workCode are once again the variables you defined in
Step 2.

7. Go to the input element with the id “homeoption”. Within the <input> tag insert an onclick event handler
that contains the following four JavaScript commands: (a) Set the value of the of the element with the id “street”
to the value of the homeStreet variable; (b) Set the value of the element with the id “city” to the homeCity
variable; (c) Set the value of the element with the id “state” to the homeState variable; (d) Set the value of the
element with the id “code” to the value of the homeCode variable.

8. Go to the input element with the id “workoption”. Repeat the previous step except store the values of the
workStreet, workCity, workState, and workCode variables.

9. Save your changes to the file and then load project01-04.html in your web browser. Verify that the contents of
the page resemble that shown in Figure 1-26 and that you can switch the address information at the bottom of
the page between home and work by clicking the corresponding option buttons.

Figure 1-26 Completed Project 1-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

caSE proJEctS 35

Do the following:

1. Use your code editor to open project01-05_txt.html from the js01 c project05 folder. Enter your name and
the date in the comment section of the document and save it as project01-05.html.

2. In the head section of the document there is a script that declares and initializes the reopenDate variable.
There are two errors in this code. Fix both errors.

3. Scroll down to the script embedded within the article element. The code contains a total of four errors.
Locate and fix the errors.

4. Save your changes to the file and then open the file in your web browser. Verify that the page resembles that
shown in Figure 1-27.

Case Projects
Individual Case Project

The Individual Case Project for each chapter in this book will build on a website that you create on a subject of
your choice. To begin, choose a topic for your website. This can be a topic related to your major, or a personal
interest or activity. Plan a website containing at least four pages with a common layout and navigation system.
Note that you’ll add pages to your site in later chapters, so ensure that your navigation system can support
additional content. Ensure that all of your web pages pass validation.

Team Case Project

Throughout the Team Case Projects in this book you will continue to work on a website on a subject chosen by
your team. Working in a team of 4–8 people, discuss and agree on a topic for your website. This may be a topic
related to your major, another area of study, your college or university, or a shared interest. Work together to
plan a website containing, at a minimum, a number of pages equal to the number of group members, and to
create a common layout and navigation system. Note that you’ll add pages to your site in later chapters, so
ensure that your navigation system can support additional content. Decide as a group who will create which
page, and create the pages individually. When you’ve finished creating the individual pages, ensure they pass
validation, and then work together to assemble the resulting website, identifying and fixing any issues as a
group.

Hands-On Project 1-5

debugging Challenge

Learning to locate and fix errors is an important skill for anyone programming in JavaScript. You have been
given a web page containing several errors that need to be fixed. When fixed, the page will display the content
shown in Figure 1-27.

Figure 1-27 Completed Project 1-5

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

37

So far, the code you have written has consisted of simple statements placed within script sections.
However, like most programming languages, JavaScript allows you to group programming statements in
logical units. In JavaScript, a group of statements that you can execute as a single unit is called a function.
You’ll learn how to create functions in this chapter, and you’ll practice using them to organize your code.

In addition to functions, one of the most important aspects of programming is the ability to store values
in computer memory and to manipulate those values. In the last chapter, you learned how to store
values in computer memory using variables. The values, or data, contained in variables are classified
into categories known as data types. In this chapter, you’ll learn about JavaScript data types and the
operations that can be performed on values of each type. You’ll also explore the order in which different
operations are performed by JavaScript processors, as well as how to change this order.

Chapter 2

When you complete this chapter, you will be able to:

❯❯ Write and call functions to perform actions and calculate values

❯❯ Associate functions with events using event handlers and event listeners

❯❯ Use built-in JavaScript functions

❯❯ Understand the scope of variables and functions

❯❯ Understand the data types supported by JavaScript and write expressions with
numeric values, text strings, and Boolean values

❯❯ Create expressions using arithmetic, assignment, comparison, logical, string, and
special operators

❯❯ Understand order precedence and associativity of operations

❯❯ Work with events and values associated with form controls

❯❯ Access your browser’s debugging console

Working with
Functions, Data
Types, and Operators

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators38

Working with Functions
A collection of statements that share a common purpose or calculate a value can be grouped into a programming
structure known as a function. A function might be used to write messages to the user, calculate the total tax on an
order, or estimate the shipping date for a product. The commands stored within a function can be called repeatedly
throughout your program, simplifying your code and making it more efficient to run.

Defining a Function
Functions are classified as either named functions or anonymous functions. A named function is a function that is
assigned a name and has the following syntax:

function functionName(parameters) {

 statements

}

where functionName is the name of the function, parameters is a comma-separated list of parameters, where each
parameter is a variable used within the function, and statements are the commands contained with the function.
For example, the following writeMsg() function encloses commands to display an alert box with part of the message
determined by the date and status parameters:

function writeMsg(date, status) {

 window.alert("Today is " + date + ". Your order is " + status);

}

If date has a value of “October 3, 2024” and status is “pending”, this function will display an alert box with the text:
“Today is October 3, 2024. Your order is pending”.

Function statements are always enclosed within opening and closing curly braces, a structure known as a command
block that is used in many JavaScript statements to encapsulate multiple JavaScript statements. It is considered good
practice to write the opening and closing curly braces on their own lines and indent the enclosed statements between
those braces.

Functions do not have to contain parameters. No parameters are required in the following function that writes a canned
message to an alert box:

function writeFinalMsg() {

 window.alert("Order completed. Thank you for your business");

}

The code in this book is indented using three space characters. The number of spaces used for indenting
is not important, but you should use the same number consistently throughout your code. Some
programmers prefer to use tab characters instead of spaces for indents; this choice is also a question of
personal preference and has no effect on the quality of the code.

Note

Functions are named so that they can be referenced and used elsewhere in the script in the same way that a variable
is named so that it can referenced and used. If the function does not need to be referenced, it can be entered as an
anonymous function without a name as in the following syntax:

function (parameters) {

 statements

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working With Functions 39

As with named functions, you do not need to include a list of parameters unless the anonymous function requires it.
Generally, named functions are used for functions that are accessed repeatedly in the program and anonymous func-
tions are used for functions accessed only once. Anonymous functions are also important for use with event handlers
as you will learn later in this chapter.

Writing a Function
In this chapter, you will create a program that calculates the total cost of photography services provided by Fan Trick
Fine Art Photography. Figure 2-1 shows a preview of the page with the selected service options and an estimate of
the total overall cost.

Figure 2-1 Estimating the total photography charge

Service options
that determine
the overall cost

Estimated total cost of the
photography service

The total charge is based on the number of photographers, the number of hours they worked, their travel distance, the
publication of a memory book, and the granting of reproduction rights to digital copies. Your job will be to write
the code that automatically calculates that total based on selections made by the customer in the web form. Open the
data file for the web page now.

to open the fan trick photography page:

1. Use your code editor to go to the js02 c chapter folder of your data files.

2. Open the js02_txt.html file in your code editor.

3. Enter your name and the date in the comment section of the file.

4. Scroll through the document to familiarize yourself with its contents.

5. Save the file as js02.html and load the file in your browser.

6. Add the following values to the web form using the controls on the form: # of photographers: 1, # of hours 2,
click the Memory book checkbox to indicate that a memory book should be part of the purchase, and finally
enter an travel distance in miles of 25.

7. Refresh or reload the web page and notice that by refreshing or reloading the page, your values are erased.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators40

You want to use JavaScript to open the web form with these default values already entered. One way of accomplishing
that is with a function named setupForm() that defines those default values. To set the value of an input box, apply
the JavaScript statement:

object.value = value;

where object is a reference to an input control on the web form and value is the value to insert into that control. If
the control can be identified by the value of the id attribute, the statement has the syntax:

document.getElementById(id).value = value;

where id is the id of the input control.

Checkboxes have a property named checked that determines whether the checkbox is checked or not. To define the
checked status, apply the JavaScript statement:

object.checked = status;

where status is true to check the checkbox or false to leave the checkbox unchecked. Use these commands in
the setupForm() function now. You will add the function to an external JavaScript file.

to create the setupform() function:

1. Open the js02_txt.js file in your code editor.

2. Enter your name and the date in the comment section of the file and the save the file as js02.js.

3. Below the initial comment section, add code for the following function as shown in Figure 2-2:

// set the form's default values

function setupForm() {

 document.getElementById("photoNum").value = 1;

 document.getElementById("photoHrs").value = 2;

 document.getElementById("makeBook").checked = false;

 document.getElementById("photoRights").checked = false;

 document.getElementById("photoDist").value = 0;

}

Figure 2-2 Creating the setupForm() function

Name of the
function

Set the number
of photographers to 1

Set the distance traveled to 0 miles

Set the number of
hours worked to 2 hours

Do not purchase
a memory book or

digital publishing rights

Next, link the web page to this external script file.

4. Return to the js02.html file in your code editor.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working With Functions 41

5. Directly above the closing </head> tag insert the following element to load the js02.js script file, deferring the
loading of the file until after the entire page has loaded.

<script src="js02.js" defer></script>

6. Save your changes to the file.

Functions like the setupForm() function cannot be run until they are called. You will explore how to call functions next.

Calling a Function
Any named function can be accessed or called by including the name of the function within the JavaScript expression:

functionName(paramValues);

where functionName is the name of the function and paramValues are the values assigned to the parameters (if
any) of the function. The variables or values that you place in the parentheses of the function call statement are also
called arguments or actual parameters. Sending arguments to the parameters of a called function is known as passing
arguments. When you pass arguments to a function, the value of each argument is then assigned to the value of the
corresponding parameter in the function definition. (Again, remember that parameters are simply variables that are
declared within a function definition.)

For example, the following showStatus() function displays an alert box using values specified by the name and
status parameters:

function showStatus(name, status) {

 window.alert("The " + name + " Contract is " + status);

}

and when called with the following parameter values

showStatus("Reynolds", "Pending");

showStatus("Dawson", "Approved");

the following text strings would be displayed within alert boxes:

The Reynolds Contract is Pending

The Dawson Contract is Approved

Functions are most effective when they can be reused with different parameter values to result in different outcomes,
freeing the web developer from duplicating the same code within a program.

returning a Value from a Function
So far you have only examined functions that perform an operation, but you may be more familiar with the concept
of functions that perform calculations and return a value. JavaScript functions can also be used for that purpose. To
create a function that returns a value, add the following return statement to the end of the function’s command
block:

function functionName(parameters) {

 statements

 return value;

}

where value is the calculated value returned by the function. The return statement marks the end of the function
so that any code placed after it within the command block will never be executed. Note that only one value can be

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators42

returned by a function, though some functions will have multiple return statements when one of several possible
values could be returned at any given time.

The following sum3() function calculates the sum of three numeric values stored in num1, num2, and num3 param-
eters. The return statement then returns the value of that sum.

function sum3(num1, num2, num3) {

 let sum = num1 + num2 + num3;

 return sum;

}

This sum3() function can then be used within any JavaScript statement just like one of JavaScript’s built-in functions
or methods. The following line of code calls the sum3() function with two sets of values, storing the result in the
finalTotal variable:

let finalTotal = sum3(3, 4, 5) + sum3(1, 0, 5);

After running this command, the finalTotal variable would have a value of 18.

Managing Events with Functions
In your code you will often need to run functions in response to events occurring within the web page or browser,
such as the user clicking a form button, or the browser having completed loading the web page. There are three ways
of associating a function with an event: by adding an attribute to an HTML tag, by adding a property to a page object,
or by attaching an event listener to a page object. Each approach has its advantages and disadvantages.

Using event handlers
The most direct way to associate a function with an event is to create an event handler as an attribute of the element
within the HTML file. The general syntax is

<elem onevent = "function()">

where elem is the HTML element in which the event occurs, event is the name of a user- or browser-initiated event,
and function() is the function that is called in response to the event. For example, the calcTotal() function
would be run in response to the input button being clicked by the user:

<input type="button" id="total" value="Calculate"

 onclick="calcTotal()" />

In this example, the element is the input box, the name of the event is “click” and the function is calcTotal().
You can include multiple JavaScript statements with the event handler as in the following example in which both the
 calcTotal() and writeMsg() functions are called

<input type="button" id="total" value="Calculate"

 onclick="calcTotal(); writeMsg()" />

The statements specified with an event handler attribute do not need to be functions at all. Any set of JavaScript state-
ments enclosed within the event handler attribute will be run in response to the event.

You can add parameter values to the function by including them within function parentheses. Parameter
values that are text strings should be enclosed within single quotes.Note

One drawback of adding event handlers as HTML attributes is that they place JavaScript code within the HTML file.
Just as developers want to keep HTML and CSS code separate, most developers prefer not to mix HTML and JavaScript
code in the same document.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Managing EvEnts With Functions 43

events as Object properties
To place an event handler within the JavaScript code, attach an event handler to a page object by specifying it as a
property of that object. The general syntax is

object.onevent = function;

where object is the reference to an object within the document or browser, event is an event associated with the
object, and function is the name of the function that will be run in response to the event. The following JavaScript
command would run the calcTotal() function when the page object with the id total is clicked.

document.getElementById("total").onclick = calcTotal;

Note that you only specify the function name. You do not and cannot specify parameter values with this approach.
Another limitation of setting an event handler as object property is that only one function can handle an event at a
time. In the following code, the second event handler supersedes the first so that only the second function is run in
response to the load event of the window object.

window.onload = function1;

window.onload = function2;

If your application requires multiple functions to be assigned to the same event, you can use an event listener.

event Listeners
An event listener listens for an event as it propagates through a web page either through being captured or being
bubbled. To understand the difference between the capturing and bubbling, imagine clicking an image on a page. In
doing so, you have clicked more than the image; you have also clicked the browser window, the web page itself, and
any page element containing the image. A single event interacts with a hierarchy of objects from the most general
down through the most specific. JavaScript manages that event through an event model that describes how objects
and events interact within the web page and web browser. Under JavaScript’s event model, an event like click is first
tracked in the capture phase, moving down the object hierarchy from the most general object (the browser window)
down to the specific (the image itself). The capture phase is followed by the bubbling phase as the event moves back
up the object hierarchy ending with the browser window. Thus, the event listener is always listening for the event as
it goes down the object hierarchy (being captured) or goes up (being bubbled).

To attach an event listener to an object, apply the following method:

object.addEventListener("event", function, capture)

where object is the object in which to listen for the event, function is the name of the function that is run in
response, and capture is an optional value equal to true (listen during the capture phase) or false (listen during
the bubbling phase). The default value is false so that the event listener will only listen during the bubbling phase.
The following statement listens for the click event occurring within the page object with the id total during the
bubbling phase, running the calcTotal() function when that event occurs:

document.getElementById("total").addEventListener("click", calcTotal);

Unlike the event handler approach, event listeners can attach multiple functions to the same event. In the following
code, both functions will be run in response to the load event of the window object:

window.addEventListener("load", function1);

window.addEventListener("load", function2);

To remove an event listener from an object, apply the following command:

object.removeEventListener("event", function, capture)

Once the event listener has been removed, the event will no longer trigger a response from the script.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators44

The distinction between the capture and bubbling phases is usually only important for more advanced applications,
like online games. In this chapter and others, the capture argument will not be used so that events will only be lis-
tened to in the bubbling phase by default.

events and anonymous Functions
You can also use anonymous functions with event handlers and event listeners. One reason to do this is to allow param-
eter values to be used with the event. The following example shows how to nest a named function with parameter
values within an anonymous function to respond to the load event of the window object:

window.onload = function() {

 showMsg("Dawson", "Approved");

}

Notice that in place of a function name, the entire structure of the anonymous function, including the command block,
is added to the statement. To do the same with an event listener, enclose the entire structure of the anonymous func-
tion within the addEventListener() method in place of the function name. The following shows its application in
response to the load event of the window object:

window.addEventListener("load", function() {

 showMsg("Dawson", "Approved");

 });

Whether you use named functions or anonymous functions depends on the needs of your application. Anonymous func-
tions can provide more flexibility in your code, but they can also make your code more difficult to interpret and edit.

applying a Function to an event
Now that you have seen how to attach functions to events, you will run the setupForm() function when the browser
window loads the web page. Add an event listener now to the js02.js file to accomplish this and then test your code.

to create an event listener for the load event:

1. Return to the js02.js file in your code editor.

2. Above the code for the setupForm() function insert the following event listener as shown in Figure 2-3:

// setup the form when the page loads

window.addEventListener("load", setupForm);

Figure 2-3 Creating an event listener

Attach an event listener
to the browser window

Listen for the event of the
window loading the web page

Run the setupForm() function
in response to the event

3. Save your changes to the file and then reload js02.html in your web browser.

4. Verify that the page opens with the number of photographs set to 1, the number of hours set to 2, the two check-
boxes unselected, and the distance set to 0.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

45undErstanding variablE scopE

Having set the initial values in the web form you will next create a function to estimate the total cost of the photo-
graphic services. To do that however, you will first need to learn about variables, data types, and operators.

Using Built-in JavaScript Functions
In addition to custom functions that you create yourself, JavaScript allows you to use the built-in functions listed in
Figure 2-4.

FUNCTION DESCRIPTION

decodeURI (string) Decodes text strings encoded with encodeURI()

decodeURIComponent (string) Decodes text strings encoded with encodeURIComponent()

encodeURI (string) Encodes a text string so it becomes a valid URI

encodeURIComponent (string) Encodes a text string so it becomes a valid URI component

eval (string) Evaluates expressions contained within strings

isFinite (number) Determines whether a number is finite

isNaN (number) Determines whether a value is the special value NaN (Not a Number)

parseFloat (string) Converts string literals to floating-point numbers

parseInt (string) Converts string literals to integers

Figure 2-4 Built-in JavaScript functions

In this book, you will examine several of the built-in JavaScript functions as you need them. For now, you just need to
understand that you call built-in JavaScript functions in the same way you call custom functions. For example, the fol-
lowing code calls the isNaN() function to determine whether the socialSecurityNumber variable is not a number.

let socialSecurityNumber = "123-45-6789";

let checkVar = isNaN(socialSecurityNumber);

document.write(checkVar);

Because the Social Security number assigned to the socialSecurityNumber variable contains dashes, it is not a
true number. Therefore, the isNaN() function returns a value of true to the checkVar variable.

Quick Check 1

1. What is the difference between a named function and an anonymous function?

2. What is a command block?

3. provide an expression to call the findSqr() function using 10 as the parameter value.

4. What is the difference between the capture phase and the bubbling phase for an event occurring within a website?

5. an htML file contains the following tag:

<input type="button" value="Submit" id="SubmitButton" />

 provide the code to run the submitOrder() function in response to the user clicking this input button using
the following approaches: as a htML attribute, as an object property entered as an event handler, and as an event
listener (during the bubbling phase).

Understanding Variable Scope
Variables can be declared using either the var keyword or the let keyword. The difference between those approaches
lies in the scope of the declared variable. Scope refers to where a variable or function can be called within the program.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators46

let and var Declaration Scopes
Variables declared with let are block scoped, in that their scope is limited to the command block in which they are defined,
or any code nested within that block. In the following code the user variable is recognized only within the command
block, but outside of that command block it is not recognized and will produce an error if it is referenced in a statement:

{

 let user = "Dawson";

 document.write(user); // writes Dawson

}

 document.write(user); // produces an error

Constants declared with the const keyword are also block-scoped and, thus, can only be referenced within the com-
mand block in which they are declared.

Variables declared with the var keyword have function scope, in that their scope is limited to the function in which
they are defined, or any code nested therein. In the following example, the user variable is only recognized within the
showUser() function but not outside of it.

function showUser() {

 var user = "Reynolds";

 document.write(user); // writes Reynolds

}

document.write(user); // produces an error

Because functions contain command blocks, any variable declared within a function using the let or const keywords
is also not accessible outside of that function.

Local and Global Scope
Block scope and function scope are collectively referred to as local scope because they define variables and functions
accessible locally within the command block or function in which they are defined. The other general type of scope
is global scope, in which the variable or function is defined outside of any command block or function and, thus, is
accessible throughout the entire program. Variables with local scope are called local variables, while variables with
global scope are called global variables.

In the following code the user variable is a global variable and thus is accessible within any command block or func-
tion in the program:

let user = "Dawson";

function showUser() {

 document.write(user); //writes Dawson

}

If a global variable and a local variable share the same name, the local variable takes precedence. However, the value
assigned to a local variable within a function or command block is not transferred outside of that context. In the fol-
lowing example the local value assigned to the user variable is limited to the scope of the function while the global
value is unchanged outside of the function:

let user = "Dawson";

function showUser() {

 let user = "Reynolds";

 document.write(user); // writes Reynolds

}

document.write(user); // writes Dawson

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

undErstanding variablE scopE 47

Global variables are fine for smaller applications developed and maintained by a single programmer. They make it
easier to share data between functions, freeing the programmer from having to declare variables within every function
and command block. However, their use is strongly discouraged for larger applications, especially for applications that
are managed by a team of programmers. The problem is that a global variable can be unexpectedly changed by one
of the many functions scattered throughout a large and complex application. It is much easier for the team to confine
their work to local variables whose scope is well-contained and easily tracked. If a value needs to be used within a
function, it is much better to pass that value as a parameter of the function.

JavaScript is a forgiving language and will allow you to “bend the rules” on occasion. For example, you
can create a variable without using the let, const, or var keywords. Variables created in this way are
assigned global scope, even if they are created within a function or command block. The best practice,
however, is to always declare a variable, so there is no ambiguity about its scope and role in the program.

Note

You will create global variables for the photography web page containing the costs per hour for each photographer
($100), the cost of a memory book ($350), the reproduction rights for all photos ($1250), and the cost per mile for
travel ($2). Because these variables will never change their value within the application, you will declare them using
the const keyword.

to declare global constants:

1. Return to the js02.js file in your code editor.

2. Directly below the initial comment section, enter the following code declaring global constants (see Figure 2-5):

// declare global constants for the application

const EMP_COST = 100; //cost of photographers per hour

const BOOK_COST = 350; //cost of memory book

const REPRO_COST = 1250; //cost of reproduction rights

const TRAVEL_COST = 2; //cost of travel per mile

Figure 2-5 Declaring constant variables

Cost per photographer
per hour = $100

Cost of the memory
book = $350

Cost of reproduction
rights = $1250

Cost of travel
per mile = $2

3. Save your changes to the file.

It is common programming practice to distinguish constants from variables, by writing the names of
constants in uppercase characters with words separated by underscores.

Note

One of the advantages of declaring these global constants is that when the company changes its rates in the future,
the programmer maintaining this application will only need to change these constant values once in the code and not
every time they’re used in a calculation or expression.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators48

Working with Data Types
Variables can contain many different kinds of values such as the time of day, a dollar amount, or a person’s name. A data
type is the specific category of information that a variable contains. The data type determines how much memory is
allocated for the data stored in the variable. The data type also governs the kinds of operations that can be performed
on the variable.

Data types that can be assigned only a single value are called primitive types. JavaScript supports the five primitive
data types described in Figure 2-6.

The JavaScript language also supports the object data type used for creating a collection of properties.
You will learn about the object type in a later chapter.Note

DATA TYPE DESCRIPTION

number A positive or negative number with or without decimal places, or a number written using exponential notation

Boolean A logical value of true or false

string Text such as “Hello World!"

undefined An unassigned, undeclared, or nonexistent value

null An empty value

Figure 2-6 Primitive JavaScript data types

You might be confused about the distinction between a null value and an undefined value. Null is both a data type and
a value. You assign the null value to a variable to indicate that the variable does not contain any data. In contrast,
an undefined variable is a variable that has never had a value assigned to it, has not been initialized or does not even
exist. For example, a variable that has been declared but not given an initial value is undefined but not null.

Many programming languages require that you declare the type of data that a variable contains. Such languages are
called strongly typed programming languages. A strongly typed language is also known as statically typed, because
data types cannot be changed after they have been declared. Programming languages that do not require you to declare
the data types of variables are called loosely typed or duck typed programming languages. A loosely typed language
is also known as dynamically typed, because data types can change after they have been declared. JavaScript is a
loosely typed programming language. In JavaScript, you are not required to declare the data type of variables and, in
fact, are not allowed to do so. Instead, a JavaScript interpreter automatically determines what type of data is stored
in a variable and assigns the variable’s data type accordingly. The following code demonstrates how a variable’s data
type changes automatically each time the variable is assigned a new literal value:

diffTypes = "Hello World!"; // String

diffTypes = 8; // Integer number

diffTypes = 5.367; // Floating-point number

diffTypes = true; // Boolean

diffTypes = null; // Null

The next two sections focus on two especially important data types: number and Boolean data types.

Working with Numeric Values
JavaScript supports two types of numeric values: integers and floating point numbers. An integer is a positive or negative
number with no decimal places like 13, 250, 0, 100, or 1000. Integer values in JavaScript range from 9007199254740990

22(2)53 to 9007199254740990 ()253 .

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working With data typEs 49

Numbers containing decimal places like 26.16, 0.314, or 10.5 or which are written in exponential notation are floating
point numbers. Exponential notation, or scientific notation, is a shortened format for writing very large numbers or
numbers with many decimal places. Exponential values in JavaScript are written with the letter e separating the decimal
and exponent parts of the value, such as 2.0e6 for the value 2 106 3 or 2,000,000, or 3.1e24 for 3 1 10 4. 3 2 or 0.00031.
Using exponential notation, JavaScript can represent floating point values as large as approximately 6 31 8 10308. or as
small as 6 3 25 10 324 . Floating point values beyond 6 31 8 10308. are assigned the keywords -Infinity and Infinity.

JavaScript treats all numeric values as binary values, rather than as decimals—that is, the numbers are calculated
using the two-digit binary system rather than the 10-digit decimal system. While the binary system can accurately
represent any value that has a decimal equivalent, when it comes to floating point values, calculations performed
on binary representations can result in slightly different results than the same calculations performed on decimal
values. Because users enter decimal values in web interfaces and the interfaces display decimal results to users,
this discrepancy can cause problems, especially when it comes to calculating exact monetary values such as dollars
and cents. JavaScript programmers have developed a straightforward workaround, however: when manipulating
a monetary value in a program, first multiply the value by 100, to eliminate the decimal portion of the number. In
essence, this means calculating based on a value in cents (for instance, $10.51 * 100 5 1051¢). Because calculations
on integer values are the same in binary and decimal, any calculations you perform will be accurate. When your
calculations are finished, simply divide the result by 100 to arrive at the correct, final value in dollars and cents.

Best Practices Calculate with Whole Numbers, Not Decimals

Working with Boolean Values
A Boolean value is a logical value of true or false. You can also think of a Boolean value as being yes or no, or on
or off. Boolean values are most often used for deciding which code should execute and for comparing data. While a
value of true or false looks like a text string, it is not. Boolean values should never be placed within quotes because
they will be treated as text.

Working with Strings
As you learned in the previous chapter, a text string contains zero or more characters surrounded by double or single
quotation marks. Examples of strings you may use in a script are company names, user names, and comments. You
can use a text string as a literal value or assign it to a variable.

A literal string can also be assigned a zero-length string value called an empty string. For example, the following state-
ment declares a variable named customerName and assigns it an empty string:

let customerName = "";

This practice specifies that the variable is a string variable with no content.

If quotation marks are themselves part of the text string, simply use double quotation marks to enclose single quotes
and single quotation marks to enclose double quotes. The following statements demonstrate this technique by show-
ing how to include first a single quote (') and then a double quote (") as part of a text string:

document.write("Welcome to 'Fan Trick Photography'");

document.write('Welcome to "Fan Trick Photography"');

JavaScript would then write the lines as

Welcome to 'Fan Trick Photography'

Welcome to "Fan Trick Photography"

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators50

In writing your code you may have to deal with long text strings that will not fit on a single line. Although many
 JavaScript commands can be entered across several lines, a text string cannot split onto a new line without causing
an error. If you have a long text string, there are several things you can do to make your code error-free:

❯❯ Fit as much of the text string as you can on one line and then close out the text with an ending quote followed
by the addition operator (1) as in the following example:

let message = "This is a very long" +

" and complicated text string to enter.";

❯❯ End the line with the \ character indicating that the text string continues on the next line (this approach might
not be supported by all browsers and browser versions).

let message = "This is a very long \

 and complicated text string to enter.";

Another approach is to enclose your text strings with the backtick character (`) rather than double or single quotes
as in the following expression:

let message = `This is a very long

and complicated text string to enter`;

Using the backtick character (`) creates a structure known as a template literal introduced in ES6 to provide more
tools for working with literal text strings. Note however that in the previous example, both the text and the line return
are part of the text string and, thus, when printed the message text string will be rendered on two lines.

A common mistake is to mix the two types of quotation marks or omit one of them as in the
following statement in which a double quote begins the text string, but a single quote ends it:

document.write("Welcome to 'Fan Trick Photography');

You must always match a beginning quote with an ending quote of the same type or else an
error will result in your code. Without matching quotes, the JavaScript interpreter cannot tell
where the text string ends.

Common
Mistakes

Unlike other programming languages, JavaScript includes no special data type for a single character, such
as the char data type in the C, C11, and Java programming languages.Note

escape Characters and Sequences
Use extra care when using single quotation marks with possessives and contractions in strings, because JavaScript
interpreters always look for the first closing single or double quotation mark to match an opening single or double
quotation mark. For example, consider the following statement:

document.write('<p>My mom's favorite color is blue.</p>');

This statement causes an error. A JavaScript interpreter assumes that the literal string ends with the apostrophe fol-
lowing “mom” and looks for the closing parentheses for the document.write() statement immediately following
“mom’”. To get around this problem, you include an escape character before the apostrophe in “mom’s”. An escape
character tells compilers and interpreters that the character that follows it has a special purpose. In JavaScript, the
escape character is the backslash (\). Placing a backslash before an apostrophe tells JavaScript interpreters that the
apostrophe is to be treated as a regular keyboard character, such as a, b, 1, or 2, and not as part of a single quotation
mark pair that encloses a text string. The backslash in the following statement tells the JavaScript interpreter to print
the apostrophe following the word “mom” as an apostrophe.

document.write('<p>My mom\'s favorite color is blue.</p>');

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using opErators to build ExprEssions 51

You can also use the escape character in combination with other characters to insert a special character into a string.
When you combine the escape character with a specific other character, the combination is called an escape sequence.
The backslash followed by an apostrophe (\') and the backslash followed by a double quotation mark (\") are both
examples of escape sequences. Most escape sequences carry out special functions. For example, the escape sequence
\t inserts a tab into a string. Figure 2-7 describes the escape sequences that can be added to a string in JavaScript.

If you place a backslash before any character other than those listed in Figure 2-7, the backslash is
ignored.Note

ESCAPE SEQUENCE CHARACTER
\\ Backslash

\b Backspace

\r Carriage return

\" Double quotation mark

\f Form feed

\t Horizontal tab

\n Newline

\0 Null character

\' Single quotation mark (apostrophe)

\v Vertical tab

\xXX Latin-1 character specified by the XX characters, which represent two hexadecimal digits

\uXXXX Unicode character specified by the XXXX characters, which represent four hexadecimal digits

Figure 2-7 JavaScript escape sequences

Notice that one of the characters generated by an escape sequence is the backslash. Because the escape character
itself is a backslash, you must use the escape sequence \\ to include a backslash as a character in a string. For exam-
ple, to include the path “C:\Users\me\Documents\Cengage\WebWarrior\JavaScript\” in a string, you must include
two backslashes for every single backslash you want to appear in the string, as in the following statement:

document.write("<p>My JavaScript files are located in↵
 C:\\Users\\me\\Documents\\Cengage\\WebWarrior\\↵
 JavaScript\\</p>");

Quick Check 2

1. What is the difference between block scope and function scope?

2. What is the scope of variables declared with the let keyword?

3. What are the possible values for a Boolean variable?

4. What is the difference between a strongly typed and a loosely typed language? Which is Javascript?

5. What is the escape sequence for the newline character?

Using Operators to Build Expressions
In the previous chapter, you learned the basics of how to create expressions using basic operators, such as the addi-
tion operator (1) and multiplication operator (*). In this section, you will learn about other types of operators you
can use with JavaScript.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators52

JavaScript operators are binary or unary. A binary operator requires an operand before and after the operator. The equal
sign in the statement myNumber = 100; is an example of a binary operator. A unary operator requires just a single
operand either before or after the operator. For example, the increment operator (++), an arithmetic operator, is used to
increase an operand by a value of one. The statement myNumber++; changes the value of the myNumber variable to 101.

Another type of JavaScript operator, bitwise operators, operate on integer values; this is a fairly complex
topic. Bitwise operators and other complex operators are beyond the scope of this book.Note

The operand to the left of an operator is known as the left operand, and the operand to the right of an
operator is known as the right operand.Note

arithmetic Operators
Arithmetic operators are used in JavaScript to perform mathematical calculations, such as addition, subtraction, mul-
tiplication, and division. You can also use an arithmetic operator to return the modulus of a calculation, which is the
remainder left when you divide one number by another number.

Figure 2-8 describes the arithmetic operators supported by JavaScript.

You might be confused by the difference between the division (/) operator and the modulus (%) operator. The division
operator performs a standard mathematical division operation so that the expression 15/6 returns a value of 2.5. The
modulus operator returns the remainder after a division so that the expression 15%6 returns a value of 3 because that
is the remainder when 15 is divided by 6.

Arithmetic operations can also be performed on a single variable using unary operators. Figure 2-9 lists the arithmetic
unary operators available in JavaScript.

OPERATOR DESCRIPTION ExPRESSION RETURNS

1 Combines or adds two items 12 1 3 15

2 Subtracts one item from another 12 2 3 9

* Multiplies two items 12*3 36

/ Divides one item by another 12/3 4

% Returns the remainder after dividing
one integer by another integer

18%5 3

** Raising a value to a power 3**2 9

Figure 2-8 Arithmetic operators

OPERATOR DESCRIPTION ExPRESSION RETURNS

11 Increases a value by 1 1211 13

22 Decreases a value by 1 1222 11

2 Changes the sign of a value 212 212

Figure 2-9 Unary operators

Unary operators provide a more simplified expression for increasing or decreasing a value by 1. The statement
count = count + 1 has the same result as the expression count++. Where things can be confusing is that the
unary operator could also be placed before the variable as in the expression ++count.

A prefix operator is a unary operator placed before the variable, while a postfix operator is placed after the variable.
The distinction is important because placement indicates the order in which the operator is applied to the variable.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using opErators to build ExprEssions 53

The following statement uses a prefix operator so that the value of x is first increased by 1, and then that value is
assigned to the variable y, giving both variables a final value of 6:

let x = 5;

let y = ++x // x = 6 and y = 6

But if the code is written using a postfix operator, a different result occurs:

let x = 5;

let y = x++ // x = 6 and y = 5

With a postfix operator, the value of x is first stored in y and only after that is x is increased by 1 so that the final
value of x is 6 but the final value of y remains as 5. The same effect occurs if you use the decrement operator (--) to
decrease the value of the variable by 1.

While including comments in your code can make your code easier for you and other programmers to read and
understand, using comments is not the only strategy for documenting code. Another strategy is to make your code
self-documenting, meaning that the code is written as simply and directly as possible, so its statements and structures
are easier to understand at a glance. For instance, it’s a good idea to name variables with descriptive names so it’s
easier to remember what value is stored in each variable. Rather than naming variables var1, var2, and so on, you
can use names like firstName or lastName . Creating statements that are easy to read is another instance of self-
documenting code. For example, code that you create with the increment operator (++) is more concise than code
that assigns a variable a value of itself plus 1. However, in this shortened form, the code can be more challenging
to read and understand quickly. For this reason, some developers choose not to use the ++ operator at all, relying
instead on the + and = operators to make their code easier for themselves and other developers to read. As you
build your programming skills, you’ll learn multiple ways to code many different tasks, but the best option is usually
the one that results in code that is easy for you and other programmers to read and understand. This results in code
that can be more easily maintained and modified by other developers when you move on to another job.

Skills at Work Making Your Code Self-Documenting

assignment Operators
An assignment operator is used for assigning a value to a variable. The most common assignment operator is the equal
sign (=), but JavaScript supports other operators known as compound assignment operators that both assign a value
and perform a calculation. For example, the expression

x += y

both performs the addition operation and assigns a value so that this expression is equivalent to

x = x + y

Figure 2-10 lists other compound assignment operators supported by JavaScript.

OPERATOR ExAmPlE EQUIvAlENT TO

5 x 5 y x 5 y

15 x 15 y x 5 x 1 y

25 x 25 y x 5 x 2 y

*5 x *5 y x 5 x * y

/5 x /5 y x 5 x/y

%5 x %5y x 5 x % y

= x=y x = x**y

Figure 2-10 Assignment operators

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators54

You can use the += compound addition assignment operator to combine two strings as well as to add numbers. In the
case of strings, the string on the left side of the operator is combined with the string on the right side of the operator,
and the new value is assigned to the left operator. Before combining operands, a JavaScript interpreter attempts to con-
vert a nonnumeric operand, such as a string, to a number. This means that unlike the + operator, which concatenates
any string values, using the += operator with two string operands containing numbers results in a numeric value. For
instance, the following code defines two variables with string values: x with a value of “5” and y with a value of “4”. In
processing the third line of code, a JavaScript interpreter first converts the strings to the values 5 and 4, respectively,
then adds them, and then assigns the result, the value 9, to the x variable.

x = "5";

y = "4";

x += y; // a numeric value of 9 is returned for x

If a nonnumeric operand cannot be converted to a number, you receive a value of NaN. The value NaN stands for “Not
a Number” and is returned when a mathematical operation does not result in a numerical value. The sole exception to
this rule is +=, which simply concatenates operands if one or both can’t be converted to numbers.

Comparison Operators
A comparison operator, or relational operator, is used to compare two operands and determine if one value is greater
than another. A Boolean value of true or false is returned after two operands are compared. For example, the
statement 5 < 3 would return a Boolean value of false, because 5 is not less than 3. Figure 2-11 lists the JavaScript
comparison operators.

The comparison operators (== and ===) consist of two and three equal signs, respectively, and
perform a different function than the one performed by the assignment operator that consists of a single
equal sign (=). The comparison operators compare values, whereas the assignment operator assigns
values. Confusion between these two types of operators is a common mistake.

Note

OPERATOR ExAmPlE DECRIPTION
== x == y Tests whether x is equal in value to y

=== x === y Tests whether x is equal in value to y and has the same data type

!= x != y Tests whether x is not equal to y or has a different data type

!== x !== y Tests whether x is not equal to y and/or doesn’t have the same data type

> x > y Tests whether x is greater than y

>= x >= y Tests whether x is greater than or equal to y

< x < y Tests whether x is less than y

<= x <= y Tests whether x is less than or equal to y

Figure 2-11 Comparison operators

You can use number or string values as operands with comparison operators. When two numeric values are used as oper-
ands, JavaScript interpreters compare them numerically. For example, the statement arithmeticValue = 5 > 4;
results in true because the number 5 is numerically greater than the number 4. When two nonnumeric values are used
as operands, the JavaScript interpreter compares them in lexicographical order—that is, the order in which they would
appear in a dictionary. The expression "b" > "a"; returns true because the letter b comes after than the letter a in the

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using opErators to build ExprEssions 55

dictionary. When one operand is a number and the other is a string, JavaScript interpreters attempt to convert the string
value to a number. If the string value cannot be converted to a number, a value of false is returned. For example, the
expression 10 === "ten"; returns a value of false because JavaScript interpreters cannot convert the string “ten”
to a number.

Conditional Operators
Comparison operators are often used with conditional operators or ternary operators that return one of two possible
values given the Boolean value of comparison. The general syntax of a comparison operator is

condition ? trueValue : falseValue;

where condition is an expression or value that is either true or false, trueValue is the returned value if the
expression is true, while falseValue is the returned value if the expression is false. The conditional expres-
sion is often enclosed within parentheses to make the statement easier to read. For example, an online store might set
a discount rate for prime members of 5%. The following statement sets the value of the discount variable based on
whether the value of member variable is equal to “prime”:

let discount = (member === "prime") ? 0.05 : 0.0;

If member equals “prime” then the value of the discount variable is set to 0.05 (5%); otherwise the discount vari-
able is set to 0.0 (no discount). The condition can be any expression that equals true or false; it can even a Boolean
variable as the following code demonstrates in which the discount variable equals 0.05 because the primeMember
variable equals true:

let primeMember = true;

let discount = primeMember ? 0.05 : 0.0;

A conditional operator only returns trueValue if the condition is true. If condition is false or undefined
or null or NaN (not a number), it will be treated as false by the conditional operator.

You can nest one conditional operator within another to test two conditions. The general syntax is

condition1 ? trueValue : condition2 ? trueValue : falseValue;

where the expression returns trueValue if condition1 is true or condition2 is true; otherwise it
returns falseValue.

Note

Conditional operators can also be used with expressions in place of values. In the following statement, an alert box is
displayed with the message “Enjoy your free shipping” if primeMember is true or the message “Go prime for free
shipping” if it is false:

(primeMember) ? window.alert("Enjoy your free shipping") :

 window.alert("Go prime for free shipping");

Note that long expressions are often more easily written on several lines. As long as the text strings are all contained
on a single line, you can break the statement at other points for better readability.

Understanding Falsy and truthy Values
JavaScript includes six values that are treated in comparison operations as the Boolean value false. These six values,
known as falsy values, are the following: "", -0, 0, NaN, null, and undefined.

All values other than these six falsy values are the equivalent of Boolean true, and are known as truthy values.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators56

Developers commonly take advantage of falsy and truthy values to make comparison operations more compact. In
a conditional statement that tests whether a text field in a form contains a value, you could write the code for the
conditional statement as

(document.getElementById("fname").value !== "") ?↵
 // code to run if condition is true :↵
 // code to run if condition is false;

However, it’s simpler to test whether the value of the text field is falsy or truthy by omitting the comparison operator
and writing the statement as follows:

(document.getElementById("fname").value) ?↵
 // code to run if condition is true :↵
 // code to run if condition is false;

Note that this code tests only the value of the text field. If it is an empty string (""), it is treated as false.

Logical Operators
Logical operators are used when combining expressions that will result in Boolean value of true or false or for
negating a Boolean value, turning true to false or false to true. Figure 2-12 lists the three logical operators
supported by JavaScript.

Logical operators are often used within conditional and looping statements such as the if, for, and
while statements. You will learn about conditional and looping statements in Chapter 3.Note

OPERATOR DEFINITION ExAmPlE DESCRIPTION
&& and (x === 5) && (y === 8) Tests whether x is equal to 5 and y is equal to 8

|| or (x === 5) || (y === 8) Test whether x is equal to 5 or y is equal to 8

! not ! (x < 5) Test whether x is not less than 5

Figure 2-12 Logical operators

The following conditional operator uses the And operator (&&) to combine two conditions testing whether the value of
the member variable is “prime” and the value of the plan variable is “gold”. If both conditions are true, then discount
rate is set to a value of 0.10; otherwise it is set to a value of 0.0.

let discount = (member === "prime" && plan === "gold") ? 0.10 : 0.0;

In the following expression, the Or operator (||) is used to return a discount rate of 0.05 if member is “prime” or sale
is “yes”:

let discount = (member === "prime" || sale === "yes") ? 0.05 : 0.0;

Using parentheses, you can create more complicated statements by grouping multiple conditions, as in the follow-
ing statement that sets the discount rate at 0.10 if member equals “prime” and plan equals “gold” or sale equals
“blowout”:

let discount = ((member === "prime" && plan === "gold") || sale === "blowout") ? 0.10 : 0.0;

A common error when using multiple conditions is to omit an opening or closing parenthesis. You must have an equal
number of opening and closing parentheses to avoid an error, so always count the number of opening and closing
parentheses to verify that they match.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

undErstanding opErator prEcEdEncE 57

Special Operators
JavaScript also includes the special operators that are listed in Figure 2-13. These operators are used for various
purposes and do not fit within any other category.

Quick Check 3

1. What is the difference between a binary operator and a unary operator?

2. how does Javascript deal with code that performs arithmetic operations on string values?

3. What is a comparison operator? What kind of value does it return?

4. What is a falsy value? What are the six falsy values in Javascript?

NAmE OPERATOR DESCRIPTION

Property access . Appends an object, method, or property to another object

Array index [] Accesses an element of an array

Function call () Calls up functions or changes the order in which individual operations in an expression are evaluated

Comma , Separates multiple expressions in the same statement

Conditional expression ?: Executes one of two expressions based on the results of a conditional expression

Delete delete Deletes array elements, variables created without the var keyword, and properties of custom objects

Property exists in Returns a value of true if a specified property is contained within an object

Object type instanceof Returns true if an object is of a specified object type

New object new Creates a new instance of a user-defined object type or a predefined JavaScript object type

Data type typeof Determines the data type of a variable

Void void Evaluates an expression without returning a result

Figure 2-13 Special operators

One of more useful special operators is the typeof operator, which returns the data type stored within a variable.
The syntax of the typeof operator is

typeof(variable);

Values returned by the typeof operator are listed in Figure 2-14. Because JavaScript allows variables to change their
data type, the typeof operator is often used to check that variables retain data type and that a number has not been
changed to a text string or vice versa.

RETURN vAlUE RETURNED FOR
number Integers and floating-point numbers

string Text strings

boolean True or false

object Objects, arrays, and null variables

function Functions

undefined Undefined variables

Figure 2-14 Values of the typeof operator

Understanding Operator Precedence
When using operators you need to be aware of operator precedence, which determines the order in which operations
in an expression are evaluated. Figure 2-15 shows the order of precedence listed in descending order of precedence.
Operators in the same grouping in Figure 2-15 have the same order of precedence. Operators listed in the same row
of the table have their precedence determined by associativity, which is the order in which operators of equal prece-
dence are executed. Associativity is evaluated from left-to-right or right-to-left, depending on the operators involved.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators58

OPERATORS DESCRIPTION ASSOCIATIvITY
. Objects—highest precedence Left to right

[] Array elements—highest precedence Left to right

() Functions/evaluation—highest precedence Left to right

new New object—highest precedence Right to left

++ Increment Right to left

-- Decrement Right to left

- Unary negation Right to left

+ Unary positive Right to left

! Not Right to left

typeof Data type Right to left

void Void Right to left

delete Delete object Right to left

** Exponentiation Left to right

* / % Multiplication/division/modulus Left to right

+ - Addition/concatenation and subtraction Left to right

, ,5 . .5 Comparison Left to right

instanceof Object type Left to right

in Object property Left to right

== != === !== Equality Left to right

&& Logical And Left to right

|| Logical Or Left to right

?: Conditional Right to left

5 Assignment Right to left

+= -= *= /= %= Compound assignment Right to left

, Comma—lowest precedence Left to right

Figure 2-15 Operator precedence

The preceding list does not include bitwise operators. As explained earlier, bitwise operators are beyond
the scope of this book.Note

In Figure 2-15, operators in a higher grouping have precedence over operators in a lower grouping. For example, the
multiplication operator (*) has a higher precedence than the addition operator (+). Therefore, the expression 5 + 2 * 8
evaluates as follows: the numbers 2 and 8 are multiplied first for a total of 16, then the number 5 is added,
resulting in a total of 21. If the addition operator had a higher precedence than the multiplication operator,
then the statement would evaluate to 56, because 5 would be added to 2 for a total of 7, which would then be
multiplied by 8.

However, multiplication and division have an equal order of precedence and, therefore, their precedence is determined
by associativity, which for them is left-to-right. Thus the expression 30 / 5 * 2 results in a value of 12 because the
division operator is applied first followed by the multiplication operator. See Figure 2-16.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using ExprEssions With WEb ForM controls 59

If the multiplication operator had higher precedence than the division operator, then the statement 30 / 5 * 2 would
result in a value of 3 because the multiplication operation (5 * 2) would execute first. By contrast, the assignment
operator and compound assignment operators, such as the compound multiplication assignment operator (*=), have
an associativity of right to left as in the following example:

let x = 3;

let y = 2;

x = y *= ++x;

Moving right to left, the variable x is incremented by one before it is assigned to the y variable using the compound
multiplication assignment operator (*=). Then, the value of variable y is assigned to the variable x, resulting a in final
value of 8 for both variables. See Figure 2-17.

Figure 2-16 Left-to-right associativity

Associativity
(left to right)

30 / 5 * 2

First operation
(division)

Second operation
(multiplication)

Figure 2-17 Right-to-left associativity

Associativity
(right to left)

x = y *= ++x

Third operation
(assignment)

Second operation
(compound multiplication
assignment)

First operation
(increment)

As shown in Figure 2-15, parentheses have among the highest precedence. For example, the expression (5 + 2) * 8
is equal to 7 * 8 or 56.

Using Expressions with Web Form Controls
Now that you have learned about expressions and operators, it is time to return to the Fan Trick Fine Art Photography
page. The next task for the page is to provide an estimate for the total cost of the photography service. Recall that
total cost is the sum of several factors:

❯❯ The number of photographers charged at a rate of $100 per hour per photographer

❯❯ The distance the photographers must travel to the photo shoot, charged at a rate of $2 per mile per photographer

❯❯ Whether a memory book is purchased at a cost of $350

❯❯ Whether full digital reproduction rights are granted to the customer at cost of $1250

To estimate the total cost, you will first have to extract information from the web form and then use JavaScript opera-
tors and expressions to calculate the total.

Working with Input Control Values
Recall from earlier in this chapter that the value inserted into an input control can be referenced using the following
value property:

object.value

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators60

where object is a reference to the input control. To extract the number of photographers from the input box with the
id “photoNum”, use the expression

document.getElementById("photoNum").value

Create a function named getEstimate()that includes code to extract the number of photographers, the number of
hours worked, and the distance traveled from the web form and sets the initial total cost of the service to $0.

to retrieve values from the web form:

1. Return to the js02.js file in your code editor.

2. At the bottom of the file insert the following getEstimate() function:

// estimate the total cost of the service

function getEstimate() {

 let totalCost = 0;

 let photographers = document.getElementById("photoNum").value;

 let hours = document.getElementById("photoHrs").value;

 let distance = document.getElementById("photoDist").value;

}

See Figure 2-18.

Figure 2-18 Retrieving input control values

Set the initial estimate
of the service to $0

Use the value property to retrieve
the value of the input control

Retrieve the value for the number of photographers,
number of hours worked, and distance traveled

Next, add the cost of the photographers per hour and the distance traveled per photographer and mile to the totalC-
ost variable. To do these calculations you will use the += assignment operator to both perform the calculation and
add it to the total cost estimate. To add the cost of photographers for the hours covered, use the statement

totalCost += photographers * hours * EMP_COST;

Notice that this expression uses the photographers and hours variables you declared in the last set of steps and
EMP_COST is the global constant you declared in Figure 2-5. To add the cost of travel for the photographers, use the statement

totalCost += photographers * distance * TRAVEL_COST;

Add both of these statements to the getEstimate() function.

to add calculations to the getEstimate() function:

1. Add the following commands to the getEstimate() function as shown in Figure 2-19:

// Add the cost of photographers for the hours covered

totalCost += photographers * hours * EMP_COST;

// Add the cost of distance per photographer per mile

totalCost += photographers * distance * TRAVEL_COST;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using ExprEssions With WEb ForM controls 61

2. Save your changes to the file.

Figure 2-19 Adding to the total cost estimate

Add the photographer cost
to the total estimate

Add the travel cost to
the total estimate

Figure 2-20 Retrieving the checked status of web form checkboxes

buyBook will be true
if the makeBook

checkbox is checked

buyRights will be true
if the photoRights
checkbox is checked

Input control values are text strings even if they appear as numbers. If you use the + operator to add
the values of two input controls, JavaScript will combine the two text strings and not add their numeric
values. You can convert a text string by enclosing the text within the Number() function as in the
expression Number("12.3"), which returns the numeric value 12.3.

Note

Working with Checkboxes
As you learned earlier in this chapter, every checkbox control has a checked property, a Boolean value indicating
whether the checkbox has been selected (true) or left unchecked (false). Thus, to retrieve the checked status of
a checkbox, use the expression

object.checked

where object is a reference to checkbox control. The following expressions returns the checked status of the checkbox
controls with the ids “makeBook” and “photoRights”.

document.getElementById("makeBook").checked

document.getElementById("photoRights").checked

Add two variables named buyBook and buyRights to the getEstimate() to record the checked status of these
two checkboxes.

to create variables for checkbox controls:

1. Below the statement declaring the distance variable in the getEstimate() function, add the following state-
ment to determine whether the makeBook checkbox has been checked:

let buyBook = document.getElementById("makeBook").checked;

2. Next add the following statement to determine whether the photoRights checkbox has been checked. Figure 2-20
shows the newly added code in the function.

let buyRights = document.getElementById("photoRights").checked;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators62

The buyBook and buyRights variables will have a value of true if their respective checkboxes have been checked
by the user and false if otherwise. You will use that fact as part of a conditional operator that adds the cost of the
book and the reproduction rights if these variables values are true but adds $0 if they are false. The statements are

totalCost += buyBook ? BOOK_COST : 0;

totalCost += buyRights ? REPRO_COST: 0;

Note that the BOOK_COST and REPRO_COST variables represent the global constants you created in Figure 2-5. Add
these statements to the getEstimate() function.

to add the cost of the memory book and digital rights:

1. At the bottom of the getEstimate() function, insert the following statements:

// Add the cost of the book if purchased

totalCost += buyBook ? BOOK_COST : 0;

// Add the cost of photo rights if purchased

totalCost += buyRights ? REPRO_COST: 0;

Figure 2-21 shows the revised code in the function.

Figure 2-21 Adding the cost of the memory book and the photo rights

Add the cost of the
photo rights to the total

cost if buyRights is true

Add the book cost to
the total cost if
buyBook is true

2. Save your changes to the file.

The last statement in the getEstimate() function displays the value of the totalCost() variable. The js02.html
file contains the following span element in which you will display the totalCost value:

<aside>

 <p>Total Estimate: </p>

</aside>

To display the totalCost value within the span element with the id “estimate”, use the innerHTML property in
the following statement:

document.getElementById("estimate").innerHTML = "$" + totalCost;

Note that this expression uses the + operator to add the $ character to the text string displayed in the element. Add
this command to the getEstimate() function and then run the web page to verify the total cost is correctly calcu-
lated and shown in the page.

to calculate and display the total cost estimate:

1. At the bottom of the getEstimate() function, add the following code:

// Display the total cost estimate

document.getElementById("estimate").innerHTML = "$" + totalCost;

Figure 2-22 shows the final code in the getEstimate() function.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using ExprEssions With WEb ForM controls 63

2. Scroll up to the setupForm() function and at the end of the function insert the following command to call the
getEstimate() function as shown in Figure 2-23.

getEstimate();

Figure 2-22 Displaying the total cost estimate in the web page

Display totalCost prefaced by the $ character

Figure 2-23 Calling the getEstimate() function when the page loads

Run the getEstimate()
function when the

browser loads the page

3. Save your changes to the file and then reload the js02.html file in your web browser. As shown in Figure 2-24, the
initial page should show a total cost estimate of $200 for the default options entered the webform.

The total cost estimate needs to be automatically updated when the customer changes values and options in the form.
You will add that feature next.

All modern browsers also support the textContent property for web page elements. This property is
similar to the innerHTML property, except that a textContent value excludes any HTML markup, while
innerHTML allows it.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators64

Using the change event with Web Form Controls
One of the events associated with web form controls is the change event, which is triggered when the value within
the control is changed. The change event is triggered for an input box only when the control loses the focus by either
tabbing out of the box or clicking outside of it. Checkboxes trigger the change event when they are clicked. To apply
the onchange event handler to the form control, apply the statement

object.onchange = function;

With the event listeners, the statement appears as

object.addEventListener("change", function);

Attach the getEstimate() function to the change event associated with each of the five input controls on the Fan
Trick web page. These commands are part of the setupForm() function that runs automatically when the browser
loads the page.

to add onchange event handlers to the form controls:

1. Return to the js02.js file in your code editor.

2. At the bottom of the setupForm() function add the following statements:

// Add event handlers for each input control

document.getElementById("photoNum").onchange = getEstimate;

document.getElementById("photoHrs").onchange = getEstimate;

document.getElementById("photoDist").onchange = getEstimate;

document.getElementById("makeBook").onchange = getEstimate;

document.getElementById("photoRights").onchange = getEstimate;

Figure 2-24 Initial Fan Trick Fine Art Photography page

Estimated cost for 1 photographer
working 2 hours is $200

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

using ExprEssions With WEb ForM controls 65

Figure 2-25 shows the final code in the setupForm() function.

Figure 2-25 Adding event handlers for each input control

Run the getEstimate()
function when the values

of any of the 5 input
controls are changed

Figure 2-26 Estimating total cost for a photography job

3. Save your changes to the file and then reload the js02.html file in your browser.

4. Test the form, verifying that as you change the plan options the total cost estimate automatically updates. Note
that you may have to tab out of a form control to trigger the change event. Figure 2-26 shows the total estimate
for a project that involves two photographers working for 3 hours traveling 30 miles to the event with both the
memory book and photographic rights purchased by the customer. The total cost of the job would be $2320.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators66

If your page does not work, compare the code for your functions to that shown in Figures 2-22 and 2-25. Common
 mistakes include

❯❯ Misspelled JavaScript keywords

❯❯ Misspelled variable names or failing to match the use of uppercase and lowercase letters

❯❯ Misplaced or missing quotation marks, parentheses, or curly braces

If you still are having problems with your code, you can try to locate your coding error with your browser’s console.

Locating Errors with the Browser Console
Even the most careful programmer makes mistakes. A small mistake, such as incorrect capitalization or the omission
of a closing quote, parenthesis, or curly brace can prevent the browser from processing your code and result in an
application filled with errors.

accessing the Browser Console
When a browser encounters an error that prevents it from interpreting your code, it generates an error message dis-
played in a pane known as a browser console, or simply console, which is hidden from the user. However, developers
can display the browser console pane to view errors in the application code. Almost every major browser supports
a browser console, though there are slight differences in how to access and view the console details. Figure 2-27
describes how to access the console in the major browsers at the time of this writing.

BROwSER KEYBOARD SHORTCUT mENU STEPS

Google
Chrome

SHIFT 1 CTRL 1 J (Windows)

Option 1 1 J (Macintosh)

1. Click the Chrome menu in the upper-right corner

2. Click More Tools

3. Click Developer Tools

4. Click Console from the Developer pane

Safari Option 1 1 C 1. Enable the Developer tab by going into the Safari Menu . Preferences window, going to the Advanced
tab and selecting Show Develop menu in menu bar checkbox

2. Click the Developer tab in the Safari menu

3. Click Show JavaScript Console

Microsoft
Edge

F12 and then click Console
from the Developer pane menu

1. Click the Edge menu in the upper-right corner

2. Click More Tools

3. Click Developer Tools

4. Click Console from the Developer pane

Firefox SHIFT 1 CTRL 1 J (Windows)

Option 1 1 J (Macintosh)

1. Click the Firefox menu in the upper-right corner

2. Click Web Developer

3. Click Web Console

Figure 2-27 Accessing the browser console

To view your browser console in action, you will introduce an intentional error in the application you created for the
Fan Trick web page by mistyping the name of the totalCost variable.

to insert an error into the js02.js file:

1. Return to the js02.js file in your code editor.

2. In the last statement in the getEstimate() function change totalCost to totalcost.

3. Save your changes to the file and then reload or refresh the js02.html file.

4. Open your browser console pane using the appropriate commands from Figure 2-27. If your browser is not listed,
use your browser’s help system to determine how to open the console. Figure 2-28 shows the console message
from the Google Chrome browser (note that your browser’s console might appear slightly different).

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

locating Errors With thE broWsEr consolE 67

The console reports an unrecognized reference to totalcost. Because variable names are case sensitive and the vari-
able should have been named totalCost, the JavaScript interpreter will not recognize the misspelled variable name.

Locating an error in Your program
In addition to error description, the console will indicate the location of the error that caused the program to fail. In
this case, the location of the unrecognized reference is on line 63 of the js02.js file. Depending on how you wrote the
code for your file, your line number might be different. The console also reports the lines in the code that the program
failed to run: line 63 within the getEstimate() function and line 31 within the setupForm() function. This informa-
tion helps the programmer locate the source of the error. With the browser console, you can click a link to jump to the
location of the error. However, while you can make temporary changes to the program within the console, permanent
changes should be made within your code editor.

to view the error location in the console:

1. Click the js02.js:63 link in your console (if your line number is different, click the link to that line number).

The console shows the file listing for the js02.js file, highlighting the line and the error within that line. See Figure 2-29.

Figure 2-29 Console showing the location of the error

List of �les used
in the web page

Unrecognized reference
is highlighted

Count of errors in
the JavaScript �le

Click to close the
Developer pane

Figure 2-28 Browser console message in the Google Chrome browser

Error message indicating totalcost
is not a defined reference

Line locations where program
failed due to error

Line location
of the error

2. Now that you have viewed the source of the error, click the Close button in the upper right corner of the Devel-
oper pane.

3. Return to the js02.js file in your editor and fix the error from the last statement in the getEstimate() function,
change totalcost back to totalCost.

4. Save your changes to the file and then reload the js02.html file in your browser and verify that the program is
once again working correctly with no errors reported in the console.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators68

This book uses the Google Chrome browser developer tools to check and report errors. If you are using a different
browser, study the developer tools for your browser. Developer tools are similar between browsers, and you can apply
what you learn from one browser to master the tools in another.

Quick Check 4

1. When performing operations with operators in the same precedence group, how is the order of precedence
determined?

2. provide the expression to retrieve the value entered in the input control with the id “membernumber”.

3. provide the expression to determine whether the checkbox control with the id “primeMember” has been
checked.

4. provide a statement that attaches an event listener to the input control with the id “membernumber”, running the
function updateRegistration() when that control’s value is changed.

In a small JavaScript program, each function you create generally serves a specific purpose. However, when writing
more complex code for larger sites, you should try to build functions that you can apply to multiple situations. For
instance, instead of specifying an element name within a function, you could use a variable whose value is specified
elsewhere in your program, depending on the context in which the function is called. Because such functions are
reusable in multiple contexts within a website, they allow you to perform the same amount of work with less code
than would be required to create functions for each specific situation. You’ll learn additional strategies for creating
reusable code in later chapters of this book.

Programming Concepts Creating Reusable Code

Summary
❯❯ A function is a related group of JavaScript statements that are executed as a single unit.

❯❯ To execute a function, you must invoke, or call, it from elsewhere in your program.

❯❯ The scope of a variable determined where it can be referenced. Variables declared with the let keyword are block
scoped and can be referenced only within their command block. Variables declared with the var keyword are
function scoped and can be referenced only within their function.

❯❯ A global variable can be referenced anywhere within the program. A local variable can only be referenced within
its command block or function.

❯❯ A data type (such as number, Boolean, or string) is the specific category of information that a variable contains.

❯❯ JavaScript is a loosely typed programming language, meaning it does not require you to declare the data types of
variables.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

kEy tErMs 69

Key Terms
anonymous function

actual parameters

arguments

arithmetic operators

assignment operator

associativity

binary operator

Boolean value

browser console

block scoped

bubbling phase

call

capture phase

command block

comparison operator

compound assignment operators

conditional operator

console

data type

duck typed

dynamically typed

empty string

escape character

escape sequence

event listener

event model

exponential notation

falsy values

floating point number

function

function scope

global scope

global variable

integer

local scope

local variable

logical operators

loosely typed

modulus

named function

operator precedence

parameter

passing arguments

postfix operator

prefix operator

primitive types

relational operator

scientific notation

scope

statically typed

strongly typed

template literal

ternary operator

truthy values

unary operator

❯❯ The numeric data type in JavaScript supports both integers (positive or negative numbers with no decimal
places) and floating-point numbers (numbers that contains decimal places or that are written in exponential
notation).

❯❯ A Boolean value is a logical value of true or false.

❯❯ The JavaScript escape character (\) tells compilers and interpreters that the character that follows it has a special
purpose.

❯❯ Operators are symbols used in expressions to manipulate operands, such as the addition operator (+) and
multiplication operator (*).

❯❯ A binary operator (such as 1) requires operands before and after the operator, while a unary operator (such as
++) requires a single operand either before or after the operator.

❯❯ Arithmetic operators (such as +, -, *, and /) are used in JavaScript to perform mathematical calculations, such as
addition, subtraction, multiplication, and division.

❯❯ An assignment operator (such as = or +=) is used for assigning a value to a variable.

❯❯ A comparison operator (such as === or >) is used to compare two operands and determine if one numeric value is
greater than another.

❯❯ The conditional operator (?:) executes one of two expressions, based on the results of a conditional expression.

❯❯ Logical operators (&&, ||, and !) combine multiple Boolean expressions, resulting in a single Boolean value.

❯❯ Operator precedence is the order in which operations in an expression are evaluated.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators70

Review Questions
1. Function statements are always enclosed within

opening and closing curly braces in a structure
known as a _________________.
a. conditional operator
b. command block
c. parameter list
d. return statement

2. Functions that are not named are called
_________________.
a. empty functions
b. closed functions
c. local functions
d. anonymous functions

3. Variables declared with the let keyword
_________________.
a. have block scope
b. have function scope
c. have values that cannot be changed once declared
d. act the same as variables declared with the var

keyword

4. To return a value from a function, the last function
statement must _________________.
a. contain the document.write() method
b. contain the let keyword
c. contain the return keyword
d. contain the Return keyword

5. Which of the following is a primitive data type in
JavaScript?
a. Boolean
b. integer
c. floating point
d. logical

6. Which of the following describes JavaScript?
a. strongly typed
b. statically typed
c. loosely typed
d. untyped

7. Which of the following is an integer?
a. 22.5
b. 6.02e23
c. 211
d. 0.03

8. Which of the following is a Boolean value?
a. 3.04
b. true
c. "Greece"
d. 6.02e23

9. Which of the following creates an empty string?
a. null
b. undefined
c. ""
d. 0

10. Which of the following is a valid JavaScript
statement?
a. document.write('Boston, MA is

called 'Beantown.'')
b. document.write("Boston, MA is

called "Beantown."")
c. document.write("Boston, MA is

called 'Beantown."')
d. document.write("Boston, MA is

called 'Beantown.'")

11. To run the showReport() function when an input
button is clicked, what attribute should be added
to the HTML tag?
a. onclick = "showReport"
b. click = "showReport()"
c. onclick = "showReport()"
d. addEvent = showReport

12. One advantage of event listeners over event
handlers is that_________________.
a. more than one function can be attached to the

event
b. event listeners work with local and global

variables
c. you can pass parameter values to event listeners
d. event listeners work with mobile devices

13. If x 5 10, the value of y in the following expression
is_________________.

let y = x--;

a. 9
b. 10
c. 11
d. undefined

14. If x = 10 and y = 20, the value of y in the
following expression is_________________.

y /= x;

a. 1/2
b. 2
c. 10
d. 30

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on projEcts 71

Figure 2-30 Completed Project 2-1

15. If x = 5 the value of y in the following expression
is _________________.

let y = (x === "5") ? 10 : 20;

a. 5
b. 10
c. 20
d. undefined

16. Write the code for a function named mod10() that
has a single parameter named x and returns the
remainder of x divided by 10.

17. Write the code for a function named calcRatio()
that has three parameters named x, y, and z

and returns the sum of x and y with that sum
divided by z.

18. Explain the difference between a prefix and a
postfix operator and provide an example of each.

19. Provide an expression that tests whether x is
greater than or equal to y and returns the value of
x if that condition is true and y if otherwise.

20. Write code that attaches an event listener for the
click event for an element with the id “calc” that
runs the function calcRatio() using 4, 8, and 3
as the parameter values. (Hint: You will have to use
an anonymous function within the event listener.)

Hands-On Projects
Hands-On Project 2-1

In this project you will create an application to convert temperature readings between Fahrenheit and Celsius
and between Celsius and Fahrenheit. The formula to convert a Fahrenheit temperature to the Celsius scale is

Celsius 5 (Fahrenheit 2 32)/1.8

and the formula to convert a Celsius temperature to the Fahrenheit scale is

Fahrenheit 5 Celsius 3 1.8 1 32

Users will enter a value in a Celsius or Fahrenheit input box, press the Tab key and have the other input box
automatically show the temperature reading in the other scale. A preview of the completed page is shown in
Figure 2-30.

Do the following:

1. Use your code editor to open the project02-01_txt.html and project02-01_txt.js files from the js02 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project02-01.html and project02-01.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators72

2. Go to the project02-01.html file in your code editor and in the head section add a script element to load the
project02-01.js file. Include the defer attribute to defer loading the external script file until the entire page is
loaded. Study the contents of the HTML file and then save your changes.

3. Go to the project02-01.js file in your code editor. Create a function named FahrenheitToCelsius()
containing a single parameter named degree. Insert a statement that returns the value of degree minus 32
and then divided by 1.8.

4. Create a function named CelsiusToFahrenheit() containing a single parameter named degree. Insert a
statement that returns the value of degree multiplied by 1.8 plus 32.

5. Add an onchange event handler to the element with the id “cValue”. Attach an anonymous function to the
event handler and within the anonymous function do the following:

a. Declare a variable named cDegree equal to the value of the element with the id “cValue”.

b. Set the value of the element with the id “fValue” to the value returned by the CelsiusToFarenheit()
function using cDegree as the parameter value.

6. Add an onchange event handler to the element with the id “fValue”. Attach an anonymous function to the event
handler and within the anonymous function do the following:

a. Declare a variable named fDegree equal to the value of the element with the id “fValue”.

b. Set the value of the element with the id “cValue” to the value returned by the FarenheitToCelsius()
function using fDegree as the parameter value.

7. Save your changes to the file.

8. Open project02-01.html in your web browser. Verify that when you enter 45 in the Temp in 8C box and press Tab
a value of 113 appears in the Temp in 8F box. Verify that when you enter 59 in the Temp in 8F box and press Tab
a value of 15 appears in the Temp in 8C box.

Hands-On Project 2-2

In this project you will create an application that tests whether all fields within a web form have been
completed. In creating this application, you will take advantage of the fact that empty text strings are falsy and
in a conditional operator will be treated as having the Boolean value false and non-empty strings are treated
as truthy with a Boolean value of true. If any of the form fields is left empty, the application will display the
alert box shown in Figure 2-31 when the Submit button is clicked, otherwise an alert box with the message
“Thank you!” is displayed.

Figure 2-31 Completed Project 2-2

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on projEcts 73

Figure 2-32 Completed Project 2-3

Do the following:

1. Use your code editor to open the project02-02_txt.html and project02-02_txt.js files from the js02 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project02-02.html and project02-02.js, respectively.

2. Go to the project02-02.html file in your code editor and in the head section add a script element to load
the project02-02.js file, deferring the loading the external script file until the entire page is loaded. Review the
contents of the HTML file. Note that there are three input controls with the ids “name”, “email”, and “phone”.
Each of these controls must be filled out for the form to be submitted.

3. Go to the project02-02.js file in your code editor. Create a function named verifyForm() with no parameters.
Within the function do the following:

a. Declare the name variable equal to the value of the input control with the id “name”.

b. Declare the email variable equal to the value of the input control with the id “email”.

c. Declare the phone variable equal to the value of the input control with the id “phone”.

d. Insert a conditional operator that tests the truthy or falsy value of and name and email and phone using
the && operator. If the result of this conditional expression is true, use the window.alert() method to
display the message “Thank you!”, otherwise display the message “Please fill in all fields”.

4. Below the verifyForm() function insert a statement that attaches an event listener to the page element with
the id “submit”. When the click event occurs for this element, run the verifyForm() function.

5. Save your changes to the file and then open project02-02.html in your web browser.

6. Test the web form by clicking the Submit button with one or all the fields left blank, verifying that an alert box
with the message “Please fill in all fields” is displayed. Enter text in all the fields and click the Submit button,
verifying that an alert box with the message “Thank you!” is displayed.

Hands-On Project 2-3

In this project you will create an application that responds to the movements of the mouse over and out of a
page object. The event that triggers the mouse over the object is called mouseover while moving the mouse
out from an object triggers the mouseout event. In this application you will display a different message
depending on the shape the mouse is hovering over or no message at all if the mouse is hovering over no
shape. Figure 2-32 shows a preview of the page with the message for the mouse hovering over the circle.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators74

Do the following:

1. Use your code editor to open the project02-03_txt.html and project02-03_txt.js files from the js02 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project02-03.html and project02-03.js, respectively.

2. Go to the project02-03.html file in your code editor and in the head section add a script element to load
the project02-03.js file, deferring the loading the external script file until the entire page is loaded. Review the
contents of the HTML file and note that the three shapes are placed within div elements with the ids “square”,
“triangle”, and “shape”. There is also an empty paragraph with the id “feedback”. Save your changes to the file.

3. Go to the project02-03.js file in your code editor. Attach an onmouseover event handler to the element with
the id “square”. In response to the event run an anonymous function containing a statement that changes the
innerHTML property of the element with the id “feedback” to the text string “You ‘re hovering over the square”.

4. Attach an onmouseout event handler to the element with the id “square”. In response to the event run an
anonymous function containing a command that changes the innerHTML property of the element with the id
“feedback” to an empty text string.

5. Repeat Steps 3 and 4 for the element with the id “triangle”.

6. Repeat Steps 3 and 4 for the element with the id “circle”.

7. Save your changes to the file and then open project02-03.html in your browser. Verify that as you hover your
mouse pointer over each shape, a message indicating the shape in displayed on the page and when you move
your mouse pointer away from the shape the message disappears.

Hands-On Project 2-4

In this project you will calculate the cost plus the tax of ordering items from a restaurant’s online menu. So
that the currency values are displayed with a leading $ character, and to two decimal places you will call a
function created for you named formatCurrency(), which takes a number and returns a text string in the
format $##.##. The completed project appears as shown in Figure 2-33.

Figure 2-33 Completed Project 2-4

Do the following:

1. Use your code editor to open the project02-04_txt.html and project02-04_txt.js files from the js02 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project02-04.html and project02-04.js, respectively.

2. Go to the project02-04.html file in your code editor and in the head section add a script element to load
the project02-04.js file, deferring the loading the external script file until the entire page is loaded. Review the

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on projEcts 75

contents of the HTML file, noting the ids of different page elements. You will display the calculated values in
span elements with ids of “foodTotal”, “foodTax”, and “totalBill”. Save your changes to the file.

3. Go to the project02-04.js file in your code editor. Below the comment section, declare the following constants
with their initial values: CHICKEN_PRICE 5 10.95, HALIBUT_PRICE 5 13.95, BURGER_PRICE 5 9.95, SALMON_
PRICE 5 18.95, SALAD_PRICE 5 7.95, and SALES_TAX 5 0.07.

4. Create the calcTotal() function containing the following:

a. Declare the cost variable with an initial value of 0.

b. Declare the buyChicken variable equal to the checked property of the element with the id “chicken”. In
the same way, declare the buyHalibut, buyBurger, buySalmon, and buySalad variables equal to the
checked property of elements with ids of “halibut”, “burger”, “salmon”, and “salad”, respectively.

c. Use a comparison operator to increase the value of the cost variable by the value of the CHICKEN_PRICE
constant if buyChicken is true or by 0 if otherwise (see Figure 2-21 as an example of your code). Do the
same for the buyHalibut, buyBurger, buySalmon, and buySalad variables, increasing the value of
total cost by the value of HALIBUT_PRICE, BURGER_PRICE, SALMON_PRICE, and SALAD_PRICE, respectively.

d. Set the innerHTML property for the element with the id “foodTotal” to the value returned by the
formatCurrency() function using cost as the parameter value.

e. Declare the tax variable, setting its value equal to the cost variable multiplied by SALES_TAX.

f. Set the innerHTML property for the element with the id “foodTax” to the value returned by the
formatCurrency() function using tax as the parameter value.

g. Declare the totalCost variable, setting its value equal to the cost variable plus the tax variable.

h. Set the innerHTML property for the element with the id “totalBill” to the value returned by the
formatCurrency() function using totalCost as the parameter value.

5. Directly above the calcTotal() function, insert an event handler that runs the calcTotal() function when
the element with id “chicken” is clicked. Repeat this for the elements with the id “halibut”, “burger”, “salmon”,
and “salad”.

6. Save your changes to the file and then open project02-04.html in your web browser. Verify that when you click
each of the menu items the calculated cost and tax is automatically updated to reflect your choices.

Hands-On Project 2-5

Debugging Challenge

In this debugging challenge you will fix mistakes in code for an online calculator. The code has already been
written for you but there are several syntax mistakes you will have to locate and correct. You can use your
browser’s debugging console to assist you in locating the errors. When the code has been fixed, you will be
able to run the online calculator shown in Figure 2-34 by clicking the calculator buttons and viewing the
results in the calculator window. To erase the contents of the window, click the C button.

Do the following:

1. Use your code editor to open the project02-05_txt.html and project02-05_txt.js files from the js02 c
project05 folder. Enter your name and the date in the comment section of each file and save them as
project02-05.html and project02-05.js, respectively.

2. Go to the project02-05.html file in your code editor and in the head section add a script element to load
the project02-04.js file, deferring the loading the external script file until the entire page is loaded. Review the
contents of the HTML file. Notice that the calculator buttons are arranged in a web table with each calculator
button having a separate id related to the button’s value. Save your changes to the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Working With Functions, Data types, anD operators76

3. Go to the project02-05.js file in your code editor. The first part of the code contains several event handlers for
running functions in response to the click event (in future chapters you will learn a more efficient way of
specifying these event handlers). Within this section there are four syntax errors. Locate and fix those errors.

4. The next section in the file contains the runCalculator() function used to edit the contents of the calculator
window in response to the clicking of calculator buttons. The calcValue variable will be used to store the text
string of the expression in the calculator window. There are two syntax errors in this function. Fix them both.

5. The next section contains the clearCalculator() function to clear contents of the calculator window. There
is one syntax error in this function. Locate and fix the error.

6. Save your changes to the file and then open project02-05.html in your browser. Test your calculator by clicking
the calculator buttons, verifying that you can enter expressions into the calculator window and evaluate those
expressions by clicking the Enter button. Also verify that you can clear the calculator window by clicking
the C button. If the online calculator does not work correctly, use the browser console to locate and fix any
undiscovered errors.

Case Projects
Individual Case Project

Plan and add a feature to one of the web pages in your personal site that uses at least one function to perform
a mathematical calculation based on user input. Test the page to ensure it works as planned.

Team Case Project

Choose one of the web pages from your team website to enhance with at least two functions. Common uses
of functions include performing actions based on user input (validation, personalization of the web page) and
performing calculations. Divide your team into subgroups equal to the number of functions your page will
include. After each subgroup has created its function, come back together as a full group and incorporate the
functions in the web page. Test the functions to verify the page works as planned, doing any troubleshooting
and making any edits to the functions as a full team.

Figure 2-34 Completed Project 2-5

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

77

The code you have written so far has been linear in nature. In other words, your programs start at the
beginning and end when the last statement in the program executes. However, sometimes it can be use-
ful to change this default order of execution. Changing the order in which JavaScript code is executed
is known as controlling flow. Controlling the flow of code is one of the most fundamental skills required
in programming. Before learning how to control program flow, you will first learn about the array data
type, which is often used with that task.

Storing Data in Arrays
An array is a set of data represented by a single variable name. You use an array when you want to store
a group or a list of related information in a single, easily managed location. Lists of names, courses, test
scores, and prices are typically stored in arrays.

Chapter 3

When you complete this chapter, you will be able to:

❯❯ Create an array containing a list of data values

❯❯ Access a collection of HTML elements by type

❯❯ View arrays and HTML collections using the browser console

❯❯ Create program loops using while, do while, and for loops

❯❯ Explore array methods to replace program loops

❯❯ Make decisions with if statements and switch statements

❯❯ Manage program loops and conditional statements with the break, continue, and
label commands

Building Arrays and
Controlling Flow

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow78

Declaring and Initializing arrays
The most common way to create an array is with an array literal, a single statement that declares a variable and speci-
fies array values as its content. The syntax of the array literal is:

let array = [values];

where array is the variable name assigned to the array, and values is a comma-separated list of values stored within
the array.

For example, the following statement creates an array, storing within it the three-letter abbreviations of the months
of the year:

let months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];

Notice that the contents of the array do not have to be confined within a single line of code if you do not start a new line
within a text string. Values stored within an array can involve several different data types. The following dataValues
array stores a text string, a numeric value, a Boolean value, and the null value:

let dataValues = ["April", 3, true, null];

The ability to store data of different types within an array is not true of other programming languages in which all values
within an array must be of the same type. Nor do you have to specify array values. You can initialize an array with no
data values by leaving the contents within the brackets empty as the following statement demonstrates:

let dataValues = [];

Arrays are objects, so another way to declare and initialize an array is with the following new Array() object
constructor:

let array = new Array(values)

where values is a comma-separated list of values stored in the array. You could declare and initialize the months
array as an Array object using the following object constructor:

let months = new Array("Jan", "Feb", "Mar", "Apr",

"May", "Jun", "Jul", "Aug","Sep", "Oct", "Nov", "Dec");

The new Object() constructor also defines arrays based on the number items within the array. The general syntax
of the statement is:

let array = new Array(length)

where length is the number of values within the array. The length argument must be entered as an integer between
0 and 232 2 1. The following statement creates the monthName array with 12 elements:

let monthName = new Array(12);

While the monthName array has been declared, it has not been initialized. The only thing that has happened is that
memory for an array of length 12 has been allotted to the monthName variable. You can do the same thing with an
array literal if you do not specify any values in the comma-separated list as in the following statement, which creates
the dataValues array with four undefined values:

let dataValues = [,,,];

Notice that three commas separate the four undefined values within the array.

The identifier you use for an array name must follow the same rules as identifiers for variables. It must
begin with an uppercase or lowercase ASCII letter, dollar sign ($), or underscore (_), can include numbers
(but not as the first character), cannot include spaces, and cannot be reserved words.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Storing Data in arrayS 79

elements and Indexes
Each value stored in an array is called an element, and each element is identified by its position or index within the
array. Indexes always start with the number 0, so the first element in any array has an index of 0, the second has an
index of 1, and so forth. You can set a specific array value by its index using the expression

array[index] = value;

where index is the index number of the array element and value is the value stored at that location within the array.
The values of the first several elements in the monthName array could be defined using the following statements:

monthName[0] = "January";

monthName[1] = "February";

monthName[2] = "March";

…

and so forth.

Unlike with many other programming languages, arrays in JavaScript are dynamic in that they will automatically
expand to allow for new elements. In the following code the dataValues array is declared with four elements. The
next statement setting the value of an element with an index of four increases the length the dataValues array to five:

let dataValues = [10, 20, 30, 40];

dataValues[4] = 50; // 10, 20, 30, 40, and 50 stored in the array

JavaScript also allows for the creation of sparse arrays in which some array values are left undefined so that the length
of the array is greater than the number of defined values. The following commands create a sparse array with only two
defined values out of 100 elements:

let x = new Array();

x[0] = "Aaron";

x[99] = "Zukov";

Sparse arrays occur frequently in applications involving customer data where items such as mobile phone numbers
or postal codes have not been stored for every individual.

JavaScript can treat the entire content of your array as text entries in a comma-separated list. For
example, the following statements

let x = ["Iowa", "Kansas", "Illinois"];

document.write(x);

will write the text string "Iowa,Kansas,Illinois" into the web page.

Note

To determine an array’s current size, use the property:

array.length

were array is a reference to the variable storing the array. The value returned by the length property is equal to
one more than the highest index number in the array (because array indexes start at 0 rather than 1.) So, if the highest
index number is 11, then the value returned by the length property would be 12.

Creating an array
In this chapter, you will work on a web page displaying game results for the Tipton Turbines, a minor league baseball
team in Tipton, Iowa. The page will retrieve game information from several arrays and display that content in an easy-
to-read table. Figure 3-1 shows a preview of the page you will create.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow80

Open the HTML file and web page now.

to open the tipton turbines web page:

1. Use your code editor to go to the js03 c chapter folder of your data files.

2. Open the js03_txt.html file in your code editor and enter your name and the date in the comment section of the file.

3. Scroll through the document to familiarize yourself with its contents. Notice that the page contains a web table
in which the table body consists of five rows of seven table cells with the table cell ids containing calendar dates
ranging from “2024-7-28” up to “2024-8-31”.

4. Save the file as js03.html and load the file in your browser.

Currently, the web table contains no data other than the calendar days. The table head section should display the
names of the days of the week. Although you can enter this content directly into the HTML file, you can also generate
that content using an array. You will create an array of weekday names for that purpose.

to create an array of weekday names:

1. Open the js03_txt.js file in your code editor and enter your name and the date in the comment section of the file.

2. Directly below the comment section, enter the following code for the weekDays array as shown in Figure 3-2.

// Days of the week

let weekDays = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];

Figure 3-1 Tipton Turbines game calendar

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Storing Data in arrayS 81

Figure 3-2 Creating the weekDays array

Name of the array Array values

Figure 3-3 Arrays describing the results of 23 games

The schedule.js file contains the following arrays and data:

❯❯gameDates—the dates of the 23 games played by the team

❯❯gameOpponents—the opponent on each of those 23 game days

❯❯gameLocations—whether the game was at home (“h”) or away (“a”)

❯❯runsScored—the number of runs the Tipton Turbines scored in the game

3. Save the file as js03.js.

You have also been given a JavaScript file named schedule.js, containing arrays with information on the 23 games that
Tipton played from July 31 to August 31. Figure 3-3 shows the content of the arrays in that file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow82

❯❯runsAllowed—the number of runs scored by their opponents

❯❯gameInnings—the number of innings played in the game

❯❯gameResults—the result of game: “W” (a win for Tipton), “L” (a loss), “S” (the game was suspended due to
weather), or “P” (the game was postponed to a later date due to weather.)

Add both the js03.js and schedule.js JavaScript files to the Tipton Turbines web page, deferring the loading of both
script files until the complete HTML file has been loaded by the browser.

to load the js03.js and schedule.js files into the web page:

1. Return to the js03.html file in your code editor.

2. Directly above the closing </head> tag, insert the following script elements:

<script src="schedule.js" defer></script>

<script src="js03.js" defer></script>

3. Save your changes to the file.

Note that all the arrays in two JavaScript files are defined as global variables (because they are not placed within a
function or command block) and will be accessible to any function you create in developing this project.

Multidimensional arrays
Many applications store data in a rectangular format known as a matrix, in which the values are arranged in a rectan-
gular grid. The following is an example of a matrix laid out in a grid of three rows and four columns:

 4 2 1 2

 1 3 18 6

 3 7 3 4

Entries in a matrix are identified by the indexes for the rows and columns. The value 18 from this matrix is referenced
using the index pair (2, 3) because that value is placed at the intersection of the second row and third column.

JavaScript does not support matrices. However, you can mimic the behavior of matrices by nesting one array within
another in a structure called a multidimensional array. The following code recreates that matrix with an array contain-
ing three elements, each of which is an array containing four elements:

var mArray = [

 [4, 2, 1, 2],

 [1, 3, 18, 6],

 [3, 7, 3, 4]

];

Values within a multidimensional array are referenced using the expression:

array[x][y] ,

where x is the index of the outer array (the row) and y is the index of the inner array (the column.) Thus the expression
mArray[1][2] would return the value 18 from the matrix’s second row and third column (remember that indexes
start with 0 and not 1.) The expression mArray[2][1] would return the value from the third row and second column,
which in this example is the number 7.

The number of rows in a multidimensional array is given by the length property. The number of columns can be
determined by applying the length property to the first table row. For example, the expressions

mArray.length;

mArray[0].length

()

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring HtMl CollECtionS 83

would return values of 3 (the number of rows) and 4 (the number of columns). This assumes that every row has the
same number of elements as the first row. You can continue to nest arrays in this fashion to create matrices of even
higher dimensions.

One reason to use multidimensional arrays is to match values from different arrays within a single variable. For exam-
ple, the game data shown in Figure 3-3 could be placed within a single multidimensional array as follows:

let games = [

 ["2024-7-28","Bettendorf","h",2,1,9,"W"] ,

 ["2024-8-1","Marion","a",4,2,9,"W"] ,

 ["2024-8-2","Clinton","h",2,0,9,"W"] ,

 ["2024-8-3","Clinton","h",1,5,6,"L"] ,

…

Information on Tipton’s second game would come from the entries in the second element of the games array with the
date given by the expression games[1][0], the opponent given by games[1][1], the location by games [1][2],
and so forth. As you become more comfortable with arrays, you might find it easier to place your data within a single
multidimensional array rather than spread across several arrays.

Exploring HTML Collections
The Document Object Model organizes HTML elements into collections where each element is an HTML Collection
Object. For example, all hyperlinks are part of a collection of links, all input controls are part of a collection of form
elements, and so forth. Though these collections are not arrays, they share many of the features of arrays. Figure 3-4
lists the JavaScript properties and methods used to access HTML collections within the DOM.

referencing an element within a Collection
To reference a specific element within an HTML collection, use either of the following expressions:

objects[idref]

or

objects.idref ,

where objects is a reference to an HTML collection of elements and idref is either an index number representing
the position of the element within the collection or the value of the id attribute assigned to the element. As with arrays,

HTML CoLLeCTion CoLLeCTion of
embeds <embed> elements in the document

forms <form> elements in the document

form.elements Elements within a web form

getElementsByClassName(class) Elements in the document with belonging to the class class

getElementsByName(name) Elements in the document with a name attribute equal to name

getElementsByTagName(tag) Elements in the document with a tag name equal to tag

images elements in the document

links <a> elements and <area> elements with a href attribute

scripts <script> elements in the document

styleSheets Stylesheet objects associated with the document

Figure 3-4 HTML Collection objects

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow84

the first element in a collection has an index value of 0, the second element has an index value of 1, and so forth. Thus,
if the first inline image within a document has the tag

it can be referenced with any of the following expressions:

document.images[0]

document.images["TiptonLogo"]

document.images.TiptonLogo

Other element collections are referenced in a similar way. As with JavaScript arrays, you can determine the number
of elements within a collection with the length property. The following expression will return the number of images
within the entire document:

document.images.length

The ordering of the elements within an HTML collection reflects the order of the element tags within the
HTML file.Note

Searching through the DOM
HTML collections can also be formed by searching through elements within the Document Object Model based on
their class attribute, tag name, or name attribute using the following methods:

document.getElementsByClassName(class)

document.getElementsByTagName(tag)

document.getElementsByName(name)

where class is the value of the class attribute, tag is the name of the HTML tag and name is the value of the name
attribute. For example, to reference the first h1 element within the document, apply the following expression:

document.getElementsByTagName("h1")[0]

To reference the second element in the document belonging to the "sideBar" class, use the expression

document.getElementsByClassName("sideBar")[1]

And to reference the third element in the document whose name attribute equals "menuChoice", use

document.getElementsByName("menuChoice")[2]

Notice that three methods all use the phrase “document.getElements” (plural) as opposed to the
document.getElementById() method, which uses the singular form because it returns only one object instead
of a collection. A common mistake is to use the singular form, as in document.getElementByName(), which will
result in an error.

Each of these three expressions returns all matching elements within the entire document. You can also return HTML
collections within a specified part of the document by nesting the object references in the following format:

object.objects

where object is an element that contains other elements and objects is a collection within that container. Thus,
the following expression returns the collection of paragraphs nested within the first table cell element of the web page:

document.getElementsByTagName("td")[0].getElementsByTagName("p")

Continuing in this fashion, you can nest one object collection within another and then another to create an element
collection specific to one branch of the document hierarchy.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ViEwing arrayS anD HtMl CollECtionS witH tHE ConSolE 85

Viewing Arrays and HTML Collections
with the Console
Your browser’s console supports commands to view the contents of arrays and HTML collections, a useful feature for
confirming that your arrays and collection are storing the correct data. You will use the console now to confirm that
your web page has loaded the arrays containing the results of the Tipton games correctly.

to view arrays in your browser console:

1. Return to the js03.html file in your web browser.

2. Open the console using commands appropriate for your web browser. (Hint: You can view your browser’s online
help if you are unsure how to access the Developer Console.)

3. Within the console type gameDates.length and press Enter. The console returns a value of 23, indicating that
there 23 elements in the gameDates array for the 23 games played by the team.

Note that the console may try to automatically complete your entry or show a list of names matching the first
few characters of your entry. You can speed up the process and save yourself some typing by pressing Tab or
double-clicking the name from the list provided by the console.

4. Type gameOpponents[4] and press Enter. The console returns the text string “Clinton” which is the fifth oppo-
nent listed in the calendar shown earlier Figure 3-1.

5. Type gameResults[4] and press Enter. The console returns the text string “L” indicating that the fifth game was a
loss.

You can also use the console to view information about the elements in your document. Use this feature now to
determine the number of hypertext links in the document.

6. Type document.links.length and press Enter. The console reports 5 links in the document.

7. Type document.links[1].innerHTML and press Enter. The console returns the text string “Calendar”, indicating
that the HTML code stored in the second text string is the word “Calendar”.

Finally, if you attempt to retrieve a value that is undefined, the console will report that error.

8. Type gameOpponents[23] to retrieve the opponent for a non-existent 24th game. The console returns the value
undefined, indicating that there is no value matching this reference.

Figure 3-5 shows the results of Google Chrome’s console for retrieving information on arrays and HTML
collections.

Working with Arrays and Indices
Assuming that the first element in an array or an HTML collection has an index number of
1 rather than 0 is a common programming error for beginners. If you are working with an
array collection and are seeing results offset by 1 from what you expect, check that your code
accounts for 0 as the first index number.

Another common mistake is to omit the index number when using properties that should be
applied to a specific element within a collection. For example, the expression

document.getElementsByTagName("input").checked

will result in an error because it attempts to apply the checked status to a collection of input
elements. Instead, you must specify only a single element from the collection, as in the following
expression that applies the checked status to the first input element:

document.getElementsTagName("input")[0].checked

Common
Mistakes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow86

9. Continue exploring arrays and collections using the console. It is a great tool for becoming more familiar with
these concepts and techniques. Close the console when finished.

Next you will learn how to use arrays to generate content for a web page.

Quick Check 1

1. show how to create an array named foodMenu containing the text strings “Breakfast”, “lunch”, and “dinner” as
an array literal and using the new Array() object constructor.

2. Provide a command to return the size of the array customerOrders.

3. Provide a command to return the tenth entry in the customerOrders array.

4. Provide the expression to reference to fifth inline image in the document.

5. Provide the expression to reference the third element belonging to the blogpost class.

Figure 3-5 Information on arrays and collections viewed in the Console

Length of the
gameDates array

Opponent and result
in the 5th game

Number of hypertext
links in the document

Text of the 2nd

hypertext link

The gameOpponents
array does not have a

24th value

Working with Program Loops
In your applications you will often need to repeat the same group of statements several times. Imagine if you had to repeat
essentially the same command block dozens, hundreds, or even thousands of times—the code would become unmanage-
ably long. Programmers deal with this kind of situation by creating program loops. A program loop is a command block
that executes repeatedly until a stopping condition is met. For example, a program that writes content from an array could
be written as a program loop that goes through each array item, writing content as it goes, and stopping only when it has
reached the end of the array. There are several different types of program loops. The first to consider is the while loop.

the while Loop
In a while loop, a command block is executed while a given condition is true but stops once that condition is no
longer true. The syntax of a while loop is:

while (condition) {

 statements;

}

where condition is a conditional expression that is either true or false and statements are the statements
within the command block that are repeatedly executed as long as that conditional expression is true. Each repetition
of the command block is called an iteration.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

working witH prograM loopS 87

To avoid loops that never end, also known as infinite loops, the command block needs to include at least one state-
ment that eventually results in a falsy value for the condition. Command blocks often use a counter, which is a variable
whose value changes with each iteration. Once that counter fails to match the condition, the loop ends. For example,
the following code includes a counter variable named i with an initial value of 1. With each iteration, the value of i
increases by 1. The loop continues while i is less than or equal to 5.

let i = 1;

while (i <= 5) {

 document.write(i + "
");

 i++; // increase the value of i by 1

}

// after the loop ends

document.write("<p>The value of i is equal to " + i +

"</p>");

Through the iterations, the value of i steadily increases. When the counter exceeds a value of 5 the while condition
is no longer met and the loop ends, continuing onto the next statement in the program. The following content is writ-
ten to the web page:

1
2
3
4
5

<p>The value of i is equal to 6</p>

It is common for programmers to use variables named i, j, or k as counters for program loops. This standard prac-
tice makes it easy for other programmers to recognize the loop counter without having to read detailed commentary
about the code.

If you forget a stopping condition and inadvertently create an infinite loop, you must close the browser
tab or browser window to cancel the loop. The method for forcing an app to close varies between
operating systems. In Windows, press Ctrl1Alt1Del to open the Task Manager, click the Application tab,
right-click the browser name and click End Task. On the Macintosh, press Command1Option1Esc, select
the browser name from the application list, and click Force Quit. Once you have closed the browser,
return to the code, and correct your mistake.

Note

You can use a wide variety of counters with while loops by varying the initial value, the iteration of the counter, and
the conditional expression. Figure 3-6 shows a few examples.

iniTiaL VaLue iTeraTion WHiLe CondiTion iTeraTed VaLues
let i = 5 i++ i <= 10 i = 5, 6, 7, 8, 9, 10

let i = 5 i-- i > 0 i = 5, 4, 3, 2, 1

let i = 0 i += 60 i <= 180 i = 0, 60, 120, 180

let i = 1 i *= 2 i <= 50 i = 1, 2, 4, 8, 16, 32

let i = 90 i /= 3 i > 5 i = 90, 30, 10

Figure 3-6 HTML Collection objects

The Tipton Turbines calendar contains a header row with seven empty table heading (th) cells. Apply a while loop
to write the contents of the weekDays array you created earlier into those seven cells. The loop will iterate through
the collection of cells and for each cell it will write the value from an element in the weekDays() array. To reference
the seven cells, use the HTML collection:

document.getElementsByTagName("th")

Add the while loop within a function that will run after the browser window loads the web page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow88

to create the while loop:

1. Return to the js03.js file in your code editor.

2. At the bottom of the file insert the following event listener to run the addWeekDays() function when the page
is loaded:

window.addEventListener("load", addWeekdays);

3. Below this statement, add the following addWeekDays() function as described in Figure 3-7:

// Function to write weekday names into the calendar

function addWeekDays() {

 let i = 0; // initial counter value

 // reference the collection of heading cells

 let headingCells = document.getElementsByTagName("th");

 // write each of the seven days into a heading cell

 while (i < 7) {

 headingCells[i].innerHTML = weekDays[i];

 // increase the counter by 1

 i++;

 }

}

Figure 3-7 Creating a while loop

Run the addWeekDays()
function when the page

loads

Store the collection
of all th elements in

the document

For each th cell,
insert the name of a

weekday

4. Save your changes to the file and then reload the js03.html file in your web browser. As shown in Figure 3-8, the
calendar now includes a table row displaying the days of the week.

Note that the scope of the i counter variable is limited to the addWeekDays() function so that you can use i as a
counter in other functions without affecting its value within this function.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

working witH prograM loopS 89

the do while Loop
The while loop is an example of a pretest loop in that the condition is evaluated before each iteration of the com-
mand block. Because of this, it is possible that command block will be halted before the first iteration. Another type
of program loop, called the do while loop, is a posttest loop in which the condition is evaluated after the command
block has been executed at least once. The syntax of the do while loop is:

do {

 statements;

} while (condition);

Notice that the condition is placed at the end of the loop so that the command block is not tested prior to the first
iteration. The following code uses a do while loop to generate a series of numbers and a concluding statement:

let i = 1;

do {

 document.write(i + "
");

 i++; // increase the value of i by 1

} while (i <= 5);

// after the loop ends

document.write("<p>The value of i is equal to " + i +

"</p>");

resulting in the following content being written to the web page:

1
2
3
4
5

<p>The value of i is equal to 6</p>

Aside from the location of the stopping condition, there is no difference between the while and do while loops. Use
the do while loop when you want to ensure that the command block will be executed at least once; use the while
loop when your program does not require such a guarantee.

the for Loop
Another pretest loop is the for loop, in which the initial condition, stopping condition, and iterative expression are
placed within a single line of code. The syntax of the for loop is:

for (initial; condition; iteration) {

 statements;

}

Figure 3-8 Adding the weekday names to the table

Weekday names
generated by the

addWeekDays() function

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow90

where initial is the initial condition before the command block is executed, condition is the condition that must
be true for each iteration, and iteration is the change that occurs with each iteration of the command block. For
example, the version of the for loop that generates a series of numbers with a concluding statement would be writ-
ten as:

for (let i = 1; i <= 5; i++) {

 document.write(i + "
");

}

// after the loop ends

document.write("<p>The value of i is equal to " + i +

"</p>");

resulting in the following output:

1
2
3
4
5

ReferenceError: i is not defined

The for loop is simpler and more compact than either the while or do while loops and thus for loops are the
preferred method for writing loops. Note that the scope of the i counter is limited to the for loop. Attempting to refer-
ence the counter outside of the for loop will produce an error. If you need to reference the final value of the counter
variable outside of the loop, you should use either the while or do while loops, but otherwise to avoid confusion
use a for loop to limit the scope of your counters.

For loops can also be nested within one another to create code that iterates through two sets of counters. The fol-
lowing code demonstrates how to generate a web table by creating an outer loop that iterates through a set of table
rows and an inner loop that iterates through a set of table cells within each row:

document.write("<table>");

for (let i = 1; i <= 2; i++) {

 document.write("<tr>");

 for (let j = 1; j <= 3; j++) {

 document.write("<td>" + i + "," + j + "</td>");

 }

 document.write("</tr>");

}

document.write("</table>");

The resulting web table has two table rows and three table data cells within each of those rows:

<table>

 <tr>

 <td>1,1</td><td>1,2</td><td>1,3</td>

 </tr>

 <tr>

 <td>2,1</td><td>2,2</td><td>2,3</td>

 </tr>

</table>

There is no practical limit to the number of nested for loops you can employ in your program. Nested for loops are
often used with multidimensional arrays to loop through each level of the nested arrays.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

working witH prograM loopS 91

Writing a for Loop
To create a for loop that iterates through the contents of an array or HTML collection, apply the following general
structure:

for (let i = 0; i < objects.length; i++) {

 statements;

}

where objects is a reference to either an array or HTML collection. The counter starts with a value of 0 (because 0
is the index of the first element in the list) with the loop continuing if the counter is less than the value of the length
property. Recall that the index of the last item in an array or collection will always be one less than the length value.
For example, an array with 100 items will have indexes that range from 0 up to 99.

A common mistake is to make the stopping condition i <= objects.length, resulting in an error
because the last iteration will go beyond the last item in the array.

Note

Once you have defined a collection, you can work with individual collection objects as you would individual array ele-
ments. The following code demonstrates how to apply an event handler to every input element within a document:

let allInputs = document.getElementsByTagName("input");

for (let i = 0; i < allInputs.length; i++) {

 allInputs[i].addEventListener("click", checkOrder);

}

By applying this code, whenever an input element in the document is clicked, the checkOrder() will run in response.

Use a for loop to write the game results into cells of the calendar table. The for loop will have the following general
structure:

for (let i = 0; i < gameDates.length; i++) {

 write a game result into a table cell

}

with the number of games determined by the gameDates array shown earlier in Figure 3-1. With each iteration of
the loop, the following contents will be written into the table cell matching the date on which the game was played:

<p>gameOpponents[i]

gameResults[i]: (runsScored[i] - runsAllowed[i])

</p>

where the gameOpponents array provides the opponent for a particular day, the gameResults array provides the result
of the game, the runsScored array retrieves the number of runs scored by Tipton, and the runsAllowed array retrieves
the number of runs scored by Tipton’s opponent. For example, the information on Tipton’s first game will be written as:

<p>Bettendorf

W: (2 - 1)

</p>

To match a game to a table cell, use the date stored in the gamesDate array and match it to the id value of a table
cell (recall that each table cell has an id for a specific calendar date.) Thus, the table cell matching a game played on
a specific date would be referenced using the expression

let tableCell = document.getElementById(gameDates[i])

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow92

Finally, the table cells are not empty, so any content will have to be added to the HTML content already present in the
cell instead of overwriting it. JavaScript provides the following insertAdjacentHTML() method to insert additional
content into an element:

element.insertAdjacentHTML(position, text)

where element is the element into which the new content is inserted, position is the location of the new content,
and text is the text of the content. The position argument has the following values:

❯❯"beforeBegin"—to insert new content directly before the element’s opening tag

❯❯"afterBegin"—to insert new content directly after the element’s opening tag

❯❯"beforeEnd"—to insert new content directly before the element’s closing tag

❯❯"afterEnd"—to insert new content directly after the element’s closing tag

For this application, you will insert the new content directly before each table cell’s closing tag, using a position value
of "beforeEnd".

Put all of these pieces together in a new function named showGames() that will run when the page is loaded by the browser.

to create the showGames() function:

1. Return to the js03.js file in your code editor.

2. At the bottom of the file insert an event listener to run the showGames() function when the page is loaded:

window.addEventListener("load", showGames);

Remember that because multiple functions can be attached to an event listener, this event listener will supple-
ment the event listener created earlier for the addWeekDays() function.

3. Below the event listener, add the following showGames() function as described in Figure 3-9:

// Function to write game information into the calendar

function showGames() {

 for (let i = 0; i < gameDates.length; i++) {

 let gameInfo = "";

 // Open the paragraph

 gameInfo += "<p>";

 // Include the opponent

 gameInfo += gameOpponents[i] + "
";

 // Include the result and score

 gameInfo += gameResults[i] + ": (" + runsScored[i] +

" - " + runsAllowed[i] + ")";

 // Close the paragraph

 gameInfo += "</p>";

 // Write the information into a table cell

 let tableCell = document.getElementById(gameDates[i]);

 tableCell.insertAdjacentHTML("beforeEnd", gameInfo)

 }

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

working witH prograM loopS 93

Figure 3-9 Add information on each game to the calendar

Run the showGames()
function when the

page loads

Loop through each
game played

Display the name of
 the opponent for

 each game

Display the game
result and score

Write the content into
 the table cell matching

 the game date

Insert the content directly
before the closing

 element’s closing tag

4. Save your changes to the file and then reload the js03.html file in your web browser. Information on each game
is added to a table cell matching the game date. See Figure 3-10.

Figure 3-10 Game data for July and August

Because arrays, collections, and program loops are so often used together, JavaScript supports several methods to
work with array items directly without creating a loop.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow94

When designing a program that involves loops, especially a large and complex program, it can be challenging to
explain the structure of the program and the relationships between its parts to other team members who might be
working with you to create it. It’s common for programmers to create a visual representation to illustrate the parts
of a program and how they fit together both before and during development. For loops, such diagrams often take
the form of a flowchart, which shows program components as boxes of different shapes, with lines connecting those
components that communicate with each other. A flowchart often includes arrows to indicate the direction that
information flows between components. Although software is available to create professional-looking flowcharts,
most programmers create flowcharts on white boards.

Skills at Work Communicating the Structure of a Program with a Flowchart

Exploring Array Methods for Generating Loops
Array methods that replace program loops are a useful JavaScript feature, and because these methods are built
into the language, they are usually faster than program loops and will make your code simpler and more com-
pact. Each of these methods employs a callback function, which is a function passed as a parameter to another
function or method. One such method is the forEach() method, which calls a function for each element within
an array:

array.forEach(callback, thisArg)

where array is a reference to an array, callback is the function called for each array element, and thisArg is
an optional parameter containing a value that can be passed to the callback function. The callback function has the
syntax:

function callback(arrValue, index, array) {

 statements;

}

where arrValue is the value of the current array element during each iteration within the array, index is the index
of the current array element, and array is the name of the array. Only the arrValue parameter is required; the other
two are optional.

The following code uses the forEach() method to apply the writeValue() function to each element within the
x array:

let x = [1, 3, 5, 10];

x.forEach(writeValue);

function writeValue(arrValue) {

 document.write("<td>" + arrValue + "</td> ");

}

resulting in the following content written to the web page:

<td>1</td> <td>3</td> <td>5</td> <td>10</td>

With the forEach() method, you don’t have to explicitly write the code for the program loop, calculate the size of
the array, or worry about iterating past the last array element. The method automatically applies the callback function
to each array element for you.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring array MEtHoDS for gEnErating loopS 95

The forEach() method can also be used to change array values. The following code calls the stepUp5() function
to increase the value of each item in the x array by 5:

let x = [1, 3, 5, 10];

x.forEach(stepUp5);

function stepUp5(arrValue, i, arr) {

 arr[i] = arrValue + 5;

}

In this example, the stepUp5() function has three parameters: the arrValue parameter representing the value of
the array element at each iteration, i representing the index number at each iteration, and arr representing the name
of the array. The result is that value of the x array will be changed from [1, 3, 5, 10] to [6, 8, 10, 15].

Figure 3-11 describes some of the other array methods that can be used in place of a program loop. However, note that
none of these methods can be applied to HTML collections, which, though they often act like arrays, are not arrays.

You can replace the name of the callback function with the code of an anonymous function, written
directly within the forEach() method.Note

array MeTHod desCripTion

every(callback, thisArg) Tests whether the value of the callback function is true for all array elements

filter(callback, thisArg) Creates a new array populated with the elements of the array that return a value of true from the
callback function

forEach(callback, thisArg) Applies the callback function to each array element

map(callback, thisArg) Creates a new array by passing the original array elements to the callback function, which returns the
mapped value of those elements

reduce(callback, thisArg) Reduces the array by keeping only those elements returning a true value from the callback function

reduceRight(callback,
thisArg)

Reduces the array starting from the last element by keeping only those elements returning a true value from
the callback function

some(callback, thisArg) Tests whether the value of callback function is true for at least one array element

find(callback, thisArg) Returns the value of the first array element returning a true value from the callback function

findIndex(callback, thisArg) Returns the index of the first array element returning a true value from the callback function

Figure 3-11 Looping methods for JavaScript arrays

As you expand your mastery of JavaScript you will find that you can save yourself a lot of time and trouble by using
array methods in place of program loops whenever possible.

Quick Check 2

1. show how to use a while loop to write the HtMl code <td>counter</td> for integer values of counter
ranging from 1 to 100 by 1.

2. what is the most important difference between a while loop and a do while loop?

3. Provide code for a for loop that writes the following HtMl code:

<td>3</td> <td>6</td> <td>12</td> <td>24</td> <td>48</td>

<td>96</td>

4. what Javascript method can be used to insert HtMl code just after an element’s opening tag?

5. what Javascript method can be used to apply a function to each element of an array without writing a program loop?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow96

Adding Decision Making to Your Code
Often an application will need to execute a different set of statements depending on varying conditions. A shopping cart
application might need to run different code depending on the customer’s choice of shipping or payment. The shop-
ping cart might need to run one set of operations for overnight shipping and different set of operations for standard
shipping. A payment using a credit card might require a different set of functions from functions applied to payment
using a gift card.

The process of choosing which code to execute in response to circumstance is known as decision making. The
special types of JavaScript statements used for making decisions are called decision-making statements, decision-
making structures, or conditional statements. The most common type of decision-making statement is the if
statement.

the if Statement
The syntax of the if statement is:

if (condition) {

 statements

}

where condition is a Boolean expression that is either true or false and statements are part of the command
block that runs when that condition is true. If the command block contains only a single statement you can dispense
with the command block and write the if statement as:

if (condition) statement;

As your programs increase in size and complexity, the ability to write efficient code becomes essential. Bloated,
inefficient code is particularly noticeable with program loops that might repeat the same set of commands hundreds
or thousands of times. A millisecond wasted due to one poorly written command can mean an overall loss of several
seconds when repeated a thousand times.

There are several ways of adding efficiency to your program loops. One is to place all calculations that will not
change during the loop, outside of the loop. For example, the expression

document.getElementsByTagName("p").length

searches through the entire document tree to count the number of paragraphs. The following for statement

for (let i = 0; i < document.getElementsByTagName("p").length;

i++)

will perform that search with each iteration. In a long document, this can result is a serious performance hit. Instead,
place the length calculation outside the loop as follows:

let pCount = document.getElementsByTagName("p").length;

for (let i = 0; i < pCount; i++)

The paragraph count will only be performed once and not hundreds or thousands of times.

Programming Concepts Creating an Efficient Loop

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

aDDing DECiSion Making to your CoDE 97

but it is considered good programming practice to always enclose even a single statement within a command block.
The following if statement tests whether the day variable is equal to "Friday" and if that condition is true, displays
a special greeting message:

if (day === "Friday") {

 window.alert("Get ready for the Weekend!");

}

A very common error is to use the = symbol in place of the === conditional operator to test for the truth
of a condition. The 5 symbol is an assignment operator and assigns one value to another; it does not test
their equality.

Note

the if else Statement
The if statement will only take an action if the condition is true; otherwise it will take no action. To run one command
block if the condition is true and a different command block if the condition is not true, use the if else statement:

if (condition) {

 statements if condition is true

} else {

 statements if condition is not true

}

The following if else statement displays one greeting if the day variable equals "Friday" and a different greeting if
otherwise:

if (day === "Friday") {

 window.alert("Get ready for the Weekend!");

} else {

 window.alert("Have a great day!");

}

The else command block runs if the condition has any falsy value. Thus, a condition that evaluates to false or null
or undefined will trigger the else command block.

the else if Statements
In some applications, there might be several possible conditions to consider. For example, a shopping cart payment
might be made with a credit card, a gift card, or an online banking account. For those situations, you can apply multiple
if statements in the following structure:

if (condition1) {

 statements if condition1 is true

} else if (condition2) {

 statements if condition2 is true

} else {

 statements if neither condition1 nor condition2 are true

}

In the else if structure, condition1 is tested first. If that condition is true, the corresponding command block
executes. Only if it is not true is condition2 tested. If that condition is true, its command block runs. If neither

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow98

condition1 nor condition2 are true, only then does the final command block run. In the following example, one
of three possible greetings is displayed based on the value of the day variable.

if (day === "Friday") {

 window.alert("Get ready for the Weekend!");

} else if (day === "Monday") {

 window.alert("Start of another work week.");

} else {

 window.alert("Have a great day!");

}

The else condition is considered the “default” option, applied only when all other possibilities have
been tested and rejected.Note

Figure 3-12 Inserting an else if statement

If the game is at home,
display the text

string “vs.”

If the game is away,
display the @ character

Proceeding in this fashion, you can add as many else if statements as your application requires until you have
covered all possible contingencies.

There are only two possible locations for Tipton’s game: home (indicated by "h" in the gameLocations array) and
away (indicated by "a"). The calendar should display the location using “vs.” for home games and “@” for away games
as in “vs. Bettendorf” or “@ Marion”. Use an else if statement now to write the home/away information on the game
calendar.

to create an else if statement:

1. Return to the js03.js file in your code editor and scroll down to the showGames() function.

2. Directly after the statement that writes the opening <p> tag, insert the following else if statement as shown
in Figure 3-12.

// Display the game location

 if (gameLocations[i] === "h") {

 gameInfo += "vs. ";

 } else if (gameLocations[i] === "a") {

 gameInfo += "@ ";

}

Note that there is no else condition in this statement because all games should be either home ("h") or away
("a") and if a different value was entered in the gameLocations array or no value at all, that situation should

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

aDDing DECiSion Making to your CoDE 99

be flagged by not displaying the “vs.” or @ characters. You should always write your code to help catch potential
errors in your data.

3. Save your changes to the file and then reload the js03.html file in your web browser. Verify that all games are
listed as either home or away on the calendar (see Figure 3-13.)

Figure 3-13 Home and away games

Away game Home game

The only other piece of information not displayed in the calendar is the number of innings played. By default baseball
games last nine innings, but in case of a tie, a game may go into extra innings, or a game might be shortened due to
weather, or suspended prior to the fifth inning to be completed at a later date. For these different situations, have the
calendar display the following:

❯❯ For nine-inning games, do not display the innings played

❯❯ For extra-inning games, display the innings enclosed in brackets, such as [11]

❯❯ For shortened games in which the result is still final, display the inning enclosed in brackets followed by an
asterisk, such as [7]*

❯❯ For games suspended prior to the fifth inning, display the inning enclosed in brackets followed by three
asterisks, such as [4]***

Add these conditions to the showGames() function using an if statement with multiple else if conditions to
cover all possibilities.

to display the innings played:

1. Return to the js03.js file in your code editor and go to the showGames() function.

2. Directly above the comment for closing the paragraph insert the following else if statement (see Figure 3-14).

// Display innings played for suspended, shortened, or extrainning games

if (gameInnings[i] < 5) {

 gameInfo += " [" + gameInnings[i]+"]***";

} else if (gameInnings[i] < 9) {

 gameInfo += " [" + gameInnings[i]+"]*";

} else if (gameInnings[i] > 9) {

 gameInfo += " [" + gameInnings[i] + "]";

}

3. Save your changes to the file and then reload the js03.html file in your web browser. As shown in Figure 3-15,
innings are added to those games that are suspended, shortened, or go into extra innings, but games that went
for nine innings are not changed.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow100

Note that because decision-making statements end with the first true condition, you need to order your statements to
remove overlapping conditions. In this case, you first test for games that end in less than five innings and then test for
games that end in less than nine innings. Switching the order would have treated all games with less than nine innings
as shortened but finalized games, even those that lasted a single inning.

Nested if and if else Statements
As with program loops, you can nest decision-making statements within one another, creating a series of conditions
that all must be true before an action is taken. This type of structure is called a nested decision-making structure. The
following code shows an example of nested if statements:

if (day === "Friday") {

 if (time === "8am") {

 window.alert("Start of the last day of the week.");

Figure 3-14 Conditional statements based on innings played

Display suspended
 games as [innings]***

Display shortened
games as [innings]*

Display extra-inning
games as [innings]

Do not do anything for
games that go exactly

9 innings

Figure 3-15 Displaying innings played

Shortened
game

Suspended
game

Extra-innings
game

Game that went
exactly 9 innings

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

aDDing DECiSion Making to your CoDE 101

 } else if (time === "5pm") {

 window.alert("Time to start the weekend!");

 } else {

 window.alert("A few more hours until the weekend.");

 }

} else if (day === "Monday") {

 window.alert("Start of another work week.");

} else {

 window.alert("Have a great day!");

}

In this example, if the day is "Friday", one of 3 possible messages will be displayed based on the value of the
time variable; otherwise two possible messages will be displayed depending on whether the day is "Monday" or
another day.

With nested statements, it is very easy to lose track of the opening and closing braces. Mismatching the
braces will most likely result in an error. To assist you, most code editors will include visual clues matching
opening and closing braces.

Note

Conditional Statements and Browser testing
A great challenge for any web developer is ensuring that program code is supported by the browser. Older browser
versions may not recognize the latest enhancements made to ECMAScript, and customers running those browsers will
be faced with an application that fails due to its lack of support. If you feel that a feature of your code might not be uni-
versally supported, you can add a browser test confirming that the feature is recognized by the JavaScript interpreter
and providing alternate statements if it is not. The general syntax is:

if (feature) {

 statements that use the feature

} else {

 statements that use replacement code

}

where feature is a JavaScript object, property, or method that should be tested for browser support. If the fea-
ture returns true, you can apply statements that use the feature; but if the condition returns a falsy value (such as
 undefined), you can supply an alternate set of commands that use a different feature that is supported.

For example, the method find() (listed in Figure 3-11) is an array method that locates the first element in array
returning a true value from a callback function. However, the method was introduced in 2015 with ES6 and thus might
not be supported by some older browsers. The following code shows how to conduct a browser test for the find()
method in a program that analyzes customer orders:

// array of order ids

let orders = ["33-104", "21-098", "88-001", "14-791"];

// find the first order that has not shipped

if (orders.find) {

 // the find method is supported by the browser

 let firstUnshipped = orders.find(unshipped);

} else {

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow102

 // alternate code in place of the find method

}

function unshipped(arrValue) {

 // callback function to determine whether an order has shipped

}

If the expression orders.find is not recognized, the JavaScript interpreter will return the falsy value undefined
and the test condition fails so that the else command block is executed with an alternate set of commands; but if the
test condition is true, the find() method is applied to accomplish the task.

Browser testing is often used to ease the transition into new ECMASCript features, so that the most current features are
applied where supported and older features are used where needed. As newer features become more widely supported,
developers can simplify their code by removing the browser test and the alternate set of instructions. Throughout the
years, many statements using outdated methods have been winnowed away in this fashion, resulting in faster, more
efficient code.

the switch Statement
As the number of possible conditions increases, the entire if else if structure can become large and unwieldy.
An alternative to a long list of else if conditions is the following switch statement:

switch (expression) {

 case label1 : statements; break;

 case label2 : statements; break;

 case label3 : statements; break;

…

 default: statements; break;

}

where expression is a statement that returns a value, label1, label2, label3, and so on are possible values of
that expression, statements are the commands run with each possible value, and the final default option is run if
none of the listed labels match the expression’s value.

The following switch statement demonstrates how to run a different set of statements based on the value of the day
variable:

switch (day) {

 case "Friday": alert("Thank goodness it's Friday!"); break;

 case "Monday": alert("Blue Monday"); break;

 case "Saturday": alert("Sleep in today."); break;

 default: alert("Today is " + day);

}

This switch statement tests for three possible day values, "Friday", "Monday", and "Saturday", with different mes-
sages displayed for each day. If day equals none of those values, the default message is displayed.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

aDDing DECiSion Making to your CoDE 103

The break statement, marking the end of each case, is an optional keyword that halts the execution of the switch
statement once a matching case has been found. For programs in which more than one label might match the expres-
sion, omit the break statements and the JavaScript interpreter will continue moving through the case labels, running
all statements in which a match has been found. This situation is known as fallthrough.

Use a switch statement to add one last feature to the game calendar. The calendar needs to show wins, losses, sus-
pended games, and postponed games with differing font and background colors. Styles for each result have been saved
in the CSS stylesheet under different class names. To use the style sheet, your program must change the paragraph
tag containing the game result to one of following depending on the game outcome:

❯❯<p class = "win"> … </p>

❯❯<p class = "lose"> … </p>

❯❯<p class = "suspended"> … </p>

❯❯<p class = "postponed"> … </p>

Create a switch statement now to write a different opening tag for the paragraph based on the value in the
gameResults array.

to apply a switch statement:

1. Return to the js03.js file in your code editor and go to the showGames() function.

2. Replace the statement let gameInfo = "<p>" that writes the paragraph’s opening tag with the following
switch statement that chooses one of four possible opening paragraph tags:

switch (gameResults[i]) {

 case "W":

 gameInfo += "<p class='win'>";

 break;

 case "L":

 gameInfo += "<p class='lose'>";

 break;

 case "S":

 gameInfo += "<p class='suspended'>";

 break;

 case "P":

 gameInfo += "<p class='postponed'>";

 break;

}

Case labels must be discrete values and cannot use operators. Thus, you cannot define a case label
based on numeric ranges like < 20 or >= 10. If you need a numeric range, use an else if construction
instead of a switch statement.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow104

Figure 3-16 Creating a switch statement

Opening tag
for games won

Opening tag for
games lost

Opening tag for
suspended games

Opening tag for
postponed games

The break command
stops the switch
statement once a

match has been found

Case labels match
possible values in

the gameResults array

Figure 3-17 Final monthly calendar for the Tipton Turbines

Game was
postponed

Game was
suspended

after 2 innings

Game was
won

Game was
lost after
10 innings

Figure 3-16 shows the newly added code in the function.

3. Save your changes to the file and then reload the js03.html file in your web browser. Figure 3-17 shows the final
version of the calendar.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Managing prograM loopS anD ConDitional StatEMEntS 105

Managing Program Loops and Conditional Statements
Although you are finished with the calendar, you still should become familiar with some features of program loops
and conditional statements for future work with these JavaScript structures. You will examine three features in more
detail—the break, continue, and label statements.

the break Statement
The break statement can be used anywhere within any program loop or conditional statement. When a break state-
ment is encountered, the execution of the code passes to the next set of statements. Breaks are most often used to exit
a program loop before the stopping condition is met, as in the following program loop that examines the customerID
array for a specific customer ID number:

for (let i = 0; i< customerID.length; i++) {

 if (customerID[i] === "C-14281") {

 window.alert("C-14281 is found");

 break; // stop processing the for loop

 }

}

Once the specific customer ID has been located, there is little point in continuing the for loop. The break command
saves the JavaScript interpreter from having to fruitlessly examine the rest of an array that might contain tens of
thousands of elements.

the continue Statement
The continue statement is like the break statement except that instead of stopping a program loop altogether, the
continue statement stops only the current iteration and continues on to the next iteration. A continue statement
is useful in programs that need to avoid undefined values that can cause the program to fail. In the following code, a
for loop is used to examine the contents of an array of customer email addresses. However, the customerEmail
array may be sparse with several undefined values that would result in errors if processed. This problem is avoided
with an if statement that continues the loop to the next iteration when an undefined value is detected:

for (let i = 0; i< customerEmail.length; i++) {

 if (customerEmail[i] === undefined) {

 continue;

 } else {

 // statements to process the e-mail address

 }

}

Statement Labels
Statement labels identify statements in the code so that they can be referenced elsewhere in the program. The syntax
of the statement label is:

label: statements

where label is the text of the label and statements are the statements identified by the label. You have already seen
labels with the switch statement, but labels can also be used with other program loops and conditional statements
to provide more control over how statements are processed. Labels often are used with break and continue state-
ments to direct the program flow to a specific set of statements. The syntax to reference a label in such cases is simply

break: label;

or

continue: label;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow106

For example, the following for loop uses a statement label not only to jump out of the programming loop when the
text string “C-14281” is found but also to jump to a location in the script identified by the nextReport label and to
continue to process the statements found there:

for (let i = 0; i< customerID.length; i++) {

 if (customerID[i] === "C-14281") {

 window.alert("C-14281 is found");

 break: nextReport; // stop processing the for loop

 }

}

nextReport: statements

Labels are most often used with nested loops when you need to break out of a loop completely, no matter how deeply
nested you might be.

Spaghetti code is a pejorative programming term that refers to convoluted or poorly written code. One hallmark
of spaghetti code is the frequent branching from one section of code to another, making it difficult to track the
program line-by-line as it is executed. A change in one part of the program could lead to unpredictable changes in
a completely different section of the code.

Many developers discourage the use of label statements unless absolutely necessary. They can confuse a programmer
trying to fix code in which a program loop can end before its stopping condition, or code in which statements are
not processed in the order that they are written in a document. Almost all of the tasks in a program can also be
performed by carefully setting up the conditions for program loops without forcing jumps to labeled sections.

Even with the best of intentions, spaghetti code can easily occur in environments in which the same code is
maintained by several people or passed from one employee to another. A programmer might add a new feature
that is needed right away without adequately documenting the changes made to the code or without considering
the impact of those changes on other programs. To avoid or at least reduce the occurrence of spaghetti code,
always document your code, and develop a structure that is easy for others to follow.

Best Practices Avoiding Spaghetti Code

Quick Check 3

1. Provide the code for an if statement that displays an alert window with the message "you passed with an A" if
the value of the exam variable is greater than 90.

2. Provide the code for an if else statement that displays an alert window with the message "you passed with an
A" if the value of the exam variable is greater than 90 and the message "not an A" if otherwise.

3. Provide the code for an else if statement that displays the message "you passed with an A" if exam is greater
than 90, else if exam is greater than 80 the browser displays the message "you passed with a B". else if exam is
greater than 70, the message "you passed with an C" is displayed, else the message "you did not pass" is displayed.

4. Provide the general code for a browser test that tests whether or not the browser supports the findIndex()
method when applied to an array named xValues.

5. How should you write the code for a switch statement to allow more than one condition to be run by the
Javascript interpreter?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

107kEy tErMS

Summary
❯❯ An array contains a set of data represented by a single variable name. You can think of an array as a collection of
variables contained within a single variable. Each piece of data contained in an array is called an element. An index
is an element’s numeric position within the array.

❯❯ A loop statement is a control flow statement that repeatedly executes a statement or a series of statements while
a specific condition is true or until a specific condition becomes true. Loop statements in JavaScript include the
while, do while, and for statements.

❯❯ The while statement is used for repeating a statement or series of statements as long as a given conditional
expression evaluates to true.

❯❯ Each repetition of a looping statement is called an iteration.

❯❯ An infinite loop is a situation in which a loop statement never ends because its conditional expression is never
false.

❯❯ The do while statement executes a statement or statements once, and then it repeats the execution as long as a
given conditional expression evaluates to true.

❯❯ The for statement is used to repeat a statement or series of statements as long as a given conditional expression
evaluates to true.

❯❯ The continue statement halts a looping statement and restarts the loop with a new iteration.

❯❯ The process of choosing which code to execute at a given point in an application is known as decision making. In
JavaScript, you use the if, if else, else if, and switch statements to create decision-making structures.

❯❯ The if statement is used to execute specific programming code if the evaluation of a conditional expression
returns a value of true.

❯❯ An if statement that includes an else clause is called an if else statement.

❯❯ When one decision-making statement is contained within another decision-making statement, they are referred to
as nested decision-making structures.

❯❯ The switch statement controls program flow by executing a specific set of statements, depending on the value of
an expression.

❯❯ A break statement is used to exit control statements, such as the switch statement or the while, do while,
and for looping statements.

Key Terms
array

array literal

browser test

callback function

conditional statement

controlling flow

counter

decision making

decision-making statement

decision-making structure

element

fallthrough

HTML Collection Object

index

infinite loop

iteration

matrix

multidimensional array

nested decision-making structure

posttest loop

pretest loop

program loop

spaghetti code

sparse array

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow108

Review Questions
1. What is the correct syntax for creating an empty

array named taxRules?
a. var taxRules = {};
b. var taxRules;
c. var taxRules = [];
d. var taxRules[5];

2. Which of the following statements adds the value
“oak” as the third element of the trees array?
a. trees += "oak";
b. trees += "","","oak";
c. trees[2] = "oak";
d. trees[3] = "oak";

3. Which of the following properties returns the
number of elements in an array?
a. length
b. size
c. elements
d. indexes

4. To create a multidimensional array in JavaScript,
you must _________________ .
a. use the new Matrix() object constructor
b. nest one array within another
c. load a JavaScript library with special array tools
d. apply the forEach() array method

5. To reference the element in the third row and
fourth column of the multidimensional array
xValues, use:
a. xValues(3, 4)
b. xValues[3, 4]
c. xValues[2][3]
d. xValues[2, 3]

6. To reference the third inline image found within the
web page document, use:
a. document.images.3
b. document.images[3]
c. image.2
d. document.images[2]

7. If you do not include code that changes the counter
value in a loop statement, your program will be
caught in a(n) _________________.
a. iteration
b. condition
c. fallthrough
d. infinite loop

8. To access HTML elements by the value of their class
attribute, which of the following would you use?
a. document.getElementsByClassName()
b. document.getElementByClassName()
c. document.getElementsByClass()
d. document.getClasses()

9. Each repetition of a program loop is called a(n)
_________________ .
a. command block
b. counter
c. iteration
d. while loop

10. Posttest loops are _________________ .
a. program loops in which the stopping condition is

evaluated before each iteration of the command
block

b. program loops in which the stopping condition
is evaluated after the command block has been
executed at least once

c. used in while loops and for loops
d. loops that have no stopping condition

11. Which of the following can be used as part of a for
loop to go through all the elements in the xValues
array?
a. for (let i = 1; i < xValues.

length; i++)
b. for (let i = 0; i <= xValues.

length; i++)
c. for (let i = 0; i < xValues.

length; i++)
d. for (let i = 1; i = xValues.

lenght; i++)

12. A simple if else statement enables you to
specify code for _________________ alternatives.
a. 2
b. 3
c. 4
d. unlimited

13. To insert HTML code within an element without
overwriting code already in that element, use the
_________________ method.
a. innerHTML()
b. insertAdjacentHTML()
c. document.write()
d. insertHTML()

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HanDS-on projECtS 109

Hands-On Projects
Hands-On Project 3-1

In this project you create an application that calculates the total cost of items selected from a lunch menu
using a for loop and an if statement as part of the program code. The cost of each menu item is stored in
the value attribute of an input control on a web form. Because attribute values are treated as text strings, you
will have to convert the attribute value to a number using the following JavaScript function:

Number(object.value)

where object is a reference to an input box within the web page. Your application will automatically update
the total order cost whenever the user clicks a menu item checkbox. Figure 3-18 shows a preview of the
completed project.

14. The forEach() method _________________ .
a. requires a JavaScript extension
b. is an example of a pretest loop
c. is an example of a posttest loop
d. is used to apply a function to every element within

an array without using a program loop

15. In an if else statement, the else command
block will run when _________________ .
a. the conditional expression is true
b. the conditional expression is false
c. the conditional expression is undefined
d. the conditional expression is falsy

16. Describe two ways of declaring a JavaScript array.

17. Provide the code to reference the fourth element in
the projectTeam array.

18. Provide the code to reference the third div
element within a web document.

19. Provide the general code of a for loop that
loops through all the div elements within a web
document.

20. Provide code to insert the HTML text string
<h1>Main Heading</h1> directly after the
opening tag of the div element with the id "Main".

Figure 3-18 Completed Project 3-1

Do the following:

1. Use your code editor to open the project03-01_txt.html and project03-01_txt.js files from the js03 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project03-01.html and project03-01.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow110

2. Go to the project03-01.html file in your code editor and in the head section add a script element to load the
project03-01.js file. Include the defer attribute to defer loading the file until the entire page is loaded. Study the
contents of the HTML file, noting that all checkboxes for the menu items belong to the menuItems class. Save
your changes to the file.

3. Go to the project03-01.js file in your code editor. Below the initial comment section, declare a variable
named menuItems containing the collection of HTML elements belonging to the menuItem class using the
getElementsByClassName() method.

4. Create a for loop that loops through the contents of the menuItems collection with a counter variable that
starts with an initial value of 0 up to a value less than the length of the menuItems collection. Increase the
counter by 1 with each iteration. Within the for loop, add an event listener to the menuItems[i] element in the
collection (where i is the value of the counter), running the calcTotal() function when that item is clicked.

5. Create the calcTotal() function to calculate the total cost of the customer order given the selected menu items.
Add the following commands to the function:

a. Declare the orderTotal variable, setting its initial value to 0.

b. Create a for loop that loops through the contents of the menuItems collection. For menuItems[i]
(where i is the counter), apply an if statement that tests whether the item has been checked. If true,
increase the value of the orderTotal variable by the value of menuItems[i]. (Hint: Use the Number()
function to convert the value of menuItems[i] to a number.)

c. After the for loop, insert a command to change the innerHTML property of the element with the id "billTotal"
to the value returned by the formatCurrency() function using orderTotal as the parameter value.

6. Save your changes to the file and then open project03-01.html in your browser. Verify that the total cost of the
order is automatically updated as you select and deselect menu items in the web form.

Hands-On Project 3-2

In this project you will generate an image gallery using images of the International Space Station. Each image
will be placed within a figure box accompanied by a caption taken from an array of caption text. A preview of
the completed project is shown in Figure 3-19.

Do the following:

1. Use your code editor to open the project03-02_txt.html and project03-02_txt.js files from the js03 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project03-02.html and project03-02.js, respectively.

2. Go to the project03-02.html file in your code editor and in the head section add a script element to load the
project03-02.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Study
the contents of the HTML file and save your changes.

3. Go to the project03-02.js file in your code editor. Below the code that creates and populates the captions
array, declare the htmlCode variable, setting its initial value to an empty text string.

4. Create a for loop with a counter that goes from 0 to less the length of the captions array in increments of 1.
With each iteration, add the following text to the value of the htmlCode variable:

<figure>

<figcaption>caption[i]</figcaption>

</figure>

 where i is the value of the counter for that iteration and captions[i] is the corresponding element from the
captions array.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HanDS-on projECtS 111

5. After the for loop, change the inner HTML of the document element by the id "gallery" to the value of the
htmlCode variable.

6. Save your changes to the file and then load project03-02.html in your browser. Verify that the page displays the
14 images in the slide gallery along with their captions.

Hands-On Project 3-3

In this project you will generate the HTML code for a web table displaying the top 10 movies from the IMDB
website. Information on each movie is stored in arrays that have been created for you. Your job will be to
create a program loop that loops through the content of the arrays and writes the information as new table
rows in the web table. A preview of the completed project is shown in Figure 3-20.

Do the following:

1. Use your code editor to open the project03-03_txt.html and project03-03_txt.js files from the js03 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project03-03.html and project03-03.js, respectively.

2. Go to the project03-03.html file in your code editor and in the head section add a script element to load the
project03-03.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Study
the contents of the HTML file and save your changes.

3. Go to the project03-03.js file in your code editor. Below the code that creates and populates the links array,
declare the htmlCode variable, setting its initial value to an empty text string.

Figure 3-19 Completed Project 3-2 NASA

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow112

4. Create a for loop with a counter that goes from 0 to less the length of the titles array in increments of 1.
With each iteration, add the following text to the value of the htmlCode variable:

<tr>

<td>titles[i]<td>

<td>summaries[i]</td>

<td>ratings[i]</td>

</tr>

 where i is the value of the counter for that iteration, and links[i], titles[i], summaries[i], and
ratings[i] are the values from the corresponding elements in the links, titles, summaries, and
ratings arrays.

5. After the for loop, declare a variable named tableBody referencing the first (and only) element in the web
document with the tag name “tbody”. (Hint: Use the getElementsByTagName() method to access the HTML
collection and don’t forget to reference the first element in that collection and not the whole collection.)

6. Change the innerHTML property of tableBody to the value of the htmlCode variable.

7. Save your changes to the file and then load project03-03.html in your browser. Verify that the page displays the
top 10 movies in the IMDB ratings.

Figure 3-20 Completed Project 3-3

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HanDS-on projECtS 113

Hands-On Project 3-4

In this project you will display customer reviews for a new digital game. Information on each customer
and review is contained within several arrays. Customers give the game a rating from one to five stars,
which you will display as star images in the web page. A preview of the completed project is shown in
Figure 3-21.

Figure 3-21 Completed Project 3-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow114

Do the following:

1. Use your code editor to open the project03-04_txt.html and project03-04_txt.js files from the js03 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project03-04.html and project03-04.js, respectively.

2. Go to the project03-04.html file in your code editor and in the head section add a script element to load the
project03-04.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Study
the contents of the HTML file and save your changes.

3. Go to the project03-04.js file in your code editor. At the bottom of the file, insert a function named starImages()
with a single parameter named rating. The purpose of the function is to generate the HTML tags of several star
images based on the value of the rating parameter.

4. Within the starImages() function add the following:

a. Declare a variable named imageText, setting its initial value to an empty text string.

b. Create a for loop with a counter that goes from 1 up to less than or equal to the value of the rating
parameter, increasing the counter by 1 with each iteration.

c. In the for loop, add the text "" to the value of the imageText
variable with each iteration.

d. After the for loop, add a statement to return the value of imageText from the function.

5. Create a for loop with the counter variable ranging from 0 up to less than the length of the reviewers array,
increasing the counter by 1 with each iteration. In this for loop you will generate the HTML code for a table
that contains the review from each customer.

6. For each iteration within the for loop, do the following:

a. Declare a variable named reviewCode, setting its initial value to an empty text string.

b. Insert an else if statement that adds one of three possible text strings to the value of reviewCode: if
the value of the reviewType for the current element in the array is equal to "P" then add the text string
"<table class = 'prime'>", else if the value of the reviewType for the current element is equal to
"N" then add the text string,"<table class = 'new'>" else add the text string, "<table>".

c. Add the following HTML code to the value of the reviewCode variable. (Hint: You may find it easier to
break this code into several text strings that you add separately using the += assignment operator.)

<caption>reviewTitles[i]</caption>

<tr><th>By</th><td>reviewers[i]</td></tr>

<tr><th>Review Date</th><td>reviewDates[i]</td></tr>

<tr><td colspan='2'>reviews[i]</td></tr>

</table>

 where reviewTitles[i], reviewers[i], reviewDates[i], and reviews[i] are the values from the
reviewTitles, reviewers, reviewDates, and reviews arrays for the current element in the iteration.

d. Use the insertAdjacentHTML() method to insert the value of the reviewCode variable into the
first (and only) <article> tag in the document, placing it directly before the closing tag. (Hint: Use the
getElementsByTagName() method to reference the collection of article elements in the document.)

7. Save your changes to the file and then load project03-04.html in your web browser, verify that all four reviews
are shown as indicated in Figure 3-21.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HanDS-on projECtS 115

Hands-On Project 3-5

debugging Challenge

In this debugging challenge you will fix the mistakes in a program that generates a horizontal bar chart
describing the relative sales of five brands of cell phones sold by a company. You can use the browser console
to evaluate the code and the arrays the program uses to locate any errors. When the code has been fixed, it
will display the bar chart shown in Figure 3-22.

Figure 3-22 Completed Project 3-5

The horizontal bar chart is created by generating a web table with each phone model displayed on a separate
table row. The bars themselves are generated using <td></td> tags with the number of td elements in each
row equal to the percentage of the total sales (to nearest 1%). For example, a phone that accounts for 40% of
sales will have 40 td elements in its table row. The width and color of each td element is set in a style sheet so
that different background colors are applied to the different phone models.

Do the following:

1. Use your code editor to open the project03-05_txt.html and project03-05_txt.js files from the js03 c
project05 folder. Enter your name and the date in the comment section of each file and save them as
project03-05.html and project03-05.js, respectively.

2. Go to the project03-05.html file in your code editor and in the head section add a script element to load the
project03-05.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Study
the contents of the HTML file and save your changes.

3. Go to the project03-05.js file in your code editor. Comments have been added to help you understand the code
used in this application.

4. Locate and fix the following errors in the code:

a. The program declares two arrays named phones and sales that contain the names of the five phone
models and their units sold. There is an error in declaring each of these arrays. Locate and fix those errors.

b. The program uses the forEach() method with the addToTotal() function as the callback function to
calculate the total sales across all phone models. Fix the error in the statement that runs the forEach()
method.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Building ArrAys And Controlling Flow116

c. In the for loop that writes the td elements for the bar chart, there are errors defining the counter values.
Locate and fix the errors involved.

d. Fix the error in the statement that declares and initializes the barPercent variable (which calculates the
sales percentage for a specific phone model.)

e. Fix the syntax errors in the switch statement that sets the value of the cellTag variable based on name of
the phone model.

f. At the end of the for loop, the program inserts the value of the barChart variable into HTML code of the
first <tbody> element in the document, directly before the closing </tbody> tag. Locate and fix the error
in this statement.

5. Save your changes to the file and then open project03-05.html in your web browser. Verify that the bar chart is
generated as shown in Figure 3-22. If you are still getting errors, use the browser console to help you locate and
fix errors in the code.

Case Projects
Individual Case Project

Plan and add a feature to one of the web pages in your personal site that incorporates content or functionality
created by a series of if, if else, and/or else if statements, or by a switch statement. View and test
your page in one or more browsers as appropriate to ensure it works as you expect.

Team Case Project

Choose one of the web pages from your team web site to enhance with code that uses an array and a loop.
Arrays are often used to store a set of related data, either provided by the developer or added by a user. Loops
are often used in combination with arrays to perform a common action on each element in an array. Plan the
structure of the code as a team, then divide into two groups. One group should create the code for the array,
and the other the code for the loop. After each group has completed its work, come back together as a full
group and incorporate the code in the group web page. Test the code to verify the page works as planned,
doing any troubleshooting and making any edits to the functions as a full team.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

117

The more JavaScript programs you write, the more likely you are to write programs that generate error
messages. At times it may seem like your programs never function quite the way you want. Regardless
of experience, knowledge, and ability, all programmers introduce errors in their programs at one time or
another. Thus, all programmers must devote part of their programming education to mastering the art of
debugging, which is the process of tracing and resolving errors in a program. Debugging is an essential
skill for any programmer, regardless of the programming language.

In this chapter, you will learn techniques and tools that you can use to trace and resolve errors in
 JavaScript programs. However, you will not create any new programs. Instead, you will learn how to
locate errors in an existing program.

Introduction to Debugging
All programming languages, including JavaScript, have their own syntax, or rules. To write a program,
you must understand the syntax of the programming language you are using. You must also understand
computer-programming logic. The term logic refers to the arrangement of operations within the program
to achieve its intended goal. You may know how to operate a car correctly (i.e., with correct syntax) but
unless you follow the correct route (with correct logic) you are unlikely to arrive at your destination.
One of the goals of programming is to arrive in the most efficient way possible and in programming, this
is as much an art as a science.

Chapter 4

When you complete this chapter, you will be able to:

❯❯ Understand four different types of errors that programmers must deal with

❯❯ Use the debugger console to locate errors in a program

❯❯ Use JavaScript in strict mode

❯❯ Trace an error to its source

❯❯ Track the flow of your program using debugger tools

❯❯ Manage errors in your code using a try catch statement

❯❯ Control how a browser handles errors

Debugging and Error
Handling

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling118

Any error in a program that causes it to function incorrectly, whether because of incorrect syntax or flaws in logic, is
called a bug. The term debugging refers to the act of tracing and resolving errors in a program. Grace Murray Hopper,
a mathematician who was instrumental in developing the Common Business-Oriented Language (COBOL) program-
ming language, is said to have first coined the term. A moth short-circuited a primitive computer that Hopper was
using. Removing the moth “debugged” the system and resolved the problem. Today, the term “bug” refers to any sort
of problem in the design and operation of a program. There are three general types of errors within a program: load-
time errors, runtime errors, and logic errors.

Do not confuse bugs with computer viruses or worms. Bugs are problems within a program that occur
because of syntax errors, design flaws, or runtime errors. Viruses and worms are self-contained programs
designed to infect a computer system and cause damage, compromise security, and/or steal information.

Note

Figure 4-1 Load-time error viewed in the Chrome browser console

Error is highlighted
in the document

Location of
load-time error

Error
message

Load-time errors
A load-time error, also known as a syntax error, occurs when the program is initially loaded by the browser. One of
the tasks of a JavaScript interpreter is to confirm that there are no errors in the syntax. A common syntax error is
the misspelling of a JavaScript keyword such as using document.writ() in place of document.write(). Other
syntax errors would be forgetting to end a command block with a closing curly brace or forgetting to enclose a text
string within a set of quotation marks. A good code editor will highlight syntax errors for you, saving you the trouble
of running the code in your browser and discovering the mistake there.

The following code contains two syntax errors. The first is that the keyword function is written as Function and
the second is the lack of a closing brace for the command block:

Function sayHello() {

 let message = "Hello World";

 window.alert(message);

When this code is loaded by the browser, an error message like the one shown in Figure 4-1 is generated by the browser
debugging console. In this figure, the browser is the Google Chrome browser.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IntroductIon to debuggIng 119

The console highlights the error within the code, provides the line number, and offers a brief description of what might
have caused the error. The message Uncaught SyntaxError: Unexpected identifier tells the programmer
that there is a syntax error within the statement Function sayHello(). Notice, however, that the console says
nothing about the syntax error in omitting the closing brace. When the debugger encounters a syntax error, it stops
processing the code so that any subsequent errors are not reported. In fixing a syntax error, you might find that fixing
one error leads you further down the code to the next error.

runtime errors
When the interpreter loads the script without finding any syntax errors, it will next attempt to run the code. At this
point, a runtime error may appear, which is an error that occurs when the interpreter is unable to run the code. Run-
time errors may manifest themselves for several reasons such as attempting to reference a function or variable that
has not been declared, using an undefined value in an expression, or performing an illegal mathematical operation
such as calculating the square root of a negative number.

The following code contains two runtime errors that will prevent the code from running successfully:

function defineVariables() {

 let pct = 25; // percent value

 let amt = 1600; // amount value

}

function calculatePercent() {

 let result = amt * pct/100;

 document.write("<p>" + pct + "% of " + amt + " is: ");

 document.write(result + "</p>");

}

defineVariables();

calculatePercent();

The interpreter does not report an error when it loads the program because there are no problems with the syntax,
but it will report a runtime error when it calls the calculatePercent() function as shown in Figure 4-2.

Figure 4-2 Runtime error viewed in the Chrome browser console

The amt and pct variables
 are declared with local scope,

limited to the function
defineVariables()

Line numbers indicate where
the browser encounters

 the error

The amt variable is not
recognized because it is
referenced outside of its

scope

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling120

The runtime error is due to the pct and amt variables being declared within the defineVariables() function
and thus with scope limited to that function. Attempts to reference those variables outside of that scope caused the
error. The console only reports the error with the amt variable, because the browser stops running the program at
the first runtime error. This particular runtime error manifests in two locations. The error on line 20 occurs when
the interpreter tries to calculate the value of the result variable using the unrecognized amt variable. The error
on line 26 occurs when the calcPercent() function is called and fails. From the line numbers you can trace an
error as it propagates during the running of the program. It is not unusual for a single error to result in multiple
error locations.

Logic errors
The third type of error, a logic error, is a flaw in a program’s design that prevents the program from reaching its intended
goal. There is nothing wrong with the syntax or with the statements themselves; the result is simply wrong.

Logic errors can result from performing essential steps in the wrong order. When you do the laundry, you sort, then
wash, then dry, and finally fold your clothes. A logic error in which you fold, sort, dry, and then wash the clothes
would leave you with a pile of wet, unsorted, and unfolded laundry! Or the problem might come from missing an
important step, such as forgetting the laundry detergent, leaving you with dirty clothes. Or the problem might lie
in misinterpreting the data involved. If you accidently mix reds and whites in the sorting step, you could end with
a pink mess.

The following function is correct in its syntax and structure, but will nevertheless not work correctly due to an error
in logic. Can you spot the mistake?

function compareValues(a, b) {

 if (a > b) {

 window.alert(a + " is greater than " + b);

 } else {

 window.alert(a + " is less than " + b);

 }

}

The mistake is that there are three possible outcomes: a could be greater than b, a could be less than b, or a
could be equal to b. That third possibility, never tested by the code, results in the nonsensical statement shown
in Figure 4-3.

Figure 4-3 Logic error viewed in the Chrome browser console

An incorrect result due
to a logical error in

the code
Running the

compareValues()function
 with two equal values

The if else statement
does not consider that
a and b could be equal

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

StartIng debuggIng wIth the browSer conSole 121

You can locate errors in your code using linting, a process that involves sending your code through a
third-party program that analyzes and produces a detailed error report. Some of the most popular linting
programs for JavaScript are jslint, ESLint, and JSHint. Also, many code editors offer their own set of
linting tools.

Note

Finding and fixing logic errors is the most difficult part of programming. You must analyze the logic at each step of
your code, comparing the results you expected with the results you got. A debugger can provide tools to make that
comparison easier, but the analysis must be done by the programmer.

Starting Debugging with the Browser Console
You have been hired by Tuba Farm Equipment, located in Fargo, North Dakota, to finalize a web application that
selects tractor models based on the acreage to be cultivated, the crop to be planted, the months of work, and the
preferred fuel source. The web application has been coded but does not work. You will use debugging techniques
to identify and fix the bugs in the program, so it functions as designed. Figure 4-4 shows how the completed page
should perform.

Figure 4-4 Tuba Farm Equipment page

The program uses a series
of decision-making
statements to decide on
 a recommendation and
generate the appropriate
description text based on
user input in the form

Each time a user
changes or selects
an input element,
the program checks
if all fields are completed

The program generates
instructions for correction
if a user entry isn’t
appropriate for a field
(such as letters in a number
field)

If a user entry isn’t
appropriate for a field
(such as letters in a
number field), an
explanation of how to
correct the error
appears here

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling122

Start your work on fixing this program by opening the page in its current state and viewing the errors.

to open the tuba Farm equipment page:

1. Go to the js04 c chapter folder of your data files.

2. Use your code editor to open the js04_txt.html and js04_txt.js files and enter your name and the date in the com-
ment section of each file.

3. Return to the js04.html file in your code editor. Scroll through the document to familiarize yourself with its con-
tent. The article element contains the form, and the aside element contains empty h2 and p elements where
the program will display its tractor recommendation.

4. Open the js04.html file in your browser, and then in the first text box (with the label “acres”), type your first
name. Because the program expects a number in this box, your entry of text should generate an error. However,
nothing happens when you type text in the box.

5. Complete the form as follows: Enter 5000 in the acres input box, click the Wheat checkbox to select it as a crop
to grow, enter 10 in the months input box, and click the Standard diesel option button as the preferred fuel
source.

Notice that even though you have completed the form correctly, no recommendation for a tractor model
appears in the left sidebar. The program is not working as intended because of one or more errors within the
code.

6. Return to the js04.js file in your code editor and take some time to examine the contents of the file.

The program code in the js04.js file involves multiple variables and functions. The program uses 12 global variables
to record the customer’s farming criteria and to reference elements and controls within the web form. The file also
contains the createEventListeners() function for defining and applying event listeners to respond to user
actions, the verifyAcres(), verifyCrops(), verifyMonths(), and verifyFuel() functions to verify that
correct data is entered for acres, crops, months, and fuel values, the testFormCompleteness() function to verify
that all data in the form has been entered, and the createRecommendation() function to determine and write
information on the recommended tractor model. Somewhere within this collection of variables and functions are
errors that prevent the program from running. Whether those are load-time errors, runtime errors, logic errors, or
some combination of all three is for the programmer to determine. The best place to start is with the debugging tools
in the browser’s console.

The figures in this chapter show the contents of the Google Chrome browser console. Although the
appearance of the console may be slightly different in each of the major browsers, they all display the
same information in roughly the same layout.

Note

to start debugging with the browser console:

1. Reload the js04.html file in your web browser and then open your browser’s console. You do not, at this time,
have to enter any data in the web form.

2. The console reports one syntax error located on line 18 of the js04.js file. Click the link to the line number to view
the contents of that file and scroll down to Line 18 as shown in Figure 4-5.

If you are using a different browser, use the steps within that console to display both the error message and
content of the js04.js file. See your browser’s online help for more information.

Line 17 is supposed to declare the fuelComplete variable using the let keyword; however, the keyword has been
mistyped as et. Correct this syntax error now and continue the debugging process.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

StartIng debuggIng wIth the browSer conSole 123

to correct the syntax error:

1. Go to the js04.js file in your code editor and scroll down Line 17 declaring the fuelComplete variable.

2. Edit the line so that it reads as follows:

let fuelComplete = true;

3. Save your changes to the file and then reload the js04.html file in your browser (you do not have to close the
console.) As shown in Figure 4-6, another syntax error is discovered in Line 27.

Figure 4-5 Syntax error in the js04.js file

Line containing
the syntax error

Syntax
error

Figure 4-6 Syntax error declaring a variable

Syntax
error

Missing equals (=)
operator

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling124

Figure 4-7 Syntax error with the getElementsByTagName() method

Missing closing
double quote

Syntax
error

The syntax error in the statement

let monthsFieldset document.getElementsByTagName("fieldset")[2];

occurs because there is no equals symbol between the declaration of the monthsFieldset variable and the
reference to the HTML collection object. Without that operator, the interpreter cannot parse the statement and
reports an error.

4. Return to the js04.js file in your code editor and edit Line 27 by inserting the equals operator, so that it reads as
follows:

let monthsFieldset = document.getElementsByTagName("fieldset")[2];

5. Save your changes to the file and then reload the js04.html file in your browser. Another syntax error appears
on the very next line as shown in Figure 4-7.

There is a syntax error in Line 28 because of a missing closing double quotation mark within the
getElementsByTagName() method. Because the text string is not properly closed, the entire line is invalid.

6. Return to the js04.js file in your code editor and edit Line 28 by inserting a closing double quotation mark so
that it reads:

let fuelFieldset = document.getElementsByTagName("fieldset")[3];

7. Save your changes to the file and then reload the js04.html file in your code editor. A fourth and final syntax
error appears on Line 70. See Figure 4-8.

8. The error in this declaration of the verifyAcres() function is the missing opening parenthesis symbol, (.
Return to the js04.js file in your code editor and edit Line 70 by inserting the opening parenthesis symbol so
that it reads:

function verifyAcres() {

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

runnIng JavaScrIpt In StrIct Mode 125

You can use the console to write commands that will be executed as the program is paused. The
commands will exist in memory only during the current session. Any permanent commands should be
added directly to the JavaScript file and saved in your code editor.

Note

Figure 4-8 Syntax error declaring a function

Syntax
error

Missing
opening

parenthesis

9. Save your changes to the file and then reload the js04.html file in your browser. You should see no more syntax
errors in the browser console.

You have located all the syntax errors in the program, but is the code properly written? To answer that question, you
will set up the browser to strictly interpret the code.

Running Javascript in Strict Mode
JavaScript interpreters are very forgiving of lapses in syntax and structure. You can create a variable without using the
let, var, or const keywords. If you forget to end a statement with the semicolon, your program will most likely still
run without fail. Though this may sound like an advantage for beginning programmers, many developers disapprove
of the feature because it can lead to a casualness in coding that makes such errors more likely to occur with future
programs.

Most languages, like C11 and Java, require strict adherence to syntax and will reject programs that depart from
 syntax rules in even the smallest way. To enforce that level of scrutiny in JavaScript, add the following text string to
the beginning of the code:

"use strict";

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling126

Adding this statement puts the JavaScript interpreter into strict mode so that all departures from proper syntax are
flagged as errors. In particular, all variables must be explicitly declared, so you can’t accidentally create a global vari-
able by omitting the let, var, or const keywords. In addition to creating tighter code, running a program in strict
mode increases the program’s speed and efficiency because the JavaScript interpreter will not waste time and memory
resolving poorly written code.

to test the page under strict mode:

1. Go to the js04.js file in your code editor and insert the following statement at the top of the file directly before
the commented head section.

"use strict";

2. Save your changes to the file and then reload js04.html in your web browser. As shown in Figure 4-9, the console
flags Line 16 as an error because the acresComplete variable has not been properly declared.

Figure 4-9 Syntax error under strict mode

Under strict mode
all variables must be
explicitly declared

The acresComplete
variable was not

declared

The acresComplete
variable was not

declared

Statement to place
the interpreter in

strict mode

3. Return to the js04.js file in your code editor. Scroll down and change the statement acresComplete = true; to

let acresComplete = true;

4. Save your changes to the file and then reload the js04.html file in your browser. Verify that no errors are reported
in the code.

5. Close the browser console.

The "use strict"; statement can be placed anywhere within your code. If you want to apply strict mode only to
code within a function, add the statement as the first line in that function’s command block. The JavaScript interpreter
will interpret the function’s code strictly and code elsewhere in your program less strictly.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tracIng errorS to theIr Source 127

Tracing Errors to Their Source
Although error and warning messages will help you catch basic syntax errors, some syntax errors are difficult to pin-
point. For example, if you have a deeply nested set of control structures and one of the control structures is missing a
closing brace, the syntax error may not be able to tell you exactly which control structure is malformed. This section
covers a few basic techniques for debugging JavaScript.

tracing errors with the window.alert() Method
If you are unable to locate a bug in your program by using error messages, or if you suspect a logic error (which does
not generate error messages), then you must trace your code. Tracing is the examination of individual statements in
an executing program. For example, the following function calculates weekly net pay by adjusting the gross pay for
taxes and withholdings. There are no syntax errors, but the function returns a value of $171,072 instead of the correct
value, $485.

function calculatePay() {

 let payRate = 15; numHours = 40;

 let grossPay = payRate * numHours;

 let federalTaxes = grossPay * 0.07;

 let stateTaxes = grossPay * 0.05;

Quick Check 1

1. Describe the three types of program errors.

2. What is the error in the following code and what type of error is it?

document.writ("Hello World");

3. What is the error in the following code and what type of error is it?

let firstValue = 10;

let secondValue = 20;

let result = firstvalue + secondValue;

4. if the browser console reports a single syntax error, does that mean there is only one syntax error in the code?

Interpreting Error Messages
As you debug your programs, you might find the debugger’s error messages difficult to
interpret. Here are some error messages and their common sources:

❯❯ Uncaught TypeError: Cannot Read Property—The object, such as a variable or function, has
not yet been defined and thus has no properties associated with it.

❯❯ TypeError: ‘undefined’ Is Not an Object—The object has not yet been defined or initialized.

❯❯ TypeError: null is Not an Object—A property or method is being applied to a null object
that has not been created or initialized.

❯❯ TypeError: Object doesn’t support property—A property or method either doesn’t exist
(perhaps because of a typing error) or is not associated with the object.

❯❯ Uncaught TypeError: Cannot set property—A variable has an undefined value and thus
cannot be used to set or return a property value.

❯❯ ReferenceError: Object is Not Defined—A variable is being referenced outside of its scope.

Common
Mistakes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling128

 let socialSecurity = grossPay * 0.06;

 let medicare = grossPay * 0.015;

 let netPay = grossPay - federalTaxes;

 netPay -= stateTaxes;

 netPay *= socialSecurity;

 netPay *= medicare;

 return netPay;

}

The function obviously contains one or more logic errors. One method of tracing the errors is to display alert boxes,
using the window.alert() method at different points in the code, showing partial results of the function. Each time
the JavaScript interpreter encounters the window.alert() method, it pauses the program to display contents of
the alert box to the user. The important goal of this technique is to take a long and complex program and break it into
discrete sections of a few lines, which you can then examine in detail to discover the error. Once you have confirmed
that one section of the code is working correctly, you can remove the alert boxes in that section and focus on other
sections.

Figure 4-10 shows the revised code along with three alert boxes that display partial calculations during the running
of the program.

Figure 4-10 Using alert boxes to trace program values

When you use the alert box approach, include the variable name alongside the variable values, so you
will be able to interpret the results of your code.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tracIng errorS to theIr Source 129

Based on the alert boxes, you determine that the payment values are reasonable through the calculation of gross pay
and gross pay after subtracting taxes. It is only in the third alert box, after subtracting withholding for Social Security
and Medicare, that payment values are unreasonable. Therefore, the error must lie with the following lines of code:

netPay *= socialSecurity;

netPay *= medicare;

The logic error is that the multiplication assignment operator (*=) was mistakenly used to calculate the net pay
after withholding rather than the subtraction operator (-=). Once that mistake is corrected, the function will return
the correct result. Note that when adding statements such as window.alert() to trace your code, it is helpful to
place them at a different level of indentation to clearly distinguish them from the actual program and make it easier
to remove them after debugging.

You have already removed the syntax errors from the Tuba Farm Equipment page. Now you will explore whether there
are logic errors in the code.

to start debugging with the browser console:

1. If necessary, load the js04.html file in your web browser.

2. Enter 5 in the acres input box. Check the Wheat check box, enter 8 in the months input box, and then click the
E85 option button for the preferred fuel choice. See Figure 4-11.

Figure 4-11 Logic error in selecting a tractor model

… but a heavy-duty
tractor, more suitable
for large farms, is
recommended

A small 5-acre
farm is selected ...

The web page recommends the W1205E tractor, but that model is best suited for larger farms. A 5-acre farm is not
considered large, so that must be due to a logic error in the conditional statements that select one model over another.
Use the alert box method to trace the actions of the conditional statement used for your selections.

to trace conditional statements with alert boxes:

1. Return to the js04.js file in your code editor and scroll down to the createRecommendation() function.

2. Directly after the if (acresBox.value >= 5000) statement, insert the following command to display an
alert box if the program reaches this first condition in the if statement:

window.alert("First if block for " + acresBox.value + " acres");

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling130

3. Scroll down to the } else { // more than 5000 acres statement and directly below that else clause,
insert the following command:

window.alert("Else block for " + acresBox.value + " acres");

Figure 4-12 shows the newly added code in the file.

Figure 4-12 Tracing a logic error with alert boxes

Alert box displayed when
the if command block is

selected

Alert box displayed when
the else command block

 is selected

acresBox.value must
 be greater than or equal

to 5000

4. Save your changes and then reload js04.html in your web browser.

5. Type 5 in the acres input box. The browser displays the alert box with the message “Else block for 5 acres”.

Using the alert box method, you have traced the program flow to the else command block. Notice that in the code
shown in Figure 4-12, the if command block uses the >= comparison operator so that the commands in that block are
only run if acresBox.value is greater than or equal to 5000 (a large farm), while farms smaller than 5000 acres are
handled in the else command block. But this is exactly the opposite of what you intended. You want the if command
block to handle farms less than or equal to 5000 acres and larger farms to be handled in the else command block.
Modify the code for the if else statement now and remove the alert boxes you created.

to fix the logic error in the if else statement:

1. Return to the js04.js file in your code editor and go to the createRecommendation() function.

2. Change the condition in the if statement from acresBox.value >= 5000 to the following:

acresBox.value <= 5000

3. Remove the statements displaying the alert boxes within the if condition and the else clause.

4. Save your changes to the file.

5. Reload js04.html in your web browser.

6. Type 5 in the acres box and verify that the page now recommends the E3250D tractor, a model more suitable for
small farms or big backyards (see Figure 4-13).

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tracIng errorS to theIr Source 131

Using alert boxes to trace the progress of your program is a fast and easy approach to debugging, but there are several
limitations with this method:

❯❯ Alert boxes interfere with the normal operation of the code and must be deleted after their use.

❯❯ Alert boxes do not perform well in tracing a long sequence of operations. Imagine displaying an alert box for
each iteration in a for loop that goes through hundreds of iterations.

❯❯ You cannot compare the contents of one alert box with subsequent boxes, because closing the alert box
removes it from the browser window.

A better alternative to alert boxes is the console log.

tracing errors with the Console Log
As your program runs, you can trace the changing values in the program by writing or logging those values in the
console log with the following method:

console.log(text)

where text is a text string that will be written into the console, which can then be viewed within the debugger.
 Figure 4-14 shows how to use the console log to locate the error in the program that incorrectly calculates take-home
pay after adjusting the gross pay for taxes and other withholdings.

Compared to the tracing method using alert boxes shown earlier in Figure 4-12, the console log approach is much
cleaner. It does not impede the operation of the program with a series of distracting alert boxes and you can easily
view the progression of values displayed in the log, comparing the payment total at different stages in the calculation.
The console includes a link to each location of a console.log method, so you can easily jump to that location in the
code, viewing the program in more detail. As before, it is obvious that the logic error had to occur in the commands
that adjusted pay for Social Security and Medicare withholdings.

Figure 4-13 Selecting a tractor model for a small farm

Tractor model more
suited to small farms

or big yards

Because the console log is hidden in the debugger user, you can leave the console.log commands
in your program; however you might want to remove them to speed up the operation of your code,
especially if your app involves processing hundreds or thousands of statements.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling132

Figure 4-14 Using the console log to trace program values

Logical error had to occur
when adjusting for Social

Security and Medicare
withholdings

Contents of the
console log

Writing expressions
to the console log

Links to each location of
a console.log method

You continue to explore the operations of the tractor recommendations page. Determine the type of tractor that would
be recommended for 8 months of work in a 5-acre wheat field.

to view the recommended tractor for 8 months of work:

1. Reload the js04.html file in your web browser.

2. Enter 5 in the acres box, check the Wheat checkbox, and enter 8 in the months box to indicate the field will be
worked on for eight months. As shown in Figure 4-15, the page recommends the E3250E tractor.

The E3250E tractor does not match the customer’s specifications, recommending a year-round tractor for heavy-duty
use when a medium-duty tractor might be a better match. Once again, there appears to be a logic error in the program
code. Use the console log to trace the error to its source.

to trace the error with the console log:

1. Return to the js04.js file in your code editor and scroll down to the createRecommendation() function.

2. Within the nested if statement, directly below the statement messageElement.innerHTML = E3250Desc;
add the following statement to write the month value to the console log:

console.log("Nested if: " + monthsBox.value + " months");

3. Directly below the statement messageElement.innerHTML = E2600Desc; within the nested else state-
ment, insert the following command:

console.log("Nested else: " + monthsBox.value + " months");

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tracIng errorS to theIr Source 133

4. Save your changes to the file and then reload js04.html in your web browser.

5. Open your browser’s debugging console and then click Sources from the Debugger menu at the top of the pane to
view the source and console. If you do not see the console, press the Esc key to display it or click the A character
in the upper-right of the Developer pane and click Show console drawer.

6. Type 5 in the acres box of the web page. The program is set up to run the createRecommendation() func-
tion whenever data is input into the form. In this case, the console log displays a message with a null value for
months, because you have not entered that information yet.

7. Click the Wheat checkbox and note that another message is sent to the console as the createRecommendation()
function is once again run in response to the click event.

8. Type 12 in the months box. Notice that with the input of each keystroke, another message is logged to the console.

Figure 4-15 Logic error in selecting a tractor model for the number of months

… but the page recommends
 a heavy-duty tractor more
suited for year-round work

The tractor will be
used for 8 months …

Figure 4-16 Tracing a logic error with the console log

Write to the console
when the if command

block is selected

Write to the console
when the else command

block is selected

monthsBox.value
must be less than or

equal to 10

Figure 4-16 highlights the revised code in the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling134

9. Click the js04.js:107 link in the console log to display that line within the js04.js file. See Figure 4-17.

Figure 4-17 Console log entries

When the months value
is 1, the program runs

 the if condition

Console log
commands

When the months value
is 12, the program runs

 the else condition

Depending on your browser and its configuration, your browser window might not exactly match that shown in
Figure 4-17.

10. Close the console pane in your browser.

From the console log you know that the if condition is run when the months value is 1 and the else condition is
selected when the months value is 12. However, this is just the opposite of what the Tuba Farm Equipment page wants.
The if statement should be run when the months value is 10 or greater and the else statement should be run for
month values less than 10. Modify the program code to fix this error and remove the console.log commands.

to fix the logic error in the if else statement:

1. Return to the js04.js file in your code editor and go to the createRecommendation() function.

2. Change the nested if statement that reads if (monthsBox.value <= 10) { to:

if (monthsBox.value >= 10) {

3. Remove the two console.log commands from the program and then save your changes.

4. Reload the js04.html file in your browser and enter 5 in the acres box, click the Wheat checkbox, and enter 8 in
the months box. The page recommends the E2600D tractor, a medium-duty model geared towards small farms
that do not need a year-round tractor.

You have corrected another logic error found in the code.

When using the console.log() method to trace bugs, it can be helpful to use a driver program, which
is a simplified, temporary program that is used for testing functions and other code. A driver program is
simply a JavaScript program that contains only the code you are testing. Driver programs do not have
to be elaborate; they can be as simple as a single function you are testing. This technique allows you to
isolate and test an individual function without having to worry about web page elements, event handlers,
global variables, and other code that complete your program’s purpose.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

tracIng errorS to theIr Source 135

Using Comments to Locate Bugs
Another method of locating bugs in a JavaScript program is identifying lines that may be causing problems and trans-
forming them into comments by adding // to the start of each line or enclosing a block of statements within the /*
and */ characters. This process, known as commenting out code, allows you to isolate a particular statement or set of
statements that may be causing an error. If there are no errors after you have commented out a section, you will know
that the error in your code lies within that section. Proceeding with this technique, you can take a long and complicated
program and break it down into smaller sections that merit more focused attention.

In the following code, several lines have been commented out that adjust the net pay value for state taxes, Social
Security, and Medicare:

function calculatePay() {

 let payRate = 15; numHours = 40;

 let grossPay = payRate * numHours;

 let federalTaxes = grossPay * 0.07;

 let stateTaxes = grossPay * 0.05;

 let socialSecurity = grossPay * 0.06;

 let medicare = grossPay * 0.015;

 let netPay = grossPay - federalTaxes;

/*

 netPay -= stateTaxes;

 netPay *= socialSecurity;

 netPay *= medicare;

*/

 return netPay;

}

If the function returns an error-free value without those lines, you can narrow the comment section until you uncom-
ment the line or lines that are causing the error. At that point you can focus your attention on those few lines to find
the error preventing your code from running correctly.

Any program longer than a handful of lines includes statements that depend on the successful execution of
other statements or functions. These relationships, known as dependencies, add an extra layer of complexity to
debugging. An error reported in one function can be the result of an error from a different part of the program. In
addition, an error in one part of the code can stop dependent code from executing, preventing you from receiving
error messages for the dependent code. After finding and fixing a bug, it is important to test related functionality that
worked correctly before the bug fix. In some cases, fixing one bug exposes another, or itself creates another problem,
so it is important not to assume that everything that worked before fixing a bug will continue to work after fixing it.

Programming Concepts Dependencies

Quick Check 2

1. The orderCost variable in a long and elaborate program might be incorrectly calculated. Provide code to display
the value of the variable within an alert box.

2. Provide code to write the value of orderCost to the console log.

3. What are three reasons to use the console log approach over the alert box approach?

4. Why would you comment out sections of a program that is producing errors?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling136

Tracking Program Flow with Debugging Tools
Examining your code manually with alert boxes or the console log is the first step in debugging. These techniques
work fine with smaller programs. However, as a program expands in size and complexity, such errors become more
difficult to spot. For instance, you may have several functions that perform calculations and pass the results to other
functions for further processing. Attempting to track the logic and flow of the code can be extremely difficult. Browser
debuggers provide several tools to trace each line of code, creating a much more efficient method of finding and
resolving logic errors.

accessing your Browser’s Debugging tools
In all the major browsers, these debugging tools are accessible through the same pane that opens with the console.
The tools can track and find errors in HTML, CSS, and JavaScript code, gauge a page’s performance and response over
different connections, and preview the page’s appearance for various devices and screen resolutions.

Each browser is slightly different in how it organizes and presents these debugging tools, so you have to spend some
time evaluating your browser’s debugging environment to fully utilize its features. Figure 4-18 describes how to access
the debugging tools in four major browsers.

Browser KeyBoard shortcut Menu steps

Google Chrome SHIFT 1 CTRL 1 J (Windows)

Option 1 1 J (Macintosh)

1. Click the Chrome menu in the upper-right corner

2. Click More tools

3. Click Developer tools

4. Click Sources from the Developer pane

Safari Option 1 1 C 1. Enable the Developer tab by going into the Safari Menu . Preferences window, going to the Advanced
tab and selecting Show Develop menu in menu bar checkbox

2. Click the Develop tab in the Safari menu

3. Click Show JavaScript Console

4. Click the Debugger tab

Microsoft Edge F12 and then click Console
from the Developer pane menu

1. Click the Edge menu in the upper-right corner

2. Click More tools

3. Click Developer tools

4. Click Sources from the Developer pane

Firefox SHIFT 1 CTRL 1 J (Windows)

Option 1 1 J (Macintosh)

1. Click the Firefox menu in the upper-right corner

2. Click Web Developer

3. Click Debugger

Figure 4-18 Accessing browser debuggers

This chapter demonstrates debugging tools within the Chrome browser running on Windows, but the techniques
discussed can be applied equally well to Safari, Edge, and Firefox.

to open the chrome browser debugger:

1. If necessary, reopen the js04.html file in your browser.

2. Click the Chrome menu A in the upper-right corner of the page, click More tools and then Developer tools.

3. Click Sources in the Developer pane.

The pane itself can be docked with the left, right, or bottom side of the browser window. It can also be floated as
its own window. For this demonstration, the pane will be docked on the right side of the window.

4. Click the A icon on the top-right corner of the pane and click the Dock to right icon (the last entry in the Dock
side list.)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

trackIng prograM Flow wIth debuggIng toolS 137

The Developer pane has several different sections arranged within different windows. There is the Navigator
section that shows the files in use with the web page, a section showing the content of those sections, the
Debugger section that shows the debugging tools, and the Console. Those sections can be arranged vertically
or horizontally within the pane.

5. Click the gear icon ⚙ located in the top-right corner of the Developer pane to display the Settings options for
the pane.

6. Go to the Preferences section, click the Panel layout list box and click horizontal to arrange the sections
horizontally.

7. Click the close button (3) located in the top-right corner of the Settings window to return to the Developer pane.

Figure 4-19 shows the contents and layout of the Developer pane in the Chrome browser.

Figure 4-19 Developer pane in Google Chrome

Debugger
section

Click to view
setup options

Click to view
additional

menus

Click to close
the Navigator

section

Console
drawer

Navigator
section

Scope and
Watch windows

Click to close the
Debugger section

Contents of the
js04.js file

Depending on your browser and its configuration, your window might not match that shown in the figure. Layout and
configuration options can be accessed by clicking the A menu button and the gear icon ⚙ if you wish to edit or modify
your Developer pane layout.

adding and removing Break points
The browser debugging tools include the ability to run programs in break mode in which the program execution is sus-
pended to allow the programmer to review the current state of variables and functions. Entering break mode requires
inserting breakpoints into the debugger, where each breakpoint marks the location where execution is suspended.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling138

Once the execution is paused, you use the debugger to view the status of the program at the point at which it was
paused.

Adding a breakpoint does not the alter the code; only how the JavaScript interpreter interacts with the
running program.Note

Figure 4-20 Adding breakpoints to the debugger

Breakpoints

You will use the debugger now to add breakpoints to the program that determines the recommended tractor model
for specified conditions.

to set breakpoints in the createRecommendation() function:

1. Enter 100 in the acres box, click the Wheat checkbox, enter 12 in the months box, and then click the E85 options
button. The recommended tractor for these options should be E3250E.

2. Within the debugger window, scroll down the contents of the js04.js file and click the line number 100 next to
the line if (monthsBox.value >= 10). The line number should be highlighted after you click it to indicate
that you have set a breakpoint at this location.

3. Click the line numbers 101, 104, 109, 110, and 113 to add breakpoints to those lines. Figure 4-20 shows the
selected breakpoints.

4. Click the acres box in the tractor selection form and type 0 to change the acres from 100 to 1000. Typing that
digit triggers an event listener which runs the createRecommendation() function. The program pauses at
the breakpoint in Line 100. See Figure 4-21.

When the program is paused, you can hover your mouse pointer over any expression in the code and the debug-
ger will display a popup with the expression’s value or a scroll box listing properties and values associated with
that expression.

5. Hover your mouse pointer over monthsBox.value expression in Line 100. The debugger displays the popup
value 12, which is the value entered in the months box. See Figure 4-21.

You can resume the program from its breakpoint using the Resume script execution button. The program will then
continue to run until it hits the next breakpoint. The program will only pause at those breakpoints within its flow. A
breakpoint within a branch that is not reached will have no effect on the execution of the script.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

trackIng prograM Flow wIth debuggIng toolS 139

to continue the program execution:

1. Click the Resume script execution button located either in the debugger or in the popup displayed above the
browser or press the keyboard shortcut F8.

The script pauses at the next breakpoint in Line 101.

2. Resume the program again using the Resume script execution button or the F8 shortcut key.

The interpreter continues to the end of the program without pause. The other breakpoints are never executed
because the flow of the program never reaches them.

3. Type 0 in the acres box, increasing the number of acres from 1000 to 10000.

The program pauses at the breakpoint in Line 109, a line of code that is reached only when acres value exceeds
5000.

4. Continue the program execution using either the Resume script execution button or the F8 shortcut key.

The program pauses at Line 113—the next line of code used when the number of months exceeds 10.

5. Continue the program execution once more. The program continues running to its end, without hitting any other
breakpoints.

Breakpoints are extremely useful in tracing the execution of the program as it moves through several logical conditions.
By viewing the breakpoints, you can determine which branch the program chose and why. Once you have confirmed
that the flow of the program is working correctly, you can remove the breakpoints.

Figure 4-21 Pausing at a breakpoint

Status message
indicates that the

program has paused

Resume script
execution button

Popup displays the
value of the highlighted

expression

Pausing at the
breakpoint
in Line 100

Acres value
set to 1000

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling140

to remove the breakpoints:

1. Scroll up to Line 100 and click the 100 line number to remove the breakpoint.

2. You can proceed in this fashion to remove the five other breakpoints. However, if you have a lot of breakpoints
you can remove them all at once using the Breakpoints list in the debugger.

3. Click the Breakpoints arrow box directly below the Call Stack arrow box in the debugger to display a list of all
breakpoints in the program.

4. Right-click anywhere within the list and click Remove all breakpoints from the popup menu.

The debugger also allows you to set event listener breakpoints, which are breakpoints that are activated when an event
occurs within the web page or browser. To apply an event listener breakpoint, click the Event Listener Breakpoints
arrow box within the debugger and then click the checkbox for the event. The program execution will pause at the
occurrence of the selected event or events and you can view the status of the program at that point.

Stepping through the program execution
As you add more program loops, control statements, and functions to your code, the program flow becomes increas-
ingly complex and difficult to navigate. One function might call another function which itself contains a series of nested
for loops with if else statements within each loop iteration that call yet other functions. If you are trying to trace
the execution of your code, you might not need or want to follow every possible branch of the code’s execution. You
might want to skip past certain functions or loops.

To make it easier to trace only those parts of the program that interest you, the debugger provides a set of stepping
options to choose how to step through the code. You can step in or step into the code so that any function called by
the program is traced by the debugger one step at a time. However, if you do not need to evaluate those functions in
detail, you can step over them so that the function is still run but the debugger does not show each step of the process.
You would use the step over option when you are convinced that a function is working correctly and thus does not
need your attention as you debug other sections of the program. Finally, you can step out of the code, so the debug-
ger executes all the remaining code within the function without pause. The step out option is used to jump out of a
function that no longer requires your direct attention.

to apply stepping options when tracing code:

1. Scroll to Line 87 and click 87 to establish a breakpoint at that line.

2. On the web form, click the E85 option button, which triggers the event listener for that button.

3. The program pauses at the statement that calls the testFormCompleteness() function.

4. Click the Step Into button in the debugger or press the F11 shortcut key (see Figure 4-22).

The debugger moves to Line 92, which is the first line within the testFormCompleteness() function.

5. Click the Step Into button to move to the next statement, Line 93 which calls the createRecommendation()
function.

6. Because you have already explored the code in the createRecommendation() function, click the Step Over
button to execute the code within the function but not proceed through it step-by-step.

The debugger moves to Line 95, which marks the end of the testFormCompleteness() function.

7. Click the Step Into button. The debugger goes to Line 88, which marks the end of the verifyFuel() function.

8. Click the Step Out button to step out of the verifyFuel() function and complete the execution of the program.

9. Click the Line 87 breakpoint to remove it.

If you are not sure which button to click as you trace the program’s execution, hover your mouse pointer over the
buttons to view the popup information associated with each button.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

trackIng prograM Flow wIth debuggIng toolS 141

tracking Variables and expressions
As you trace program execution with step commands and breakpoints, you may also need to track how variables and
expressions change during that execution. For example, suppose you have following statement in your code:

let squareRoot = number**(1/2);

Unfortunately, somewhere in the program, number was given a negative value, and because you cannot calculate
the square root of a negative, this expression returns the value NaN (Not a Number). But it is a long and complicated
program, so you do not know when and how number became negative.

To assist you, the debugger displays a Scope window listing all the local and global variables and objects available
to the program and their current values. As the program executes, the Scope window will update the list to reflect
the operations of the code. If you do not need to track all variables, the debugger also provides a Watch window to
specify the variable or expression whose value you wish to track during the program’s execution. To add a variable
or an expression to the Watch window, locate an instance of the variable or expression in the program, select it, and
copy it to the Clipboard. You can then paste the copied text into the Watch window. You can also type the variable or
expression directly into the Watch window.

Figure 4-22 Stepping into a function

Resume script
execution

Step over the
next function

call

Step into the
next function

call

Step out of the
current function

Proceed one
step at a time

You can insert a breakpoint directly into your program by adding the statement debugger; to the code.
When the browser encounters this statement, it will pause the program execution until you manually
restart it using the step buttons in the debugger.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling142

Your contacts at Tuba Farm Equipment have tested out your most recent changes to the tractor selector application,
and they have found one additional bug. A single letter should be added to the end of the model name to denote the
selected fuel source—E for E, B for biodiesel, or D for standard diesel. The letters are correctly appended for E and
standard diesel. However, when a user selects Biodiesel, the model number is displayed as simply “B”. Use the Scope
and Watch windows now to track the variables in the code and pinpoint the source of the error.

to track variables and expressions with the Scope and watch windows:

1. Add a breakpoint at Line 123 to pause the program at the execution of this line.

2. Click the E85 option button in the web form. The event handler for the option button is triggered and the program
pauses at Line 123.

3. Click the Scope tab near the bottom center of the debugger to view a scrollable list of all local and global vari-
ables and their values. You may have to click the arrow icons within the window to expand the list of variables
and expressions.

4. Click the Watch tab and then click the Add Watch Expression button 1 to add an expression to the window.

Watch the value of the expression messageHeadElement.innerHTML, which references the text string that
is displayed as the name of the tractor model recommended for the customer’s specifications.

5. Type messageHeadElement.innerHTML and press Enter. As you type, the debugger displays a list box of names
and expressions. To reduce your typing and avoid typing mistakes, you can press Tab to select the option high-
lighted in the list box. See Figure 4-23.

Figure 4-23 The Scope and Watch windows

Scope window showing variables and
expressions

Watch window for tracking variables and
expressions

6. Click the Step In button twice. The debugger moves to Line 124 and then to the end of the if else statement.
Again click the Resume script execution button to continue running the program to the end.

7. Next, click the Biodiesel option button on the web form. The script pauses once again at Line 123.

8. Click the Step In button to first move to Line 125 and then to Line 126. The value of the messageHeadElement.
innerHTML expression shown in the Watch window changes to “B”. A value which is incorrect and thus must
be the source of the error in the program.

9. Click the Resume script execution button to run the program to its end.

10. Remove the breakpoint in Line 123.

From tracking the value of the messageHeadElement.innerHTML, you have determined that the value is incor-
rectly set in Line 126:

messageHeadElement.innerHTML = "B";

But that code is incorrect because the program should append the letter “B” to the tractor name and not replace the
name altogether. The expression should use the following assignment operator:

messageHeadElement.innerHTML += "B";

Make this change to the program and rerun it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

trackIng prograM Flow wIth debuggIng toolS 143

to fix the logic error in the program:

1. Go to the js04.js file in your code editor.

2. Scroll down to the bottom of the file and change the statement messageHeadElement.innerHTML = "B"; to:

messageHeadElement.innerHTML += "B";

See Figure 4-24.

Figure 4-24 Fixing a logical error

Revised statement to
append “B” to the tractor

model name

3. Save your changes to the file and then reload js04.html in your browser.

4. Enter 10000 in the acres box, click the Wheat checkbox, enter 12 in the months box, and click the Biodiesel
option button. The web page returns a recommendation for the W2500B tractor, a heavy-duty tractor designed
for the needs of wheat, corn, and soy farmers.

examining the Call Stack
As programs become more complex, they will often involve functions that call other functions that call even
more functions. For example, an accounting program might have an accountsPayable() function that calls
the accountsReceivable() function that might call the depositFunds() function, all nested within the
balanceBooks() function that is called by the reportBudget() function. With such a complex set of nested
functions, you might get lost as you trace the execution of the program code. To aid in knowing where you are in the
code, the debugger provides a call stack that lists the functions currently running, displayed in a hierarchical list of
function names and properties. Each time the program calls a function or procedure, it is added to the top of the call
stack. After the function or procedure finishes executing, it is removed from the stack.

The call stack is useful to trace the changing values of a variable that is passed as an argument among several functions.
If variable is assigned a wrong value, the call stack makes it easier to locate the specific function causing the problem.
Use the call stack to view the order of execution among the many functions used the Tuba Farm Equipment web page.

to view the call stack during program execution:

1. Add a breakpoint to Line 87 containing the statement that calls the testFormCompleteness() function.

2. Click the E85 option button the web form to initiate the event handler and run the program.

3. Within the debugger tools click the Call Stack arrow if necessary, to view its contents. The verifyFuel() func-
tion is listed within the stack along with the location indicating both the file name and the line number (js04.js:87).

4. Click the Step Into button to step into the verifyFuel() function on Line 92 as the program continues.

5. The testFormCompleteness function is added to the top of the call stack, indicating that the
testFormCompleteness() function is the currently active function and when it is completed, the program
will return to the verifyFuel() function.

6. Click the Step Into button twice to trace the program into the createRecommendation() function located on
Line 99. Figure 4-25 shows the current contents of the call stack.

7. Continue clicking the Step Into button to complete the createRecommendation() function and return to
the testFormCompleteness() function. The call stack is revised to show the current hierarchy of the active
functions in the code.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling144

8. Click the Step Into function again to move back to the verifyFuel() function on Line 87.

9. Click the Resume script execution button to complete the running of the program.

10. Remove the breakpoint on Line 87 and close the debugger.

With the call stack and the code window, you will always know where you are within the program, making it easier to
determine which line or lines are causing the errors.

Working as a member of a development team or providing technical support, you need to describe clearly and
concisely any bugs encountered in an application. The following are some tips to ensure your reporting will be
useful to the programmers tasked with fixing the error:

❯❯ Provide the exact text of the error message, do not simply summarize it.

❯❯ Describe in detail the steps required to reproduce the error, what you expected would result from these steps,
and what you observed instead.

❯❯ Do not jump to conclusions about what may be causing the error.

❯❯ Make yourself available for further tests and demonstrations.

The more complex the program, the more difficult it will often be to fix the bug, so you should not expect a quick
turnaround on every bug report.

Skills at Work Reporting Bugs

Figure 4-25 Viewing the call stack

Call
stack

The verifyFuel() function
runs when the

 testFormCompleteness()
function ends

The testFormCompleteness()
function runs when the

createRecommendation()
function ends

Currently active
function

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ManagIng errorS 145

Managing Errors
A fourth type of error is one that is often not under a programmer’s direct control: user error. A user error occurs
when the user mistakenly runs the program in a way not intended by the developer, such as an entering a text string
when a numeric value is called for or neglecting to enter all required data. Programmers employ bulletproofing to
anticipate and handle potential user error before it causes major problems in the code. For example, form data should
be validated before it is acted upon by the program and input controls should be designed to restrict the user’s ability
to enter data in the wrong format.

Anticipating and preventing user error is one of the developer’s greatest challenges because, quite frankly, users are
very resourceful. Therefore, programs need to be written in such a way that user error, when it does occur, is least
disruptive to the program and the user experience. One oft-employed technique is exception handling in which the
program handles errors rather than leaving that task to the JavaScript interpreter.

handling exceptions with the try catch Statement
Statements that may result in an error can be enclosed within the following try catch statement:

try {

 statements that might contain an error;

} catch (error) {

 statements that respond to the error

}

In this structure, the statements that might contain an error are tested within the try command block. If an error
is present the statements within the catch command block are run. The error parameter in the catch command
block is an error object that contains information about the error. The error parameter can be given any name that
does not conflict with a JavaScript keyword.

The statements in the catch command block override the browser’s default error handling. For example, you
can create a customized error message that appears within the browser window rather than relying on the default
error message written to the debugger console. The following code contains a mistake in which a variable named
username is referenced, but because the variable’s correct name is userName, a runtime error is generated. By
enclosing the code within a try catch statement, the JavaScript interpreter “tries out” the code first, catches the
error, and handles it using the commands in the catch command block.

let userName = "Jenkins";

try {

 window.alert("The user is " + username);

} catch(err) {

 window.alert("Invalid code");

}

The result is an alert box containing the message “Invalid code” displayed within the web browser. Note that the
browser will run all the code within the try command block until the first error is caught after which the commands
in the catch command block are run. The runtime error will not cause the program to halt because the catch state-
ments provide an alternate way of managing the error.

Quick Check 3

1. What is a breakpoint?

2. explain the difference between stepping into, stepping over, and stepping out of the program execution.

3. What is the call stack? How do you use it to aid in debugging a program?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling146

throwing an exception
The try catch statement is not much help in managing user error because those would not be recognized as errors
by the JavaScript interpreter. However, you can define your own errors called exceptions using the following throw
operator:

throw id

where id is a value or text string that that identifies the error. The id will appear in the debugger console as the expla-
nation for the error.

The following code uses the ** operator to calculate the square root of a given number. While this is an illegal math
operation for negative values, it is not a fatal error because the program will simply generate a NaN value and continue
on. To create an exception for this event, the code first tests whether number is less than zero. If it is, the code will
throw an exception, and the program halts; otherwise, the program continues as normal.

let number = -9;

if (number < 0) throw "Attempt to calculate the square root of a negative value.";

let sqrt = number**0.5;

window.alert("The square root of " + number is + " is " + sqrt);

Because number is negative in this example, the debugger would stop at the throw statement, writing the message
“Attempt to calculate the square root of a negative value.” to the debugger console.

Thrown exceptions can be combined with the try catch statement to create a customized error response. The fol-
lowing code employs a try catch statement with the throw operator to catch a user error in which the value of the
IDBox input box has been left blank.

try {

 userID = document.getElementById("IDBox").value;

 if (userID === "") throw "Missing user ID";

 window.alert("Your user ID is " + userID);

} catch(err) {

 window.alert("You must enter a user ID");

}

If the IDBox control has been left blank, an exception is thrown, generating an alert box with the message “You
must enter a user ID”. If IDBox is not blank, there is no error, and the program displays an alert box showing the
user ID.

the try catch finally Statement
JavaScript supports the following optional finally clause to supplement exception handling:

try {

 statements that might contain an error;

} catch (error) {

 statements to respond to the error

} finally {

 statements to run with or without an error

}

Statements in the finally command block are always run, whether or not an error is found. The finally command
block is often used to perform those tasks that are necessary even in the presence of an error. In the following code,
an alert box with the Thank You message is always displayed after the error checking is performed.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ManagIng errorS 147

try {

 userID = document.getElementById("IDBox").value;

 if (userID === "") throw "Missing user ID";

 window.alert("Your user ID is " + userID);

} catch(err) {

 window.alert("You must enter a user ID");

} finally {

 window.alert("Thank You");

}

You can have multiple catch statements within a program to deal with multiple types of thrown exceptions. Whenever
a try statement throws an exception, the JavaScript interpreter executes the nearest catch statement. If a catch
statement is not located within the construct that throws the exception, the JavaScript interpreter looks at the next
higher levels of code for a catch statement until it locates one.

Every try statement must be followed by a catch or a finally statement or both. If the catch
statement is omitted, the program terminates in the presence of the error or exception after it has run
the commands in the finally statement. If both are included, an error will cause the commands in the
catch statement to be run followed by the commands in the finally statement.

Note

the error parameter in the catch Statement
The catch statement includes an error parameter that contains information about the error that was caught. For built-in
errors, the object has two properties: the name property storing the name of the error and the message property storing
text describing the error. Thus, in the following code, the alert box will display the error name followed by its description:

catch(err) {

 window.alert(err.name + ": " + err.message);

}

There are six name property values for built-in errors: EvalError, RangeError, ReferenceError, SyntaxError,
TypeError, and URIError with each indicating the general type of error that occurred. The values of the message
property are based on information that provides details on the source of the error. Custom errors created by throwing
an exception do not have the name or message properties. Instead, the id specified in the throw operator is stored
as the text of the error message and provides all the information the developer requires.

In ES10 released in 2019, the error parameter is optional. If you are not using the error parameter in your code,
apply the simpler form:

catch {

 statements

}

to catch a thrown exception.

applying exception handling to a program
One possible source of user error in the Tuba Farm Equipment page is a customer specifying zero or a negative acreage
for the area to be cultivated. You will anticipate this error by adding a try catch statement to the code to throw an
exception if that error occurs. To test for an invalid acreage, apply the following statement:

if (!(acresBox.value > 0)) throw "Enter a positive acreage";

The statement uses the negation operator ! that returns a true value if acresBox.value has any other value but a posi-
tive number. Use this expression now in a try catch statement that throws an exception when the expression is true.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling148

to test for a valid acreage:

1. Return to the js04.js file in your code editor and scroll down to the verifyAcres() function.

2. Replace the statement that calls the testFormCompleteness() function with the following try catch statement:

try {

 if (!(acresBox.value > 0)) throw "Enter a positive acreage";

 testFormCompleteness();

} catch(error) {

 messageElement.innerHTML = error;

 messageHeadElement.innerHTML = "";

}

If an error is detected, the browser will throw an exception and run the catch commands. If no error is detected,
the browser will call the testFormCompleteness() function as before. See Figure 4-26.

Figure 4-26 Creating a try catch statement

Throw an exception if
acresBox.value is not

a positive number
Text describing

the error

If an exception is thrown,
display the text of the
error and display an

empty text string for the
tractor model

call the
testFormCompleteness()

function if no exception
is thrown

3. Save your changes to the file and then reload js04.html in your web browser.

4. Enter 0 in the acres box. The event handler immediately responds to the action, running the verifyAcres()
function. Because this is not a positive value, an exception is thrown, and the error text is displayed in the left
sidebar shown in Figure 4-27.

Figure 4-27 Catching an invalid acreage

User error by specifying
zero acres to cultivate

Text of the error caught by
the try catch statement

5. Change the value in the acres box to 1000 and verify that no exception is thrown, and the sidebar displays the
details of the E2600D tractor.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ManagIng errorS 149

Users should specify that the tractor should be in operation from 1 to 12 months. To catch user errors in which a
customer specifies a duration outside of this range you will add another try catch statement to the program. The
statement to throw the exception is:

if (!(monthsBox.value >= 1 && monthsBox.value <= 12))

 throw "Enter months between 1 and 12";

This statement also uses the negation operator ! to throw an exception for any condition other than
monthsBox.value having a duration between 1 and 12 months, inclusive. Create and test the try catch
statement now.

to test for a valid duration of operation:

1. Return to the js04.js file in your code editor and scroll down to the verifyMonths() function.

2. Replace the statement calling the testFormCompleteness() function with the following:

try {

 if (!(monthsBox.value >= 1 && monthsBox.value <= 12))

 throw "Enter months between 1 and 12";

 testFormCompleteness();

} catch(error) {

 messageElement.innerHTML = error;

 messageHeadElement.innerHTML = "";

}

See Figure 4-28.

Figure 4-28 Testing for invalid months of operation

Display the text of the error
and remove any text of the
recommended tractor mode

Throw an exception if
 months is not between

1 and 12

Error
description

call the
 testFormCompleteness()

function if no exception
is thrown

3. Save your changes to the file and then reload js04.html in your web browser.

4. Enter 14 in the months box. The event handler runs the verifyMonths() function, catching the user error and
displaying the message shown in Figure 4-29 in the left sidebar.

5. Change the value in the acres box to 6 and verify that the sidebar displays information on the E2600D tractor.

You have completed your work on the Tuba Farm Equipment page by locating and fixing all the errors in the code and
adding code to catch possible user errors.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling150

Customizing Your Error Handling
Exception handling provides a graceful way to handle errors, especially user error. In addition to handling errors within
a specific section of code, JavaScript allows the programmer to create custom methods for handling any errors that
may appear anywhere within the program. Many programmers prefer to write their own error handlers in place of the
default error handlers built into the browser and viewed within the debugger console.

Catching errors with the error event
The occurrence of an error is an event, so it can be managed with an event handler or event listener. The syntax for
managing an error event is

window.onerror = function;

or

window.addEventListener("error", function)

where function is the function that will be run whenever an error occurs anywhere within the program, including
custom errors generated by throwing an exception. For example, the following statement runs the processErrors()
function in response to errors occurring with the program or browser:

window.addEventListener("error", processErrors)

Note that running a function in response to an error will not fix the error. The function’s only purpose it to create a
customized method of handling errors.

Figure 4-29 Catching an invalid duration of operation

Text of the error caught by
the try catch statement

User error by specifying
a month value larger

than 12

To have a customized error message appear in the console log in error message format, apply the
console.error() method in place of console.log().Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cuStoMIzIng Your error handlIng 151

error handling Functions
Error handling functions have the following general syntax:

function errorFn(message, url, line) {

 statements;

 return value;

}

where message, url, and line are optional parameters that provide the message, file URL, and line location associ-
ated with the error. The return statement’s value is either true or false. If return is true, the error handling
function replaces the browser’s default error handling; if return is false or omitted, the error handling function
supplements the actions of the browser but does not replace them.

The following processErrors() function writes a specialized message to the console log, specifying the name of
the file, the type of error that occurred, and its line location.

function processErrors(msg, url, line) {

 console.log("The file " + url

 + " generated the following error: "

 + msg + " on line: " + line);

 return true;

}

Note that because the return value is true, this error handling function will override the default way the browser
manages errors.

What can you do to mitigate bugs in your JavaScript programs? First, always use good syntax, such as ending
statements with semicolons and declaring variables with the let or var keywords. The more disciplined you are in
your programming techniques, the fewer bugs you will introduce in your code.

Second, be sure to thoroughly test your JavaScript programs with every browser type and version on which you
anticipate your program will run. Most desktop users run Chrome, Safari, Firefox, or Edge, and mobile web use is
dominated by Safari for iOS and Chrome for Android. Write your code so that it is compatible with current versions
of all major web browsers, as well as any older versions that may continue to have significant market share among
your users.

One rule of thumb is that if a browser is used by more than 1 percent of the market, then you need to write and
debug your JavaScript programs for that browser. After all, if you were running a business, would you want to write
off 1 percent of your customers if you did not have to?

Finally bugs in your web page are not limited to JavaScript. Always run your HTML file and your CSS stylesheet
through a validator such as the one at http://validator.w3.org to ensure that you have made no mistakes in those
files.

Best Practices Minimizing Bugs in your Code

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling152

Summary
❯❯ Three types of errors can occur in a program: syntax errors, runtime errors, and logic errors. Syntax errors occur
when the interpreter fails to recognize code. Runtime errors occur when the JavaScript interpreter encounters a
problem while a program is executing. Logic errors are flaws in a program’s design that prevent the program from
running as you anticipate.

❯❯ The first line of defense in locating bugs in JavaScript programs consists of the error messages you receive when
the JavaScript interpreter encounters a syntax or runtime error.

❯❯ Tracing is the examination of individual statements in an executing program. You can use the window.alert()
and console.log() methods to trace JavaScript code.

❯❯ When using the console.log() method to trace bugs, it is helpful to use a driver program, which is a simplified,
temporary program that is used for testing functions and other code.

❯❯ Another method of locating bugs in a JavaScript program is to identify lines that you think may be causing
problems and transform them into comments.

❯❯ The current versions of all major browsers contain built-in debugging tools.

❯❯ The term “break mode” refers to the temporary suspension of program execution so that you can monitor values
and trace program execution.

❯❯ A breakpoint is a statement in the code at which program execution enters break mode.

❯❯ The step in (or into), step over, and step out options in browser debugging tools allow you to continue program
execution after you enter break mode.

❯❯ You can add an expression to the watch list in browser debugging tools to monitor its value as you step through
the program.

❯❯ The term “call stack” refers to the order in which procedures, such as functions, methods, or event handlers,
execute in a program.

❯❯ Writing code that anticipates and handles potential problems is often called bulletproofing.

❯❯ Exception handling allows programs to handle errors as they occur in the execution of a program. The term
“exception” refers to some type of error that occurs in a program.

❯❯ You execute code that may contain an exception in a try statement. You use a throw statement to indicate that
an error occurred within a try block. After a program throws an error, you can use a catch() statement to
handle, or “catch” the error. A finally statement that is included with a try statement executes regardless of
whether its associated try block throws an exception.

❯❯ You can assign a custom function to JavaScript’s error event for handling any types of errors that occur on a web page.

Quick Check 4

1. under what circumstances will the catch command block be run by the browser?

2. under what circumstances will the finally command block be run by the browser?

3. Provide code to generate an exception with the message, “Supply a positive value”, if the value of the age variable
is less than zero.

4. What must be included within an error handling function to replace the browser’s default error reporting methods?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

revIew QueStIonS 153

❯❯ Additional methods and techniques for locating and correcting errors in your JavaScript programs include
checking your HTML elements, analyzing your logic, testing statements with the console command line, using the
debugger statement, executing code in strict mode, linting, and reloading a web page.

Key Terms
break mode

breakpoint

bug

bulletproofing

call stack

commenting out

debugging

dependencies

driver program

event listener breakpoint

exception

exception handling

linting

load-time error

logging

logic

logic error

runtime error

Scope window

step in

step into

step out

step over

stepping options

strict mode

syntax

syntax error

throw

tracing

user error

Watch window

Review Questions
1. What type of error occurs when the interpreter

fails to recognize code?
a. debugging
b. syntax
c. runtime
d. logic

2. _________________ errors are problems in the design
of a program that prevent it from running as you
anticipate.
a. Application
b. Syntax
c. Logic
d. Runtime

3. When a JavaScript interpreter encounters a
problem while a program is executing, that
problem is called a(n) _________________ error.
a. application
b. syntax
c. logic
d. runtime

4. Which of the following statements causes a syntax
error?
a. let firstName = "";
b. document.write(Available points:

" + availPoints);
c. readyState = true;
d. "use strict";

5. Which of the following statements writes the value of
the selection variable to the console?
a. console.log("selection");
b. document.console("selection");
c. console.alert(selection);
d. console.log(selection);

6. Which of the following for statements is logically
incorrect?
a. for (var count = 10; count <= 0;

count++) {
document.write(count);}

b. for (var count = 0; count <= 10;
count++) {

document.write (count);}
c. for (var count = 10; count >= 0;

count--) {
document.write (count);}

d. for (var count = 5; count >= 0;
count--) {

document.write (count);}

7. Which of the following modes temporarily suspends,
or pauses, program execution so that you can
monitor values and trace program execution?
a. Suspend
b. Step
c. Break
d. Continue

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling154

8. Which command executes all the statements in the
next function in browser debugging tools?
a. Step out
b. Step over
c. Step
d. Step in/into

9. After you throw an exception, you use a
_________________ statement to handle the error.
a. try
b. throw
c. catch
d. finally

10. In _________________, some features are removed
from the JavaScript language, while other features
require more stringent syntax.
a. exception handling
b. strict mode
c. debugging tools
d. debugger mode

11. Which of the following pieces of information is
passed as an argument from a throw statement to
a catch statement?
a. error number
b. error message
c. line number
d. URL

12. What statement can you add to your code to
effectively serve the same role as a breakpoint?
a. break;
b. breakpoint;
c. debug;
d. debugger;

13. The Watch window in the debugger lets you
monitor the value of a(n) _________________ during
program execution.
a. function
b. exception handler
c. expression
d. statement

14. The _________________ is the ordered list maintained
by a JavaScript processor containing all the
procedures, such as functions, methods, or event
handlers, that have been called but have not yet
finished processing.
a. Scope window
b. Watch window
c. strict mode
d. call stack

15. Which of the following exception handling code
executes regardless of whether its associated try
block throws an exception?
a. throw "Please enter your last

name.";
b. catch(lNameError) {

return false;
}

c. catch(lNameError) {
window.alert(lNameError)
return false;

}
d. finally {

lNameValid = true;
}

16. What is the advantage of tracing errors using
the window.alert() method? What is the
advantage of using the console.log() method
instead?

17. Explain how to debug code by commenting
it out.

18. Explain two different ways that a text editor
specialized for web development can
help you in preventing errors and debugging
code.

19. When and why should you use exception handling
with your JavaScript programs?

20. Explain what strict mode is, how to implement
it, and how it’s useful in reducing coding
errors.

Hands-On Projects
Hands-On Project 4-1

debugging challenge

In this project you will finish an application that provides a general estimate of costs from a moving company.
The company charges 50 cents per pound of items moved and 75 cents per mile plus an optional $500 fee for
setting and installing furniture and appliances. The program code needs some debugging work and extra code
to account for user error. A preview the completed page is shown in Figure 4-30.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on proJectS 155

Do the following:

1. Use your code editor to open the project04-01_txt.html and project04-01_txt.js files from the js04 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project04-01.html and project04-01.js, respectively.

2. Go to the project04-01.html file in your code editor and in the head section add a script element to load the
project04-01.js file, deferring the loading of the program until the web page finishes loading. Study the contents
of the HTML to become family with the elements and the ids associated with each element. Save your changes
to the file.

3. Go to the project04-01.js file in your code editor. At the top of the file above the comment section, insert a
statement that indicates this program adheres to a strict interpretation of JavaScript syntax.

4. There are two logic errors in setting up the global constants. Locate and fix those errors.

5. Go to the calcTotal() function. To guard against users entering a zero or negative value for the estimated
weight, replace the statement totalCost += wgtBox.value * COST_PER_LB; with a try catch
statement that does the following:

a. Tests whether wgtBox.value is not greater than 0 by using the expression !(wgtBox.value > 0). If
that expression is true, throw an exception with the error message “!! Enter a positive weight”

b. If no exception is thrown then run the command totalCost += wgtBox.value * COST_PER_LB;.

c. If an exception is caught, set the value of msgBox.innerHTML to the error message you defined for the
thrown exception.

6. Repeat Step 5, for the estimated distance cost using distBox.value. Throw the error message “!! Enter a
positive mileage” for a caught exception.

7. Save your changes to the file.

8. Open the project04-01.html file in your web browser. Open the debugger and confirm that there are no syntax
errors. If there are, fix your code in your code editor.

9. Test your code by entering 0 for the estimated weight and 1200 for the mileage. Confirm that the error message
“!! Enter a positive weight” appears next to the total box.

10. Change the weight to 2500 and enter a 0 for the estimated mileage. Confirm that the error message “!! Enter a
positive mileage” appears next to the total box.

11. Enter a mileage of 1200 miles and click the Setup and Installation box. Confirm that the estimated moving cost is
calculated to be $2650.

Figure 4-30 Completed Project 4-1

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling156

Hands-On Project 4-2

debugging challenge

In this project you have been given a program that generates a random Jane Austen quote each time a page
reloads. The application calls the following function to generate a random integer used in picking the quote
from an array of quotes:

randomInt(lowest, highest)

where lowest is the lowest integer in the range and highest is the highest integer. Thus, the statement

randomInt(0, 5)

will generate a randomly selected integer from 0 up to 5 (including both 0 and 5). However, there are several
bugs in the application that need to be fixed before the page will work properly. Figure 4-31 shows a preview
of the page with a randomly selected quote.

Figure 4-31 Completed Project 4-2

Do the following:

1. Use your code editor to open the project04-02_txt.html and project04-02_txt.js files from the js04 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project04-02.html and project04-02.js, respectively.

2. Go to the project04-02.html file in your code editor and in the head section add a script element to load the
project04-02.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Study
the contents of the HTML file and save your changes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on proJectS 157

3. Go to the project04-02.js file in your code editor. At the top of the file insert a command to have the JavaScript
interpreter parse the code using strict standards.

4. Save your changes to the file and then load project04-02.html in your browser.

5. Use the debugger to locate the syntax and runtime errors within the document. Fix the errors using your code
editor.

6. Once you have fixed the syntax and runtime errors, continually reload the web page. Each time the page is
loaded, a Jane Austen quote is randomly selected from the array. Occasionally, an undefined value appears
where the quote should be. Find the source of this logic error by setting a breakpoint at Line 48 and watch the
values of the randomQuote and quotes[randomQuote] expression. What are their values that result in an
undefined quote?

7. Return to the code editor and fix the program to remove the logic error. (Hint: What is the largest index in the
quotes array and what would happen if you tried to retrieve an entry larger that index?)

8. Return to the project04-02.html file in your browser and continually reload it to verify that the undefined quote
no longer appears.

Hands-On Project 4-3

debugging challenge

In a comment text box, reviewers are often given a character limit that they cannot exceed. In this project,
you will debug the code for an application that counts the number of characters in a posted comment to
ensure the comment does not exceed a predetermined limit. The app makes use of the keyup event which
is triggered when a key is pressed and then released up from the keyboard as part of typing a character. A
function named countCharacters() has been provided that counts the characters in the review. Your job
will be to locate and fix the errors in the code and to catch user error when the review exceeds the character
count limit. A preview of the page for a character count limit of 100 is shown in Figure 4-32.

Figure 4-32 Completed Project 4-3

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling158

Do the following:

1. Use your code editor to open the project04-03_txt.html and project04-03_txt.js files from the js04 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project04-03.html and project04-03.js, respectively.

2. Go to the project04-03.html file in your code editor and in the head section add a script element to load the
project04-03.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Study
the contents of the HTML file and save your changes.

3. Go to the project04-03.js file in your code editor. At the top of the file, insert a statement directing that the code
be interpreted under strict standards.

4. Go to the updateCount() function. Insert at the bottom of the function a try catch finally statement
that does the following:

a. Within the try statement, test if the charCount variable is greater than the value of the MAX_REVIEW
constant. If it is, throw an exception with the error message “You have exceeded the character count limit”.

b. For caught exceptions, display the error message within the innerHTML of the warningBox object.

c. Whether the exception is thrown or not, change the innerHTML of the wordCountBox object to the value
of the charCount variable.

5. Save your changes to the file and then load project04-03.html in your web browser. Start typing text into the
comment box.

6. There are several errors within the code. Use the debugger to find any syntax or runtime errors you encounter.
Fix the errors in your code editor.

7. When the app is free of errors, attempt to type more than 100 characters into the comment box. Verify that
when you exceed the character limit, a warning message appears on the page.

8. Return to your code editor and increase the value of MAX_COUNT from 100 to 1000.

Hands-On Project 4-4

debugging challenge

In this project you will work with an app that calculates the change returned for a purchase and breaks down
the amount in units of currency from pennies up to $20 bills. However, there are errors in the code that must
be corrected. A preview of the completed page is shown in Figure 4-33.

Figure 4-33 Completed Project 4-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on proJectS 159

Do the following:

1. Use your code editor to open the project04-04_txt.html and project04-04_txt.js files from the js04 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project04-04.html and project04-04.js, respectively.

2. Go to the project04-04.html file in your code editor and in the head section add a script element to load the
project04-04.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Take
some to study the contents of the file, paying special attention to the ids of the different elements in the page.
Save your changes to the file.

3. Go to the project04-04.js file in your code editor. At the top of the file insert a command so that the code in the
file is interpreted with strict adherence to the JavaScript standards for syntax.

4. Study the contents of the file, noting the different functions that are used to create the change calculator. Save
your changes to the file.

5. Open the project04-04.html file in your web browser. To run the program, enter a cash value in the Cash
Amount box and the bill in the Bill box. An event handler should calculate the change in response to those
events. There are several syntax and runtime errors in the program. Use the debugger to assist you in locating
the errors. Use your code editor to fix the errors you find.

6. Once the program operates without syntax or runtime errors, use it to calculate the change from $20 for a bill
of $12.31. While the change is correctly calculated, the breakdown in units of currency is not. Use the tracing
features of the debugger to trace the error to its source. Use your code editor to fix the problem. When the
program works as intended, the change and currency amounts should match that shown in Figure 4-33.

7. Return to the project04-04.js in your code editor. If the bill is greater than the cash amount, no change can be
given. Handle this user error by adding a try catch statement to the runTheRegister() function. Within
the try catch statement do the following:

a. Within the try statement test if changeValue is not greater than or equal to zero. If that condition is
true, throw an exception with the error message “Cash amount doesn’t cover the bill”.

b. Run the following commands

changeBox.value = formatCurrency(changeValue);

calcChange(changeValue);

c. Within the catch statement set the innerHTML of the element with the id “warning” to the value of thrown
exception.

8. Save your changes to the file. Reload project04-04.html in your browser. Verify that if the Bill value is greater
than the Cash Amount value, no calculation is done on the change and a warning message appears on the page.

Hands-On Project 4-5

debugging challenge

In this debugging challenge you will debug a program that converts angular measurements between degrees
and radians. The formula to convert an angle measured in degrees to radians is as follows:

180
p

5 3radians degrees

and the formula to convert radians to degrees is:

180
p

5 3degrees radians

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Debugging anD error HanDling160

The value of π can be entered with the built-in JavaScript constant Math.PI. The code to do the calculations
has been entered for you, but you will have to fix the bugs in the program. A preview of the completed page is
shown in Figure 4-34.

Figure 4-34 Completed Project 4-5

Do the following:

1. Use your code editor to open the project04-05_txt.html and project04-05_txt.js files from the js04 c
project05 folder. Enter your name and the date in the comment section of each file and save them as
project04-05.html and project04-05.js, respectively.

2. Go to the project04-05.html file in your code editor and in the head section add a script element to load the
project04-05.js file, deferring the loading of the JavaScript source file until the entire HTML file is loaded. Study
the contents of the HTML file and save your changes.

3. Go to the project04-05.js file in your code editor. At the top of the file, insert a command so that the code is
strictly interpreted.

4. Directly below the command that declares the radians variable, insert a command that writes the radians value
to the debugger console in the form: “Radians 5 radians”.

5. Directly below the command that declares the degrees variable, insert a command that writes the degrees value
to the debugger console in the form: “Degrees 5 degrees”.

6. Save your changes to the file and then load project04-05.html in your web browser.

7. Use the debugger to locate syntax and runtime errors in the code. Fix those errors in your code editor.

8. Enter 60 in the Angle in Degrees box. The value for Angle in Radians should be 1.047, but it is not. Locate and fix
the logic error that resulted in the incorrect value being calculated.

Case Projects
Individual Case Project

Add exception handling to the code for one of the forms on your personal website. If your site does not
include a form, add one first. Your code should display one or more relevant error messages in an appropriate
location. After you finalize your code, write a summary of the debugging methods from this chapter that you
used in this project, describing how you used each one in your code.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

caSe proJectS 161

Team Case Project

Divide your team into two subgroups and assign each group a page from your team project website that
includes JavaScript code. Within each subgroup, introduce at least three bugs into the code for the page
you’ve been assigned. Exchange documents with the other subgroup, and then work as a team to debug the
code provided by the other team. As you debug, record which debugging methods you use, including whether
each was helpful in resolving a given issue. When the document works as expected, create a report. For each
bug, describe the behavior you expected as well as the erroneous behavior that the bug caused and describe
the methods you used to debug it, including whether each method was helpful or not. Also specify the line
number or numbers of the code that contained the error, and show the incorrect as well as the corrected code
in your report.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

163

Designing a Web App
In this chapter you will create a web app that displays a slideshow or lightbox in which multiple images
are displayed in a scrolling gallery with individual images expanded to fill the entire screen, dimming
the rest of the page. Figure 5-1 shows a preview of the lightbox you will create and the features it will
support.

A web app like the lightbox is built on four foundations:

❯❯ The HTML code that provides a container for the web app

❯❯ The CSS code that defines the look of the app

❯❯ The JavaScript code that manages the operation and output from the app

❯❯ The data used by the app, often stored in an external file, or retrieved from a database server

Chapter 5

When you complete this chapter, you will be able to:

❯❯ Understand the principles of building a web app

❯❯ Create nodes and append them to a web document

❯❯ Restructure a web document by adding, deleting, copying, and moving element
nodes

❯❯ Define a timed command that repeats a function or command block at set intervals

❯❯ Create system dialog boxes that receive user input

❯❯ Open and configure a browser popup window

❯❯ Create an overlay that lies on top of a web document

❯❯ Work with the objects within the Browser Object Model

Creating a Web App
Using the Document
Object Model

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel164

In some environments these features might not even by handled by the same person. A team of designers might work
with the HTML and CSS code while a team of programmers manages the JavaScript code, and a third team is responsible
for data. For the lightbox app, you are responsible for the JavaScript code; the images and the code for the HTML and
CSS files are already created for you.

To open the files for the lightbox app:

1. Go to the js05 c chapter folder of your data files.

2. Use your code editor to open the js05_txt.html and js05_txt.js files and enter your name and the date in the
 comment section of each file.

3. Return to the js05.html file in your code editor. With the head section, add the following code to link the page
to a stylesheet with the styles used by the lightbox, a script file containing data on the lightbox images, and the
script you will write that creates the lightbox.

<link rel="stylesheet" href="lightbox.css" />

<script src="lightbox_data.js" defer></script>

<script src="js05.js" defer></script>

4. Scroll to the bottom of the file and directly above the closing </article> tag insert the following div element
that will contain the lightbox app.

<div id="lightbox"></div>

Figure 5-2 shows the revised code in the HTML file.

5. Close the file, saving your changes.

Figure 5-3 shows the contents of the lightbox_data.js file. In this app, the title of the lightbox is stored in the
 lightboxTitle variable, the image file names are stored in the imgFiles array, the captions associated with each
image are stored in the imgCaptions array, and the total number of images is calculated and stored in the imgCount
variable.

There are 12 images in this example, but you will write your code so that the lightbox app can manage any number
of images.

Figure 5-1 Preview of the lightbox app Joan Carey

Click an image to view
a full screen version

Play/pause button
to run the slideshow

Previous
button

Next
button

Counter box shows
current slide number

and slide count

Lightbox title

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InTroducIng nodes 165

Figure 5-2 Parts of the lightbox app

Stylesheet that
formats the lightbox

appearance

Stylesheet that
formats the lightbox

appearance

Script containing the
lightbox data

Script to create the
lightbox

Element to contain
the lightbox

Figure 5-3 Content of the lightbox_data.js file

Introducing Nodes
To generate web page content you’ve been limited to the document.write() method, the innerHTML property,
and the textContent property. In each of these approaches the HTML code is submitted as a text string that the
browser parses and adds to the web document. While effective for small and simple scripts, these approaches quickly
become unwieldy when the app needs to write longer sections of HTML code or must constantly revise the structure
of that code. A better approach to deal with those challenges is to work with nodes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel166

Nodes and the Document Object Model
Each element, attribute, comment, processing instruction, or text string within a web document is a distinct entity
known as a node. For example, the following fragment of HTML code consists of two nodes—one node for the h1
 element and one node for the text string “My Slideshow” contained within that element.

<h1>My Slideshow</h1>

In the Document Object Model, nodes are organized into a hierarchical structure called a node tree. Figure 5-4 shows
the representation of the node tree for a sample HTML file.

Figure 5-4 A node tree

document

html

head body

title

"Slideshow"

h1 p

<html>

<head>
<title>Slideshow</title>

</head>
<body>

<h1>Slide Images</h1>

<p>Views from my vacation</p>
</body>

</html>

"Slide Images" "Views from my" em

"vacation"

The root node can be referenced using the documentElement object. The page body itself can be
referenced using the document.body object.Note

Each of these familial relationships can be referenced using the JavaScript properties shown in Figure 5-5.

For example, the following expression references the parent of a node within the node tree.

node.parentNode

Nodes in the node tree have a familial relationship—each node can be a parent, child, and/or sibling of other nodes.
In the node tree shown in Figure 5-4, the parent of the body node is the html node, and the parent node at the top of
the node tree is known as the root node. The body element has two child nodes: an h1 element and a paragraph (p)
element. The h1 element and the paragraph element are siblings of each other because they share a common parent.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InTroducIng nodes 167

To go two levels up (to the “grandparent”) add another parentNode property to the expression:

node.parentNode.parentNode

and to go to an “aunt or uncle” node, go up to the parent node and move to either sibling:

node.parentNode.previousSibing

node.parentNode.nextSibling

By combining the properties listed in Figure 5-5, you can start from any node in the node tree and navigate to any
other node. Nodes can also be referenced as part of collection within a node list. The following childNodes property
references a collection of all nodes that are children of the node object:

node.childNodes

As with arrays and HTML collections, a node list is indexed starting with an index of 0 and the total number of nodes within
the list indicated by the length property. Both of the following expressions reference the first child node of its parent:

node.firstChild

node.childNodes[0]

The properties in Figure 5-5 make no distinction between nodes that represent elements and nodes that represent
text strings, comments, and other types of nodes in the node tree. Most applications are concerned only with element
nodes. To work directly with those, JavaScript provides the properties listed in Figure 5-6.

Figure 5-5 Node relationships

ExprEssion DEscription

node.firstChild The first child of node

node.lastChild The last child of node

node.childNodes A node list of all nodes which are direct children of node

node.previousSibling The sibling listed before node on the same level in the node tree

node.nextSibling The sibling listed after node on the same level in the node tree

node.ownerDocument The root node of the document

node.parentNode The parent of node

Figure 5-6 Element node relationships

ExprEssion DEscription

node.children A node list of all elements which are direct children of node

node.firstElementChild The first element within node

node.lastElementChild The last element within node

node.previousElementSibling The sibling element immediately prior to node in the node tree

node.nextElementSibling The sibling element immediately following node in the node tree

node.parentElement The parent element of node

One of the reasons to use nodes to create page content instead of using a property like innerHTML is that nodes
provide the ability to create, add, remove, and rearrange elements within the node tree, giving the programmer control
over not just the content of the web document but also its structure.

Referencing Child Elements
In some scripts you might need to reference the children of a parent node. Make sure you
reference the right node list. To reference only element nodes, use the children property. To
reference nodes of any kind, use the childNodes property.

Common
Mistakes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel168

Selecting Nodes with the querySelectorAll() Method
You can define a node list based on a CSS query using the following querySelectorAll() method:

document.querySelectorAll(css)

where css is the text of CSS selector. For example, the following expression creates a node list by selecting all para-
graph element nodes belonging to the review class:

document.querySelectorAll("p.review");

The querySelectorAll() method gives the programmer more options selecting elements than could be achieved by
the getElementsByClassName() or getElementsByTagName() methods. However, the querySelectorAll()
method creates a node list, not an HTML collection, and there are some important differences. JavaScript also provides
the querySelector() method, which returns the first element node that matches the CSS selector rather than the
complete node list.

Node lists and HTML collections are similar, but there are some important differences. Items within an HTML
collection can be referenced by index number, element id, or element name. Items within a node list can only be
referenced by their index number. HTML collections can only contain elements. A node list can contain a variety of
node types including elements, text strings, and attributes.

Finally, HTML collections are dynamic so that changes in the structure of the web page will be automatically
reflected in the HTML collection. A node list is static. Once it has been created it will not automatically update itself
even as the document changes.

Programming Concepts Node Lists vs. HTML Collections

Figure 5-7 Methods to create or copy a node

ExprEssion DEscription

document.createAttribute(att) Create an attribute node with the name att

document.createComment(text) Creates a comment node containing the comment text

document.createElement(elem) Creates an element node with the name elem

document.createTextNode(text) Creates a text node containing the text string text

node.cloneNode (deep) Creates a copy of node, where deep is true to copy all the node’s descendants or false to copy
only node itself

Creating and Connecting Nodes
Like objects and variables, nodes can be created using JavaScript and stored as variables. The methods employed by
JavaScript to create or copy nodes are described in Figure 5-7.

For example, the following code creates an element node for an h1 heading and a text node containing the text string
“My Slideshow”:

let mainHeading = document.createElement("h1");

let headingTxt = document.createTextNode("My Slideshow");

Nodes can be combined to create a document fragment. The document fragment resides only within computer memory
and is not yet part of the web page. Figure 5-8 describes the JavaScript methods used to combine, replace, or remove
nodes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InTroducIng nodes 169

The following code appends the headingTxt node as a child of the mainHeading node:

mainHeading.appendChild(headingTxt);

resulting in the following document fragment:

<h1>My Slideshow</h1>

To place mainHeading into the web document it must be attached to a node already present in that document’s
node tree. If the document had a div element with the id “intro”, the mainHeading node could be attached to that
element using the following code:

let introDIV = document.getElementById("intro");

introDiv.appendChild(mainHeading);

and the web page would then include the following content:

<div id="intro">

 <h1>My Slideshow</h1>

</div>

Proceeding in this fashion, you can continue to append nodes to each other and to elements within the web page,
creating an elaborate hierarchy of parent and child elements.

Nodes support the innerHTML and textContent properties so you can always add HTML code and text
to a node as a quick way of creating a document fragment.Note

Figure 5-8 Methods to add or remove nodes

ExprEssion DEscription

node.appendChild(new) Appends new node as the last child of node

node.insertBefore(new, child) Insert new node as a sibling directly before child node (if no child node is specified then new node
is added as a sibling after the last child node)

node.removeChild(old) Remove old node from node

node.replaceChild(new, old) Replaces old node with new node

elements Nodes and htML attributes
Attributes are considered nodes and JavaScript supports a wealth of tools for working with attribute nodes, but it
is often easier to enter the attribute and its value directly as a property of a node. Every HTML attribute has a cor-
responding node property. For example, the following code attaches the id property with the value “main” to the
mainHeading node created previously:

mainHeading.id = "main";

resulting in the following HTML content:

<div id="intro">

 <h1 id="main">My Slideshow</h1>

</div>

In the same way, you can use the src property to add a src attribute to the element node for an inline image or the
href property to define the href attribute for the <a> tag. One exception to this approach is HTML’s class attri-
bute. Because class is a reserved JavaScript keyword, it cannot be used as a property of an element node. Instead,

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel170

JavaScript uses the className property as in the following example that sets a value for the class attribute of the
mainHeading element node:

mainHeading.className = "lightbox";

resulting in the following modification to the <h1> tag:

<div id="intro">

 <h1 id="main" class="lightbox">My Slideshow</h1>

</div>

A similar property to the className property is the classList property, which is used with HTML elements asso-
ciated with more than one class. With the classList property you can add, remove, or replace class values from an
element with multiple classes.

Nodes and Inline Styles
Inline styles are added to HTML elements using the style attribute. Thus, the following HTML code

<h1 id="main" style="font-size: 1.5em; color: blue">

 My Slideshow

</h1>

can be replaced with the JavaScript statements:

let mainH1 = document.getElementById("main");

mainH1.style = "font-size: 1.5em; color: blue;";

However, you can also define individual styles by appending the style property and a style value to the object. For
example, you can set values of the font-size and color properties using the following:

mainH1.style.fontSize = "1.5em";

mainH1.style.color = "blue";

Notice that because JavaScript does not support hyphens in property names, the CSS font-size style is written
in camel case as fontSize. Similarly, the background-color style would be written as backgroundColor, the
font-family style would be entered as fontFamily, and so forth. Any styles defined using the style property
are treated as inline styles and thus will have precedence over styles defined in an embedded or external style sheet.

Creating a Document Fragment in an app
You will use nodes to develop the content of the lightbox app. The general structure of the lightbox is as follows:

<div id="lightbox">

 <h1>Lightbox Title</h1>

 <div id="lbCounter"></div>

 <div id="lbPrev"></div>

 <div id="lbNext"></div>

 <div id="lbPlay"></div>

 <div id="lbImages">

 images

 </div>

</div>

Compare this HTML code to the preview of the completed lightbox shown earlier in Figure 5-1. You have already
added the lightbox container element to the web page, so any nodes appended to it will automatically be added to

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InTroducIng nodes 171

the page. While you could add this general structure using the innerHTML property, such a text string would be long
and cumbersome to create and manipulate. The content and the structure will be more easily managed with nodes.
Commands to create this lightbox structure will be placed within a createLightbox() function that runs when the
browser initially loads the page.

To create nodes for the lightbox app:

1. Go to the js05.js file in your code editor.

2. Below the initial comment section insert the event listener:

window.addEventListener("load", createLightbox);

3. Add the following initial code for the createLightbox() function as shown in Figure 5-9:

function createLightbox() {

 // Lightbox Container

 let lightBox = document.getElementById("lightbox");

 // Parts of the lightbox

 let lbTitle = document.createElement("h1");

 let lbCounter = document.createElement("div");

 let lbPrev = document.createElement("div");

 let lbNext = document.createElement("div");

 let lbPlay = document.createElement("div");

 let lbImages = document.createElement("div");

}

Figure 5-9 Creating element nodes

Create h1 and
div element nodes

Next, append each part of the lightbox to the lightbox container using the appendChild() method, adding an id
attribute to each element to identify it for the styles defined in the lightbox.css stylesheet.

To append the element nodes:

1. Within the createLightbox() function add the following code to append the element nodes to the lightbox
container and to assign each of them a unique id.

// Design the lightbox title

lightBox.appendChild(lbTitle);

lbTitle.id = "lbTitle";

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel172

// Design the lightbox slide counter

lightBox.appendChild(lbCounter);

lbCounter.id = "lbCounter";

// Design the lightbox previous slide button

lightBox.appendChild(lbPrev);

lbPrev.id = "lbPrev";

// Design the lightbox next slide button

lightBox.appendChild(lbNext);

lbNext.id = "lbNext";

// Design the lightbox Play-Pause button

lightBox.appendChild(lbPlay);

lbPlay.id = "lbPlay";

// Design the lightbox images container

lightBox.appendChild(lbImages);

lbImages.id = "lbImages";

Figure 5-10 shows the revised code in the function.

Figure 5-10 Attaching element nodes to the lightbox container

Append the lightbox
heading

Append the image
slide counter

Append the
Play/Pause button

Append the previous
and next buttons

Append the box
containing the
slide images

The appendChild() method always places the node at the end of the parent node’s children. To insert a
node at a different position—such as at the beginning of the child list—use the insertBefore() method.Note

2. Save your changes to the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InTroducIng nodes 173

Viewing elements within the Browser Debugger
Currently, the lightbox has no images, so there is nothing that would appear on the web page, but in developing this
app you want to ensure that your code has generated the correct node structure. Before going further in developing
this app, examine the contents and structure of the web page using tools in your browser’s debugger.

To view the elements within a web page:

1. Reload the js05.html file in your browser.

2. To view the node tree in Google Chrome and Microsoft Edge, open the Developer tools pane and click the
 Elements tab. For the Firebox browser, open the Debugger and click the Inspector tab. For the Safari browser,
open the Web Inspector from the Develop menu.

3. The elements are displayed in a hierarchy. Click the c icon next to an element to expand a lower branch of the
hierarchy and view its contents.

4. Navigate through the representation of the node tree, expanding the branches down through the body element,
the article element, and finally the contents of the div element with the lightbox id.

5. Hover over and click the lightbox div element in the node tree. The web browser highlights the location of the
element within the web page and a styles box provides information on the styles applied to the element. See
Figure 5-11.

Figure 5-11 Viewing the element hierarchy in the Elements tab

Selected element is
highlighted within the

web page

Styles applied to the
selected element

View the element hierarchy
in the Elements tab

Nodes created
 and appended
to the document

Hover the cursor over an
element to highlight it in

the page

If your page does not contain the elements shown in Figure 5-11, return to the js05.js file in your code editor. Check
your code against the code shown in Figures 5-9 and 5-10. Common errors might involve the misspelling of id names,
node variables, or node properties.

To add images to the lightbox, use a for loop to iterate through the imgFiles array, creating an img element node
for each item in the array and appending it as a child of the lbImages element node. Notice that the code uses the

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel174

imgCount variable whose value was already calculated in the lightbox_data.js file and stores the number of images
in the lightbox.

To add the light box images:

1. Return to the js05.js file in your code editor.

2. At the bottom of the createLightbox() function, insert the following for loop to populate the lbImages
element node with inline images (see Figure 5-12):

// Add images from the imgFiles array to the container

for (let i = 0; i < imgCount; i++) {

 let image = document.createElement("img");

 image.src = imgFiles[i];

 image.alt = imgCaptions[i];

 lbImages.appendChild(image);

}

Figure 5-12 Adding images to the lightbox

Add the image to the
lbImages container

Loop through the
contents of the
imgFiles array

For each item in the array,
create an img element with

the src attribute pointing to
the image file and the alt

attribute containing the
image caption

3. Save your changes to the file and then reload the js05.html file in your web browser. Verify that the page now
contains 12 img elements within the lbImages div container of which only the first four are currently visible
in the web page.

Next you will use the textContent property to insert the title of the lightbox slideshow and the text of the slide
counter. The counter text will have the format:

currentImg / imgCount

where currentImg is the number of the image currently shown in the lightbox and imgCount is the total number
of images.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InTroducIng nodes 175

To add the lightbox title and image counter:

1. Directly below the statement that defines the id for the lbTitle node, add:

lbTitle.textContent = lightboxTitle;

2. Below the statement defining the id for the lbCounter node, add:

let currentImg = 1;

lbCounter.textContent = currentImg + " / " + imgCount;

See Figure 5-13.

Figure 5-13 Adding the lightbox title and counter

Add the
lightbox title

Set the initial
value of the
currentImg
variable to 1

Display the current image
number and the count

of all images

3. Save your changes and reload js05.html in your web browser. Verify that the title “My Western Vacation” appears
above the lightbox images and that the counter text “1 / 12” appears superimposed on the first image.

To complete the lightbox content, add symbols for the previous (b), next (c), and play/pause () buttons, using the
HTML entity references ◀, ▶, and ⏯, respectively. Because these symbols are entered as HTML code,
they must be added using the innerHTML property.

To add symbols to the lightbox buttons:

1. Return to the js05.js file in your code editor.

2. Directly below the statement defining the id for the lbPrev node, add:

lbPrev.innerHTML = "◀";

3. Below the statement defining the id for the lbNext node, add:

lbNext.innerHTML = "▶";

4. Finally, directly below the statement defining the id for the lbPlay node, add:

lbPlay.innerHTML = "⏯";

Figure 5-14 shows the revised code in the createLightbox() function.

5. Save your changes and reload js05.html in your web browser. Figure 5-15 shows the complete content of the
lightbox including the structure of the div and img elements.

6. Close the browser debugger.

The lightbox displays only the first four of the 12 images. The other image files are part of the page but hidden
using a style rule defined in the lightbox.css style sheet that hides any overflowing content in the lightbox container.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel176

In the next session you will work with commands to allow the user to scroll through image list manually or automati-
cally to view all the images one-by-one.

Figure 5-14 Adding the symbols for the buttons in the lightbox

Display the
symbol

Display the
symbol

Display the
symbol

Figure 5-15 Lightbox images and text Joan Carey

Lightbox
counter

Lightbox
image

Lightbox
title

Images appended to
the lightbox container

Symbols for the previous,
next, and play/pause

buttons

Quick Check 1

1. provide the code to reference the last child element of the element with the id “main”.

2. What properties would you combine to reference the “cousin” of a node (where cousin refers to the first child of
the previous sibling of the parent of node)?

3. provide code to create a span element node named rating belonging to the “review” class.

4. provide code to append the rating element node to a div element with the id “reviews”.

5. provide code to change the font size of the rating element to 1.2em.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

resTrucTurIng a node Tree 177

Restructuring a Node Tree
In the next part of the lightbox app you provide the ability to move forward and backward through the image
list. Because only four images are displayed at any one time, to move forward the lightbox app must send the
first image to the back of the image list, shifting the remaining images forward one place in line. See Figure 5-16.

Figure 5-16 Moving forward through the list of images

<div id= "lbImages"></div>

img1 img2 img3 img4 img5 img6

<div id= "lbImages"></div>

img2 img3 img4 img5 img6 img1

The app does not need to create or copy any elements, it only needs to move a node that already exists.

Moving Nodes with the appendChild() Method
You have already used the appendChild() method to add a new child to a parent node. As the name implies,
the method appends the node, placing it at the end of the child list. If the node is already part of a document tree,
the appendChild() method moves the node from its current location to that new position. Thus, the following
statement:

lbImages.appendChild(lbImages.firstElementChild);

moves the first image, referenced with the expression lbImages.firstElementChild to the end of the list of images.
All the other images will move up in position so that the second image is now the first, the third image is now the
second, and so forth.

As the user moves through the image list the value of the currentImg variable should increase by 1 with each image
moved. When the user goes beyond the last image the currentImg variable should reset to 1 as the lightbox “loops”
back to the beginning of the list. You can determine the value of currentImg with the following conditional operator
that tests whether the currentImg value is less than the total number of images. If it is, the counter is increased by 1;
otherwise it is reset to 1.

(currentImg < imgCount) ? currentImg++ : currentImg = 1;

lbCounter.textContent = currentImg + " / " + imgCount;

Add these statements as part of a showNext() function that runs whenever the Next button is clicked within the
lightbox.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel178

To create the showNext() function:

1. Return to the js05.js file in your code editor.

2. Directly before the closing brace of the createLightbox() function command block insert the following code
as described in Figure 5-17:

// Function to move forward through the image list

function showNext() {

 lbImages.appendChild(lbImages.firstElementChild);

 (currentImg < imgCount) ? currentImg++ : currentImg = 1;

 lbCounter.textContent = currentImg + " / " + imgCount;

}

Figure 5-17 The showNext() function

Move the first image
to the end of the list

Increase the image
count by 1 until the last
image is reached, then

reset the image count to 1

Update the text in the
image counter box

Figure 5-18 Event handler for the showNext() function

Run the showNext()
function when the Next

button is clicked

3. Scroll up to the line that sets the innerHTML value of the lbNext element node and add the following event
hander (see Figure 5-18):

lbNext.onclick = showNext;

4. Save your changes to the file and then reload js05.html in your web browser.

5. Click the c button repeatedly in the lightbox to verify that the app advances forward through the image list and
the image counter increases by 1.

6. Continue clicking the c button to verify that the images loop around to the beginning after moving through the
first 12 images and that the image counter returns to a value of 1.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

resTrucTurIng a node Tree 179

Notice that by placing the showNext() function within the command block, you have given the function local scope,
confined to the createLightbox() function. When creating apps that may be used by third parties, you want to give
your variables and functions local scope so they do not interfere with any other code your users might be running. It
is not uncommon for an app to have a single function with several nested functions doing the work.

Moving Nodes with the insertBefore() Method
To move backwards through the list of images, the lightbox app must move the last image to the beginning of the line,
shifting the subsequent images back one position. See Figure 5-19.

Figure 5-19 Moving backward through the list of images

<div id= "lbImages"></div>

img1 img2 img3 img4 img5 img6

<div id= "lbImages"></div>

img6 img1 img2 img3 img4 img5

To insert a node at any position other than the end of the list of child nodes, apply the following insertBefore()
method:

node.insertBefore(new, child)

where node is the parent node, new is the node that will be inserted as a new child of the parent, and child is a child
node before which the new node is to be placed. As with the appendChild() method, if the new node is already part
of the node tree it will be moved from its current location to its new location.

For the lightbox, the new node would be the last image referenced with the expression lbImages.lastElementChild
and the child node would be first image referenced with the expression lbImages.firstElementChild. The fol-
lowing command would then move the last image to the front of image list:

lbImages.insertBefore(lbImages.lastElementChild,lbImages.firstElementChild);

As the user moves backward through the image list, the image counter should decrease by 1 with each image displayed
until the first image is reached. At that point, the counter will have “looped” to the end of the list and the next image
should have a counter value equal to number of the last image. The code to update the counter value would use the
following conditional operator:

(currentImg > 1) ? currentImg-- : currentImg = imgCount;

lbCounter.textContent = currentImg + " / " + imgCount;

As long as currentImg is greater than 1, its value will decrease by 1, otherwise its value will be set to the num-
ber of the last slide image as the slideshow loops back to the end of the image list. Add these statements to the
showPrev()function that will be called when the Previous button is clicked.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel180

To create the showPrev() function:

1. Return to the js05.js file in your code editor.

2. Directly below the showNext() function add the following code as described in Figure 5-20:

// Function to move backward through the image list

function showPrev() {

 lbImages.insertBefore(lbImages.lastElementChild,

lbImages.firstElementChild);

 (currentImg > 1) ? currentImg-- : currentImg = imgCount;

 lbCounter.textContent = currentImg + " / " + imgCount;

}

Figure 5-20 The showPrev() function

Update the text in
the image counter box

Decrease the image count by 1
until the first image is reached,
then reset the image count to

the total number of images

Move the last image
to the start of the list

Figure 5-21 Calling the showPrev() function

Run the showPrev()
function when the

Previous button is clicked

3. Scroll up to the line that sets the innerHTML value of the lbPrev element node and add the following event
hander (see Figure 5-21):

lbPrev.onclick = showPrev;

4. Save your changes to the file and reload js05.html in your web browser.

5. Click the b button to verify that the lightbox moves backward through the image list and that the image counter
displays a decreasing image count.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

runnIng TImed commands 181

If the slideshow is not moving through image list as expected, use your browser’s debugger, and view the list of img
elements with the document. Verify that the sequence of img elements changes as you move forward and backward
in the list. If you have an error in your code, check that your program matches the code shown in Figures 5-17,
5-18, 5-20, and 5-21.

Cloning a Node
In some of your applications you may need to create and move a copy of a node rather than the node itself. To create
a node copy, apply the command:

node.cloneNode(deep)

where node is the node to be copied and deep is a Boolean value that is true to create a deep copy that copies the
node and all of its descendants or false to copy only the node and not any descendants. In the following code, the
mainCopy node is a copy of all the content of the mainElem node, including any nested headings, paragraphs, text,
inline image tags, etc.

let mainElem = document.getElementById("main");

let mainCopy = mainElem.cloneNode(true);

The cloneNode() method will copy all of the node’s DOM content, but it will not copy any JavaScript properties attached
to the node. For example, it will not copy event handlers, so those will have to added individually to any node copies.

Running Timed Commands
Many slideshows give users the option of automatically running the show rather than clicking a button to go to the
next image. You will add that capability to the lightbox app.

repeating Commands at Specified Intervals
A timed command is a command or function that is run at a specified time or repeated at set intervals. To repeat a
command at set intervals, apply the following setInterval() method:

timeVar = window.setInterval(command, interval)

where timeVar is a variable that stores an id identifying the timed command, command is a statement or command
that will be repeatedly run, and interval is the interval in milliseconds between runs. For example, the following
statement runs the moveNext() function every 2000 milliseconds (2 seconds) after an initial 2-second delay. The id
of the timed command is stored in the timeID variable.

let timeID = window.setInterval(moveNext, 2000);

To run a timed command with no initial delay, include two statements: the first statement running the
command immediately and a second statement using the setInterval() method to run the command
after a specified time interval.

Note

Use the setInterval() method to run the moveNext() command every 1.5 seconds or 1500 milliseconds, storing
the id of the timer in the timeID variable. Initiate this process by adding an event handler to the lbPlay element
node that runs the time command when the Play-Pause button is clicked.

To create a timed command:

1. Return to the js05.js file in your code editor.

2. Directly below the command that sets the innerHTML property of the lbPlay element node, add the follow-
ing command to declare the timeID variable, but leaving its value undefined (because no timed command has
been initialized yet).

let timeID;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel182

3. Next, apply an event handler to the lbPlay element node that runs the following anonymous function when
that button is clicked:

lbPlay.onclick = function() {

 showNext();

 timeID = window.setInterval(showNext, 1500);

}

See Figure 5-22.

Figure 5-22 Running a timed command

Variable to store the id
of the timed command

Run the showNext()
function every 1.5 seconds

Run the showNext()
function when the
Play-Pause button

is clicked

4. Save your changes to the file and then reload js05.html in your web browser.

5. Click the button to verify that the lightbox starts moving through the images every 1.5 seconds without stopping.

Once the slideshow is started, there is no way to stop it save reloading the web page. You need to modify the button
so that it pauses the slideshow if it is already running and restarts the slideshow if it is currently paused.

Stopping a timed Command
Once a timed command is initiated, it can be stopped using the following clearInterval() method:

window.clearInterval(timeVar)

where timeVar is the variable storing the id of the timed command. An application might have several timed com-
mands running simultaneously, so the id is necessary to distinguish one timed command from another.

The lightbox’s play/pause button needs to toggle between two states: (1) If the slideshow is not running, clicking the
 button starts the show; and (2) if the slideshow is running, clicking the button stops the show by clearing the

timed command. The following if else statement covers both conditions:

if (timeID) {

 window.clearInterval(timeID);

 timeID = undefined;

} else {

 showNext();

 timeID = window.setInterval(showNext, 1500);

}

The if condition is true only if timeID has a truthy (defined) value and the slideshow is running. The if statement
clears the timed command and sets timeID back to undefined; otherwise the slideshow is not running and the
else condition starts the slideshow by running the showNext() function and storing the id of the timed command.

Add this if else statement to the code for the lightbox app.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

runnIng TImed commands 183

To clear a timed command:

1. Return to the js05.js file in your code editor.

2. Replace the two commands in the anonymous function you created in the last set of steps with the following if
else structure:

if (timeID) {

 // Stop the slideshow

 window.clearInterval(timeID);

 timeID = undefined;

} else {

 // Start the slideshow

 showNext();

 timeID = window.setInterval(showNext, 1500);

}

See Figure 5-23.

Figure 5-23 Toggling between starting and stopping the slideshow

If the slideshow is running,
timeID will have a defined

(truthy) value

If the slideshow is running,
stop it and change timeID

to undefined

If the slideshow is not
running, start it and store

the id of the timed command

3. Save your changes to the file and then reload js05.html in your web browser.

4. Click the button to start the slideshow. Click the button again the stop the show. Continue clicking the
button to verify that the state of lightbox toggles between running and pausing the slideshow.

Note that the browser is not guaranteed to run a timed command at exactly the specified time. While the command is
scheduled to be run at that time, it is also placed within a queue along with other commands. Commands are only run
when they reach the top of the queue and thus a timed command might not always start exactly at the specified time.

Using time-Delayed Commands
Another type of timed command is one in which the command is run once after a specified delay. To run a delayed
command use the following setTimeout() method:

let timeVar = window.setTimeout(command, delay);

where delay is the delay time in milliseconds. The following command runs the showNext() function but only after
a 2-second delay.

let timeID = window.setTimeout(showNext, 2000);

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel184

As with the setInterval() method, time-delayed commands can be assigned an id that distinguishes the command from
other timed commands. To prevent a delayed command from running, apply the following clearTimeout() method:

window.clearTimeout(timeVar)

Once a time-delayed command runs or is cleared, it is removed from the queue and will not run unless another
setTimeout() method is applied to place it back in the queue.

Quick Check 2

1. Where does the appendChild() method place nodes?

2. provide code to create a copy of the rating node, including all the node’s descendants.

3. provide code to repeat the checkAnswers() function every 10 seconds; store the time id in the variable
timeID.

4. provide code to stop the checkAnswers() function from repeating.

With all properties and methods of the window object, you can omit the window part of the reference
name, for example, using setInterval() in place of window.setInterval(). You can use the window
part of the reference to apply the property or method to a specific browser window in the case of a script
that involves working with multiple open windows.

Note

You have completed your work on the lightbox tools that enable the user to move through the slideshow images. Your
final task will be to add a feature that displays full-screen versions of individual images from the lightbox.

Working with Popup Windows
Many applications require an external window to be opened and displayed on top of or adjacent to the application
content. Within these windows, also known as popup windows, the application can include additional information to
users or provide an area where users can provide feedback that can be used by the application. For example, a popup
window might prompt a user for a password or email address.

System Dialog Boxes
One popup window that you’ve already seen is the alert window created with the window.alert() method. The
alert window simply displays a message along with an OK button to close the window, but the method does not ask
for any response from the user.

A window that does provide the ability for the user to respond is a confirmation window that displays a message along
with an OK and Cancel button. The window returns a value of true or false depending on whether the user closed
the window by clicking the OK button or the Cancel button. To create a confirmation window, apply the following
window.confirm() method:

response = window.confirm(message)

where response is a Boolean value that is true if the user clicks the OK button and false if the user clicks the
Cancel button, and message is the text that appears in the window.

For a more general response, JavaScript provides the prompt window that displays a message along with an input
box into which the user can enter a text string. To create a prompt window, apply the following window.prompt()
method:

response = window.prompt(message, default)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WorkIng WITh PoPuP WIndoWs 185

Figure 5-24 JavaScript popup windows

window.alert("Welcome to the game!")

window.prompt("Which game to play?", "Poker")

window.confirm("Quit the game?")

The exact appearance of the window is determined by the operating system and the browser. There are no JavaScript
properties or CSS styles to modify these windows.

Working with Browser Windows
Another approach to creating a popup window is to open a new browser window. The browser window then becomes
its own window object with its own collection of properties and methods. You can use JavaScript to create a new
window object and define the window’s appearance and content. Figure 5-25 describes some of the JavaScript proper-
ties associated with the window object.

Figure 5-25 Properties of the window object

propErty DEscription

window.closed Returns true if the browser window or tab has been closed

window.document References the document stored in the window

window.history References the browsing history stored with the window

window.innerHeight Returns the height of the window’s content area, including the scrollbar

window.innerWidth Returns the width of the window’s content area, including the scrollbar

window.location Returns information about the current URL displayed in the window

window.name Sets or returns the name of the window

window.navigator References an object containing information about the browser displaying the window

window.outerHeight Returns the height of the browser window, including the scrollbar

window.outerWidth Returns the width of the browser window, including the scrollbar

window.screen References an object containing information about the user’s viewscreen

window.status Sets or returns the text displayed in the browser window status bar

where response is the text of the user’s response, message is the prompt message, and default is the input box’s
default value. Figure 5-24 shows examples of each window along with the code that generated it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel186

Figure 5-26 describes some of the methods that can be applied to the window object.

Figure 5-27 Options of the window.open() method

namE DEscription

height=value Sets the window’s height in pixels

left=value Sets the horizontal position of the window in pixels

menubar=yes|no|1|0 Displays the menu bar (yes or 1) or hides it (no or 0)

scrollbars=yes|no|1|0 Displays scrollbars (yes or 1) or hides them (no or 0)

status=yes|no|1|0 Displays the status bar (yes or 1) or hides it (no or 0)

toolbar=yes|no|1|0 Displays the browser toolbar (yes or 1) or hides it (no or 0)

top=value Sets the vertical position of the window in pixels

width=value Sets the window’s width in pixels

Figure 5-26 Methods of the window object

mEthoD DEscription

window.blur() Removes the focus from the browser window or tab

window.close() Closes the browser window or tab

window.focus() Makes the window object the active window or tab

window.moveBy(x, y) Moves the browser window x pixels horizontally and y pixels vertically

window.moveTo(x, y) Moves the browser window to the screen coordinates (x, y)

window.open(url, name, option,
replace)

Opens a new browser window or tab where url is the location of a file loaded into the window, name is
the window’s name, options defines the window’s appearance, and replace is Boolean value that
specifies whether url should create a new entry in the window’s history list (true) or replace the existing
entry (false)

window.print() Opens the print dialog box displaying the content of the browser window

window.resizeBy(width, height) Resizes the window by specified width and height relative to its current size

window.resizeTo(width, height) Resizes the window to a specified width and height

window.scrollBy(xnum, ynum) Scrolls the browser window or tab by a specified amount in the horizontal (xnum) and vertical direction (ynum)

window.scrollTo(xpos, ypos) Scrolls the browser window or tab to a specified (xpos, ypos) coordinate in the document

To create a new browser window, apply the following window.open() method:

window.open(url, title, options, replace)

where url is the location of the file displayed in the window, title is the window’s title, options is a comma-
separated list of features defining the window’s appearance, and replace is an optional Boolean value that specifies
whether url should create a new entry in the window’s history list (true) or replace the existing entry (false). You
can include all or none of the arguments for the window.open() method.

Depending on the arguments used with the window.open() method, the new content might open as a popup window or it
might appear as a new tab within the browser. For example, the statement window.open("http://www.example.com");
opens the page at www.example.com in a new browser window or tab. If you exclude a url value or specify and empty text
string, a blank browser window or tab opens.

You can customize the appearance of a new browser window or tab using the options argument in the window.
open() method. Figure 5-27 lists options common to all major browsers. Because the window object is part of the
Browser Object Model, the exact list of features is determined by the browser. Some browsers also include the ability
to turn off the address bar or allow the window to be resized; others do not.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WorkIng WITh PoPuP WIndoWs 187

If you omit an option list in the window.open() method, then all standard options are included in the new browser
window. However, if the window.open() method does include an option list, only those features specified in that list
will be applied to the new window or tab. To force the browser to display a new browser window rather than a new
tab, always include a width and height value in the option list of the window.open() method.

The following statement creates a browser window that is 400 pixels wide by 600 pixels tall displaying the contents of
the page at www.example.com without a toolbar, menu bar, location box, or status bar.

let newWin = window.open("http://www.example.com", "win", "width=400, height=600, toolbar=0,

menubar=0, scrollbars=0, status=0");

The window is stored in an object variable named newWin. When a window has been saved under a variable name, you
can apply the properties and methods described in Figures 5-25 and 5-26 to it. For example, the following statement
moves the newWin browser window to a position 300 pixels to left and 400 pixels down from the top-left corner of the
screen and then increases its width and height by 50 pixels.

newWin.moveTo(300,400);

newWin.resizeBy(50, 50);

Values for moving, sizing, or scrolling browser windows are always measured in pixels. You do not have to include the
px unit, only the value itself.

You can reference the window from which the popup window was opened using the opener property.
The expression newWin.opener would refer to the original window that opened the newWin popup. In
this way, the two windows can exchange information and content.

Note

Writing Content to a Browser Window
The new window contains a web document and thus all document properties and methods can be applied to that docu-
ment. The document body contained within the window is referenced using the window.document.body object
where window is the name assigned to the window object. Thus, the following code creates a blank window named
newWin and adds the h1 heading <h1>My slideshow</h1> to the document body.

let newWin = window.open("", "slideshow", "width=500, height=300");

let mainHeading = document.createElement("h1");

mainHeading.textContent = "My Slideshow";

newWin.document.body.appendChild(mainHeading);

You can also use the document.write() method to write the content into the document as a single text string:

let newWin = window.open("", "slideshow", "width=500, height=300");

newWin.document.write("<h1>My Slideshow</h1>");

Unlike windows created with the confirm() or prompt() methods, a browser popup window can be designed in
whatever fashion the application requires. You can include form elements, tables, and embedded images to design a
customized dialog box suitable for your app.

Limitations of Browser Windows
While you can do a lot with browser windows, they do suffer from some very important limitations:

❯❯ Popup browser windows can be blocked by popup blockers installed by the user or built into the browser itself.

❯❯ Browser windows do not scale well to small mobile devices such as cell phones, which put a premium on screen space.

❯❯ For security reasons, browser windows cannot display files that are loaded locally on the user’s computer.

❯❯ Browsers are not consistent in how they handle browsers windows. A feature that is supported in one browser
might not be supported in a different browser.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel188

All of this is not to say you should never use a browser window as a popup. They are flexible and easy to apply and
make sense for some applications. However, their use has declined in recent years due to their limitations.

Figure 5-28 Image overlay for the lightbox app Joan Carey

Image and caption
are overlaid on the
web page when the

image is clicked

Semi-transparent
background shows
 the page content

Click the close button to
close the overlay and
return to the lightbox

Popup blockers generally will not block popup windows that are opened in response to user-initiated
events, such as clicking a form button.Note

Creating an Overlay
An alternative to a popup window is an overlay, which is an element that lays on top of the rest of the page content,
partially obscuring that content. An overlay is sometimes referred to as a modal or modal window, a window that takes
control of an application and must be closed before the user can continue using the app. Examples of modal windows
include popup dialog boxes that must be completed before returning a user to the web form or, annoyingly, a popup
ad that must be clicked before a user can return to a web page.

The final piece of the lightbox app will be an overlay that is generated whenever the user clicks an image from the light-
box slideshow. The overlay will display a full-sized version of the clicked image alongside the image caption. Included
with the overlay will be a Close button that closes the overlay when clicked. See Figure 5-28.

The image overlay will contain the following HTML code:

<div id="lbOverlay">

 <figure>

 <figcaption>text</figcaption>

 </figure>

 <div id="lbOverlayClose">×</div>

</div>

where url is the URL of the clicked image and text is the caption text associated with that image. The styles for the
overlay have already been entered into the lightbox.css stylesheet, using the following style rules:

div#lbOverlay {

 position: fixed;

 top: 0;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creaTIng an overlay 189

 left: 0;

 z-index: 1;

 width: 100%;

 height: 100%;

 background-color: rgba(104, 49, 0, 0.85);

}

The style rule fixes the div element within the browser window and sizes it to cover the complete window. A semi-
transparent browser background is used so that the contents of the page are still partially visible beneath the overlay.

Add the createOverlay()function to begin creating the structure and content of the overlay.

To begin creating the image overlay:

1. Return to the js05.js file in your code editor.

2. Directly before the closing curly brace of the createLightbox() function, insert the following initial code for
the createOverlay() function as described in Figure 5-29:

function createOverlay() {

 let overlay = document.createElement("div");

 overlay.id = "lbOverlay";

 // Add the figure box to the overlay

 let figureBox = document.createElement("figure");

 overlay.appendChild(figureBox);

 document.body.appendChild(overlay);

}

Figure 5-29 Initial createOverlay() function

Create the
overlay

Append the figure
box to the overlay

Append the overlay
to the page body

3. Scroll up to the for loop that adds images to the container and directly below the statement that sets the value
of the alt property, and insert the following statement to run the createOverlay() function whenever an
lightbox image is clicked (see Figure 5-30):

image.onclick = createOverlay;

4. Save your changes and then reload js05.html in your web browser.

5. Click any image within the lightbox and verify that a semi-transparent brown overlay covers the entire page. If
the overlay is not generated, use your browser’s debugger to examine the elements within the web page to verify
that overlay box was created. Check the code in your file against the code shown in Figures 5-29 and 5-30.

Next you will add the image and caption to the overlay. To do that the app needs to know which image was clicked by
the user. That can be accomplished using the this object.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel190

Introducing the this Object
The this object references the owner of a currently running segment of JavaScript code. That general definition can
be confusing because its meaning depends on context. How do you determine who “owns” the code? For an anonymous
function called by an event handler or event listener, the owner of the function is the object that initiated the event.
If clicking an image initiated an event that called an anonymous function, that image is the called function’s owner.

From within the createOverlay() function, you can reference the image that called the function using the this
object. The following code uses the this object to append a copy of the image node to the overlay’s figure box:

let overlayImage = this.cloneNode("true");

figureBox.appendChild(overlayImage);

In the same way, the following code creates the figure caption based on the alt attribute of the image node and
appends it to the figure box:

let overlayCaption = document.createElement("figcaption");

overlayCaption.textContent = this.alt;

figureBox.appendChild(overlayCaption);

Add both sections of code to the createOverlay() function and retest your app.

To append the image and caption to the overlay:

1. Return to the js05.js file in your code editor.

2. Within the createOverlay() function directly after the statement that appends the figure box to overlay, add
the following code to copy the image and append it to the figure box:

// Add the image to the figure box

let overlayImage = this.cloneNode("true");

figureBox.appendChild(overlayImage);

3. Next, add the following code as described in Figure 5-31 to add the figure caption, set the caption text, and
append the caption to the figure box:

// Add the caption to the figure box

let overlayCaption = document.createElement("figcaption");

overlayCaption.textContent = this.alt;

figureBox.appendChild(overlayCaption);

4. Save your changes to the file and then reload js05.html in your web browser.

5. Click any image within the lightbox app and verify that a larger version of the image along with the image caption
is overlaid on the page. Note that this overlaying is done with an animated zoom effect that was created within
the lightbox.css stylesheet.

Figure 5-30 Adding an event handler for the createOverlay() function

Call the createOverlay()
function when any image

is clicked

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creaTIng an overlay 191

removing a Node
To complete the lightbox app, you will add a close button that removes the overlay from the web page, returning the
user to the lightbox slideshow. To remove a node, apply the method:

node.removeChild(old)

where node is the parent node and old is the child node that will be removed from the parent. Add a close button to
the overlay and create an event handler that removes the overlay when that button is clicked.

To create the overlay close button:

1. Return to the js05.js file in your code editor.

2. Within the createOverlay() function directly after the statement that appends the caption to the figure box
add the following code to create the close button:

// Add a close button to the overlay

let closeBox = document.createElement("div");

closeBox.id = "lbOverlayClose";

closeBox.innerHTML = "×";

3. Next, add an event handler that calls an anonymous function to remove the overlay from the document body
when the close button is clicked:

closeBox.onclick = function() {

 document.body.removeChild(overlay);

}

4. Finally, append the close button to the overlay:

overlay.appendChild(closeBox);

Figure 5-32 describes the code added to the createOverlay() function.

5. Close the file, saving your changes.

6. Reload the js05.html file in your browser. Verify that you can open the overlay when any image in the lightbox is clicked
and that you can close the overlay by clicking the close button in the upper-right corner of the browser window.

Figure 5-31 Adding an image and caption to the overlay

Copy the image that
called the function

Append the copied
image to the figure box

Display the value of the
alt attribute as the

figure caption

Append the caption
to the figure box

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel192

You have completed your work on the lightbox app. The app is reasonably customizable. If users wish to apply this
app to their own projects, they can change the images and captions listed in the lightbox_data.js file. If they wish to
change the look and feel of the lightbox or the overlay, they can make changes to the lightbox.css stylesheet without
having to touch the JavaScript code.

Figure 5-32 Adding the close box to the overlay

Create an element
for the close button

Display the × symbol
in the close button

When the close button is
clicked remove the overlay
from the document body

Append the close button
to the overlay

When you plan the visual design for your app, you want to create a design that can be easily modified in the future.
For that reason, put as much of your design choices within a CSS stylesheet and not within your JavaScript code.
One way of accomplishing this is with classes. For example, you could include the following statement in your app
to increase the font size of text in a “major” element:

document.getElementById("major").style.fontSize = "1.8em";

But a better approach is the following statement that changes that element’s class name:

document.getElementById("major").className = "majorText";

and leaves the style definition in the CSS style sheet. If at a later date you and your team decide that your app
needs a facelift, you can make all the modifications to the style definitions for that class in the stylesheet, saving you
the trouble of wading through what might be long and complicated script looking for all the style settings.

Best Practices Designing the Look of an App

Quick Check 3

1. provide code to create a confirmation window with the message “Do you wish to continue?”, storing the response
in the continuePlay variable.

2. provide code to create a prompt window with the message “enter your state” with the default value, “texas”. store
the response in the state variable.

3. provide code for the Url “http://www.microsoft.com” in a new browser window named newWin that is 600 pixels
wide and 400 pixels tall. store the window object in variable named myWindow.

4. provide code to increase the width of myWindow by 100 pixels and the height by 50 pixels.

5. What do you use the this object for?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exPlorIng The BroWser oBjecT model 193

Exploring the Browser Object Model
In some situations, an app may need to work with the user’s browser or device. In this section you will review some of
the objects, properties, and methods associated with the Browser Object Model (BOM). Like objects in the Document
Object Model, objects in the BOM are also arranged in a hierarchy with the browser window at the top of the tree. See
Figure 5-33.

Figure 5-33 Browser Object Model

window

history location navigator screen document

The total number of pages stored in the history list is provided by the window.history.length
property. Note

The browser automatically creates the window object and the other objects in tree. The window object is also referred
to as a global object because all other objects in the BOM are contained within it.

the History Object
Each browser window maintains a history of all the pages that have been opened during the current session within a
history list. Under the BOM, this information is stored in the history object. For security and privacy reasons, the
history object does not store the actual contents or addresses of those pages, but you can go back and forth through
the history list using the back(), forward(), and go() methods described in Figure 5-34.

For example, to go back one page in the history list, apply either of the following statements:

window.history.back();

window.history.go(-1);

To go forward one page, apply either command:

window.history.forward();

window.history.go(1);

These navigation methods are often used for applications that involve data entry in web forms spread across multiple
pages. By applying these methods, users can go back or forward through the pages to review or revise their answers.
To navigate through the history list of a popup window, use the name assigned to the window object as part of the
history statement.

Figure 5-34 Methods of the History object

history mEthoD DEscription

history.back() Go back one page in the history list

history.forward() Go forward one page in the history list

history.go(integer) Go to a page whose index is indicated by integer. Negative integers cause the browser to go back in the history list;
positive integers cause the browser to go forward. An integer value of 0 reloads the page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel194

the location Object
Information about the current page opened in the browser is stored in the location object. Properties and methods
of the location object are described in Figure 5-35.

Figure 5-35 Properties and methods of the location object

propErty DEscription

location.hash Returns the anchor part (#) of the location URL

location.host Returns the name of the server and the port number, if present

location.hostname Returns the name of the server hosting the URL

location.href Returns the full text of the URL address

location.pathname Returns the directory and/or filename within the URL

location.port Returns the port number of the URL

location.protocol Returns the protocol used by the browser to access the page

location.search Returns the query string portion of the URL

location.assign(url) Loads the page at the url address

location.reload() Reloads the current page

location.replace(url) Replaces the current document with the page at the url address

The location object is a property of both the document and window objects, so you can write the entire reference
as either document.location or window.location. If you omit the document or window object, the location
is assumed to refer to the current document being viewed in the currently active window.

The location object is useful for apps that must load certain web pages or extract important information from page
addresses. A navigation app might need to load specific web page maps or geolocation websites to function prop-
erly. Web forms often include field names and values as part of the web address so that by accessing the location
object, the app can extract those field names and values from the address. For example, following statement uses the
location object to load the Google home page into a popup browser window named newWin.

let newWin = window.open("", "searchbox", "width=700, height=700");

newWin.location.href = "http://www.google.com";

You can also load the Google home page using either of the following statements:

location.assign("http://www.google.com");

location.replace("http://www.google.com");

The difference is that replace() method removes the URL of the current page, so that the user won’t be able to use
the back button to navigate back to the original document.

the navigator Object
Originally introduced with the Netscape Navigator browser in 1995, the navigator object is used to obtain infor-
mation about the user’s browser. Different browsers support different properties, but the properties described in
Figure 5-36 are supported by all current versions of the major browsers.

The navigator object is primarily used for debugging or for verifying that the user is running a compatible browser
or operating system. For example, the following code tests whether the language of the browser is based on United
States English, running a different command block if it is not:

if (navigator.language !== "en-US") then {

 statements to work with browsers of other languages

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exPlorIng The BroWser oBjecT model 195

In the past, the navigator object was sometimes used for to choose which code to run based on the user’s browser.
For example, an application would run one set of code for Netscape and another for Internet Explorer. However, it is
usually better and more effective to use object detection to determine whether the browser (regardless of its vendor)
supports a section of code and using a try catch statement to handle exceptions.

the screen Object
Computer displays vary widely depending on the type of device, the size and resolution of the monitor, the features
of the graphics card and screen settings chosen by the user. Information about the screen is stored in the screen
object. Figure 5-37 describes the properties associated with the object.

Figure 5-36 Properties of the navigator object

propErty DEscription

navigator.appName Returns the name of the browser

navigator.appVersion Returns version information about the browser

navigator.geolocation Returns a geolocation object that can be used to extract information about the user’s current position

navigator.language Returns information on the browser’s primary language

navigator.onLine Determines whether the browser is currently online

navigator.platform Returns information about the platform on which the browser is running

navigator.userAgent Returns information about the browser, platform name, and compatibility

Figure 5-37 Properties of the screen object

propErty DEscription

screen.availHeight Returns the height of the screen in pixels, excluding parts of the browser such as the taskbar, menu, or scrollbars

screen.availWidth Returns the width of the screen in pixels, excluding parts of the browser such as the taskbar, menu, or scrollbars

screen.colorDepth Returns the bit depth of the screen’s color palette

screen.height Return the total height of the screen in pixels

screen.pixelDepth Returns the color resolution in bits per pixel of the screen

screen.width Returns the total width of the screen in pixels

If your app employs popup windows, you can use the width and height properties of the screen object to center
the popup within the screen. To center a popup window, subtract the width and height of the popup from the screen’s
width and height and divide those differences by two. Assign the two calculated values to the popup window’s left
and top position. The following code show a function that opens a popup window centered on the screen for a given
width and height value:

function centerPopup(url, popName, popWidth, popHeight) {

 let leftPos = (screen.width - popWidth)/2;

 let topPos = (screen.height - popHeight)/2;

 let popOptions = "width="+popWidth + ", height=" + popHeight +

 ", left=" + leftPos + ", top=" + topPos;

 let popWin = window.open(url, popName, popOptions);

}

Note that this method will not work for users running multiple monitors; however, there are workarounds involving
using the available height and width within the current browser window.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel196

Summary
❯❯ A document is made up of objects called nodes organized into a hierarchical structure called a node tree. Nodes
can represent elements, text strings, attributes, and other document objects.

❯❯ Nodes have a familial relationship and can be parents, children, siblings, or descendants of other nodes.

❯❯ A node can be connected to other nodes to create document fragments, which can then be connected to the
document’s node tree.

❯❯ HTML attributes are matched in JavaScript by properties attached to element nodes.

❯❯ A node tree can be restructured using the appendChild() and insertBefore() methods, which move nodes
from one location to another.

❯❯ A node can be copied using the cloneNode() method.

❯❯ The setInterval() method repeats a function or command block at set intervals. To stop a function
or command block from repeating, apply the clearInterval() method.

❯❯ The setTimeout() method runs a function or command block after a specified time has elapsed. To cancel the
function or command, apply the clearTimeout() method.

A successful web app is one that is easy to use with clear and consistent feedback to the user. As you think about
your own apps, keep in mind the following tips:

❯❯ Know your users. Learn their strengths and weakness. An app created for the elderly might have very different
design features than an app produced for a much younger generation.

❯❯ Determine how your app will be used. Are your users going to be on mobile devices or at a kiosk? Plan your
design with the most likely devices in mind.

❯❯ Provide constant feedback. Whenever a user interacts with your app there should always be feedback indicated
that the app has recognized the user activity and is responding. Don’t leave the user with “dead air,” unsure
whether the app is really working as intended.

❯❯ Anticipate user error. User error is perhaps the most common kind of error. Make sure you build in safeguards
that can prevent user error as much as possible so that user experience is enjoyable and free of frustration.

❯❯ Keep it simple. An app with a lot of busy and distracting design features is not as effective as a clean and direct
interface. Focus on only a few things at any one time and have your app direct the users to those tasks.

The best web apps are the ones that meet the needs of the customers and help them to be effective in their tasks.

Skills at Work Designing your Web App

Quick Check 4

1. provide two statements that display the previous page in the browser history.

2. What is the difference between the assign() method and the replace() method?

3. provide an expression to return the width of screen after adjusting for browser features such as toolbars, menus,
and scrollbars.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

revIeW QuesTIons 197

❯❯ System dialog boxes that receive user input can be created with the window.confirm() and
window.prompt() methods.

❯❯ Properties of the browser window itself can be set using the window object.

❯❯ A new browser window can be created and configured using the window.open() method.

❯❯ The Browser Object Model contains a hierarchy of objects relating to the operation of the browser.

❯❯ The history object contains information on the history of pages viewed by the user. The location object
contains information on the current page. The navigator object contains information about the browser itself.
The screen object contains information on the screen in which the page is rendered.

Key Terms
confirmation window

deep copy

document fragment

global object

history list

history object

lightbox

location object

modal

modal window

navigator object

node

node list

node tree

overlay

popup window

prompt window

root node

screen object

this object

timed command

Review Questions
1. The node at the top of the document node tree

containing all other nodes is the _________________
node.
a. parent
b. root
c. head
d. body

2. To reference the third child node of a parent node,
use _________________.
a. childNodes[3]
b. childNodes[4]
c. childNodes.2
d. childNodes[2]

3. To create a node list of all img element
belonging to the slideshow class, use
_________________.
a. document.querySelectorAll("img.

slideshow")
b. document img.slideshow
c. document.selector("img.slideshow")
d. document.querySelector("img.

slideshow")

4. Which of the following is an important difference
between node lists and HTML collections?
a. HTML collections are created using HTML elements.
b. Node lists are dynamic, HTML collections are static.
c. Node lists are static, HTML collections are dynamic.
d. HTML collections include attributes and text strings.

5. Which of the following is an action performed by
the appendChild() method?
a. It adds the node to the end of the parent node’s

child list.
b. It adds the node to the beginning of the parent

node’s child list.
c. It replaces any child nodes of the parent node.
d. It copies the parent node and adds it as a child of

the parent.

6. Provide the JavaScript equivalent of the HTML tag:
.
a. document.logo[src] = "photo1.jpg"
b. document.getElementById("logo").

src = "photo1.jpg"
c. document[logo].src = "photo1.jpg"
d. document.image[0].src = "photo1.jpg";

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel198

7. What is the JavaScript equivalent of the HTML class
attribute?
a. class
b. classVar
c. classValue
d. className

8. Provide the JavaScript equivalent of the HTML tag:
<p id="main" style="color: red">
a. document.getElementById("main").

color = "red";
b. document.getElementById("main").

style = "red";
c. document.getElementById("main").

style.color = "red";
d. document.getElementById("main").

red = true;

9. In JavaScript, the CSS border-color property is
entered as _________________.
a. bordercolor
b. border-color
c. border.color
d. borderColor

10. Which of the following moves the third child of a
parent node to the end of the child node list?
a. node.appendChild(node.

children[3]);
b. node.lastChild(node.children[2]);
c. node.appendChild(node.

children[2]);
d. node.moveTo(node.children[2],

node.lastChild);

11. Which of the following creates of copy of a node
including all the node’s descendants?
a. node.cloneNode(true);
b. node.cloneNode(false);
c. node.copy(deep);
d. node.copy(true);

12. Which method do you use to repeat a function or
command block at a set interval?
a. setRepeat()
b. repeatCommand()
c. setInterval()
d. repeatFunction()

13. What method do you use to create a system dialog
box with a message, an OK button, and a Cancel
button?
a. window.alert()
b. window.prompt()
c. window.confirm()
d. window.open()

14. Which of the following provides code to create a
browser window that displays the website
http://www.example.com with the title “new” sized
to 800 pixels wide by 600 pixels tall?
a. window.open("new", "http://

www.example.com", "width=800,
height=600")

b. window.open("http://www.example.
com", "new", "width=800,
height=600")

c. window.open("http://www.example.
com", "new", "width=800px,
height=600px")

d. window.create("http://www.
example.com", "new", "width=800,
height=600")

15. Which object provides information about the URL
of a currently displayed website?
a. navigator
b. document
c. location
d. screen

16. What is the advantage of using nodes over writing
HTML content using the innerHTML property?

17. What is an advantage and disadvantage of the using
the document.querySelectorAll() method
for selecting elements from an HTML document?

18. What are some disadvantages in using popup
windows to convey information or content in a
web app?

19. What is the this object and why would you
reference it with an event handler or event listener?

20. Why should you use JavaScript to change an
element class instead of directly changing
the element’s style to change the element’s
appearance?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on ProjecTs 199

Hands-On Projects
Hands-On Project 5-1

In this project you will create an online practice quiz for an Algebra I class. All questions must be answered
within a specified time limit. A countdown clock will show the number of seconds remaining to complete
the quiz. At the end of the quiz the number of correct answers will be totaled, and incorrect answers will be
marked in red so that students can retake the quiz to correct their mistakes. When the clock is not running,
the quiz should be hidden from the student. A preview of the completed page during the quiz is shown in
Figure 5-38.

Figure 5-38 Completed Project 5-1

The project uses an overlay to hide the quiz when the clock is not running. The styles for the overlay and
other page elements are saved in the style.css file. To change the overlay from visible to invisible, your
project will change the value of the overlay’s class attribute so that a different visual style is applied to the
overlay.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel200

Do the following:

1. Use your code editor to open the project05-01_txt.html and project05-01_txt.js files from the js05 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project05-01.html and project05-01.js, respectively.

2. Go to the project05-01.html file in your code editor and in the head section add a script element to load the
project05-01.js file, deferring the app until the page is loaded. Review the contents and structure of the web
document and then close the file, saving your changes.

3. Go to the project05-01.js file in your code editor. Below the initial code at the top of the file declare the timeID
variable but do not set an initial value.

4. Declare the questionList variable, storing in it the node list created by the querySelectorAll() method
using “div#quiz input” as the CSS selector.

5. Add an onclick event handler to the startQuiz object, running an anonymous function that sets the
class attribute of the overlay object to “showquiz” and repeats the countdown() function every 1 second
(every 1000 milliseconds), storing the id of the timed command in the global timeID variable you declared in
Step 3.

6. Create the countdown() function to update the quiz clock. Within the function create an if else
statement that tests whether the value of the timeLeft variable is equal to 0. If it is equal to 0, do the
following:

a. Use the clearInterval() method to cancel the timed command with the variable timeID.

b. Declare a variable named totalCorrect and set it equal to the value returned by the checkAnswers()
function.

c. If totalCorrect is equal to the length of the correctAnswers array then display an alert window
congratulating the student on getting 100%, otherwise do the following: (i) Display an alert window
indicating the number of incorrect answers out of the total number of questions on the quiz, (ii) change the
value of the timeLeft variable to quizTime, (iii) set quizClock.value to the value of the timeLeft
variable, and (iv) change the class attribute of the overlay object to “hidequiz”.

7. Otherwise, if the timeLeft variable is not equal 0, then:

a. Decrease the value of timeLeft by 1.

b. Set quickClock.value to the value of the timeLeft variable.

8. Save your changes to the file and then open project05-01.html in your web browser.

9. Run the quiz within the allotted time. Verify that the clock counts down the time remaining every second. At the
end of the time limit, confirm that the quiz catches your mistakes and reports the number of correct answers
out of the total number of questions. Verify that when you get all the answers correct, a congratulatory message
is given.

10. Return to the project05-01.js file in your code editor. Increase the value of the timeLimit variable to 90 and
the close the file, saving your changes.

Hands-On Project 5-2

In this project you will create an app that allows users to rank photos by clicking the images in a “photo
bucket” to move them from the bucket to an ordered list of images. Clicking an image in the list returns the
photo to the bucket while automatically renumbering the list. A preview of the completed project is shown in
Figure 5-39.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on ProjecTs 201

Do the following:

1. Use your code editor to open the project05-02_txt.html and project05-02_txt.js files from the js05 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project05-02.html and project05-02.js, respectively.

2. Go to the project05-02.html file in your code editor and in the head section add a script element to load the
project05-02.js file, deferring the app until the page is loaded. Review the contents and structure of the web
document and then close the file, saving your changes.

3. Return to the project05-02.js file in your code editor. Below the initial comment section declare the following
variables:

a. The images variable containing an HTML collection of all elements with the tag name “img”.

b. The photoBucket variable referencing the element with the id “photo_bucket”.

c. The photoList variable referencing the element with the id “photo_list”.

4. Create a for loop that iterates through all of the items in the images collection.

5. Within the for loop insert an onclick event handler that runs an anonymous function when an image is
clicked.

Figure 5-39 Completed Project 5-2 Joan Carey

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel202

6. When an image is clicked it is either moved from the photo bucket to the photo list or from the photo list
back to the photo bucket. To determine which action to perform, add the following if else statement to the
anonymous function:

a. If the parent element of the clicked image has an id equal to “photo_bucket” then do the following: (i) Create
an element node named newItem for the li element, (ii) append newItem to the photoList object, and
(iii) append the image to the newItem object using the appendChild() method. Note: Use the this
object to reference the image that was clicked by the user.

b. Otherwise, do the following: (i) Declare a variable named oldItem equal to the parent element of the
clicked image, (ii) append the clicked image to photoBucket object, and (iii) remove oldItem from the
parent element of oldItem using the removeChild() method.

7. Save your changes to the file and then load project05-02.html in your web browser.

8. Verify that you can move items between the photo bucket and the photo list by clicking the image within either
location.

Hands-On Project 5-3

In this project you will explore more about the properties and uses of nodes. The first feature you will use
is the nodeName property which, for element nodes, returns the tag name in uppercase letters. Thus, the
expression n.nodeName would return a value of “P” if the node n represents a paragraph element. The
second feature is a for loop that doesn’t use a counter variable, but instead iterates through each child
element of a parent node. The general structure is the following:

for (let n = node.firstElementChild; n != null; n = n.nextElementSibling) {

 commands applied to each child node

}

The for loop starts with the first child of node, storing that child node in the node variable n. With each
new iteration, n proceeds to next sibling until it tries to go past the last child node. At that iteration, the next
sibling would be null (because there is no next sibling) and the loop ends.

You will use these node techniques in a project that automatically generates a table of contents for a document
of any length. In this project the document is the text of the amendments to the U.S. Constitution and the name of
each amendment is marked with an h2 heading. The completed project shown in Figure 5-40 extracts the text of
each h2 heading, creating a list of internal hypertext links that will jump to each amendment listed in the document.

Do the following:

1. Use your code editor to open the project05-03_txt.html and project05-03_txt.js files from the js05 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project05-03.html and project05-03.js, respectively.

2. Go to the project05-03.html file in your code editor and add a script element loading the project05-03.js file,
deferring the app until the entire page is loaded. Take some time to study the contents and structure of the
document. Note that the table of contents will be written to an ordered list with the id “toc” and the source of
the table of contents is stored in element with the id “source_doc”. Close the file, saving your changes.

3. Go to the project05-03.js file in your code editor. Below the initial comment section declare the following
variables:

a. The sourceDoc variable referencing the element with the id “source_doc”.

b. The toc variable referencing the element with the id “toc”.

c. The headingCount variable with an initial value of 1.

d. A constant named heading with a value of “H2”.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on ProjecTs 203

4. Create a for loop using the code structure described above going from the first child element of the
sourceDoc variable through the last child where the next sibling element would be null.

5. Within the for loop insert an if statement that tests whether the value of n.nodeName is equal to the value of
the heading constant.

6. Within the if statement insert the following commands to be run if the condition is true:

a. Create an element node named anchor for the a element.

b. Set the value of the name attribute of anchor to the text string: “doclink” + headingCount.

c. Use the insertBefore() method to insert anchor before first child of the n node.

d. Create an element node named listItem for the li element and an element node named link for the a
element. Use the appendChild() method to append link to listItem.

e. Set the value of the textContent property of link to n.textContent.

f. Set the value of the href property of listItem to the text string: “#doclink” + headingCount;

g. Use the appenChild() method to append listItem to the toc object.

h. Increase the value of the headingCount variable by 1.

7. Save your changes to the document and then load project05-03.html in your web browser.

8. Verify that the app populates the table of contents with the names of each of the 27 amendments and that when
an amendment is clicked the browser jumps to that amendment’s location in the source document.

Figure 5-40 Completed Project 5-3

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel204

Hands-On Project 5-4

In this project you will create a browser popup window that displays footnotes for a soliloquy from Hamlet.
The 26 phrases that require a footnote are marked with the <dfn> tag in the document. The text of the
footnote is saved in the footnotes array stored in the footnotes.js file. Rather than loading an HTML file into
the popup window, your app will insert the following document fragment into the popup window:

<h1>phrase</h1>

<p>footnote</p>

<input type=”button” value=”Close Footnote” />

where phrase is the phrase from the document and footnote is the corresponding entry in the footnotes
array. The styles associated with these elements will also be added to the popup window as inline styles.
Figure 5-41 shows a preview of the completed web page and the footnote popup.

Do the following:

1. Use your code editor to open the project05-04_txt.html and project05-04_txt.js files from the js05 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project05-04.html and project05-04.js, respectively.

2. Go to the project05-04.html file in your code editor and in the head section add a script element to load
the footnotes.js and project05-04.js files, deferring both files until the page is loaded. Review the text of the
document, noting the phrases that are marked with the <dfn> tag. Close the file, saving your changes.

3. Return to the project05-04.js file in your code editor. Create a for loop that uses a counter variable, i, to
loop through all the items in phrases node list. For each phrases[i] item in that list, apply an onclick
event handler that runs an anonymous function. Add the statements described in Steps 4 through 10 to that
anonymous function.

Figure 5-41 Completed Project 5-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on ProjecTs 205

4. Create the phrase variable containing an h1 element. Set the value of the textContent property to the value
of the textContent property of the this object. (Note that in this context, the this object references the
dfn element clicked by the user.)

5. Create the footnote variable containing a p element. Set the value of the textContent property of that
element to the value of footnotes[i], where i is the counter from the for loop. Apply the style rule
“font-style: italic; font-size: 1.2em;” to the footnote.style object property.

6. Create the closeButton variable containing an input element. Set the value of the button’s type attribute
to “button” and the value attribute to “Close Footnote”. Apply the style rule “display: block; margin:
10px auto” to the closeButton.style object property.

7. Use the window.open() method to create a popup window, storing the window in a variable named popup.
The url parameter should be an empty text string, the title parameter be “footnote” and the options
parameter should set the width of the popup to 300, the height to 200, and the top and left values to 100.

8. Apply the style rule “background-color: ivory; font-size: 16px; padding: 10px;” to the
popup.document.body.style object property.

9. Use the appendChild() method to append the phrase, footnote, and closeButton objects to
popup.document.body.

10. Add an onclick event handler to the closeButton element node, running an anonymous function containing
the single statement popup.close() to close the popup window when the button is clicked.

11. Save your changes to the file and then load project05-04.html in your web browser. Verify that clicking a marked
phrase in the document opens a popup window with the text of the phrase and footnote as well as the Close
Footnote button. Confirm that clicking the Close Footnote button closing the popup window.

Hands-On Project 5-5

Debugging challenge

In this debugging challenge you will work on an online version of the Concentration game. In the game pairs of
image tiles are randomly placed on a board face down. To view an image, click the tile followed by another tile
that you believe contains the matching image. If the images match, the tiles remain face up; otherwise they are
automatically flipped face down after 1 second.

In this online version, the tile image and back of the tile image are placed within div elements belonging to the
tile class. The second of the two images is always the one displayed on the page. When a tile is flipped, the
order of the two images is switched and then switched again to flip the tile back. Tiles can only be clicked if
they are face down and only two tiles can be clicked at any time. The code for the game has several errors that
prevent it from working correctly. A preview of the completed page is shown in Figure 5-42.

Do the following:

1. Use your code editor to open the project05-05_txt.html and project05-05_txt.js files from the js05 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project05-05.html and project05-05.js, respectively.

2. Go to the project05-05.html file in your code editor and in the head section add a script element to load
the project05-05.js file, deferring it until the entire page is loaded. Take some time to review the contents and
structure of the game board. Close the file, saving your changes.

3. Return to the project05-05.js file in your code editor. Comments have been added to help you interpret the code
in the file.

4. The page initially loads the scrambleTiles() function to randomize the order of the tiles on the game board.
There are two errors within the function. Locate and correct the errors. Note: There is no error in the statement
that declares the randomIndex variable.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Creating a Web app Using the DoCUment objeCt moDel206

5. After the board is scrambled, the page will run the playConcentration() function to set up the game play
and event handlers. There are seven errors in this function that prevent the game from running or running
correctly. Locate and fix the errors.

6. When two tiles have been clicked, the page will run the flipBack() function after a 1-second delay. There is
an error in the flipBack() function. Locate it and correct it.

7. Save your changes to the file and then open project05-05.html in your web browser. Verify that you can play
the game by clicking the tiles to view their images. You should be able to only click two tiles at a time and
only when the tile is face down. Matching tiles should remain face up. Reloading the page should reorder the
tiles. If you still have errors in the code, use the browser debugger tools to assist you in locating and fixing
the errors.

Case Projects
Individual Case Project

Add a page to your individual website that educates visitors about web security. Report the values of at least
six properties from Figures 5-36 and 5-37 to illustrate the breadth of information about a user’s computer that
a web app can access. Perform a web search on practices for using the web safely, and include links to at least
three sources, along with a one-sentence summary of each.

Figure 5-42 Completed Project 5-5 Photo images from Joan Carey; Tile image by Patrick Carey

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

case ProjecTs 207

Team Case Project

In this project, your team will draw the DOM tree for an HTML document.

To start, break into pairs, with each pair responsible for a different HTML document in your team website.
With your partner, sketch the DOM tree for the selected document. Your tree should show the hierarchy of the
site, including elements, attributes, and text content, similar to Figure 5-4.

When all the pairs are finished creating their DOM trees, assemble as a full group and compare your trees.
Identify and discuss any differences between trees. Make any changes necessary to your own tree based on
feedback from the rest of the team.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

209

Chapter 6

When you complete this chapter, you will be able to:

❯❯ Use JavaScript to reference form and form elements

❯❯ Retrieve values from selection lists

❯❯ Retrieve values from option buttons

❯❯ Format numeric values and currency values based on local standards

❯❯ Write scripts that respond to form events

❯❯ Store values in hidden fields

❯❯ Understand how web forms are submitted for validation

❯❯ Validate web form fields using customized tools

❯❯ Test a field value against a regular expression

❯❯ Create a customized validation check for credit card data

❯❯ Manage the form validation process

Enhancing and
Validating Forms

In this chapter you will learn how to use JavaScript to manage web forms, perform calculations based
on data from those forms, report the results, and validate data entry to catch user error.

Exploring Forms and Form Elements
You have been given two web pages containing commonly used forms: an order form for calculating the
cost of a purchase and a payment form for entering credit information to complete the purchase. The gen-
eral code for the order form web page has already been created for you. Open the files for that page now.

To open the files for the order form:

1. Go to the js06 c chapter folder of your data files.

2. Use your code editor to open the js06a_txt.html and js06a_txt.js files. Enter your name and the date
in the comment section of each file and then save them as js06a.html and js06a.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms210

3. Return to the js06a.html file in your code editor. Within the head section, add the following code to run the
js06a.js script, deferring the loading the script file until after the entire page has loaded.

<script src="js06a.js" defer></script>

4. Take some time to scroll through the contents of the HTML file, noting that a web form containing several input
elements has been enclosed within a web table.

5. Close the file, saving your changes.

6. Open the js06a.html file in your web browser. Figure 6-1 shows the current layout and contents of the page.

Figure 6-1 Product order form

model field

qty field
modelCost

field

planCost
field

totalCost
field

subtotal
field

salesTax
field

plan field

The order form contains the following fields:

❯❯ The model field displayed as a selection list from which customers can choose a model to order

❯❯ The qty field displayed as another selection list from which customers specify the amount of the selected
model to order

❯❯ The plan field displayed as a collection of option buttons from which customers choose the protection plan, if
any, for the selected model

❯❯ The modelCost field calculating the cost of the model times the quantity ordered

❯❯ The planCost field calculating the cost of the protection plan times the quantity ordered

❯❯ The subtotal field calculating the sum of the modelCost and planCost fields

❯❯ The salesTax field calculating a 5% sales tax on the subtotal

❯❯ The totalCost field adding the values of the subtotal and salesTax fields

Note that some of these fields are entered by the customer and some are automatically calculated by the web form
using the script you will write. Currently no calculations have been done on the web form data.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring Forms and Form ElEmEnTs 211

the Forms Collection
To program a web form, you work with the properties and methods of the form object and the elements it
contains. Because a page can contain multiple web forms, JavaScript organizes forms into the following HTML
collection:

document.forms

The first several forms listed in the page are referenced using the expressions document.forms[0],
document.forms[1], and so forth. You can also reference a form using the value of the form’s name attribute using
either of the following expressions:

document.forms[fname]

document.forms.fname

where fname is the form’s name. As always, you can reference a form using the document.getElementById()
method if the form has been assigned an id. Figure 6-2 describes some of the properties and methods associated with
individual form objects.

ProPerty or Method descriPtion

form.action Sets or returns the action attribute of the web form

form.autocomplete Sets or returns the autocomplete attribute; allows the browser to automatically complete form fields

form.enctype Sets or returns the enctype attribute

form.length Returns the number of elements in the form

form.method Sets or returns the method attribute

form.name Sets or returns the name attribute

form.noValidate Sets or returns whether the form should be validated upon submission. Use true for no validation, false to
apply validation.

form.target Sets or returns the target attribute

form.reset() Resets the web form

form.submit() Submits the web form

form.requestAutocomplete() Triggers the browser to initiate autocompletion of those form fields that have autocomplete activated

Figure 6-2 Form properties and methods

For example, the following statement resets the form with the name orderForm in the current document:

document.forms.orderForm.reset()

Resetting a form will replace all current values and selections in the form with their default values and selections.

Working with Form elements
A form and its elements are organized into a hierarchy like the one shown in Figure 6-3.

To reference specific elements within that hierarchy, use the following HTML collection:

form.elements

where form is the reference to the web form.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms212

You can reference an element using the value of the element’s name attribute using the following expression:

form.elements[ename]

form.elements.ename

where ename is name of a field contained within the web form or the index number of the element within the elements
collection. Fields are always associated with a web form control like an input box or selection list. For example, to
reference the model field from the orderForm form, apply either of the following object references:

document["orderForm"].elements["model"]

document.orderForm.elements.model

As with the form itself, you can always reference the control associated with a field using the
document. getElementById() method.

Figure 6-3 Web form hierarchy

document

window

forms[0] forms[1] forms[2]

elements[0] elements[1] elements[2]

options[0]

options[1]

options[2]

options within
a selection list

The id attribute for a web form element references the control that the user interacts with; the name
attribute references the field in which the element’s value is stored.

Note

properties and Methods of input elements
A common form element is one marked with the HTML <input> tag. Every attribute that is associated with the <input>
tag is mirrored by a JavaScript property. Figure 6-4 lists some of the properties and methods associated with input boxes.

Thus, to set the value of the username field within the orderForm web form, apply the statement:

document.orderForm.username.value = "John Smith";

and the text string “John Smith” will appear within the input box control and stored as the value of the username
field.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring Forms and Form ElEmEnTs 213

Navigating Between Input Controls
You might need your script to manage how users navigate between the controls on your form. A form control like an
input box, text area box, or selection list receives the focus of the browser when it becomes active, either by mov-
ing the cursor into the control or by clicking it. A control that has received the focus is ready for data entry. To use
JavaScript to give focus to a form element, apply the following property to the element:

element.focus()

where element is a reference to the web form control that will become active in the document. To remove focus from
a form element, apply the following blur() method:

element.blur()

Note that using the blur() method to remove the focus from an element doesn’t give any other element the focus. To
speed up data entry, many web forms will open with an input control automatically given the focus. You will program
the order form on the Coctura website to give the focus to the selection list from which a customer selects a product
model to order.

To give the focus to the selection list:

1. Return to the js06a.js file in your code editor.

2. Directly below the initial comment section, add the following code to be run when the page is initially opened in
the browser window (see Figure 6-5):

window.addEventListener("load", function() {

 let orderForm = document.forms.orderForm;

 let model = orderForm.elements.model;

 // Select Model selection list when form opens

 model.focus();

});

ProPerty or Method descriPtion

input.autocomplete The value of the input box’s autocomplete attribute

input.defaultValue The default value for the input box

input.form The form containing the input box

input.maxLength The maximum number of characters allowed in the input box

input.name The name of the field associated with the input box

input.pattern The value of the input box’s pattern attribute

input.placeholder The value of the input box’s placeholder attribute

input.readOnly Returns whether the input box is read-only or not

input.required Returns whether the input box is required or not

input.size The value of the input box’s size attribute

input.type The data type associated with the input box

input.value The current value displayed in the input box

input.blur() Removes the focus from the input box

input.focus() Gives focus to the input box

input.select() Selects the contents of the input box

Figure 6-4 Properties and methods of input boxes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms214

3. Save your changes to the file and then reload js06a.html in your browser.

4. Verify that the selection list box for the model field has the focus, by pressing the up and down arrows on your
keyboard to change the selected mode option without having to select the selection list first.

In the rest of the form, you will calculate the cost of a customer’s order. This involves (1) determining the price of the
order (equal to the price of the selected model multiplied by the quantity ordered); (2) adding the cost of the protection
plan, if any, for the quantity of models ordered; (3) calculating the sales tax; and (4) adding all these costs to determine
the grand total. Start with a function to calculate the cost of ordering a model.

You can also ensure that a field gets the focus when the page loads by adding the autofocus attribute
to element’s markup tag in the HTML file.Note

Figure 6-5 Giving the focus to the Model selection list

Run the anonymous
function when

the page is loaded

Give the focus
to the model
selection list

Reference to the
selection list within

the order form

Reference to the
order form

Working with Selection Lists
Extracting a value from a form control like an input box is very straightforward: You only need to reference the value
property of the input box. Selection lists, however, do not have a value property because they contain a multitude
of possible options each with a different value. Figure 6-6 describes some of the properties associated with selection
lists that you will use in your program.

ProPerty or Method descriPtion

select.length The number of options in the selection list, select

select.multiple Returns true if more than one option can be selected from the list

select.name The selection list field name

select.options The object collection of the selection list options

select.selectedIndex The index number of the currently selected option

select.size The number of options displayed in the selection list

select.add(option) Adds option to the selection list

select.remove(index) Removes the option with the index number, index, from the selection list

Figure 6-6 Properties and methods of selection lists

The value of the field associated with a selection list is the value of the option selected by the user. Selection list options
are organized into the following HTML collection:

select.options

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working WiTh sElEcTion lisTs 215

If no option is selected, the selectedIndex property returns a value of −1.Note

ProPerty or Method descriPtion

option.defaultSelected Returns true if option is selected by default

option.index The index number of option within the options collection

option.selected Returns true if the option has been selected by the user

option.text The text associated with option

option.value The field value of option

Figure 6-7 Properties and methods of selection list options

To return the value from a selection list field, you must first determine which option has been selected using the
selectedIndex property and then reference the value property of that selected option to determine the field’s
value. The following code demonstrates how to return the cost of the product chosen from the model selection list box:

let mIndex = model.selectedIndex;

let mValue = model.options[mIndex].value;

The initial cost of the customer’s order is equal to the price of the selected model multiplied by the quantity of items
ordered. Because both the model and qty fields are entered as selection lists, you will retrieve the values of the two
selected options. Add the code into the calcOrder() function, which will be nested and called within the anonymous
function you created in the previous set of steps.

To create the calcOrder() function:

1. Return to the js06a.js file in your code editor.

2. Within the anonymous function add the following statement to call the calcOrder() function:

// Calculate the cost of the order

calcOrder();

3. Next, add the following initial code for the calcOrder() function described in Figure 6-8.

function calcOrder() {

 // Determine the selected model

 let mIndex = model.selectedIndex;

 let mValue = model.options[mIndex].value;

 // Determine the selected quantity

 let qIndex = orderForm.elements.qty.selectedIndex;

 let quantity = orderForm.elements.qty[qIndex].value;

 // Model cost = model cost times quantity

 let modelCost = mValue*quantity;

 orderForm.elements.modelCost.value = modelCost;

}

where select is the reference to a selection list within the web form. As with other HTML collections, an individual
option is referenced either by its index value within the collection or by the value of its id attribute. Figure 6-7
describes the properties associated with individual selection list options within the options collection.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms216

Figure 6-9 Cost of one 6-Quart pressure cooker

Some selection lists allow multiple selections. In those cases, the selectedIndex property returns the index of
the first selected item. To determine the indices of all the selected items, create a for loop that runs through the
options in the list, checking each to determine whether the selected property is true (indicating that the option
was selected by the user). If the option is selected, it can then be added to an array of the selected options using
the push() method. The general structure of the for loop is:

let selectedOpt = new Array();

for (let i = 0; i < select.options.length; i++) {

 if (select.options[i].selected) {

 selectedOpt.push(select.options[i]);

 }

}

where select is a selection list object. After this code runs, the selectedOpt array will contain all the selected
options. To extract the values of the selected options, create another for loop that iterates through the items in the
selectedOpt array to extract the text and value properties of each.

Programming Concepts Selection List with Multiple Values

Figure 6-8 Calculating the cost of models ordered

Calculate the cost of
the customer order

Retrieve the value of
the selected model

Retrieve the quantity
ordered of that model

Calculate the cost of
ordering that model in
the indicated quantity

To the cost of the order, add the cost of the protection plan, if any, selected by the customer. To retrieve the cost of the
protection plan, you will work with the values stored in option buttons associated with the different protection options.

4. Save your changes to the file and then reload js06a.html in your browser. As shown in Figure 6-9, a cost of
$129.95 appears in the input box as the result of multiplying the selected product (the 6-Quart pressure cooker
for $129.95) by the select quantity (1).

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working WiTh opTion BuTTons 217

Working with Option Buttons
Option or radio buttons are grouped together when they share a common field name stored in their name attribute.
For example, the four protection plan options shown in the order form all share the common name of “plan”. Option
buttons associated with a common field are placed within the following HTML collection:

form.elements.options

where form is the reference to the web form and options is the common field name. To reference a specific option
from the collection use either the index number or the id value of the option button control. Thus, the first option
button for the plan field from the customer order form would have the reference:

document.forms.orderForm.elements.plan[0]

Figure 6-10 describes some of the properties associated with individual option buttons.

ProPerty descriPtion

option.checked Boolean value indicating whether the option button, option, is currently checked by the user

option.defaultChecked Boolean value indicating whether option is checked by default

option.disabled Boolean value indicating whether option is disabled or not

option.name The field name associated with option

option.value The field value association with option

Figure 6-10 Properties of option buttons

Locating the Checked Option
The option selected by the user will be indicated by the presence of the checked property. The following code uses
a for loop to go through each option button associated with the plan field, storing the value of the selected option
in the pCost variable, and breaking off the for loop and storing the option button value once the checked button
has been found:

let orderForm = document.forms.orderForm;

let plan = orderForm.elements.plan;

for (let i = 0; i < plan.length; i++) {

 if (plan[i].checked) {

 planValue = plan[i].value;

 break;

 }

}

In place of a for loop, you can use the following CSS selector, which references the checked option button from the
plan field:

input[name="plan"]:checked

By placing this selector within a querySelector() method, you can retrieve the value of the checked option without
the need for a for loop as the following code demonstrates:

let planValue =

document.querySelector('input[name="plan"]:checked').value;

Note that these techniques will return a value only if an option has been selected from the option button collection.
Use this method now to retrieve the cost of the selected protection plan.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms218

To retrieve the cost of the selected plan:

1. Return to the js06a.js file in your code editor.

2. Within the calcOrder() function add the following code described in Figure 6-11.

// Retrieve the cost of the protection plan

let planValue =

document.querySelector('input[name="plan"]:checked').value;

// Charge the plan to each item ordered

let planCost = planValue * quantity;

orderForm.elements.planCost.value = planCost;

Checkbox controls work the same way as option buttons because the checked property indicates
whether the box is checked and the field value associated with a checked box is stored in the value
property of the checkbox object. However, this value is applied only when the checkbox is checked;
otherwise there is no field value associated with the element.

Note

Figure 6-11 Calculating the cost of the protection plan

Value of the plan
selected by the

customer

Calculate the cost of
applying the plan to
every item ordered

3. Save your changes to the file and then reload js06a.html in your browser. A 0 should now appear in the planCost
field because no protection plan ($0.00) is selected by default.

To complete the order form calculations, add commands to the calcOrder() function to calculate the subtotal, taxes
due, and the total cost of the order.

To complete the cost calculations:

1. Return to the js06a.js file in your code editor.

2. Add the following statements to the calcOrder() function to calculate and display the order subtotal:

// Calculate the order subtotal

let subtotal = modelCost + planCost;

orderForm.elements.subtotal.value = subtotal;

3. Add the following statements to calcOrder() to calculate the 5% sales tax:

// Calculate the 5% sales tax

let salesTax = subtotal * 0.05;

orderForm.elements.salesTax.value = salesTax;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working WiTh opTion BuTTons 219

4. Finally, add the following statements to calculate the total cost of the order by adding the subtotal and
sales tax:

// Calculate the total cost of the order

let totalCost = subtotal + salesTax;

orderForm.elements.totalCost.value = totalCost;

5. Figure 6-12 describes the newly added code in the function.

Figure 6-12 Calculating the subtotal, sales tax, and total order cost

Calculate the total
cost of the order

Calculate the sales tax
applied to the subtotal

Calculate the sum of
the cost of the model

and the cost of the
protection plan

Figure 6-13 Initial order calculations

Cost of the
protection plan

Sum of the model and
protection plan costs

Sales tax on
the order

Total cost of
the order

6. Save your changes to the file and then reload js06a.html in your browser. Figure 6-13 shows the calculated values
from the initial state of the order form.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms220

accessing the Option Label
A challenge with option buttons is that the text associated with the button is not part of the <input> tag but instead
is displayed alongside the button. HTML deals with this challenge with the <label> tag, which marks text associ-
ated with a specified form control. For example, the order form contains the following code for the No Protection Plan
option button and its label:

<input type="radio" id="plan_0" name="plan" value="0" checked />

<label for="plan_0">No protection plan ($0.00)</label>

The value of the input control’s id attribute (plan_0) is the same as the value of label’s for attribute, associating the
input control with the label. Because an input control can be associated with more than one label, JavaScript supports
the following labels node list for any input element:

input.labels

where input is a reference to an input element. The text of the No Protection Plan option button’s one (and only)
label would be retrieved using the following commands:

let noProtection = document.getElementById("plan_0");

let planLabel = noProtection.labels[0].textContent;

You can also use the querySelector() method to retrieve the text of the label associated with the checked option
button using the code:

let plan = document.querySelector('input[name="plan"]:checked');

let planLabel = plan.labels[0].textContent;

If the label contains HTML code in addition to plain text, it can be retrieved using the innerHTML property.

Formatting Data Values in a Form
The content of a form needs to be simple and clear. The numeric values shown in the order form, while calculated
correctly, are difficult to read. Currency values should be displayed to two decimal places with commas used as thou-
sands separators. In some cases, you may want to preface the value with a currency symbol, such as $ or €. You can
use JavaScript’s formatting methods to format calculated values as currency.

the toFixed() Method
JavaScript stores numeric values to 16 decimal places. This level of precision can result in calculated values displayed
with a long string of digits. For example, a value such as 1/3 would be stored and displayed as 0.3333333333333333. It
is rare that you would need more than a few decimal places in any calculation, so to make your forms more readable
you will often want to reduce the number of digits.

To set the number of digits displayed by the browser, apply the following toFixed() method:

value.toFixed(n)

where value is the value to be displayed and n is the number of decimal places. The following examples demonstrate
how the toFixed() method would display numeric values to different levels of precision:

let total = 2.835;

total.toFixed(0); // returns "3"

total.toFixed(1); // returns "2.8"

total.toFixed(2); // returns "2.84"

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FormaTTing daTa ValuEs in a Form 221

Notice that the toFixed() method converts a numeric value to a text string and rounds the last digit in the expres-
sion rather than truncating it. Do not apply this method until your script has finished all calculations. Prior to that,
you should keep the complete 16-digit level of accuracy in your calculations.

Formatting Values Using a Locale String
The toFixed() method is limited to setting the decimal place accuracy; it does not format numbers as currency or sepa-
rate groups of thousand with the comma symbol. To do those tasks, apply the following toLocaleString() method:

value.toLocaleString(locale, {options})

where locale is a comma-separated list of location and language codes that indicate the locale for displaying numeric
values, and options is a comma-separated list of formatting options for numeric values. With no arguments, the
toLocaleString() method displays a numeric value using the computer’s own local standards. The following code
demonstrates the format applied to a sample number in which the user’s computer employs standard English United
States formatting:

let total = 14281.478;

total.toLocaleString(); // returns "14,281.478"

Different locales have different formatting standards. In France, the convention is to use spaces to separate
groups of a thousand and commas to mark the decimal place. A French locale applied to the same test value
would appear as:

let total = 14281.478;

total.toLocaleString("fr"); // returns "14 281,47"

To create your own standards, customize the appearance of the formatted text using the options argument of the
toLocaleString() method. Figure 6-14 describes the options that provide for complete control over number
formatting.

oPtion descriPtion

style: type Formatting style to use where type is “decimal”, “currency”, or “percent”

currency: code Currency symbol to use for currency formatting where code designates the country or language

currencyDisplay: type Currency text to display where type is “symbol” for a currency symbol, “code” for the ISO currency code, or
"name" for the currency name

useGroup: Boolean Indicates whether to use a thousands grouping symbol (true) or not (false)

minimumIntegerDigits: num The minimum number of digits to display where num ranges from 1 (the default) to 21

minimumFractionDigits: num The minimum number of fraction digits where num varies from 0 to 20; 2 digits are used for currency and 0
digits are used for plain number and percentages

maximumFractionDigits: num The maximum number of fraction digits where num varies from 0 to 20; 2 digits are used for currency and 0
digits are used for plain number and percentages

minimumSignficantDigits: num The minimum number of significant digits where num varies from 1 (the default) to 21

maximumSignificantDigits: num The maximum number of significant digits where num varies from 1 (the default) to 21

Figure 6-14 Options of the toLocaleString() method

The following code demonstrates how to display a numeric value as currency using U.S. dollars by setting the locale
to U.S. English, the number style to currency, and the currency symbol to “USD” (the $ symbol):

let total = 14281.5;

total.toLocaleString("en-US", {style: "currency", currency: "USD"})

// returns "$14,281.50"

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms222

To display the same currency amount in Euros under a French locale, apply the following commands:

let total = 14281.5;

total.toLocaleString("fr", {style: "currency", currency: "EUR"})

// returns "14 281,50€"

You can set the locale value to undefined to apply a format based on whatever is set on the user’s computer.

Figure 6-15 Applying the toLocaleString() method

Set the locale
to U.S. English

Display the
value as currency

Use U.S. dollars ($)
as the currency

symbol

Display all costs
in currency format

The toLocaleString() method can be used with date values as well. By applying the method to a date
value, you can display a date or time in a wide variety of standard formats.Note

Use the toLocaleString() method to display every calculated value in the order form as U.S. currency prefaced
with the $ symbol and with commas separating each group of one thousand.

To apply the setLocaleString() method:

1. Return to the js06a.js file in your code editor.

2. Go to the calcOrder() function and locate the statement that stores the value of the modelCost variable in
the modelCost field of the order form. Append the toLocaleString() method to the statement changing it
from orderForm.elements.modelCost.value = modelCost to:

orderForm.elements.modelCost.value = modelCost.toLocaleString("en-US", {style: "currency",

currency: "USD"})

3. Repeat Step 2 to the four statements displaying the values of the planCost, subtotal, salesTax, and
totalCost fields. You can use the copy and paste feature of your code editor to duplicate the code for each
field. Figure 6-15 highlights the changed code in the file.

4. Save your changes to the file and then reload js06a.html in your browser. Figure 6-16 shows the values in the
order form formatted as U.S. currency.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

rEsponding To Form EVEnTs 223

Figure 6-16 Displaying numeric values as currency

Costs displayed
as U.S. currency

On the World Wide Web, your customers and associates can come from anywhere. You need to plan your website
for international visitors as well as domestic clients. Consider the following tips as you plan to go “international”:

❯❯ Support international conventions for dates, times, numbers, and currency using country and language codes in
your HTML content and JavaScript programs.

❯❯ Avoid images that contain text strings. A picture is a worth a thousand words but not if that picture includes
language foreign to your audience.

❯❯ Make your layout flexible. The translated version of your content might contain more words or fewer words
than your web page. Ensure that the page layout can adapt to different text content. Remember that in some
countries, text is read from right to left.

❯❯ Optimize your site for international searches, including using country-specific domain names and keywords
tailored to international customers.

❯❯ Provide customers with a way to convert their payments into their own currency or provide information on
exchange rates.

❯❯ Be aware of cultural differences: Color, working hours, holidays, and so forth have different meanings in different
countries.

Once you have established an international website, monitor its usage with various analytical tools such as Google
Webmaster and Analytics. A poor traffic report might indicate a problem with the international content of your
website.

Skills at Work Making a Website International Friendly

Next, add code to recalculate the costs whenever the customer changes a selection in the order form.

Responding to Form Events
Web forms need to be able to respond instantly to changes made to data values and form selections. JavaScript sup-
ports provides this interactivity using the event handlers described in Figure 6-17.

To run the calcOrder() function when the user selects a different model to order, apply the following onchange
event handler to the model field:

orderForm.elements.model.onchange = calcOrder;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms224

Edits made to an input field do not invoke a change event until field loses the focus, signifying that the changes to the
field are completed. This is to avoid the event firing while the user is typing values into the input control.

In contrast, the input event is fired whenever the user changes a value within a control even if the control has not
lost the focus. If a script needs to respond immediately to changes made while typing a field’s value, use the oninput
event handler or listen for the input event. Note that the input event does not apply to selection lists or option
buttons because no content is changed.

Add an event listener for the change event to every element within the order form, running the calcOrder()
 function in response.

To add an event listener to every element in the order form:

1. Return to the js06a.js file in your code editor.

2. Directly below the statement that gives the focus to the model field, add the following for loop that adds event
listeners to every item in the elements collection of the order form (see Figure 6-18):

// Add an event listener for every form element

for (let i = 0; i < orderForm.elements.length; i++) {

 orderForm.elements[i].addEventListener("change", calcOrder);

}

Figure 6-18 Adding event listeners to a form

Run the calcOrder()
function when any

order form element
changes its value

event handler descriPtion

element.onblur The form element has lost the focus

element.onchange The value of element has changed, and element has lost the focus

element.onfocus The element has received the focus

element.oninput The element has received user input

element.oninvalid The element value is invalid

form.onreset The form has been reset

element.onsearch The user has entered something into a search field

element.onselect Text has been selected within the element

form.onsubmit The form has been submitted

Figure 6-17 Form and element event handlers

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working WiTh hiddEn FiElds 225

3. Save your changes to the file and then reload js06a.html in your browser.

4. Test the event listeners by changing the model to 8-Quart ($159.95), the quantity to 8 and the protection plan to
3-year protection plan ($19.95). Figure 6-19 shows the updated cost estimate for the order.

Figure 6-19 Order costs recalculated for different customer
choices

Working with Hidden Fields
In many web forms, important data is stored within hidden fields making that data available to the server processing
the form but hiding that data from the user. The product order page contains the following hidden fields to store the
model and protection plan chosen by the consumer:

<input type="hidden" id="modelName" name="modelName" />

<input type="hidden" id="planName" name="planName" />

To store values in these two hidden fields extract the name of the model chosen in the Model selection list and the
name of the plan chosen from the list of protection plan option.

The model name is contained in the text of the selected option and can be stored in the modelName field using the
text attribute in the following command:

orderForm.elements.modelName.value =

orderForm.elements.model.options[mIndex].text;

where the mIndex variable provides the index of the option chosen from the model selection list.

The text of the selected plan must be retrieved from the text of the label element associated with that option button.
Retrieve that text using the following statements:

let planOpt = document.querySelector('input[name="plan"]:checked');

orderForm.elements.planName.value = planOpt.labels[0].textContent;

Add these two sets of commands to the calcOrder() function.

To store a value in a hidden field:

1. Return to the js06a.js file in your code editor.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms226

2. At the bottom of the calcOrder() function add the following code as shown in Figure 6-20:

orderForm.elements.modelName.value = model.options[mIndex].text;

let selectedPlan =

document.querySelector(‘input[name=”plan”]:checked’);

orderForm.elements.planName.value =

selectedPlan.labels[0].textContent;

Figure 6-21 Contents of the shopping cart

Figure 6-20 Setting the value of hidden fields

Store the text of
the selected option

in a selection list

Store the text of the label
associated with the
checked option in a

set of option buttons

3. Save your changes to the file and then reload js06a.html in your browser.

4. Open the browser debugger and verify that no errors in the code are noted by the debugger.

5. Close the debugger window when you are satisfied that the code is working without error; otherwise return to
your code editor to fix any reported mistakes.

You have completed the coding for the order form report. At this point a customer could click the Add to Cart but-
ton and submit the order to the web server for processing. However, because the focus of this book is client-side
JavaScript, this form will submit the data to another HTML document named ordersubmit.html located in the same
folder as the js06a.html file. The only purpose of the ordersubmit.html document is to display the form data that would
be submitted to a server. However, you can view the submitted information to verify that the form is working correctly.

To submit the completed order:

1. Enter the following data in the order form as displayed in your browser: Model = 8-Quart ($159.95), Quantity =
6 and Protection Plan = 1-year protection plan ($11.95).

2. Click the add to cart button to submit the completed form. The browser opens the submitorder.html file with
your choices and the calculated values already filled in. See Figure 6-21.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring Form suBmission 227

Notice in the browser’s address box that the address for the ordersubmit.html file is appended with a long text string
called a query string containing field names and values from the product order form. The script embedded in the
ordersubmit.html file extracts these field names and values and formats for them for the order summary shown in
Figure 6-21. Techniques for extracting data from a query string are beyond the scope of this chapter.

Next you will learn how to use JavaScript and web forms to validate the payment information for this order.

Quick Check 1

1. Provide the object reference to the second element within the first web form on the web page.

2. Provide code to retrieve the value of the selected option in the selection list with the id “state”, storing the value in
the stateName variable.

3. Provide code to retrieve the value of the checked option in the option group for the shipping field.

4. Provide code to display the value of the payment variable as United states currency.

5. Provide code to run the calcShipping() function when the value of the state field in the shoppingCart
form is changed.

Exploring Form Submission
When the user has completed a web form, the data can be submitted for processing as you did with the product order
form. Forms are submitted when the user clicks (or otherwise interacts) with a submit button. Submit buttons are
marked using <input> or <button> tags with the attribute type="submit". When a submit button is activated,
the following actions occur within the browser:

1. The field values are checked for invalid data.

2. If no invalid data is found, a submit event is fired indicating that the form is being submitted.

3. If no errors occur in the form submission, a request is sent to the server or other resource handling the form
data.

Once the request has been sent to the server or other resource, the action of the form is completed until another
submit button is activated.

Using the submit event
The submission of a form by clicking a submit button creates a submit event after a successful validation. A form can
also be submitted via JavaScript using the following submit() method:

form.submit()

where form is a reference to the web form. Note that submitting a form in this fashion bypasses a validation of the
form’s contents and does not fire the submit event of the form object.

resetting a Form
Forms are reset whenever the user clicks a reset button, marked within an <input> or <button> tag containing the
type="reset" attribute. When a form is reset, all fields are set back to their default values. Clicking a reset button
fires the reset event which also be initiated using the reset() method:

form.reset()

In general, avoid resetting a form because restoring all fields to their default values can be confusing to the user.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms228

Validating Form Data with JavaScript
A big part of any form submission is checking the form for invalid data in a process known as validation. When this
validation is done using the user’s own computer, it is known as client-side validation as opposed to server-side valida-
tion, which is handled by the web server.

The product order form you worked on earlier used selection lists and option buttons to limit data to a predetermined
list of options. In so doing, the form reduced the possibility of data entry error, making it more likely that any informa-
tion sent to the server was complete and accurate.

Not every form can be so constructed. Many fields cannot be so easily confined to a list of options, such as fields that
request a customer name, password, credit card number, or address. In those situations, client-side validation should be
applied as much as possible to catch errors and notify the user of the mistake. While some validation still must be done on
the web server, it is good practice to do as much validation as possible on the user’s own computer to reduce server load.

HTML provides attributes to restrict what data the user can and cannot enter within a form, and CSS provides style rules
that highlight data entry errors. You will want to take advantage of these browser-based validation or native validation tools
whenever possible but in other situations you may need to augment these features with a validation script of your own.

A payment form for the customer’s order has been created for you. Your task is to write a script providing validation
checks and feedback not covered by the built-in browser validation tools. Open the web page form and the script file now.

To open the files for the payment form:

1. Go to the js06 c chapter folder of your data files.

2. Use your code editor to open the js06b_txt.html and js06b_txt.js files. Enter your name and the date in the com-
ment section of each file and then save them as js06b.html and js06b.js, respectively.

3. Return to the js06b.html file in your code editor. Within the head section, add a script element to run the js06b.
js script file, deferring the loading the script file until after the entire page has loaded.

4. Take some time to scroll through the contents of the HTML file, studying the elements used for the input controls
on the payment form and the field names associated with each control.

5. Open the js06b.html file in your web browser. Figure 6-22 describes the fields contained within the payment form.

Figure 6-22 Payment form

cardName
 field

cardNumber
field

expMonth and
expYear fields

cvc field

credit
field

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ValidaTing Form daTa WiTh JaVascripT 229

Figure 6-23 Browser validation message and highlighting

Required field
left blank

An invalid field
is highlighted with

a light red background

Validation error message
generated by the browser

The error bubble displayed by the browser occurs because cardName is a required field as indicated by the following
<input> tag in the js06b.html file:

<input name="cardName" id="cardName" required type="text" />

The other data fields in the form also have the required attribute so that a payment cannot be submitted unless data
is entered in each field. The appearance and content of the error bubble is determined by the browser.

CSS styles highlight those form fields that are invalid for one reason or another. In this example, input boxes containing
invalid data are displayed with a semi-transparent red background based on the following CSS style rule:

input:invalid {

 background-color: rgba(221,147,148,0.2);

 }

where the invalid pseudo-class selects those input elements containing invalid data. Figure 6-24 describes some of
the other HTML attributes that can be added to input elements to help mark invalid data.

For example, to ensure that a data for an age field must fall between 18 and 35, include the following min and max
attributes with the <input> tag:

<input name="age" min="18" max="35" type="number" />

As much as possible, use these HTML attributes as the first line of defense against invalid data. However, browser-
generated validation checks and CSS styles have some important limitations in protecting against invalid data:

❯❯ The validation error message is generic and might not contain specific information about the source of the
error.

❯❯ The validation tests are based on a single field value and do not allow for tests involving multiple fields.

❯❯ The validation tests are limited to what was entered (or not entered) into the data field and, thus, cannot be
generalized to work with calculated items or functions.

Before creating your own validation tests, explore the validation features built into the HTML and CSS code.

To explore a validation check:

1. With no data in the payment form, click the Submit Payment button on the payment form.

2. The browser returns an error bubble requesting that the Name field be filled out. See Figure 6-23.

3. Reload the page and the web form.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms230

To supplement the native browser validation tools, use the form validation properties and methods built into
JavaScript, which are known collectively as the Constraint Validation API. For this payment form, you will want your
script to do the following:

❯❯ Provide customized error messages to explain the source of the error.

❯❯ Verify that the customer has entered a name for the credit card owner.

❯❯ Verify that one of four credit card brands has been selected.

❯❯ Verify that a valid credit card number for the user’s credit card has been entered.

❯❯ Verify that the card’s expiration date has been selected from the drop-down lists.

❯❯ Verify that a valid CVC number for the user’s credit card has been entered.

You will start by exploring how to work with JavaScript’s validation properties and methods.

Working with the Constraint Validation apI
The Constraint Validation API includes the properties and methods listed in Figure 6-25.

For example, the following expression returns the Boolean value true if the cardName field from the payment form
contains valid data:

document.forms.payment.elements.cardName.valid

You can also test for valid data using the following checkValidity() method:

document.forms.payment.elements.cardName.checkValidity()

The checkValidity() method returns a value of true for valid data; but, if the field is invalid, the method returns a
value of false while firing an invalid event. An invalid event is an event that occurs whenever the browser encounters
a field whose value does not match the rules specified for its content.

attribute descriPtion

maxlength="value" Sets the maximum number of characters allowed in an input field

min="value" Sets the minimum allowed value in an input field; can be used with numbers, ranges, dates, and times

max="value" Sets the maximum allowed value in an input field; can be used with numbers, ranges, dates, and times

pattern="regex" Specifies a regular expression pattern that text within an input field must satisfy to be valid

required Makes it a requirement that data be entered into an input field for the field to be valid

step="value" Sets the step interval between values entered into a numeric field

type="date" The input field must contain a date

type="email" The input field must contain an email address

type="month" The input field must contain a month and year

type="number" The input field must contain a numeric value

type="tel" The input field must contain a phone number

type="time" The input field must contain a time value

type="url" The input field must contain a URL

type="week" The input field must contain a week and year

Figure 6-24 Attributes of the input element

The checkValidity() method can be applied to a form object as well as individual form elements.
When applied to a form object, if at least one element within that form fails validation, the form fails.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ValidaTing Form daTa WiTh JaVascripT 231

exploring the ValidityState Object
There are several reasons why data might be flagged as invalid. Information about the cause of invalid data is stored
in the ValidityState object referenced with the expression:

element.validity

where element is a field from a web form. To determine the current validation state of an element, apply the expression

element.validity.ValidityState

where ValidityState is one the validation states described in Figure 6-26.

ProPerty or Method descriPtion

form.noValidate Set to true to prevent the native browser tools from validating the web form form

form.reportValidity() Reports on the validation status of form using the native browser validation tools

element.willValidate Returns true if web form element element is capable of being validated by the browser (regardless of
where the data itself is actually valid)

element.valid Sets or return the validity of the element where true indicates the element contain valid data and false
indicates an invalidate field value

element.validationMessage Sets or returns the text of the validation message returned by the browser when element fails validation

element.validity Returns a ValidityState object containing specific information about the validation of element

element.setCustomValidity(msg) Sets the validity message displayed by the browser where msg is the text displayed when element fails
validation (set msg to an empty text string to indicate that the element does not have a validation error)

element.checkValidity() Returns true if element is valid and false if it is not invalid; a false value also fires the
invalid event

Figure 6-25 Constraint Validation API properties and methods

validity state descriPtion

element.validity.badInput The field element, element, contains data that the browser is unable to convert, such as when an
e-mail address lacks the @ character

element.validity.customError A custom validation message has been set to a non-empty text string using the
setCustomValidity() method

element.validity.patternMismatch The element value does not match the character pattern specified in the pattern attribute

element.validity.rangeOverflow The element value is greater than the max attribute

element.validity.rangeUnderflow The element value is less than the min attribute

element.validity.stepMismatch The element value does not match the step attribute

element.validity.tooLong The element character length exceeds the value of the maxLength attribute

element.validity.tooShort The element character length is less than the minLength attribute

element.validity.typeMismatch The element value does not match the data type specified by the type attribute

element.validity.valid The element contains valid data, satisfying all constraints

element.validity.valueMissing The element specified in the pattern does not contain data though it is marked with the
required attribute

Figure 6-26 Properties of a ValidityState object

In summary, the checkValidity() method will tell you whether a field is invalid; the validity property will tell
you why.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms232

In the following code the validity state of the userMail field is evaluated to determine whether it contains the cor-
rect data type. If the field’s data type was set to “mail” and the field did not contain an email address, the notValid
variable would return a value of true, indicating that the userMail field does not conform to its specified data
type.

let email = document.getElementById("userMail");

let notValid = email.validity.typeMismatch;

Note that the typeMismatch property can only test whether a field’s value matches the data type, it does not test
whether that field’s value is legitimate. Testing an email address only confirms that the text string “looks” like an email
address it does not test whether that email address exists.

Creating a Custom Validation Message
You have already seen that when a data field fails validation, the browser displays its own native error bubble notify-
ing the user of the problem. Different browsers may display different messages. For example, Google Chrome displays
the message “Please fill out this field” for missing data while Microsoft Edge displays the message “This is a required
field.” To display the same error message across all browsers, apply the following setCustomValidity() method
to the element:

element.setCustomValidity(msg)

where msg is the custom message displayed by all browsers, overriding the native browser error message. If an element
is valid, store an empty text string for the msg parameter, which also marks the element as being valid.

You can access the text of the validation error message associated with an invalid data field by using the
element.validationMessage property where element is the form element containing the error.Note

Use the setCustomValidty() method to display the message “Enter your name as it appears on the card” if the
user leaves the required field cardName blank. Otherwise, store an empty string using the setCustomValidity()
method so that the cardName field is marked as valid.

To create custom validation message:

1. Return to the js06b.js file in your code editor.

2. Directly below the initial comment section, add the following validateName() function:

// Check if the owner's name is entered on the cardfunction

validateName() {

 let cardName = document.getElementById("cardName");

 if (cardName.validity.valueMissing) {

 cardName.setCustomValidity("Enter your name as it appears on the card");

 } else {

 cardName.setCustomValidity("");

 }

}

 Figure 6-27 describes the code in the function.

By creating your own customized error message, you have provided more specific information to the customer about
the nature of the error.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ValidaTing Form daTa WiTh JaVascripT 233

responding to Invalid Data
Form data can be tested after the user enters the data into an input control and when the submit button is clicked to
initiate form submission. To check the validity of form data after it is entered, use an event handler or event listener
for the change event. To catch invalid data before the form is submitted, add an event handler or event listener for
the click event of the form’s submit button.

There are reasons for both approaches. If you want users to be notified immediately of invalid data so that mistakes
can be corrected before continuing with the form, validate the data after it is entered. If such constant prompting would
annoy and frustrate the user, save all the validation checks until the entire form has been completed and submitted.
For the payment form you save all validation checks until the submit button is clicked.

Add an event listener now to run the validateName() function when the submit button is clicked.

To add the event listener for the click event:

1. Directly above the validateName() function add the following statement as described in Figure 6-28:

let subButton = document.getElementById("subButton");

// Validate the payment when the submit button is clicked

subButton.addEventListener("click", validateName);

Figure 6-28 Calling the validateName() function

Run the validateName()
function when the submit

button is clicked

Figure 6-27 Creating the validateName() function

Test if a required value
is missing from the
cardName field

Popup error message
when value is missing

No popup error
message when the

field is valid

2. Save your changes to the file and then reload js06b.html in your web browser.

3. Without entering any data, click the Submit Payment button. Verify that the revised error message appears next
to the empty cardName field. See Figure 6-29.

4. Enter a sample name into the cardName field and click the Submit Payment button again. Verify that no error
bubble appears next to the cardName field.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms234

The next field on the payment form is the credit field, which is laid out as a set of option buttons. This is also a
required field; however, with option buttons clicking one option button from the list automatically sets the values of
the remaining option buttons; therefore, the required attribute is needed only with the first option button and vali-
dation tests need to be performed only on that first option button.

Create the validateCredit() function to test whether the user has selected an option button from the group and
if no option button is selected, display the custom validation message “Select your credit card”.

To create the validateCredit() function:

1. Return to the js06b.js file in your code editor.

2. Directly below the event listener for the click event, add the following event listener to add another function
to the click event:

subButton.addEventListener("click", validateCard);

3. Directly below the validateName() function add the following function as described in Figure 6-30:

// Check if a credit card has been selected

function validateCard() {

 let card = document.forms.payment.elements.credit[0];

 if (card.validity.valueMissing) {

 card.setCustomValidity("Select your credit card");

 } else {

 card.setCustomValidity("");

 }

}

Figure 6-29 Customized popup error message

Custom error
message

Figure 6-30 Creating the validateCard() function

With option buttons you
only have to check the
first option in the list

Popup error message if
no options are selected

No popup error
message when the

field is valid

4. Save your changes to the file and then reload js06b.html in your web browser.

5. Enter a sample name in the Name box, but do not select a credit card from the list of options.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ValidaTing Form daTa WiTh JaVascripT 235

6. Click the Submit Payment button. Verify that the error message “Select your credit card” appears next to the list
of unselected credit card options.

7. Click one of the credit card option buttons and click the Submit Payment button again. Verify that the next error
bubble appears alongside the empty Credit Card Number input box.

The next field in the payment form is the cardNumber field in which not only must a value be entered but the value
must also be a string of numbers fitting a recognized credit card number pattern.

Validating Data with pattern Matching
The content of a text string can be validated against a regular expression, which is concise code describing the general
pattern and content of the characters within a text string. For example, the regular expression:

^\d{5}5$

matches any text string containing exactly 5 digits, such as “12345”, “80517”, or “00314”, but not “abcde” or “123456”.

It is beyond the scope of this chapter to discuss the syntax of regular expressions, but they are an important tool in the
validation of any form, especially forms used in e-commerce. Regular expressions can be long and complicated to accom-
modate a wide range of possible character patterns, such as would be used to validate a credit card number. The follow-
ing rather imposing regular expression pattern has already been entered in the <input> tag for the cardNumber field:

pattern = "^(?:4[0-9]{12}(?:[0-9]{3})?|5[1-5][0-9]{14}|6(?:011|5[0-9][0-9])[0-9]{12}|3[47]

[0-9]{13}|3(?:0[0-5]|[68][0-9])[0-9]{11}|(?:2131|1800|35\d{3})\d{11})$"

This long and complicated expression matches the valid credit card number patterns associated with the four types of
credit cards listed in the payment form. Though you don’t have to duplicate this expression in your script file, you want
to display a customized error message if the number entered by the customer does not match this regular expression
pattern or if no credit card number is entered at all.

Create a function named validateNumber() that displays the error message “Enter your card number” if the cus-
tomer leaves the cardNumber field blank or the error message “Enter a valid card number” if the customer enters
a number that does not match an approved credit card number pattern. You will use the valueMissing property
to test for a missing value and the patternMismatch property to test for a card number that does not follow the
prescribed character pattern.

To create the validateNumber() function:

1. Return to the js06b.js file in your code editor.

2. Directly below the event listener for the click event, add the following event listener to run the
 validateNumber() function in response to the click event:

subButton.addEventListener("click", validateNumber);

3. Directly below the validateCard() function add the following function as described in Figure 6-31:

// Check if the card number is valid

function validateNumber() {

 let cNum = document.getElementById("cardNumber");

 if (cNum.validity.valueMissing) {

 cNum.setCustomValidity("Enter your card number");

 } else if (cNum.validity.patternMismatch) {

 cNum.setCustomValidity("Enter a valid card number");

 } else {

 cNum.setCustomValidity("");

 }

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms236

Figure 6-31 Creating the validateNumber() function

Test whether the credit
card number field

was left blank

With option buttons you
only have to check the
first option in the list

Otherwise test if the
card number matches

the correct pattern

Popup error message
if the card does not

have the right pattern

Popup error message
if no card number

is entered

4. Save your changes to the file and then reload js06b.html in your web browser.

5. Enter a sample name in the Name box and select the MasterCard credit card.

6. Click the Submit Payment button. Verify that the error message “Enter your card number” appears next to the
Credit Card Number box.

7. Enter the invalid credit card number 1234567890 into the cardNumber field and click the Submit Payment
button. Verify that the browser displays the message “Enter a valid card number”, as shown in Figure 6-32.

Figure 6-32 Popup error message for an invalid card number

Card number does not
have the correct pattern

8. Enter the valid credit card number 6011485077126974 into the cardNumber field and click the Submit Payment
button. Verify that the browser accepts this number and does not display an error bubble.

The next part of the payment form contains two drop-down list boxes for the month and year of the credit card expi-
ration date.

Validating a Selection List
The payment form has placed the possible expiration date values of the credit card in two selection lists named
 expMonth and expYear. The first entry in each of the two selection lists is “mm” and “yy”, respectively. You must
validate these two fields so that if either “mm” or “yy” is left selected, their respective fields will be flagged as invalid.
Use the selectedIndex property to determine if the selected index is 0 (the first entry). If the index is 0, then the
browser will declare the field value as invalid, otherwise it will accept the selected month or year as valid.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ValidaTing Form daTa WiTh JaVascripT 237

To validate the expiration date:

1. Return to the js06b.js file in your code editor.

2. Directly below the event listeners for the click events, add the following event listeners:

subButton.addEventListener("click", validateMonth);

subButton.addEventListener("click", validateYear);

3. Directly below the validateNumber() function add the following function to validate the expiration
month:

// Check that a month is selected for the expiration date

function validateMonth() {

 let month = document.getElementById("expMonth");

 if (month.selectedIndex === 0) {

 month.setCustomValidity("Select the expiration month");

 } else {

 month.setCustomValidity("");

 }

}

4. Add the following validateYear() function to validate the expiration year:

// Check that a year is selected for the expiration date

function validateYear() {

 let year = document.getElementById("expYear");

 if (year.selectedIndex === 0) {

 year.setCustomValidity("Select the expiration year");

 } else {

 year.setCustomValidity("");

 }

}

Figure 6-33 describes the newly added code.

Figure 6-33 Creating the validateMonth() and validateYear() functions

If the first option in the
selection list is selected,

the month is invalid

If the first option in the
selection list is selected,

 the year is invalid

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms238

5. Save your changes to the file and then reload js06b.html in your web browser.

6. Verify that unless you select a month and a year from the selection lists, validation error messages appear when
you submit the payment form.

The last field remaining in the payment form is the CVC field, which is the card verification code printed on credit cards
to provide additional security in financial transactions.

Testing a Form Field Against a Regular Expression
Credit card CVC numbers are either 3- or 4-digit numbers depending on the card being used. American Express cards
use 4-digit CVC numbers while Discover, MasterCard, and Visa use 3-digit numbers. The regular expression that matches
the 4-digit CVC numbers used by American Express is:

/^\d{4}$/

while for the other cards, the regular expression is

/^\d{3}$/

You can determine whether a text string conforms to a regular expression pattern using the following test() method:

regExp.test(text)

where regExp is the regular expression pattern and text is the text string containing the characters to be tested.
If the text matches the regular expression pattern, the test() method returns the value true, otherwise it returns
false. For example, the following code returns a Boolean value indicating whether the value in the cardCVC field
matches the 4-digit pattern:

let cvc = document.getElementById("cvc");

let isValid = /^\d{4}$/.test(cvc.value)

To test whether the CVC is valid for American Express cards, use the following expression:

if ((card === "amex") && !(/^\d{4}$/.test(cvc.value)))

which returns false if the card is American Express and not a 4-digit number. For cards that are not American Express
and require a 3-digit CVC code, use the if condition:

if ((card !== "amex") && !(/^\d{3}$/.test(cvc.value)))

which returns false if the card is not American Express and not a 3-digit number. You will use both of these if condi-
tions in the validateCVC() function testing whether the customer has entered a valid CVC based on their selected
credit card.

To create the validateCVC() function:

1. Return to the js06b.js file in your code editor.

2. Directly below the event listener statements, add the following statement to run the validateCVC() function
when the submit button is clicked.

subButton.addEventListener("click", validateCVC);

3. Directly below the validateYear() function add the following code the for validateCVC() function:

function validateCVC() {

 // Determine which card was selected

 let card =

document.querySelector('input[name="credit"]:checked').value;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TEsTing a Form FiEld againsT a rEgular ExprEssion 239

 let cvc = document.getElementById("cvc");

 // Validate the CVC value

 if (cvc.validity.valueMissing) {

 cvc.setCustomValidity("Enter your CVC number");

 } else if ((card === "amex") && !(/^\d{4}$/.test(cvc.value))) {

 cvc.setCustomValidity("Enter a 4-digit number");

 } else if ((card !== "amex") && !(/^\d{3}$/.test(cvc.value))) {

 cvc.setCustomValidity("Enter a 3-digit number");

 } else {

 cvc.setCustomValidity("");

 }

}

See Figure 6-34.

Figure 6-34 Creating the validateCVC() function

If the CVC number is
missing, it is invalid

If the card is American
Express and the CVC

does not have 4 digits,
it is invalid

If the card is not American
Express and the CVC

 does not have 3 digits,
it is invalid

Otherwise the CVC
number is valid

Retrieve the name of
the selected credit card

4. Save your changes to the file and then reload js06b.html in your web browser.

5. Complete the payment form by entering a sample name in the Name box, click the American Express option
button, select 04/2026 as the expiration date, and enter 6011485077126974 as the credit card number.

6. Enter 123 as the CVC number for the card and click the Submit Payment button. Verify that the form rejects the
CVC number as shown in Figure 6-35.

7. Change the CVC number to 1234 and click the Submit Payment button again. Verify that the form is successfully
submitted and a web page confirming this fact is displayed.

If your form does not work, use the debugger tools on your browser to examine the code and compare your code to
that shown in Figure 6-35. The statements in this function are very complicated, and it is easy to misplace a parenthesis
or quotation mark.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms240

Creating a Custom Validity Check
A credit card number might fit the numeric pattern indicated by a regular expression but still be invalid. In addition to
a specified pattern of characters, numerical ids like credit card numbers employ a checksum algorithm in which the
sum of the digits must satisfy specific mathematical conditions. Most credit card numbers use the checksum algorithm
known as the Luhn algorithm or the mod 10 algorithm, which calculates the sum of the digits in the credit card number
after doubling every other digit going backwards from the end of the number. If the sum of the digits is a multiple of
10, the credit card number is legitimate, otherwise it is not.

A function named luhn() has been created for you and saved in the js06b.js file. The function performs the necessary
calculations on the digits in a numerical id to determine if those digits satisfy the conditions of the Luhn algorithm. If
they do, the function returns a value of true, otherwise it returns false. You will use this function as one last test of
the customer’s credit card number, verifying that not only is the pattern of the digits in the credit card number correct
but also that the digits satisfy the Luhn algorithm.

To validate the expiration date:

1. Return to the js06b.js file in your code editor and go to the validateNumber() function.

2. Add the following condition directly before the final else condition in the function:

} else if (luhn(cNum.value) === false) {

 cNum.setCustomValidity("Enter a legitimate card number");

Submitting a Form
You can submit a form using the method form.submit() where form is a reference to the web
form. A common mistake is to assume that this method is equivalent to clicking a submit button.
It is not. The key differences are as follows:

❯❯ The submit event is not triggered, so any event listeners or event handlers associated
with the submit event will not be accessed.

❯❯ The native browser validation tools that are part of the Constraint Validation API will be
bypassed.

If your script needs to use the native validation tools supplied by your browser, provide the user
with a submit button and run your code in response to its use.

Common
Mistakes

Figure 6-35 Validating the CVC number

The CVC is invalid
because American

Express cards
have 4-digit CVC

numbers

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

managing Form ValidaTion 241

Figure 6-36 shows the complete code of the validateNumber() function.

Figure 6-36 Validating the credit card number

If the card number fails
the Luhn algorithm, display

a validation error

Figure 6-37 Reporting an illegitimate credit card number

Card number fails
the Luhn algorithm

3. Save your changes to the file and then reload js06b.html in your browser.

4. Enter a sample name in the Name box, click the Discover option button, select 04/2026 as the expiration date,
enter 6011280768434850 as the credit card number and enter 123 as the CVC number.

5. Click the Submit Payment button.

As shown in Figure 6-37, the credit card number is rejected because it fails the Luhn algorithm even though it
has the correct general pattern.

6. Edit the credit card number by changing the last digit from 0 to 6 so that it reads 6011280768434856 and click
the Submit Payment button. Verify that the form now passes validation as the credit card number fits the correct
pattern and satisfies the Luhn algorithm.

You have completed your work on the validation of the payment form. At this point further validation would be
done by the web server to verify that the credit card information matches a real account; but in doing some of the
validation on the customer’s own computer, you would have weeded out faulty data and reduced the workload on
the server.

Managing Form Validation
In completing the payment form, you took advantage of the native browser tools for managing invalid data. With some
applications, you might want to disable the native browser validation tools altogether and supply your own validation
framework. Such a situation might occur if you need to support older browsers that do not supply native validation. It
might also be the case that you do not want to use error bubbles to notify users of errors but would prefer to highlight
validation errors in a different way such as with side notes or overlays.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms242

To disable the built-in validation tools supplied by your browser, apply the following statement:

form.noValidate = true;

where form is the reference to the web form. You can achieve the same effect by adding the novalidate attribute to
the <form> tag in the HTML file or by adding the attribute formnovalidate to the tag for the form’s submit button.

Another way to control the native browser validation is by preventing the default browser actions associated with
an invalid event (such as displaying an error bubble), which are fired whenever the browser notes an invalid data
value. The following code uses the addEventListener() method to listen for an occurrence of an invalid event
within a form element, running an anonymous function in response:

element.addEventListener("invalid", function(evt) {

 evt.preventDefault();

 commands;

});

The evt parameter in this code is an example of the event object, which is the object associated with an event
captured by the script. Every event creates an event object. The anonymous function in this example applies the
 preventDefault() method to this event object to prevent the browser’s default action of reporting the error.
Having prevented the default actions associated with the event, the script is free to run a set of custom commands to
respond to the invalid event.

You can determine which form element reported the invalid data by using the evt.target property
where evt is the name of the event object variable. Note

You can also turn off the built-in validation tools and write your own set of validation procedures and run them in
response to the submit event occurring within the web form. The general code using an event handler is as follows:

form.onsubmit = myValidation;

function myValidation(e) {

 e.preventDefault();

 commands to determine if form passes validation

 if (form is valid) {

 commands run when form passes validation

 return true;

 } else {

 commands run when form doesn’t pass validation

 return false;

}

The myValidation() function runs when the form is submitted, prevents the default actions associated with the
submit event and then runs a different set of commands whether the form is valid or not. Notice that the function
returns a value of true for valid forms and false for invalid forms, thus, indicating whether the submission was
successful or not.

Using any of these approaches, you can create your own framework of validation tools customized to meet the specific
needs of your application and your customers.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

summary 243

Summary
❯❯ A web form is a hierarchical structure consisting of form object containing form elements.

❯❯ Each attribute of a form control is matched by a JavaScript property for an element object.

When customers shop online, they are looking for what every customer looks for: good products at a fair price in
a shopping experience that is pleasant and easy. While all these things are important, you cannot forget that your
competition is only a click away and, if your customers don’t have confidence in your website design, they might
also not have confidence in the products you sell.

Here are some tips to keep in mind as you build your e-commerce website:

❯❯ Do not burden your customers with a long and complicated registration process. Provide guest users with easy
access to your catalog because they will be more likely to register after viewing all you have to offer.

❯❯ Provide robust search tools. Make it easy to match your customers with the products they are most likely to purchase.

❯❯ Make it easy to navigate the purchasing process. Customers should be able to easily move forward and
backward in the purchase process so that mistakes can be easily fixed. Provide information to the customer at
each step in the process about what is being purchased and how much it will cost. Do not hide fees or taxes until
later in the shopping process or you run the risk of irritating your customer.

❯❯ Put discount options and membership deals up front so that your customers can take advantage of deals that
make a final purchase more likely.

❯❯ Use validation tests and security measures to reassure your customers that their credit information is safe and secure.

❯❯ Incorporate social media in your e-commerce website, providing your customers the opportunity to discuss with
you and other customers your products and services.

Technology and customer tastes are constantly in flux and websites need to respond to a quickly changing market.
Evaluate and revaluate your e-commerce design to ensure that it meets the needs of your customers today while
you prepare for your customers of tomorrow.

Best Practices Designing an E-Commerce Website

Quick Check 2

1. Provide code to turn off the native browser validation for the web form with the name reviewForm.

2. Provide code to indicate whether there is a type mismatch for data entered in the input box with the id
“reviewdate”.

3. Provide code to indicate whether the field with the id “reviewrating” has a value greater than allowed by the max
attribute.

4. Provide code to change the validation message for the reviewrating input box to “Value larger than allowed”.

5. Provide code to test whether the value entered in the customerid input box matches the regular expression
/^[A-Z]{3}-\d{2}$/

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms244

❯❯ Use the focus() method to make an input control active on the form. Use the blur() method to remove focus
from that object.

❯❯ Options within a selection are referenced with the options HTML collection. The currently selected option is
referenced with the selectedIndex property.

❯❯ Option buttons that share a common field name belong to the options collection of the form.elements object.
Reference the currently selected option button using a for loop or the querySelector() method. Labels
associated with an option are referenced using the labels collection.

❯❯ Numeric values can be displayed to a defined number of decimal places using the toFixed() method. Use
the toLocaleString() method to display numeric values, dates, and currency values according to local and
geographic standards.

❯❯ When forms are submitted the field values can be validated using native browser validation tools prior to the
submit event being triggered. The native browser validation tools are part of the Constraint Validation API.

❯❯ Test whether a field value is true using the checkValidity() method. To learn the state of a field’s value and
why it might be invalid, use the validity property.

❯❯ To create a customized validation error message, use the setCustomValidity() method.

❯❯ Required elements can be tested using the validity.valueMissing property. Values that don’t match a
specified character pattern can be tested using the validity.patternMismatch property.

❯❯ A regular expression is code that concisely describes the general pattern and content of characters within a text
string. Use the test() method to determine whether a text string matches a particular regular expression.

❯❯ Checksum algorithms are used to determine whether the digits in a numeric id match specified mathematical
conditions. Credit cards use the Luhn or mod 10 algorithm.

❯❯ To override the native browser validation tools, apply the noValidate property to the web form and then create
a customized function that tests for the validity of the data when the submit event of the form is triggered.

Key Terms
browser-based validation

checksum algorithm

client-side validation

Constraint Validation API

event object

focus

invalid event

Luhn algorithm

mod 10 algorithm

native validation

query string

regular expression

server-side validation

validation

ValidityState object

Review Questions
1. Objects representing each of the controls in a form

are stored in the _________________ collection.
a. forms
b. controls
c. inputs
d. elements

2. To reference elements from the first and only form
in the web page with the name userForm, which
of the following expressions should you not apply?
a. document.userForm
b. document["userForm"]
c. document.forms[1]
d. document.forms[0]

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

245rEViEW QuEsTions

3. Which value of the selectedIndex property of a
select object corresponds to no selection?
a. −1
b. 0
c. false
d. 1

4. To remove the focus from a form element, apply
which of the following methods?
a. focus()
b. delete()
c. step()
d. blur()

5. Which method do you apply to a selection list to
add a new option to the list?
a. select.insert(option)
b. select.write(option)
c. select.append(option)
d. select.add(option)

6. To reference the text associated with an option
button, use which of the following HTML
collections?
a. options
b. elements
c. labels
d. nodes

7. To display a numeric value to three decimal places,
which method should you apply?
a. value.digits(3)
b. value.round(3)
c. value.toFixed(3)
d. value.float(3)

8. To display a currency value based on local
standards, which method should you apply?
a. value.toLocaleString()
b. value.toCurrency()
c. value.toFixed()
d. value.test()

9. When a submit button is clicked in a form, which of
the following actions occurs first?
a. The web form is reloaded.
b. The field values are validated.
c. The submit event is fired.
d. The form is submitted to the server.

10. If a field contains a value that does not match its
data type, which value of the validity object
returns a value of true?

a. validity.type
b. validity.valid
c. validity.typeMismatch
d. validity.patternMismatch

11. To test whether a field value is valid, which method
should you apply?
a. element.test()
b. element.validity()
c. element.submit()
d. element.checkValidity()

12. To display a customized error message for invalid
data, which method should you apply?
a. element.error()
b. element.alert()
c. element.setCustomValidity()
d. element.validityError()

13. To reference the source of an event where evt is
the event object variable, use
a. evt.src
b. evt.target
c. evt.object
d. evt.alt

14. Which method do you use to disable the default
behavior for an event?
a. preventDefault()
b. checkValidity()
c. select()
d. cancelEvent()

15. To override the native browser tools for managing
form validation, which statement should you apply?
a. form.validate = false
b. form.noValidate = true
c. form.submit(false)
d. form.checkValidity(false)

16. Describe how to retrieve the value of a field that is
entered using a selection list.

17. Under what circumstances would you use the
toLocaleString() method?

18. Why would you use hidden fields within a web
form?

19. If your code submits a form using the expression
form.submit(), what will happen with the
browser’s native validation tools?

20. When would you choose not to use the native
browser validation tools for validating a web form?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms246

Hands-On Projects
Hands-On Project 6-1

In this project you will program the actions of a sign-up form in which users must supply a user name, email
address, and password for a new account. Passwords must be at least eight characters long and contain at
least one letter and one number. As a validation test, the password must be entered twice to confirm that the
user did not inadvertently mistype the password. If the password does not match the required pattern or if
the two passwords are not identical, the password field should be flagged as invalid. A preview of the form in
which the passwords are mismatched is shown in Figure 6-38.

Figure 6-38 Completed Project 6-1

Do the following:

1. Use your code editor to open the project06-01_txt.html and project06-01_txt.js files from the js06 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project06-01.html and project06-01.js, respectively.

2. Go to the project06-01.html file in your code editor and link the page to the project06-01.js file, deferring the
script from loading until after the page loads. Take some time to study the sign-up form. Note that the pwd field
contains a regular expression pattern that will be used to verify that the password is in the proper format. Save
your changes to the file.

3. Go to the project06-01.js file in your code editor. Below the comment section declare the following variables:
submitButton referencing the element with the id “submitButton”, pwd referencing the element with the id
“pwd”, and pwd2 referencing the element with the id “pwd2”.

4. Create an event listener for the click event occurring with the submitButton that runs an anonymous
function.

5. Within the anonymous function add the following if else structure:

a. If the pwd field fails the pattern match, display the validation message “Your password must be at least 8
characters with at least one letter and one number”.

b. Else if the value of the pwd field does not equal the value of the pwd2 display the validation message “Your
passwords must match”.

c. Otherwise, set the validation message to an empty text string.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on proJEcTs 247

6. Save your changes to the file and then open project06-01.html in your web browser.

7. Verify that you cannot submit the form if your password is less than eight characters long and does not include
at least one number and one letter.

8. Verify that you cannot submit the form if the two passwords do not match.

Hands-On Project 6-2

In this project you will use selection lists to store long lists of hypertext links that might overwhelm a page if
displayed within a navigation list. The name of a linked page is displayed as the text of a selection list option
while the URL is stored as that option’s value. By selecting an item from one of the selection list options, the
browser will open the web page with that selected URL. To script this action, you will use the event object.
One of the properties associated with the event object is as follows:

evt.target

where evt is the variable name assigned to event object and target is the object that received the event. In
this project the target is the option selected by the user from one of the selection lists. The event will be the
change event. A preview of the page is shown in Figure 6-39.

Figure 6-39 Completed Project 6-2

Do the following:

1. Use your code editor to open the project06-02_txt.html and project06-02_txt.js files from the js06 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project06-02.html and project06-02.js, respectively.

2. Go to the project06-02.html file in your code editor and link the page to the project06-02.js file, deferring loading
of the script. Study the contents of the file and note that with each option the URL address is stored as the
options value. Save your changes to the file.

3. Go to the project06-02.js file in your code editor. Add an event listener that runs an anonymous function when
the page loads.

4. Within the anonymous function, add a statement that uses the querySelectorAll() method to create
a node list of all elements matching the CSS selector form#govLinks select. Store the node list in the
allSelect variable.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms248

5. Also, within the anonymous function: Insert a for loop that iterates through all of the contents of the
allSelect node list. At each iteration of the allSelect node list do the following:

a. Apply the onchange event handler to allSelect[i] to run an anonymous function when the selection
list option is changed. Add the parameter evt to the anonymous function.

b. Within the nested anonymous function retrieve the value property of evt.target and store it in the
linkURL variable.

c. Within the nested anonymous function: Use the window.open() method to open a new browser window
with linkURL as the url of the window. You do not have to set a name for the window or any window
options. Store the window under the newWin variable.

6. Save your changes to the file and then open project06-02.html in your web browser.

7. Verify that by selecting an entry from one of three selection lists, the web page for that entry opens in a new
browser tab or window.

Hands-On Project 6-3

In this project you complete the script for a web form that collects billing and shipping information. Because the
shipping address and billing address are often the same, this form will include a checkbox to copy the shipping
address values into the corresponding billing address fields. Also, instead of using browser error bubbles to
report invalid data, display the text of the error message in a box at the bottom the form and prevent the browser
from showing error bubbles in response to validation errors. A preview of the form is shown in Figure 6-40.

Figure 6-40 Completed Project 6-3

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on proJEcTs 249

Do the following:

1. Use your code editor to open the project06-03_txt.html and project06-03_txt.js files from the js06 c

project03 folder. Enter your name and the date in the comment section of each file and save them as
project06-03.html and project06-03.js, respectively.

2. Go to the project06-03.html file in your code editor and link the page to the project06-03.js file, deferring
loading of the script. Study the contents of the file and note field names associated with each input element
within the form Save your changes to the file.

3. Go to the project06-03.js file in your code editor. Below the comment section declare the useShip
variable to reference the element with the id “useShip”. Add an event listener to useShip to run the
copyShippingToBilling() function when clicked.

4. Create the copyShippingToBilling() function that copies values from the shipping fields to corresponding
billing fields. Within the function, insert an if statement that tests whether useShip is checked and if it is, do
the following:

a. Set the value of the firstnameBill field to the value of the firstnameShip field.

b. Repeat the previous step to set the value of the lastnameBill, address1Bill, address2Bill,
cityBill, countryBill, codeBill fields to the values of their corresponding fields in the shipping part
of the form.

c. Set the selectedIndex property of the stateBill field to the value of the selectedIndex property of
the stateShip field.

5. Below the copyShippingToBilling() function do the following:

a. Declare the formElements variable and using the querySelectorAll() method store within it a node
list corresponding to elements selected with “input[type=’text’]”.

b. Declare the fieldCount variable with a value equal to the length of the formElements node list.

c. Declare the errorBox referencing the element with the id “errorBox”.

6. Create a for loop that iterates through each element in the formElements node list and for each element
apply an event listener that calls the showValidationError() function in response to the invalid
event.

7. Create the showValidationError(evt) function and add the following commands to it:

a. For the event object, evt, apply the preventDefault() method to prevent the browser from applying the
native browser tools to respond to invalid data.

b. Set the textContent property of errorBox to the text string “Complete all highlighted fields”.

8. Save your changes to the file and then open js06-03.html in your browser.

9. Verify that you can copy shipping address information to the billing fields by clicking the Same as Shipping
Address box.

10. Verify that you cannot submit the form until all data fields are completed (aside from the second address fields)
and that validation errors appear in the error box below the form.

Hands-On Project 6-4

In this project you will explore how to filter the contents of one selection list based on an option chosen in
another selection list. The web form you are given contains three selection lists with the make, model, and
trim of cars that one might consider purchasing. Your script will link the three selection lists so that selecting
a car make will filter the list of car models and selecting a car model will filter the list of car trims. A preview of
the completed form in which a single car is chosen from a combination of makes, models, and trims, is shown
in Figure 6-41.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms250

Do the following:

1. Use your code editor to open the project06-04_txt.html and project06-04_txt.js files from the js06 c

project04 folder. Enter your name and the date in the comment section of each file and save them as
project06-04.html and project06-04.js, respectively.

2. Go to the project06-04.html file in your code editor and link the page to the project06-04.js file, deferring loading
of the script. Study the contents of the form. Note that the class value of each option in the Model selection list
corresponds to a car company listed in the Make selection list and that the class value of each option in the
Trim selection list corresponds to a model name in the Model selection list. You will use this correspondence in
writing a script that filters each selection list based on the option chosen from the previous selection list. Save
your changes to the file.

3. Go to the project06-04.js file in your code editor. Some of the variables and the event handlers have already
been created for you but the script is not complete. You will need to create two functions: one to show all
the options within a selection list and the other to filter the options within a selection list to show only those
options that match a previously chosen car make or car model.

4. Create the showAll() function. The function has a single parameter named selectList that will represent
one of the selection lists shown in the web form. Within the function do the following:

a. Declare a variable named options that references the collection of option elements within selectList.

b. Declare a variable named optionLength equal to the length of the options node list.

c. Add a for loop that iterates through the items in the options node list. For each item in the collection
change the value of the style.display property to “block” in order to display the option within the
selection list.

5. Create the filterSelect() function. The function has two parameters named selectList and category,
where selectList will represent one of the selection lists in the web form and category will determine
which options within that selection list will be displayed on the web page. Within the function do the following:

a. Declare a variable named options that references the collection of option elements within selectList.

b. Declare a variable named optionLength equal to the length of the options node list.

c. Add a for loop that iterates through the items in the options node list. For each item in the options
collection, insert an if else statement that sets the style.display property of the item to “block” if
the className property of the option equals the category variable, otherwise set the style.display
property to “none” (to hide the option).

Figure 6-41 Completed Project 6-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-on proJEcTs 251

6. Create an onclick event handler for the selectVehicle button to run an anonymous function when clicked.
Within the anonymous function, insert a command that writes the text “make model trim” to the vehicle
paragraph in the web page, where make, model, and trim are the text values of the selected options from the
three selection lists. (Hint: You will have to use the text property of the selected option from each selection
list to return the text of the option.)

7. Save your changes to the file and then open js06-04.html in your browser.

8. Verify that as you select options from the Make selection list, the options in the Model selection list are filter
to show only cars from that make. Verify that as you select options from the Model selection list, the Trim
selection list is filtered to show only trim options for that selected model.

9. Verify that when you click the Select button, the text of the make, model, and trim are displayed at the bottom of
the web page.

Hands-On Project 6-5

debugging challenge

You have been given a web form that is to be used to register attendees at a conference. However, there are
errors in the JavaScript program that calculates and reports the total cost of the registration. You have been
asked to locate and fix the errors in the code. A preview of the completed form is shown in Figure 6-42.

Figure 6-42 Completed Project 6-5

Do the following:

1. Use your code editor to open the project06-05_txt.html and project06-05_txt.js files from the js06 c
project05 folder. Enter your name and the date in the comment section of each file and save them as
project06-05.html and project06-05.js, respectively.

2. Go to the project06-05.html file in your code editor and in the head section add a script element to load the
project06-05.js file, deferring it until the entire page is loaded. Study the contents of the file to become familiar
with the structure of the HTML code. Save your changes to the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Enhancing and Validating Forms252

3. Return to the project06-05.js file in your code editor. Comments have been added to help you interpret the code
in the file.

4. The first part of the code uses an anonymous function to load several event handlers to calculate and
recalculate the shopping cart as different form fields lose the focus. There are several errors in this anonymous
function.

5. The sessionTest() function is used to confirm that the user has selected a session to attend at the
conference. If the user did not select a session, the form should be invalid. Locate and fix two errors in setting
up the custom validation message.

6. The calcCart() function is used to generate the contents of the shopping cart and calculate the total cost of
registration. Within this function there are errors in determining the index of the chosen session, whether the
user checked the media checkbox, and in the display of the total cost of the registration. Locate and fix all three
errors.

7. Save your changes to the file and then open project06-05.html in your web browser. Verify the following:

a. When you enter text into the form fields and tab out of the input boxes, the shopping cart text automatically
updates to show your data entry.

b. As you select different conference options, the total cost of the conference automatically updates.

c. The total cost of the conference is displayed in U.S. currency.

d. If you attempt to submit the form without entering all required data, the form will be rejected.

Case Projects
For the following projects, save the documents you create in your Projects folder for Chapter 6. Be sure to
validate each web page with the W3C Markup Validation Service.

Individual Case Project

Add validation the code for one of the forms on your individual website. First, ensure that your form uses
at least three of the following field types: check boxes, text boxes, option buttons, selection lists, and text
areas. Then, program validation for your form ensuring that users enter values or make selections in all fields,
and verifying at least one other aspect of at least one of the fields. Provide appropriate feedback to users
when the form fails validation. Test your completed program until all validation works reliably with different
combinations of valid and erroneous data.

Team Case Project

Add validation code to one of the forms on your team website. First, ensure that your form uses at least three
of the following field types: check boxes, text boxes, option buttons, selection lists, and text areas. Next, as a
team, plan validation for each field in the form. Your validation should require a value in each field, and should
verify at least one other aspect of at least one field. Divide your team into two groups—one that will write
code to verify that all fields have values, and the other to write code to verify another aspect of the entered
data. Each group’s code should also incorporate appropriate feedback to users when it encounters validation
errors. When both groups are done, work as a team to integrate the code into the document. Strategize as a
team about how to test for all possible validation scenarios. Test and debug the code until your completed
program until all validation works reliably with different combinations of valid and erroneous data.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

253

Retrieving Content from a Text File
Many web apps need to load and process information from text files or information contained within
text strings. This chapter will focus on the JavaScript properties and methods for working with textual
data to create a Word Cloud app. A word cloud is a graphical representation of the words and phrases
used within a document in which the size and style of each word indicates its frequency and importance.
Word clouds are often used in textual analysis to highlight important themes in documents and speeches.
Figure 7-1 shows a preview of the word cloud you will create as applied to the text of Abraham Lincoln’s
first presidential inaugural address in 1861. Without reading any of the 3600 words of the speech, you
can determine that the main themes involve a discussion of the constitution, the union, the government,
the states, and their relation to people, with less coverage of slaves or slavery and little to no mention
of an impending civil war.

Chapter 7

When you complete this chapter, you will be able to:

 ❯ Read information from a text file

 ❯ Read and write content into a text string

 ❯ Interpret the language of regular expressions

 ❯ Create a regular expression object and use it in a program

 ❯ Sort an array using the sort() method with a compare function

 ❯ Work with the properties and methods of the Math object

 ❯ Work with the properties and methods of the Date object

 ❯ Explore text strings using template literals

Manipulating Data in
Strings, Arrays, and
Other Objects

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS254

Figure 7-1 A sample word cloud

The size and style of each word
is based on its frequency in the

source document
Source

document

To create this word cloud, your app will need to do the following:

1. Load the contents of text document and convert it to a text string.

2. Remove all extraneous characters from the text string such as punctuation marks.

3. Remove all extraneous words from the text string, including articles such as “the”, “an”, and “a”.

4. Calculate the frequency of the remaining words.

5. Highlight the words with the greatest frequency in the largest font presented in a word list alongside the complete
text of the document.

Ideally, the Word Cloud app should work with any HTML or text document and be flexible enough to allow the user to
choose the document to analyze. Files containing the initial code for the app have been created for you. Open those
files now.

To open the files for the order form:

1. Go to the js07 c chapter folder of your data files.

2. Use your code editor to open the js07_txt.html and js07_txt.js files. Enter your name and the date in the comment
section of each file and then save them as js07.html and js07.js, respectively.

3. Return to the js07.html file in your code editor. Within the head section, add a script element to run the js07.js
script, deferring the loading the script file until after the entire page has loaded.

4. Review the contents of the document and then close the file, saving your changes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ReTRieving ConTenT fRom a TexT file 255

the file Object
The app has the following input element to enable users to select a text file to view:

<input id="getFile" type="file" />

When a file input control is clicked, the browser displays a File Open dialog box. Once a file is selected, it can be
accessed using the JavaScript File API, an API introduced with HTML5 that retrieves the contents of selected files from
the local computer or network.

To enable the user to select more than one file, add the multiple attribute to the <input> tag.Note

Because the File Open dialog box allows for multiple files to be selected, input boxes of the file data type support
the following files collection:

element.files()

where element is a reference to an input element of the file data type. Each item in the files collection represents
a file object with information about a specific file. The properties of the file object are described in Figure 7-2.

ProPerty DescriPtion

file.lastModified Returns the date and time that the file was last modified

file.name Returns the name of the file without the file path

file.size Returns the size of the file in bytes

file.type Returns the MIME type of the file

Figure 7-2 Properties of the file object

Add an onchange event handler to the getFile input box to retrieve information about the first (and only) file
selected by the user. Use the this keyword to reference the input box that initiated the change event and store
information about the file in the userFile variable.

To create an onchange event handler:

1. Return to the js07.js in your code editor.

2. Directly below the initial comment section, insert the following code to run an anonymous function in response
to the change event (see Figure 7-3):

document.getElementById("getFile").onchange = function() {

 // Retrieve information about the selected file

 let userFile = this.files[0];

};

Figure 7-3 Retrieving a selected file

File object
selected

 by the user

Files collection contains
the files selected by

the user

Having stored information about the selected file, you will next read its contents.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS256

the File reader apI
To read the contents of an external file JavaScript provides the File Reader API. File readers are JavaScript objects
created using the following new FileReader() object constructor:

let reader = new FileReader()

where reader is a variable that stores a FileReader object. FileReader objects support the properties and
methods described in Figure 7-4.

ProPerty or MethoD DescriPtion

reader.abort() Aborts the read operation

reader.readAsArrayBuffer() Reads the file contents, storing the result in a raw binary file as a text string

reader.readAsDataURL() Reads the file contents, storing the result in a data URI

reader.readAsText() Reads the file contents, storing the result in a text string

reader.error Returns an error code for failed reads

reader.readyState Returns the state of the reader as 0 (EMPTY) — no data has been loaded yet; 2 (LOADING) — data is currently
being loaded; 3 (DONE) — the read request is completed

reader.result Returns the contents of the file after the read operation is complete

Figure 7-4 Properties and methods of the FileReader object

A FileReader object works asynchronously so that the rest of the script will continue to run as the external file is
read. For that reason, you should not attempt to do anything with the file contents until the reader has completely
loaded the file. As the file reader progresses through the document the following events are triggered:

 ❯loadstart — The reader is starting to read the file.

 ❯progress — The reading is progressing.

 ❯load — The reading is complete with no errors.

 ❯abort — The reading is aborted.

 ❯error — An error has occurred during the reading.

 ❯loadend — The reading is complete either successfully or with an error.

If the document is successfully read and loaded, its contents can be accessed with the result property of the
FileReader object.

Create a file reader for the word cloud script to load and read the contents of the userFile document. Once the load
event for the document has occurred (indicating a successful reading), create an onload event handler to write the
contents of the userFile document to the web page.

To load a document using the file reader:

1. Within the anonymous function add the following commands to create a FileReader object and to load the
contents of the userFile object as a text file.

// Read the contents of the selected file

let fr = new FileReader();

fr.readAsText(userFile);

2. Next, apply the onload event handler to the file reader so when the document is complete and successfully
loaded, its contents will be written to the web page.

// Once the file has finished loading, display in the page

let sourceDoc = document.getElementById("wc_document");

fr.onload=function(){

 sourceDoc.innerHTML = fr.result;

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ReTRieving ConTenT fRom a TexT file 257

Figure 7-5 describes the newly added code to the anonymous function.

Figure 7-5 Reading and loading the contents of a text file

Create a FileReader
object

Load userFile as
a text file

When the document
is loaded, write its

contents to the web
page

Figure 7-6 External text loaded into the Word Cloud app

Contents of the
source document

Name of the source
document file

Click to select
a file to load

3. Save your changes to the file and then load fig07.html in your browser.

4. Click the Choose File button to open the File Open dialog box.

5. Locate and open the lincoln1.html file from the js07 c chapter folder.

As shown in Figure 7-6, the contents of Lincoln’s first inaugural address should appear within the web page.

In this chapter you will use the lincoln1.html file to develop and test the Word Cloud app. The content of that file
includes HTML tags marking the speech’s main heading and paragraphs. HTML tags are not included in a word cloud,
so you will strip them out, storing only the text content of the speech in a variable named sourceText.

To create the sourceText variable:

1. Return to the js07.js file in your code editor.

2. Within the anonymous function for the onload event handler, add the following code to store the text of the
source document (see Figure 7-7):

// Store the text of the document, removing HTML tags

let sourceText = sourceDoc.textContent;

3. Save your changes to the file, load fig07.html in your browser and then load the lincoln1.html file into the web page.

4. Open your browser’s debugger console and confirm that no errors are reported by the debugger.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS258

Figure 7-7 Extracting text content from the source document

Store the text of the
source document

without the HTML tags

A file is an example of a Blob or Binary Large Object. Blobs are used for data storage in which the data is stored as
a chunk of bytes. Like a computer file, a Blob has a size property and a type property. It is either stored as part of
the computer’s file system or resides in computer memory. To create a Blob, apply the following new Blob() object
constructor:

let blob = new Blob(blobParts, options);

where blobParts are data source or text string values stored in the Blob and options define the Blob’s data type.
For example, the following statement creates a Blob that stores a string of HTML code:

let myHeading = new Blob("<h1>Word Cloud App</h1>");

You cannot change the contents of a Blob once it is created, but you can remove data from the Blob to create new
Blob objects using the following slice() method:

blob.slice(start, end, contentType)

where start and end providing the indexes of the starting and ending bytes of the Blob from which to extract data
and contentType defines the data type of those bytes.

If your app involves storing large pieces of information and then disseminating that information for reports and
analyses you will need to create your own Blobs to effectively manage that data.

Programming Concepts Blobs and Files

Working with Text Strings
A text string is a JavaScript object, created implicitly by storing or retrieving text. Text string objects can also be cre-
ated explicitly using the following new String() object constructor:

let string = new String(text);

where text is the text string that is stored in the string variable. Both of the following statements create an object
containing the text “Abraham Lincoln”:

let author = "Abraham Lincoln";

let author = new String("Abraham Lincoln");

The new String() object constructor is often used to reserve space for an empty string whose content is to be
determined later by the app.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WoRking WiTh TexT STRingS 259

Because text strings are objects, they are associated with wide variety of JavaScript methods and properties. The fun-
damental property for any text string is the length property, which returns the number of characters in the string.
The length property is often used with web form apps that need to confirm that an input field such as a user name
or password field has the required number of characters to be valid.

Searching for Substrings within a text String
Apps that manage text often need to determine whether the text string contains a group of characters known as a
substring. For example, an app that analyzes email addresses may need to determine whether a text string contains
the @ character or ends with a three-letter domain like “.org” or “.com”. Figure 7-8 describes the JavaScript properties
and methods for searching text strings to determine whether they contain a specified substring.

ProPerty or MethoD DescriPtion

string.length Returns the number of characters in string.

string.endsWith(text [,length]) Returns true if string ends with the substring text; the optional length property specifies
the length of the string to search

string.includes(text [,start]) Returns true if string contains the substring text; the optional start property specifies the
index of the starting character for the search

string.indexOf(text [,start]) Returns the first index of substring text within the text string, string; a value of -1 is returned if
text is not present within string

string.lastIndexOf(text [,start]) Returns the last index of substring text within the text string, string

string.startsWith(text [,start]) Returns true if string starts with the substring text

Figure 7-8 Properties or methods for text string characters

The startsWith(), endsWith(), and includes() methods indicate whether a text string contains a specified
substring located at the beginning of the string, at the end, or somewhere in-between. Thus, the statement

sourceText.includes(" union ")

returns true if the sourceText variable contains the word “union” anywhere within the string and false if other-
wise. Note that this substring starts and ends with a blank space. A blank space is a whitespace character—a term that
refers to any blank or nonprintable character such as a space, tab, or line break. Whitespace characters are important
in separating printable characters. This statement would return true only if the word “union” is found, but not for
words like “unions” or “disunion” in which the “union” substring is not surrounded by whitespace.

To determine exactly where a substring is located within a larger string, apply the indexOf() and lastIndex()
methods. The following two statements apply these methods to locate the first and last occurrence of a blank space
within the text string “First Inaugural Address”:

"First Inaugural Address".indexOf(" "); // returns 5

"First Inaugural Address".lastIndexOf(" "); // returns 15

The first text string character has an index number of 0 and therefore the index of the first blank space in this example
is 5, indicating that the blank space is the sixth character in the string. The index value of 15 indicates that the last
blank space is the sixteenth character. If the substring is not found within the larger string, both the indexOf() and
lastIndex() methods return an index value of −1.

The Word Cloud app needs to confirm that the user has selected a text file for processing and not a non-text file like an
image or video. The type property of the file object indicates the content of the file by returning file’s MIME type. Text
files have MIME types starting with the substring “text”, such as “text/plain”, “text/html”, or “text/javascript”. Thus, you
can confirm that the user selected a text file by checking whether the file’s MIME type starts with the “text” substring.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS260

Add a try catch statement to the Word Cloud app that uses the startsWith() method to verify that a text file
has been selected by the user, throwing an error if it has not.

To test that the user has selected a text file:

1. Return to the js07.js file in your code editor.

2. Directly below the statement declaring the userFile variable, add the following initial code for a try catch
statement:

// Verify that a text file is selected

try {

let isText = userFile.type.startsWith("text");

if (!isText) {

throw userFile.name + " is not a text file";

}

3. Scroll down and directly after the onload anonymous function, insert the following code closing the try state-
ment and adding a catch statement for catching the thrown error.

}

// Alert the user to select a text file

catch(err) {

 window.alert(err);

}

4. Indent the content of the try statement to make your code easier to read. Figure 7-9 describes the revised code
in the file.

Figure 7-9 Verifying that the user selects a text file

Test whether the source
�le’s MIME type starts

with “text”

If it does not, throw
an error

Commands run if
no error is thrown

Commands run if
 an error is caught

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WoRking WiTh TexT STRingS 261

5. Save your changes to the file and then load fig07.html in your browser.

6. Click Choose File and select the wordcloud.png file. Verify that the page displays an alert box indicating that
wordcloud.png is not a text file.

7. Click Choose File again and select lincoln1.html, verifying that the contents of that file load without error.

If your program does not work correctly, check your code against that shown in Figure 7-9. A common mistake is
omitting an opening or closing curly brace within the try catch statement. Having confirmed that the user has
selected a text file, you can begin building the commands that generate a word cloud for the document. You will start
by modifying the text within the file.

Modifying text Strings
An important point to remember with text strings is that they are immutable and cannot be changed, only replaced.
Any JavaScript method you apply to a text string will not change that string but instead will return a new string that
includes your modifications. Figure 7-10 lists some of the JavaScript methods that return a new text string from modi-
fying the contents of a source text string.

MethoD DescriPtion

string.toLowerCase() Converts string to lowercase characters

string.toLocaleLowerCase(locale) Converts string to lowercase characters based on the user’s locale

string.toUpperCase() Converts string to uppercase characters

string.toLocaleUpperCase(locale) Converts string to uppercase characters based on the user’s locale

string.trim() Removes whitespace characters from the start and end of string

Figure 7-10 Methods to manipulate text strings

You will make the following changes to the text of the source document:

 ❯ Convert all characters to lowercase letters to remove the distinction between words like “Nation” and “nation”.

 ❯ Strip out any leading or trailing whitespace characters from the text so that the text begins and ends with a
printable character.

To create a new string containing only lowercase characters apply the following toLowerCase() method to the
sourceText variable:

sourceText = sourceText.toLowerCase();

To strip out leading and trailing whitespace characters apply the trim() function:

sourceText = sourceText.trim();

Add both of these commands to the wordCloud() function running them after the file is successfully read by the
browser.

To modify the source text:

1. Return to the js07.js file in your code editor.

2. Directly after the statement declaring the sourceText variable, add the following command to call the
wordCloud() function:

// Generate the word cloud

wordCloud(sourceText);

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS262

3. After the closing brace of the catch statement, add the following initial code for the wordCloud() function:

function wordCloud(sourceText) {

// Convert the source text to lowercase

// and remove leading and trailing whitespace

sourceText = sourceText.toLowerCase();

sourceText = sourceText.trim();

console.log(sourceText);

}

The app writes the content of the sourceText to the debugger console so you can view the changing value of
that variable as you develop the Word Cloud app. See Figure 7-11.

Figure 7-11 Modifying the source text

Call the wordCloud()
function using sourceText

as the argument

Write the revised source
text to the debugger

console

The wordCloud()
function

Convert characters in
sourceText to lowercase

Remove leading and
trailing whitespace

Figure 7-12 Source text in the debugger console

Source text appears
in lowercase characters

4. Save your changes to the file and then reload js07.html in your browser and load lincoln1.html in the web page.

5. View the console log in the browser debugger and verify that content of the sourceText variable is displayed
in lowercase characters. See Figure 7-12.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WoRking WiTh TexT STRingS 263

Not all locales use the same rules for displaying uppercase and lowercase letters. For that reason JavaScript also
provides the toLocaleLowerCase() and toLocaleUpperCase() methods to allow for regional differences in
character case.

Because text strings are immutable it is a mistake to apply a method like toLowerCase() to a string
thinking that it will modify the string. It won’t. To modify a text string, you must completely replace its
content with the new string.

Note

extracting Characters and Substrings
In addition to searching for substrings within larger text strings, JavaScript supports methods for extracting substrings.
Figure 7-13 describes some of the JavaScript substring methods.

MethoD DescriPtion

string.charAt(i) Returns the character at index, i, where the first character has index 0, the second character has index 1, …

string.charCodeAt(i) Returns the Unicode of the character at index, i

string.slice(start [,end]) Extracts a substring from string, between the start and end index values, if no end value is specified
the substring extends to the end of the string.

string.split(text [,limit]) Splits string into an array of string values for each occurrence of text; the optional limit attribute
specifies an upper limit for the length of the array

string.substr(start
[,length])

Extracts a substring from string, starting at the index value start and continuing for the next length
characters; if no length value is specified the substring extends to the end of the string

string.substring(start
[,end])

Extracts a substring from string, between the start and end index values; if no end value is specified
the substring extends to the end of the string

Figure 7-13 Methods to extract characters and substrings

To extract a single character from a text string, apply the following charAt() method:

string.charAt(i)

where string is the string object and i is the index value of the character starting from 0 for the first character in
the string. For example, the following expression returns the fifth character from the text string “Abraham Lincoln”.

"Abraham Lincoln".charAt(4) // returns "h"

To extract substrings longer than a single character, use the slice(), substr(), or substring() methods. All
three methods accept either one or two arguments: the first argument specifying where the extraction begins, and the
second optional argument specifying where the extraction ends. For the slice() and substring() methods the
second argument specifies the character position directly after the end of the extraction so that all characters up to
but not including that index are extracted. For the substr() method the second argument specifies the number of
characters to be extracted. If no second argument is provided, all three methods extract a substring starting from the
initial index to the end of the text.

The following code shows the substring extracted from a sample text string starting from the fifth character using each
method. With the slice() and substring() methods, a substring up to the eleventh character is extracted. With
the substr() method, a substring of 10 total characters is extracted.

"Abraham Lincoln".slice(4,10) // "ham Li"

"Abraham Lincoln".substring(4,10) // "ham Li"

"Abraham Lincoln".substr(4,10) // "ham Licol"

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS264

The index can be negative in which case substrings are extracted counting backwards from the end of the text string;
however this is true only for the slice() and substr() methods. The substring() method treats negative
indexes as zero. The following examples show the result of applying a negative index with each method. Both the
slice() and substr() methods start the extraction seven characters from the end of the text and move forward.
The substring() method treats the negative index as 0 and extracts the entire string.

"Abraham Lincoln".slice(-7, -3) // "Linc"

"Abraham Lincoln".substring(-7) // "Abraham Lincoln"

"Abraham Lincoln".substr(-7, 4) // "Linc"

Extraction methods are often used in conjunction with indexOf() and lastIndexOf() to extract substrings up
to a specified character within the text. The following code demonstrates how to extract the user name and domain
from a sample email address by first finding the index of the @ character to create substrings of the text before and
after that character.

let email = "lincoln@example.com";

let atIndex = email.indexOf("@"); // returns 7

email.slice(0, atIndex); // returns "lincoln

email.slice(atIndex + 1); // returns "example.com"

The first slice() method extracts a substring up to (but not including) the @ character. The second slice() method
extracts a substring starting after the @ character through the end of the text.

Another way to achieve the same result is to split the text string using the following split() method:

let array = string.split(text)

where array is an array of substrings, string is the text to be split, and text is a delimiter character marking where
the text should be split. The following code uses the split() method to create the parts array where parts[0]
contains the username and parts[1] contains the domain.

let email = "lincoln@example.com";

let parts = email.split("@");

// parts[0] = "lincoln"

// parts[1] = "example.com"

Notice that the delimiter character is not included in either substring because it marks where the substrings begin and
end. The split() method is very effective for text strings that need to be broken up into multiple substrings based
on the placement of several delimiters. Later you will apply the split() method to create an array of the words in
the Lincoln speech.

Combining text Strings
New text strings can also be generated by combining two or more existing text strings. Figure 7-14 describes JavaScript
functions for combining text strings.

MethoD DescriPtion

string.concat(str1, str2, …) Appends the substrings str1, str2, … to the text string, string

string.fromCharCode(n1, n2, …) Constructs a String object using the Unicode character codes n1, n2, …

string.repeat(n) Repeats the text string, string, n times

Figure 7-14 Methods to generate new strings

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WoRking WiTh TexT STRingS 265

For example, the concat() method can be employed to append one or more text strings to an existing string as in
the following example in which the speech variable stores the text string “four score and seven years”.

let firstWord = "four";

let speech = firstWord.concat(" score and seven years")

// Returns "four score and seven years"

The concat() method does the same thing as the + and += operators, so there is no reason to use it in preference
to those much more direct approaches.

Comparing text Strings
Text strings can be compared using JavaScript operators such as the comparison operator === which tests whether
two strings are identical in content and type. Text strings can also be compared based on lexicographical order, which
indicates the order of characters within a language. In the United States where English is the standard language, the
letter “A” is listed before the letter “L” so that “A” is less than “L”. The following expressions indicate the ordering of
two text strings:

"Abraham" < "Lincoln" // Returns true

"Abraham" > "Lincoln" // Returns false

Note that uppercase letters come before lowercase letters so that if two letters have the same case, then alphabetic
order is used to compare them, but if the two strings are identical aside from case, the one starting with an uppercase
letter comes first.

Lexicographical order is related to Unicode value. The characters A through Z have Unicode values of 65
to 90 and, thus, are “less than” the characters a through z, which have Unicode values of 97 to 122.Note

Another way of comparing two text strings is with the following localeCompare() method:

string.localeCompare(compare)

where string and compare are text strings to compare. The localeCompare() method returns the following
values:

21 or a negative number If string comes before compare in lexicographical order

0 If string equals compare

1 or a positive number If string comes after compare in lexicographical order

The following statement returns a value of 21 because “a” comes before “z” in lexicographical order:

"a".localeCompare("z") // returns −1

Because lexicographical order might differ across locales, JavaScript provides the following localeCompare()
method:

string1.localeCompare(string2, locale, {options})

where locale defines the locale and options provides optional parameters for determining order. The following
statement returns a value of −1 indicating that A comes before Ä under the German (de) language.

"A".localeCompare("Ä", "de") // returns −1

You have completed the coverage of the JavaScript methods and properties associated with text strings. In the next
section you will learn to combine these methods with regular expressions.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS266

Introducing Regular Expressions
Many of the techniques and methods used with text strings can also be applied to regular expressions. Before continu-
ing with the development of the Word Cloud app, you will explore the terse language of regular expressions using an
interactive demo page.

Regular expressions have the following general form:

/pattern/

where pattern is a regular expression code defining a character pattern. For example, the following regular expres-
sion defines a character pattern in which 5 digits are followed by a dash and another 4 digits:

/\d{5}–\d{4}/

A text string such as “13472-0912” would match this pattern, but text strings such as “13472” or “134720912” do not.

Matching a Substring
The most basic regular expression is simply a substring of characters entered as follows:

/chars/

where chars is the substring text. To help you understand regular expressions, you will apply this regular expression
pattern in a demo page that has been created for you.

To open the regular expression demo:

1. Use your browser to open the demo_regexp.html file from the js07 c chapter folder.

2. Type There is the place we shall gather. in the text area box located in the upper-left corner of the page.

3. Click the Or enter one directly text box located directly below the drop-down list box and type /the/ as the
regular expression

4. Click the Pattern Test button. The first occurrence of the “the” substring is highlighted and the Pattern Test
Result field displays the word “match”, indicating that a matching character pattern has been found in the text
string. See Figure 7-15.

Spaces are part of a regular expression substring. The regular expression /the/ is different from the
regular expression / the /.Note

Quick Check 1

1. provide code to create a FileReader object named fReader.

2. provide code to read the file memo.txt in the fReader object as text.

3. What value is returned by the expression "Daily Memo".indexOf(" ")?

4. What text string is returned by the expression "Daily Memo".slice(3, 8)?

5. What value is returned by the expression "Daily".localeCompare("Memo")?

Notice that the substring match is case-sensitive and does not match the substring “The” found at the beginning
of the sample text.

Regular expressions use the anchors ^ and $ to mark the beginning and end of a text string. The following expression
matches the substring “land” but only if it comes at the start of the sample text.

/^land/

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inTRoduCing RegulaR expReSSionS 267

Figure 7-15 Matching a substring

Matching
substring

Click to perform
a pattern match

Pattern match
found

List of regular
expression codes

Sample text
string

Match the �rst
occurrence of the
characters “the”

The regular expression

/land$/

matches the substring “land” only if it comes at the end of the text string. Finally, the expression

/^land$/

only matches text strings that contain the word “land” and nothing else.

Setting regular expression Flags
By default, pattern matching stops with the first match. To override this default behavior, add a modifier character or
flag to end of the regular expression. To perform global searches, add the g flag to the regular expression

/pattern/g

To make a regular expression insensitive to case, add the i flag:

/pattern/i

Test these flags in the regular expression demo by matching all occurrences of the substring “the” regardless of case.

To open the regular expression demo:

1. Within the regular expression demo, change the regular expression pattern to /the/ig.

2. Click the Pattern Test button and verify that all occurrences of the substring “the” are highlighted regardless of
the case of the letters.

You can enter the regular expression flags in any order. Thus, ig will be treated the same as gi.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS268

Regular expression symbols have opposite meanings when expressed in uppercase letters. The symbol \B
means the absence of a word boundary, and the symbol \W means the absence of a word character.Note

character DescriPtion

\b A word boundary

\B Not a word boundary

\d A digit from 0 to 9

\D Any non-digit character

\w An alphabetical character (in upper- or lowercase letters), a digit, or an underscore

\W Any non-word character

\s A whitespace character (a blank space, tab, new line, carriage return, or form feed)

\S Any non-whitespace character

. Any character

Figure 7-16 Regular expression character types

Defining Character types and Character Classes
So far, your regular expressions have matched specific characters. The power of regular expressions comes with the
introduction of special characters that match substrings of a general type. The four charter types are alphabetical
characters; digits (numbers 0 to 9); word characters (alphabetical characters, digits, or the underscore character _)
and whitespace characters (blank spaces, tabs, and new lines). Figure 7-16 describes the regular expression symbols
used for these character types.

To apply a word boundary to a regular expression:

1. Within the regular expression demo, change the regular expression pattern to /\bthe\b/ig to match only the
word “the” and nothing else.

2. Click the Pattern Test button and verify that only “the” is matched from the text string.

3. Change the regular expression pattern to /\Bthe\B/ig to match only “the” only when it is not surrounded by
word boundaries.

4. Click the Pattern Test button again and verify that only the string “the” within the word “gather” is selected.

5. Change the regular expression pattern to /\bthe\B/ig to match only “the” only when it starts a word but does
not finish it.

6. Click the Pattern Test button and verify that only the string “The” within the word “There” is selected. See Figure 7-17.

A regular expression word is any substring containing only word characters. The string “R2D2” is considered a single
word, but “R2D2&C3PO” is considered two words, with the & symbol acting as a boundary between the words. Word
boundaries are indicated by the \b symbol. The following pattern matches any word starting with “art”, such as “art-
ful”, “artist”, or “article”.

/\bart/

On the other hand, the following pattern matches any word that ends with “art” such as “smart”, “dart”, or “heart”.

/art\b/

Finally, the following pattern places word boundaries around “art” so that it matches only the word “art” and nothing
else.

/\bart\b/

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inTRoduCing RegulaR expReSSionS 269

Digits are represented by the \d character. To match any occurrence of a single digit, apply the regular expression

/\d/

which finds matches in text strings such as 105, 6, or U2 because these examples all contain at least one digit. To match
several consecutive digits, repeat the \d symbol. The following regular expression matches a substring consisting of
5 consecutive digits:

/\d\d\d\d\d/

To match words consisting of exactly 5-digit numbers, mark the word boundaries with the \b character as follows:

/\b\d\d\d\d\d\b/

Finally, to match entire text strings that contain a 5-digit number and nothing else, anchor the regular expression pat-
tern with the ^ and $ characters:

/^\d\d\d\d\d$/

Test this pattern now on the demo page.

To apply a word boundary to a regular expression:

1. Within the regular expression demo, change the text in the Enter a text string box to 51523.

2. Change the regular expression pattern to /^\d\d\d\d\d$/ and click the Pattern Test button. The demo page
highlights all the digits in the test indicating a complete match.

3. Change the sample text string to 51,523 and click the Pattern Test button. The demo reports no match because
the text string does not consist of 5 digits and no other characters.

There is no character type that matches only alphabetical characters. However, you can specify a collection of charac-
ters known as a character class to limit the regular expression to a select group of characters. The regular expression
pattern for a character class is:

[chars]

where chars are characters in the class. For example, to create a character class matching all vowels in a text string
regardless of case, apply the following regular expression pattern

/[aeiou]/gi

Because characters have a lexicographical order, a character class can also be defined by a range of characters. To
create a character class for all lowercase letters, use the following:

[a–z]

Figure 7-17 Using word boundaries in a regular expression

Matching
substring

\B marks the
absence of a

word boundary

\b marks a
word boundary

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS270

for uppercase letters, use the following:

[A–Z]

A character class can contain multiple ranges. The following character class matches digits, lowercase letters, and
uppercase letters but nothing else:

[0–9a–zA–Z]

To create a negative character class that matches any character not in the class, preface the list of characters with
the caret symbol (^). The following regular expression matches all characters that are not vowels, regardless of case:

/[^aeiou]/gi

Note that the negative character set uses the same ^ symbol used to mark the beginning of a text string. Although
the symbol is the same, the meaning is very different in this context. Figure 7-18 summarizes the syntax for creating
regular expression character classes.

Pattern DescriPtion

[chars] Match any character in the chars list

[^chars] Do not match any character in the chars list

[char1-charN] Match characters in the range char1 through charN

[^char1-charN] Do not match any characters in the range char1 through charN

[a-z] Match any lowercase letter

[A-Z] Match any uppercase letter

[a-zA-Z] Match any lower- or uppercase letter

[0-9] Match any digit

[0-9a-zA-Z] Match any digit or letter

Figure 7-18 Character classes

Use the demo page now to explore the workings of character classes.

To create a character class pattern:

1. Within the regular expression demo, change the text in the Enter a text string box to With malice towards none.

2. Change the regular expression pattern to /[aeiou]/gi and click the Pattern Test button. All the vowels in the
text string are highlighted.

Next, select only the consonants in the text string.

3. Change the regular expression pattern to /[^aeiou]/gi and click the Pattern Test button. The regular expres-
sion selects all the characters which are not vowels. See Figure 7-19.

Specifying repeating Characters
Rather than repeating the same character in a regular expression, you can indicate the repetition of a character using
the following regular expression code:

{n}

where n is the number of repetitions. The following regular expression defines a character pattern consisting of 5 digits
and nothing else:

/^\d{5}$/

In place of a number, use the symbol * for 0 or more repetitions, + for 1 or more repetitions, or ? for 0 or 1 repetitions.
Figure 7-20 describes these and other repetition symbols in the regular expression language.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inTRoduCing RegulaR expReSSionS 271

To apply a repetition pattern:

1. Within the regular expression demo, change the text in the Enter a text string box to To be or not to be. That is
the question.

2. Change the regular expression pattern to /\bt[a-zA-Z]+\b/gi to match all words that begin with the letter “t”
followed by one or more letters.

3. Click the Pattern Test button. Figure 7-21 shows the words matched by the regular expression pattern.

Figure 7-19 Regular expression for non-vowels

Character classes
are grouped

within brackets

The negation of the
class is indicated
with the ^ symbol

Non-vowel
characters

are selected

Figure 7-21 Regular expression with
repetitive characters

Select any word
beginning with “t”
followed by 1 or

more letters

Matching
substring

rePetition characters DescriPtion

* Repeat 0 or more times

? Repeat 0 or 1 time

+ Repeat 1 or more times

{n} Repeat exactly n times

{n,} Repeat at least n times

{n,m} Repeat at least n times but no more than m times

Figure 7-20 Repetition symbols

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS272

4. Change the regular expression to /\bt[a-zA-Z]{2}\b/gi to limit the number of letters after the initial letter
“t” to two. Click the Pattern Test button and verify that “the” is the only match.

Using escape Sequences
Many commonly used characters are part of the regular expression language. The forward slash character / is reserved
to mark the beginning and end of a regular expression and the ?, +, and * characters specify the number of times a
character can be repeated. But what if you need to match one of those characters? For example, how do you create a
regular expression matching the date pattern mm/dd/yyyy when the / character is already reserved for other uses?

In such cases, use an escape sequence by prefacing the character with the backslash character \ indicating that the
character that follows should be interpreted as a character and not a command. For example, the escape sequence
\$ represents the $ character, while the escape sequence \\ represents a single \ character. Figure 7-22 provides a
list of escape sequences for other special characters.

Figure 7-23 Regular expression with an escape sequence

To apply an escape sequence:

1. Within the regular expression demo, change the text in the Enter a text string box to the date 3/14/2024.

2. Change the regular expression pattern to /^\d{1,2}\/\d{1,2}\/\d{4}$/ to match date text strings of the
form mm/dd/yyyy. Click the Pattern Test button. Figure 7-23 shows that the date is matched by the regular
expression pattern.

escaPe sequence rePresents

\/ /

\\ \

\. .

* *

\+ +

\? ?

\| |

\(\) ()

\{ \} { }

\^ ^

\$ $

\n A new line

\r A carriage return

\t A tab

Figure 7-22 Escape sequences

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inTRoduCing RegulaR expReSSionS 273

3. Test the regular expression against other data strings; note that the regular expression matches invalidate date
strings such as 23/99/0007 or 0/0/0000.

Explore the date expressions available from the selection list on the demo page to learn about other
regular expressions involving dates.Note

Specifying alternate patterns and Grouping
Your regular expression will often need to involve several different character patterns. Those patterns can be combined
with the | character as follows:

pattern1|pattern2

where pattern1 and pattern2 are two distinct patterns. For example, the following expression matches text strings
containing either 5 digits or 5 digits followed by a dash and another 4 digits:

/^\d{5}$|^\d{5}-\d{4}$/

Explore how to use the alternate character on the demo page by creating a regular expression that matches the abbre-
viations St., Ave., or Ln.

To specify alternate regular expressions:

1. Within the regular expression demo, change the text in the Enter a text string box to 815 Maple St.

2. Change the regular expression pattern to /St.|Ave.|Ln./g Click the Pattern Test button to verify that the
regular expression matches “St.”.

3. Change the address to 815 Maple Ave. and then to 815 Maple Ln. and verify that with each street address, the
regular expression matches the street abbreviation.

Another useful technique in regular expressions is to group characters so they can be treated as a single unit. The
syntax to create a group is:

(pattern)

where pattern is a regular expression pattern. Groups are often used with the | character to create regular expres-
sions that match different variations of the same text. For example, a phone number might be entered with or without
an area code. The pattern for the phone number without an area code, such as 555-1234, is:

/^\d{3}-\d{4}$/

but if an area code is included in the number, such as 800-555-1234, the pattern for the phone number would be:

/^\d{3}-\d{3}-\d{4}$/

To treat the area code as optional, place it within a group using the () symbols and apply the ? repetition character
to the entire area code group. The regular expression is:

/^(\d{3}-)?\d{3}-\d{4}$/

matching either 555-1234 or 800-555-1234. Test this regular expression now in the demo page.

To create a regular expression group:

1. Within the regular expression demo, change the text in the Enter a text string box to 555-1234.

2. Change the regular expression pattern to /^(\d{3}-)?\d{3}-\d{4}$/ and then click the Pattern Test button
to verify that phone number matches the regular expression pattern. See Figure 7-24.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS274

3. Change the phone number text string to 800-555-1234 and click the Pattern Test button to verify that this phone
number is also matched by the regular expression.

4. Continue to explore other text strings and regular expression patterns and then close the demo page when finished.

Having completed this overview of regular expressions, you are ready to return to the development of the Word Cloud app.

Avoiding Mistakes with Regular Expressions
The language of regular expressions is beautifully compact, but it is easy to make mistakes in
syntax. Here are some typical errors that may creep into your regular expressions:

 ❯ Including spaces in the regular expression. In JavaScript, whitespace can make your code
more readable, but a blank space in a regular expression is treated as a character and will be
evaluated as such.

 ❯ Forgetting to escape special characters. Characters like (and) have special meanings in a
regular expression so they must be escaped if they are part of the character pattern.

 ❯ Forgetting the ^ and $ characters. If your regular expression is designed to match the entire
text string, you must anchor it with the ^ and $ characters.

 ❯ Excessive backtracking. Backtracking occurs when the regular expression contains
quantifiers such as the * or + characters, which force the parser to examine each possible
substring within a larger text string. A text string consisting of no more than 20 characters
might result in millions of individual searches, slowing down the program’s execution. You
can avoid such catastrophic backtracking by not overusing quantifiers and tightly writing your
regular expressions to limit the number of possible matches.

Always test your regular expressions before committing them to your code. There are several
free and fee-based regular expression testers available on the web that can highlight syntax
errors and help you avoid catastrophic backtracking .

Common
Mistakes

Figure 7-24 Regular expression with grouping

Area code
is optional

Pattern for the
rest of the

phone digits

Programming with Regular Expressions
A regular expression can be directly entered into your JavaScript code as a regular expression literal. For example, the
following command stores a regular expression literal in the regx variable:

let regx = /\d{5}-\d{4}/g;

Note that the regular expression is not enclosed within quotes (it’s not a String object!)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

pRogRamming WiTh RegulaR expReSSionS 275

A regular expression can also be defined using the following new RegExp() object constructor:

new RegExp(pattern, flags);

where pattern is the text of the regular expression (enclosed in quotes) and flags are the text of any modifiers
added to that pattern. The following command stores a regular expression in the regx variable using an object
constructor:

let regx = new RegExp("\d{5}-\d{4}", "g");

One of the advantages of using an object constructor is that it can read a variable containing a regular expression. For
example, the following code creates a regular expression based on the value of the patternTest variable:

let patternTest = "\d{5}-\d{4}";

let regx = new RegExp(patternTest, "g");

regular expression Methods
Because regular expressions are another type of JavaScript object, they have their own collection of methods. For
example, you can search a text string to determine whether a character pattern defined by a regular expression is
present within the text. You can replace or remove characters within the text string that match a regular expression
pattern. You can also split a text string into several substrings at each occurrence of a regular expression character
pattern. Figure 7-25 describes some of the JavaScript methods associated with regular expressions.

MethoD DescriPtion

re.exec(str) Searches the text string, str, for the character pattern expressed in the regular expression re, returning data
about the search results in an array

re.test(str) Searches str for the character pattern re; if a match is found returns the Boolean value true

re.toString() Converts the regular expression re to a text string

str.match(re) Searches str for the character pattern expressed in the regular expression re, returning the search results in
an array

str.search(re) Searches str for a substring matching the regular expression re; returns the index of the match, or -1 if no
match is found

str.replace(re, newsubstr) Replaces the characters in str defined by the regular expression re with the text string newsubstr

str.split(re) Splits str at each point indicated by the regular expression re, storing each substring as an item in an array

Figure 7-25 Regular expression methods

One method often used with regular expressions is the following test() method to determine whether the contents
of a text string match a regular expression pattern:

re.test(str)

where re is a regular expression and str is the text string to be tested. The test() method returns true if a match
is found and false otherwise. For example, the following code uses the test() method to compare the text string
stored in the zipCode variable with the regular expression object stored in the regx variable:

let digits = "12345";

let regx = /^\d{5}$/;

let testValue = regx.test(digits); // returns true

To determine where the match occurs within the text string, apply the following search() method:

str.search(re)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS276

The search() method returns the index of the first matching substring from the string. If no match is found, it
returns the value −1, just like the indexOf() method discussed earlier. However, unlike the indexOf() method, the
search() method always starts from the beginning of the text string.

replacing text with regular expressions
Regular expressions can locate and replace substrings within a larger text string using the following replace()
method:

str.replace(re,newsubstr)

where str is a text string containing text to be replaced, re is a regular expression defining the character pattern of
the substrings that need replacing, and newsubstr is the replacement substring. The following code shows how to
apply the replace() method to replace “1st” with “First” in a sample text string:

let oldtext = "1st Inaugural";

oldtext.replace(/1st/g, "First"); // returns First Inaugural

Use the replace() method to move all punctuation marks and digits from the Word Cloud app’s source text, replac-
ing them with empty text strings. The regular expression to match all characters that are not alphabetic and not
whitespace is:

/[^a-zA-Z\s]/g

Add your code to the wordCloud() function now.

To remove non-alphabetic characters from the source text:

1. Return to the js07.js file in your code editor.

2. Go to the wordCloud() function and directly before the statement writing sourceText to the debugger con-
sole, add the following code as described in Figure 7-26:

// Leave only alphabet characters and whitespace in the text

let alphaRegx = /[^a-zA-Z\s]/g;

sourceText = sourceText.replace(alphaRegx, "");

Figure 7-26 Removing non-alphabetic characters

Replace those
characters with an
empty text string

Select characters that
are not alphabetic

nor whitespace

3. Save your changes to the file and then reload js07.html in your browser and load lincoln1.html in the app.

4. View the console log to confirm that the source text no longer contains punctuation marks or digits, but only
alphabetic characters and blank spaces. See Figure 7-27.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

pRogRamming WiTh RegulaR expReSSionS 277

The Word Cloud app also needs to remove stop words from the source text. A stop word is a word not normally
included within a word cloud because it provides no meaning, including articles such as “and”, “if”, “is”, and “the”. An
array of stop words has been created for you and stored at the bottom of the js07.js file. Figure 7-28 shows a portion
of the stopWords array.

Figure 7-27 Source text with only alphabetic characters

Only alphabetic characters
and whitespace remain

in the document

Figure 7-28 Part of the stopWords array

To remove the stop words from the source text, the Word Cloud app will examine every entry in the stopWords
array and apply the replace() method to replace the stop word in the source text with an empty text string. The
for loop is:

for (let i = 0; i < stopWords.length; i++) {

let stopRegx = new RegExp("\\b"+stopWords[i]+"\\b", "g");

sourceText = sourceText.replace(stopRegx, "");

}

Note that the regular expression using \b to mark the word boundaries around each stop word and the global flag, g,
to do the replacement throughout the source text. Add this for loop to the wordCloud() function now.

To remove stop words from the source text:

1. Return to the js07.js file in your code editor.

2. Directly before the statement writing sourceText to the debugger console, add the following for loop as
described in Figure 7-29.

// Remove stop words from the text

for (let i = 0; i < stopWords.length; i++) {

let stopRegx = new RegExp("\\b"+stopWords[i]+"\\b", "g");

sourceText = sourceText.replace(stopRegx, "");

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS278

3. Save your changes to the file and then reload js07.html in your browser and load lincoln1.html in the app.

4. View the console log to confirm that stop words have been removed from the source text. See Figure 7-30.

Figure 7-29 Removing stop words from the source text

Replace stop
words with empty

text string

Select all stop
words in the
document

Figure 7-30 Source text without stop words

The global flag must be set to locate all matches in the text string. Without the g flag, only the first match
is returned.Note

Having removed the stop words from the source text, you will next place the remaining words into an array.

Splitting a text String into an array
To create an array of substrings from a text string, use the following match() method:

let array = str.match(re)

where str is the text string, re is the regular expression indicating which substrings to match, and array contains
each matched substring. For example, the following command extracts the individual words from the text string, plac-
ing each word as a separate item in the words array:

let words = "with malice towards none".match(/\b\w+\b/g);

// words = ["with", "malice", "towards", "none"]

Similar to the match() method is the split() method, which breaks a text string into substrings at each location
where a pattern match is found, placing the substrings as individual items in an array. You saw how to use the split()
method earlier in the session when it was applied with a text string as a delimiter. It can also be used with regular
expressions. The following command splits a text string at every occurrence of one or more whitespace characters,
creating an array of individual words:

words = "with malice towards none".split(/\s+/g);

// words = ["with","malice","towards","none"]

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

pRogRamming WiTh RegulaR expReSSionS 279

Use the split() method now to split the source text as every occurrence of one or more whitespace characters,
creating an array of words from the source text.

To place the source text words into an array:

1. Return to the js07.js file in your code editor.

2. Directly after the for loop that removes stop words from the source text, add the following code.

// Place the remaining words in array

let words = sourceText.split(/\s+/g);

3. Change the statement that writes to the debugger console from console.log(sourceText) to
console.log(words). See Figure 7-31.

Figure 7-31 Splitting a text string to an array

Display the array
in the debugger

console

Split the document at
locations of one or more

whitespace characters

Figure 7-32 Contents of the words array

4. Save your changes to the file and then reload js07.html in your browser and load lincoln1.html in the app.

5. View the console log to examine the contents of the words array. See Figure 7-32.

After removing the stop words, there are 1357 words left in the speech, many of which are duplicates.

referencing Substring Matches
Whenever a method is applied to a regular expression, information about the matched substrings is stored in a JavaS-
cript RegExp object using properties labeled $1 through $9. The $1 property returns the first group of matching
substrings, the $2 property returns the second matching substring and so forth. By using these properties, you can
restructure a text string using substrings selected by the regular expression.

For example, in the following code a text string contains the first and last names of several individuals with the names
separated by commas. By creating a regular expression that identifies the grouping of the first name and the last name,
the ordering of the names can be switched so that the last name comes before the first name followed by a semicolon.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS280

let names = "Travis Lee, Darius Green, Alisha Draves";

let re = /(\w+)\s(\w+),?/g;

let names2 = names.replace(re, '$2, $1; ');

// returns "Lee, Travis; Green, Darius; Draves, Alisha"

In this code the $1 property represents the first name group entered as (\w+) in the regular expression and $2 repre-
sents the second name group (\w+) placed after the whitespace \s character. By properly constructing your regular
expression you can rearrange the contents of a text string in a wide variety of ways.

You have completed your study of text strings and regular expressions. In the next section you will explore how to
retrieve the unique words from the words array and tabulate the frequency of each word from the Lincoln speech.

The language of regular expressions can describe a wide variety of patterns in a minimal amount of code. However,
it is important to consider the trade-offs—especially the decreased readability of complex regular expressions by
other programmers. In some cases, such as a phone number or email address, single, compact expressions are
standardized and widely used. However, especially for custom regular expressions, it is important to stop and
consider which is a higher priority for your organization and/or your team of developers: readability or compactness.

In many cases, you can break a regular expression into smaller units and run a separate test on each. This has the
side benefit of enabling you to identify specific issues with a string being tested, rather than simply learning that it
does not meet all the requirements coded into a single complex regular expression. In other words, do not try to be
too clever and fit several levels of matching into one expression.

On the other hand, breaking a test into multiple statements results in more code, which can take longer to execute
and download, and those factors can negatively impact user experience. For these reasons, it is important to
understand whether compact code or self-documenting code is a higher priority when creating regular expressions
for a project, and that this decision may impact your entire team.

Skills at Work Balancing Readability and Efficiency in Regular Expressions

Quick Check 2

1. provide a regular expression to match every occurrence of the word "the" regardless of case.

2. What regular expression symbol matches every character but a whitespace character?

3. Social security numbers can be entered as either 9 digits in a row or in the form ddd-dd-dddd. Write a regular
expression to match either pattern.

4. provide code to test whether the value of the userID variable matches a character pattern of 3 digits followed by
a dash followed by another 4 digits.

5. provide code to split the text string stored in the orderDate variable at every occurrence of the / character,
storing the values in the array dateArray.

Exploring Array Methods
To complete the Word Cloud app you will need to work with the properties and methods associated with arrays.
JavaScript arrays include methods that change an array’s content, order, and size. There are also methods to combine
multiple arrays into a single array and to convert the contents of an array into a text string.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exploRing aRRay meThodS 281

reversing and Sorting an array
Items are placed in an array either in the order in which they are defined or explicitly by index number. You can alter
that order by using the reverse() and sort() methods. The reverse() method reverses the order of the array
items, making the last items first and the first items last. In the following set of commands, the reverse() method
changes the order of the values in the cards array:

let cards = ["Ace", "King", "Queen", "Jack"];

cards.reverse();

// returns ["Jack", "Queen", "King", "Ace"]

The sort() method rearranges array items by lexicographical order. Applied to the cards array, the sort() method
produces the following array:

cards.sort();

// returns ["Ace", "Jack", "King", "Queen"]

Use the sort() method to sort the contents of the words array in alphabetical order.

To sort the contents of the words array:

1. Return to the js07.js file in your code editor and go to the wordCloud() function.

2. Directly after the statement to create the words array, add the following statement to sort the contents of that
array (see Figure 7-33):

// Sort the words in alphabetical order

words.sort();

Figure 7-33 Applying the sort() method

Sort the array
content in

alphabetical order

3. Save your changes to the file and then reload js07.html in your browser and load lincoln1.html in the app.

4. Use the debugger console to verify that the contents of the array are sorted in alphabetical order. See Figure 7-34.

Figure 7-34 The words array sorted in alphabetical order

The word “abide”
is mentioned twice

The word “administration”
is mentioned six times

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS282

With the words array sorted, it is easier to see the duplicates. For example, the word “abide” appears twice in
Lincoln’s speech, “according” appears three times, and “administration” appears six times. You will store this
information in a multidimensional array named unique in which each item in the array is itself an array consist-
ing of two entries: the first containing the text of the word and the second storing the number of times that word
was used.

Figure 7-35 The unique multidimensional array

words array

words[
"abide",
"abide",
"ability",
"accept",
"according",
"according",
"according",
"act",
"acts",
"acts",
"acts",
"actually"

…
]

unique[

["abide",2]
["ability",1]
["accept",1]

["according",3]
["act",1]

["acts",3]
["actually",1]

…
]

unique array

For an overview of multidimensional arrays, see Chapter 3.Note

Figure 7-35 shows a preview of this “array of arrays” for a selection of words.

To create the unique array, use a for loop that iterates through the items in the words array. If the current word is
different from the previous word, add it to the unique array and set the duplicate count to 1, but if it is the same as
the previous word, increase the duplicate count by 1 without adding a new array item.

The name of each word in this multidimensional array can be referenced with the expression unique[i][0] where
i is the index of the word in the unique array. The duplicate count is referenced with the expression unique[i]
[1]. For example, the first word “abide” from Figure 7-35 is referenced as unique[0][0] and its duplicate count is
referenced as unique[0][1]. The seventh word “actually” is referenced with the expression unique[6][0] and
its duplicate count with unique[6][1].

Add code to the wordCloud() function to generate the unique array.

To sort the contents of the words array:

1. Return to the js07.js file in your code editor.

2. Directly after the statement to sort the words array, add the following statements to declare the unique array
and enter its initial word and set that duplicate count to 1.

// Create an 2D array in which each item is array

// containing a word and its duplicate count

let unique = [[words[0], 1]];

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exploRing aRRay meThodS 283

3. As you generate the unique array, you will need to keep track of the index of the current item in the array. Add
the following code to declare that variable:

// Keep an index of the unique words

let uniqueIndex = 0;

4. Add the following for loop to iterate through each item in the words array, adding new words as they are found
or increasing the duplicate count for words previously discovered.

for (let i = 1; i < words.length; i++) {

if (words[i] === words[i-1]) {

// Increase the duplicate count by 1

unique[uniqueIndex][1]++;

} else {

// Add a new word to the unique array

uniqueIndex++;

unique[uniqueIndex] = [words[i], 1];

}

}

5. Delete the console.log(words); statement because you will no longer be needing it.

Figure 7-36 describes the newly added code in the file.

Figure 7-36 Code to generate the array of unique words

First element in the array
contains the first word
and a word count of 1

Keep count of the
number of unique

words

Test whether the
current word equals
 the previous word

Otherwise add a new
entry to the unique array

If it does, increase its
duplicate count by 1

Verify that the unique array has been properly constructed by viewing its contents in the Scope window of your
browser’s debugger.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS284

To view the contents of the unique array:

1. Save your changes to the file and then reload js07.html in your browser.

2. In your browser debugger set a breakpoint at the last line of the wordCloud() function directly before the final
line of the anonymous function for the onload event hander.

3. Click the Choose File button and open the lincoln1.html file.

4. Go to the Scope window in your browser debugger and examine the contents of the unique array as shown in
Figure 7-37.

Figure 7-37 Contents of the unique array

Duplicate
countWord

5. Continue executing the script and then remove the breakpoint from the debugger.

The words in the unique array are sorted in alphabetical order but it would be more useful in building the word cloud
if the most often-used words were listed first.

Sorting with a Compare Function
The sort() method sorts everything in lexicographical order, and because of this, numeric values are sorted in order
of their leading digits and not their values. Applying the sort() method to the following array of numeric values would
result in an array that is not sorted by increasing numeric value.

let x = [45, 3, 1234, 24];

x.sort(); // returns [1234, 24, 3, 45]

To sort by numeric value, a compare function must be applied to the sort() method to indicate when pairs of items
within the array should be swapped (or not swapped). To call a compare function, add the function name to the
sort() method as follows:

sort(compare)

where compare is the name of the compare function. The general form of a compare function is:

function compare(a, b) {

 return compareValue;

}

where a and b are parameters representing two items within the array and compareValue is a value that determines
the ordering of those two items.

 ❯ If compareValue is negative, a is moved before b.

 ❯ If compareValue is positive, a is moved after b.

 ❯ If compareValue is zero, a and b retain their original positions.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exploRing aRRay meThodS 285

The compare function determines the relative positions of every item pair within the array. The following compare
function can be used to sort numbers by increasing order of value:

function ascending(a, b) {

 return a – b;

}

When a is less than b, the expression a – b is negative, causing a (the smaller number) to be placed before b (the
larger number). If a is greater than b then a – b is positive, causing a to be placed after b. If a – b is zero, the two
items have equal value and retain their original array positions. When this compare function is applied to an array of
numbers, the smaller numbers will be moved towards the front of the array:

let x = [45, 3, 1234, 24];

x.sort(ascending); // Returns [3, 24, 45, 1234]

To sort numbers in descending order, use a compare function that returns the difference b – a so that a is placed
after b when it is smaller and before b when it’s bigger.

function descending(a, b) {

 return b – a;

}

You can embed the compare function as an anonymous function within the sort() method using the
following general form:

array.sort(function(a, b) {return compareValue;});

Note

Use a compare function to sort the unique array by descending order of duplicate count. The code for the compare
function is:

function byDuplicate(a, b) {

 return b[1] – a[1];

}

Note that in this code b[1] and a[1] refer to the duplicate counts for each word, placing the word with the greater
duplicate count first. Add this compare function to the Word Cloud app and sort the words in the unique array.

To sort the unique array by duplicate count:

1. Return to the js07.js file in your code editor and add the following code to the wordCloud() function as
described in Figure 7-38:

// Sort by descending order of duplicate count

unique.sort(byDuplicate);

function byDuplicate(a, b) {

 return b[1]-a[1];

}

Figure 7-38 Using sort() with a compare function

Compare function
for numeric sorting

Place a after b if
b[1]–a[1]
is negative

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS286

2. Save your changes to the file and then reload js07.html in your web browser.

3. In your browser debugger set a breakpoint at the last line of the wordCloud() function.

4. Click the Choose File button and open the lincoln1.html file.

5. Go to the Scope window in your browser debugger. Figure 7-39 shows the sorted contents of the unique array.

Based on your analysis, “constitution” is most-repeated word in the Lincoln speech with 22 mentions, followed
by “people”, “union”, “government”, and “states”.

Figure 7-39 Content of the unique array sorted by descending order of duplicate count

6. Continue executing the script and then remove the breakpoint from the debugger.

There are 826 unique words in the Lincoln speech, which is too many for a word cloud. You will reduce the array to
the 100 most-repeated words.

extracting and Inserting array Items
In some scripts, you will need to extract a section of an array, known as a subarray. One way to create a subarray is
with the following slice() method:

array.slice(start, stop)

where start is the index value of the array item at which slicing begins and stop is the index before which slicing
ends. The stop value is optional; if it is omitted, the array is sliced to its end. The original contents of the array are
unaffected after slicing, but the extracted items can be stored in another array. For example, the following command
slices three items from the middle of the months array and stores them as a new array named summerMonths:

let months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"];

summerMonths = months.slice(5, 8);

// returns ["Jun", "Jul", "Aug"]

Remember that arrays start with the index value 0, so the sixth month of the year (Jun) has an index value of 5, and
slicing is applied up to (but not including) array index 8 (Sep).

Related to the slice() method is the splice() method, a general-purpose method for removing and inserting
array items:

array.splice(start, size, values)

where start is the starting index in the array, size is the number of array items to remove after the start index,
and values is an optional comma-separated list of values to insert into the array. If no size is specified, the array
is spliced to its end. If no values are specified, the splice() method removes items without replacement. The
following statement employs the splice() method to remove three names from the middle of the emp array while
inserting three new names into the same location.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exploRing aRRay meThodS 287

let emp = ["Drew", "Lee", "Grant", "Li", "Rao", "Yang"];

emp.splice(1,3,"Evans", "Greer", "Smith");

// emp = ["Drew", "Evans", "Greer", "Smith", "Rao", "Yang"];

An important difference between the slice() and splice() methods is that the splice() method
removes items from the original array, while the slice() method returns a new array with the items
removed.

Note

Use the slice() method to retain the first 100 words in the unique array, removing the rest.

To apply the splice() method:

1. Return to the js07.js file in your code editor and add the following code to the wordCloud() function as
described in Figure 7-40.

// Keep the Top 100 words

unique = unique.slice(0, 100);

Figure 7-40 Slicing an array

Slice the array
from index 0

up to index 100

2. Save your changes to the file and then reload js07.html in your web browser.

3. In your browser debugger set a breakpoint at the last line of the wordCloud() function.

4. Click the Choose File button and open the lincoln1.html file.

5. Go to the Scope window in your browser debugger and verify that the size of the unique array is reduced to the
100 most-used words.

6. Continue executing the script and then remove the breakpoint from the debugger.

7. Close the browser debugger.

Using arrays as Data Stacks
Arrays can also store information in a data structure known as a stack in which new items are added to the top of the
stack—or to the end of the array—much like a person clearing a dinner table adds dishes to the top of a stack of dirty
plates. A stack data structure employs the last-in first-out (LIFO) principle in which the last items added to the stack
are the first ones removed. Stack data structures are employed with the Undo feature of some software applications,
in which the last command performed is the first command undone.

JavaScript supports several methods for stack data structures. The following push() method appends new items to
the end of an array:

array.push(values)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS288

where values is a comma-separated list of values to be appended to the end of the array. To remove—or unstack—the
last item, apply the following pop() method:

array.pop()

The following set of commands demonstrates how to employ the LIFO principle with the push() and pop() methods
to add and remove items from a data stack:

let x = ["a", "b", "c"];

x.push("d", "e"); // x = ["a", "b", "c", "d", "e"]

x.pop(); // x = ["a", "b", "c", "d"]

x.pop(); // x = ["a", "b", "c"]

Another type of data structure is the queue, which employs the first-in-first-out (FIFO) principle in which the first item
added is the first item removed. You see the FIFO principle in action with a line of people waiting to be served. For array
data that should be treated as a queue, use the shift() method to remove the first array item and the unshift()
to insert a new first item. The following code demonstrates how to apply these methods to insert and remove items
from the start of an array:

let x = ["c", "d", "e"];

x.unshift("a", "b"); // x = ["a", "b", "c", "d", "e"]

x.shift(); // x = ["b", "c", "d", "e"]

x.shift(); // x = ["c", "d", "e"]

Figure 7-41 summarizes several other array methods. Arrays are a powerful and useful feature of the JavaScript lan-
guage and can be applied to a wide variety of tasks.

MethoD DescriPtion

array.copyWithin(target, start, end]) Copies items within array from the start to end indexes and pastes those values starting
at the target index

array.concat(array1, array2,...) Joins array to other arrays, creating a single array

array.fill(value, start, end) Fills array with the value value, starting from the start index through the end index

array.indexOf(value, start) Returns the index number of the first element equal to value, starting from the optional
start index

array.join(separator) Converts array to a text string with array values separated by the separator character (if
no separator is specified, a comma is used)

array.lastIndexOf(value, start) Searches backward through array, returning the index number of the first element equal to
value, starting from the optional start index

array.pop() Removes the last item from array

array.push(values) Appends array with new items, where values is a comma-separated list of item value

array.reverse() Reverses the order of items in array

array.shift() Removes the first item from array

array.slice(start, stop) Extracts items starting with the start index up to the stop index, returning a new subarray

array.splice(start, size, values) Extracts size items starting with the item with the index start; to insert new items into the
array, specify the array items in a comma-separated values list

array.sort(compare) Sorts array where compare is the name of a function that returns a positive, negative, or 0
value; if no compare function is specified, array is sorted in alphabetical order

array.toString() Converts array to a text string with the array values in a comma-separated list

array.unshift(values) Inserts new items at the start of array, where values is a comma-separated list of new values

Figure 7-41 Array methods

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exploRing aRRay meThodS 289

The last part of the Word Cloud app is to display the top 100 words with the font size of each word proportional to
the number of times it was repeated. The word with the most duplicates will have the largest size; the word with
the fewest duplicates will have the smallest. To size these words correctly, the app will the need count of the word
with the most duplicates. Because the unique array has been sorted in descending order of duplicate count, the
first item in the array will also be the most repeated and, thus, the top count can be stored using the following
expression:

let maxCount = unique[0][1];

Apply this command to the wordCloud() function and then sort the unique array back into alphabetical order.

To store the maximum duplicate count:

1. Return to the js07.js file in your code editor.

2. Directly below the command that slices the unique array, add the following commands to the function as shown
in Figure 7-42.

// Find the duplicates of the most-repeated word

let maxCount = unique[0][1];

// Sort the word list in alphabetic order

unique.sort();

Figure 7-42 Determine the count of the most-repeated words

To display the word list sized proportional to each word’s use, create a for loop that iterates through every word in
the unique array. For each word, set its size in em units as a fraction of the size of the word with the most repetitions.
The most-used word will be displayed with a font size of 1em. A word that appears half as often will have a font size to
0.5em. A word that appears a tenth as often has a font size of 0.1em, and so forth. The font size represented by 1em is
set in the CSS style sheet used with this project and could be changed the web designer based on the website design
without affecting the script code.

To display each word in a size proportional to its use:

1. Return to the js07.js file in your code editor.

2. Directly below the command to sort the unique array, add the following commands to reference the element
that will contain the word cloud and set its initial content to an empty string.

// Reference the word cloud box

let cloudBox = document.getElementById("wc_cloud");

cloudBox.innerHTML = "";

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS290

3. Add the following for loop to add each word to the cloudBox, sized proportional to the number of times it
appears in the document.

// Size each word based on its usage

for (let i = 0; i < unique.length; i++) {

let word = document.createElement("span");

word.textContent = unique[i][0];

word.style.fontSize = unique[i][1]/maxCount + "em";

cloudBox.appendChild(word);

}

Figure 7-43 describes the code in the file.

Figure 7-43 Sizing the words in the word cloud

Loop through every
word in the list

Set the font size as
a percentage of the

largest duplicate count

Create a span element
containing the text

of every word

Append the word
to the word cloud box

4. Close the js07.js file, saving your changes.

5. Reload the js07.html file in your browser.

6. Click the Choose File button and load the lincoln1.html file. A word cloud is generated for the content of Lincoln’s
speech shown earlier in Figure 7-1.

7. Click the Choose File button again and load the lincoln2.html speech for Lincoln’s second inaugural address
given near the end of the Civil War. See Figure 7-44.

You can compare the word cloud in Figure 7-44 with the one shown earlier in Figure 7-1, to see how the tone and
emphasis of Lincoln’s speech changed between the First and Second Inaugural addresses.

8. Use the Word Cloud app to open the fdr3.html, jkf1.html, and reagan1.html files for those presidential inaugural
addresses. What do the word clouds tell you about the content and theme of those speeches?

9. Close the js07.html file.

You have completed your work on the Word Cloud app. The app can be used with almost any text file to generate a
word cloud highlighting the most important themes and concepts. By modifying the style sheet, you can create a wide
variety of word cloud designs and styles.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exploRing aRRay meThodS 291

Figure 7-44 Word cloud for Lincoln’s second inaugural address

Quick Check 3

1. provide code to sort the username array based on the byOrders() compare function.

2. What will be the contents of the totals array after the following command?

let totals = [12, 55, 128, 25, 437];

totals.sort();

3. What will be the contents of the x array after the following command?

let x = ["a", "b", "c", "d", "e", "f", "g"];

let sliced = x.slice(2, 4);

4. What will be the contents of the x array after the following command?

let x = ["a", "b", "c", "d", "e", "f", "g"];

x.splice(2, 3, "h", "i", "j");

5. What will be the contents of the x array after the following command?

let x = ["a", "b", "c", "d", "e", "f", "g"];

x.pop();

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS292

Exploring the Math Object
In this final section you will explore two other important objects used in many JavaScript applications. The first is
the Math object, which is a built-in JavaScript object used for performing mathematical operations and storing math-
ematical constants. Unlike other built-in objects like the String and Array objects, which must be created before
they are used, there is no object constructor for Math objects. All properties and methods of the Math object can be
called without creating it.

the Math Object
Figure 7-45 describes some of the methods associated with the Math object. Using these methods, you can construct
almost any mathematical expression or modify a numeric value through rounding or truncating fractional digits.

MethoD DescriPtion exaMPle returns

Math.abs(x) Returns the absolute value of x Math.abs(–5) 5

Math.ceil(x) Rounds x up to the next highest integer Math.ceil(3.58) 4

Math.exp(x) Raise e to the power of x Math.exp(2) e 2 (approximately 7.389)

Math.floor(x) Rounds x down to the next lowest integer Math.floor(3.58) 3

Math.log(x) Returns the natural logarithm of x Math.log(2) 0.693

Math.max(values) Returns the largest of a comma-separated list of
values

Math.max(3, 5) 5

Math.min(x, y) Returns the smallest of a comma-separated list of
values

Math.min(3, 5) 3

Math.pow(x, y) Returns x raised to the power of y Math.pow(2,3) 2 3 (or 8)

Math.rand() Returns a random number between 0 and 1 Math.rand() Random number between 0 and 1

Math.round(x) Rounds x to the nearest integer Math.round(3.58) 4

Math.sqrt(x) Returns the square root of x Math.sqrt(2) approximately 1.414

Math.trunc(x) Returns the integer portion of x, removing any
fractional digits

Math.trunc(13.85) 13

Figure 7-45 Methods of the Math object

In addition to the methods shown in Figure 7-45, the Math object also supports trigonometric functions. For example,
to calculate the sine, cosine, or tangent of a given angle x, you would enter the following commands:

Math.sin(x)

Math.cos(x)

Math.tan(x)

Note that trig calculations are performed for angles in radians, not degrees. To calculate the inverse of the trig func-
tions, use the Math.asin(), Math.acos(), and Math.atan() methods.

Math Object properties
Many mathematical expressions require the use of constants such as π or e. Rather than entering the numeric values
of these constants directly into your code, you can reference the built-in constants stored as properties of the Math
object. The general syntax for any built-in constant is:

Math.CONSTANT

where CONSTANT is the name of one of the mathematical constants described in Figure 7-46.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

293exploRing The MATH objeCT

constant DescriPtion

Math.E The base of the natural logarithms (2.71828…)

Math.LN10 The natural logarithm of 10 (2.3026…)

Math.LN2 The natural logarithm of 2 (0.6931…)

Math.LOG10E The base 10 logarithm of e (0.4343…)

Math.LOG2E The base 2 logarithm of e (1.4427…)

Math.PI The value of p (3.14159…)

Math.SQRT1_2 The value of 1 divided by the square root of 2 (0.7071…)

Math.SQRT2 The square root of 2 (1.4142…)

Figure 7-46 Math constants

You can use the Math.PI constant with the built-in trig functions to do calculations of sine, cosine, and tangent on
angles measured in degrees. The following commands show the form for calculating trig values for an angle stored in
the deg variable:

Math.sin(deg*Math.PI/180)

Math.cos(deg*Math.PI/180)

Math.tan(deg.Math.PI)

applying a Math Method to an array
In the Word Cloud app you took advantage of the fact that the unique array was sorted in descending order to quickly
retrieve the maximum value of the duplicate counts (as it would have to be the first item in the array). Sorting an array
is certainly one of way of determining the maximum or minimum array value, but if you don’t want to sort the array,
you can apply the max() or min() methods. However, those methods only apply to comma-separated lists of numeric
values and not items within an array. There are two approaches to using them with arrays.

One approach is to use the apply() method, which applies a method from object to another object. The general
syntax for the max() and min() methods is as follows:

Math.max.apply(null, array)

Math.min.apply(null, array)

where array is the array of item values. The following code uses this approach to calculate the maximum and minimum
values from a sample array.

Math.max.apply(null, [3, 8, 2, 4, 6]) // returns 8

Math.min.apply(null, [3, 8, 2, 4, 6]) // returns 2

Another approach is to use the spread operator. The spread operator, written as an ellipsis of three dots, spreads
out the items within an array into a comma-separated list of values. The following statements show how to apply the
spread operator to calculate the maximum and minimum values from an array without sorting:

Math.max(…[3, 8, 2, 4, 6]) // returns 8

Math.min(…[3, 8, 2, 4, 6]) // returns 2

The spread operator can be used with any JavaScript method or function that requires a comma-separated list of
values. For example, in the following code the spread operator is used to concatenate the contents of two arrays into
a single array:

let x1 = [1, 2, 3];

let x2 = [4, 5];

let allX = […x1, …x2]

// returns [1, 2, 3, 4, 5]

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS294

The spread operator can also be used with text strings in which each individual character of a string is spread out
into separate characters, as in the following example in which the text string “bcd” is spread into separate characters:

let chars = ["a", …"bcd ", "e"]

// returns ["a","b","c","d","e"]

Note that the spread operator is not supported in early editions of many browsers, so check the compatibility of your
users’ browsers before committing to its use.

random Numbers and random Sorting
Many applications, particularly games, involve working with random numbers. JavaScript generates random numbers
using the Math.random() method, which returns a random number between 0 and 1. To return a random value from
a different range, apply the following expression:

lowest + size*Math.random()

where lowest is the lower boundary of the range and size is the size of the range. For example, to generate a random
number from 20 to 30, apply the following expression:

20 + 10*Math.random();

Many applications need to limit random numbers to integers. To do so, enclose the random value within the Math.
floor() method, which rounds a number down to the next-lowest integer. The following statement generates random
integers from 21 to 30:

Math.floor(21 + 10*Math.random());

Some applications, such those that simulate games of chance like poker, need to randomly sort the contents of an
array. To randomly sort an array, create a compare function that randomly selects a positive, negative, or zero value.
The following compare function employs a simple approach to this challenge:

function randOrder(){

 return 0.5 – Math.random();

}

When applied with the sort() method in the following code, the contents of the x array will be randomly sorted:

let x = ["a", "b", "c", "d", "e", "f", "g"];

x.sort(randOrder); // x sorted in random order

Note that this is the simplest compare function for generating random order, but it may not always be the best.
In some simulations it might bias the random sorting to the earliest array items. The study of generating “true”
random numbers is broad and complex with various tests to compare the randomness of different approaches.
You can find other compare functions and algorithms on the web that perform a similar task but with fewer built-
in biases.

Exploring the Date Object
Another important object used in scripts that involve calendars and scheduling is the Date object, which stores date
and time values. Date objects are created using the following new Date() object constructor:

new Date("month day, year hrs:mins:secs")

where month, day, year, hrs, mins, and secs provide the Date object’s date and time. For example, the following state-
ment creates a Date object storing a date of May 23, 2024, at a time of 2:35:05 p.m.:

let orderDate = new Date("May 23, 2024 14:35:05");

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

295exploRing The DATE objeCT

Note that time values are based on a 24-hour clock so that a time of 2:35:05 p.m. would be entered as 14:35:05. Dates
and times can also be specified as numeric values in the form:

new Date(year, month, day, hrs, mins, secs)

where each parameter is a numeric equivalent of a date or time. Month values are entered as integers ranging from 0
(January) up to 11 (December) and hour values once again use a 24-hour clock. Thus, the following expression also
stores a date of May 23, 2024, at 2:35:05 p.m.:

let orderDate = new Date(2024, 4, 23, 14, 35, 5);

If no time value is specified, it is assumed that the time is 0 hours, 0 minutes, and 0 seconds of the specified day, in
other words midnight of the specified day. If neither day nor time is specified as in the following expression, JavaScript
will store the current date and time using information drawn from the system clock.

let today = new Date()

extracting Information from Dates and times
JavaScript dates are stored as numbers equal to the number of milliseconds between the specified date and Janu-
ary 1, 1970, at midnight. For example, the date May 23, 2024, at 2:235:05 p.m. is stored internally as 1,716,492,905,000
milliseconds. Because dates are stored as numbers, the interval between two dates is expressed as the difference in
milliseconds. Because there are 1000 milliseconds in one second, 60 seconds in one minute, 60 minutes in one hour,
and 24 hours in one day; to express a time difference in days; you must divide the time difference by 1000*60*60*24
as in the following statement:

let day1 = new Date("May 23, 2024");

let day2 = new Date("June 1, 2024");

let days = (day2 – day1)/(1000*60*60*24); // returns 9

JavaScript also supports several methods for extracting date and time information from a Date object. Figure 7-47
describes these methods.

Date MethoD DescriPtion result
let today
= new
Date("May
23, 2024
14:35:05");

today.getSeconds() Seconds (0 2 59) 5

today.getMinutes() Minutes (0 2 59) 35

today.getHours() Hours (0 2 23) 14

today.getDate() Day of the month (1 2 31) 23

today.getMonth() Month (0 2 11), where January 5 0, February 51, etc. 4

today.getFullYear() 4-digit year value 2024

today.getDay() Day of the week (0 2 6), where Sunday 5 0, Monday 5 1, etc. 4

today.toLocaleString() Text of the date and time using local conventions "5/23/2024 2:35:05 PM"

today.toLocaleDateString() Text of the date using local conventions "5/23/2024"

today.toLocateTimeString() Text of the time using local conventions "2:35:05 PM"

Figure 7-47 Methods of the Date object

All these methods will extract time information based on local time as specified on the user’s computer. In some appli-
cations, especially those involving international data exchanges, you will need to base your date and time values on
Universal Time Coordinated (UTC) time or Greenwich Mean Time (GMT) corresponding to the current date and time
in Greenwich, England. Each of the methods described in Figure 7-47 has an equivalent method using UTC time. For
example, the following code retrieves the current clock hour based on the user’s own computer and on Greenwich:

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS296

let today= new Date();

localHour = today.getHours () // returns the local hour

GMTHour = today.getUTCHours() // returns the hour in Greenwich

In same fashion, the getUTCDate() returns the date in Greenwich, getUTCDay() returns the day of the month in
Greenwich, and so forth.

Setting Date and time Values
JavaScript also supports methods to change the date or time stored within a Date object. Changing these values is
often used with apps that involve setting a future date or time based on a current value, such as setting the expiration
date for an online membership or for orders placed within a shopping cart. Figure 7-48 summarizes the methods sup-
ported by Date objects for setting date and time values.

Be careful with your dates and times or you run the risk of confusing your international readers. For example, the
text string 10/1/2024 is interpreted as October 1, 2024 in some countries, and as January 10, 2024 in others. Some
countries express times in a 12-hour (AM/PM) format while others use the 24-hour clock.

Best Practices Writing Dates and Times for a Global Marketplace

Date MethoD DescriPtion

date.setDate(value) Sets the day of the month, where value is an integer, ranging from 1 up to 31 (for some months)

date.setFullYear(value) Sets the 4-digit year value where value is an integer

date.setHours(value) Sets the 24-hour value, where value is an integer ranging from 0 to 23

date.setMilliseconds(value) Sets the millisecond value where value is an integer between 0 and 999

date.setMinutes(value) Sets the minutes value where value is an integer ranging from 0 to 59

date.setMonth(value) Sets the month value where value is an integer ranging from 0 (January) to 11 (December)

date.setSeconds(value) Sets the seconds value where value is an integer ranging from 0 to 59

date.setTime(value) Sets the time value where value is an integer representing the number of milliseconds since midnight on
January 1, 1970

Figure 7-48 Setting date and time values

For example, the following code uses the setFullYear() method to store a date that is one year after the current
date (whatever that may be):

let date = new Date();

let year = date.getFullYear(); // stores the year

date.setFullYear(year + 1); // increases year by 1

The different set methods overlap so that applying the method setHours(48) to a date object will increase the day
value by two. Also note that you can use the setHours() method with hours, minutes, seconds, and milliseconds.
The expression

setHours(5, 30, 15, 4)

will set a time value equal to 5 hours, 30 minutes, 15 seconds, and 4 milliseconds. This technique also applies to the
setMinutes() and setSeconds() methods so you can always set a time value for any time unit as well as smaller
intervals of that unit using a single method.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

exploRing TemplaTe liTeRalS 297

If you expect your dates and times to be read by an international audience, ensure that your text corresponds to local
standards. One way to do this is to spell out the month portion of the date, expressing a date as “October 1, 2024”.
Other designers suggest that a date format with the year expressed first (for example, 2024-10-1) is less likely to
be misinterpreted. With JavaScript, you can write dates and times in the user’s own local format with the following
method:

date.toLocaleString()

which returns the date and time formatted as a text string based on the local conventions. Thus, date values such as
October 1, 2024, at 2:45 p.m. would be displayed on a computer in the United States as:

Tue, October 1, 2024 2:45:00 PM

While a computer in France would display the same date and time as:

mardi 1 octobre 2018 1714:45:00

To display only the date or only the time, use the toLocaleDateString() and toLocaleTimeString() methods.

Exploring Template Literals
As you continue to work with text strings and arrays, you might find it easier to store your text strings as template
literals. A template literal encloses the text string within a backtick character (`), located on your keyboard’s tilde
key, rather using a single or double quote. Replacing single or double quotes with the backtick character has several
advantages: (1) Template literals can be extended across multiple lines without using the 1 operator; (2) Characters
like single and double quotes can be placed directly within the text string; and (3) whitespace characters including
line breaks are preserved as part of the text string.

adding placeholders to template Literals
Another advantage of a template literal is that variables and expressions can be inserted directly within the text string
using the following placeholder:

${placeholder}

where placeholder is the name of a variable or expression that returns a value. For example, the following code
inserts the text of the group1 and group2 variables directly into the text string:

let group1 = "none";

let group2 = "all";

`With malice towards ${group1} and charity for ${group2}`

// Returns "With malice towards none and charity for all"

If you place an expression within the placeholder, the JavaScript interpreter will evaluate the expression’s value and
insert it directly into the text string.

tagging a template Literal
Template literals do more than allow you to easily insert variables and expressions into a text string. They also break
up the text string into an implicit array of literal substrings between the placeholders. In the example in the previous
section, the template literal created an array containing two items: “With malice towards” and “and charity for”. The
placeholders themselves form a set of arguments called substitutions.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS298

Template literals can be tagged with a function that accesses the values stored within the literal substrings and place-
holder values, and modifies the text before it is stored in a variable. The general form of a function that tags a template
literal is:

function {literals, …substitutions}

 commands

 return value;

}

where literals is the array of substrings within the template literal and substitutions are the placeholder val-
ues. The value returned by the function is then passed to the variable. For example, the following highlight function
goes through the array of literal substrings and placeholder values to return a text string in which each substitution
is displayed in uppercase letters:

function highlight(literals, ...substitutions) {

 let result = "";

 for (let i = 0; i < substitutions.length; i++) {

 result += literals[i];

 result += substitutions[i].toUpperCase();

 }

 return result;

}

To tag the template literal with this function, place the function name directly before the template literal. The function
is applied to the text string modifying it in place as follows:

highlight`With malice towards ${group1} and charity for ${group2}`;

// Returns "With malice towards NONE and charity for ALL"

You might find it disconcerting to apply a function to a text string without formally calling the function or referenc-
ing an array that only exists within the template literal. However, once mastered, tagged template literals can greatly
increase the speed and efficiency of your work with text strings and arrays.

Quick Check 4

1. provide a javaScript expression to return the value of sin (45°).

2. provide two ways of calculating the maximum value of the items from the sales array without sorting or using a
for loop.

3. provide code to store the current date and time in the trialStart variable.

4. provide code to store a date and time in the expireDate variable that is one month after the trialStart
variable.

5. provide code to store the text string "Four score and 7 years ago" as a template literal in a variable named
preamble, tagging the template literal with the revise() function.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SummaRy 299

Summary
 ❯ The File API is used to retrieve the contents of selected files on the local computer or network.

 ❯ File reader objects are created using the new FileReader() object constructor. Use the readAsText()
method to read files containing text content.

 ❯ To determine the placement of a character within a text string, use the indexOf() or lastIndexOf() methods.

 ❯ You can change the case of a text string using the toLowerCase() and toUpperCase() methods of the
String object.

 ❯ To extract substrings from a text string, use the slice(), substring(), or substr() methods.

 ❯ To break a text string into an array of separate substrings, use the split() method of the String object.

 ❯ Regular expressions are written in a terse language to provide the description of a text string character pattern.
The general form of a regular expression is /pattern/.

 ❯ A flag can be added to regular expressions to indicate whether matching should be done for the entire text string
and whether matching should be case sensitive.

 ❯ In a regular expression, word characters indicated the by \w symbol match all alphabetical characters, digits, and
the underscore (_) character. Words are those substrings consisting only of word characters. Word boundaries
are indicated by the \b symbol.

 ❯ Select groups of characters in a regular expression can be enclosed within a character class using the square
bracket symbols [and].

 ❯ Repetition in a regular expression is indicating by a numeric value enclosed within the brace symbols { and }.

 ❯ To create a regular expression object, use the new RegExp() object constructor.

 ❯ To test whether a regular expression matches a sample text string, use the test() method. To determine where
within the sample text string a match occurs, use the search() method. To replace a substring with a new
substring, use the replace() method.

 ❯ To sort an array in alphabetical order, apply the sort() method. To create a custom sort, include a compare
function within the sort() method in the form sort(compare) where compare is the name of the function.
The compare function should return either a positive, negative, or zero value to determine the sorting order.

 ❯ To create subarrays from an array, use the slice() or splice() methods. To add or remove items from the
end of an array use the push() and pop() methods. To insert or remove items from the start of an array use the
shift() and unshift() methods.

 ❯ The Math object can be used to store mathematical functions and constants.

 ❯ To generate a random number between 0 and 1, use the Math.rand() method.

 ❯ Functions that require comma-separated values can be applied to an array of values by using the apply()
method or the spread operator (entered as an ellipsis …).

 ❯ Dates can be created and stored using the new Date() object constructor. To store the current date and time,
apply the command new Date().

 ❯ Text strings can be stored in template literals with variables or expressions entered directly into the text string.
Template literals can be tagged with the functions that modify the text string before it is saved to a variable.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS300

Key Terms
anchor

backtracking

Binary Large Object (Blob)

Blob

character class

compare function

Date object

escape sequence

File API

file object

File Reader API

files collection

first-in-first-out (FIFO)

flag

immutable

last-in-first-out (LIFO)

lexicographical order

Math object

MIME type

queue

regular expression literal

spread operator

stack

stop word

subarray

substring

whitespace character

word

word character

word cloud

Review Questions
1. To allows users to select one or more text files to

be read into web form, which attribute do you add
to the input element?
a. type="text"
b. type="files"
c. type="file"
d. type="reader"

2. What event is triggered when the File Reader object
completes reading a file with no errors?
a. load
b. write
c. loadend
d. submit

3. What value is returned by the following expression?

"In the course of events".indexOf("course")

a. 5
b. 6
c. 7
d. 8

4. What is the value of the introTxt variable after
the following commands?

let introTxt = "Four Score and Seven";

introText.toLowerCase();

a. "Four Score and Seven"
b. "four Score and seven"
c. "FOUR SCORE AND SEVEN"
d. "fourscoreandseven"

5. What substring is generated by applying the
following command?

"When in the course of events".

slice(5, 11);

a. "in the course"
b. "the course"
c. " in the "
d. "in the"

6. What is the regular expression that matches a
text string consisting of 6 digits and no other
characters?
a. /\d{6}/
b. /^\d{6}$/
c. /\d{6}/g
d. /^d(6)$/

7. To match any non-word character, which symbol
should be used in a regular expression?
a. \w
b. \b
c. \W
d. \B

8. Provide the regular expression symbols to match at
least 5 consecutive digits in a text string.
a. \d{5, }
b. \d{5}
c. \d{5+}
d. \d{5*}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on pRojeCTS 301

9. Provide the regular expression to match any
occurrence of "Tim", "Timothy", or "Timmy" in a
text string, but nothing else.
a. /Tim*/g
b. /Tim+/g
c. /Tim?/g
d. /Tim|Timothy|Timmy/g

10. Which of the following creates a variable named
userID, for regular expression for the pattern
/\d{6}/g ?
a. let userID = regex("/\d{6}/g");
b. let userID = new reg(/\d{6}/g);
c. let userID = new RegExp(/\d{6}/g);
d. let userID = new

RegExp("/\d{6}/", "g");

11. What is the value of the x array after the following
command?

let x = [8, 45, 1, 32, 12, 5];

x.sort();

a. [1, 12, 32, 45, 5, 8]
b. [1, 5, 8, 12, 32, 45]
c. [12, 32, 45, 1, 5, 8]
d. [45, 32, 12, 8, 5, 1]

12. Which of the following expressions in a compare
function could be used to sort an array in
descending order?
a. a - b
b. b - a
c. -1
d. +1

13. What is the value of the x array after the following
code?

let x = [1, 3, 5, 7, 9];

x.splice(2, 3, 9, 11, 12);

a. [2, 4, 9, 11, 12]
b. [1, 3, 5]
c. [1, 3, 9, 11, 12]
d. [9, 11, 12, 5, 7, 9]

14. Which method removes the last item in an array?
a. pop()
b. push()
c. shift()
d. unshift()

15. To round the value of x up to the next highest
integer, which expression should be entered?
a. round(x)
b. Math.round(x)
c. Math.ceil(x)
d. floor(x)

16. What feature does the File Reader API provide to
the programmer?

17. What is the difference between the indexOf()
and lastIndex() methods?

18. Describe how to insert a variable or expression
directly into a text string using a template literal.

19. When are compare functions necessary for sorting
arrays?

20. Provide the code to store the current date and time
in a variable named today.

Hands-On Projects
Hands-On Project 7-1

In this project, you will use regular expressions to verify that a password passes validation before it is
accepted. In this web form, all proposed passwords must (1) be at least eight characters long, (2) have at least
one uppercase letter, (3) have at least one digit, and (4) have at least one of the following symbols !, @, #, or $.
If the password fails validation, a message indicating the reason for failure should appear in the web form. A
preview of the completed project is shown in Figure 7-49.

Do the following:

1. Use your code editor to open the project07-01_txt.html and project07-01_txt.js files from the js07 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project07-01.html and project07-01.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS302

2. Go to the project07-01.html file in your code editor and link the page to the project07-01.js file, deferring the
script from loading until after the page loads. Save your changes to the file.

3. Go to the project07-01.js file in your code editor. Within the event listener for the submit event add the
commands specified in steps 4 through 6.

4. Add the e.preventDefault() command to prevent the browser from responding to the submit event.

5. Create the following variables containing regular expressions:

a. Create the regex1 variable containing a regular expression literal with a character class that matches any
uppercase letter A through Z.

b. Create the regex2 variable containing a regular expression literal that matches any single digit.

c. Create the regex3 variable containing a regular expression with a character class containing the symbols
!$#%. (Hint: you will have to use \$ for the $ symbol.)

6. Create an if else statement that with the following conditions and outcomes:

a. If the length of pwd is less than 8, set the text content of the feedback object to “Your password must be at
least 8 characters.”

b. Else if the test() method with the regex1 regular expression applied to the pwd variable returns a false
value, set the text content of the feedback object to "Your password must include an uppercase letter."

c. Else if the test() method with the regex2 regular expression applied to pwd returns false, set the text
of feedback to "Your password must include a number."

d. Else if the test() method with the regex3 regular expression applied to pwd returns false, set the text of
feedback to "Your password must include one of the following: !$#%".

e. Otherwise, apply the submit() method to the signupForm object to submit the form for processing.

7. Save your changes to the file and then load project07-01.html in your web browser. Verify that the form cannot
be submitted unless a password is provided that has at least eight characters with at least one uppercase letter,
one digit, and one of the following characters !$#%. Also verify that if an invalid password is provided, a text
message appears on the web form indicating the reason for failure.

Figure 7-49 Completed Project 7-1

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on pRojeCTS 303

Hands-On Project 7-2

In this project you will generate a poker hand containing five cards randomly selected from a deck of cards.
The names of the cards are stored in a text string that will have to be converted into an array. The array will be
randomly sorted to “shuffle” the deck. Each time the user clicks a Deal button, the last five cards of the array will be
removed, reducing the size of the deck size. When the size of the deck drops to zero, a new randomly sorted deck
will be generated. A preview of the completed project with a randomly generated hand is shown in Figure 7-50.

Figure 7-50 Completed Project 7-2

Do the following:

1. Use your code editor to open the project07-02_txt.html and project07-02_txt.js files from the js07 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project07-02.html and project07-02.js, respectively.

2. Go to the project07-02.html file in your code editor and link the page to the project07-02.js file, deferring the
script from loading until after the page loads. Save your changes to the file.

3. Go to the project07-02.js file in your code editor. Within the onclick event hander, add the commands
described in Steps 4 through 5.

4. Create a function named newDeck(). The purpose of this function is to generate a new shuffled array of poker
cards. Add the following commands to the function:

a. Split the contents of the deckStr variable at each occurrence of the “,” character. Store the substrings
generated by the split() method in the deck array.

b. Sort the contents of the deck array using the shuffle() function as the compare function.

c. Create the shuffle() function with 2 parameters named a and b. Return the value of 0.5 minus a
randomly-generated number created with the Math.random() method.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS304

5. Below the newDeck() function add a for loop that iterates through the contents of the cards node list. For
each item in the node list do the following:

a. If the length of the deck array is 0, call the newDeck() function.

b. Use the pop() method to remove the last item from the deck array and store the popped item as the text
content of the current item in the cards node list.

c. Change the value of the text content of the cardsLeft object to the value of the length of the deck array.

6. Save your changes to the file and then load project07-02.html in your web browser. Click the Deal button to
generate a new hand of five randomly selected cards. Verify that with each deal, the number of cards left in the
deck decreases by 5 and that a new deck is provided each time the contents of the current deck are exhausted.

Hands-On Project 7-3

In this project, you use the properties and methods of Date objects to create a clock that counts down the time
to the start of the new year. The clock will update itself every second and will work for any date of any year.

Because the countdown clock displays only integer values, you will work with the Math.floor() method,
which rounds down a calculated value to the next lowest integer. For example, when applied to a value like
38.47, the Math.floor(value) method will return a value of 38.

The clock also needs to determine fractional parts of the days, hours, minutes, and seconds left in the year.
To return the fractional part of a value, apply the following expression:

value - Math.floor(value)

where value from which to extract the fractional part. When applied to a value of 38.47, this expression will
return a value of 0.47. A preview of the clock is shown in Figure 7-51.

Figure 7-51 Completed Project 7-3

Do the following:

1. Use your code editor to open the project07-03_txt.html and project07-03_txt.js files from the js07 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project07-03.html and project07-03.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on pRojeCTS 305

2. Go to the project07-03.html file in your code editor and link the page to the project07-03.js file, deferring the
script from loading until after the page loads. Save your changes to the file.

3. Return to the project07-03.js file in your code editor and add a command that uses the setInterval()
method to run the countdown() function every 1000 milliseconds.

4. Create the countdown() function and within the function add the commands specified in steps 5 through 11.

5. Declare the now variable and use the new Date() object constructor to store within it the current date and time.

6. Apply the toLocaleString() method to the now variable to display the text of the current date and time in
the currentTime object.

7. Declare the newYear variable and using the new Date() object constructor store the date “January 1, 2024”.

8. Use the getFullYear() to retrieve the 4-digit year value from the now variable, increase that value by 1 and
store the result in the nextYear variable.

9. Use the setFullYear() method to change the year value of newYear to the value of the nextYear variable.

10. Perform the following calculations to determine the days, hours, minutes, and seconds left until the New Year:

a. Calculate the days left by calculating the difference between newYear and now and dividing that difference
by 1000*60*60*24. Store the result in the daysLeft variable.

b. Multiply the fractional part of the daysLeft variable by 24 and store the result in the hrsLeft variable.

c. Multiply the fractional part of the hrsLeft variable by 60 and store the result in the minsLeft variable.

d. Mulitply the fractional part of the minsLeft variable by 60 and store the result in the secsLeft variable.

11. Display the following results in the web page clock:

a. Apply the Math.floor() method to the daysLeft variable and write the result to the text content of the
daysLeftBox object.

b. Repeat the previous step for the hrsLeft, minsLeft, and secsLeft variables, storing their results in the
hrsLeftBox, minsLeftBox, and secsLeftBox objects.

12. Save your changes to the file and open project07-03.html in your web browser. Verify that the web page shows
the current date and time and updates the time left in the current year every second.

Hands-On Project 7-4

In this project you will explore how to apply array methods to add, remove, and search for entries within the
array of customer names. A web page has been created for you containing web form buttons to enable the
different array features. Your task is to create event handlers for those buttons. A preview of the completed
page is shown in Figure 7-52.

Figure 7-52 Completed Project 7-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS306

Do the following:

1. Use your code editor to open the project07-04_txt.html and project07-04_txt.js files from the js07 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project07-04.html and project07-04.js, respectively.

2. Go to the project07-04.html file in your code editor and link the page to the project07-04.js file, deferring
the script from loading until after the page loads. Take some time to study the content and structure of the
document. There are four buttons you will need to program for adding, searching for, and removing customer
names and another button for removing the top customer from the queue. Save your changes to the file.

3. Return to the project07-04.js file in your code editor. Add an onclick event handler for the addButton object.
Within the event handler do the following:

a. Use the push() method to add the value of the customerName object to the end of the customers array.

b. Run the generateCustomerList() function to update the contents of the ordered list that appears on
the web page.

c. Change the text of the status paragraph to “customer added to the end of the queue” where customer is the
value of the customerName object.

4. Add an onclick event handler for the searchButton object. Within the event handler do the following:

a. Use the indexOf() method to locate the index of the array item whose value equals the value of the
customerName object. Add 1 to the index value and store the result in the place variable.

b. If place is equal to 0, change the text of the status paragraph to “customer is not found in the queue”
where customer is the value of the customerName object; otherwise change the text of the status
paragraph to “customer found in position place of the queue” where place is the value of the place variable.

5. Add an onclick event handler for the removeButton object. Within the event handler do the following:

a. Use the indexOf() method to locate the index of the array item whose value equals the value of the
customerName object. Store the index in a variable named index.

b. If index is not equal to –1 then (i) use the splice() method to remove one item from the customers
array whose index equal the value of the index variable, (ii) change the text of the status paragraph to
“customer removed from the queue”, and (iii) call the generateCustomerList() function to recreate
the ordered list of customer names. Otherwise, change the text of the status paragraph to “customer is not
found in the queue”.

6. Add an onclick event handler for the topButton object. Within the event handler do the following:

a. Apply the shift() method to remove the first item from the customers array, storing the value returned
by the shift() method in the topCustomer variable.

b. Change the text of the status paragraph to “Top customer from the queue” where Top Customer is the value
of the topCustomer variable.

c. Call the generateCustomerList() function.

7. Save your changes to the file and open project07-04.html in your web browser. Do the following tasks to test
your code:

a. Add Alijah Jordan to the customer list. Verify that her name appears as the 26th entry in the list.

b. Search for Gene Bearden. Verify that his entry is in the 21st position in the queue.

c. Remove John Hilton from the custom list. Verify that the number of customers is reduced back to 25.

d. Remove the top customer from the list to reduce the customer list to 24 entries.

e. Search for Peter Blake. Verify that the page reports that no such entry can be found in the customer list.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on pRojeCTS 307

Hands-On Project 7-5

Debugging challenge

Stylometry is the statistical analysis of the variation in literary style between one author and another. By
examining the types of words authors use and their frequency, statisticians can attribute authorship to disputed
texts. In this project you will work with a JavaScript app that compares two authors based on the frequencies of
words of different lengths. A preview of the completed page is shown in Figure 7-53, comparing the word length
frequency of Ernest Hemmingway and H.P. Lovecraft based on excerpts from two of their short stories.

Figure 7-53 Completed Project 7-5

This app has already been written for you, but there are several errors scattered throughout the program that
need to be fixed. Study the code and fix the app.

Do the following:

1. Use your code editor to open the project07-05_txt.html and project07-05_txt.js files from the js07 c
project05 folder. Enter your name and the date in the comment section of each file and save them as
project07-05.html and project07-05.js, respectively.

2. Go to the project06-05.html file in your code editor and in the head section add a script element to load the
project07-05.js file, deferring it until the entire page is loaded. Take some time to study the contents of the file to
become familiar with its structure. Save your changes to the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Manipulating Data in StringS, arrayS, anD Other ObjectS308

3. Return to the project07-05.js file in your code editor. Comments have been added to help you interpret the code
in the file.

4. The code starts with two anonymous functions that run in response to button1 and button2 being clicked.
There is an error in both anonymous functions. Locate and fix the error.

5. The main part of the program is done in the generateWordFreq() function. There are several errors in this
function that need to be fixed.

a. The code initially reads the content of the inputFile document but there are two syntax errors that need
to be fixed before the files can be read.

b. In the command that stores the text of the output document in the sourceText variable there is a logical
error that will cause the word lengths to appear longer than they should be. Fix the error in the command
that causes the app to include extraneous characters in the source text.

c. There is a syntax error in the command that creates the regular expression literal alphaRegx, locate and fix
the error.

d. The words array will be created by splitting the source text at every occurrence of one or more whitespace
characters, but there is a mistake in the regular expression. Fix the error.

e. A for loop iterates through every item in the words array. There is an error in the statement of the for
loop. Locate and fix the error.

f. At the end of a function, another for loop writes the contents of the freqs array to the web page. There is
a logic error in the calculation of the frequency percentage. Fix the logical error so that the app displays the
correct percentage values for each word length.

6. Save your changes to the file and then open project07-05.html in your web browser. Verify the following:

a. Verify that you can load both the hemmingway1.html and lovecraft1.html documents into the web page and
their contents appear in the scrolling windows below the Choose File button.

b. Verify that the app automatically calculates the frequency of each word length for the two author samples.
Check that your percentages match that shown in Figure 7-53.

c. If the program fails to run correctly, use the debugging console to help you locate and fix the errors in the code.

Case Projects
Individual Case Project

Enhance the feedback form in your project to enable users to choose one or more options from a list of at least five
options. Include code that adds user selections to either an array or an object and ensure that if a user deselects
one of the options, it is removed from the array or object. Add code to convert the array or object to a string.

Team Case Project

Have each group member demonstrate the enhancements they created for the Individual Case Project to the
group, including reviewing the code. From the different group members’ implementations, decide on what
information would be most useful to collect on the group feedback form and whether to store it in an array or
an object. Then write the code together to add these features to the group site, ensuring that the code removes
an option from the array or object if a user deselects it. Add code to convert the array or object to a string.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

309

In this chapter, you will work with self-contained pieces of code and data called objects. You already have
some experience with object-oriented programming with JavaScript built-in objects such as the String,
Date, and Array objects. In this chapter you will learn how to create customized objects with their own
collections of properties and methods that can be used and reused in your apps.

Understanding Object-Oriented Programing
The JavaScript code you have written so far has been tailored for specific situations. Most of your vari-
ables, statements, and functions were specific to one document and one application. That approach
limits your code’s usefulness. For example, code that calculates the total cost of sales for one brand of
products is similar to code used for other products. Rather than recreating the same code structure, it
would be more efficient to have structures that can be reused and applied to a variety of applications.
That kind of reusability is the goal of object-oriented programming.

Chapter 8

When you complete this chapter, you will be able to:

❯❯ Describe the fundamentals of object-oriented programming

❯❯ Create an object literal

❯❯ Define a method for a customized object

❯❯ Apply a method to an object class using a prototype

❯❯ Create and apply a closure

❯❯ Work with public, private, and privileged methods

❯❯ Create a prototype chain to combine objects

❯❯ Work with associative arrays to store data in JSON format

Creating Customized
Objects, Properties,
and Methods

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods310

reusing Software Objects
Object-oriented programming (OOP) refers to the creation of reusable software objects that can be easily incorporated
into multiple programs. Objects involve programming code and data that can be treated as an individual unit and
reused in a wide variety of contexts. An object can be as compact as a single input button or as wide-ranging as an
entire program such as a database application. Object-oriented programming, therefore, would consist in describing
how these different objects interact with each other in presenting a finished application.

In your JavaScript programs, you deal with three kinds of objects. Native objects, such as the Date or Array
objects, are objects that are part of the JavaScript language. Host objects are objects provided by the browser for
use in interacting with the web document and browser, such as the Window, Document, or Form objects. Custom
objects, also known as user-defined objects, are objects created by the user for specific programming tasks. For
example, a developer might create a “chart object” that provides properties and methods associated with graphical
charts. A developer could then include the chart object as another object within an application. Figure 8-1 illustrates
the basic idea behind object-oriented programing in which objects from different sources come together to create
a finished product.

Understanding encapsulation
Objects use a process called encapsulation by which all code (primarily properties and methods) and data needed for
the object are completely contained within the object itself. The code and data are hidden so they cannot be read or
modified by other programs. The inner workings of the object are instead accessed through an interface that consists
of the programmatic elements accessible to other programs and scripts. By hiding the object’s inner mechanisms,
encapsulation reduces complexity, allowing programmers to concentrate on the task of integrating the object into
their own programs. Encapsulation also prevents other programmers from accidentally introducing programming
errors into the object.

Encapsulated objects are like the workings of a handheld calculator. You interact with the calculator by pressing digits
and calculation buttons (the “properties and methods” of the calculator) but you don’t need to know how the calculator
works to achieve its results. JavaScript’s built-in Document object is another example of encapsulation. You work with
the Document object through its interface, consisting of methods like the getElementById() method or properties
like the title property; but you do not work directly with the Document object’s inner code.

In this chapter you will create the following four objects for an online card game:

❯❯ A card object containing properties and methods associated with a single card

❯❯ A hand object containing a collection of card objects held by a player

❯❯ A deck object containing the complete collection of card objects used in a game

❯❯ A game object containing properties and methods associated with game play

You will work with two JavaScript source files: one that creates the objects you need and another that applies
those objects to a specific application; in this case, an online version of the Draw Poker game. Some of the

Figure 8-1 Combining objects within an application

Objects you
create

Application

Built-in
JavaScript

objects

Objects from
third-party
developers

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Understanding Object-Oriented PrOgraming 311

preparatory work in developing your application has been done for you. Open the files that will be used by this
application now.

to open the files for draw Poker application:

1. Go to the js08 c chapter folder of your data files.

2. Use your code editor to open the js08a_txt.html, js06a_txt.js, and objects_txt.js files. Enter your name
and the date in the comment section of each file and then save them as js08.html, js08.js, and objects.js,
respectively.

3. Return to the js08a.html file in your code editor. Within the head section, add the following code to run the js08.js
and objects.js script files, deferring the scripts until the entire page has loaded.

<script src="objects.js" defer></script>

<script src="js08.js" defer></script>

4. Examine the contents of the file, noting the structure, ids, and class names of the elements used to create the
Draw Poker web page.

5. Close the file, saving your changes.

6. Open the js08.html file in your web browser. Figure 8-2 shows the current layout and contents of the page.

Figure 8-2 Starting Draw Poker page

Click to draw
new cards

Click to restart
the game

Click to stand
pat with your hand

Click to select
a bet

Input box showing
current bank value

Game board on
which card images
will be displayed

Click to deal
a new hand

Payoffs for
different hands

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods312

The page displays the poker table on which users will play a game of draw poker. Note that the Draw and Stand buttons
are disabled. They will not be enabled until a game has started. The game play has the following conditions:

❯❯ The player will start with $500 (play money) in the bank.

❯❯ Before each hand is dealt, the player chooses an amount to bet from the selection list. The bank is reduced by
the amount bet.

❯❯ The player clicks the Deal button and is dealt five cards from a randomly shuffled poker deck.

❯❯ The player can replace any or all cards in the hand with new cards by clicking the Draw button.

❯❯ After the draw, the hand is evaluated. To win back the bet, the hand needs to contain at least a pair of jacks or
better. Higher-valued hands result in higher payoffs.

❯❯ After the player’s winnings (if any) are added to the bank, a new hand is dealt. The game continues until the
bank is empty or the player quits.

The initial code for the Deal, Draw, and Stand buttons has already been created for the page. What has not been cre-
ated is code that defines objects used by the game and how those objects interact with the game play. You will start
by creating an object for the Draw Poker game itself.

Creating an Object Literal
A custom object can be defined either as an instance of an object class or as an object literal. An object literal is
a standalone object used once for a single purpose. Within the object literal you can add properties and meth-
ods that define the object and its behavior. To create an object literal, provide the object’s name followed by a
command block that stores object properties within a comma-separated list of name:value pairs. The general
syntax is:

let objName = {

name1: value1,

name2: value2,

...

};

where objName is the name of the object, name1, name2, and so on are properties associated with that object, and
value1, value2, etc. are the property values. The following code creates an object named cardGame containing
five properties named title, createdBy, yearCreated, lastRevised, and programmers.

let cardGame = {

title: "Draw Poker",

createdBy: "Ronnell Jones",

yearCreated: 2024,

lastRevised: null,

programmers: ["Tom Devlan", "Chanda Bhasin"]

};

Note that the property values can contain any JavaScript data type, including other objects. For example, the value of
the programmers property is an Array object.

A property can be assigned the null value if no initial value has been set.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creating an Object LiteraL 313

Objects can be nested within one another. In the following code the creators property is also an object literal nested
within the cardGame object:

let cardGame = {

title: "Draw Poker",

creators: {

supervisor: "Ronnell Jones",

programmers: ["Tom Devlan", "Chanda Bhasin"]

}

yearCreated: 2024,

lastRevised: null

};

For the Draw Poker app, the pokerGame object will contain two properties: currentBank storing the amount cur-
rently in the player’s bank, and currentBet storing the size of the player’s wager. You will set the initial values of
both properties to null. Place the code for this object in the objects.js file so that it can be available to other apps
involving poker games.

to create the pokerGame object:

1. Return to the objects.js file in your code editor.

2. Directly below the initial comment section, insert the following code to create the pokerGame object as described
in Figure 8-3:

/* Object defining the poker game */

let pokerGame = {

currentBank: null,

currentBet: null

};

3. Save your changes to the file.

Dot Operators and Bracket Notation
Accessing a custom object property uses the by-now familiar object.property notation involving a dot operator
connecting the object name with an object property. Object properties can also be referenced using the following
bracket notation:

object["property"]

where object is the object name and property is the object property. The value of the currentBank property of
the pokerGame object could be set with either of the following statements:

pokerGame.currentBank = 500;

pokerGame["currentBank"] = 500;

Figure 8-3 Creating the pokerGame object literal

Initial property
values set to null

Object
name

Object
properties

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods314

One of the advantages of bracket notation is the property name itself can be referenced as a variable. For example,
consider the following object literal:

let employee = {

name: "Ronnell Jones",

position: "manager"

};

The following statements could be used to specify which property to display:

let prop = "name";

window.alert(employee[prop]);

and the browser would display an alert box with the name of the employee, “Ronnell Jones”. This kind of flexibility
would be important in a database application involving dozens of properties associated with an object, but it cannot
be easily done with the dot operator notation.

Built-in JavaScript objects also support both the dot operator and the bracket notation. You may recall that the id prop-
erty of the forms object element could be referenced either as document.forms.id or document.forms["id"].
As you develop in your skill with JavaScript programming, you might switch between the two notations based on the
needs of your code.

In the Draw Poker game, players start with $500 in the bank and have a default betting size of $25. Set these values
now using the dot operator format.

to set values for the currentBank and currentBet properties:

1. Return to the js08.js file in your code editor and go to playDrawPoker() function.

2. Directly below the command declaring the cardImage variable, add the following commands to set the values
of the currentBank and currentBet properties:

// Set the initial bank and bet values

pokerGame.currentBank = 500;

pokerGame.currentBet = 25;

3. Add the following command to display the currentBank value in the bankBox element:

// Display the current bank value

bankBox.value = pokerGame.currentBank;

4. Finally, the currentBet value should be updated every time the user changes the selected option in the
betSelection list box. Add the following event listener to the code:

// Change the bet when the selection changes

betSelection.onchange = function() {

pokerGame.currentBet = parseInt(this.value);

}

Note that the parseInt() function is used to store the numeric value of the selected bet in the currentBet
property. Figure 8-4 describes the newly added code.

Nested object properties are referenced using the dot operator notation object.prop1.prop2… or the
bracket notation object["prop1"]["prop2"]…Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creating an Object LiteraL 315

5. Save your changes to the file and then reload js08.html in your browser. Verify that a bank value of 500 appears
in the BANK box and a value of 25 appears in the BET box.

Next, you will add custom methods to the pokerGame object.

Creating a Custom Method
Methods are added to a custom object by including a function name and its commands as part of the object definition.
The general syntax to add a method to an object literal is:

let objName = {

method: function() {

commands

}

};

where method is the name of the method and commands are commands associating with the method. For example,
the following code adds the placeBet() method to the pokerDeck object:

let pokerDeck = {

currentBank: null,

currentBet: null,

placeBet: function() {

this.currentBank -= this.currentBet;

return currentBank;

}

};

Note that the placeBet() method uses the this keyword to reference the current object, which in this case is the
pokerDeck object itself. The -= assignment operator subtracts the value of the current bet from the current bank
value. The method concludes by returning the value of the currentBank property.

Methods for custom objects are called in the same way they are for built-in JavaScript objects. Thus, to apply the
placeBet() method to the pokerDeck object, run the expression:

pokerDeck.placeBet()

Figure 8-4 Setting values for currentBank and currentBet

Set the size of
the bank to $500

Update
currentBet
when the bet

selection changes

Set the size of
the bet to $25

Use the parseInt()
function to change the

selected text to a number

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods316

and whatever value has been stored in currentBet will be subtracted from currentBank and the new bank value
will be returned by the method. Add the placeBet() method to the pokerGame object to reduce the bank value
by the size of the bet.

to define the placeBet() method:

1. Return to the objects.js file in your code editor.

2. Go to the code for the pokerGame object and add a, (comma) to the end of the line defining the currentBet
property.

3. Add the following code defining the placeBet() method:

placeBet: function() {

this.currentBank -= this.currentBet;

return this.currentBank;

}

Figure 8-5 describes the code for the placeBet() method.

Figure 8-5 Creating the placeBet() method

Returns the
updated bank

value

Subtracts the
 bet from the
 bank value

Creates the
placeBet()

method Properties and
methods must be

separated by commas

4. Save your changes to the file.

The placeBet() method will be applied whenever the player starts a new hand by clicking the Deal button, but only
if the player’s bank has sufficient funds to cover the bet. Add an if else condition to the event listener for the Deal
button that reduces the value of the player’s bank, but only if the bank has sufficient funds to cover the bet.

to apply the placeBet() method:

1. Return to the js08.js file in your code editor.

2. At the top of the anonymous function for the click event of the Deal button, insert the following if condition:

if (pokerGame.currentBank >= pokerGame.currentBet) {

3. Indent the next six statements that enable or disable the buttons on the poker game page.

4. On the line after the six lines you indented, add the following statement to change the bank value based on the
size of the bet placed by the user:

// Reduce the bank by the size of the bet

bankBox.value = pokerGame.placeBet();

5. Complete the if else structure by adding the following code warning the player that their bank cannot cover
their bet:

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creating an Object LiteraL 317

} else {

statusBox.textContent = "Insufficient Funds";

}

Figure 8-6 shows the newly added code to the anonymous function.

6. Save your changes to the file.

Test the buttons used in the Draw Poker game. Whenever you click the Deal button, your bank should be reduced by
the size of the bet and the Deal button should be disabled as you choose whether to draw new cards or stand pat. Of
course, currently you have no cards; that feature will come later! Finally, the program should warn you if you attempt
to place a bet larger than the size of your bank.

to test the buttons in the draw Poker game:

1. Reload the js08.html file in your browser.

2. Select 100 from the Bet selection list and click the Deal button. Verify the bank is reduced to $400 and the Deal
button is disabled.

3. Click either the Draw or Stand button to re-enable the Deal button and prepare the game for another hand.

4. Continue to click the Deal button followed by the Draw or Stand button to reduce the bank amount to $0.

5. Verify that when you attempt a bet that exceeds your bank account, an Insufficient Funds message appears on
the poker table.

6. Click the Reset button to reload the game, restoring the bank balance to $500.

Creating an Object with the new Operator
Another way to create an object literal is with the following new Object() command:

let objName = new Object();

objName.property = value;

objName.method = function() {

commands

};

Figure 8-6 Applying the placeBet() method

Test whether there
 are sufficient funds

to cover the bet

If there are, then
 reduce the bank by

the size of the bet

Otherwise, display a
warning message

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods318

where objName is the object name, property is a property defined for that object, and method is a method assigned
to that object. The following code defines the pokerGame object and its properties and methods using the new
Object() operator:

let pokerGame = new Object();

pokerGame.currentBank = null;

pokerGame.currentBet = null;

pokerGame.placeBet = function() {

this.currentBank -= this.currentBet;

return this.currentBank;

};

The new Object() statement creates a generic object using with the initial properties and methods of the JavaScript
base object. Any other properties or methods must be added in separate JavaScript statements, as in the previous
example. The biggest limitation of an object created either as an object literal or with the new Object() command
is that the object is not reusable. Any custom properties or methods apply to that object and no others.

You have completed the initial work on the Draw Poker game by creating a custom object for the game itself. Next, you
will study how to create object classes for the cards, hands, and deck used in the game.

Working with Object Classes
Using an object literal to create the pokerGame object was an appropriate choice because there would only be one
game object within any application. However, when an application requires several copies of the same type of object,
you need to create an object class.

Understanding Object Classes
An object class acts as a template or blueprint for the creation of new objects all sharing a common collection of
properties and methods. For each new object based on a class, an object instance is created. For example, the Array
object represents a class of objects containing properties and methods associated with arrays, but the specific array
used for a program is an instance of that class. Creating an instance of a class is also known as instantiating a class.

Object Constructors and Literals
Objects are instantiated using an object constructor having the general form:

new Class(parameters)

where Class is the name of an object class and parameters are the values passed to the object class used in creat-
ing an instance of that class. Figure 8-7 lists some of the classes built into JavaScript from which you can instantiate
an object. Many of these classes will be familiar to you from your experience developing other applications.

An object constructor can also be applied to customized object classes to instantiate new objects. In this section you
will develop your own object classes to be used with any card game app such as the Draw Poker game.

Quick Check 1

1. What is object-oriented programming?

2. Provide code to create an object literal named pokerCard containing a suit property with a value of “spades”
and a rank property with a value of 12.

3. Provide code that adds a dropRank() method to the pokerCard object that decreases the value of the rank
property by 1.

4. Provide code to return the value of the rank property of the pokerCard object in bracket notation.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With Object cLasses 319

Constructor Functions
Object constructors are defined with the following constructor function:

function Class(parameters) {

this.prop1 = value1;

this.prop2 = value2;

…

this.method1 = function1;

this.method2 = function2;

…

}

where Class is the name of the object class; parameters are the parameters used by the constructor function;
prop1, prop2, etc. are the properties associated with that object class; and method1, method2, etc. are the methods.
The this keyword refers to any object instance of this particular object class.

For example, the constructor function for an object class of poker cards might appear as follows:

function pokerCard(cardSuit, cardRank) {

this.suit = cardSuit;

this.rank = cardRank;

this.showCard() function() {

return "Your card is a " + this.rank + " of " + this.suit;

};

}

Object class DescriptiOn
Arguments Retrieves and manipulates arguments within a function

Array Creates new array objects

Boolean Creates new Boolean objects

Date Retrieves and manipulates dates and times

Error Returns run-time error information

Function Creates new function objects

Global Stores global variables and contains various built-in JavaScript functions

JSON Manipulates objects formatted in JavaScript Object Notation (JSON)

Map Stores key-value pairs, remembering the original insertion order of the keys

Math Contains methods and properties for performing mathematical calculations

Number Contains methods and properties for manipulating numbers

Object The base class for all built-in JavaScript classes

Promise Represents the completion of an asynchronous operation and its resulting value

RegExp Contains methods and properties for a regular expressions

Set Contains a collection of unique values of any type

String Contains methods and properties for manipulating text strings

WeakSet Contains a collection of unique objects of any type

Figure 8-7 Built-in JavaScript object classes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods320

The suit and rank properties store the suit and rank of pokerCard objects based on the values specified by the
cardSuit and cardRank parameters. The showCard() function returns a text string describing the card.

Once the constructor function for the object class is defined, instances of the object are created with the command

let object = new Class(parameters);

where object is an instance of the object, Class is the object class as defined by the constructor function, and
parameters are parameter values. The following code instantiates two pokerCard objects: one for the king of hearts
and the other for the seven of spades:

let card1 = new pokerCard("hearts", "king");

let card2 = new pokerCard("spades", "7");

The showCard() method attaches to both objects so that the statement card1.showCard() returns the text string
“Your card is a king of hearts”.

Create a constructor class for poker cards in the objects.js file defining properties for the suit and rank properties.

to create the class of poker card objects:

1. Return to the objects.js file in your code editor.

2. Directly below the object literal for the pokerGame object, insert the following constructor for the class of poker
card objects as described in Figure 8-8.

/* Constructor function for poker cards */

function pokerCard(cardSuit, cardRank) {

this.suit = cardSuit;

this.rank = cardRank;

}

Figure 8-8 Creating the pokerCard object class

The suit property
 contains the card suit

The suit property
 contains the card suit

The rank property
contains the card rank

Parameters for the
pokerCard object

3. Save your changes to the file.

Next, you will create an object class representing an entire deck of cards.

Combining Object Classes
An object class can include objects defined in other classes. For the Draw Poker game, you will create the pokerDeck
class containing an array of 52 pokerCard objects. The code for the constructor function follows:

function pokerDeck() {

let suits = ["clubs", "diamonds", "hearts", "spades"];

let ranks = ["2", "3", "4", "5", "6", "7", "8", "9",

"10", "jack", "queen", "king", "ace"];

this.cards = [];

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With Object cLasses 321

for (let i = 0; i < 4; i++) {

for (let j = 0; j < 13; j++) {

this.cards.push(new pokerCard(suits[i], ranks[j]));

}

}

};

The contents of the cards array are generated with a nested for loop that iterates through each combination of
four possible suits and 13 possible ranks to create an array of 52 pokerCard objects containing the following items:

[

pokerCard {suit: "clubs", rank: "2"},

pokerCard {suit: "clubs", rank: "3"},

pokerCard {suit: "clubs", rank: "4"},

pokerCard {suit: "clubs", rank: "5"},

…

pokerCard {suit: "spades", rank: "ace"}

]

The following command instantiates an object from the pokerDeck class, storing it in the myDeck variable:

let myDeck = new pokerDeck();

A specific card within the deck can then be referenced using the cards array property along with an index number
representing the position of the card within the deck. Thus, to retrieve the fourth card from myDeck, apply the fol-
lowing expression:

myDeck.cards[3] // Returns the 5 of clubs

Add the constructor function for the pokerDeck object class to the objects.js file.

to create the class of poker deck objects:

1. Below the constructor function for the pokerCard object class, insert the following constructor for the class
of pokerDeck objects (see Figure 8-9):

/* Constructor function for poker decks */

function pokerDeck() {

// List the suits and ranks

let suits = ["clubs", "diamonds", "hearts", "spades"];

let ranks = ["2", "3", "4", "5", "6", "7", "8", "9",

"10", "jack", "queen", "king", "ace"];

this.cards = [];

// Add a card for each combination of suit and rank

for (let i = 0; i < 4; i++) {

for (let j = 0; j < 13; j++) {

// Add a pokerCard object

this.cards.push(new pokerCard(suits[i], ranks[j]));

}

}

};

2. Save your changes to the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods322

Almost all card games require cards to be sorted in random order. You can add the following shuffle() method to
the pokerDeck object class to randomize the order of items in the cards array.

this.shuffle = function() {

this.cards.sort(function() {

return 0.5 - Math.random();

});

};

The code applies the sort() method with a compare function to return a random arrangement of each pair of array
items. Add the shuffle() method to the constructor function of the pokerDeck object class.

to create the shuffle() method:

1. Add the following method to the constructor function for the pokerCard object class as described in
Figure 8-10:

// Method to randomly sort the cards in the deck

this.shuffle = function() {

this.cards.sort(function() {

return 0.5 - Math.random();

});

};

Figure 8-10 Creating the shuffle() method

Defines the shuffle()
method of the

pokerDeck object class Compare function that
returns a random number

between –0.5 and 0.5

Figure 8-9 Creating the pokerDeck object class

Use the push()method
to add the new card to

the end of the cards array

Add a new pokerCard
object to the cards array

for each suit and rank

Iterate through each
combination of suit and rank

Array for pokerCard
objects

Arrays containing all possible
card suits and ranks

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With Object cLasses 323

2. Save your changes to the file.

With the initial properties and methods of the pokerDeck object class defined, add an instance of that object class
to the Poker Game app and use the shuffle() method to shuffle the contents of the deck.

to instantiate the pokerDeck class:

1. Return to the js08.js file in your code editor.

2. Directly after the command setting the initial value of the currentBet property to 25, insert the following com-
mand to create and shuffle a new deck of cards (see Figure 8-11):

// Create a deck of shuffled cards

let myDeck = new pokerDeck();

myDeck.shuffle();

Figure 8-11 Creating an instance of the pokerDeck object class

Figure 8-12 Contents of the myDeck object before and after shuffling

cards array unshuffled cards array shuffled

3. Save your changes to the file.

Before going further with the development of the Poker Game app, confirm that a shuffled deck of cards is generated
by the code. You will use the Scope window within your browser’s debugger to check on your progress.

to view the contents of the myDeck object:

1. Reload the js08.html file in your web browser and open the browser debugger.

2. Put a breakpoint at the line applying the shuffle() method to the myDeck object.

3. Reload the web page so that it stops at the breakpoint.

4. Go to the browser Scope window.

5. Under the list of objects with Local scope, click and expand the myDeck and cards objects. As shown in
Figure 8-12, the cards array contains an unshuffled list of poker cards.

6. Click the Step over next function call button in the debugger or press F10 to skip tracing the shuffle()
method. As shown in Figure 8-12, the cards array should now show the poker cards in random order.

7. Remove the breakpoint and resume the script without interruption.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods324

The final object class you need for the Draw Poker game is a class for poker hands consisting of poker cards drawn
from a poker deck. The constructor function for the pokerHand object class is:

function pokerHand(handLength) {

this.cards = new Array(handLength);

}

The function has a single parameter, handLength, specifying the number of cards in the hand. Like the pokerDeck
object class, individual pokerCard objects will be placed in the cards array with an array length equal to the value
of the handLength parameter. Add this constructor to the objects.js file.

to create the pokerHand object class:

1. Return to the objects.js file in your code editor.

2. Directly below the constructor for the pokerDeck class, insert the following constructor function for the
pokerHand class as described in Figure 8-13:

/* Constructor function for poker hands */

function pokerHand(handLength) {

this.cards = new Array(handLength);

}

Figure 8-13 Creating the pokerHand() object class

Array of cards
in the poker

hand

Number of
 cards in the

hand

3. Save your changes to the file and then return to the js08.js file in your code editor.

4. Directly below the command the declares the myDeck object and shuffles it, add the following code as described
in Figure 8-14 to create an instance of a five-card poker hand:

// Create an empty poker hand object

let myHand = new pokerHand(5);

Figure 8-14 Instantiating a pokerHand() object

Poker hand containing
five cards

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With Object cLasses 325

5. Save your changes to the file.

One of the advantages of object-oriented programming is that it encourages the creation of objects that mimic their
real-world counterparts. A poker hand is constructed by dealing cards from a deck into the hand, so the pokerDeck
object needs a dealTo() method in which cards are taken from the deck and moved into a hand by moving items in
one cards array to the other array. The code for the dealTo() method is a follows:

function pokerDeck() {

…

this.dealTo = function(pokerHand) {

let cardsDealt = pokerHand.cards.length;

pokerHand.cards = this.cards.splice(0, cardsDealt);

}

};

The dealTo() method has a single parameter, pokerHand, which references the pokerHand object that will receive
the cards from the poker deck. The function then uses the splice() method to remove items from the cards array
of the pokerDeck object, placing them in the cards array of pokerHand object. After the application of this method,
the number of cards in the poker deck is reduced by the number of cards dealt to the poker hand.

to add the dealTo() method to the pokerDeck object class:

1. Return to the objects.js file in your code editor.

2. Scroll up to the pokerDeck constructor in the objects.js file.

3. Within the constructor function, add the following code to define the dealTo() method (see Figure 8-15):

// Method to deal cards from the deck into a hand

this.dealTo = function(pokerHand) {

let cardsDealt = pokerHand.cards.length;

pokerHand.cards = this.cards.splice(0, cardsDealt);

}

Figure 8-15 Creating the dealTo() method of the pokerDeck object class

Hand in which to
deal the cards

Use the splice(method)
to move cards from the

deck to the hand

Number of cards
in the hand

4. Save your changes to the file.

A new hand is created every time the Deal button is clicked. Because the size of the deck is reduced with each deal,
the app should verify that the deck has at least 10 cards before dealing a new hand; otherwise create a newly shuffled
deck and deal cards from that deck.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods326

Add an instance of the pokerHand object to the Draw Poker app, placing the code within the event listener for the
click event of the Deal button.

to create an instance of the pokerHand object:

1. Return to the js08.js file in your code editor and go to the event listener for the click event of the dealButton
object.

2. Directly below the command that applies the placeBet() method to the pokerGame object, add the following
code to check whether a new deck is required:

// Get a new deck is there are less than 10 cards left

if (myDeck.cards.length < 10) {

myDeck = new pokerDeck();

myDeck.shuffle();

}

3. Next, add the following code to deal five cards from the poker deck into the poker hand, displaying the contents
of both objects in the debugger console (see Figure 8-16):

// Deal 5 cards from the deck to the hand

myDeck.dealTo(myHand);

console.log(myDeck, myHand);

Figure 8-16 Dealing from the deck into a hand

Displays myDeck and
myHand in the debugger

console

Deal cards from the
deck into the hand

If there are less
than 10 cards in the
deck, create a new

shuffled deck

4. Save your changes to the file.

Verify that cards have been dealt from the poker deck into the poker hand by clicking the Deal button and viewing the
contents of myDeck and myHand in your debugger console.

to deal a hand:

1. Reload the js08.html file in your browser and open your browser’s debugging console.

2. Click the Deal button.

3. Click pokerDeck in the debugger console to expand its contents for viewing.

4. Click pokerHand in the debugger console and then click cards to expand its contents. Figure 8-17 shows the
expanded view of the user-created objects.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With Object PrOtOtyPes 327

5. Close your browser’s debugger.

The Draw Poker game does not yet show the actual cards in the page. You will add this feature using object prototypes.

Working with Object Prototypes
Every JavaScript object has a prototype, which is a template for all the properties and methods associated with the
object’s class. If the constructor function can be thought of as a machine to instantiate objects, then a prototype is the
blueprint for that object. When an object is instantiated from a constructor function, it uses properties and methods
defined in the prototype.

However, instantiating new objects can be an inefficient use of memory and resources because the same code is copied
from the constructor function into every object instance. Imagine the strain on resources when several methods with
dozens of lines of code each are copied from the constructor function into thousands of object instances. A better
approach is to place the code for those methods directly into the object’s prototype, which is then accessible to the
constructor function and all object instances without the need for individual copies.

the prototype Object
The prototype is itself an object (almost everything in JavaScript is) and is referenced using the expression:

Class.prototype

where Class is the name of the object class. For example, the prototype for the pokerCard object class is referenced
as follows:

pokerCard.prototype

To add a method to a prototype, apply the command:

Class.prototype.method = function;

where method is the name of the method and function is the function applied by the method. The function can be
entered as an anonymous function or it can be a reference to the name of a function created elsewhere in the code.

Images of the 52 poker cards have been created for the Draw Poker app. The file names of the card images follow the
convention rank_suit.png. where rank is the card’s rank and suit is the card’s suit. For example, the image for

Figure 8-17 Cards in the poker hand

Cards within the
poker hand

Poker deck
reduced by

5 cards

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods328

the 5 of hearts is stored in the image file, 5_hearts.png, the queen of hearts image is stored in the queen_hearts.png
file, and so forth. The following code adds a cardImage() method to the pokerCard prototype that returns this
file name for every instance of the pokerCard object:

pokerCard.prototype.cardImage = function() {

return this.rank + "_" + this.suit + ".png";

}

Add this method to the objects.js file so that it can be made available for every poker card.

A general programming practice to ensure clean and efficient code is to add custom methods only to the
object prototype.Note

Figure 8-18 Creating the cardImage() method

Constructor
function

Constructor function
prototype

Returns the file
name of the
card image

3. Save your changes to the file.

Card images are displayed in the Draw Poker web page using img elements belonging to the cardImg class. The web
page contains five such img elements, all displaying the empty contents of the blank.gif image file. Replace those images
with the images of the five cards in the poker hand, using the image files as specified by the cardImage() method.

to display card images:

1. Return to the js08.js file in your code editor.

2. Scroll down to the event listener for the click event with the Deal button. Replace the console.log(myDeck,
myHand) statement with the following code:

// Display the card images on the table

for (let i = 0; i < cardImages.length; i++) {

cardImages[i].src = myHand.cards[i].cardImage();

}

to create the cardImage() method:

1. Return to the objects.js file in your code editor.

2. Directly below the constructor function for the pokerCard object class, add the following code to create the
cardImage() method for the pokerCard prototype (see Figure 8-18):

// Method to reference the image of the poker card

pokerCard.prototype.cardImage = function() {

return this.rank + "_" + this.suit + ".png";

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With Object PrOtOtyPes 329

Note that the cardImages object is a node list that references all img elements belonging to the cardImg class.
Figure 8-19 describes the new code in the file.

3. Save your changes to the file.

4. Reload the js08.html file in your browser.

5. Click the Deal button and verify that the images of the cards in the dealt hand are displayed on the table (your
card images will differ). See Figure 8-20.

Figure 8-19 Displaying card images for a dealt hand

Replace the blank card
image with images determined
by the cardImage()method

Figure 8-20 Card images from the dealt hand

6. Continue clicking the Draw button followed by the Deal button to generate new poker hands.

One of the advantages of this approach in generating the card images is that developers can supply their own card
images if they follow the naming conventions for the Draw Poker app.

extending Built-in JavaScript Objects
Another feature of prototypes is the ability to add new methods to existing objects, which is what you did with the
pokerCard object. However, this feature also applies to built-in JavaScript objects. Native objects such as the Array,
Date, and String objects can be extended with new methods added to those object’s prototypes. For example, to
make the shuffle() method, defined earlier for the pokerDeck object, available to all arrays, apply the following
expression:

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods330

Array.prototype.shuffle = function() {

this.sort(function() {

return 0.5 – Math.random();

});

}

Now, any array can be sorted in random order by applying the shuffle() method. Use caution and restraint when
adding new custom properties and methods to native objects because poorly formed code can “break” the object,
making the code unusable for all native objects of that class.

There are many benefits to object-oriented programming but only if you follow some very important principles. The
developer Robert C. Martin laid out those principles under the acronym SOLID:

❯❯ Single Responsibility Principle: Every object class should be designed with a single purpose. Do not create
complex objects that serve multiple purposes; instead, split the duty among several different object classes.

❯❯ Open/Close Principle: Object classes should be open for extensions (adding new features) but closed for
modifications (changing existing features). Your objects should be able to be extended without having to be
modified.

❯❯ Liskov’s Substitution Principle: Introduced by Barabara Liskov in 1987, the principle states that “Derived classes
must be substitutable for their base or parent classes.” In other words, if an object class is based on another class
or parent class, that object should be able to be substituted for its parent. A lower-order object class should not
operate in a way that is incompatible with the general object class in which it resides.

❯❯ Interface Segregation Principle: Objects should not require a particular interface to perform. The design of the
interface should be left to the developer and a properly constructed object should fit into any interface that the
developer needs for a particular project or application.

❯❯ Dependency Inversion Principle: Objects defined in higher-order modules should not be affected by changes
in lower-order modules or objects. For example, the operation of a coffee machine (a higher-order object) should
not be affected the choice of coffee grind (a lower-order object).

You can read more about the SOLID principles and other best practices for object-oriented programming on
the web.

Best Practices Making your Object-Oriented Code SOLID

You programmed the actions of the Deal button. In the next section you will program the actions of the Draw button
to enable players to discard useless cards in a quest to get the best possible hand.

Quick Check 2

1. how does an object class differ from an object literal?

2. Provide code for a construction function named bounceBall with two parameters named x and y and
properties named speedX and speedY with initial values equal to the x and y parameter values.

3. Provide code to instantiate an object variable named myBall created from the bounceBall class with initial x
and y values of 50 and 100.

4. What is an object prototype and what is its relationship to a constructor function?

5. Provide code to add the moveBall() method to the prototype of the bounceBall constructor function.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

intrOdUcing cLOsUres 331

Introducing Closures
Players improve their hands in Draw Poker by replacing one or more cards with new cards from the deck. To mimic
this action, you will add the following replaceCard() method to the pokerHand prototype:

pokerHand.prototype.replaceCard = function(index, pokerDeck) {

this.cards[index] = pokerDeck.cards.shift();

};

The replaceCard() method has two parameters: the index parameter identifying which card to replace and the
pokerDeck parameter specifying from which deck the new card should be drawn. The shift() method moves
the first card from the cards array in the pokerDeck object into the appropriate location within the cards array
of the pokerHand object. Add this method to the objects.js file.

to add the replaceCard() method to the pokerHand prototype:

1. Return to the objects.js file in your code editor.

2. Directly below the constructor function for the pokerHand class add the following code described in Figure 8-21:

// Method to replace a card in a hand with a card from a deck

pokerHand.prototype.replaceCard = function(index, pokerDeck) {

this.cards[index] = pokerDeck.cards.shift();

};

Figure 8-21 Creating the replace() method of the pokerHand prototype

Use the shift()
method to remove the
first card from the deck

Deck from which to
get replacement card

Index of the card to
remove from the hand

3. Save your changes to the file.

Players indicate which cards should be replaced by clicking the card image. A selected card is “flipped over” to display
the back of the card and then once the Draw button is clicked all flipped-over cards will be replaced with cards from
the deck. The code needs to remember which card images were flipped and match them to corresponding cards in the
player’s hand. To do that task, the code will use a closure.

Lexical Scope
To understand what closures are and why they are so useful in object-oriented programming, you must start with the
concept of variable scope. Recall that scope determines where a variable or function is accessible within the program
code. Many scripts involve multiple levels of nested functions in which variables declared at one level are accessible to
all functions at a lower level. For example, the following code contains a set of nested functions named appropriately

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods332

outer() and inner(). When the outer() function is called, it runs itself and the inner() function to log two
message in the debugger console.

function outer() {

let msg = "ace of spades";

function inner() {

console.log(msg);

}

inner();

console.log("is my card");

}

// run the outer() function

outer();

// logs "ace of spades"

// logs "is my card"

Note that inner() function logs the content of the msg variable even though that variable is declared outside of that
function. The inner() function “knows” what is meant by the msg variable because of lexical scope or static scope in
which the scope of variables, functions, and other objects is based on their physical location within the source code.
In this case, the JavaScript Interpreter recognizes the msg variable because it is part the larger context of the outer()
function that encompasses the declaration of the msg variable and the creation of the inner() function.

The interpreter applies lexical scope in evaluating all variables it encounters, starting by looking for a matching variable
declaration within the innermost function. If none is found, the interpreter moves outward to the higher-level functions
until it finds the declaration. If no declaration can be found at any level, the interpreter reports an error due to an
unrecognized variable name. In this example, the interpreter looks for the msg variable declaration within the inner()
function, and failing to find it, locates it at the next higher level within the outer() function. The interpretation of a
variable and its value exists within the lexical environment that encompasses functions and the variables they use.
An attempt to use a variable referenced outside of its lexical environment will return an error.

Closures and the Lexical environment
Now examine the following code in which the outer() function doesn’t call the inner() function but instead returns
the function itself as a variable, which is then stored in the myClosure variable.

function outer() {

let msg = "ace of spades";

function inner() {

console.log(msg);

}

return inner;

console.log("is my card");

}

let myClosure = outer();

myClosure();

// logs "ace of spades

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

intrOdUcing cLOsUres 333

When myClosure() is called in the last line of the code, it bypasses the outer() function completely to run only
the inner() function. And yet, even though the msg variable is referenced outside of its lexical environment, the
code still works.

The reason is because of a closure, which is created when a copy is made of a function that includes the lexical envi-
ronment of variables used within that function. When the inner() function was stored in the myClosure variable,
a closure was created in which the lexical environment that defined the meaning of the msg variable was also copied.
Closures “enclose” everything about the function, including its context within the larger source code. That is why the
msg variable still had meaning within the myClosure variable.

Because a closure copies a function’s lexical environment, it takes more memory. Overuse of closures can lead to
excessive memory consumption, impairing system performance. You should use closures only when necessary to
achieve a program objective.

Functions, like almost everything in JavaScript, are objects with their own collections of properties and methods. For
this reason, a function can be copied and stored as a variable to create closures. Function object properties include
the following:

function.name returns the function’s name
function.caller returns the function that called the function
function.length returns the number of arguments used by the function

For example, the following commands log the number of arguments required by the myHand() constructor
function, returning a value of 1 because the function has a single argument.

let myHand = newPokerHand(5);

console.log(myHand.constructor.length); // logs "1"

Because functions are objects, any function can be created using the following new Function() object
constructor

let function = new Function(arg1, arg2, …, body);

where function is the function’s name, arg1, arg2, etc. are the function arguments, and body is the function code.
The following code creates the adder() function used for returning the sum of two values:

let adder = new Function("x", "y", "return x + y");

The adder() function is equivalent to the following set of statements:

function adder(x, y) {

return x + y;

}

One advantage of the new Function() constructor is that it can be used to construct dynamic functions whose
properties and methods are themselves variables.

Programming Concepts Functions as Objects and Variables

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods334

Closures with for Loops
Closures also appear in the operation of program loops that call functions at each iteration. Consider the following
for loop that displays the value of a counter variable after a 1-second delay:

for (let i=0; i < 3; i++) {

setTimeout(function() {

console.log("The counter is " + i);

}, 1000);

}

// logs "The counter is 0"

// logs "The counter is 1"

// logs "The counter is 2"

The setTimeout() method delays operation of the console.log() until after the loop is finished and counter
variable, i, removed from memory. Yet, despite this, the value of the counter variable at the time the setTimeout()
method was called is preserved.

The reason for this behavior is that the program loop copies and encloses the function nested within the setTimeout()
method and, thus, also copies its lexical environment. The fact that the anonymous function is not actually run until
well after the loop finishes changes nothing. Because of closures, the JavaScript interpreter “remembers” the value of
i at the time it was encountered in the loop.

Closures also appear in program loops involving event handlers that are not run until the event occurs (well after
the program loop finishes). Even though the code is run later, the lexical environment surrounding the event handler
function is copied because of the closure. You will take advantage of this feature of closures in the following loop that
flips over cards displayed on the poker table:

for (let i = 0; i < cardImages.length; i++) {

cardImages[i].onclick = function() {

if (this.src.includes("cardback.png")) {

this.src = myHand.cards[i].cardImage();

} else {

this.src = "cardback.png";

}

}

}

The loop adds an onclick event handler to every card image on the table. When the player clicks an image, if the
card is currently displaying the back of the card, it changes the image to the front, otherwise it displays the card back.
Notice that the code within the event handler is not run until the player clicks the card (well after the loop is finished)
but because of closures, the value of the index counter i is copied as part of the lexical environment so that the cor-
rect card is flipped in response to the click event.

The includes() method determines whether the complete file name of the card image includes the
substring “cardback.png” indicating that the card is flipped on its back.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

intrOdUcing cLOsUres 335

to add code to flip the card images:

1. Return to the js08.js file in your code editor.

2. Within the for loop that displays the five card images, add the following code as described in Figure 8-22:

// Flip the card images when clicked

cardImages[i].onclick = function() {

if (this.src.includes("cardback.png")) {

// Show the front of the card

this.src = myHand.cards[i].cardImage();

} else {

// Show the back of the card

this.src = "cardback.png";

}

}

Figure 8-22 Switching the card images between the back and front

Add an event handler
to every card image

If the card is already
showing the back,

show the front image

Otherwise show
the back image

3. Save your changes to the file and then reload js08.html in your browser.

4. Click the Deal button to deal a new hand to the table.

5. Verify that you can switch each card image between its front and back by clicking it. See Figure 8-23.

Figure 8-23 Cards flipped on the table

Cards flipped
from front to back

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods336

After the Draw button is clicked, cards that have been flipped over are replaced with new cards from the deck. Add
code to the Draw button’s onclick event handler to check each card to determine if it has been flipped over, and if
so, replace it with a new card from the deck.

to program the draw button:

1. Return to the js08.js file in your code editor.

2. Scroll down to the onclick event handler for the Draw button and directly below the statement that turns off
the Stand button, add the following for loop:

// Replace cards marked to be discarded

for (let i = 0; i < cardImages.length; i++) {

if (cardImages[i].src.includes("cardback.png")) {

// Replace the card and its image on the table

myHand.replaceCard(i, myDeck);

cardImages[i].src = myHand.cards[i].cardImage();

}

}

Figure 8-24 describes the newly added code.

Figure 8-24 Replacing marked cards when the Draw button is clicked

Event listener for
the click event in

the Draw button

If the card is showing
the back image,

replace it with a new
card from the deck

Loop through the
list of card images

3. Save your changes to the file and then reload js08.html in your browser.

4. Click the Deal button to deal a new hand to the table.

5. Click cards from the table to flip them and then click the Draw button. Verify that the flipped cards are replaced
with new cards drawn from the deck. See Figure 8-25.

Notice that the correct card is replaced in the player’s hand because the closure “remembers” the index value associ-
ated with the event handler and uses it with the replaceCard() method.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

intrOdUcing cLOsUres 337

Figure 8-25 Marking and replacing cards from the hand

Original hand

Cards marked to
be replaced

Click the Draw
button to get

new cards

Final hand

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods338

Working with Public, Private, and Privileged Methods
Methods associated with custom objects can be public, private, or privileged. A public method is defined for the object
prototype and, thus, can be called outside of the object. The replaceCard() method you created for the pokerHand
object prototype is an example of a public method.

A private method is a method created within the constructor function and, thus, is accessible only within the construc-
tor. In the following pokerCard() constructor, scope of the getPoints() function is limited to the constructor and
cannot be accessed from outside that function:

function pokerCard(rank) {

function getPoints() {

if (rank === "ace") return 11;

else if ("king,queen,jack".includes(rank)) return 10;

else return parseInt(rank);

}

this.showPoints = function() {

console.log(rank + " is worth " + getPoints());

}

}

A privileged method is a method that accesses private variables and methods but that is also accessible to the public.
In the code sample above, the showPoints() function is available to the public, but it is also privileged because it
relies on the value returned by calling the private getPoints() function.

Private and privileged methods can be made only within the constructor function itself. Public methods can be made at
any time using the object’s prototype. Private methods are essential to protect code from being inadvertently altered,
but they come at a cost in system resources. Because the methods are placed within the constructor function, they
are copied each time a new object is instantiated. Thus, you should always place such methods within the object
prototype so that only one copy is created and then accessed by each object instance.

Players must end up with a pair of jacks or better to win at draw poker. To determine whether a player is a winner, a
function named handType() has been provided for you. The function returns a text string describing the player’s
hand with text values such as “Jacks or Better” for winning hands that have a pair of Jacks, Queens, Kings, or Aces.
The function also returns the text of other winning hands such as Flushes, Straights, Full Houses, and Royal Flushes.
For hands that are not winners, the function returns the text string “No Winner”.

Some of the coding techniques in the handType() function are beyond the scope of this tutorial;
however, you may wish to review the code to understand some of the approaches used to evaluate the
contents of a poker hand.

Note

To use this function in your app, you will copy the function code into the getHandValue() method of the pokerHand
prototype. The getHandValue() method will then be public and available to any users of the pokerHand object, but
the handType() function and its nested functions will be private and inaccessible outside of the pokerHand prototype.

to add the getHandValue() method:

1. Return to the objects.js file in your code editor.

2. Directly below the replaceCard() method of the pokerHand prototype, add the following code to create the
getHandValue() method:

// Method to determine the value of the pokerHand

pokerHand.prototype.getHandValue = function() {

return handType(this);

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With PUbLic, Private, and PriviLeged methOds 339

3. Scroll to the bottom of the file. The complete code of the handType() function is placed between a pair of
opening and closing comments.

4. Use your code editor to cut the code of the function and paste it directly below the return handType(this)
statement within the getHandValue() method you just entered. Figure 8-26 shows part of the newly pasted code.

5. Save your changes to the file.

Apply the getHandValue() method to report the value of the player’s final hand after the Draw or Stand button is
clicked.

to apply the getHandValue() method:

1. Return to the js08.js file in your code editor and go to the event listener for the Draw button’s click event.

2. Directly below the for loop that replaces cards from the hand add the following statements to display the value
of the hand in the status box:

// Evaluate the hand drawn by user

statusBox.textContent = myHand.getHandValue();

3. Add the following statements to the Stand button’s click event listener to cover the condition when the player
continues play without drawing any new cards.

Figure 8-26 Adding the getHandValue() public method

getHandValue()
is a public method

The handType()
function is private

End of the
function

End of the
method

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods340

// Evaluate the hand drawn by user

statusBox.textContent = myHand.getHandValue();

Figure 8-27 describes the newly added code in the file.

Figure 8-27 Displaying the value of the played hand

The suit property
 contains the card suit

Displays the hand
value after the Draw

button is clicked

The suit property
 contains the card suit

Event listener for
the Stand button

The suit property
 contains the card suit

Displays the hand
value after the Stand

button is clicked

Figure 8-28 Results of a played hand

4. Save your changes to the file and then reload the js08.html file in your browser.

5. Click the Deal button to deal a new hand, select cards to replace, and then click the Draw button. Verify that the
table displays the value of the played hand. See Figure 8-28.

6. Click the Deal button followed by the Stand button to play the hand as originally dealt. Verify that the table once
again displays the value of the hand.

The only task remaining is to update the bank value for winning hands. Recall that different hands provide differ-
ent payouts. For example, a Pair of Jacks or Better repays the original bet while Two Pair pays back double the bet,
Three of a Kind plays back triple, and Royal Flush (if you can get one) pays back 250× the bet. Add a new method
named payBet() to the pokerGame object literal to calculate the amount of the payout and update the value of
the player’s bank.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking With PUbLic, Private, and PriviLeged methOds 341

to create the payBet() method:

1. Return to the objects.js file in your code editor and scroll up to the pokerGame object literal at the top of the page.

2. Type a comma, at the end of the placeBet() method and add the following statement to begin the payBet()
method:

payBet: function(type) {

let pay = 0;

switch (type) {

case "Royal Flush": pay = 250; break;

case "Straight Flush": pay = 50; break;

case "Four of a Kind": pay = 25; break;

case "Full House": pay = 9; break;

case "Flush": pay = 6; break;

case "Straight": pay = 4; break;

case "Three of a Kind": pay = 3; break;

case "Two Pair": pay = 2; break;

case "Jacks or Better": pay = 1; break;

}

The switch case statement examines the value of the type parameter, returning the pay multiplier for each
possible hand or 0 if there is no winning hand.

3. Add the following commands to update the value of the player’s bank and return it:

this.currentBank += pay*this.currentBet;

return this.currentBank;

4. Type } to close the payBet() method. Figure 8-29 describes the complete code of the method.

Figure 8-29 Calculating the payout for a winning hand

The pay variable stores
the payout multiplier

The type parameter
contains the text

string of the hand value

Add the payout
(if any) to the current

bank

Payout multipliers for
different hand types

Return the value of
the player’s bank

Comma placed at
end of placeBet()

method

5. Close the file, saving your changes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods342

Apply the payBet() method to update the player’s bank after the Draw or Stand button is clicked.

to apply the payBet() method:

1. Return to the js08.js file in your code editor and scroll down to the click event listener for the Draw button.

2. Add the following code to the event listener:

// Update the bank value

bankBox.value = pokerGame.payBet(statusBox.textContent);

3. Go to the click event listener for the Stand button and add the following statement:

// Update the bank value

bankBox.value = pokerGame.payBet(statusBox.textContent);

Figure 8-30 shows the newly add code in the file.

Figure 8-30 Applying the payBet() method to update the player’s bank

Updates the bank value
after the Draw button

is clicked

Event listener for the
Stand button

Updates the bank value
after the Stand button

is clicked

The text of the status
box contains the value

of the hand

4. Close the file, saving your changes.

5. Reopen js08.html in your browser.

6. Play the game, verifying that winning hands pay back money to your bank based on the odds multiplier for the
different types of hands.

You have completed your work on the Draw Poker app. In the process of designing this app, you created custom objects
that can be used in other poker card games.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cOmbining Objects With PrOtOtyPe chains 343

Combining Objects with Prototype Chains
Object classes can inherit properties and methods from other object classes. Figure 8-31 shows a diagram of three
object classes named Person, Employee, and Staff. The Person object class contains properties and methods
that describe individuals, such as the individual’s name and age. The Employee object inherits those properties
and methods and adds others unique to employees, such as an employee’s date of employment or annual salary.
Finally, the Staff object class inherits properties and methods from the Employee object, adding properties and
methods specific to staff members, such as information on current projects or membership in different working
groups.

Ensuring that the logic of your JavaScript programs works is, of course, essential. However, you also need to make
sure users intuitively understand how to use your programs. A judicious use of visual formatting can go a long way
toward showing users how to interact with a program. In the Draw Poker game, buttons that were not applicable at
certain points in the game were disabled and grayed out. For example, a player would not be able to click the Draw
or Stand buttons until the Deal button had already been clicked. This visual cue removed distracting information
from the player and guided the player to fewer legitimate choices.

Although you do not need to be an expert in design to be a successful JavaScript programmer, it can be useful to
pay attention to the visual aspects of interfaces that you encounter on other websites and apps and draw lessons
from them to make your application easier to work with.

Skills at Work Guiding User Choices with Interface Cues

Quick Check 3

1. What is the lexical environment of a variable or function?

2. What is a closure?

3. What is a disadvantage of creating a closure?

4. What is the difference between a public method and a private method?

5. What is a privileged method?

Figure 8-31 Prototypal inheritance

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods344

These object classes form a hierarchy or prototype chain ranging from a base object class, known as the superclass,
down to the lower classes or subclasses. The process by which the properties and methods of an object class at one
level are shared with an object class at the next level is called prototypal inheritance.

Creating a prototype Chain
To demonstrate how prototypal inheritance works in JavaScript, consider the following code that creates the object
classes for Person, Employee, and Staff. In this example, methods within each class build upon methods from
the other classes. The name() method of the Person class returns the text string firstName.lastName and the
email() method of the Employee class builds upon that method to return the text string firstName.lastName@
example.com. Finally, the id() method of the Staff class uses the email() method to return the text string
firstName.lastName@example.com [title].

function Person(fName, lName) {

this.firstName = fName;

this.lastName = lName;

this.name = function() {

return this.firstName + "." + this.lastName;

}

}

function Employee(fName, lName) {

this.firstName = fName;

this.lastName = lName;

this.email = function() {

return this.name() + "@example.com";

}

}

function Staff(fName, lName) {

this.firstName = fName;

this.lastName = lName;

this.title = null;

this.id = function() {

return this.email() + " [" + this.title + "]";

}

}

To chain these object classes together, define the prototype of each class as an instance of a higher-order class.
Because every staff member is an employee and every employee is a person, the prototype chain from staff member
to employee to person would be defined as follows:

Staff.prototype = new Employee();

Employee.prototype = new Person();

Once the chain is established, an instance of the Staff object class will inherit all properties and methods defined
throughout the prototype chain. In the following code the id() method is applied to a new hire showing a text string
that relies on methods inherited from the Employee and Person classes:

let hire = new Staff("Keisha", "Adams");

hire.title = "Programmer";

console.log(hire.id());

// logs Keisha.Adams@example.com [Programmer]

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cOmbining Objects With PrOtOtyPe chains 345

Order is important when defining a prototype chain. Start at the lowest subclass and move up the chain to the superclass.
When the JavaScript interpreter encounters a reference to a property or method, it attempts to resolve it in the following order:

1. Check for the property or method within the current object instance.

2. Check for the property or method with the object’s prototype.

3. If the prototype is an instance of another object, check for the property or method in that object.

4. Continue moving through the prototype chain until the property or method located or the end of the chain is
reached.

All prototype chains ultimately find their source in the base object.

Using the Base Object
The base object or Object is the fundamental JavaScript object whose properties and methods are shared by all
native, host, and custom objects. All objects are ultimately subclasses of Object. Figure 8-32 describes some of the
properties and methods that all objects inherit from the Object prototype.

prOperty Or MethOD DescriptiOn
object.constructor References the constructor function that creates object

object.hasOwnProperty(prop) Returns true if object has the specified property, prop

object.isPrototypeOf(obj) Returns true if object exists in object obj prototype chain

object.propertyIsEnumerable(prop) Returns true if the prop property is enumerable

object.toLowerString() Returns a text string representation of object using lower standards

object.toString() Returns a text string representation of object

object.valueOf() Returns the value of object as a text string, number, Boolean value, undefined, or null

Figure 8-32 Common object properties and methods

For example, to determine whether an object supports a particular property use the hasOwnProperty() method.
Thus, the following code returns true to confirm that the hire object contains the title property but false for
the email property because that property is inherited from a higher-order object class:

hire.hasOwnProperty("title"); // true

hire.hasOwnProperty("email"); // false

The constructor for Object also supports methods to retrieve and define properties for any custom or native object.
Figure 8-33 lists some of the methods associated with the Object constructor.

MethOD DescriptiOn
Object.assign(target, sources) Copies all of the enumerable properties from the sources objects into the target object

Object.create(proto, properties) Creates an object using the prototype, proto; where properties is an optional list of
properties added to the object

Object.defineProperty(obj, prop,
descriptor)

Defines or modifies the property, prop, for the object, obj; where descriptor describes
the property

Object.defineProperties(obj, prop) Defines or modifies the properties, prop, for the object, obj

Object.freeze(obj) Freezes obj so that it cannot be modified by other code

Object.getPrototypeOf(obj) References the prototype of the object, obj

Object.isFrozen(obj) Return true if obj is frozen

Object.keys(obj) Returns an array of the enumerable properties found in obj

Figure 8-33 Methods of the base object

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods346

As the hierarchy of objects and classes becomes more complex, it is often important to know which objects are associ-
ated with which prototypes. To reference the prototype of an object instance, apply the getPrototypeOf() method
to the base object as in the following command that returns the prototype for the hire object, which in this example
is the Person object (the last link in the prototype chain created above).

Object.getPrototypeOf(hire) // returns the Person object

The following Object.create() method provides another way to create objects based on existing prototypes:

let newObject = Object.create(prototype);

where newObject is an instance of a new object based on the object class prototype. The following code creates
an instance of a new object based on the Staff prototype and then uses the name() method from that prototype to
return the full name of that staff member:

let hire2 = Object.create(Staff.prototype);

hire2.firstName = "Sandi";

hire2.lastName = "Ghang";

hire2.name(); // Returns the text string "Sandi.Ghang"

You can also view an object’s prototype in your browser’s debugger by using the __proto__ property
of the object.Note

Using the apply()and call() Methods
You can share methods between objects without defining one object as an instance of another. In the following code,
the showRank() method is defined for the pokerCard object prototype to display the rank property in the debug-
ger console:

function pokerCard(rankValue) {

this.rank = rankValue;

}

pokerCard.prototype.showRank = function() {

console.log(this.rank);

};

This method of logging rank values would be useful for any type of card game. To borrow a method from one object
class and apply it with objects of a different class, use the following apply() method:

function.apply(thisObj [,argArray])

where function is a reference to a function, thisObj is the object that receives the actions of the function, and
argArray is an optional array of argument values sent to the function. Thus, to apply the showRank() function to
cards of UnoCard class, use the following apply() method:

function UnoCard(rank) {

this.rank = rank;

}

let myUno = new UnoCard("8 green");

pokerCard.prototype.showRank.apply(myUno);

// logs "8 green"

One of the advantages of copying and applying a method like showRank() is that if the developer needs to make
modifications to that method’s code, those edits will be automatically shared with all objects that rely upon it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

data stOrage With assOciative arrays 347

Another way of sharing a method between objects is the call() method. The call() method is similar to the
apply() method except that the argument values are placed in a comma-separated list of values instead of an array,
as follows:

function.call(thisObj, args)

where args is a comma-separated list of argument values for function.

The apply() method is used with arrays (think “a” for “array”), while the call() method is used for a
comma-separated list of values (think “c” for “comma”).Note

This chapter has only scratched the surface of the study of prototypes and the organization of JavaScript objects. Just
as you can build a complex lexical environment of nested functions and variables, you can create a complex hierarchi-
cal structure of objects and object prototypes. As you expand your knowledge and application of customized objects,
you will need to adopt strategies for managing those objects to ensure integrity of your data and to keep your code
lean and efficient.

Data Storage with Associative Arrays
Objects can also be used for storing and organizing data. The JavaScript object literal structure is also used as an
associative array with data values defined using key:value pairs in which a key term is paired with a data value.
The general structure is:

let array = {key1:value1, key2:value2, …}

where key1, key2, etc. are the keys and value1, value2, etc. are the values associated with each key. For example,
the following structure defines several key values describing the properties of an employee:

let employee = {

name: "Keisha Adams",

position: "programmer",

dept: "sales"

};

where the Array object uses an index to reference an item, an associative array uses a key. To reference the employee
name, use the bracket notation employee["name"], which for this object returns the value "Keisha Adams".

Despite the name, associative arrays are, strictly speaking, not arrays and do not support the JavaScript Array object
properties and methods. There is no length property for associative arrays nor is there a sort() method for sort-
ing the array contents.

Associative arrays are called hash tables or hashes in other programming languages.Note

the for in and for of Loops
Because associative arrays do not use indexes, you cannot examine their contents using a program loop with a counter
variable. Instead of using a for loop, apply the following for in loop:

for (let prop in object) {

commands

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods348

where prop references the properties or keys within the associative array and object is the object containing the
data structure. For example, the following for in loop iterates through each key in the employee data structure,
writing the key value to the console log:

for (let prop in employee) {

console.log(prop + " is " + employee[prop];

}

// logs "name is Keisha Adams"

// logs "position is programmer"

// logs "dept is sales"

If an object inherits properties from other objects, all those properties will be included in the for in loop. The follow-
ing for in loop iterates through properties in the person object as well as properties inherited from the employee
object.

let person = {

name: "Keisha Adams"

}

let employee = Object.create(person);

employee.position = "programmer";

for (let prop in employee) {

console.log(prop + " is " + employee[prop]);

}

// logs "name is Keisha Adams"

// logs "position is programmer"

Note that for in loops do not follow a specific order because keys can be listed and read out in any order. For item
collections in which order is important, use an Array object with array values assigned index numbers. Only prop-
erties that are countable or enumerable are accessible to for in loops. You can determine whether a property is
enumerable using the following propertyIsEnumerable() method:

obj.propertyIsEnumerable(prop)

where obj is the object and prop is the property.

Similar to the for in loop is the for of loop, which is used for items that are enumerable. The syntax of the for
of loop is:

for (let items of list) {

commands

}

where items references the values within an enumerable list such as an array, node list, or HTML collection. For
example, the following for of loop iterates all the items within the pokerCards array, writing the value of the rank
property to the debugger console:

for (let items of pokerCards) {

console.log(items.rank);

}

The for of loop is an efficient way to loop through the contents of a list without using a counter variable.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

data stOrage With assOciative arrays 349

Storing Object data in JSON
The general structure of JavaScript objects was quickly seen as a useful vehicle for storing and organizing data. Doug-
las Crockford, one of JavaScript’s pioneering architects, advocated a similar data structure called JavaScript Object
Notation or JSON that could be used for storing structured data in a text-based format. JSON files are often used in
web applications that need to transfer data between the server and the client.

JSON is not part of JavaScript, though it employs a similar syntax, nor is it used solely by JavaScript. A JSON file
can be parsed and interpreted by programming languages such as PHP and Python. JSON is an example of a data
interchange format, which is a text format that almost all systems have agreed upon as a common standard for informa-
tion exchange. Another such language is XML. In fact, Crockford advocated for JSON as an alternate data interchange
format to XML.

JSON data is often stored in text files with the file name extension “.json”.Note

The following is an example of employee data saved in the JSON format. This data could be stored in its own JSON text
file, sent from the server to the client via a data stream, or stored as a text string in a JavaScript variable.

{

"name" : "Keisha Adams",

"age" : 27,

"address" : {

"street" : "41 Maple Avenue",

"city" : "Ithaca",

"state" : "New York",

"postal code" : "14850"

},

"phone" : [

{

"type" : "work",

"number" : "607-555-7812"

},

{

"type" : "mobile",

"number" : "607-555-0048"

}

],

"spouse" : null

}

Data written in JSON is organized as a comma-separated list of key:value pairs, though with JSON the key names
must always be enclosed within double quotation marks. JSON supports three data types:

❯❯ Simple values such as numeric values, text strings, Boolean values, and null

❯❯ Objects with contents written as key:value pairs

❯❯ Arrays containing an array literal of simple values or objects

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods350

Although JSON data appears in the form of an object literal, it is not an object. It is a text string. However, a JSON text
string can be converted to an object using the following parse() method:

let object = JSON.parse(JSONtxt)

where object is an object storing the JSON data and JSONtxt is the text of the JSON data structure. Once converted
into an object, values from the JSON data structure can be referenced as any other JavaScript object. For example, if
the parse() method were applied to the above JSON text string and then stored in a variable named employee, its
values could be referenced using the following statements:

employee["name"] // returns "Keisha Adams

employee.age // returns 27

employee.address.city // returns "Ithaca"

employee["phone"][1].type // returns "mobile"

As with all JavaScript objects, properties are referenced using either the bracket or the dot notation and nested objects
are referenced by enclosing on object name within another. A JSON data structure might have several of these data
values nested within one another. Notice that the Keisha Adams data includes a phone key with an array of objects
listing work and mobile numbers.

Because JSON key names must be enclosed within double quotes, use single quotes to enclose the
JSON data structure. For longer data structures that span several lines, store the text string as template
literals using the backtick (‛) character to mark the beginning and end of the string.

Note

Many applications need to convert JavaScript objects into JSON text strings so that the information contained within
the object can be exchanged with a server or database application. To convert a JavaScript object into the JSON format
use the following stringify() method:

JSON.stringify(object, [replacer [, space]]);

where string stores the JSON text string, object is the JavaScript object to be converted, replacer is an optional
function is an array of text strings and numeric values for filtering the object, and space is an optional argument to
insert spaces into the output string for readability. The following are some examples of applying the stringify()
method to custom and built-in JavaScript objects:

JSON.stringify(27)

// returns '27'

JSON.stringify(false)

// returns 'false'

JSON.stringify({name: "Keisha Adams", age: 27})

// returns '{"name":"Keisha Adams","age",27}'

JSON.stringify(new Date(2024, 5, 4, 13, 15, 8))

// returns '2024-06-04T18:15:08.000Z'

Note that applying the stringify() method to a Date object returns a text of the date value in Greenwich time.

You may not want to write all the properties of an object into a text string, so you can specify the list of properties to
include in the array as part of the replacer argument. The following expression returns only the name property of
the object, dropping the age property:

JSON.stringify({name: "Keisha Adams", age: 27}, ['name'])

// returns '{"name":"Keisha Adams"}'

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

sUmmary 351

In developing applications to communicate with server scripts and programs, you may need to use JSON as the data
format. Many applications use the stringify() method to convert object data into a suitable format for transfer-
ring to a server.

Catching Syntax Errors in JSON Data
JSON is an excellent format for data exchange and because it builds upon the structure of
JavaScript objects, it should be a very familiar format. However, despite its appearance, there
are some important differences in the code for JSON data and JavaScript objects. Keep these
syntax issues in mind when you write your JSON data:

❯❯ Key names should always be enclosed within double quotes. An error will result if you use
single quotes or avoid using quotes at all.

❯❯ The collection of key:value pairs must be placed in a comma-separated list. Failure to
separate these pairs with a comma or using a semicolon in place of a comma will result in an
error.

❯❯ All nested objects within the JSON data structure must include the opening and closing
braces.

❯❯ JSON data is entered as a text string; therefore, it should be enclosed within single quotes
when written on one line. If the code extends over several lines, enter it as a template literal
with the opening and closing marked with the backtick character (‛).

By catching these errors, you can avoid problems with writing data in JSON format.

Common
Mistakes

Quick Check 4

1. Provide code to specify that the Clothing object class is a subclass of the Merchandise class.

2. Provide an expression to test whether the myCard object contains a property named “suit”.

3. Which command should be used to loop through properties of an associative array?

4. When would you use the call() method with an object?

5. how do you convert a json text string into a javascript object? how do you convert a javascript object into a json
text string?

Summary
❯❯ Object-oriented programming (OOP) refers to the creation of reusable software objects that can be easily
incorporated into multiple programs.

❯❯ An object literal is a standalone object used once for a single purpose. Within the object literal you can add
properties and methods that define the object and its behavior.

❯❯ Properties are added to a custom object with name:value pairs within a command block. Methods are added as
nested functions within the command block.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods352

❯❯ Object properties can be referenced using either the dot operator or bracket notation.

❯❯ An object literal can be created with the new Object() constructor.

❯❯ An object class acts as a template or blueprint for the creation of new objects all sharing a common collection of
properties and methods. Each new object based on a class creates an instance of that class.

❯❯ An object constructor function is used to create a new class of objects.

❯❯ Every JavaScript object has a prototype, which is a template for all the properties and methods associated with
the object’s class. Object prototypes are referenced using the prototype property.

❯❯ Prototypes can be used to add methods to existing object classes.

❯❯ A closure is a copy of a function that also copies the lexical environment of variables within the function.

❯❯ Methods associated with custom objects can be public, private, or privileged. A public method is defined for the
object prototype and, thus, can be called outside of the object. A private method is a method created within the
constructor function and, thus, is accessible only within the constructor. A privileged method is a method that
accesses private variables and methods but that is also accessible to the public.

❯❯ Object classes can be combined with prototype chains in which the property and methods of one object are
inherited by other objects in the chain. All native and custom objects are connected ultimately to the base object.

❯❯ Methods in one object class can be applied to another object class using the apply() and call() methods.

❯❯ Data can be stored within associative arrays in which data values are matched to key names. A for in loop can
be used to loop through the contents of an associative array. A for of loop can be used to loop through lists that
are enumerable.

❯❯ JavaScript Object Notation or JSON is a text-based data structure used for storing data using the general structure
of key:value pairs within an object.

Key Terms
associative array

base object

bracket notation

closure

constructor function

custom object

data interchange format

dot operator

encapsulation

enumerable

host object

instantiating

interface

JavaScript Object Notation

JSON

lexical environment

lexical scope

native object

object class

object constructor

object instance

object literal

object-oriented programming (OOP)

private method

privileged method

prototypal inheritance

prototype

prototype chain

public method

static scope

subclass

superclass

user-defined object

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

revieW QUestiOns 353

Review Questions
1. Why are objects encapsulated?

a. So that they can act as templates for other objects
b. To create an interface for an app
c. To share their code in a prototype chain
d. So that the code and data are hidden from other

programs

2. What is an object literal?
a. A template for the creation of other objects
b. A native object built into JavaScript
c. A host object used by the web browser
d. A standalone object used for a single purpose

3. Provide the reference to the dateHired property
of the employee object in bracket notation.
a. employee.dateHired
b. employee[dateHired]
c. employee["dateHired"]
d. employee:dateHired

4. The new Object() command ____________.
a. creates a new object from the JavaScript base

object
b. is used to create an object class
c. is used to create a closure
d. creates a new native object

5. An object class is used ____________.
a. to create standalone objects built for a single

purpose
b. to create native objects
c. as a template for new objects sharing the same

properties and methods
d. to create host objects

6. To create an object class, you need a(n) __________.
a. JavaScript framework
b. constructor function
c. object literal
d. closure

7. Provide code to instantiate an object from the
Employee object class, storing the object in the
myEmp variable.
a. let myEmp = new Employee;
b. let myEmp = Employee();
c. let myEmp : Employee();
d. let myEmp = new Employee()

8. What is an object prototype?
a. A literal object used for a single purpose
b. A template for all properties and methods

associated with an object class
c. A constructor function used to create an object

class
d. A host object built into the web browser

9. Provide code to add the review() method to the
prototype of the Employee class.
a. Employee.review = function()
b. Employee.prototype.review() =

function
c. Employee.prototype.review =

function
d. Employee.review.prototype =

function

10. A closure is a ____________.
a. command block that encloses an object’s

properties and methods
b. copy of a variable that encloses that variable’s value
c. closed chain of object prototypes
d. copy of a function along with the lexical

environment of variables within that function

11. What is a privileged method?
a. A method that takes precedence over other

methods in the script
b. A method created that access private variables and

methods but is also accessible to the public
c. A method associated with an object prototype
d. A method associated with a native or host object

12. The hierarchy of objects connected via their
prototypes is known as a(n) ____________.
a. prototype chain
b. prototype tree
c. object list
d. object tree

13. Which object method references the prototype of
an object instance?
a. Object.prototype()
b. Object.getPrototype()
c. Object.getPrototypeOf()
d. Object.loadPrototype()

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods354

Hands-On Projects
Hands-On Project 8-1

In this project you will build the object class for a countdown timer. The timer object will have
properties to record the minutes and seconds remaining, and to record the id value used with for the
windows.setInterval() method. The timer object will also have a method that runs the timer, updating
its value once per second or pausing the timer. A preview of the interface that controls the actions of the
timer object is shown in Figure 8-34.

14. A for in loop is used to ____________.
a. iterate through the contents of an associative

array
b. determine whether an object contains a specified

property
c. iterate through the contents of any array
d. write the contents of an object in JSON format

15. Which method should be used to convert text
written in JSON to a JavaScript object?
a. JSON.toObject()
b. JSON.stringify()
c. JSON.construct()
d. JSON.parse()

16. What are some advantages of creating custom
objects using object-oriented programming?

17. Provide code to create an object class named
realEstate containing two properties named
salesPrice and squareFoot, setting both of
those property values to null.

18. Why should you add a method to the prototype of
an object class rather than adding the method to
the constructor function of the object class?

19. What are the advantages and disadvantages of
closures?

20. Why would you place object data in the JSON format?

Figure 8-34 Completed Project 8-1

Do the following:

1. Use your code editor to open the project08-01_txt.html and project08-01_txt.js files from the js08 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project08-01.html and project08-01.js, respectively.

2. Go to the project08-01.html file in your code editor and link the page to the project08-01.js file, deferring the
script until after the page loads. Take some time to study the code of the file and then close it, saving your
changes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-On PrOjects 355

3. Return to the project08-01.js file in your code editor. Directly below the Object Code comment add a
constructor function for the timer object containing two parameters named min and sec. Set the
timer.minutes property equal to min, the timer.seconds property equal to sec, and the
timer.timeID property equal to null.

4. Directly below the timer() constructor function, add the runPause() method to the timer object class
prototype. The runPause() method has three parameters named timer, minBox, and secBox. Within the
anonymous function for the runPause() method add the tasks described in Steps 5 through 6.

5. Insert an if else statement testing whether timer.timedID is truthy (has a value). If it does, you will pause
the timer by applying the window.clearInterval() method using timer.timeID as the parameter value;
set timer.timeID equal to null. Otherwise, run the window.setInterval() method to start the timer,
running the countdown() function every 1000 milliseconds; store the id of the setInterval() method in
the timer.timeID property.

6. Add the countdown() function that updates the timer every second. Within the function, add an if else
statement that does the following:

a. If timer.seconds is greater than 0, decrease the value of timer.seconds by 1.

b. Else, if timer.minutes is greater than 0, decrease the value of timer.minutes by 1 and set the value of
timer.seconds to 59.

c. Else the timer has reached 0:0; stop the timer by running the window.clearInterval() method with
timer.timeID as the parameter value and then set the value of timer.timeID to null.

d. After the if else statement, write the value of timer.minutes to minBox.value and
timer.seconds to secBox.value

7. Scroll to the bottom of the file. Declare an instance of the timer object and name it myTimer using
minBox.value and secBox.value as the parameter values for the initial value of the timer.

8. Create an onchange event handler for minBox that sets myTimer.minutes to minBox.value. Create an
onchange event handler for secBox that sets myTimer.seconds to secBox.value.

9. Create an onclick event handler for the runPauseTimer button that runs an anonymous function that
applies the runPause() method to myTimer using myTimer, minBox, and secBox as the parameter values.

10. Save your changes to the file and then load project08-01.html in your web browser.

11. Verify that clicking the RUN/PAUSE button alternately starts and pauses the timer and that the timer correctly
updates itself every second, stopping when it reaches 0:0.

Hands-On Project 8-2

In this project you will write code defining objects for balls bouncing within a container. When a ball hits the
container side it will rebound, and the container will shift in the direction of the ball’s velocity. Each instance
of the ball object includes properties for the ball’s radius, horizontal and vertical position, and horizontal and
vertical velocity. The container object will have properties defining its width, height, and position. New balls
with random velocity are added to the center of the container by clicking a New Ball button. A preview of the
completed project is shown in Figure 8-35.

Do the following:

1. Use your code editor to open the project08-02_txt.html and project08-02_txt.js files from the js08 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project08-02.html and project08-02.js, respectively.

2. Go to the project08-02.html file in your code editor and link the page to the project08-02.js file, deferring the
script until after the page loads. Close the file, saving your changes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods356

3. Return to the project08-02.js file in your code editor. Directly below the Object Code comment create an object
literal named box with its width and height properties equal to BOX_WIDTH and BOX_HEIGHT and its xPos
and yPos properties equal to 0.

4. Create a constructor function for the ball class. The constructor function has a single parameter named
size. Within the constructor function set the value of the radius property to size and the xPos, yPos,
xVelocity, and yVelocity properties to null.

5. Create the moveWithin() method of the ball object class prototype that runs an anonymous function with
container as its only parameter. The purpose of this method is to move the ball within the container,
bouncing it off the container sides. Within the anonymous function do the following:

a. Set the top and left positions of the ball by creating the ballTop variable equal to this.yPos and the
ballLeft variable equal to this.xPos.

b. Set the bottom and left positions of the ball by creating the ballBottom variable equal to this.yPos +
this.radius and the ballRight variable equal to this.xPos + this.radius.

c. If ballTop is less than zero or ballBottom is greater than container.height, then bounce the
ball vertically by (i) increasing container.yPos by the value of this.yVelocity and (ii) setting
this.yVelocity = –this.yVelocity.

d. If ballLeft is less than zero or ballRight is greater than container.width, then bounce the ball
horizontally by (i) increasing container.xPos by the value of this.xVelocity and (ii) setting
this.xVelocity = –this.xVelocity.

e. Move the ball within the container by increasing the value of this.yPos by this.yVelocity and by
increasing the value of this.xPos by this.xVelocity.

Figure 8-35 Completed Project 8-2

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-On PrOjects 357

6. Scroll down to the Interface Code section and within the onclick event handler for the addBall button add
the code described in Steps 7 and 8.

7. Create an instance of a ball object with the following properties:

a. Store an instance of the ball object in a variable named newBall with a size value equal to BALL_RADIUS.

b. Center the newBall within the container by setting the yPos property to (BOX_HEIGHT – BALL_
RADIUS)/2 and the xPos property to (BOX_WIDTH – BALL_RADIUS)/2.

c. Give newBall an initial random velocity by calling the rand() function, setting the value of the
yVelocity and xVelocity properties to rand(–10, 10).

8. Animate the motion of newBall by calling the window.setInterval() method. Within the method, run the
following code in an anonymous function every 25 milliseconds:

a. Apply the moveWithin() method to newBall with box as the value of the container parameter.

b. Move the image of the ball by setting ballImage.style.top equal to newBall.yPos + "px" and
ballImage.style.left equal to newBall.xPos + "px".

c. Shake the image of the container by setting boxImage.style.top equal to box.yPos + "px" and
boxImage.style.left equal to box.xPos + "px".

9. Save your changes to file and then load project08-02.html in your browser.

10. Verify that you can add new balls to the container by clicking the Add Ball button and that the balls bounce off
the sides, shaking the container.

Hands-On Project 8-3

In this project you will create objects to describe the contents of a pizza and the contents of a shopping cart.
Each pizza is described by its size, crust, and list of toppings. An interface that allows customers to build their
pizza by selecting items from a web form has been created for you. Your job will be to write the object code to
work with this interface, storing data about the pizzas the customers build. A preview of the completed project
is shown in Figure 8-36.

Figure 8-36 Completed Project 8-3

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods358

Do the following:

1. Use your code editor to open the project08-03_txt.html and project08-03_txt.js files from the js08 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project08-03.html and project08-03.js, respectively.

2. Go to the project08-03.html file in your code editor and link the page to the project08-03.js file, deferring the
script until after the page loads. Take some time to study the contents and structure of the web from which
customers will make their selections. Close the file, saving your changes.

3. Return to the project08-03.js file in your code editor. Directly below the Object Code comment create an object
literal named cart. The cart object has a single property named items containing an empty array and a single
method named addItem(foodItem) Add the command this.items.push(foodItem) to this method.

4. Create a constructor function for the Pizza object class containing a size and crust property with no initial
values and a toppings property containing an empty array.

5. Create a constructor function for the Topping object class containing the name and side property to store
the name of the topping and whether covers the entire pizza or is limited to the pizza’s left or right side. Do not
enter initial values for these properties.

6. Add the addToCart(cart) method to the Pizza prototype. Within the method run the command cart.
items.push(this) to add the pizza to the items array of a shopping cart.

7. Add the summarize() method to the Pizza prototype to create a text string summarizing the content of the
pizza. Within the function do the following:

a. Declare a variable named summary with the initial value “Pizza: “.

b. Add the value of this.size and this.crust to the value of summary. Separate the size and crust values
with a blank space.

c. Create a for loop that iterates through the this.toppings array. For each item in the array add the text
string name (side) to the summary variable, where name is the value of the this.toppings[i].name
property and side is the value of the this.toppings[i].side property.

d. After the for loop, return the value of the summary variable.

8. Scroll down to the buildPizza() function. This function builds a pizza object based on selections made on
the web form. Add the following code to the function.

a. Create an instance of a Pizza object storing it in myPizza.

b. Set the value of myPizza.size to pizzaSizeBox.value. Set the value of myPizza.crust to
pizzaCrustBox.value.

c. Add the selected toppings to the pizza by creating a for loop that iterates through the contents of
the checkedToppings node list. Within the loop, (i) create an instance of a Topping object named
myTopping; (ii) set myTopping.name equal to checkedToppings[i].name and myTopping.side
equal to checkedToppings[i]value; (iii) apply the addTopping(myTopping) method to myPizza.

d. After the for loop, return the value of myPizza.

9. Go to the updateCart() function, which adds the pizza to the shopping cart. Add the following commands to
the function:

a. Run the buildPizza() function, storing the result in the myPizza variable.

b. Apply the addItem(myPizza) method to the cart object.

c. Run the console.log(cart) method to write the contents of the cart object to the debugger console.

d. Create a paragraph element containing the value of summarize(myPizza). Use the appendChild()
method to append the paragraph to the cartBox element.

e. Reset the page for the next pizza by running the clearPizzaImage() function followed by the
clearToppings() function.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-On PrOjects 359

In this file, there is single root object named directory containing an array of objects with each object
containing key:value pairs for the employee id, first name, last name, position, department, email address,
and phone number. To iterate through these properties, you will use a for in loop with the following general
form:

for (let prop in object) {

commands

}

where prop references the properties associated with object and commands are the commands applied to
each key:value pair in the object. Figure 8-38 shows the final version of the web table you will create for
this project.

Do the following:

1. Use your code editor to open the project08-04_txt.html and project08-04_txt.js files from the js08 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project08-04.html and project08-04.js, respectively.

2. Go to the project08-04.html file in your code editor and link the page to the project08-04.js file, deferring the
script until after the page loads. Close the file, saving your changes.

3. Return to the project08-04.js file in your code editor. Some of the code to create the app has already been
entered for you. Go to the onload event handler for the fr (file reader) variable and add the following code:

a. Add a command to convert the contents of the JSON data in fr.result into an object named staff.

b. Call the makeStaffTable() function using staff as the parameter value.

4. Go to the makeStaffTable() function and add the commands described in Steps 5 through 7.

10. Save your changes to the file and then load project08-03.html in your browser. Verify that you can build a pizza
and add it to the shopping cart by clicking controls on the web form. Verify that the debugger console lists all of
the pizzas added to the cart object.

Hands-On Project 8-4

In this project you will explore how to retrieve text data from a JSON file and display that data in a web table.
The first few lines of a JSON file containing a staff directory is shown in Figure 8-37.

Figure 8-37 Staff directory stored in JSON format

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods360

5. First create a table row containing the property names stored in the JSON file using the properties from the first
directory entry. Create a for in loop for the object stored in staff.directory[0] and add the following
commands to the loop:

a. Use the document.createElement() method to create a th element named headerCell.

b. Store prop as the text content of headerCell.

c. Use the appendChild() method to append headerCell to the headerRow object.

d. After the for in loop completes, append headerRow to the staffTable object.

6. Next, create table rows containing the property values for each entry in the directory array. Add a for loop
that loops through the items of staff.directory. Within the for loop do the following:

a. Create an element node for the tr element and store it in the tableRow variable.

b. Create a for in loop for the properties listed in the staff.directory[i]. For each property do the
following: (i) Create an element node for the td element and store it in the tableCell variable; (ii) store
the value of staff.directory[i][prop] as the text content of tableCell; (iii) append tableCell to
the tableRow object.

c. After the for in loop completes, append tableRow to the staffTable object.

7. After the for loop is finished, use the appendChild() method to append staffTable to the
containerBox object.

8. Save your changes to the file and then load project08-04.html in your web browser.

9. Click the Choose File button and open the staff.json file from the js08 c project04 folder. Verify that the contents
of the file are converted into a web table with the property names in the first table row and the property values
for each directory entry shown in subsequent table rows.

Figure 8-38 Completed Project 8-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hands-On PrOjects 361

The location of each square on a chess board is identified by a letter and number for the square column and
row. For example, the e2 square is placed in the fifth column and second row of the board. One way of logging
a chess game is to record the opening and closing positions of pieces as they are moved. The log entry “Pc2-
c4” means to move the pawn on square c2 to square c4.

The moves shown in Figure 8-39 are stored in a JSON file. The chess board is created with a web table in which
each <td> tag has been assigned an id matching its square. Form buttons have been provided to move forward and
backward through the game with the movement of the pieces on the board matching the game log.

The code for this app contains several errors that keep it from running correctly. You have been asked to use
your knowledge of object-oriented programming to debug the program.

Hands-On Project 8-5

Debugging challenge

You have been given code for a web page that loads game logs from classic chess games. A preview of the
completed project is shown in Figure 8-39.

Figure 8-39 Completed Project 8-5

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 Creating Customized objeCts, ProPerties, and methods362

Do the following:

1. Use your code editor to open the project08-05_txt.html, project08-05_txt.js, and objects_txt.js files from
the js08 c project05 folder. Enter your name and the date in the comment section of each file and save
them as project08-05.html, project08-05.js, and objects.js, respectively.

2. Go to the project08-05.html file in your code editor and link the page to the project08-05.js and objects.js files,
deferring the scripts until after the page loads. Study the code in the HTML file to become familiar with the
structure and content of the file. Close the document, saving your changes.

3. Go to the sample_txt.json file in your code editor and save it as sample.json. The JSON file contains information
on a sample game, but there are several mistakes in the syntax of the JSON data in naming the properties and
separating the properties from each other. Locate and fix the errors and save your changes.

4. Return to the objects.js file in your code editor. This file is used to define custom objects for use with chess
game apps. At the top of the file is a constructor function that defines the piece object containing information
about chess pieces. A mistake has been made in defining the color, rank, square, and image properties.

5. The chessSet() constructor is used to define the collection of chess pieces within a game. There is a mistake
in instantiating the chessPiece object. Fix the error and save your changes to the file.

6. Return to the project08-05.js file in your code editor. This file is used to define the interface for the chess game
app. At the top of the file in the onchange event handler for the getLogButton object, the data from the
JSON file is converted to the game object. A mistake has been made in the code to create the game object. Fix
the error.

7. The code also creates the mySet object that is an instance of the chessSet object class. There is a mistake in
instantiating that object. Locate and fix the error. Save your changes to the file.

8. Load project08-05.html in your web browser. Click the Choose File button and load the sample.json file from
the js08 c project05 folder into the web page.

a. Verify that the app loads the chess log and displays the list of moves.

b. Verify that you can move forward and backward through the game by clicking the Next Move and Previous
Move buttons.

9. If the app still does not work, use the debugging tools in your browser to help you locate and fix the errors.

Case Projects
Individual Case Project

Add object-oriented programming techniques to your project by creating custom objects to manage some
of the tasks in your project. Store the objects in a separate file. Create a constructor function for a class of
objects and then add methods to your object class prototypes. Create instances of each object class in your
code. Your objects and object classes should be designed in such a way that they could be used with other
applications.

Team Case Project

Have your group members discuss the objects they created for the Individual Case Project to the group,
reviewing how they designed the objects so they could be easily used with other applications. Suggest ways
that each member’s custom objects could be used in other projects that might be designed in the future.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

363

End users often need to store their data in a permanent form that can be accessed whenever they return to
a website. For example, customers do not want to reenter the same credit card data and shipping address
with each new purchase from an online store. Gamers want to maintain a win/loss record and be able to
return to matches that last longer than a single session. An online blog needs to keep a record of ongoing
conversations and discussion threads. In this chapter you will learn some techniques to store data that
persists from one website session to the next and explore ways in which that data is made safe and secure.

Understanding Sessions and State Information
A session is begun each time the user visits a website within a browser window or tab. During that
session data called state information is transferred between the client computer and the web server
via the Hypertext Transfer Protocol (HTTP), which is a set of rules defining how data is to be read and
interpreted between the client and server.

Chapter 9

When you complete this chapter you will be able to:

❯❯ Describe the fundamentals of sessions and state information

❯❯ Share data between web pages using query strings

❯❯ Explain how data is stored using the Web Storage API

❯❯ Use browser tools to view and manage web storage contents

❯❯ Identify the purpose and structure of a cookie

❯❯ Write data into a cookie

❯❯ Retrieve data from web storage

❯❯ Force the deletion of a persistent cookie

❯❯ Describe the fundamental concepts involved in web security

Managing State
Information and
Security

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security364

HTTP was originally designed to be stateless so that data would not be maintained between sessions. A stateless
design is a static design because the server treats all clients equally, saving no information about the client’s previous
sessions. Stateless designs can be very efficient because the server does not have to retrieve data for individual users
and clients, but they are also extremely limiting because they do not allow information and actions from one session
to be preserved for future sessions. There are many applications that require storing state information, during and
between sessions, such as:

❯❯ Shopping carts that store the items selected by a customer while visiting an online store

❯❯ User profile pages maintained by companies and organizations for their customers and members

❯❯ Web forms spanning multiple web pages in which data entered in one form must be accessible to other pages
and other forms

❯❯ Website designs that allow users to choose customized colors and fonts based on their accessibility needs

State information that needs to be maintained between and during individual sessions can be stored either remotely
on the web server or locally on the client device. There are reasons for both approaches. Storing the data on the web
server makes it accessible to any of the user’s client devices, so that data follows the user from one device to the next.
However, storing a lot of information on the server can strain server resources, slowing down the connection between
the server and the client. That load can be lessened by storing some of the data on the client device. The best designs
often involve both server-side and client-side storage. Note that client-side storage should only be used for data that
is applicable to a specific client device or for data that is only required for the current browser session.

The main protocol used to encrypt data on websites is Secure Sockets Layer (SSL). The use of SSL encryption is
widespread on the web. However, the SSL standard is being replaced by Transport Layer Security (TLS), which will
eventually replace SSL. Both SSL and TLS encryption can be used to prevent a man-in-the-middle attack, in which
data being exchanged between two parties is read and potentially changed in transit. SSL and TLS encrypt data
between the client and the server, making it essentially impossible for anyone who might intercept that data in
transit to read or change it.

Programming Concepts Encryption

This chapter focuses on storing and retrieving state information stored on the client side, covering the following
methods for storing client-side data:

❯❯ Data appended as a text string to a website address

❯❯ Data saved to a storage file created and stored on the client device

❯❯ Data placed within a cookie created and stored on the client device

You will explore these techniques using the website Eating Well in Season (EWS), developed for a company delivering
quality produce from local farms directly to paid subscribers. Web designers for EWS have created a member sign-up
form that extends across two pages. The first page collects contact information for new subscribers and the second
page records the subscriber’s membership options. Because the sign-up form covers two pages, data entered on the
first page must be accessible to the second page.

To access the files for Eating Well in Season website:

1. Go to the js09 c chapter folder of your data files.

2. Use your code editor to open the js09a_txt.html, js09b_txt.html, and js09b_txt.js, files. Enter your name and the
date in the comment section of each file and then save them as js09a.html, js09b.html, and js09b.js, respectively.

3. Open the js09a.html file in your browser.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sharing DaTa BETWEEn FormS 365

The initial page in the web form contains fields for entering the new member’s name, email address, phone number,
and mailing address. The second page contains fields for membership options. When users submit the first form, they
will be automatically redirected to the second. Thus, the first technique you will explore involves transferring data
from the first form to the second.

Sharing Data Between Forms
Each time the web server and client exchange data, an HTTP request is generated, consisting of two parts: a header
with metadata about the browser and its capabilities, and a body with information necessary to process the request.
When a user submits a web form, data from that form is sent to the server using either the post method or the get
method. The post method appends the form data to the body of the HTTP request, while the get method appends
the data as a query string added to a website’s URL. One reason to use the get method is that the query string can be
read and parsed by a JavaScript program running on the client device and thus does not require the browser to store
data in a separate file for retrieval.

To retrieve data from a form submitted using the post method, you must run a script on the server
written in a server-side language like PHP that can access data stored in the HTTP request.Note

To append form data within a query string, add the following method and action attributes to the form element:

<form method="get" action="url">

where url is the website address or file name of the resource that will be opened when the form is submitted. For
the EWS website, the form stored in the js09a.html file will open the web form stored in the js09b.html file. Edit the
form element in the js09a.html so that it opens the js09b.html file using the get method, appending the form data as
a query string.

To set the form’s method and action properties:

1. Return to the js09a.html file in your code editor.

2. Scroll down to the <form> tag within the body of the HTML file and insert the following attributes as shown in
Figure 9-1:

action="js09b.html" method="get"

Figure 9-1 Applying the get method to a form

Append the form
data to the page URL

Open the js09b.html
 file when the form

is submitted

3. Close the file, saving your changes.

Next, submit a completed registration form, verifying that it opens the js09b.html file with the data fields and values
appended to the URL shown in your browser’s address bar.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security366

To submit the form:

1. Open the js09a.html file in your browser.

2. Complete the web form using your contact information if you are working on your own computer or a fictitious
contact if you are sharing a device with others. See Figure 9-2.

Figure 9-2 Entering sample data into a form

Figure 9-3 Viewing the query string

Query string containing
field names and values

3. Click the Next button to submit the form and open the js09b.html file.

As shown in Figure 9-3, the browser’s address bar shows the URL for the js09b.html file appended with a query
string containing field names and values.

A URL containing a query string has the general format

http://server/path/file?field1=value1&field2=value2. . .

where server and path are the server and path names for the web page and file is the file name of the web
page. The query string starts with the ? character and contains data stored as field=value pairs with each pair

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sharing DaTa BETWEEn FormS 367

separated by the & character. The following text string contains sample text of a query string appended to the URL of
the js09b.html file:

?name=Desmond+Jennings&email=djennings%40example.com&phone=%28802%29

+555-4781&address=43+Maple+Hill+Drive&city=Burlington&state=VT&zip=0

5401

To retrieve data from a query string, split the text string into separate substrings for each name=value pair, yielding
the following text for the name, email, phone, address, city, state, and zip fields:

name=Desmond+Jennings

email=djennings%40example.com

phone=%28802%29+555-4781

address=43+Maple+Hill+Drive

city=Burlington

state=VT

zip=05401

You will use JavaScript string methods to automate the process of retrieving the field names and values.

retrieving the Query String text using the Location object
Recall that the URL for the current web page is stored within JavaScript’s Location object. The text of the query
string is referenced with the location.search property, which returns the entire query string including the initial
? character. Because you don’t need that first ? character you will use the slice() method to extract a substring
from the query string starting from the second character.

To extract the field names and values from the query string:

1. Open the js09b.html file in your code editor and add a script element to run the js09b.js file, deferring the
running of the script until after the web page is loaded. Close the file, saving your changes.

2. Open the js09b.js file in your code editor. After the initial comment section, add the following code to store the
text of the query string in the qString variable:

// Retrieve the text of the query string

let qString = location.search.slice(1);

console.log(qString);

Figure 9-4 describes the code in the file.

Figure 9-4 Viewing the query string

Returns the text
 after he first query

string character

Reference the text
of the query string

3. Save your changes to the file and then reload the current js09b.html file with its appended query string in your
web browser. If you need to reenter the form data, return to the js09a.html file and resubmit the form with your
contact information.

4. Open your browser debugger and view the contents of the console log to confirm that the text of the query string
has been stored in the qString variable.

With the text of the query string stored in the qString variable, you can begin the process of extracting its data.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security368

replacing UrI encoding Characters
Before data can be placed within a query string it must be encoded. Website addresses cannot contain blank spaces,
so any blanks within a data value must be replaced with the + character. There are other characters not allowed within
a query string. The / and : characters are not allowed because they are used in the URL pathname. Including those
characters within the query string will confuse the browser as it attempts to load the website. Under the Hypertext
Transfer Protocol, a character that cannot be used within a query string is replaced with a URI-encoded character. A
list of some of the reserved characters and their corresponding URI character codes is displayed in Figure 9-5.

To convert a text string from its original form into URI code, apply the encodeURIComponent() method
to the string.Note

Under URI-encoding, a text string like “phone=(802) 555-4781” is replaced by “phone=%28802%29+555-4781”. To decode
the text string back into its original form, apply the following decodeURIComponent() function:

decodeURIComponent(string)

where string is a text string containing URI-encoded characters. The following statement restores data stored as a
query string to its original text:

decodeURIComponent("phone=%28802%29%20555-4781")

// returns "phone=(802) 555-4781"

Use the replace() method to replace every occurrence of the + character in the qString variable with a blank
space and apply the decodeURIComponent() method to the query string text to replace other encoded characters.

To replace encoded characters in the query string text:

1. Return to the js09b.js file in your code editor. Directly after the line that declares the qString variable add the
following statements to modify the contents of that text string:

// Replace the encoded characters in the query string

qString = qString.replace(/\+/g, " ");

qString = decodeURIComponent(qString);

See Figure 9-6.

CharaCter UrI CharaCter Code CharaCter UrI CharaCter Code

space %20 / %2F

! %21 : %3A

%23 ; %3B

$ %24 < %3C

& %26 = %3D

‘ %27 > %3E

(%28 ? %3F

) %29 @ %40

* %2A [%5B

+ %2B] %5D

, %2C ^ %5E

Figure 9-5 URI character codes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sharing DaTa BETWEEn FormS 369

2. Save your changes to the file and reload the js09b.html file in your browser using the form data you have entered.

3. Verify that the debugger console shows the text of the qString variable without the encoded characters. See
Figure 9-7.

Figure 9-6 Replacing characters from a query string

Replace every occurrence
of the + character with a

blank space

Replace every
URI code with its

character equivalent

Figure 9-7 Revised query string text

4. Close your browser’s debugger.

The final task of transferring data from the js09a.html file involves writing the field names and values into the web
form on the js09b.html web page. To create the form elements, the script will split the query string at each location
of the & character, creating an array of name=value pairs. The script will then use a for of loop to iterate through
those pairs, writing a form label for the field name and an input box for the field value. Add the code to create these
form elements now.

To create form elements from the query string:

1. Delete the console.log() statement and add the following command to create the formData array by split-
ting the query string at each occurrence of the & character:

// Split the field=name pairs into separate array items

let formData = qString.split(/&/g);

2. Add the following initial code for the for of loop to iterate through each item in the formData array

for (let items of formData) {

3. Enter the following code to extract the field name and value from each name=value pair and store them in the
fieldname and fieldValue variables:

// Extract the field names and values

let fieldValuePair = items.split(/=/);

let fieldName = fieldValuePair[0];

let fieldValue = fieldValuePair[1];

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security370

4. Enter the following code to create a label element containing the field name and append it to the contactInfo
box from the web page:

// Create a label containing the field name

let fieldLabel = document.createElement("label");

fieldLabel.textContent = fieldName;

document.getElementById("contactInfo").appendChild(fieldLabel);

5. Enter the following code to create an input box containing the field value. Use the fieldname variable as
the input box’s id and name. Disable the input box so that its contents may be viewed but not edited in this
web form.

// Create an disabled input box with the field value

let inputBox = document.createElement("input");

inputBox.id = fieldName;

inputBox.name = fieldName;

inputBox.value = fieldValue;

inputBox.disabled = true;

6. Add the following code to append the input box to the contactInfo element and close the for of
loop.

document.getElementById("contactInfo").appendChild(inputBox);

}

Figure 9-8 describes the complete code to display the field names and values in the web form.

Figure 9-8 Extracting data from a field name/value pair

Split the query string
at each & character

Store the fieldName
value in a form label

Store the fieldValue
value in an input box

Loop through every
item in the formData

array

Store the name in the
fieldName variable
 and the value in the
fieldValue variable

7. Save your changes to the file and reload the js09b.html file in your browser using the form data you have entered.
Verify that the field names and values from the query string appear in the web page. See Figure 9-9.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inTroDucing WEB SToragE 371

Introducing Web Storage
Storing data in a query string works well for multipart forms in which data needs to be accessed only for the current
session and only as the user moves between forms. For applications that involve data that is not part of a sequential
set of forms or needs to be available for future sessions, you need web storage.

the Web Storage apI
The Web Storage API is a JavaScript specification enabling browsers to store data as an associative array within a
file that can be read by the browser. Web storage is easy to use and can store large amounts of textual data (though
currently it cannot store non-textual data) and is supported by all current browsers. However, it is not supported in
older browsers, so you may need to examine other storage options, such as cookies, if you need to support legacy
browsers and operating systems.

There are two types of storage supported in the Web Storage API: local storage and session storage. Both storage
objects map field names and values in into key:value pairs of an associative array. The difference between session
storage objects and local storage objects is based on the data’s scope and how long it is stored.

Local Storage and Session Storage Objects
With a local storage object, the data is permanently stored by the browser and can be accessed at any time. The data can-
not be removed until it is explicitly removed by a web app or by the browser’s built-in tools for managing web storage.

Figure 9-9 Field names and values displayed in a web page

Name and value
 pairs extracted from

the query string

Quick Check 1

1. What is the difference between the post method and the get method?

2. Why do you apply the decodeURIComponent() method to data value enclosed within a query string?

3. What character is used within a query string to separate name=value pairs?

You have completed your work copying data from one web form to another using query strings. Next you will explore
how to store data in a file on your computer.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security372

When data is stored within a session storage object, it is accessible only during the current session. Moreover, the
storage object exists only as long as the browser window or tab in which it was defined is open. Once that browser
tab or window is closed, the session storage object is deleted. If two browser tabs are open to the same website loca-
tion, they create separate session storage objects. With session storage objects, there is no communication between
different locations and from the same location if opened in different browser windows or tabs.

Storing Data in Web Storage
Local storage is referenced with JavaScript’s native localStorage object. Session storage is referenced using the
 sessionStorage object. To store data within either local storage or session storage, apply the following setItem() method:

storage.setItem(key, value)

where storage is either localStorage or sessionStorage, key is the name of the field or property, and value
is the key’s value. For example, the following statement stores the value “Desmond Jennings” into the name key, placing
the key=value pair into local storage to be available whenever that website location is accessed again:

localStorage.setItem("name", "Desmond Jennings");

To temporarily save the name key and value in web storage, replace localStorage in the statement with
sessionStorage.Note

Previously, you reached a point in the js09b.html file where the member preferences were stored within fields on the
page’s web form. You will complete the script for that page by writing that form data into local storage. Membership
data was stored in the following form controls:

❯❯ Input boxes nested within the contactInfo div element containing the member’s contact information

❯❯ Radio buttons containing membership options

❯❯ A textarea box in which members describe their allergies

You will reference these input controls using the querySelectorAll() method and then write the name of each
field and the field’s value to local storage.

To store field values in local storage:

1. Return to the js09b.js file in your code editor.

2. At the bottom of the file add the following statement to create an onclick event handler for the Sign Up button:

// Store data to local storage when the user signs up

document.getElementById("signupBtn").onclick = function() {

}

3. Within the event handler’s anonymous function, add the following statement to define a node list of the data
fields to be saved to local storage:

// data fields to be saved to local storage

let formFields = document.querySelectorAll("#contactInfo input,

input[type=radio], textarea");

4. Within the anonymous function, add the following for of loop to iterate through the node list of fields, writing
the field name and value to local storage:

// write each field name and value to local storage

for (let fields of formFields) {

 localStorage.setItem(fields.name, fields.value);

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SToring DaTa in WEB SToragE 373

5. Directly after the for of loop, insert the following command to display the contents of the local Storage
object in the debugger console:

console.log(localStorage);

Figure 9-10 describes the newly added code.

Figure 9-10 Writing data to local web storage

Select the fields
containing data

to be stored

Place each field and
value in local storage

Write the local storage
contents to the

debugger console

The number of keys saved in web storage is referenced in the length property of the localStorage
or sessionStorage objects.Note

6. Save your changes to the file and then reload js09b.html using the sign-up data you previously entered.

7. Complete the web form by entering a food allergy in the Food allergies box and selecting a Frequency option and
Package size option from the radio buttons.

8. Click the Sign Up button.

9. Open your browser’s debugger and view the console to confirm that the field names and values have been added
to local storage. See Figure 9-11.

Figure 9-11 Contents of local web storage

key:name pairs
within local storage

The order of the items within local storage do not necessarily match the order of items in the web form. As with other
associative arrays, the keys within the localStorage and sessionStorage objects are not enumerable.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security374

Viewing Web Storage Items in your Browser
Your browser provides tools to view and manage web storage contents so you can edit or remove storage objects that
no longer serve a purpose. Explore this feature of the Google Chrome browser now.

To view the web storage contents:

1. With the browser debugger still open, click Application from the menu list at the top of the debugger pane. You
might have to click » to view hidden menu options.

2. Double-click Local Storage from the list of storage options to expand the Local Storage menu.

3. Click file:// to display the list of fields stored in local storage from web pages that originate on your device. See
Figure 9-12.

Figure 9-12 Viewing web storage within the browser

Items in local storage
originating on the

client device

Open to view data
stored with other tools

key:value pairs
in local storage

To view web storage data on Safari, click Show JavaScript Console from the Develop tab menu. Click
Storage from the menu list in the JavaScript Console pane. To view web storage contents in Firefox, click
Web Developer from the Firefox menu, click Application, and then click Storage.

Note

4. Close your browser debugger.

The browser organizes web storage values by origin. Because the Eating Well in Season data is from a web page stored
on the client computer, its origin is file://. Your browser might list other web storage items.

retrieving Items with the getItem() Method
Data stored within local or session storage can be retrieved using the following getItem() method:

storage.getItem(key)

where key is the key whose value is to be retrieved and storage is either localStorage or sessionStorage.
For example, the following statement retrieves the value of the name key from local storage:

localStorage.getItem("name") // returns Desmond Jennings

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SToring DaTa in WEB SToragE 375

Because web storage is saved as an associative array, a stored key value can also be accessed as a property using
either of the following:

storage.key

storage["key"]

The following statement returns the stored value for the name key by accessing the name property of the
local Storage object:

localStorage.name // returns Desmond Jennings

Finally, a key can be referenced with the key() method:

key(index)

where index represents the index number of the key within the storage object. The following statement returns the
ninth key from local storage, which in this example is the name key.

localStorage.key(8) // returns "name"

Use the getItem() method to retrieve the local storage keys for the Eating Well website and display them in a web
page listing your membership preferences.

To retrieve values from local storage:

1. Use your code editor to open the js09c_txt.html and js09c_txt.js, files from js09 c chapter folder of your data
files. Enter your name and the date in the comment section of each file and then save them as js09c.html and
js09c.js, respectively.

2. Return to the js09c.html file in your code editor and add a script element to run the js09c.js file, deferring the
running of the script until after the web page is loaded. Close the file, saving your changes.

3. Go to the js09c.js file in your code editor and add the following code, creating an array of key names:

// Eating Well Preference Keys

let keys = ["name", "email", "phone", "address", "city", "state",

 "zip", "allergies", "frequency", "size"];

4. Add the following for of loop to iterate through each item in the keys array, creating a table row for each entry.

for (let item of keys) {

 let newRow = document.createElement("tr");

}

5. Within the for of loop, add the following code to create and append a table cell containing the name of each
key from the keys array:

// Display the storage key

let keyCell = document.createElement("td");

keyCell.textContent = item;

newRow.appendChild(keyCell);

6. Add the following code to create and append a table cell containing key values:

// Display the key value

let keyValue = document.createElement("td");

keyValue.textContent = localStorage.getItem(item);

newRow.appendChild(keyValue);

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security376

7. Complete the for of loop by appending the new table row to the table element with the id “prefTable”.

// Append each key=name pair as a table row

document.getElementById("prefTable").appendChild(newRow);

Figure 9-13 describes the completed code.

Figure 9-13 Getting values from web storage

Array of keys to retrieve
from local storage

Create a table cell
showing the key name

Create a table cell
showing the key value

Figure 9-14 Web storage values displayed in a web table

Remove preferences

8. Save your changes to the file and then load js09c.html in your web browser. As shown in Figure 9-14, the page
shows the current user preferences read from local storage.

With the keys saved under local storage, anytime you access a page from that website you will be able to access the
keys and their values. However, you might not want to have your browser cluttered with keys which are no longer of
use. If that is the case, you can remove them.

removing Items from Web Storage
Data in session storage is erased when the session ends with the closing of the browser window or tab. Data in local
storage must be manually erased using the browser tools or the following removeItem() method:

storage.removeItem(key)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SToring DaTa in WEB SToragE 377

where key is the name of a web storage key from the current page. To remove all keys from storage in the current page
apply the following clear() method:

storage.clear()

Use the removeItem() method to remove all local storage keys for Eating Well website.

To remove items from local storage:

1. Return to the js09c.js file in your code editor.

2. At the bottom of the file add the following code to loop through the content of the keys array, removing each
key from local storage (see Figure 9-15):

// Remove Eating Well keys when the Remove Preference button is clicked

document.getElementById("removePrefBtn").onclick = function() {

 for (let item of keys) {

 localStorage.removeItem(item);

 }

}

Figure 9-15 Removing items from local storage

Remove the item
from local storage

3. Close the file, saving your changes.

4. Reload the js09c.html file in your browser and click the Remove Preferences button.

5. Reload the page and verify that values for the name through size fields no longer appear in the web table
 indicating that those keys have been removed from local storage.

If you need to add the Eating Well preferences back to local storage you will have to complete the data entry forms in
the js09a.html and js09b.html files.

exploring Storage events
Saving data to web storage triggers a storage event within the active browser window or tab. If two pages are open
to the same location and one of the pages stores data to local or session storage, the other page will be notified via
the storage event. The event handler to respond to that event is:

window.onstorage = function(event) {

 commands

}
where event is the event object representing the storage event and commands are commands run in response
to a change in the values saved to web storage. The event object supports the properties described in
Figure 9-16.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security378

For example, the following code writes text to the debugger console indicating which storage key was changed and
how it was changed from its previous value to its current value:

window.onstorage = function(e) {

 console.log("The " + e.key + " value was

 changed from " + e.oldValue + " to " + e.newValue);

}

Web apps with data spread across several browser windows or tabs can broadcast changes made to web storage in
one page to all other pages. For example, an online game might be spread across several browser tabs with one tab
displaying the game interface and another tab containing game statistics that are constantly updated during game play.

You can also respond to changes in local or system storage using an event listener for the storage event.Note

If the same-origin policy did not exist, then a web page in one browser window or tab could alter pages
displayed in other browser windows or tabs. A malicious program could insert advertising, or simply redirect
the browser to a new website. The security of private networks and intranets would be at risk without the same-
origin policy as content on the private network would be accessible to any other website opened by the user.

Note

Web Storage and the Same-Origin policy
Web storage ensures data integrity by adhering to the same-origin policy, which is a set of security standards restrict-
ing the transfer of data between web pages of different origins. Two web pages have the same origin if the protocol,
port, and host are the same for both documents. The following website addresses point to different origins because
they do not share the same protocol, port, and host:

http://www.example.com

http://store.example.com // different hostname

http://www.example.com:8080 // different port number

https://www.example.com // different protocol

Data stored in one origin is not accessible to websites from other origins. The same-origin policy does not include
the origin’s path, which is a storage folder on the web server. Addresses that differ only in their paths are part of the
same origin and thus do not violate the same-origin policy. The following addresses are part of the same origin and
thus could share data:

http://www.example.com/members/login.html

http://www.example.com/store/order.html

http://www.example.com/cart/purchase.html

The same-origin policy applies only to the content of scripts and APIs such as the Web Storage API. Other resources
such as images and CSS style sheets are not affected.

ProPerty desCrIPtIon

key Returns the name of the key that was changed

newValue Returns the value of the changed key

oldValue Returns the original value of the changed key

storageArea Returns the storage object (localStorage or sessionStorage) that was changed

url Returns the URL of the document whose key was changed

Figure 9-16 Properties of the storage event object

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inTroDucing cookiES 379

Introducing Cookies
Prior to the Web Storage API, cookies were the only way to save web session data. A cookie is a small piece of informa-
tion, stored as a text string, exchanged via an HTTP request between the web server and the client device. Figure 9-17
illustrates the process by which session data is exchanged using cookies.

Quick Check 2

1. What is the same-origin policy?

2. What are two types of web storage objects?

3. Provide code to create a session storage object named orderQty that stores a value of 5.

4. Provide code to retrieve the value of the orderQty key from session storage.

5. Provide code to delete the orderQty key from session storage.

Cookies adhere to the same-origin policy so that data cannot be exchanged using cookies from different origins.

Cookies vs. Web Storage
Web storage and cookies should be considered complementary approaches. While it is easier to save and retrieve data
from web storage, cookies are better integrated with scripts running on the web server. Figure 9-18 lists some of the
important differences between cookies and web storage.

You have completed your work on the Eating Well website. In the next sections you will explore other techniques for
storing data that persists within a single session or across sessions.

Figure 9-17 Cookies and web servers

4. The server uses the
cookie to retrieve
information speci�c to
that client device.

1. Client device
accesses a website
stored on a web server
for the �rst time.

2. The web server
sends information
stored in a cookie
to the client device.

3. When the client
device returns to the
website, it sends
information from
the stored cookie
back to the server.

La
p

to
p

: c
ob

al
t8

8/
Sh

ut
te

rs
to

ck
.c

om
; G

lo
b

e/
Sc

re
en

: N
.D

. F
er

na
nd

ez
/S

hu
tt

er
st

oc
k.

co
m

;

C
oo

ki
es

: S
er

g
io

33
/S

hu
tt

er
st

oc
k.

co
m

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security380

the Structure of a Cookie
In its simplest form, a cookie is just a text string containing a name=value pair. The following text string defines a
cookie storing the value “Burlington” in the city field:

city=Burlington

Cookies are stored in a protected file on your computer. The Google Chrome browser stores cookies in the Cookie file
located in the folder C:\Users\Your User Name\AppData\Local\Google\Chrome\User Data\Default, where Your User Name
is the name of your Windows 10 account. Other browsers and operating systems use different file names and locations.
You can view the contents of your browser cookies using the same tools used for web storage objects. Figure 9-19 shows
the contents of the Eating Well in Season website if the site’s data were stored using cookies rather than web storage.

In general, browsers provide storage for:

❯❯ 20 cookies per website domain

❯❯ 300 cookies from all websites

❯❯ 4 kilobytes of space for each cookie

In practice, browsers are more generous in what they allow. Chrome, for example, supports up to 180 cookies per
website domain while Safari allows 600 cookies. Most browsers support at least 50. If the limit per domain is exceeded,
the oldest cookie is automatically deleted by the browser. If a cookie exceeds the 4K limit, it will be ignored by the
browser and not saved.

Because cookies are exchanged between the client device and the web server via HTTP, the web page
must be stored on a server for development and testing. There are several free web servers, such as
Apache and Nginx, that you can download and install on your computer for that purpose.

Note

Avoid overloading your server and clients with cookies. A long list of cookies will slow down the
connection between the server and the client device, impairing performance.Note

Websites support two types of cookies: session cookies, which exist only for the current browser session, and persistent
cookies, which are available beyond the current session. A session cookie might be used within an online store to allow
customers to save their selected items in a shopping cart while continuing to shop. A persistent cookie might be used
to help those customers retrieve their purchase history or access delivery information on previously purchased items.

CookIes Web storage

An old standard introduced in 1995, supported by legacy browsers and apps A newer standard introduced in 2012 and supported by almost all browsers

Stored on the client device and transferred to the web server as part of an
HTTP header

Stored on the client device but not transferable to the web server

Requires access to a web server for testing and development Does not require a web server for testing and development

Each domain can store a maximum of 20 cookies and the largest cookie size is
generally limited to 4KB

Each domain can save 5 MB in web storage with no practical limit on the
number of stored keys

Can be set to expire automatically without user or browser intervention Unless session storage is used, items must be removed manually either through
a JavaScript command or via the browser interface

Data must be parsed from a text string using JavaScript string methods Data can be read directly using the Web Storage API

Data can be accessed directly on both the server side and the client side Data can be accessed directly only on the client side

Figure 9-18 Comparing cookies and web storage

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WriTing DaTa inTo a cookiE 381

Writing Data into a Cookie
A cookie is created by writing the cookie text into the following document.cookie object:

document.cookie = string;

where string defines the cookie for a particular field. The following code creates three cookies, storing data for the
city, state, and zip fields:

document.cookie = "city=Burlington";

document.cookie = "state=VT";

document.cookie = "zip=05401";

A single cookie can contain multiple name=value pairs. For example, the following cookie contains values for all
three fields separated by the & symbol:

document.cookie = "city=Burlington&state=VT&zip=05401";

Combining fields within a single cookie is a way of getting around limits placed on the total number of cook-
ies per website. If that is not an issue, it is usually easier to place only a single name=value pair within the
document.cookie object.

As with query strings, the text of the name=value pair cannot contain spaces, semicolons, commas, or other non-
alphanumeric characters. To store a value containing those characters, apply the encodeURIComponent() method
to the data value prior to writing the cookie as in the following code that writes the text “Desmond Jennings” into a
cookie:

let username = "Desmond Jennings";

let nameCode = encodeURIComponent(username);

document.cookie = "name=" + nameCode;

The cookie stores the text string name=Desmond%20Jennings with the %20 code, replacing the blank space within
the user’s name.

Figure 9-19 Cookies listed in the Application window of the Chrome Developer pane

Cookie name Cookie value Cookie’s domain
and path

Date and time when
the cookie expires Cookie size in bytes

Cookies stored in the
http://localhost domain

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security382

Setting the Cookie expiration Date
Every cookie is created as a session cookie, automatically deleted by the browser at the conclusion of the current
session. The cookie’s life can be extended past the current session by adding the expires=date attribute to the
cookie text string, where date is the date and time past which the cookie will be deleted. Expiration dates are written
in following GMT/UTC format:

;expires=wday, dd-mmm-yyyy hh:mm:ss GMT

where wday is the three-letter abbreviation of the day of the week, mmm is the three-letter abbreviation of the month,
hh is the 24-hour time, mm is the minute value, and ss is the second value. For example, the following code set the
expiration of the city cookie to midnight on April 18, 2024:

document.cookie = "city=Burlington;expires=Thu, 18 Apr 2024 00:00:00

GMT";

Rather than typing the complete date string, you can apply the toGMTString() or toUTCString() methods to a
Date object as in the following code, which adds an expiration date of June 1, 2024 to the cookie:

let username = "Desmond Jennings";

let nameCode = encodeURIComponent(username);

let expire = new Date("June 1, 2024");

let expireCode = expire.toUTCString();

document.cookie = "name=" + nameCode + ";expires=" + expireCode;

Do not encode the expires attribute using the encodeURIComponent() method. JavaScript will not
recognize a UTC date when it is encoded.Note

There is no attribute to make a cookie permanent. To make a cookie practically permanent, set the
expires date or the max-age value far into the future.Note

Expiration dates can also be set relative to the current date. For example, to set a cookie to expire in six months, add
6 to the current month by using the setMonth() and getMonth() methods:

let expire = new Date();

let expire = setMonth(expire.getMonth() + 6);

Cookies also support the following max-age attribute to set an expiration date relative to the date and time on which
the cookie was created:

;max-age=seconds;

where seconds is the number of seconds before the cookie will expire. The following code sets the cookie to expire
365 days after its creation:

let username = "Desmond Jennings";

let nameCode = encodeURIComponent(username);

let maxAge = 60*60*24*365;

document.cookie = "name=" + nameCode + ";max-age=" + maxAge;

A cookie is not deleted until the browser accesses it past its expiration date. At that point, the cookie will be removed
from the browser and the server.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WriTing DaTa inTo a cookiE 383

Setting the Cookie path
Just as web storage items are associated with specific locations, so too are cookies associated with specific website
domains and folders within those domains. By default, a cookie is associated with the same website and folder of the web
page in which it was defined as well as any subfolders of that folder. A cookie created for the www.example.com/orders/
order.html web page will be accessible to the web page www.example.com/orders/cart.html but not to www.example.com/
members/myaccount.html because that page lies on a completely different path even if it is on the same server.

With some applications you might want to specify the path so that all cookies are associated with the same folder regard-
less of the page’s location on the server. To define the cookie path, add the following path attribute to the cookie text:

;path=directory

where directory is the directory path on the web server where the cookie is stored and read. The following code
defines the cookie for the city field, placing it within the members folder of the website:

document.cookie = "city=Burlington;path=/members";

Any page stored within the members folder or a subfolder will be able to access this cookie. To make all cookies acces-
sible regardless of their folder location, set the path attribute to the root folder as in the following statement that
makes the city field available to any page within any folder on the website:

document.cookie = "city=Burlington;path=/";

Using the root folder has the disadvantage that all cookies within a website must have unique names. A cookie named
title cannot be used to describe a product in one web page and store an employee title in another page. For this
reason, it is considered best practice to confine cookies to those folders and subfolders on the web server where they
are needed, freeing the cookie name for use elsewhere on the website.

Setting the Cookie Domain
Cookies are also restricted to a particular web domain. A cookie created for www.example.com is not accessible to any
page from any other domain. A cookie created for a page at www.example.com cannot be read from www.microsoft.
com or another other domain. This security feature prevents other domains from “snooping” on cookies that do not
belong to them.

However, many sites use multiple domains and subdomains. The Eating Well website might employ domains such
as www.example.com, news.example.com, and members.example.com. Although these separate domain names help
organize the website contents, cookies created under one domain are not accessible to pages in the other domains.
To avoid this problem, specify the cookie’s domain by adding the following domain attribute to the cookie string:

;domain=domain-name

where domain-name is the name of the domain on the sever in which the cookie resides. The cookie will then be
available to any page within domain-name or any of its subdomains. The following statement makes the city cookie
available to all domains on the example.com website:

document.cookie = "city=Burlington;domain=example.com";

Under the same-origin policy you cannot set the domain of a cookie to a domain other than a domain found on your
web server.

Defining Cookie Security
The final attribute that can be added to a cookie is the secure attribute, specifying whether the cookie must be
exchanged over a secure HTTPS connection as opposed to a less secure HTTP connection. The following statement
makes the city cookie secure, requiring the web server and the client device to communicate over HTTPS:

document.cookie = "city=Burlington;secure";

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security384

Because cookies are stored unencrypted on the client device’s hard drive, where they could be read by malicious
programs, sensitive information should never be stored in a cookie. Adding the secure attribute to all cookies is an
important part of an comprehensive plan for site security.

a Function to Write the Cookie Value
Putting all these attributes together can result in a long and complex cookie string. The following statement defines
the address cookie, setting the cookie to expire on Thursday April 18, 2024 at midnight, confining the cookie to the
members folder on the example.com domain, and restricting transmission of the cookie to a secure HTTPS connection:

document.cookie = "city=Burlington;expires=Thu, 18 2024 00:00:00

GMT;path=/members;domain=example.com;secure;

Many apps employing cookies include a customized function to write the cookie value without the need for typing a
long and complicated text string. Figure 9-20 shows an example of a function to construct a cookie based on values
supplied for the cookie’s name, value, expiration date, path, domain, and secure attributes.

Websites and applications that require users to log into a server commonly can keep a user logged in for weeks
or months at a time without compromising the security of the user’s login information. Such sites often display a
checkbox with the label “Remember me” or “Keep me logged in” as part of the login form and enable you to
continue to access customized content in the future without repeatedly providing your login information. Because
cookies store data in plain text, they can be read from a user’s drive by malicious applications; for this reason,
sensitive information such as passwords should never be stored in cookies.

In a system that supports persistent logins, when a user logs into the system, the web server provides the browser
a string of random characters known as a token. The token is stored in a cookie, which the web server uses to verify
the user’s identity the next time the user requests access. Because the token is a random string, malicious programs
cannot anticipate its value to log into a user’s account from another location. A web server stores the token value
and compares it to the username to verify the user’s identity. At that time, the server generates a new token, which
is stored in a cookie on the user’s machine.

Best Practices Providing Persistent Logins

Figure 9-20 Function to write a cookie

Store the cookie string
as a document cookie

If other attributes are
provided, add them
to the cookie string

Add the name and
encoded value to
the cookie string

Verify that a cookie
name and value have

been provided

The following statements apply this function to create a cookie for the age field, setting its expiration date to May 15,
2024 at midnight and placing the cookie in the members folder:

let expDate = new Date("May 15, 2024");

writeCookie("age", 18, expDate, "/members");

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

rEaDing a cookiE 385

Once a cookie has been created its value can only be changed by writing the cookie again with a new value but under
the same name, path, and domain. The revised cookie will overwrite the original cookie within both the browser and
the web server.

Cookies are transferred automatically between the browser and the server via the HTTP or HTTPS protocols.
Once you have defined a cookie, you only need to open the page on the web server to enable it.Note

Reading a Cookie
All name=value pairs that have been previously saved as cookies for the current web page can be retrieved using the
document.cookie object. If the name=value pairs for the Eating Well in Season website had been saved as cookies,
the value of the document.cookie object would be:

name=Desmond%20Jennings; email=djennings%40example.com;

phone=(802)%20555-4781; address=43%20Maple%20Hill%20Drive;

city=Burlington; state=VT; zip=05041; allergies=none;

frequency=Monthly; size=Full%20plate

Each name=value pair is separated from the others with a semicolon and a blank space. The document.cookie value
does not contain any information about the cookie’s expires, max-age, domain, path, or secure attributes. Those
attributes are treated as commands to be run by the browser and web server and are not directly accessible to JavaScript.

To extract the field names and values from document.cookie, apply the same approach used to access name=value
pairs from a query string:

1. Apply the split() method to document.cookie, creating an array of name=value pairs for each stored cookie.

2. Loop through the array, saving each name=value pair as a separate item.

3. Extract the cookie name and cookie value from those pairs.

4. Apply the decodeURIComponent() method to the cookie value, replacing URI codes with their character equivalents.

You can organize your cookie values by placing them within a custom object so that each cookie name appears as
a property of that object and the cookie value appears as a property value. Figure 9-21 displays the code in the
readCookie() function, which returns an object containing the names of each cookie as a separate object property.

Figure 9-21 Function to read a cookie

Create an object literal
to store the cookie values

Split the cookie at each
occurrence of a semicolon
followed by a blank space,

creating an array of
name=value pairs

Split each name=value pair,
storing the cookie name and

the decoded cookie value

Add the name=value pair as
 a property of the object literal

Test for the presence of
cookies associated with the

web page

Return the object literal
after the loop is finished

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security386

To apply this function to the cookies created for a website like Eating Well in Season, you can use the following code,
which retrieves each cookie value as a property of the myPreferences object:

let myPreferences = readCookie();

myPreferences.name // returns "Desmond Jennings"

myPreferences.email // returns "djennings@example.com"

myPreferences.phone // returns "(802) 555-4781"

…

Functions like writeCookie() and readCookie()can make it easier to read and write cookies in your website
application.

Deleting a Cookie
A session cookie is automatically deleted whenever a browser window or tab associated with that cookie is closed.
Persistent cookies remain until they expire. To force the deletion of a persistent cookie, change the expires date to
a past date or change the value of the max-age attribute to zero. The following statement deletes the city cookie
from the members folder by setting its age to zero seconds:

document.cookie = "city=;max-age=0;path=/members";

If the cookie was created with defined values for the path and domain attributes, those attributes need to be included
in any statement removing the cookie. Some browsers will not delete a cookie if you do not include the path attribute.

Cookies can also be deleted manually within your browser by:

1. Opening the Application or Storage window within your browser’s developer tools (shown in Figure 9-19 for the
Google Chrome browser).

2. Selecting Cookies from the list of storage options.

3. Selecting the origin of the cookies you wish to delete.

4. Selecting the cookies to be removed and pressing the Delete key on your keyboard.

Once the cookie is removed from your browser it will be automatically deleted on the web server as well.

Quick Check 3

1. What are the two types of cookies?

2. Provide a statement to store the text string "Jolene Jones" in the username cookie.

3. What attribute do you add to a cookie to set the cookie’s lifetime to one week?

4. at what substring should you split the value of document.cookie object to retrieve individual name=value pairs?

5. How do you delete a cookie with JavaScript?

Exploring Security Issues
Viruses, worms, data theft by hackers, and other types of security threats are now a fact of life when it comes to web-
based applications. If you put an application into a production environment without considering security issues, you
are asking for trouble. To combat security violations, you need to consider both web server security issues and secure
coding issues. Web server security involves technologies such as firewalls, which combine software and hardware to
prevent access to private networks connected to the Internet. One very important technology is the Secure Sockets
Layer (SSL) protocol, which encrypts data and transfers it across a secure connection. This type of security technology

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Exploring SEcuriTy iSSuES 387

works well in the realm of the Internet. However, JavaScript programs are downloaded and executed locally within the
web browser of a client computer and are not governed by security technologies such as firewalls and SSL.

This section discusses security issues that relate to web browsers and JavaScript.

Although web server security issues are critical, they are properly covered in books on Apache, Nginx,
Internet Information Services, and other types of web servers. Be sure to research security issues for your
web server and operating system before putting your website online.

Note

Secure Coding with JavaScript
The terms secure coding and defensive coding refer to writing code in a way that minimizes any intentional or acci-
dental security issues. Secure coding has become a major goal for many information technology companies, primarily
because of the exorbitant cost of fixing security flaws in commercial software. According to one study, it is 100 times
more expensive to fix security flaws in released software than it is to apply secure coding techniques during the devel-
opment phase. The National Institute of Standards & Technology estimates that tens of billions of dollars per year is
spent identifying and correcting software errors.

Basically, all code is insecure unless proven otherwise. Unfortunately, there is no magic formula for writing secure
code, although there are various techniques that you can use to minimize security threats in your scripts. Your first
line of defense in securing your JavaScript programs is to validate all user input. You have studied various techniques
in this book for validating user input, including how to validate data with regular expressions and how to use excep-
tions to handle errors as they occur in your scripts. Be sure to use these techniques in your scripts, especially scripts
that run on commercial websites. The remainder of this section discusses security issues that relate to web browsers
and JavaScript.

JavaScript Security Concerns
The web was originally designed to be read-only, which is to say its primary purpose was to locate and display docu-
ments that existed on other areas of the web. With the development of programming languages such as JavaScript,
web pages can now contain programs in addition to static content. This ability to execute programs within a web page
raises several security concerns. The security areas of most concern to JavaScript programmers are:

❯❯ Protection of a web page and JavaScript program against malicious tampering

❯❯ Privacy of individual client information

❯❯ Protection of the local file system of the client or website from theft or tampering.

JavaScript code that is not written securely is vulnerable to a code injection attack, in which a program or user enters
code that changes the function of the web page. For instance, a malicious program could open a web page containing
a form and enter JavaScript code in one of the form fields designed to retrieve sensitive information from the server.
Such a program could then relay this information to a person other than the owner.

Validating forms before submission is an important part of preventing injection attacks. In addition, it is important to
escape characters in form field values that could be part of malicious code, which involves converting the characters
to their character code equivalents, as you do when URI-encoding cookie data. For form input, escaping is generally
performed by the web server before processing user input.

Another security concern is the privacy of individual client information in the web browser window. Your contact infor-
mation and browsing history are valuable pieces of information that many advertisers would like to access to tailor
their advertising based on your personal tastes. Without security restrictions, a JavaScript program could read this
information from your web browser. One of the most important JavaScript security features is its lack of certain types
of functionality. For example, many programming languages include objects and methods that make it possible for a

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security388

program to read, write, and delete files. To prevent mischievous scripts from stealing information or causing damage
by changing or deleting files, JavaScript does not allow any file manipulation aside from cookies, web storage, and a
few other emerging standards, which are site specific. Similarly, JavaScript does not include any sort of mechanism for
initiating a network connection, preventing JavaScript programs from infiltrating a private network or intranet from
which information may be stolen or damaged. Another helpful limitation is the fact that JavaScript cannot run system
commands or execute programs on a client. The ability to read and write cookies is the only type of access to a client
JavaScript allows, and browsers strictly govern cookies and do not allow access to cookies from outside the domain
that created them through the same-origin policy.

Storing Sensitive Information in Cookies
Cookies are stored on a user’s computer as plain text files. If a user’s computer is infected
with malware, any data, including the contents of cookies, is vulnerable to being stolen and
used fraudulently by a third party. For this reason, your programs should never place sensitive
information, such as a password or credit card information, in a cookie. All modern browsers
offer secure storage of logins and other personal information, which users can choose to
enable; note that this information is not stored in cookies, but instead it is stored using a
separate browser-specific mechanism. For more information on the hazards of storing sensitive
information in cookies, use a search engine to search on “storing passwords in cookies.”

Common
Mistakes

When you access the web at home, school, or work, there are a couple steps you can take to keep your personal
information secure. When your browser asks if you would like to save your login information, or a website you are
visiting offers to remember you for next time, you should say yes only if you are using a computer whose users you
trust, such as a computer owned by you or a friend or family member. You should never allow a browser or website
to save any information you enter when using a public or shared computer, as the information can be accessed by
anyone else using the computer.

When connected to a public wireless network—like at a café or at your school—you should transmit sensitive data
only when you are connected to a server using an encrypted connection (using the HTTPS protocol). For instance, if
you are using a wireless network at a café and you want to log into a website, ensure that your login will be handled
with HTTPS. Taking these steps can help ensure the security of your personal information when you use the web.

Skills at Work Using the Web Securely

Using third-party Scripts
Although the same-origin policy is an important part of web browser security, in some cases you want scripts from
other domains, known as third-party scripts, to be able to run on your web pages. For instance, some companies
provide widgets, which are programs that you can add to your web pages but that run from the provider’s web server,
rather than from your own. Another common situation requiring third-party scripts is the use of a content delivery
network (CDN), which is a company that maintains web servers optimized for fast delivery of content. CDNs are
commonly used by large organizations, and generally provide content from their own domain rather than from the
client’s domain.

To enable a third-party script in a web document, include a script element with a src value pointing to the third-
party content. The same-origin policy limits scripts to those referenced by HTML documents from the original web
server; this enables web pages to use third-party scripts.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

kEy TErmS 389

Summary
❯❯ Websites can be either stateless so that information is not maintained between one session and the next or they
can be designed to store information from previous sessions for the needs and convenience of the user.

❯❯ Information from a web form can be appended to the URL of a web page as a query string by adding the get
method to the form element in the HTML file.

❯❯ Data in a query string is encoded using URI codes and placed within name=value pairs which are separated with
the & symbol. Extract data from a query string using JavaScript’s string methods and decode the data values using
the decodeURIComponent() method.

❯❯ Data can be stored on the client device between sessions using the Web Storage API, which places data
temporarily in session storage or permanently in local storage referenced with the sessionStorage and
localStorage objects.

❯❯ Each web storage item is entered as a text string the form of a name=value pair.

❯❯ To place data in web storage, use the setItem() method. To retrieve item from web storage use the getItem()
method. To delete a web storage item, use the removeItem() method.

❯❯ Data can be stored on the web server and client device between sessions using cookies, which are text strings
containing name=value pairs. Cookies are either session cookies, which are automatically deleted at the end of
each session, or persistent cookies, which expire at a specified date and time.

❯❯ To store data in a cookie, write the cookie text string to the document.cookie object.

❯❯ The expiration date for a cookie can be set using the expires or max-age attribute. The cookie’s domain and
path can be set using the domain and path attributes. The cookie can be set to be transmitted over a secure
HTTPS connection by adding the secure attribute to the cookie text.

❯❯ Data can be retrieved from stored cookies by splitting the cookie string at each occurrence of the "; " substring.

❯❯ JavaScript includes safeguards such as the same-origin policy to guard against security breaches. However, it
is still important to write code with an eye toward security and to avoid other potential problems such as code
injection attacks.

Quick Check 4

1. What is secure coding or defensive coding?

2. What is a code injection attack?

3. What are third-party scripts?

Key Terms
code injection attack

content delivery network (CDN)

cookie

encoding

escape

get method

HTTP request

Hypertext Transfer Protocol
(HTTP)

local storage object

man-in-the-middle attack

origin

path

persistent cookie

post method

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security390

query string

same-origin policy

secure (or defensive) coding

Secure Sockets Layer (SSL)

session

session cookie

session storage object

state information

stateless

third-party scripts

token

Transport Layer Security
(TLS)

URI-encoded character

Web Storage API

Review Questions
1. HTTP was originally designed to be

_________________, which means that web browsers
store no persistent data about a visit to a website.
a. hidden
b. encrypted
c. stateless
d. stateful

2. What attribute should be added to the <form>
element to submit the form data appended to a
query string?
a. post
b. get
c. action
d. src

3. What method should be applied to decode data
values within a query string?
a. decode()
b. parse()
c. decodeString()
d. decodeURIComponent()

4. What method should be applied to a query string
to extract the name=value pairs from the string
text?
a. query_string.split(/&/g)
b. query_string.extract(/&/g)
c. query_string.substring(/&/g)
d. query_string.subst(/&/g)

5. Which of the following addresses has the same
origin as http://www.example.com?
a. https://www.example.com
b. http://www.example.com/members
c. http://members.example.com
d. http://example.com:8080

6. What is the object reference to a web storage
object that is retained after the current session
concludes?
a. localStorage
b. sessionStorage
c. webStorage
d. permanentStorage

7. Provide code to store the username key with
value "user301x" in session storage.
a. sessionStorage =

"username=user301x"
b. sessionStorage[username] =

"user301x"
c. sessionStorage.setItem(username,

user301x)
d. sessionStorage.setItem("username",

"user301x")

8. To extract a key based on its index within the
storage object, which method should you use?
a. extract()
b. split()
c. key()
d. storage()

9. To remove all keys from web storage for the current
origin, which method should you apply?
a. removeItem()
b. removeItems()
c. clear()
d. clearAll()

10. Which of the following is not a difference between
web storage and cookies?
a. Cookies can be stored permanently; web storage

items have an expiration date.
b. Cookies are the older standard used with legacy

browsers; web storage represents a newer standard.
c. Cookies require a web server for development and

testing; web storage does not.
d. Cookie values must be parsed using JavaScript’s

String methods; web storage values can be read
directly.

11. Provide code to save the text string "user301x" in
the username cookie.
a. cookie.username = "user301x"
b. document.cookie =

"username=user301x"
c. cookie["username"] = "user301x"
d. username.cookie = "user301x"

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hanDS-on projEcTS 391

Hands-On Projects
Hands-On Project 9-1

In this project you will work on a web page in which customers attach greeting messages to gifts purchased
for friends and family. The contents of the greeting message will be entered on one web page form and then
displayed as part of a shopping cart on a separate page. Data will be transferred from one page to the next
by appending data to a query string. A preview of the shopping cart page with a sample gift card message is
shown in Figure 9-22.

12. Which attribute should be added to the cookie text
string to set the date on which a cookie should be
removed?
a. max-age
b. deleteBy
c. removeBy
d. expires

13. What attribute should be added to a cookie string
to specify the folder in which the cookie should be
stored on the server?
a. folder
b. directory
c. dir
d. path

14. What attribute should be added to a cookie string
to transfer the cookie over HTTPS?
a. https
b. secure
c. secure=high
d. safety

15. To separate the value of document.cookie into
individual name=value pairs, split the text at
every occurrence of what substring?
a. ";"
b. "&"
c. " & "
d. "; "

16. When would you use query strings to store user
data?

17. How does the same-origin policy keep web data
safe and secure?

18. What is the difference between session storage and
local storage?

19. Why should a password never be stored in a
cookie?

20. Explain what a code injection attack is, and one
step you can take to prevent such attacks.

Figure 9-22 Completed Project 9-1

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security392

Do the following:

1. Use your code editor to open the project09-01a_txt.html, project09-01b_txt.html, and project09-01b_txt.js
files from the js09 c project01 folder. Enter your name and the date in the comment section of each file
and save them as project09-01a.html, project09-01b.html, and project09-01b.js, respectively.

2. Go to the project09-01a.html file in your code editor. Edit the form element so that submitting the form opens
the project09-01b.html file using the get method. Close the file, saving your changes.

3. Go to the project09-01b.html file in your code editor and add a script element linked to the project09-01b.js
file. Defer the loading of the script until the page finishes loading. Take some time to study the contents of the
HTML file and then close the file, saving your changes.

4. Go to the project09-01b.js file in your code editor. Apply the slice() method to the location.search
object, storing the text after the first character in the query variable.

5. Use the replace() method to replace very occurrence of the + character in the query variable with a blank
space. Apply the decodeURIComponent() method to replace every URI-encoded character in query with the
matching character.

6. Appy the split() method to the query string to split the text at every occurrence of the & character, placing
each name=value pair as a separate item in the cardFields array.

7. Create a for of loop that loops through every item in the cardFields array. At each iteration of the loop do
the following:

a. Split each item at the location of the = character, store the substrings in the nameValue array variable.

b. Store the first item in the nameValue array in the name variable. Store the second item in the nameValue
array in the value variable.

c. Store the value of the value variable as the text content of the document element with an id equal to the
name variable.

8. Save your changes to the file and then load project09-01a.html in your web browser. Enter sample greeting
text in the field of the web form and then click the Submit button. Verify that the browser opens the
project09-01b.html file with the text of the greeting message displayed in the page.

Hands-On Project 9-2

In this project you will use web storage to store information from a membership form of a cycling group. The
membership information will be extracted from the form and saved to session storage. You will then confirm
that the data has been saved and retrieve the data, displaying it within a second web page. Figure 9-23 shows
a preview of membership data retrieved from session storage and presented within a web table.

Do the following:

1. Use your code editor to open the project09-02a_txt.html, project09-02a_txt.js, project09-02b_txt.html, and
project09-02b_txt.js files from the js09 c project02 folder. Enter your name and the date in the comment
section of each file and save them as project09-02a.html, project09-02a.js, project09-02b.html, and
project09-02b.js, respectively.

2. Go to the project09-02a.html file in your code editor and add a script element linked to the project09-02a.js
file. Defer the loading of the script until the page finishes loading. Study the contents of the file and then close it,
saving your changes.

3. Go to the project09-02a.js file in your code editor. At the bottom of the file insert an onclick button that runs
the showData() function when the Submit button is clicked.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hanDS-on projEcTS 393

4. Add the showData() function and within the function insert the following commands:

a. Insert a command to the store the value of the riderName object in a session storage object named
riderName.

b. Repeat the previous step for the ageGroup, bikeOption, routeOption, accOption, region, miles,
and comments objects.

c. Add a command that changes the value of the location.href object to the project09-02b.html file.

5. Close the file, saving your changes.

6. Go to the project09-02b.html file in your code editor and add a script element linked to the project09-02b.js
file. As before, defer the loading of the script until the page loads. Review the contents of the file and then close
it, saving your changes.

7. Go to the project09-02b.js file in your code editor. At the bottom of the file insert a command to retrieve the
value of the riderName key from session storage and store that value in the text content of the riderName
object in the web page.

8. Repeat Step 7 for the ageGroup, bikeOption, routeOption, accOption, region, miles, and comments
keys.

9. Save your changes to the file and then load project09-02a.html in your web browser. Enter sample membership
data in the web form and then click the Submit button. Verify that the project09-02b.html opens and that the
membership information you entered is displayed in the web table.

Hands-On Project 9-3

In this project you will use web storage on a blogging site that posts news commentary and articles from
the world of sports. The website will record the date and time of your last visit in a local storage item. Links

Figure 9-23 Completed Project 9-2

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security394

to articles that have been posted to the website after that date and time will be marked with the text string
“New”. Articles that were already posted during your last visit will not be marked. The website will also store
the date and time of the user’s last visit in a local storage object with the key named “sbloggerVisit”. A preview
of the completed page is shown Figure 9-24.

Figure 9-24 Completed Project 9-3

Do the following:

1. Use your code editor to open the project09-03_txt.html and project09-03_txt.js files from the js09 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project09-03.html and project09-03.js, respectively.

2. Go to the project09-03.html file in your code editor and add a script element linked to the project09-03.js file.
Defer the loading of the script until the page finishes loading. Take some time to study the contents of the HTML
file. Note the date of the user’s last visit will be displayed in a span element with the id “lastVisitDate” and the
date of each posted article is stored in a span element belonging to the “posttime” class. Save your changes to
the file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hanDS-on projEcTS 395

3. Go to the project09-03.js file in your code editor. Create an if statement that tests whether the object
localStorage.sbloggerVisit exists. If it does exist, add the commands described in Steps 4 through 7.

4. Retrieve the value of the sbloggerVisit key from local storage and save the key value to the
storedLastDate variable.

5. Display the value of storedLastDate as the text content of the lastVisitDate object to show the date of
the user’s last visit to the website.

6. Declare the lastDate variable, storing within it a Date object using the value of the storedLastDate
variable.

7. Create a for of loop that iterates through each item in the articleDates collection. Each time through the
loop do the following for every posted article on the website:

a. Declare the articleDate variable storing within it a Date object containing the date text of the current
item in the loop.

b. If articleDate is greater than lastDate (meaning that the article was posted after the user’s last visit)
then add "new" to the HTML content of the current item in the articleDates
collection.

8. If localStorage.sbloggerVisit does not exist (meaning this is the user’s first visit to the website), then
do the following:

a. Change the text content of the lastVisitDate object to “Welcome to SBlogger!”

b. Create a for of loop that iterates through each item in the articleDates collection. Each time through
the loop add "new</strong" to the HTML content of the current date item.

9. After the if else statement, run the following code to update the stored date value in the sbloggerVisit
key:

a. Declare the currentDate variable and store within it a Date object containing the date “9/12/2024”. (Note
that this is just a test date you will use to verify that the application is working properly.)

b. Apply the toLocaleDateString() method to currentDate and store the date string in
sbloggerVisit key of local storage.

10. Save your changes to the file and then load the project09-03.html file in your web browser. Verify the
following:

a. The first time the page loads, the Date of Last Visit box should display the message “Welcome to SBlogger!”
and all three articles should be marked as “New” because this is your first visit to the website.

b. The second time you reload the page, the Date of Last Visit box should display the date “9/12/2024” and only
the first article should be marked as “New”.

11. If you need to reset the website to correct your errors, delete the sbloggerVisit key from the saved items in
local storage using the Developer Tools in your web browser. When you have completed the project, delete the
sbloggerVisit key from local storage so that it is not saved permanently within your browser.

Hands-On Project 9-4

In this project you will work with cookies that stores the fastest time to complete a sliding block puzzle. Much
of the code for the puzzle has already been written. Your task is to write the code that records the user’s best
time and stores it within a persistent cookie with a 90-day lifetime.

To complete this task you will have to load your project onto a web server placed on a remote site or installed
on your own computer. If you need to install your own server, you can download free server software like
XAMPP from the web or you can use software supplied by your instructor.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security396

NOTE: If you are unable to get access to a server, you can complete this project using local web storage by
modifying the steps to store data in the localStorage object rather than in a cookie. A preview of the
completed page is shown in Figure 9-25.

Figure 9-25 Completed Project 9-4

Do the following:

1. Use your code editor to open the project09-04_txt.html and project09-04_txt.js files from the js09 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project09-04.html and project09-04.js, respectively.

2. Go to the project09-04.html file in your code editor. A script element linked to the library.js file has already
been added to the page to provide the interface to the puzzle. Add another script element linked to the
project09-04.js file to provide code for the cookie will you create. Defer the loading of that script file until the
page finishes loading. Review the contents of the file and then save your changes.

3. Go to the project09-04.js file in your code editor. Within the anonymous function for the event listener of the
browser window’s load event, add the following code:

a. Insert an if statement testing whether the document.cookie object exists for this page.

b. If the if statement is true, change the text content of the bestText object to the text string “best
seconds” where best is the value returned by the getBestTime() function.

4. Create the getBestTime() function. The purpose of this function is to retrieve the user’s current best time to
solve the sliding block puzzle. Add the following code to the function:

a. If the document.cookie object exists then i) Declare the cookieArray variable containing the text of the
document cookie split at the occurrence of the "=" character. ii) Convert the cookie value to an integer by
applying the parseInt() function to the value of cookieArray[1] and return it from the function.

b. If the document.cookie object does not exist, return a value of 9999.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hanDS-on projEcTS 397

5. Create the updateRecord() function. The purpose of this function is to replace the user’s best time with the
time of their recent attempt if that attempt was better. Add the following commands to the function:

a. Declare the solutionTime variable, storing within it value of the document element with the id “timer”.
Apply the parseInt() function to that value to convert it from a text string to an integer.

b. Call the getBestTime() function and store the returned value in the bestTime variable.

c. If solutionTime is less than bestTime then let bestTime equal solutionTime.

d. Change the text content of the bestText object to “best seconds” where best is the value of the
bestTime variable.

e. Write the following text string to the document.cookie object, setting the max age of the cookie to 90
days:

puzzle8Best=best

where best is the value of the bestTime variable.

6. Save your changes to the file and then load all the web page files for this project to a folder on your web server.

7. Start your server software if necessary, and then use your browser to open the project09-04.html from the
folder on your server. Verify the following:

a. When you initially open the page, the page footer should display the message “Your best time is not yet
recorded”.

b. Click the Start button and begin sliding the block pieces by clicking blocks adjacent to the open square.
The timer will automatically stop when the blocks are in the correct order. Verify that the footer shows the
updated best time.

c. Close the web page and your browser. Verify that when you reopened the web page in your browser the
updated best time is displayed in the page footer.

d. Attempt to solve the puzzle several times, verifying that the page always shows the best time from all your
attempts.

e. If you need to retest the web page, delete the puzzle8Best cookie using the tools in your browser.

Hands-On Project 9-5

debugging Challenge

You have been given code to add items to a shopping cart in a website for winter clothing company. There are
four pages describing different winter gloves. Each page contains a web form and a form button to add the
selected product to a shopping cart. Information about the selected product will be added to session storage
in the text string:

product & price & quantity & size & color

where product is the name of the glove style, price is the glove’s price, quantity is the quantity ordered,
size is the glove size, and color is the glove’s color. The first item added to the cart will have the key name
cartItem1, the second cartItem2, and so forth.

However, there are several mistakes in the code that need to be corrected before the shopping cart works
properly. A preview of a completed shopping cart is shown in Figure 9-26.

Do the following:

1. Use your code editor to open the order_txt.js and cart_txt.js files from the js09 c project05 folder.
Enter your name and the date in the comment section of each file and save them as order.js and cart.js,
respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Managing State inforMation and Security398

2. There are four HTML products for the four different sample products for the shopping cart. Open the
product01.html through product04.html files in your code editor to review their content and structure. Each is
already linked to the order.js script file to add items to the shopping cart. Close the file after your review, you do
not have to make any changes to the file.

3. Open the cart.html file in your code editor. This page will display the contents (if any) of the shopping cart. The
page is already linked to the cart.js file to display shopping cart items. Close the file after reviewing the page
contents. You do not need to make any changes to the file.

4. Go to the order.js file in your code editor. Fix the following mistakes in the file:

a. When the customer adds an item to the shopping cart, the app should create or update a session storage key
named itemsInCart containing the number of cart items. However, there are several mistakes in storing
values in this key. Locate and fix the errors.

b. The app will also store information about the selected item which each piece of information separated by
the " & " substring. Fix the mistake in writing the text string.

c. The app concludes by the text string of the production summary to a session storage item named
cartItemn where n is the number of the cart item. There is a mistake in the statement that writes the text
string to session storage. Fix the error.

5. Save your changes to the file and then go to the cart.js file in your code editor. Fix the following mistakes:

a. To display the shopping cart the app extracts the value of the itemInCart session storage key. Fix the
errors in the code to retrieve information about the number items to display in the shopping cart.

b. The code extracts information about each product from the cartItemn key; however, there is a mistake in
retrieving that information and writing that data to the productArr array. Fix the errors in those lines.

6. Save your changes to the file and then load the product01.html file in your browser. Verify that the app works
correctly as follows:

a. Using the product01.html through product04.html web page forms, click the Add to Shopping Cart button to
add new items to your shopping cart.

b. Click the link to the Shopping Cart page to verify that the items you selected are displayed in the shopping
cart.

c. If the app does not work, view the contents of your session storage using the web storage tools in your
browser.

Figure 9-26 Completed Project 9-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

caSE projEcTS 399

Case Projects
Individual Case Project

Enhance the personal website you have created in the preceding chapters of this book to include state
information that will be retained from one session to the next. You can use either web storage or cookies
depending on the tools available to you. Remember that if you use cookies you need to place your website
on its own server. If your website contains web forms that span several pages, show your mastery of query
strings by adding code to store data within query strings as users navigate from one form to the next.

Team Case Project

Have each group member solicit feedback from other group members on security issues with the team
website. Discuss ways of ensuring data validity and privacy. Discuss ways in which state information on the
team website could be maintained between sessions and how long that information should be retained. After
all group members have presented their sites and received feedback, implement any suggestions for your site
that your group generally felt would be good additions. Document your discussions and your conclusions.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

401

As you gain experience in developing your own web apps you will have to consider the needs of
users who will access your app from a wide variety of devices from desktop computers to laptops
to mobile devices and tablets. In supporting those devices, you will need to consider how users will
 interact with your app. Will they use a keyboard or a mouse or a touchscreen? Will you need to consider
their geographic location if they are using a mobile device? In this chapter you will examine some of the
tools and techniques for managing events occurring between the user and your website.

Chapter 10

When you complete this chapter, you will be able to:

❯❯ Write code for event objects and event properties

❯❯ Work with events for mice, touchscreens, and pointer devices

❯❯ Program a drag and drop action using pointer events

❯❯ Create drag and drop interfaces using the Drag and Drop API

❯❯ Write code that responds to keyboard events

❯❯ Create interactive maps using the Google Maps API

❯❯ Locate your position using geolocation

❯❯ Add routes and directions to a Google Map using the Google Directions and Renderer
services

❯❯ Use the Device Orientation API to detect changes in client device speed and
position

❯❯ Create more efficient code for mobile devices by reducing script numbers and
sizes

Programming with
Event Objects and
Third-Party APIs

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis402

Working with Events as Objects
In this chapter you will work with a website for the Oak Top House, a conference center in Columbus, Ohio. Meeting
rooms at the Oak Top House are available for daily or multiday rental and are commonly used for wedding receptions,
graduation parties, conferences, and other special events. You have been asked to work on a web page in which cus-
tomers design a room layout suitable for their event. Open the web page for Oak Top House’s Rose Room now.

To open the files for the Oak Top House website:

1. Go to the js10 c chapter folder of your data files.

2. Use your code editor to open the js10a_txt.html and js10a_txt.js files. Enter your name and the date in the com-
ment section of each file and then save them as js10a.html and js010a.js, respectively.

3. Take some time to study the contents of the js10a.html file to become familiar with its contents and its code.

4. Open the js10.html file in your web browser. Figure 10-1 shows the initial layout of the page.

Figure 10-1 Rose Room Banquet Hall Setup page

Guest
count

Table types
in storage

Initial room
layout

In the upper-right corner of the room layout is Table Storage containing icons of four different types of tables ranging
from round tables that can accommodate 8 to 12 guests to long tables that can accommodate 20 guests. The layout
of the Rose Room will show positions of the tables for the event and will include an estimate of the number of guests
that the layout can accommodate. Table positions can be set by dragging and dropping the table images.

the Event Object
All interactions between the user and a web app take place in the context of events. If the user strikes a keyboard key
while working with a web page or web form, that action creates an event. If the user clicks the mouse button or drags
the cursor across the web page or touches a point on the screen, those actions also create events. Because of the
object-oriented nature of JavaScript, an event is just another type of object to be managed by your code.

An event object contains information about the event occurring within the web page or browser. Initiating an event
such as clicking a mouse button generates an event object describing which mouse button was clicked, what object
on the web page was clicked, the exact location of the cursor when the mouse button was clicked, and so forth. The

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking WiTH EvEnTs as ObjEcTs 403

event object is passed as parameter of the function managing the event as in the following command in which an event
object included as a parameter of userClick() function:

myButton.onclick = userClick;

function userClick(event) {

 commands

}

The event parameter can be assigned any name, but the general practice is to name it event, evt, ev, or simply
e (a practice we will follow in this chapter). Once the event object has been named, it can be referenced within the
function to return information about the event. In the following code the event object is named e and uses the button
property to provide information about the button clicked by the user:

function userClick(e) {

 console.log("The " + e.button + " button was clicked.");

}

Figure 10-2 describes some of the properties and methods common to many of the events supported by JavaScript.

event Capturing and Bubbling
A property common to all events is the target property indicating which object initiated the event. When an element
is clicked by a mouse or pointer device, the expression

event.target

returns a reference to that object. It might not always be clear which object is associated with an event. Consider the
act of clicking a table cell nested within a table row, inside of a table that is part of a div element placed within a web
page displayed in a browser window. Within that hierarchy of objects, which one is associated with the click?

ProPerty DescriPtion

e.bubbles Returns a Boolean value indicating whether the event is bubbling up through the object hierarchy

e.cancelable Returns a Boolean value indicating whether the event can have its default action canceled

e.currentTarget Returns the object that is currently experiencing the event

e.defaultPrevented Returns a Boolean value indicating whether the preventDefault() method was called for the event

e.eventPhase Returns the phase of the event propagation the event object is currently at, where 0 5 NONE, 1 5
CAPTURING_PHASE, 2 5 AT_TARGET, and 3 5 BUBBLING_PHASE

e.isTrusted Returns a Boolean value indicating whether the event is trusted by the browser

e.target Returns the object in which the event was initiated

e.timeStamp Returns the time (in milliseconds) when the event occurred

e.type Returns the type of the event

e.view Reference the browser window in which the event occurred

MethoD DescriPtion

e.preventDefault() Cancels the default action associated with the event

e.stopImmediatePropagation() Prevents other event listeners of the event from being called

e.stopPropagation() Prevents further propagation of the event through the object hierarchy

Figure 10-2 Event object properties and methods

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis404

The answer is based on the way that events propagate through a web document. Events move down the object hierar-
chy from the window to the innermost object during the capture phase, reach the innermost object at the target phase,
and then move back up the hierarchy during the bubbling phase. The target of the event is the innermost object in that
hierarchy. Figure 10-3 shows the propagation of an event as it moves through these phases.

Figure 10-3 Capturing and bubbling of events

capture phase

target phase

window

document

section

�gure

bubbling phase

By default, event listeners listen for events during the bubbling phase. Event handlers do not support capturing or
bubbling, so they respond to the event at the target phase.

To listen for events during the capture phase, apply the method addEventlistener
(event_name, true) to the event. To keep an event from propagating to the next object,
apply the stopPropagation() method to the event object.

Note

Event listeners allow for greater flexibility in responding to events. A web app could respond to the same event with
different actions depending on which object within the hierarchy is currently experiencing the event and whether the
event occurs during the capture phase or during the bubbling phase. You can determine which event in the hierarchy
is currently experiencing the event using the currentTarget property. In most cases you do not need to consider
event propagation in your scripts, but it does become useful in some gaming apps. For the Oak Top House website,
you will focus on events associated with mice and other pointing devices.

The first feature you will add to the app will give users the ability to add tables to the room by clicking one of the four
icons in table storage. For each table in storage, you will create an onclick event handler that copies the clicked
table and appends it as a new child element of the room.

Because tables might overlap, you will specify the table stacking with the CSS zIndex property, which determines
how overlapping page objects are displayed. An element with a higher z-Index value will appear on top of objects with
lower z-index values. As each new table is added to the room, it will be given the highest z-index value.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking WiTH EvEnTs as ObjEcTs 405

Some of the code to complete this project has already been created for you. Your first task is to enter the event handlers
to add tables from storage to the Rose Room.

To create onclick event handlers for the tables in storage:

1. Return to the js10a.js file in your code editor.

2. When the page initially loads it will run the setupRoom() function to establish the functions and variables used
by the app. Directly below the countSeats() function add the following for of loop that adds onclick
event handlers to each table in storage:

// Add tables from storage to the banquet hall

for (let items of storageTables) {

 items.onclick = function() {

 let storageCopy = items.cloneNode(true);

 room.appendChild(storageCopy);

3. Within the anonymous function add the following commands to increase the value of the zIndexCounter so
that newly copied tables will be displayed on top of any other table in the room:

zIndexCounter++;

storageCopy.style.zIndex = zIndexCounter;

4. Complete the anonymous function and the loop by adding the following commands to run the countSeats()
function, updating the room’s guest count:

 countSeats();

 }

}

Be sure to close off the command blocks in the for of loop and the anonymous function. Figure 10-4 describes
the newly added code in the file.

Figure 10-4 Creating event handlers for the tables in storage

Add a copy of the table
to the banquet hall

Count the number of
seats in the room

Add an onclick
event handler for each

table

Increase the z-index
value by 1 to put the

table on the top

5. Save your changes to the file and then reload js10a.html in your browser.

6. Click each icon in table storage, verify that a copy of the table is added to the room and the guest count increases
by the number of seats at the table. See Figure 10-5.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis406

Your next task is to give customers the ability to move tables around within the banquet hall using their mouse or
pointing device.

Exploring Mouse, Touch, and Pointer Events
Thus far your work with mice and other pointing devices has been limited to the click event. However, there are
several other actions associated with mice such as moving the mouse cursor across the web page, pressing the mouse
button down and then releasing it, double-clicking the mouse button, or opening a context menu by right-clicking the
mouse. Figure 10-6 describes some of the other events associated with mice and other pointing devices.

Figure 10-5 Adding tables to the Rose Room

Click a table icon …

Guest count updates
with each added table

… to add that table
type to the room

A mouse action can combine several events in quick succession. The action of clicking the mouse button combines
three events fired in the following order:

1. mousedown (the button is pressed down)

2. mouseup (the button is released)

3. click (the button is pressed and released)

Figure 10-6 Mouse events

event DescriPtion
click The mouse button has been pressed and released on an element

contextmenu The right mouse button has been pressed and released

dblclick The mouse button has been double-clicked

mousedown The mouse button has been pressed down

mouseup The mouse button has been released

mousemove The mouse pointer is moving

mouseover The mouse pointer enters an element

mouseout The mouse pointer leaves an element

mouseenter Similar to the mouseover event except that it does not bubble

mouseleave Similar to the mouseout event except that it does not bubble

wheel The mouse scroll wheel has been rotated

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ExplOring MOusE, TOucH, and pOinTEr EvEnTs 407

Other events are fired more than once during an action. Moving the mouse pointer across an element causes the
mousemove event to be fired continuously with each new pointer position triggering a new mousemove event.

The event object for mouse events has its own set of properties that return specific information about the condition
of the mouse and its buttons. Figure 10-7 describes some of the properties specific to mice events.

The click event responds to the click of any mouse button, though for secondary mouse buttons you
may have to prevent the browser’s default response to the button click before supplying your own code.Note

event ProPerty DescriPtion

e.button Returns the pressed button where: 0 5 primary (usually left), 1 5 middle or wheel, 2 5 secondary (usually right),
3 5 4th button (usually back), 4th 5 5 button (usually forward)

e.buttons Returns the pressed button or buttons where: 0 5 no button, 1 5 primary (usually left), 2 5 secondary (usually
right), 4 5 middle or wheel, 8 5 4th button (usually back), 16 5 5 button (usually forward). If more than one button
is pressed the numeric sum is returned

e.detail Returns a number describing the event. For click and dblclick this is the current click count. For
mousedown and mouseup this is the current click count plus 1.

e.relatedTarget Returns the secondary target of the event. For mouseenter, this is the element that the mouse is leaving, for
mouseleave, this is the element that the mouse is entering.

Figure 10-7 Mouse event object properties

You can create scripts that respond differently depending on which mouse button was clicked by the user as deter-
mined by the button or buttons property. Be aware, however, that some buttons are reserved by the browser for
specific tasks. The right mouse button is reserved for context menus. Thus, if your application requires the use of
that button, you must prevent the display of a context menu by running a function for the contextmenu event that
returns a value of false. The following code demonstrates this technique by first disabling the context menu for a
specified element and then writing text to the debugger console if the secondary (right) button is clicked within that
element:

element.oncontextmenu = function() {

 return false;

}

element.onmouseup = function(e) {

 e.preventDefault();

 e.stopPropagation();

 if (e.button === 2) {

 console.log("Right mouse button clicked");

 }

}

Note that the anonymous function for the mouseup event also prevents the default action associated with the event
and halts the propagation of the event through the object hierarchy.

exploring touch events
Users are increasingly visiting websites with tablets and mobile devices that utilize touch in place of a mouse. Touch
events share some of the same characteristics as mouse events but there are important differences. A mouse event

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis408

consists of a single point of contact; touchscreens allow for multiple simultaneous contact points. A mouse event is a
single interface involving the action of the button; touch events consist of the three following interfaces:

❯❯ In the Touch interface the user touches the screen at a single contact point called a touchpoint.

❯❯ In the TouchList interface the user creates several touchpoints simultaneously, such as the act of “pinching”
with two fingers to zoom into or out of a window.

❯❯ In the TouchEvent interface the state of touchpoints on the touch surface changes, such as would occur when
touchpoints move or change their pressure on the touch surface.

Within each interface there are four primary touch events, described in Figure 10-8.

event DescriPtion

touchstart A touch point is placed on the touch surface

touchmove A touch point is moved along the touch surface

touchend A touch point is removed from the touch surface

touchcancel A touch point has been disrupted by the device or operating system and is no longer available

Figure 10-8 Touch events

Touchscreen browsers emulate mouse events so that a tap on the screen initiates a touch cascade consisting of touch
and mouse events. See Figure 10-9.

Figure 10-9 The touch cascade for a tap action

tap!

click

touchstart1 touchmove2 touchend3

mousedown6 mousemove5 mouseover4

mouseup7 8

Associating the same action with multiple events can be a problem if the script includes event handlers for several
events within the cascade. One way of managing the cascade is to apply the preventDefault() method to the event
so that the browser’s default method emulating mouse events is not invoked. The general code structure is:

element.ontouchstart = function(e) {

 commands for the touchstart event

 e.preventDefault();

}

One drawback to this approach is that it can result in complicated scripts that include code for every possible touch
and mouse event.

Finally, a browser might have its own actions associated with touch events. The CSS touch-action property can be
used to disable those default actions. The following JavaScript command disables all default touch actions associated
with the element by setting the value of the touch-action property to “none”:

element.style.touchAction = "none";

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ExplOring MOusE, TOucH, and pOinTEr EvEnTs 409

Other values of the touch-action property include pan-x, pan-y, and pinch-zoom to enable only those actions
on the element. You can read more about touch-action on the web.

Managing Multiple touchpoints
Touchscreens allow for multiple touchpoints such as the pinch gesture in which two fingers are used to zoom into an
element. Multiple touchpoints are stored in a TouchList object. Every touchpoint within that list is referenced using
the touches property, which returns an array of touchpoints related to a single touch action. Thus, touches[0]
references the first touchpoint in the action, touches[1] references the second, and so forth. The total number of
touchpoints within any action is returned by the touches.length property.

Because not all touchpoints change with each touch event, the changedTouches object returns an array of touch-
points whose properties have changed. If there are two points on the screen but one point moves in a zoom-out ges-
ture, there would be two items in the touches array, but only one item in changeTouches, and that item would be
referenced with changedTouches[0]. Thus, index numbers in the touches array do not necessarily correspond
to indexes in the changeTouches array.

Finally, not all touchpoints will be in contact with the same target. The targetTouches object returns an array of
touchpoints within a specified element. In some apps there might be two touchpoints, each associated with a differ-
ent target and thus the length of targetTouches for each target element would be 1. Using the targetTouches
array you can focus only on those touchpoints in contact with the target and ignore touchpoints placed elsewhere.

As you add more touchpoints to an app, the level of complexity increases. Some game apps require managing multiple
touchpoints and gestures, but for the Oak Top House app, you only need to worry about one touchpoint.

Using pointer events
Originally JavaScript only supported mouse events because they were the primary means of interacting with the
document. Touch events were added later with the rising popularity of touchscreens. Other types of devices such as
stylus pens were introduced a bit later still. Any action that involves using a device to point at an object on the screen
is called a pointer event.

JavaScript uses pointer events to organize mice, touch, and other similar events under one roof. Rather than writing
separate code for each device, the goal is to write one set of code for all pointers. Figure 10-10 lists some of the pointer
events supported by JavaScript. Note the similarity between these events and the mouse events in Figure 10-6.

event DescriPtion

pointerdown The pointer has become active such as when a mouse button is pressed down, or physical contact is made with a touch surface

pointerup The pointer is no longer active

pointermove The pointer has changed coordinates

pointerover The pointer has moved over a specified element

pointerout The pointer has moved out of a specified element

pointerenter Similar to pointerover except that it does not bubble

pointerleave Similar to pointerout except that it does not bubble

pointercancel The pointer is no longer able to generate events

Figure 10-10 Pointer events

Pointer events include properties that are not supported by mice but are supported by other pointers. For example,
a pen stylus has properties such as the pressure of the pen on the screen surface or the pen’s tilt angle. Figure 10-11
describe some of pointer’s “non-mouse” properties.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis410

For apps that need to accommodate both mouse and touch events, the following events are treated by the browser
as equivalent:

pointerdown = mousedown = touchstart

pointerup = mouseup = touchend

pointermove = mousemove = touchmove

Thus, the following event handler would be interpreted as a mousedown event for a mouse and a touchstart event
for a touchscreen:

element.onpointerdown = function

You will use the pointerdown, pointmove, and pointerup events in your code to provide drag and drop func-
tionality to the Oak Top House website.

Programming a Drag and Drop Action
A drag and drop action proceeds through the following phases:

❯❯ The grab phase in which an element is selected at the pointerdown event

❯❯ The move phase in which the element follows the motion of the pointer during the pointermove event

❯❯ The drop phase in which the element is released at the pointerup event

Add an event listener to initiate the grab phase in response to a pointerdown event for tables in the
Rose Room.

To add an event listener for the pointerdown event:

1. Return to the js10a.js file in your code editor.

2. Go to the anonymous function in the for of loop, and add the following statement after the command to run
the countSeats() function. See Figure 10-12.

// Grab the table in response to the pointerdown event

storageCopy.addEventListener("pointerdown", grabTable);

Pointer event ProPerty DescriPtion

e.pointID Returns a unique identifier for devices that allow multiple pointers

e.width The width of the contact point along the horizontal axis

e.height The height of the contact point along the vertical axis

e.pressure The pressure of the pointer on the device surface ranging from 0 (no pressure) to 1 (maximum pressure)

e.tangentialPressure The pressure of the pointer tangent to the device surface, ranging from 0 to 1

e.tiltX The angle of the pointer with the device surface along the horizontal axis, ranging from -90 to 90

e.tiltY The angle of the pointer with the device surface along the vertical axis, ranging from -90 to 90

e.twist The clockwise rotation of the pointer with respect to the device surface

e.pointerType The type of pointer (mouse, touch, pen, etc.)

e.isPrimary Returns true if the pointer is the primary pointer of the device

Figure 10-11 Pointer event properties

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prOgraMMing a drag and drOp acTiOn 411

Next you will begin writing the code of the grabTable() function.

Finding event Coordinates
During a drag and drop action the selected object follows the pointer around the screen, matching its coordinates to
the change in the pointer’s coordinates. Coordinates are measured relative to the top-left corner of a container, such
as a page element, the browser window, the web page, or the screen. Figure 10-13 describes four sets of JavaScript
properties that return event coordinates.

Figure 10-12 Listening for the pointerdown event

Run the grabTable()
function in response to

the pointerdown event

If the entire page is visible within the browser window, e.pageX and e.pageY return the same values as
e.clientX and e.clientY.Note

horizontal vertical event coorDinates

e.offsetX e.offsetY Measured relative to the top-left corner of the element in which the event occurred

e.clientX e.clientY Relative to the top-left corner of the browser viewport or window

e.pageX e.pageY Relative to the top-left corner of the web page

e.screenX e.screenY Relative to the top-left corner of the screen

Figure 10-13 Event coordinates

Every coordinate property returns the pointer’s relative location in pixels. If a pointer event occurs 100 pixels to the
right and 50 pixels down from the top-left corner of the browser window, the value of e.clientX will be 100 and
e.clientY will be 50. The pointer’s position relative to other containers would be measured by the other properties.

Use the clientX and clientY properties to store the initial position of the pointer during the pointerdown event.

To save the pointer’s initial position:

1. Scroll to the top of the js10a.js file and directly below the statement that sets the initial value of zIndexCounter
to 0, add the following statement to declare the startingX and startingY variables:

let startingX, startingY; // initial pointer coordinates

2. Scroll down and below the for of loop, insert the following grabTable() function:

// Grab a table from the banquet hall

function grabTable(e) {

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis412

3. Within the grabTable() function insert the following command to store the initial position of the pointer:

startingX = e.clientX;

startingY = e.clientY;

4. Add the following command to disable the browser’s default touch actions around the target of the
pointerdown action:

e.target.style.touchAction = "none";

5. Finally, apply the following commands to increase the z-index value of the table so that it will be on top of the
other tables during the subsequent drag and drop action:

zIndexCounter++;

e.target.style.zIndex = zIndexCounter;

Figure 10-14 describes the newly added code in the file.

Figure 10-14 The grabTable() function

Store the pointer’s
initial position

Display the table on
top of other page

objects

Disable touch
actions on the table

The script also needs to store the table’s initial position. The horizontal and vertical coordinates of an element within
its parent can be retrieved with the following properties:

elem.offsetLeft

elem.offsetTop

As with the event coordinates, offsetLeft and offsetTop return the element’s position in pixels. The element
must be placed within its parent with its CSS position property set to absolute and the position property of
the parent element set to relative or absolute.

Create the tableX and tableY variables to store the initial position of the table and then add event handlers to the
table for the pointermove and pointerup events.

To save the table’s initial position:

1. Scroll to the top of the js10a.js file and directly below the statement declaring the startingX and startingY
variables, declare the following variables:

let tableX, tableY; // initial table coordinates

2. Add the following commands to the grabTable() function to store the table’s initial position with the room
layout:

tableX = e.target.offsetLeft;

tableY = e.target.offsetTop;

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prOgraMMing a drag and drOp acTiOn 413

3. Add the following event listeners to the function:

e.target.addEventListener("pointermove", moveTable);

e.target.addEventListener("pointerup", dropTable);

See Figure 10-15.

Figure 10-15 Storing the table’s starting position

Store the table’s
initial position

Add event listeners
to the table

Next you will write code that moves the table following the pointer.

Dragging and Dropping an element
Dragging is accomplished by calculating the change in position of the pointer during the pointermove event and moving
the selected object by the same amount. Because the pointer and the object move by the same distance and direction, the
object will appear to be dragged by the pointer. Create the moveTable() function to (1) determine the pointer’s current
position, (2) calculate the distance and direction the pointer has traveled, and (3) move the table by the same amount.

To calculate the table’s new position:

1. Directly below the grabTable() function add the following moveTable() function:

// Move the table along with the pointer

function moveTable(e) {

}

2. Within the moveTable() function add the following code to determine the pointer’s current location and the
distance it has traveled in the horizontal and vertical direction:

let currentX = e.clientX;

let currentY = e.clientY;

let deltaX = currentX - startingX;

let deltaY = currentY - startingY;

3. Finally, add the following code to move the table in the horizontal and vertical direction by the same amount
that the pointer has traveled:

// Calculate the table’s new position

e.target.style.left = tableX + deltaX + "px";

e.target.style.top = tableY + deltaY + "px";

Note that the table is placed within the room using the CSS left and top properties. Figure 10-16 shows the
completed code of the moveTable() function.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis414

Once a table has been dropped it should no longer follow the pointer. Thus, the drop action needs to remove the event
listeners for the pointermove and pointerup events, leaving the table at its final recorded position.

To drop an element:

1. Directly below the moveTable() function add the following dropTable() function:

function dropTable(e) {

 e.target.removeEventListener("pointermove", moveTable);

 e.target.removeEventListener("pointerup", dropTable);

}

Figure 10-17 describes the newly added code.

Figure 10-18 A table layout created with drag and drop

Figure 10-16 The moveTable() function

Determine the
pointer’s current

position

Move the table the
same distance as

the pointer

Calculate the
distance the pointer
traveled horizontally

and vertically

Figure 10-17 The dropTable() function

After the table is dropped,
remove the event listeners so

the table no longer moves with
the pointer

2. Save your changes to the file and then reload js10a.html in your web browser.

3. Add tables to the Rose Room and then use your pointer to drag and drop each table to a new location within the
room. Figure 10-18 shows a sample room layout that can accommodate up to 128 guests.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ExplOring THE drag and drOp api 415

Browser tools for touchscreen emulation
The app you created should work equally well with mice and touchscreens. If you do not have a touchscreen device,
you can still test the touch by using the device emulator with your browser’s developer tools.

For Chrome, Edge, and Firefox, display the emulator by opening your browser’s Developer Pane and clicking the device
icon or press Ctrl+Shift+M to enter Responsive Design Model. For Safari, open the Develop menu and click Enter
Responsive Design Model or press Shift+Cmd+R. Under Chrome and Edge, the pointer will appear as a blurry circle
to indicate that touch emulation is active (see Figure 10-19).

Quick Check 1

1. what is the difference between the target property and the currentTarget property?

2. what sequence of events is initiated during a mouse click and in what order?

3. what event properties provide the coordinates of the pointer relative to the web page?

4. what is the touch cascade?

5. what two events are treated by the browser as equivalent to the pointerdown event?

You can also make an element draggable by running the command elem.draggable = "true" in your
JavaScript code.Note

Figure 10-19 Touchscreen emulation within Google Chrome

Device emulation
toolbar

Touchpoint appears
as a blurred circle

Click to display
toolbar with device
emulation options

From the device toolbar you can choose different devices to emulate or define the properties of a new device. Note
that device emulation cannot replace testing on the actual device, so you should always test your app on a variety of
platforms and browser versions before releasing it to the public.

Exploring the Drag and Drop API
There are some elements that support drag and drop without JavaScript. A hypertext link can be opened by dragging
and dropping the link into the browser’s address bar. Text can be added to a web form by dragging and dropping it
into a text box control. Other elements can be given this feature by adding the following attribute to their element tag:

<element draggable = "true">

Adding the draggable attribute only makes the element capable of being dragged. To define the browser response
does requires JavaScript.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis416

the htML Drag and Drop apI
JavaScript manages draggable elements using the Drag and Drop API (DnD API), defining what elements can be dragged
and where they can be dropped. The API supports two types of events: events targeted to draggable elements and
events targeted to an element, called a drop zone, that will receive dragged items. Figure 10-20 describes both types
of events and their targets.

When an element is enabled as a drop zone, all children of that element also act as drop zones.Note

event DescriPtion event target

dragstart A draggable element starts being dragged by the user Draggable element

drag The element is in the process of being dragged Draggable element

dragend A pointer button is released, or the Esc key is pressed, ending the dragging of the element Draggable element

dragenter A draggable element enters a drop zone Drop zone

dragover The element is hovering over a drop zone Drop zone

dragleave The element leaves a drop zone Drop zone

drop The element is released onto a drop zone Drop zone

Figure 10-20 Drag and drop events

The DnD API leaves the task of recognizing when dragging and dropping has occurred to the browser, bypassing the
need for pointer events. The start of a dragging event is managed using the following event handler and listener:

dragElem.ondragstart = function;

dragElem.addEventListener("dragstart", function);

where dragElem references an element whose draggable attribute has been set to "true" and that has started
being dragged by the user. As the drag commences the browser supplies an image of the dragged element tethered
to the pointer. There is no need to store the pointer’s coordinates during the drag operation or to move the element
using pointer events.

As the image of the element is dragged, it will pass over other elements on the page. To enable one of those elements
to act as a drop zone, add the following event handler or listener to it:

dropZone.ondragover = function;

dropZone.addEventListener("dragover", function);

where dropZone is an element that can receive the draggable element. Elements that are not drop zones will display
the symbol alongside the pointer to indicate that the element cannot be dropped there.

Elements are released into the drop zone by applying an event handler or listener to the drop event:

dropZone.ondrop = function;

dropZone.addEventListener("drop", function);

To avoid conflicts with pointer and touch events that might fire during the drag and drop, functions for the dragover
and drop events should start with the command:

event.preventDefault();

where event is the event object for the function. Any commands associated with pointer or touch events will be
superseded by the function. You can also have the function return the value false to prevent further handling of the
drag and drop action.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ExplOring THE drag and drOp api 417

transferring Data with Drag and Drop
Once the image of the element has been dropped, there can be several results, including:

❯❯ The draggable element is moved from its original location into the drop zone.

❯❯ A copy of the draggable element is added to the drop zone.

❯❯ Data from the draggable element is written into the drop zone.

Unlike with pointer events in which the element is physically moved across the page, the DnD API transfers informa-
tion about the element. This information is stored in a dataTransfer object. Figure 10-21 describes some of the
dataTransfer methods for storing and retrieving data from the drag and drop operation.

Figure 10-22 Moving an object using the Drag and Drop API

Draggable Item

Drop Zone

Draggable Item

Drop Zone

Draggable Item

Draggable Item

Drop Zone (1) Set the id of the item in the dataTransfer object

(3) Get the id of the element to place in the drop zone

(2) When the item moves over drop zone it can be dropped

MethoD DescriPtion

dataTransfer.setData(mime, data) Store data in the dataTransfer object where mime is the mime-type of the
data and data is a text string containing the data value

dataTransfer.setDragImage(image, xOffset,
yOffset)

Defines a semi-transparent image to displaying during the drag operation where
image is the image to display, and xOffset and yOffset set the horizontal
and vertical distance from the pointer to the image

dataTransfer.getData(mime) Retrieves data stored in the dataTransfer object method

dataTransfer.clearData() Clears all data from the dataTransfer object

Figure 10-21 Methods of the dataTransfer object

When dragging and dropping an element using the DnD API, it is easy to forget that the event target is
based on the event and not the element being moved. For the dragstart event, e.target references
the dragged item; for the dragover and drop events, e.target references the drop zone.

Note

For example, to store the id of the dragged item, apply the following setData() method during the dragstart event:

e.dataTransfer.setData("text", e.target.id)

where e.target references element being dragged. To retrieve that id value during a drop event, apply the following
getData() method to the dataTransfer object:

e.dataTransfer.getData("text")

Figure 10-22 demonstrates the complete sequence of moving an element into a drop zone by setting and getting data
from the dataTransfer object.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis418

The sequence starts by storing the id of the element in the dataTransfer object and concludes by retrieving the id
to move that element using the appendChild() method. The code to copy the element into the drop zone is similar
except that a clone of the dragged element would be placed in the drop zone.

You can store HTML code within the dataTransfer object, using the “text/html” mime-type along with
the inner or outer HTML code of the dragged element. To transfer an object, use the JSON.stringify()
method to convert the object into a text string that can be stored in the dataTransfer object and the
JSON.parse() method to convert it once the element has been dropped.

Note

The Drag and Drop API can simplify the drag and drop process, but currently it is not well supported on touch devices.
If you need to support such devices you will have to work with pointer events. Also note that the browser’s default
drag and drop behavior for naturally draggable objects like images can conflict with pointer events. To manage those
kinds of objects using only pointer events, set the object’s draggable attribute to "false".

Working with Keyboard Events
Your app for the Oak Top House does not provide a way for removing tables from the room layout. You have been
asked to give users the ability to remove a table by clicking the table while the Shift key is pressed down. To add this
feature, you will have to work with keyboard events.

When a user presses a key on the keyboard, the following events occur in order:

1. keydown The key is pressed down.

2. keypress The key is pressed down and released, resulting in a character.

3. keyup The key is released.

The distinction between the keydown/keyup events and the keypress event lies in the difference between the physi-
cal keyboard and the generated character. The keydown/keyup events are fired in response to the physical act of
pressing and releasing a keyboard key, while keypress is fired in response to the creation of a character. Figure 10-23
describes some of the properties associated with keyboard events.

event ProPerty DescriPtion

e.altKey Returns a Boolean value indicating whether the Alt key was used in the keyboard event

e.ctrlKey Returns a Boolean value indicating whether the Ctrl key was used

e.shiftKey Returns a Boolean value indicating whether the Shift key was used

e.metaKey Returns a Boolean value indicating whether the meta key (the Command key on Mac keyboards or the Windows key on PC keyboards)
was used

e.code Returns a text string of the physical key that was pressed

e.key Returns the text containing the value of the key that was pressed

e.charCode Returns the Unicode value of the character generated by the keypress event (this property has been deprecated)

e.keyCode Returns the value of the physical key that was pressed (deprecated)

e.location Returns the location number of the key, where 0 = key located in the standard position, 1 = a key on the keyboard's left edge, 2 = a
key on the keyboard's right edge, and 3 = a key on the numeric keypad (deprecated)

Figure 10-23 Keyboard event properties

To determine which key was pressed, use either the code property or the key property of the keyboard event. The
code property provides the name of the key and the key property provides the character generated. Figure 10-24
demonstrates that these are not always the same thing.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WOrking WiTH kEybOard EvEnTs 419

The cursor does not have to be within a form field for a keyboard action to be recognized. Keyboard events can also
be associated with the browser window or document. The following statement fires whenever the user presses down
a key within the active browser window:

window.onkeydown= function(e) {

commands

}

In addition to character keys, JavaScript supports the modifier keys Alt, Ctrl, Shift, and Command using the altKey,
ctrlKey, shiftKey, and metaKey properties, which return true if the key is pressed down during an event. These
properties can be combined with pointer events, so that event handlers and listeners can be written for actions that
involve both pointers and keyboard modifiers.

Use the shiftKey property with the Oak Top House app to determine whether the user is pressing down the Shift
key during the pointerdown event. If the key is pressed, remove the table from the room layout and update the
guest count.

To remove a table from the room layout:

1. Return to the js10a.js file in your code editor.

2. Scroll down to the grabTable() function.

3. At the start of the function insert the following if command block to test whether the Shift key was pressed and
if it has, remove the table from the web page and update the guest count:

if (e.shiftKey) {

 // Remove the table from the room

 e.target.parentElement.removeChild(e.target);

 countSeats();

}

The keypress event only fires when a character is generated, thus there is no code or key value for
keypress events of keys like Shift, Alt, or Tab.Note

action E.CODE E.KEY

Pressing the "a" through "z" keys "KeyA" through "KeyZ" "a" through "z"

Pressing the "0" through "9" keys "Digit0" through "Digit9" "0" through "9"

Pressing the Spacebar "Space" " "

Pressing the Shift key "ShiftLeft" or "ShiftRight" "Shift"

Pressing the Ctrl key "ControlLeft" or "ControlRight" "Control"

Pressing the Alt key "AltLeft" or "AltRight" "Alt"

Pressing the Command key "MetaLeft" or "MetaRight" "Meta"

Pressing the Tab, Enter, Backspace Insert, Delete,
Home, End, Page Up, and Page Down keys

"Tab", "Enter", "Backspace",
"Insert", "Delete", "Home",
"End", "PageUp", "PageDown"

"Tab", "Enter", "Backspace", "Insert", "Delete",
"Home", "End", "PageUp", "PageDown"

Pressing the arrow keys "ArrowUp", "ArrowDown", "ArrowLeft", "ArrowRight" "ArrowUp", "ArrowDown", "ArrowLeft",
"ArrowRight"

Figure 10-24 Comparing the values of e.code and e.key

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis420

4. Enclose the rest of the code in the function within an else command block, indenting the code to make it easier
to read. Figure 10-25 shows the completed code of the grabTable() function.

Figure 10-25 Responding to a keyboard event

Place the remaining code
within an else command

block

If the Shift key is pressed
down remove the table
and update the guest

count

5. Close the file, saving your changes.

6. Reload the js10a.html file in your web browser. Verify that you can add tables to the Rose Room, move them
around to create new room layouts, and remove tables by holding down the Shift key as you click the table image.

You have completed your work on the room layout page by giving customers the ability to add, move, and remove
tables from the banquet hall. In the next session you will explore other events and APIs that will be useful to the Oak
Top House website.

Drag and drop interfaces are so common it is easy to forget that you still need to design them to be easy for the
end user. Here are some tips to make your drag and drop apps user-friendly.

❯❯ Create visual clues for objects that are draggable. This can be as simple as changing the cursor style when the
pointer hovers over the object or adding an outline or drop shadow to draggable objects.

❯❯ During the drag, choose a cursor style that reflects the action. If the action involves moving the object, choose
a move cursor. If the action involves copying, choose a copy cursor. You can view cursor styles as part the CSS
cursor property or you can create your own customized cursor.

❯❯ Provide visual clues for the drop zones so that users understand where the object can be dropped and where it
cannot.

❯❯ It can be difficult to drop an item in an exact location. Give your dropped items the ability to “snap to” a point
when the object is close rather than requiring precision dropping.

❯❯ Touchscreens can be difficult to use with drag and drop because fingers are not as precise as pointers. Provide
your touchscreen users with at least a one square centimeter of space for grabbing an item. During the drag,
make sure that user’s finger does not cover any important information needed for the drag and drop.

Best Practices Making Drag and Drop User-Friendly

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

crEaTing an inTEracTivE Map 421

Creating an Interactive Map
Another page in the Oak Top House website provides a driving map with directions to the conference center. To com-
plete this page, you will work with the Google Maps API.

Getting Started with the Google Maps apI
The Google Maps API is one of the most popular third-party APIs available for JavaScript, allowing developers
to supplement their websites with maps of almost any place on the globe and to augment those maps with pins
highlighting points of interest or to show travel routes connecting one location with another.

To use the Google Maps API, go to the Google Console at https://console.cloud.google.com/ and do the following:

1. Pick a product to purchase, such as the Google Maps API.

2. Set up a billing account for your product.

3. Create and enable a project to access the Google Maps API.

4. Create an API key to allow your website to access the Google Maps API.

Google provides step-by-step instructions for setting up the Google Maps platform at https://developers.google.com/
maps/gmp-get-started. Although you have to provide Google with payment information to set up your account, at the
time of this writing Google provides $200 in free monthly usage of Google Cloud products. Under their current pricing
structure, Google charges $7 for every 1000 map requests and $5 for every 1000 requests for map directions. Unless
you generate a lot of requests for maps and directions, it is unlikely you will exceed the free monthly allowance.

If you do not wish to set up a billing account on Google Cloud at this time, review the material in this section for future
reference.

After setting up a billing account and a project, you must get an API key from Google Maps. An API Key is a string of
characters passed from your application to an API platform, verifying you are the owner of an account and project that
has access to the tools built into the API. You can safeguard your API key so that it only works with specific website
domains or IP addresses. Look under the Credentials menu on Google Cloud for more information about setting up
access restrictions to your API key.

❯❯ Drag and drop is traditionally a mouse or touchscreen activity. Make your app accessible to all users by enabling
keyboard events so that users can move an item using the keyboard arrow keys and drop objects pressing the
Enter or Spacebar keys. Provide messages to screen readers explaining exactly how to do drag and drop with
keyboard keys.

A drag and drop interface can be fun to create and use, but it must meet the needs of the user. Do not choose a
drag and drop interface if you can accomplish the same thing with a simpler more straightforward approach. The
flashiest interface is of no use if it leaves a frustrated customer.

Quick Check 2

1. what must be added to an htmL element to make it draggable?

2. what event handler is applied to an element when it starts being dragged?

3. what property and method can be used to store data associated with a drag and drop action?

4. what is the difference between the keypress and keydown events?

5. how do you determine if the ctrl key is pressed down during a pointer event?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis422

Once you have secured an API key for your Google Maps account, you are ready to add maps to your website. The
Google Maps API is made accessible to your web page by including the following script element:

<script src="https://maps.googleapis.com/maps/api/js?key=keyID&callback=function">

</script>

where keyID is a key obtained from Google Cloud for your project and function is a callback function called by the
API to generate a map. The API key is a long and complex string of characters, but you can copy the key value from
your project account on Google Cloud and paste it directly into your code.

Add the Google Maps API to a web page for the Oak Top House web page that provides customers with directions to
the conference center.

To add the google Maps api:

1. Set up a billing account on Google Cloud and create a project.

2. Within the project add the Google Maps API for JavaScript and set up a Google Maps API key.

3. Go to the js10 c chapter folder of your data files.

4. Use your code editor to open the js10b_txt.html and js10b_txt.js files. Enter your name and the date in the com-
ment section of each file and then save them as js10b.html and js010b.js, respectively.

5. Go to the js10b.html file in your code editor and within the document head, add the following command to link
to your script file:

<script src="js10b.js" defer></script>

6. Add the following script element to access the Google Maps API, copying the API key from your project account:

<script defer

 src="https://maps.googleapis.com/maps/api/js?key=keyID &callback=initMap">

</script>

where keyID is the text of your API key. Figure 10-26 shows the code with the API key text blurred out. You will
have to copy and insert your own key within the indicated place in the src attribute.

To restrict the use of the API key to pages hosted on your own local network, you will need your network’s
IP address. You can retrieve that address by going to the google.com website and searching for the
phrase “my ip”.

Note

Figure 10-26 Linking to the Google Maps API

Paste your Google Maps
API key here

Callback function to create
and display the map

7. Review the contents of the rest of the document and then close the file, saving your changes.

Now that your page can access the Google Maps API, you will begin creating the initMap() callback function show-
ing the location of the Oak Top House within the city of Columbus, Ohio. (This is a fictional convention center; the
“location” is provided for instructional purposes only.)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

crEaTing an inTEracTivE Map 423

the map Object
All Google maps are treated as objects with a large library of properties and methods. To create a map object, apply
the following new google.maps.Map() object constructor:

let map = new google.maps.Map(element, mapOpt);

where map is the variable name given to the map, element references a page element in which the map is displayed,
and mapOpt is an object literal of map options and properties.

There are dozens of options for defining the appearance and behavior of the map but only two are required: a zoom
value to set the map’s level of magnification and a center value to determine where the map is centered. The mapOpt
object literal has the following structure:

mapOpt = {

 zoom: zoomValue,

 center: LatLng,

 other map properties

}

where zoomValue ranges from 0 (showing the entire globe) up to 20 (individual buildings), and LatLng sets the
coordinates of the map center by latitude and longitude. Latitude and longitude values are specified as an object literal
in the following format:

{lat: latitude, lng: longitude}

with latitude ranging from –90 to 90 and longitude ranging from –180 to 180. Latitude and longitude can also be
set using following LatLng() method of the maps object:

new google.maps.LatLng(latitude, longitude)

Once a latitude and longitude value has been defined, it cannot be modified. To use different coordinates, you must
define a new set of latitude and longitude values.

The following code demonstrates how to create a Google Map centered at Oak Top House (latitude 39.9118° latitude,
longitude –82.99879°). The rendered map will be displayed without map controls for street view, map type, and full
screen view.

let map = new google.maps.Map(elem, {

 zoom: 11,

 center: { lat: 39.96118, lng: -82.99879}

 streetViewControl: false,

 mapTypeControl: false,

 fullscreenControl: false

});

Add code to the js10b.js file to create a map for the Oak Top House and then view the rendered map in your web
browser.

To create a google map:

1. Return to the js10b.js file in your code editor.

2. Add the following statement to the initMap() function to store the global coordinates of the Oak Top House
convention center:

// Create a map to the Oak Top House

let oakTopHouse = {lat: 39.96118, lng: -82.99879};

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis424

3. Add the following command to create a map centered at Oak Top House with a zoom level of 11 and the full
screen control turned off:

let myMap = new google.maps.Map(displayMap, {

 zoom: 11,

 center: oakTopHouse,

 fullscreenControl: false,

});

The map will be displayed within the displayMap element, which has been previously defined for you.
 Figure 10-27 describes the newly added code.

Figure 10-27 Creating a map object

Callback function for the
Google Maps API

Location of the Oak Top
House convention center

Google Maps map
object

Options of the map
object

Objects to display the map
and list of driving

directions

Figure 10-28 Google map of the Oak Top House location

4. Save your changes to the file and then open js10b.html in your web browser. As shown in Figure 10-28, the page
displays a map centered on downtown Columbus, Ohio—the fictional home of the Oak Top House.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

crEaTing an inTEracTivE Map 425

If your web page did not render the map shown in Figure 10-28, first check the debugger to verify that you do not have
any syntax errors in the code. If the map still fails to load, verify that you have a valid Google Maps API key and that
your network is not blocking any connections from Google Cloud.

adding Map pins
Map objects provide detail information on streets, cities, countries, and terrain, but you will often need to add content
specific to your application. A map pin or marker can be used to highlight a specific location on the map such as a
home or business. Map markers are created with the following object constructor:

marker = new google.maps.Marker(markerOpt)

where markerOpt is an object literal containing marker properties. Among the properties supported by markerOpt
are the following:

markerOpt = {

 position: LatLng,

 map: map,

 title: "title"

 icon: image,

 label: text

}

where LatLng is a latitude and longitude object, map is a map object, title is the text that appears as a tooltip when
users hover over the marker pin, image is an image file to be used to represent the marker pin, and text is text that
appears as a label within the marker pin. If you do not specify an icon or label, Google Maps will apply its own defaults
in rendering the marker pin. It is a good idea in a map with multiple pins to supply a different label for each pin. Labels
should not be more than one character to fit within the pin image.

Markers can also be added to maps using the command marker.setMap(map) where marker is a
marker object and map is a map object. To remove a marker from its map, run marker.setMap(null).Note

Add a pin to the Oak Top House map to identify the location of the conference center. You will reference the coordi-
nates using the latitude and longitude values previously stored in the oakTopHouse variable and use the default pin
markers supplied by Google Maps.

To add a marker to a map:

1. Return to the js10b.js file in your code editor.

2. Add the following commands to the initMap() function to create a marker for the Oak Top House location:

// Add a marker for the Oak Top House

new google.maps.Marker({

 position: oakTopHouse,

 map: myMap,

 title: "Oak Top House"

});

Figure 10-29 displays the added code to generate the marker.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis426

3. Save your changes to the file and then open js10b.html in your web browser. The map will reopen with a marker
placed at the center of Columbus, Ohio. Hover your pointer over the pin to display the tooltip. See Figure 10-30.

Figure 10-29 Adding a marker to a map

Marker position

Map in which to
place the marker

Tooltip title

Figure 10-30 Marker with tooltip

Another feature that can be added to a map are directions connecting two or more locations. You can use geolocation
to give Oak Top House customers driving directions to the conference center from their current position.

Mapping Your Position with Geolocation
Geolocation is the process that determines the position of the client device using either a built-in GPS receiver or
information drawn from the client’s network IP address. Not every client device supports geolocation, so you must
verify that the device’s position can be determined and provide workarounds if it cannot.

The Geolocation API provides information on the global position of the client device, using the getCurrentPosition()
method of the navigator.geolocation object:

navigator.geolocation.getCurrentPosition(success, fail, opt)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Mapping yOur pOsiTiOn WiTH gEOlOcaTiOn 427

where success is a callback function run if the browser successfully retrieves the device’s global position, fail is
an optional callback function handling geolocation failures, and opt are optional geolocation parameters. Only the
callback function for a successful geolocation is required and has the following structure:

function success(position) {

Commands involving the position object

}

The position parameter provides the position object containing data on the device’s position. Figure 10-31 lists
some of the properties associated with the position object. Note that some properties require a GPS sensor.

Sometimes the getCurrentPosition() function is not successful, which can occur if geolocation is not supported
by the client or the device fails to make a connection to a GPS server. To cover those situations, call the following failure
function so that the failure can be gracefully managed by your app:

function fail(error) {

 Commands involving the error object

}

The error object supports two properties: the code property containing the error number and the message property
containing a description of the error. Possible error codes are:

1. PERMISSION_DENIED (the position was not determined because the page was not given permission)

2. POSITION_UNAVAILABLE (an internal source of error in the client prevented the acquisition of the device’s
position)

3. TIMEOUT (the position was not retrieved with the allotted time)

The following code calls the getCurrentPosition() function and, if successful, writes the device’s current latitude
and longitude to the debugger console, but if unsuccessful logs the reason:

navigator.geolocation.getCurrentPosition(getPos, handleError);

function getPos(pos) {

 console.log("Latitude = " + pos.coords.latitude);

 console.log("Longitude = " + pos.coords.longitude);

}

function handleError(err) {

 console.log("Unable to get location.");

 console.log("Error Code: " + err.code);

 console.log("Reason : " + err.message);

}

ProPerty DescriPtion

pos.coords.latitude Returns the latitude of the client device

pos.coords.longitude Returns the client device's longitude

pos.coords.altitude Returns the altitude in meters (GPS required)

pos.coords.heading Returns the device's heading in degrees, where 0° indicates a heading due North, 90° is East, 180° is South, and 270°
is West (GPS required)

pos.coords.speed Returns the device's speed in meters per second (GPS required)

Figure 10-31 Properties of the Position object

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis428

The optional opt parameter of the getCurrentPosition() method supports the following properties and values
to set whether the current position should be retrieved with high accuracy (true or false), the amount of time in
milliseconds before a timeout error is triggered, and the maximum age in milliseconds allowed to the device to use a
cached position rather than querying for a current position.

{

 enableHighAccuracy: Boolean,

 timeout: value,

 maximumAge: value

}

Unless your app has special need for these options, you can use the default geolocation options.

Add code to retrieve your device’s current position, saving the latitude and longitude in the myPosition object. In
case of failure, display the error message in the debugger console.

To access the device’s global position:

1. Return to the js10b.js file in your code editor.

2. Directly below the code to create the map marker, add the following command to get the device’s current location:

// Get the device’s current position

navigator.geolocation.getCurrentPosition(getPos, handleError);

3. Add the getPos() function to store your device’s current location:

function getPos(pos) {

 let myPosition = {

 lat: pos.coords.latitude,

 lng: pos.coords.longitude

 }

 console.log(myPosition);

}

4. Add the handleError() function to handle errors from the Geolocation API:

// In case of geolocation error

function handleError(err) {

 console.log("Geolocation error: " + err.message);

}

Figure 10-32 describes the newly added code.

Figure 10-32 Getting the device’s current position

Store the current latitude
and longitude in the
myPosition variable

Write the error message to
the debugger console

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Mapping yOur pOsiTiOn WiTH gEOlOcaTiOn 429

For devices in constant motion, the Geolocation API also supports the following watchPosition() method to con-
tinually update position data in response to movement:

id = navigator.geolocation.watchPosition(success, fail, opt)

where success, fail, and opt have the same meaning they have with the getCurrentPosition() function and
id is a timer ID registering the repeated invocations of the function, as it is called every time the device changes loca-
tion. To clear the function, apply the following method:

navigator.geolocation.clearWatch(id)

The watchPosition() function can be very resource-intensive, so only use it when you need to track a device in
constant motion.

Figure 10-33 The device’s current position

Current latitude and longitude
(your values will differ)

5. Save your changes to the file and then reload js10b.html in your browser. When requested, click the Allow button
to allow the page to know your location.

6. Open the debugger console and verify your device’s latitude and longitude are displayed. See Figure 10-33.

7. Close the browser debugger console.

If the Geolocation API displays violation warnings like those in Figure 10-33, it is because the
getCurrentPosition() function is best run in direct response to a user action such as clicking a form
button, rather than run automatically when the page loads. However, the function will operate either way.

Note

Handling Errors with Geolocation
Geolocation has come a long way since its early days. Almost every browser and device will
be able to retrieve information about its current global location. If your app reports an error in
determining its location, here are some possible fixes:

❯❯ Use a modern browser version. If you are using Internet Explorer, make sure it is Internet
Explorer 9 or higher.

❯❯ Enable location services on your browser or mobile devices when requested.

❯❯ There may be access restrictions on a school or business network. Talk with a network
administrator to determine if you need clearance.

If you are still having trouble, try loading the page with a different browser or network.
Sometimes simply rebooting your computer will fix the problem.

Finally, do not overlook the possibility that you have made a mistake in your code. Use your debugger
to locate any syntax, runtime, or logical errors that may be keeping your program from working.

Common
Mistakes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis430

Adding Directions to a Map
Once you have determined the device’s location, you can augment the Oak Top House map with traveling directions
from your location to the conference center. The Google Maps API provides two objects to manage directions. The
DirectionsService object queries the Google Maps Directions Service to find the most efficient route between
two locations for a given mode of travel. The DirectionsRenderer object draws that route on a map or writes the
turn-by-turn directions to the web page. Both objects need to be instantiated before they can be used.

To instantiate the DirectionsService and DirectionsRenderer objects:

1. Return to the js10b.js file in your code editor.

2. Within the getPos() function below the statement to write the myPosition variable to the debugger console,
add the following two statements to instantiate DirectionsService and DirectionsRenderer objects:

// Set up direction service and rendering

let routeFind = new google.maps.DirectionsService();

let routeDraw = new google.maps.DirectionsRenderer();

Figure 10-34 shows the new code in the file.

Figure 10-34 The device’s current position

Object to generate
data about the route

Object to display the
route within a map
or page element

The routeFind variable will be used to query the directions service and generate directions to the Oak Top House
and the routeDraw variable will be used to display that route on the map.

the route Object
Routes submitted to the directions service are described in the following object:

route ={

 origin: location,

 destination: location,

 travelMode: type

}

where location is either a latitude and longitude object, or a named location such as street, city, state, or country;
while travelMode describes the travel conveyance using one of the follow types:

❯❯ DRIVING For routes based on standard driving directions (the default)

❯❯ BICYCLING For cycling routes using bike paths and preferred streets

❯❯ TRANSIT For routes that use public transportation

❯❯ WALKING For walking routes using pedestrian paths and sidewalks

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

adding dirEcTiOns TO a Map 431

The following cycling route starts from a specified latitude and longitude and ends at the Mount Rushmore National
Monument:

route = {

 origin: {lat: 43.932652, lng: -103.576607},

 destination: "Mount Rushmore, SD",

 travelMode: "BICYCLING"

}

A route can also include fields for departure or arrival time, driving preferences (such as avoiding toll roads), public
transit type, or waypoints on the way to the destination. You can learn more about creating detailed route requests
using the Google Maps documentation on the Google Console website.

For the Oak Top House website, you will define a driving route starting from your location and ending at the conven-
tion center.

To define a driving route:

1. Directly below the command declaring the routeDraw variable, add the following object specifying the route:

// Drive from current location to Oak Top House

let myRoute = {

 origin: myPosition,

 destination: oakTopHouse,

 travelMode: "DRIVING"

}

See Figure 10-35.

Figure 10-35 Route object from your location to the convention center

2. Save your changes to the file.

Having defined a route, you will next generate driving directions from your location to the Oak Top House.

Displaying the Driving route
Directions between an origin and a destination are generated by calling the directions service using the following
route() method:

directionsService.route(routeObj, callback);

where routeObj is the route object and callback is a callback function processing the results returned from the
directions service.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis432

The first parameter of the callback function stores the response from the service; the second parameter stores the
final status of the request. A status value of “OK” indicates that the service successfully found driving directions for
the route; any other status value indicates failure. With the two parameters, the callback function has the general form:

function callback(result, status) {

 if (status === "OK") {

 display the result

 } else {

 report an error

 }

}

If the status of the request is “OK”, store the directions in a DirectionsRenderer object using the following
setDirections() method:

directionsRenderer.setDirections(result)

otherwise, alert the user that directions could not generated. Add this code structure to your script.

To generate directions between the origin and the destination:

1. Directly below the command creating the myRoute object, add the following:

// Generate directions for the route

routeFind.route(myRoute, function(result, status) {

 if (status == "OK") {

 routeDraw.setDirections(result);

 } else {

 routeBox.textContent = "Directions Unavailable: " + status;

 }

});

See Figure 10-36.

Figure 10-36 Generating directions for the route

If the request is
successful, apply the

result to the directions
renderer

Otherwise, display the
reason for the failure

Route object from your
location to Oak Top House

Result generated by the
directions serviceQuery the directions

service to �nd directions
for the route

Status of the service
request

2. Save your changes to the file and then reload the js10b.html file in your browser. Allow the browser to use your
location and verify that no error message is generated the directions service.

This project assumes a driving path exists between your current location and the convention center in Columbus,
Ohio. If the browser displays an alert box with the message “ZERO_RESULTS”, it indicates that no such driving path
exists (which might be the case if you are not located within North America). Revise the code to provide a different
destination that would be drivable for you.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

adding dirEcTiOns TO a Map 433

When directions have been successfully retrieved from the directions service, the route is placed on the map using
the following setMap() method of the directionsRenderer object:

directionsRenderer.setMap(map)

Turn-by-turn directions are displayed within a web page element using the following setPanel() method:

directionsRenderer.setPanel(elem)

Add both methods to your code, completing the page that shows both the route to the Oak Top House and the turn-
by-turn directions.

To show the route to the Oak Top House:

1. Return to the js10b.js file in your code editor.

2. Directly below the command applying the setDirections() method, add the following two statements to
draw the route and show the direction list:

// Display route and directions

routeDraw.setMap(myMap);

routeDraw.setPanel(routeBox);

Figure 10-37 shows the completed code.

Figure 10-37 Displaying the travel route

Draw the route on the
map using a polyline

Display the turn-by-turn
directions in the

routeBox element

The route() method uses a callback function to retrieve direction information. A callback is any executable code
that is called to complete a task or return a value, such as generating a driving direction for a given route and mode
of travel.

A synchronous callback is a callback that accomplishes its task before returning control to the caller. If the task is a
long one or if there is some difficulty in completing the task, the script stalls, waiting for the response. The compare
functions used with the sort() method are an example of a synchronous callback because sorting cannot proceed
until the results of the callback are returned.

An asynchronous callback releases the program execution as it works on its task so that the callback and the rest of
the code are working in parallel. The problem with an asynchronous callback is that there is no guarantee that tasks
in the callback will be finished before the rest of the code needs the result. Thus, the code must ensure that a result
has been provided before working on outcome. That is why the route() method included a status parameter
to ensure that the callback function had completed its task (either successfully or unsuccessfully). Asynchronous
callbacks are often used with calls to external resource such as third-party APIs and scripts running on a web server.

Programming Concepts Synchronous and Asynchronous Callbacks

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis434

You have completed your work on the Oak Top House Directions map. The Google Maps API is a broad and powerful
set of tools for creating interactive maps, and you have only scratched the surface of what it can do. For example, you
can develop maps that respond to pointer events with content that can be modified by the user in real time. The API
is extensively documented at the Google Console website.

Introducing the Device Orientation API
For some apps you will need information about the movements of the client device, but not on a global scale. The
Device Orientation API provides access to data from specialized hardware in many mobile devices for detecting
changes in position and speed. A device’s gyroscope detects its orientation in space, and its accelerometer detects
changes in speed. The Device Orientation API lets your apps react to changes in the data provided by this hardware
through the deviceorientation and devicemotion events.

The deviceorientation event reports a set of coordinates with the property names alpha, beta, and gamma.
Each property corresponds to one of the three dimensions, analogous to the x, y, and z axes used in geometry. By
comparing changes in orientation mathematically, your code can respond to user actions including tilting a device.
For example, you could use the deviceorientation event to create a game that simulates a marble on a flat

3. Close the file, saving your changes, and then reload js10b.html in your browser. Verify that the page now shows
the route and the driving directions between your location and the Oak Top House. See Figure 10-38.

Figure 10-38 Route and directions to the Oak Top House

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prEparing an app fOr MObilE usE 435

board, with the user tilting the device back and forth and side to side to get the marble into a center hole without
falling off one of the edges. Based on changes in the orientation of the device, your app would run code changing
the direction of the marble’s movement.

The devicemotion event reports values for acceleration and rotation. You could use this event in an app that pro-
vides the user with continuous information on their direction and speed, determining if the user is moving or standing
still.

Preparing an App for Mobile Use
When you create an app with mobile users in mind, it is important to account for some of the limitations of handheld
devices. In this section, you will explore a few development practices that can make your apps work better and more
reliably for mobile users.

testing tools
Mobile devices run different browsers than desktop computers. Even though Chrome, Firefox, Safari, and Internet
Explorer all make mobile versions available for different mobile operating systems, the mobile versions are distinct
from the desktop versions, and may have different capabilities, limitations, and even bugs. For all these reasons, it is
important to test your apps on the mobile platforms that you expect your users to be running.

The quickest and easiest way to test your code is to use the device emulation features built into your web browser;
however, emulation does not always capture all the subtleties of the actual device. A professional web development
department or studio often maintains a large collection of mobile devices for testing mobile apps on various operating
systems and with different screen sizes and resolutions. Because most developers do not have the resources to main-
tain a collection of mobile devices, other options exist. Several services are available online that enable developers to
interact with virtual versions of many mobile devices. You can locate some of these services by searching on “mobile
device testing service.” In addition, the makers of mobile operating systems and browsers all provide free programs
that simulate interactions with their devices or software.

Minimizing Download Size
The amount of data required by a mobile app and how it is handled is an important consideration for developers.
Although mobile devices can connect to the Internet via a fast local network, many mobile users access the web
through the wireless provider’s mobile network. While mobile speeds are increasing on a regular basis, speed limita-
tions and the cost of bandwidth can impair performance. Therefore, to ensure that users can effectively make use of
your app, you should design the app to download as little data as possible.

Web developers have come up with several strategies for minimizing download size, including loading scripts respon-
sively and minifying files. For small web apps, it is common to include all JavaScript code in a single external JavaScript
file. However, as your web apps become more complex, they will include code that is not needed unless a user chooses
a specific option. In those cases, you can reduce the amount of code that needs to be downloaded by dividing up the
JavaScript code into multiple files and downloading each file only when requested.

Minifying Files
You have learned that adding indents and line breaks makes it easier for you and others to interpret your code. A
JavaScript processor does not care about that. The code will run the same way with or without those features. In a
large web app that will be used by mobile devices, it is important for developers to remove every unneeded character,
reducing the download size as much as possible. One commonly used method is minifying files, by removing comments,
indents, and line breaks, and tweaking the code in other ways to make the file size smaller.

Figure 10-39 shows an example of a JavaScript program before and after minifying.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis436

Before minifying, the file contained 1,769 characters. After removing all line breaks, indents, and comments the
minified version contained 708 characters—a 60 percent reduction! There are several free minifying programs on
the web for reducing the file size of your HTML, CSS, and JavaScript programs. Many code editors also include
minifying tools.

Minifying is the last thing you should do with your code prior to publishing, and only after you have ensured all errors
have been found and fixed and the code has been vetted by colleagues and customers. Always keep a non-minified
version of the file available for future revisions. Remember that once you minify a file, all comments, line returns, and
indents will be forever lost if you have not saved the original.

Figure 10-39 Minifying a JavaScript file

Standard �le Mini�ed �le

Apps that use geolocation require the user’s permission before acquiring geolocation data. This part of the
specification is implemented by browsers, so no additional steps are required by app developers to carry it out.
However, it serves as a useful model of data transparency, which is the process of making it clear to users what
information your app wants to collect from them and how you intend to use it. The more transparent you are with
your data requests and use, the more trust you build with the users of your apps. Data transparency also helps your
colleagues as your app will clearly document: (a) What it is doing, (b) why it is doing it, and (c) what is required of
the end user. It will help everyone if you are clear and complete in all your coding.

Skills at Work Making your App Transparent

Quick Check 3

1. Provide code for a map options object named mapOpt that is centered at 43.992722° latitude and -102.241509°
longitude with a zoom level of 15.

2. Provide code to create a new marker named cityMarker using options defined in the object literal,
cityOptions.

3. what does it mean if the geolocation aPi returns an error code of 3?

4. what is the difference between the DirectionsService object and the DirectionsRenderer object?

5. why would you minify a file?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

kEy TErMs 437

Summary
❯❯ Events are objects with their own collections of properties and methods.

❯❯ Events propagate through the object hierarchy either by bubbling up the object hierarchy or by capturing down
the object hierarchy.

❯❯ Pointer events can be used to respond to mouse and touch events as well as events associated with other pointer
devices.

❯❯ To create a drag and drop action using pointer events, capture the object during a pointerdown event, move the
object during the pointermove event, and release the object during the pointerup event.

❯❯ You can determine the pointer’s location within the browser window using the e.clientX and e.clientY event
properties.

❯❯ The Drag and Drop API simplifies the drag and drop process by making object draggable using tools built into the
browser.

❯❯ DataTransfer objects are used with the Drag and Drop API to transfer data from dragged elements into the drop zone.

❯❯ Keyboard actions can be captured using the keydown, keypress, and keyup events. The keydown and keyup
events capture the physical act of typing on a keyboard; the keypress event captures the act of generating a character.

❯❯ The Google Maps API can be used to create interactive maps embedded into a web page. To use the API, you need
to set up a billable account with Google and establish an API key for the app.

❯❯ Google maps are generated by centering the map at a specified latitude and longitude and setting the zoom level
for the map view.

❯❯ Pin markers can be placed on a map using the new google.maps.Marker() method with each pin being given
a position and title.

❯❯ To add a route between two points on the map, create a DirectionsService object to determine the directions
between the points and a DirectionsRenderer object to display the route on the map or within a box
containing turn-by-turn directions.

❯❯ You can make an app more suitable for mobile devices by reducing the number of script files that must be loaded
and by minifying the script file contents to remove extraneous content.

Key Terms
accelerometer

API key

asynchronous callback

bubbling phase

callback

capture phase

dataTransfer object

data transparency

Device Orientation API

DirectionsRenderer object

DirectionsService
object

Drag and Drop API (DnD API)

drop zone

Geolocation API

geolocation

Google Maps API

gyroscope

minifying

modifier keys

pointer event

position object

synchronous callback

target phase

touch cascade

Touch interface

TouchEvent interface

TouchList interface

touchpoint

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis438

Review Questions
1. The object that initiated an event is referenced

using which of the following?
a. e.currentTarget
b. e.origin
c. e
d. e.target

2. The part of event propagation in which events
from the event target up the browser window is
_________________.
a. the target phase
b. the bubbling phase
c. the capture phase
d. the event phase

3. What is the order of events triggered during a
mouse click action?
a. just click
b. mousedown, mouseup, and then click
c. mousedown, click, and then mouseup
d. mousedown and then mouseup

4. Touch events begin with which event?
a. touchstart
b. touch
c. touchdown
d. tap

5. An array of touchpoints that have changed during
an event is referenced with which object?
a. touches
b. newtouches
c. changedTouches
d. touchList

6. Which of the following events is interpreted as
being equivalent to the pointerup event?
a. touchstart
b. touchend
c. touchmove
d. touchoff

7. The horizontal distance between a pointer event and
the containing element is given with which property?
a. e.clientX
b. e.offsetX
c. e.screenX
d. e.pageX

8. To make an element draggable, what attribute
should be added to the element tag?
a. dragstart = "true"
b. drag = "true"
c. drag = "on"
d. draggable = "true"

9. Which statement will store data during the
dragstart event?
a. e.drag.setData()
b. e.dragstart.setData()
c. e.setData()
d. e.dataTransfer.setData()

10. Which of the following events will return the
character generated by a keyboard action?
a. keydown
b. keypress
c. keyup
d. key

11. Which of the following object constructors creates
a Google Maps object?
a. new google.maps.Map()
b. new maps()
c. new maps.Map()
d. new google.Map()

12. Which of the following objects defines a global
position at 45° latitude and -80° longitude?
a. {lat: 45; long: -80}
b. {lat = 45, long = -80}
c. {lat: 45, lng: -80}
d. {lat: 45; lng: -80}

13. Which statement returns the device’s global
position?
a. navigator.position()
b. navigator.getCurrentPosition()
c. navigator.geolocation.

getCurrentPosition()
d. navigator.gelocation.getPosition()

14. You wish to use Google Maps to show a public bus
route between two locations. What value should
you enter for the route’s travelMode field?
a. BUS
b. TRANSIT
c. DRIVE
d. PUBLIC

15. What method is used to apply a set of directions to a
directionsRenderer object?
a. directionsRenderer.setMap()
b. directionsRenderer.setPanel()
c. directionsRenderer.setDirection()
d. directionsRenderer.route()

16. How do event listeners and event handlers manage
event propagation?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hands-On prOjEcTs 439

Hands-On Projects
Hands-On Project 10-1

In this project you will use pointer events to add drag and drop functionality to a jigsaw puzzle page. The page
already contains code that generates and randomizes the placement of 48 jigsaw pieces. Your task will be to
complete the page by writing code to enable users to drag and drop individual pieces. The code in this page
closely resembles the code used to add drag and drop capability to the Oak Top House room layout page. A
preview of the puzzle page is shown in Figure 10-40.

17. What is a touch cascade?

18. How does the Drag and Drop API differ from drag
and drop effects created using pointer events?

19. What do you need to set up before you can use the
Google Maps API in your web app?

20. What does minifying do to a code file?

Figure 10-40 Completed Project 10-1

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis440

Do the following:

1. Use your code editor to open the project10-01_txt.html and project10-01_txt.js files from the js10 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project10-01.html and project10-01.js, respectively.

2. Go to the project10-01.html file in your code editor. Add a script element linked to the project10-01js file.
Defer the loading of the script until after the page is loaded. Close the file, saving your changes.

3. Go to the project10-01.js file in your code editor. At the bottom of the file create a for loop that iterates through
every item in the pieces node list. For each item, add an event listener that runs the grabPiece() function
in response to the pointerdown event.

4. Create the grabPiece() function. Within the function do the following:

a. Set the value of the pointerX and pointerY variables to the values of the clientX and clientY
properties of the event object.

b. Set the value of the touchAction style for the event target to “none”.

c. Increase the value of the zCounter variable by 1 and apply that value to the zIndex style of the event
target.

d. Set the value of the pieceX and pieceY variables to the values of the offsetLeft and offsetTop
properties of the event target.

e. Add an event listener to the event target that runs the movePiece() function in response to the
pointermove event. Add an event listener to the event target that runs the dropPiece() function in
response to the pointerup method.

5. Create the movePiece() function. Within the function do the following:

a. Declare the diffX variable, setting it equal to the difference between e.clientX and pointerX. Declare
the diffY variable setting it equal to the difference between e.clientY and pointerY.

b. Set the value of the left style property of the event target to sum of pieceX and diffX plus the text string
“px”. Set the value of the top style property of the event target to sum of pieceY and diffY plus the text
string “px”.

6. Create the dropPiece() function. Within the function do the following:

a. Remove the movePiece() function from the event listener for the pointermove event.

b. Remove the dropPiece() function from the event listener for the pointerup event.

7. Save your changes to the file and then load project10-01.html in your web browser. Verify that the page loads
with the puzzle pieces randomly ordered and that you can move pieces around using drag and drop. The puzzle
pieces might lag behind the movement of the pointer. This is an effect of the browser screen’s refresh not
keeping up with pointer movements.

Hands-On Project 10-2

In this project you will code a page dedicated to tangram puzzles. A tangram is a two-dimensional shape that
is created by five triangular shapes, one square, and one parallelogram. Users are given the final shape but not
how the pieces are laid out to create it. To complete this project, you will add drag and drop functionality to
the seven tangram pieces and give the user the ability to rotate each piece 90° when the Shift key is held down
as the shape is clicked. A preview of the page is shown in Figure 10-41.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hands-On prOjEcTs 441

Do the following:

1. Use your code editor to open the project10-02_txt.html and project10-02_txt.js files from the js10 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project10-02.html and project10-02.js, respectively.

2. Go to the project10-02.html file in your code editor. Add a script element linked to the project10-02js file.
Defer the loading of the script until after the page is loaded. Close the file, saving your changes.

3. Go to the project10-02.js file in your code editor. Below the rotateTan() function add a for loop that iterates
through all the pieces in the tans node list. For each piece add an event listener that runs the grabTan()
function in response to the pointerdown event.

4. Create the grabTan() function. Within the function do the following:

a. If the Shift key has been pressed down, call the rotateTan() function using the event target and a value of
15 as the parameter values.

b. Otherwise, store the e.clientX and e.clientY values in the eventX and eventY variables. Set the
touch-action style to “none”. Increase the zCounter variable by 1 and apply it to the zIndex style of
the event target.

c. Add an event listener to run the moveTan() function in response to the pointermove event. Add an event
listener to run the dropTan() function in response to the pointerup event.

5. Create the moveTan() function. Within the function calculate the distance horizontally and vertically that the
pointer has moved from its initial position and move the event target the that same amount.

Figure 10-41 Completed Project 10-2

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis442

6. Create the dropTan() function. Within the function remove that event listeners you created for the
pointermove and pointerup events.

7. Save your changes to the file and then load project10-02.html in your browser.

8. Verify that you can drag and drop the seven tangram pieces. Also verify that when you hold down the Shift
key and click the pieces they rotate clockwise. Note: The seven pieces are stock in rectangular images with
transparent backgrounds that may overlap, so clicking two adjacent pieces might result in either piece being
selected.

Hands-On Project 10-3

In this project you will create an interactive map for a cycling club in Boulder, Colorado, allowing cyclists to
view a map with directions between two popular cycling destinations. To complete this project, you will need
to set up a Google Cloud account along with an API key to access the Google Maps, Directions Service, and
Directions Renderer APIs. A preview of the completed page is shown in Figure 10-42.

Figure 10-42 Completed Project 10-3

Do the following:

1. Use your code editor to open the project10-03_txt.html and project10-03_txt.js files from the js10 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project10-03.html and project10-03.js, respectively.

2. Go to the project10-03.html file in your code editor. Add a script element linked to the project10-03js file.
Defer the loading of the script until after the page is loaded.

3. Add another script element with the following src attribute: https://maps.googleapis.com/maps/
api/js?key=key&callback=showMap where key is your Google Maps API key. Also defer this script until
after the page is loaded.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hands-On prOjEcTs 443

4. Close the file, saving your changes and then go to the project10-03.js file in your code editor. Steps 5
through 10 should all be down within the showMap() function. Several variables have already been
declared for you.

5. Use the new google.maps.DirectionsService() object constructor to create a DirectionsService
object named bikeFind.

6. Use the new google.maps.DirectionsRenderer() object constructor to create a
DirectionsRenderer object named bikeDraw.

7. Create a LatLng object named Boulder storing within it a latitude of 40.01753° and a longitude of
-105.26496°.

8. Use the new google.maps.Map() object constructor to instantiate a new Google map named myMap. Set the
zoom level to 12 and center the map on Boulder.

9. Create event listeners for the startingPoint and endingPoint selection lists, running the drawRoute()
function in response to the change event.

10. Create the drawRoute() function. Within the function insert an if statement that tests whether the selected
index for the startingPoint and endingPoint selection lists are both not equal to 0. If true, then do the
following:

a. Define a route object named bikeRoute with an origin at startingPoint.value and a destination at
endingPoint.value. Set the travelMode option to BICYCLING.

b. Apply the route() method to the bikeFind object generating directions between the starting and ending
points. If the status of the request is “OK” then (i) apply the setDirections() method to bikeDraw
object request directions from the directions service, (ii) apply the setMap() method to bikeDraw to
display the route within myMap, and (iii) apply the setPanel() method to bikeDraw to display the turn-
by-turn directions within the bikeDirections object.

If the status is not “OK” then change the text content of the bikeDirections object to “Directions
Unavailable: status”.

11. Save your changes to the file and then load project10-03.html in your browser. Verify that a map of Boulder,
Colorado appears in the left box. Verify that when you select starting and ending points from the two list boxes,
a route is drawn on the map and turn-by-turn directions are provided between the two points.

Hands-On Project 10-4

In this project you will explore how to use the Drag and Drop API to move chess pieces onto and around a
chess board. Refer to Figure 10-22 for help in coding this project.

Dropping a piece onto a square moves the element from its current location (either in the chess board or on
the board), appending it as a child element of the square. In some cases, the square may already be occupied
by another piece. If that is case, that occupying piece will be removed and returned to its box. To determine
whether another piece is already in the drop zone, you will use the node.tagName property, which
returns the tag name of an element node in uppercase letters. A preview of the completed page is shown in
Figure 10-43.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis444

Do the following:

1. Use your code editor to open the project10-04_txt.html and project10-04_txt.js files from the js10 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project10-04.html and project10-04.js, respectively.

2. Go to the project10-04.html file in your code editor. Add a script element linked to the project10-04js file.
Defer the loading of the script until after the page is loaded. Take some time to study the contents of the file.
Note that every chess piece is marked with a span element and given a unique id. White pieces belong to the
white class, while black pieces belong to the black class. After you have become familiar with the content and
structure of the document, close the file saving your changes.

3. Go to the project10-04.js file in your code editor. Create a for loop that iterates through all the contents of the
pieces collection. For each piece do the following:

a. Set the value of the piece’s draggable property to “true”.

b. Create an event handler for the dragstart event that sets the text of event target’s id in the
dataTransfer object.

4. Create a for loop that iterates through all the items in the boardSquares node list. Add the tasks described
in Steps 5 through 11 to this for loop.

5. For each item create an event handler for the dragover event. In the anonymous function associated with the
event, add a command that prevents the default actions associated with the dragover event.

6. For each item create an event handler for the drop event that runs an anonymous function. Add the tasks
described in Steps 7 through 11 to the function.

7. Insert a command to prevent the default action associated with the drop event.

8. Declare the pieceID variable that gets the id value from the dataTransfer object.

9. Declare the movingPiece variable that references the document element with that id.

10. If the tag name of the event target equals “TD” (indicating that you are dropping the piece onto an empty
square), append movingPiece as a child of the event target.

Figure 10-43 Completed Project 10-4

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hands-On prOjEcTs 445

11. Otherwise, if the tag name equals “SPAN” (indicating the you are dropping the piece onto another piece), do the
following:

a. Store the event target in a variable named occupyingPiece.

b. Store the parent element of occupyingPiece in a variable named square.

c. Use the appendChild() method to append movingPiece as a child of square.

d. Move the occupying piece back to the chess box. If the class name of occupyingPiece equals “white” then
use the appendChild() method to append occupyingPiece to the whiteBox object; otherwise append
occupyingPiece to the blackBox object.

12. Save your changes to the file and then load project10-04.html in your web browser. Verify that you can move
pieces from the chess box onto the board. Also verify that moving a piece onto a square that is occupied by
another piece, moves the occupying piece back to its box.

Hands-On Project 10-5

Debugging challenge

You have been given a web app for a crossword puzzle game. The page is designed to accept pointer and
keyboard input. From the keyboard, players can type their answers, move to a different space using the Arrow,
Tab, and Enter keys or delete letters using the Delete and Backspace keys. Finally, they can toggle the typing
direction between across and down by pressing the Spacebar key. While the pointer actions are working
correctly, the keyboard actions are not. You have been asked to debug the code for keyboard actions. A
preview of the page is shown in Figure 10-44.

Figure 10-44 Completed Project 10-5

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 Programming with EvEnt objEcts and third-Party aPis446

Do the following:

1. Use your code editor to open the project10-05_txt.html and project10-05_txt.js files from the js10 c
project05 folder. Enter your name and the date in the comment section of each file and save them as
project10-05.html and project10-05.js, respectively.

2. Go to the project10-05.html file in your code editor and add script elements to link the file the cross.js and
project10-05.js files, deferring both scripts until is page is loaded. Take some time to study the contents of
document and then close, the file saving your changes.

3. Go to the cross.js file in your code editor. This file contains many variables and functions used in the operation
of the crossword puzzle. While there are no errors in this file, take some time to study the code so you have a
better grasp of the project. Close the file without saving your changes you might have made.

4. Go to the project10-05.js file in your code editor. Fix the following mistakes in the file:

a. The first statement in the file calls the selectLetter() function when the user types a keyboard key
in the document. Keyboard actions will control the actions of this program, but there is a mistake in the
statement.

b. Default actions associated with the keyboard should be prevented. A line has been added to the
selectLetter() function to do this, but it is causing an error.

c. The value of the key typed by the user will be stored in the userKey variable, but there is a mistake in
declaring this variable.

d. When the user presses the Spacebar, the typing direction should toggle between across and down. However,
there is an error in the else if statement that calls the switchTypeDirection().

e. If the user types a letter from “a” to “z”, the character should be added to the puzzle in uppercase. Fix the
line that write the character so that it does this.

5. Save your changes to the file and then load project10-05.html in your web browser.

6. Test the page by typing answers into the crossword puzzle. Verify the following:

a. Typing a letter places the character in the highlighted puzzle square.

b. Pressing arrow keys changes the highlighted square.

c. Pressing the Enter key moves the highlighted square down on cell. Pressing the Tab key moves the
highlighted square one cell to the right.

d. You can toggle the typing direction by pressing the Spacebar.

e. You can delete characters by pressing the Backspace or Delete keys.

You might have to use the browser’s debugger to locate all the errors in the code and work through the
debugging issues in stages. Figure 10-24 can be a great help in understanding how to interpret keyboard entries.

Case Projects
Individual Case Project

In your individual website, enhance your existing page about browser security to show users their current
location on a map. Note that you must specify a height and width using CSS for the element in which you
display the map; these dimensions can be any size you choose. Also enhance the page to display the user’s
latitude, longitude, and altitude, with a label for each value.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

casE prOjEcTs 447

Team Case Project

Divide into two or three subgroups, with each group taking responsibility for downloading, installing, and
becoming familiar with the testing tool for a touchscreen or mobile operating system under Google Android
and Apple iOS. Note that the testing tools for Apple iOS can be installed only on an Apple Mac computer, so
ensure that the subgroup responsible for this OS includes at least one member with the necessary hardware.

In your group, download your group’s tool using the appropriate URL:

❯❯ Android: https://developer.android.com/sdk/index.html

❯❯ iOS: https://developer.apple.com/xcode/downloads/

Read the documentation at the same URL or included with the tool to learn how to open and test a web app
using the tool. Open your Group Case Project web app in your subgroup’s tool and then test the following
aspects of your app:

❯❯ Appearance on at least three virtual devices with different screen sizes

❯❯ Functionality of your navigation interface

❯❯ Functionality of your form

Note the results of each test, even if the result is that the app performs the same as on a desktop computer.
Share your results with the other subgroups and then as a group create a report describing the following:

❯❯ Areas where your app functioned as you expected in each OS

❯❯ Areas where your app functioned unexpectedly in each OS

❯❯ Aspects of the app that you would have liked to test in each tool, but may have been unable to

❯❯ At least two advantages and two disadvantages of each tool

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

449

When you go to the web to get information such as the current state of the weather, driving conditions,
or the stock market, you are making data requests to a server resource. The server resource takes your
request and generates a response in the form of a weather forecast, driving directions, or stock quotes.
The request/response action takes place entirely within the web page. Because the browser is only
retrieving the data it needs and not the entire page, the result is a more efficient and more flexible means
of exchanging information with the server. In this chapter you will explore how to use such techniques
to augment your own web apps with data requests to server resources.

Chapter 11

When you complete this chapter, you will be able to:

❯❯ Understand the nature of server requests and responses

❯❯ Work with the content of HTTP messages

❯❯ Create HTTP request objects using AJAX

❯❯ View the status of an HTTP request and response

❯❯ Understand the limitations of AJAX and nested callbacks

❯❯ Write functions in arrow function syntax

❯❯ Create and use promise objects

❯❯ Manage requests and responses using the Fetch API

❯❯ Retrieve content written in XML

❯❯ Create an autocomplete search box

❯❯ Work with third-party APIs

❯❯ Manage security issues with third-party APIs

Managing Data
Requests with
AJAX and Fetch

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch450

Introducing Server Requests
Web pages are a fundamental means of delivering content on the Internet. In this approach, illustrated in Figure 11-1,
a browser accesses a page via the HTTP protocol with the page’s content generated using server-side scripts with
content often drawn from server-side databases.

This chapter assumes you will have access to a web server and server scripts provided either by your
instructor or set up on your own computer.Note

Figure 11-2 Google search suggestions

List of suggested keywords
retrieved from server in

response to keyboard actions

The transfer of data from the server to the web page is synchronous because once the browser has asked for a web page,
nothing can be done on the client until the page’s content is generated and returned by the server. However, it is ineffi-
cient to transfer entire pages when only part of a page needs to be updated. The Google Search box shown in Figure 11-2
provides a list of suggestions based what the user has typed into a search box and updates that list with each additional
character. The only part of the page that needs to be updated is the contents of the suggestion list.

Figure 11-1 Processing a web page

HTTP request

HTTP response as
a new web page

Database request

Database response with
content for the page La

p
to

p
: c

ob
al

t8
8/

Sh
ut

te
rs

to
ck

.c
om

.

D
at

ab
as

e
ic

on
: Y

ul
ia

 T
er

en
ty

ev
a/

Sh
ut

te
rs

to
ck

.c
om

G
lo

b
al

/S
cr

ee
n:

 N
.D

. F
er

na
nd

ez
/S

hu
tt

er
st

oc
k.

co
m

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IntroducIng Server requeStS 451

The approach used by the Google Search box and other similar apps is to send a request to the server, which then
operates on that request and returns a response to the client. A request to a weather server could supply informa-
tion on the client’s location and a script running on the server would use that data to generate a forecast, which is
then returned to the client. See Figure 11-3.

Data transfers of this type between the client and the server are asynchronous, freeing up the client for other tasks while
waiting for a response. A single web page might wait on several such asynchronous requests. For weather forecasts or
stock market quotes, requests can be automated to repeat at set intervals so that information is constantly streamed
between the server and client, but not preventing the client from completing other tasks.

In this chapter you will add asynchronous requests to a web page created by a sports blogger to retrieve news stories,
headlines, and commentary from a server. The basic structure and content of the page has already been created for you.
Your job will be to write code requesting information from the server and displaying the server’s response within the page.

to open the files for the sports blog:

1. Go to the js11 c chapter folder of your data files.

2. Use your code editor to open the js11_txt.html and js11_txt.js files. Enter your name and the date in the comment
section of each file and then save them as js11.html and js11.js, respectively.

3. Take some time to study the contents of the js11.html file. Note that the only page content currently in the file is the
header logo, search box, and list of navigation links. All other content will be generated and returned by the server.

Because you will be interacting directly with a server, you will need to place all files for this project in a web server of
your own. You can install local server software on your computer using a free program like XAMPP, or you might have
access to a server account provided by your instructor.

See Appendix A for installation instructions for XAMPP.Note

to place the files on your server:

1. Copy all the files in the chapter folder, except the js11_txt.html and js11_txt.js files, and paste them into a new
directory on your server.

If you are using XAMPP you can place them in a new subfolder of the htdocs folder where your version of XAMPP
is installed. In Nginx, the folder name is html. For IIS, the default folder is wwwroot. If you are using a server
provided by your instructor or using different server software, consult your instructor or the server documenta-
tion to determine the folder in which website pages should be stored.

2. Use your web browser to open the js11.html file from its location on your server. If you are using a local server this
would be the address: http://localhost/folder/js11.html where folder is the name of the subfolder in
which you have stored the project files. Figure 11-4 shows the initial contents of the page as viewed on a local server.

Figure 11-3 Processing a server request

Database response for
the server request

Server request Database request

Response sent to
browser to add
to the DOM La

p
to

p
: c

ob
al

t8
8/

Sh
ut

te
rs

to
ck

.c
om

.

D
at

ab
as

e
ic

on
: Y

ul
ia

 T
er

en
ty

ev
a/

Sh
ut

te
rs

to
ck

.c
om

G
lo

b
al

/S
cr

ee
n:

 N
.D

. F
er

na
nd

ez
/S

hu
tt

er
st

oc
k.

co
m

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch452

Figure 11-4 Initial blogging page

Sidebar will display
current headlines

Articles of interest
will be displayed in

the center panel

Enter keywords to
search for articles

Website address
on server

In this chapter, you will always edit the copy of the files placed on your server. When viewing the page in
your browser, always use the page’s address on the web server and not the location from your computer’s
disk drive.

Note

The page is currently devoid of content and must be able to retrieve and display content from other sources:

❯❯ The daily commentary needs to be retrieved from a file residing on the web server.

❯❯ Current headlines will be retrieved from an online newsfeed.

❯❯ Archived columns will be retrieved from the server after the user enters a keyword in the search box.

❯❯ Suggested keywords will appear in the search box in response to keyboard actions.

Before you begin writing the code for this project, you will review some of the principles of communication via the
Hypertext Transfer Protocol.

Exploring HTTP Messages
Hypertext Transfer Protocol (HTTP) is a set of rules defining how requests are made by an HTTP client to an HTTP
server and how responses are returned from the server to the client. The term HTTP client refers to the client,
usually a web browser, making the request. HTTP server refers to a computer, usually the web server, that receives
HTTP requests and returns responses to HTTP clients.

Understanding http Messages
When a request is submitted from a web page, the HTTP client opens a connection to the server and submits a request
encapsulated within an HTTP message. The web server then returns a response also encapsulated within a message.
The request and response messages have the following general structure:

start line

header lines

blank line

message body

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

explorIng Http MeSSageS 453

The start line identifies the type of request or response, the resource to access, and the HTTP version. The
following is a typical HTTP start line that makes a request to the server resource file submit.cgi using the GET
method via the HTTP 1.1 protocol. A query string topic=Baseball is attached to the URL of the requested
resource.

GET submit.cgi?topic=Baseball HTTP/1.1

The start line of the response message from the server to the client contains information about the protocol and the
response status. The following start line indicates a successful response via the HTTP 1.1 protocol:

HTTP/1.1 200 OK

After the start line are the header lines. A header can include zero or more lines with each header written in a
name:value pair:

header: value

The following Connection header specifies that the HTTP connection should close after the web client receives
the server response. The Date header identifies the date and time of the message in Greenwich Mean Time. The
Cache-Control header tells the browser that it should not cache any server content it receives.

Connection: close

Date: Wed, 26 June 2024 18:32:07 GMT

Cache-Control: no-cache

Caching is the temporary storage of data on a local device for faster access. Most web browsers reduce the
amount of data that needs to be retrieved from a server by caching retrieved data on a local computer. If caching
is enabled in a web browser, the browser will attempt to locate any necessary data in its cache before making a
request from a web server. While this technique improves web browser performance, it goes against the goal of
dynamically updating portions of a web page with request information from the server. Thus, many apps will set
the Cache-Control header to no-cache.

A blank line separates the message header and the message body. The message body might contain data needed for
the request or the data returned with the response. However, message bodies are not required for either request or
response messages. With a GET request, no message body is necessary because any form data is appended to the
URL as a query string.

Although GET and POST requests are among the most common types of HTTP requests, other methods that can be
used with an HTTP request are HEAD, DELETE, OPTIONS, PUT, and TRACE. For example, the HEAD method returns
information about a document, but not the document itself. An app might use the HEAD method to determine the last
modification date of a web page before requesting it from the web server.

Although HTTP is probably the most widely used protocol on the Internet, it is not the only one. HTTP is
a component of a large collection of Internet communication protocols called the Transmission Control
Protocol/Internet Protocol (TCP/IP). Other common protocols include the Hypertext Transfer Protocol
Secure (HTTPS), which provides secure Internet connections used in web-based financial transactions and
other communications that require heightened security and protection, and the Internet Message Access
Protocol (IMAP), used for storing and accessing email.

Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch454

Introducing AJAX
The technology for sending and receiving HTTP messages between the client and the server was first introduced as
AJAX (Asynchronous JavaScript and XML), a term coined by Jesse James Garrett in 2005 in an article titled AJAX: A
New Approach to Web Applications. Garnett’s article focused attention on techniques already pioneered by such apps
as Google Suggest and Gmail. AJAX is based on the following three foundations:

❯❯ Asynchronous—The client is free to use the other contents of the website without waiting for a response from
the server. All responses are managed in separate data streams.

❯❯ JavaScript—Programming can be managed on the client side using only the JavaScript language. No other
client-side programming language or app is necessary.

❯❯ XML—Data can be stored in XML, a markup language similar to HTML for creating structured documents using
element tags.

There have been several changes since Garnett’s principles of AJAX were first articulated. JSON has replaced XML as
the preferred language of data exchange and the tools described in Garnett’s article to manage server requests have
been replaced by better tools; however, the fundamental concepts have not changed.

the XMLHttpRequest Object
AJAX is built on the XMLHttpRequest (XHR) object, which is used to send asynchronous requests from the client
to the server over HTTP. A request object is instantiated using the following object constructor:

let xhr = new XMLHttpRequest()

where xhr is the variable that stores the request object. Once a request object has been instantiated, it can open a
connection to the server, request data, and process the server response. Figure 11-5 lists some of the common request
object methods.

Method description

xhr.open(method, url, async) Specifies the type of request, where method is either GET or POST, url is the location of
requested resource, async is true to set up an asynchronous request or false to set up a
synchronous request

xhr.send(content) Submits a request using the information specified in the open() method; the optional
content argument provides the message body (used only with POST requests)

xhr.abort() Cancels the current request

xhr.getAllResponseHeaders() Returns a text string containing all the headers in the HTTP message

xhr.getResponseHeader(header) Returns the text of the specified header in the HTTP message

xhr.setRequestHeader(header, value) Defines an HTTP header using the header and name arguments

Figure 11-5 Request object methods

Requests begin with the open() method defining where to submit a request and how that request should be pro-
cessed. The following statement uses the GET method to open an asynchronous request between the client and the
submit.pl file on the server:

let xhr = new XMLHttpRequest();

xhr.open("get", "submit.pl&id=41088")

Note that the request data is appended to the URL as a query string. The location of the resource is defined relative to
the location of the page. In this case the submit.pl file is assumed to be in the same folder as the web page. For other
locations, you will need to specify the complete URL. By default, requests are asynchronous, but you can set the async
parameter to false, establishing a synchronous request as in the following statement, which causes the program to
pause as it awaits a response from the server:

xhr.open("get", "submit.pl&id=41088", false)

In most situations, you will use an asynchronous connection so that app can continue without waiting for a response.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IntroducIng aJax 455

Request objects follow the same-origin policy enforced with cookies and other server data streams so
that any requested resource must reside on the same domain, port, and path as the requesting page.Note

Once the request has been defined, it is sent to the server using the following send() method:

xhr.send(content);

where content is content sent to the resource to be used in processing the request. A content value is only required
if the request uses the POST method that stores data in the body of the request message. The following code uses the
POST method to open and send an id value to a server script, storing the text “id541088” as a line in the message body:

xhr.open("post", "submit.pl");

xhr.send("id=41088");

If the request uses the GET method or does not need to include data in the message body, set the content value to
null as in the following expression:

xhr.send(null)

Daily commentary for the sports blog is stored as an HTML fragment in the commentary.html file located on the server.
You will create an AJAX request asking for this file using the GET method and then send the request.

to create a request object:

1. Use your code editor to open the js11.js file from the folder on your web server.

2. Within the init() function add the following statement to create a request object:

// Create a request object

const xhr = new XMLHttpRequest();

3. Add the following statement to define the server resource and the method for opening the resource:

// Open the request and send it

xhr.open("get", "commentary.html");

4. Finally, send the request. Because there is no data to be sent to the server, set the data value to null.

xhr.send(null);

Figure 11-6 describes the code in the file.

Figure 11-6 Creating a request object

Object for sending
requests to the server

Define the resource
 and method to open

on the server

Send the request

Do not send any
data to the server

Access the commentary.html
file on the server using

the GET method

Once a request has been defined and sent, the client will wait for a response from the server.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch456

Managing a response
In the opening, sending, and receiving a response from the server, the request object progresses through these five
states:

❯❯ UNSENT (0)—The request object is created but has not yet been opened.

❯❯ OPENED (1)—The open() method is called to load the request.

❯❯ HEADERS_RECEIVED (2)—The send() method has been called to send the request.

❯❯ LOADING (3)—The browser has begun receiving a response from the server.

❯❯ COMPLETE (4)—The response from the server is complete.

Each change in state triggers a readystatechange event that can be managed using either an event handler or event
listener applied to the request object:

xhr.onreadystatechange = function;

xhr.addEventListener("readystatechange", function)

Information about the current state of the request object and any contents that it might contain are stored in request
object properties. Figure 11-7 describes some of the properties.

To determine the current state of the request object, use the readyState and status properties. If the readyState
value is 4, the response from the server is complete. However, a complete response does not necessarily mean a
successful response, so you also must use the status property to confirm that a successful connection with the
server was made. Figure 11-8 lists some of the common status codes contained within the start line of the returned
message.

Successful connections will have status codes of 200 to 300. For other status values, write the text of the status mes-
sage to the debugger console to inform the developer of an issue in creating the connection.

property description

xhr.readyState Returns an integer indicating the current state of the request (0 = UNSENT, 1 = OPENED, 2 = HEADERS_RECEIVED,
3 = LOADING, 4 = COMPLETE)

xhr.status Returns an integer indicating the status of the request (200 = “OK”, 404 = “Not Found”, etc.)

xhr.statusText Returns a text string indicating the status of the request (“OK”, “Not Found”, etc.)

xhr.responseText Returns the text of the response from the server

xhr.responseXML Returns the response data as an XML DOM document

Figure 11-7 Request object properties

code text description

200 OK The request was successful

301 Moved Permanently The requested URL has been permanently moved

302 Moved Temporarily The requested URL has been temporarily moved

304 Not Modified The client already has the current version of the requested content

404 Not Found The requested URL was not found

500 Internal Server Error The request could not be completed due to server error

Figure 11-8 Common response codes

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IntroducIng aJax 457

You will create an event handler for the readystatechange event that tests whether a complete response and a
successful connection has been received from the server.

to create an event handler for changes in request state:

1. Directly below the statement that defines the xhr request object, add the following onreadystatechange
event hander:

// Handle the changing request state

xhr.onreadystatechange = function() {

}

2. Within the anonymous function, add the following code that first tests whether the response is complete and
then tests whether the response is successful. If the response is not successful, log an error message.

if (xhr.readyState === 4) {

 if (xhr.status >= 200 && xhr.status < 300) {

 // Manage the response

 } else {

 console.log("Request failed: " + xhr.statusText);

 }

}

Figure 11-9 shows the complete code within the event handler.

Figure 11-9 Handling changes in the ready state

If the connection is not
successful, log the error

message

Respond to changes
in the state of the

request object

Test if the response
from the server

is complete

Test if connection
is successful

You can evaluate the server response once you have determined that the response is complete and the connection
successful. The text of the response content is stored in the responseText property of the request object or in the
responseXML property if the server resource is returning an XML document as the response.

For the sports blog, the response from the commentary.html file is simply the HTML code of the day’s commentary.
Store that code within the web page’s stories object, displaying the current commentary on sports stories of
the day.

Always place the onreadystatechange event handler before the statements that open and send the
request so that the browser can manage the changing state of the request object.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch458

to write the response text:

1. Directly below the // Manage the response comment, insert the following statement as shown in Figure 11-10:

stories.innerHTML = xhr.responseText;

Figure 11-10 Displaying the request response text

Write the response
text to the stories

element

Figure 11-11 New sports commentary pulled from the server

Content retrieved by
the request response

2. Save your changes to the file and then reload the js11.html file from your web server. Figure 11-11 shows two
articles pulled from the server’s commentary.html file and placed within the web page.

Viewing the Status of a Request and Response
Most browsers include developer tools to evaluate requests and responses from the server. These tools are useful to
gauge the performance of a request/response as well as to locate and fix network connection errors. Use the developer
tools in your browser to view the status of the requests and responses associated with the commentary.html file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vIewIng tHe StatuS of a requeSt and reSponSe 459

to view the request/response status:

1. Open the developer tools for your browser. If you are using Safari click Show Web Inspector from the Develop menu.

2. Within the Developer Pane or the Web Inspector Pane, click the Network menu located at the top of the pane.

3. The pane shows a network log of browser network activity arranged in chronological order. Click XHR from the
list of resources to show the request objects currently in use.

4. Reload the js11.html file to reload the request and then click commentary.html from the list of request objects.
A window showing network information associated with the file is opened within the pane.

5. Click Headers to view the HTTP content of both the request and response messages. See Figure 11-12.

Figure 11-12 HTTP headers for the request and response

Click to view
the header text

Response
headers

Request
headers

6. Click Timing to view information on the timings involved with sending the request and receiving a response from
the server. See Figure 11-13.

7. Close the Developer Pane or the Web Inspector on your browser.

Using the tools shown in Figure 11-13, a developer can track the amount of time required to manage the request and
response. In this case the entire process takes a bit more than 40 milliseconds, which does not sound like much, but
if an app has several dozen requests even milliseconds can result in unacceptable delays for the end user.

Use the network tools panel when you need to make sure that requests and responses are being transferred as expected
or to trace files that may be slowing down your app. By default the network tool uses the online connection resulting
in the fastest speeds. To simulate lower bandwidth connections, use the throttling drop-down list box and choose
another connection speed for your app.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch460

Figure 11-13 Timings of the request and response

Total time used for the
request and response

Figure 11-14 Nested callbacks resulting in callback hell

AJAX and Callback Hell
The AJAX approach works very well for apps consisting of a few asynchronous requests. It begins to break down for
apps with multiple asynchronous requests, creating a situation known as callback hell.

To understand what callback hell is, imagine an app that has dozens of requests. Each request is associated with a
callback function that is run once a complete and successful response is received from the server resource. There is
no guarantee that a response will be quick in coming if the server is overburdened and slow. Moreover, each callback
function can initiate one or more new requests. The response to a request for a customer contact initiates a new request
for the customer’s order history, which itself will initiate another request for product information and so forth in a
growing and near-unmanageable pyramid of nested callbacks. Figure 11-14 shows a structure with a series of three
nested requests with callbacks; and this code does not even include error handling for failed requests.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IntroducIng arrow functIonS 461

That is not to say these situations cannot be handled within AJAX with good coding practices. You can avoid creating
large structures of nested callbacks by keeping your code shallow. However, AJAX, with its reliance on callbacks is
susceptible to this type of problem. In the next section you will learn another set of tools to manage server request
and responses that avoids callback hell.

Quick Check 1

1. What is caching?

2. What are the foundations of AJAX?

3. Provide a statement to create a new request object named MyReq.

4. Provide a statement to open the MyReq object to the URL http://www.example.com using the GET method.

5. What property value indicates that a complete response has been received from the server?

Introducing Arrow Functions
Before discussing other ways of managing asynchronous requests, we first need to discuss functions. So far in your
coding you have created functions using function declarations. You can also store a function using a function expression
as in the following code which stores the addValues() function as a variable:

let addValues = function(a, b) {

 let sum = a + b;

 return sum;

}

addValues(3, 5); // returns 8

In 2015 with the release of ECMAScript 6, JavaScript introduced arrow function syntax in which extraneous characters
are removed from the function expression. Arrow function syntax has the following general form:

let functionName = (parameters) => {

 statements

}

with the fat arrow => symbol replacing the function keyword and parameters and statements having the same
meaning they would have for a function declaration or function expression. The addValues() function can be writ-
ten in arrow function syntax as:

let addValues = (a, b) => {

 let sum = a + b;

 return sum;

}

Arrow functions act the same way as function expressions or function declarations. The expression addValues(4, 6)
would return a value of 10 no matter which of the three approaches was used to define the function.

You can create named functions using the const keyword in place of let for both a function expression
and an arrow function.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch462

arrow Functions and parameter Values
The parentheses can be removed around the parameter list for functions that contain a single parameter. The following
arrow function applies this approach with the doubleIt() function which has only parameter:

let doubleIt = a => {

 let double = a*2;

 return double;

}

doubleIt(6); // returns 12

If the function contains a single statement, there is no need for the command block or the return keyword,
resulting in a very terse function expression. For example, the following code that declares the doubleIt()
function

function doubleIt(a) {

 return a*2;

}

can be written as a single line in arrow function syntax:

 let doubleIt = a => a*2;

If the function does not contain any parameters, you must still include parentheses as a placeholder separating the =
assignment operator from the => fat arrow symbol. The following expression uses this approach to define a function
that logs the text “Response Received”:

let writeEnd = () => console.log("Response Received");

The general rule is that if an arrow function contains a single parameter, omit the parentheses, otherwise always
include them.

You cannot insert a line break between the parameters and the fat arrow symbol. If the parameter list and
the fat arrow symbol are not on the same line, a syntax error will result.Note

Anonymous functions can be written in arrow function syntax as well. The following function declaration

function() {

 console.log("Response Received");

}

becomes in arrow function syntax the single line:

() => console.log("Response Received")

Figure 11-15 provides other examples comparing function declarations to their arrow function equivalents.

Aside from the differences in syntax, arrow functions differ from function declarations in how the this keyword is
handled. In function declarations, the this keyword returns the object that called the function, which could be the
window object, document object, or a page object, among other things. With arrow functions the this keyword always
returns the object that defined or owns the function. Thus, arrow functions do not have their own this, they always
take their meaning from the outside context.

You might find arrow functions confusing at first, but with practice you will be able write them as easily as function
declarations. One area where arrow functions are often used is in creating promises.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IntroducIng arrow functIonS 463

Arrow functions can make your code more concise; however, they do not entirely replace function declarations or
function syntaxes. Here are situations where arrow functions would not be appropriate:

❯❯ Do not use arrow functions if it makes your code more difficult to interpret and debug. Being compact is not
always a virtue.

❯❯ Because arrow functions do not have their own this value, they should not be used with event handlers where
the this value is needed.

❯❯ Also, since arrow functions do not have their own this value, they should also not be used to define object
methods or methods for object classes. Use function declarations instead.

❯❯ Function declarations support the arguments object that references all arguments used in the function.

Arrow functions work best with functions that have few statements. Their utility is reduced for extended functions
comprising several statements.

Best Practices When to Use and Not Use Arrow Functions

Function declaration arrow Function

function sumTen(x, y) {

 let total = x + y + 10;

 return total;

}

let sumTen (x, y) => {

 let total = x + y + 10;

 return total;

}

function sum(x, y) {

 return x + y;

}

let sum = (x, y) => x + y;

function addTen(x) {

 return x + 10;

}

let addTen = x => x + 10;

function randNum() {

 return Math.random;

}

let randNum = () => Math.
random;

function (msg) {

 console.log(msg);

}

msg => console.log(msg);

setTimeout(function() {

 alert("hello");

}, 2000);

setTimeout(() =>
alert("hello"), 2000);

numbers.sort(function(a, b)

{

 return b-a;

});

numbers.sort((a,b) => b-a);

form.onclick = function()
{

 alert("Click");

}

form.onclick = () =>
alert("Click");

Figure 11-15 Arrow function examples

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch464

Exploring the Promise Object
A promise is an object that does not have a value currently but might have one in the future. For example, you might
promise to buy groceries for dinner, but whether you do or not depends on future events. A server may promise to
respond to a request from the client but has not done so yet. There is no guarantee that a promise will ever be kept,
so a promise will exist in one of three states:

❯❯ pending The promise has been given but not yet fulfilled or rejected.

❯❯ resolved The promise has been fulfilled.

❯❯ rejected The promise will not be fulfilled.

Promises operate asynchronously so that while the promise is pending, the script is free to accomplish other
tasks.

Defining a promise Object
A promise object is defined using the following new Promise() object constructor:

let promise = new Promise((resolve, reject) => {

 // statements defining the promise

 resolve(resolve value);

 reject(rejected value);

});

where resolve and reject are callbacks that are run once the promise is either resolved or rejected. Nothing hap-
pens until the promise is settled. Note that this object constructor uses arrow function syntax but you could have also
used a function declaration. The command block contained within the promise is called the executor. The executor’s
statements are run in the background once the promise is initiated. Once the promise is settled, a value is sent to the
resolve and reject functions.

The following code defines a promise involving dinner preparations. After a two-second delay, the executor returns
a random number between 0 and 1 so that 80% of the time the promise will be resolved with the purchase of grocer-
ies and 20% of the time that option will be rejected. But the resolution of the promise will not be known until after
2 seconds has passed.

let planDinner = new Promise((resolve, reject) => {

 setTimeout(()=>

 if (Math.random() < 0.8)

 resolve("Bought groceries")

 } else {

 reject("Ordered takeout");

 }

 }, 2000);

});

To initiate a promise, apply the following statements to the promise object:

promise

.then(function)

.catch(function)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

explorIng tHe proMISe obJect 465

where promise references the promise object, and the then()and catch() methods run functions depending on
whether the promise was resolved or rejected. Both functions reference the resolve or reject method stored in
the promise’s executor. The following statements initiate the planDinner promise, using arrow function syntax to
log the promise’s outcome:

planDinner

.then(msg => console.log(msg))

.catch(msg => console.log(msg));

console.log("Planning dinner");

When the planDinner promise is initiated, the debugger console first displays the message “Planning dinner”. Over
the next two seconds, the promise is pending, after which the promise is settled by logging the message “Bought
groceries” if the promise is resolved or “Ordered takeout” if the promise is rejected.

Chaining promises
One promise might rely on the successful resolution of a prior promise. For example, you might promise to buy grocer-
ies, cook a meal, and clean the dishes, but without buying groceries there is no promise to cook and without cooking
there are no dirty dishes. A promise chain has the following general structure:

promise

.then(function)

.then(function)

…

.catch(function)

with each then() method returning a promise object with values passed to the next then() method. The chain ends with
a catch() statement handling any rejection that breaks the promise chain. Promise chains avoid callback hell because
the promises are not nested within one another but are executed in sequence as each promise is passed off to the next.

The following code shows how multiple then() methods can be chained to pass promise values through the chain.
As before, “Planning dinner” is immediately written to the log as the promise is initiated. If the promise is resolved
successfully, the message “Bought groceries” is logged and the then() method returns the text string “Started
cooking”, which is passed to the next then() method where it is also logged. If the initial promise is rejected, only
the text “Ordered takeout” is logged.

buyGroceries

.then(msg => {

 console.log(msg);

 return "Started cooking";

})

.then(newMsg => console.log(newMsg))

.catch(msg => console.log(msg));

console.log("Planning dinner");

Promises can also be nested within the then() method to create resolved and rejected functions at each link in
the chain. The following code places a promise object within the first then() method. The planDinner promise
is initiated and if it is settled successfully, this second promise is created that resolves after a one-second delay as
either “Made dinner” (70% of the time) or “Ordered takeout anyway” (30% of the time). A successful resolution of that
promise is returned to the next then() method, which logs it in the console. The message from a rejected promise is
still caught using the catch() method.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch466

console.log("Planning dinner");

buyGroceries

.then(msg => {

 console.log(msg);

 return new Promise((resolve, reject) => {

 setTimeout(() => {

 if (Math.random() < 0.7) {

 resolve("Made dinner");

 } else {

 reject("Ordered takeout anyway");

 }

 }, 1000);

 });

})

.then(newMsg => console.log(newMsg))

.catch(msg => console.log(msg));

When this code is run, three possible strings of messages will be logged:

Planning dinner > Ordered takeout

Planning dinner > Bought groceries > Ordered takeout anyway

Planning dinner > Bought groceries > Made dinner

The log informs the user what promises were kept and if they were not kept, at what point the promise chain was broken.
In general, you should avoid nesting promises or you run the risk of duplicating “callback hell” except with promises.

running Multiple promises
Multiple promises can be organized in a wide variety of ways. The promises could be independent actions such as
with an app that tries to retrieve different data from different servers. Independent promises are managed using the
following Promise.all() method:

Promise.all(array)

.then(function)

.catch(function)

where array is an array of promise objects. The promises run independently from each other. Upon the successful
competition of the last pending promise, the then() method is invoked. However, if any of the promises fails, the
catch() method is immediately invoked.

But you might also have promises trying to fulfill the same task, such as with promises retrieving the same data from
different servers. The promises are essentially racing each other and the task is completed with the first resolved
promise. Such a promise structure is implemented with following Promise.race() method:

Promise.race(array)

.then(function)

.catch(function)

where array is once again an array of promise objects. In this structure the then() method will handle the resolved
function associated with promise that finishes first and the catch() method will handle the rejection if that promise
fails. The other promises are ignored once the first promise either fulfills or fails.

Promises are a powerful feature that was introduced in ES6, and this overview only scratches the surface of what can be
accomplished with promises and asynchronous connections. One use of promises is with requesting data using the Fetch API.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

uSIng tHe fetcH apI 467

Using the Fetch API
The Fetch API uses promises to manage server requests, avoiding some of the problems associated with callback hell.
A request is made to a server using the method:

fetch(url, options)

where url is the location of the server resource and options is an optional object defining values for the HTTP mes-
sage. The following statement uses fetch to make a GET request from the submit.pl file on the server. The fetch()
method creates an asynchronous request, so that the app continues to run while the status of the promise is pending.

fetch("submit.pl&id=41088")

Figure 11-16 list some of the option properties that can be included with fetch() to provide more content with the
server request.

Fetch options description

body: string Text of the message body placed within the request message

cache: type Specifies how the browser will interact with the HTTP cache, where type is default, no-store, reload,
no-cache, force-cache, or only-if-cached

credentials: type Specifies if and how cookies should be included with the request where type is omitted, same-origin, or include

headers: object Specifies an object instance containing key-value pairs to be placed in the request header

method: type Specifies the type of request where type is GET (the default), POST, PUT, PATCH, DELETE, HEAD, OPTIONS,
CONNECT, or TRACE

Figure 11-16 Options of the fetch() method

For example, the following statement makes a POST request, providing the header and body content of the message
as part of the request:

fetch("submit.pl", {

 method: "POST",

 headers: {"Content-Type" : "application/json"},

 body: "{'id':41088}"

})

Fetch does not need event handlers or listeners to constantly monitor the request status. Like other promise objects
the request is pending until resolved or rejected.

Managing Fetch responses
The promise initiated by fetch can be managed in the following chain:

fetch(url, options)

.then(function)

.then(function)

…

.catch(function)

with each then() method returning a promise that is passed to the next then() method. If the fetch promise is
rejected, catch handles the rejection. The following code shows how fetch could be used in place of AJAX to retrieve
the text of the commentary.html file and write that content to the stories element:

fetch("commentary.html")

.then(response => response.text())

.then(text => stories.innerHTML = text)

.catch((error) => console.log(error));

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch468

Fetch goes through the following steps in processing this request:

1. A promise is made to connect to the resource at commentary.html.

2. Once the promise is resolved, it is passed to the first then() method where the text of the response object is
parsed using the response.text() method, creating another promise.

3. That promise is passed to the next then() method as the text parameter and stored in the inner HTML of the
stories element.

4. If the promise is rejected at any point in the chain, an error message is written to the console.

Notice that arrow functions are applied in this code sample, but you could also use a function declaration. Arrow func-
tions are preferred because they result in much cleaner code that clearly displays the logic of passing information from
one promise to the next in the chain.

The initial promise defined with the fetch() method creates a response object containing information about the
server’s response. Figure 11-17 describes some of the properties associated with that response object.

property description

response.headers Returns an object containing the response header

response.ok Returns a value indicating the nature of the HTTP code, where a status code of 200 to 299 returns true and false if otherwise

response.status Returns the status code of the response

response.statusText Returns a text string describing the response status

response.type Returns the type of response, where type is basic, cors, error, opaque, or opaquedirect

response.url Returns the URL of the response

Figure 11-17 Response object properties

As with AJAX, you can read the status of the server’s response using the status or statusText properties, thus
gaining valuable information about why a promise might have been rejected.

Figure 11-18 describes some of the methods associated with fetch’s response object.

Method description

response.error() Returns a response object associated with a network error

response.arrayBuffer() Returns a low-level binary data often used with image and multimedia data

response.blob() Returns a Blob object used file-like objects that contain text or binary data

response.formData() Returns a promise object that resolves as form data comprised of key-value pairs

response.json() Returns a promise object that can be parsed as JSON data

response.text() Returns a promise object that can be parsed as text string data

Figure 11-18 Response object methods

For example, you can read the content the server’s response using the blob(), formData(), json(), or text() methods.

error handling with Fetch
If the promise can get a response from the server, even an error response, fetch counts the promise as being resolved.
This means that only network errors, such as failure to connect to the server, are treated as failed promises.

The ok property can be used to catch non-network failures. A false value of the ok property indicates a failure on
the server to completely process the request as in the following code that catches a server error in attempting to
retrieve the commentary.html file:

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

uSIng tHe fetcH apI 469

fetch("commentary.html")

.then(response => {

 if (response.ok) {

 return response.text();

 } else {

 return "Commentary not available";

 }

})

.then(text => stories.innerHTML = text)

.catch((error) => console.log(error));

If the promised response is not ok, the text “Commentary not available” is passed to the next then and displayed in
the page. Depending on the app, more robust error handling can be invoked.

Using Fetch to return a Search
You will use Fetch to request commentary archived on the sports blog server. Each commentary is marked by a key-
word that can be entered using a search box on the sports blogger page. The keyword is sent to a server script that
returns articles matching that keyword.

The server script is written in Perl, a popular scripting language often used to generate and manipulate text strings.
Perl is supported by almost all web servers. However, before you can use the script file, you will need to modify the
file so that it can locate the Perl executable files on your server. The perl.exe file is often located in a server’s /usr/bin/
perl or /root/bin/perl folder. If you are running XAMPP or another server on your computer, you will need to specify
the path on your computer to the perl.exe file. A common path under XAMPP might be “C:\xampp\perl\bin\perl.exe”.

to edit the script file:

1. Use your code editor to open the archives.pl file from the js11 c chapter folder on your server.

2. At the top of the page change the first line to

#!location

where location points to the perl.exe file on your server. If you specify a path on your local computer using
the XAMPP server, enclose the path and the name of the perl.exe file in quotes. Figure 11-19 shows a sample
path (yours may differ).

Figure 11-19 Specifying the location of the perl.exe file

Enter the location
of the perl.exe file

on the server

3. Close the file, saving your changes.

To use the archives.pl script, send the request archives.pl?skey=keyword to the server where keyword is the
name of the keyword associated with an archived commentary. Create a fetch request to this script file now.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch470

to fetch commentaries from the server archive:

1. Use your code editor to open the js11.js file stored on your web server.

2. Directly after the xhr.send(null) command insert the following event handler for a click event associated
with the sButton element:

// Retrieve archived articles from the web server

sButton.onclick = () => {

};

3. Within the anonymous function, add the following fetch() method to access the archive using the value of the
sInput element as the keyword. Because the value is appended as a query string, it must be encoded.

fetch("archives.pl?skey=" + encodeURIComponent(sInput.value))

4. Add the following then() method to return the value of the promised response, displaying an error message if
the response result contains an HTTP error:

.then (response => {

 if (response.ok) {

 return response.text();

 } else {

 return "Unable to retrieve commentary";

 }

})

5. Add the following then() method to insert text of the commentary within the stories element:

.then (comtext => stories.innerHTML = comtext)

6. Catch any network errors by adding the following catch() method:

.catch (stories.innerHTML = "Network Failure");

Figure 11-20 describes the complete code to fetch a response from the archives.pl server script.

Figure 11-20 Fetching archived articles by keyword

Fetch the data when
sButton is clicked

Location of the
fetch resource

If the response is ok,
parse and return

 the response text,
otherwise return an

error message

Then display the
parsed text in

the stories element

Catch any rejected
responses

Encode the keyword
text as a query string

7. Save your changes to the file and then open the js11.html file from its location on your server.

8. Enter baseball into the keyword search box and click the magnifying glass icon. As shown in Figure 11-21, two
commentaries are retrieved from the blog archive.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

uSIng tHe fetcH apI 471

Figure 11-21 Articles retrieved by keyword

Articles retrieved
from the server

Search
keyword

Click to retrieve
matching articles

Working with Fetch
As you use Fetch in designing your own web apps, here are important points to remember when
using the fetch() method:

❯❯ HTTP errors will not be caught with Fetch. The catch() method will only catch network
errors. To catch other errors, you must examine the properties of the response object.

❯❯ The fetch() method returns a response object. To extract useful information, the response
object needs to be parsed with methods like text() and json().

❯❯ Be sure to apply the correct parser to the data type. Use response.json() for JSON data;
use response.text() for basic text strings.

❯❯ The fetch(), then(), and catch() methods are not separate statements but part of one long
statement. The command could be written on a single line as fetch().then().then().catch().

Common
Mistakes

If your Fetch request fails, check for the following errors:

❯❯ Verify that your server is accessible and running.

❯❯ Verify that you have entered the correct path to the perl.exe file in the archives.pl file.

❯❯ The archives.pl might not be publicly executable. Check with the instructor or system administrator to verify
that you can run the file.

❯❯ Check your code against the code shown in Figure 11-20 to verify that you have not made any syntax errors.

In the next session you will explore how to use Fetch to retrieved data stored in XML and JSON format.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch472

XML Document

Figure 11-22 Comparing XML and JSON

Quick Check 2

1. Write the following function in arrow function syntax:

function display(msg) {

 alert(mg);

}

2. What are the three states of a promise object?

3. Provide code to create a promise object named myPromise.

4. Provide code to send a promise to the https://jsonshow/photos resource using Fetch.

5. What method should be applied to a response object to return a promise that can be parsed as text?

Working with XML
AJAX was designed to work with XML documents. XML (Extensible Markup Language) is a language used for structured
documents built with markup tags such as would be found within HTML documents. But the XML language is more
flexible than HTML, allowing the developer to create and distribute customized markup tags. XML forms a foundation
for a wide variety of document types including documents for newsfeeds, technical manuals, legal documents, and
scalable vector graphics (SVG).

Figure 11-22 compares the same content written in XML and in JSON. The XML code uses the same structure you
would see with an HTML document with each element tagged and nested within other elements. The JSON document
accomplishes the same thing more concisely using nested objects and arrays.

Due to its smaller file size and similarity to JavaScript objects, JSON is the more popular format for transferring data
between client and server. However, XML is still widely used in such applications as RSS newsfeeds, that transmit cur-
rent new stories to media outlets and podcasts. JavaScript provides tools to handle both formats.

The home page of the sports blog displays current headlines drawn from a newsfeed stored in the headlines.
xml file on the server. You will write code to fetch that content, displaying it within a sidebar on the sports blog
home page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workIng wItH xMl 473

parsing XML Content
XML is stored as text within the body of the server response. To convert that text into an XML DOM object, first create
the following parser object:

let parser = new DOMParser();

where parser is an object that supports methods for converting text into a DOM. To create the DOM, apply the
following parseFromString() method to the parser:

parser.parseFromString(text, mimeType)

where text is the text string to be parsed and mimeType identifies the type of structured data stored in the text
string. Mime type values include “text/html”, “text/xml”, and “image/svg1xml” for working with HTML, XML, and SVG
documents. For example, the following expression creates a parser object and uses it to convert XML text stored in
the headlines.xml file into a DOM:

new DOMParser().parseFromString("headlines.xml", "text/xml")

Use Fetch to retrieve the text of the headlines.xml document from your server and then parse the retrieved text, creat-
ing a node tree.

to fetch the headlines.xml file from the server:

1. Return to the js11.js file in your code editor.

2. Directly below the code for the sButton.onclick event handler, insert the following code to fetch headlines
from the server:

// Fetch current headlines from the web server

fetch("headlines.xml")

3. Add the following statement to parse the text string from the response object once the promise is resolved:

.then (response => response.text())

4. Add the following statement to receive the parsed text string and convert it into a DOM:

.then (str => new DOMParser().parseFromString(str, "text/xml"))

Figure 11-23 describes the newly added code in the file.

JSON Document

Figure 11-22 Comparing XML and JSON (Continued)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch474

Figure 11-23 Loading and parsing an XML document

Convert the
 parsed text into a

DOM object

Fetch an XML
document from

the server

Parse the text
from the server

response

The content in the headlines.xml file has the following structure with one or more item elements nested within a
newsfeed channel. Each item contains a headline, hypertext link, and a summary of a news story.

<rss version="2.0">

 <channel>

 <title>Newsfeed title</title>

 <description>Newsfeed description</title>

 <item>

 <title>Story Headline</title>

 <link>Story URL</link>

 <description>Story summary</description>

 </item>

…

 </channel>

</rss>

Each new story item needs to be converted to the following HTML structure and then appended to the web page
sidebar:

<article>

 <h2>Story Headline</h2>

 <p>Story summary</p>

</article>

You can convert this structure by navigating through the nodes within the XML node tree using JavaScript’s node
properties and methods.

Working with an XML Node tree
Because XML node trees are DOM objects, they are accessible to the same JavaScript methods used with an HTML DOM.
You can create a node list using the querySelectorAll() method and use the appendChild() methods to create
or move element nodes. Use JavaScript’s node methods to convert the content of each news item into an HTML article.

to write the headlines into HtMl articles:

1. Directly below the then() method that parses the XML document, add the following then() method to receive
the XML DOM:

// Write the XML content to HTML

.then (dom => {

});

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workIng wItH xMl 475

2. Within the anonymous arrow function, add the following statement creating a node list of all item elements in
the XML DOM:

let items = dom.querySelectorAll("item");

3. Add the following statement to loop through all the elements in the items node list:

// Loop through each story item

for (let story of items) {

4. Within the for loop, add the following statement to extract the headline, link, and summary of each story:

// Write the story content and append it to the page

let headline = story.children[0].textContent;

let link = story.children[1].textContent;

let summary = story.children[2].textContent;

5. Add the following statement that uses a template literal to write the story content into an HTML fragment (be
sure to use the backtick character ` to enclose the text string):

let htmlCode = `<article><h2>${headline}</h2>

 <p>${summary}</p></article>`;

6. Complete the for loop by inserting the HTML code into the news sidebar:

news.insertAdjacentHTML("beforeend", htmlCode);

}

Figure 11-24 shows complete code of the final then() method.

Figure 11-24 Converting XML content to HTML

Retrieve the DOM
from the previous

promise

Loop through every
item element in

the DOM

Write the content of
each item into an
HTML document

fragment

Append the HTML
code to the news

sidebar

HTML code written
as a template literal

To keep the headlines current, enclose Fetch within the setInterval() method running requests and
receiving responses at regular intervals.Note

7. Save your changes to the file and then reload the js11.html file from your web server. As shown in Figure 11-25,
the sidebar displays the headlines retrieved from the headlines.xml document.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch476

Figure 11-25 Headlines added to sidebar

Sports
headlines

Figure 11-26 Suggested keywords displayed in the search box

List of suggested
keywords

Search
substring

JavaScript also supports the opposite operation by taking an XML DOM and converting it to a text string. To create a
text string from a DOM, first create an XML Serializer object using the expression:

let serializer = new XMLSerializer();

where serializer is an object used to serializing a DOM. To convert a DOM into a text string, apply the following
method to the serializer:

serializer.serializeToString(dom)

where dom is the node tree containing elements to convert to text. For example, the following expression converts a
DOM into a text string:

new XMLSerializer().serializeToString(dom)

Once the DOM has been converted to a text string, it can be sent as text to a server where scripts running on the server
can parse the string and work directly with the structured content.

Creating an Autocomplete Search Box
A problem with the search box on the sports blogger page is that there is no list of supported keywords. You will aug-
ment the search by adding an autocomplete feature providing a list of keywords based on characters typed into the
search box. Figure 11-26 shows a preview of the suggestion box in action.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creatIng an autocoMplete SearcH box 477

The list of keyword suggestions is generated by the keywords.pl script running on the server. The URL to invoke
this script is:

keywords.pl?suggest=substring

where substring is a substring of characters used by the script to generate suggestions. Before writing the JavaScript
code to fetch this information, you must first edit the keywords.pl file so that it can access the perl.exe executable file
on your server.

to edit the keywords.pl file:

1. Use your code editor to open the keywords.pl file from the js11 c chapter folder on your server.

2. At the top of the page, change the first line to

#!location

where location is the path to the perl.exe file on your server.

3. Close the file, saving your changes.

4. Open your browser and type the following in the following address box:

http://domain/path/keywords.pl?suggest=s

where domain is the domain name of your server and path is the path to the keywords.pl file. The script returns
a list of suggested keywords starting with the letter “s”. See Figure 11-27.

Figure 11-27 Accessing the keywords.pl script

List of keywords
that start with “s”

URL to run
the script

5. Try other character strings to verify that the browser returns keywords starting with the suggested substring.
Note that an empty list means that no keywords start with the suggest substrings. Not all character strings are
matched by a list of keywords.

If you fail to get search results from the server script or get an error message, verify that you have specified the cor-
rect path to the perl.exe program in the keywords.pl file. Also verify that you have access privileges to the file and
that your server is operating.

Working with JSON Data
The list of suggested keywords is returned in JSON format with individual suggestions stored in the matches array.
For example, the substring “se” returns the following JSON string:

{

 "matches": ["Seahawks","Senators"]

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch478

To parse JSON text fetched from a server, apply the json() method to the Fetch response:

response.json()

Once parsed, the JSON data can be handled as an object literal. Add commands to the js11.js file to fetch keywords
from the keywords.pl script based on characters entered in the search box. The fetch() method should be called
with each keyup event occurring within the box.

to make a request to the keywords.pl file:

1. Return to the js11.js file loaded on your server.

2. Below the then() method that writes the newsfeed headlines to the web page, add the following keyup event
handler for the search box:

// Suggest keywords as text is entered in the search box

sInput.onkeyup = () => {

}

3. Within the anonymous arrow function, add the following if else statements testing whether printable charac-
ters have been typed into the search box. If there are no printable characters, hide the suggestion box; otherwise
fetch a list of keyword matches from the server and parse the response.

if (sInput.vaue === "") {

 suggestBox.style.display = "none";

} else {

 // Retrieve a list of matching keywords

 fetch("keywords.pl?suggest=" + encodeURIComponent(sInput.value))

 .then (response => response.json())

}

Figure 11-28 describes the code in the file.

Figure 11-28 Requesting matching keywords from the server

Request data with each
keyup event within

the search box

If there are no
 printable characters,

hide the suggestion box

Otherwise, fetch a
list of keywords from

the server

Parse the response
text as a JSON object

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creatIng an autocoMplete SearcH box 479

Building the Suggestion Box
Once the JSON data has been retrieved and parsed, the JSON object can be used to write the following HTML code
for a suggestion box:

<div id="suggestBox">

 <div class="suggestion">json.matches[0]</div>

 <div class="suggestion">json.matches[1]</div>

…

</div>

where json.matches[0], json.matches[1], and so on are the suggested keywords from the matches array.
Styles for the div elements have already been defined in the CSS style sheet, you only need to build the structure of
the suggestion box and append it to the web page.

to begin building the suggestion box:

1. Below the then() method, add another then() method that receives the keywords object containing the JSON
data:

// Build the suggestion box

.then(keywords => {

 suggestBox.innerHTML = "";

})

2. Directly after the suggestBox.innerHTML statement add the following if else statement that tests whether
there are any keyword matches. If there are none, hide the suggestion box; otherwise begin displaying the con-
tents of the box.

if (keywords.matches.length === 0) {

 // No suggestions to display

 suggestBox.style.display = "none";

} else {

 // Display suggestions

 suggestBox.style.display = "block";

}

3. Within the else condition, add the following for loop writing a div element for every item in the matches
array:

// Create a list of suggestions

for (let word of keywords.matches) {

 let suggestion = document.createElement("div");

 suggestion.textContent = word;

 suggestBox.appendChild(suggestion);

}

Figure 11-29 displays the code to create the box of suggested keywords.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch480

Figure 11-29 Building the suggestion box

If there are no
suggestions, hide
the suggestion box

Otherwise display
the box

Write a div element
for each suggestion

Figure 11-30 Viewing a list of keywords starting with “b”

6. Continue typing be and verify that the list is reduced to two entries (Bears and Bengals).

7. Type ben and verify that only Bengals is listed as a suggested keyword.

If the program does not display a list of keyword suggestions or reports an error, check your code against that shown
in Figure 11-29. Common errors would include neglecting to close a command block with a closing curly brace or
neglecting to close a then() method with a closing right parenthesis.

If a user clicks a suggested keyword, it should be added to search box and articles matching that keyword should be
retrieved from the server. Add this feature to the app.

4. Save your changes to the file and then reload the js11.html file using the server address.

5. Type b in the Search box and verify that a list of five matching keywords is displayed (see Figure 11-30).

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

creatIng an autocoMplete SearcH box 481

to add an onclick event handler to suggestions:

1. Return to the server’s js11.js file in your code editor.

2. Directly after the command to append the suggestion to the suggestBox element, add the following event
handler to (a) insert the word in the Search box, (b) hide the suggestion list, and (c) run the search using the
Search box keyword.

// Add suggestion to search box when clicked

suggestion.onclick = () => {

 sInput.value = word;

 suggestBox.style.display = "none";

 sButton.click();

}

Figure 11-31 displays the final code added to the app.

Figure 11-31 Creating an event handler for each picked suggestion

Add the suggestion
to the search box

Hide the
suggestion list

Run a search to
retrieve articles
matching the

selected keyword

3. Save your changes to the file and then reload the js11.html file using the server address.

4. Type a in the Search box and then click Astros from the list of suggestions. Verify that the word “Astros” is added
to the Search box and that the article titled “DL on DL” is retrieved from the server.

You have completed your work on the autocomplete suggestion box. At this stage in development there are only a few
articles, but as more are added you will be able to make a more sophisticated tool for locating articles of interest to the reader.

The most common HTTP methods to use with Fetch are GET, POST, PUT, PATCH, and DELETE. Each method is
associated with a specific type of database operation.

❯❯ The GET method is the default Fetch option, and it is used to retrieve server data. Because GET is limited to
read-only operations there is no risk of modifying server content.

❯❯ The POST method sends data to the server, such as uploading the contents of a web form or adding a new user profile.

❯❯ The PUT method changes an existing data. PUT could be used to change the contents of an existing user profile.

❯❯ The PATCH method is like the PUT method in that it modifies existing data. The difference is that PUT replaces all the
data, while PATCH only rewrites part of that data. The PATCH method would be used to modify part of a user profile.

❯❯ The DELETE method deletes data on the server, such as removing an entire user profile from an online database.

Programming Concepts GET, POST, PUT, PATCH, and DELETE

continued

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch482

Quick Check 3

1. Provide code to create an XML parser.

2. What method converts an XML text string into a DOM?

3. What method converts an XML DOM back into a text string?

4. What method parses JSON data received from a response object?

5. when would you use the Put method in a Fetch request?

Other than GET, the name of the method always needs to be included in the message body. For example, the
following statement uses Fetch and the DELETE method to call a server script that deletes a user with the id
"41088" from an online database:

fetch("https://example.com/deleteuser/41088", {

 method: "DELETE"

})

The deletion is handled by a server script; the DELETE method only tells that script to do it. Note that each method
can return a response to the client. The DELETE method might return a response indicating the successful removal
of the user data or it might reject the request to indicate that no such deletion can occur.

If you are building a database app in which clients can read, create, modify, or delete server data, you will rely on
these different methods to create a clean and polished app. The Fetch API makes this task much easier.

Working with Third-Party APIs
So far, the code for the sports blog relied on scripts provided by blog’s host server. However, many websites augment
their content with content provided by third parties that supply APIs that can be accessed via AJAX or Fetch. Many
of these services are known as freemium services in which there is no cost to the developer if the requests are few.
A freemium service helps developers evaluate the API without committing financial resources and makes the service
available to smaller operations with low request volume. Once the developer’s site moves out of the production phase
and goes online, such services become premium services with monthly or annual charges based on traffic volume.

requesting a random GIF
The owners of the sports blog website want to enhance the site by attaching fun animated GIFs to their articles. Rather
than create their own GIFs, they will use the website Giphy.com to retrieve a randomly generated GIF. Giphy supports an
extensive library of over a million GIFs, stickers, emojis, and animated text indexed by content topic and image size. The
Giphy API can be integrating into website apps so that developers can augment their apps with GIFs containing specific
content. Giphy’s API for developers is currently limited to 42 requests per hour and 1000 requests per day. Higher volumes
require a paid subscription once developers move from testing a website to putting it into production for public use.

To request GIFs from Giphy.com, set up an account and get a beta API key now.

to set up a giphy account:

1. Use your browser to open the website https://developers.giphy.com/ and click the Get Started link to start
working with the website.

2. Click on the Login link a create a new free account, specifying your email address, user name, and password.

3. Go to your dashboard page and create a new app using a beta API for developers to test the service.

4. Explore the Giphy website to learn about how to use the site to access GIFs for your own website.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workIng wItH tHIrd-party apIS 483

third-party endpoints
Third--party services like Giphy provide several different APIs organized by endpoint. An endpoint is the point of
contact between the client device and a service resource; essentially an endpoint is the URL to which the request is
made. Giphy provides endpoints including the following:

❯❯ https://api.giphy.com/v1/gifs/trending For GIFs trending upward in popularity

❯❯ https://api.giphy.com/v1/gifs/search For searching for GIFs by a keyword or phrase

❯❯ https://api.giphy.com/v1/gifs/translate To convert a keyword or phrase into a GIF

❯❯ https://api.giphy.com/v1/gifs/random To return a random GIF related to a keyword or phrase

❯❯ http://upload.giphy.com/v1/gifs To upload your own GIFs to the Giphy library

For this project you will use the https://api.giphy.com/v1/gifs/random endpoint, retrieving a GIF related to the search
keyword entered by the user. The random GIF endpoint includes the following parameters for specifying the type of
GIF to request:

❯❯api_key The developer’s API key required to access the Giphy library

❯❯tag A keyword or phrase describing the GIF

❯❯limit A numeric value specifying the number of GIFs to be retrieved

❯❯rating The content rating of the GIF ranging from “g” (family friendly) to “r” (mature content)

For example, the following code encloses parameter values within a template literal to fetch a single family-friendly GIF
related to the topic of golf. Information about the selected GIF is returned to the client as a JSON object.

let url = "https://api.giphy.com/v1/gifs/random";

let key = "Ft4wVVyKlRqRyPrsj6jUdDuZmJNcgpQ7";

fetch(`${url}?api_key=${key}&tag=golf&limit=1&rating=pg`)

.then(response => response.json())

It is good practice to store your API key and the endpoint URL as variables so that they can be used with
other Fetch commands. Use template literals to avoid typing mistakes when entering the URL and query
string of the requested endpoint.

Note

You will add a function to the js11.js file that uses fetch to retrieve a random GIF on a specified topic.

to create a function for retrieving random gIfs:

1. Return to the js11.js file in your code editor.

2. Scroll to the bottom of the page and after the init() function insert the following getGIF() function to access
the Giphy API and return one randomly chosen GIF based on the value of the topic parameter. Enter your own
API key as the value of the key variable in your code.

// Fetch a GIF for a given topic from Giphy.com

function getGIF(topic) {

 const url = "https://api.giphy.com/v1/gifs/random";

 const key = "key";

 fetch(`${url}?api_key=${key}&tag=${topic}&limit=1&rating=pg`)

 .then(response => response.json())

}

Be sure to enclose the template literal text of the fetch() method within backtick (̀) characters. See Figure 11-32.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch484

Figure 11-32 Accessing the Giphy API

GIF topic

Endpoint to retrieve
a random GIF

API key to request
content from

Giphy.com

GIF data is returned
as a JSON object

Fetch one random
GIF on the specified
topic with a PG rating

Figure 11-33 Appending the GIF as a page image

Create an
img element

Retrieve the URL of
the GIF and make it the

source of the inline image
Append the image
 to the stories

element

Giphy returns an extensive JSON object with detailed information on the GIF, its file size, dimensions, creation date, and so
forth. For this project you only need to reference the URL of the file image, which is contained within the following reference:

json.data.images.fixed_height.url

where json is the name assigned to the JSON object fetched from the API. Add a then() method to fetch to create an
img element with the GIF URL as the value of the src attribute and then append that image to the stories element.

to create a gIf image:

1. Add the following then() method to the getGif() function as shown in Figure 11-33.

.then(obj => {

 let newImg = document.createElement("img");

 newImg.src = obj.data.images.fixed_height.url;

 stories.appendChild(newImg)

})

2. Scroll up the page to the anonymous function for the sButton.onclick event handler.

3. Between the then() and catch() methods, add another then() method that runs the getGIF() function
using the value of the sInput element. Because the Giphy API requires all topic names to be lowercase, apply
the toLowerCase() method to the keyword.

.then (() => {

 let topic = sInput.value.toLowerCase();

 getGIF(topic);

})

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workIng wItH tHIrd-party apIS 485

Figure 11-34 shows the newly added code in the anonymous function.

Figure 11-34 Calling the getGIF() function

Retrieve the topic
name in lowercase

characters

Call the getGIF()
function to display

the GIF for that topic

4. Close the file, saving your changes to the file.

5. Reload js11.html from its location on your web server. Enter Golf into the Search box to retrieve articles related
to golf from the archives. Verify that the page also loads an animated GIF, displaying it below the Physician Heal
Thyself article. See Figure 11-35. Note that your GIF will be different and each time you request the golf article
a different GIF will appear.

Figure 11-35 Golf articles with random GIF

Animated GIF retrieved
from the Giphy API

Search keyword for
both the article and

for Giphy

Po
w

er
ed

 b
y

G
IP

H
Y

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch486

If the GIF fails to load, check your code. Common errors include mistakes in the Giphy API key, mistyping the
Giphy endpoint, or syntax errors entered into Fetch. Check your debugger console for any network or HTTP error
messages.

Exploring Security Issues with APIs
Browsers use the same-origin policy to ensure security in the exchange of data between different domains. However,
third-party APIs like the APIs for Giphy or Google Maps do make such content available in an apparent violation of
that policy. There are three approaches commonly used to manage the same-origin policy but still allow the transfer
of data between websites of differing origins: CORS, JSONP, and XHR proxies.

Working with COrS
One way of allowing requests and responses to bypass their origins is to use Cross Origin Resource Sharing (CORS),
which places information with the HTTP message header indicating that such transfers are allowed. To enable cross-
origin requests, the CORS standard requires that the server hosting the resource include an Access-Control-
Allow-Origin header in the HTTP message it sends to the requesting site, specifying that it can access data from
the server. For example, the following HTTP header authorizes requests from the example.com website.

Access-Control-Allow-Origin: https://example.com

The example.com domain in this example is a fully qualified domain that can receive data without hindrance from the
browser. To authorize requests from any domain, the header will employ the * wildcard character as follows:

Access-Control-Allow-Origin: *

If the API client needs to pass authentication headers or cookies, it must connect as a fully qualified domain. This policy
is applied to prevent unauthorized content in the form of cookies from violating the same-origin policy. If the Access-
Control-Allow-Origin header is missing or does not include the origin of the requesting site, the browser will
forbid the request and an error message will appear in the browser console. Both XMLHttpRequest objects and the
Fetch API follow the same-origin policy so that a web app can only request resources from the application’s origin
unless the response from the resource includes the required CORS header.

If the same-origin policy is violated, the requested data will still be sent, but the browser will not allow
JavaScript to access the response.Note

Using JSONp
CORS represents the newer standard for handling the same-origin problem. Prior to CORS, data transfer across origins
was managed using JSONP, otherwise known as JSON with Padding. When developers began looking for ways to work
around the same-origin policy for AJAX requests, they looked to one of the few HTML elements that is not subject to
that policy: the script element. A web document can load a script from another domain, and it is left to the developer
to ensure that any script loaded into an app is from a trusted source.

The script element calls an API running on a server from a different origin, which then returns request content in
JSON format. Because the data is returned within the script element, the object is treated as the parameter for a
callback function and the same-origin policy is not invoked. The callback function identified in the script receives a
JSON object from the server, parses that object, and uses it within the app. The basic syntax of an HTML script ele-
ment that employs the JSONP approach is:

<script src="resource?callback=function"></script>

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

explorIng SecurIty ISSueS wItH apIS 487

where resource is the web address of the resource and function is the callback function that handles the JSON
data returned by that resource. For example, Google Maps uses the JSONP approach to enable developers to access
its mapping API via the following script element:

<script

src="https://maps.googleapis.com/maps/api/js?key=key&callback=func">

</script>

where key is the user’s API key and func is the callback function that will receive the data from Google Maps. Many
third-party APIs give developers the options of requesting data using AJAX, Fetch, or JSONP depending on the security
needs of the developer.

JSONP is a popular solution to the same-origin policy because of its simplicity. However, you are still bringing executable
code into your website from another location, so you must ensure that the API is not responding with malicious code.
Always verify an API’s trustworthiness and integrity before you use it. Another challenge with the JSONP approach is that
there is no easy way of determining whether a request has failed and for what reason. Some developers nest the callback
function within a setTimeout() method so they can notify the user of a failure to connect after a certain time limit has
passed. However, such an approach might not consider slow connections due to low bandwidth rather than server failure.
Finally, as the name implies, JSONP only works with data in the JSON format. It would not work with data stored as XML.

Using Xhr with a proxy
A final solution to the same-origin policy is to use a proxy server to handle the request for your site. Instead of request-
ing directly from the resource, make the request to another (proxy) server that is a trusted domain for the resource
and that can then pass that information onto your app. Under this approach the app would then use an AJAX request
object or Fetch to make the request of the proxy server and include parameters indicating the API that will manage
the response. You can find proxy servers such as CORS-Anywhere to manage your requests. Be aware, however, that
you will probably need to set up an account with the proxy server to utilize its features.

Web developers who work for large organizations often have a specific focus in both their job skills and
responsibilities. The arena of web development can be divided up in several ways, but one of the most common
is between developers who focus on client-side code and those who work on server-side code. A web developer
who works primarily with HTML, CSS, and client-side JavaScript is known as a front-end developer. A developer
who works mainly with server-side languages and libraries such as PHP, Perl, SQL, and Node.js is known as a
back-end developer.

Increasingly web developers are sought who have skills and responsibility for both client-side and server-side code.
These developers are known as full stack developers. Even if your goal is front-end development, it is important to
attain at least basic familiarity with server-side issues and challenges. Both front-end and back-end developers need
to be able to communicate to work together effectively and deliver a polished final product.

Skills at Work Web Developer Job Titles and Roles

Quick Check 4

1. What is a freemium service?

2. What is an API endpoint?

3. What are three ways that an app can deal with the same-origin policy?

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch488

Key Terms
arrow function

Asynchronous JavaScript and XML
(AJAX)

asynchronous

back-end developer

caching

callback hell

Cross Origin Resource Sharing (CORS)

endpoint

executor

Extensible Markup Language
(XML)

fat arrow

Fetch API

freemium service

front-end developer

fully qualified domain

full stack developer

HTTP function expression client

HTTP message

HTTP server

JSON with Padding (JSONP)

Perl

promise

Summary
❯❯ Clients can request data from servers to augment existing web pages, receiving a response asynchronously.

❯❯ Information about the request and response is contained within the header and the body of an HTTP message.

❯❯ AJAX is an older technology used to create request objects that can be submitted to a server resource, receiving a
response that can be parsed and added to a web page.

❯❯ A request from a server resource is monitored using the readystatechange event, which records when the
response is complete, and the connection is successful.

❯❯ Apps based on AJAX can sometimes result in “callback hell” in which several asynchronous requests are nested
within one another, resulting in confusing and unwieldy code.

❯❯ Arrow function syntax is often used to create concise code defining the parameters and statements associated
with a function.

❯❯ A promise object is an object that does not have a current value but might have one in the future once the promise
is settled.

❯❯ A promise chain is created by creating a sequence of then() methods concluding with a catch() method that
catches any rejected promises.

❯❯ The Fetch API replaces AJAX by using promises to request and receive responses from server resources. Requests
are made with the fetch() method; responses are handled with the then() and catch() methods.

❯❯ Data stored in an XML document is marked with tags similar to tags used with HTML documents. Data stored in
an XML text string can be parsed and transformed into a node tree, at which point it can be manipulated using
JavaScript node methods.

❯❯ A JSON data object must be parsed using the response.json() method before its contents can be used in a
web app where response is the variable containing the response from the server.

❯❯ Third-party APIs often offer freemium services for which there is no cost to the developer for resource requests if
the requests are few.

❯❯ To bypass the same-origin policy, third-party apps use Cross Origin Resource Sharing (CORS) to allow websites to
access server resources across origins by placing messages in the header to identify fully qualified domains.

❯❯ JSON with padding or JSONP places requests for server resources within the script element, bypassing
challenges with the same-origin policy.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

revIew queStIonS 489

Review Questions
1. Data is transferred via query strings using the

_________________.
a. PUT method
b. POST method
c. GET method
d. QUERY method

2. The temporary storage of data on a local device is
called _________________.
a. asynchronous storage
b. synchronous storage
c. remote storage
d. caching

3. Which of the following is not a part of the AJAX
standard?
a. JSON
b. JavaScript
c. Asynchronous communication
d. XML

4. Which of the following methods instantiates a
request object under AJAX?
a. new Request()
b. new XMLHttpRequest()
c. new XMLRequest()
d. new XHR()

5. An AJAX request to a server begins with which
method?
a. send()
b. connect()
c. start()
d. open()

6. What code value is sent to the client to indicate
that a response from the server is complete?
a. 1
b. 2
c. 3
d. 4

7. What is the arrow function version of the following
anonymous function?

function(obj) {

 console.log(obj.name);

}

a. function (obj) => console.log(obj.
name)

b. obj => console.log(obj.name)
c. obj => obj.name
d. let obj => console.log(obj.name)

8. Which of the following is not one of a promise’s
three states?
a. Pending
b. Settled
c. Resolved
d. Rejected

9. Resolved promises are managed by which method?
a. fetch()
b. then()
c. catch()
d. resolve()

10. To run several promises simultaneously, accepting
only the first response, which method should be
applied to the array of promise objects?
a. Promise.all()
b. Promise.first()
c. Promise.race()
d. Promise.settled()

11. What would be the final result of a successful
response in the following Fetch code?
fetch("https://example.com/report")
.then (response => response.json())
.then (text => console.log(text.msg))
.catch (error => console.error(error))
a. A response is received containing an HTTP message

with the text of a JSON object in the message body.
b. The content of the JSON text is parsed, creating an

object literal.
c. The text of the response message is written to the

debugger console.
d. An error message is sent to the error console.

12. Which method converts XML text into a DOM that
is accessible to JavaScript’s node methods?
a. response.json()
b. text.stringify()
c. response.xml()
d. parser.parseFromStringify()

promise chain

proxy server

request

response

RSS newsfeed

synchronous

XHR object

XMLHttpRequest object

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch490

Hands-On Projects

13. Which method is used in Fetch to parse JSON data
retrieved from a server resource?
a. response.parse()
b. response.stringify()
c. response.json()
d. response.text()

14. A service that is essentially free unless the
developer exceeds a limit on the number of
requests within a specified time is called a
_________________.
a. premium service
b. freemium service
c. testing service
d. beta service

15. Which of the following does JSONP use to bypass
the same-origin policy?
a. A request object
b. A script element

c. A proxy server
d. A promise object

16. What is the difference between a standard HTTP
request and one that uses an XMLHttpRequest
object?

17. When would you use arrow function syntax in place
of a function declaration in your code?

18. Describe some of the differences between AJAX and
Fetch.

19. What is callback hell?

20. Summarize the three methods for managing the
same-origin policy between a client and a server
resource.

In some of the following projects you will have to place your project files on your own
server and make modifications to server scripts to match your server’s configuration. Talk
to your instructor or technical resource desk if you are unsure about how to work with
server-side scripts.

Note

Hands-On Project 11-1

In this project you will use Fetch to retrieve the Astronomy Picture of the Day (APOD) from an API on the NASA
website. The endpoint for retrieving either a picture or image has the URL:

https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY&date=date

where date is the date of the photo to be retrieved from the NASA APOD archive. The API key, “DEMO_KEY”
is free to the public but is limited to 30 requests per hour with a total of 50 requests per day. If you are not
sure how many requests you have left, view the X-RateLimit-Remaining value in the HTTP header of
the response object. The APOD API returns a JSON object in which the name of the picture is given by json.
title, a description is stored in json.explanation, and the picture source is stored in json.url. The
picture of the day can be either an image file or a video file. The file type is stored in json.media_type.
Figure 11-36 shows a preview of the web page with a picture for a specified date.

Do the following:

1. Use your code editor to open the project11-01_txt.html and project11-01_txt.js files from the js11 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project11-01.html and project11-01.js, respectively.

2. Go to the project11-01.html file in your code editor. Add a script element linked to the project11-01js file.
Defer the loading of the script until after the page is loaded. Close the file, saving your changes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HandS-on proJectS 491

Figure 11-36 Completed Project 11-1

3. Go to the project11-01.js file in your code editor. Within the anonymous function for the dateBox.onchange
event handler, add the following:

a. Declare the dateStr variable and set it equal to the value of the dateBox element.

b. Use the fetch() method to make a request to the following url:

https://api.nasa.gov/planetary/apod?api_key=DEMO_KEY&date=dateStr

where dateStr is the value of the dateStr variable.

c. Add a then() method that takes a successful response and applies the json() method to the response
object to parse the JSON text string.

d. Add a then() method that receives the JSON object and runs the showPicture() method with the JSON
object as the parameter value.

e. Add a catch() method that displays the text of the rejected promise in the debugger console.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch492

4. Create a function named showPicture() with a single parameter named json. Within the function create an
if else structure that tests the following conditions:

a. If json.media_type equals “video” then change the inner HTML of the imageBox element to the
following:

<iframe src="url"></iframe><h1>title</h1><p>explanation</p>

where url is the value of json.url, title is the value of json.title, and explanation is the value
of json.explanation. (Hint: You might find it easier to specify this HTML code using a template literal.)

b. If json.media_type equals "image” then change the inner HTML of the imageBox element to the following:

<h1>title</h1><p>explanation</p>

c. Otherwise, change the inner HTML of the imageBox element to the text string: “Image not Available”.

5. Save your changes to the file and then open project11-01.html in your web browser. Select a date from the
Picture Date input box and verify that an image or video requested from the NASA APOD service for that date
appears in the web page.

Hands-On Project 11-2

In this project you will create an interactive form that retrieves the place name and region for a given country
and postal code. The place name and region values are accessed from an API at the following URL:

http://api.zippopotam.us/country/postal

where country is the country code and postal is the postal code. The API returns a JSON object containing
information about the place and region corresponding to the postal code. The following is sample JSON output
for the United States (US) and the postal code 90210.

{

 "post code": "90210",

 "country": "United States",

 "country abbreviation": "US",

 "places": [

 {

 "place name": "Beverly Hills",

 "longitude": "-118.4065",

 "state": "California",

 "state abbreviation": "CA",

 "latitude": "34.0901"

 }

]

}

Because the places and state names include spaces, you have to use the bracket form in place of the dot form
to reference those properties. Use json.places[0]["place name"] to reference the place name and
json.places[0]["state abbreviation"] to reference the state. A preview of the completed project is
shown in Figure 11-37.

Do the following:

1. Use your code editor to open the project11-02_txt.html and project11-02_txt.js files from the js11 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project11-02.html and project11-02.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HandS-on proJectS 493

2. Go to the project11-02.html file in your code editor. Add a script element linked to the project11-02.js file.
Defer the loading of the script until after the page is loaded. Take some time to study the content and structure
of the document and then close the file, saving your changes.

3. Go to the project11-02.js file in your code editor. Within the anonymous function for the postalCode.onblur
event handler, add the following:

a. Declare the codeValue and countryValue variables setting them equal to the value of the postalCode
and country elements, respectively.

b. Set the value of the place and region elements to an empty text string.

c. Use Fetch to access the API at

http://api.zippopotam.us/country/code

where country is the value of the countryValue variable and code is the value of the codeValue variable.

d. When the Fetch promise is returned, add a then() method to parse the JSON response object.

e. Add another then() method using an arrow function with a single parameter named json. Set the value of the
place element to place property for the postal code and the region element to the state abbreviation property.

f. If the response is rejected, write the error text to the console log.

4. Save your changes to the file and then open the project11-02.html file in your browser. Enter the postal code
01101 in the Postal Code box and press the Tab key. Verify that Springfield, MA, appears as the place and region.

5. Select Spain from the Country list box and enter 30151 in the Postal Code box. Verify that Santo Angel, MU,
appears as the place and region.

Hands-On Project 11-3

In this project you will complete an app that retrieves customer orders for Wizard Works, a manufacturer
of brand name fireworks and pyrotechnics. The app connects to a script named wworders.pl on your web
server. Customers send user id and password information to the server script and the script responds with the
following JSON object containing information on the customer’s order:

{

 username : "name",

 status : "order status",

 totalCharges : amount

Figure 11-37 Completed Project 11-2

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch494

 orderHistory : [{

 orderDate : date,

 orderCost : value,

 products : [{

 description: "item description",

 qty : integer,

 price : value,

 total : value

 } …]

 } …]

}

The customer name and status of the customer’s orders is stored in json.username and json.status.
The total charges from all orders is stored in json.totalCharges. Individual orders are stored in the
json.orderHistory array. Each order in the array contains information about the date of the order and the total
cost of the order. Items purchased within each order are stored in the json.orderHistory.items array. Each
item in that array contains an object with the product’s description, quantity ordered, price, and total cost.

You will add this information in table form to the web page. Figure 11-38 shows a preview of the completed
web page for sample customer.

Figure 11-38 Completed Project 11-3

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HandS-on proJectS 495

Do the following:

1. Use your code editor to open the project11-03_txt.html and project11-03_txt.js files from the
js11 c project03 folder. Enter your name and the date in the comment section of each file and save
them as project11-03.html and project11-03.js, respectively.

2. Go to the project11-03.html file in your code editor. Add a script element linked to the project11-03.js file.
Defer the loading of the script until after the page is loaded. Close the file, saving your changes.

3. Open the wworders.pl file in your code editor. Edit the initial line to read as follows:

#!location

where location is the location and name of the perl.exe executable file on your server. See your instructor or
technical support person for assistance in locating the perl.exe file on your server. Close the file, saving your
changes.

4. Copy the js11 c project03 folder and upload it to a folder on your server. For XAMPP, place the files in a new
subfolder of the htdocs folder where your version of XAMPP is installed. In Nginx, the folder name is html. For
IIS, the default folder is wwwroot. If you are using a server provided by your instructor or using different server
software, consult the server documentation to determine the folder in which website pages should be stored.

At this point, the rest of your work should be done with files on the server.

5. Go to the project11-03.js file in your code editor. Within the anonymous function for the
viewOrders.onclick event handler, add the following:

a. Declare the user and pwd variables with values equal to the value of the userIDBox and pwdBox
elements, respectively.

b. Use Fetch to connect to wworders.pl?id=user&pwd=pwd where user is the value of the user variable
and pwd is the value of the pwd variable.

c. When the Fetch promise is returned, add a then() method to parse the JSON response object.

d. Add another then() method to run the buildOrderTable() function using the json object as the
parameter value.

e. If the response is rejected, write the error text to the console log.

6. Go to the buildOrderTable() function. Within the function insert an if else structure that tests whether
obj.status is equal to “Orders Not Found”. If it is, change the inner HTML of the orderResult element to
the text string “No orders found for this user id and password”. Otherwise, do the tasks in Steps 7 through 9.

7. Within the else condition, declare a variable named htmlCode setting its initial value to the following text
string.

<table id="summary"><tr><th>Name</th><td>username</td>

<tr><th>Total Charges</th><td>totalCharges</td></tr></table>

where username is the value of obj.username and totalCharges is the value of obj.totalCharges.

8. Add a for loop to the else condition that loops through the contents of the obj.orderHistory array,
creating a separate table for each order. With each iteration of the loop, do the following:

a. Add the following text string to the value of the htmlCode variable:

<table class="orderList"><tr><th colspan="2">date</th>

<th colspan="2">cost</th></tr><tr><th>Description</th>

<th>Qty</th><th>Price</th><th>Total</th></tr>

where date is the value of orderDate property for the current order in the orderHistory array and
cost is the value of the orderCost property for the current order.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch496

b. Information about the products ordered is displayed in separate rows of the orderList table. Within the
for loop, nest another for loop that iterates through the contents of the products array for the current
order and for each item in the products array, add the following text string to the value of the htmlCode
variable:

<tr><td>description</td><td>qty</td><td>price</td>

<td>total</td></tr>

where description, qty, price, and total are the values of the description, qty, price, and
total properties for the current item in the products array.

c. After the nested for loop is finished, add the text string “</table>” to the htmlCode variable to close off
the orderList table.

9. After the outer for loop is finished but still within the else condition, write the value of the htmlCode
variable as the inner HTML of the orderResult element.

10. Save your changes to the file.

11. Use your browser to open the project11-03.html file from its location on your server.

12. Verify that you can display order history for Wizard Works customers by submitting the following User ID/
Password combinations to the web form: RW301/kaboom and BA684/sparkler.

13. Verify that if you enter any other combination of user id and password, the page displays the message “No
orders found for this user id and password”.

Hands-On Project 11-4

In this project you will use your computer’s position along with a third-party app to determine the current
level of sun safety for your location. The app to return UV and ozone values for your position has the endpoint:

https://api.openuv.io/api/v1/uv?lat=lat&lng=lng

where lat is the latitude and lng is the longitude. The API returns a wealth of solar data related to sun safety
and exposure times before burning. The content you are interested is stored within the following JSON object:

{result: {

 uv: value,

 uv_max: value,

 ozone: value,

 safe_exposure_time : {

 st1: value,

 st2: value,

 st3: value,

 st4: value,

 st5: value,

 st6: value

 }

}

Once you have retrieved and parsed this data and determined your latitude and longitude, you will display the
sun safety information in the tables shown in Figure 11-39.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HandS-on proJectS 497

Figure 11-39 Completed Project 11-4

Do the following:

1. Use your code editor to open the project11-04_txt.html and project11-04_txt.js files from the js11 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project11-04.html and project11-04.js, respectively.

2. Go to the project11-04.html file in your code editor. Add a script element linked to the project11-04.js file.
Defer the loading of the script until after the page is loaded. Take some time to study the contents and structure
of the document and then close the file, saving your changes.

3. Go to the Open UV Index API website at https://www.openuv.io/ and register for an API key. The API key is free
but limited to 50 requests per day. You will not need to supply payment information, but you will need an email
account to receive the key.

4. Once you have received the key, return to the project11-04.js file in your code editor. Go to the
getLocation() function and within the function complete the tasks in Steps 5 through 10.

5. Declare the url variable and set its value equal to “https://api.openuv.io/api/v1/uv”. Declare the key variable
and set its value equal to the key you received from the Open UV Index API website.

6. Use Fetch to connect to request UV data from the endpoint url?lat=lat&lng=lng where url is the value of
the url variable, lat is the value of the myPosition.lat object and lng is the value of myPosition.lng.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch498

7. To the fetch() method add an options object containing the following properties and values:

a. Set the method property to “GET”.

b. Add the following line to the header of the HTTP message:

"x-access-token" : key

where key is the value of the key variable.

8. When the Fetch promise is returned, add a then() method to parse the JSON response object.

9. Add another then() method to run the showSunSafety() function using the json object as the parameter
value.

10. If the response is rejected, write the error text to the console log.

11. Go to the showSunSafety() function and add the following commands:

a. Display your latitude and longitude as the text content of the latCell and lngCell elements. Use the
toFixed() method to show those values to six decimal places.

b. In the uvIndexCell, uvMaxCell, and ozoneCell elements, show the text content of the obj.result.
uv, obj.result.uv_max, and obj.result.ozone properties.

c. In the st1Cell through st6Cell elements, show the text content of the obj.result.safe_exposure_
time.st1 through obj.result.safe_exposure_time.st6 properties.</EOCAL>

12. Save your changes to the file and load project11-04.html in your browser. Allow the browser to know your
location and verify that sun safety information is displayed in the page. If you are unable to allow the browser
to know your location, substitute your own longitude and latitude values directly in the code.

Hands-On Project 11-5

debugging challenge

You have been given a website for a science fiction (SF) author’s book review and commentary. The website
draws content from three sources on the server: (1) archived book reviews stored as text in the sfreviews.pl file,
(2) a list of popular SF authors stored in JSON format in authorlist.json file, and (3) a newsfeed describing recent
SF podcasts stored in the sfpod.xml file. Unfortunately, the web page is unable to access the files and render
them correctly. Use your knowledge of requests and responses to fix the errors in the code. A preview of the
corrected page is shown in Figure 11-40.

Do the following:

1. Use your code editor to open the project11-05.html and project11-05.js files from the js11 c project05
folder. Enter your name and the date in the comment section of each file and save them as project11-05.
html and project11-05.js, respectively.

2. Go to the project11-05.html file in your code editor and add a script element linked to the project11-05.js file.
Defer the loading of the script until after the page is loaded. Take some time to study the contents and structure
of the file, saving your changes.

3. Open the sfreviews.pl file in your code editor. Edit the initial line to read as follows:

#!location

where location is the location and name of the perl.exe executable file on your server. See your instructor or
technical support person for assistance in locating the perl.exe file on your server. Close the file, saving your
changes.

4. Copy the js11 c project05 folder and upload it to a folder on your server. Consult the server documentation to
determine the folder in which website pages should be stored.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

HandS-on proJectS 499

5. Go to the project11-05.js file in your code editor. Fix the following mistakes in the file:

a. In the statement that fetches the list of authors from the authorlist.json file, there is a mistake in the
fetch() statement.

b. Fix the mistake in the then() method that uses an arrow function to parse the response from the server.

c. In the fetch() statement that retrieves reviews of books in the sfreviews.pl file, there is a mistake in
formatting the query string.

d. The reviews should be returned as text string, but there is a mistake in the then() method that parses the
text content.

e. Scroll down to the then() statement that parses the XML content from the sfpod.xml file, creating a DOM
node list. There is a mistake in defining the Parser object.

f. In the for loop that writes the summary of the podcasts, there is a mistake in the template literal that writes
the HTML code.

6. Save your changes to the file and then load project11-05.html in your web browser from your web server
location.

Figure 11-40 Completed Project 11-5

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Data Requests with aJaX anD Fetch500

7. Verify the following in the completed page:

a. Verify that a list of SF authors appears in a selection list next to book review.

b. Verify that four podcast summaries are displayed on the right edge of the page.

c. Verify that when you click Robert Heinlein or Gene Wolfe from the list of authors, the page retrieves a
review of one of their novels.

Case Projects
Individual Case Project

Identify data provided by an API that you would like to include in your personal website. You should choose a
web service other than those used in the chapter and the Hands-on Projects. If you have an idea for data you’d
like to access but are unsure what service might provide that data, perform a web search on a description
of the data plus “API”. For instance, if you were looking for a source of tide tables, you might search for “tide
tables API”. Use the documentation for the web service to construct a Fetch request and to display selected
data from the service on your website.

Team Case Project

Identify data provided by an API that you would like to include in your group website. You should choose a
web service other than those used in the chapter, the Hands-on Projects, or the Individual Case Project of any
group member. If you have an idea for data you’d like to access but are unsure what service might provide
that data, perform a web search on a description of the data plus “API”. For instance, if you were looking for
a source of tide tables, you might search for “tide tables API”. Use the documentation for the web service to
construct a Fetch request and to display selected data from the service on your website.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

501

Developers often find themselves reusing the same sets of code across multiple projects. That code
provides a foundation for future projects, saving the developer time and effort. The most useful sets of
JavaScript code can be organized into a JavaScript library where they can be quickly applied to a wide
variety of projects and applications. Some JavaScript libraries are provided to the public for free. Perhaps
the most successful of these free libraries is jQuery, which is a library enabling developers to implement
many common JavaScript tasks with minimal coding. In this chapter, you will learn what jQuery can do
and how you can use it in your projects.

Getting Started with jQuery
A challenge for developers in the early years of the web was that different browsers implemented
JavaScript in different ways. The two competing standards were promoted by the Netscape and
Internet Explorer browsers. Among other differences, the two browsers took fundamentally differ-
ent approaches in referencing page objects, managing events, and handling server requests. For any
JavaScript app to be truly compatible across browsers, a way had to be found to reconcile those
differences. Several JavaScript libraries were proposed for this purpose. The most popular of these
libraries was jQuery.

Chapter 12

When you complete this chapter, you will be able to:

❯❯ Use the jQuery library to apply jQuery methods to a selection of elements

❯❯ Modify the contents and structure of the DOM using jQuery

❯❯ Manage browser events using jQuery

❯❯ Create effects and animations using jQuery methods

❯❯ Apply jQuery Plugins, such as jQuery UI, to create specialized animations

Introducing jQuery

jQuery was designed to run the same on all browsers, which was the biggest part of
its appeal.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery502

The jQuery library is a concise set of tools that simplifies commonly needed tasks with a minimum of coding. The core
features supported by jQuery are:

❯❯ DOM manipulation jQuery makes it easier to navigate the document’s node tree, reference elements by their
CSS selector, and to create and remove elements from the web page.

❯❯ Event management jQuery provides tools to handle browser and user events that makes it easier to write
event-driven code.

❯❯ Animation effects jQuery supports a large collection of animation effects to enhance user interaction with any
website or web app.

❯❯ Widgets jQuery provides a collection of widgets such as photo slideshows, calendars, and web form controls
that can be incorporated into almost any website.

❯❯ AJAX jQuery makes it easy to create and apply AJAX requests and responses.

In addition to these core features, there are collections of jQuery plugins created by third-party programmers providing
more tools to the frontend developer. There are plugins to support social media forums, run online videos, design
flexible page layouts, and create scrolling slideshows, among other things. You can find libraries of jQuery plugins by
doing a search on the web or on the jQuery website.

Versions of jQuery
From its initial release in August 2006, jQuery has gone through several releases, some of which are described in Figure 12-1.

Version release Date Description

1.0 August 2006 First stable release

1.9 January 2013 Removal of deprecated features and code cleanup

2.0 April 2013 Dropped support for IE 6 through IE8 to improve performance and reduce file size

3.0 June 2016 Support for promises and compatible with HTML5, provided a slim version of the library

3.2 March 2017 Added support for template elements, deprecation of older features

3.4 May 2019 Performance improvements and security fixes

3.5 May 2020 Security fixes, .even() and .odd() methods, deprecation of older features

Figure 12-1 Versions of jQuery

As of this writing the most current release is jQuery 3.6.0, but new versions with security updates are released every
few months. You might not want to always use the most recent version of jQuery. Several plugins are designed to work
with earlier jQuery versions and will not work with the more recent versions, so you need to check the documentation
of any third-party plugin to ensure that it is compatible with your jQuery version.

Loading jQuery
The jQuery library is accessible either as a .js file downloaded to your website or as a link to a file residing on a
Content Delivery Network. A Content Delivery Network (CDN) is a web server that hosts open-source software and
is optimized for quick delivery of that software. If your app needs to work offline you should download the library
file, but if that is not a concern and you wish to save space, create a link to the file on the CDN. Generally, using the
CDN is considered the best practice if network connection is not a concern. jQuery recommends that links to the CDN
include Subresource Integrity checking (SRI) to ensure that the resources on the CDN have not been tampered with.

Each release of the jQuery library comes in several versions. An uncompressed version allows programmers to view the
JavaScript code that is used in the library. A minified version compresses the library to save space and memory while
increasing execution speed but at the expense of readability. Both versions are available in normal and slim builds.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GettinG Started with jQuery 503

The normal jQuery build includes the full features of the jQuery library. The slim jQuery build removes features such
as AJAX and some animation tools, which have been supplanted by Fetch and CSS. As the name implies, the slim build
is smaller and thus would execute faster than the normal build.

Use the slim build if you do not need the full jQuery library. If you are not sure which build you need, it is
safest to load the slightly larger full build.Note

Is jQuery Still relevant?
A question confronting web developers is whether jQuery is still relevant since many of the reasons for jQuery no
longer apply. All major browsers now support a common core of JavaScript standards, so coding for cross-browser
compatibility is not as much of an issue as it once was. Moreover, several features that jQuery provides are now part
of standard JavaScript. For example, jQuery’s ability to select elements using CSS selectors can also be accomplished
using JavaScript’s querySelector() and querySelectorAll() methods. An argument could be made that there
is little need for a JavaScript library that duplicates things JavaScript already does so well.

Nonetheless, a web developer should be familiar with jQuery. At the time of this writing jQuery remains the most
popular JavaScript library in the world, used on 77% of the top 1 million websites. Of sites that use jQuery, 55% still
use Version 1, which means that a lot of websites are operating under the adage: “If it’s not broken, don’t fix it.” So,
you will probably encounter jQuery either maintaining already-existing websites or building your own apps on its
established foundations. Full coverage of jQuery would require several chapters of material, so this chapter will serve
as an introduction.

You will learn how to use jQuery in a Frequently Asked Questions page for Bonsai Expression, a company that sells
bonsai trees and supplies for interested arborists. The FAQ page answers several questions about the art of bonsai, but
to keep the page at a manageable length, the answers are collapsed until the question is clicked. Clicking the question
again collapses the answer. Figure 12-2 shows a preview of the page in operation.

While there are ways of completing this assignment using CSS or standard JavaScript, you will complete the page using
jQuery. Rather than downloading the jQuery library file, you will link to the latest build on a jQuery CDN.

to set up the files for jQuery:

1. Go to the js12 c chapter folder of your data files.

2. Use your code editor to open the js12_txt.html and js12_txt.js, files. Enter your name and the date in the comment
section of each file and then save them as js12.html and js12.js, respectively.

3. Go to code.jquery.com website in your browser.

Figure 12-2 Expanding an FAQ answer

Clicking the question
expands to display the answer;

clicking the question again
collapses the answer

Pa
tr

ic
k

C
ar

ey

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery504

4. Click the link for the minified build of the latest core jQuery release. The website displays the Code Integration
overlay shown in Figure 12-3 with a link to the jQuery file (your overlay might look slightly different).

Figure 12-3 Copying the link to the minified jQuery build

Select the mini�ed build
of the most current

jQuery release

Click to copy the
script code

Figure 12-4 Script elements in the document head

Link to the mini�ed
version of the core

jQuery �le

The integrity and
crossorigin attributes
ensure that the CDN has
not been tampered with

5. Click the Copy button to copy the code.

6. Return to the js12.html file in your code editor.

7. Directly above the closing </head> insert the copied script.

8. Add the following script element to link the page to the js12.js file. (You do not need to include the defer
attribute.) Figure 12-4 shows the code in the file.

<script src="js12.js"></script>

Always place any scripts for the web app after the script element that loads or links jQuery, thus ensuring that
the browser has loaded the jQuery library before attempting to use its commands.

9. Study the code for the page body to become familiar with its contents and structure and then close the file, sav-
ing your changes.

Now that you have linked the page to the jQuery library, you can use the library to code the FAQ page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workinG with jQuery SelectorS 505

Because jQuery is used throughout the web, many users will have the linked jQuery file already saved in
their browser’s cache, speeding up the time it takes to load and execute the library.Note

Working with jQuery Selectors
All jQuery commands begin with a $ symbol indicating any code following should be interpreted as part of the jQuery
library. jQuery commands follow the general syntax:

$(selector).action(parameters)

where selector references a selection of elements from the web page document, action is an action performed on
that object, and parameters are parameter values associated within that action. Parameters can be values, but they
can also reference callback functions that are run in response to the action.

For example, the following statement applies the ready() action to the web document, telling the browser to wait
until the web document is completely loaded, and once it is loaded and read, the anonymous callback function will
be run in response:

$(document).ready(function() {

 jQuery statements

 })

Later versions of jQuery also support the following more concise command to accomplish the same task:

$(function() {

 jQuery statements

});

This code can also be written even more concisely in arrow function syntax as:

$(() => {

 jQuery statements

});

The expression $() is a concise alias for jQuery(). If you are using another JavaScript library that
employs the $ symbol, use jQuery() to avoid naming conflicts.Note

Use the $(function() { }) syntax now to create a function that will not be loaded until the document is ready.

to run jQuery commands only after the page is loaded and read:

1. Return to the js12.js file in your code editor.

2. Directly below the comment section add the following statements:

// Run once the page is loaded and ready

$(() => {

});

See Figure 12-5.

3. Save your changes to the file and then open js12.html in your browser.

4. Check the browser developer tools to verify that no mistakes have been introduced in writing the initial code
or in linking to jQuery. Close the Developer pane after you have verified that the code is free of syntax errors.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery506

Before writing the code to display and hide the FAQ answers, you must first review how to manage elements and events
using jQuery.

Selecting elements from the DOM
Like the querySelector() and querySelectorAll() methods, the jQuery $(selector) expression refer-
ences a selection of elements based on CSS selector patterns. Any selector pattern supported by CSS can be used in
a $(selector) expression. The following expression returns an array of all paragraphs nested as direct children of
the dd element.

$("dd > p")

To select paragraphs that are direct children of either a dt or dd element, use:

$("dd > p, dt > p")

To select all paragraphs nested within article elements belonging to the story class, use:

$("article.story p")

The selected elements can be treated as items within an array. To reference the first and second paragraphs within an
article element, apply the following expressions:

$("article.story p")[0]

$("article.story p")[1]

As with all JavaScript arrays, jQuery array indexes start with zero up to one less than the number of items in
the array.

Figure 12-5 Running a function when the document is ready

Anonymous function
that is run when the

page is ready

The $ symbol indicates
that what follows

should be interpreted as
a jQuery command

Always enter a CSS selector pattern as a text string, placed within quotation marks.Note

jQuery selectors can be saved as variables as in the following code that stores a reference to the paragraphs nested
within the main h1 heading under the variable name mainPara.

let mainPara = $("h1#main p");

$(mainPara) // references paragraphs of the main h1 heading

Notice that variable is also placed with the $() expression to indicate that it should be treated as a jQuery selector.
Once a selector has been stored as a variable, the array of selected elements generated by that expression is available
to the JavaScript parser without requiring a rescan of the DOM.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workinG with jQuery SelectorS 507

Because jQuery selectors are based on CSS selector patterns, you can speed up your processing time by optimizing
your use of selectors. This is especially important for large documents in which searching through the node tree
would involve investigating several branches. Here are some tips to keep in mind to optimize jQuery selectors:

❯❯ The id attribute is unique for every page element. The fastest way to retrieve a specific element is by its id value.

❯❯ Be specific in your selectors. Instead of referencing all article elements, use a selector like $("article.news")
so that JavaScript limits its search to article elements of the news class.

❯❯ Include a context for the selectors whenever possible to reduce the size of the node tree that the parser will
search. For example, instead of using $("p") to search for any paragraph, use $("article.news > p") to
limit the search only for paragraphs that are direct children of article elements belong to the news class.

❯❯ Cache your selectors by storing them within variables. By storing the selector as a variable, JavaScript does not
have to rescan the DOM to recreate the node collection.

❯❯ Avoid pseudo-selectors. A selector like $("div:first") takes up valuable processing time as the JavaScript
parser needs to parse the entire node tree to evaluate which div element is first in the list. Instead use id
attributes if you need to reference specific nodes.

A little bit goes a long way with code optimization. Speed up your jQuery apps by writing selectors that are efficient
and specific.

Best Practices Optimizing jQuery Selectors

traversing the DOM with jQuery
Just as JavaScript includes properties and methods for traversing the document node tree, jQuery provides tools to
navigate through the node tree from parent elements through sibling and child elements. Figure 12-6 describes some
of the methods supported by jQuery for traversing the DOM.

MethoD Description

children(filter) Returns all direct children of the selected elements, where filter is an optional selector expression or jQuery expression that
narrows down the search

closest(filter) Returns the closest ancestor of the selected elements

contents(filter) Returns all children (including text and comment nodes) of the selected elements

find(filter) Returns descendant elements that match a filter

first() Returns the first element from a list of selected elements

has(element) Returns all elements which contain a specified element

last() Returns the last element from a list of selected elements

next(filter) Returns the next sibling of the selected elements

nextAll(filter) Returns all next siblings of the selected elements

parent(filter) Returns the parent of the selected elements

parents(filter) Returns all ancestors of the selected elements

prev(filter) Returns the previous sibling of the selected elements

prevAll(filter) Returns all previous siblings of the selected elements

siblings(filter) Returns all siblings of the selected elements

Figure 12-6 jQuery methods to traverse the node tree

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery508

jQuery can traverse the node tree in any direction and includes optional filters to narrow the search. For example, the
following expression returns an array of all sibling elements of the main article, which themselves are also articles:

$("article#main").siblings("article")

The process by which a jQuery selector is appended with jQuery methods that extends or redirects the selected ele-
ments is known as object chaining.

Object chains can be extended indefinitely to create even more specific element arrays. The following expression
extends the object chain to include only those sibling articles that also contained unordered lists:

$("article#main").siblings("article").has("ul")

The jQuery methods are often more versatile than their JavaScript counterparts so that if an app needs to navigate
a complex path through the node tree it may be more efficient and easier to use jQuery’s object chaining in place of
standard JavaScript node methods.

MethoD Description

addClass(class) Adds one or more class names to selected elements

attr(att, value) Returns or sets attribute values to selected elements

css(prop) Returns or sets CSS properties for the selected elements

hasClass(class) Returns a Boolean value indicating whether the selected elements have a specified class attribute

prop(prop) Returns or sets properties of the selected elements

removeAtt(attr) Removes one or more attributes from the selected elements

removeClass(class) Removes one or more classes from the selected elements

removeProp(prop) Removes a property set by the prop() method

toggleClass(class) Toggles between adding and removing one or more classes from the selected elements.

Figure 12-7 jQuery methods for classes and attributes

Working with attributes and CSS properties
jQuery also provides methods to work with element attributes and CSS properties. Using these methods, you can
narrow a search based on element or CSS property values or you can create new attributes and CSS properties.
Figure 12-7 describes some of the jQuery methods for attributes and properties.

If a method does not include a filter, it selects all elements from the specified direction in the node tree.Note

Using jQuery methods, you can get or set the attributes and CSS properties of selected elements. The following expres-
sion gets the value of the width attribute for the first inline image of the slides class:

$("img.slides").first().attr("width")

To set an attribute value, include the value within the attr() method as in the following expression that sets the
width to 500 pixels:

$("img.slides").first().attr("width", "500px")

Multiple attributes can be provided in JSON format. The following expression sets both the width and the height of
the inline image:

$("img.slides").first().({"width": "500px", "height": "300px"})

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workinG with jQuery SelectorS 509

CSS properties, whether placed as inline styles or in external style sheets, are also accessible to jQuery. The follow-
ing expression gets the CSS font-size property of the main h1 heading. Note that hyphenated property names like
font-size are written in camel case.

$("h1#main").css("fontSize")

If several items are returned by the jQuery selector, the css() and attr() methods will return values for
the first matched element in the array.Note

As with element attributes, the value of multiple CSS properties can be set in JSON format. The following expression
sets both the color and the font size of the main h1 heading:

$("h1#main").css({

 fontSize: "2em",

 color: "blue"

})

jQuery returns the computed values of CSS styles, which is not necessarily the value defined in the style sheet. For
example, the following style rule defines the font size and color of article text in an em unit and a color name:

article {

 font-size: 2em;

 color: green;

}

The value of those properties returned by jQuery would be expressed in pixels and the rgb color value.

$("article").css("fontSize") // 32px

$("article").css("color") // rgb(0, 128, 0)

If an app needs to access the CSS value as defined in the style sheet, it will have to be done using JavaScript. It cannot
be done under jQuery.

Changing the DOM Structure
jQuery contains a large library of methods to edit and replace elements existing in the DOM or to create and add new
elements. Figure 12-8 describes a few of the jQuery methods for manipulating the DOM structure.

MethoD Description

add(content) Adds new content after the selected elements

after(content) Inserts new content before the selected elements

append(content) Appends new content at the end of the selected elements

before(content) Inserts new content before the selected elements

clone() Makes a copy of the selected elements (including event handlers)

detach(elems) Detaches elements from the selected elements

empty() Removes all child nodes and content from selected elements

html(content) Gets or sets the HTML content of the selected elements

prepend(content) Inserts new content at the beginning of the selected elements

Figure 12-8 jQuery methods to modify the DOM
(Continues)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery510

jQuery methods act as both getters and setters. A getter is a method that gets a value, while a setter is a method that
sets a value. The following statement acts as a getter by getting the value stored in the username input box:

$("input#username").val()

while this statement acts as a setter to set the value stored in the input box:

$("input#username".val("dawson4815")

In the same fashion, the text() and html() methods can act as both getters and setters.

The other methods listed in Figure 12-8 are used to change the structure of the DOM but can do so more efficiently with
few lines of code than would be required in standard JavaScript. For example, the following HTML fragment

<h1 class="old">Main Heading</h1>

<h1 class="old">Main Heading</h1>

<h1 class="old">Main Heading</h1>

can be changed to

<h2 class="new">Minor Heading</h2>

<h2 class="new">Minor Heading</h2>

<h2 class="new">Minor Heading</h2>

by applying the single jQuery statement:

$("<h2 class='new'>Minor Heading</h2>").replaceAll("h1.old");

The wrap() method encloses elements within a specified HTML structure, creating a new parent for the elements. To
enclose the following h1 headings:

<h1 class="story">Main Heading</h1>

<h1 class="story">Second Heading</h1>

within the following article elements:

<article>

 <h1 class="story">Main Heading</h1>

</article>

The jQuery replaceAll() and replaceWith() methods accomplish the same task except that the
order of the arguments is reversed. In the replaceWith() method, the selected elements are listed first
followed by the replacement HTML code.

Note

MethoD Description

remove(elems) Removes elements from the selected elements

replace(old, new) Replaces an old string with a new text string within the selected elements

replaceAll(selector) Applies a new HTML structure to the selected elements.

replaceWith(html) Replaces selected elements with new HTML content

text(str) Gets or sets the text content of selected elements

val(value) Gets or sets the value of selected form elements

unwrap() Removes the parent element surrounding the selected elements, leaving the selected elements within the DOM

wrap(html) Wraps HTML structure around the selected elements

Figure 12-8 jQuery methods to modify the DOM—(Continued)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handlinG eventS with jQuery 511

<article>

 <h1 class="story">Second Heading</h1>

</article>

and apply the jQuery wrap() method to the selected elements:

$("h1.story").wrap("<article></article>")

To remove the article elements but keep the h1 headings within the DOM, apply the unwrap() method:

$("h1.story").unwrap()

The unwrapped content will take as its new parent, the parents of the article elements that were removed.

Handling Events with jQuery
jQuery uses the same syntax for managing events as it does for applying methods to selected elements. The general
format is:

$(selector).event(handler)

where selector are the elements that experience the event, event is the name of the event, and handler is the
function that handles the event. jQuery responds to events during the bubbling phase. If you need to respond to events
during the capture phase, use JavaScript’s addEventListener() method.

If an event method is supplied without a handler function, jQuery triggers the event instead of
responding to it.Note

Figure 12-9 describes the most common of the many jQuery event methods.

MethoD Description

blur(handler) The focus leaves a form element, running the handler function. If no handler is specified, the event is
triggered rather than responded to.

change(handler) An input field value changes

click(handler) Selected elements are clicked

dblclick(handler) Selected elements are double-clicked

focus(handler) The focus is applied to a form element

hover(handlerIn, handlerOut) Mouse pointer enters the element to initiate the handlerIn function, leaves the element to initiate the
handlerOut function.

mousenter(handler) The mouse pointer enters the selected elements

mouseover(handler) The mouse pointer moves over the selected elements

mouseout(handler) The mouse pointer leaves the selected elements

ready(handler) The DOM is ready and loaded by the browser

submit(handler) The web form is submitted by the browser

Figure 12-9 Common jQuery event methods

As with the JavaScript event model, jQuery supports an event object that is passed as an object of the handler func-
tion. Figure 12-10 describes some of the properties associated with the jQuery event object.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery512

Figure 12-11 Apply the jQuery click() method

Select all dt elements
nested with the
dl#faq element

Event object for the
click() method

property or MethoD Description

event.currentTarget Returns the current element experiencing the event during the bubbling phase

event.preventDefault() Prevents the default browser action associated with the event

event.stopPropagation() Stops the propagation of the event from the current element to its parents

event.target Returns the DOM element which triggered the event

event.type Returns the type of event which was triggered

Figure 12-10 Properties and methods of the jQuery event object

The following code demonstrates how to apply the click() event to every h1 element in the document to dis-
play the text of the element that follows the heading. In this handler function, the heading clicked by the user is
stored in the e.target property. The next() method selects the next sibling element in the DOM, and the text()
method displays the text stored within that sibling.

$("h1").click(e => {

 console.log($(e.target).next().text());

});

Notice that the event object property, e.target, has to be placed within the jQuery selector, $(), so that jQuery
handles the methods associated with the event target.

You now have enough information to begin creating the app that displays answers to the question on the Bonsai Expres-
sions FAQ page. Questions on the page are enclosed within a definition list (dl) element. Each question is marked with
a dt element and the answer to each question immediately follows, marked with a dd element. Add a click event
method for every dt element within the FAQ, running a function that will alternately hide and unhide the answers.

to add a click event for every question:

1. Return to the js12.js file in your code editor.

2. Within the function that runs when the page is loaded and ready, add the following code that runs an anonymous
function each time a dt element is clicked:

// Add click events to each question in the FAQ

$("dl#faq dt").click(e => {

});

Indent the code to make it easier to read as shown in Figure 12-11.

When answers are hidden, the question is prefaced with the + symbol. When answers are displayed the symbol changes
to a – symbol. The + and – symbols are graphical elements displayed as part of the background image of the ques-
tion text. The background image is determined by the value of the class attribute assigned to the dt element. If the

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handlinG eventS with jQuery 513

class attribute value is “hiddenAnswer” then the + image is displayed. If there is no class attribute, the – image is
used as the background.

Switch between the two symbols by using the jQuery toggleClass() method to alternate between turning the
class attribute on and off.

to apply the toggleClass() method:

1. Within the anonymous function for the click event add the following code:

// Alternate between hiding and showing the answer

let question = $(e.target);

let answer = $(question.next());

$(question).toggleClass("hiddenAnswer");

Figure 12-12 shows the newly added code in the function.

Figure 12-12 Toggling the class attribute on and off

Alternate between
deleting and adding the
hiddenAnswer class to

the question

The question is the
target of the click

event

The answer follows the
question in the DOM

2. Save your changes to the file and then reload js12.html in your browser.

3. Click each of the questions in the FAQ, verifying that the symbol switches between a + and a –.

Next you will alternately show and hide the answer to the clicked question. Elements can be shown and hidden using
the following jQuery methods:

$(selector).show()

$(selector).hide()

Hiding does not remove the selected elements from the DOM, it merely hides them from view. Use these two methods
now to show and hide the question answers depending on the value of the question’s class attribute.

to alternate between shown and hidden answers:

1. Return to the js12.js file in your code editor.

2. Within the anonymous function for the click event, add the following:

if ($(question).hasClass("hiddenAnswer")) {

 $(answer).hide();

} else {

 $(answer).show();

}

See Figure 12-13.

3. Save your changes to the file and reload js12.html in your browser.

4. Click each of the questions in the FAQ, verifying that the answers alternate between being hidden and being
shown. See Figure 12-14.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery514

Figure 12-13 Displaying and hiding an FAQ answer

Hide the answer
on the page

Display the answer
on the page

Figure 12-14 Displaying an answer in the FAQ

Clicking the
question …

… displays the
answer

Managing jQuery Efficiently
jQuery is a great supplement to standard JavaScript. However, like all JavaScript libraries it can
be used well or poorly. Here are some common mistakes to avoid when using jQuery with your
projects.

❯❯ Not using a minified version of jQuery. Unless you have a real need to view the underlying
jQuery code, there is no reason to not use the compressed version. You will save bandwidth
and increase the speed and responsiveness of your apps.

❯❯ Not using a CDN. Using a CDN reduces the load on your own server and with browser
caching, jQuery may actually load quicker. Unless you need to work offline, there is little
reason not to use a CDN.

❯❯ Using selectors inefficiently. jQuery’s $(selector) method is a great and simple tool for
referencing arrays of elements. However, do not overuse it. Chain your methods together so
that jQuery only scans the DOM once.

❯❯ Mixing jQuery and JavaScript methods. jQuery integrates so well with standard JavaScript
that it is easy to forget when jQuery ends, and JavaScript begins. A common mistake is trying
to apply a JavaScript method to a jQuery object and vice versa.

Another common mistake is using jQuery when you do not have to. Before committing to jQuery
make sure you have exhausted everything that can be done with HTML, CSS, and JavaScript.
There may be solutions you have overlooked.

Common
Mistakes

You have completed the initial work on the FAQ page. In the next section you will learn how to apply jQuery effects
and animations to objects on the page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workinG with effectS and animationS 515

Figure 12-15 Setting the duration of a jQuery effect

Set the duration of the
effects to 0.6 seconds

Quick Check 1

1. What is a content delivery network (cdn)?

2. Provide a jQuery selector that selects all articles of the story class that are descendants of the aside element.

3. Provide a jQuery expression that selects the sibling elements prior to the aside element with the id “sidebar”.

4. What jQuery method can be used to enclose selected elements within a specified HtML code string?

5. Provide jQuery code to run a handler function to respond to the mouse pointer entering an inline image belonging
to the “photos” class.

Working with Effects and Animations
The show() and hide() methods used in the last section are examples of a jQuery effect, which is a method that
applies a visual effect to an element selection. The complete syntax of the two methods is as follows:

show(speed, easing, callback)

hide(speed, easing, callback)

where speed is slow, fast, or the length of the effect in milliseconds, easing specifies the speed of the effect at
different points in the animation, and callback is a callback function that is run after the effect is completed. The
easing parameter has two possible values:

❯❯ swing The default easing in which the changes are slower at the beginning and at the end, but faster in the
middle

❯❯ linear An easing in which the changes occur at a constant rate

You could not see any special effects in the last section because the duration was set to 0 milliseconds by default.
To experience the transitions used by the show() and hide() methods, increase to duration to 0.6 seconds or
600 milliseconds.

to set the duration of the show() and hide() effects:

1. Return to the js12.js file in your code editor.

2. Change the hide() and show() methods to hide(600) and show(600), respectively. See Figure 12-15.

3. Save your changes to the file and reload js12.html in your browser.

4. Click each of the questions and note that the effect is applied over a longer interval.

The hide() method works by reducing the size of the selected elements to 0 pixels and their opacity to 0 (making the
elements completely transparent.) The show() methods works just the opposite: increasing the size of elements from
0 pixels to its default size and increasing their opacity to 1 (making the elements completely opaque.) Other effects
are also supported by jQuery as described in Figure 12-16.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery516

MethoD Description

fadeIn() Changes the opacity of the selected elements from 0 to 1 as the elements fade into view

fadeOut() Changes the opacity of the selected elements from 1 to 0 as the elements fade out of view

fadeTo() Fades to a specified opacity value

fadeToggle() Toggles between fading in and fading out depending on the current state of the selected elements

hide() Hides the selected elements by reducing their size and their opacity

show() Reveals the selected elements by increasing their size and their opacity

slideDown() Reveals the selected elements with a vertical sliding motion

slideToggle() Toggles between sliding down and sliding up based on the current state of the selected elements

slideUp() Hides the selected elements with a vertical sliding motion

toggle() Toggles between hide() and show() methods depending on the current state of the selected elements

Figure 12-16 jQuery effect methods

Each of the methods described in Figure 12-16 also support the speed, easing, and callback parameters.
The fadeTo() method includes an additional parameter specifying the opacity value that the selected elements
should fade to.

You will modify the code for the FAQ page so that the questions are revealed and hidden using the slideDown() and
slideUp() effects.

to apply the slideDown() and slideUp() effects:

1. Return to the js12.js file in your code editor.

2. Change the hide(6000) and show(600) methods to slideUp(600) and slideDown(600), respectively.
See Figure 12-17.

Figure 12-17 Using the slideUp() and slideDown() methods

Hide the answer by
sliding up

Reveal the answer
by sliding down

3. Save your changes to the file and reload js12.html in your browser.

4. Click each of the questions, verifying that the answers are revealed by sliding down and hidden by sliding up.

Chaining effects
jQuery effects can be chained in a queue so that one effect quickly follows another. The following code creates a queue
in which the selected elements are initially revealed with the slideDown() effect over a 0.5-second interval, followed
by several fade-ins and fade-outs over 0.1-second intervals.

$(selector).slideDown(500)

.fadeOut(100).fadeIn(100).fadeOut(100).fadeIn(100)

.fadeOut(100).fadeIn(100).fadeOut(100).fadeIn(100);

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workinG with effectS and animationS 517

The overall effect is one in which the element is revealed and then flashes by, quickly fading out and in.

Callback functions can be interspersed within a chain of effects so that the function is run as soon as one effect in the
chain concludes but before the next effect begins. With this approach you can time actions to occur within the middle
of an effects queue. The following code applies a 1-second fadeout to the div#caption element and then changes
the text to “New caption”. After the callback function is finished, the next effect that fades in the element is run.

$("div#caption")

.fadeOut(1000, () => {

 $("div#caption").text("New caption");

})

.fadeIn(1000);

When this chain of effects is applied, the old caption text will fade out, followed by the fading in of an entirely new
caption.

A common syntax error with callback functions within jQuery effects is to forget to properly close the
function’s command block or the effect parenthesis.Note

Creating Custom effects with animate
In addition to the jQuery effect methods, you can create custom effects using animations. A jQuery animation is a visual
effect accomplished by gradually changing the values of a collection of CSS properties over a specified time interval.
Animations are created using the following animate() method:

$(selector).animate({properties}, duration, callback)

where properties is an object literal of CSS properties and their values, duration is slow, fast, or the time
interval in milliseconds, and callback is a function that is run once the animation is concluded.

Every animation needs to have a starting condition to build upon, entered either in the style sheet or within the jQuery
code. The following example application applies an animation to the h1.caption elements. Each heading starts
within an initial font size, width, and opacity of 0. Over a span of 0.5 seconds, the font size increases to 2em, the width
to 800 pixels, and the opacity to 1.

$("h1.caption").css({

 fontSize: 0,

 width: 0,

 opacity: 0

})

.animate({

 fontSize: "2em",

 width: "800px",

 opacity: 1

}, 500)

The effect will be a heading that appears to grow with increasing font size, width, and opacity. Notice that property
values that include units such as the “px” unit for length, need to be quoted. Property values that are numeric do not
need quotes.

Not all CSS properties can be animated. In general, only those CSS properties whose value can be
expressed in numbers, lengths, or percentages can be animated.Note

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery518

A CSS property can be changed relative to its current value using the += and –= operators. In the following code,
the font size of the h1.caption elements is increased by 1em relative to their initial font size when the animation
starts:

$("h1.caption").animate({

 fontSize: "+=1em"

}, 500);

Finally, property values can be entered using the following keywords:

❯❯hide Changes the CSS property value to zero.

❯❯show Restores the CSS property value to its initial condition.

❯❯toggle Switches the CSS property value between zero and its initial condition.

For example, the following code toggles the font size and opacity of the h1.caption elements between zero
and their initial conditions. The effect alternately hides and reveals the headings each time the animation is
applied.

$("h1").animate({

 fontSize: "toggle"

 opacity: "toggle"

}, 500);

You will use the animate() method to animate the main heading of the FAQ page when it is initially opened by the
browser.

to apply the animate() method:

1. Return to the js12.js file in your code editor.

2. Directly above the click() method for the $("dl#faq dt") selector, add the following code to set the initial
font size and opacity of the h1 heading:

// Animate the h1 heading

$("section > h1").css({

 fontSize: 0,

 opacity: 0

})

3. Add the following animate() method to increase the font size and opacity of the h1 heading over a 0.6-second
interval:

.animate({

 fontSize: "2.3em",

 opacity: 1

}, 600);

Figure 12-18 shows the completed code in the file.

4. Save your changes and then reload js12.html in your browser. Verify that when the page is opened, an animation
effect revealing the h1 heading is applied to the page.

If the animation fails, check the debugger console for errors. Common mistakes are not closing off the parenthesis
within the css() and animate() methods and not separating CSS properties with a comma.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

workinG with effectS and animationS 519

Figure 12-18 Applying an animate() method

Set the initial font
size and opacity of

the heading to
zero

Increase the font
size and the

opacity over a
0.6-second interval

Controlling the animation Queue
Animation effects placed within a queue are run in order with each animation starting as soon as the preceding anima-
tion finishes. Once an animation has started, it will continue to the end of its duration value. jQuery provides methods
to control the queue by delaying an animation, halting a current animation, or removing animations from the queue.
Figure 12-19 describes the jQuery methods for controlling the animation queue.

MethoD Description

clearQueue(queue) Removes all items from the queue which have not yet been run, where queue is an optional parameter that
references the name of the animation queue. The default queue name is “fx”.

delay(duration, queue) Sets a timer to delay execution of subsequent items in the queue where duration is the delay time in
milliseconds

dequeue(queue) Executes the next function in the queue and then removes that function

finish(queue) Stops the current animation and removes all queued animations, setting the selected elements to their end state

queue(queue) Returns information about the named queue associated with the selected elements

stop(clearQueue, jumpToEnd) Stops the current animation running in the queue, where clearQueue is an optional parameter indicating
whether to remove queued animation as well, and jumpToEnd is an optional parameter whether go to the
end state of the current animation

Figure 12-19 Methods to control the animation queue

In the following code, moving a mouse pointer over the div.box element will shift the box 20 pixels to the right over
a duration of 1 second. The animation will continue even if the mouse pointer is no longer over the box.

$("div.box").mouseenter(e => {

 $(e.target).animate({

 left: "+=20px"

 }, 1000)

});

To stop the animation when the pointer leaves the box, add the following stop() method, which leaves the box in its
current position in the animation:

$("div.box").mouseout(e => {

 $(e.target).stop()

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery520

The overall effect will be that as the pointer enters the box, the box moves to the right and as the pointer leaves the
box, that movement stops.

Because an app might have several jQuery animations, all running simultaneously, the queue for each animation can
be given a unique name that can be referenced in the clearQueue(), delay(), dequeue(), finish(), queue(),
and stop() methods.

Libraries and frameworks often get mistaken for one other and while they have a lot in common, there are important
differences. A JavaScript library, like jQuery, is a reusable collection of code that is often directed toward one use
or purpose. The developer “calls” on the library to perform tasks or get information. When you use jQuery, you are
calling on the jQuery library to do those tasks that you could have done in JavaScript, but that are done much easier
using the tools jQuery provides.

On the other hand, a framework like React.js, Vue.js, or Angular.js encompasses all the tools you need in application
development. A framework might contain a collection of several libraries and scripts and whatever other tools
are necessary to deliver a final project. The framework organizes those tools for the developer and the developer
provides the code. Unlike libraries, frameworks call on your code to complete a task; your code does not call on the
framework. It is part of the framework.

Programming Concepts Libraries vs. Frameworks

Exploring jQuery Plugins
You can create interesting visual effects with the jQuery effects and animation methods. For more advanced effects and
other tasks, you can download one of the many jQuery plugins available on the web. There are hundreds of plugins
for creating web page objects such as photo slideshows, calendars, and form widgets. You can find a searchable list of
plugins in the jQuery Plugin Registry at https://plugins.jquery.com. To use a jQuery plugin, you need to:

1. Read the documentation for the plugin and view demos to understand what the plugin can do and how to inte-
grate it with your website.

2. Either download the plugin files to your site or create a link to a CDN hosting the plugin. For some plugins you
may need to download or link to several files, including CSS style sheets and image files.

3. Edit the HTML and CSS code for your website to load the required files for the plugin. The script element for
plugins must always be placed after the script element for the jQuery library.

4. Edit the JavaScript code to take full advantage of the plugin’s capabilities.

Because you are using a third-party library in your website, the first step is crucial. You will not be able to easily debug
your code if you are not using the plugin in the correct way.

With some plugins you might need an older version of jQuery because more recent jQuery releases
might have removed some features required by an older plugin.Note

The most popular jQuery plugin is the jQuery UI, which expands the functionality of jQuery with a large collection
of functions and methods for creating specialized user interfaces. As with jQuery, the jQuery UI is available either
as a downloadable .js file or via a link to a CDN. You will use the jQueryUI to add one more visual effect to the
FAQ page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

explorinG jQuery pluGinS 521

to access the jQuery ui library from a cdn:

1. Go to code.jquery.com/ui in your browser.

2. Click the link for the minified build of the last jQuery UI library. Copy the link from the Code Integration overlay
shown in Figure 12-20.

Figure 12-20 Copying the link to the minified jQuery UI build

Click to copy the
script code

Current jQuery UI
mini�ed build

Figure 12-21 Linking to the minified jQuery UI build

Link to the mini�ed
version of the

jQuery UI library

3. Click the Copy button to copy the code.

4. Return to the js12.html file in your code editor.

5. After the script element for the jQuery library, paste the copied script element for the jQuery UI library as shown
in Figure 12-21.

6. Close the js12.html file, saving your changes.

To add other visual effects to selected elements, the jQuery UI library provides the following effect() method:

effect(type, options, speed, callback)

where type is the type of effect, options is an object containing parameter values for the effect type, speed is the
speed of the effect, and callback is a function that will be run once the effect is over. Figure 12-22 describes some
of the effect types supported by the effect() method.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery522

You will use the clip() method to display the list of questions onto the FAQ page when the page is initially opened
by the browser. The general syntax of the method is:

effect("clip", {

 mode: mode,

 direction: direction,

}, speed, callback)

where mode is either hide or show and direction is vertical (the default) or horizontal. Add this method
the dl#faq selector.

to add a clip effect:

1. Go to js12.js file in your code editor.

2. Directly below the animate() method, add the following code to initially hide the list of frequently asked ques-
tions when the page is loaded by the browser:

// Reveal the questions when the page opens

$("dl#faq")

.hide()

3. Add the following effect() method to “unclip” the list of questions horizontally over a 0.6-second time interval:

.effect("clip", {

 mode: "show",

 direction: "horizontal"

}, 600);

Figure 12-23 describes the code added to the file.

effect MethoD Description

blind(param) Pulls a “blind” over the element content in the horizontal or vertical direction, where param are the parameters associated with the method

bound(param) Bounces the element with the first bounce either fading the element in or the last bounce fading the element out

clip(param) Hides or shows the selected elements by clipping them horizontally or vertically

drop(param) Causes the selected elements to fall in a specified direction to reveal or hide them

explode(param) Splits the selected elements into several pieces to reveal or hide them

fold(param) Folds the selected elements to reveal them or hide them

puff(param) Creates a puff effect by scaling the selected elements up and hiding them at the same time

pulsate(param) Pulsing the selected elements in and out to reveal or hide them

scale(param) Shrinks or grows the selected elements by a percentage factor

shake(param) Shakes the selected elements several times in the vertical or horizontal direction

size(param) Resizes the selected elements to a specified width and height

slide(param) Slides the selected elements in and out of the viewport to reveal or hide them

transfer(param) Transfers the outline of the selected elements to another element

show(effect) Applies an effect type to show the selected elements

hide(effect) Applies an effect type to hide the selected elements

toggle(effect) Toggles the effect type between showing and hiding the selected elements

Figure 12-22 Effect types from jQuery UI

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

explorinG jQuery pluGinS 523

Figure 12-23 Adding the clip effect from the jQuery UI

Reveal the questions
by clipping the

content horizontally

Initially hide the
questions when the

page opens

Web developers are important professionals in this age of information. There is hardly an aspect of life that has
not been profoundly affected by the web. There is a lot of opportunity for the professional web developer to find
meaningful and varied work across a wide range of disciplines. As you consider entering this field, consider the
following:

❯❯ Choose an area of specialization. The tools, languages, and techniques in creating and maintaining a website
is vast and few people can do it all. Find the area that interests you most from web design to server security and
focus your attentions and mastering that field.

❯❯ Learn the technical skills. Even if you are specializing in a specific area you need to have a broad understanding
of the field. Employers want employees well versed in three main areas: HTML, CSS, and JavaScript. Beyond
that you should have some knowledge of CSS frameworks like Bootstrap and Foundation as well as backend
languages like Ruby, PHP, and SQL Server.

❯❯ Practice Practice Practice. The web provides several sites where you can hone your coding skills. Set up a
GitHub account and submit code samples to that site. An active Github profile can help you get noticed and will
demonstrate your problem-solving ability and your ability to work in a group dynamic.

❯❯ Create a portfolio. Getting certified in a wide range of languages and software tools is very important, but
employers want to see what you have done and what you can do. Maintain a portfolio of your coding projects
and place it online where prospective employers can easily access it.

Finally, never stop learning. This is an actively changing field. New languages, software, and approaches
are constantly being developed, and established methods can become quickly outdated. The way you
interact with the web today will not be the same way you interact with it four years hence. A professional is
always a student.

Skills at Work Becoming a Professional

4. Close the file, saving your changes.

5. Reload js12.html in your browser. Verify that when the FAQ page loads, the list of questions is revealed,
unclipping in the horizontal direction.

You have concluded your work on the Bonsai Expressions FAQ page. You can continue to explore jQuery and jQuery
UI for other methods and objects that can be useful to you in your work. jQuery provides an easy way to add special
features to your website that will be supported across all browsers.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery524

Quick Check 2

1. What are two easing values used by jQuery effects?

2. Provide jQuery code to slide up the article#main element over a half-second interval, followed by a fade out
over another half-second interval.

3. Provide jQuery code to change the font size of the article#main element from an initial value of 1em to a final
value of 1.4em over a 2-second interval.

4. What jQuery method is used to stop an animation and move all queued animations to their final state?

5. What is jQuery uI?

Summary
❯❯ jQuery is a JavaScript library built on JavaScript and providing objects, properties, and methods that simplify
common coding challenges.

❯❯ jQuery can be downloaded from the jQuery website and linked to on a Content Delivery Network (CDN).

❯❯ jQuery commands are marked with $ symbol and elements are selected using the $(selector) where
selector is a CSS selector.

❯❯ jQuery methods are connected to the $(selector) to traverse the DOM, create new elements, and modify
element content and style.

❯❯ Events are managed in jQuery by connecting event methods to the $(selector).

❯❯ The jQuery show() method is used to reveal selected elements; the hide() method is used to hide those
elements.

❯❯ jQuery supports several methods to apply effects and animations to selected elements.

❯❯ The jQuery UI plugin contains a library of expanded effects and user interfaces that can be used in conjunction
with jQuery.

Key Terms
Content Delivery Network (CDN)

getter

JavaScript library

jQuery

jQuery animation

jQuery effect

jQuery plugin

jQuery UI

normal jQuery build

object chaining

setter

slim jQuery build

Subresource Integrity checking
(SRI)

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

review QueStionS 525

Review Questions
1. What language is jQuery written in?

a. CSS
b. JavaScript
c. HTML
d. Java

2. Instead of hosting your own copy of the jQuery
library, you can link to a copy of the jQuery file
_________________ .
a. on the W3C website
b. on the WHATWG website
c. in a stylesheet
d. on a CDN

3. Every jQuery statement begins with which
character?
a. #
b. $
c. .
d. (

4. Which of the following jQuery statements selects
all h1 headings of the intro class?
a. $(h1.intro)
b. getElementByClassName("intro")
c. $("h1.intro")
d. "h1.intro"

5. What is accomplished by the following code?

$(()=> {

 jQuery statements

});

a. An anonymous function is attached to an empty
element.

b. An anonymous function is run when the DOM is
ready.

c. An anonymous function is applied to every
element in the DOM.

d. An anonymous function is applied to none of the
elements in the DOM.

6. Provide code to select all siblings of the
nav#links element.
a. $(nav#links).siblings()
b. $(nav#links.siblings)
c. $("nav#links").siblings
d. $("nav#links").siblings()

7. What jQuery method can be used to get or set the
HTML content of an element?
a. innerHTML
b. html()
c. innerHTML()
d. text()

8. To enclose selected elements within specified HTML
content, which jQuery method should be used?
a. wrap()
b. outerHTML()
c. enclose()
d. replaceOuter()

9. Provide jQuery code that runs when the
input#user element changes value.
a. $("input#user").onchange()
b. $(input#user).onchange()
c. $("input#user").change()
d. $("input#user").addChange()

10. Which of the following objects could reference
the event object from a jQuery event method that
initiated the event?
a. $(e.target)
b. e.target
c. $("e.target")
d. ($e.target)

11. Provide code to apply the show() method to every
article element in the document over a 2-second
time interval.
a. $(article.show(2))
b. $(article).show(2)
c. $("article").show(2000)
d. $(article).show(2000)

12. How does the browser handle jQuery effects that
are chained?
a. The effects are run asynchronously.
b. The effects are run synchronously.
c. Only the effect that finishes first is run.
d. Only the last effect in the chain is run.

13. The animate() method is used for which action?
a. It applies changes in the CSS properties of the

selected elements over time.
b. It runs an animation from the jQuery UI.
c. It places effects within a quue.
d. It is used only for animated text.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery526

14. What jQuery method is used to halt all effects in a
queue?
a. halt()
b. stop()
c. cancel()
d. finish()

15. Which effect type from jQuery UI causes the
selected elements to fall in a specified direction?
a. fall
b. clip
c. puff
d. drop

16. Why should you load the minified version of jQuery?

17. What is the difference between applying a jQuery
method that includes a parameter value and
method that is empty of a parameter value?

18. Where should the script element that links or
loads the jQuery library be placed relative to the
script for the app’s code?

19. Why should jQuery methods be chained to a
selector rather than placing the methods within
separate commands?

20. Why is jQuery still relevant to web developers
despite advances in the standard JavaScript
language?

Hands-On Projects
Hands-On Project 12-1

In this project you will use jQuery on the Wildlife Sea Cruises website. Most of the content and styles have
been completed for you. Your task will be to finish the project by creating a dropdown menu containing links
to other pages on the website. A preview of the completed project is shown in Figure 12-24.

Figure 12-24 Completed Project 12-1

So
ur

ce
: S

te
ve

 L
on

ha
rt

/N
O

A
A

 M
B

N
M

S

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on projectS 527

Do the following:

1. Use your code editor to open the project12-01_txt.html and project12-01_txt.js files from the js12 c
project01 folder. Enter your name and the date in the comment section of each file and save them as
project12-01.html and project12-01.js, respectively.

2. Go to the project12-01.html file in your code editor. Add a script element to load the latest minified build of
the jQuery library from the CDN on the jQuery website. Add another script element loading the contents of
the project12-01.js file. Take some time to study the contents and structure of the document and then close the
file, saving your changes.

3. Go to the project12-01.js file in your code editor. Below the comment section insert jQuery code that runs an
anonymous function when the page is loaded and ready. Within the anonymous function do the tasks described
in Steps 4 and 5.

4. Create a jQuery selector for the li.submenu element. Attach the mouseover() method to the
selector that runs an anonymous function. Within the anonymous function apply the show() method to
$(e.currentTarget).children("ul") selector to show the contents of the dropdown menu during
the mouseover event.

5. Chain the mouseout() method to the li.submenu selector. Within the anonymous function apply the
hide() method to $(e.currentTarget).children("ul") selector to hide the contents of the dropdown
menu during the mouseout event.

6. Save your changes to the file and the open the project12-01.html file in your browser.

7. Verify that when you move the mouse pointer over any of the three menu headings, a submenu appears below
the heading and that when you move the pointer off, the submenu disappears.

Hands-On Project 12-2

In this project you will complete a Fahrenheit-to-Celsius calculator using jQuery methods. Figure 12-25 shows
a preview of the page.

Figure 12-25 Completed Project 12-2

When users change the value of either the Fahrenheit or Celsius input box, the value of other input box will
automatically update to reflect the change. To create this calculator, the app will use the jQuery change()
method to respond to each change in the input boxes and the val() method to either get or set the
temperature values.

Do the following:

1. Use your code editor to open the project12-02_txt.html and project12-02_txt.js files from the js12 c
project02 folder. Enter your name and the date in the comment section of each file and save them as
project12-02.html and project12-02.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery528

2. Go to the project12-02.html file in your code editor. Add a script element to load the latest minified build of
the jQuery library from the CDN on the jQuery website. Add another script element to load the contents of
the project12-02.js file and defer that script until after the page is completely loaded. Study the contents and
structure of the document and then close the file, saving your changes.

3. Go to the project12-02.js file in your code editor. Below the comment section apply the change() method to
the input#cValue element, responding to changes in the Celsius input box. Within the change() method
create an anonymous function that does the following:

a. Declare the celsius variable, setting its value equal to the value of the event target. Use the val() method
to get the event target’s value.

b. Declare the fahrenheit variable with a value equal to 1.8 times the celsius variable’s value plus 32.

c. Apply the val() method to the input#fValue element, displaying the value of the fahrenheit variable.
Apply the toFixed(0) method to that variable, displaying the calculate value as an integer.

4. Apply change() method to the input#fValue element, responding to changes to the fahrenheit input box.
Add the following commands to the anonymous function for the change() method:

a. Declare the fahrenheit variable, setting its value equal to the value of the event target. Once again, use
the val() method to get the event target value.

b. Declare the celsius variable with a value equal to the value of the fahrenheit variable minus 32 and
then divided by 1.8.

c. Apply the val() method to the input#cValue element, displaying the value of the celsius variable.
Once again, use the toFixed(0) method to display the temperature value as an integer. </EOCAL>

5. Save your changes to the file and then open project12-02.html in your browser. Verify that when you change
the value of one temperature input box, the value of the other temperature automatically updates to show the
corresponding Celsius or Fahrenheit value.

Hands-On Project 12-3

In this project you will use jQuery to add visual effects to a recipe page for the dessert website Save your Fork.
Each recipe has an ingredients list and a list of directions. To save page space, both lists are initially hidden,
but their contents can be revealed by clicking the Ingredients and Directions headings. When those headings
are clicked, the lists toggle between sliding down to reveal their content and sliding up to hide it. A preview of
the page is shown in Figure 12-26.

Do the following:

1. Use your code editor to open the project12-03_txt.html and project12-03_txt.js files from the js12 c
project03 folder. Enter your name and the date in the comment section of each file and save them as
project12-03.html and project12-03.js, respectively.

2. Go to the project12-03.html file in your code editor. Add a script element to load the latest minified build of
the jQuery library from the CDN on the jQuery website. Add another script element to load the contents of
the project12-03.js file, deferring the script until after the page loads. Review the contents and structure of the
document and then close the file, saving your changes.

3. Go to the project12-03.js file in your code editor. Below the comment section apply the click() method to
the article > h2 selector. Within the anonymous function inserted into the click() method, do the tasks
described in Steps 4 through 6.

4. Declare the following variables using jQuery.

a. Declare the heading variable referencing the target of the click event.

b. Declare the list variable referencing the next sibling element of the heading variable.

c. Declare the headingImage variable referencing the children of the heading variable whose tag name is “img”.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on projectS 529

Figure 12-26 Completed Project 12-3

5. Alternate between hiding and showing the content of the lists by applying the slideToggle() method to the
list variable over a half-second interval.

6. Change the symbol displayed in the headings by applying the attr() method to headingImage variable
to get the value of the src attribute. If src attribute value is equal to “plus.pg”, apply the attr() method
to headingImage to set the src attribute value to “minus.png”; otherwise set the src attribute value to
“plus.png”.

7. Save your changes to the file and then load project12-03.html in your web browser.

8. Click the Ingredients and Directions headings and verify that the contents of each list are displayed using a
sliding effect and that the symbol within each heading alternates between a plus and a minus.

Hands-On Project 12-4

In this project you will use jQuery to add visual effects to interactive slideshow. The user progresses through
the slides by clicking the left and right arrow buttons located on either side of the slide box. Twelve images are
stored within the slide box, but only one image is displayed at a time. The other images are brought into view
by moving the image list to the left or right within the box. A caption for each image is displayed below the
box. Figure 12-27 shows a preview of the slideshow page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery530

Figure 12-27 Completed Project 12-4

The images are moved by changing the value of the CSS left property for each image using the animate()
method. The image caption is changed by using the blind effect from the jQuery UI. The syntax of the blind
effect is as follows:

$(selector).effect("blind", {

 mode: mode,

 direction: direction,

}, speed, callback)

where mode is either show or hide and direction is up, down, left, right, vertical, or horizontal.
The callback function will change the image caption text.

Do the following:

1. Use your code editor to open the project12-04_txt.html and project12-04_txt.js files from the js12 c
project04 folder. Enter your name and the date in the comment section of each file and save them as
project12-04.html and project12-04.js, respectively.

2. Go to the project12-03.html file in your code editor.

a. Add a script element to load the latest minified build of the jQuery library from the CDN on the jQuery
website.

b. Following this script element with another script element that loads the latest minified build of the
jQuery UI plugin from the jQuery CDN.

c. Finally, add another script element that loads the contents of the project12-04.js file, deferring the script
until after the page loads.

d. Review the contents and structure of the document and then close the file, saving your changes.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

handS-on projectS 531

3. Go to the project12-04.js file in your code editor. Below the comment section declare the slideNumber
variable and set its initial value to 0.

4. Apply the click() method to the img#leftbutton selector. When this button is clicked, images will be
moved to the right through the slide box.

5. Within the anonymous function for the click() method insert an if statement that tests whether
slideNumber is greater than 0. If true, do the following:

a. Apply the animate() method to the img.slideImages selector. Within the animate method, set the
value of the left property to "+=401px". Apply the animate method over a 1-second interval.

b. Decrease the value of slideImage by 1.

c. Declare the currentSlide variable, referencing the selector $("img.slidesImages")
[slideNumber].

d. Declare the slideCaption variable, setting its value equal to $(currentSlide).attr("alt").

e. Call the changeCaption() function using slideCaption as the parameter value.

6. Copy and paste the code from Steps 4 and 5 at the end of the file. Make the following changes to the pasted
code.

a. Change click() method so that it is applied to the img#rightbutton selector, which moves images to
the left through the slide box.

b. Change the if statement to test whether slidenumber is less than 11.

c. Change the statement that sets the value of the left property within the animate method to "-=401px".

d. Change the statement that decreases the value of the slideImage variable by 1 to increase the value of
that variable by 1.

7. Create the changeCaption() function with a single parameter named captionText. The purpose of this
function is to change the image caption using the blind effect from the jQuery UI plugin. Add the following
commands to the function:

a. Apply the blind effect method to the div#caption selector. Set the mode parameter to “hide” and the
direction parameter to “left”. Set the speed to 500 milliseconds. Add an anonymous callback function that
contains the single statement: $("div#caption").text(captionText);

b. Chain another blind effect method to the div#caption selector. Set the mode parameter to “show”, the
direction parameter to “left”, and the speed to 500 milliseconds.

8. Save your changes to the file and then load project12-04.html in your browser.

9. Verify that you can scroll back and forth through the slide images by clicking the right and left buttons.
Also verify that the caption changes with each new image and is revealed using the blind effect. Note that the
slideshow cannot go past the last image or go before the first image.

Hands-On Project 12-5

Debugging challenge

You have been given a web form in which users supply their username, email address, and password. The
validation for the form has been written in jQuery. However, the validation is not working because of errors in
the code. You have been asked to fix the code so that the form validates the user data and submits that data
for processing. A preview of the form is shown in Figure 12-28.

Do the following:

1. Use your code editor to open the project12-05.html and project12-05.js files from the js12 c project05
folder. Enter your name and the date in the comment section of each file and save them as project12-05.
html and project12-05.js, respectively.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 IntroducIng jQuery532

Figure 12-28 Completed Project 12-5

2. Go to the project12-05.html file in your code editor. Add a script element to load the latest minified build of
the jQuery library from the CDN on the jQuery website. Add another script element to load the contents of the
project12-05.js file, deferring the script until after the page loads. Take some time to study the contents of the file
and then close the file, saving your changes.

3. Go to the project12-05.js file in your code editor. Fix the following mistakes in the file:

a. The first statement selects the web form from the page, but there is an error in the selector.

b. To methods are chained to the selector, applying the attr() and submit() methods. But there is an error
that breaks the chain.

c. The code tests whether the value in the username input box is equal to an empty text string, but there is a
mistake in the if statement.

d. The email variable stores the reference to the email input box. Correct the mistake in the statement.

e. The mailRE variable stores a regular expression literal to match email addresses. There is an error in
creating the regular expression literal.

f. The code applies a chain of methods to the $(pwd).next() selector to display an error message. There is
a mistake in constructing the chain.

g. If the passwords are not equal, the app will display an error message to the user after a 0.5-second interval.
However, there is a mistake in specifying the interval for the $(pwd2).next() selector.

h. If the isValid variable is equal to false, the form will not be submitted. There is a mistake in the if
statement that tests this condition.

4. Save your changes to the file and then load project12-05.html in your web browser.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

caSe projectS 533

5. Verify the following in the completed form:

a. Verify that if you do not enter a username, an error is displayed on the form.

b. Verify that if you do not enter a proper email address, the form displays an error message.

c. Verify that if you do not enter a password consisting of at least characters with at least one uppercase letter,
at least one lowercase letter, and at least one number, an error is reported.

d. Verify that if the two passwords do not match, an error is reported.

e. Verify that if the form is properly completed and submitted, the browser displays a web containing the form
values you entered.

Case Projects
Individual Case Project

In your individual website, revise a function to use jQuery selectors and methods. Identify a function that
contains at least three selectors that you can replace with jQuery selectors, and that performs at least one
DOM traversal or CSS change that you can replace with a jQuery method. Comment out the code you replace
rather than deleting it. Be sure to link to the jQuery library in all HTML documents that link to the .js file you
have updated. When your revisions are done, test all pages that use the function to ensure they still perform
as they did when the function was written in standard JavaScript.

Team Case Project

Examine the documentation of jQuery methods and properties at api.jquery.com. As a group, pick a jQuery
method that would enhance the appearance or function of one or more pages of your group website. As a
group, agree on which sections of your code need to be changed to implement this method. Make the changes
as a group and continue to save and test your changes until the feature works as you expect.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

535

Appendix A

Installing and
Configuring a
Testing Server

For frontend development with HTML, CSS, and JavaScript, you do most of your testing on your own
laptop or desktop computer. However, some web app functionality can be tested only by moving the
code to a web server and opening it in your browser using an HTTP connection. A web server used
privately for testing purposes is known as a testing server. Applications published on a testing server
are available only to the developers working on them, and not to other users of the Internet or a local
intranet. When testing is complete and your application is ready to be released, you move your app to
a production server accessible to your target audience.

It is common for web developers to install a testing server on the same computer they use to code. Hav-
ing both the server and client on the same machine enables quick testing of changes while coding or
debugging, without needing to be connected to a network or to first transfer files to another machine.

Like any web server, a testing server consists of server software and interpreters. The server software
listens for and processes HTTP requests. When necessary, it passes requests along to interpreters of spe-
cific languages for parsing and processing and then forwards the results to the client. Most web servers
on the web today are running either Apache, nginx, or Internet Information Services for server software.

This appendix provides instructions the XAMPP server software, which is free and available for com-
puters running Windows or Mac OS X. XAMPP installs the Apache web server along with the MySQL
database and interpreters for the PHP and Perl languages.

Installing Xampp for Windows
The following instructions detail installing XAMPP for Windows. These steps are followed by a separate
set of instructions for installing XAMPP for Mac OS X.

To install XAMPP for Windows:

1. In your browser, open apachefriends.org. As Figure A-1 shows, the Download page provides links
for multiple versions of XAMPP for each operating system at the time of this writing. Your page
may appear different.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix A InstallIng and ConfIgurIng a testIng server536

2. Click the download link for the Windows edition of XAMPP to save the executable installation file to your computer.

3. When the download is completed, if your browser offers you the option to run the downloaded file, follow the
browser instructions to do so. Otherwise, open the folder to which the file was downloaded, locate the down-
loaded file, and double-click it to start the installer.

4. If Windows asks for confirmation that you wish to install the file, follow the instructions shown to authorize the
installation.

5. If a warning is displayed about the interaction of the XAMPP installer with antivirus, click Yes to continue with
the installation. The installer may also display a window discussing the interaction between XAMPP and Windows
User Account Control. Click OK. The Setup window is displayed, as shown in Figure A-2.

6. Click Next. The Select Components window is displayed. Ensure that all boxes are checked, as shown in
Figure A-3, and then click Next.

7. The Installation folder window is displayed. Choose the location in which you want XAMPP installed as shown
in Figure A-4. Click Next.

8. The language configuration window is displayed. Choose your language and click Next.

9. The Bitnami for XAMPP window is displayed, which offers more information about enhancing an XAMPP instal-
lation with other open-source apps. Uncheck the Learn more about Bitnami for XAMPP box to specify a basic
installation and then click Next.

10. The Ready to Install window is displayed. Click Next. A progress bar is displayed while the installer downloads
required files and installs the XAMPP server software.

Figure A-1 XAMPP download page for Windows

Click to download the
installation �le for

Windows

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InsTAllIng XAMPP for WIndoWs 537

Figure A-2 Setup window Figure A-3 Selected components window

11. When setup is completed, you will be able to open the XAMPP control panel shown in Figure A-5.

12. The Control Panel lists several modules. In the line for the Apache module, click the Start button to start the
Apache service. If Windows displays a security alert dialog box, click Allow access to continue. (Note: If you see
a Stop button instead of a Start button, the Apache service is already started, so you can skip this step.)

13. To test your XAMPP installation, open your browser, then in the address bar, type localhost and press Enter.
Your browser should display a default web document for XAMPP, as shown in Figure A-6 (your page may differ.)
This confirms that your Apache web server is working correctly.

Figure A-4 Installation folder window

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix A InstallIng and ConfIgurIng a testIng server538

Figure A-5 XAMPP control panel

Click to start the
server

Click to view the
server folders

Once the server is installed and running, you can move files and folders into the XAMPP folder structure so they can
be viewed through the server connection at localhost.

Figure A-6 Default XAMPP for the local server

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InsTAllIng XAMPP for MAc os X 539

To move your own files to the Apache installation so you can open them with an HTTP connection, open File
Explorer, navigate to the location of your files, copy and paste one or more files or folders to the clipboard, navi-
gate to xampp/htdocs where xampp is the installation folder for your version of XAMPP specified during the
Install routine, and then paste your copied files or folders.

For instance, if you copied a file called register.html to the htdocs folder, you would open this file in a browser by
entering localhost/register.html. If you copied a folder called website containing a file called info.html, you
would open this file in a browser by entering localhost/website/info.html.

If your website needs to use Perl, you will have to edit your server script so that it accesses the perl.exe file, which
is located at the following address:

xampp\perl\bin\perl.exe

where xampp is the installation folder for XAMPP. You can reference XAPP’s extensive list of online documentation to
configure other aspects of your local server.

Installing Xampp for mac OS X
The following instructions detail installing XAMPP for Mac OS X.

To install XAMPP for Mac os X:

1. In your browser, open apachefriends.org and then scroll down to the XAMPP for Apple section. As Figure A-7
shows, the Download page provides links for multiple versions of XAMPP for each operating system.

Figure A-7 XAMPP download page for Mac OS X

Click to download the
installation file for

OS X

2. Click the download link for the Windows edition of XAMPP to save the executable installation file to your computer.

3. When the download is completed, run the executable installation file.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Appendix A InstallIng and ConfIgurIng a testIng server540

4. After the installation file has run, move the XAMPP application into the Applications folder (see Figure A-8).

Figure A-8 Installing XAMPP in the Applications folder

Figure A-9 Starting the XAMPP services

Click to view a list of
services running in

XAMPP

Click to start
the server

5. If your computer asks for confirmation that you wish to run the application, provide your administrator
credentials (username and password.)

6. When the installation is complete and the XAMPP application starts, a Control Panel will appear. From the Control
Panel you can click the Start button to start the services supported by XAMPP, including the web server. See
Figure A-9.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

InsTAllIng XAMPP for MAc os X 541

Figure A-10 Mounting volumes from the server

Click to mount
the server

folders

Click to explore
the mounted

folders

7. To access folders on the server, you must first mount the server volumes. Go to the Volumes tab in the Control
Panel and click the Mount button as shown in Figure A-10.

8. To view the contents of the server volumes, create new folders, or upload files, click the Explore button and then
use the Mac’s file tools to modify the contents of the server volumes.

9. To test your XAMPP installation, open your browser, then in the address bar, type localhost and press Enter.
Your browser should display the default web document for XAMPP.

Files that will appear on the local server, should be moved into the htdocs folder of the mounted server volumes. For
instance, if you copied a file called register.html to the htdocs folder, you would open this file in a browser by enter-
ing localhost/register.html. If you copied a folder called website containing a file called info.html, you would
open this file in a browser by entering localhost/website/info.html.

If your website needs to use Perl, you will have to edit your server script so that it accesses the perl.exe file, which
is located at the following address:

xampp\perl\bin\perl.exe

where xampp is the installation folder for XAMPP. You can reference XAPP’s extensive list of online documentation to
configure other aspects of your local server.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

543

APPENDIX B

Working with
HTML and CSS

Writing HTML5
Compared to many other markup languages, HTML5 is not very strict in the elements it requires to be
present in a document, or the syntax it requires. However, to ensure that parsers interpret your HTML5
code as you intended, it’s advisable to follow some guidelines for the documents you create.

Defining the Document Type
The DOCTYPE declaration in the first line of an HTML document specifies the Document Type Defini-
tion with which the document complies. A Document Type Definition, or DTD, defines the elements
and attributes that can be used in a document, along with the rules that a document must follow for its
structure. Although many DOCTYPE declarations exist for different versions of HTML and other markup
languages, HTML5 uses the following simple DOCTYPE:

<!DOCTYPE html>

This DOCTYPE declaration should come first in your HTML document, before the opening <html> tag
that starts the page content.

Specifying the Character Encoding
Every text document, including an HTML5 file, has a character encoding, which is the system used to
encode the human-readable characters that make up the page in a machine-readable format. Many char-
acter encoding systems exist, including ASCII and ISO-8859-1. The standard encoding used across the
web today is UTF-8. To specify that your document uses this encoding, you include the following meta
element in your document’s head section:

<meta charset="utf-8" />

Using Semantic Elements
The div element is a useful tool for applying styles to element or groups of elements that don’t fit
semantically into common HTML tags. However, the added semantic value of more specific tags can
enhance the interpretation of your web pages by user agents and increase the value of the information

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX B Working With htML and CSS544

indexed by search engines. To bridge this gap, HTML5 defines a set of elements that serve the same function as the
div element, but that include semantic value. Figure B-1 describes some of these elements.

Writing XHTML
XHTML is a version of HTML that’s written to conform to the rules of XML. Because XML is a relatively strict language,
XHTML documents must include several elements and must conform to a specific syntax.

XHTML Document Type Definitions (DTDs)
When a document conforms to the rules and requirements of XHTML, it is said to be well formed. Among other
things, a well-formed document must include a DOCTYPE declaration and the html, head, and body elements. As in
an HTML5 document, the DOCTYPE declaration belongs in the first line of an XHTML document and determines the
Document Type Definition with which the document complies. You can use three types of DTDs with XHTML docu-
ments: transitional, strict, and frameset. To understand the differences among the three types of DTDs, you need to
understand the concept of deprecated HTML elements. One of the goals of XHTML is to separate the way HTML is
structured from the way the parsed web page is displayed in the browser. To accomplish this goal, the W3C decided
that several commonly used HTML elements and attributes for display and formatting would not be used in XHTML
1.0. Instead of using HTML elements and attributes for displaying and formatting web pages, the W3C recommends
you use the Cascading Style Sheets (CSS) language, which is discussed later in this appendix.

Elements and attributes that are considered obsolete and that will eventually be eliminated are said to be deprecated.
Figure B-2 lists the HTML elements that are deprecated in XHTML 1.0.

ElEmEnt DEscription
applet Executes Java applets

basefont Specifies the base font size

center Centers text

dir Defines a directory list

font Specifies a font name, size, and color

isindex Creates automatic document indexing forms

menu Defines a menu list

s or strike Formats strikethrough text

u Formats underlined text

Figure B-2 HTML elements that are deprecated in XHTML 1.0

sEmantic ElEmEnt intEnDED usE
article Standalone piece of work, such as a single entry in a blog

aside Part of a page that’s tangential to the main page content; in a book, this might lend
itself to a sidebar or pull quote

footer Information about a section or document that usually appears at the end, such as
attributions and/or footnotes

header Information about a section or document that usually appears at the beginning, such
as a heading, logo, and/or table of contents

nav A list of navigational links to other pages in the website or in external websites

section Section of content focused on a common theme, such as a chapter of a larger work

Figure B-1 HTML5 Semantic Elements

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Writing XHtML 545

The three DTDs are distinguished in part by the degree to which they accept or do not accept deprecated HTML
elements. This is explained in more detail in the following sections.

The Transitional, Frameset, and Strict DTDs
The transitional DTD allows you to use deprecated style elements in your XHTML documents. The DOCTYPE
declaration for the transitional DTD is as follows:

<!DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

The frameset DTD is identical to the transitional DTD, except that it includes the frameset and frame elements,
which allow you to split the browser window into two or more frames.

The !DOCTYPE declaration for the frameset DTD is as follows:

<!DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Frameset//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

Because frames have been deprecated in favor of layouts using CSS, frameset documents are rarely used. However,
you may encounter them if you need to modify an existing web page that was created with frames.

The strict DTD eliminates the elements that were deprecated in the transitional DTD and frameset DTD. The !DOCTYPE
declaration for the strict DTD is as follows:

<!DOCTYPE html PUBLIC

 "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Using the strict DTD ensures that your web pages conform to the most current web page authoring techniques.

Writing Well-Formed XHTML Documents
As you learned earlier, a well-formed document must include a !DOCTYPE declaration and the html, head, and body
elements. The following list describes some other important components of a well-formed document:

❯❯ All XHTML documents must use html as the root element. The xmlns attribute is required in the html element
and must be assigned the http://www.w3.org/1999/xhtml URI.

❯❯ XHTML is case sensitive.

❯❯ All XHTML elements must have a closing tag.

❯❯ Attribute values must appear within quotation marks.

❯❯ Empty elements must be closed.

❯❯ XHTML elements must be properly nested.

Most of the preceding rules are self-explanatory. However, the last rule requires further explanation. Nesting refers to
how elements are placed inside other elements. For example, in the following code, the a element is nested within the
span element, while the span element is nested within an li element.

<a>Contact

HTML parsers can be somewhat forgiving if elements are not closed in the order in which they are opened. For instance,
examine the following modified version of the preceding statement:

<a>Contact

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX B Working With htML and CSS546

In this version, the opening a element is nested within the span element, which, in turn, is nested within the li element.
Notice, however, that the closing tag is outside the closing tag. The a is the innermost element. In XHTML,
the innermost element in a statement must be closed before another element is closed. In the preceding statement, the
span element is closed before the a element. Although the order in which elements are closed generally does not prevent an
HTML parser from interpreting the content, the preceding code would prevent an XHTML document from being well formed.

The second-to-last rule in the list (“Empty elements must be closed.”) also requires further explanation. One of the
most common empty elements in HTML is the img element, which adds an image to the document. You close an empty
element in XHTML by adding a space and a slash before the element’s closing bracket. For example, the following code
shows how to use the img element in an XHTML document.

<header>

 <h1>

 </h1>

 <p>Ducks in a Row Organizing Service</p>

</header>

Working with Cascading Style Sheets (CSS)
Once you have marked up the content of a web document with HTML, you can specify how it should be presented to
users by using CSS, a standard set by the W3C for managing the visual design and formatting of HTML documents. A
single piece of CSS formatting information, such as text alignment or font size, is referred to as a style. Some of the
style capabilities of CSS include the ability to change fonts, backgrounds, and colors, and to modify the layout of ele-
ments as they appear in a web browser.

CSS information can be added directly to documents or stored in separate documents and shared among multiple web
pages. The term “cascading” refers to the ability of web pages to use CSS information from more than one source. When
a web page has access to multiple CSS sources, the styles “cascade,” or “fall together.” Keep in mind that CSS design
and formatting techniques are truly independent of the content of a web page. CSS allows you to provide design and
formatting specifications for well-formed documents that are compatible with all user agents.

CSS Properties
CSS styles are created with two parts separated by a colon: the property, which refers to a specific CSS style, and
the value assigned to it, which determines the style’s visual characteristics. Together, a CSS property and the value
assigned to it are referred to as a declaration or style declaration. The following code creates a simple style declara-
tion for the color property that changes the color of an element’s text to blue:

color: blue;

CSS Selectors
To apply a style declaration to an HTML document, you need to specify the element or elements to which it applies.
You do this using selectors. When you associate a selector with one or more style declarations, you create a style rule,
which has the following general format:

selector {

 property: value;

 property: value;

 ...

}

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Working WitH CasCading styLe sHeets (Css) 547

Some of the simplest selectors simply specify an element name and result in applying associated styles to every occur-
rence of that element. For instance, the selector p selects all p elements in an HTML document to which it is applied.
The following selector applies the foreground color blue to all p elements:

p {

 color: blue;

}

In addition to selecting all occurrences of an element, you can specify an element id value by preceding its name with
the pound symbol (#). Likewise, you can specify a class value by preceding its name with a period (.). Figure B-3
describes some basic CSS selectors.

namE Format sElEcts

Element element All occurrences of the specified element

ID #id The element with the id value id

Class .class All elements with the class value class

Attribute [attribute] All elements containing the attribute attribute

Attribute value [attribute=value] All elements containing the attribute attribute with
a value of value

Figure B-3 Basic CSS selectors

typE Format sElEcts

Child selector1 > selector2 Every occurrence of selector2 that is a child
 element of selector1

Descendant selector1 selector2 Every occurrence of selector2 that is a descendant
(child, grandchild, etc.) of selector1

Multiple selector1, selector2 All elements that match selector1 and all elements
that match selector2

Figure B-4 Common CSS selector combinations

You can also create style rules using combined selectors to specify multiple types of elements, or to choose elements
with specific relationships to other elements. Figure B-4 describes common selector combinations.

Inline Styles
You can apply styles to a single element in a document using inline styles, which uses the style attribute to assign
inline style information to the element. For instance, the following code assigns the value Verdana to the font-family
property for a p element:

<p style="font-family: Verdana">

 Ducks in a Row Organizing Service

</p>

You can include multiple style declarations in an inline style by separating each declaration with a semicolon.

When you change the style property of an element using JavaScript, you are adding an inline style.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

APPENDIX B Working With htML and CSS548

Internal Style Sheets
You use an internal style sheet to create styles within an HTML document that apply to that entire document. You
create an internal style sheet within a style element placed within the document head, as follows:

<style>

 p {

 color: blue;

 }

</style>

Within the style element, you create any style instructions for a specific element that are applied to all instances of
that element contained in the body of the document.

Inline styles and internal style sheets are rarely written in HTML documents. Instead, web developers generally limit
HTML documents to HTML code, and they keep CSS code separate in a CSS document.

External Style Sheets

An external style sheet is a separate text document containing style declarations that can be used by multiple docu-
ments on a website. You create an external style sheet in a text editor, just as you create HTML and JavaScript docu-
ments, and you save it with an extension of .css. A style sheet document should not contain HTML elements, only
style declarations.

To link the styles in an external style sheet to a web document, you add a link element to the head section of the
HTML document. You include two attributes in the link element: an href attribute that is assigned the URL of
the style sheet and the rel attribute that is assigned a value of stylesheet to specify that the referenced file is a
style sheet. For example, to link a document to a style sheet named corpstyles.css, you include the following link
element in the document head:

<link rel="stylesheet" href="corpstyles.css">

One of the advantages of putting styles in an external file is that it separates page content from page design. One team
of developers can work on keeping the website content current, while another team can focus on the presentation
of that content.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A
accelerometer Hardware in a mobile device
that detects changes in speed.
actual parameter See argument.
AJAX See Asynchronous JavaScript and XML.
anchors The regular expression characters ^
and $ that mark the beginning and ending of a
text string.
anonymous function A function with no
name assigned to it.
API key  A string of characters passed
from the application to an API platform,
verifying that the application has access to
the tools built into the API.
Application Programming Interface (API) A
set of procedures that access an application
such as a web page or a web browser.
argument Values supplied to a method or
function call statement.
arithmetic operators Operators used to
perform mathematical calculations, such as
addition, subtraction, multiplication, and
division.
array A set of data represented by a single
variable name.
array literal A single statement that declares
an array variable and its content.
arrow function A terse representation
of a function that removes all extraneous
characters from the function definition.
assignment operator The operator (=)
used to assign the value on the right side of an
expression to the variable on the left side of
the expression.
associative array A data structure with data
values defined using key:value pairs.
associativity The order in which operators of
equal precedence execute.
asynchronous Type of client-server
connection in which client activity continues
in the background while waiting for a server
response.
asynchronous callback A callback function
that accomplishes its task working in parallel
with the caller.

Asynchronous JavaScript and
XML A technology for transferring
asynchronous HTTP messages between a
client and server with particular support for
XML documents.

B
back end See server.
back-end developer A developer who
works mainly with server-side languages and
libraries, such as PHP, SQL, and Node.js.
backtracking An operation of a regular
expression in which the regular expression
contains quantifiers such as the * or +
characters, which force the parser to examine
each possible substring within a larger text
string.
base object The fundamental
JavaScript object whose properties and
methods are shared with all custom and
native objects.
Binary Large Object (Blob) An object used
for data storage in which the data is stored as
a chunk of bytes.
binary operator An operator that requires an
operand before and after it.
Blob See Binary Large Object.
block comment A comment that contains
multiple lines of code; created by enclosing
the multiple lines within the /* and */
characters.
block scoped The scope in which a variable
can only be referenced within the command
block in which it is declared using the let
keyword.
BOM See Browser Object Model (BOM).
Boolean value A logical value of true or
false.
bracket notation The object["property"]
notation that connects an object name with an
object property.
break mode The temporary suspension
of program execution in a browser so the
programmer can monitor values and trace
program execution.

Glossary

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Glossary550

breakpoint A designation added to a specific
statement in a program that causes program
execution to pause when it reaches that
statement.
browser console A browser pane that displays
error messages.
Browser Object Model (BOM) The aspect of
JavaScript that describes how to access the
features and behaviors of the browser itself.
browser test A conditional statement that tests
whether a feature of the JavaScript language is
supported by the browser.
browser-based validation Validation tasks
performed by browsers themselves without any
extra JavaScript, enabled by recent enhancements
to HTML and to modern browsers; also known as
native validation.
bubbling phase The propagation of an event
moving up the object hierarchy from the most
specific object to the most general or from the
innermost object to the browser window.
bug Any error in a program that causes it to
function incorrectly, whether because of incorrect
syntax or flaws in logic.
bulletproofing Writing code that anticipates and
handles potential problems.

C
caching Temporary storage for data on a local
device to enable faster access to that data.
call A statement that invokes a function to
perform a task or calculate a value.
call stack The ordered list maintained by
a JavaScript processor containing all the
procedures, such as functions, methods, or event
handlers, that have been called but have not yet
finished processing.
callback Executable code that is called to
complete a task or return value.
callback function A function that is passed as a
parameter to another function or method.
callback hell A programming challenge in
which callbacks involving multiple asynchronous
requests are organized in a large and unwieldy
nested structure.
camel case A method of capitalization that
uses a lowercase letter for the first letter of the
first word in a variable name, with subsequent
words starting with an initial cap, as in
myVariableName.

capture phase The propagation of an event
moving down the object hierarchy from the most
general object to the most specific or from the
browser window to the innermost object.
Cascading Style Sheets (CSS) A complementary
language to HTML, developed for specifying the
appearance of web page elements on a specified
device.
CDATA See character data.
CDN See content delivery network.
character class A collection of regular
expression characters that limits characters to a
select group.
character data A section of an HTML document
that is not interpreted as markup.
checksum algorithm A mathematical algorithm
used with the digits within numeric ids to verify
that such ids are legitimate.
client In a two-tier system, the tier that presents
an interface to the user.
client-side scripting Programming written in a
scripting language that runs on a local browser
(on the client tier) instead of on a web server (on
the processing tier).
client-side validation Validation of web form
data that takes place on the user’s browser.
closure A copy of a function and the lexical
environment of the function’s variables.
code editor An app used for writing and
managing program code such as the code for
HTML, CSS, and JavaScript.
code injection attack A security threat in which
a program or user enters JavaScript code that
changes the function of the web page.
command block Multiple JavaScript statements
enclosed within a set of opening and closing curly
braces.
commenting out A debugging technique
in which program errors are located by
changing potentially incorrect program code to
comments.
comments Lines of code that are not
processed by browsers and which serve as
notes about the meaning and purpose of
program statements.
compare function A function called by the
sort() method to specify how array items should
be sorted.
comparison operator An operator to compare
two operands and determine their relative value.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GloSSAry 551

compiled A process by which instructions from
a programming language are transformed into
machine code.
compiler A program that transforms
programming code into machine code that can
be understood by the computer or computer
device.
compound assignment operators Assignment
operators other than the equal sign, which
perform mathematical calculations on variables
and literal values in an expression, and then
assign a new value to the left operand.
concatenation operator The plus symbol (+)
use to either add numeric values or to combine
text strings.
conditional operator The ?: operator, which
executes one of two expressions based on the
results of a conditional expression.
conditional statement See decision-making
statement.
confirmation window A system dialog box
created with the confirm() method that displays
an OK and Cancel button, returning a value of true
or false depending on which button the user clicks.
console See browser console.
Constraint Validation API The set of properties
and methods that enables developers to
customize the validation of web forms.
constructor function A function used to define
an object class.
content delivery network (CDN) A server that
maintains web servers optimized for fast delivery
of content.
controlling flow Changing the order in which
JavaScript code is executed.
cookie  A small piece of information stored
as a text string that is exchanged between a
web server and client device with every HTTP
request.
CORS See Cross Origin Resource Sharing.
counter A variable that is incremented or
decremented with each iteration of a program
loop.
Cross Origin Resource Sharing A method of
bypassing the same origin policy by including a
special HTTP request header in the message from
the client to the server.
CSS See Cascading Style Sheets (CSS).
custom object Object created by the user for a
specific programming task.

D
data interchange format A data format that is a
common standard for information exchange.
data transparency The process of making it
clear to users what information an app needs to
collect and how it will be used.
data type The specific category of information
that a variable contains, such as numeric,
Boolean, or string.
dataTransfer object An object used to transfer
data collected during a drag and drop action.
Date object A JavaScript object that stores
date and time values and provides methods and
properties for managing dates and times.
debugging The act of tracing and resolving
program errors.
decision making The process of choosing
which code to execute at a given point in an
application.
decision-making statement A special type of
JavaScript statement used for making decisions.
decision-making structure See decision-making
statement.
declare The process by which a variable is
defined using the var, let, or const keywords.
deep copy A copy of a node that includes all the
node’s descendants.
defensive coding See secure coding.
dependencies The relationships that exist when
statements depend on the successful execution of
other statements or functions.
Device Orientation API An API providing access
to data from specialized hardware in many mobile
devices for detecting changes in position and
speed.
DirectionsRenderer object An object that
draws a route on a map or writes turn-by-turn
directions given results queried from a Google
Maps DirectionsService object.
DirectionsService object An object that
queries the Google Maps Directions service
to find the most efficient route between two
locations for a given mode of travel.
DnD API See Drag and Drop API.
document fragment A set of connected nodes
that are not part of a document.
Document Object Model (DOM) The aspect
of JavaScript that describes how to access the
contents of the web page and user actions within
that page.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Glossary552

DOM See Document Object Model (DOM).
dot operator The object.property notation that
connects an object name with an object property.
Drag and Drop API A JavaScript API that
manages all parts of a drag and drop operation.
driver program A simplified, temporary
program that is used for testing functions and
other code.
drop zone An element that is enabled to receive
items dropped from a drag and drop action.
duck typed See loosely typed.
dynamically typed See loosely typed.

E
ECMA See European Computer Manufacturers
Association (ECMA).
ECMA-262 See EMCAScript.
ECMAScript An international, standardized
version of JavaScript.
element An individual value contained in an array
or a page object marked within an HTML file.
empty string A zero-length string value.
encapsulation The process by which all code
(primarily properties and methods) and data
needed for the object are completely contained
within the object itself.
encoding The process of converting each
special character in a text string to its
corresponding hexadecimal ASCII value, preceded
by a percent sign.
endpoint The point of contact between the
client and server resource, often specified as the
URL that receives the client request.
enumerable The property of being countable.
escape To convert characters to their character
code equivalents, similar to encoding.
escape character The backslash character (\),
which tells JavaScript compilers and interpreters
that the character that follows it has a special
purpose.
escape sequence The combination of the
escape character (\) with one of several other
characters, which inserts a special character into
a string; for example, the \b escape sequence
inserts a backspace character.
European Computer Manufacturers Association
(ECMA) A non-profit organization that
develops standards in computer hardware,
communications, and programming languages,
including ECMAScript.

event A specific occurrence within a web page
or browser that is initiated either by the user or
the browser itself.
event handler Code that tells a browser how to
respond to an event within the web page or browser.
event listener A method that listens for events
that propagate through the object hierarchy either
in the capture phase or the bubbling phase.
event listener breakpoint  A breakpoint that is
activated when an event occurs within the web
page or browser.
event model A model that describes how
objects and events interact within the web page
and web browser.
event object An object that contains
information about events captured by an event
handler or event listener.
exception An error that occurs in the execution
of a program.
exception handling A method of bulletproofing
code that allows a program to handle errors as
they occur in the execution of the program.
executor The command block contained within
a promise.
exponential notation A shortened format for
writing very large numbers or numbers with many
decimal places, in which numbers are represented
by a value between and multiplied by raised to
some power.
expression A literal value or variable or a
combination of literal values, variables, operators,
and other expressions that can be evaluated by a
JavaScript interpreter to produce a result.
Extensible Markup Language (XML) A
document language to create structure
documents using markup tags.

F
fallthrough A situation in which execution
of a switch statement does not stop after
the statements for a particular case label are
executed, but continues evaluating the rest of the
case labels in the list.
falsy values Values or expressions that
are treated in comparison operations as the
Boolean value false.
fat arrow The => symbol that replaces the
function keyword in an arrow function.
Fetch API A JavaScript API replacement for AJAX
that uses promises to manage server requests
and responses.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GloSSAry 553

File API A JavaScript API that allows for the
retrieval of the contents of selected files on the
local computer or network.
file object A single file within the files
collection.
File Reader API A JavaScript API used for
reading the contents of an external file and
created with the new FileReader() object
constructor.
files collection A collection of files
retrieved using the file data type of the
input element.
first-in-first-out (FIFO) A principle of data
structures in which the first items added to the
queue are the first ones removed.
flag A regular expression character that
modifies the global behavior of the regular
expression.
floating point number A number that contains
decimal places or that is written in exponential
notation.
focus The state where a web form control is
active, either by clicking it or moving the cursor
into it.
freemium service A service in which there are
no costs to the web developer if server requests
are few.
front end See client.
front-end developer A developer who works
primarily with HTML, CSS, and client-side
JavaScript.
full stack developer A developer who has
skills to manage both client-side and server-side
code.
fully qualified domain A domain that can
receive data from a service resource without
hindrance from the browser.
function A related group of JavaScript
statements that are executed as a single unit.
function braces The set of curly braces
that contain the statements used within a
function.
function call A statement that runs a named
function and passes argument values to that
function.
function expression A statement that stores a
function as a variable.
function scope Scope in which a variable can
only be referenced within the function in which it
is declared by the var keyword.

G
geolocation A process that determines the
position of the client device using either a built-in
GPS receiver or information drawn from the
client’s network IP address.
Geolocation API An API that provides information
on the global position of the client device.
get method  A method of sending data to the
server that appends the data as part of a query
string added to the URL of a web page address.
getter A method that gets a value from selected
elements.
global object A term for the window object,
based on the fact that all other objects in the
browser object model are contained within it.
global scope Scope in which a function or variable
is defined outside of any command block or function
and thus is accessible throughout the program.
global variable A variable that is accessible to
all functions and statements within a program.
Google Maps API An API developed by Google to
provide interactive global maps.
gyroscope Hardware in a mobile device that
detects its spatial orientation.

H
history list The internal list maintained by the
history object of all the documents that have been
opened during the current web browser session.
history object The child object of the window
object that maintains an internal list of all the
documents that have been opened during the
current web browser session.
host object An object provided by the browser
for use in interacting with the web document and
browser.
HTML See Hypertext Markup Language (HTML).
HTML Collection Object A group of HTML
elements within the Document Object Model.
HTTP See Hypertext Transfer Protocol (HTTP).
HTTP client An application, usually a web
browser, that makes a request from a server.
HTTP message A message transferred between a
server and client via the HTTP protocol.
HTTP request Part of the HTTP protocol that
is generated each time the web server and client
exchange data, consisting of a header containing
data about the browser and its capabilities and a
body containing information necessary to process
the request.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Glossary554

HTTP server A web server or computer that
receives HTTP request and returns a response to
HTTP clients.
Hypertext Markup Language (HTML) A markup
language used to define the content and structure
of web pages.
Hypertext Transfer Protocol
(HTTP) A communication standard used on the
web to exchange information between servers
and client devices.

I
IDE See Integrated Development Environment
(IDE).
identifier The name assigned to a variable.
immutable A property of objects that cannot be
modified.
index A number associated with an element in
an array, which represents the element’s position
within the array.
infinite loop A program loop than repeats
without end.
initialize The process by which a variable is
defined and given an initial value.
instantiating Creating an object from an object
class.
integer A positive or negative number with no
decimal places.
Integrated Development Environment (IDE) An
application that manages all of the facets of
website development, including the writing and
testing of JavaScript code.
interface The programmatic elements that make
the inner workings of an object accessible to
other programs and scripts.
interpreter A program that scans scripting
language code for errors and executes it.
invalid event An event that is fired when the
browser encounters invalid data within a web
form control.
iteration Each repetition of a program loop.

J
JavaScript A client-side scripting language that
allows web page authors to develop interactive
web pages and sites.
JavaScript library A set of JavaScript code
that can be organized and shared with other
programmers to reduce time and effort in
developing an app.

JavaScript Object Notation (JSON) A text
data structure organized in a format similar to
JavaScript objects.
JavaScript source file An external file containing
JavaScript code, which can be referenced in a web
document.
jQuery A free public JavaScript library that
enables developers to implement many common
tasks with minimal code.
jQuery animation A jQuery visual effect
accomplished by gradually changing the values
of a collection of CSS properties over a specified
time interval.
jQuery effect A jQuery method that applies a
visual effect to a selection of elements.
jQuery plugin A jQuery add-on package that
extends the capabilities of jQuery with new
effects, methods, objects, and properties.
jQuery UI A jQuery plugin that expands the
functionality of jQuery with a large collection of
functions and methods for creating specialized
user interfaces.
JScript An early version of JavaScript used by
Microsoft Internet Explorer in the 1990s.
JSON See JavaScript Object Notation
JSON with Padding (JSONP) A technique for
requesting data from a server on a different origin
in which the request is folded within a script
element rather than as a request object or a Fetch
promise.
JSONP See JSON with Padding.

K
keywords See reserved words.

l
last-in-first-out (LIFO) A principle of data
structures in which the last items added to the
stack are the first ones removed.
lexical environment The programming
environment that encompasses a function and its
variables and their values.
lexical scope The scope of variables, functions,
and other objects is based on their physical
location within the source code.
lexicographical order An ordering of the
characters within a language.
library A JavaScript source file that contains
generic scripts that can be applied to different
web apps.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GloSSAry 555

lightbox A web app that displays multiple
images in a scrolling gallery with the capability to
enlarge single images.
line comment A comment that occupies only a
single line or part of a line; created by adding two
slashes (//) before the comment text.
linting The process of running code through a
program that flags common issues that may affect
code quality and performance.
literal A value such as a literal string or a number.
literal string See text string.
load-time error  An error that occurs when the
program is initially loaded by the browser.
local scope Scope in which a function or
variable is available only to a command block or a
function but not outside those contexts.
local storage object  Web storage in which the
data is permanently stored by the browser and
can be accessed anytime by the user running that
browser on that client device.
local variable A variable that is declared
inside a function and is available only within the
function in which it is declared, because it has
local scope.
location object The child object of the
window object that contains properties and
methods associated with the address of the
current web page.
logging A debugging technique that involves
writing values directly to the browser console.
logic The order in which various parts of a
program run, or execute.
logic error A flaw in a program’s design that
prevents the program from running as anticipated.
logical operators The Or (||), And (&&), and Not
(!) operators, which are used to modify Boolean
values or specify the relationship between operands
in an expression that results in a Boolean value.
loosely typed A programming language that
does require variable data types to be explicitly
declared.
Luhn algorithm A checksum algorithm used
with credit card numbers.

M
machine code  Binary code that can be
understood by a computer or computer device.
man-in-the-middle attack An attack in which
data being exchanged between two parties is read
and potentially changed in transit.

markup language A language that defines the
content, structure, and appearance of a document.
Math object A built-in JavaScript object used for
performing mathematical operations and storing
mathematical constants.
matrix Numbers stored in a rectangular grid of
rows and columns.
method A procedure associated with an object.
middle tier See processing tier.
MIME type A property of a file that indicates the
type of content that file contains.
minifying A method of reducing the size of a file by
removing comments, indents, and line breaks, and
tweaking the code in other ways to make it smaller.
mod 10 algorithm See Luhn algorithm.
modal a window that takes control of an
application and must be closed before the user
can continue using the app.
modal window See modal.
modifier keys The Alt, Ctrl, Shift, and Command
keys.
modulus Operator represented by the %
character that returns the remainder after
division.
multidimensional array A data structure in which
two or more arrays are nested within one another.
multitier client/server system See three-tier
client/server system.

N
n-tier client/server system See three-tier client/
server system.
named function A function that is identified by
an assigned name.
native object An object that is part of the
JavaScript language.
native validation See browser-based validation.
navigator object The child object of the
window object that is used to obtain information
about the current browser.
nested decision-making structure The type of
structure created by nesting one decision-making
statement within another decision-making statement.
node Each item in the DOM tree.
node list An indexed collection of nodes.
node tree Nodes organized into a hierarchical
structure.
normal jQuery build The build of jQuery that
includes the full features of the jQuery library.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Glossary556

o
object Programming code and data that can be
treated as an individual unit or component.
object chaining The process by which a jQuery
selector is appended with jQuery methods that
extends or redirects the selected elements.
object class A template or blueprint for the
creation of new objects all sharing a common
collection of properties and methods.
object constructor A command in the form new
Class(parameters) used to create new objects
from an object class.
object instance A specific object created from
an object class.
object literal A standalone object used once for
a single purpose.
object-oriented programming
(OOP) Programming technique involving the
creation of reusable software objects that can be
easily incorporated into multiple programs.
OOP See Object Oriented Programming.
operand A variable or a literal contained in an
expression.
operator A symbol such as + or * used in an
expression to manipulate operands.
operator precedence The system that
determines the order in which operations in an
expression are evaluated.
origin The location of a web resource indicated
by its protocol, port, and host.
overlay An element that lays on top of web page
content, partially obscuring the page.

P
parameter A variable that is used within a
function.
parsed character data A section of an HTML
document that is interpreted as markup.
passing arguments Providing one or more
arguments for a method or called function.
path  A storage folder on the server.
PCDATA See parsed character data.
Perl A popular server-side scripting language
often used to generate and manipulate text
strings.
persistent cookie A cookie that remains
available beyond the current browser session and
is stored in a text file on a client computer.
pointer event Any action that involves using a
device to point at an object on the screen.

popup window An external window to be
opened and displayed on top of or adjacent to the
application content.
position object An object that contains data
on the device’s position.
post method A method of submitting web
forms that appends the form data to the body of
the HTTP request.
postfix operator An operator that is placed
after a variable name.
posttest loop A program loop in which
the stopping condition is evaluated after the
command block has been executed at least once.
prefix operator An operator that is placed
before a variable name.
pretest loop A program loop in which the
stopping condition is evaluated before each
iteration of the command block.
primitive types Data types that can be assigned
only a single value.
private method A method created within the
constructor function and thus accessible only
within the constructor.
privileged method A method that accesses
private variables and methods but is also
accessible to the public.
procedure In a computer program, a logical unit
composed of individual statements, which is used
to perform a specific task.
processing tier The part of a three-tier client/
server system that handles the interaction
between the web browser client and the data
storage tier.
program loop A command block that is
executed repeatedly until a stopping condition is
met.
programming language A set of instructions
directing the actions of the computer or computer
device
promise An object that does not have a value
currently but might have one in the future once
certain conditions are met.
promise chain A sequence of promises in which
each promise relies on the successful resolution
of the prior promise.
prompt window A system dialog box created
with the prompt() method that displays a input
box, returning the text entered by the user into
the box.
property A piece of data, such as a color or a
name, that is associated with an object.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GloSSAry 557

prototypal inheritance The process by which
the properties and methods of an object class at
one level are shared with an object class within a
nested level.
prototype A template for all the properties and
methods associated with the object’s class.
prototype chain A hierarchy of objects from
a base object class down to lower classes or
subclasses.
proxy server A server that handles an HTTP
request for the client rather than relying on the
client’s own server.
public method A method defined for the object
prototype which can be called outside of the
object.

Q
query string Text appended to a URL containing
data field names and data field values; a set of
name-value pairs appended to a target URL.
queue A data structure in which new items are
added to the bottom or beginning of the array.

r
regular expression Code that concisely
describes the general pattern and content of
characters within a text string
regular expression literal A regular expression
pattern entered in JavaScript as /pattern/.
relational operator See comparison operator.
request A query sent to a server resource
asking for content.
reserved words Special words that are part of
the JavaScript language syntax.
response A reply from a server resource when
data is requested.
root node The html node in a web document,
which is also the parent of all other nodes in the
node tree.
RSS newsfeed A technology that uses XML to
transmit current news stories to media outlets
and podcasts.
runtime error An error that occurs when a
JavaScript interpreter encounters a problem while
a program is executing.

S
same-origin policy A JavaScript security feature
that restricts how JavaScript code in one window,
tab, or frame accesses a web page in another
window, tab, or frame on a client computer.

scientific notation See exponential notation.
scope A characteristic of a function or variable
that indicates where it can be referenced within
the program code.
Scope window  A section of the browser
debugger pane that lists all local and global
variables and objects available to the program
and their current values.
screen object The child object of the window
object that is used to obtain information about the
display screen’s size, resolution, and color depth.
script A JavaScript program contained within a
web page.
scripting language A subcategory of
programming languages that are interpreted rather
than compiled and run directly from a program or
script, often used to control a web page or return
some sort of response to a web browser.
secure coding The process of writing code to
minimize any intentional or accidental security
issues.
Secure Sockets Layer (SSL) The main protocol
used to encrypt data on websites.
server A device or application from which a
client requests information; a server fulfills a
request for information by managing the request
or serving the requested information to the client.
server-side scripting Programming written in
a scripting language that is executed from a web
server.
server-side validation Validation of web form
data that takes place on the web server.
session The interaction that occurs each time
the client device connects to the web server
within a browser window or tab.
session cookie Cookie that remains available
only for the current browser session.
session storage object Web storage in which
the data is accessible only during the current
session.
setter A method that sets the value within
selected elements.
slim jQuery build The build of jQuery that
removes features such as AJAX and animation
effect tools.
spaghetti code A pejorative programming term
that refers to convoluted or poorly written code.
sparse array An array in which some array
elements are left undefined so that the length
of the array is not the same as the number of
defined values.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Glossary558

spread operator A JavaScript operator written
as an ellipsis of three dots (...), which spreads
out the items within an array into a comma-
separated list of values.
SRI See Subresource Integrity checking.
SSL See Secure Sockets Layer.
stack A data structure in which new items are
added to the top or end of the array.
state information Information about individual
visits to a website.
stateless A communication protocol that does
not accommodate the storage of data beyond the
current session.
statement An individual line of code in a
JavaScript program.
static Description of a web page that can’t
change after a browser renders it.
static scope See lexical scope.
statically typed See strongly typed.
step in The stepping option that executes an
individual line of code and then pauses until
instructed to continue; also known as step into.
step into See step in.
step out The stepping option that executes all
remaining code in the current function.
step over The stepping option to skip function
calls; the program still executes each function
stepped over, but appearing in the debugger as if
a single statement executes.
stepping options Options in browser debugging
tools to continue program execution after
program breaks.
stop words Words that are not normally
included within a word cloud.
strict mode A JavaScript processing mode in
which adherence to JavaScript syntax is strictly
enforced.
strongly typed Description of a programming
language that requires the declaration of variable
data types.
subarray A section of an array.
subclass An object class at the lower levels of a
prototype chain.
Subresource Integrity checking (SRI) A software
check that ensures that the resources on the CDN
have not been tampered with.
substring A portion of a larger text string.
superclass An object class at the higher levels
of a prototype chain.

synchronous The halting of program operation
pending a response from a callback function or
other code currently being run.
synchronous callback A callback function that
accomplishes its task before returning control to
the caller.
syntax The rules for a programming language.
syntax error An error that occurs when an
interpreter fails to recognize code, such as a
statement that is not recognized by a browser’s
scripting engine.

T
target phase The phase during event
propagation in which the event reaches the event
target.
template literal A text string enclosed with the
backtick character (̀) which allows the string
to be written across several lines and be made
available to JavaScript tools for handling text
characters.
ternary operator An operator that takes three
operands.
text string Text passed as an argument,
contained within double or single quotation
marks.
third-party scripts Scripts from other domains.
this object The object that references
the owner of a currently running segment of
JavaScript code.
three-tier client/server system A system that
consists of three distinct pieces: the client tier,
the processing tier, and the data storage tier.
throw A JavaScript statement used to trigger an
error event.
timed command A command or function
that is run at a specified time or repeated at set
intervals.
TLS See Transport Layer Security.
token A string of random characters used to
verify a user’s identity in a system that supports
persistent logins.
touch cascade A sequence of touch and mouse
events triggered during interaction with a touch
surface.
Touch interface An interface with a touchscreen
that involves a single point of contact.
TouchEvent interface An interface with a
touchscreen that involves changing the state of
touchpoints on the touch surface.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GloSSAry 559

TouchList interface An interface with a
touchscreen that involves multiple simultaneous
points of contact.
touchpoint A single point of contact on a touch
surface.
tracing A debugging technique that involves
examining individual statements in an executing
program.
Transport Layer Security (TLS) The encryption
standard planned to eventually replace SSL.
truthy values A value or expression that is
treated as the Boolean value true.
two-tier system A system consisting of a client
and a server.

U
unary operator An operator that requires just a
single operand either before or after it.
URI-encoded character A character that is
replaced with its URI character code.
user error   An error initiated by the user
through operating the program in a way not
intended by the developer.
user-defined object See custom object.

V
validating parser A program that checks
whether a web page is well formed and whether
the document conforms to a specific DTD.
validation The process of checking that
information provided by users conforms to rules
to ensure that it appropriately answers the form’s
questions and is provided in a format that the
site’s back-end programs can work with.
ValidityState object A text string appended
to a URL containing field names and values.
variables The values a program stores in
computer memory.

W
W3C See World Wide Web Consortium (W3C)
Watch window   A section of the debugger pane
used for tracking the changing values of a variable
or expression.
web See World Wide Web.
web application A program that is executed
on a server but is accessed through a web page
loaded in a client browser.
Web Storage API A JavaScript specification that
enables browsers to store data as text strings
within an associative array that can be read by
the client device using the browser interface.
well formed  A document that conforms to the
rules and requirements of a markup language
such as HTML or XHTML.
whitespace character Any blank or
nonprintable character such as a space, tab, or
line break.
word A regular expression pattern consisting
solely of word characters.
word characters Characters that are
alphabetical characters, digits, or the underscore
character (_).
word cloud A graphical representation of the
words and phrases used within a document in
which the size and style of each word indicates its
frequency and importance.
World Wide Web A system for easily accessing
cross-referenced documents using the Internet.
World Wide Web Consortium (W3C) An
organization established to oversee the
development of web technology standards.

X
XHR object See XMLHttpRequest object.
XML See Extensible Markup Language.
XMLHttpRequest object A request object used
to send requests from the client to the server
over the HTTP communication protocol.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A
abort() method, 256, 454
abs() method, 292
accelerometer, 434
action attribute, 365
actual parameters, 41
addClass() method, 508
addEventListener() method,

44, 242
adding event listeners, 224
addition compound assignment

operator (15), 53–54, 58,
60, 69, 114, 265, 518

addition operator (1), 17, 18, 50,
51, 58, 69

a element, 19–20, 203, 545–546
AJAX. See Asynchronous

JavaScript and XML (AJAX)
alert dialog boxes, 20
alert() method, 20
alpha property, 434
ampersand (&), 27
anchors, 266
And operator (&&), 56
animate() method, 517
animations

chaining effects, 516–517
custom effects, 517–519
queue, 519–520

anonymous function, 38
API. See application programming

interface (API)
API Key, 421, 482–484
apostrophe ('), 51
appendChild() method,

171, 418
applet element, 544
application programming

interface (API), 3
CORS, 486
JSONP, 486–487
XHR, 487

apply() methods, 346–347
Aptana Studio, 7
arguments, 10, 41

arithmetic operators, 52–53
binary arithmetic operators, 52
unary arithmetic operators, 52

Array() constructor, 78, 86
array index operator ([]), 57
array literals, 78
Array object, 78, 86, 292, 309,

310, 312, 318, 347, 348
arrays, 77

compare function, 284–286
creating, 79–82
data stacks, 287–291
data types, 77, 78
days of the week or months,

80–81, 88
declaring and initializing, 78
displaying contents, 128
elements, 79
extracting and inserting,

286–287
identifiers, 78
index, 79
length, 79, 82, 84
literal, 78
loops, 94–96
multidimensional, 82–83
reversing and sorting,

281–284
storing data, 77–83

arrow functions, 461, 461–463
arrValue, 94
article element, 9, 506, 507,

510–511
aside element, 21, 122, 515
ASP.NET, 6
assignment operator, 16, 53–54
associative array, 347
associativity, 57
asynchronous, 451
asynchronous callback, 433
Asynchronous JavaScript and

XML (AJAX), 454
callback hell, 460–461
Hypertext Transfer Protocol

(HTTP), 454–455

JavaScript, 454
JSON, 454
response, 456–458
XMLHttpRequest object,

454–455
asynchronous requests, 451
async keywords, 24
attributes, 19–20, 166, 508

name specifying event
handler, 19–20

Attribute selector, 547
Attribute value selector, 547
autocomplete property,

211, 213
autocomplete search box,

476–482
JSON data, 477–478
suggestion box, 479–481

autofocus property, 214
availHeight property, 195
availWidth property, 195

B
back end, 4
back-end developer, 487
back() method, 193
backslash (\), 50
backslash (\\) escape sequence,

50–51
backspace (\b) escape

sequence, 51
backtracking, 274
basefont element, 544
base object, 345
beta property, 434
binary arithmetic operators, 52
binary large object (Blob), 258
binary operator, 52
binary values, 49
bitwise operators, 52
block comments (/* */), 13
block scoped, 46
blur event, 19, 511
blur() method, 213
body element, 19–20, 544–545

index

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index562

body property, 166
BOM. See browser object model

(BOM)
Boolean class, 319
Boolean data type, 48
Boolean values, 49
bracket notation, 313
break mode, 137
breakpoint, 137
break statement, 105
browser-based validation, 228

constraint validation API, 230
browser console, 66

accessing, 66–67
error, 67–68

browser debugger, 173–176
browser object model (BOM), 3,

193–195
browser test, 101
browsers

See also web browsers
advanced web page
standards, 3

anonymous functions in
response to events, 44

automatically performing
validation, 228

breakpoints, 137–140
bubble, 229, 233–234
debugging tools, 136–144
deleting cookies, 386
error messages, 150
event listeners, 43–44
HTML attributes, 42
HTML elements, 42
information about, 194–195
line numbers, 119
Navigator, 194
object properties, 43
remove the breakpoints, 140
runtime errors, 119–120
scripting engine, 6
step in or step into, 140–141
stepping options, 140–141
step out, 140–141
step over, 140–141
strict mode, 125–127
syntax errors, 122–125
testing programs, 151
watch list, 152

web pages displayed in, 403
browser windows

limitations, 187–188
working, 185–187
writing content, 187

bubble, 229, 233–234
bubbling phase, 43, 404
bug, 118

comments, 135
describing, 144
fixing, 135
minimizing in code, 151
tracing with window.alert()

method, 127–131
tracing with the console log,

131–134
built-in javascript functions, 45
bulletproofing, 145
button element, 217–220

C
caching, 453
callback, 94, 433
callback function, 94
callback hell, 460–461
called, 41
call() methods, 346–347
call stack, 143
camel case, 15
capture phase, 43, 404
carriage return (\r) escape

sequence, 51
Cascading Style Sheets (CSS), 2

comments, 13
declaration, 546
external style sheets, 548
inline styles, 547
internal style sheets, 548
properties, 508–509, 546
selectors, 546–547
style declaration, 546
style rules, 546–547
styles, 546
web development, 2

case-sensitive language, 13
catch statement, 147, 262
CDATA, 27
CDN. See content delivery network

(CDN)
changedTouches object, 409

change event, 64
character class, 269
character data, 27
character encoding, 543
charAt() method, 263
charCodeAt() method, 263
checkboxes, 61–64
checked property, 61, 217
checksum algorithm, 240
checkValidity() method, 230
checkVar variable, 45
children() method, 527
Child selector, 547
Chrome. See Google Chrome
class attribute, 84
classList property, 170
Class selector, 547
clearInterval() method, 182
clear() method, 377
clearTimeout() method, 184
click event, 19, 20
click() method, 512
client, 4
client/server architecture, 4–5
client-side scripting, 5–7
client-side validation, 228
clientX property, 411–413, 437
clientY property, 411–413, 437
clip() method, 522
clone() method, 509
cloneNode() method, 181
close() method, 186
closures, 333

lexical environment, 332–333
lexical scope, 331–332
for Loops, 334–337

COBOL. See Common Business-
Oriented Language (COBOL)

code
bugs, 151
bulletproofing, 145
callbacks, 433
commenting out, 135
comments, 53
controlling flow, 77
embedded, 24
HTML and JavaScript code, 24, 42
indenting, 38
linting, 121
reusing, 16

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index 563

self-documenting, 53
strict mode, 126
structuring, 22
tracing, 127

code editors, 7–8, 8
code injection attack, 387
colorDepth property, 195
color properties, 170
comma operator (,), 57
command block, 38
commenting out, 135
comments, 13
Common Business-Oriented

Language (COBOL), 118
compare function, 284
comparison operator, 54–55
compiled process, 2
compiler, 2
compound assignment operators, 53
concat() method, 265
conditional operators, 55
conditional statements, 96,

101–102
confirmation window, 184
confirm() methods, 187
Connection header, 453
console, 66
console.log() method, 150, 334
const keyword, 16, 46
Constraint Validation API, 230–231
constructor function, 318
content delivery network (CDN),

388, 502
contextmenu event, 407
continue statement, 105
controlling flow, 77
cookies, 379

deleting, 386
domain, 383
expiration date, 382
path, 383
persistent, 386
reading, 385–386
security, 383
setting expiration dates, 382
structure, 380–381
value, 384–385
vs. web storage, 379–380

CORS. See Cross Origin Resource
Sharing (CORS)

counter, 87
Cross Origin Resource Sharing

(CORS), 486
CSS. See Cascading Style Sheets

(CSS)
custom objects, 310
custom validity check, 240–241

d
data interchange format, 349
data stacks, 287–291
data storage, 347–351
dataTransfer object, 417, 418
data transparency, 436
data types, 48

Boolean values, 49
escape characters, 50–51
numeric values, 48–49
sequences, 50– 51
strings, 49–50

dataValues array, 78
Date object, 294

extracting information from
dates and times, 295–296

setting date and time values, 296
debugging, 118

browser console, 121–125
load-time errors, 118–119
logic errors, 120–121
runtime errors, 119–120

debugging tools
break points, 137–140
browsers, 136–137
call stack, 143–144
program execution, 140–141
tracking variables and

expressions, 141–143
decision making, 96
decision-making statements, 96
decision-making structures, 96
declaration, 546
declare, 15–17
decodeURIComponent()

function, 368
deep copy, 181
defensive coding, 387
defer keywords, 24
dependencies, 135
devicemotion event, 435
Device Orientation API, 434

directionsRenderer object, 433
DirectionsService object, 430
discount variable, 55
display attribute, 20
DnD API. See Drag and Drop API

(DnD API)
document fragment, 168
document.getElementById()

method, 23, 84, 211
document.getElementByName()

method, 84
document.getElements, 84
Document object, 10–12
Document Object Model (DOM),

3, 84
elements, 507–508
structure, 509–511
traversing, 506–507

document type definitions (DTDs),
544–545

document.write() method,
12, 17, 50

DOM. See Document Object Model
(DOM)

dot operator, 313
double quotation mark (\"), 51
do while loop, 89
drag and drop

element, 413–414
event coordinates, 411–413
HTML drag, 416
touchscreen emulation, 415
transferring data, 417–418

Drag and Drop API (DnD API), 416
driver program, 134
drop zone, 416
DTDs. See document type definitions

(DTDs)
duck typed programming

languages, 48
dynamically typed programming

languages, 48

e
ECMA. See European Computer

Manufacturers Association
(ECMA)

ECMA-262, 3
ECMAScript, 2–3, 101–102
ECMAScript 6, 461

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index564

elements, 19, 21, 79, 173, 209, 211, 506
arrays, 77–83, 85–86, 280–291,

347–395
attributes, 20, 77, 169, 229,

230t, 508–509
automatically creating, 79
browsers and, 50, 371
checking, 153
class name, 27, 153
CSS properties, 508, 546
CSS selectors, 503
data types, 78
deprecated, 544
empty, 546
events, 19–21
forms, 83, 209–214
index, 79
name, 192, 311
nesting, 545
number, 79
opening and closing tags, 31
referencing, 83
refer to, 194
rendered, 11
retrieve information about,

21
tag name, 112, 201, 443
text of, 225
undefined, 78
values, 102–105

element array, 508
Element selector, 547
elements property, 211
else clause, 107, 130
else command, 102
else if construction, 103
else if statements, 97–100, 130,

134, 140
email addresses, 105, 259, 532
email() method, 344
embedded code, 25
empty elements, 546
empty string, 49, 56, 72, 232
enableHighAccuracy, 428
encapsulation, 310, 452
encodeURIComponent() function,

45, 368, 381–382, 470, 478
encodeURI() function, 45
encoding, 368, 543
endpoint, 483

endsWith()methods, 259
enumerable, 348, 352
equal sign (5), 53
Error class, 319
error event, 150
error messages

browser console, 119
browsers, 122
description of error, 119
line number where error

occurred, 119
locating bugs, 135
logic errors, 118
run-time errors, 119

error parameter, 147
errors

catching, 150
handling, 150–151
locating with browser console,

66–68
managing, 145–150
thrown, 260
tracing, 131–134

escape, 387
escape characters, 50– 51
escape sequence \, 51, 52, 272
European Computer Manufacturers

Association (ECMA), 2
EvalError, 147
eval() function, 45
event, 18
event capturing, 403–406
event handler, 19, 42

anonymous functions , 44
jQuery, 511–514

event listener, 43
else if construction, 103
mouse events, 406–409
touch events, 407

event listener breakpoints, 140
event model, 43
e.Location property, 418
event object, 242, 402–403
event parameter, 403
events, 18–21

actions users perform, 19
anonymous functions, 44
calling a functions, 41
elements, 19–21
event handler, 19

listeners, 43–44
object properties, 43

event.target property, 512
event.type property, 512
evt parameter, 242

exception handling, 145,
147–150, 160

custom, 150–152
exception handling, 145
exceptions, 146

catching, 146
error Parameter, 147
throwing, 146

exec() method, 275
expires attribute, 382
expiresDate variable, 382
executor, 464
exponential notation, 49
expressions, 17, 17–18

change event, 64
checkboxes, 61–64
comparing, 54
evaluated, 57–59
falsy values, 55, 57
input control values, 59–61
operators and,
order in which operations are
parentheses (), 59
tracing, 131–134
truthy values, 55–56
watch list, 152
web form controls, 65–66

Extensible Hypertext Markup
Language (XHTML), 27, 544

Extensible Markup Language
(XML), 472

content, 473–474
node tree, 474–476

external style sheet, 548

F
fadeIn() method, 516
fadeOut() method, 516
fail() function, 427
fallthrough, 103
false value, 49, 55
falseValue value, 55
falsy values, 55–56

if statements, 97
for statements, 107

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index 565

fat arrow, 461
Fetch API, 467

error handling, 468–469
responses, 467–468
search, 469–471

fetch request from web service, 500
API key, 500
Google maps, API key, 421–422

fieldset element, 124
figcaption element, 9, 110, 188
figure element, 110, 188
File API, 255
file.lastmodified, 255
file.name property, 255
file object, 255
File Reader API, 256–258
FileReader objects, 256
files collection, 255
file.size property, 255
files, minifying, 435–436
file.type, 255
finally command, 146–147
find(), 101
Firefox, 66, 136, 151, 374, 415, 435

breakpoints,137–141
debugger window,
debugging tools, 138, 226
deleting a cookie, 386
open the console, 66, 85
removing breakpoints, 137
track variables, 142
watch list, 152

first-in-first-out (FIFO), 288
first() method, 507
flag, 267
floating point numbers, 49
floor() method, 292, 294
focus, 213
focus event, 511
focus() method, 186, 213, 244,

511
font element, 544
font-family property, 170, 547
font-size properties, 170
footer element, 544
forEach() method, 94
for in loops, 347–348
for Loop, 90, 334–337
formData variable, 369
form element, 20

form feed (\f) escape sequence, 51
formFields variable, 372
form object, 211, 227, 230, 310
forms

browser-based validation, 228
check boxes, 252
clearing, 287
collection, 211
custom validation, 232,

234, 252
data validation, 7, 28
elements, 211–212
events, 223–225
field values, 227, 244
formatting data values, 220–223
hidden fields, 225–227
multiple, 216
option buttons, 217–220
product order, 210
selection lists, 214–216, 228, 236,

238, 247–252, 443
submission, 227
textarea box, 372
text field, 56
validation, 228–230

for statement, 96
for of loops, 347–348
frames, 545
frameset DTD, 545
freemimum services, 482
fromCharCode() method, 264
front end, 4
front-end developer, 487
full stack developers, 487
fully qualified domain, 486
function, 38

anonymous functions, 44
arguments, 41
built-in, 41, 45
braces, 38
calling, 41
definition, 38–39
external Javascript file, 25, 40
named functions, 38–39, 44
order of execution, 77, 143
parameters, 38
reusing, 310
script element, 32, 34, 72, 74
statements, 38
writing, 39–41

function(), 42, 118
function braces, 38
Function class, 319
function expression, 461
functionName, 41
function scope, 46
function statements, 38

G
geolocation, 426–429
Geolocation API, 426
gestures, 409
getCurrentPosition()

method, 426
getDate() method, 295
getDay() method, 295
getElementById() method, 21
getElementsByClassName()

method, 83–84, 110, 168
getElementsByName() method,

83–84
getElementsByTagName()

method, 124
getFullYear() method,

295–296, 305
getHours() method, 295
get method, 365
getMonth() method, 382
getResponseHeader, 454
getSeconds() method, 295
getter, 510
Global class, 319
global object, 193
global scope, 46–47
global variables, 46
go() method, 193
Google, 194, 223

Suggest and gmail, 454
Google Chrome, 66–68, 85, 118, 122,

136–137, 232, 374, 380, 415,
450, 451

breakpoints, 138–141
debugger window, 226
debugging tools, 136–144
deleting a cookie, 386
ending debugging session, 246
open your browser console,

66–67
Watch Expression, 142

Google Maps API, 421–422

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index566

greater than operator (.), 54
greater than or equal operator

(.5), 54
greater-than symbol (.), 27
Greenwich Mean Time (GMT), 295
gyroscope, 434

H
hash property, 194
hasOwnProperty() method, 345
header element, 360, 544
header() function, 453
headers, 452–453, 459
heading property, 427
HEAD method, 453
height method, 186
height pointer event

property, 410
hide() method, 515
history list, 193
History object, 193
history property, 193
h1 elements, 512
Hopper, Grace Murray, 118
horizontal tab (\t) escape

sequence, 51
hostname property, 194
host property, 194
host objects, 310
href attribute, 169, 548
href property, 194
HTML. See Hypertext Markup

Language (HTML)
HTML5, 13

character encoding, 543
DOCTYPE declaration, 543
Document Type Definition

(DTD), 543
semantic elements, 543–544

HTML Collection Object, 83
DOM, 84–85
reference, 83–84

HTTP. See Hypertext Transfer
Protocol (HTTP)

h2 element, 122
Hypertext Markup Language

(HTML), 2
attribute, 169–170
collections, 85–86
element, 20, 544–545

JavaScript code and, 20, 24, 42
static documents, 5
syntax, 20
validating, 27, 151
web development, 2html()

method, 510
HTML pages, 2
HTTP client, 452
Hypertext Transfer Protocol (HTTP),

4, 363
Ajax, 454–458
asynchronous requests, 451
client, 452
HTTP client, 452
HTTP messages, 452–453
HTTP server, 452
message, 452–453
request, 365
responses, 451, 452–453
server, 452
stateless, 364
synchronous requests,

450–451
synchronous responses, 451
Uniform Resource Locators

(URLs), 454
httpRequest object, 454, 486
HTTPS (Hypertext Transfer Protocol

Secure), 385, 453

i
IDE. See Integrated Development

Environment (IDE)
identifier, 15
idref, 83
if else statement, 97, 100–101
if statement, 96–97
immutable, 261
includes() methods, 259
index, 79
indexOf() method, 259, 264, 276
infinite loops, 87
infinity keywords, 49
initialized, 15
initializing variables, 15–17
inline styles, 170, 547
input control values, 59–61
insertAdjacentHTML()

method, 92
instantiating, 318

integer, 48
Integrated Development

Environment (IDE), 7
interface, 310
internal style sheet, 548
interpreter, 2
invalid event, 230
isNaN() function, 45
iteration, 86, 90

J
Java, 6, 13, 50
JavaScript, 1

Ajax, 454–460,
case sensitivity, 13
client-side scripting, 5–6
code, 14–17
code editors, 7–8
deleting a cookie, 386
ECMAScript, 2–3
HTML code and, 23–26
IDEs, 7–8
languages, 2
library, 501
objects, 10
reading a cookie, 385–386
secure coding, 387
security, 387–388
source file, 23–26
statements, 9–10
strict mode, 125–126
validation, 228–229
valid XHTML code, 27
web pages, 7–12

JavaScript Object Notation
(JSON), 349

data, 477–478
JavaScript source file, 23
jQuery, 501

animation, 517
DOM, 506–508
effect, 515
handling events, 511–515
loading, 502–503
plugins, 520–523
relevant, 503–504
selectors, 505–506
versions, 502

jQuery UI, 520
JScript, 2

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index 567

JSON. See JavaScript Object
Notation (JSON)

JSON with Padding (JSONP), 486
jtesting server, 535

K
keydown events, 19
keyup events, 19
keywords, 15
Komodo IDE, 7

L
label element, 225
lastIndex(), 259
lastIndexOf() method, 259, 264
last-in first-out (LIFO), 287
Latin-1 character (\xXX) escape

sequence, 51
LatLng() constructor, 423, 425
left property, 413, 418
length parameter, 259
length property, 79, 84, 259
less than operator (,), 54–59
less than or equal operator (,5),

54–59, 130, 141–142
less-than symbol (,), 27
let keyword, 15, 46
lexical environment, 332
lexical scope, 332
lexicographical order, 265
libraries, 26
li elements, 21
lightbox, 163
line breaks, 11
line comment (//), 13, 135
link element, 548
links, 202
linting, 121, 153
list array, 288
list property, 170
list variable, 200
literal, 17
literal string, 11
LN2 property, 293
LN10 property, 293
load event, 19
load-time errors, 118–119
localeCompare() method, 265
local scope, 46–47
local storage object, 371

localStorage property, 372–375
local variables, 46
location object, 194, 367
logging, 131
logic, 117
logic errors, 120–121

analyzing, 153
logical operators, 56
log() method, 292
longitude property, 427
longitude variable, 423
loop statements, 107

continue statement, 105
counters, 334
do/while statements, 107
falsy value, 55
flow charts, 94
infinite loop, 107
iterations, 107
logical operators, 56
for statements, 107
while statements, 56

loosely typed programming
languages, 48

luhn(), 240
Luhn algorithm, 240

M
Mac OS X, 535
machine code, 2
mainHeading node, 169
man-in-the-middle attack, 364
Map() object, 423–425
mapOptions object, 423
map pins, 425–426
markup language, 2, 27
Math object, 292–294
Math.random() method, 294
matching zero or more of preceding

characters quantifier (*), 453
math, 319
Math class, 319, 320
Math object, 292
matrix, 82
max attribute, 158
maxLength property, 230, 231
MAX_VALUE property, 230
menu element, 544
meta element, 543
methods, 10, 38

arguments, 10
constructor functions,

318–322
patterns, 230
regular expressions, 235

Microsoft, 2
Microsoft Visual Studio, 7
middle tier, 5
min attribute, 231
minifying files, 435–436
min() method, 293
MIME type, 259
minifying, 435
mobile web apps

minifying files, 435–436
minimizing download size, 435
testing tools, 435

mod 10 algorithm, 240
modal, 188
modal window, 188
Modernizr library, 26
modifier keys, 419
modulus operator (%), 52
mouse events, 406
mouse events, 406–408
moveBy() method, 186
multidimensional array, 82–83
multiple touchpoints, 409
multitier client/server system, 5

n
name attribute, 84
named function, 38
name parameter, 41
NaN property, 45
native objects, 310
native validation, 228
nav element, 544
navigator object, 194
nested decision-making

structure, 100
nested if statements, 100–101
nesting, 545
Netscape, 2, 194
new Array()constructor, 78
new Object() constructor, 78,

317–318
newline (\n) escape sequence, 272
next() method, 512
new Promise() object, 464

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index568

Nginx, 535
node list, 167–168
nodes, 166

creating and connecting,
168–169

document fragment, 170–172
document object model,

166–167
elements, 169–170
list, 167
querySelectorAll()

method, 168
tree, 166, 177–181

nonvalidate property, 211
Notepad, 8
Notepad11, 8
not equal operator (!5), 54
normal jQuery build, 503
novalidate attribute, 211, 231,

242
n-tier client/server system, 5
null value, 48, 78
numeric values, 48–49

O
object, 10
object-based programming

languages, 10
object chaining, 508
object class, 318

combining, 320–327
constructor functions, 319–320
literals, 318–319

object constructor, 318
object instance, 318
object literal, 312

custom method, 315–317
dot operators and bracket

notation, 313–315
new Object() command,

317–318
object-oriented programming

(OOP), 310
encapsulation, 310–312
instantiating objects, 318
reusing objects, 310

Object prototype, 345
objects, 83
onclick event handler, 25, 336
operands, 17

15 operator, 54
operator precedence, 57–59
operators, 17

arithmetic, 52–53
assignment, 53–54
associativity, 57–59
binary 52
bitwise 52
comparison, 54–55
compound assignment 58–59
conditional 55
falsy values, 55–56
logical 56
postfix 52–53
prefix 52–53
relational 54–55
special operators, 57
truthy values, 55–56
unary 52

opponents array, 86, 91
opponents variable, 91
option buttons

checked option, 217–219
option label, 220

options argument, 221
options collection, 215
origin, 378
Or operator (||), 56
outer() function, 332
overlay, 188–192

P
parameter, 38
parameter values, 462–463
paramValues, 41
parentheses (), 462
parsed character data (PCDATA), 27
parseFloat() function, 45
parseInt() function, 314
parse() method, 315, 418
parsing, 535

data from query strings, 365–366
parsed character data passing

arguments, 10, 41
path, 378
path attribute, 383, 386
pathname property, 194
pattern attribute, 231
pattern matching rules, 235
patternMismatch property, 235

patternTest variable, 275
patterns

alternate characters allowed,
273

characters, 381
literal characters, 381
regular expressions, 387
replacing, 369

PCDATA. See parsed character data
(PCDATA)

p element, 11, 122, 205, 424, 547
Perl, 469
persistent cookies, 380, 386, 389
PHP, 6, 349, 487
pointerdown event, 411
pointer events, 409–410
popup windows, 184

browser windows, 185–187
system dialog boxes, 184–185

position argument, 92
position object, 427
postfix operator, 52
post method, 365
posttest loop, 89
prefix operator, 52
pretest loop, 89
preventDefault() method,

242, 408
primitive types, 48
private method, 338
privileged method, 338
procedures, 10
processing tier, 5
production server, 535
program loop, 86

do while loop, 89
for loop, 90
while loop, 86–89

programming language, 2
promise, 464
promise chain, 464, 465
Promise.all() method, 466
promise object

chaining promises, 465–466
defining, 464–465
multiple promises, 466

prompt() methods, 187
prompt window, 184
property, 10

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index 569

propertyIsEnumerable()
method, 348

prototypal inheritance, 344
prototype, 327

JavaScript objects, 329–330
object, 327–328

prototype chain, 344
base object, 345–346
creating, 344–345

proxy server, 487
public method, 338

Q
quantifiers, 274
qString variable, 367
querySelectorAll() method,

168, 372, 503
querySelector() method, 217, 503
query string, 227
queue, 288

R
random() method, 294
RangeError, 147
readystatechange event, 456
readyState property, 256,

456–457
ReferenceError, 147
Regex object, 279
RegExp() constructor, 275
regular expression literal, 274
regular expressions, 235

alternate patterns and grouping,
273–274

character types and classes,
268–270

HTML code, 418
escape sequences, 272–273
flags, 267
methods, 275–276
quantifiers, 274
referencing substring matches,

279–280
repeating characters, 270–272
replacing text, 276–278
special escape characters, 387
substring, 266–267
text string into array, 278–279

regx variable, 274
relational operator, 54

replace() method, 276
request, 451, 458–460
reserved words, 15
reset event, 227
resetForm() function, 19,

211, 227
resizeBy() method, 186
resizeTo() method, 186
response, 451, 458–460
return statement, 41, 462
reverse() methods, 281
root node, 166
route() method, 431
route object, 430–431
RSS newsfeeds, 472
Ruby, 6
RSS newsfeeds, 472
runtime errors, 119–120, 319

S
Safari, 66, 136, 151, 374
same-origin policy, 378
scientific notation, 49
scope, 45
Scope window, 141
screen object, 195
script elements, 9, 10, 23, 27, 82
scripting language, 2
scripts, 2, 6

break mode, 137–138
HTML code, 17
libraries, 26
processing, 4–7
stepping through, 140–141
variable declarations, 3

scrollBy() method, 186
scrollTo() method, 186
search() method, 275–276
search property, 367
secure attribute, 383–384, 389
secure coding, 387
Secure Sockets Layer (SSL), 364
security, 387

code injection attack, 387
escape characters, 387
JavaScript, 1–5
privacy of client information,

387–388
same origin policy, 378–379
secure coding, 386–387

third-party scripts, 388
web server security, 386–387

selectedIndex property, 215, 236
selection lists, 214–216
selectors, 546
sequences, 50– 51
server, 4
server requests, 450–452
server-side scripting, 6–7
server-side validation, 228
session cookies, 380
session storage object, 372
sessions, 363–365
setCustomValidity()

method, 232
setInterval() method, 181
setMonth() method, 382
setter, 510
setTimeout() method, 183, 334
show() method, 515
slice() method, 263
slim jQuery build, 503
sort() methods, 281
spaghetti code, 106
sparse arrays, 79
speech variable, 265
split() method, 264
spread operator, 293
sqrt() method, 292
SQRT1_2 property, 293
SQRT2 property, 293
src attribute, 17
SRI. See subresource integrity

checking (SRI)
SSL. See Secure Sockets Layer (SSL)
stack, 287
startsWith()methods, 259
state information, 363–365

cookies, 378–382
hidden form fields, 225–226
maintaining, 503
storing, 371
Web Storage API, 371–372

stateless, 364
statements, 9–10, 105

console command line,
152–153

repeating, 181–182
semicolons (;) in, 9, 21
variables, 16

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index570

static, 5
static scope, 332
static web pages, 5
statically typed, 48
statically typed programming

languages, 48
status parameter, 41
statusText property, 468
step attribute, 231
stepMismatch property, 231
step in, 140
step into, 140
step out, 140
step over, 140
stepping options, 140

in, 140
into, 140
out, 140
over, 140
stop word, 277

stop word, 277
storage event, 377–378
storing object data, 349–351
strict DTD, 545
strict mode, 125–126, 126
strings, 49–50

arithmetic operations, 57
backslashes, 51
characters and substrings,

263, 369
combining, 53–54
comparison operators, 54–55
converting numbers, 387
empty string, 49
finding and extracting

characters, 263–264
formatting, 221
JavaScript Object Notation

(JSON), 349
JSON object, 351
numeric position in, 107
parsing, 473–474
patterns, 274
quotation marks, 349
searching, 259
single quotation marks (‘‘),

49–50
special characters, 50–51,

268
substrings, 259–260

strongly typed, 48
style attribute, 170
style declaration, 546
subarray, 286
subclasses, 344
submit event, 227
subresource Integrity checking

(SRI), 502
substring() method, 259, 263
substr() method, 263
superclass, 344
switch statement, 102–104
synchronous, 450
synchronous callback, 433
synchronous requests, 451, 460
syntax, 117

error, 118
SyntaxError, 147

T
tableCell variable, 91, 92
table element, 376
tabs, 268, 372, 378
tan() method, 292
target attribute, 211
target phase, 404
targetTouches array, 409
targetTouches property, 409–410
TCP/IP (Transmission Control

Protocol/ Internet Protocol), 453
td element, 115, 116
template literals, 50

placeholders, 297
tagging, 297–298

ternary operators, 55
test() method, 275
testing server, 535
textContent property, 63, 165,

203–205, 249
text file, retrieving content, 253–258
text strings, 11, 17–18

combining, 264–265
comparing, 265
extracting characters, 263–264
modifying, 261–263
substrings, 259–261

third-party APIs
endpoints, 483–486
GIF, 482

third-party scripts, 388

this keyword, 190, 255, 462
three-tier client/server system, 5
throw, 146
timed commands, 181

specified intervals, 181–182
stopping, 182–183
time-delayed commands,

183–184
timeID variable, 181
timeVar, 182
TLS. See Transport Layer Security

(TLS)
toFixed() method, 220–221
toggleClass() method, 513
token, 384
toLocaleLowerCase()

methods, 263
toLocaleString() method, 221
toLocaleUpperCase()

method, 263
toLowerCase() method, 261
touch-action property, 408
touch cascade, 408
touchend events, 19
TouchEvent interface, 408
touch events, 407–409
touch interface, 408
TouchList interface, 408
TouchList object, 409
touchmove events, 19
touchpoint, 408
touchscreen devices, 409

app and device interaction,
404–405

click event, 406
gestures, 409
pointer events, 406–410
touch cascade, 408

touchscreen emulation, 415
touchstart events, 19
toUpperCase() method, 261, 298,

299
toUTCString method, 382
TRACE method, 453
tracing, 127
tracing errors

console log, 131–134
locating bugs, 135
window.alert() method,

127–131

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index 571

transitional DTD, 545
Transport Layer Security (TLS), 364
trim() function, 261
true value, 45, 49, 55
truthy values, 55–56
try catch statement, 145, 260
two-tier system, 4
TypeError, 147
typeof operator, 57

U
unary operator, 52
undefined variables, 57
Unicode, 265
Unicode character (\xXXXX) escape

sequence, 51
unload event, 20
URI-encoded character, 368–371
URIError, 147
userAgent property, 195
user-defined objects, 310
user error, 145
user interface, 4–5
user variable, 46
use strict declaration, 125–126

V
validating parser, 27
validation, 27, 228

API, 230–231
custom validation message,

232–233
HTML, 153
HTML documents, 27
HTML5 validation, 255
invalid data, 234–235
native validation, 255
option buttons, 217–220
pattern matching, 235–236
required fields with custom

functions, 229
selection list, 236–238
submitted data, 227
web pages, 27

ValidityState object, 231–232
ValidityState object, 231
valid pseudo-class, 229
val() method, 527
valueMissing property, 235
valueOf() method, 345

value property, 59, 215
variable names, 15
variables, 14, 45–47

camel case, 15
case sensitivity, 13
data types, 37–68, 78
declaring, 15–17, 25, 260
displaying, 15–16, 152
global, 46–47
identifiers, 15
initializing, 15–16
literal strings, 15
literal text, 18
local, 46–47
modifying, 18–20
naming, 15, 53
null value, 48
numeric value, 16
printing, 29
regular expressions, 266, 274
strings, 49, 265
tracing, 127–135
undefined, 48
variable scope, 45–47
var keyword, 45–47
Window object, 185–190

var keyword, 15, 46
vertical tab (\v) escape sequence, 51
viruses, 118

W
W3C Markup Validation Service,

27, 252
W3C. See World Wide Web

Consortium (W3C)
Watch window, 141
Web, 1
web app, 7, 163–165
web browsers, 6, See also browsers

caching, 453
ECMAScript, 2–3
JavaScript, 1–29
nonprinting characters, 29
requesting documents from

web servers, 5
Window object, 193

web browser window, 387
web development, 2–24

Cascading Style Sheets
(CSS), 2

client/server architecture,
4–5

client-side scripting, 5–7
client-side scripting versus

server-side scripting, 6–7
Hypertext Markup Language

(HTML), 2
JavaScript, 1–5
scripting languages, 2
server-side scripting, 6–8

web development tools, 27
web form controls, 65–66
web page elements, 21–22
web pages, 27

DOM tree, 207
Hypertext Markup Language

(HTML), 2
JavaScript, 1–27
referencing elements, 21–22
reloading, 153, 182
sharing JavaScript source

files, 23–26
static, 5–6
text, 10–11
validation, 27
viewing HTML elements, 11

web servers, 6
data storage, 4–5
HTML files, 25
scripting languages, 2–4
security, 387
server-side scripting, 6–7

web storage
local storage, 371–372
removing items, 376–377
session storage objects, 371–372
storing data, 372–379

Web Storage API, 371–372
well formed, 27
while loop, 86–89
whitespace character, 259
willValidate property, 231
window.alert() method, 20, 21,

73, 127–129, 152, 184
window.close() method,

185–186
Window object, 44, 185, 186,

193, 462
window.alert() method, 20,

127–131, 184

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

index572

window.confirm() method, 184
window.open() method,

186–187, 248
window.prompt() method, 184
Windows

forcing applications to close,
87

text editors, 7
Windows Phone mobile web apps,

435
Windows Phone SDK, 435
word, 268
word characters, 268
word cloud, 253
World Wide Web, 1

World Wide Web Consortium
(W3C), 3

write() method, 10–12

x
Xampp

for Mac OS X, 539–542
for Windows, 535–539

XHR. See XMLHttpRequest (XHR)
XHTML

deprecated elements, 544
Document Type Definitions

(DTDs), 544–546
frameset DTD, 545
JavaScript, 27

strict DTD, 545
transitional DTD,

545
well-formed documents,

545–546
XML (Extensible Markup Language),

472
XMLHttpRequest (XHR) object,

454–455, 487
xmlns attribute,

545–546

Z
zIndex property, 404
zoom property, 423

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2022 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Brief Contents
	Contents
	Preface
	Chapter 1: Introduction to JavaScript
	Exploring the JavaScript Language��
	Writing a JavaScript Program�����������������������������������
	Writing Basic JavaScript Code������������������������������������
	Building Expressions with Variables��
	Understanding Events���������������������������
	Structuring JavaScript Code����������������������������������
	Creating a JavaScript Source File��
	Validating Web Pages���������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 2: Working with Functions, Data Types, and Operators
	Working with Functions�����������������������������
	Defining a Function��������������������������
	Writing a Function�������������������������
	Calling a Function�������������������������
	Returning a Value from a Function��

	Managing Events with Functions�������������������������������������
	Using Event Handlers���������������������������
	Events as Object Properties����������������������������������
	Event Listeners����������������������
	Events and Anonymous Functions�������������������������������������
	Applying a Function to an Event��������������������������������������

	Using Built-in JavaScript Functions��
	Understanding Variable Scope�����������������������������������
	let and var Declaration Scopes�������������������������������������
	Local and Global Scope�����������������������������

	Working with Data Types������������������������������
	Working with Numeric Values����������������������������������
	Working with Boolean Values����������������������������������
	Working with Strings���������������������������
	Escape Characters and Sequences��������������������������������������

	Using Operators to Build Expressions���
	Arithmetic Operators���������������������������
	Assignment Operators���������������������������
	Comparison Operators���������������������������
	Conditional Operators����������������������������
	Understanding Falsy and Truthy Values��
	Logical Operators������������������������
	Special Operators������������������������

	Understanding Operator Precedence��
	Using Expressions with Web Form Controls���
	Working with Input Control Values��
	Working with Checkboxes������������������������������
	Using the change Event with Web Form Controls��

	Locating Errors with the Browser Console���
	Accessing the Browser Console������������������������������������
	Locating an Error in Your Program��

	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 3: Building Arrays and Controlling Flow
	Storing Data in Arrays�����������������������������
	Declaring and Initializing Arrays��
	Elements and Indexes���������������������������
	Creating an Array������������������������
	Multidimensional Arrays������������������������������

	Exploring HTML Collections���������������������������������
	Referencing an Element within a Collection���
	Searching through the DOM��������������������������������

	Viewing Arrays and HTML Collections with the Console���
	Working with Program Loops���������������������������������
	The while Loop���������������������
	The do while Loop������������������������
	The for Loop�������������������
	Writing a for Loop�������������������������

	Exploring Array Methods for Generating Loops���
	Adding Decision Making to Your Code��
	The if Statement�����������������������
	The if else Statement����������������������������
	The else if Statements�����������������������������
	Nested if and if else Statements���������������������������������������
	Conditional Statements and Browser Testing���
	The switch Statement���������������������������

	Managing Program Loops and Conditional Statements��
	The break Statement��������������������������
	The continue Statement�����������������������������
	Statement Labels�����������������������

	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 4: Debugging and Error Handling
	Introduction to Debugging��������������������������������
	Load-Time Errors�����������������������
	Runtime Errors���������������������
	Logic Errors�������������������

	Starting Debugging with the Browser Console��
	Running Javascript in Strict Mode��
	Tracing Errors to Their Source�������������������������������������
	Tracing Errors with the window.alert() Method��
	Tracing Errors with the Console Log��
	Using Comments to Locate Bugs������������������������������������

	Tracking Program Flow with Debugging Tools���
	Accessing your Browser’s Debugging Tools���
	Adding and Removing Break Points���������������������������������������
	Stepping through the Program Execution���
	Tracking Variables and Expressions���
	Examining the Call Stack�������������������������������

	Managing Errors����������������������
	Handling Exceptions with the try catch Statement���
	Throwing an Exception����������������������������
	The try catch finally Statement��������������������������������������
	The error Parameter in the catch Statement���
	Applying Exception Handling to a Program���

	Customizing Your Error Handling��������������������������������������
	Catching Errors with the error Event���
	Error Handling Functions�������������������������������

	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 5: Creating a Web App Using the Document Object Model
	Designing a Web App��������������������������
	Introducing Nodes������������������������
	Restructuring a Node Tree��������������������������������
	Running Timed Commands�����������������������������
	Working with Popup Windows���������������������������������
	Creating an Overlay��������������������������
	Exploring the Browser Object Model���
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 6: Enhancing and Validating Forms
	Exploring Forms and Form Elements��
	Working with Selection Lists�����������������������������������
	Working with Option Buttons����������������������������������
	Formatting Data Values in a Form���������������������������������������
	Responding to Form Events��������������������������������
	Working with Hidden Fields���������������������������������
	Exploring Form Submission��������������������������������
	Validating Form Data with JavaScript���
	Testing a Form Field Against a Regular Expression��
	Creating a Custom Validity Check���������������������������������������
	Managing Form Validation�������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 7: Manipulating Data in Strings, Arrays, and Other Objects
	Retrieving Content from a Text File��
	Working with Text Strings��������������������������������
	Introducing Regular Expressions��������������������������������������
	Programming with Regular Expressions���
	Exploring Array Methods������������������������������
	Exploring the Math Object��������������������������������
	Exploring the Date Object��������������������������������
	Exploring Template Literals����������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 8: Creating Customized Objects, Properties, and Methods
	Understanding Object-Oriented Programing���
	Creating an Object Literal���������������������������������
	Working with Object Classes����������������������������������
	Working with Object Prototypes�������������������������������������
	Introducing Closures���������������������������
	Working with Public, Private, and Privileged Methods���
	Combining Objects with Prototype Chains��
	Data Storage with Associative Arrays���
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 9: Managing State Information and Security
	Understanding Sessions and State Information���
	Sharing Data Between Forms���������������������������������
	Introducing Web Storage������������������������������
	Storing Data in Web Storage����������������������������������
	Introducing Cookies��������������������������
	Writing Data into a Cookie���������������������������������
	Reading a Cookie�����������������������
	Deleting a Cookie������������������������
	Exploring Security Issues��������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 10: Programming with Event Objects and Third-Party APIs
	Working with Events as Objects�������������������������������������
	Exploring Mouse, Touch, and Pointer Events���
	Programming a Drag and Drop Action���
	Exploring the Drag and Drop API��������������������������������������
	Working with Keyboard Events�����������������������������������
	Creating an Interactive Map����������������������������������
	Mapping Your Position with Geolocation���
	Adding Directions to a Map���������������������������������
	Introducing the Device Orientation API���
	Preparing an App for Mobile Use��������������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 11: Managing Data Requests with AJAX and Fetch
	Introducing Server Requests����������������������������������
	Exploring HTTP Messages������������������������������
	Introducing AJAX�����������������������
	Viewing the Status of a Request and Response���
	AJAX and Callback Hell�����������������������������
	Introducing Arrow Functions����������������������������������
	Exploring the Promise Object�����������������������������������
	Using the Fetch API��������������������������
	Working with XML�����������������������
	Creating an Autocomplete Search Box��
	Working with Third-Party APIs������������������������������������
	Exploring Security Issues with APIs��
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Chapter 12: Introducing jQuery
	Getting Started with jQuery����������������������������������
	Working with jQuery Selectors������������������������������������
	Handling Events with jQuery����������������������������������
	Working with Effects and Animations��
	Exploring jQuery Plugins�������������������������������
	Summary��������������
	Key Terms����������������
	Review Questions�����������������������
	Hands-On Projects������������������������
	Case Projects��������������������

	Appendix A: Installing andConfiguring aTesting Server
	Appendix B: Working withHTML and CSS
	Glossary
	Index

