

Django for APIs

Build web APIs with Python and Django

William S. Vincent

This book is for sale at http://leanpub.com/djangoforapis

This version was published on 2022-03-24

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing

process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools

and many iterations to get reader feedback, pivot until you have the right book and build

traction once you do.

© 2018 - 2022 William S. Vincent

http://leanpub.com/djangoforapis
https://leanpub.com/
https://leanpub.com/manifesto

Also ByWilliam S. Vincent
Django for Beginners

Django for Professionals

https://leanpub.com/u/wsvincent
https://leanpub.com/djangoforbeginners
https://leanpub.com/djangoforprofessionals

Contents

Introduction 1

Why APIs 1

Django REST Framework 2

Prerequisites 3

Why this book 3

Conclusion 4

Chapter 1: Initial Set Up 5

The Command Line 5

Shell Commands 7

Install Python 3 on Windows 10

Install Python 3 on Mac 11

Python Interactive Mode 12

Virtual Environments 13

Install Django and Django REST Framework 15

Text Editors 17

Install Git 18

Conclusion 20

Chapter 2: Web APIs 21

World Wide Web 21

URLs 22

Internet Protocol Suite 23

HTTP Verbs 24

Endpoints 24

CONTENTS

HTTP 25

Status Codes 27

Statelessness 28

REST 28

Conclusion 29

Chapter 3: Library Website 30

Traditional Django 30

First app 33

Models 35

Admin 36

Views 39

URLs 40

Templates 41

Tests 43

Git 45

Conclusion 46

Chapter 4: Library API 47

Django REST Framework 47

URLs 49

Views 50

Serializers 51

Browsable API 52

Tests 54

Deployment 56

Static Files 58

Deployment Checklist 60

GitHub 62

Heroku 62

Conclusion 64

Chapter 5: Todo API 66

CONTENTS

Single Page Apps (SPAs) 66

Initial Set Up 67

.gitignore 68

Models 69

Tests 72

Django REST Framework 74

URLs 75

Serializers 76

Views 78

Browsable API 79

API Tests 80

CORS 82

CSRF 84

Back-End API Deployment 84

Conclusion 89

Chapter 6: Blog API 90

Initial Set Up 90

.gitignore 92

Custom User Model 92

Posts App 97

Post Model 98

Tests 102

Django REST Framework 103

URLs 104

Serializers 106

Views 107

Browsable API 108

CORS 112

Conclusion 114

Chapter 7: Permissions 115

Project-Level Permissions 115

CONTENTS

Create New Users 117

Add Log In and Log Out 121

View-Level Permissions 123

Custom Permissions 125

Conclusion 130

Chapter 8: User Authentication 131

Basic Authentication 131

Session Authentication 133

Token Authentication 134

Default Authentication 136

Implementing token authentication 137

Endpoints 140

dj-rest-auth 140

User Registration 146

Tokens 149

Conclusion 155

Chapter 9: Viewsets and Routers 156

User endpoints 156

Viewsets 161

Routers 162

Permissions 164

Conclusion 166

Chapter 10: Schemas and Documentation 168

Schema 169

Dynamic Schema 171

Documentation 172

Conclusion 175

Chapter 11: Production Deployment 177

Environment Variables 177

CONTENTS

DEBUG & SECRET_KEY 179

ALLOWED HOSTS 181

DATABASES 182

Static Files 183

Pyscopg and Gunicorn 184

requirements.txt 185

Procfile and runtime.txt 186

Deployment Checklist 187

Heroku Deployment 187

Conclusion 191

Advanced Topics 191

Next Steps 192

Giving Thanks 192

Introduction

In this book you will learn how to build multiple web APIs of increasing complexity using Django

and Django REST Framework. Django is a very popular Python-based web framework that han-

dles the challenging parts of building a website: authentication, connecting to a database, logic,

security, and so on. There are also thousands of third-party packages that add functionality to

Django itself, the most prominent of which is Django REST Framework, which allows developers

to transform any existing Django project into a powerful web API.

Django and Django REST Framework are used by the largest tech companies in the world, in-

cluding Instagram, Mozilla, and Pinterest. But they are also well-suited to beginners or weekend

side projects because Django’s “batteries-included” approach masks much of the underlying

complexity, allowing for rapid and secure development. By the end of this book you will be able

to create production-ready web APIs with a small amount of code in an even smaller amount of

time.

Why APIs

An API (Application Programming Interface) is a shorthand way to describe how two computers

communicate directly with one another. For web APIs, which exist on the world wide web, the

dominant architectural pattern is know as REST (REpresentational State Transfer) and will be

covered properly later on in this book.

Back in 2005, when Django was first released, most websites consisted of one large monolithic

codebase. The back-end of database models, views, and URLs were combined with front-end

templates to control the presentational layer of each web page.

But these days it is far more common for websites to adopt an API-first approach of formally

separating the back-end from the front-end. This allows a website to use a dedicated JavaScript

front-end framework, such as React or Vue, which were released in 2013 and 2014 respectively.

Introduction 2

When the current front-end frameworks are eventually replaced by even newer ones in the years

to come, the back-end API can remain the same. No major rewrite is required.

Another major benefit is that one single API can support multiple front-ends written in different

languages and frameworks. Consider that JavaScript is used for web front-ends, while Android

apps require the Java programming language, and iOS apps need the Swift programming

language.With a traditionalmonolithic approach, a Djangowebsite cannot support these various

front-ends. But with an internal API, all three can communicate with the same underlying

database back-end!

Growing websites can also benefit from creating an external API that allows third-party devel-

opers to build their own iOS or Android apps. When I worked at Quizlet back in 2010 we did

not have the resources to develop our own iOS or Android apps, but we did have an external

API available that more than 30 developers used to create their own flashcard apps powered by

the Quizlet database. Several of these apps were downloaded over a million times, enriching the

developers and increasing the reach of Quizlet at the same time.

The major downside to an API-first approach is that it requires more configuration than a

traditional Django application. However as we will see in this book, the fantastic Django REST

Framework library removes much of that complexity for us.

Django REST Framework

There are thousands of third-party apps available that add further functionality to Django. You

can see a complete, searchable list over at Django Packages1, as well as a curated list in the

awesome-django repo2. However, amongst all third-party applications, Django REST Framework

is arguably the killer app for Django. It is mature, full of features, customizable, testable, and ex-

tremely well-documented. It also purposefully mimics many of Django’s traditional conventions,

which makes learning it much faster. If you already know Django, then learning Django REST

Framework is the logical next step.

1https://djangopackages.org/
2https://github.com/wsvincent/awesome-django

https://djangopackages.org/
https://github.com/wsvincent/awesome-django
https://djangopackages.org/
https://github.com/wsvincent/awesome-django

Introduction 3

Prerequisites

If you’re brand new toweb developmentwith Django, I recommend startingwithmy bookDjango

for Beginners3. The first several chapters are available for free online and cover proper set up, a

Hello World app, a Pages app, and aMessage Board app. The full-length version goes deeper and

covers a Blog website with forms and user accounts as well as a production-ready Newspaper

site that features a custom user model, complete user authentication flow, emails, permissions,

deployment, environment variables, and more.

This background in traditional Django is important since Django REST Framework deliberately

mimics many Django conventions. It is also recommended that readers have a basic knowledge

of Python itself. Truly mastering Python takes years, but with just a little bit of knowledge you

can dive right in and start building things.

Why this book

I wrote this book because there is a distinct lack of good resources available for developers

new to Django REST Framework. The assumption seems to be that everyone already knows all

about APIs, HTTP, REST, and the like. My own journey in learning how to build web APIs was

frustrating… and I already knew Django well enough to write a book on it! This book is the guide

I wish existed when starting out with Django REST Framework.

Chapter 1 covers the initial set up of installing Python, Django, Git, and working with the

command line. Chapter 2 is an introduction to web APIs and the HTTP protocol that underpins

it all. In Chapters 3-4 we review the differences between traditional Django and Django REST

Framework by building out a Library book website, transforming it into an API, adding tests, and

then deploying it live. In Chapter 5 we build, test, and deploy a Todo API with list and detail API

endpoints. It also includes Cross Origin Resource Sharing (CORS).

Chapter 6 is the start of a making a production-ready Blog API that uses a custom user model

and full Create-Read-Update-Delete (CRUD) functionality. Chapters 7 focuses on permissions,

how to limit access appropriately, and creating a custom permission class. In Chapter 8 the

3https://djangoforbeginners.com/

https://djangoforbeginners.com/
https://djangoforbeginners.com/
https://djangoforbeginners.com/

Introduction 4

focus turns to user authentication and the four built-in authentication methods. Then we add

endpoints for user registration, log out, password reset, and password reset confirmed. Chapter

9 turns to viewsets and routers, built-in components that can greatly reduce the amount of

coding required for standard API endpoints. Chapter 10 covers schema and documentation and

Chapter 11 goes step-by-step through a production deployment.

Complete source code for all chapters can be found online on Github4.

Conclusion

Django and Django REST Framework is a powerful and accessible way to build web APIs. By the

end of this book you will be able to add APIs to any existing Django projects or build your own

dedicated web API from scratch properly using modern best practices. Let’s begin!

4https://github.com/wsvincent/restapiswithdjango

https://github.com/wsvincent/restapiswithdjango
https://github.com/wsvincent/restapiswithdjango

Chapter 1: Initial Set Up

If you have already read Django for Beginners5 much of this will be familiar but there are additional

steps around installing Django REST Framework.

This chapter covers how to properly configure your Windows or macOS computer to work on

Django projects. We will start by reviewing the Command Line, a powerful text-only interface

that developers use extensively to install and configure software projects. Then we install the

latest version of Python, learn how to create dedicated virtual environments, and install Django.

As a final step, we will explore using Git for version control and working with a text editor. By the

end of this chapter you will have created your first Django and Django REST Framework project

from scratch. In the future, you will be able to create or modify any Django project in just a few

keystrokes.

The Command Line

The command line is a text-only interface that harkens back to the original days of computing. It

is an alternative to themouse or finger-based graphical user interface familiar tomost computer

users. An everyday computer user will never need to use the command line but software

developers do because certain tasks can only be done with it. These include running programs,

installing software, using Git for version control, or connecting to servers in the cloud. With a

little practice, most developers find that the command line is actually a faster andmore powerful

way to navigate and control a computer.

Given its minimal user interface–just a blank screen and a blinking cursor–the command line

is intimidating to newcomers. There is often no feedback after a command has run and it is

possible to wipe the contents of an entire computer with a single command if you’re not careful:

no warning will pop up! As a result, the command line must be used with caution. Make sure

5https://djangoforbeginners.com

https://djangoforbeginners.com/
https://djangoforbeginners.com/

Chapter 1: Initial Set Up 6

not to blindly copy and paste commands you find online; only rely on trusted resources for any

command you do not fully understand.

In practice, multiple terms are used to refer to the command line: Command Line Interface (CLI),

console, terminal, shell, or prompt. Technically speaking, the terminal is the program that opens

up a new window to access the command line, a console is a text-based application, the shell

is the program that runs commands on the underlying operating system, and the prompt is

where commands are typed and run. It is easy to be confused by these terms initially but they

all essentially mean the same thing: the command line is where we run and execute text-only

commands on our computer.

On Windows, the built-in terminal and shell are both called PowerShell. To access it, locate the

taskbar on the bottom of the screen next to the Windows button and type in “powershell” to

launch the app. It will open a new window with a dark blue background and a blinking cursor

after the > prompt. Here is how it looks on my computer.

Shell

PS C:\Users\wsv>

Before the prompt is PS which refers to PowerShell, the initial C directory of the Windows

operating system, followed by the Users directory and the current user which, on my personal

computers, is wsv. Your username will obviously be different. At this point, don’t worry about

what comes to the left of the > prompt: it varies depending on each computer and can be

customized at a later date. The shorter prompt of > will be used going forward for Windows.

On macOS, the built-in terminal is called appropriately enough Terminal. It can be opened via

Spotlight: press the Command and space bar keys at the same time and then type in “terminal.”

Alternatively, open a new Finder window, navigate to the Applications directory, scroll down to

open the Utilities directory, and double-click the application called Terminal. This opens a new

screen with a white background by default and a blinking cursor after the % prompt. Don’t worry

about what comes to the left of the % prompt. It varies by computer and can be customized later

on.

Chapter 1: Initial Set Up 7

Shell

Wills-Macbook-Pro:~ wsv%

If your macOS prompt is $ instead of % that means you are using Bash as the shell. Starting in

2019, macOS switched from Bash to zsh as the default shell. While most of the commands in this

book will work interchangeably, it is recommended to look up online how to change to zsh via

System Preferences if your computer still uses Bash.

Shell Commands

There are many available shell commands but most developers rely on the same handful over

and over again and look up more complicated ones as needed.

Inmany cases, the commands forWindows (PowerShell) andmacOS are similar. For example, the

command whoami returns the computer name/username onWindows and just the username on

macOS. As with all shell commands, type the command itself followed by the return key. Note

that the # symbol represents a comment and will not be executed on the command line.

Shell

Windows
> whoami
wsv2021/wsv

macOS
% whoami
wsv

Sometimes, however, the shell commands on Windows and macOS are completely different. A

good example is the command for outputting a basic “Hello, World!” message to the console. On

Windows the command is Write-Host while on macOS the command is echo.

Chapter 1: Initial Set Up 8

Shell

Windows
> Write-Host "Hello, World!"
Hello, World!

macOS
% echo "Hello, World!"
Hello, World!

A frequent task on the command line is navigating within the computer filesystem. OnWindows

and macOS the command pwd (print working directory) shows the current location.

Shell

Windows
> pwd

Path

C:\Users\wsv

macOS
% pwd
/Users/wsv

You can save your Django code anywhere you like but for convenience we will place our code the

desktop directory. The command cd (change directory) followed by the intended location works

on both systems.

Chapter 1: Initial Set Up 9

Shell

Windows
> cd onedrive\desktop
> pwd

Path

C:\Users\wsv\onedrive\desktop

macOS
% cd desktop
% pwd
/Users/wsv/desktop

Tip: The tab key will autocomplete a command so if you type cd d and then hit tab it will

automatically fill in the rest of the name. If there are more than two directories that start with d,

hit the tab key again to cycle through them.

Tomake a new directory use the command mkdir followed by the name.Wewill create one called

code on the Desktop and then within it a new directory called setup.

Shell

Windows
> mkdir code
> cd code
> mkdir setup
> cd setup

macOS
% mkdir code
% cd code
% mkdir setup
% cd setup

You can check that it has been created by looking on your Desktop or running the command ls.

The full Windows output is slightly longer but is shortened here for conciseness.

Chapter 1: Initial Set Up 10

Shell

Windows
> ls
setup

macOS
% ls
setup

Tip: The clear command will clear the Terminal of past commands and outputs so you have a

clean slate. The tab command autocompletes the line as we’ve discussed. And the ↑ and ↓ keys

cycle through previous commands to save yourself from typing the same thing over and over

again.

To exit you could close the Terminal with your mouse but the hacker way is to use use the

shell command exit instead. This works by default on Windows but on macOS the Terminal

preferences need to be changed. At the top of the screen click on Terminal, then Preferences

from the drop downmenu. Click on Profiles in the topmenu and then Shell from the list below.

There is a radio button for “When the shell exits:”. Select “Close the window.”

Shell

Windows
> exit

macOS
% exit

Kinda cool, right? With practice, the command line is a far more efficient way to navigate and

operate your computer than using a mouse. For this book you don’t need to be a command line

expert: I will provide the exact instructions to run each time. But if you are curious, a complete

list of shell commands for each operating system can be found over at ss64.com.

Install Python 3 on Windows

On Windows, Microsoft hosts a community release of Python 3 in the Microsoft Store. In the

search bar on the bottom of your screen type in “python” and click on the best match result.

Chapter 1: Initial Set Up 11

This will automatically launch Python 3.10 on the Microsoft Store. Click on the blue “Get” button

to download it.

To confirm Python was installed correctly, open a new Terminal window with PowerShell and

then type python --version.

Shell

> python --version
Python 3.10.2

The result should be at least Python 3.10. Then type python to open the Python interpreter from

the command line shell.

Shell

> python
Python 3.10.2 (tags/v3.10.2:a58ebcc, Jan 17 2022, 19:00:18)
[MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits", or "license" for more information.
>>>

Install Python 3 on Mac

On Mac, the official installer on the Python website is the best approach. In a new browser

window go the Python downloads page6 and click on the button underneath the text “Download

the latest version for Mac OS X.” As of this writing, that is Python 3.10. The package will be in your

Downloads directory. Double click on it which launches the Python Installer and follow through

the prompts.

To confirm the download was successful, open up a new Terminal window and type python3

--version.

6https://www.python.org/downloads/

https://www.python.org/downloads/
https://www.python.org/downloads/

Chapter 1: Initial Set Up 12

Shell

% python3 --version
Python 3.10.2

The result should be at least 3.10. Then type python3 to open the Python interpreter.

Shell

% python3
Python 3.10.2 (v3.10.2:a58ebcc701, Jan 13 2022, 14:50:16)
[Clang 13.0.0 (clang-1300.0.29.30)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Python Interactive Mode

From the command line typing either python onWindows or python3 onmacOSwill bring up the

Python Interpreter, also known as Python Interactive mode. The new prompt of >>> indicates

that you are now inside Python itself and not the command line. If you try any of the previous

shell commandswe ran–cd, ls, mkdir–theywill each raise errors.Whatwillwork is actual Python

code. For example, try out both 1 + 1 and print("Hello Python!")making sure to hit the Enter

or Return key after each to run them.

Shell

>>> 1 + 1
2
>>> print("Hello Python!")
Hello Python!

Python’s interactive mode is a great way to save time if you want to try out a short bit of Python

code. But it has a number of limitations: you can’t save your work in a file and writing longer code

snippets is cumbersome. As a result, we will spend most of our time writing Python and Django

in files using a text editor.

To exit Python from the command line you can type either exit() and the Enter key or use Ctrl

+ z on Windows or Ctrl + d on macOS.

Chapter 1: Initial Set Up 13

Virtual Environments

Installing the latest version of Python and Django is the correct approach for any new project.

But in the real world, it is common that existing projects rely on older versions of each. Consider

the following situation: Project A uses Django 2.2 but Project B uses Django 4.0? By default, Python

and Django are installed globally on a computer meaning it is quite a pain to install and reinstall

different versions every time you want to switch between projects.

Fortunately, there is a straightforward solution. Virtual environments allow you to create and

manage separate environments for each Python project on the same computer. There are many

areas of software development that are hotly debated, but using virtual environments for Python

development is not one. You should use a dedicated virtual environment for each new Python

project.

There are several ways to implement virtual environments but the simplest is with the venv7

module already installed as part of the Python 3 standard library. To try it out, navigate to the

existing setup directory on your Desktop.

Shell

Windows
> cd onedrive\desktop\code\setup

macOS
% cd ~/desktop/code/setup

To create a virtual environmentwithin this new directory use the format python -m venv <name_-

of_env> on Windows or python3 -m venv <name_of_env> on macOS. It is up to the developer to

choose a proper environment name but a common choice is to call it .venv.

7https://docs.python.org/3/library/venv.html

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Chapter 1: Initial Set Up 14

Shell

Windows
> python -m venv .venv
> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
>

macOS
% python3 -m venv .venv
(.venv) %

If you use the command ls to look at our current directory it will appear empty. However the

.venv directory is there, it’s just that it is “hidden” due to the period . that precedes the name.

Hidden files and directories are a way for developers to indicate that the contents are important

and should be treated differently than regular files. To view it, try ls -la which shows all

directories and files, even hidden ones.

Shell

> ls -la
total 0
drwxr-xr-x 3 wsv staff 96 Oct 7 11:10 .
drwxr-xr-x 3 wsv staff 96 Oct 7 11:10 ..
drwxr-xr-x 6 wsv staff 192 Oct 7 11:10 .venv

You will see that .venv is there and can be accessed via cd if desired. In the directory itself is a

copy of the Python interpreter and a few management scripts, but you will not need to use it

directly in this book.

Once created, a virtual environment must be activated. On Windows an Execution Policy must

be set to enable running scripts. This is a safety precaution. The Python docs8 recommend

allowing scripts for the CurrentUser only, which is what we will do. On macOS there are no

similar restrictions on scripts so it is possible to directly run source .venv/bin/activate.

Here is what the full commands look like to create and activate a new virtual environment called

.venv:

8https://docs.python.org/3/library/venv.html

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

Chapter 1: Initial Set Up 15

Shell

Windows
> python -m venv .venv
> Set-ExecutionPolicy -ExecutionPolicy RemoteSigned -Scope CurrentUser
> .venv\Scripts\Activate.ps1
(.venv) >

macOS
% python3 -m venv .venv
% source .venv/bin/activate
(.venv) %

The shell prompt now has the environment name (.venv) prefixed which indicates that the

virtual environment is active. Any Python packages installed or updated within this location will

be confined to the active virtual environment.

To deactivate and leave a virtual environment type deactivate.

Shell

Windows
(.venv) > deactivate
>

macOS
(.venv) % deactivate
%

The shell prompt no longer has the virtual environment name prefixed which means the session

is now back to normal.

Install Django and Django REST Framework

Now that Python is installed and we know how to use virtual environments it is time to install

Django and Django REST Framework. In the setup directory reactivate the existing virtual

environment.

Chapter 1: Initial Set Up 16

Shell

Windows
> .venv\Scripts\Activate.ps1
(.venv) >

macOS
% source .venv/bin/activate
(.venv) %

Django is hosted on the Python Package Index (PyPI)9, a central repository for most Python

packages. We will use pip, the most popular package installer, which comes included with

Python 3. To install the latest version of Django use the command python -m pip install

django∼=4.0.0.

The comparison operator∼= ensures that subsequent security updates for Django, such as 4.0.1,

4.0.2, and so on are automatically installed. Note thatwhile it is possible to use the shorter version

of pip install <package>, it is a best practice to use the longer but more explicit form of python

-m pip install <package> to ensure that the correct version of Python is used. This can be an

issue if you have multiple versions of Python installed on your computer.

Shell

(.venv) > python -m pip install django~=4.0.0

You might see a WARNINGmessage about updating pip after running these commands. It’s always

good to be on the latest version of software and to remove the annoying WARNINGmessage each

time you use pip. You can either copy and paste the recommended command or run python -m

pip install --upgrade pip to be on the latest version.

Shell

(.venv) > python -m pip install --upgrade pip

The latest version of Django REST Framework is 3.12.0. To install it and any future 3.12.x updates

use the following command:

9https://pypi.org

https://pypi.org/
https://pypi.org/

Chapter 1: Initial Set Up 17

Shell

(.venv) > python -m pip install djangorestframework~=3.13.0

The command pip freeze outputs the contents of your current virtual environment.

Shell

(.venv) > pip freeze
asgiref==3.4.1
Django==4.0.0
djangorestframework==3.12.4
pytz==2021.3
sqlparse==0.4.2

Ours contains five programs total that have been installed. Django relies on asgiref, pytz, and

sqlparse which are automatically added when you install Django.

It is a standard practice to output the contents of a virtual environment to a file called

requirements.txt. This is away to keep track of installed packaged and also lets other developers

recreate the virtual environment on different computers. Let’s do that now by using the >

operator.

Shell

(.venv) > pip freeze > requirements.txt

If you look in the setup directory there is now an additional file called requirements.txt. If

you open its contents with your text editor, you’ll see it matches the five programs previously

outputted to the command line.

Text Editors

The command line is where we execute commands for our programs but a text editor is where

actual code is written. The computer doesn’t care what text editor you use–the end result is just

code–but a good text editor can provide helpful hints and catch typos for you.

Chapter 1: Initial Set Up 18

There are many modern text editors available but a very popular one is Visual Studio Code10,

which is free, easy to install, and enjoys widespread popularity. If you’re not already using a text

editor, download and install VSCode from the official website.

An optional–but highly recommended–additional step is to take advance of the large ecosys-

tem of extensions available on VSCode. On Windows, navigate to File -> Preferences ->

Extensions or on macOS Code -> Preferences -> Extensions. This launches a search bar

for the extensions marketplace. Enter “python” which will bring up the Microsoft extension as

the first result. Install it.

A second extension to add is Black11, which is a Python code formatter that has quickly become

the default within the Python community. To install Black, open a Terminal window within

VSCode by going to Terminal -> New Terminal at the top of the page. In the new terminal

window opened at the bottom of the page, type python -m pip install black. Next, open up

the VSCode settings by navigating to File -> Preferences -> Settings on Windows or Code

-> Preferences -> Settings on macOS. Search for “python formatting provider” and select

black from the dropdown options. Then search for “format on save” and enable “Editor: Format

on Save”. Black will now automatically format your code whenever a *.py file is saved.

To confirm this is working, use your text editor to create a new file called hello.py within the

setup directory located on your Desktop and type in the following using single quotes:

hello.py

print('Hello, World!')

On save, it should be automatically updated to using double quotes which is Black’s default

preference12: print("Hello, World!"). That means everything is working properly.

Install Git

The final step is to install Git, a version control system that is indispensable to modern software

development. With Git you can collaborate with other developers, track all your work via

10https://code.visualstudio.com/
11https://pypi.org/project/black/
12https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings

https://code.visualstudio.com/
https://pypi.org/project/black/
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings
https://code.visualstudio.com/
https://pypi.org/project/black/
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#strings

Chapter 1: Initial Set Up 19

commits, and revert to any previous version of your code even if you accidentally delete

something important!

On Windows, navigate to the official website at https://git-scm.com/ and click on the “Down-

load” link which should install the proper version for your computer. Save the file and then open

your Downloads folder and double click on the file. This will launch the Git forWindows installer.

Click the “Next” button through most of the early defaults as they are fine and can always be

updated later as needed. There are two exceptions however: under “Choosing the default editor

used by Git” select VS Code not Vim. And in the section on “Adjusting the name of the initial

branch in new repositories” select the option to use “main” as opposed to “master” as the default

branch name. Otherwise the recommended defaults are fine and can always be tweaked later if

needed.

To confirm Git is installed onWindows, close all current shell windows and then open a new one

which will load the changes to our PATH variable. Type in git --version which should show it

is installed.

Shell

Windows
> git --version
git version 2.33.1.windows.1

On macOS, installing Git via Xcode is currently the easiest option. To check if Git is already

installed on your computer, type git --version in a new terminal window.

Shell

macOS
% git --version

If you do not have Git installed, a popup message will ask if you want to install it as part of

“command line developer tools.” Select “Install” which will load Xcode and its command line tools

package. Or if you do not see themessage for some reason, type xcode-select --install instead

to install Xcode directly.

Be aware that Xcode is a very large package so the initial download may take some time. Xcode

is primarily designed for building iOS apps but also includes many developer features need on

Chapter 1: Initial Set Up 20

macOS. Once the download is complete close all existing terminal shells, open a new window,

and type in git --version to confirm the install worked.

Shell

macOS
% git --version
git version 2.30.1 (Apple Git-130)

OnceGit is installed on yourmachineweneed to do a one-time system configuration by declaring

the name and email address associated with all your Git commits. We will also set the default

branch name to main. Within the command line shell type the following two lines. Make sure to

update them your name and email address.

Shell

> git config --global user.name "Your Name"
> git config --global user.email "yourname@email.com"
> git config --global init.defaultBranch main

You can always change these configs later if you desire by retyping the same commands with a

new name or email address.

Conclusion

Configuring a new software development environment is no fun at all, even for experienced

programmers. But if you’ve gotten to this point the one-time pain will pay many dividends

down the road. We have now learned about the command line, Python interactive mode, and

installed the latest version of Python, Django, and Django REST Framework. We installed Git and

configured our text editor. Next up we’ll learn about web APIs and then dive into creating our

own with Django.

Chapter 2: Web APIs

Before we start building our own web APIs with Django it’s important to review how the web

really works. After all, a “web API” literally sits on top of the existing architecture of the world

wide web and relies on a host of technologies including HTTP, TCP/IP, and more.

In this chapter we will review the basic terminology of web APIs: endpoints, resources, HTTP

verbs, HTTP status codes, and REST. Even if you already feel comfortable with these terms, I

encourage you to read the chapter in full.

World Wide Web

The Internet is a system of interconnected computer networks that has existed since at least the

1960s13. However, the internet’s early usagewas restricted to a small number of isolated networks,

largely government, military, or scientific in nature, that exchanged information electronically.

By the 1980s, many research institutes and universities were using the internet to share data.

In Europe, the biggest internet node was located at CERN (European Organization for Nuclear

Research) in Geneva, Switzerland, which operates the largest particle physics laboratory in the

world. These experiments generate enormous quantities of data that need to be shared remotely

with scientists all around the world.

Compared with today, though, overall internet usage in the 1980s was miniscule. Most people

did not have access to it or even understood why it mattered. A small number of internet

nodes powered all the traffic and the computers using it were primarily within the same, small

networks.

This all changed in 1989 when a research scientist at CERN, Tim Berners-Lee, invented HTTP

and ushered in the modern World Wide Web. His great insight was that the existing hypertext14

13https://en.wikipedia.org/wiki/Internet
14https://en.wikipedia.org/wiki/Hypertext

https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Hypertext
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Hypertext

Chapter 2: Web APIs 22

system, where text displayed on a computer screen contained links (hyperlinks) to other

documents, could be moved onto the internet.

His invention, Hypertext Transfer Protocol (HTTP)15, was the first standard, universal way to

share documents over the internet. It ushered in the concept of web pages: discrete documents

with a URL, links, and resources such as images, audio, or video.

Today, whenmost people think of “the internet,” they think of theWorldWideWeb, which is now

the primary way that billions of people and computers communicate online.

URLs

A URL (Uniform Resource Locator) is the address of a resource on the internet. For example, the

Google homepage lives at https://www.google.com.

When you want to go to the Google homepage, you type the full URL address into a web browser.

Your browser then sends a request out over the internet and is magically connected (we’ll cover

what actually happens shortly) to a server that responds with the data needed to render the

Google homepage in your browser.

This request and response pattern is the basis of all web communication. A client (typically a

web browser but also a native app or really any internet-connected device) requests information

and a server responds with a response.

Since web communication occurs via HTTP these are known more formally as HTTP requests

and HTTP responses.

Within a given URL are also several discrete components. For example, consider the Google

homepage located at https://www.google.com. The first part, https, refers to the scheme used.

It tells the web browser how to access resources at the location. For a website this is typically

http or https, but it could also be ftp for files, smtp for email, and so on. The next section,

www.google.com, is the hostname or the actual name of the site. Every URL contains a scheme

and a host.

Many webpages also contain an optional path, too. If you go to the homepage for Python

15https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

Chapter 2: Web APIs 23

at https://www.python.org and click on the link for the “About” page you’ll be redirected to

https://www.python.org/about/. The /about/ piece is the path.

In summary, every URL like https://python.org/about/ has three potential parts:

• a scheme - https

• a hostname - www.python.org

• and an (optional) path - /about/

Internet Protocol Suite

Once we know the actual URL of a resource, a whole collection of other technologies must work

properly (together) to connect the client with the server and load an actual webpage. This is

broadly referred to as the internet protocol suite16 and there are entire books written on just

this topic. For our purposes, however, we can stick to the broad basics.

Several things happen when a user types https://www.google.com into their web browser and

hits Enter. First the browser needs to find the desired server, somewhere, on the vast internet.

It uses a domain name service (DNS) to translate the domain name “google.com” into an IP

address17, which is a unique sequence of numbers representing every connected device on the

internet. Domain names are used because it is easier for humans to remember a domain name

like “google.com” than an IP address like “172.217.164.68”.

After the browser has the IP address for a given domain, it needs a way to set up a consistent

connection with the desired server. This happens via the Transmission Control Protocol (TCP)

which provides reliable, ordered, and error-checked delivery of bytes between two application.

To establish a TCP connection between two computers, a three-way “handshake” occurs

between the client and server:

1. The client sends a SYN asking to establish a connection

2. The server responds with a SYN-ACK acknowledging the request and passing a connection

parameter

16https://en.wikipedia.org/wiki/Internet_protocol_suite
17https://en.wikipedia.org/wiki/IP_address

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/IP_address

Chapter 2: Web APIs 24

3. The client sends an ACK back to the server confirming the connection

Once the TCP connection is established, the two computers can start communicating via HTTP.

HTTP Verbs

Every webpage contains both an address (the URL) as well as a list of approved actions known as

HTTP verbs. So far we’ve mainly talked about getting a web page, but it’s also possible to create,

edit, and delete content.

Consider the Facebook website. After logging in, you can read your timeline, create a new

post, or edit/delete an existing one. These four actions Create-Read-Update-Delete are known

colloquially as “CRUD” and represent the overwhelming majority of actions taken online.

The HTTP protocol contains a number of request methods that can be used while requesting

information from a server. The four most common map to CRUD functionality: POST, GET, PUT,

and DELETE.

Diagram

CRUD HTTP Verbs
---- ----------
Create <--------------------> POST
Read <--------------------> GET
Update <--------------------> PUT
Delete <--------------------> DELETE

To create content you use POST, to read content GET, to update it PUT, and to delete it you use

DELETE.

Endpoints

A traditional website consists of web pages with HTML, CSS, images, JavaScript, andmore. There

is a dedicated URL, such as example.com/1/, for each page. A web API also relies on URLs

and a corresponding one might be example.com/api/1/, but instead of serving up web pages

Chapter 2: Web APIs 25

consumable by humans it produces API endpoints. An endpoints contains data, typically in the

JSON18 format, and also a list of available actions (HTTP verbs).

For example, we could create the following API endpoints for a new website called mysite.

Diagram

https://www.mysite.com/api/users # GET returns all users
https://www.mysite.com/api/users/<id> # GET returns a single user

In the first endpoint, /api/users, an available GET request returns a list of all available users. This

type of endpoint which returns multiple data resources is known as a collection.

The second endpoint, /api/users/<id>, represents a single user. A GET request returns informa-

tion about just that one user.

If we added a POST to the first endpoint we could create a new user, while adding DELETE to the

second endpoint would allow us to delete a single user.

We will become much more familiar with API endpoints over the course of this book but

ultimately creating an API involves making a series of endpoints: URLs that expose JSON data

and associated HTTP verbs.

HTTP

We’ve already talked a lot about HTTP in this chapter, but now we will describe what it actually

is and how it works.

HTTP is a request-response protocol between two computers that have an existing TCP connec-

tion. The computer making the requests is known as the client while the computer responding

is known as the server. Typically a client is a web browser but it could also be an iOS app or really

any internet-connected device. A server is a fancy name for any computer optimized to work

over the internet. All we really need to transform a basic laptop into a server is some special

software and a persistent internet connection.

18https://json.org/

https://json.org/
https://json.org/

Chapter 2: Web APIs 26

Every HTTPmessage consists of a status line, headers, and optional body data. For example, here

is a sample HTTP message that a browser might send to request the Google homepage located

at https://www.google.com.

Diagram

GET / HTTP/1.1
Host: google.com
Accept_Language: en-US

The top line is known as the request line and it specifies the HTTP method to use (GET), the path

(/), and the specific version of HTTP to use (HTTP/1.1).

The two subsequent lines are HTTP headers: Host is the domain name and Accept_Language is

the language to use, in this case American English. There are many HTTP headers19 available.

HTTP messages also have an optional third section, known as the body, however we only see a

body message with HTTP responses containing data.

For simplicity, let’s assume that the Google homepage only contained the HTML “Hello, World!”

This is what the HTTP response message from a Google server might look like.

Diagram

HTTP/1.1 200 OK
Date: Mon, 24 Jan 2022 23:26:07 GMT
Server: gws
Accept-Ranges: bytes
Content-Length: 13
Content-Type: text/html; charset=UTF-8

Hello, world!

The top line is the response line and it specifies that we are using HTTP/1.1. The status code 200

OK indicates the request by the client was successful (more on status codes shortly).

The next five lines are HTTP headers. And finally, after a line break, there is our actual body

content of “Hello, world!”.

Every HTTP message, whether a request or response, therefore has the following format:

19https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

https://en.wikipedia.org/wiki/List_of_HTTP_header_fields
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

Chapter 2: Web APIs 27

Diagram

Response/request line
Headers...

(optional) Body

Most web pages containmultiple resources that requiremultiple HTTP request/response cycles.

If a webpage hadHTML, one CSS file, and an image, three separate trips back-and-forth between

the client and server would be required before the complete web page could be rendered in the

browser.

Status Codes

Once yourweb browser has executed anHTTPRequest on aURL there is no guarantee thingswill

actually work! Thus there is a quite lengthy list of HTTP Status Codes20 available to accompany

each HTTP response.

You can tell the general type of status code based on the following system:

• 2xx Success - the action requested by the client was received, understood, and accepted

• 3xx Redirection - the requested URL has moved

• 4xx Client Error - there was an error, typically a bad URL request by the client

• 5xx Server Error - the server failed to resolve a request

There is no need to memorize all the available status codes. With practice you will become

familiar with the most common ones such as 200 (OK), 201 (Created), 301 (Moved Permanently),

404 (Not Found), and 500 (Server Error).

The important thing to remember is that, generally speaking, there are only four potential

outcomes to any given HTTP request: it worked (2xx), it was redirected somehow (3xx), the client

made an error (4xx), or the server made an error (5xx).

These status codes are automatically placed in the request/response line at the top of every

HTTP message.

20https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Chapter 2: Web APIs 28

Statelessness

A final important point to make about HTTP is that it is a stateless protocol. This means

each request/response pair is completely independent of the previous one. There is no stored

memory of past interactions, which is known as state21 in computer science.

Statelessness brings a lot of benefits to HTTP. Since all electronic communication systems have

signal loss over time, if we did not have a stateless protocol, things would constantly break if

one request/response cycle didn’t go through. As a result, HTTP is known as a very resilient

distributed protocol.

The downside is that managing state is really, really important in web applications. State is how a

website remembers that you’ve logged in and how an e-commerce site manages your shopping

cart. It’s fundamental to how we use modern websites, yet it’s not supported on HTTP itself.

Historically, state was maintained on the server but it has moved more and more to the client,

the web browser, in modern front-end frameworks like React, Angular, and Vue. We’ll learn more

about state when we cover user authentication but remember that HTTP is stateless. This makes

it very good for reliably sending information between two computers, but bad at remembering

anything outside of each individual request/response pair.

REST

REpresentational State Transfer (REST)22 is an architecture first proposed in 2000 by Roy

Fielding in his dissertation thesis. It is an approach to building APIs on top of the web, which

means on top of the HTTP protocol.

Entire books have beenwritten onwhatmakes an API actually RESTful or not. But there are three

main traits that we will focus on here for our purposes. Every RESTful API:

• is stateless, like HTTP

• supports common HTTP verbs (GET, POST, PUT, DELETE, etc.)

21https://en.wikipedia.org/wiki/State_(computer_science)
22https://en.wikipedia.org/wiki/Representational_state_transfer

https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 2: Web APIs 29

• returns data in either the JSON or XML format

Any RESTful API must, at a minimum, have these three principles. The standard is important

because it provides a consistent way to both design and consume web APIs.

Conclusion

While there is a lot of technology underlying the modern world wide web, we as developers

don’t have to implement it all from scratch. The beautiful combination of Django and Django

REST Framework handles, properly, most of the complexity involved with web APIs. However, it

is important to have at least a broad understanding of how all the pieces fit together.

Ultimately, a web API is a collection of endpoints that expose certain parts of an underlying

database. As developers we control the URLs for each endpoint, what underlying data is available,

and what actions are possible via HTTP verbs. By using HTTP headers we can set various levels

of authentication and permission too as we will see later in the book.

Chapter 3: Library Website

Django REST Framework works alongside the Django web framework to create web APIs. We

cannot build a web API with only Django Rest Framework. It always must be added to a project

after Django itself has been installed and configured.

In this chapter, we will review the similarities and differences between traditional Django

and Django REST Framework. The most important takeaway is that Django creates websites

containing webpages, while Django REST Framework creates web APIs which are a collection

of URL endpoints containing available HTTP verbs that return JSON.

To illustrate these concepts, we will build out a basic Librarywebsite with traditional Django and

then extend it into a web API with Django REST Framework.

Traditional Django

Navigate to the existing code directory on the Desktop and make sure you are not in a current

virtual environment. You should not see (.venv) before the shell prompt. If you do, use the

command deactivate to leave it. Make a new directory called library, create a new virtual

environment, activate it, and install Django.

Shell

Windows
> cd onedrive\desktop\code
> mkdir library
> cd library
> python -m venv .venv
> .venv\Scripts\Activate.ps1
(.venv) > python -m pip install django~=4.0.0

macOS
% cd desktop/desktop/code
% mkdir library
% cd library

Chapter 3: Library Website 31

% python3 -m venv .venv
% source .venv/bin/activate
(.venv) % python3 -m pip install django~=4.0.0

A traditional Django website consists of a single projectwith multiple apps representing discrete

functionality. Let’s create a new project with the startproject command called django_project.

Don’t forget to include the period . at the end which installs the code in our current directory.

If you do not include the period, Django will create an additional directory by default.

Shell

(.venv) > django-admin startproject django_project .

Pause for a moment to examine the default project structure Django has provided for us. You

examine this visually if you like by opening the new directory with your mouse on the Desktop.

The .venv directory may not be initially visible because it is “hidden” but nonetheless still there.

Code

├── django_project
│ ├── __init__.py
| ├── asgi.py
│ ├── settings.py
│ ├── urls.py
│ └── wsgi.py
├── manage.py
└── .venv/

The .venv directory was created with our virtual environment but Django has added a django_-

project directory and a manage.py file. Within django_project are five new files:

• __init__.py indicates that the files in the folder are part of a Python package. Without

this file, we cannot import files from another directory which we will be doing a lot of in

Django!

• asgi.py allows for an optional Asynchronous Server Gateway Interface23 to be run

• settings.py controls our Django project’s overall settings

23https://asgi.readthedocs.io/en/latest/specs/main.html

https://asgi.readthedocs.io/en/latest/specs/main.html
https://asgi.readthedocs.io/en/latest/specs/main.html

Chapter 3: Library Website 32

• urls.py tells Django which pages to build in response to a browser or URL request

• wsgi.py stands forWeb Server Gateway Interface24 which helps Django serve our eventual

web pages.

The manage.py file is not part of django_project but is used to execute various Django com-

mands such as running the local web server or creating a new app. Let’s use it now with migrate

to sync the database with Django’s default settings and start up the local Django web server with

runserver.

Shell

(.venv) > python manage.py migrate
(.venv) > python manage.py runserver

Open a web browser to http://127.0.0.1:8000/25 to confirm our project is successfully installed

and running.

24https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
25http://127.0.0.1:8000/

https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://127.0.0.1:8000/
https://en.wikipedia.org/wiki/Web_Server_Gateway_Interface
http://127.0.0.1:8000/

Chapter 3: Library Website 33

Django welcome page

First app

The next step is to add our first app which we’ll call books. Stop the local server by typing

Control+c and then run the startapp command plus our app name to create it.

Shell

(.venv) > python manage.py startapp books

Now let’s explore the app files Django has automatically created for us.

Chapter 3: Library Website 34

Shell

├── books
│ ├── __init__.py
│ ├── admin.py
│ ├── apps.py
│ ├── migrations
│ │ └── __init__.py
│ ├── models.py
│ ├── tests.py
│ └── views.py

Each app has a __init__.py file identifying it as a Python package and there are 6 new files

created:

• admin.py is a configuration file for the built-in Django Admin app

• apps.py is a configuration file for the app itself

• migrations/ is a directory that stores migrations files for database changes

• models.py is where we define our database models

• tests.py is for our app-specific tests

• views.py is where we handle the request/response logic for our web app

Typically, developers will also create an urls.py file within each app for routing. We’ll do that

shortly.

Beforemoving on wemust add our new app to the INSTALLED_APPS configuration in the django_-

project/settings.py. Do so now with your text editor.

Chapter 3: Library Website 35

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
Local
"books.apps.BooksConfig", # new

]

Each web page in traditional Django requires several files: views.py, urls.py, template, and

models.py. Let’s start with the database model to structure our Library data.

Models

In your text editor, open up the file books/models.py and update it as follows:

Code

books/models.py
from django.db import models

class Book(models.Model):
title = models.CharField(max_length=250)
subtitle = models.CharField(max_length=250)
author = models.CharField(max_length=100)
isbn = models.CharField(max_length=13)

def __str__(self):
return self.title

This is a basic Django model where models is imported from Django on the top line and a new

class, called Book, extends it. There are four fields: title, subtitle, author, and isbn. We also

include a __str__method so that the title of a book will display in readable format in the admin

later on. Note that an ISBN is a unique, 13-character identifier assigned to every published book.

Chapter 3: Library Website 36

Since we created a new database model we need to create a migration file to go along with it.

Specifying the app name is optional but recommended. We could just type python manage.py

makemigrations but if there were multiple apps with database changes, both would be added

to the migrations file which makes debugging in the future more of a challenge. Keep your

migrations files as specific as possible.

Shell

(.venv) > python manage.py makemigrations books
Migrations for 'books':
books/migrations/0001_initial.py
- Create model Book

Then second step after creating a migrations file is to migrate it so it is applied to the existing

database.

Shell

(.venv) > python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, books, contenttypes, sessions

Running migrations:
Applying books.0001_initial... OK

So far so good. If any of this feels brand new to you I suggest taking a pause to review Django for

Beginners26 for a more-detailed explanation of traditional Django projects.

Admin

We can start entering data into our new model via the built-in Django app. To use it we need to

create a superuser account and update the books/admin.py file so the books app is displayed.

Start with the superuser account. On the command line run the following command:

26https://djangoforbeginners.com/

https://djangoforbeginners.com/
https://djangoforbeginners.com/
https://djangoforbeginners.com/

Chapter 3: Library Website 37

Shell

(.venv) > python manage.py createsuperuser

Follow the prompts to enter a username, email, and password. Note that for security reasons,

text will not appear on the screen while entering your password.

Now update our books app’s admin.py file.

Code

books/admin.py
from django.contrib import admin

from .models import Book

admin.site.register(Book)

That’s all we need! Start up the local server again.

Shell

(.venv) > python manage.py runserver

Navigate to http://127.0.0.1:8000/admin and log in. This brings up the admin homepage.

Admin homepage

Chapter 3: Library Website 38

Click on the “+ Add” link next to Books.

Admin add book

I’ve entered in the details for my three books: Django for Beginners, Django for APIs, and Django

for Professionals. After clicking the “Save” button we are redirected to the “Books” page that lists

all current entries.

Chapter 3: Library Website 39

Admin books list

Our traditional Django project has data now but we need a way to expose it as a web page. That

means creating views, URLs, and template files. Let’s do that now.

Views

The views.py file controls how the database model content is displayed. Since we want to list all

books we can use the built-in generic class ListView27. Update the books/views.py file.

27https://docs.djangoproject.com/en/4.0/ref/class-based-views/generic-display/#django.views.generic.list.

ListView

https://docs.djangoproject.com/en/4.0/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/4.0/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/4.0/ref/class-based-views/generic-display/#django.views.generic.list.ListView

Chapter 3: Library Website 40

Code

books/views.py
from django.views.generic import ListView

from .models import Book

class BookListView(ListView):
model = Book
template_name = "book_list.html"

On the top lines we import ListView and our Book model. Then we create a BookListView class

that specifies the model to use and the not-yet-created template.

Twomore steps beforewe have aworkingweb page: create our template and configure our URLs.

Let’s start with the URLs.

URLs

We need to set up both the project-level urls.py file and then one within the books app. When

a user visits our site they will initially interact with the django_project/urls.py file so let’s

configure that one first. Add the include import on the second line and then a new path for

the books app.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("", include("books.urls")), # new

]

The top two lines import the built-in admin app, path for our routes, and include which will be

used with our books app. We use the empty string, "", for the books app route which means a

user on the homepage will be redirected directly to the books app.

Chapter 3: Library Website 41

Now we can configure our books/urls.py file. But, oops! Django for some reason does not

include a urls.py file by default in apps so we need to create it ourself. In your text editor create

a new file called books/urls.py and update it as follows:

Code

books/urls.py
from django.urls import path

from .views import BookListView

urlpatterns = [
path("", BookListView.as_view(), name="home"),

]

We import our views file, configure BookListView at the empty string, "", and add a namedURL28,

home, as a best practice.

Nowwhen a user goes to the homepage of ourwebsite theywill first hit the django_project/urls.py

file, then be redirected to books/urls.py which specifies using the BookListView. In this view

file, the Bookmodel is used along with ListView to list out all books.

Templates

The final step is to create our template file that controls the layout on the actual web page.

We have already specified its name as book_list.html in our view. There are two options for its

location: by default theDjango template loaderwill look for templateswithin our books app in the

following location: books/templates/books/book_list.html. We could also create a separate,

project-level templates directory instead and update our django_project/settings.py file to

point there.

Which one you ultimately use in your own projects is a personal preference. We will use the

default structure here.

Start bymaking a new templates folderwithin the books app andwithin it a books folder. This can

be done from the terminal shell. If it is still running the local server use the command Control+c

to stop it.
28https://docs.djangoproject.com/en/4.0/topics/http/urls/#naming-url-patterns

https://docs.djangoproject.com/en/4.0/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/4.0/topics/http/urls/#naming-url-patterns

Chapter 3: Library Website 42

Shell

(.venv) > mkdir books/templates
(.venv) > mkdir books/templates/books

With your text editor create a new file called books/templates/books/book_list.html. It will

contain the following code:

HTML

<!-- books/templates/books/book_list.html -->
<h1>All books</h1>
{% for book in book_list %}

Title: {{ book.title }}
Subtitle: {{ book.subtitle }}
Author: {{ book.author }}
ISBN: {{ book.isbn }}

{% endfor %}

Django ships with a template language29 that allows for basic logic. Here we use the for30 tag to

loop over all available books. Template tags must be included within opening/closing brackets

and parentheses. So the format is always {% for ... %} and then we must close our loop later

with {% endfor %}.

What we are looping over is the object containing all available books in our model courtesy of

ListView. The name of this object is <model>_listwhich, given our model is named book, means

it is book_list. Therefore to loop over each book we write {% for book in book_list %}. And

then display each field from our model.

Now we can start up the local Django server again.

29https://docs.djangoproject.com/en/4.0/ref/templates/language/
30https://docs.djangoproject.com/en/4.0/ref/templates/builtins/#std:templatetag-for

https://docs.djangoproject.com/en/4.0/ref/templates/language/
https://docs.djangoproject.com/en/4.0/ref/templates/builtins/#std:templatetag-for
https://docs.djangoproject.com/en/4.0/ref/templates/language/
https://docs.djangoproject.com/en/4.0/ref/templates/builtins/#std:templatetag-for

Chapter 3: Library Website 43

Shell

(.venv) > python manage.py runserver

Navigate to the homepage at http://127.0.0.1:8000/ to see our work.

Book web page

If we add additional books in the admin, they will each appear here, too.

Tests

Tests are a vital part of writing software and we should add them now before moving on to the

API portion of this project. We want to be sure that the Bookmodel works as expected as well as

our view, urls, and template. Our books app already has an empty books/tests.py file that we

can use for this.

Chapter 3: Library Website 44

Code

books/tests.py
from django.test import TestCase
from django.urls import reverse

from .models import Book

class BookTests(TestCase):
@classmethod
def setUpTestData(cls):

cls.book = Book.objects.create(
title="A good title",
subtitle="An excellent subtitle",
author="Tom Christie",
isbn="1234567890123",

)

def test_book_content(self):
self.assertEqual(self.book.title, "A good title")
self.assertEqual(self.book.subtitle, "An excellent subtitle")
self.assertEqual(self.book.author, "Tom Christie")
self.assertEqual(self.book.isbn, "1234567890123")

def test_book_listview(self):
response = self.client.get(reverse("home"))
self.assertEqual(response.status_code, 200)
self.assertContains(response, "excellent subtitle")
self.assertTemplateUsed(response, "books/book_list.html")

At the top of the file we import Django’s TestCase class, reverse so we can confirm the named

URL used, and our single model Book.

Then we create a class called BookTests and fill setUpTestData with dummy information for a

book. All tests must start with the name test_ in order to be run by Django so we create one to

test the book’s content, test_book_content, that performs an assertEqual on each field. Next

we test our listview with test_book_listview that checks the response uses the named URL

"home", it returns anHTTP Status Code of 200, contains the expected text, and uses our template

at books/book_list.html.

Make sure the local server is not running and then use the shell command python manage.py

Chapter 3: Library Website 45

test to execute the tests.

Shell

(.venv) > python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..
--
Ran 2 tests in 0.007s

OK
Destroying test database for alias 'default'...

They all pass! Great, we can move on with our project.

Git

Whenever we have added new code it is a good idea to track our progress using Git. Make sure

you’ve stopped the local server with Control+c. Then run git init to initialize a new repo and

git status to check its contents.

Shell

(.venv) > git init
(.venv) > git status
On branch main

No commits yet

Untracked files:
(use "git add <file>..." to include in what will be committed)

.venv/
books/
db.sqlite3
django_project/
manage.py

nothing added to commit but untracked files present (use "git add" to track)

Chapter 3: Library Website 46

At the moment, the virtual environment .venv is included which is not a best practice because

it can contain secret information such as API keys that we do not want to be tracked. To fix this

create a new file with your text editor called .gitignore in the project-level directory next to

manage.py. A .gitignore file tells Git what to ignore. Add a single line for .venv.

.gitignore

.venv/

If you run git status again youwill see that .venv is not longer there. It has been “ignored” byGit.

We do, however, want a record of all packages installed in the virtual environment. The current

best practice is to run the command pip freeze with the > operator to output the contents to a

new file called requirements.txt.

Shell

(.venv) > pip freeze > requirements.txt

Let’s add all our work by using the command add -A and then commit the changes along with a

message (-m) describing what has changed.

Shell

(.venv) > git add -A
(.venv) > git commit -m "initial commit"

Conclusion

This chapter has been all about setting up a traditional Django project. We went through the

standard steps of creating a new project, adding a new app, and then updating models, views,

urls, and templates. The admin.py file has to be updated so we can see our new content and we

added tests to ensure our code works and we can add new functionality without worrying about

a mistake.

In the next chapter we’ll add Django REST Framework and see how quickly a traditional Django

website can be transformed into a web API.

Chapter 4: Library API

Our Library website currently consists of a single page that displays all books in the database. To

transform it into a web API we will install Django REST Framework and create a new URL that

acts an API endpoint outputting all available books. If you recall from Chapter 2, a web API does

not output a traditional webpage with HTML, CSS, and JavaScript. Instead, it is just pure data

(often in the JSON format) and accompanying HTTP verbs that specify what user actions are

allowed. In this instance, an API user can only read the content, they are not able to update it in

any way though we will learn how to do that in future chapters.

Django REST Framework

As we saw in Chapter 1, adding Django REST Framework is just like installing any other third-

party app. Make sure to quit the local server with Control+c if it is still running. Then on the

command line type the following.

Shell

(.venv) > python -m pip install djangorestframework~=3.13.0

Wehave to formally notifyDjango of the new installation in our django_project/settings.py file.

Scroll down to the INSTALLED_APPS section and add rest_framework. I like to make a distinction

between third-party apps and local apps since the number of apps grows quickly in most

projects.

Chapter 4: Library API 48

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd party
"rest_framework", # new
Local
"books.apps.BooksConfig",

]

Ultimately, our web API will expose a single endpoint that lists out all books in JSON. To do this,

we will need a new URL route, a new view, and a new serializer file (more on this shortly).

There are multiple ways to organize these files. Many professional Django developers will just

include API logic in the related app while putting URLs under an /api/ prefix. For now though,

to keep the API logic clear from the traditional Django logic, we will create a dedicated apis app

for our project.

Let’s do that now by using the startapp command. Remember that apps should always have a

plural name since Django will otherwise automatically add an s is the admin and other locations.

Shell

(.venv) > python manage.py startapp apis

Then add it to INSTALLED_APPS in our “Local” section.

Chapter 4: Library API 49

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd party
"rest_framework",
Local
"books.apps.BooksConfig",
"apis.apps.ApisConfig", # new

]

The apis app will not have its own database models so there is no need to create a migration file

and run migrate to update the database. In fact, the database models are the one area we don’t

need to touch at all since this new web API is designed to expose existing data not create new

data.

URLs

Let’s start with our URL configs. Adding an API endpoint is just like configuring a traditional

Django URL route. In the project-level django_project/urls.py file include the apis app and

configure its URL route, which will be at api/.

Chapter 4: Library API 50

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("api/", include("apis.urls")), # new
path("", include("books.urls")),

]

Then create a new file called apis/urls.py with your text editor. This file will import a future

view called BookAPIView and set it to the URL route of "" so it will appear at api/. As always,

we’ll add a name to it as well, book_list, which helps in the future when we want to refer to this

specific route.

Code

apis/urls.py
from django.urls import path

from .views import BookAPIView

urlpatterns = [
path("", BookAPIView.as_view(), name="book_list"),

]

All set.

Views

In traditional Django views are used to customize what data to send to the templates. Django

REST Framework views are similar except the end result is serialized data in JSON format, not

the content for a web page! Django REST Framework views rely on a model, a URL, and a new

file called a serializer that we’ll see in the next section.

There are genericDjangoREST Framework views for commonuse cases andwe’ll use ListAPIView31

here to display all books.
31http://www.django-rest-framework.org/api-guide/generic-views/#listapiview

http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
http://www.django-rest-framework.org/api-guide/generic-views/#listapiview

Chapter 4: Library API 51

To avoid confusion, some developers will call an API views file apiviews.py or api.py. Personally,

when working within a dedicated apis app I do not find it confusing to just call a Django REST

Framework views file views.py but opinion varies on this point.

Update the apis/views.py file so it looks like the following:

Code

apis/views.py
from rest_framework import generics

from books.models import Book
from .serializers import BookSerializer

class BookAPIView(generics.ListAPIView):
queryset = Book.objects.all()
serializer_class = BookSerializer

On the top lines we have imported Django REST Framework’s generics32 class of views, the Book

model from our books app, and serializers from our api app. We will create the serializer used

here, BookSerializer, in the following section.

Then we create a view class called BookAPIView that uses ListAPIView to create a read-only

endpoint for all book instances. There are many generic views available and we will explore them

further in later chapters.

The only two steps required in our view are to specify the queryset, which is all available books,

and then the serializer_class which will be BookSerializer.

Serializers

We’re on the final step now! So far we have created a urls.py file and a views.py file for our API.

The last–but most important–action is to create our serializer.

A serializer33 translates complex data like querysets and model instances into a format that is

easy to consume over the internet, typically JSON. It is also possible to “deserialize” data, literally

32https://www.django-rest-framework.org/api-guide/generic-views/#generic-views
33https://www.django-rest-framework.org/api-guide/serializers/

https://www.django-rest-framework.org/api-guide/generic-views/#generic-views
https://www.django-rest-framework.org/api-guide/serializers/
https://www.django-rest-framework.org/api-guide/generic-views/#generic-views
https://www.django-rest-framework.org/api-guide/serializers/

Chapter 4: Library API 52

the same process in reverse, whereby JSON data is first validated and then transformed into a

dictionary.

The real beauty of Django REST Framework lies in its serializers which abstracts away most of

the complexity for us. We will cover serialization and JSON in more depth in future chapters

but for now the goal is to demonstrate how easy it is to create a serializer with Django REST

Framework.

In your text editor, create a new file called apis/serializers.py and update it as follows:

Code

apis/serializers.py
from rest_framework import serializers

from books.models import Book

class BookSerializer(serializers.ModelSerializer):
class Meta:

model = Book
fields = ("title", "subtitle", "author", "isbn")

On the top lineswe import Django REST Framework’s serializers class and the Bookmodel from

our books app.Next,we extendDjangoREST Framework’sModelSerializer34 into a BookSerializer

class that specifies our databasemodel, Book, and the database fields wewant to expose of title,

subtitle, author, and isbn.

And that’s it! We’re done. By creating a new URL route, a new view, and a serializer class we have

created an API endpoint for our Library website that will display all existing books in list format.

Browsable API

Raw JSON data is not particularly friendly to consume with human eyes. Fortunately, Django

REST Framework ships with a built-in browsable API that displays both the content and HTTP

verbs associated with a given endpoint. To see it in action start up the local web server with the

runserver command.
34https://www.django-rest-framework.org/api-guide/serializers/#modelserializer

https://www.django-rest-framework.org/api-guide/serializers/#modelserializer
https://www.django-rest-framework.org/api-guide/serializers/#modelserializer

Chapter 4: Library API 53

Shell

(.venv) > python manage.py runserver

We know the location of our API endpoint is at http://127.0.0.1:8000/api/ so navigate there

in your web browser.

Book API

And look at that! Django REST Framework provides this visualization by default. It displays the

HTTP status code for the page, which is 200 meaning OK. Specifies Content-Type is JSON. And

displays the information for our single book entry in a formatted manner.

If you click on the “Get” button in the upper right corner and select “json” at the top of the

dropdown list you’ll see what the raw API endpoint looks like.

Chapter 4: Library API 54

Book API JSON

Not very appealing is it? The data is not formatted at all and we can’t see any additional

information about HTTP status or allowable verbs either. I think we can agree the Django REST

Framework version is more appealing.

Professional developers typically use on a third-party tool such as Postman35 or, if on a Mac,

Paw36, to test and consume APIs. But for our purposes in this book the built-in browsable API is

more than enough.

Tests

Testing in Django relies upon Python’s built-in unittest37 module and several helpful Django-

specific extensions. Most notably, Django comes with a test client38 that we can use to simulate

GET or POST requests, check the chain of redirects in a web request, and check that a given

Django template is being used and has the proper template context data.

Django REST Framework provides several additional helper classes39 that extend Django’s

existing test framework. One of these is APIClient, an extension of Django’s default Client,

which we will use to test retrieving API data from our database.

Since we already have tests in books/tests.py for our Book model we can focus on testing the

API endpoint, specifically that it uses the URL we expect, has the correct status code of 200, and

contains the correct content.

Open the apis/tests.py file with your text editor and fill in the following code which we will

review below.
35https://www.postman.com/
36https://paw.cloud/
37https://docs.python.org/3/library/unittest.html#module-unittest
38https://docs.djangoproject.com/en/4.0/topics/testing/tools/#the-test-client
39https://www.django-rest-framework.org/api-guide/testing/

https://www.postman.com/
https://paw.cloud/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.djangoproject.com/en/4.0/topics/testing/tools/#the-test-client
https://www.django-rest-framework.org/api-guide/testing/
https://www.postman.com/
https://paw.cloud/
https://docs.python.org/3/library/unittest.html#module-unittest
https://docs.djangoproject.com/en/4.0/topics/testing/tools/#the-test-client
https://www.django-rest-framework.org/api-guide/testing/

Chapter 4: Library API 55

Code

apis/tests.py
from django.urls import reverse
from rest_framework import status
from rest_framework.test import APITestCase

from books.models import Book

class APITests(APITestCase):
@classmethod
def setUpTestData(cls):

cls.book = Book.objects.create(
title="Django for APIs",
subtitle="Build web APIs with Python and Django",
author="William S. Vincent",
isbn="9781735467221",

)

def test_api_listview(self):
response = self.client.get(reverse("book_list"))
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(Book.objects.count(), 1)
self.assertContains(response, self.book)

At the top we import reverse from Django and from Django REST Framework both status and

APITestCase. We also import our Book model though note that since we are in the api app we

must specify the app name of book to import it.

We extend APITestCase in a new class called APITests that starts by configuring set up data.

Then we run four different checks. First we check that the named URL of “book_list” is being

used. Second we confirm that HTTP status code matches 200. Third we check that there is a

single entry in the database. And finally we confirm that the response contains all the data from

our created book object.

Make sure to stop the local server and run the test to confirm that it passes.

Chapter 4: Library API 56

Shell

(.venv) > python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
...
--
Ran 3 tests in 0.009s

OK
Destroying test database for alias 'default'...

Note that the output describes three tests passing because we had two in books/tests.py and

one here. In larger websites with hundreds or even thousands of tests, performance can become

an issue and sometimes you want to check just test within a given app before running the full

website test suite. To do that, simply add the name of the app you wish to check to the end of

python manage.py test.

Shell

(.venv) > python manage.py test apis
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.005s

OK
Destroying test database for alias 'default'...

Deployment

Deploying a web API is almost identical to deploying a traditional website. We will use Heroku

in this book as it provides a free tier and is a widely used Platform-As-a-Service that removes

much of the complexity inherent in deployment.

If this is your first time using Heroku, you can sign up for a free account on their website40. After

completing the registration form wait for the verification email to confirm your account. It will

40https://www.heroku.com/

https://www.heroku.com/
https://www.heroku.com/

Chapter 4: Library API 57

take you to the password setup page and, once configured, you will be directed to the dashboard

section of Heroku’s site. Heroku now also requires enrolling inmulti-factor authentication (MFA),

which can be done with SalesForce or a tool like Google Authenticator.

We will be using Heroku’s Command Line Interface (CLI) so we can deploy from the command

line. Currently, we are operating within a virtual environment for our Library project but we

want Heroku available globally, that is everywhere on our machine. An easy way to do so is open

up a new command line tab–Control+t onWindows, Command+t on aMac–which is not operating

in a virtual environment. Anything installed here will be global.

OnWindows, see theHeroku CLI page41 to correctly install either the 32-bit or 64-bit version. On

a Mac, the package manager Homebrew42 is used for installation. If not already on your machine,

install Homebrew by copy and pasting the long command on the Homebrew website into your

command line and hitting Return. It will look something like this:

Shell

% /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/\
install/HEAD/install.sh)"

Next install the Heroku CLI by copy and pasting the following into your command line and hitting

Return.

Shell

% brew tap heroku/brew && brew install heroku

If you are on a new M1 chip Apple computer you might receive an error with something like Bad

CPU type in executable. Installing Rosetta 243 will solve the issue.

Once installation is complete you can close the new command line tab and return to the initial

tab with the pages virtual environment active.

To verify the installation worked properly run heroku --version. There should be output with

the current version of the Heroku CLI installed.

41https://devcenter.heroku.com/articles/heroku-cli#download-and-install
42https://brew.sh/
43https://support.apple.com/en-us/HT211861

https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://brew.sh/
https://support.apple.com/en-us/HT211861
https://devcenter.heroku.com/articles/heroku-cli#download-and-install
https://brew.sh/
https://support.apple.com/en-us/HT211861

Chapter 4: Library API 58

Shell

(.venv) > heroku --version
heroku/7.59.2 darwin-x64 node-v12.21.0

If you see an error message here on VSCode for Windows about “the term ‘heroku’ is not

recognized…” it is likely a permissions issue. Try opening up the PowerShell app directly and

executing heroku --version. It should work properly. The VSCode Terminal Shell has some

subtle issues from time to time unfortunately.

And if you receive a “Warning” that your Heroku version is out of date try running heroku update

to install the latest version.

Once you have seen the installed version of Heroku, type the command heroku login and use

the email and password for Heroku you just set.

Shell

(.venv) > heroku login
Enter your Heroku credentials:
Email: will@wsvincent.com
Password: *********************************
Logged in as will@wsvincent.com

You might need to verify your credentials on the Heroku website but once the terminal shell

confirms your log in you are ready to proceed.

Static Files

Static files44 are somewhat tricky to deploy properly on Django projects but the good news is

that the process for Django APIs is essentially the same. Even though we do not have any of our

own at this point, there are static files included in the Django admin andDjango REST Framework

browsable API so in order for those to deploy properly we must configure all static files.

First we need to create a dedicated static directory.

44https://docs.djangoproject.com/en/4.0/howto/static-files/

https://docs.djangoproject.com/en/4.0/howto/static-files/
https://docs.djangoproject.com/en/4.0/howto/static-files/

Chapter 4: Library API 59

Shell

(.venv) > mkdir static

Git will not track empty directories so it’s important to add a .keep file so the static directory

is included in source control. Do so now with your text editor.

Then we’ll install the WhiteNoise45 package since Django does not support serving static files in

production itself.

Shell

(.venv) > python -m pip install whitenoise==6.0.0

WhiteNoise must be added to django_project/settings.py in the following locations:

• whitenoise above django.contrib.staticfiles in INSTALLED_APPS

• WhiteNoiseMiddleware above CommonMiddleware

• STATICFILES_STORAGE configuration pointing to WhiteNoise

Code

django_project/settings.py
INSTALLED_APPS = [

...
"whitenoise.runserver_nostatic", # new
"django.contrib.staticfiles",

]

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"whitenoise.middleware.WhiteNoiseMiddleware", # new
...

]

STATIC_URL = "/static/"
STATICFILES_DIRS = [BASE_DIR / "static"] # new
STATIC_ROOT = BASE_DIR / "staticfiles" # new
STATICFILES_STORAGE =

"whitenoise.storage.CompressedManifestStaticFilesStorage" # new

45http://whitenoise.evans.io/en/stable/

http://whitenoise.evans.io/en/stable/
http://whitenoise.evans.io/en/stable/

Chapter 4: Library API 60

The last step is to run the collectstatic command for the first time to compile all the static file

directories and files into one self-contained unit suitable for deployment.

Shell

(.venv) > python manage.py collectstatic

All set. Now that our static files are properly configured we don’t have to think much about them

going forward!

Deployment Checklist

For a basic deployment we have five items on our deployment checklist:

• install Gunicorn46 as the production web server

• create a requirements.txt file

• create a runtime.txt file

• update the ALLOWED_HOSTS configuration

• create a Procfile for Heroku

Django’s built-in web server is fine for local testing but either Gunicorn or uWSGI47 should be

used in production. Since Gunicorn is the simpler of the two to use, it will be our choice. Install

it via Pip.

Shell

(.venv) > python -m pip install gunicorn~=20.1.0

In the previous chapter we created a requirements.txt file but we have since installed Django

REST Framework and Gunicorn in our virtual environment. Neither is reflected in the current

file. It is simple enough though to simply run the command again with the > operator to update

it.

46https://gunicorn.org/
47https://uwsgi-docs.readthedocs.io/en/latest/

https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/

Chapter 4: Library API 61

Shell

(.venv) > python -m pip freeze > requirements.txt

The third step is to create a runtime.txt file in the root directory, next to requirements.txt,

that specifies what version of Python to run on Heroku. If not set explicitly this is currently set48

to the python-3.9.10 runtime but changes over time.

Sincewe are using Python 3.10 wemust create a dedicated runtime.txt49 file to use it. In your text

editor, create this new runtime.txt file at the project-level meaning it is in the same directory

as the manage.py file. As of this writing, the latest version is 3.10.2. Make sure everything is

lowercased!

runtime.txt

python-3.10.2

The fourth step is to update ALLOWED_HOSTS. By default it is set to accept all hosts but we want to

restrict access on a live website and API.Wewant to be able to use either localhost or 127.0.0.1

locally and we also know that any Heroku site will end with .herokuapp.com. Add all three hosts

to our ALLOWED_HOSTS configuration.

Code

django_project/settings.py
ALLOWED_HOSTS = [".herokuapp.com", "localhost", "127.0.0.1"]

And the final step in your text editor is to create a new Procfile in the project root directory next

to the manage.py file. This is a file specifically for Heroku that provides instructions for running

our website. We’re telling it to use Gunicorn as the webserver, look for the WSGI configuration

in django_project.wsgi, and also to output log files which is an optional but helpful additional

config.

48https://devcenter.heroku.com/articles/python-support#specifying-a-python-version
49https://devcenter.heroku.com/articles/python-runtimes

https://devcenter.heroku.com/articles/python-support#specifying-a-python-version
https://devcenter.heroku.com/articles/python-runtimes
https://devcenter.heroku.com/articles/python-support#specifying-a-python-version
https://devcenter.heroku.com/articles/python-runtimes

Chapter 4: Library API 62

Procfile

web: gunicorn django_project.wsgi --log-file -

We’re all set. Add and commit our new changes to Git.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "New updates for Heroku deployment"

GitHub

It is recommended to also store your code on a hosting provider like GitHub, GitLab, or BitBucket.

GitHub is very popular and provides a generous free tier so we will use it in this book. You can

create a free account on the website.

Once setup, create a new repo50 called library andmake sure to select the “Private” radio button.

Then click on the “Create repository” button. On the next page, scroll down to where it says “…or

push an existing repository from the command line.” Copy and paste the two commands there

into your terminal.

It should look like the below albeit instead of wsvincent as the username it will be your GitHub

username.

Shell

(.venv) > git remote add origin https://github.com/wsvincent/library.git
(.venv) > git push -u origin main

Heroku

The final step is to create a new project on Heroku and push our code into it. You should already

be logged into Heroku via the command line from earlier in the chapter.

50https://github.com/new

https://github.com/new
https://github.com/new

Chapter 4: Library API 63

You can either run heroku create and Heroku will randomly assign a name for your project or

you can specify a custom name but it must be unique across all of Heroku! So the longer the

better. I’m calling mine wsvincent-library. Prefixing your GitHub username is a good way to

ensure you can specify the name of your Heroku project though you can always change it later

on, too.

Shell

(.venv) > heroku create wsvincent-library
Creating � wsvincent-library... done
https://wsvincent-library.herokuapp.com/ | https://git.heroku.com/wsvincent-library.git

Then we’ll push the code up to Heroku itself and add a web process so the dyno is running.

Shell

(.venv) > git push heroku main
(.venv) > heroku ps:scale web=1

The URL of your new app will be in the command line output or you can run heroku open to find

it.

Here is my Library homepage.

Library Homepage

And also the API endpoint at /api/.

Chapter 4: Library API 64

Library API

Deployment is a complicated topic and we’ve intentionally taken a number of shortcuts here. But

the goal is to walkthrough a very basic Django website and API to show how it can be created

from scratch.

Conclusion

Wecovered a lot ofmaterial in this chapter so don’t worry if things feel a little confusing right now.

We added Django REST Framework to our existing Library website and created an API endpoint

for our books. Then we added tests and deployed our project to Heroku.

Web APIs can do a lot more than simply list information from your database though. In the next

chapter we will build and deploy our own Todo API back-end that can be easily consumed by any

Chapter 4: Library API 65

front-end.

Chapter 5: Todo API

In this chapter we will build and deploy Todo API back-end that contains both a list API endpoint

for all todos and dedicated endpoints for each individual todo. We will also learn about Cross-

Origin Resource Sharing (CORS)which is a necessary security feature when a deployed back-end

needs to communicate with a front-end. We have already made our first API and reviewed how

HTTP and RESTwork in the abstract but it’s still likely you don’t “quite” see how it all fits together

yet. By the end of these two chapters you will.

Single Page Apps (SPAs)

SPAs are required formobile apps that run on iOS or Android and is the dominant pattern for web

apps that want to take advantage of JavaScript front-end frameworks like React, Vue, Angular,

and others.

There are multiple advantages to adopting a SPA approach. Developers can focus on their own

area of expertise, typically either front-end or the back-end, but rarely both. It allows for using

testing and build tools suitable to the task at hand since building, testing, and deploying a Django

project is quite different than doing the same for a JavaScript one like React. And the forced

separation removes the risk of coupling; it is not possible for front-end changes to break the

back-end.

For large teams, SPAs make a lot of sense since there is already a built-in separation of tasks.

Even in smaller teams, the adoption cost of an SPA approach is relatively small. The main risk of

separating the back-end and the front-end is that it requires domain knowledge in both areas.

While Django is relatively mature at this point the front-end ecosystem is decidedly not. A solo

developer should think carefully about whether the added complexity of a dedicated JavaScript

front-end is worth it versus sprinkling JavaScript into existing Django templates with modern

tools like htmx51.
51https://htmx.org/

https://htmx.org/
https://htmx.org/

Chapter 5: Todo API 67

Initial Set Up

The first step for any Django API is always to install Django and then later add Django REST

Framework on top of it. From the command line, navigate to the code directory on the Desktop

and create both a todo folder.

Shell

Windows
> cd onedrive\desktop\code
> mkdir todo && cd todo

macOS
% cd desktop/desktop/code
% mkdir todo && cd todo

Then run through the standard steps of creating a new virtual environment, activating it, and

installing Django.

Shell

Windows
> python -m venv .venv
> .venv\Scripts\Activate.ps1
(.venv) > python -m pip install django~=4.0.0

macOS
% python3 -m venv .venv
% source .venv/bin/activate
(.venv) % python3 -m pip install django~=4.0.0

Now that Django is installed we should start by creating a traditional Django project called

django_project, adding an app called todos within it, and then migrating the initial database.

Chapter 5: Todo API 68

Shell

(.venv) > django-admin startproject django_project .
(.venv) > python manage.py startapp todos
(.venv) > python manage.py migrate

In Django we always need to add new apps to our INSTALLED_APPS setting so do that now. Open

up django_project/settings.py in your text editor and add todos to the bottom of the installed

apps.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
Local
"todos.apps.TodosConfig", # new

]

If you run python manage.py runserver on the command line now and navigate in your web

browser to http://127.0.0.1:8000/ you can see our project is successfully installed. We are

ready to proceed.

.gitignore

Since wewill be using Git for our source control it’s important to create a .gitignore file early to

specify what should not be tracked. This includes our new virtual environment .venv. To fix the

issue, create a new file with your text editor called .gitignore and add a single line for .venv.

Chapter 5: Todo API 69

.gitignore

.venv/

Then let’s initialize a new Git repository for our project and run git status to confirm the .venv

file does not appear.We can also add all our setupwork via git add -A andwrite our first commit

message.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "initial commit"

Models

Next up is defining the Todo database model within the todos app. We will keep things basic and

have only two fields: title and body.

Code

todos/models.py
from django.db import models

class Todo(models.Model):
title = models.CharField(max_length=200)
body = models.TextField()

def __str__(self):
return self.title

We import models at the top and then subclass it to create our own Todomodel. A __str__method

is also added to provide a human-readable name for each future model instance.

Sincewe have updated ourmodel it’s time forDjango’s two-step dance ofmaking a newmigration

file and then syncing the database with the changes each time. On the command line type

Control+c to stop our local server. Then run the makemigrations command.

Chapter 5: Todo API 70

Shell

(.venv) > python manage.py makemigrations todos
Migrations for 'todos':
todos/migrations/0001_initial.py
- Create model Todo

And then the migrate command.

Shell

(.venv) > python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, sessions, todos

Running migrations:
Applying todos.0001_initial... OK

It is optional to add the specific app we want to create a migration file for–we could instead type

just python manage.py makemigrations–however it is a good best practice to adopt. Migration

files are a fantastic way to debug applications and you should strive to create a migration file

for each small change. If we had updated the models in two different apps and then run python

manage.py makemigrations the resulting single migration file would contain data on both apps.

That just makes debugging harder. Try to keep your migrations as small as possible.

Now we can use the built-in Django admin app to interact with our database. If we went into

the admin straight away our Todos app would not appear. We need to explicitly add it via the

todos/admin.py file. While we’re at it we can create a TodoAdmin class that uses list_display so

that both of our model fields, title and body, will be visible.

Chapter 5: Todo API 71

Code

todos/admin.py
from django.contrib import admin

from .models import Todo

class TodoAdmin(admin.ModelAdmin):
list_display = (

"title",
"body",

)

admin.site.register(Todo, TodoAdmin)

That’s it! Now we can create a superuser account to log in to the admin.

Shell

(.venv) > python manage.py createsuperuser

Start up the local server again with python manage.py runserver and navigate to the admin

section at http://127.0.0.1:8000/admin/. Log in and click on “+ Add” next to Todos. Create 3

new todo items, making sure to add a title and body for both. Here’s what mine looks like:

Chapter 5: Todo API 72

Admin todos

Tests

Code without tests is incomplete so we should add some now for our Todo model. We will use

Django’s TestCase52 to create a test database and use setUpTestData to create test data for our

TodoModelTest class. We want to confirm that the title and body appear as expected, as well as

the __str__method on the model.

Open up the todos/tests.py file and fill it with the following:

52https://docs.djangoproject.com/en/4.0/topics/testing/tools/#testcase

https://docs.djangoproject.com/en/4.0/topics/testing/tools/#testcase
https://docs.djangoproject.com/en/4.0/topics/testing/tools/#testcase

Chapter 5: Todo API 73

Code

todos/tests.py
from django.test import TestCase

from .models import Todo

class TodoModelTest(TestCase):
@classmethod
def setUpTestData(cls):

cls.todo = Todo.objects.create(
title="First Todo",
body="A body of text here"

)

def test_model_content(self):
self.assertEqual(self.todo.title, "First Todo")
self.assertEqual(self.todo.body, "A body of text here")
self.assertEqual(str(self.todo), "First Todo")

Make sure the local server is not running by typing Control+c from the command line and then

run the test with the python manage.py test command.

Shell

(.venv) > python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..
--
Ran 1 tests in 0.002s

OK
Destroying test database for alias 'default'...

We are actually done with the traditional Django part of our Todo API at this point! Since we are

not bothering to build out webpages for this project all we need is a model and Django REST

Framework will take care of the rest.

Chapter 5: Todo API 74

Django REST Framework

To add Django REST Framework stop the local server by typing Control+c and then install it with

Pip.

Shell

(.venv) > python -m pip install djangorestframework~=3.13.0

Then add rest_framework to our INSTALLED_APPS setting just like any other third-party applica-

tion. We also want to start configuring Django REST Framework specific settings which all exist

under a configuration called REST_FRAMEWORK that can be added at the bottom of the file.

For starters, let’s explicitly set permissions to AllowAny53 which allows unrestricted access re-

gardless of whether a request was authenticated or not. In a production setting API permissions

are strictly controlled but for learning purposes we will use AllowAny for now.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd party
"rest_framework", # new
Local
"todos.apps.TodosConfig",

]

REST_FRAMEWORK = {
"DEFAULT_PERMISSION_CLASSES": [

"rest_framework.permissions.AllowAny",
],

}

53http://www.django-rest-framework.org/api-guide/permissions/#allowany

http://www.django-rest-framework.org/api-guide/permissions/#allowany
http://www.django-rest-framework.org/api-guide/permissions/#allowany

Chapter 5: Todo API 75

Django REST Framework has a lengthy list of implicitly set default settings. You can see the

complete list here54. AllowAny is one of them which means that when we set it explicitly, as

we did above, the effect is exactly the same as if we had no DEFAULT_PERMISSION_CLASSES config

set.

Learning the default settings is something that takes time.Wewill become familiarwith a number

of them over the course of the book. The main takeaway to remember is that the implicit

default settings are designed so that developers can jump in and start working quickly in a

local development environment. Just as in traditional Django though, the default Django REST

Framework settings are not appropriate for production. Before deployment we will typically

make a number of changes to them over the course of a project.

Ok, so Django REST Framework is installed.What next? Unlike the Library project in the previous

chapters where we built both a webpage and an API, here we are just building an API. Therefore

we do not need to create any template files or traditional Django views. It is also arguably

unnecessary to create a separate apis app since this project is API-first by design. While Django

comes with a lot of guardrails around project structure, it is up to the developer to decide how to

organize their apps. This is a common point of confusion for newcomers but by buildingmultiple

projects with different app structures it becomes clearer that apps are just an organizational

tool for the developer. As long as an app is added to INSTALLED_APPS and uses the correct import

structure they can be used in almost any configuration.

To transform our existing database model into a web API we will need to update the URLs, add

Django Rest Framework views, and create a serializer. Let’s begin!

URLs

I like to start with the URLs first since they are the entry-point for our API endpoints. Start at

the Django project-level file located at django_project/urls.py. We will import include on the

second line and add a route for our todos app at the path of api/. It is a good idea to have all

API endpoints at a consistent path such as api/ in case you decide to add traditional Django

webpages at a later date.

54http://www.django-rest-framework.org/api-guide/settings/

http://www.django-rest-framework.org/api-guide/settings/
http://www.django-rest-framework.org/api-guide/settings/

Chapter 5: Todo API 76

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("api/", include("todos.urls")), # new

]

Next create an app-level todos/urls.py file with your text editor and add the following code:

Code

todos/urls.py
from django.urls import path

from .views import ListTodo, DetailTodo

urlpatterns = [
path("<int:pk>/", DetailTodo.as_view(), name="todo_detail"),
path("", ListTodo.as_view(), name="todo_list"),

]

Note that we are referencing two views here, ListTodo and DetailTodo, that we have yet to

create. But the routing is now complete. There will be a list of all todos at the empty string "", in

other words at api/, and each individual todo will be available at its primary key, pk, which is a

value Django sets automatically in every database table. The first entry is 1, the second is 2, and

so on. Therefore our first todo will eventually be located at the API endpoint api/1/, the second

at api/2/, and so on.

Serializers

Let’s review where we are so far. We started with a traditional Django project, added a dedicated

app, configured our database model, and added initial data. Then we installed Django REST

Framework and created an api app for which we just configured our URLs. There are two

Chapter 5: Todo API 77

steps remaining: serializer and views. Let’s begin with the serializer which transforms our

model data into JSON that will be outputted at our desired URLs. Create a new file called

todos/serializers.py file and update it with the following code.

Code

todos/serializers.py
from rest_framework import serializers

from .models import Todo

class TodoSerializer(serializers.ModelSerializer):
class Meta:

model = Todo
fields = (

"id",
"title",
"body",

)

At the top we have imported serializers from Django REST Framework along with our Todo

database model. Then we extended ModelSerializer into a new class called TodoSerializer.

The format here is very similar to how we create model classes or forms in Django itself. We’re

specifying which model to use and the specific fields on it we want to expose. Remember that

id (similar to a pk) is created automatically by Django so we didn’t have to define it in our Todo

model but we will display in our individual detail view for each todo. And that’s it! Django REST

Framework will magically transform our data into JSON exposing the fields for id, title, and

body from our Todomodel.

What’s the difference between id and pk? They both refer to a field automatically added toDjango

models by the ORM. id55 is a built-in function from the Python standard library while pk56 comes

from Django itself. Generic class-based views like DetailView in Django expect to be passed a

parameter named pk while on model fields it is often common to simply refer to id.

The last thing we need to do is configure a views.py file to accompany our serializer and URLs.

55https://docs.python.org/3.10/library/functions.html#id
56https://docs.djangoproject.com/en/4.0/ref/models/instances/#the-pk-property

https://docs.python.org/3.10/library/functions.html#id
https://docs.djangoproject.com/en/4.0/ref/models/instances/#the-pk-property
https://docs.python.org/3.10/library/functions.html#id
https://docs.djangoproject.com/en/4.0/ref/models/instances/#the-pk-property

Chapter 5: Todo API 78

Views

Wewill use two DRF generic views here: ListAPIView57 to display all todos and RetrieveAPIView58

to display a single model instance.

Update the todos/views.py file to look as follows:

Code

todos/views.py
from rest_framework import generics

from .models import Todo
from .serializers import TodoSerializer

class ListTodo(generics.ListAPIView):
queryset = Todo.objects.all()
serializer_class = TodoSerializer

class DetailTodo(generics.RetrieveAPIView):
queryset = Todo.objects.all()
serializer_class = TodoSerializer

At the top we import Django REST Framework’s generics views, our Todo model and the

TodoSerializer we just created. Recall from our todos/urls.py file that we have two routes

and therefore two distinct views. A new view called ListTodo subclasses ListAPIView while

DetailTodo subclasses RetrieveAPIView.

Astute readers will notice that there is a bit of redundancy in the code here.We essentially repeat

the queryset and serializer_class for each view, even though the generic view extended is

different. Later on in the book we will learn about viewsets and routers which address this issue

and allow us to create the same API views and URLs with much less code.

But for now we’re done! Our API is ready to consume.

57http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
58http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview

http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview
http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview

Chapter 5: Todo API 79

Browsable API

Let’s use Django REST Framework’s browsable API now to interact with our data. Make sure the

local server is running and navigate to http://127.0.0.1:8000/api/ to see our working API list

views endpoint.

API List

This page shows the three todos we created earlier in the databasemodel. An API endpoint refers

to the URL used to make a request. If there are multiple items at an endpoint it is known as a

collection while a single item is known as a resource. The terms endpoint and resource are often

used interchangeably by developers but they mean different things.

We also made a DetailTodo view for each individual model which should be visible at:

http://127.0.0.1:8000/api/1/.

Chapter 5: Todo API 80

API Detail

You can also navigate to the endpoints for:

• http://127.0.0.1:8000/api/2

• http://127.0.0.1:8000/api/3

API Tests

As we saw in the last chapter, Django REST Framework contains several helper classes for testing

our API endpoints. We want to check that the correct URLs are used, return a 200 status code,

and contain the correct content. This time there are two pages to test: our listing page of all

todos and individual todos on their own dedicated endpoint.

Open the todos/tests.py file with your text editor. To test the API we need to import three new

items at the top: reverse from Django, status from Django REST Framework, and APITestCase

from Django REST Framework. Then we add two tests–test_api_listview and test_api_-

detailview–to check both the list and detail pages use the correct namedURL, return 200 status

codes, contain only one object, and the response has all the data expected. The only tricky thing

here is that for a detail view we must pass in the pk of the object.

Chapter 5: Todo API 81

Code

todos/tests.py
from django.test import TestCase
from django.urls import reverse # new
from rest_framework import status # new
from rest_framework.test import APITestCase # new

from .models import Todo

class TodoModelTest(TestCase):
@classmethod
def setUpTestData(cls):

cls.todo = Todo.objects.create(
title="First Todo",
body="A body of text here"

)

def test_model_content(self):
self.assertEqual(self.todo.title, "First Todo")
self.assertEqual(self.todo.body, "A body of text here")
self.assertEqual(str(self.todo), "First Todo")

def test_api_listview(self): # new
response = self.client.get(reverse("todo_list"))
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(Todo.objects.count(), 1)
self.assertContains(response, self.todo)

def test_api_detailview(self): # new
response = self.client.get(

reverse("todo_detail", kwargs={"pk": self.todo.id}),
format="json"

)
self.assertEqual(response.status_code, status.HTTP_200_OK)
self.assertEqual(Todo.objects.count(), 1)
self.assertContains(response, "First Todo")

Run the tests with the python manage.py test command.

Chapter 5: Todo API 82

Shell

(.venv) > python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
..
--
Ran 3 tests in 0.007s

OK
Destroying test database for alias 'default'...

We’re almost done now but there are two additional considerations since our backend will be

communicating with a frontend on a different port. This raises a host of security concerns that

we will now tackle.

CORS

Cross-Origin Resource Sharing (CORS)59 refers to the fact that whenever a client interacts with

an API hosted on a different domain (mysite.com vs yoursite.com) or port (localhost:3000 vs

localhost:8000) there are potential security issues.

Specifically, CORS requires the web server to include specific HTTP headers that allow for the

client to determine if and when cross-domain requests should be allowed. Because we are using

a SPA architecture the front-end will be on a different local port during development and a

completely different domain once deployed!

The easiest way to handle this issue–-and the one recommended by Django REST Framework60–

-is to use middleware that will automatically include the appropriate HTTP headers based on our

settings. The third-party package django-cors-headers61 is the default choice within the Django

community and can easily added to our existing project.

Make sure to stop the local server with Control+c and then install django-cors-headers with

Pip.

59https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
60http://www.django-rest-framework.org/topics/ajax-csrf-cors/
61https://github.com/adamchainz/django-cors-headers

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
http://www.django-rest-framework.org/topics/ajax-csrf-cors/
https://github.com/adamchainz/django-cors-headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
http://www.django-rest-framework.org/topics/ajax-csrf-cors/
https://github.com/adamchainz/django-cors-headers

Chapter 5: Todo API 83

Shell

(.venv) > python -m pip install django-cors-headers~=3.10.0

Next update our django_project/settings.py file in three places:

• add corsheaders to the INSTALLED_APPS

• add CorsMiddleware above CommonMiddleWare in MIDDLEWARE

• create a CORS_ALLOWED_ORIGINS config at the bottom of the file

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd party
"rest_framework",
"corsheaders", # new
Local
"todos.apps.TodosConfig",

]

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"corsheaders.middleware.CorsMiddleware", # new
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",

]

CORS_ALLOWED_ORIGINS = (
"http://localhost:3000",
"http://localhost:8000",

)

Chapter 5: Todo API 84

It’s very important that corsheaders.middleware.CorsMiddleware appears in the proper loca-

tion since Django middlewares are loaded top-to-bottom. Also note that we’ve whitelisted two

domains: localhost:3000 and localhost:8000. The former is the default port for React (if that

is the front-end being used) and the latter is the default Django port.

CSRF

Just as CORS is an issue when dealing with a SPA architecture, so too are forms. Django comes

with robust CSRF protection62 that should be added to forms in any Django template, but with

a dedicated React front-end setup this protection isn’t inherently available. Fortunately, we can

allow specific cross-domain requests from our frontend by setting CSRF_TRUSTED_ORIGINS63.

At the bottom of the settings.py file, next to CORS_ORIGIN_WHITELIST, add this additional line

for React’s default local port of 3000:

Code

django_project/settings.py
CSRF_TRUSTED_ORIGINS = ["localhost:3000"]

And that’s it! Our back-end is now complete and capable of communicating with any front-end

that uses port 3000. If our front-end of choice dictates a different port that can easily be updated

in our code.

Back-End API Deployment

Wewill again deploy the Django API backend with Heroku. If you recall our deployment checklist

from Chapter 4 for the Library API included the following:

• configure static files and install WhiteNoise

• install Gunicorn as the production web server

• create requirements.txt, runtime.txt, and Procfile files

62https://docs.djangoproject.com/en/4.0/ref/csrf/
63https://docs.djangoproject.com/en/4.0/ref/settings/#csrf-trusted-origins

https://docs.djangoproject.com/en/4.0/ref/csrf/
https://docs.djangoproject.com/en/4.0/ref/settings/#csrf-trusted-origins
https://docs.djangoproject.com/en/4.0/ref/csrf/
https://docs.djangoproject.com/en/4.0/ref/settings/#csrf-trusted-origins

Chapter 5: Todo API 85

• update the ALLOWED_HOSTS configuration

We can run through each of thesemore quickly now. For static files create a new static directory

from the terminal shell.

Shell

(.venv) > mkdir static

With your text editor create a .keep file within the static directory so it is picked up by Git.

Then install whitenoise to handle static files in production.

Shell

(.venv) > python -m pip install whitenoise==5.3.0

WhiteNoise must be added to django_project/settings.py in the following locations:

• whitenoise above django.contrib.staticfiles in INSTALLED_APPS

• WhiteNoiseMiddleware above CommonMiddleware

• STATICFILES_STORAGE configuration pointing to WhiteNoise

Code

django_project/settings.py
INSTALLED_APPS = [

...
"whitenoise.runserver_nostatic", # new
"django.contrib.staticfiles",

]

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"whitenoise.middleware.WhiteNoiseMiddleware", # new
"corsheaders.middleware.CorsMiddleware",
...

]

STATIC_URL = "/static/"

Chapter 5: Todo API 86

STATICFILES_DIRS = [BASE_DIR / "static"] # new
STATIC_ROOT = BASE_DIR / "staticfiles" # new
STATICFILES_STORAGE =

"whitenoise.storage.CompressedManifestStaticFilesStorage" # new

Finally run the collectstatic command so that all static directories and files are compiled into

one location for deployment purposes.

Shell

(.venv) > python manage.py collectstatic

Gunicorn will be used as the production web server and can be installed directly.

Shell

(.venv) > python -m pip install gunicorn~=20.1.0

With your text editor create a runtime.txt file in the project root directory next to manage.py.

It will have one line specifying the version of Python to run on Heroku.

runtime.txt

python-3.10.2

Now create an empty Procfile file in the same project root directory location. It should contain

the following single line command:

Procfile

web: gunicorn django_project.wsgi --log-file -

We can automatically generate a requirements.txt file with the contents of our virtual environ-

ment in one command:

Chapter 5: Todo API 87

Shell

(.venv) > python -m pip freeze > requirements.txt

The last step is to update the ALLOWED_HOSTS configuration in django_project/settings.py.

Access should be restricted to localhost, 127.0.0.1, and .herokuapp.com.

Code

django_project/settings.py
ALLOWED_HOSTS = [".herokuapp.com", "localhost", "127.0.0.1"]

Make sure to add and commit the new changes to Git.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "New updates for Heroku deployment"

Then log into Heroku’s CLI by typing the command heroku loginwhich will require you to verify

credentials on the Heroku website itself.

Shell

(.venv) > heroku login
heroku: Press any key to open up the browser to login or q to exit:
Opening browser to ...
Logging in... done
Logged in as will@wsvincent.com

Once logged in we need to create a newHeroku project. Since Heroku names are unique you will

need to come up with your own variation. I’ve called mine wsvincent-todo.

Chapter 5: Todo API 88

Shell

(.venv) > heroku create wsvincent-todo
Creating � wsvincent-todo... done
https://wsvincent-todo.herokuapp.com/ | https://git.heroku.com/wsvincent-todo.git

Push the code up to Heroku and add a web process so the dyno is running.

Shell

(.venv) > git push heroku main
(.venv) > heroku ps:scale web=1

The URL of your new app will be in the command line output or you can run heroku open to find

it. Make sure to navigate to the /api/ endpoint to see a list of all Todo items. Here is my Todo

API endpoint listing all items:

Todo API List Endpoint

Chapter 5: Todo API 89

The individual API endpoints for each Todo itemwill also be available at /api/1/, /api/2/, and so

on. The deployed Todo API is now consumable. Once the deployed URLs of the front-end code

is known they can be added to the CORS and CSRF sections as appropriate.

Conclusion

With a minimal amount of code Django REST Framework has allowed us to create a Django API

from scratch. Unlike our example in the previous chapter, we did not build out any web pages

for this project since our goal was just to create an API. However at any point in the future, we

easily could! It would just require adding a new view, URL, and a template to expose our existing

database model.

An important point in this example is that we added CORS headers and explicitly set only the

domains localhost:3000 and localhost:8000 to have access to our API. Correctly setting CORS

headers is an easy thing to be confused about when you first start building APIs.

There’s much more configuration we can and will do later on but at the end of the day creating

Django APIs is about making a model, writing some URL routes, and then adding a little bit of

magic provided by Django REST Framework’s serializers and views.

Chapter 6: Blog API

The major project in this book is a Blog API using the full set of Django REST Framework

features. It will have users, permissions, and allow for full CRUD (Create-Read-Update-Delete)

functionality. We’ll also explore viewsets, routers, and documentation.

In this chapter we will build the basic API section. Just as with our Library and Todo APIs, we

start with traditional Django and then add in Django REST Framework. The main differences are

we’ll be using a custom user model and supporting CRUD operations from the beginning which,

as we will see, Django REST Framework makes quite seamless to do.

Initial Set Up

Our set up is the same as before. Navigate into the code directory and within it create one for

this project called blogapi. Then install Django in a new virtual environment and create a new

Django project called django_project.

Shell

Windows
> cd onedrive\desktop\code
> mkdir blogapi
> cd blogapi
> python -m venv .venv
> .venv\Scripts\Activate.ps1
(.venv) > python -m pip install django~=4.0.0
(.venv) > django-admin startproject django_project .

macOS
% cd desktop/desktop/code
% mkdir blogapi
% cd blogapi
% python3 -m venv .venv
% source .venv/bin/activate
(.venv) % python3 -m pip install django~=4.0.0
(.venv) % django-admin startproject django_project .

Chapter 6: Blog API 91

Run the command python manage.py runserver and it should bring up the Django welcome

page over at http://127.0.0.1:8000/.

Django welcome page

The terminal shell likely displays a message complaining You have 18 unapplied migration(s).

We are deliberately not running migrate yet because we’ll be using a custom user model and

want to wait until it is configured before running our first migrate command.

Chapter 6: Blog API 92

.gitignore

Using Git early and often is always a good idea on projects. It lets developers track the progress

of the project over time and identify any errors that may arise. Let’s initialize a new Git repo and

check its status.

Shell

(.venv) > git init
(.venv) > git status

The .venv file should appear which we do not want in source control therefore use your text

editor to create a .gitignore file in the project directory next to the manage.py file. Add a single

line for .venv so it will be ignored by Git.

.gitignore

.venv/

Then run git status again to confirm .venv no longer appears, add our current work, and create

the first Git commit.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "initial commit"

Custom User Model

Adding a custom user model is an optional but recommended next step. Even if you have no

plans to use one, taking a few steps now leaves the door open to leveraging it in the future on

your project.

To do so first create a new app called accounts.

Chapter 6: Blog API 93

Shell

(.venv) > python manage.py startapp accounts

Then add it to our INSTALLED_APPS configuration so Django knows it exists.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
Local
"accounts.apps.AccountsConfig", # new

]

Within accounts/models.py define a customusermodel called CustomUser by extending Abstrac-

tUser64 and adding a single field, name, for now. We’ll also add a __str__ method to return the

user’s email address in the admin and elsewhere.

Code

accounts/models.py
from django.contrib.auth.models import AbstractUser
from django.db import models

class CustomUser(AbstractUser):
name = models.CharField(null=True, blank=True, max_length=100)

The last step is to update the AUTH_USER_MODEL65 configuration in settings.py, which is

implicitly set to auth.User, over to accounts.CustomUser. This can be added at the bottom of

the file.

64https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
65https://docs.djangoproject.com/en/4.0/ref/settings/#auth-user-model

https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/4.0/ref/settings/#auth-user-model
https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/4.0/ref/settings/#auth-user-model

Chapter 6: Blog API 94

Code

django_project/settings.py
AUTH_USER_MODEL = "accounts.CustomUser" # new

Now we can run makemigrations for our model changes, migrate to initialize the database, and

createsuperuser to create a superuser account so we can view the admin. Make sure to include

an email for your custom user.

Shell

(.venv) > python manage.py makemigrations
(.venv) > python manage.py migrate
(.venv) > python manage.py createsuperuser

Then launch Django’s internal web server with the runserver command:

Shell

(.venv) > python manage.py runserver

If we head on over to the admin at http://127.0.0.1:8000/admin/ and log in it looks like

something is missing doesn’t it?

Admin Empty Homepage

Only the Groups section appears. We don’t have Users as we normally would with the default

User model. What’s missing is two things: we have to customize accounts/admin.py to display

our new custom usermodel and create a new file called accounts/forms.py that sets CustomUser

to be used when creating or changing users. We’ll start with account/forms.py.

Chapter 6: Blog API 95

Code

accounts/forms.py
from django.contrib.auth.forms import UserCreationForm, UserChangeForm

from .models import CustomUser

class CustomUserCreationForm(UserCreationForm):
class Meta(UserCreationForm):

model = CustomUser
fields = UserCreationForm.Meta.fields + ("name",)

class CustomUserChangeForm(UserChangeForm):
class Meta:

model = CustomUser
fields = UserChangeForm.Meta.fields

At the top we import UserCreationForm66 and UserChangeForm67 which are used for creating

or updating a user. We’ll also import our CustomUsermodel so that it can be integrated into new

CustomUserCreationForm and CustomUserChangeForm classes.

With that out of the way, the last step in the custom user setup is to update accounts/admin.py

to properly display the new custom user.

Code

accounts/admin.py
from django.contrib import admin
from django.contrib.auth.admin import UserAdmin

from .forms import CustomUserCreationForm, CustomUserChangeForm
from .models import CustomUser

class CustomUserAdmin(UserAdmin):
add_form = CustomUserCreationForm
form = CustomUserChangeForm
model = CustomUser
list_display = [

66https://docs.djangoproject.com/en/4.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
67https://docs.djangoproject.com/en/4.0/topics/auth/default/#django.contrib.auth.forms.UserChangeForm

https://docs.djangoproject.com/en/4.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/4.0/topics/auth/default/#django.contrib.auth.forms.UserChangeForm
https://docs.djangoproject.com/en/4.0/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/4.0/topics/auth/default/#django.contrib.auth.forms.UserChangeForm

Chapter 6: Blog API 96

"email",
"username",
"name",
"is_staff",

]
fieldsets = UserAdmin.fieldsets + ((None, {"fields": ("name",)}),)
add_fieldsets = UserAdmin.add_fieldsets + ((None, {"fields": ("name",)}),)

admin.site.register(CustomUser, CustomUserAdmin)

And we’re done. If you reload the admin page it now displays Users.

Admin Users

If you click on Users you can see our superuser is in there, too.

Chapter 6: Blog API 97

Admin Superuser

Posts App

It’s time to create a dedicated app for our Blog. Naming is always tricky and while it is tempting

to add a new app called blog and a related model called Blog, this is rarely done since multiple

areas within Django add an s on to app and model names and “blogs” just doesn’t look very good.

For this reason, it is more common to called a Blog app something like posts and the related

database model simply Post. That’s what we’ll do here.

Type Control+c to stop the local server and then use the management command startapp to

create the new posts app.

Chapter 6: Blog API 98

Shell

(.venv) > python manage.py startapp posts

Then immediately update INSTALLED_APPS in the django_project/settings.py file before we

forget.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
Local
"accounts.apps.AccountsConfig",
"posts.apps.PostsConfig", # new

]

Post Model

Our blog Post database model will have five fields: author, title, body, created_at, and

updated_at. We will also import Django’s settings so we can refer to AUTH_USER_MODEL in our

author field. And we’ll add a __str__method as a general best practice.

Chapter 6: Blog API 99

Code

posts/models.py
from django.conf import settings
from django.db import models

class Post(models.Model):
title = models.CharField(max_length=50)
body = models.TextField()
author = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)
created_at = models.DateTimeField(auto_now_add=True)
updated_at = models.DateTimeField(auto_now=True)

def __str__(self):
return self.title

That looks straightforward enough. Now update our database by first creating a new migration

file with the command makemigrations posts and then running migrate to sync the database

with our model changes.

Shell

(.venv) > python manage.py makemigrations posts
(.venv) > python manage.py migrate

Good! We want to view our data in Django’s admin app so we’ll quickly update posts/admin.py

as follows.

Code

posts/admin.py
from django.contrib import admin

from .models import Post

admin.site.register(Post)

Start up the local web server again with python manage.py runserver and visit the admin to see

our work in action.

Chapter 6: Blog API 100

Admin Posts

There’s our Posts app! Click on the “+ Add” button next to Posts and create a new blog post. Next

to “Author” will be a dropdown menu that has your superuser account (mine is called wsv). Make

sure an author is selected, add a title, add body content, and then click on the “Save” button.

Chapter 6: Blog API 101

Admin add blog post

You will be redirected to the Posts page which displays all existing blog posts.

Admin blog posts

Chapter 6: Blog API 102

Tests

We’ve written new code so it is time for tests. These are added to the existing posts/tests.py

file created with the startapp command.

At the top of the file import get_user_model()68 to refer to our User along with TestCase and

the Postmodel. Then create a class BlogTests with set up data and a single test for now, test_-

post_model, that checks the fields on the Postmodel along with its __str__method.

Code

posts/tests.py
from django.contrib.auth import get_user_model
from django.test import TestCase

from .models import Post

class BlogTests(TestCase):
@classmethod
def setUpTestData(cls):

cls.user = get_user_model().objects.create_user(
username="testuser",
email="test@email.com",
password="secret",

)

cls.post = Post.objects.create(
author=cls.user,
title="A good title",
body="Nice body content",

)

def test_post_model(self):
self.assertEqual(self.post.author.username, "testuser")
self.assertEqual(self.post.title, "A good title")
self.assertEqual(self.post.body, "Nice body content")
self.assertEqual(str(self.post), "A good title")

To confirm that our tests are working quit the local server with Control+c and run our tests.

68https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#django.contrib.auth.get_user_model

https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#django.contrib.auth.get_user_model

Chapter 6: Blog API 103

Shell

(.venv) > python manage.py test
Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.
--
Ran 1 test in 0.105s

OK
Destroying test database for alias 'default'...

We are done now with the regular Django part of our API. All we really need is a model and some

data in our database. Now it’s time to add Django REST Framework to take care of transforming

our model data into an API.

Django REST Framework

As we have seen before, Django REST Framework takes care of the heavy lifting of transforming

our database models into a RESTful API. There are three main steps to this process:

• urls.py file for the URL routes

• serializers.py file to transform the data into JSON

• views.py file to apply logic to each API endpoint

On the command line use pip to install Django REST Framework.

Shell

(.venv) > python -m pip install djangorestframework~=3.13.0

Then add it to the INSTALLED_APPS section of our django_project/settings.py file. It’s also a

good idea to explicitly set our permissions. By default Django REST Framework is configured

to AllowAny to enable ease of us in local development however this is far from secure. We will

update this permission setting in the next chapter.

Chapter 6: Blog API 104

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd-party apps
"rest_framework", # new
Local
"accounts.apps.AccountsConfig",
"posts.apps.PostsConfig",

]

REST_FRAMEWORK = { # new
"DEFAULT_PERMISSION_CLASSES": [

"rest_framework.permissions.AllowAny",
],

}

Now we need to create our URLs, views, and serializers.

URLs

Let’s start with the URL routes for the actual location of the endpoints. Update the project-level

urls.py file with the include import on the second line and a new api/v1/ route for our posts

app.

Chapter 6: Blog API 105

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include # new

urlpatterns = [
path("admin/", admin.site.urls),
path("api/v1/", include("posts.urls")), # new

]

It is a good practice to always version your APIs since when you make a large change there may

be some lag time before various consumers of the API can also update. That way you can support

a v1 of an API for a period of timewhile also launching a new, updated v2 and avoid breaking other

apps that rely on your API back-end.

Note that since our only app at this point is posts we can include it directly here. If we had

multiple apps in a project it might make more sense to create a dedicated api app and then

include all the other API url routes into it. But for basic projects like this one, I prefer to avoid an

api app that is just used for routing. We can always add one later, if needed.

Next create a new posts/urls.py file and add the following code:

Code

posts/urls.py
from django.urls import path

from .views import PostList, PostDetail

urlpatterns = [
path("<int:pk>/", PostDetail.as_view(), name="post_detail"),
path("", PostList.as_view(), name="post_list"),

]

At the top of the file we imported two views–PostList and PostDetail–that we will write in the

next section but they correspond to a list of all blog posts at the empty string, "", which means

at api/v1/. The individual detail posts will be at their primary key, pk, so the first blog post will

be at api/v1/1/, the second at api/v1/2/, and so on. So far this is all standard Django stuff.

Chapter 6: Blog API 106

Serializers

Now for our serializers. Create a new posts/serializers.py file with your text editor. The

serializer not only transforms data into JSON, it can also specify which fields to include or

exclude. In our case, we will include the id field Django automatically adds to database models

but we will exclude the updated_at field by not including it in our fields.

The ability to include/exclude fields in our API this easily is a remarkable feature. More often

than not, an underlying database model will have far more fields than what needs to be exposed.

Django REST Framework’s powerful serializer classmakes it extremely straightforward to control

this.

Code

posts/serializers.py
from rest_framework import serializers

from .models import Post

class PostSerializer(serializers.ModelSerializer):
class Meta:

fields = (
"id",
"author",
"title",
"body",
"created_at",

)
model = Post

At the top of the file we have imported Django REST Framework’s serializers class and our own

models. Then we created a PostSerializer and added a Meta class where we specified which

fields to include and explicitly set the model, Post, to use. There are many ways to customize a

serializer but for common use cases, such as a basic blog, this is all we need.

Chapter 6: Blog API 107

Views

The final step is to create our views. Django REST Framework has several generic views that

are helpful. We have already used ListAPIView69 in both the Library and Todos APIs to create

a read-only endpoint collection, essentially a list of all model instances. In the Todos API we

used RetrieveAPIView70 for a read-only single endpoint, which is analogous to a detail view in

traditional Django.

For our Blog API we want to list all available blog posts as a read-write endpoint which means

using ListCreateAPIView71, which is similar to the ListAPIView we’ve used previously but allows

for writes and therefore POST requests. We also want to make the individual blog posts available

to be read, updated, or deleted. And sure enough, there is a built-in generic Django REST

Framework view just for this purpose: RetrieveUpdateDestroyAPIView72. That’s what we’ll use

here.

Update the posts/views.py file as follows.

Code

posts/views.py
from rest_framework import generics

from .models import Post
from .serializers import PostSerializer

class PostList(generics.ListCreateAPIView):
queryset = Post.objects.all()
serializer_class = PostSerializer

class PostDetail(generics.RetrieveUpdateDestroyAPIView):
queryset = Post.objects.all()
serializer_class = PostSerializer

69http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
70http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview
71http://www.django-rest-framework.org/api-guide/generic-views/#listcreateapiview
72http://www.django-rest-framework.org/api-guide/generic-views/#retrieveupdatedestroyapiview

http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview
http://www.django-rest-framework.org/api-guide/generic-views/#listcreateapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveupdatedestroyapiview
http://www.django-rest-framework.org/api-guide/generic-views/#listapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveapiview
http://www.django-rest-framework.org/api-guide/generic-views/#listcreateapiview
http://www.django-rest-framework.org/api-guide/generic-views/#retrieveupdatedestroyapiview

Chapter 6: Blog API 108

At the top of the file we import generics from Django REST Framework as well as our models

and serializers files. Then we create two views: PostList uses the generic ListCreateAPIView

while PostDetail uses the RetrieveUpdateDestroyAPIView.

It’s pretty amazing that all we have to do is update our generic view to radically change the

behavior of a given API endpoint. This is the advantage of using a full-featured framework like

Django REST Framework: all of this functionality is available, tested, and just works. As developers

we do not have to reinvent the wheel here.

Phew. Our API is now complete and we really did not have to write much code on our own. We

will make additional improvements to our API in the coming chapters but it is worth appreciating

that it already performs the basic list and CRUD functionality we desire. Time to test things out

with the Django Rest Framework’s browsable API.

Browsable API

Start up the local server to interact with our API.

Shell

(.venv) > python manage.py runserver

Then go to http://127.0.0.1:8000/api/v1/ to see the Post List endpoint.

Chapter 6: Blog API 109

API Post List

The page displays a list of our blog posts—just one at the moment—in JSON format. Note that

both GET and POSTmethods are allowed. The id is 1 representing this is the 1st blog post and the

author is also 1 since we used a superuser account which was the first created. It might be more

ideal to display the username or perhaps require a full name to be displayed.

Serializers are very powerful and can be customized to output almost whatever we want with

whatever restrictions in place. There are many listed in the docs73 which also note that “REST

Framework does not attempt to automatically optimize querysets passed to serializers in terms

73https://www.django-rest-framework.org/api-guide/relations/#serializer-relations

https://www.django-rest-framework.org/api-guide/relations/#serializer-relations
https://www.django-rest-framework.org/api-guide/relations/#serializer-relations

Chapter 6: Blog API 110

of select_related and prefetch_related since it would be too much magic.” On larger sites

serializers usually need to be tweaked for performance reasons.

Unlike our previous APIs for the blog we have a model instance endpoint displaying a single post.

Let’s confirm that it also exists by navigating to http://127.0.0.1:8000/api/v1/1/ in the web

browser.

API Post Detail

You can see in the header that GET, PUT, PATCH, and DELETE are supported but not POST. And in

fact you can use the HTML form below to make changes or even use the red “DELETE” button

to delete the instance.

Let’s try things out. Update our title with the additional text (edited) at the end. Then click

Chapter 6: Blog API 111

on the “PUT” button.

API Post Detail edited

Go back to the Post List view by clicking on the link for it at the top of the page or navigating

directly to http://127.0.0.1:8000/api/v1/ and you can see the updated text there as well.

Chapter 6: Blog API 112

API Post List edited

CORS

Since it is likely our API will be consumed on another domain we should configure CORS and set

which domains will have access. As we saw in the earlier Todo API the process is straightforward.

First, we’ll stop the local web server with Control+c and install the third-party package django-

cors-headers74.

74https://github.com/adamchainz/django-cors-headers

https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers
https://github.com/adamchainz/django-cors-headers

Chapter 6: Blog API 113

Shell

(.venv) > python -m pip install django-cors-headers~=3.10.0

Then we add corsheaders to INSTALLED_APPS, add CorsMiddleware to the MIDDLEWARE setting,

and create a CORS_ALLOWED_ORIGINS list. Update the settings.py file as follows to do all three:

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
3rd party
"rest_framework",
"corsheaders", # new
Local
"accounts.apps.AccountsConfig",
"posts.apps.PostsConfig",

]

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"corsheaders.middleware.CorsMiddleware", # new
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",

]

new
CORS_ORIGIN_WHITELIST = (

"http://localhost:3000",
"http://localhost:8000",

)

In the event our API is used with forms it is a good idea to allow specific cross-domain requests

Chapter 6: Blog API 114

from our frontend by setting CSRF_TRUSTED_ORIGINS75 as well. We can do this in settings.py

right after the CORS_ORIGIN_WHITELIST section. For nowwe’ll set it to local port of 3000, which is

what React uses, thoughwe can easily change the port in the future depending on our front-end’s

needs.

Code

django_project/settings.py
CSRF_TRUSTED_ORIGINS = ["http://localhost:3000"] # new

As a final step commit our Blog work to Git.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "Blog API setup"

Conclusion

And that’s it!Wehave deliberately repeated several steps fromour earlier examples so the pattern

of creating a new Django project and then its API should start to feel more familiar. The models

are are pure traditional Django but otherwise the URLs, views, and serializers all come from DRF.

We added a detail endpoint to our API and started to explore the power of serializers.

The Blog API is completely functional for local use at this point however there is a big problem:

anyone can update or delete an existing blog post! In other words, we do not have any

permissions in place. In the next chapter we will learn how to apply permissions to protect our

API.
75https://docs.djangoproject.com/en/4.0/ref/settings/#csrf-trusted-origins

https://docs.djangoproject.com/en/4.0/ref/settings/#csrf-trusted-origins
https://docs.djangoproject.com/en/4.0/ref/settings/#csrf-trusted-origins

Chapter 7: Permissions

Security is an important part of any website but it is doubly important with web APIs. Currently

our Blog API allows anyone full access. There are no restrictions; any user can do anything which

is extremely dangerous. For example, an anonymous user can create, read, update, or delete any

blog post. Even one they did not create! Clearly we do not want this.

Django REST Framework ships with several out-of-the-box permissions settings that we can use

to secure our API. These can be applied at a project-level, a view-level, or at any individual model

level.

In this chapter we will explore all three and end up with a custom permission so that only the

author of a blog post has the ability to update or delete it.

Project-Level Permissions

Django REST Framework has a host of configurations76 that are namespaced inside a single

Django setting called REST_FRAMEWORK. We already made one of those, AllowAny77, explicit in the

django_project/settings.py file.

76https://www.django-rest-framework.org/api-guide/settings/
77https://www.django-rest-framework.org/api-guide/permissions/#allowany

https://www.django-rest-framework.org/api-guide/settings/
https://www.django-rest-framework.org/api-guide/permissions/#allowany
https://www.django-rest-framework.org/api-guide/settings/
https://www.django-rest-framework.org/api-guide/permissions/#allowany

Chapter 7: Permissions 116

Code

django_project/settings.py
REST_FRAMEWORK = {

"DEFAULT_PERMISSION_CLASSES": [
"rest_framework.permissions.AllowAny", # new

],
}

There are actually four built-in project-level permissions settings we can use:

• AllowAny78 - any user, authenticated or not, has full access

• IsAuthenticated79 - only authenticated, registered users have access

• IsAdminUser80 - only admins/superusers have access

• IsAuthenticatedOrReadOnly81 - unauthorized users can view any page, but only authenti-

cated users have write, edit, or delete privileges

Implementing any of these four settings requires updating the DEFAULT_PERMISSION_CLASSES

setting and refreshing our web browser. That’s it!

Let’s switch to IsAuthenticated so only authenticated, or logged in, users can view the API.

Update the django_project/settings.py file as follows:

78http://www.django-rest-framework.org/api-guide/permissions/#allowany
79http://www.django-rest-framework.org/api-guide/permissions/#isauthenticated
80http://www.django-rest-framework.org/api-guide/permissions/#isadminuser
81http://www.django-rest-framework.org/api-guide/permissions/#isauthenticatedorreadonly

http://www.django-rest-framework.org/api-guide/permissions/#allowany
http://www.django-rest-framework.org/api-guide/permissions/#isauthenticated
http://www.django-rest-framework.org/api-guide/permissions/#isadminuser
http://www.django-rest-framework.org/api-guide/permissions/#isauthenticatedorreadonly
http://www.django-rest-framework.org/api-guide/permissions/#allowany
http://www.django-rest-framework.org/api-guide/permissions/#isauthenticated
http://www.django-rest-framework.org/api-guide/permissions/#isadminuser
http://www.django-rest-framework.org/api-guide/permissions/#isauthenticatedorreadonly

Chapter 7: Permissions 117

Code

django_project/settings.py
REST_FRAMEWORK = {

"DEFAULT_PERMISSION_CLASSES": [
"rest_framework.permissions.IsAuthenticated", # new

],
}

If you refresh your web browser nothing changes because we are already logged in with our

superuser account. It should be present in the upper right corner of your browsable API. To log

out enter the admin at http://127.0.0.1:8000/admin/ and click the “Log Out” link in the upper

right corner.

If you go back to http://127.0.0.1:8000/api/v1/ it displays anHTTP 403 Forbidden error since

authentication credentials were not provided. That’s what we want.

403 Error

Create New Users

We need to create a new user to test that a regular user–not just an admin superuser–has access

to the API. There are two ways to do that: create a user in the command shell with python

Chapter 7: Permissions 118

manage.py createsuperuser or we can log into the admin and add a user that way. Let’s talk

the admin route.

Head back to the admin at http://127.0.0.1:8000/admin/ and log in with your superuser

credentials. Then click on “+ Add” next to Users. Enter a username and password for a new user

and click on the “Save” button. I’ve chosen the username testuser here. Note the Name field is

available but not required thanks to our custom user model.

Admin Add User Page

The next screen is the Admin User Change page. I’ve called my user testuser and here I could

add additional information included on the default User model such as first name, last name,

email address, etc. But none of that is necessary for our purposes: we just need a username and

password for testing.

Chapter 7: Permissions 119

Admin User Change

Scroll down to the bottom of this page and click the “Save” button. It will redirect back to the

main Users page at http://127.0.0.1:8000/admin/auth/user/82.

82http://127.0.0.1:8000/admin/auth/user/

http://127.0.0.1:8000/admin/auth/user/
http://127.0.0.1:8000/admin/auth/user/

Chapter 7: Permissions 120

Admin Two Users

We can see our two users are listed. Note that “Staff Status” shows only one of the accounts is

for a superuser. As a final step, click the “Log Out” link in the upper right corner of the webpage

to leave the admin.

Admin Logout

Chapter 7: Permissions 121

Add Log In and Log Out

With that setup out of the way, how can our new user log in to the browsable API? We can do it

by updating our project-level URLconf it turns out. Update django_project/urls.py as follows

with the new path for log in.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("api/v1/", include("posts.urls")),
path("api-auth/", include("rest_framework.urls")), # new

]

Nownavigate to our browsable API at http://127.0.0.1:8000/api/v1/. There is a subtle change:

a “Log in” link in the upper right corner. Click on it to log in

API Log In Link

Use the new testuser account to log in.

Chapter 7: Permissions 122

API Log In Page

This redirects back to the Post List pagewhere testuser is present in the upper righthand corner

along with an arrow that reveals a drop down “Log out” link.

Chapter 7: Permissions 123

API Log In Testuser

View-Level Permissions

Permissions can be added at the view-level too for more granular control. Let’s update our

PostDetail view so that only admin users can view it. If we do this correctly, a logged out user

can’t view the API at all, a logged-in user can view the list page, but only an admin can see the

detail page.

In the posts/views.py file import permissions from Django REST Framework and then add a

Chapter 7: Permissions 124

permission_classes field to PostDetail that sets it to IsAdminUser.

Code

posts/views.py
from rest_framework import generics, permissions # new

from .models import Post
from .serializers import PostSerializer

class PostList(generics.ListCreateAPIView):
queryset = Post.objects.all()
serializer_class = PostSerializer

class PostDetail(generics.RetrieveUpdateDestroyAPIView):
permission_classes = (permissions.IsAdminUser,) # new
queryset = Post.objects.all()
serializer_class = PostSerializer

That’s all we need. Refresh the browsable API at http://127.0.0.1:8000/api/v1/ and the Post

List page is still viewable. However if you navigate to http://127.0.0.1:8000/api/v1/1/ to see

the Post Detail page an HTTP 403 Forbidden status code is displayed.

API Post Detail 403

Chapter 7: Permissions 125

If you log out of the browsable admin and then log in with your admin account the Post Detail

page will still be visible. So we have effectively applied a view-level permission.

As you can see the standard types of permissions to set are allow any for full access, restrict to

authenticated users, restrict to admin users, or allow authenticated users to perform any request

but read-only for other users. How you configure permissions is dependent upon your project

needs.

Before we proceed, remove the permission_classes field on PostDetail. For our purposes it is

enough to restrict access to authenticated userswhichwe’ve done in django_project/settings.py

with the DEFAULT_PERMISSION_CLASSES configuration.

Custom Permissions

For our first custom permission we want to restrict access so that only the author of a blog post

can edit it or delete it. The admin superuser will have access to do everything but a regular user

can only update/delete their own content.

Internally, Django REST Framework relies on a BasePermission class from which all other

permission classes inherit. All the built-in permissions settings like AllowAny or IsAuthenticated

simple extend BasePermission. Here is the actual source code which is available on Github83:

Code

class BasePermission(object):
"""
A base class from which all permission classes should inherit.
"""

def has_permission(self, request, view):
"""
Return `True` if permission is granted, `False` otherwise.
"""
return True

def has_object_permission(self, request, view, obj):
"""
Return `True` if permission is granted, `False` otherwise.

83https://github.com/encode/django-rest-framework

https://github.com/encode/django-rest-framework
https://github.com/encode/django-rest-framework

Chapter 7: Permissions 126

"""
return True

For a custom permission class you can override one or both of these methods. has_permission

works on list views while detail views execute both: first has_permission and then, if that passes,

has_object_permission. It is strongly advised to always set both methods explicitly because

each defaults to True, meaning they will allow access implicitly unless set explicitly.

In our case, we want only the author of a blog post to have write permissions to edit or delete it.

We also want to restrict read-only list view to authenticated users. To do this we’ll create a new

file called posts/permissions.py and fill it with the following code:

Code

posts/permissions.py
from rest_framework import permissions

class IsAuthorOrReadOnly(permissions.BasePermission):
def has_permission(self, request, view):

Authenticated users only can see list view
if request.user.is_authenticated:

return True
return False

def has_object_permission(self, request, view, obj):
Read permissions are allowed to any request so we'll always
allow GET, HEAD, or OPTIONS requests
if request.method in permissions.SAFE_METHODS:

return True

Write permissions are only allowed to the author of a post
return obj.author == request.user

We import permissions at the top and then create a custom class IsAuthorOrReadOnly which

extends BasePermission. The first method, has_permission, requires that a user be logged in,

or authenticated, in order to have access. The second method, has_object_permission, allows

read-only requests but limits write permissions to only the author of the blog post. We access

the author field via obj.author and the current user with request.user.

Chapter 7: Permissions 127

Back in the views.py file we can remove the permissions import because we will swap out

PostDetail’s permissions.IsAdminUser in favor of importing our custom IsAuthorOrReadOnly

permission. Add the new permission to the permission_classes for both PostDetail and

PostList.

Code

posts/views.py
from rest_framework import generics

from .models import Post
from .permissions import IsAuthorOrReadOnly # new
from .serializers import PostSerializer

class PostList(generics.ListCreateAPIView):
permission_classes = (IsAuthorOrReadOnly,) # new
queryset = Post.objects.all()
serializer_class = PostSerializer

class PostDetail(generics.RetrieveUpdateDestroyAPIView):
permission_classes = (IsAuthorOrReadOnly,) # new
queryset = Post.objects.all()
serializer_class = PostSerializer

And we’re done. To check this we need to create a blog post entry with testuser as the author

and confirm testuser can access it. Our current superuser account can see and do everything

by default. Navigate over to http://127.0.0.1:8000/admin/ and log in as your superuser. Then

create a new post with testuser as the author.

Chapter 7: Permissions 128

TestUser Post

After its creation head over to the Post Detail endpoint at http://127.0.0.1:8000/api/v1/2/.

Use the dropdown menu in the upper righthand corner to “Log out” of your superuser account

and log back in as testuser.

Chapter 7: Permissions 129

TestUser Post Detail

Yes! There are options to edit or delete the entry since testuser is the author. However if you

navigate to the detail page for the first blog post at http://127.0.0.1:8000/api/v1/1/ it is read-

only since testuser was not the author.

Chapter 7: Permissions 130

TestUser Post Detail Not Author

To make sure our authentication controls work correctly log out in the upper right hand corner.

Then navigate to both the Post List endpoint and the two Post Detail endpoints to confirm a

logged out user does not have access.

To finish up we should commit our new work to Git.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "add permissions"

Conclusion

Setting proper permissions is a very important part of any API. As a general strategy, it is a good

idea to set a strict project-level permissions policy such that only authenticated users can view

the API. Then make view-level or custom permissions more accessible as needed on specific API

endpoints.

Chapter 8: User Authentication

In the previous chapter we updated our APIs permissions, which is also called authorization. In

this chapter we will implement authenticationwhich is the process by which a user can register

for a new account, log in with it, and log out.

Within a traditional, monolithic Django website authentication is simpler and involves a session-

based cookie pattern which we will review below. But with an API things are a bit trickier.

Remember that HTTP is a stateless protocol so there is no built-in way to remember if a user is

authenticated from one request to the next. Each time a user requests a restricted resource it

must verify itself.

The solution is to pass along a unique identifier with each HTTP request. Confusingly, there

is no universally agreed-upon approach for the form of this identifier and it can take multiple

forms. Django REST Framework ships with four different built-in authentication options84: basic,

session, token, and default. And there are many more third-party packages that offer additional

features like JSON Web Tokens (JWTs).

In this chapter we will thoroughly explore how API authentication works, review the pros and

cons of each approach, and then make an informed choice for our Blog API. By the end, we will

have created API endpoints for sign up, log in, and log out.

Basic Authentication

The most common form of HTTP authentication is known as “Basic” Authentication85. When a

client makes an HTTP request, it is forced to send an approved authentication credential before

access is granted.

The complete request/response flow looks like this:

84https://www.django-rest-framework.org/api-guide/authentication/#api-reference
85https://tools.ietf.org/html/rfc7617

https://www.django-rest-framework.org/api-guide/authentication/#api-reference
https://tools.ietf.org/html/rfc7617
https://www.django-rest-framework.org/api-guide/authentication/#api-reference
https://tools.ietf.org/html/rfc7617

Chapter 8: User Authentication 132

1. Client makes an HTTP request

2. Server responds with an HTTP response containing a 401 (Unauthorized) status code and

WWW-Authenticate HTTP header with details on how to authorize

3. Client sends credentials back via the Authorization86 HTTP header

4. Server checks credentials and responds with either 200 OK or 403 Forbidden status code

Once approved, the client sends all future requests with the Authorization HTTP header

credentials. We can also visualize this exchange as follows:

Diagram

Client Server
------ ------

--------------------------------------->
GET / HTTP/1.1

<-------------------------------------
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic

--------------------------------------->
GET / HTTP/1.1
Authorization: Basic d3N2OnBhc3N3b3JkMTIz

<-------------------------------------
HTTP/1.1 200 OK

Note that the authorization credentials sent are the unencrypted base64 encoded87 version of

<username>:<password>. So in my case, this is wsv:password123 which with base64 encoding is

d3N2OnBhc3N3b3JkMTIz.

The primary advantage of this approach is its simplicity. But there are several major downsides.

First, on every single request the server must look up and verify the username and password,

which is inefficient. It would be better to do the look up once and then pass a token of some

kind that says, this user is approved. Second, user credentials are being passed in clear text—not

encrypted at all—over the internet. This is incredibly insecure. Any internet traffic that is not

86https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
87https://en.wikipedia.org/wiki/Base64

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://en.wikipedia.org/wiki/Base64
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://en.wikipedia.org/wiki/Base64

Chapter 8: User Authentication 133

encrypted can easily be captured and reused. Thus basic authentication should only be used via

HTTPS88, the secure version of HTTP.

Session Authentication

Monolithicwebsites, like traditional Django, have long used an alternative authentication scheme

that is a combination of sessions and cookies. At a high level, the client authenticates with its

credentials (username/password) and then receives a session ID from the server which is stored

as a cookie. This session ID is then passed in the header of every future HTTP request.

When the session ID is passed, the server uses it to look up a session object containing all available

information for a given user, including credentials.

This approach is stateful because a record must be kept and maintained on both the server (the

session object) and the client (the session ID).

Let’s review the basic flow:

1. A user enters their log in credentials (typically username/password)

2. The server verifies the credentials are correct and generates a session object that is then

stored in the database

3. The server sends the client a session ID—not the session object itself—which is stored as a

cookie on the browser

4. On all future requests the session ID is included as an HTTP header and, if verified by the

database, the request proceeds

5. Once a user logs out of an application, the session ID is destroyed by both the client and

server

6. If the user later logs in again, a new session ID is generated and stored as a cookie on the

client

The default setting in Django REST Framework is actually a combination of Basic Authentication

and Session Authentication. Django’s traditional session-based authentication system is used

and the session ID is passed in the HTTP header on each request via Basic Authentication.

88https://en.wikipedia.org/wiki/HTTPS

https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/HTTPS

Chapter 8: User Authentication 134

The advantage of this approach is that it is more secure since user credentials are only sent once,

not on every request/response cycle as in Basic Authentication. It is also more efficient since

the server does not have to verify the user’s credentials each time, it just matches the session ID

to the session object which is a fast look up.

There are several downsides however. First, a session ID is only valid within the browser where

log in was performed; it will not work across multiple domains. This is an obvious problem when

an API needs to support multiple front-ends such as a website and a mobile app. Second, the

session object must be kept up-to-date which can be challenging in large sites with multiple

servers. How do youmaintain the accuracy of a session object across each server? And third, the

cookie is sent out for every single request, even those that don’t require authentication, which

is inefficient.

As a result, it is generally not advised to use a session-based authentication scheme for any API

that will have multiple front-ends.

Token Authentication

The third major approach–and the one we will implement in our Blog API–is to use token

authentication. This is the most popular approach in recent years due to the rise of single page

applications.

Token-based authentication is stateless: once a client sends the initial user credentials to the

server, a unique token is generated and then stored by the client as either a cookie or in local

storage89. This token is then passed in the header of each incoming HTTP request and the server

uses it to verify that a user is authenticated. The server itself does not keep a record of the user,

just whether a token is valid or not.

Cookies vs localStorage

Cookies are used for reading server-side information. They are smaller (4KB) in size and auto-

matically sent with each HTTP request. LocalStorage is designed for client-side information.

It is much larger (5120KB) and its contents are not sent by default with each HTTP request.

89https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Chapter 8: User Authentication 135

Tokens stored in both cookies and localStorage are vulnerable to XSS attacks. The current

best practice is to store tokens in a cookie with the httpOnly and Secure cookie flags.

Let’s look at a simple version of actual HTTPmessages in this challenge/response flow. Note that

the HTTP header WWW-Authenticate specifies the use of a Token which is used in the response

Authorization header request.

Diagram

Client Server
------ ------

--------------------------------------->
GET / HTTP/1.1

<-------------------------------------
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Token

--------------------------------------->
GET / HTTP/1.1
Authorization: Token 401f7ac837da42b97f613d789819ff93537bee6a

<-------------------------------------
HTTP/1.1 200 OK

There are multiple benefits to this approach. Since tokens are stored on the client, scaling the

servers to maintain up-to-date session objects is no longer an issue. And tokens can be shared

amongst multiple front-ends: the same token can represent a user on the website and the same

user on a mobile app. The same session ID can not be shared amongst different front-ends, a

major limitation.

A potential downside is that tokens can grow quite large. A token contains all user information,

not just an id as with a session id/session object set up. Since the token is sent on every request,

managing its size can become a performance issue.

Exactly how the token is implemented can also vary substantially. Django REST Frameworks’

Chapter 8: User Authentication 136

built-in TokenAuthentication90 is deliberately quite basic. As a result, it does not support setting

tokens to expire, which is a security improvement that can be added. It also only generates one

token per user, so a user on a website and then later a mobile app will use the same token.

Since information about the user is stored locally, this can cause problems with maintaining and

updating two sets of client information.

JSON Web Tokens (JWTs) are a newer form of token containing cryptographically signed JSON

data. JWTs were originally designed for use in OAuth91, an open standard way for websites

to share access to user information without actually sharing user passwords. JWTs can be

generated on the server with a third-party package like djangorestframework-simplejwt92 or

via a third-party service like Auth0. There is an ongoing debate, however, among developers on

the pros and cons of using JWTs for user authentication and covering it properly is beyond the

scope of this book. That is why we will stick to the built-in TokenAuthentication in this book.

Default Authentication

The first step is to configure our new authentication settings. Django REST Framework comes

with a number of settings93 that are implicitly set. For example, DEFAULT_PERMISSION_CLASSES

was set to AllowAny before we updated it to IsAuthenticated.

The DEFAULT_AUTHENTICATION_CLASSES are set by default so let’s explicitly add both SessionAuthentication

and BasicAuthentication to our django_project/settings.py file.

90http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication
91https://en.wikipedia.org/wiki/OAuth
92https://github.com/jazzband/djangorestframework-simplejwt
93http://www.django-rest-framework.org/api-guide/settings/

http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication
https://en.wikipedia.org/wiki/OAuth
https://github.com/jazzband/djangorestframework-simplejwt
http://www.django-rest-framework.org/api-guide/settings/
http://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication
https://en.wikipedia.org/wiki/OAuth
https://github.com/jazzband/djangorestframework-simplejwt
http://www.django-rest-framework.org/api-guide/settings/

Chapter 8: User Authentication 137

Code

django_project/settings.py
REST_FRAMEWORK = {

"DEFAULT_PERMISSION_CLASSES": [
"rest_framework.permissions.IsAuthenticated",

],
"DEFAULT_AUTHENTICATION_CLASSES": [# new

"rest_framework.authentication.SessionAuthentication",
"rest_framework.authentication.BasicAuthentication",

],
}

Why use both methods? The answer is they serve different purposes. Sessions are used to power

the Browsable API and the ability to log in and log out of it. BasicAuthentication is used to pass

the session ID in the HTTP headers for the API itself.

If you revisit the browsable API at http://127.0.0.1:8000/api/v1/ it will work just as before.

Technically, nothing has changed, we’ve just made the default settings explicit.

Implementing token authentication

Now we need to update our authentication system to use tokens. The first step is to update our

DEFAULT_AUTHENTICATION_CLASSES setting to use TokenAuthentication as follows:

Code

django_project/settings.py
REST_FRAMEWORK = {

"DEFAULT_PERMISSION_CLASSES": [
"rest_framework.permissions.IsAuthenticated",
],

"DEFAULT_AUTHENTICATION_CLASSES": [
"rest_framework.authentication.SessionAuthentication",
"rest_framework.authentication.TokenAuthentication", # new

],
}

We keep SessionAuthentication since we still need it for our Browsable API, but now use tokens

to pass authentication credentials back and forth in our HTTP headers. We also need to add the

Chapter 8: User Authentication 138

authtoken app which generates the tokens on the server. It comes included with Django REST

Framework but must be added to our INSTALLED_APPS setting:

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",

3rd-party apps
"rest_framework",
"corsheaders",
"rest_framework.authtoken", # new

Local
"accounts.apps.AccountsConfig",
"posts.apps.PostsConfig",

]

Since we have made changes to our INSTALLED_APPS we need to sync our database. Stop the

server with Control+c. Then run the following command.

Shell

(.venv) > python manage.py migrate
Operations to perform:
Apply all migrations: accounts, admin, auth, authtoken, contenttypes, posts, sessions

Running migrations:
Applying authtoken.0001_initial... OK
Applying authtoken.0002_auto_20160226_1747... OK
Applying authtoken.0003_tokenproxy... OK

Now start up the server again.

Chapter 8: User Authentication 139

Shell

(.venv) > python manage.py runserver

If you navigate to the Django admin at http://127.0.0.1:8000/admin/ you’ll see there is now

a Tokens section at the top. Make sure you’re logged in with your superuser account to have

access.

Admin Homepage with Tokens

Click on the link for Tokens. Currently there are no tokens which might be surprising.

Chapter 8: User Authentication 140

Admin Tokens Page

After all we have existing users. However, the tokens are only generated after there is an API call

for a user to log in. We have not done that yet so there are no tokens. We will shortly!

Endpoints

We also need to create endpoints so users can log in and log out. We could create a dedicated

users app for this purpose and then add our own urls, views, and serializers. However user

authentication is an areawherewe really do notwant tomake amistake. And since almost all APIs

require this functionality, it makes sense that there are several excellent and tested third-party

packages we can use instead.

Notably we will use dj-rest-auth94 in combination with django-allauth95 to simplify things. Don’t

feel bad about using third-party packages. They exist for a reason and even the best Django

professionals rely on them all the time. There is no point in reinventing the wheel if you don’t

have to!

dj-rest-auth

First we will add log in, log out, and password reset API endpoints. These come out-of-the-box

with the popular dj-rest-auth package. Stop the server with Control+c and then install it.

94https://github.com/jazzband/dj-rest-auth
95https://github.com/pennersr/django-allauth

https://github.com/jazzband/dj-rest-auth
https://github.com/pennersr/django-allauth
https://github.com/jazzband/dj-rest-auth
https://github.com/pennersr/django-allauth

Chapter 8: User Authentication 141

Shell

(.venv) > python -m pip install dj-rest-auth==2.1.11

Add the new app to the INSTALLED_APPS config in our django_project/settings.py file.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",

3rd-party apps
"rest_framework",
"corsheaders",
"rest_framework.authtoken",
"dj_rest_auth", # new

Local
"accounts.apps.AccountsConfig",
"posts.apps.PostsConfig",

]

Update our django_project/urls.py file with the dj_rest_auth package. We’re setting the URL

routes to api/v1/dj-rest-auth. Make sure to note that URLs should have a dash - not an

underscore _, which is an easy mistake to make.

Chapter 8: User Authentication 142

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("api/v1/", include("posts.urls")),
path("api-auth/", include("rest_framework.urls")),
path("api/v1/dj-rest-auth/", include("dj_rest_auth.urls")), # new

]

And we’re done! If you have ever tried to implement your own user authentication endpoints, it

is truly amazing howmuch time—and headache—dj-rest-auth saves for us. Now we can spin up

the server to see what dj-rest-auth has provided.

Shell

(.venv) > python manage.py runserver

We have a working log in endpoint at http://127.0.0.1:8000/api/v1/dj-rest-auth/login/.

Chapter 8: User Authentication 143

API Log In Endpoint

And a log out endpoint at http://127.0.0.1:8000/api/v1/dj-rest-auth/logout/.

Chapter 8: User Authentication 144

API Log Out Endpoint

There are also endpoints for password reset, which is located at:

http://127.0.0.1:8000/api/v1/dj-rest-auth/password/reset

Chapter 8: User Authentication 145

API Password Reset

And for password reset confirmed:

http://127.0.0.1:8000/api/v1/dj-rest-auth/password/reset/confirm

Chapter 8: User Authentication 146

API Password Reset Confirm

User Registration

Next up is our user registration, or sign up, endpoint. Traditional Django does not ship with built-

in views or URLs for user registration and neither does Django REST Framework. Which means

we need to write our own code from scratch; a somewhat risky approach given the seriousness–

and security implications–of getting this wrong.

Chapter 8: User Authentication 147

A popular approach is to use the third-party package django-allauth96 which comes with user

registration as well as a number of additional features to the Django auth system such as social

authentication via Facebook, Google, Twitter, etc. If we add dj_rest_auth.registration from

the dj-rest-auth package then we have user registration endpoints too!

Stop the local server with Control+c and install django-allauth.

Shell

(.venv) > python -m pip install django-allauth~=0.48.0

Then update our INSTALLED_APPS setting. We must add several new configs:

• django.contrib.sites

• allauth

• allauth.account

• allauth.socialaccount

• dj_rest_auth.registration

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"django.contrib.sites", # new

3rd-party apps
"rest_framework",
"corsheaders",
"rest_framework.authtoken",
"allauth", # new
"allauth.account", # new
"allauth.socialaccount", # new
"dj_rest_auth",

96https://github.com/pennersr/django-allauth

https://github.com/pennersr/django-allauth
https://github.com/pennersr/django-allauth

Chapter 8: User Authentication 148

"dj_rest_auth.registration", # new

Local
"accounts.apps.AccountsConfig",
"posts.apps.PostsConfig",

]

django-allauth needs to be added to the TEMPLATES configuration after existing context

processors as well as setting the EMAIL_BACKEND to console and adding a SITE_ID of 1.

Code

django_project/settings.py
TEMPLATES = [

{
"BACKEND": "django.template.backends.django.DjangoTemplates",
"DIRS": [],
"APP_DIRS": True,
"OPTIONS": {

"context_processors": [
"django.template.context_processors.debug",
"django.template.context_processors.request",
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.messages",
"django.template.context_processors.request", # new

],
},

},
]

EMAIL_BACKEND = "django.core.mail.backends.console.EmailBackend" # new

SITE_ID = 1 # new

The email back-end config is needed since by default an email will be sent when a new user is

registered, asking them to confirm their account. Rather than also set up an email server, we will

output the emails to the console with the console.EmailBackend setting.

SITE_ID is part of the built-inDjango “sites” framework97, which is away to hostmultiplewebsites

from the sameDjango project.We only have one site we are working on here but django-allauth

uses the sites framework, so we must specify a default setting.

97https://docs.djangoproject.com/en/4.0/ref/contrib/sites/

https://docs.djangoproject.com/en/4.0/ref/contrib/sites/
https://docs.djangoproject.com/en/4.0/ref/contrib/sites/

Chapter 8: User Authentication 149

Ok. We’ve added new apps so it’s time to update the database.

Shell

(.venv) > python manage.py migrate

Then add a new URL route for registration.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
path("admin/", admin.site.urls),
path("api/v1/", include("posts.urls")),
path("api-auth/", include("rest_framework.urls")),
path("api/v1/dj-rest-auth/", include("dj_rest_auth.urls")),
path("api/v1/dj-rest-auth/registration/", # new

include("dj_rest_auth.registration.urls")),
]

And we’re done. We can run the local server.

Shell

(.venv) > python manage.py runserver

There is now a user registration endpoint at:

http://127.0.0.1:8000/api/v1/dj-rest-auth/registration/.

Tokens

To make sure everything works, create a third user account via the new user registration

endpoint. I’ve called my user testuser1.

Chapter 8: User Authentication 150

API Register New User

After clicking on the “POST” button the next screen shows the HTTP response from the server.

Our user registration POST was successful, hence the status code HTTP 201 Created at the top.

The return value key is the auth token for this new user.

Chapter 8: User Authentication 151

API Auth Key

If you look at the command line console, an email has been automatically generated by django-allauth.

This default text can be updated and an email SMTP server added with additional configuration

that is covered in the book Django for Beginners.

Shell

Content-Type: text/plain; charset="utf-8"
MIME-Version: 1.0
Content-Transfer-Encoding: 7bit
Subject: [example.com] Please Confirm Your E-mail Address
From: webmaster@localhost
To: testuser1@email.com
Date: Wed, 09 Feb 2022 16:22:38 -0000
Message-ID:
<164442375878.25521.7693193428490319037@1.0.\
0.0.0.0.0.0.0.0.ip6.arpa>

Hello from example.com!

Chapter 8: User Authentication 152

You're receiving this e-mail because user testuser1 has given your e-mail address to regi\
ster an account on example.com.

To confirm this is correct, go to http://127.0.0.1:8000/api/v1/dj-rest-auth/registration/\
account-confirm-email/MQ:1nHpjq:D1vZokltkCU2bqKO_g9cmA_hf2fThyl6vgtC7CpNdfI/

Thank you for using example.com!
example.com

[09/Feb/2022 16:22:38] "POST /api/v1/dj-rest-auth/registration/ HTTP/1.1" 201 7828

Switch over to the Django admin in your web browser at http://127.0.0.1:8000/admin/. You

will need to use your superuser account for this. There are a number of new fields here that

django-allauth has added. Click on the link for Tokens and you will be redirected to the Tokens

page.

Admin Tokens

A single token has been generated by Django REST Framework for the testuser1 user. As

additional users are created via the API, their tokens will appear here, too.

A logical question is, Why are there are no tokens for our superuser account or testuser? The

answer is that we created those accounts before token authenticationwas added. But noworries,

once we log in with either account via the API a token will automatically be added and available.

Moving on, let’s log in with our new testuser1 account. Make sure to log out of the admin and

then in your web browser navigate to http://127.0.0.1:8000/api/v1/dj-rest-auth/login/.

Enter the information for our testuser1 account. Click on the “POST” button.

Chapter 8: User Authentication 153

API Log In testuser1

Two things have happened. In the upper righthand corner, our user account testuser1 is visible,

confirming that we are now logged in. Also the server has sent back an HTTP response with the

token.

Chapter 8: User Authentication 154

API Log In Token

In our front-end framework, we would need to capture and store this token. Traditionally this

happens on the client, either in localStorage98 or as a cookie, and then all future requests include

the token in the header as a way to authenticate the user. Note that there are additional security

concerns on this topic so you should take care to implement the best practices of your front-end

framework of choice.

To finish up we should commit our new work to Git.

98https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Chapter 8: User Authentication 155

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "add user authentication"

Conclusion

User authentication is one of the hardest areas to grasp when first working with web APIs.

Without the benefit of a monolithic structure, we as developers have to deeply understand and

configure our HTTP request/response cycles appropriately.

Django REST Framework comes with a lot of built-in support for this process, including

built-in TokenAuthentication. However developers must configure additional areas like user

registration and dedicated urls/views themselves. As a result, a popular, powerful, and secure

approach is to rely on the third-party packages dj-rest-auth and django-allauth to minimize

the amount of code we have to write from scratch.

Chapter 9: Viewsets and Routers

Viewsets99 and routers100 are tools within Django REST Framework that can speed-up API

development. They are an additional layer of abstraction on top of views and URLs. The primary

benefit is that a single viewset can replace multiple related views. And a router can automatically

generate URLs for the developer. In larger projects with many endpoints this means a developer

has to write less code. It is also, arguably, easier for an experienced developer to understand and

reason about a small number of viewset and router combinations than a long list of individual

views and URLs.

In this chapter we will add two new API endpoints to our existing project and see how switching

from views and URLs to viewsets and routers can achieve the same functionality with far less

code.

User endpoints

Currently we have the following API endpoints in our project. They are all prefixed with api/v1/

which is not shown for brevity:

99http://www.django-rest-framework.org/api-guide/viewsets/
100http://www.django-rest-framework.org/api-guide/routers/

http://www.django-rest-framework.org/api-guide/viewsets/
http://www.django-rest-framework.org/api-guide/routers/
http://www.django-rest-framework.org/api-guide/viewsets/
http://www.django-rest-framework.org/api-guide/routers/

Chapter 9: Viewsets and Routers 157

Diagram

Endpoint	HTTP Verb
/	GET
/:pk/	GET
/rest-auth/registration	POST
/rest-auth/login	POST
/rest-auth/logout	GET
/rest-auth/password/reset	POST
/rest-auth/password/reset/confirm	POST

The first two endpoints were created by us while dj-rest-auth provided the five others. Let’s

now add two additional endpoints to list all users and individual users. This is a common feature

in many APIs and it will make it clearer why refactoring our views and URLs to viewsets and

routers can make sense.

The process to wire up new endpoints always involves the following three steps:

• new serializer class for the model

• new views for each endpoint

• new URL routes for each endpoint

Startwith our serializer.Weneed to import the CustomUsermodel and then create a UserSerializer

class that uses it. Then add it to our existing posts/serializers.py file.

Code

posts/serializers.py
from django.contrib.auth import get_user_model # new
from rest_framework import serializers

from .models import Post

class PostSerializer(serializers.ModelSerializer):

class Meta:
model = Post
fields = ("id", "author", "title", "body", "created_at",)

Chapter 9: Viewsets and Routers 158

class UserSerializer(serializers.ModelSerializer): # new

class Meta:
model = get_user_model()
fields = ("id", "username",)

It’s worth noting that while we have used get_user_model to reference the CustomUser model

here, there are actually three different ways to reference101 the current User model in Django.

By using get_user_model we ensure that we are referring to the correct user model, whether it

is the default User or a custom user model102 like CustomUser in our case.

Moving on we need to define views for each endpoint. First add UserSerializer to the list

of imports. Then create both a UserList class that lists out all users and a UserDetail class

that provides a detail view of an individual user. Just as with our post views we can use

ListCreateAPIView and RetrieveUpdateDestroyAPIView here. We also need to reference the

users model via get_user_model so it is imported on the top line.

Code

posts/views.py
from django.contrib.auth import get_user_model # new
from rest_framework import generics

from .models import Post
from .permissions import IsAuthorOrReadOnly
from .serializers import PostSerializer, UserSerializer # new

class PostList(generics.ListCreateAPIView):
permission_classes = (IsAuthorOrReadOnly,)
queryset = Post.objects.all()
serializer_class = PostSerializer

class PostDetail(generics.RetrieveUpdateDestroyAPIView):
permission_classes = (IsAuthorOrReadOnly,)
queryset = Post.objects.all()
serializer_class = PostSerializer

101https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#referencing-the-user-model
102https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#specifying-a-custom-user-model

https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#referencing-the-user-model
https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#specifying-a-custom-user-model
https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#referencing-the-user-model
https://docs.djangoproject.com/en/4.0/topics/auth/customizing/#specifying-a-custom-user-model

Chapter 9: Viewsets and Routers 159

class UserList(generics.ListCreateAPIView): # new
queryset = get_user_model().objects.all()
serializer_class = UserSerializer

class UserDetail(generics.RetrieveUpdateDestroyAPIView): # new
queryset = get_user_model().objects.all()
serializer_class = UserSerializer

If you notice, there is quite a bit of repetition here. Both Post views and User views have the

exact same queryset and serializer_class. Maybe those could be combined in some way to

save code?

Finally we have our URL routes. Make sure to import our new UserList, and UserDetail views.

Then we can use the prefix users/ for each.

Code

posts/urls.py
from django.urls import path

from .views import PostList, PostDetail, UserList, UserDetail # new

urlpatterns = [
path("users/", UserList.as_view()), # new
path("users/<int:pk>/", UserDetail.as_view()), # new
path("", PostList.as_view()),
path("<int:pk>/", PostDetail.as_view()),

]

And we’re done. Make sure the local server is running and jump over to the browsable API to

confirm everything works as expected.

Our user list endpoint is located at http://127.0.0.1:8000/api/v1/users/.

Chapter 9: Viewsets and Routers 160

API Users List

The status code is 200 OKwhichmeans everything is working.We can see our three existing users.

A user detail endpoint is available at the primary key for each user. So our superuser account is

located at: http://127.0.0.1:8000/api/v1/users/1/.

Chapter 9: Viewsets and Routers 161

API User Instance

Viewsets

A viewset is a way to combine the logic for multiple related views into a single class. In other

words, one viewset can replace multiple views. Currently we have four views: two for blog posts

and two for users. We can instead mimic the same functionality with two viewsets: one for blog

posts and one for users. The trade-off is that there is a loss in readability for fellow developers

who are not intimately familiar with viewsets.

Here is what the code looks like in our updated posts/views.py file when we swap in viewsets.

Chapter 9: Viewsets and Routers 162

Code

posts/views.py
from django.contrib.auth import get_user_model
from rest_framework import viewsets # new

from .models import Post
from .permissions import IsAuthorOrReadOnly
from .serializers import PostSerializer, UserSerializer

class PostViewSet(viewsets.ModelViewSet): # new
permission_classes = (IsAuthorOrReadOnly,)
queryset = Post.objects.all()
serializer_class = PostSerializer

class UserViewSet(viewsets.ModelViewSet): # new
queryset = get_user_model().objects.all()
serializer_class = UserSerializer

At the top instead of importing generics from rest_framework we are now importing viewsets

on the second line. Then we are using ModelViewSet103 which provides both a list view and a

detail view for us. And we no longer have to repeat the same queryset and serializer_class

for each view as we did previously!

At this point, the local web server will stop as Django complains about the lack of corresponding

URL paths. Let’s set those next.

Routers

Routers104 work directly with viewsets to automatically generate URL patterns for us. Our

current posts/urls.py file has four URL patterns: two for blog posts and two for users. We can

instead adopt a single route for each viewset. So two routes instead of four URL patterns. That

sounds better, right?

103http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset
104http://www.django-rest-framework.org/api-guide/routers/

http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset
http://www.django-rest-framework.org/api-guide/routers/
http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset
http://www.django-rest-framework.org/api-guide/routers/

Chapter 9: Viewsets and Routers 163

Django REST Framework has two default routers: SimpleRouter105 and DefaultRouter106. We will

use SimpleRouter but it’s also possible to create custom routers for more advanced functionality.

Here is what the updated code looks like:

Code

posts/urls.py
from django.urls import path
from rest_framework.routers import SimpleRouter

from .views import UserViewSet, PostViewSet

router = SimpleRouter()
router.register("users", UserViewSet, basename="users")
router.register("", PostViewSet, basename="posts")

urlpatterns = router.urls

On the top line SimpleRouter is imported, alongwith our views. The router is set to SimpleRouter

and we “register” each viewset for Users and Posts. Finally, we set our URLs to use the new

router. Go ahead and check out our four endpoints now by starting the local server with python

manage.py runserver. First up is User List at http://127.0.0.1:8000/api/v1/users/which is

the same.

The detail view at http://127.0.0.1:8000/api/v1/users/1/ is a little different though. It is now

called “User Instance” instead of “User Detail” and there is an additional “delete” option which is

built-in to ModelViewSet107.
105http://www.django-rest-framework.org/api-guide/routers/#simplerouter
106http://www.django-rest-framework.org/api-guide/routers/#defaultrouter
107http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset

http://www.django-rest-framework.org/api-guide/routers/#simplerouter
http://www.django-rest-framework.org/api-guide/routers/#defaultrouter
http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset
http://www.django-rest-framework.org/api-guide/routers/#simplerouter
http://www.django-rest-framework.org/api-guide/routers/#defaultrouter
http://www.django-rest-framework.org/api-guide/viewsets/#modelviewset

Chapter 9: Viewsets and Routers 164

API User Detail

Permissions

If we stop and consider our API at the moment there is actually a huge security issue. Any

authenticated user can add a new user on the User List page or edit/delete/update an individual

on the User Instance page because there are no explicit permissions for UserViewSet. This is a

big problem!

It is important to think of permissions for any API endpoint but especially when user infor-

mation is involved. In this case, we want to restrict access to superusers only. If we look at

the Permissions page in the official documentation there is an existing permissions setting

called IsAdminUser108 which is what we want. Adding it to the UserViewSet is actually pretty

108https://www.django-rest-framework.org/api-guide/permissions/#isadminuser

https://www.django-rest-framework.org/api-guide/permissions/#isadminuser
https://www.django-rest-framework.org/api-guide/permissions/#isadminuser

Chapter 9: Viewsets and Routers 165

straightforward.

In the posts/views.py file import IsAdminUser at the top and then, under the UserViewSet class,

set permission_classes to [IsAdminUser].

Code

posts/views.py
from django.contrib.auth import get_user_model
from rest_framework import viewsets
from rest_framework.permissions import IsAdminUser # new

from .models import Post
from .permissions import IsAuthorOrReadOnly
from .serializers import PostSerializer, UserSerializer

class PostViewSet(viewsets.ModelViewSet):
permission_classes = (IsAuthorOrReadOnly,)
queryset = Post.objects.all()
serializer_class = PostSerializer

class UserViewSet(viewsets.ModelViewSet):
permission_classes = [IsAdminUser] # new
queryset = get_user_model().objects.all()
serializer_class = UserSerializer

The local web server should automatically restart with the changed code so we can revist the

User List endpoint at http://127.0.0.1:8000/api/v1/users/.

Chapter 9: Viewsets and Routers 166

User List Admin Only

Even though we are still logged in as testuser this endpoint is unavailable and the same is true

for each User Instance endpoint.

When setting permissions it is always a good idea to have restrictive project-level settings and

open up access per endpoint as needed. It is also important to check that existing endpoints are

not left wide open, as our Users were earlier, which is quite easy to do!

To finish up we should commit our new work to Git.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "add schema and documentation"

Conclusion

Viewsets and routers are a powerful abstraction that reduce the amount of codewe as developers

must write. However this conciseness comes at the cost of an initial learning curve. It will feel

strange the first few times you use viewsets and routers instead of views and URL patterns.

Chapter 9: Viewsets and Routers 167

Ultimately the decision ofwhen to add viewsets and routers to your project is subjective. A good

rule of thumb is to start with views and URLs. As your API grows in complexity if you find yourself

repeating the same endpoint patterns over and over again, then look to viewsets and routers.

Until then, keep things simple.

Chapter 10: Schemas and Documentation

Now that we have our API complete we need a way to document its functionality quickly and

accurately to others. After all, in most companies and teams, the developer who is using the API

is not the same developer who initially built it. And if an API is available to the public it definitely

needs a well-documented guide to be usable.

A schema is a machine-readable document that outlines all available API endpoints, URLs, and

the HTTP verbs (GET, POST, PUT, DELETE, etc.). This is great but not very readable for a human.

Enter documentation which is something added to a schema that makes it easier for humans to

read and consume.

As a reminder, here is the complete list of our current API endpoints:

Diagram

Endpoint	HTTP Verb
/	GET
/:pk/	GET
users/	GET
users/:pk/	GET
/rest-auth/registration	POST
/rest-auth/login	POST
/rest-auth/logout	GET
/rest-auth/password/reset	POST
/rest-auth/password/reset/confirm	POST

In this chapter we will add both machine-readable schema and human-readable documentation

to our Blog project. Even better, we will automate the generation of each so that they are always

up-to-date with the latest version of our API.

Chapter 10: Schemas and Documentation 169

Schema

The OpenAPI109 specification is the current default way to document an API. It describes

common rules around format for available endpoints, inputs, authentication methods, contact

information, and more. As of this writing, drf-spectacular110 is the recommended third-party

package for generating an OpenAPI 3 schema for Django REST Framework.

To start, install drf-spectacular with Pip in the usual way.

Shell

(.venv) > python -m pip install drf-spectacular~=0.21.0

Add it to the INSTALLED_APPS configuration in the django_project/settings.py file.

Code

django_project/settings.py
INSTALLED_APPS = [

"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"django.contrib.sites",

3rd-party apps
"rest_framework",
"corsheaders",
"rest_framework.authtoken",
"allauth",
"allauth.account",
"allauth.socialaccount",
"dj_rest_auth",
"dj_rest_auth.registration",
"drf_spectacular", # new

Local
"accounts.apps.AccountsConfig",

109https://www.openapis.org/
110https://github.com/tfranzel/drf-spectacular/

https://www.openapis.org/
https://github.com/tfranzel/drf-spectacular/
https://www.openapis.org/
https://github.com/tfranzel/drf-spectacular/

Chapter 10: Schemas and Documentation 170

"posts.apps.PostsConfig",
]

Then register drf-spectacularwithin the REST_FRAMEWORK section of the django_project/settings.py

file.

Code

django_project/settings.py
REST_FRAMEWORK = {

"DEFAULT_PERMISSION_CLASSES": [
"rest_framework.permissions.IsAuthenticated",
],

"DEFAULT_AUTHENTICATION_CLASSES": [
"rest_framework.authentication.SessionAuthentication",
"rest_framework.authentication.TokenAuthentication",

],
"DEFAULT_SCHEMA_CLASS": "drf_spectacular.openapi.AutoSchema", # new

}

The last step is adding some metadata such as title, description, and version to the default

settings111. Create a new section in django_project/settings.py and add the following:

Code

django_project/settings.py
SPECTACULAR_SETTINGS = {

"TITLE": "Blog API Project",
"DESCRIPTION": "A sample blog to learn about DRF",
"VERSION": "1.0.0",
OTHER SETTINGS

}

To generate the schema as a standalone file we can use a management command and specify the

name of the file, which will be schema.yml.

111https://drf-spectacular.readthedocs.io/en/latest/settings.html

https://drf-spectacular.readthedocs.io/en/latest/settings.html
https://drf-spectacular.readthedocs.io/en/latest/settings.html
https://drf-spectacular.readthedocs.io/en/latest/settings.html

Chapter 10: Schemas and Documentation 171

Shell

(.venv) > python manage.py spectacular --file schema.yml

A new schema.yml file has been created in the project-root directory. If you open that file in your

text editor it’s quite long and not very human-friendly. But to a computer it’s perfectly formatted.

Dynamic Schema

A more dynamic approach is to serve the schema directly from our API as a URL route. We’ll

do this by importing SpectacularAPIView and then adding a new URL path at api/schema/ to

display it.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include
from drf_spectacular.views import SpectacularAPIView # new

urlpatterns = [
path("admin/", admin.site.urls),
path("api/v1/", include("posts.urls")),
path("api-auth/", include("rest_framework.urls")),
path("api/v1/dj-rest-auth/", include("dj_rest_auth.urls")),
path(

"api/v1/dj-rest-auth/registration/",
include("dj_rest_auth.registration.urls"),

),
path("api/schema/", SpectacularAPIView.as_view(), name="schema"), # new

]

Start up the local server againwith python manage.py runserver and navigate to the new schema

URL endpoint at http://127.0.0.1:8000/api/schema/. The automatically generated schema file

of our entire API is available and will be downloaded as a file.

Personally, I prefer the dynamic approach in projects rather than having to regenerate a

schema.yml file each time there is an API change.

Chapter 10: Schemas and Documentation 172

Documentation

A schema iswell and good for consumption by a computer but humans generally prefer documen-

tation for using an API. There are two API documentation tools supported by drf-spectacular:

Redoc112 and SwaggerUI113. Fortunately transforming our schema into either is a relatively

painless process.

Let’s beginwith Redoc. To add it import SpectacularRedocView at the top of django_project/urls.py

and then add a URL path at api/schema/redoc/.

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include
from drf_spectacular.views import (

SpectacularAPIView,
SpectacularRedocView, # new

)

urlpatterns = [
path("admin/", admin.site.urls),
path("api/v1/", include("posts.urls")),
path("api-auth/", include("rest_framework.urls")),
path("api/v1/dj-rest-auth/", include("dj_rest_auth.urls")),
path("api/v1/dj-rest-auth/registration/",

include("dj_rest_auth.registration.urls")
),
path("api/schema/", SpectacularAPIView.as_view(), name="schema"),
path("api/schema/redoc/", SpectacularRedocView.as_view(

url_name="schema"), name="redoc",), # new
]

If the local server is still running you canheaddirectly to http://127.0.0.1:8000/api/schema/redoc/

to see our new documentation.
112https://redoc.ly/redoc/
113https://swagger.io/tools/swagger-ui/

https://redoc.ly/redoc/
https://swagger.io/tools/swagger-ui/
https://redoc.ly/redoc/
https://swagger.io/tools/swagger-ui/

Chapter 10: Schemas and Documentation 173

Redoc Schema

The process for adding SwaggerUI is quite similar. Import SpectacularSwaggerView at the top of

the file and then add a URL path for it at api/schema/swagger-ui/.

Chapter 10: Schemas and Documentation 174

Code

django_project/urls.py
from django.contrib import admin
from django.urls import path, include
from drf_spectacular.views import (

SpectacularAPIView,
SpectacularRedocView,
SpectacularSwaggerView, # new

)

urlpatterns = [
path("admin/", admin.site.urls),
path("api/v1/", include("posts.urls")),
path("api-auth/", include("rest_framework.urls")),
path("api/v1/dj-rest-auth/", include("dj_rest_auth.urls")),
path("api/v1/dj-rest-auth/registration/",

include("dj_rest_auth.registration.urls")
),
path("api/schema/", SpectacularAPIView.as_view(), name="schema"),
path("api/schema/redoc/", SpectacularRedocView.as_view(

url_name="schema"), name="redoc",),
path("api/schema/swagger-ui/", SpectacularSwaggerView.as_view(

url_name="schema"), name="swagger-ui"), # new
]

Then head over to the web browser to see the output at:

http://127.0.0.1:8000/api/schema/swagger-ui/.

Chapter 10: Schemas and Documentation 175

SwaggerUI Schema

Conclusion

Adding a schema and documentation is a vital part of any API. It is typically the first thing a fellow

developer looks at, either within a team or on an open-source projects. Thanks to the automated

Chapter 10: Schemas and Documentation 176

tools covered in this chapter, ensuring your API has accurate, up-to-date documentation only

requires a small amount of configuration. The last step is to deploy the Blog API properly which

we’ll cover in the next chapter.

Chapter 11: Production Deployment

The final step for any web API project is deployment. Pushing it into production is very similar

to a traditional Django deployment but with some added concerns. In this chapter, we will

cover adding environment variables, configuring our settings to be more secure, switching to

a PostgreSQL database in production, and running through Django’s own deployment checklist

to make sure we are not missing anything.

Environment Variables

Environment variables can be loaded into a codebase at runtime yet not stored in the source

code. This makes them an ideal way to toggle between local and production settings. They are

also a good place to store sensitive information that should not be present in source control.

When using Git, any changes are stored in the Git history, so even if something is later removed

from the codebase, if it was checked into a commit at any time it is there forever if someone

knows how to look.

There are multiple packages that enable working with environment variables in Python but for

this project we’ll use environs114 because it comes with an additional Django configuration that

is very useful.

Let’s begin by installing environs[django]. If you are using Zsh as your terminal shell it is

necessary to add single quotes, '', around the package name, so run python -m pip install

'environs[django]==9.3.5'.

114https://github.com/sloria/environs

https://github.com/sloria/environs
https://github.com/sloria/environs

Chapter 11: Production Deployment 178

Shell

(.venv) > python -m pip install 'environs[django]==9.5.0'

There are three lines of imports to add near the top of the django_project/settings.py file.

Code

django_project/settings.py
from pathlib import Path
from environs import Env # new

env = Env() # new
env.read_env() # new

Then create a new hidden file called .env in the root project directory which will store our

environment variables. It is empty for now but will be used in the next section. The last step

is to add .env to our existing .gitignore file. There’s no sense using environment variables if

they will still be stored in Git!

.gitignore

.venv/

.env

And while we are updating the file we might as well as add all *.pyc files and the __pycache__-

directory. If you’re on a Mac, there’s no need to track .DS_Store which stores information about

folder settings. Finally, it is not a good idea to commit the local db.sqlite3 to source control.

It contains the entire database so anyone with access to all our data. We will continue to use it

locally for convenience and see shortly how PostgreSQL can be used in production instead.

Here is what the final .gitignore file should contain:

Chapter 11: Production Deployment 179

.gitignore

.venv/

.env
__pycache__/
db.sqlite3
.DS_Store # Mac only

Before committing run git status to confirm all these files are being ignored as intended. Then

add our new work and create a commit.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "add environment variables"

DEBUG & SECRET_KEY

Django’s default settings.py file automatically defaults to local production settings that make

it easy to start with projects, but there are several configurations that need to be tweaked before

deploying into production. If you look at the DEBUG configuration in django_project/settings.py

it is currently set to True. This generates a very detailed error page and stack trace. For example,

start up the local webserver with python manage.py runserver and visit an API endpoint that

doesn’t exist such as http://127.0.0.1:8000/99.

Chapter 11: Production Deployment 180

404 Page

We want DEBUG to be True for local development yet False for production. And if there is any

difficulty loading the environment variables, we want DEBUG to default to False so we’re extra

secure. To implement this, start by adding DEBUG=True to the .env file.

.env

DEBUG=True

Then in django_project/settings.py, change the DEBUG setting to read the variable "DEBUG"

from the .env file but with a default value of False.

Code

django_project/settings.py
DEBUG = env.bool("DEBUG", default=False)

If you refresh the webpage at http://127.0.0.1:8000/99, you’ll see the full local error page is

still there. Everything is working properly.

The next setting to change is SECRET_KEY which is a random 50 character string generated each

time startproject is run. If you look at the current value in django_project/settings.py it

starts with django-insecure to indicate the current value is not secure. Why is it insecure?

Because it is easy to commit the SECRET_KEY to source control as, in fact, we have already done.

Even if we moved the current value into an environment variable now it will still remain visible

in the project’s Git history.

Chapter 11: Production Deployment 181

The solution is to generate a new secret key and to store that value in an environment variable so

it never touches source control. One way to generate a new one is by invoking Python’s built-in

secrets115 module by running python -c 'import secrets; print(secrets.token_urlsafe())'

on the command line.

Shell

(.venv) > python -c "import secrets; print(secrets.token_urlsafe())"
KBl3sX5kLrd2zxj-pAichjT0EZJKMS0cXzhWI7Cydqc

Copy and paste this new value into the .env file under the variable SECRET_KEY.

.env

DEBUG=True
SECRET_KEY=KBl3sX5kLrd2zxj-pAichjT0EZJKMS0cXzhWI7Cydqc

Finally, switch over SECRET_KEY in the django_project/settings.py file to read from the

environment variable now.

Code

django_project/settings.py
SECRET_KEY = env.str("SECRET_KEY")

To confirm everything is working properly restart the local server with python manage.py

runserver and refresh any API endpoint on our site. It should be working normally.

ALLOWED HOSTS

Next up is the ALLOWED_HOSTS configuration in our django_project/settings.py file which

represents the host/domain names our Django project can serve. We will add three hosts here:

.herokuapp.com for the deployment on Heroku and both localhost and 127.0.0.1 for local

development.

115https://docs.python.org/3/library/secrets.html

https://docs.python.org/3/library/secrets.html
https://docs.python.org/3/library/secrets.html

Chapter 11: Production Deployment 182

Code

django_project/settings.py
ALLOWED_HOSTS = [".herokuapp.com", "localhost", "127.0.0.1"] # new

If you re-run the python manage.py runserver command and refresh http://127.0.0.1:8000/1

it should display normally after the change.

DATABASES

Our current DATABASES configuration is for SQLite butwewant to be able to switch to PostgreSQL

for production on Heroku. When we installed environs[django] earlier, the Django “goodies”

included the elegant dj-database-url116 package, which takes all the database configurations

needed for our database, SQLite or PostgreSQL, and creates a DATABASE_URL environment

variable.

To implement this update the DATABASES configuration with dj_db_url from environs[django]

to help parse DATABASE_URL.

Code

django_project/settings.py
DATABASES = {

"default": env.dj_db_url("DATABASE_URL") # new
}

That’s it! All we need to do now is specify SQL as the local DATABASE_URL value in the .env file.

.env

DEBUG=True
SECRET_KEY=KBl3sX5kLrd2zxj-pAichjT0EZJKMS0cXzhWI7Cydqc
DATABASE_URL=sqlite:///db.sqlite3

This seems quite magical, no? The reason it works is because whenever Heroku provisions a new

PostgreSQL database it automatically creates a configuration variable for it named DATABASE_URL.

Since the .env file is not committed to production, our Django project on Heroku will instead

use this PostgreSQL configuration. Pretty elegant, no?
116https://github.com/jacobian/dj-database-url

https://github.com/jacobian/dj-database-url
https://github.com/jacobian/dj-database-url

Chapter 11: Production Deployment 183

Static Files

As we saw in earlier deployments static files need to be configured for the browsable web API to

work. First, create a new project-level directory called static.

Shell

(.venv) > mkdir static

With your text editor create an empty .keep file within the static directory so it is picked up by

Git. Then install whitenoise to handle static files in production.

Shell

(.venv) > python -m pip install whitenoise==5.3.0

WhiteNoise must be added to django_project/settings.py in the following locations:

• whitenoise above django.contrib.staticfiles in INSTALLED_APPS

• WhiteNoiseMiddleware above CommonMiddleware

• STATICFILES_STORAGE configuration pointing to WhiteNoise

Code

django_project/settings.py
INSTALLED_APPS = [

...
"whitenoise.runserver_nostatic", # new
"django.contrib.staticfiles",

]

MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"whitenoise.middleware.WhiteNoiseMiddleware", # new
"corsheaders.middleware.CorsMiddleware",
...

]

STATIC_URL = "/static/"

Chapter 11: Production Deployment 184

STATICFILES_DIRS = [BASE_DIR / "static"] # new
STATIC_ROOT = BASE_DIR / "staticfiles" # new
STATICFILES_STORAGE =

"whitenoise.storage.CompressedManifestStaticFilesStorage" # new

The final step is to run the collectstatic command so that all static directories and files are

compiled into one location for deployment purposes.

Shell

(.venv) > python manage.py collectstatic

Pyscopg and Gunicorn

There are two final packages that must be installed for a proper production environment.

Psycopg117 is a database adapter that lets Python apps talk to PostgreSQL databases. If you are

on macOS it is necessary to install PostgreSQL first via Homebrew and then psycopg2.

Shell

Windows
(.venv) > python -m pip install psycopg2==2.9.3

macOS
(.venv) % brew install postgresql
(.venv) % python -m pip install psycopg2==2.9.3

We can use this approach because Django’s ORM (Object Relational Mapper) translates our

models.py code from Python into the database backend of choice. This works almost all the time

without error. It is possible for weird bugs to creep up and it is recommended on a professional

project to install PostgreSQL locally, too, to avoid them.

Gunicorn is a production web server and must be installed as well to replace the current Django

web server which is only suitable for local development.

117https://www.psycopg.org/docs/

https://www.psycopg.org/docs/
https://www.psycopg.org/docs/

Chapter 11: Production Deployment 185

Shell

(.venv) > python -m pip install gunicorn==20.1.0

requirements.txt

Aswe have seen before in this book, a requirements.txt file is neededwhich lists all the packages

installed in our local virtual environment. We can do that as well with the following command.

Shell

(.venv) > python -m pip freeze > requirements.txt

Here is what the contents of my requirements.txt file look like. Yours might look slightly

different: for example, Django will likely be on a 4.1.1 or later release because we installed it using

∼= which means the latest 4.0.x version is installed.

requirements.txt

asgiref==3.5.0
attrs==21.4.0
certifi==2021.10.8
cffi==1.15.0
charset-normalizer==2.0.11
cryptography==36.0.1
defusedxml==0.7.1
dj-database-url==0.5.0
dj-email-url==1.0.5
dj-rest-auth==2.1.11
Django==4.0.2
django-allauth==0.48.0
django-cache-url==3.2.3
django-cors-headers==3.10.1
djangorestframework==3.13.1
drf-spectacular==0.21.2
environs==9.5.0
gunicorn==20.1.0
idna==3.3
inflection==0.5.1
jsonschema==4.4.0

Chapter 11: Production Deployment 186

marshmallow==3.14.1
oauthlib==3.2.0
psycopg2==2.9.3
pycparser==2.21
PyJWT==2.3.0
pyrsistent==0.18.1
python-dotenv==0.19.2
python3-openid==3.2.0
pytz==2021.3
PyYAML==6.0
requests==2.27.1
requests-oauthlib==1.3.1
sqlparse==0.4.2
uritemplate==4.1.1
urllib3==1.26.8
whitenoise==5.3.0

Procfile and runtime.txt

Heroku relies on a custom file called Procfile that describes how to run projects in production.

This must be created in the project root directory next to the manage.py file. Do so now in your

text editor and add the following line to use Gunicorn as the production web server.

Procfile

web: gunicorn django_project.wsgi --log-file -

The final step is to specify which Python version should run on Heroku with a runtime.txt file.

In your text editor, create this new runtime.txt file at the project-level meaning it is in the same

directory as manage.py and the Procfile. The Python version we want is 3.10.2.

runtime.txt

python-3.10.2

Chapter 11: Production Deployment 187

Deployment Checklist

We just went through a lot of steps. Too many to remember for most developers which is why

deployment checklists exist. To recap, here is what we did:

• add environment variables via environs[django]

• set DEBUG to False

• set ALLOWED_HOSTS

• use environment variable for SECRET_KEY

• update DATABASES to use SQLite locally and PostgreSQL in production

• configure static files and install whitenoise

• install gunicorn for a production web server

• create a requirements.txt file

• create a Procfile for Heroku

• create a runtime.txt to set the Python version on Heroku

Aside from the Procfile file created for Heroku these deployment steps are virtually the same

for any hosting platform.

Make sure to commit all these changes to Git before we actually deploy the project.

Shell

(.venv) > git status
(.venv) > git add -A
(.venv) > git commit -m "deployment checklist"

Heroku Deployment

To deploy on Heroku make sure you are logged in via the terminal shell.

Chapter 11: Production Deployment 188

Shell

(.venv) > heroku login

The command heroku createmakes a new container for our app to live in and by default, Heroku

will assign a random name. You can specify a custom name, as we are doing here, but it must be

unique on Heroku. Mine is called dfa-blog-api so that name is already taken; you need another

combination of letters and numbers!

Shell

(.venv) > heroku create dfa-blog-api
Creating � dfa-blog-api... done
https://dfa-blog-api.herokuapp.com/ | https://git.heroku.com/dfa-blog-api.git

So far so good. A new step at this point is creating a PostgreSQL database on Heroku itself, which

wehaven’t done before. Heroku has its ownhosted PostgreSQLdatabaseswe can usewhich come

in multiple tiers. For a learning project like this, the free hobby-dev tier is more than adequate.

Run the following command to create this new database. Replace dfa-blog-api with your own

custom name.

Shell

(.venv) > heroku addons:create heroku-postgresql:hobby-dev -a dfa-blog-api
Creating heroku-postgresql:hobby-dev on � dfa-blog-api... free
Database has been created and is available
! This database is empty. If upgrading, you can transfer
! data from another database with pg:copy
Created postgresql-angular-74744 as DATABASE_URL
Use heroku addons:docs heroku-postgresql to view documentation

Did you see that Heroku has created a custom DATABASE_URL to access the database? For mine

here, it is postgresql-angular-74744. This is automatically available as a configuration variable

within Heroku once we deploy. That’s why we don’t need to set an environment variable for

DATABASE_URL in production. We also don’t need to set DEBUG to False because that is the default

value in our django_project/settings.py file. The only environment variable to manually add

to Heroku is SECRET_KEY, so copy its value from your .env file and run the config:set command,

placing the value of the SECRET_KEY itself within double quotes "".

Chapter 11: Production Deployment 189

Shell

(.venv) > heroku config:set SECRET_KEY="KBl3sX5kLrd2zxj-pAichjT0EZJKMS0cXzhWI7Cydqc"
Setting SECRET_KEY and restarting � dfa-blog-api... done, v5
SECRET_KEY: KBl3sX5kLrd2zxj-pAichjT0EZJKMS0cXzhWI7Cydqc

Now it’s time to push our code up to Heroku itself and start a web process so our Heroku dyno

is running.

Shell

(.venv) > git push heroku main
(.venv) > heroku ps:scale web=1

The URL of your new app will be in the command line output or you can run heroku open to

find it. We don’t have a standard home page for this API so you need to travel to an endpoint like

/api/v1/.

Deployed Post List Endpoint

If you click on the “Log in” link in the upper right corner it responds with a 500 Server Error

message! That’s because the PostgreSQL database exists but has not been setup yet!

Chapter 11: Production Deployment 190

500 Server Error

Previously we used SQLite in production, which is file-based, and was already configured locally

and then pushed up to Heroku. But this PostgreSQL database of ours is brand new! Heroku has

all our code but we haven’t configured this production database yet.

The same process used locally of running migrate, creating a superuser account, and entering

blog posts in the admin must be followed again. To run a command with Heroku, as opposed to

locally, prefix it with heroku run.

Shell

(.venv) > heroku run python manage.py migrate
(.venv) > heroku run python manage.py createsuperuser

Youwill need to log into the live admin site to add blog entries and users since this is a brand-new

database and not related to our local SQLite one.

Refresh your live website and it should work correctly. Note that since the production server will

run constantly in the background, you do not need to use the runserver command on Heroku.

Conclusion

We’re now at the end of the book but only the beginning of what can be accomplished with

Django REST Framework. Over the course of three different projects—the Library API, Todo API,

and Blog API—we have built, tested, and deployed progressively more complex web APIs from

scratch. And it’s no accident that at every step along the way, Django REST Framework provides

built-in features to make our life easier.

If you’ve never built web APIs before with another framework be forewarned that you’ve been

spoiled. And if you have, rest assured this book only scratches the surface of what Django REST

Framework can do. The official documentation118 is an excellent resource for further exploration

now that you have a handle on the basics.

Advanced Topics

As a web API grows there are several additional topics worth exploring that we did not cover

in the book. Pagination119 is a helpful way to control how data is displayed on individual API

endpoints. Filtering120 also becomes necessary in many projects especially in conjunction with

the excellent django-filter121 library.

Throttling122 is often necessary on APIs as a more advanced form of permissions. For example,

the public-facing side of the API might have restrictive limits for unauthenticated requests while

authenticated requests face much more lenient throttling.

The final additional area to explore is caching123 of the API for performance reasons. This works

in a very similar manner to how caching is handled on traditional Django projects.

118http://www.django-rest-framework.org/
119https://www.django-rest-framework.org/api-guide/pagination/
120https://www.django-rest-framework.org/api-guide/filtering/
121https://github.com/carltongibson/django-filter
122https://www.django-rest-framework.org/api-guide/throttling/
123https://www.django-rest-framework.org/api-guide/caching/

http://www.django-rest-framework.org/
https://www.django-rest-framework.org/api-guide/pagination/
https://www.django-rest-framework.org/api-guide/filtering/
https://github.com/carltongibson/django-filter
https://www.django-rest-framework.org/api-guide/throttling/
https://www.django-rest-framework.org/api-guide/caching/
http://www.django-rest-framework.org/
https://www.django-rest-framework.org/api-guide/pagination/
https://www.django-rest-framework.org/api-guide/filtering/
https://github.com/carltongibson/django-filter
https://www.django-rest-framework.org/api-guide/throttling/
https://www.django-rest-framework.org/api-guide/caching/

Conclusion 192

Next Steps

A good next step is to implement the pastebin API covered in the official DRF tutorial124. It should

not be that difficult after completing this book and showcases a few more sides of DRF.

Third-party packages are as essential to Django REST Framework development as they are to

Django itself. A complete listing can be found at Django Packages125 or a curated list on the

awesome-django126 repo on Github.

Ultimately, how you proceed in using Django and Django REST Framework depends on what you

want to build. Is the goal to integrate with a mobile iOS or Android app? To work in coordination

with a full-blown JavaScript front-end? For internal use or to display public-facing content? The

best way to learn is to work backwards from a big project and figure out the pieces along the

way.

Giving Thanks

While the Django community is quite large and relies on the hard work of many individu-

als, Django REST Framework is much smaller in comparison. It was initially created by Tom

Christie127, an English software engineer who now works on it full-time thanks to open-source

funding.

Thank you for reading along and supporting my work. If you purchased the book on Amazon,

please consider leaving an honest review: they make an enormous impact on book sales and

help me continue to produce both books and free Django content which I love doing.

124http://www.django-rest-framework.org/tutorial/1-serialization/
125https://djangopackages.org/
126https://github.com/wsvincent/awesome-django
127http://www.tomchristie.com/

http://www.django-rest-framework.org/tutorial/1-serialization/
https://djangopackages.org/
https://github.com/wsvincent/awesome-django
http://www.tomchristie.com/
http://www.tomchristie.com/
http://www.django-rest-framework.org/tutorial/1-serialization/
https://djangopackages.org/
https://github.com/wsvincent/awesome-django
http://www.tomchristie.com/

	Table of Contents
	Introduction
	Why APIs
	Django REST Framework
	Prerequisites
	Why this book
	Conclusion

	Chapter 1: Initial Set Up
	The Command Line
	Shell Commands
	Install Python 3 on Windows
	Install Python 3 on Mac
	Python Interactive Mode
	Virtual Environments
	Install Django and Django REST Framework
	Text Editors
	Install Git
	Conclusion

	Chapter 2: Web APIs
	World Wide Web
	URLs
	Internet Protocol Suite
	HTTP Verbs
	Endpoints
	HTTP
	Status Codes
	Statelessness
	REST
	Conclusion

	Chapter 3: Library Website
	Traditional Django
	First app
	Models
	Admin
	Views
	URLs
	Templates
	Tests
	Git
	Conclusion

	Chapter 4: Library API
	Django REST Framework
	URLs
	Views
	Serializers
	Browsable API
	Tests
	Deployment
	Static Files
	Deployment Checklist
	GitHub
	Heroku
	Conclusion

	Chapter 5: Todo API
	Single Page Apps (SPAs)
	Initial Set Up
	.gitignore
	Models
	Tests
	Django REST Framework
	URLs
	Serializers
	Views
	Browsable API
	API Tests
	CORS
	CSRF
	Back-End API Deployment
	Conclusion

	Chapter 6: Blog API
	Initial Set Up
	.gitignore
	Custom User Model
	Posts App
	Post Model
	Tests
	Django REST Framework
	URLs
	Serializers
	Views
	Browsable API
	CORS
	Conclusion

	Chapter 7: Permissions
	Project-Level Permissions
	Create New Users
	Add Log In and Log Out
	View-Level Permissions
	Custom Permissions
	Conclusion

	Chapter 8: User Authentication
	Basic Authentication
	Session Authentication
	Token Authentication
	Default Authentication
	Implementing token authentication
	Endpoints
	dj-rest-auth
	User Registration
	Tokens
	Conclusion

	Chapter 9: Viewsets and Routers
	User endpoints
	Viewsets
	Routers
	Permissions
	Conclusion

	Chapter 10: Schemas and Documentation
	Schema
	Dynamic Schema
	Documentation
	Conclusion

	Chapter 11: Production Deployment
	Environment Variables
	DEBUG & SECRET_KEY
	ALLOWED HOSTS
	DATABASES
	Static Files
	Pyscopg and Gunicorn
	requirements.txt
	Procfile and runtime.txt
	Deployment Checklist
	Heroku Deployment

	Conclusion
	Advanced Topics
	Next Steps
	Giving Thanks

