
M A N N I N G

Joshua S. Ponelat
Lukas L. Rosenstock
Foreword by Tony Tam

openapi: 3.0.3

info:

title: UserAccount API

description: For users

version: 1.0.0

tags:

- name: User

description: User related operations

servers:

- url: https://example.com

paths:

/users/{id}:

put:

summary: Modify user

description: |

Modify the user and return `updated_at`.

Needs **Authentication**!

operationId: modifyUser

tags:

- User

security:

- MyToken: []

parameters:

- name: id

in: path

required: true

schema:

type: string

- name: role

in: query

schema:

type: string

enum:

- admin

- member

default: member

requestBody:

content:

application/json:

schema:

oneOf:

- $ref: '#/components/schemas/Employee'

- $ref: '#/components/schemas/Customer'

responses:

'200':

description: Updated user

content:

application/json:

schema:

$ref: '#/components/schemas/User'

'403':

continued...

Version of OpenAPI

Metadata of the API

Group your operations.

Where the API is hosted

URL and method

Descriptions support
Markdown.

List of security types
required

Path parameter;
matches the {id} in URL

Query parameter
with enum

Request body
with either Employee
or Customer schema

Responses

$ref used to reference
a reusable component

Designing APIs with Swagger and OpenAPI

Designing APIs
with Swagger

and OpenAPI
JOSHUA S. PONELAT

AND LUKAS L. ROSENSTOCK

Foreword by TONY TAM

MANN I NG
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2022 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning Publications
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any usage
of the information herein.

Manning Publications Co. Development editor: Jenny Stout
20 Baldwin Road Technical development editor: John Guthrie
PO Box 761 Review editors: Ivan Martinović, Adriana Sabo
Shelter Island, NY 11964 Production editor: Andy Marinkovich

Copy editor: Andy Carroll
Proofreader: Katie Tennant

Technical proofreader: Ian Lovell
Typesetter: Dennis Dalinnik

Cover designer: Marija Tudor

ISBN: 9781617296284
Printed in the United States of America

www.manning.com

 To Tony, Ron, and Ciaran for shaping my current career

 —Josh

To everyone who promised they’d buy one, even before it was done

 —Lukas

brief contents
PART 1 DESCRIBING APIS..1

1 ■ Introducing APIs and OpenAPI 3

2 ■ Getting set up to make API requests 13

3 ■ Our first taste of OpenAPI definitions 26

4 ■ Using Swagger Editor to write OpenAPI
definitions 35

5 ■ Describing API responses 48

6 ■ Creating resources 64

7 ■ Adding authentication and authorization 82

8 ■ Preparing and hosting API documentation 99

PART 2 DESIGN-FIRST. ...121

9 ■ Designing a web application 123

10 ■ Creating an API design using OpenAPI 142

11 ■ Building a change workflow around
API design–first 168

12 ■ Implementing frontend code and reacting
to changes 182
vii

BRIEF CONTENTSviii
13 ■ Building a backend with Node.js and Swagger
Codegen 198

14 ■ Integrating and releasing the web application 221

PART 3 EXTENDING APIS...237

15 ■ Designing the next API iteration 239

16 ■ Designing schemas with composition in OpenAPI 253

17 ■ Scaling collection endpoints with filters and
pagination 273

18 ■ Supporting the unhappy path: Error handling
with problem+json 304

19 ■ Improving input validation with advanced
JSON Schema 324

20 ■ Versioning an API and handling breaking
changes 339

21 ■ The API prerelease checklist 353

contents
foreword xix
preface xx
acknowledgments xxii
about this book xxiii
about the authors xxvi
about the cover illustration xxvii

PART 1 DESCRIBING APIS..1

1 Introducing APIs and OpenAPI 3

1.1 What is an API ecosystem? 3
1.2 Describing things 4

Bridget’s task 4 ■ The potential of Bridget’s solution 5

1.3 What is OpenAPI? 5
Example OpenAPI definition 6

1.4 Where do OpenAPI definitions fit in? 7
1.5 What is Swagger? 8
1.6 What about REST? 9
ix

CONTENTSx
1.7 When to use OpenAPI 10
For API consumers 10 ■ For API producers 11
For API designers 11

1.8 This book 11

2 Getting set up to make API requests 13
2.1 The problem 14

FarmStall API overview 14 ■ The first two operations
of the FarmStall API 14

2.2 Getting set up with Postman 15
2.3 FarmStall API 16
2.4 Our first request 16

Forming a GET request in Postman 17 ■ Verification 18

2.5 Adding a review to the FarmStall API 18
Forming a POST request in Postman 19 ■ Verification 21

2.6 Practice 21
Cat (and other animal) facts API 21 ■ Random avatar API 22
DuckDuckGo’s search engine API 22 ■ Pirate talk API 22

2.7 HTTP for the brave 23

3 Our first taste of OpenAPI definitions 26
3.1 The problem 28
3.2 Introducing the OpenAPI specification 29
3.3 A quick refresher on YAML 29

From JSON to YAML 31

3.4 Describing our first operation 32
3.5 Extending our first operation 33

4 Using Swagger Editor to write OpenAPI definitions 35
4.1 Introducing Swagger Editor 37

The Editor panel 37 ■ The UI Docs panel 37
The toolbar 38 ■ Persistence 38

4.2 Writing the smallest OpenAPI definition
in Swagger Editor 38
The smallest valid OpenAPI definition 38 ■ Writing in Swagger
Editor 39 ■ A word on validation 40

CONTENTS xi
4.3 Adding GET /reviews to our definition 41
4.4 Interacting with our API 42

Executing GET /reviews 43 ■ Adding servers to our
definition 44 ■ Executing GET /reviews (again) 45

5 Describing API responses 48
5.1 HTTP responses 49
5.2 The problem 50
5.3 The mind-blowing world of data schemas 51
5.4 JSON Schema 51

The type field 52 ■ Adding a field to an object 53 ■ The
minimum and maximum keywords 53 ■ Number vs. integer 54

5.5 Status codes 55
5.6 Media types (aka MIME) 56
5.7 Describing the GET /reviews response 57

Smallest response in OpenAPI 57 ■ The GET /reviews 200
response body 57 ■ Adding the rating field to our response
body 58 ■ Describing message, uuid, and userId 59

6 Creating resources 64
6.1 The problem 65
6.2 Describing POST /reviews with a request body 66

Where to find request bodies 69 ■ Describing the schema for
POST /reviews requestBody 70

6.3 Executing operations with request bodies 71
Adding examples to make try-it-out look pretty 74

6.4 Describing GET /reviews/{reviewId} with a path
parameter 75
Path parameters 76 ■ Describing the reviewId path parameter 77

6.5 Verifying our reviews are getting created 78

7 Adding authentication and authorization 82
7.1 The problem 84
7.2 Getting set up for authentication 85

Challenge: Describe POST /users 86 ■ Challenge: Describe POST
/tokens 86 ■ Solution: Definition changes 88 ■ Verifying we
can create users and get a token 89

CONTENTSxii
7.3 Adding the Authorization header 91
How OpenAPI handles authorization 92 ■ Types of authorization
(securities) supported in OpenAPI 3.0.x 92 ■ Adding the
Authorization header security scheme 93 ■ Adding the security
requirements to POST /reviews 94 ■ Using the security feature
of try-it-out 94

7.4 Optional security 96
7.5 Other types of security schemas 97
7.6 How to add security schemes in general 97

8 Preparing and hosting API documentation 99
8.1 The problem 100
8.2 Adding metadata to the definition 103
8.3 Writing the description in Markdown 105

Markdown basics 106 ■ Adding a rich text description
to the FarmStall API definition 108

8.4 Organizing operations with tags 111
Adding the Reviews tag to GET /reviews 112 ■ Adding
descriptions to tags 112 ■ Adding the rest of the tags 113

8.5 Hosting our API documentation using Netlify.com
and Swagger UI 114
Preparing Swagger UI with our definition 115 ■ Hosting on
Netlify.com 116

8.6 The end of part 1 120

PART 2 DESIGN-FIRST..121

9 Designing a web application 123
9.1 The PetSitter idea 124
9.2 PetSitter project kickoff 124

Additional requirements 124 ■ Team structure 125
API-driven architecture 126 ■ The plan 127

9.3 Domain modeling and APIs 128
Domain modeling for APIs 130 ■ Looking back on
FarmStall 130

9.4 A domain model for PetSitter 131
Concepts in the model 131 ■ The User model 132
The Job and Dog models 133

CONTENTS xiii
9.5 User stories for PetSitter 134
What are user stories? 134 ■ Collecting user stories 134
Mapping user stories 136

10 Creating an API design using OpenAPI 142
10.1 The problem 143

Converting a domain model to OpenAPI 143 ■ Ensuring
reusability 144

10.2 Creating the schemas 145
Starting an OpenAPI file with schemas 145 ■ Referencing
common schemas 146 ■ The User schema 146 ■ The Job
schema 148 ■ The Dog schema 150 ■ The JobApplication
schema 151

10.3 The CRUD approach to API operations 152
Defining API requests and responses 154 ■ From user stories
to CRUD design 156

10.4 API operations for PetSitter 156
User operations 156 ■ Job operations 159 ■ JobApplication
operations 163

11 Building a change workflow around API design–first 168
11.1 The problem 169
11.2 Communicating and reacting to change 171
11.3 GitHub as our workflow engine 172

A single source of truth 173 ■ Suggesting a change 173
Agreeing on a change 173 ■ A way of viewing changes
(based on an older version) 174

11.4 Tying the GitHub workflow together 175
Setting up GitHub and the source of truth 175 ■ Steps in
our GitHub workflow 176

11.5 A practical look at the workflow 177
Creating and suggesting DELETE /jobs/{id} 177 ■ Reviewing
and accepting changes 178 ■ Comparing older branches to the
latest 179 ■ What we’ve done 180

12 Implementing frontend code and reacting to changes 182
12.1 The problem 183
12.2 Setting up Prism 183

Installing Prism 183 ■ Verifying that Prism works 184

CONTENTSxiv
12.3 Building a frontend based on a mock server 185
Adding multiple examples into your OpenAPI definition 187
Using examples in Prism 188

12.4 Identifying a missing API operation 189
Due diligence for adding the operation 190 ■ Designing the new
operation 190 ■ Choosing which mock data response to get from
Prism 193 ■ Formalizing and suggesting the change 195
Extra curl examples 196

13 Building a backend with Node.js and Swagger Codegen 198

13.1 The problem 199
13.2 Introducing Swagger Codegen 199

Client code generation 200 ■ Server code generation 200
Swagger Generator 200

13.3 The backend structure 201
Generating the backend 201 ■ Investigating the structure 201
OpenAPI changes 203

13.4 Updating OpenAPI for the backend 204
Adding operation IDs 204 ■ Tagging API operations 206
Regenerating the backend stubs 208

13.5 Running and testing the backend 209
Testing with Postman 209 ■ Testing input validation 210
Output validation with Prism 211

13.6 Database persistence with Mongoose 212
Another API modification 213 ■ Getting ready to use
MongoDB 214 ■ Configuring Mongoose in the project 214
Creating models 214

13.7 Implementing API methods 218

14 Integrating and releasing the web application 221

14.1 The problems 222
Authentication 222 ■ Organizing code 223 ■ Serving both
components 224

14.2 Implementing authorization 225
Creating a security scheme 225 ■ Adding a “Login” action 226
Defining operation security 229

CONTENTS xv
14.3 Managing repositories 231
Keeping the existing structure 231 ■ Creating a shared Git
repository to implement both components 231 ■ Combining code
and API definition in a repository 231 ■ Making the choice and
refactoring 232

14.4 Setting up an integrated web server 232
URL design 232 ■ Server setup 234

PART 3 EXTENDING APIS ..237

15 Designing the next API iteration 239
15.1 Reviewing the first development sprint 240
15.2 Planning the next sprint 241
15.3 Preparing for new features 242

Reviewing the domain model 243 ■ Reviewing user stories 245

15.4 Improving the developer experience 248
Consistency 250 ■ Error handling 250 ■ Input
validation 250 ■ Versioning vs. evolvability 251

16 Designing schemas with composition in OpenAPI 253
16.1 The problem 254
16.2 Polymorphism and inheritance in domain models 257
16.3 Updating the schemas 259

The Pet schema 261 ■ The Dog schema 261
The Cat schema 262

16.4 Polymorphism and inheritance in OpenAPI 262
Composition inside the Dog and Cat schemas 264
Composition inside the Pet schema 266

16.5 Adding discriminators in OpenAPI 268

17 Scaling collection endpoints with filters and pagination 273
17.1 The problem 274
17.2 Designing filters 276

Projection filters 277 ■ Selection filters 277 ■ Handling nested
schemas 280 ■ Query languages 281 ■ Special conventions 281

17.3 Filters for PetSitter 282
Finding filter fields 282 ■ Adding filters to OpenAPI 286
Making a request 290

CONTENTSxvi
17.4 Designing pagination 290
Offset-based and page-based pagination 291 ■ Cursor-based
pagination 293

17.5 Pagination for PetSitter 294
Adding pagination to OpenAPI 295 ■ Extending our request
example 297

17.6 Designing sorting 297
Single-field sorting 298 ■ Multifield sorting 299
Consistency throughout parameter types 299

17.7 Sorting for PetSitter 300
Finding sorting fields 300 ■ Designing the sort parameter 301
Adding sorting to OpenAPI 301 ■ The final request
example 302

18 Supporting the unhappy path: Error handling with
problem+json 304

18.1 The problem 305
18.2 Error categories 306

Finding unhappy paths 307 ■ Common error patterns 309

18.3 Requirements for error responses 309
18.4 The OAS tools format 312
18.5 The problem+json format 314
18.6 Adding error responses to OpenAPI 316

Creating error schemas 317 ■ Adding errors to operations 318

18.7 Error-handling guidance 320
Frontend development 320 ■ Backend development 322

19 Improving input validation with advanced JSON Schema 324
19.1 The problem 325
19.2 Supported validations 326

Read-only and write-only properties 326 ■ Enforcing number
constraints 328 ■ Enforcing string formats 328 ■ Enforcing
array constraints 330 ■ Defining enumerations 331
Listing required and optional properties 331 ■ Setting
defaults 332

19.3 Updating PetSitter schemas 332
User schema 333 ■ Job schema 335 ■ JobApplication
schema 336 ■ Pet, Dog, and Cat schemas 337

CONTENTS xvii
20 Versioning an API and handling breaking changes 339
20.1 The problem 340
20.2 What is a breaking change? 341
20.3 Releasing a breaking change 341

Coordinated breaking changes 342 ■ Multiple API versions 343
Using media types to version operations 346 ■ Adding and
deprecating features 349

21 The API prerelease checklist 353
21.1 Pros and cons of a public API 353
21.2 The checklist 354
21.3 Getting the API working 356

Unit testing your API 356 ■ End-to-end testing 357

21.4 Documentation 360
21.5 Getting your API consistent 362
21.6 Validation and error reporting 363
21.7 An API roadmap and exposure index 363
21.8 Getting a change strategy 366
21.9 Improving security 366

21.10 Monitoring your API 368
Setting up metric collection 368

21.11 Releasing the API 369

appendix Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1 371

index 383

foreword
The job of a software developer has changed dramatically in the last decade. Advanced
features like single sign-on, persistence, synchronization across devices, and sharing
have become standardized and accepted as commonplace. To the small shop, develop-
ing these necessary features is often more work than building the application itself.

 REST APIs opened the door for developers to build applications with greater focus
on their core values and less on incidental features. Initially, it was up to each provider
to create bespoke documentation and client libraries. Swagger and OpenAPI were
born to establish a common language to describe REST APIs and make consuming
and producing these APIs quicker and more effective.

 In this book, Josh and Lukas take a holistic approach to teaching API design and
implementation. Using interesting and relevant examples, they first teach the reader
how to document an existing API with OpenAPI literacy. Then, they expand that core
knowledge to introduce design-first techniques. OpenAPI wouldn’t be the same with-
out the awesome tools and open source software that make it so easy to use, and this
book explores some powerful ones that will help readers design, build, share, and
investigate all sorts of REST APIs.

 As applications become more complex and end users continue to expect estab-
lished features, it is inevitable that the reliance on OpenAPI and other spec-based
standards will increase. This book clearly presents patterns and techniques that will
enhance the experience for all software developers who need to work with APIs.

—Tony Tam, Founder of Swagger and helping drive innovation at Apple iCloud
xix

preface
I’m Josh. I want to teach people. Always have, really.

 Swagger and OpenAPI are areas that I’ve come to feel shouldn’t be all that compli-
cated. Yet I saw many folks who wrestled unnecessarily with the topics—folks who
needed to make decisions that would affect many others. It was hard to watch, and I
sympathized. When I joined Swagger in 2015 (then, shortly after, SmartBear), I had
never heard of YAML and had no idea how writing it in a certain way would help with
APIs. It was all a murky blend of ideas, jargon, and an eclectic collection of tools. It
took some time to unwind that in my head, and it’s that journey that led me here.

 After writing one third of this book, I started feeling burnt out, as I’m sure many
authors do. I was working full time on SwaggerHub and in the gaps was writing about
the same topic: OpenAPI. When Lukas agreed to help coauthor this book, he not only
brought great ideas and support, but also whole new angles from which to view
OpenAPI. It’s been great to share this journey with him.

I’m Lukas. Just like Josh, I enjoy teaching and explaining stuff. Being asked to take
part in the creation of a book on a topic (APIs) that I’m very passionate about and
that has been a common thread in my diverse set of work for so long, has been a
great honor.

What we’ve both learned is that writing is hard. It’s hard because our heads are full of
unconnected ideas and thoughts. Writing them down forces us to find clarity. And
even if we’re confident in short-form technical writing, such as tutorials and blog
xx

PREFACE xxi
posts, tackling a full-length book is a whole different beast. It requires us to find a
common narrative structure to present diverse aspects of the subject in a way that
helps readers understand and follow along. Doing this as a team requires not just clar-
ity in our own heads but also strong collaboration.

 Unsurprisingly, designing APIs is much like writing. Creating a quick API to hook
up two different systems isn’t a big deal. Building a strong foundation that both makes
the API work and ensures that it is well documented, easy to understand, maintain-
able, and extensible is a challenge. Also, like coauthoring a book or building a soft-
ware project, designing APIs is a team sport. Our goal is to tackle this challenge
together with you.

 When it comes to designing new APIs and describing old ones, we want your work
to have the impact you desire on the world and your life. We hope that this book will
help you ever so slightly in achieving those goals.

acknowledgments
We’d like to thank the open source community for all the hard work they have put
into Swagger and OpenAPI. Without this great community, we wouldn’t have this fun
topic to write about.

 We thank our editor, Jenny Stout, as well as the rest of the team at Manning, and all
those involved in the process of making this book: without you all, this book would be
an erratic collection of chaotic thoughts and scribbles.

 To all the reviewers: Ben McNamara Chris Viner, Christopher Kardell, Conor Red-
mond, Foster Haines, Francis Edwards, Frans Oilinki, Hilde Van Gysel, Ian Lovell,
James Woodruff, Jeff Loughridge, Jort Rodenburg, Michal Rutka, Pierre-Michel Ansel,
Raushan Jha, Romell Ian De La Cruz, Sander Zegveld, Stephen Moon, Tanya Wilke,
Teddy Hagos, Travis Wisnasky, and Víctor Durán: thank you. Your suggestions are
appreciated and helped to improve this book.

Joshua Ponelat: I would like to thank my brother for helping with everything outside
of the book while I was busy grinding and writing. I also thank the team at SmartBear
(both past and present) who showed support by buying books, always encouraging
me, and being so fun to work with.

Lukas Rosenstock: I would like to give a shout-out to my virtual co-working group,
who were such a great help whenever I was at risk of procrastinating, and who made
writing a much less solitary activity. Also, I give special thanks to family, clients, and
business partners who have always been supportive of my work.
xxii

about this book
This book is about APIs: how to describe them and how to design them. It is a primer
introducing the world of OpenAPI, looking into the tools and practices used by
design-first practitioners and API developers. Our goal is to give APIs the “swagger”
(pun intended!) they deserve.

 We start with the foundation of reading and writing OpenAPI definitions and then
progress to domain modeling, change workflows, and API design patterns. While our
focus areas are OpenAPI and API design, we’ve tried to touch on all aspects of the API
lifecycle, and we’ve tried to bring both technical and project management perspec-
tives to the table.

 We hope to inspire confidence in our readers when it comes to understanding the
problems OpenAPI solves, why it exists, and how to use it.

Who should read this book
This book was written for software developers who are interested in APIs and leverag-
ing them with the API design–first approach. It is for folks in teams that need to make
API-related decisions, be they frontend or backend developers, product managers,
QA testers, or even CEOs.

 Concepts such as JSON and HTTP should be reasonably familiar to you, although
we’ve taken measures to ensure a deep understanding of specific topics isn’t needed.
We also provide brief refreshers and links to external resources.
xxiii

ABOUT THIS BOOKxxiv
How this book is organized: A roadmap
This book is divided into three parts covering 21 chapters and one appendix.

 Part 1 contains eight chapters and is about describing an existing API:

 Chapter 1 is an introduction to the world of describing APIs.
 Chapter 2 gives you a tool for exploring APIs: Postman.
 Chapter 3 starts our journey of describing an existing API, the FarmStall API.
 Chapter 4 gives you another tool, Swagger Editor.
 Chapter 5 covers describing a basic API request and response.
 Chapter 6 covers requests and request bodies.
 Chapter 7 looks at authentication and authorization.
 Chapter 8 shows how you can host an API documentation website with Swag-

ger UI.

Part 2 contains six chapters and is about designing an API from scratch:

 Chapter 9 sets the scene for part 2, introducing the PetSitter project.
 Chapter 10 builds the API design and OpenAPI description for this project.
 Chapter 11 introduces a Git-based workflow for handling changes to the API

design.
 Chapter 12 shows how API consumers can mock an API and react to changes.
 Chapter 13 walks through an API implementation with Swagger Codegen.
 Chapter 14 prepares the API for use and brings frontend and backend together.

Part 3 contains seven chapters that cover extending the API design from part 2 and
presents more advanced topics:

 Chapter 15 plans out the next API design iterations.
 Chapter 16 extends the domain model using JSON Schema composition.
 Chapter 17 adds filtering, pagination, and sorting to the API.
 Chapter 18 adds error handling, introducing the problem+json response format.
 Chapter 19 extends the JSON Schema for input validation.
 Chapter 20 describes versioning and breaking changes.
 Chapter 21 introduces a final API release checklist.

The appendix covers the differences between Swagger 2.0, OpenAPI 3.0, and Open-
API 3.1.

About the code
As this book is about describing APIs with OpenAPI, the OpenAPI definitions are the
most important “code” for this book. We provide at least one intermediate version of
the OpenAPI definition for the FarmStall API (in part 1) and PetSitter API (in parts 2
and 3) for every chapter where they change, so you can see every stage of progress for
the APIs. You can access them through the short link https://designapis.com/chXX,
where XX is the chapter number (e.g., https://designapis.com/ch06 for chapter 6).

https://designapis.com/ch06
https://designapis.com/chXX

ABOUT THIS BOOK xxv
 We also provide source code versions for the FarmStall and PetSitter APIs for refer-
ence, even though we won’t cover the implementation of FarmStall at all and only
parts of the backend code for PetSitter (chapter 13). You can find these code versions
here:

 FarmStall: https://github.com/designapis/farmstall (implemented in Go)
 PetSitter: https://github.com/designapis/petsitter (the backend is implemented

in JavaScript based on Swagger Codegen; the frontend is implemented with
TypeScript and React)

If in doubt, you can always start on the book’s website at https://designapis.com/,
where we’ll also inform you about any changes after the book was printed.

liveBook discussion forum
Purchase of Designing APIs with Swagger and OpenAPI includes free access to liveBook,
Manning’s online reading platform. Using liveBook’s exclusive discussion features,
you can attach comments to the book globally or to specific sections or paragraphs.
It’s a snap to make notes for yourself, ask and answer technical questions, and receive
help from the author and other users. To access the forum, go to https://live-
book.manning.com/book/designing-apis-with-swagger-and-openapi/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and authors can take place.
It is not a commitment to any specific amount of participation on the part of the
authors, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking them some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

Other online resources
Our website for the book is https://designapis.com/. There you can access live demos
of the FarmStall and PetSitter APIs and find additional resources.

 You should also look at the official website of the OpenAPI initiative, where you
can find all versions of the OpenAPI specification: www.openapis.org.

 We also cover the Swagger open source tools (Editor, UI, and Codegen) in this book.
You can find those tools on the Swagger website: https://swagger.io/tools/open-source/.

 And you’ll find more links to specific resources we cover in this book sprinkled
throughout.

https://github.com/designapis/farmstall
https://github.com/designapis/petsitter
https://designapis.com/
https://livebook.manning.com/book/designing-apis-with-swagger-and-openapi/discussion
https://livebook.manning.com/book/designing-apis-with-swagger-and-openapi/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://designapis.com/
https://swagger.io/tools/open-source/
http://www.openapis.org

about the authors
JOSH PONELAT runs lead on Swagger Open Source at Smart-
Bear. As part of that role, he aims to reduce API friction and
help teams build better tools. Based at the bottom of the world
in South Africa, Josh is extraordinarily fussy with coffee and
loves a good pun. If your interests extend to amateur cartogra-
phy, building tiny products, or advanced note taking, feel free
to hit him up in the different Slack groups and other online
forums. He tries to use the same username everywhere: ponelat.

LUKAS ROSENSTOCK is a freelance entrepreneur who supports
both startups and large organizations around the API lifecycle
as a consultant, software developer, and technical writer. He
lives in the heart of Europe in Germany. Lukas is a weird Ger-
man who doesn’t like beer and a weird person in tech who
doesn’t drink coffee, though both are adequately replaced with
tea. When he isn’t busy with APIs or coding, he enjoys board
game nights and thinking how to improve the world with effec-
tive altruism. Feel free to follow @LukasRosenstock on Twitter.
xxvi

about the cover illustration
The figure on the cover of Designing APIs with Swagger and OpenAPI is “Homme d’ aus-
bourg,” or “ausbourg man,” taken from a collection by Jacques Grasset de Saint-Sauveur,
published in 1797. Each illustration is finely drawn and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.
xxvii

Part 1

Describing APIs

Before we start our journey into API design, we should get comfortable
describing the existing world around us. Therefore, in part 1 we’ll look at how to
describe an existing API using OpenAPI and Swagger. The API we’ll use, Farm-
Stall, is hosted online and was created specifically for this book. It’s a little con-
trived but functional.

 Chapter 1 will start by discussing the fundamentals of APIs and what OpenAPI
is, provide a refresher on YAML, and go through each step that would lead up to
a fully described API. We’ll then introduce tools like Postman (chapter 2) and
Swagger Editor (chapter 4), and end up hosting a real API documentation web-
site with Swagger UI (chapter 8). Areas of the API we’ll describe include requests
and responses (chapter 5), bodies, query parameters, authentication, and autho-
rization (chapter 7).

 By the end of part 1, you’ll be able to describe real APIs in the wild, albeit
with a limited vocabulary that we’ll further develop throughout the book.

Introducing APIs
and OpenAPI
In this chapter we’ll take a look at the world of APIs and OpenAPI so we can give
you an overview of the topics covered in this book. We’ll start by looking at the ben-
efits of describing an API, at how these descriptions form part of an API ecosystem,
and where OpenAPI fits in. We’ll look at an example of an OpenAPI document and
see when to use OpenAPI in practice. Let’s get started.

1.1 What is an API ecosystem?
We like the word ecosystem. It describes the interactions and relationships between
living and nonliving things within a fully functioning environment. We like to
picture a wetland pond with frogs, wild grasses, and stones for some reason,
but you may imagine something a little different—either way, the principle of
an interactive, symbiotic system remains. If we borrow (cough, maybe steal) this

This chapter covers
 Describing an API ecosystem

 What OpenAPI and Swagger are

 When to use OpenAPI

 An overview of this book
3

4 CHAPTER 1 Introducing APIs and OpenAPI
principle from biology, we can use it to describe the world of APIs within a team or
organization:

 The living, changing variables represent elements that we have control over.
These are the things we make, such as our services, stacks, or code.

 The fixed, nonliving components are the useful things we can benefit from but
cannot easily change. These are the libraries and external services we use.

 And, of course, there is the environment. It could be the internet, an internal
network, or a tiny device stuck on the roof of our house—perhaps even all of
them.

All of these pieces together form a complete ecosystem. When these parts are moving
in harmony, our system is healthy, and our developers, consumers, and users are all
happy. It is how these interactions and relationships evolve that is central.

 APIs define what each service is capable of providing and how others can interact
with that service. When we assume the role of an “API designer,” our job is to create
these APIs for services in a way that incorporates feedback from consumers and
ensures that changes are communicated ahead of time.

 Why “API ecosystem” and not “service ecosystem” or perhaps even just “ecosystem,”
you might ask? In this book we’re interested in APIs, so naturally we’ll focus on that
aspect. Since APIs are the contracts that hold together the ecosystem, it is not an unrea-
sonable focal point. APIs are a very important part of the ecosystem, without which our
services would be isolated. Understanding APIs gives us a holistic perspective.

 This book will focus on APIs and how OpenAPI helps make them easier to work
with.

1.2 Describing things
If we look at our ecosystem as individual services, we’ll fail to see how they form a com-
plete system. It’s how they are connected that gives us the bigger picture. When those
services change without updating all of their dependencies, the ecosystem loses
functionality and in some cases can completely break.

 Let’s look at a story that illustrates this idea.

1.2.1 Bridget’s task

Bridget has been tasked with managing a medium-sized web stack. Her stack (or eco-
system) is made up of services that talk to and depend on each other. The stack also
makes use of external services that are beyond her control.

 Every now and then, one of the APIs will change in such a way as to negatively
impact, and sometimes break, the services that rely on it. This disrupts the ecosystem,
bringing down parts of her stack and ultimately causing failures.

 Bridget needs to effectively solve this problem. When an API changes, she needs
to be able to tell the affected developers beforehand and keep the ecosystem run-
ning smoothly.

5What is OpenAPI?
 Bridget takes a moment to think about how this ecosystem works. She knows that
each service has an API, and that each of those APIs is made up of smaller operations.
Each operation expects a certain input and generates a resulting output. When an
operation changes so that it requires different inputs, any service that doesn’t adapt
along with it will result in a systemic failure. Similarly, if an operation changes to pro-
duce a different output, it will cause other dependent services to break unless they are
updated to address those changes. Bridget concludes that tracking API changes is an
important part of keeping the overall functionality up. But how will she know when an
API has changed?

 Bridget decides she needs a way of describing APIs so that she can compare an old
API with a new one to see if the new one has any breaking changes. She writes a pro-
gram that compares the description of an older API with that of a newer version, gen-
erating a report. The report is simple and just tells her if the new API has any breaking
changes since the older version.

 Happy with her plan, she instructs the developers to describe their APIs using her
format so that she can compare old with new. Aware that the external services aren’t
under her control, she keeps an eye on those developments and describes them
herself—she feels prepared for when those external services change.

1.2.2 The potential of Bridget’s solution

Bridget’s solution is centered around the idea that APIs can be described, that people
can write these descriptions, and that software can understand them.

 While she only used that approach to solve one specific problem, there is much
potential for growth with those descriptions. They could serve as the basis for gener-
ating more than just reports. For example, she could generate documentation, test
changes before building them, reduce the overhead of boilerplate code, and much
more.

 Let’s take a look at how Bridget’s solution is used in the real world. Let’s look at
how OpenAPI works.

1.3 What is OpenAPI?
OpenAPI specifies a way of describing HTTP-based APIs, which are typically RESTful
APIs (more on what REST is later). An OpenAPI definition comes in the form of a
YAML or JSON file that describes the inputs and outputs of an API. It can also include
information such as where the API is hosted, what authorization is required to access
it, and other details needed by consumers and producers (such as web developers).

 Definitions can be written by hand or by tools, or even be generated from code.
Once an API has been written down, we say it has been described, and it then becomes
a platform that tools and humans can make use of. A typical way of using API defini-
tions is to generate human-readable documentation from it.

6 CHAPTER 1 Introducing APIs and OpenAPI
1.3.1 Example OpenAPI definition

There is a fun little API for dog breeds and their images on the internet, hosted at
https://dog.ceo. To give you an example of what an OpenAPI definition looks like,
we’ve described a single operation along with some other basic details of this Dog API
(as a YAML file).

openapi: 3.0.0
info:
 title: Dog API
 version: 1.0.0
servers:
- url: https:/ /dog.ceo/api
paths:
 /breed/{breedName}/images:
 get:
 description: Get images of dog breeds
 parameters:
 - in: path
 name: breedName
 schema:
 type: string
 example: hound
 required: true
 responses:
 '200':
 description: A list of dog images
 content:
 application/json:
 schema:
 type: object
 properties:
 status:
 type: string
 example: success
 message:
 type: array
 items:
 type: string

An OpenAPI definition can seem a little verbose at first glance, but you will find some
exceptionally useful information contained within. In this example, we can learn a few
things about the single operation it describes and how to consume it. Don’t worry if
you can’t make the connection between the YAML file and every one of the following
statements yet. We’re just getting started, and we’ll unpack OpenAPI definitions step
by step in this book. That said, here is what we could discover in the preceding listing:

 The API is hosted at https://dog.ceo/api.
 There is a GET operation with the path /breed/{breedName}/images.

Listing 1.1 Example OpenAPI document/definition

https://dog.ceo
https://dog.ceo/api

7Where do OpenAPI definitions fit in?
 This path has a part called breedName, and it is a required string.
 A successful response will give us a JSON array where each item is an object con-

taining message and status fields.
 The message field is an array of strings that are URLs of dog images.

That is usable information. Developers can build clients to consume the API, product
managers can determine if the API suits their needs and meets their standards, and doc-
umentation teams can use it as the basis for showing human-readable documentation.

 To use this OpenAPI definition, we could load it into a tool called Swagger UI
(we’ll discuss that later in the book), which renders human-friendly documentation
based on the definition and provides other small niceties. The result would look
something like figure 1.1.

1.4 Where do OpenAPI definitions fit in?
Once we have an API definition, we can use tools to leverage them, build bigger abstrac-
tions, and create more automated workflows. Definitions are machine readable.

 Figure 1.2 shows how OpenAPI definitions could fit into an organization’s work-
flows. The definitions can be created by tools or by extracting annotations from code.
They are then transformed into API documentation, server stubs, and client SDKs.
This is just one example. Other workflows could be designed, depending on the busi-
ness cases.

Figure 1.1 Swagger UI with the Dog API

8 CHAPTER 1 Introducing APIs and OpenAPI
Other workflows could include

 Automating parts of API testing
 Getting early feedback on the design of an API
 Ensuring API consistency
 Comparing API changes across versions

The beauty of OpenAPI is that once you have an OpenAPI definition, the rest (pun
intended) is simply a matter of leveraging it for your needs.

1.5 What is Swagger?
In the beginning there was Swagger UI and a rough guide for writing YAML files that
described HTTP APIs. Later, more tools were built that relied on this guide, which
soon became a specification and a standard. The tools and this specification were col-
lectively known as “Swagger.” The specification grew more mature and was released as
open source, which encouraged the community to create even more tools. They soon
began to contribute features to the specification, which finally began to be adopted by
large companies.

 In 2015 Swagger was adopted by SmartBear, which then donated the specification
part to the Linux Foundation (www.linuxfoundation.org). During that transfer, the
specification was renamed as the “OpenAPI specification,” and SmartBear retained
the copyright for the term “Swagger.”

 Today, as a result of this historical quirk, you’ll find the terms used interchange-
ably. Going forward, we are encouraged to use the term “OpenAPI” to refer the
heart of this ecosystem—the specification—and to use “Swagger” to refer to the spe-
cific set of tools managed by SmartBear (which includes Swagger UI, Swagger Editor,

Design/create

OpenAPI

definition

Your code

OpenAPI tooling

Editor

Annotated

code

Extract

Generate

Generate

Generate

API docs

Server

stubs/mocks

Client SDKs

Figure 1.2 Creating and using OpenAPI definitions

http://www.linuxfoundation.org

9What about REST?
Swagger Parser, and at least a dozen more). Many, many other tools are also built to
use OpenAPI.

NOTE There is an old standard, the Web Application Description Language
(WADL; pronounced “waddle”), which was inspired by SOAP’s WSDL specifi-
cation and used XML. It could have been used instead of Swagger to describe
HTTP APIs. The team working on Swagger used to joke, “Why WADL when
you can Swagger?” And so the name was born.

1.6 What about REST?
REST (representational state transfer) is a collection of ideas about how to design net-
worked systems (in particular, server/client systems). While REST is not restricted to
HTTP-based APIs, they are both closely linked in practice. RESTful APIs now drive the
majority of web servers on the internet.

 The principles of REST were outlined by Roy Fielding in his dissertation on net-
worked systems, which was released in the year 2000 (www.ics.uci.edu/~fielding/
pubs/dissertation/top.htm). Whether an API is RESTful or not is determined by how
closely it adheres to the ideas (or constraints) of that dissertation. What is considered
RESTful or not is a little subjective and sparks heated debates. Out in the wild, HTTP-
based APIs have to make trade-offs between what they require and how standard or
RESTful they are. It is a balancing act that all API producers have to manage.

 The ideas in REST aim to be simple and to decouple the API from the underlying
services that serve the API. It uses a request-response model and is stateless, as all the
information necessary to do something is contained within the request.

 One of the key ideas behind REST is that of a resource. Things such as user accounts,
billing reminders, or even the weather in San Francisco are all resources, and each resource
is identified by a URI. For a user’s account, we might have the URI /users/123, which
uniquely identifies a user resource within the API.

 Consumers will want to be able to do things to and with resources. Think of these
actions as verbs. HTTP has a set of well-defined ones, such as POST, GET, PUT, DELETE,
and PATCH, all derived from the ideas in REST. In HTML, if you want to fetch data
related to a resource, you would use the GET method. If you want to create a new
resource, you could use the POST method. In chapter 10 we’ll dive deeper into URL
structures and HTTP verbs.

 Where REST starts and HTTP ends is a tricky question to answer, but the rule of
thumb is that HTTP is the protocol and REST is a way of designing APIs. HTTP has
incorporated many of the ideas of REST into its protocol, which is why they are so
closely related. Typically we’ll more often note when an HTTP API is not RESTful,
meaning that it doesn’t conform to the design patterns outlined by REST.

 OpenAPI was designed to describe as many HTTP-based APIs as possible, but not
all of them. Its major constraint (and a huge benefit of OpenAPI) is that it is designed
to allow tools to generate usable code from the definitions; this came with the trade-off

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

10 CHAPTER 1 Introducing APIs and OpenAPI
that not every facet of an API can be described, because they can’t all be well defined
enough in the specification for both humans and machines.

1.7 When to use OpenAPI
Always.

 We hope that statement triggered the picture of grinning authors. We couldn’t resist
being snarky. But no, like all technologies, OpenAPI isn’t always necessary. OpenAPI
describes HTTP-based APIs (including RESTful APIs), so when you’re tasked with
designing, managing, and consuming an HTTP API, using OpenAPI will give you value.

 If you’re dealing with other API technologies that don’t leverage HTTP semantics
(like methods, URLs, headers, and bodies), OpenAPI will have limited value to you.
Examples of those API types include gRPC and GraphQL.

 In this section, when we talk about APIs, we’re referring specifically to HTTP-based
APIs.

1.7.1 For API consumers

When you’re required to consume an API, your first instinct might be to reach for an
SDK for that API written in your programming language. Many of the popular APIs
have put great care and effort into making these SDKs available to consumers, but
many other APIs simply don’t have the resources to write SDKs for one or more lan-
guages. If the API has been described with OpenAPI (whether by the producer or by
you), you can generate SDKs for many different languages. The SDK templates pro-
vided by tools such as Swagger Codegen or OpenAPI Generator are usually sufficient
and will give you a good head start for developing clients. But even more power can

A quick note about hypermedia
In Fielding’s REST paper, he mentions the idea of hypermedia: a system of returning
context-aware links in the form of URIs. For example, if you were to execute a GET on
a /users/{userId} resource, it could return a link (a URI) to the login operation for
that user and another to execute a password reset. The links are related to the
resource (at that point in time), and they decouple clients from needing to know those
URIs outside of the response. This is a crude description of a very powerful model.

Many REST purists point out that this is a sorely missed component of RESTful APIs.
In OpenAPI (particularly version 3.0.0+), support was added to help document these
hypermedia links, but their semantics are out of scope for the OpenAPI specification.
OpenAPI can describe what is required by hypermedia APIs, but not what each link
should do. There are other specifications that attempt to tackle describing those
details. Here are a few:

 HATEOAS: https://restfulapi.net/hateoas/
 Siren: https://github.com/kevinswiber/siren
 Hydra: https://www.hydra-cg.com/

https://restfulapi.net/hateoas/
https://github.com/kevinswiber/siren
https://www.hydra-cg.com/

11This book
be extracted by customizing and creating templates specific to your needs that will
work with any API described by OpenAPI.

1.7.2 For API producers

Building APIs can be quite fun, particularly when you have a contract to develop
against, but building out the boilerplate of an HTTP server is less fun once you’ve
done it umpteen times. Automatically generating boilerplate code and stubs from an
OpenAPI definition gives you speed and consistency (since you can customize the
templates to your needs).

 There are even more exciting methods of developing APIs, such as using OpenAPI
definitions during runtime to act as a router (having API operations map to classes
and methods in code) or as a validation layer (where incoming requests will fail valida-
tion unless they conform to the OpenAPI definition’s schema). Such practices are
becoming more common in microservice-oriented architectures where services are
being built out at a faster rate.

1.7.3 For API designers

API design has also been given more attention of late, and its importance cannot be
understated. While we’re a huge fan of Agile practices (short feedback cycles) and the
art of failing fast (bringing products to market quicker to validate their success or fail-
ure), APIs should still be designed with longevity in mind because changing them
means changing the consumers, which is typically beyond your control. (No one likes
getting stuck maintaining an old API!) OpenAPI is a medium for communicating to
both consumers and producers, allowing designers to get feedback early in the pro-
cess and to iterate based on that feedback.

 Design becomes even more interesting when it comes to managing more than one
API. In those cases, consistency plays an important role. Standardizing all your APIs
on consistent patterns becomes possible when you can measure those patterns.
OpenAPI definitions offer one such measurement.

1.8 This book
This book aims to help you understand how OpenAPI works, how it and the associ-
ated tooling can be used to design APIs, and how you can create advanced and very
specific workflows for your team and organization. OpenAPI is aimed at automating
parts of your workflow and freeing your team to accomplish more. The small upfront
cost of describing APIs with OpenAPI is greatly offset by the power you can wield by
leveraging it and the new opportunities it presents.

 This book is broken down into three parts:

 Part 1 deals with OpenAPI literacy and introduces you to the syntax and struc-
ture of OpenAPI definitions, giving you the ability to describe APIs. Through-
out this part we’ll document an example FarmStall API that is hosted online

12 CHAPTER 1 Introducing APIs and OpenAPI
and is simple enough to easily understand without knowing the details. We’ll
use figure 1.3 to indicate where we are in the scheme of things.

 Part 2 deals with the design phase and how we can use the tools to create a new
API and iterate its design. We’ll be designing a pet-sitting API from scratch,
along with the processes around it.

 Part 3 is a deeper dive into some more specific tools and workflows, particularly
related to releasing an API to the public.

Summary
 OpenAPI is a specification for describing HTTP-based APIs, most notably

RESTful APIs.
 Swagger is a term that refers to a set of tools by SmartBear. It used to refer to the

OpenAPI specification itself and is sometimes still used that way.
 Describing APIs by writing a definition (a YAML file) allows you to leverage

tools to automate a lot of API-related processes.
 OpenAPI is useful for consumers, producers, and API designers. Each can ben-

efit from knowing and utilizing tools that consume OpenAPI definitions.
 This book will explain how to work with OpenAPI. With this knowledge base,

you can ultimately incorporate OpenAPI into your team and organization
workflows.

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Here

Figure 1.3 Where we are

Getting set up to
make API requests
Our task in this part of the book is to describe an API called FarmStall. FarmStall
was designed specifically for this book, and it is intentionally as simple as possible.
Before we can describe this API, we’ll need to understand how it works and be able
to make HTTP requests and inspect the responses.

 In this chapter we’ll use a tool called Postman to make HTTP requests against
the FarmStall API (see figure 2.1). We’ll be verifying that we get decent-looking
responses without concerning ourselves too much with the details of those responses.
We’ll also take a basic look at the business domain of the API. We won’t go into
great detail, but we’ll learn enough so that we have an understanding of what we’re
doing. This will make it easier to describe later on.

This chapter covers
 Introducing the FarmStall API and some of

its business logic

 Introducing a tool to make HTTP requests:
Postman

 Executing API requests and inspecting the
responses
13

14 CHAPTER 2 Getting set up to make API requests
These are the sources for the points we’ll be touching on:

 Postman—https://getpostman.com
 FarmStall API landing page—https://farmstall.designapis.com
 FarmStall API—https://farmstall.designapis.com/v1/reviews
 Source code (in Go)—https://github.com/designapis/farmstall

2.1 The problem
Our problem in this chapter is to discover and learn more about the FarmStall API. In
particular, we want to interact with it and confirm some basics, such as how to access it,
create requests, and inspect the responses.

 First, let’s look at the API itself.

2.1.1 FarmStall API overview

The FarmStall API is hosted at https://farmstall.designapis.com/v1. The API’s pri-
mary focus is to allow patrons of a farmer’s market to write up reviews and give feed-
back on their experiences. Users can submit anonymous reviews, which include a
message and a rating (from 1 to 5 inclusive). Users can also sign up to create reviews
that will then be associated with them. Once they are signed up, they can get a user
token to create reviews with their user ID.

2.1.2 The first two operations of the FarmStall API

The FarmStall API has several operations, and we’ll try out the following two, summa-
rized in table 2.1:

 To get a list of public reviews, you can use GET /reviews. You can also filter
reviews by their rating by using the maxRating query parameter.

 To submit a new review, you can use POST /reviews. The body of this request
will include message and rating fields.

Based on the preceding information, including where the API is hosted (https://
farmstall.designapis.com/v1) and the details of each operation, we can create our first

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Figure 2.1 Where we are

https://getpostman.com
https://farmstall.designapis.com
https://farmstall.designapis.com/v1/reviews
https://github.com/designapis/farmstall
https://farmstall.designapis.com/v1
https://farmstall.designapis.com/v1
https://farmstall.designapis.com/v1
https://farmstall.designapis.com/v1

15Getting set up with Postman
two requests. Our task in this chapter is to verify that responses come back from each
operation and that they make sense to us.

 So how do we make these HTTP requests? Fortunately for API folks, there are
numerous ways to make these requests—the brave may want to try their hand using
telnet, the practical may choose to use curl, and the rest of us may prefer to use soft-
ware suites with bells, whistles, and bunches of utilities.

NOTE Although no one really writes HTTP requests by hand, we encourage
you to give it a try. It is actually quite satisfying when you form an HTTP
request completely from scratch and get a response. We’ve included the small
section 2.7 at the end of this chapter explaining how to craft a request using
low-level tools: telnet (for HTTP) and OpenSSL (for HTTPS).

There are many ways to make HTTP requests, and we’ve tried to structure this book in
such a way as to avoid requiring particular tools. However, we still encourage you to try
out the suggested tools as is, to more closely follow along with our explanations. Per-
haps you’ll discover features that you can incorporate into your own arsenal.

 Without further ado, let’s take a look at Postman.

2.2 Getting set up with Postman
Postman is a general HTTP tool that has a pleasant user interface and is suitable for
beginners and professionals alike. Postman has a lot of features, and at first glance it
can be a bit overwhelming. We’ll only be using a small subset of them in this book.

 We chose Postman as a tool for this book predominantly because of its popularity
(so that you’re not stuck using an esoteric tool like some that we use) and because of
the many features it provides. Some features you’ll find useful, and others you might
find inspirational.

 In order to use Postman, you need to install it, so go ahead and download it from
www.getpostman.com/downloads/. There are versions for Microsoft Windows, macOS,
and most Linux distributions.

 At the time of writing, Postman was at version 9.x, and your version may look and
act a little differently, depending on how much the authors of Postman change it in
the interim. The UI has been pretty stable, so it should look similar to the screenshots
in this chapter.

 Also, when this book was being written, you did not need to create an account with
Postman in order to use it, although they will encourage you to do so. There are free
and paid-for plans, as well as the option to not create any account at all. For this

Table 2.1 API operations

Method URI Query params Body

GET /reviews maxRating (1-5) N/A

POST /reviews N/A {"message": "Was good.", "rating": 5}

http://www.getpostman.com/downloads/

16 CHAPTER 2 Getting set up to make API requests
chapter we’ll assume you didn’t create an account, so we’ll only use features that are
available to unregistered users, which should be ample for our purposes.

 Go ahead and install Postman, we’ll wait. :)

2.3 FarmStall API
To come to grips with the basics of creating an HTTP request, we’re going to execute
two of them: a GET request with query parameters and a POST request with a JSON
request body. We’ll progressively examine the details of these operations as we go
along. To start with, we’re going to focus more on the practical side of making
requests and less on what the operations are actually doing.

NOTE We designed the FarmStall API specifically for this book, to help us
describe an existing API. It wasn’t designed to handle production-level data,
so the data in the FarmStall API will persist, but only for a day or two. If you
add a review one day and don’t see it the next, you’re not going crazy—the
API is just cleaning up so that it doesn’t overflow with too much data.

Let’s start by getting a list of reviews from the API.

2.4 Our first request
We’ll use the GET operation described at the beginning of this chapter to get the list
of reviews.

 The details are listed in table 2.2. The GET method has at least one query parameter
called maxRating, which accepts a number from 1 to 5 inclusive.

Operations are often described relative to where the server is hosted, and this API has
a base URL of https://farmstall.designapis.com/v1, so the URL for GET /reviews
becomes

https:/ /farmstall.designapis.com/v1/reviews

If we add in the query parameter, it’ll form our final URL:

https:/ /farmstall.designapis.com/v1/reviews?maxRating=5

Armed with the URL and method, we have enough to execute this particular request—
time to use Postman.

Table 2.2 Using GET /reviews

Method URI Query params Body

GET /reviews maxRating (1-5) N/A

https://farmstall.designapis.com/v1

17Our first request
2.4.1 Forming a GET request in Postman

If you haven’t done so already, start up Postman. Figure 2.2 shows the key areas in the
main page that we are interested in for our GET request:

 Method dropdown—This selects the method to use. The default will likely be GET,
but you can select it if not.

 URL input box—This is where you will enter the URL of the endpoint you want
to make the request against.

 Send Request button—This button executes the request.

To create a request against our endpoint, we need to enter the URL in the URL input
box and press the Send button, so go ahead and type https:/ /farmstall.designa-
pis.com/v1/reviews?maxRating=5. Press Send, and a chunk of JSON data should be
displayed (see figure 2.3). This is the result of executing the request. If you see this
JSON data—congratulations, you’ve successfully executed a request!

Send requestMethod
URL

Figure 2.2 Postman—the key areas for the GET request

Body tab Headers tab

Body (JSON)

Status (200)

Figure 2.3 Postman—the GET /reviews response

18 CHAPTER 2 Getting set up to make API requests
NOTE If for some reason you encountered an error in the response, that’s
okay. It could be that there is a typo, that the server is misbehaving, or some
other unforeseen problem. If you’re happy that you wrote the request cor-
rectly, that is enough for now. We’ll provide more examples later in the chap-
ter that you can test against.

2.4.2 Verification

We now have some response data from our request, confirming that our API works
and that we can reach it. The response data should look similar to the following.

[
 {
 "message": "Was awesome.",
 "rating": 5,
 "uuid": "16f5e7e1-b581-4ca4-8af2-8dead5894869",
 "userId": null
 },
 {
 "message": "Was awful",
 ...more of the same...

We’ve successfully verified that some reasonable data is returned when we execute the
request. Later we’ll need to describe this data, but for now it’s enough that the opera-
tion works and does indeed return data.

 Now let’s try creating a new review by executing a POST request.

2.5 Adding a review to the FarmStall API
The operation for adding a review via the FarmStall API is POST /reviews (see table 2.3).
It takes no query parameters but it does require a body. In this case, the response isn’t
the most interesting part of the operation; what is more interesting is that we are add-
ing data into the API.

One of the key differences between POST and GET is the request body. One could con-
ceivably send data in query parameters, but they impose too many limitations, from
the size limitations of query parameters to the fact that they cannot contain binary
data. A request body doesn’t have these limitations—the size is limited only by practi-
cality, and the body can contain binary data.

Listing 2.1 Data received from GET /reviews

Table 2.3 Using POST /reviews

Method URI Query params Body

POST /reviews N/A {"message": "Was good.", "rating": 5}

19Adding a review to the FarmStall API
NOTE Another interesting benefit of sending data in the body is security.
Query parameters are part of the URL, and as such are often logged by servers
and proxies. If you were to send secret data in query parameters, there is a good
chance it would be recorded somewhere between your client and the server.
Bodies are usually not processed by proxies, nor are they typically logged.

2.5.1 Forming a POST request in Postman

In the POST /reviews operation, the body is required to be in JSON format. In this
format, it’s an object that has two fields—message and rating:

 message is a string, and it’s the feedback for the farmer’s market.
 rating is a number, from 1 to 5 inclusive. This will indicate our general experi-

ence, where 1 is the worst and 5 is the best.

Let’s build the request.

{
 "message": "was pretty good.",
 "rating": 4
}

As before with the GET /reviews operation, we need to combine the URI with the base
URL of the server to form the following complete URL:

https:/ /farmstall.designapis.com/v1/reviews

Now let’s go through what we need to do in Postman in order to execute this request:

1 Change the method to POST.
2 Type out the URL, https:/ /farmstall.designapis.com/v1/reviews (the same

as for GET /reviews).
3 Select the Body tab, so that we can type out the body.
4 Type out the JSON body, which includes the message and rating fields.
5 Ensure that the content type is set to JSON (or application/json).

That last step will set a special header called Content-Type, which indicates to the
server which media type the data is in (more on that later). Since the UI of Postman
could change, you’ll need to double-check that this header is set correctly.

 Go ahead and make the preceding changes in Postman, as shown in figure 2.4.
Your request is now ready to send. When you click the Send button, the new review
should be created.

 To confirm that the review was created, look in the response body section of Post-
man. Also look for a status code of 201, which indicates “Resource Created” or just
“Created.” See listing 2.3 for the response body and figure 2.5 for where it appears
in Postman.

Listing 2.2 JSON request body for POST /review

20 CHAPTER 2 Getting set up to make API requests
{
 "message": "was pretty good.",
 "rating": 4,
 "uuid":"16f5e7e1-b581-4ca4-8af2-8dead5894869",
 "userId": null
}

NOTE A lot of terms are used to refer to creating a request and executing it.
Sending, executing, calling, and requesting all have the same meaning, and you
will often find these words used interchangeably. You can use whichever feels
more natural, but if in doubt, use the term execute.

Listing 2.3 JSON response body from POST /review

Select raw

Change to POST

Select odyb

Select JSONType out body

Figure 2.4 Postman—posting a pretty good review

Note that this
value will vary
(it’s random).

Response status codeResponse body

Figure 2.5 Postman—POST /review response

21Practice
2.5.2 Verification

What have we accomplished so far? We’ve successfully executed two requests: one for
getting the list of reviews, and another for creating a new review.

 For now, just seeing reasonable data is enough. Soon we’ll describe these opera-
tions in a way that clarifies what is possible, without actually executing requests and
making assumptions about the data.

 Now that we’re able to make basic requests with Postman, we can have a little fun
and practice with more APIs.

2.6 Practice
Now for a bit of practice! The following HTTP requests are a short list of APIs that
have fun, interesting, or perhaps even useful responses. Given the nature of the inter-
net, it’s entirely possible that some (hopefully not all) of these APIs will become
unavailable or, worse, change their interfaces so that these requests will fail. The latter
is something we hope to avoid when designing our own APIs. We considered the APIs
in this section to be stable enough at the time of print. Only time will tell how stable!

 We’ve included example responses that you can compare with your own. Here are
the requests.

2.6.1 Cat (and other animal) facts API

This first API provides a little fun with cat (and other animal) facts.

Documentation: https:/ /alexwohlbruck.github.io/cat-facts/docs/
Server: https:/ /cat-fact.herokuapp.com

GET /facts?animal_type=cat,horse
GET /facts/random

Example response:
{
 "_id": "58e008780aac31001185ed05",
 "user": "58e007480aac31001185ecef",
 "text": "Owning a cat can reduce the risk of stroke and heart attack.",
 "__v": 0,
 "updatedAt": "2019-01-19T21:20:01.811Z",
 "createdAt": "2018-03-29T20:20:03.844Z",
 "deleted": false,
 "type": "cat",
 "source": "user",
 "used": false
}

Listing 2.4 Cat facts API

22 CHAPTER 2 Getting set up to make API requests
2.6.2 Random avatar API

This one is for those times when you need a random avatar image (see figure 2.6), and
it includes some animated ones.

Documentation: https:/ /minimalavatars.com/
Server: https:/ /api.minimalavatars.com

GET /avatar/random/svg

Example: GET /avatar/random/svg
Example response: see figure 2.6

2.6.3 DuckDuckGo’s search engine API

This is DuckDuckGo’s search engine API.

Documentation: https:/ /api.duckduckgo.com/api
Server: https:/ /api.duckduckgo.com

GET /?q={query}&format=json&pretty=1

Example: /?q=cats&format=json&pretty=1
Example response:
{
 "Abstract" : "",
 "ImageWidth" : 0,
 "AbstractSource" : "Wikipedia",
 "meta" : {
 "src_domain" : "en.wikipedia.org",
 "blockgroup" : null,
 "is_stackexchange" : null,
 "dev_milestone" : "live",
 ...
<a bit too large to print>

2.6.4 Pirate talk API

And because the world needs more “pirate speak,” someone went and made an API
for that too!

Listing 2.5 Minimal Avatars API

Listing 2.6 DuckDuckGo API

Figure 2.6 Sample output of
the Minimal Avatars API

23HTTP for the brave
Documentation: https:/ /funtranslations.com/api/pirate
Server: https:/ /api.funtranslations.com

POST /translate/pirate.json?text={text}
Example:

POST /translate/pirate.json?text=Hello%20Good%20Sir
Note: %20 is URL encoding for spaces

Example response:
{
 "success": {
 "total": 1
 },
 "contents": {
 "translated": "Ahoy Good matey",
 "text": "Hello Good Sir",
 "translation": "pirate"
 }
}

2.7 HTTP for the brave
As promised, here is the bonus section on how to craft an HTTP request completely
from scratch. If you’re feeling less than brave, you’re welcome to give this section a
skip. There will be a bit of low-level jargon in this section, and you may spontaneously
start sporting a neck beard if you continue. You’ve been warned!

 There are two utilities you can use to open a TCP connection (a pipe you can read
data from and write it into) suitable for HTTP requests. The first is telnet, which is
available on most systems, and the other is OpenSSL, which is typically found on *nix
(Linux, macOS, etc.) systems. OpenSSL can be used to open a TCP connection over
SSL/TLS, which is necessary for HTTPS-only servers.

 We’re going to assume a *nix system here, as we haven’t tried these commands on
Windows. The syntax for telnet may differ on that system.

 The following two commands will open the connection.

$ telnet farmstall.designapis.com 80
Or for HTTPS sites...
$ openssl s_client -quiet -connect farmstall.designapis.com:443

After running either of those commands, your terminal will pause and wait for you to
enter the text you want to send to the server. By entering the content of listing 2.9, we
can get a list of reviews.

Listing 2.7 Pirate translator API

Listing 2.8 Opening a TCP connection

24 CHAPTER 2 Getting set up to make API requests

the
me
GET /v1/reviews HTTP/1.1 <enter>
Host: farmstall.designapis.com <enter>
<enter>

You should get back a response, including headers and a body. Here is an OpenSSL
example with its response.

$ openssl s_client -quiet -connect \
 farmstall.designapis.com:443
depth=0 CN = letsencrypt-nginx-proxy-companion
verify error:num=18:self signed certificate
verify return:1
depth=0 CN = letsencrypt-nginx-proxy-companion
verify return:1
GET /v1/reviews HTTP/1.1
Host: farmstall.designapis.com

HTTP/1.1 200 OK
Server: nginx/1.17.5
Date: Thu, 14 Nov 2019 09:24:50 GMT
Content-Type: application/json
Content-Length: 465
Connection: keep-alive
Vary: Origin
X-Ratelimit-Limit: 36
X-Ratelimit-Remaining: 35
X-Ratelimit-Reset: 1573723550

[{"uuid":"16f5e7e1-b581-4ca4-8af2-8dead5894869","message":"Was okay.",
"rating":3,"userId":""},{"uuid":"92da1efe-a0ab-40a5-bbb9-466e7c32e96d",
"message":"Was terrible.","rating":1,"userId":""},{"uuid":
"5ca80db6-82f7-41a6-8c54-19fb7db77a31", "message":"hello","rating":5,
"userId":""},{"uuid":"13151e0e-f3e7-4f33-ad5b-d4bda9adf496","message":
"hello", "rating":5,"userId":""},{"uuid":
"e4d99a5c-5883-43e7-8133-bb05bf34d0d9","message":"Was awesome!","rating":5,
"userId":""}]

Now let’s create a new review (and add a body to our request). After creating a con-
nection using the telnet or openssl command, type the content of the next listing.

POST /v1/reviews HTTP/1.1 <enter>
Host: farmstall.designapis.com <enter>
Content-Length: 37 <enter>

Listing 2.9 Using GET /v1/reviews over TCP

Listing 2.10 OpenSSL connection with a response

Listing 2.11 Creating a new review over TCP

This is the status line, which includes the
method, URI, and version of HTTP protocol.

The host header is important because
a lot of servers host multiple sites
and use the host header to determine
which site you are asking for.

A blank line separates the
headers from the body section.

The openssl command to
open up the connection

Some connection
details (not typed)

Typing out the
HTTP request

The start of the
response (not typed)

The response
body (not typed)

Use
 POST
thod.

Indicate the size of
the body (we counted
it for you).

25Summary
Content-Type: application/json <enter>
<enter>
{"message": "neckbeard", "rating": 5} <enter>

As soon as you hit that last <enter>, you should get a response. Note that if you
increase the Content-Length to a larger value, your response will only be returned
after you press Enter multiple times.

 That is the HTTP protocol, and you wrote GET and POST requests by hand! That is
brave.

Summary
 The FarmStall API is a trivial example designed for this book so we could illus-

trate an existing API.
 Postman is an HTTP client that can be used to execute requests against an API

and view the responses.
 Executing requests gives you a way to explore an API, to verify that it works, and

to inspect real data via the responses.
 HTTP requests can be written by hand using tools such as telnet for HTTP and

OpenSSL for HTTPS.

Specify the
media type of
the payload.

 Add a blank line to
separate the header
section from the body.

Enter the body
(all 37 characters
in this example).

Our first taste
of OpenAPI definitions
OpenAPI definitions are at the heart of automating our API workflows. They are
the slices of bread in a sandwich shop, the fruit on a breakfast buffet, and the
vanilla in vanilla muffins, which is our way of saying that they’re important.

 When we formally describe an API, we’re turning the idea of that API into
some data, which we call a definition. It differs from an informal description,
which has no strict rules or syntactical structure. Informal descriptions are akin to
documentation found on websites—great for humans to read, but hard for machines
to decipher.

 Once an API has been described in a definition, the definition can be used by
tools (machines) fueling different parts of the API ecosystem, such as API request
validation, code stubs, documentation, and more. Figure 3.1 illustrates where defi-
nitions fit into the scheme of things.

This chapter covers
 Informal versus formal descriptions

 Learning about the OpenAPI specification

 Learning about YAML

 Describing our first GET operation
26

27
If movies have taught us anything, it’s that machines shouldn’t have too much power,
else they’ll take over the world. However, they should be able to help us out just a little!

WARNING API definitions both excite and propel us, and as such, we will con-
tinue to wax lyrical on the merits of API definitions. You’ve been warned!

In this chapter we’re going to write a formal definition of a single operation from the
FarmStall API. To get there, we’ll first need to understand what that operation
requires. Then we’ll take a look at YAML, and finally we’ll write an OpenAPI defini-
tion fragment (not a complete OpenAPI definition).

 We’ll be touching on the following topics:

 FarmStall API—https://farmstall.designapis.com/v1
 YAML—https://yaml.org/
 OpenAPI specification—https://github.com/OAI/OpenAPI-Specification

We’ll also be covering GET operations and query parameters (see figure 3.2).

Design/create

Your code

OpenAPI tooling

Editor

Annotated

code

Extract

Generate

Generate

Generate

API docs

Server

stubs/mocks

Client SDKs

Design/create

Your code

OpenAPI tooling

Editor

Annotated

code

Extract

Generate

Generate

Generate

API docs

Server

stubs/mocks

Client SDKs

OpenAPI

definition

Figure 3.1 Tool and workflow examples around OpenAPI definition

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Figure 3.2 Where we are

https://farmstall.designapis.com/v1
https://yaml.org/
https://github.com/OAI/OpenAPI-Specification

28 CHAPTER 3 Our first taste of OpenAPI definitions
3.1 The problem
In this chapter we want to formally describe a single operation from the FarmStall
API. We’ll supply the details of that operation and build up to the fragment. We’re not
going to add the boilerplate required in an OpenAPI definition, so this definition
won’t pass validation. We’ll soon look at that.

 At the end of this chapter, we’ll have an OpenAPI fragment that looks like the
following.

/reviews:
 get:
 description: Get a list of reviews
 parameters:
 - name: maxRating
 in: query
 schema:
 type: number
 responses:
 200:
 description: A list of reviews

The following listing provides an informal description of FarmStall’s GET /reviews.

GET /reviews

Returns a list of reviews in the FarmStall API.
The list can be filtered down by the maxRating query parameter.
Each review is an object with at least the message and rating fields.

In addition to the critical parts of this operation, such as the method (GET) and the
URI (/reviews), we’ll also be describing the maxRating parameter (see table 3.1).
What we won’t be describing is the response body.

NOTE API descriptions fall on a scale from vague or useless to pedantically
precise. The latter is preferred but it’s sometimes too expensive or impracti-
cal to produce, so the usual goal is to achieve a good balance. A good rule of
thumb is to get the description to the point where developers are able to
build a client without having access to the hosted API. This will mean they
have enough information, though more is of course desirable—especially con-
sidering that the machines in the API ecosystem can leverage the information
in OpenAPI definitions. You’ll need to weigh the costs and ensure you don’t
waste time on noncritical parts of the system. You can also start with a basic

Listing 3.1 The OpenAPI fragment we’ll describe

Listing 3.2 Summary of GET /reviews

Table 3.1 Parameter of GET /reviews

Param Description Where Type Notes

maxRating Reviews below this rating Query Number 1-5 inclusive

29A quick refresher on YAML

p

definition and expand on it later to add more detail. At some point, however,
adding to the description might produce diminishing returns.

3.2 Introducing the OpenAPI specification
Formal descriptions need a standard or specification—a source of truth for how to
describe a thing. The OpenAPI specification is a formal way of describing RESTful or
HTTP-based APIs. It is tantamount to a template.

 If you do follow the template, both humans and machines will be able to make use
of your description via generally available tools. They’ll not only understand what
you’re describing but will also be able to use it as part of their system with far less
effort than if it were described using a bespoke specification.

 Let’s look at the following fragment of an OpenAPI definition.

openapi: 3.0.3
...
paths:
 /reviews:
 get:
 description: Get a bunch of reviews
 parameters:
 - name: maxRating
 description: |
 Filter the reviews
 by the maximum rating
 in: query
 schema:
 type: string
 responses:
 200:
 description: A bunch of reviews

First of all, what is up with the indentation? What are those dashes and those colons?
 That is YAML. If you know JSON, it’ll be pretty straightforward to understand, and

we’ll take a look at it in a bit. For now, we just want you to get a feel for what an
OpenAPI definition looks like.

NOTE An OpenAPI definition is a document that conforms to the OpenAPI
specification. If it breaks a rule set out by the OpenAPI specification, it’s said
to be “invalid.”

3.3 A quick refresher on YAML
To write our definitions, we need to use a data format that conforms to the OpenAPI
specification. You could use JSON, but if you try to write in JSON you’ll soon learn
that it can be painful.

 YAML is a popular alternative to JSON, particularly for those cases where you
might be required to write pieces of it by hand. YAML has far fewer restrictions than

Listing 3.3 A taste of OpenAPI

The path or URIThe
method

A human-readable
description of the
operation

The list of
arameters

The name of
this parameter

A human-readable
description of this
parameter

The type of
parameter

The schema
(values allowed)

The list of
responses

A status
code

A human-readable
description of the
response

30 CHAPTER 3 Our first taste of OpenAPI definitions
JSON, and it permits several ways of expressing the same piece of data (for example,
strings can be quoted or unquoted, and trailing commas are allowed).

NOTE OpenAPI supports both YAML and JSON documents, but we’ll only be
using YAML in this book.

One of YAML’s features is its support for flow types, which is what it calls the JSON-like
objects {} and arrays []. With this support it becomes a full superset of JSON, which is
awesome considering that all JSON documents are legal YAML documents. Hurrah!1

 JSON is arguably the standard when it comes to web communication. It is the low-
est common denominator of data types in most programming languages, it’s compact
and basic enough that most programmers can grok it (that is, understand it intui-
tively) pretty quickly, and the grammar of JSON is simple enough to fit on a business
card (see figure 3.3)!2

1 You may find fault with this statement (looking at you, Ron). An edge case, of no consequence, is that JSON
technically allows for duplicate keys, whereas YAML does not. No JSON parser we know implements this, nor
does it make sense to implement it. Ergo, YAML is a superset of JSON. See the YAML specification: https://
yaml.org/spec/1.2/spec.html#id2759572.

2 There are still parts of the specification that are ambiguous, like how deeply you can nest arrays and other
odd issues, but on the whole it does a very good job.

object

{ }

{ members }

members

pair

pair , members

pair

string : value

array

][

[elements]

elements

value

value , elements

value

string

number

object

array

true

false

null

string

""
" chars "

chars

char

char chars

char

any-Unicode-character-

except-"-or-\-or-

control-character

\" \f

\\ \n

\/ \r

\b \t

\u four-hex-digits

number

int

int frac

int exp

int frac exp

int

digit

digit1-9 digits

- digit

- digit1-9 digits

frac

- digits

exp

e digits

digits

digit

digit digits

e
e E

e+ E+

e- E -

object

{ }

{ members }
members
pair

pair , members
pair

string : value
array

][

[elements]
elements
value

value , elements
value

string
number
object
array

true

false

null

string
“ ”
“ chars ”

chars
char
char chars

char
any-Unicode-character-except-”-or-\-or-
control-character
\” \f
\\ \n
\/ \r
\b \t
\u four-hex-digitsnumber
int
int frac
int exp
int frac exp

int
digit
digit1-9 digits

- digit
- digit1-9 digits

frac
- digits
exp
e digits

digits
digit
digit digits

e

e E
e+ E+
e- E-

Figure 3.3 Mockup of Douglas
Crawford’s JSON grammar on a
business card

https://yaml.org/spec/1.2/spec.html#id2759572
https://yaml.org/spec/1.2/spec.html#id2759572
https://yaml.org/spec/1.2/spec.html#id2759572

31A quick refresher on YAML
3.3.1 From JSON to YAML

YAML originally stood for Yet Another Markup Language, but they changed it to
YAML Ain’t Markup Language. They may have really wanted a recursive acronym,
although the primary motivation for the changed name was to emphasize the data
aspect and deemphasize the markup side of it (for human-readable documents).

 The YAML specification itself is quite large and comes in different flavors (or sche-
mas). OpenAPI focuses on the bare minimum for its needs, which is the JSON schema
of YAML, version 1.2: https://yaml.org/spec/1.2/spec.html.

 All this talk of schemas and specifications can seem daunting, but YAML docu-
ments are quite easy to work with, as they’re essentially a prettier version of JSON. So
what does YAML look and feel like?

SomeNumber: 1
SomeString: hello over there!
IsSomething: true
Some Comment
SomeObject:
 SomeKey: Some string value
 SomeNestedObject:
 Key: With a nested key/value pair
AList:
- a string
- another string
SomeOldSchoolJSONObject: { one: 1, two: 2 }
SomeOldSchoolJSONArray: ["one", 'two', three]
MultiLineString: |
 hello over there,
 this is a multiline string!

For comparison, here is the same document in JSON format.

{
 "SomeNumber": 1,
 "SomeString": "hello over there!",
 "IsSomething": true,
 "SomeObject": {
 "SomeKey": "Some string value",
 "SomeNestedObject": {
 "Key": "With a nested key/value pair"
 }
 },

Listing 3.4 A taste of YAML

Listing 3.5 That same taste in JSON

Strings don’t need to be wrapped
in quotes, but they can be.

YAML supports comments, yay!

YAML uses indentation to nest objects and arrays,
somewhat like how Python uses indentation. It
doesn’t matter how many spaces or tabs you
use as indentation. As long as you’re consistent,
the YAML parsers will be happy.

You only have to be consistent
within the scope (within a map
or sequence).

YAML is a superset of JSON,
so you can stick pieces of JSON
wherever it feels natural.

YAML supports multiline strings, although there are many
different variants (see YAML Multiline for more details:
https://yaml-multiline.info/). The | variant keeps newlines
between paragraphs and a single newline at the end of
the string.

https://yaml.org/spec/1.2/spec.html
https://yaml-multiline.info/

32 CHAPTER 3 Our first taste of OpenAPI definitions
 "AList": [
 "a string",
 "another string"
],
 "SomeOldSchoolJSONObject": {
 "one": 1,
 "two": 2
 },
 "SomeOldSchoolJSONArray": [
 "one",
 "two",
 "three"
],
 "MultiLineString": "hello over there,\nthis is a multiline string!\n"
}

As you can see, YAML is quite similar to JSON, and because OpenAPI only supports
the data types that are in JSON, the two are interchangeable according to OpenAPI
parsers. While YAML supports a multitude of more advanced features that JSON
doesn’t (such as advanced/custom data types, anchors, etc.), those advanced features
aren’t interesting for our purposes, as they don’t relate to describing OpenAPI defini-
tions. To find out more about YAML and its flavorful features, take a look at the YAML
home page: https://yaml.org/.

 With YAML, we can write data. That alone is quite a powerful concept, but we’re
after bigger fish—OpenAPI uses YAML to describe APIs, and we want OpenAPI.

3.4 Describing our first operation
We’ll define an operation as a URL and a single method. For example, GET /reviews
is an operation, and it’s separate from POST /reviews. In this chapter we’ll focus on
describing the GET /reviews operation sufficiently so that we can execute requests.

 We know the following critical information:

 We know the path: /reviews.
 We know the method: GET.
 We know that this operation returns a list of reviews.

Let’s start forming our OpenAPI definition.

/reviews:
 get:
 description: Gets a bunch of reviews.
 responses:
 200:
 description: A bunch of reviews

Listing 3.6 The bare bones of our first operation

The path, relative to the server.
More on that in the next chapter.

The method in
lowercase (in HTTP
itself, methods are
in uppercase)

The textual description of
the operation (not required
but often useful)

The responses
object, which
holds the different
responses

The 200 response (we can only
describe one response per status
code—this isn’t a hindrance, as we
can model complex responses)

The textual response description (this is
the only required field in a response)

https://yaml.org/

33Extending our first operation
Those are the core details of the operation, described according to OpenAPI’s specifi-
cation. This is a fragment of an OpenAPI document, not a full one yet. We’ll be insert-
ing this fragment into a more complete OpenAPI definition in the next chapter.

 You may be wondering, “What about the query parameter?” and you’re quite right
to do so. We need to add maxRating.

3.5 Extending our first operation
Building on top of our initial OpenAPI fragment, we can describe the query parame-
ter. The maxRating parameter serves the purpose of filtering the reviews by rating,
up to (and including) the maxRating value.

 Once again, table 3.2 shows the parameter for GET /reviews. We can glean the
following:

 We know that it’s a number from 1 to 5 (inclusive).
 We know that it appears in the query string.
 We know that it’s called maxRating.

To describe this parameter, we’d use the following.

name: maxRating
description: Filter reviews by the maximum rating
in: query
schema:
 type: number

Okay, so that’s a little more involved and a little more OpenAPI-ish. This is another
fragment. It doesn’t stand on its own, so we need to add it to the operation we
described in listing 3.6. The following listing shows the preceding fragment copied
into its rightful place.

/reviews:
 get:
 description: Get a bunch of reviews.
 parameters:
 - name: maxRating

Table 3.2 Parameter of GET /reviews

Param Description Where Type Notes

maxRating Reviews below this rating Query Number 1-5 inclusive

Listing 3.7 The maxRating query parameter

Listing 3.8 Adding the maxRating query parameter to our OpenAPI definition

The name of the parameter A textual description of
the parameter, useful
for humans

The location of the parameter
(we’ll see options other than
“query” later)

The schema of
the parameter This simple schema just says

it needs to be a number.

The parameters
field

The parameter
object and first field

34 CHAPTER 3 Our first taste of OpenAPI definitions
 description: Filter reviews by the maximum rating
 in: query
 schema:
 type: number
 responses:
 200:
 description: A bunch of reviews

Here we have our original fragment (from listing 3.6), and to it we have added a
parameters field, which is an array of parameters. You may have noticed the dash (-)
before the name field, which indicates an array item that is an object (name, descrip-
tion, in, and schema are fields of that object).

Summary
 The difference between formal and informal descriptions is whether they fol-

low strict rules (a specification). A formal description can be more readily con-
sumed by software, whereas informal descriptions cannot.

 OpenAPI is a formal specification for describing HTTP-based APIs. An OpenAPI
definition is a YAML (or JSON) file that describes an HTTP API.

 YAML is a data language that OpenAPI definitions are based on. It is a superset
of JSON and is designed to be written by hand and read by machines.

 OpenAPI only supports the “JSON schema” flavor of YAML, which means it
only supports the data types that JSON supports, and nothing more.

 By using OpenAPI, it is possible to describe operations and their parameters
(and more, as you’ll see in future chapters).

The end of the parameter object
(note that the indentation
changes in the next line)

Using Swagger Editor
to write OpenAPI

definitions
OpenAPI definitions have a lot of nuances that most of us can’t be bothered to learn
right away. This is often the way of the developer—jumping into a new technology
and trying to hack it out until it looks right and hopefully works. However, we often
stumble and end up reading the documentation anyway, just enough to get the job
done. A better approach is to try to minimize the amount of documentation we actu-
ally need to know by building tools that can help guide our actions.

 Swagger Editor is one such tool for writing OpenAPI definitions. It is a web appli-
cation hosted at https://editor.swagger.io, or it can be downloaded and self-hosted.
Like a lot of Swagger tools, it is open source. The web application contains both a
text editor and a panel showing the generated documentation. The documentation
pane shows the results of what we type, giving us immediate feedback and a great

This chapter covers
 Introducing Swagger Editor

 Writing the smallest OpenAPI definition in
Swagger Editor

 Adding GET /reviews from the last chapter into
our definition

 Interacting with the API in Swagger Editor
35

https://editor.swagger.io

36 CHAPTER 4 Using Swagger Editor to write OpenAPI definitions
affirmation that we typed the right things. We also get validation on the definition,
which means that if we type something incorrectly, it’ll shout at us and (hopefully) give
us insight into fixing it. It is primarily used as a design tool (see figure 4.1).

In the previous chapter we described a single operation (GET /reviews) using OpenAPI,
but we didn’t write a complete definition, only part of one. In this chapter we’re going to
use Swagger Editor to create a valid, if small, OpenAPI definition, by writing the neces-
sary boilerplate required for a full OpenAPI definition (see figure 4.2). After that, we will
add in the description of GET /reviews from the previous chapter. At the end of this
chapter we’ll have our very first OpenAPI definition for the FarmStall API!

Your code

OpenAPI tooling
Annotated

code

Extract

Generate

Generate

Generate

API docs

Server

stubs/mocks

Client SDKs

Your code

OpenAPI tooling
Annotated

code

Extract

Generate

Generate

Generate

API docs

Server

stubs/mocks

Client SDKs

OpenAPI

definition

Design/create

Editor

Figure 4.1 Role of Swagger Editor in the OpenAPI ecosystem

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Figure 4.2 Where we are

37Introducing Swagger Editor
4.1 Introducing Swagger Editor
To begin our journey into Swagger Editor, let’s load it up and look at some of the fea-
tures. As mentioned previously, it is an open source web application. We can either
use the online version or host it ourselves using a web server (there is a Docker version
too). For simplicity’s sake, we’ll stick to the online version, which should be very close
to the latest version of the application.

 At the time of writing, https://editor.swagger.io looked like figure 4.3, with the
Editor panel on the left, the UI Docs panel on the right, and a toolbar at the top.

4.1.1 The Editor panel

The Editor panel is the text editor where we will write the YAML for our OpenAPI
definition. The content of this panel will be our OpenAPI definition.

4.1.2 The UI Docs panel

The UI Docs panel reflects what is in the Editor panel. This panel is an embedded ver-
sion of another Swagger tool called Swagger UI (you’ll meet the standalone version
later in the book). As you type or make changes in the Editor panel, you will see
immediate feedback in the UI Docs panel. This will give you some level of confidence
in what you’re writing.

Toolbar
Editor panel
(OpenAPI YAML editor)

UI Docs panel
(Swagger UI)

Figure 4.3 Swagger Editor’s initial page

https://editor.swagger.io

38 CHAPTER 4 Using Swagger Editor to write OpenAPI definitions
4.1.3 The toolbar

The toolbar contains some options for importing (or fetching) a definition from a
URL, a menu for generating code stubs and SDKs (we’ll cover Codegen in chapter 13),
and some utilities to help generate OpenAPI fragments. We won’t be looking at the
File or Edit menus of the toolbar in this book, but it is useful to know that those
features are there.

4.1.4 Persistence

The first time you visit the Swagger Editor web app, it will be preloaded with an
example OpenAPI definition. As a convenience, any changes you make to the YAML
will be stored in your browser. This means that if you reload the page or visit the site
at a later time, your changes should still be there. This is only meant as a conve-
nience and isn’t foolproof! It is prudent to save a copy of your definition outside of
the tool, if it’s important to you.

4.2 Writing the smallest OpenAPI definition
in Swagger Editor
Before we can start describing the operations of the FarmStall API, we need to write
some boilerplate OpenAPI to set the stage. We’ll start by outlining the smallest valid
OpenAPI definition.

 After we’ve looked at what’s involved in a valid definition, we’ll hop over to Swag-
ger Editor and write it out using that tool. This definition will serve as the base of our
FarmStall API definition. As we go through the next few chapters, we’ll continue to
flesh out the details and describe more areas of the API.

4.2.1 The smallest valid OpenAPI definition

The following three things are needed for the smallest possible OpenAPI definition:

 The OpenAPI identifier and the version of OpenAPI used
 The info object with the title and version fields
 An empty paths object

The Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1 specifications
At the time of writing, Swagger Editor will load up the Petstore API, written with the
Swagger 2.0 specification, so take care if you’re using it as the basis for learning the
specification. In this book we describe APIs using the OpenAPI 3.0 specification,
which is encouraged over Swagger 2.0. To learn about the differences between Swag-
ger 2.0, OpenAPI 3.0, and the latest OpenAPI 3.1, see the appendix.

Why aren’t we using OpenAPI 3.1? Because the tooling support for that version isn’t
nearly as stable as tooling for OpenAPI 3.0. Fortunately, the differences between the
two aren’t as large as those between Swagger 2.0 and OpenAPI 3.0.

39Writing the smallest OpenAPI definition in Swagger Editor
To identify this YAML document as being an OpenAPI definition, we need to first
include the openapi field. Its value is the version of the OpenAPI specification
we’re using.

openapi: 3.0.3

That’s not exactly thrilling, but necessary. Let’s move on to the metadata of the API.
 We need a title and a version (the version of the API definition, not of the spec-

ification); both of those fields fall under the info object. When we write it out, it looks
like the following listing.

openapi: 3.0.3
info:
 title: FarmStall API
 version: v1

That’s starting to look a little more interesting. We can finish this off and make it a
valid OpenAPI definition by adding the last required field: paths. We’ll leave the
value of paths empty for now—later it will hold the GET operation we described in
the last chapter.

openapi: 3.0.3
info:
 title: FarmStall API
 version: v1
paths: {}

At last we have the smallest, most Spartan, yet valid OpenAPI definition!
 We’ve effectively described very little, but we’re on the road. For our next trick,

we’re going to write this definition in Swagger Editor and see what that feels like.

4.2.2 Writing in Swagger Editor

To get started with Swagger Editor, visit https://editor.swagger.io, and then follow
these steps:

1 Clear out the Editor panel (on the left).
2 Type in the minimal OpenAPI definition (listing 4.3).
3 See what happens.

Listing 4.1 Just the openapi field

Listing 4.2 The openapi field and info object

Listing 4.3 A minimal OpenAPI definition

We’re using version
3.0.3 of OpenAPI.

The info object stores the metadata
of the API we’re describing.

The title of the API—a human-
friendly name for the API

The version of the API, which can be any
string. We’re using the old fashioned v1.

The paths field is currently an
empty object. We’ll expand on
that later in this chapter.

https://editor.swagger.io

40 CHAPTER 4 Using Swagger Editor to write OpenAPI definitions
There are two ways to quickly clear the editor:

 Click in the Editor panel so that you see a cursor blinking. Then press Ctrl-A or
Cmd-A to select all the YAML within the editor, and delete it by pressing the
Delete or Backspace key.

 Alternatively, there is an option in the Toolbar: File > Clear Editor.

You should now have no YAML in the editor and a sad-looking UI Docs panel. It’s
time to write out our bare bones definition, so go ahead and copy or type out the
minimal OpenAPI definition from listing 4.3. If you get it right, it’ll look some-
thing like figure 4.4. You’ll see the metadata from the minimal OpenAPI definition
(title and version).

Whoop! Much happiness abounds. We’ve done just enough work to form a coherent
definition. Now we can go home and party like it’s New Year’s Eve.

4.2.3 A word on validation

As we write, we sometimes make mistakes. Some of them can be happy accidents,1 but
most will be silly little things and typos. Swagger Editor will try to help out, mostly
by gently prodding you from the UI Docs panel. The validation happens as you are
typing (for instant feedback), so you can expect it to complain a bit as you type.

1 Yeah, Bob Ross rocks!

Title VersionTiniest OpenAPI definition

Figure 4.4 The smallest OpenAPI definition in Swagger Editor

41Adding GET /reviews to our definition
 Figure 4.5 shows what an error looks like, so you know what’s happening.

4.3 Adding GET /reviews to our definition
After your celebrating has subsided, it’s time to add an operation to Swagger Edi-
tor. We want our efforts from the previous chapter to be recorded in this new
OpenAPI definition.

 We’re going to add our previous fragment (listing 3.8) under the paths object,
because that’s where it belongs. Together they’ll look like this.

openapi: 3.0.3
info:
 title: FarmStall API
 version: v1
paths:
 /reviews:
 get:
 description: Get a bunch of reviews.
 parameters:
 - name: maxRating
 description: Filter the reviews by the maximum rating
 in: query
 schema:
 type: number

Listing 4.4 OpenAPI definition of the FarmStall API with one operation

Error: Title should
be indented

Line
indicators Jump to line Validation box

Figure 4.5 A validation error in Swagger Editor

We add our operation into
the paths object
(removing the empty {}).

Our GET /reviews operation
is nestled lovingly within
the paths object.

42 CHAPTER 4 Using Swagger Editor to write OpenAPI definitions
 responses:
 200:
 description: A bunch of reviews

When you add that into the Swagger Editor, you’ll see something like figure 4.6.
You can see the operation and can click on it to see the details within.

Awesome. At this point you might be satisfied that our definition serves a good pur-
pose—it has automagically generated documentation. But you might be wondering, is
there anything more we can do? Well, we can interact with the API!

4.4 Interacting with our API
The UI Docs panel of Swagger Editor has a nifty little tool built in. It has an API con-
sole or, as its known in the tool, the try-it-out feature. This tool allows you to execute
API requests from within Swagger Editor, to see if they work and what they return.
This can help a lot when you’re describing an existing API, since it allows you to con-
firm that the operations work as you’ve described them.

 We are missing one key element to make this work—let’s try to figure out what it is.
We will try to execute our definition and see what happens.

The updated UI Docs panel

An operation Click to expand

Try-it-out
button

A parameter

The updated YAML

Figure 4.6 Swagger Editor with the start of the FarmStall API

43Interacting with our API
4.4.1 Executing GET /reviews

To execute the GET /reviews operation, there are several steps:

1 Expand the operation (see figure 4.6).
2 Click the Try It Out button to enable the feature.
3 Fill in any parameters (see figure 4.7).
4 Click the Execute button.

If you follow the steps (it’s encouraged), you won’t find much joy. The request
should fail (see figure 4.8), and perhaps you can guess at the reason: we don’t know
where the server/host is!

 Do you see the issue? The try-it-out feature believes our server to be https://editor
.swagger.io itself! We’re trying to call GET https:/ /editor.swagger.io/reviews. This
is expected behavior, because a common pattern is to serve a version of Swagger Edi-
tor (or the UI Docs panel only—the Swagger UI) with the API itself. A hosted Swagger
UI could be found on the same URL as the API (e.g., https://example.com/api-docs),
and in that case the behavior of using the hosted URL as the base URL makes sense.

 Our problem is that we haven’t described where the API is hosted. Fortunately
there is a simple solution for that: the servers field.

Input now enabled

Try It Out
was clicked

Giant execute button

Figure 4.7 Swagger Editor after the Try It Out button has been clicked

https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io
https://example.com/api-docs

44 CHAPTER 4 Using Swagger Editor to write OpenAPI definitions

4.4.2 Adding servers to our definition

Once it’s described, our server object will look like the following.

servers:
- url: https:/ /farmstall.designapis.com/v1

We can easily add this servers object into our API definition.

Listing 4.5 The servers array

The URL used for this request

The response after executing

Status code + status message

Response body

Response headers

The responses we’ve described

Figure 4.8 Swagger Editor after the try-it-out execution failed

The servers field An array item (-) with an object with the
single field (url). Its value shows where
the server is hosted. It’ll serve as the
base for all paths in this definition.

45Interacting with our API
openapi: 3.0.3
info:
 title: FarmStall API
 version: v1
servers:
- url: https:/ /farmstall.designapis.com/v1
paths:
 # ... our operation

Adding the servers field should produce a new dropdown in the UI Docs panel. It’ll
just contain the one server, and that’s fine. Naturally the try-it-out feature will pick up
on this server and use it as the base URL, as you can see in figure 4.9.

4.4.3 Executing GET /reviews (again)

Cool. Now go ahead and execute the GET /reviews operation again. With the
server added, you should get a taste of success—something that looks dangerously
like figure 4.10.

 Congratulations! You’ve successfully described a part of the FarmStall API! We
used Swagger Editor to help with the writing, and we then got some feedback by using
the try-it-out feature. Going forward there are lots of interesting things we can con-
tinue to describe, from complex models to security features. Slowly we’ll shape and
describe the FarmStall API until developers around the world will find it straightfor-
ward to implement and consume.

Listing 4.6 OpenAPI definition of FarmStall with servers added

The servers array
added to the root of
our API definition

We redacted the paths
content for brevity.

Added server to servers array

Figure 4.9 Swagger Editor with an added server

46 CHAPTER 4 Using Swagger Editor to write OpenAPI definitions
Summary

 We introduced Swagger Editor, a tool where you can write OpenAPI definitions
and see feedback in the UI Docs panel.

 The smallest valid OpenAPI definition includes the following fields: openapi
(version of the specification), info (metadata of the API), and paths (where
our operations are defined).

 The info field has two child fields: title and version. The title is the
human-friendly name of the API, and version is the version of the API defini-
tion (the YAML file).

 Operations can be added under the paths field. The direct children of these
are URIs (such as /reviews) and the children under the URIs are methods
(such as get). Finally, the fields under the methods detail the operations (such
as description, parameters, responses).

 To describe where the API is hosted (the FarmStall API in this case), there is the
root-level servers field. It is an array of server objects where, at minimum, a

The URL used for this request
The response after executing

Status code + status message

Response body

Response headers

Figure 4.10 Swagger Editor try-it-out succeeded!

47Summary
url field is defined. For this chapter we had a single server object with a url
pointing to https://farmstall.designapis.com/v1.

 Swagger Editor includes a try-it-out feature that allows you to execute requests
based on the OpenAPI definition.

https://farmstall.designapis.com/v1

Describing API responses
In this chapter we’re going to describe a simple HTTP response with OpenAPI and
add it to our FarmStall API definition. We’ll look at the components of an HTTP
response, comprising three parts: a status code, a set of headers, and an optional
body. We’re going to focus on the status code and body for now (see figure 5.1).
Headers will be covered incrementally throughout the next chapters.

 Describing response bodies is an important part of communicating an API.
Consumers need to know what the API will return when they call it from their
applications.

This chapter covers
 Learning about JSON Schema and how to

describe data

 Describing the 200 response of GET /reviews

 Adding a response definition to our FarmStall API
48

49HTTP responses
5.1 HTTP responses
When describing a response in OpenAPI, you’ll need at least a status code and a
description. If there is a response body, it must include at least one media type (such
as application/json). Response bodies are where all the exciting bits are.

 To describe the shape of the data, OpenAPI adopted the JSON Schema (https://
json-schema.org/) specification, which was designed to describe what goes into a
JSON document. Different versions of OpenAPI support different versions of JSON
Schema. In this book we’ll almost exclusively look at OpenAPI 3.0.x, which deals with
JSON Schema draft 04, while OpenAPI 3.1+ supports JSON Schema draft 2020.1 The
change to supporting JSON Schema draft 2020 is quite large, and the tooling will
take time to catch up. We’ll cover the major differences in the appendix. For now
we’ll refer to JSON Schema draft 04 and the OpenAPI modifications collectively as
JSON Schema.

Listing 5.1 gives a quick glance at a sample response definition.

1 JSON Schema versions are a little confusing. They use “draft,” as they’re following the IETF protocol for
becoming an internet standard.

Why are there differences between OpenAPI and JSON Schema?
JSON Schema is a specification for describing JSON data, and OpenAPI is a specifi-
cation for describing REST APIs, which can contain JSON data.

When OpenAPI wrestled with how they were going to describe this data, they
needed something that would work for XML, JSON, and FormData. They chose JSON
Schema as the specification to model the data shapes, but they needed to make
some tweaks to support XML and FormData. They were also very interested in gen-
erating code from OpenAPI definitions, so they further tweaked the JSON Schema
to be more deterministic. This decision to use a variation of JSON Schema
remained controversial, which motivated the move to full JSON Schema support in
version 3.1.0 of OpenAPI.

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Figure 5.1 Where we are

https://json-schema.org/
https://json-schema.org/
https://json-schema.org/
https://json-schema.org/
https://json-schema.org/
https://json-schema.org/

50 CHAPTER 5 Describing API responses
responses:
 200:
 description: A human description
 content:
 application/json:
 schema:
 type: object
 properties:
 # ...

Let’s learn more about describing data.

5.2 The problem
Our task in this chapter is to describe the (successful) response to the GET /reviews
operation and add it to our burgeoning FarmStall API definition. The response is a
JSON array of the objects listed in table 5.1.

We’re going to take that response information and translate it into the OpenAPI for-
mat, using OpenAPI’s slight variant of JSON Schema, which we will look at first. The
definition will ultimately look like listing 5.2, which has some sections commented out
for brevity. Here you can see some familiar terms like string, integer, and object.
We’ll show the power of this structure and how it can be used to describe data ranging
from simple and plain to intricate and complex.

openapi: 3.0.3
...
paths:
 /reviews:
 get:
 # ...
 responses:
 '200':
 description: A bunch of reviews
 content:

Listing 5.1 An example response definition

Table 5.1 The 200 response to GET /reviews

Field Type Description Limits

uuid string The ID of the review UUID

message string The review notes

rating number The rating of how good the experi-
ence was, with higher being better

1–5 inclusive, whole number

userId string or null The ID of the author UUID, or null for anonymous

Listing 5.2 The GET /reviews response body

The status code

The description

The media type for JSON

The schema (OpenAPI’s
flavor of JSON Schema)

200 response
Human-readable
description

Response body

51JSON Schema
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 uuid:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 message:
 type: string
 rating:
 type: integer
 minimum: 1
 maximum: 5
 userId:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 nullable: true

Before we add our GET /reviews response to our definition, we’ll take a look at JSON
Schema on its own.

5.3 The mind-blowing world of data schemas
Suppose someone sends you some data in JSON format, but they don’t tell you what’s
in the data. What can you do with it?

 You might imagine some interesting ways to handle unknown data—perhaps you’d
employ a data discovery algorithm. But you could equally answer with, “Not much can
be done with unknown data.” And, in truth, most applications do require the con-
sumer to know what structure the data will be in, which also includes what structure that
data can be in. This makes sense, since we must be able to make some assumptions
about the data in order to make use of it. The more we understand it, the more we
can do with it.

 We like to refer to the schema of data as its shape. A triangle will fit into a triangular
hole and a circle into a circular hole. Similarly, the data needs to fit the consumer’s
application. Knowing the shape of the data allows us to build useful things (although
building useless things can be as fun).

 We’re going to look at how we can describe JSON data. As mentioned before,
OpenAPI uses a slight variation of the industry standard JSON Schema, so that’s
what we’re using here. We’ll also note deviations between the standards when we
bump into them.

5.4 JSON Schema
You may have encountered other schemas before. JSON Schema is a way to say what
can and cannot be done with JSON, much like XML Schema does for XML.

Media type

Schema of the
response body (for
the 200 response)

Type of schema

Schema for array items

Fields of the
object, with each

being a schema

52 CHAPTER 5 Describing API responses
 In this section we’ll give you a taste of JSON Schema by describing an object that
has a rating field in it. We’ll be aiming to describe the following JSON data.

{
 "rating": 3
}

Listing 5.3 shows an object with a single field, rating. As you saw in table 5.1, the
value in the rating field cannot be more than 5 or less that 1. It is also a whole num-
ber (not a float, such as 1.3 or 2.9). That’s summed up in table 5.2.

Taking that info, we’ll build up the following JSON Schema fragment.

type: object
properties:
 rating:
 type: integer
 minimum: 1
 maximum: 5

5.4.1 The type field

We have to describe a JSON object with a single field. Where do we start? Well, we
could start by saying that the root-level type is an object.

type: object

According to a given schema, data can be valid or invalid. This is core to understand-
ing JSON Schema. The use cases for schemas is large, but at their heart, they are all
about validating data.

 Throughout this chapter we’ll look at how schemas validate data. There are many,
many libraries and tools for validating data, but for now we’ll only talk about valida-
tion, and not about the tools that do the validating.

Listing 5.3 Sample object with a single field

Table 5.2 The rating field’s requirements

Field Type Description Limits

rating number The rating of how good the experience was,
with higher being better

1–5 inclusive, whole number

Listing 5.4 JSON Schema for the rating field

Listing 5.5 JSON Schema for a simple object

This says an object
is required.

53JSON Schema
 Table 5.3 shows how our simple object schema in listing 5.5 validates some data.
As you can see, "hello" isn’t an object, whereas {} and {"rating": 1} both are.
Right off the bat we can declare the type of the data with this type field. It is
required for all JSON Schemas.

5.4.2 Adding a field to an object

Let’s extend our schema to include the rating field.

type: object
properties:
 rating:
 type: number

Let’s validate some data against this updated schema. Note in table 5.4 how extra
fields are fine in this schema. This is the default behavior, but it can be changed to
limit the schema to only the fields that are defined.

5.4.3 The minimum and maximum keywords

We’ve increased the specificity of our schema to not only require an object, but to
require an object that has a field called rating. We’ve also specified that the field
needs to have a number for a value. Not bad, but we’re still not quite there with our
requirements. The ratings are not supposed to go above 5, let alone 100!

Table 5.3 Validating JSON against the simple object schema

JSON Valid Description

{"rating": 3} Valid It’s an object with a field.

"hello" Invalid Expected an object but found a string.

{ } Valid There’s nothing wrong with an empty object.

Listing 5.6 Adding the rating field

Table 5.4 Running validation on the expanded schema in listing 5.6

JSON Valid Description

{ "rating": "hi" } Invalid Expected a number but found a string.

{ "rating": 100 } Valid 100 is a valid number.

{ "rating": 100, "a": "b" } Valid Extra fields are fine (by default).

When the type is object, we can declare
the properties keyword, which shows
which fields it’s allowed to have.

Each key under properties
is a field, where the value
is the schema for that
field.The rating field is declared

to have a type of number.

54 CHAPTER 5 Describing API responses
 We can use the minimum and maximum keywords to limit the range of allowed
numbers.

type: object
properties:
 rating:
 type: number
 minimum: 1
 maximum: 5

Table 5.5 shows validation with maximum and minimum.

JSON Schema defines other fields similar to minimum and maximum that allow develop-
ers to be very specific in defining constraints for their data. In this chapter we focus on
a few that are helpful for the FarmStall API response. In chapter 19 we’ll discuss more
of these JSON Schema constraints.

5.4.4 Number vs. integer

Our schema is shaping up, but we can still get a few unwanted results, such as floating-
point numbers (numbers with decimal points). Our requirements specifically say
whole numbers, so our rating system will likely not handle those in-between values,
but we can sort that right out.

 JSON Schema has two number types: number and integer. As you can see, the lat-
ter is a more limited variant that only includes negative, zero, and positive whole num-
bers. Perfect for our needs!

type: array
items:
 type: object
 properties:
 rating:
 type: integer
 minimum: 1
 maximum: 5

Listing 5.7 JSON Schema of rating

Table 5.5 Running validation on the limited number schema

JSON Valid Description

{ "rating": 1 } Valid 1 is a valid number.

{ "rating": -48 } Invalid Negative numbers are below 1.

{ "rating": 1.43 } Valid Uh oh. It’s valid, but we don’t want decimals.

Listing 5.8 Limiting the rating field

Just like “properties” applies to “type:
object,” there are other modifiers. For “type:
number” we can declare a minimum value.

We can also declare a
maximum. The values are
inclusive (meaning 5 is allowed).

We’ve changed to the
integer type, which
includes whole
numbers only.

55Status codes
Table 5.6 validates our freshly limited number type! Whoop! We now have a schema
that correctly represents our rating field.

Eager as we are to add more fields, we need to take a step back and head over to
OpenAPI where we can describe the response. In particular, we’ll look at the status
codes first. This will give our schema a home in the OpenAPI definition before we
describe our response to its fullest.

5.5 Status codes
Status codes are those three-digit codes that we find in an HTTP response. They are
three-digit numbers from 100 to 599 inclusive that indicate the high-level semantics of
the response. Broadly speaking, we can think of these statuses as the success or failure
of the request. Perhaps the best-known status code, and an example of a failure, is 404
Not Found, which of course means that the resource you’re after isn’t there, or you
don’t have authorization to know if it exists.

 The HTTP specification puts status codes into five categories, with each category
being a range of codes. For example, the 200–299 (or 2xx) category includes those
codes that indicate the request was successful. Table 5.7 lists those categories.

Table 5.8 lists some specific status codes and their semantics.

Table 5.6 Validating against whole numbers

JSON Valid Description

{ "rating": -48 } Invalid Number is too low (less than 1)

{ "rating": 3.43 } Invalid Expected an integer but found a number

{ "rating": 5 } Valid Perfect

Table 5.7 Status code categories

Range Category Notes

1xx Informational The most common is when a websocket connection is upgraded.

2xx Success This indicates some form of success, like the general 200 or the 201 for
“created.”

3xx Redirects The resource has a different location/URI.

4xx Client error The client did something wrong, like misspell a resource or provide invalid
details.

5xx Server error The server hit an error that isn’t a fault of the client.

56 CHAPTER 5 Describing API responses
For more information, see the MDN article on HTTP response status codes: http://mng
.bz/zQ1X. For fun, see the cat (https://http.cat/) and dog (https://httpstatusdogs
.com/) interpretations of these status codes.

5.6 Media types (aka MIME)
HTTP is a multimedia protocol, and it can handle requests and responses in many
different formats. To indicate what format the data is in, it includes a header, typi-
cally Content-Type, with a media type as its value. Media types, or Multipurpose Internet
Mail Extensions (MIME), are a way to indicate data formats. The list is standardized
by the Internet Assigned Numbers Authority (IANA) and indicates what format a
request (or response) body is in. These media types were adopted from the email
standards, so you may see the terms “MIME” and “media type” used interchangeably.
For most purposes they mean the same thing. It is preferred to use “media type”
going forward, so that’s what we’ll do in this book.

 A media type has a “type” and a “subtype” and optional parameters (see the MDN
article on MIME types for more info: http://mng.bz/GG7R). The type is the category,
such as text, audio, image, font, etc. The subtype makes it concrete: text/plain,
image/png, etc. Table 5.9 lists some common data formats.

Table 5.8 Status code examples

Status Status text Description

101 Switching protocols Typically used to upgrade to a websocket connection.

200 Ok The request was successfully executed.

201 Created A new resource was successfully created.

301 Moved permanently Redirect to another URL, which the client can always do in future.

403 Forbidden Elevated permissions are required.

404 Not found The resource asked for was not found.

504 Gateway timeout The proxy or gateway could not reach the backend server.

Table 5.9 Common media types for data

Media type Description

text/html The HTML you get back from a web server

text/csv Comma-separated values

image/png PNG encoded image

application/json JSON data

application/xml XML data

http://mng.bz/zQ1X
http://mng.bz/zQ1X
http://mng.bz/zQ1X
https://http.cat/
https://httpstatusdogs.com/
https://httpstatusdogs.com/
https://httpstatusdogs.com/
http://mng.bz/GG7R

57Describing the GET /reviews response

T

That should keep us abreast of media types for now. Let’s get back to the OpenAPI
side of things.

5.7 Describing the GET /reviews response
Now that we’ve had a brief overview of the moving parts in an API response—JSON
Schema, status codes, and media types—it’s time we combined them into our OpenAPI
definition.

5.7.1 Smallest response in OpenAPI

You already saw the smallest (the minimum) response in listing 4.3, as we needed it to
form a valid OpenAPI definition. But we didn’t really look closely at it.

 Inside each operation, we can describe several responses, one for each status code.
The responses all go under the responses field. Each key in the responses field is a
status code, and its value is a response definition object. The only required field in a
response definition object is the description field, which is for humans to read.

paths:
 /reviews:
 get:
 responses:
 '200':
 description: A list of reviews

Voilà! This is the start of our GET /reviews - 200 response. Time to add some meat to
those bones.

5.7.2 The GET /reviews 200 response body

So far we have the skeleton of a response, but before we can add in the JSON Schema,
we need to write out some more details for the response body—details such as the
content (response body) field and at least one media type (application/json).

Media types and wrapper formats
You may find suffixes in some media types that indicate a wrapper format. For example,
the SVG media type used for scalable images has the media type of image/svg+xml,
which has the suffix +xml. This indicates that the format is XML but that it will be com-
pliant with the SVG schema.

Occasionally API designers will use custom (or vendor) media types to version the
API. These vendor extensions can also make use of a suffix to indicate the wrapper
format. An example of this in the wild is application/vnd.github.v3+json, which
is for version 3 of GitHub’s public API. You’ll note that it uses JSON as a wrapper
format. You’ll learn more about this practice in chapter 20.

Listing 5.9 The bare minimum response definition

The operation under which
we’re describing responses

The responses keyword
he status
code as a

string The description keyword,
mostly for humans

58 CHAPTER 5 Describing API responses
 We’ll start our schema simple and gradually make it more specific. We’ll first
declare the response body as an array—an array of anything at this point. This
schema, although broad, will validate the data of our response, and that’s what’s
important. We will then add more details and constraints to that schema as we go on.

 The following listing shows our response with a body definition.

#...
paths:
 /reviews:
 get:
 # ...
 responses:
 '200':
 description: A bunch of reviews
 content:
 application/json:
 schema:
 type: array

5.7.3 Adding the rating field to our response body

The first field we want to add is rating. It’ll represent the rating that the review got,
where 1 is the poorest and 5 is the most glowing rating. We already described this field
in our first taste of JSON Schema in listing 5.8. We’ll now add it to our definition.

 Our current response body describes an array of anything. Let’s change that to be
an array of objects, with the rating field in them. There is a fair bit of YAML in the
following listing—take a moment to digest it.

#...
paths:
 /reviews:
 get:
 # ...
 responses:
 '200':
 description: A bunch of reviews
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 rating:
 type: integer
 minimum: 1
 maximum: 5

Listing 5.10 The response body boilerplate

Listing 5.11 A response body with a rating field

The response
body goes

under content.

The media type of
the response body
(JSON in this case)

The schema field will
contain the schema
(the data shape).

We’ll start with the
broadest, but valid, schema
we can muster: an array.

For the rest of this chapter, we’ll
focus on the schema underneath
this keyword—the good stuff.

The items property only
applies to type: array.

The schema that describes
an object with a rating field
(from listing 5.8)

59Describing the GET /reviews response
As a quick sanity check, table 5.10 shows a validation table based on the current schema.

Nice. Our response body is described. All that’s lacking are a few more fields to com-
pletely describe the rest of the body.

5.7.4 Describing message, uuid, and userId

Let’s start extending our schema with something fun—strings! The GET /reviews end-
point has several strings defined in the response: message, uuid (universally unique
identifier), and userId. Table 5.11 describes those fields.

We’ll start with the message field, as it has fewer requirements than the other fields.

type: array
items:
 type: object
 properties:
 rating: # ...
 message:
 type: string

That wasn’t too hard. We added a field and ensured that its type was string. Table 5.12
shows how it validates.

 It’s time for something more meaty, and what is more meaty than UUIDs? The
FarmStall API makes use of them for all of its IDs, as they’re easy to generate and are
statistically guaranteed to be unique.

Table 5.10 Validating data against our schema

JSON Valid Description

[] Valid An empty array is valid.

[{ "rating": 1 }] Valid A valid array item.

[{ "rating": 5}, false] Invalid Expected an object but found a Boolean.

Table 5.11 The string fields and their requirements

Field Type Description Limits

uuid string The ID of the review UUID

message string The review notes None

userId string or null The ID of the author UUID, or null for anonymous

Listing 5.12 Adding the message field

We’re only looking at the contents
under the schema field for brevity.

Our message field

The type is set to string.

60 CHAPTER 5 Describing API responses
To limit our schema to match this type of string, we’re going to add a crude regular
expression that reads “36 characters composed of hexadecimals and dashes.” We
don’t need to be more specific than that in this case.

type: array
items:
 type: object
 properties:
 rating: # ...
 message: # ...
 uuid:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'

NOTE OpenAPI uses the JavaScript regular expression syntax. More precisely,
it uses the ECMAScript language specification (https://262.ecma-international
.org/5.1/#sec-7.8.5). As different languages have slightly different regular
expressions, it helps to know which variation is expected. If you want to play
around with regular expressions, we find the Regular Expressions 101 website
to be a great resource: https://regex101.com/.

Table 5.12 Validating data against the schema with the message field added

JSON Valid Description

[{ "rating": 5, "message": 1 }] Invalid Expected a string but found a number.

[{ "rating": 5, "message": "Hello" }] Valid All good, it contains a string.

[{ "rating": 5, "message": "" }] Valid There are no limits, so message can
be an empty string.

UUIDs
A universally unique identifier (UUID) is a large number that is almost guaranteed to
be unique, probabilistically speaking of course. UUIDs are rendered as a string of
hexadecimal characters separated by hyphens, in the format 8-4-4-4-12, such as
25f9f605-7cbb-4f02-9569-1d120e0580f7.

Version 4 of this standard uses a completely random number, as opposed to a num-
ber based on a computer’s MAC address and date/time, which was used in earlier
versions. We’ve only ever seen V4 used—the other versions may still be around, but
they’re unlikely to be useful for API development.

UUIDs can be generated by servers but also by clients, since you don’t need to check
existing entries for collisions, which makes them easier to use than other sorts of
unique identifiers.

Listing 5.13 Adding the uuid field

Our uuid field

It is also of type string.
A regular expression pattern!
This ensures that the string
meets the UUID v4 spec (not
100% precise, but close).

https://262.ecma-international.org/5.1/#sec-7.8.5
https://262.ecma-international.org/5.1/#sec-7.8.5
https://262.ecma-international.org/5.1/#sec-7.8.5
https://regex101.com/

61Describing the GET /reviews response
Table 5.13 is a validation table based on our growing schema.

This schema stuff is easy(ish)! Let’s add userId.

USERID AND NULLABLE

Up to this point, we’ve been using vanilla JSON Schema, but now we come to one of
the subtle (but biggish) differences between OpenAPI’s flavor of JSON Schema and
JSON Schema itself: the nullable keyword.

 In JSON Schema multiple types are allowed.

JSON Schema, NOT valid in OpenAPI
type: [number, string, null]

In OpenAPI, multiple types like this are not supported (as of OpenAPI 3.0.x, at least).
But to make allowance for the very common use case of having a schema be some
value or null, the spec has the nullable keyword.

type: string
nullable: true

Let’s go ahead and add userId, which is a UUID (so we’ll add the pattern property
from before) but is also allowed to be null (because anonymous reviews are allowed,
and they have no associated author). The following listing shows the schema so far,
with the userId included.

type: array
items:
 type: object
 properties:

Table 5.13 Validating data against the schema with the uuid field added

JSON Valid Description

[{ "rating": 5, "message": "hello", "uuid":
"hi" }]

Invalid Pattern did not match for
uuid

[{ "rating": 5, "message": "hello", "uuid":
"" }]

Invalid Pattern did not match for
uuid

[{ "rating": 5, "message": "hello", "uuid":
"3b5b1707-b82c-4b1d-9078-157053902525" }]

Valid Correct-looking UUID

Listing 5.14 Multiple types in JSON Schema

Listing 5.15 nullable in OpenAPI

Listing 5.16 Full schema for an array of review objects

The value can be a
number, string, or null.

Only one type at a
time is allowed in
OpenAPI (a string
in this case).

This value can
also be null.

62 CHAPTER 5 Describing API responses
 rating:
 type: integer
 minimum: 1
 maximum: 5
 message:
 type: string
 uuid:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 userId:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 nullable: true

We can see our full OpenAPI schema so far (careful, it’s growing big).

openapi: 3.0.3
info:
 title: FarmStall API
 version: v1
paths:
 /reviews:
 get:
 description: Get a list of reviews
 parameters:
 - name: maxRating
 in: query
 schema:
 type: number
 responses:
 '200':
 description: A bunch of reviews
 content:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 rating:
 type: integer
 minimum: 1
 maximum: 5
 message:
 type: string
 uuid:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 userId:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 nullable: true

Listing 5.17 The full definition for GET /reviews so far

Our
userId

field

The type
string

The UUID regular
expression pattern

This field is allowed to either be a
UUID (such as "3b5b1707-b82c-4b1d-
9078-157053902525") or null.

Our schema for the
(successful) response
body of GET /reviews

63Summary
What we’ve done is describe the successful (200) response of GET /reviews. But more
than that, we’ve touched on data schemas, and particularly JSON Schema. Data sche-
mas are perhaps the most interesting part of an API definition because they describe
the data we get back or need to send.

 As you’ll see, the schemas you’ve seen here will work just as well in request bodies
as they do in response bodies. There are also more powerful features we haven’t
touched on, related to composition and polymorphism—watch out for them later in
this book (in chapter 16, to be precise)!

Summary
 Operations in OpenAPI can describe a single response for each status code

(such as 200 or 404), and within that response can be described a response
body for each media type (such as application/json). All responses in an
operation will be described under the responses field.

 For describing data, OpenAPI uses a flavor of JSON Schema that is around 90%
the same as JSON Schema v4. The differences were made to allow for more
deterministic code generation, which was key to Swagger/OpenAPI’s success.
One such example is the nullable keyword (OpenAPI only) and the lack of
multiple types (JSON Schema only).

 All schemas have a type field that describes one of the basic JSON types:
object, array, string, number, boolean, integer, or null.

 Object schemas (those with type: object) can have the properties property
for describing fields. Array schemas must have the items property for describ-
ing items within the array, where the value of items is another schema.

 Schemas of type number can have minimum and maximum fields to limit the size of
the number; these are inclusive by default.

 String schemas can use the patterns field to limit the string to match a regular
expression. OpenAPI makes use of the JavaScript variant of regular expressions.

Creating resources
In previous chapters you learned a little about using Postman, and in one of those
examples you learned how to create new reviews in the FarmStall API by executing
a POST operation with a request body. Creating reviews is a critical part of this API—
what good is a review-centric API without the ability to create reviews!

 In this chapter we’ll describe how to create new reviews using POST /reviews. In
addition to that, we’ll take a look at GET /reviews/{reviewId}. This GET operation
interests us for two reasons: first, we’ll want to confirm that we did indeed create a
new review by fetching the same review back again, and, second, we will see how a
path parameter works (see figure 6.1). Part of the charm of this approach is using the
API itself to verify our work.

This chapter covers
 Describing POST /reviews to create new reviews

using a request body

 Creating new reviews using try-it-out in Swagger
Editor

 Describing GET /reviews/{reviewId}, including
its path parameter

 Verifying that our new reviews were really created
using try-it-out
64

65The problem
Like response bodies, request bodies are described using OpenAPI’s JSON Schema
variant and they require a media type to indicate the type of data being sent
(application/json).

6.1 The problem
Right, let’s get set up to create reviews. We’re going to look at POST /reviews first. To
describe it, we’ll need to know the details of the operation, including both the request
and response.

 For POST /reviews, the request body’s schema will need to cover the fields listed in
table 6.1.

We also want to describe the (successful) response that will be returned from this
operation, as it includes something of interest: the server-generated ID of the review.
The API could have used the response code 200 Ok for this situation, but there is a
more specific response code when creating new resources, the 201 Created status
code. Table 6.2 shows the details of this response.

The Review object is described in table 6.3.

Table 6.1 The POST /reviews request body

Field Type Description

message string The message of the review

rating number A whole number from 1 to 5 inclusive

userId string The ID (UUID v4) of the author, or null for anonymous

Table 6.2 The POST /reviews response

Status Body Description

201 Created Review Successfully created a new review

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Figure 6.1 Where we are

66 CHAPTER 6 Creating resources
As you can see, we’re covering a lot of familiar ground from the previous chapter.
However, the following points are different:

 The uuid is missing from the request body, as it will be created by the server.
 The response isn’t 200 Ok but the more specific 201 Created.
 The response body includes the server-generated uuid.

The following listing will give you an idea of where we’ll be describing the body.

openapi: 3.0.3
...
paths:
 /reviews
 post:
 requestBody: # ...

NOTE When designing APIs, it’s helpful to understand the semantics of each
method, such as GET and POST. These methods are described in the HTTP 1.1
specification, but a lighter introduction can be found in the MDN Web Docs
at https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.

6.2 Describing POST /reviews with a request body
We love request bodies, as they hint at changing the world. Unlike GET requests, which
just fetch data, POST requests are far more active and exciting. A POST request will cre-
ate a new resource each time it is executed—it isn’t idempotent. Due to the flexibility
of what a “resource” can be, the POST request could do anything (and often does many
different things), such as launch a rocket, sell a company’s stock, sign a peace treaty
(that’d be pretty cool), or create a new review in the FarmStall API.

DEFINITION Idempotent: Can be applied multiple times without changing the
result beyond the first execution. In other words, executing it five times has
the same effect as executing it once.

Table 6.3 The Review schema

Field Type Description

message string The message of the review

rating number A whole number from 1 to 5 inclusive

userId string The ID (UUID v4) of the author, or null for anonymous

uuid string The ID (UUID v4) of this review

Listing 6.1 Where the request body goes in OpenAPI

Only some methods are
allowed a requestBody,
and POST is one of them.

The request body
will go here.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

67Describing POST /reviews with a request body
Request bodies are data in the same way that response bodies are data, and they are
described with the same JSON Schema. In this section we’re going to describe the
POST /reviews request and create some reviews. The OpenAPI definition will look
like the next listing when we’re done.

openapi: 3.0.3
info:
 version: v1
 title: FarmStall API

servers:
- url: https:/ /farmstall.ponelat.com/v1

paths:
 /reviews:
 get: #...
 post:
 description: Create a new Review
 requestBody:
 content:
 application/json:
 schema:
 type: object
 properties:
 message:
 type: string
 example: An awesome time for the whole family.

An anecdotal example of POST operations by Josh
A friend runs a computer shop that, in addition to selling parts and supplies, ser-
vices computers and fixes them. That last part was being tracked by writing out job
cards by hand and keeping those cards near the PCs that needed servicing. There
were some problems with that approach, ranging from notifying customers when a
computer was ready for pickup to not losing the job card! To show off some API
skills to this friend (I’m pretty sure most innovations in this world start with the
words “Hold my beer and watch this…”) I went on to code and wire up a service
that would collect the job card data in a simple form, send it to an online tool for
managing jobs (a Trello board), and finally send a message to the customer’s
phone (Twilio), notifying them that their job was underway and including a link to
see the progress.

In each of those steps, a POST request was used: a POST to send the customer data
into the service, a POST to create the new card in the online tool, and a POST to send
a message to the customer. POSTs are what drive the API world forward. They are the
active part of an API, and for that reason alone they are thrilling!

Listing 6.2 The POST /reviews description

68 CHAPTER 6 Creating resources
 rating:
 type: integer
 minimum: 1
 maximum: 5
 example: 5
 responses:
 '201':
 description: Successfully created a new Review
 content:
 application/json:
 schema:
 type: object
 properties:
 message:
 type: string
 example: An awesome time for the whole family.
 rating:
 type: integer
 minimum: 1
 maximum: 5
 example: 5
 userId:
 type: string
 nullable: true
 pattern: '[a-zA-Z-.0-9]{36}'
 example: f7f680a8-d111-421f-b6b3-493ebf905078
 uuid:
 type: string
 pattern: '[a-zA-Z-.0-9]{36}'
 example: f7f680a8-d111-421f-b6b3-493ebf905078
 /reviews/{reviewId}:
 get:
 description: Get a single review
 parameters:
 - name: reviewId
 in: path
 required: true
 schema:
 type: string
 minLength: 36
 maxLength: 36
 pattern: '[a-zA-Z0-9-]+'
 responses:
 '200':
 description: A single review
 content:
 application/json:
 schema:
 type: object
 properties:
 message:
 type: string
 example: An awesome time for the whole family.
 rating:
 type: integer

69Describing POST /reviews with a request body
 minimum: 1
 maximum: 5
 example: 5
 userId:
 minLength: 36
 maxLength: 36
 pattern: '^[a-zA-Z0-9-]+$'
 nullable: true
 example: f7f680a8-d111-421f-b6b3-493ebf905078
 uuid:
 minLength: 36
 maxLength: 36
 pattern: '^[a-zA-Z0-9-]+$'
 example: f7f680a8-d111-421f-b6b3-493ebf905078

Let’s get going.

6.2.1 Where to find request bodies

There can only be one requestBody per operation, but each media type can describe
its own shape, and each shape can be made to fit many different bodies (we’ll look
into how that can be done in later chapters). That means you could conceivably
describe two randomly different bodies in the same operation if you so chose. That
would be a poor design choice, but there is merit in describing slightly different bod-
ies to match the media types when required.

 It’s also worth noting that only some operations are allowed to have request bodies.
The notable ones that aren’t allowed them are GET and DELETE. Technically you could
include a request body for those operations, but the HTTP specification doesn’t like
it, and servers that implement the specification to the letter should ignore those bod-
ies, so don’t do it.

 Request bodies are described at the root of the operation, as shown in the follow-
ing listing.

openapi: 3.0.3
...
paths:
 /foo:
 post:
 #...
 requestBody:
 description: Return a bar after creating a foo
 content:
 application/json:
 schema:
 type: object
 properties:
 bar:
 type: string

Listing 6.3 Where request bodies are located

POST methods are allowed
request bodies (it’s
encouraged, actually).

The requestBody
keyword

The content or
data goes here.

The media type of the
data—application/json

The
schema of

our data

70 CHAPTER 6 Creating resources

D

6.2.2 Describing the schema for POST /reviews requestBody

We now have a structure we can use to describe the request body for creating a new
review. Given what you learned in the previous chapter, the request body for POST
/reviews should seem strikingly familiar. It is, in fact, almost a copy of the response
body for GET /reviews. However, instead of an array of reviews, we’re describing a sin-
gle review here, and we’re going to remove the uuid field, as that will be generated by
the server.

 This request body has three fields to be described: message, rating, and userId.
Let’s add the details for this request body schema, so we can test it out.

type: object
properties:
 message:
 type: string
 rating:
 type: integer
 minimum: 1
 maximum: 5
 userId:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 nullable: true

Now we can add the schema to the request body section of our operation. We can also
sneak in the response body as well, which is quite similar. In fact, it’s the same, except
for the uuid field.

openapi: 3.0.3
info:
 version: v1
 title: FarmStall API
servers:
- url: https:/ /farmstall.designapis.com/v1
paths:
 /reviews:
 get: #...
 post:
 description: Create a new review
 requestBody:
 description: A new Review
 content:
 application/json:
 schema:
 type: object
 properties:
 message:
 type: string

Listing 6.4 Schema for the requestBody

Listing 6.5 Request and response bodies for POST /reviews

Describing a
single object

The message field, a
string with no limits

The rating field, a whole
number from 1 to 5

The userId field, a UUID
that can optionally be null

Our GET /reviews operation
is redacted for brevity.

We’re creating
a POST method
under the
/reviews path.

All operations deserve (and
require) a description for
humans.

The buzzword of this chapter
is requestBody, where our
request body will go.

etails of this can be
found in chapter 5,
in the GET /reviews

response schema.

71Executing operations with request bodies
 rating:
 type: integer
 minimum: 1
 maximum: 5
 userId:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 nullable: true
 responses:
 '201':
 description: Successfully created a new Review
 content:
 application/json:
 schema:
 type: object
 properties:
 message:
 type: string
 example: An awesome time for the whole family.
 rating:
 type: integer
 minimum: 1
 maximum: 5
 userId:
 type: string
 nullable: true
 pattern: '^[0-9a-fA-F\-]{36}$'
 uuid:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'

That was quite a mouthful, getting all that into our definition. Time for a breather
from theory. You can find the listing 6.5 definition at https://designapis.com/
ch06/01.yml. Let’s copy that definition into Swagger Editor and create some reviews!

6.3 Executing operations with request bodies
Swagger Editor’s try-it-out feature supports request bodies, much like you’d expect. It
generates an example JSON (or XML) string and places that inside a text area. The
user can then modify the text area (the body) and execute the request. And when we
say “modify,” we mean that quite manually, as it is just a text area input. There may
well be fancier ways to edit request bodies in the near future, but at the moment we
can simply tweak the text as we see it. Be careful when working with the raw text, since
JSON (and XML) have syntax rules that should be obeyed.

 The default JSON (or XML) string that Swagger Editor generates is based on the
schema we’ve provided. There are a few heuristics that determine what the generated
example will look like. Often strings will be the literal string "string" and numbers
will be 0. The generated example tries to be valid and will look at constraints such as
minimum and maximum too.

 Once you click the Try It Out button, the request body should become editable
(see figure 6.2). Go ahead and change it as shown in listing 6.6.

We always need to
describe a response, and
we get to use the specific
201 Created status code.

This schema is the same as the
requestBody except for the addition
of the userId and uuid fields.

The userId
field

The uuid field, which
will hold our server-

generated UUID

https://designapis.com/ch06/01.yml
https://designapis.com/ch06/01.yml
https://designapis.com/ch06/01.yml

72 CHAPTER 6 Creating resources
{
 "message": "Totally awesome",
 "rating": 5,
 "userId": null
}

After editing, it should look like figure 6.3.

Listing 6.6 Editing the request body in Swagger Editor

Our new POST /reviews operation

Try It Out was clicked.

The request body, with the autogenerated
JSON based on the schema described

“string” for strings and “0” for numbers

Figure 6.2 Try-it-out executing a POST /reviews request

Edit the request body by
typing out a better one.

Figure 6.3 The text area of the request body, edited

73Executing operations with request bodies
Go on and click the big Execute button. The browser will execute the request, and the
server will receive it, internally create a new review, and send a response back to the
browser (and us). This response will have the generated UUID inside of it, as you can
see in figure 6.4. Later on we’ll be using this UUID to verify that we actually created a
review, by fetching it (and only it) back from the server.

Trailing commas
When editing JSON by hand, we must look out for trailing commas. While all fields
and array items are separated by a comma, the last field or item in the array or object
should not have a comma. This restriction in JSON is a bit of a pain, as JavaScript
allows trailing commas.

The following example shows where a trailing comma is valid and invalid:

{
 "foo": true,
 "bar": true,
}

The response from the server (20)1

Response body showing the
server-generated UUID

The response(s) we describe
in the definition

Figure 6.4 The 201 response from POST /reviews

This is valid, as fields are
separated by the comma.

This is invalid because the last
field cannot end with a comma.

74 CHAPTER 6 Creating resources
Do you know what’s really missing? A little bit of developer love. So far, we have no
examples for API consumers to draw from. However, OpenAPI has a way to show
examples, so let’s look into that.

6.3.1 Adding examples to make try-it-out look pretty

Our schemas look dry. Strings, numbers, and more strings. What joy are we imparting
to consumers when they read this? It could be one of those Mondays, where nothing is
going right, and we’re not helping. Let’s add some love to our definition by showing
that there are humans behind these schemas.

 Examples give us the gist of data much faster than reading schemas, which are pre-
cise but verbose. Imagine you see this field: name. What can you grasp from it? Well, it
could be a full name, like Josh Ponelat, or it could be a username, like ponelat. An
example can go that extra mile and help your consumers out by showing real data.

 We have one field where we can unleash our inner creative beasts. That field is
message, because it is a freestyle string, written by humans for humans. We also have
rating, but it hardly allows much creativity. Let’s create some fun examples.

{
 "message": "The utter worst experience of my life, I feel bad, simply

recalling it.",
 "rating": 1
}

{
 "message": "My heart burns with anticipation of my next visit. It was

breathtaking.",
 "rating": 5
}

{
 "message": "Completely average. Like the colour grey.",
 "rating": 3
}

There, that looks more interesting! Our attention to the developer experience will be
noticed by others, especially on those particularly tough Mondays.

 OpenAPI has places for these examples on different levels. You can put an exam-
ple on each individual field or on the whole schema itself—both can be useful. Let’s
add a basic example to each individual field within our request body schema.

requestBody:
 description: A review object
 content:
 application/json:

Listing 6.7 Example review 1

Listing 6.8 Examples for requestBody

75Describing GET /reviews/{reviewId} with a path parameter
 schema:
 type: object
 example:
 message: A lovely experience
 rating: 4
 properties:
 message:
 type: string
 example: Blew my mind,
➥ life won't be the same after this.
 rating:
 type: integer
 minimum: 1
 maximum: 5
 example: 5

Go ahead and add some examples to your definition. It’ll help when you want to use
the try-it-out feature, because it’ll generate more pleasing request bodies. Examples
take precedence over values created through constraints (like minimum and maximum)
or default values (like "string" and 0).

 Now, let’s get back to the task at hand.

6.4 Describing GET /reviews/{reviewId} with a path
parameter
Now we’ll validate that we did actually create a new review on the server. It’s all good
and well we’ll think we added a review, but without checking, how do we know it
really happened?

 To test that assumption, we’re going to kill two birds with one stone. First, we’re
going to describe an operation that needs to be described, and second, we’re going to
execute it to confirm that our reviews were indeed created.

 We’re talking about the humble GET /reviews/{reviewId} operation. Right away,
we can see it is a little special, since the path includes some curly brackets in it! The
name surrounded by curly brackets is known as a path parameter in OpenAPI parlance.
The requirements of GET /reviews/{reviewId} are summarized in table 6.4.

The operation has a response body of a single review, summarized in table 6.5. This is
something we’ve already described before.

Table 6.4 Parameter of GET /reviews/{reviewId}

Parameter In Type Description

reviewId Path string (UUIDv4) The ID of the review, required

The example for the whole object will take
precedence over the individual examples found
on each individual field. The example must also
be valid, according to the schema described
(which makes sense).

Part of the
example; we’re

showing the
message here.

Another part of the example; here we’re
showing what a rating could look like.

This will help consumers who are deep
down in your schema. And if you don’t
provide examples higher up (like on the
root object), they’ll be composed into
an example for you.An example for

the rating field

76 CHAPTER 6 Creating resources
This is the same schema we’ve already described in POST /reviews, so it makes sense
to just copy it over.

openapi: 3.0.3
paths:
 #...
 /reviews/{reviewId}:
 get:
 description: Get a single review object
 responses:
 '200':
 description: Review object
 content:
 application/json:
 schema:
 type: object
 properties:
 message: #...
 rating: #...
 userId: #...
 uuid: #...

What remains is to describe the reviewId path parameter. Let’s take a closer look
at that.

6.4.1 Path parameters

Path parameters are described in the same way as query parameters. Each parameter
requires the following properties to describe it:

 name—The name of the parameter
 in—The location of the parameter (i.e., query, path, header, and cookie)
 schema—The schema of the parameter

Parameters can also include the following properties (we’ll cover some of them later on):

 required—Whether or not this parameter is required (which, for path parame-
ters, must always be true).

 example—An example of the parameter’s value.

Table 6.5 Getting a single review response body

Field Type Description

message string The message of the review

rating number A whole number from 1 to 5 inclusive

uuid string (UUIDv4) The ID of this review

userId string (UUIDv4) or null The ID of the author, or null for anonymous

Listing 6.9 The GET /reviews/{reviewId} operation

Copy from
POST /reviews

77Describing GET /reviews/{reviewId} with a path parameter
 examples (plural)—A list of examples, which is mutually exclusive with example.
 deprecated—Whether or not this parameter is marked as deprecated.
 style—How the value will be serialized.
 explode—Whether or not to create a separate instance for each value in arrays

and objects.
 allowReserved—Whether or not to allow reserved characters (i.e., / and ?).

This is useful when you want a catchall parameter.

For our path parameter, we’re going to stick to the basics—let’s get on to describing it.

6.4.2 Describing the reviewId path parameter

To describe the reviewId parameter, we’ll follow the same pattern we did when describ-
ing query parameters. Looking at the path parameter in isolation, we’d see the following.

parameters:
- in: path
 name: reviewId
 required: true
 schema:
 type: string
 description: The review's ID
 example: 3b5b1707-b82c-4b1d-9078-157053902525

Note that besides in being set to path, the only extra field we require (compared to
query parameters) is the required field. A path parameter cannot be optional,
according to the OpenAPI spec.

 Adding the parameter into our definition should be straightforward now.

openapi: 3.0.3
paths:
 #...
 /reviews/{reviewId}:
 get:
 description: Get a single review object
 parameters:
 - in: path
 name: reviewId
 required: true
 schema:
 type: string
 description: The review's ID
 example: 3b5b1707-b82c-4b1d-9078-157053902525
 responses:
 '200':
 description: Review object

Listing 6.10 The reviewId path parameter

Listing 6.11 Adding in the GET /reviews/{reviewId} fragment

This is the critical piece. Here we say it’s a “path”
parameter and not a “query” parameter.

This is necessary boilerplate, as all
“path” parameters are required.

As for all parameters,
we include a schema.

We want
examples
everywhere!

Our path
parameter,
added in

78 CHAPTER 6 Creating resources
 content:
 application/json:
 schema:
 type: object
 example: #...
 properties:
 message: #...
 rating: #...
 userId: #...
 uuid: #...

NOTE You may be wondering, given how similar all these schemas are, if
there is a way to reuse them? Bravo! That’s an excellent question, and worth a
good talking about. Rest assured that there are ways of reducing the duplica-
tion. We’ll be covering schemas as reusable components in chapter 10; they
allow us to use the exact same schema multiple times. Later, in chapter 16,
we’ll look at composition and polymorphism for even more reusability. That’s
still some way off, so for now don’t worry about the verbosity of duplicating
these fields (like message, rating, etc.).

Here is the high-level view of our OpenAPI definition thus far. It can be tough to see
the forest for the trees sometimes, so it helps to reflect.

openapi: 3.0.3
info:
 title: FarmStall API
 version: v1
paths:
 /reviews:
 get: #...
 post: #...
 /reviews/{reviewId}:
 get: #...

Now we need to verify that we are indeed creating a new review on the system when we
execute POST /reviews. We’ll do that by utilizing GET /reviews/{reviewId}, the API
operation we just described.

6.5 Verifying our reviews are getting created
To verify whether or not we’ve created a review, we need to do the following:

1 Create a review with POST /reviews.
2 Copy the review ID (the uuid) we get back in the response.
3 Execute GET /reviews/{reviewId} using the review ID we got back.
4 Ensure that the response is what we expected—that it’s the same review we just

created.

Listing 6.12 A high-level view of our definition so far

The schema for a single
review, redacted for
brevity

Our reviews path with the
two methods underneath
(get and post)

Our new path, which
includes a path parameter

Our new path’s
method: get

79Verifying our reviews are getting created
You can grab the complete definition we’ve described so far from https://designapis
.com/ch06/openapi.yaml. Using Swagger Editor, execute a POST /reviews opera-
tion, adding something memorable and unique in the message field so that you
know it’s your own. When the operation returns a response, copy the uuid field and
paste it into Notepad or some other text editor so that you can use it again later (see
figure 6.5).

Now you need to fetch the same review by using GET /reviews/{reviewId} to confirm
that you created a review on the system. Using Swagger Editor, expand the GET
/reviews/{reviewId} operation. Click the Try It Out button, and enter the previ-
ously captured uuid value into the reviewId input box. Then go ahead and execute
the request (see figure 6.6).

 Congratulations! If all went well, you should see the response of GET /reviews/
{reviewId}, which will include the uuid you used as well as the other details of the
review that you recently created.

Create a review with a unique message.

Execute the request.

Copy the generated UUID for later use.

Figure 6.5 Creating a review and noting the ID

https://designapis.com/ch06/openapi.yaml
https://designapis.com/ch06/openapi.yaml
https://designapis.com/ch06/openapi.yaml

80 CHAPTER 6 Creating resources
In this exercise you were able to verify that our POST /reviews operation did indeed
create a new review. By copying the uuid from the response of POST /reviews and
using it as the path parameter, you were able to fetch that review back again. All this
while describing our FarmStall API. What fun!

Summary
 POST is described in the same way as GET, but it can include the requestBody

property.
 Request bodies are described in the same way as response bodies, with media

types and schemas.
 Request bodies are added underneath the requestBody field inside an opera-

tion. It has the high-level fields description and content. The content field

GET /reviews/{reviewId} operation

Try It Out was clicked already.

Paste the UUID from earlier.

Execute the request.

Yay! Our review is indeed saved
on the server. Note the message
from earlier.

Figure 6.6 Fetching a review by ID

81Summary
will include fields for each media type (such as application/json), and those
media types will include description and schema properties.

 Examples help consumers understand the data more quickly and can be added
to each field, where parent examples will take precedence over child examples.
For example, a review example will take precedence over the example inside
the review’s message field.

 Path parameters are declared in the path and must be described by the opera-
tions under that path (get, post, etc.).

 Using the try-it-out feature is great for interacting with the API as you describe
it, and it can be used to verify the functionality of your API.

Adding authentication
and authorization
We’re going to look at authentication and authorization in this chapter (see fig-
ure 7.1), two close friends in APIs that are often a little misunderstood. Authentica-
tion is about proving you are who you say you are, which could be done with a
username and password. Authorization is about being allowed access to particular
actions or resources, such as getting user details or creating a new review.

 APIs almost always include a form of authorization and authentication, so
describing them is important. In today’s world we have multiple standards for deal-
ing with authorization, each with different trade-offs and strengths, so we need to
inform our consumers which of these standards we use.

This chapter covers
 Identifying the difference between authentication

and authorization

 Adding operations for creating users

 Adding an operation for getting a user’s token
(authentication)

 Adding the Authorization header to the POST
/reviews operation (authorization)
82

83
We find that one of the biggest hurdles to using an API is getting authorization to
work. We’ve often found ourselves wading through oodles of documentation, search-
ing for how to get access to consume the API! OpenAPI makes it easier by being
explicit about what authorization is needed.

 By the end of this chapter, you’ll be able to describe simple security schemes for
authentication and authorization and add them to operations in OpenAPI.

 In our FarmStall API definition, we’ll be adding the following:

 The POST /users operation
 The POST /tokens operation
 The Authorization header to POST /reviews

These changes will enable us to create new reviews as a particular user, and we’ll use
Swagger Editor to describe and test our success. The new parts we’ll be tackling are
briefly shown in the following listings. In listing 7.1 you’ll note the extra OpenAPI syn-
tax for a security requirement, which we’ve called MyUserToken. In listing 7.2 you’ll
see the new userId field in the POST /reviews response.

...
paths:
 /reviews:
 post:
 security:
 - MyUserToken: []
 /users:
 post: {} #...
 /tokens:
 post: {} #...
...
components:
 securitySchemes:
 MyUserToken:
 type: apiKey
 in: header
 name: Authorization

Listing 7.1 Adding a security requirement to POST /reviews

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Figure 7.1 Where we are

Declaring the
requirement
for security

The new POST
/users operation

The new POST
/tokens operation

The format of the new
security requirement,
named MyUserToken

84 CHAPTER 7 Adding authentication and authorization
{
 "message": "An awesome time for the whole family.",
 "rating": 5,
 "uuid": "4c07518b-2b3d-4c53-ab84-0abf56c8edf2",
 "userId": "5ef1dd77-7a62-4b94-bc6d-b9fc2c070ab5"
}

We’ll be building on top of our existing definitions. If you don’t have them handy, you
can get a copy here: https://designapis.com/ch07/01.yml.

7.1 The problem
We’re going to describe authorization and authentication for the FarmStall API so
that our consumers know how to use operations that require them. In particular, we
want to describe the Authorization header in the POST /reviews operation and the
operations necessary to get the token used in that header. Figure 7.2 outlines the POST
/reviews operation and how it handles authorization.

By adding an Authorization header that has a valid MyUserToken, the operation will
create a review and populate the userId field. If the MyUserToken is invalid, the oper-
ation will return an error. And finally, if we don’t provide an Authorization header,
then the operation will create an anonymous review (where userId is null). This is
summed up in table 7.1.

 Up till now, all our reviews have been anonymous, but that will change by the end
of this chapter.

Listing 7.2 The response of POST /reviews with authorization added

userId is
populated, and
it isn’t null.

POST /reviews

Has headerAuthorization
Yes No

Header value is a valid MyUserToken
Valid Invalid

Create review with UserId

201 Review Created

403 Invalid Token

Create anonymous review

201 Review Created

Figure 7.2 Diagram of authorization in POST /reviews

https://designapis.com/ch07/01.yml

85Getting set up for authentication
Today is not about errors. Today is about the happy path1 of creating a review with a
userId and a valid MyUserToken. This is how do we’ll do that:

1 We’ll figure out what a MyUserToken is and how to get one.
2 We’ll describe the requirement of the Authorization header (which will be

used in POST /reviews).
3 We’ll describe POST /reviews as having that requirement.
4 We’ll use Swagger Editor to create a review as a given user.

Let’s get going!

7.2 Getting set up for authentication
In figure 7.2, you can see that MyUserToken is something important in determining
whether the POST /reviews operation is authorized to create a review as a given user or
not. MyUserToken is the name FarmStall API gives to the value of the Authorization
header, to distinguish it from other values or tokens. The name is arbitrary. In order
to get a MyUserToken, you need to first register a new user with POST /users, and then
you can call POST /tokens, which will return a MyUserToken.

 In this section we’re going to look at the details of those two operations—POST

/users and POST /tokens—but as the operations themselves do not introduce any
new OpenAPI concepts, we’ll leave it as an exercise for you to describe these opera-
tions and stretch your newly learned OpenAPI skills. These operations need to be
described for the next sections on authorization, but you only need to describe the
success responses at this point, not the failure responses (only the 2xx status codes,
not the 4xx ones).

 We’ll outline the requirements of these operations, and near the end of the sec-
tion we’ll show how they should work with Swagger Editor’s try-it-out feature. The
definition changes will be shown at the end of this section, but try describing the oper-
ations without peeking too much!

 Ready for the challenge? Have a crack at it using the base definition (https://
designapis.com/ch07/01.yml) and Swagger Editor to add the changes.

Table 7.1 Authorization flow of POST /reviews

Authorization header Valid token Result

Present Valid 201 Created review (with userId)

Missing N/A 201 Created review (userId is null)

Present Invalid 403 InvalidMyUserToken

1 The happy path is when things are all valid and good.

https://designapis.com/ch07/01.yml
https://designapis.com/ch07/01.yml
https://designapis.com/ch07/01.yml

86 CHAPTER 7 Adding authentication and authorization
7.2.1 Challenge: Describe POST /users

This operation will create a new user in the FarmStall API. The server will return an
error if you try to use an already existing username. We cannot describe that con-
straint in OpenAPI as it’s domain specific, so when you’re trying out the operation,
pick a unique name and note that the FarmStall API periodically resets all its data.
Have some fun with the names!

 Table 7.2 describes the request body for POST /users. For a refresher on how
request bodies are described, look back at chapter 6.

Table 7.3 describes the response of POST /users. We’re only mentioning the success-
ful response here. There are also error responses when you try to create a user with
a username that already exists. We’ll cover describing and handling errors in chap-
ter 18.

The User response object is described in table 7.4.

7.2.2 Challenge: Describe POST /tokens

The POST /tokens operation will create a MyUserToken for a given user. The user is
identified (authenticated) by a username and password combination. This is perhaps
the most common example of authentication in APIs. You’ll need to create a user
before you can create a MyUserToken for that user.

Table 7.2 The POST /users request body

Field Type Description

username string The username of the user

password string (format = password) The password of the user

fullName string The full name of the user

Table 7.3 The POST /users response

Status Body Description

201 Created User Successfully created a new user

Table 7.4 User schema

Field Type Description

username string The username of the user

fullName string The full name of the user

uuid string The ID of the user, as a UUID v4

87Getting set up for authentication
 The request body of POST /tokens is described in table 7.5.

The response of POST /tokens is described in table 7.6. As before, we’re only mention-
ing the successful response. There can also be error responses if you try to authenti-
cate with invalid credentials.

The Token object is a simple object wrapper around a token string. We wrap it in an
object so that it’s easier to extend in the future, such as {"token": "abcabcabc"}. For
completeness, the schema for this field is described in table 7.7.

After describing the two operations, they should appear in Swagger Editor as shown in
figure 7.3.

Table 7.5 The POST /tokens request body

Field Type Description

username string The username of the user

password string (format is password) The password of the user

Table 7.6 The POST /tokens response

Status Body Description

200 Success Token Successfully created a token

Table 7.7 Token schema

Field Type Description

token string The token for a given user

Tokens vs. secrets
We believe the term “token” is used because it refers to

 Something that is hard to reproduce
 Something that will grant you access to something

Tokens are slightly different from secrets in that a secret is more static (although
tokens should also be secret). Secrets aren’t usually accessible via APIs; a user will
usually have to go to a website to get their secret. In contrast, a token is generated
and provided via an API.

This is our experience when it comes to secrets versus tokens.

88 CHAPTER 7 Adding authentication and authorization
7.2.3 Solution: Definition changes

You can find the completed definition with POST /users and POST /tokens described
here: https://designapis.com/ch07/openapi.yml. The following listing show the rele-
vant changes.

openapi: 3.0.3
#...
paths:
#...
 /users:
 post:
 description: Create a new user
 requestBody:
 description: User details
 content:
 application/json:
 schema:
 type: object
 properties:
 username:
 type: string
 example: ponelat
 password:
 type: string
 format: password
 fullName:
 type: string
 example: Josh Ponelat
 responses:
 '201':
 description: Successfully created a new user
 content:
 application/json:
 schema:
 type: object
 properties:
 username:
 type: string
 example: ponelat
 uuid:
 type: string
 example: f7f680a8-d111-421f-b6b3-493ebf905078

Listing 7.3 Two user-related operations

Figure 7.3 Two new
operations in Swagger
Editor

https://designapis.com/ch07/openapi.yml

89Getting set up for authentication
 /tokens:
 post:
 description: Create a new token
 requestBody:
 content:
 application/json:
 schema:
 type: object
 properties:
 username:
 type: string
 example: ponelat
 password:
 type: string
 format: password

 responses:
 '201':
 description: Create a new token for gaining access to resources.
 content:
 application/json:
 schema:
 type: object
 properties:
 token:
 type: string

7.2.4 Verifying we can create users and get a token

Let’s verify that we can get a MyUserToken. First we’ll need to register a user.
 The request body is detailed in the following listing and shown in figure 7.4. You

will, of course, need to change at least the username so that it’s unique to you.

{
 "username": "josh",
 "password": "secret",
 "fullName": "Josh Ponelat"
}

After successfully executing the request, you should see the following response body
(see figure 7.5).

{
 "uuid": "7a2fbc1e-685f-4aae-8cdf-be94334895df",
 "username": "josh",
 "fullName": "Josh Ponelat"
}

Listing 7.4 The request body for creating a user

Listing 7.5 A successful response body after creating a user

Be sure to use a unique
username, or the API will
return an error.

The generated UUID
for the new user will
be random.

90 CHAPTER 7 Adding authentication and authorization
Now we need to create a token for this user using the POST /tokens operation. Add
the following to the request body of POST /tokens.

POST /users

Try It Out was clicked already.

Update request body.

Execute request.

Figure 7.4 Creating a user with Try It Out

The full URL used

Response

Figure 7.5 A successful response from POST /user

91Adding the Authorization header
{
 "username": "josh",
 "password": "secret"
}

Then execute the request and copy the token from the response (see figure 7.6).

{
 "token": "B1sBULTwPu"
}

Success! Now that we can create tokens (as defined by MyUserToken) we’re ready to
add authorization to our POST /reviews operation.

7.3 Adding the Authorization header
In this section we want to add an Authorization header to the POST /reviews opera-
tion, so we can create reviews as ourselves and not anonymously. We need to first
describe the header and then verify that we’ve done it correctly by executing the
request.

 We’ll be introducing and adding to the securitySchemes component. Then we’ll
add a security object to POST /reviews in our OpenAPI definition. Here are the
changes we’ll be making to our definition.

openapi: 3.0.0
#...
paths:
 /reviews:
 post:

Listing 7.6 Creating a token request body

Listing 7.7 The token in the response body

Listing 7.8 Bones of the definition we’ll be using

Remember to use
your own username
and password.

The token

Token in response body

Figure 7.6 A successful response for POST /tokens

92 CHAPTER 7 Adding authentication and authorization
 #...
 security:
 - MyUserToken: []
#...
components:
 securitySchemes:
 MyUserToken:
 type: apiKey
 in: header
 name: Authorization

7.3.1 How OpenAPI handles authorization

To describe a security requirement or authorization for an operation, you need to do
two things:

 Add a securityScheme (under securitySchemes) describing the type of secu-
rity/authorization, and give that security a name.

 Add that security name to the list of required securities in your operation under
the security field.

In listing 7.8 you can see that POST /reviews has a security requirement that
is described under securitySchemes. The key of the security scheme (MyUserToken) is
used as the name of that security.

 A security scheme tells us the requirements of the security. We’ll dig into the
details shortly, but at a glance we can see the words header and Authorization. So it’s
reasonable to guess that we’re specifying a header called “Authorization.”

 What types of securities or authorization mechanisms does OpenAPI support
describing? Let’s take a look.

7.3.2 Types of authorization (securities) supported in OpenAPI 3.0.x

OpenAPI 3.0.x supports four categories of securities (see figure 7.7):

 apiKey

 http

 oauth2

 openIdConnect

The name of
the security
requirement

The security requirement
name matches the key of
the security scheme.

Types of securities in OpenAPI 3.0.x

in: header

in: query

in: cookie

flows: {} openIdConnectUrl: <url>scheme:

type: ...

apiKey http oauth2 openIdConnect

Figure 7.7 Different
security scheme types
in OpenAPI 3.0.x

93Adding the Authorization header
The most basic type of security is apiKey, which describes either a header, query
parameter, or cookie value as a way of authorizing the request. For our FarmStall API,
this will work just fine, as we need to describe a header with the name Authorization.

 We’ll ignore the other security types for a moment and just focus on apiKey. For
this type, the fields in table 7.8 apply.

NOTE Parameters for API operations in OpenAPI are used to describe query
strings, parts of the path, headers, and even cookies. Hence, it’s possible to
describe an Authorization header as a parameter. The only reason we use
security schemes instead is because they indicate our intent and semantics—
the header is not just any parameter but a parameter for security purposes—
and this allows tooling to interpret it as such. Security schemes can also be
used to describe more complex security requirements, such as OAuth 2.0 and
others—things that humble parameters cannot.

7.3.3 Adding the Authorization header security scheme

Time to start describing the security scheme.

openapi: 3.0.0
...
components:
 securitySchemes:
 MyUserToken:
 type: apiKey
 in: header
 name: Authorization

This is how we declare security types within OpenAPI. We haven’t described which
operations require it—we’ve only declared the security. We’ve chosen the simplest
type of authorization, which is what FarmStall API uses, an HTTP header named
Authorization. The name of the security (the name that will be referenced later) is
an arbitrary string. We’ve chosen to call it MyUserToken, but we could have called it
FooBar and been just fine—so long as we use the same name in both the security
requirement and under the security schemes.

Table 7.8 Fields of the security scheme object when type is apiKey

Field Notes Required

type apiKey Yes

in Can be header, query, or cookie Yes

name The name of the header/query/cookie Yes

description A short description of the security, which can be in Markdown format No

Listing 7.9 Authorization security scheme

The name of our security scheme, which will be
referenced in other parts of the specification

The type
of our

security

Narrows down the parameter location for
apiKey security (header, query, or cookie)

The name of the header,
query, or cookie

94 CHAPTER 7 Adding authentication and authorization
7.3.4 Adding the security requirements to POST /reviews

Having declared our security type, we can now add it to POST /reviews.

openapi: 3.0.0
...
paths:
 # ...
 /reviews:
 post:
 # ...
 security:
 - MyUserToken: []

The security field declares which security schemes apply for this operation. The
semantics of OpenAPI are a logical OR, meaning that as long as one of the listed secu-
rities is applied, it is considered acceptable.

 The array value following MyUserToken is a list of scopes that apply within that
security scheme. Those are not used with the apiKey type, so the array remains empty
and doesn’t require further discussion.

 We’re now “code complete” as it were, in that we’ve described the security require-
ments of MyUserToken and added it to the operation we’re interested in. It’s time now
to verify that we did a good job; time to try it out!

7.3.5 Using the security feature of try-it-out

We’re now in a position to verify that we’ve correctly described the security needs
of POST /reviews. Before we can do that, we need to ensure we have a user and a
MyUserToken.

 If you haven’t already (or if it’s been a while—the server may have been reset) go
ahead and create a user and grab a user token using Swagger Editor’s try-it-out feature:

1 Execute POST /users.
2 Execute POST /tokens with the username and password.

Note the MyUserToken when you retrieve one, as you’ll need it for the next step.

NOTE The exact steps for getting a token are in section 7.2.4, but we reckon
you can wing it.

We’re now going to

 Add the security token to the try-it-out request.
 Execute POST /reviews.

Click on the unlocked lock icon at the far right on the POST /reviews operation row.
It will launch a dialog box where you can fill in a value for the security requirements
(see figure 7.8).

Listing 7.10 Adding a security requirement object to POST /reviews

The security field—declares
which security requirements
this operation has

The MyUserToken security, whose
value is a list of scopes (which is
empty and irrelevant for now)

95Adding the Authorization header
After you add a security requirement, the icon will change to a closed lock to indicate
that it’s been applied (see figure 7.9).

After executing POST /reviews with the security applied, you will see a different
response. The response should contain the userId, which comes from the security we
provided, as you can see in the following listing (also see figure 7.10).

{
 "message": "An awesome time for the whole family.",
 "rating": 5,
 "uuid": "4a31a134-4896-4dde-851c-9dcf8e90d1be",
 "userId": "7a2fbc1e-685f-4aae-8cdf-be94334895df"
}

Booyah! If you managed to create a review and see that exciting userId in the response,
then congratulations—you successfully added a security type!

Listing 7.11 A successful response with security applied

Figure 7.8 Adding a security value via try-it-out

Security applied

Figure 7.9 An operation with security applied to it

userId is now
populated.

96 CHAPTER 7 Adding authentication and authorization
If you got stuck somewhere along the line, check out the complete example at
https://designapis.com/ch07/openapi.yml. Compare it to your own to see where a
difference may have sneaked in.

7.4 Optional security
According to the diagram in figure 7.2, the Authorization header isn't required, it's
optional. And if it's missing, then the “Review” will be created anonymously. However,
that's not how we've set up the definition. In it we've declared that POST /reviews must
always include the security requirement.

 In order to accommodate the FarmStall API's behaviour of optionally requiring
it, we need to include an empty object in the security list, as shown in the following
listing.

openapi: 3.0.3
...
paths:
 # ...
 /reviews:
 post:
 # ...
 security:
 - {}
 - MyUserToken: []

Listing 7.12 Making the security requirement for POST /reviews optional

userId is populated
thanks to the security
applied.

Figure 7.10 Executing POST /reviews with security applied

An empty object
indicates that security
is optional in this
operation.

https://designapis.com/ch07/openapi.yml

97How to add security schemes in general
Only one of the security schema requirements (under the security keyword) needs to
be satisfied, and the empty object indicates no requirements. In this way we can declare
that the MyUserToken is optional.

7.5 Other types of security schemas
So far, we’ve only used the apiKey type of security. We won’t discuss the other options
in detail, but the following list provides some general information and additional ref-
erences if you want to look into them:

 http—The http type is for the HTTP Basic authentication scheme, which
describes how to send a username and password through the Authorization
HTTP header. It is specified in RFC 7617 (https://datatracker.ietf.org/doc/
html/rfc7617). Just like apiKey, http doesn’t use scopes.

 oauth2—The oauth2 type is for the OAuth 2.0 protocol, which describes a pro-
cess for delegated authentication. If you’ve ever been to a website and they
asked you to log in with a third-party account (like Google or Facebook), you’ve
experienced what’s often called the “OAuth dance.” And if the third-party
account asked you which information you wanted to share (such as your name
and email), those are the scopes that the API providers allow the API consumer
to access. You can think of scopes as capabilities that are granted to a user of an
API. After “dancing” between two websites, the API provider hands out a bearer
access token that the API consumer can send through the Authorization
HTTP header. OAuth is specified in RFC 6749 (https://datatracker.ietf.org/
doc/html/rfc6749), and there’s also a great website at https://oauth.net/ that
can help you get started with the protocol.

 openIdConnect—The openIdConnect type is for the OpenID Connect protocol,
which itself is an extension of OAuth 2.0, that adds things like automated dis-
covery and standardized endpoints to get user details. You can learn more
about OpenAPI Connect on its website: https://openid.net/connect/.

7.6 How to add security schemes in general
In this chapter we described POST /reviews as having a security scheme, which was a
header named Authorization. We did so by first describing an apiKey security
scheme named MyUserToken in the global securitySchemes component. We indi-
cated it was located in the header with in: header and that the header name was
Authorization with name: Authorization.

 The general pattern of adding authorization to operations is to first declare it
under securitySchemes and then reference it in the security list of the operations
that demand it (see figure 7.11). The value of the security requirement object (that
empty array in our example) only applies to OAuth2 scopes, so if you’re using any
other security type, you can simply leave it as an empty array.

https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://oauth.net/
https://openid.net/connect/

98 CHAPTER 7 Adding authentication and authorization
The details of the security schemes are specific to each scheme. For apiKey, you can
describe a primitive value of query, header, or cookie. You can learn about the config-
uration for other types by looking at the specifications directly.

Summary
 Describing POST operations is straightforward.
 securitySchemes, which is written underneath components, holds all the secu-

rity declarations, and each is given an arbitrary name.
 security, which is written under an operation, lists the securities that apply to

that operation. Each array item under security is an object with a single key.
The key is the name of a security (as declared in securitySchemes), and the
value is an empty array (or an array of scopes for oauth2).

 To declare a security requirement as optional, you can add an empty object to
the list of securities.

 Swagger Editor’s try-it-out feature allows you to authorize a request by filling in
the value for a security.

openapi: 3.0.3

paths:
/reviews:

post:
...
security:
- : []Security1
- :Security2

- 'user:email'
- 'user:fullname'

...
components:

securitySchemes:
Security1: #...
Security2: #...

Reference
security scheme
by name.

Security requirement
(non-OAuth2)

Security requirement
(O uth2)A

Figure 7.11 How to add security schemes in general

Preparing and hosting
API documentation
In this chapter we’re going to take our OpenAPI definition and turn it into online
documentation (see figure 8.1). Before hosting it online, we’ll add some human
touches, such as API metadata, rich text descriptions, and operation tags. These
touches will make it a lot easier for our users to consume.

 So far we’ve only been describing the bare essentials of the API, such as what
operations exist and how to use them. This is the meat of the definition, but
we’re lacking a softness that comes from one person explaining the API to
another. In addition, we’re lacking some critical information that consumers
require, such as the license of the API (are they allowed to consume it?) and con-
tact information in case they need to reach out. We’ll be adding this metadata to
the definition under the info section.

This chapter covers
 Adding metadata to our API definition

 Writing a description in Markdown

 Grouping operations together using tags

 Hosting our API documentation online using
Swagger UI and Netlify.com
99

http://Netlify.com

100 CHAPTER 8 Preparing and hosting API documentation
Metadata is the data about data, and it’s a fun term to use. In our context, it’s data
about the API definition: useful data that isn’t directly related to the mechanics of
the API.

 To give our consumers the best possible introduction, we’re going to add a rich
text description of our API using the awesome Markdown syntax, which OpenAPI sup-
ports. This will give us a little freedom in how we showcase our API documentation
without getting too deep into the weeds of a more formal website.

 When our API definition is ready to go, we’re then going to look at hosting it
online for people to see. There are many ways to turn an OpenAPI definition into API
documentation, and we’re going to use one of the oldest, a tool called Swagger UI.
You’ve seen it already—it is the UI part of Swagger Editor (the right-side panel). To be
precise, Swagger Editor includes an embedded version of Swagger UI.

 There are a myriad of ways to host static websites online. You could use an existing
server if you have one, or perhaps configure Apache or NGINX as an HTTP server to
host static files, or do something silly like use a bash loop and TCP sockets. We’re not
going to assume any knowledge of static file hosting, so we’ve chosen a suitable solu-
tion for our needs—Netlify.com. Netlify is a static website-hosting service. At the time
of writing, it offers a free account that is more than suitable to host our static website
online. It’s free (very important) and it’s super quick to set up.

 By the end of this chapter you’ll have hosted your API documentation as shown in
figure 8.2.

8.1 The problem
We have several tasks to get through in this chapter:

1 Add license info, contact info, and a link to external docs.
2 Add a rich text description of the API in Markdown.
3 Organize the operations with tags.
4 Host the API documentation online using Swagger UI.

The first three tasks involve adding to our API definition. The last task is an operational
one where we create an account, copy over some HTML, and click a few buttons.

Introduction Postman
GET

operations

Query

parameters
Swagger Editor

OpenAPI

boilerplate

Responses

media type + status + body

POST

operations

Requests

media type + body

Path

parameters

Authentication,

authorization
Metadata Swagger UI

Hosting

(Netlify)

Figure 8.1 Where we are

http://Netlify.com

101The problem
Figure 8.2 A custom Swagger UI hosted on Netlify.com

http://Netlify.com

102 CHAPTER 8 Preparing and hosting API documentation
The API metadata that we’re going to add, listed in table 8.1, will provide consumers
with some basic information that they’ll need. That will give API consumers enough
information to use the API, a place to reach out if there are issues, and the license info
to see if and how they can use the API.

The description (written in Markdown) will look like figure 8.3 when it has been ren-
dered by Swagger UI.

 In addition to adding metadata, we want to organize our API documentation so
that it’s a little easier to figure out what operations exist at a glance. OpenAPI has the
concept of tags, and we’re going to use them to categorize our five operations into
Reviews and Users categories to give consumers a better overview of the API’s opera-
tions. Table 8.2 lists how each operation can be categorized.

Table 8.1 Information to be added

Information Value Notes

API description An API for writing reviews about
your favourite (or worst) farm stalls

Description in Markdown.

Contact name <your name> Or John Doe, if you like.

Contact email <your email> If you use a fake email address, be sure to
use the example.com domain (e.g., fake@exam-
ple.com). This domain was designed for this
purpose and avoids people awkwardly sending
emails to a real account. This is good practice
for all dummy email addresses.

Contact URL https://farmstall.designapis.com Usually a contact page on a website.

License URL https://apache.org/licenses/
LICENSE-2.0

License name Apache 2.0 It’s a nice license.

Link to exter-
nal docs

https://farmstall.designapis.com A link to any documentation that isn’t found
within this definition. It can be anything relevant.

Description of
external docs

Hosted API definition This tells the consumer what the external docs
link points to.

Table 8.2 Organizing operations with tags

Operation Tag

GET /reviews Reviews

POST /reviews Reviews

GET /reviews/{reviewId} Reviews

POST /users Users

POST /tokens Users

https://farmstall.designapis.com
https://apache.org/licenses/LICENSE-2.0
https://apache.org/licenses/LICENSE-2.0
https://farmstall.designapis.com
http://example.com

103Adding metadata to the definition
We can also add descriptions to those tags, as listed in table 8.3, so that viewers under-
stand each category’s purpose better.

You can continue to extend the API definition you already have in Swagger Editor, or
you can get a fresh copy here: https://designapis.com/ch08/01.yml.

8.2 Adding metadata to the definition
Let’s begin by writing the metadata. The information we’re going to add to our API is
listed in table 8.4.

Table 8.3 Tag descriptions

Tag Description

Reviews Reviews of your favourite/worst farm stalls

Users Users and authentication

Figure 8.3 Markdown description

https://designapis.com/ch08/01.yml

104 CHAPTER 8 Preparing and hosting API documentation
We’ll be adding these fields to the info and externalDocs sections of the definition.
We have already created this section, as it was required for our very basic metadata,
such as title and version, without which it would be very difficult to identify the API
at all. Extending it should be straightforward.

 In later sections we’ll flesh out the description field to include a host of rich text
elements, but for now we’ll just add a single line of text.

openapi: 3.0.3
info:
 version: v1
 title: FarmStall API
 description: |-
 An API for writing reviews about your favourite (or worst)
 farm stalls.
 contact:
 name: Josh Ponelat
 email: jponelat+daso@gmail.com
 url: https:/ /farmstall.designapis.com
 license:
 url: https:/ /www.apache.org/licenses

➥ /LICENSE-2.0.html
 name: Apache 2.0
...end of the info section
externalDocs:
 url: https:/ /farmstall.designapis.com
 description: Hosted docs
...rest of the definition...

Table 8.4 Information to be added to the API

Field Value

info.description An API for writing reviews about your favourite (or worst) farm stalls

info.contact.name Josh Ponelat

info.contact.email jponelat+daso@gmail.com

info.contact.url https://farmstall.designapis.com/

info.license.url https://apache.org/licenses/LICENSE-2.0

info.license.name Apache 2.0

externalDocs.url https://farmstall.designapis.com

externalDocs.description Hosted docs

Listing 8.1 The info section fleshed out

The description field will contain a lot of
text later on, so we’ll make it a multiline
string. (See https://yaml-multiline.info for
more about multiline strings.)

Note that this text is indented because
description is a multiline string.

The name of the person to reach
out to for API-related queries

The email of the person to reach
out to for API-related queries

The URL of a website where
consumers can get more contact
details and possibly a contact form

The URL for the licensing information (typically
one of the well-established licenses)

The name of the license

The externalDocs section (at the
same level as the info section)

A link to external docs—we’re using
the landing page of FarmStall API.

A description of the external doc

https://farmstall.designapis.com/
https://apache.org/licenses/LICENSE-2.0
https://farmstall.designapis.com
https://yaml-multiline.info

105Writing the description in Markdown
NOTE It’s worth noting that the contact and license information are housed
under the fields contact and license, respectively, instead of being directly
under the info section. You can find a list of popular open source licenses
here: https://opensource.org/licenses.

8.3 Writing the description in Markdown
In this section you’ll learn about Markdown and how to use it to create a rich text
description for the FarmStall API. The rich text will go under the info.description
field in the API definition. Markdown is an amazing syntax that allows us to create rich
text that can be rendered to HTML. It is far friendlier to write than HTML, and it’s
simple enough to use.

 In listing 8.1 we added a placeholder, shown in figure 8.4. Now we’re going to flesh
it out with Markdown and transform it into what’s shown in figure 8.5.

Rich text usually consists of italics, headers, lists, links, and the like. Knowing how
to write Markdown is becoming a must for developers from all walks of life. It is

Description
rendered

Figure 8.4 The FarmStall API with the placeholder description

Description
rendered

Figure 8.5 The rich text description of the FarmStall API

https://opensource.org/licenses

106 CHAPTER 8 Preparing and hosting API documentation
perhaps the most straightforward way to lift plain text into rich text, and it’s used in
many different environments and supported by a host of platforms. You’ll find it in
blogging and CMS platforms, wiki pages, chat apps, and most places where rich text
is desired.

 There are different flavors of Markdown, such as the popular GitHub Flavored Mark-
down (GFM), which is used in GitHub issues and in most README files. These flavors
tend to offer platform-specific features, so an effort was made to create a standard Mark-
down specification that is more generic and open. Those efforts culminated in Com-
monMark, which is the version of Markdown that OpenAPI officially supports.

NOTE You can find details on the CommonMark specification here: http://
spec.commonmark.org/0.27/. The specification is a little boring, so for a much
more fun introduction to CommonMark, see the tutorial: https://commonmark
.org/help/tutorial/.

We’ll cover the basics of Markdown in this section. These will be (mostly) applicable
to all flavors of Markdown, but when in doubt, the CommonMark specification is the
official standard for OpenAPI. If you’re already familiar with Markdown, feel free to
skip quickly through this discussion of the basics.

 We’ll be covering the following formatting:

 Bold, italic, and inline-code text
 Links and images
 Lists
 Code blocks
 Headings and horizontal rules

8.3.1 Markdown basics

Back in the day, if you wanted to write a blog post and have some of the text be bold,
you would add an HTML snippet such as Some Bold Text . That was good and
well, but it was tedious and error prone. Subsequently, simple markup languages arose
(languages that add semantics to text), and they had shortcuts for making text look
more exciting. Instead of Bold , you could write something like this: **more
bold text**, which was much easier to remember and to write.

 In addition to the simple markup shortcuts (such as those for bold and italic), all
sorts of shorthand notations began to appear, and eventually you had full markup
languages that covered a lot of the rich text needs of bloggers and website content
writers.

 The leading implementation that soon outshone the others was Markdown (a play
on the term markup). It’s a simple syntax that gives you a lot of power to liven up plain
text, but it’s still simple enough to remember. It also has a trick up its sleeves—it allows
you to nest HTML inside of it, so when you need something particularly fancy, you can
defer to HTML.

http://spec.commonmark.org/0.27/
http://spec.commonmark.org/0.27/
http://spec.commonmark.org/0.27/
https://commonmark.org/help/tutorial/
https://commonmark.org/help/tutorial/
https://commonmark.org/help/tutorial/

107Writing the description in Markdown
 The best way to learn Markdown is to simply play with it. There are many online
(and offline) editors that allow you to see what the different markups look like when
rendered, just as Swagger Editor does for OpenAPI. In fact, you can use Swagger Edi-
tor to learn Markdown by simply typing Markdown in any of the description tags.
Before you dive into playing with Markdown, take a look at the cheat sheet in figure 8.6
for the basics.

Let’s use Markdown to create a simple but rich description for our FarmStall API.

Figure 8.6 Markdown cheatsheet

108 CHAPTER 8 Preparing and hosting API documentation
8.3.2 Adding a rich text description to the FarmStall API definition

Let’s break down the description area into sections so that we can tackle them one
by one (see figure 8.7). Table 8.5 describes each section.

Table 8.5 Sections of the rich text description

Section Notes

Header A simple paragraph followed by a banner image and a horizontal rule

Auth A heading-1 with a paragraph having bold, italic, and inline-code text, followed by a
numbered list, including links

Reviews A heading-1, a paragraph using line breaks, and a bulleted list

Example Reviews Inline images, line breaks, and HTML entities (an em dash)

Header section

Auth section

Reviews section

Example Reviews
section

Figure 8.7 Layout of the final rich text description

109Writing the description in Markdown
HEADER SECTION

We’ll open up with a simple paragraph that has no markup in it, followed by a banner
to add a splash of color. The banner is inserted as an image—in Markdown, images
have alt text (the text that displays if the image fails to load) and URL attributes. The
URL pointing to the image can be relative to where the docs are hosted or can be an
absolute URL. Finally, to separate the header from the rest of the description, we’ll
add a horizontal rule.

openapi: 3.0.3
info:
 #...
 description: |-
 An API for writing reviews about your favourite (or worst) farm stalls.

 ![Picture of produce](https:/ /farmstall.designapis.com/img/produce-banner.jpg)

#...

AUTH SECTION

Now for some (more) exciting markup (although we did enjoy the image in the last
section). In this Auth section we have a heading-1, which is the largest of the headings.
We also have bold, italic, and inline-code (monospaced text) formatting, and a num-
bered list.

openapi: 3.0.0
info:
 #...
 description: |-
 An API for writing reviews about your favourite (or worst) farm stalls.

 ![Picture of produce](https:/ /farmstall.designapis.com

➥ /img/produce-banner.jpg)

 # Auth

 To create **Reviews** without being _anonymous_.
 You need to add a **MyUserToken** to
 the Authorization header.

Listing 8.2 Rich text: header section

Listing 8.3 Rich text: Auth section

An opening paragraph
that doesn’t include

any markup

The banner image with alt text of “Picture
of produce.” Note the initial exclamation
mark (!), which indicates image markup.

A horizontal rule, which
can be three or more
dashes or asterisks

This is the section we already wrote up;
we’ll begin to leave it out for brevity.

The Auth header, which is a heading-1
element (largest of the headings)

A paragraph containing bold
(“Reviews”), italic (“anonymous”)
and inline code (“Authorization”)

110 CHAPTER 8 Preparing and hosting API documentation
 To get a **MyUserToken**:
 1. Create a **User** with [POST /users](#Users/post_users)
 1. Get a **MyUserToken** by calling [POST /tokens](#Users/post_tokens)
 with your **User** credentials.

#...

REVIEWS SECTION

The Reviews section introduces two new elements: the bullet list (without numbers)
and an HTML element for line breaks. The line breaks can be created in Markdown
(by using two newlines), but we wanted to show how you can use raw HTML.

openapi: 3.0.3
info:
 #...
 description: |-

 ...

 # Reviews
 Reviews are the heart of this API.

 Registered **Users** and anonymous users can both
 write reviews based on their experience at farm stalls.

 Each review comes with a rating of between one and five stars inclusive.

 - One star being the worst experience
 - Five stars being the best

EXAMPLE REVIEWS SECTION

To round off our rich text section, we’re going to display a few review examples that
look pretty. They’ll include an inline image and an HTML entity (a special character).

openapi: 3.0.0
info:
 #...
 description: |-

 ...

 ### Example Reviews

Listing 8.4 Rich text: Reviews section

Listing 8.5 Rich text: Example Reviews section

A numbered list item (note that the
number itself doesn’t matter, so we

always use 1) and a link to an internal
local anchor (#Users/post_users)

Another numbered list item including
bold text and a link. Again, the list

number itself doesn’t matter.

Previous rich text is
left out for brevity.

The Reviews heading
(heading-1)

The end of this line
includes raw HTML:
the
 element
(for a line break).

A bullet list item

Another bullet
list item

The description we’ve
written so far has been
left out for brevity.

A heading-3 (smaller
than heading-1 and
heading-2)

111Organizing operations with tags
 "A wonderful time!" — Bob McNally

 ![5 stars](https:/ /farmstall.designapis.com/img

➥ /rating-5.png)

 "An awful place" — _Anonymous_

 ![1 star](https:/ /farmstall.designapis.com/img/rating-1.png)

 "A totally average place." — Jane Fair

 ![3 stars](https:/ /farmstall.designapis.com/img/rating-3.png)

You can find the completed definition here: https://designapis.com/ch08/02.yml.

8.4 Organizing operations with tags
To help organize operations within an API definition, OpenAPI supports a feature
called tags. One or more tags can be added to operations to better categorize and
group different operations together. In the FarmStall API we have described five oper-
ations, and in this section we’re going to add a tag to each operation, grouping them
together into Reviews operations and Users operations.

 In Swagger UI these tags will show up as sections, with the relevant operations
grouped underneath each section. Using tags is a great way to organize related opera-
tions. Table 8.6 lists the operations and the tags we’ll be adding to each. Different
tools can interpret tags in different ways.

NOTE With Swagger UI, an operation can appear under multiple tag headings.

Once we add the tags and the tag descriptions, we should see something like figure 8.8
show up in Swagger Editor.

Table 8.6 Organizing operations with tags

Operation Tag Note

GET /reviews Reviews Get reviews

POST /reviews Reviews Create reviews

GET /reviews/{reviewId} Reviews Get a specific review

POST /users Users Create a new user

POST /tokens Users Authenticate a user by giving them a token

A paragraph with an HTML
entity inside: — is a
long dash (—)

A line break
(but not a new
paragraph)

An image with
alt text (the
alt text is “5
stars”)

Another review example (with
the same structure as first)

And another
example

https://designapis.com/ch08/02.yml

112 CHAPTER 8 Preparing and hosting API documentation
8.4.1 Adding the Reviews tag to GET /reviews

Let’s begin by adding the Reviews tag to the GET /reviews operation.

openapi: 3.0.0
#...
paths:
 /reviews:
 get:
 tags:
 - Reviews
 #...

Done! That wasn’t too hard. That’s all there is to creating a tag. Go ahead and add it
in Swagger Editor. If you need a copy of the definition so far, you can find it here:
https://designapis .com/ch08/02.yml. Copy the YAML into https://editor.swagger.io,
and you can begin adding tags.

8.4.2 Adding descriptions to tags

In the last section we added a tag to an operation. That tag will be created on the fly, and
tools (such as Swagger Editor and Swagger UI) can render UIs based on such tags. But
we are missing a description for the tag—something to expand on what the tag entails.
The word Reviews may not be sufficient to tell the consumer what’s going on.

Listing 8.6 Adding the Reviews tag to GET /reviews

Description of tag

Adding tag(s) to an operation

Figure 8.8 How tags are rendered in Swagger Editor

Inside the operation,
add the tags field.

Add an array item and,
inside it, the name of the
tag, such as Reviews.

https://designapis.com/ch08/02.yml
https://editor.swagger.io

113Organizing operations with tags
 To add a description to a tag, we need to create a root-level tags field (with “root-
level” meaning outside of the operation) and describe our tags in it.

openapi: 3.0.0
#...
tags:
 - name: Reviews
 description: |
 Reviews of your favourite/worst farm stalls
#...

Figure 8.9 shows what you’ll see in Swagger Editor after adding a description to the tag.

8.4.3 Adding the rest of the tags

We’ve successfully added a tag to the GET /reviews operation and added a description
for the Reviews tag. Now we can go ahead and add tags to the remaining operations
within the definition and add a description for the Users tag.

 Go ahead and add tags to operations listed in table 8.7. Also, add a description to
the Users tag, as described in table 8.8.

Listing 8.7 Adding a root-level tags object with a description for the Reviews tag

Table 8.7 Organizing with tags

Operation Tag Added?

GET /reviews Reviews Yes

POST /reviews Reviews No

GET /reviews/{reviewId} Reviews No

POST /users Users No

POST /tokens Users No

The tags root-level field for describing tags is an array
of objects, with each having at least a name field and,
optionally, description and externalDocs fields.

The name of our tag, Reviews. This is case sensitive, so
operations that want to add this tag should match it exactly.

The description
of our tag

Description of tag

Figure 8.9 Adding a description to a tag

114 CHAPTER 8 Preparing and hosting API documentation
At the end of this exercise, Swagger Editor should render what you see in figure 8.10.

8.5 Hosting our API documentation using Netlify.com
and Swagger UI
API documentation is only as good as it is reachable. If Bob the developer can’t reach
the API documentation, he won’t know how to use it! In this section we’re going to
host a Swagger UI webpage using our OpenAPI definition, and we’re going to make it
publicly reachable so that we can show it off and get feedback on it.

 Swagger UI forms the right panel of Swagger Editor, and it can be used on its own
to render HTML documentation based on an OpenAPI definition. Historically, Swag-
ger UI was found embedded in API servers, so that developers would have a console to
play with the API and make API calls. The embedded Swagger UI would use relative
URLs to talk to the server that hosted it.

 Nowadays you’ll find Swagger UI in all sorts of places, as it can be hosted on its
own. The project is a collection of HTML, JS, and CSS files that dynamically build up
a webpage, rendering the OpenAPI definition.

 After we have a working Swagger UI instance, we’re going to share it online using a
static file server. We’ve chosen one that suits our needs: it’s free, it looks cool, and it’s
quick to set up. It’s Netlify.com.

Table 8.8 Tag descriptions

Tag Description

Reviews Reviews of your favourite/worst farm stalls

Users Users and authentication

Tags:
- Reviews

Tags:
- Users

Figure 8.10 Swagger
Editor with tags and tag
descriptions

http://Netlify.com

115Hosting our API documentation using Netlify.com and Swagger UI
8.5.1 Preparing Swagger UI with our definition

Let’s get our own version of Swagger UI set up! We’ll need two things:

 An HTML page for rendering Swagger UI
 An OpenAPI definition (we’ll be using our FarmStall API definition, of course)

The following listing shows the full HTML page necessary to render Swagger UI.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" type="text/css" href="

➥ / /unpkg.com/swagger-ui-dist@3/swagger-ui.css">

 <title>FarmStall API v1</title>

<body>

 <div id="farmstall-docs" />

 <script src="/ /unpkg.com/swagger-ui-dist@3/swagger-ui-bundle.js"></script>
 <script>

 window.onload = function() {

 const ui = SwaggerUIBundle({
 url: "openapi.yml",
 dom_id: "#farmstall-docs",
 deepLinking: true,
 })

 }

 </script>

</body>
</html>

Whoa, that’s slightly scary but not that scary. We’ve just created all that we need to host
a Swagger UI instance. In it we have some HTML boilerplate, tags like <head> and
<meta>. Importantly we’re importing a script tag for version 3 of swagger-ui-dist,
which is the Swagger UI artifact that can be used directly from HTML (the one that
doesn’t need to be bundled with other JS packages). For bundling and integrating with
other applications, there are different artifacts. Then, by overriding the window.onload
function, we’re able to initialize Swagger UI with some configuration values after the
page has successfully loaded up. The only thing missing here is the OpenAPI defini-
tion we’ve been working on: openapi.yml.

Listing 8.8 Swagger UI boilerplate

Some general
HTML boilerplate

We link to the
Swagger UI CSS
(using Unpkg.com).

The DOM element
that Swagger UI will
inject HTML into

The Swagger
UI JS bundle

(also using
Unpkg.com)

An onload hook, which is
called when the browser
has finished loading

Initializes a Swagger
UI instance

URL to the
OpenAPI

definition
(can be

relative)

The DOM
element to

inject the
HTML into An extra feature to

enable links to individual
operations (used in the
Auth section rich text)

http://Unpkg.com
http://Unpkg.com

116 CHAPTER 8 Preparing and hosting API documentation
 You can grab a copy of the HTML and OpenAPI definition here: https://designapis
.com/ch08/site. You may want to spice up the rich text a little bit to make it your own!

 If you have a static file server lying around, you can demo it yourself to see how it
works. Next, we’re going to get busy hosting this on the internet.

8.5.2 Hosting on Netlify.com

In this section we’re going to host our folder on a publicly accessible URL.
 We’ll need to do the following:

 Create a Netlify.com account.
 Upload our folder.
 Optionally, drink a cup of coffee to take a break.

Given that we have a folder containing index.html and openapi.yml, we’re ready to go!
 Netlify.com has a free plan that allows us to host a static folder and even to connect a

domain name to it. (Connecting a domain is beyond the scope of this chapter, but the
Netlify documentation explains how here: www.netlify.com/docs/custom-domains/.)

Quick-and-dirty Python hosting
We often find a need to quickly host some files from a laptop or a remote server. Install-
ing a file server like Apache or NGINX is okay, but sometimes we just want to test some-
thing quickly. Python (which comes installed by default on most *nix systems, like
macOS and Linux) has a quick and simple command-line trick to start a file server.

If it’s Python 2, use one of these commands:

 python -m SimpleHTTPServer 8080
 python2 -m SimpleHTTPServer 8080

If it’s python 3, use one of these:

 python -m http.server 8080
 python3 -m http.server 8080

They will do the same thing and expose the directory you ran the command from on
port 8080, which you can then visit at http:/ /localhost:8080.

Using Python as a quick-and-dirty file server is a nifty trick. Just don’t keep it exposed
for longer than you need to!

Alternatives to Netlify.com
The steps for using Netlify.com may change after this book has been published. We
took care to choose a service that would likely last and remain relatively unchanged,
but the internet changes faster than a speeding bullet, so your mileage may vary on
the Netlify.com steps.

https://designapis.com/ch08/site
https://designapis.com/ch08/site
https://designapis.com/ch08/site
http://www.netlify.com/docs/custom-domains/
http://Netlify.com
http://Netlify.com
http://Netlify.com
http://Netlify.com

117Hosting our API documentation using Netlify.com and Swagger UI
First things first, we need a (free) account with Netlify.com to create a static website.
Go ahead and create an account (https://app.netlify.com/). (Netlify accepts signing
up with GitHub, which we like to use.)

 After you’ve signed up, you can click the Sites link in the navigation bar (see figure
8.11). From there you’ll be able to upload a folder containing the following:

 index.html (with Swagger UI boilerplate)
 openapi.yml (our API definition of FarmStall v1)

This will be our static site. (Remember, you can get copies of the files here if you need
them: https://designapis.com/ch08/site.) Upload the site as shown in figure 8.12.

 After a few seconds, Netlify.com will give you a randomly generated site name as
shown in figure 8.13, and your site will be hosted at a URL based on that site name. All
that remains is to visit the site, see if it looks good, and then share it with your eager
consumers (well, friends and colleagues for now). Figure 8.14 shows the final result.

These are some alternatives to Netlify.com:

 An S3 bucket
 GitHub Pages
 GitLab Pages
 Dropbox
 Google Drive

Select the Sites tab

Drag/drop a folder to create a site

Figure 8.11 Netlify.com with the Sites tab open

https://app.netlify.com/
https://designapis.com/ch08/site
http://Netlify.com
http://Netlify.com
http://Netlify.com
http://Netlify.com

118 CHAPTER 8 Preparing and hosting API documentation
site

Name

Drag the site folder from your desktop

Figure 8.12 The Netlify.com upload folder

Generated site name

Figure 8.13 Netlify.com with a site successfully uploaded

http://Netlify.com
http://Netlify.com

119Hosting our API documentation using Netlify.com and Swagger UI
Figure 8.14 Swagger UI hosted on Netlify.com

http://Netlify.com

120 CHAPTER 8 Preparing and hosting API documentation
8.6 The end of part 1
That concludes part 1 of our adventure into OpenAPI and Swagger. In previous chap-
ters you learned how to describe an existing API using OpenAPI and Swagger Editor.
We looked at the basic building blocks of an API definition and ended up hosting a
Swagger UI instance online, including some rich text!

 Describing an API enables you to use tooling to manage that API. In this part of
the book we’ve described the basics of a contrived API, but one that included a lot of
the common patterns found in RESTful design, from the simple CRUD-like methods
to authentication and authorization. The very first thing you can do with a freshly
described API is host API documentation (using Swagger UI or other tools), which in
itself is useful enough, but that is only the beginning.

 In the next part of the book, we’ll be looking at the design phase of APIs and how
we can incorporate OpenAPI into that critical stage. We’ll be designing an API from
scratch and, more importantly, incrementally adding to and changing it as one would
in a real-world environment. Exciting times ahead!

Summary
 APIs require good metadata to be really useful to consumers. You can add

details such as contact info (under info.contact), licensing info (under
info.license), and, if necessary, a link to any auxiliary information that might
exist (under externalDocs on the root level).

 Markdown can be used in the description fields—OpenAPI 3.x officially sup-
ports CommonMark as the syntax. Markdown is used to add life to text with
common semantics such as headings, bold, italic, inline code, numbered lists,
unordered lists, block quotes, code blocks, links, images, and horizontal rules.
When those won’t suffice, you can defer to using raw HTML as well, which some
(but not all) tools support.

 Tags can be used to organize and group operations. You can add a tag to an
operation by adding a string to the paths.{path}.{method}.tags array. Tags
can also be associated with descriptions. To add a description to a tag, add it to
the root level tags field, under tags.[0].name and tags.[0].description.

Part 2

Design-first

Part 2 starts afresh by introducing a new product, with the goal of designing
its API from scratch, instead of documenting an existing one as we did in part 1.

 We’ll work with a fictional software product for pet owners who need to hire
pet sitters to look after their companions when they’re away—we’ve given it the
incredibly original name PetSitter. This scenario provides the background theme
for the remainder of the book. We’ll also introduce the company and three per-
sonas that will help us capture the driving roles behind an API’s design process.
The technical stack for PetSitter is split into a backend (the server) and a front-
end (the website) that communicate via the API.

 This part of the book opens up with defining the requirements, looking at
user stories, and domain modeling (chapter 9). It progresses by taking those
models and designing an API using OpenAPI (chapter 10). Topics in the design
process include change workflow (chapter 11), mocking with Prism (chapter 12),
generating server stubs with Swagger Codegen (chapter 13), and integrating the
two components together into a working system (chapter 14).

 Each chapter builds on the last, so we recommend that these chapters be
read in sequence.

Designing a web
application
In the first part of this book, we went through the basics of APIs, how to use them,
and how to formally describe them with OpenAPI. We also worked with Swagger Edi-
tor to document an existing API—the FarmStall API—using OpenAPI. Now, in the
second part of this book, we’ll design a new API for a web application from scratch.

 Going through the API design process and further through the API lifecycle is
not just about using OpenAPI and various tools. It’s also about people and pro-
cesses. There are always new requirements and unforeseen circumstances that
require handling. We’ve tried to make this second part of the book as close to real-
ity as possible by working through the process with a fictional company.

 We’ll start with a founder envisioning an idea and assembling a team. Together
they’ll create a plan to realize the project that starts with a domain model and user

This chapter covers
 The goals, scenarios, and plan for the second

part of this book

 Creating a domain model for the PetSitter
application

 Adding functionality to the domain model with
user stories
123

124 CHAPTER 9 Designing a web application
stories, continues with API design, and finishes with software implementation and
integration. We’ll explain these methods as we move through the process.

9.1 The PetSitter idea
Meet José. He is the owner of a small web development company. Even though he’s
earning good money designing custom websites and web applications, he thinks a lot
about developing his business and starting his own product. And he’s already got a
business idea.

 José and his wife are dog lovers, but both are working full time and don’t want to
leave their dog alone. Sometimes José brings their dog to the office, but that’s not
always an option. And even then, someone needs to take it for a walk when José is as
busy as company owners tend to get. Finding someone to look after their dog is a
chore that José and his wife would like to simplify. Why isn’t there an app for that?

 After mulling over the idea for a bit, José takes out a notebook and scribbles down
an initial set of requirements for the app’s functionality:

 Sign up: as a dog owner or dog walker.
 Dog owners can post jobs.
 Dog walkers can apply for posted jobs.

Although José only thought about dogs, he decides to use the more generic “PetSit-
ter” (instead of “DogSitter”) as the working title for his project. With that title and a
list of functional requirements, José feels he is ready to get started.

9.2 PetSitter project kickoff
To get from a business or project idea to a working product requires execution. José
has a business background and is not a developer himself, so he needs to build a team
to implement his application. Luckily he can draw from the pool of his employees.

 Assembling a team, however, is not enough. Every project also needs a plan so that
every member of the team knows what they need to do. Let’s join José in building his
team and outlining their plan.

9.2.1 Additional requirements

While thinking about the resources he has at his disposal to actualize his plan, José
adds the following notes:

 Build web app with in-house team—two people.
 Mobile app—work with other development agency (later!).
 Chance to experiment with new technology.
 Release first working prototype as soon as possible.

Unlike the functional requirements he wrote down, which directly relate to the
application’s functionality, these are nonfunctional requirements. That’s an umbrella
term that covers various attributes of the product itself as well as constraints around
the development process.

125PetSitter project kickoff
 As we proceed, we will regularly check back to see whether our plan matches the
requirements with a summary like table 9.1.

9.2.2 Team structure

José goes through the list of his employees and looks at their skills and the kinds of
projects they’re involved with at the moment. Then he schedules a meeting with two
of them, Nidhi and Max. Both developers have worked with José for a while and have
shown their aptitude for learning and solving problems in unique ways.

 Both agree to join the project, so we have a three-person team. Being the initiator,
José acts as the project lead. The roles of the developers are not defined yet.

 In their first meeting, José presents the plan based on his notes about the functional
and the nonfunctional requirements. Nidhi tells him that if they want to expand into
the mobile realm later, they should work on a clear separation between backend and
frontend. “That way,” she says, “we can have a backend with an API that different clients,
such as our web application and then later the mobile application, can use!” “Great,”
says Max enthusiastically. “Then we can build an SPA, a single-page-application. I’ve
experimented with React lately, and I think we can use that here!”

 The three of them keep talking, and everyone seems hooked on the project. “How-
ever, José,” Nidhi adds, “remember that I have a few clients to support. We should try to
work independently and asynchronously as much as possible. We can’t always meet to
sync up.” Max nods in agreement, “Same here.” In this discussion, the developers sug-
gest an architecture in which backend and frontend are two separately developed com-
ponents, and Max already has a technology suggestion for the frontend.

 Before we move on, let’s first look at what frontend and backend mean in the con-
text of a web application:

 The frontend is everything that happens on the user’s computer in their browser.
The frontend is made with HTML, using JavaScript for interactivity. Max
talked about React, which is a JavaScript framework for creating web applica-
tion frontends.

Table 9.1 Requirements checklist

Type Requirement In plan?

Functional Sign up: as a dog owner or dog walker.

Functional Dog owners can post jobs.

Functional Dog walkers can apply for posted jobs.

Nonfunctional Build web app with in-house team—two people.

Nonfunctional Mobile app—work with other development agency (later!).

Nonfunctional Chance to experiment with new technology.

Nonfunctional Release first working prototype as soon as possible.

126 CHAPTER 9 Designing a web application
 The backend is whatever happens on the web application’s server, wherever it’s
hosted. Backends can use many different programming languages and frame-
works, and they typically use a database to persist data.

The setup and the developers’ interests and availability naturally lead to a team struc-
ture with one frontend developer and one backend developer:

 Nidhi implements the backend.
 Max implements the frontend.

José’s first nonfunctional requirement about being able to build the application with
two developers is met. We’ll look more closely at the technology and the process for
building each part later in this book.

9.2.3 API-driven architecture

José’s eyes light up after hearing the word “API” come out of Nidhi’s mouth. His team
has integrated a few APIs into client projects, such as APIs for sending SMS notifica-
tions, or integrating e-commerce data, or for marketing automation. To date, how-
ever, they have not built their own. “We could release this API later so that people can
build stuff,” he suggests. “Maybe some smart device that lets my pet sitter in automati-
cally? Or something for my voice assistant?”

 Given all that’s possible with an API-driven architecture, his second requirement
about being able to work with an external agency for building a mobile app is easily
fulfilled. And so is the third requirement of experimenting with new technology, as it’s
the first time José’s company will build an API of their own. We can update our
requirements list as in table 9.2.

Traditional web applications run backend code that dynamically generates the HTML
for the frontend. In an API-driven architecture, however, the frontend generates the
HTML with client-side JavaScript code based on the API responses from the backend,
which typically are in JSON format. That way, the backend is disconnected from the
presentation logic on the client (see figure 9.1).

Table 9.2 Requirements checklist

Type Requirement In plan?

Functional Sign up: as a dog owner or dog walker.

Functional Dog owners can post jobs.

Functional Dog walkers can apply for posted jobs.

Nonfunctional Build web app with in-house team—two people. Yes

Nonfunctional Mobile app—work with other development agency (later!). Yes

Nonfunctional Chance to experiment with new technology. Yes

Nonfunctional Release first working prototype as soon as possible.

127PetSitter project kickoff
9.2.4 The plan

In our setup with its API-driven architecture, the backend and frontend developers
can work autonomously, but it requires them to agree on the API beforehand. As you
know from reading this book, you can use OpenAPI to create a formal description of
an API. And, as you’ll learn as we proceed, there are tools that can help you build an
application based on an OpenAPI description.

 We have a team now, and we have the basic architecture of the software. What’s
missing is a plan. The purpose of the plan is to get the team from idea to implemen-
tation. As there are two parts of the implementation that the developers are tackling
individually, the plan needs to include the immediate step of designing the API. As
the basis of the API design, the team needs to create a domain model. We’ll get to
that in a bit.

 Putting everything together, the team writes down the following actionable steps:

1 The team will jointly create a domain model.
2 Max will create the first draft of their API design.
3 Nidhi will review that draft.
4 Both will finalize the specification, or make edits and review again, as necessary.
5 Both will work independently on their parts of the implementation.
6 After completion, they will integrate their code into one application.

We will follow this plan and walk through all the steps in this and upcoming chapters
of this book. Figure 9.2 illustrates the process, with the numbers in the diagram refer-
encing the different chapters. As our first step, we’ll focus on the domain model.

Frontend

Backend

Max

Nidhi

Project owner

José

An API

Figure 9.1 PetSitter
architecture and
development team

128 CHAPTER 9 Designing a web application
9.3 Domain modeling and APIs
Domain modeling is the process of taking a problem domain (or area of interest) and
creating a description that can be implemented in computer software. For the pur-
poses of this book, a domain model is a group of concepts and their relationships to
each other. Because models are abstract, they allow us to talk about any problem in
the real world that we want to. We can talk about a dog without initially worrying
about what makes a dog a dog.

 In the upcoming sections, we’ll first look at domain modeling in general. Then we’ll
discuss the specifics that we need to consider if we want to create a domain model that
works well with an API. As a third step, we’ll look back at the FarmStall API from part 1 of
this book, which had a domain model even if we didn’t explicitly describe it as such. Fig-
ure 9.3 offers a sneak peek at what our domain model will look like at the end of this
chapter. In it you’ll see several concepts and their relationships to each other.

 To create a domain model, we map concepts from the real world onto an
abstract representation. We refer to this representation as a model, while being fully
aware that this creates some ambiguity—the term “model” can refer to the represen-
tation of a single concept (for example, the “Dog” model) or of the whole area of
interest (the domain model).

NOTE We will generally use lowercase (for example, “dog”) to refer to the
real-world concept and capitalize the names of models (“Dog”). You can
think of the concept as the thing in the real world and the model as the thing
we’ll have on paper, although we may sometimes use the word “concept” for
the representation as well, to avoid using the word “model” for both mean-
ings in the same sentence. Language is beautiful!

11

GitHub

workflow

Suggest / review / merge9

Domain

model 10

OpenAPI

design

Edit / review

12

Backend / frontend

Implementation

13 14

URLs / authentication

Integration

Figure 9.2 Action plan, showing the steps discussed in chapters 9–14

129Domain modeling and APIs
Each model of a concept has attributes and relationships to other models as well as
actions or behavior. Attributes are data that describes the concept, such as a name, and
actions are things that the concept can do or things a user can do with the concept. A
domain model is not dependent on a specific technical implementation, and we can
express it in different ways. In this chapter we’ll use a textual representation in the
form of bulleted lists and a visual representation through figures that are loosely based
on Unified Modeling Language (UML). In this form of visualization, each model is a
box with three areas. The upper box contains the name, the middle box contains the
attributes, and the bottom box contains the functionality. Arrows between these boxes
symbolize relationships between the respective models.

 You’ve seen this visualization already in figure 9.3. The diagram contains the attri-
butes, actions, and relationships that we’ll identify as we go through this chapter. For a
more generalized example of a domain model, comprising two concept representa-
tions and their relationship, refer to figure 9.4.

ID

EmailAddress

Password

Fullname

Roles

User

Register

Login

View

Modify

Delete

JobApplication

ListForJob

Approve

Create

ID

Status

Job

Create

ListMyOwn

View

Modify

Delete

ListAll

ID

StartTime

EndTime

Activity
Dog

Name

Age

Breed

Size

Belongs to

Creates

Creates Solves

Figure 9.3 PetSitter full domain model

Model

Attributes

Relationship

Actions

Model

Attributes

Actions Figure 9.4 General
domain model

130 CHAPTER 9 Designing a web application
9.3.1 Domain modeling for APIs

Creating a domain model for an API is a crucial task. A class or relational database is
mostly an implementation detail that is relevant for those dealing with the inner work-
ings. An API, however, is more akin to the view layer of an application. It is a clearly
defined boundary between parts of a system, and it can potentially act as an abstrac-
tion layer and hide underlying complexity. An API designer should always look at the
API from the perspective of the client and not the server.

 In keeping with this client-side perspective, José’s team did something that can be
considered good practice when designing APIs for web applications: they put Max,
the frontend developer, in charge of the first draft. He’s not the one building the API
but the one consuming it.

9.3.2 Looking back on FarmStall

In the first part of this book, you learned about OpenAPI using the FarmStall API as a
basic example. What is its domain model? As mentioned before, we never explicitly
talked about a domain model, but we can deduce the concepts of the problem
domain by looking at the API description.

 The two concepts present in the basic version of the FarmStall API are users and
reviews. Let’s look at these concepts and think about them in terms of attributes, rela-
tionships, and actions.

Other applications of models
Models appear everywhere in computing, albeit in different forms. In object-oriented
programming (OOP), for example, they appear as classes. In relational databases (such
as MySQL or PostgreSQL), they appear as tables. There are always minor differences,
but the general idea remains the same. While it may be helpful for you to make a con-
nection between existing implementations and what you’re about to learn about
domain modeling for APIs, that is not essential to understanding the next sections.

A word on autogenerating API domain models
If you have previous experience with medium-size or larger database-driven web appli-
cations and the frameworks used to build them, you may be aware that you need to
create different representations of your domain. You’ll have classes in your appli-
cation layer, and you’ll have tables in your database. And depending on how the
application is built, there will either be a manual translation between them or an
automated system called an object-relational mapper (ORM). The API can be consid-
ered a third layer with its own domain model.

You may be tempted to look for ways to avoid doing API design for an existing appli-
cation and to automate the connection to the other layers. Be careful! We’ll explain
later in this book why this is dangerous territory. Here, though, we’re starting from
scratch anyway.

131A domain model for PetSitter
 Users have three attributes: a username, a password, and a
full name. They also have the ability to register (see figure 9.5).

 Reviews have at least three attributes: a rating, a message,
and a UUID. If they are not anonymous, they also have a user
ID. In the OpenAPI description, that is a fourth attribute.
Due to the fact that it is a reference to another concept, how-
ever, in a domain model we would not include it as an attri-
bute but instead describe a relationship between the user
and the review models. Reviews can also be created and
retrieved. For retrieval, it is possible to get all reviews, option-
ally filtered by rating, or to get a single review based on its ID (see figure 9.6).

Without consciously knowing it, you already created a representation of this domain
model in OpenAPI, using JSON Schema for attributes and API paths for actions. Just
now we took this API description and created a domain model from it.

 In the next chapter we’ll reverse this process. We’ll take the PetSitter domain
model and transform it into OpenAPI.

9.4 A domain model for PetSitter
José, Nidhi, and Max meet for the second time. José reminds them of his fourth and final
nonfunctional requirement, where he said that he wants to get a working prototype out
as soon as possible. This working prototype should be usable and provide value to the
user but not contain any non-essential functionality. By focusing on the essentials of the
application, the team can create a simpler domain model, API, and implementation.

9.4.1 Concepts in the model

As the first step, the team lists all concepts that their domain model will likely contain:

 Pet owners and pet sitters use the application, so we need a User model.
 As pet owners post jobs and pet sitters apply for them, we probably need a Job

model.
 The jobs are about dogs, so we may need a Dog model too.

We will look at these three models (see figure 9.7) and list their attributes and
relationships.

User

Register

Username

Password

FullName

Figure 9.5 FarmStall
User model

User

Register

Username

Password

FullName

Review

Rating

Message

UUID

Create

RetrieveOne

RetrieveMultiple Figure 9.6 FarmStall User
and Review models

132 CHAPTER 9 Designing a web application
9.4.2 The User model

A user appears in almost every domain model. That doesn’t mean, however, that the
User model always looks the same. The attributes, actions, and relationships may
change significantly, depending on the use case. In PetSitter, we’ve already talked
about two types of users: pet owners and pet sitters. Our model needs to accommo-
date that by including a role attribute.

 Apart from the two roles already mentioned, we’ll probably have administrators
who moderate the whole marketplace. It’s always helpful to include this role and
think about administrative duties that will happen in the application, even if they are
not part of a regular user’s feature set.

 The team collects the following attributes on their whiteboard:

 Email address
 Password
 Full name
 User’s role: pet owner, pet sitter, or admin

The user role attribute leads to a bit of discussion in our team, centered around the
following question: “Does every user have a single role, or can they have multiple
roles?” José believes that a person either has a pet or wants to look after other pets.
Max agrees that cases where a person might want to do both are uncommon. “How-
ever,” he argues, “in those rare cases, having to register twice for the same applica-
tion would be annoying.”

 A question like this might seem trivial at first, but it not
only changes the user experience, it also requires different
representations inside the API. And these are potentially
breaking changes. This is another reminder about how
important it is to get your domain model right. The team
eventually decides to support multiple roles.

 From her perspective as a backend developer, Nidhi
makes another suggestion: “An email address can change,
but a user’s identifier shouldn’t have to. We could add an ID
attribute.” The team agrees and adds “ID” to their list. Fig-
ure 9.8 shows the resulting User model.

User Job Dog

Figure 9.7 PetSitter initial domain model

ID

EmailAddress

Password

Fullname

Roles

User

Figure 9.8 PetSitter
User model

133A domain model for PetSitter
9.4.3 The Job and Dog models

José asks his developers to brainstorm: “If I asked you to look after my dog, and imag-
ine this is the first time and you haven’t met it yet, what would you want to know?” It
helps to ask questions like this during domain modeling to force us to look at the
model from the perspective of a new application user.

 He also reminds the team that they should keep things simple and, even though
the name is PetSitter, they can limit the model to dogs for now. Seeing the potential
complexity of a more generic pet model, the team agrees. (As authors, we’re also
happy with that decision, since we don’t want to dive too deep into sophisticated
domain modeling now, at the expense of other aspects of API design.)

 Nidhi and Max write down their thoughts, compare notes, and present the follow-
ing joint list to José:

 When is the job, and how long will it take?
 What do you want me to do? Go for a walk, look after the dog at home, or some-

thing else?
 Who is the dog? Name, age, breed, etc.?

The first two questions lead to an attribute list for jobs:

 Start time
 End time
 Activity

Instead of start and end times, another possibility would be to
include start time and duration. Both versions convey the
same information. Also, similar to the User model, we’ll add
an ID so we can uniquely identify every job posted on Pet-
Sitter. Figure 9.9 shows the resulting Job model.

 The third question leads to an attribute list for dogs:

 Name
 Age (in years)
 Breed
 Size (in case people are not familiar with the breed)

Figure 9.10 shows the Dog model.
 At this point, we have mapped three concepts into our

domain model, but we have only looked at their attributes.
We’ll leave the domain model in its current state and com-
plete it later, after we look at the application through the
lens of user stories.

Job

ID

StartTime

EndTime

Activity

Figure 9.9 PetSitter
Job model

Dog

ID

Name

Age

Breed

Size

Figure 9.10 PetSitter
Dog model

134 CHAPTER 9 Designing a web application
9.5 User stories for PetSitter
To complete the domain model and start implementing the PetSitter application, we
need to discuss the connections between the models and the actions that they can
take, or that can be taken on them. The team decides to write user stories for that.
We’ll first introduce user stories as an instrument for describing application func-
tionality, then collect the stories for PetSitter, and finally merge the results with the
domain model.

9.5.1 What are user stories?

User stories are an informal project management method for analyzing requirements
during software development. Each user story is written from the perspective of the
user of a software product and describes one activity that they perform within the soft-
ware to accomplish something. Commonly, user stories are written with a template
like the following:

As a <role> I can <capability>, so that <receive benefit>.

That template includes a role, which makes it work well with applications where users
have different roles with different capabilities. The “so that” clause is optional and
provides background information on the purpose of the user story.

 For user stories that depend on other stories, we can use this template:

Given <prerequisite>, I can <capability>.

Here are a couple of examples:

 As a pet owner I can post a pet-sitting job, so that I can go on holiday.
 Given that I posted a job, I can view its status.

9.5.2 Collecting user stories

We have already seen that user stories support roles and that there are three roles in
PetSitter: pet owner, pet sitter, and admin. It makes sense to look at each of them sep-
arately, and, with a multiperson team, we can split the work of brainstorming and writ-
ing the user stories. In the PetSitter team, José takes on the perspective of a pet owner,
and Max puts himself in the shoes of a potential pet sitter. Meanwhile, Nidhi investi-
gates the admin role.

 To keep the stories short, we’ll present them in separate lists and drop the “as a
<role>” prefix. The following lists will act as an overview. We’ll look more closely at
each user story afterwards, as we map them to actions and relationships for the
domain model.

 Here are José’s results for the pet-owner role:

 I can register a new account and choose my role, so that I can log in.
 I can log in to my account, so that I can use the marketplace.

135User stories for PetSitter
 I can post a job on PetSitter, including a description of one of my dogs, so that
pet sitters can apply.

 I can see a list of jobs I have posted.
 Given that I have posted a job, I can view and modify its details.
 Given that I have posted a job, I can delete it.
 Given that I have posted a job, I can see the pet sitters that applied.
 Given that I have found a suitable candidate, I can approve them.
 I can modify my account details.
 I can delete my account.

Here are Max’s results for the pet-sitter role:

 I can register a new account and choose my role, so that I can log in.
 I can log in to my account, so that I can use the marketplace.
 I can view a list of pets that need looking after.
 Given that I have found a job, I can apply for it.
 I can modify my account details.
 I can delete my account.

Here are Nidhi’s results for the administrator role:

 I can log in to my account, so that I can access the admin functionality.
 I can modify my account details.
 I can modify other users’ account details.
 I can edit jobs that other users have posted.
 I can delete users.

Four of the user stories (the ones in bold) directly correspond to the functional
requirements that José wrote down initially, so it seems like his team is on the right
track for building the application he wants. We can check them off the requirements
checklist (see table 9.3).

Table 9.3 Requirements checklist

Type Requirement In plan?

Functional Sign up: as a dog owner or dog walker. Yes

Functional Dog owners can post jobs. Yes

Functional Dog walkers can apply for posted jobs. Yes

Nonfunctional Build web app with in-house team—two people. Yes

Nonfunctional Mobile app—work with other development agency (later!). Yes

Nonfunctional Chance to experiment with new technology. Yes

Nonfunctional Release first working prototype as soon as possible. Yes

136 CHAPTER 9 Designing a web application
Having collected all the stories, we can now investigate them and update our models
as needed.

9.5.3 Mapping user stories

Previously, we created three models: User, Job, and Dog. They all already have a set of
attributes. To find out about their functionality and relationships, we should walk
through the user stories and see which of the models they affect. If they affect only
one of the models, we can add an action to that model. If they affect multiple models,
we will also have to look at them from a relationship perspective.

 To start, we’ll look at those user stories that are the same or similar for multiple roles.

I CAN REGISTER A NEW ACCOUNT AND CHOOSE MY ROLE

This user story appears for both pet owners and pet sitters. Registration is a prerequi-
site to using the application, and it’s independent of any jobs. For the User model, we
can derive the action “Register” from it.

I CAN LOG IN TO MY ACCOUNT

This user story appears for all three roles and is also independent of any jobs. We can
assume we’ll have a “Login” action in our application’s User model.

I CAN MODIFY MY ACCOUNT DETAILS

This user story also appears for all three roles, so we can add a “Modify” action to the
User model. Although not explicitly mentioned here, we can safely assume that a user
needs to retrieve and see their details first, before making any changes. Therefore, we
can also add a “View” action to the user model.

I CAN DELETE MY ACCOUNT

This user story appears for both pet owners and pet sitters
and adds a “Delete” action to the User model.

 So far, we have identified several actions for the User
model, but we haven’t touched Job, Dog, or any relationships
yet. Here are the User actions (shown in figure 9.11):

 User: “Register”
 User: “Login”
 User: “View”
 User: “Modify”
 User: “Delete”

Now let’s look at the list of user stories for pet owners.

I CAN POST A JOB ON PETSITTER, INCLUDING A DESCRIPTION OF ONE OF MY DOGS

This story calls for a “Create” action related to the Job model. It also includes the Dog
model, so let’s take a closer look at that.

 According to the user story, posting a job and including the dog that the job is about
is a single step. There is no preceding user story for adding a dog to the PetSitter

User

ID

EmailAddress

Password

Fullname

Roles

Register

Login

View

Modify

Delete

Figure 9.11 PetSitter
User model with actions

137User stories for PetSitter
application, which might also lead to the need for user stories for listing, editing, and
deleting dogs. That is a design choice. José says that it keeps the application simple,
and the developers wholeheartedly agree, as it requires fewer actions to implement.

 What about relationships? Well, due to the inclusion of the dog in every job post-
ing, there is a strong connection between the Dog and Job models. It is a one-to-one
mapping, which means that for every job there is exactly one dog, and every dog is
assigned to exactly one job. As a result, we can drop the ID from the Dog model,
because we can identify each dog by the job it belongs to.

 Of course, there might be scenarios where jobs ask the pet sitter to look after
multiple dogs. They are, however, not covered by this user story, which explicitly
mentioned “one of my dogs” and, as we said before, we want to keep the model sim-
ple (see figure 9.12). At the same time, it is very likely for one pet owner to create
multiple jobs for the same dog over the course of time. As the dog’s description is
included in the job, though, it would be a different Dog model even if it is the same
dog in the real world.

There are two lessons to be learned here. One is that there is no perfect mapping
between an instance of a concept in reality and an instance of the same concept in
the domain model. The second lesson is that the way we write our user stories and,
hence, how we want users to interact with our applications, can throw assumptions
off the rails.

I CAN SEE A LIST OF JOBS I HAVE POSTED

From this story, we can assume a “List my own” action for jobs, which also requires
knowing the user that created them. Since that connection is needed for users to list
their jobs, we can draw a relationship between the User and Job models and call it
“user creates job” (see figure 9.13).

Belongs to
Dog

Name

Age

Breed

Size

Job

ID

StartTime

EndTime

Activity

Create
Figure 9.12 PetSitter Job
and Dog models

Creates
JobUser

...

Create

ListMyOwn
...

...

Figure 9.13 PetSitter User
and Job create relationship

138 CHAPTER 9 Designing a web application
GIVEN THAT I HAVE POSTED A JOB, I CAN VIEW AND MODIFY ITS DETAILS

This user story adds “View” and “Modify” actions to the Job model. It doesn’t tell us
anything new about relationships.

GIVEN THAT I HAVE POSTED A JOB, I CAN DELETE IT
This user story is similar to the previous one and adds a “Delete” action to the Job model.

GIVEN THAT I HAVE POSTED A JOB, I CAN SEE THE PET SITTERS THAT APPLIED

Users with the pet-sitter role can apply for jobs. The application process itself is
another user story that we’ll look at when we go through the user stories for pet sit-
ters. The current user story takes the perspective of the pet owner who wants to see
these pet sitters. To support it, we could draw a second relationship between the User
and the Job models, calling it “applies for” (see figure 9.14).

What would be a proper name for an action that corresponds to this user story, and to
which model should it belong? It could be “List applications.” It probably doesn’t
belong to the Dog model, but is it about the User or the Job? Somehow it is about
both, and we also introduced a new noun, “application,” in the action name. Maybe
we’ll have to revise our domain model? If we can’t name an action without a new
proper noun, it’s an indication that we need new concepts in the domain model.

 We can create a model named JobApplication and connect it to both User and
Job. In this way, we can have a “List for job” action for the new model (see figure 9.15).
This action also includes a noun, but that’s okay since it’s a noun that already exists
as a concept.

Creates
JobUser

...

...

...

Create

ListMyOwn

View

Modify

Delete

Applies for

Figure 9.14 PetSitter User
and Job application relationship
(first approach)

Creates
JobUser

...

...

...

...

JobApplication

...

ListForJob

Creates Applies for

Figure 9.15 PetSitter User and
JobApplication relationship
(improved approach)

139User stories for PetSitter
GIVEN THAT I HAVE FOUND A SUITABLE CANDIDATE, I CAN APPROVE THEM

A candidate for a job is a user who applied for that job, or, in other words, someone
who created an application. We can add an action to the JobApplication model and
call it “Approve.”

 In the initial stage where we created the attributes for our
domain model, we didn’t yet have the JobApplication model.
However, our domain model should include the result of the
“Approve” action, so the team decides to add a “Status” attri-
bute, which could indicate applying or accepted. Also, to be con-
sistent with the other models, JobApplication gets an “ID”
attribute (see figure 9.16).

 Great, we’ve completed all the user stories for pet owners,
and we have updated our domain model with relationships.
Before we move on to the user stories for pet sitters, let’s rec-
ollect all the actions we have identified so far:

 Job: “Create”
 Job: “List my own”
 Job: “View”
 Job: “Modify”
 Job: “Delete”
 JobApplication: “List for job”
 JobApplication: “Approve”

Now let’s look at the pet-sitter user stories.

I CAN VIEW A LIST OF PETS THAT NEED LOOKING AFTER

As we’ve established in our domain model, pets, or dogs, are created and listed as part
of the jobs. Thus, the list that the pet sitter can view is not a list of pets but rather a list
of jobs. We can add an action to the Job model and call it “List all.” This user story
does not require any changes to the relationships.

GIVEN THAT I HAVE FOUND A JOB, I CAN APPLY FOR IT
This user story establishes a user that wishes to do the pet sitting, by connecting them
to the job via a job application. We can add the “Create” action to connect the User
and JobApplication models.

 Awesome, we’ve gone through all of the pet-sitter user stories now. They work with
our domain model and don’t require any new or modified relationships. We can add
the following actions to our collection:

 Job: “List all”
 JobApplication: “Create”

JobApplication

ID

Status

ListForJob

Approve

Figure 9.16 PetSitter
JobApplication

140 CHAPTER 9 Designing a web application
Last, but not least, let’s look at the user stories for the administrator:

 I can modify other user profiles.
 I can edit jobs that other users have posted.
 I can delete users.

One thing that these stories have in common is that we already defined actions like
“View,” “Modify,” and “Delete” for users and jobs. The only difference is that regular
users can only execute these actions for themselves or for jobs they have created,
whereas the administrator can execute them for any user. We will have to consider
these user stories when implementing permissions in the backend, but they do not
result in changes to our domain model.

 Great, it seems we’re done with this phase of the project. José, Nidhi, and Max
each leave the meeting with a photograph of the whiteboard containing the full
domain model (see figure 9.17). According to the plan, it’s now Max’s responsibility
to turn it into the first version of the OpenAPI description.

Summary
 PetSitter is an application that connects busy dog owners with job seekers who

want to take care of them. It is the foundation that we will build on throughout
the second part of this book.

ID

EmailAddress

Password

Fullname

Roles

User

Register

Login

View

Modify

Delete

JobApplication

ListForJob

Approve

Create

ID

Status

Job

Create

ListMyOwn

View

Modify

Delete

ListAll

ID

StartTime

EndTime

Activity
Dog

Name

Age

Breed

Size

Belongs to

Creates

Creates Applies for

Figure 9.17 PetSitter full domain model

141Summary
 We have a plan that involves a team with two developers, one focusing on the
backend and the other on the frontend. We will first design an API for the
application, then build the two parts, and finally integrate both. We’ll cover this
iterative process in the coming chapters.

 Domain modeling is the process of creating a representation of concepts in a
problem domain. It is the first step in building an API, and it starts before writ-
ing the OpenAPI description. PetSitter’s domain model includes User, Job,
Dog, and JobApplication.

 User stories can help with domain modeling, especially when defining actions
for the models and relationships between different models. As the result of writ-
ing and analyzing user stories, we have updated the domain model with four
relationships and a list of actions for Users, Jobs, and JobApplication. The com-
plete model forms the basis of the OpenAPI work to follow.

Creating an API
design using OpenAPI
In the previous chapter we got to know José and his team, who are building the
PetSitter application. We accompanied them through their initial meeting, in
which they created an action plan for building the application. We also joined
their domain-modeling whiteboard session, in which they prepared a high-level
domain model.

 The domain-modeling session was the first item on their action plan, which
leaves us with the following steps:

1 Max, the frontend developer, will create the first draft of their API design.
2 Nidhi, the backend developer, will review that draft.
3 Both will agree on finalizing the specification, or make edits and review

again as necessary.

This chapter covers
 Creating reusable schemas in OpenAPI

 Converting the PetSitter domain model into
schemas

 Designing an API following the CRUD approach

 Creating paths and operations for the PetSitter
API
142

143The problem
4 Both will work independently on their parts of the implementation.
5 After completion, they will integrate their code.

In this chapter, we’ll go through the first of the remaining steps.

10.1 The problem
In the previous chapter we created a domain model. That model is an informal, high-
level representation of the concepts underlying the PetSitter application. Later, in the
implementation stage of the project, we will develop frontend and backend parts, con-
nected with an API. We now have to bridge the gap between those two, and we’ll do
this with the formal description of the API using OpenAPI.

 By the end of this chapter, we should have an OpenAPI file that satisfies the follow-
ing three objectives:

 It is a valid representation of the domain model, fulfilling the requirements for
the project.

 A backend developer can use it to create an implementation of the API.
 A frontend developer can write code to integrate the API.

10.1.1 Converting a domain model to OpenAPI

In a domain model, we assign attributes, relationships, and functionality to various
concepts. To understand how we can convert each of these to OpenAPI, let’s take a
look back at the FarmStall API. We already looked at a domain model for FarmStall in
the previous chapter (section 9.3.2), where we identified users and reviews as the
main concepts. We’ll revisit this model now and take a closer look at the OpenAPI
description to see how we could do a mapping between the two.

 To retrieve a list of reviews in the FarmStall API, users can make an API call to the
GET /reviews operation. In chapter 5 we used JSON Schema to describe the response.
As a reminder, here is the schema part of the OpenAPI description for this response.

type: array
items:
 type: object
 properties:
 uuid:
 type: string
 pattern: '^[0-9a-fA-F\-]{36}$'
 message:
 type: string
 rating:
 type: integer
 minimum: 1
 maximum: 5
 userId:
 type: string

Listing 10.1 The GET /reviews response schema

144 CHAPTER 10 Creating an API design using OpenAPI
 pattern: '^[0-9a-fA-F\-]{36}$'
 nullable: true

The schema describes the properties of an object: in this case, uuid, message, rating,
and userId. In the previous chapter we looked at a domain model for reviews in
which the UUID, message, and rating were attributes, and the user ID turned into a
relationship between the Review and User models (see figure 9.6).

 Generally speaking, schemas in OpenAPI definitions are representations of the
attributes and relationships for concepts in a domain model. We’ll stick to using
the terms “model” or “concept” for the high-level domain model representation
and the word “schema” for its technical implementation as a data structure. In other
documentation of domain modeling with OpenAPI, however, you may also see the
words “model” and “schema” used interchangeably.

 If you look at the HTTP method GET and the /reviews URL, you can read it as
“Get Reviews.” This is a “Get” action taken on the reviews concept in the domain
model. The functionality or behavioral parts of the domain model are represented
through the API operations in OpenAPI. We will look at operations later in this chap-
ter and focus on schemas first.

10.1.2 Ensuring reusability

In the definition of the FarmStall API’s GET /reviews operation in chapter 5, we pro-
vided the schema as part of the operation. That is referred to as an “inline schema.”

 Let’s look at another function of the FarmStall API: adding reviews. In this case,
users can make an API call to the POST /reviews operation. In chapter 6 we created
this operation with a request body—we described the data structure as part of the
request itself. In other words, we provided an inline schema. As a reminder, here is
the schema part of the OpenAPI description for this request.

type: object
properties:
 message:
 type: string
 example: An awesome time for the whole family.
 rating:
 type: integer
 minimum: 1
 maximum: 5
 example: 5

If we compare both listings, we’ll notice some duplication:

 Both have a message property with a string type.
 Both have a rating property with an integer type, a minimum constraint of 1,

and a maximum constraint of 5.

Listing 10.2 The POST /reviews request schema

145Creating the schemas
Now, assume that you wanted to change the rating scale so that instead of rating from
1 to 5, users can rate from 1 to 10. We’ve already identified two places where you would
have to make a change, and for the sake of brevity we only included two inline sche-
mas here, but there are more. The POST /reviews endpoint returns a response that
echoes the review back, resulting in a third inline schema. Additionally, we copied and
pasted the same response format into the GET /review/{reviewId} operation.

 In total, there are four places where we’d need to make a change. Changing some-
thing in four places in a file doesn’t seem like an impossible burden for a developer,
but it introduces a margin for error. Imagine what could go wrong if the change
needed to be made in only some places, such as in POST /reviews, but not in GET
/reviews. A developer integrating GET /reviews would be under the assumption that
there’s a maximum rating of 5, so they might design their API client with this expecta-
tion. For example, they might build a visual user interface with five stars. At the same
time, another developer would send reviews with a maximum rating of 10. Those
could not be displayed in the first developer’s application.

 Consistency is key for API design, so having a way to define a schema only once
and then use it throughout the OpenAPI description would be really helpful. Apart
from the practical advantages, it also provides a closer mapping between the domain
model and its implementation, because a single schema in OpenAPI represents
exactly one concept from the domain model. That is what we’re about to do.

10.2 Creating the schemas
In this section we will create reusable schemas, and you’ll learn where they are located
in an OpenAPI file. To get there, however, we have to create a new OpenAPI file first.

10.2.1 Starting an OpenAPI file with schemas

To start the new OpenAPI definition for PetSitter, we’ll use Swagger Editor (https://
editor.swagger.io), the tool you got to know in chapter 4. Open the website and clear
out the editor, so you can start writing on a blank slate.

 As a reminder, you need to do the following when creating a new OpenAPI file:

 Specify the version of OpenAPI you’re using.
 Add an info section with title and version.
 Add an empty paths object even if you do not define any operations yet,

because otherwise you will get a syntax error.

Your first file should look like the following listing.

openapi: 3.0.3
info:
 title: PetSitter API
 version: "0.1"
paths: {}

Listing 10.3 Minimal PetSitter OpenAPI file

https://editor.swagger.io
https://editor.swagger.io
https://editor.swagger.io

146 CHAPTER 10 Creating an API design using OpenAPI
There is another top-level element for OpenAPI files: components. It is a container in
which you can define elements of your API that do not belong to a specific path. You
can add references to components in various places throughout your API description.
You saw this element in chapter 7, where we used it to create a security scheme defini-
tion for the API. Now we’ll use components and its sub-element schemas to define
reusable schemas for the API.

 After adding these container elements, your OpenAPI file should look like the fol-
lowing listing.

openapi: 3.0.3
info:
 title: PetSitter API
 version: "0.1"
paths: {}
components:
 schemas: {}

The OpenAPI description is now ready for the schema descriptions of our User, Job,
Dog, and JobApplication concepts from the domain model.

10.2.2 Referencing common schemas

Once we have created common schemas in the components section of our OpenAPI
file, we can use the $ref keyword to add references to them. Those references can be
used in requests, responses, and even other schemas.

 The value for the $ref keyword is a JSON pointer that describes where we can find
the schema in the hierarchical structure of our OpenAPI file. The JSON pointer starts
with the hash symbol (#), followed by the path /components/schemas/, and it ends
with the name of the schema:

$ref: '#/components/schemas/User'

10.2.3 The User schema

According to the domain model discussions in the previous
chapter, a User (see figure 10.1) has the following attributes:

 ID
 Email address
 Password
 Full name
 Roles

The roles indicate whether they have a pet and want to pro-
vide jobs, or they’re looking for a pet-sitting job, or they’re an
admin, or some combination of the three.

Listing 10.4 PetSitter OpenAPI with schemas

User

ID

EmailAddress

Password

FullName

Roles

Figure 10.1 PetSitter
User model

147Creating the schemas
We have to create an object schema with multiple fields, where each field, or prop-
erty, represents one of these attributes.

 When converting the attributes, we should follow the naming convention for JSON
objects, which says that all properties are lowercase and without spaces. We also have
to add a type to each of them. Considering these two requirements, table 10.1 lists the
properties.

The ID is an integer. The fields for email, password, and full name have the string
type, which is a sensible default unless we’re sure that they only contain numeric or
Boolean values. The roles field is an array because users can have multiple roles.
Each role is a string itself, so we can set the array’s items type keyword to string.

 Now let’s add our schema to the OpenAPI description. To do so, you need to pro-
vide the name of your schema as the YAML key under schemas, with the description
below it. Unlike property names, which are lowercase, schema names typically start
with an uppercase letter—a convention we already used for domain modeling. Hence,
we’ll create a schema with the name User. The following listing shows the OpenAPI
file with our first schema. You can copy this definition from https://designapis.com/
ch10/01.yml.

openapi: 3.0.3
#...
components:
 schemas:
 User:
 type: object
 properties:
 id:
 type: integer
 email:
 type: string
 password:
 type: string
 full_name:
 type: string

Table 10.1 The User fields and their types

Field Type

id integer

email string

password string

full_name string

roles array (of strings)

Listing 10.5 PetSitter OpenAPI with the User schema

https://designapis.com/ch10/01.yml
https://designapis.com/ch10/01.yml
https://designapis.com/ch10/01.yml

148 CHAPTER 10 Creating an API design using OpenAPI
 roles:
 type: array
 items:
 type: string

When you add this code to Swagger Editor, you will see a new section called Schemas
appear in the right panel of the editor. Inside that section, you can expand the User
model and see the properties you have defined (see figure 10.2).

NOTE In figure 10.2, you may spot the yellow triangle in the leftmost column.
This is a warning that a schema is unused in the definition. We can ignore
that for now, since we’re starting by creating the schemas; later, we’ll define
the operations that use them.

10.2.4 The Job schema

In the PetSitter domain model, a Job (see figure 10.3) has the
following attributes:

 ID
 Start time
 End time
 Activity

As we did in the User schema, we will make the ID an integer
and use string for everything else. Relationships in domain

Figure 10.2 Swagger Editor with User model

Job

ID

StartTime

EndTime

Activity

Figure 10.3 PetSitter
Job model

149Creating the schemas
models also lead to properties in the schema. We saw this in the FarmStall API where
there was a user_id field in a Review. Therefore, we also have to look at the relation-
ships. So far, we have User and Job schemas, so we can only look at the relationship
between them: “user creates job” (see figure 10.4).

To reference the user who created the job, we can add a field that includes the ID of
the user. A common naming approach for these fields is to use the (lowercase) name
of the target schema, followed by an underscore, and then the name of the field on
the target schema that contains the unique identifier, such as id. With this approach,
the property name would be user_id. We can also be more specific and include a
description of the relationship in the name, which is especially helpful if we have
more than one relationship between the same two schemes. With that said, let’s call it
creator_user_id.

 Listing 10.6 shows the OpenAPI file after we have added our second schema (from
table 10.2).

openapi: 3.0.3
#...
components:
 schemas:
 User:
 #...
 Job:
 type: object
 properties:
 id:
 type: integer

Table 10.2 The Job fields and their types

Field Type

id integer

creator_user_id integer

start_time string

end_time string

activity string

Listing 10.6 PetSitter OpenAPI with Job schema

User

...

Creates

...

Job

...

... Figure 10.4 PetSitter User
and Job create relationship

150 CHAPTER 10 Creating an API design using OpenAPI
 creator_user_id:
 type: integer
 start_time:
 type: string
 end_time:
 type: string
 activity:
 type: string

10.2.5 The Dog schema

In the previous chapter, the team listed the following attributes for the Dog model:

 Name
 Age (in years)
 Breed
 Size (in case people are not familiar with the breed)

We can use an integer for the age, as it is a number, and string for everything else.
Just as before, we’ll list the attributes in a table first (see table 10.3).

Here is our third schema in the OpenAPI file.

openapi: 3.0.3
#...
components:
 schemas:
 User:
 #...
 Job:
 #...
 Dog:
 type: object
 properties:
 name:
 type: string
 age:
 type: integer
 breed:
 type: string

Table 10.3 The Dog fields and their types

Field Type

name string

age integer

breed string

size string

Listing 10.7 PetSitter OpenAPI with Dog schema

151Creating the schemas
 size:
 type: string

What about the “dog belongs to job” relationship? As we realized while processing the
user stories, this is a one-to-one mapping, and pet owners create dogs as part of the jobs
they post. It follows that we have to somehow include the Dog schema in the Job
schema. We can do that with a reference: the Job schema gets an additional property
called dog with a $ref pointer to the new schema. That way, the dog’s description
becomes part of the job, just as intended. The following listing shows how that looks
in OpenAPI.

openapi: 3.0.3
#...
components:
 schemas:
 User:
 #...
 Job:
 type: object
 properties:
 id:
 type: integer
 creator_user_id:
 type: integer
 start_time:
 type: string
 end_time:
 type: string
 activity:
 type: string
 dog:
 $ref: '#/components/schemas/Dog'
 Dog:
 #...

10.2.6 The JobApplication schema

Our fourth and last schema is the JobApplication, which has the following attributes:

 ID
 Status

The ID can be an integer again, and status can be a string. We also have relation-
ships to the Job and User schema, as every job application is created by a user and
is dedicated to one specific job. To support this, we can add user_id and job_id
fields with integer types (because id on Job and User is an integer), as shown in
table 10.4.

 Awesome. Now let’s update the OpenAPI file with the final schema.

Listing 10.8 PetSitter OpenAPI with Job schema, referencing Dog

152 CHAPTER 10 Creating an API design using OpenAPI
openapi: 3.0.3
#...
components:
 schemas:
 User:
 #...
 Job:
 #...
 Dog:
 #...
 JobApplication:
 type: object
 properties:
 id:
 type: integer
 status:
 type: string
 user_id:
 type: integer
 job_id:
 type: integer

Great, we now have four complete schemas in our OpenAPI file. Good work, Max!
Let’s continue with the actions in our domain model. Before we can look at them,
however, it’s time for some more theory as we look at CRUD.

10.3 The CRUD approach to API operations
The abbreviation CRUD stands for Create-Read-Update-Delete. Originally, CRUD
comes from the world of database management systems—it describes the essential
operations that can be executed on a certain piece of data.

 CRUD as an API design paradigm fits in nicely with some of the concepts of REST,
which you read about in chapter 1. URLs represent resources, and the different
HTTP methods (or verbs) represent the operations. That, in turn, leads to a certain
approach in designing the URL paths and the operations available on them. You have
already seen this approach in the FarmStall API as well as in some of the external
examples throughout part 1 of this book. Before we reproduce it for PetSitter, how-
ever, let’s take another look at this approach and work out the specifics.

Table 10.4 The JobApplication fields and their types

Field Type

id integer

status string

user_id integer

job_id integer

Listing 10.9 PetSitter OpenAPI with JobApplication schema

153The CRUD approach to API operations
 We can typically make a distinction between two kinds of URL paths in an API:

 Resource endpoints
 Collection endpoints

Later in this chapter, you’ll learn about a third type of endpoint, but let’s focus on
these two first. Also, let’s agree on a definition for the term “resource.” Resources are
individual instances of a concept in the domain model. We have, for example, User
and Job models, so every specific user is a resource, and so is every specific job.

 The best practice for naming the path to an individual resource is to use the plu-
ralized name of the model, followed by a slash, and then a unique identifier for the
instance. For example, if there’s a user with an ID of 123, you could access it as
/users/123. If you think of the URL as a directory structure (which, for static web-
sites, it actually is!), you can imagine a folder called users that contains one file for
each user.

 We call the URL to an individual resource a resource endpoint. On a resource end-
point, you can use HTTP GET to retrieve the resource, PUT or PATCH to update it, and
DELETE to remove it.

 Accessing individual resources, however, is not sufficient. Often you’ll have to
retrieve a list of resources of the same type—instances of the same concept in the
domain model. For this purpose, you can use the pluralized name of the model with-
out suffixing it with an ID. To follow the filesystem analogy, you open a folder instead
of a specific file.

 We call the URL to a resource listing a collection endpoint. On a collection endpoint,
you can use HTTP GET to retrieve all resources of the same type. You may argue, of
course, that it’s not practical to retrieve all resources if there are thousands or millions
of them. Thus, there are concepts like pagination and filters. You saw filters in chap-
ter 2 where the collection endpoint GET /reviews in the FarmStall API allows a max-
Rating parameter so that it only returns reviews with a certain rating value. We will
discuss pagination (and more about filters) in chapter 17.

 It’s also common to use the collection endpoint URL combined with the HTTP
POST method to create a new element for which the ID is not yet known, because it is
assigned by the server.

 You can find a summary of these ideas in table 10.5.

Table 10.5 CRUD operations, methods, and paths

Operation Method Typical path

Create POST Collection endpoint (/{schema}s)

Read GET Both collection and resource endpoints

Update PUT or PATCH Resource endpoint (/{schema}s/{id})

Delete DELETE Resource endpoint (/{schema}s/{id})

154 CHAPTER 10 Creating an API design using OpenAPI
10.3.1 Defining API requests and responses

In an interaction with an API, the operation defines the URL, the HTTP method, and,
optionally, request parameters and a response body that the client sends to the server.
The server then sends back a response, which contains an HTTP status code and a
response body. In chapter 5 we introduced HTTP status codes, so you can refer to that
chapter for more information about them.

 The CRUD approach to designing an API includes some rules for requests and
responses. We’ll cover the theory in this section and then follow up by demonstrating
how it looks in practice as we add operations to the PetSitter OpenAPI description.

REQUESTS

For “Read” and “Delete” operations, there is no request body. If necessary, the input
for “Read” operations, such as filter criteria, typically goes in query parameters.

 For “Create” and “Update” operations, you need to send the JSON representation
of the resource (a JSON structure following the schema) as the request body.

RESPONSES

For “Read” operations on resource endpoints, the response is a JSON object following
the schema of the resource. A successful API call gets status code 200 OK. If the
requested resource does not exist, the API should return a 404 Not Found.

 For “Read” operations on collection endpoints, the response is a collection object
that contains an array of resource objects, optionally accompanied by additional fields
with metadata. The field that contains the array of items is often called items or the
name of the resource. Let’s look at an example of a response structure.

#...
responses:
 '200':
 description: A list of items
 content:
 application/json:
 schema:
 type: object
 properties:
 items:
 type: array
 items:
 $ref: '#/components/schemas/Item'

Listing 10.10 A collection endpoint response example

Why not return a top-level array?
We could simplify the structure in listing 10.10 by not having an object with an
items field and instead just make the whole response an array. There are two rea-
sons why this is discouraged.

One is that there is a security vulnerability in some older browsers that allows a cir-
cumvention of Cross-Origin Resource Sharing (CORS) restrictions when the top-level

155The CRUD approach to API operations
For collection endpoints, every API call should return status code 200, even if the col-
lection is empty.

For “Update” operations, the resource endpoints responds with a JSON object follow-
ing the schema of the resource. That results in symmetry of request and response and
also consistency between “Read” and “Update,” as the resource endpoints give the
same response, independent of the HTTP verb. For continued symmetry, update
requests also return a 200 status code.

 For “Delete” operations, the response from the resource endpoint is typically
empty. This is not consistent with the other operations on the resource endpoint, but
it makes sense, as after a “Delete,” the resource no longer exists. A successful deletion
request returns a 204 No Content status code, because 200 expects a response body.

 For “Create” operations, which are POST requests on the collection endpoint, the
response body is typically empty. Instead, the response contains a Location header
that points to the resource endpoint for the newly created resource. A successful cre-
ation request returns a 201 Created status code.

 We collected these practices in table 10.6.

element is an array. The second reason is that we may need additional fields with
metadata, especially when we use pagination. An example of such metadata could
be the count of items available but not returned in the current API response.

Even if we have no apparent use for additional fields, we should follow the best prac-
tice of never returning top-level arrays in the APIs we design—we probably also need
to have a word with our former selves who did it the wrong way in chapter 5 with the
FarmStall GET /reviews collection.

Why not use 404 for empty collections?
An API call to a resource endpoint receives a 200 status if the resource exists and
404 if it doesn’t, but a collection endpoint always returns 200, even if the collection
is empty. The reason is that the collection itself still exists, even if there are no
resources in it. If you think of it as a bucket, it makes sense, because an empty
bucket is still a bucket, and you can grab it and do something with it.

Table 10.6 CRUD responses

Operation Status code Response body

Create 201 Empty, with a Location header

Read 200 Resource or collection object

Update 200 Resource

Delete 204 Empty

156 CHAPTER 10 Creating an API design using OpenAPI
10.3.2 From user stories to CRUD design

You might now conclude that API design is about following the mechanical process of
taking your models, adding collection and resource endpoints for each of them, and
specifying all CRUD operations—GET and POST for collection endpoints, and GET, PUT,
and DELETE for resource endpoints. And indeed, the API that results from this process
might be what API designers call a well-designed, consistent API. Unfortunately, how-
ever, it may not be the API that your consumers (such as your web application) need.

 In the previous chapter José’s team wrote user stories to cover the requirements of
the PetSitter application. As an API designer, you should look at those stories and ask
yourself some questions:

 Does this user story match with one or more CRUD operations? If so, make sure
you include these in your API design.

 Does the story require a different kind of operation? If so, is there a way you can
include this in your API that still feels right, from a resource-oriented (CRUD/
RESTful) perspective?

 Are there CRUD operations that none of your user stories need? If so, you can
and should them leave out of the API design.

10.4 API operations for PetSitter
With our toolbox prepared, we can now move on to implementing the operations for
the PetSitter API. There are no actions on the Dog concept, but we still have to walk
through the actions for User, Job, and JobApplication.

10.4.1 User operations

Reviewing our PetSitter User model (see figure 10.5), we find
the following actions:

 “Register”
 “Login”
 “View”
 “Modify”
 “Delete”

Let’s take a closer look at each action and see how it matches
the CRUD operations.

REGISTER

Registration is the initial action that a user takes to create their
representation (their account) in the application. Therefore
we can map this action to “Create” and add a POST operation
on the /users path, which is the collection endpoint for the User resources, to our
OpenAPI description. The request for that operation includes the User schema as a

User

ID

EmailAddress

Password

FullName

Roles

Register

Login

View

Modify

Delete

Figure 10.5 PetSitter
User model with actions

157API operations for PetSitter
component reference with $ref, and the response has a 201 status code and a Loca-
tion header.

openapi: 3.0.3
#...
paths:
 /users:
 post:
 summary: Register User
 responses:
 '201':
 description: Created
 headers:
 Location:
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/User'
#...

LOGIN

A user logs in to an application when they want to start using it. In the login process,
users authenticate themselves, and the application ensures that they are authorized
for access. We already discussed authentication in APIs in chapter 7, so we might
assume that this action is not represented as an operation but rather relates to the
security section of the OpenAPI description. Max decides to skip this action for now
and work on security later.

VIEW

We added this action from the user story about modifying user details, assuming that
the user needs to retrieve their profile before they can modify it. In the CRUD model,
this would be a “Read” on a single resource. In the API, we can add a GET operation on
the resource endpoint for users, GET /users/{id}.

MODIFY

After viewing a profile, the user can modify it. In other words, they can do an
“Update.” Again, this would be on a single resource, so we can add a PUT operation on
the resource endpoint for users, PUT /users/{id}.

DELETE

Users can delete themselves. This can be a DELETE operation on the resource end-
point for users, DELETE /users/{id}.

 In an OpenAPI file, we specify paths and then all the operations below them. For
the three actions that use the resource endpoint for users, we need a common path

Listing 10.11 PetSitter OpenAPI Register User

158 CHAPTER 10 Creating an API design using OpenAPI
parameter for the ID. (As a reminder, we introduced path parameters in chapter 6.)
Only the “Modify” operation needs a request body.

 The following listing shows these three operations in the OpenAPI file. As you look
at the code, take note of the references to the User schema, and especially how we
have placed a reference to the same schema for request and response bodies for the
PUT operation.

openapi: 3.0.3
#...
paths:
 /users:
 #...
 /users/{id}:
 parameters:
 - schema:
 type: integer
 name: id
 in: path
 required: true
 get:
 summary: View User
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/User'
 put:
 summary: Modify User
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/User'
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/User'
 delete:
 summary: Delete User
 responses:
 '204':
 description: No Content

Listing 10.12 PetSitter OpenAPI User operations

159API operations for PetSitter
10.4.2 Job operations

In the previous chapter we collected the following actions for
the Job model (see figure 10.6):

 “Create”
 “List my own”
 “View”
 “Modify”
 “Delete”
 “List all”

CREATE

Creating a job is the action that generates a new resource. We
can add a POST operation on the /jobs path, the collection
endpoint for the Job resources, to our OpenAPI description. It
follows a very similar design to the “Register” action for the
User schema.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:
 summary: Create Job
 responses:
 '201':
 description: Created
 headers:
 Location:
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Job'
#...

LIST MY OWN

To list jobs, we could use the Jobs collection endpoint, /jobs, with a GET operation. If
we do that for “List my own,” however, we will clash with another action for the Job
model, “List all.” As you learned, collection endpoints are typically used to list all
instances of a resource, so this operation fits “List all” more than it does “List my own.”
What should we do?

Listing 10.13 PetSitter OpenAPI Create Job

Job

Create

ListMyOwn

View

Modify

Delete

ListAll

ID

StartTime

EndTime

Activity

Figure 10.6 PetSitter
Job model with actions

160 CHAPTER 10 Creating an API design using OpenAPI
 First of all, it seems like a good idea to extend “List my own” into a more generic
“List for user,” as the latter covers the former and helps support additional use cases.
For example, while we may not want pet sitters and pet owners to look at the jobs for
other users, it could be a useful admin function. We will design “List for user” but stick
with the name “List my own,” as that is what we need at the moment.

 We have already learned that we can use query parameters to implement filter cri-
teria and use collection endpoints for searches. One option for the “List my own”
action would be to use a filter parameter on the collection endpoint, so we can use
GET /jobs?user_id= to fetch the user’s jobs. There is another alternative, however, so
it’s time we talk about the third type of endpoint in CRUD APIs that we promised.

 Directory structures, which we used as an analogy for paths in URLs, can be
nested. You can create a folder within another folder. Now, imagine that you have a
folder for users, and not just a file for each user, but also a subfolder for the user, into
which you can save other files related to that user. In PetSitter, you can think of each
pet owner as having a folder containing all the jobs they have ever posted. In our
CRUD terminology, we call that approach a subresource collection endpoint. Its general
structure is /{schema}s/{id}/{subschema}s. For our specific case, the path will be
/users/{id}/jobs. These endpoints use CRUD methods in the same way as top-level
collection endpoints, which means we use the GET verb.

 For the response format, we’ll follow the collection structure we introduced ear-
lier. To do so, we’ll create a collection object with an items field that is an array. All
the items in that array are instances of our Job schema, which we link here with the
$ref keyword.

openapi: 3.0.3
#...
paths:
 /users:
 #...
 /users/{id}:
 #...
 /users/{id}/jobs:
 parameters:
 - schema:
 type: integer
 name: id
 in: path
 required: true
 get:
 summary: List Jobs For User
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:

Listing 10.14 PetSitter OpenAPI List Jobs For User

161API operations for PetSitter
 type: object
 properties:
 items:
 type: array
 items:
 $ref: '#/components/schemas/Job'
#...

VIEW

Users can get details for a single job. That is a “Read” on the resource, so we can add a
GET operation on the resource endpoint for jobs, GET /jobs/{id}.

MODIFY

Pet owners can perform an “Update” on the jobs they posted, so we can add a PUT
operation on the respective resource endpoint, PUT /jobs/{id}.

 The last two operations did not have anything peculiar to them—they are very
basic CRUD operations, and they follow the same format as the similar actions we
have for users. The following listing shows these two operations in the OpenAPI file.

openapi: 3.0.3
#...
paths:
 #...
 /jobs/{id}:
 parameters:
 - schema:
 type: integer
 name: id
 in: path
 required: true
 get:
 summary: View Job
 responses:
 '200':
 description: OK
 content:
 application/json:

Shouldn’t we use a subresource collection endpoint for “Create” as well?
If /users/{id}/jobs is the resource location for all jobs created by a user, shouldn’t
we refactor our OpenAPI definition and use POST /users/{id}/jobs to create a new
job instead of the shorter POST /jobs we used before? That is a valid concern. In
general, however, when designing APIs with the CRUD approach, we try to keep the
use of subresources to a minimum and always use the shortest path we can get away
with. The only reason we’re using the subresource here is that there is a clash with
another action in a current user story. There’s no similar clash or ambiguity for the
“Create” action.

Listing 10.15 PetSitter OpenAPI Job operations

162 CHAPTER 10 Creating an API design using OpenAPI
 schema:
 $ref: '#/components/schemas/Job'
 put:
 summary: Modify Job
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Job'
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Job'

LIST ALL

We already mentioned the “List all” action. And, as we used GET /users/{id}/jobs
for “List my own,” we’re now free to use the collection endpoint for “List all,” so we
can add GET /jobs to our OpenAPI file.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:
 #...
 get:
 summary: List All Jobs
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 type: object
 properties:
 items:
 type: array
 items:
 $ref: '#/components/schemas/Job'
 #...

As you may imagine, if PetSitter takes off, there could be a lot of jobs in its database.
Adding parameters for pagination and filtering is a good idea, but we want to keep
things simple for now, so we’ll revisit that in chapter 17.

Listing 10.16 PetSitter OpenAPI List All Jobs

163API operations for PetSitter
10.4.3 JobApplication operations

In the JobApplication model that we created for PetSitter (see
figure 10.7), we have the following actions:

 “List for job”
 “Approve”
 “Create”

LIST FOR JOB

When we look at the “List for job” action, we may find that it
is similar to the “List my own” action for jobs. We’re working
with resources from one schema that have a relationship with
a resource from another schema. In “List my own,” we had
the jobs for a user. In “List for job,” we have the job applica-
tions for a job. Therefore, it is another case where a subresource collection endpoint
is appropriate. In our directory analogy, we can think of each job as having a folder for
all the applications it receives. That path is /jobs/{id}/job-applications. And since
this is a “Read” operation, we’ll use the GET verb.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 #...
 /jobs/{id}/job-applications:
 parameters:
 - schema:
 type: integer
 name: id
 in: path
 required: true
 get:
 summary: List Applications For Job
 responses:
 '200':
 description: OK
 content:

What about “Delete” for Jobs?
Don’t we have a “Delete” action in our domain model that is missing from the
OpenAPI file? Yes! It appears you are paying more attention than frontend developer
Max, who accidentally skipped over it. It’s good that we have a review cycle. The team
will eventually notice and add the appropriate operation to our OpenAPI later in this
book. Hold that thought.

Listing 10.17 PetSitter OpenAPI List Applications For Job

JobApplication

ListForJob

Approve

Create

ID

Status

Figure 10.7 PetSitter
JobApplication model
with actions

164 CHAPTER 10 Creating an API design using OpenAPI
 application/json:
 schema:
 type: object
 properties:
 items:
 type: array
 items:
 $ref: '#/components/schemas/JobApplication'
 #...

APPROVE

Pet owners approve applications to their jobs. The JobApplication schema contains a
status field that can be used to indicate whether the application is pending, accepted,
or denied. Therefore, the “Approve” action is a more specific version of a “Modify”
action that changes a JobApplication resource. To follow the CRUD approach, we can
create the more generic operation with a PUT method on the /job-applications/{id}
path. To perform the “Approve” action, the pet owner sends a request following the
JobApplication schema with the status field set to approved.

 If there was another action, like “Deny,” which the PetSitter application will likely
have down the line, but which we have not included in the current domain model, the
same operation can be used. The lesson is that not every action in a domain model
maps to exactly one operation; sometimes an operation can cover multiple actions
that are differentiated through the request parameters.

openapi: 3.0.3
#...
paths:
 #...
 /job-applications/{id}:
 parameters:
 - schema:
 type: integer
 name: id
 in: path
 required: true

Why use the format job-applications?
We don’t want to use JobApplications or jobApplications in the /jobs/{id}/
job-applications path because it’s a good practice to keep everything in URLs
lowercase. That’s because hostnames in URLs are not case sensitive, but the path
segment is. Keeping everything lowercase reduces confusion. We shouldn’t use
job_applications either, because URLs are often displayed as underlined, so an
underscore couldn’t be distinguished from a space. For these reasons, separating
words with hyphens (called “dash case” or “kebab case”) has become a best prac-
tice in URL design.

Listing 10.18 PetSitter OpenAPI Modify Job Application

165API operations for PetSitter
 put:
 summary: Modify Job Application
 requestBody:
 description: Update the application details
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/JobApplication'

 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/JobApplication'
#...

CREATE

Pet sitters apply for jobs by creating job applications. A “Create” requires a POST method
on a collection endpoint. In this case, there are two options for the API design:

 We can use the collection endpoint for job applications, /job-applications.
The information about the job that the user applies for is included in the
request body through the job_id field in the JobApplication schema.

 We can use the subresource collection endpoint for applications for a specific
job, /jobs/{id}/job-applications, which is the same one we used for the
“List for job” action. Users can then omit the job_id field from the request
body because it is redundant information.

There are arguments in favor of both approaches, so there is no true right or wrong
here. Our API designer Max decides to use the second approach. His argument is that
we have not used the /job-applications endpoint so far, and by using /jobs/{id}/
job-applications the “Create (for job)” action pairs well with “List for job,” leading
to more consistency within the API design.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 #...
 /jobs/{id}/job-applications:
 parameters:
 - schema:
 type: integer
 name: id
 in: path
 required: true

Listing 10.19 PetSitter OpenAPI Create Job Application

166 CHAPTER 10 Creating an API design using OpenAPI
 get:
 #...
 post:
 summary: Create Job Application
 responses:
 '201':
 description: Created
 headers:
 Location:
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/JobApplication'

 #...

Awesome, we made it through the whole domain model and created an OpenAPI file!
The API definition that we have is a representation of that domain model. You can
find the complete definition here: https://designapis.com/ch10/openapi.yml. See
figure 10.8 for what it looks like in Swagger Editor.

It should now be possible to develop a frontend and a backend that communicate
with each other through this API and, together, form a PetSitter application that ful-
fills all the requirements laid out in the user stories from the previous chapter. At the

Figure 10.8 PetSitter initial API definition

https://designapis.com/ch10/openapi.yml

167Summary
same time, there is probably still room for enhancing the OpenAPI definition. And, if
you have ever worked on a real-world software development project, you surely know
that the initial design is never perfect and requires changes due to issues that arise
within the development lifecycle.

 Based on the plan we presented in chapter 9, frontend developer Max sends his
OpenAPI file to backend developer Nidhi for feedback before implementation. In the
next chapter we’ll introduce a workflow to handle changes to the API and look at a
specific change to the API definition.

Summary
 Each concept from the domain model has an equivalent schema in the

OpenAPI file. The attributes from the model become properties with a specific
data type. Relationships between concepts usually show up as a property in one
schema pointing to the ID of the other schema. For example, a job points to its
creator with the creator_user_id field. It is also possible to include one
schema in another, which we did for Dog and Job.

 OpenAPI provides the components sections where we can define common, reus-
able schemas. In that way, we don’t need duplicate schemas in different places.
Instead, we can add references with the $ref keyword. For example, we can use
the same Job schema for creating, viewing, listing, and modifying jobs.

 The CRUD approach provides common patterns for expressing the actions in
the domain models as operations in an API. The four actions, create, read,
update, and delete, map to HTTP methods. Each instance of a concept is called
a “resource,” and there are resource endpoints for each resource and collection
endpoints for retrieving multiple resources with the same schema. There are
also subresource endpoints for listing resources related to another resource.

 As we go through actions in the domain model, we strive to map them to CRUD
and add the respective paths and operations to the OpenAPI file. Some actions
correspond directly, such as “View” with “Read” or “Modify” with “Update.”
Sometimes we need to express actions differently, though. For example, we
modeled “Approve” (for job application) as an “Update” on the JobApplication
resource with a specific value for its status field.

Building a change
workflow around
API design–first
Having defined an API, our next logical step is to start building it. When we do so,
we will inevitably be missing something critical that will cause us pain down the
road. We have to consider how changes to the API definition will be communicated
when we’re not all in the same room—changes that result from issues found during
implementation or evolving business requirements. Before we start implementing
the code, we should take the time to set up a change workflow so that we’ll be able
to adapt confidently as changes arise.

 In terms of the action plan created in chapter 9, we’re currently within the
draft/review cycle. We will iterate on the API definition until we’ve concluded its
design, so that the next step of implementing it can begin.

 Describing the API ahead of building it—taking an API design–first approach—
while hugely beneficial, comes with trade-offs that we need to be aware of and have

This chapter covers
 Identifying the critical issues around an API

design–first approach

 Setting up a workflow to solve those issues
using GitHub

 Walking through an example change to our
PetSitter API definition
168

169The problem
answers for. We’ll be looking at these trade-offs, specifically those related to making
changes in the API definition and keeping everyone on the same page.

NOTE The API design–first approach can also be referred to as contract-first,
where the API definition acts as the contract between the API provider and
consumer.

At the end of this chapter we’ll have put together a change workflow based on
GitHub. To illustrate this workflow, we’ll be walking through a practical example in
the PetSitter API.

WARNING The change workflow in this chapter is intended for changes that
occur before an application is released. We won’t be bumping versions or commu-
nicating these changes to the public. This workflow will serve as a base for
when we need to consider public and breaking changes to our API. We’ll
cover versioning in chapter 20.

11.1 The problem
Let’s consider what happens when a stakeholder discovers an issue with the API
design. This could be an issue with dependencies between people, where one or more
are blocked by others, such as a frontend engineer having to wait for a backend engi-
neer to build a feature. Any issue that affects one or more stakeholders should be
addressed sooner, rather than later, to reduce wasted time and energy. And, ideally, it
should be addressed consistently.

 We haven’t used the word “stakeholder” before—in this context it refers to people
who have a role to play in the project. This includes developers, architects, product
managers, UX designers, etc. For example, José has two developers (frontend and
backend) and himself as the project lead, making three stakeholders. It’s really just a
convenient way of saying “people who are involved.” Throughout this chapter, we will
be assuming a team structure like José’s, with separate people working on the front-
end and backend pieces of the application and other people coming up with the busi-
ness requirements. If this doesn’t match your team structure, you can think of these as
“roles” that can be split up further (creating more fine-grained roles) or that can be
combined (in the form of a single person with multiple responsibilities).

 Developing software (and APIs) is becoming more “artistic” when it comes to figur-
ing out which workflows are best for organizing and managing a successful project,
with new ideologies popping up all the time. Most problems and their solutions will
stem from the organization’s structure, as suggested by Conway’s Law.1 If you are an
independent developer working completely on your own, your problems will be sig-
nificantly different from those of an organization that has thousands of developers
and an active intern program.

1 Organizations design systems that mirror their communication structure.

170 CHAPTER 11 Building a change workflow around API design–first
 Workflows are like beverage choices: quite personal both to the situation and to
the people involved. There’s no one option that works for everyone. When it comes to
suggesting a workflow, we don’t want to use the dreaded words “it depends.” Yuck! We
strongly believe that showing a concrete workflow—one that works for a team like our
PetSitter folks—is helpful to get started. This doesn’t mean you’re off the hook and
that you can always force this workflow onto every project. You’ll still need to consider
the nuances of your precise situation and change the workflow to suit.

 In API design and implementation, there are some common points of interest
across organizational structures, particularly when more than one person is involved
in the design or implementation of the API:

 There is a need to find the source of truth for the API—the one place where
you can always find the latest agreed-upon version of the API.

 There will inevitably be a need to make changes to the design of the API when
issues arise during implementation. It’s necessary to communicate those changes
to other stakeholders.

 After communicating the changes, there must also be a way to get consensus on
integrating those changes.

 There is a need to know what has changed since you, a stakeholder, last viewed
the API definition.

When designing an API from scratch (and later adding to it), you’ll naturally discover
these challenges of implementing an API with the design–first approach. Let’s sum-
marize and reframe them as the steps (see also figure 11.1) we need to go through:

 View the latest API definition
 Suggest changes
 Compare changes to the working copy
 Accept changes

What we need is a system with a rhythm to get stakeholders pushing toward the
same goal.

What’s a “single source of truth,” and why is it important?
The source of truth for an API is its contract or API definition. Since the code will be
implemented to match that design, the API definition should provide the answer if
questions arise like “Which is right, A or B?”

An API—application programming interface—is an interface by definition. Every API
defines a boundary between two separate software components, but also between
the humans behind those components. Both sides, producer and consumer, need to
follow the API contract to make the whole system work. This is where the pains of
developing software really start to make themselves known, and it is why agreeing on
the source of truth for an API is so crucial.

171Communicating and reacting to change
In this chapter we’re going to put together a workflow for making changes to an API
definition. Too much theory makes Jack a dull boy (or was it not enough playing?), so
in the last part of this chapter we’ll walk through making a change to the PetSitter API
and see how each of our three stakeholders are impacted by that change. By the end
of this chapter we’ll have established a workflow using GitHub, which will address the
critical issue of how to communicate changes in an API design–first approach.

11.2 Communicating and reacting to change
At the heart of our workflow will be the idea that changes to the API design are inevi-
table. The changes we’re specifically interested in are those that arise during imple-
mentation—things we could not foresee at the time we designed the API—although
there are other reasons why a design should change after it has begun to be imple-
mented (missing business requirements, as an example).

 We must balance how much time we spend on design against the time we’ll need
to implement it. Spend too little time on the design side, and we’ll end up needing to
make expensive changes later. Spend too much time on the design side, and we risk
waiting too long to implement it. We can’t solve all the issues at design time, but that is
the cheapest time to solve them.

 So we can assume that there will be changes. The question is how to build a work-
flow to accommodate that. Stakeholders will need to be able to highlight an issue in
the design, suggest a change, and get consensus on that change. They will also need to
react to changes made by other stakeholders. These changes need to be based on the
source of truth for the design. Without a central source of truth, we could be wasting
time working on older, invalid features!

 These are important points that our workflow needs to address in order to be
effective. Let’s expand on them a little more:

 A single source of truth for the API definition—Everyone needs to know what the
latest, agreed-upon version of the definition is. A lot of confusion occurs
when multiple documents are lying around (in emails, Slack channels,
GitHub pull requests, etc.), and that causes real delays. We need to find a sin-
gle place where our API definition can live, and agree that it speaks the truth
and is the whole truth.

 A way to suggest a change, and a way to agree to that change—There are multiple
stakeholders, and each will have their own priorities and needs. Each needs to

Comparing changesMaking changes Accepting changes Figure 11.1 Challenges

172 CHAPTER 11 Building a change workflow around API design–first
be able to suggest a change to the API definition, and there needs to be an
authority (or quorum, etc.) that accepts that change.

 A way of viewing changes made since you last saw the API definition—As a stake-
holder, you may have an older idea of what the API was, so you need a way to
see the differences between the API version you remember and the current
API. If you’re a developer, this will give you requirements for the API changes
you need to implement.

Table 11.1 lists these requirements so that we can address them and find solutions.

As a software developer, you probably already have a workflow that satisfies these
needs in your codebase. All of these issues can be reasonably solved by a version con-
trol system, like Git. In our first workflow for API design, that’s exactly what we’ll use.
More specifically, we’ll make use of GitHub and its pull request feature, although you
could use your favorite version control system instead and be just fine.

NOTE Is GitHub enough for an API design–first approach? It certainly can be;
there are API-specific tools that offer more features for API design and defini-
tion management. While it’s tempting to cover them in this book, we’ve made
an effort to keep it as agnostic as possible and focus on the root problem
statements involved in OpenAPI and its uses. Specific tools (such as Swagger-
Hub, Stoplight, and Apiary) will change to adapt to the market, but the prob-
lem statements will remain unchanged for longer.

We’ve discussed the points of interest in our changes workflow. Now let’s see how we
can use GitHub to solve for them.

11.3 GitHub as our workflow engine
GitHub is a great service for managing code, and it’s built on the awesome Git version
control system. There are two reasons we want to use GitHub (or BitBucket, GitLab,
etc.) instead of just Git:

 We want an obvious place where new and existing stakeholders can get the lat-
est version of the API definition.

 We want a central place to suggest, review, and merge changes.

This doesn’t mean you can’t use Git on its own to achieve these goals. What it does
mean is that you’d need to figure out another way of centralizing the system or at least
making it accessible to all stakeholders, which is exactly what GitHub does for us.

Table 11.1 Requirements for the workflow of API design changes

Workflow issue Solved by

A single source of truth for the API definition ?

A way to suggest a change, and a way to agree to that change ?

A way of viewing changes since you last saw the API definition ?

173GitHub as our workflow engine
 We have three concerns related to our API workflow, so let’s begin to solve them
with GitHub.

11.3.1 A single source of truth

Creating a single source of truth for the API definition is an easy one, since it’s a
core part of GitHub. GitHub uses branches, and we can pick one that will act as our
“latest and greatest” version. Later on we can declare a feature branch be the source
of truth as we develop specific features, but we’ll ultimately merge them back into
the “latest and greatest” version. For simplicity’s sake, we won’t dive into what our
branch names could be. We’ll just say that the main branch holds the latest version of
the API definition.

11.3.2 Suggesting a change

To suggest a change in our workflow system, we’ll say that you can modify any part of
the API definition within your own Git branch, and use that to suggest changes into
the main Git branch. Alternatively, if you have an issue but no ideas about how to
change the API, you can simply raise a GitHub issue instead.

11.3.3 Agreeing on a change

Agreeing on changes is a little harder. There are a few ways we can do that:

 Have a single authority be in charge of the API, and that person or team will
sign off on every API change.

 All stakeholders need to agree. This is good for small teams, but it doesn’t scale
well for larger teams.

 Accept votes on a change. Depending on the size of the team, perhaps just two
votes would be necessary to accept an API change.

You’ll need to decide which option suits your organizational structure—you can see
the alternatives in figure 11.2. An important point to stress is that autonomy equates
with speed, but more eyes on a subject reduces mistakes. Strike that balance! For José
and his team, we’re going to say that at least one other stakeholder needs to agree.
This will keep progress moving.

Regardless of who we give authority to, the mechanism for accepting a change is the
same in GitHub: the pull request.

Single authority All accept 1+ accept

Most scalable
Figure 11.2 Different strategies
for agreeing on changes

174 CHAPTER 11 Building a change workflow around API design–first
GITHUB PULL REQUESTS

These will be our steps in GitHub for accepting a change:

1 Create a pull request from your branch to the main branch to show the sug-
gested change.

2 Add reviewers to the pull request. Each reviewer can approve the pull request.
3 Merging the pull request will accept the change and update the main branch.

For stakeholders who weren’t part of the conversation, they’ll need a way of reviewing
all the changes made since they last saw the API definition. This leads to our next work-
flow item, a way of viewing changes.

11.3.4 A way of viewing changes (based on an older version)

This is the trickiest item so far. We’re going to use a boring approach and rely on Git’s
text-diffing feature to show the differences between two API definitions. We would
have loved to show you a specialized tool that compares OpenAPI definitions, but
none are stable enough to put into print. And while such a tool would be awesome
and useful, we’ve found that diffing text files works well enough in practice.

 Each stakeholder will need to know what version of the API definition they last saw,
in order to compare it to the latest version. In our GitHub workflow system we have at
least two (and perhaps many more) ways of achieving this:

 We could rely on stakeholders checking for changes before doing a git pull
(on the same branch), but this is a little risky. In Git there are good reasons to
encourage pulling as often as possible for unrelated reasons, so relying on
stakeholders to compare API definitions before pulling is untenable, mostly
because there is no explicit declaration of what API definition you’re currently
working on.

 Alternatively, we can establish an explicit process by having every stakeholder
merge in changes from the source-of-truth (main) branch into a specific stake-
holder branch. We can create such a branch for each stakeholder. They’ll only
merge when they are ready, and at that time they can compare to see if any
changes are actionable for them.

How can they view changes? Because they have their own branch, they can use GitHub
to compare their branch to the main branch and see what changes have been made
(see figure 11.3). As an added bonus, they can make changes to their branch to sug-
gest changes to the main branch. This will work well for our purposes.

Pull request
to view changes

Each stakeholder
has their own branch.

<stakeholder>

main

Figure 11.3 How to compare changes
from each stakeholder’s perspective

175Tying the GitHub workflow together
11.4 Tying the GitHub workflow together
Now that we’ve addressed each of our three points in isolation, we need to tie them
together into something coherent. We can list steps for common actions (like suggest-
ing a change) and show a friendly diagram that will give us a mental model of what’s
going on.

 The first step is to set up our workflow and set up GitHub.

11.4.1 Setting up GitHub and the source of truth

We’ll start with a new GitHub repository (aka “repo”). We will give you detailed
descriptions on what we’re doing, but we don’t recommend you treat them as step-by-
step instructions and follow along while reading. Instead, read them through to the
end to understand what we’re doing, and then decide whether you want to practice
using GitHub with the PetSitter API or whether you want to adapt the process for your
API project.

SETTING UP AN API REPOSITORY

You should first set up a GitHub repo such that the following is true:

1 There is a main branch, set as the default branch.
2 There is a branch for each of the stakeholders, such as frontend, backend, and

business.
3 The main branch should contain the OpenAPI definition (e.g., petsitter.0.0

.oas.yml).

You’ll find an official GitHub guide here: https://guides.github.com/activities/hello
-world/. In it you’ll see how to create a new GitHub repo, branches, and your first
commit. If you’re already familiar with these concepts, feel free to skim it.

NAMING CONVENTIONS

In our example, the OpenAPI definition file is named petsitter.0.0.oas.yml. Let’s look
at this naming convention and break it down:

 You obviously need to name the API, and here it’s named after the product,
PetSitter.

 Your API will have versions. There shouldn’t be any version changes in the
prerelease period, as the API can be considered fluid. You can use 0.0 as
the prerelease version number.

 Adding “.oas” indicates that it’s an OpenAPI definition without users having to
look inside.

 It’s a YAML file, so you’ll need a .yml or .yaml extension.

NOTE The OAS in the PetSitter filename (petsitter.0.0.oas.yml) is short for
OpenAPI Specification, and the abbreviation is often used as a shorter way of
saying “OpenAPI.” It’s different from the OpenAPI Initiative (OAI), which
refers to the folks who help guide the specification.

https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/
https://guides.github.com/activities/hello-world/

176 CHAPTER 11 Building a change workflow around API design–first
We’ll cover the versioning of the API definitions in chapter 20. At that point, after the
launch of PetSitter, it’ll become increasingly important. For now we’ll just stick with 0.0.

NOTE A quick look-ahead for those already familiar with semantic version-
ing: Adding major and minor versions indicates whether a version added fea-
tures (minor version) or if the API has breaking changes (major version).
We’ve explicitly left out patch versions, as they do not impact the semantics of
the API, and we wouldn’t want a file for each new tweak we make unless it
affects the semantics. If we make an additive change (add a new operation), we
can bump the minor version. If we make a breaking change (such as remov-
ing a parameter), we can bump the major version.

11.4.2 Steps in our GitHub workflow

Each stakeholder needs a way of doing the following:

 Viewing the latest API definition
Visit the GitHub repo and view the main branch. In it will be the latest and

greatest API definition.

 Suggesting a new change
a Create a new branch with the change.
b Create a pull request against the main branch. Add a description to the pull

request showing the motivation behind the change.
c Add your fellow stakeholders as reviewers.

 Reviewing and accepting a change
a When you get notified of a pending pull request, view the changes and add

your feedback.
b If you’re satisfied, approve the pull request.
c The authority (or the owner of the pull request) can then merge the change

after enough reviewers have approved.
 Comparing changes to the working copy

a When the main branch has new changes in it, compare that to your own
branch to see the changes since your last merge, using Git(Hub) diffs.

b Note down any tasks that you need to do based on the changes (if there are any).
c Merge the main branch into your own branch to keep it up to date.

Revisiting table 11.1, we can now fill in the blanks—see table 11.2.

Table 11.2 GitHub workflow solutions

Workflow issue Solved by

A single source of truth for the API definition Nominate a branch, such as main.

A way to suggest a change, and a way to agree to that change Use pull requests.

A way of viewing changes since you last saw the API definition Each stakeholder maintains their own
branch.

177A practical look at the workflow
Now that we’ve described how GitHub works, let’s get back to the world of API defini-
tions. Given that we have a GitHub workflow (on paper, at least) it’s time to kick the
tires and test a design change to our API definition, PetSitter.

11.5 A practical look at the workflow
José’s team has decided to adopt a more formal workflow for making design changes
to their API definition. This makes sense, because even though their team is small,
they cannot meet for every small change to the API design, but they need to be aware
of each change. A formal workflow has become a must for them.

 Let’s see how a single change makes its way into the design using our new GitHub
workflow. Nidhi (the PetSitter backend engineer) was contemplating backend designs
for the application when she discovered that although the domain model said there
should be a way to delete jobs, the API definition that Max shared was missing this
operation. This was a simple oversight on his part. She knows this will be needed, so
she wants to suggest this as a small change to the design. Let’s look at her process.

11.5.1 Creating and suggesting DELETE /jobs/{id}

The change itself is quite small, and Nidhi has no problem writing it directly into the
definition on her branch. She doesn’t anticipate that this will need a design session,
nor does she need to do any research into it.

 She whips out Swagger Editor (her favorite tool for this job, although any will do)
and copies the definition into it. She adds her changes and commits the change into
her branch on GitHub—the backend branch.

/jobs/{id}:
 #...
 delete:
 summary: Delete Job
 responses:
 '204':
 description: No Content

After committing her change, she creates a pull request to suggest this change to her
colleagues. She adds a simple motivational message describing her changes, along
these lines:

Title:
> Add the missing DELETE /job/{id} operation.
Description:
> Add the missing DELETE /job/{id} operation.
> I believe we’ll need this when the user wants to delete the Job.

She also adds the reviewers, Max and José. Figure 11.4 shows her pull request in the
GitHub UI, complete with title, description, and reviewers just before submission.

Listing 11.1 Added DELETE /job/{id} change

178 CHAPTER 11 Building a change workflow around API design–first
11.5.2 Reviewing and accepting changes

José is on holiday, which leaves Max as the only other stakeholder who can approve
the change. After Nidhi creates the pull request, and depending on how Max has set
up his notifications, he’ll be notified almost immediately.

 As soon as Max is ready, he can look over the pull request and supply his feedback.
He’s looking at three things:

1 Is the motivation behind the change sound? Does this require research?
2 Does the change itself make sense?
3 Is this a breaking change?

Max thinks to himself, shucks, this is an oversight—I simply forgot to add it in. He
doesn’t need to research the change, since it’s self-evident. Looking at the pull request,
Max is clearly able to see the single change to the API definition, and it looks consistent
with the other DELETE operations. This change is additive—it doesn’t remove functional-
ity from the API, so there are no breaking changes. He’s satisfied with the pull request.

 He mentally checks off the three questions:

1 The motivation makes sense. They will need to be able to delete jobs in the future.
2 The change is valid and matches the motivation. A single operation was added

and appears valid.
3 The change isn’t going to break consumers; it only adds an operation.

Pull equest titler

Motivation behind the change
Add reviewers

Figure 11.4 Creating a new pull request in GitHub

179A practical look at the workflow
He has no problem approving the change, although he can’t resist throwing in a little
comment about something that caught his eye (see figure 11.5).

Nidhi notices that the description is missing too, and she adds a new commit. This will
automatically update the pull request after she pushes the commit. The change can
now be merged.

11.5.3 Comparing older branches to the latest

Time passes and José returns from his (well deserved) holiday. He now has the press-
ing need to catch up on the API design that’s taken place. He has several options,
depending on what sort of information he’s looking for. For instance, if he’s just inter-
ested in what the latest API definition looks like, he can visit the main branch and scan
it—nothing further. But if he’s looking to confirm exactly what’s changed to see if any
details will impact him, he can compare using his branch (the business branch).

 By comparing branches, he’s interested in answering the following questions:

 What are the exact differences between when I last saw the API definition and
the current version?

Review message

Add review

Approve or
request more
changes

Finish review

Figure 11.5 Reviewing a pull request

180 CHAPTER 11 Building a change workflow around API design–first
 Do any of the changes impact my interest in the API? For a business stake-
holder, this might relate to whether a change will cost more money or allow
more features in the future.

Instead of creating a pull request between <some-branch> and main, José creates a
pull request between main and his branch, business (in other words, the reverse, so
that main will be merged into business). This will allow him to consider the changes.
When that’s done, he can finally update his branch to the latest version by merging
the pull request himself.

 Given that Nidhi only added a single operation, the diff would look like figure 11.6.
José sees only one change, and it doesn’t affect him. He can merge in the branch and
carry on with his tasks of the day, confident about what’s happened to the API design
in his absence.

11.5.4 What we’ve done

In this chapter we’ve devised a workflow for API design changes based on three criti-
cal points and using GitHub as a concrete way of implementing those design changes.
There are more API-specific workflow tools that we encourage you to consider—tools
that reduce a lot of the manual effort—but they target different audiences, and you’ll
need to consider how important the features of each platform are to your API design
workflow.

 Hopefully the GitHub solution will be enough to get you going so that you can
discover how API design can be at once incremental, asynchronous, and generally
smooth.

The diff

New operation added

View more

Figure 11.6 GitHub diff of the API changes

181Summary
Summary
 API design–first is an approach to solving design issues as cheaply as possible,

but there are critical points of interest that make the process run smoothly: how
to find the source of truth for an API; how to make or suggest changes, review
them, and get them accepted; and how to compare the changes that are made,
from your perspective (relative to when you last viewed the API design).

 There are several ways to accept changes made to the design. Depending on
the size of your team, you could nominate someone as a single authority and
only allow them to accept changes. More often you’ll allow changes to be
accepted if one or more reviewers accept the change. The latter approach is
the most scalable.

 GitHub can be used to manage the API design workflow, and we created a sim-
ple approach to solving the three critical issues of the API design–first approach.
The source of truth is a branch called main. We used pull requests to suggest,
review, and accept changes. And we created a separate branch for each stake-
holder and used pull requests to explicitly update them when the stakeholder is
interested in viewing changes and dealing with them.

Implementing
frontend code and

reacting to changes
When we separate a web application into frontend and backend, we create a depen-
dency issue. The backend often needs to be built first, before the frontend can
start. In this chapter, we’re going to look at how we can build the frontend without
having the backend implemented. This will free us up to start developing straight
away. It’ll also allow us to catch design issues sooner, while it’s still cheap to add
them into the backend.

 Before we build the frontend, however, we have several options to consider, mostly
related to the question, “Where should we mock?” We have the following options:

 Mock the data on the view layer.
 Mock the data in a central data store (think Redux, MobX, RxJS, etc.).
 Set up a mock API server.

This chapter covers
 Building the frontend against a mock server

(Prism) based on OpenAPI

 Identifying design issues found during
implementation

 Using OpenAPI examples to verify that API
changes make sense
182

183Setting up Prism
The first option is the quickest, but the messiest. We’d need to be careful about where
we’ve added mock data and when we remove it. That approach should only be used
for very short-lived tests.

 Mocking data in a central data store is better, since we have one place where it’ll
be mocked. This would allow us to also toggle it on and off in code when it comes
time to integrate with the backend. The downside is that we still have mock code in
our source files.

 The last option is to keep the frontend code clean (not polluting it at all with mock
data) and instead set up a mock server. This approach does have trade-offs, but it is
the cleanest approach and requires the least (almost no) code changes when it comes
time to switch to the real backend. One of the trade-offs with this approach is that we
can’t write logic in our mock server—it’ll only serve up the data that we tell it to.

12.1 The problem
To build the frontend without a backend, we’re going to use a mock server called
Prism. We’ll also deal with the inevitable challenge of handling an API design change
that was missed during the initial design. We’ll update our local API definition and
use examples to test different scenarios and edge cases. By the end of this chapter,
we’ll be suggesting a design change to our stakeholders based on needed require-
ments, and we’ll have verified that the change will solve our problem.

NOTE The change we’re going to make to the API will correct an omission
from the existing OpenAPI definition. It’s a mistake that we, as authors, dis-
covered during the implementation of the demo site. Yes, we even make mis-
takes while designing toy APIs!

We’re going to do the following:

1 Set up a mock server.
2 Learn how to build against a mock server.
3 Identify a missing operation.
4 Design a possible solution.
5 Verify that the solution works for our use case.

12.2 Setting up Prism
Prism is an open source mocking server that reads in an OpenAPI definition and
serves up responses that fit the shape of the data. In other words, it serves up what
you’ve described in the OpenAPI definition. It is simple and gaining in support.

12.2.1 Installing Prism

Prism is a Node.js command-line (CLI) tool, which has the following requirements:

 Node.js v17+ (https://nodejs.org/en/download/)
 npm (comes bundled with Node.js)

https://nodejs.org/en/download/

184 CHAPTER 12 Implementing frontend code and reacting to changes
You can install Prism by running the following command in a shell (we tested this in
Bash):

npm install --global @stoplight/prism-cli

You should now be able to run prism --help, which prints out usage information. If
that doesn’t work, try restarting your terminal.

12.2.2 Verifying that Prism works

To test Prism, we’ll need an OpenAPI definition. Go ahead and grab the latest PetSit-
ter API from here: https://designapis.com/ch12/openapi.yml. Save that file locally
and call it openapi.yml.

 Now you can spin up a Prism server with the following command:

prism mock -p 8080 ./openapi.yml

That should produce output similar to the following.

$ prism mock -p 8080 ./openapi.yml
[CLI] ... awaiting Starting Prism...
[CLI] i info POST http:/ /127.0.0.1:8080/users
[CLI] i info GET http:/ /127.0.0.1:8080/users/846
[CLI] i info PUT http:/ /127.0.0.1:8080/users/777
[CLI] i info DELETE http:/ /127.0.0.1:8080/users/835
[CLI] i info POST http:/ /127.0.0.1:8080/jobs
[CLI] i info GET http:/ /127.0.0.1:8080/jobs
[CLI] i info GET http:/ /127.0.0.1:8080/jobs/255
[CLI] i info PUT http:/ /127.0.0.1:8080/jobs/907
[CLI] i info DELETE http:/ /127.0.0.1:8080/jobs/393
[CLI] i info GET http:/ /127.0.0.1:8080/jobs/514/job-applications
[CLI] i info POST http:/ /127.0.0.1:8080/jobs/926/job-applications
[CLI] i info GET http:/ /127.0.0.1:8080/users/768/jobs
[CLI] i info PUT http:/ /127.0.0.1:8080/job-applications/192
[CLI] > start Prism is listening on http:/ /127.0.0.1:8080

Voila! It’ll stick around for as long as you need. When you’re done with it, you can
press Ctrl-C (or Cmd-C) to exit it.

 As I’m sure you’ve guessed, the mock server will be running on port 8080. If you try
to visit 127.0.0.1:8080 or localhost:8080 in the browser, you’ll likely see a 404 error
of some sort. This is fine, as it’s telling us we don’t have a route for /, which is true.

NOTE If Prism fails to start up, check the documentation to see if it requires a
newer version of Node.js or some other dependency: https://github.com/
stoplightio/prism. The details could change after this books goes to print.

To see if Prism is correctly serving up responses, you can use your favorite API client to
test it. Postman (discussed in chapter 2) is useful, or you can simply use curl as follows:

curl http:/ /localhost:8080/jobs

Listing 12.1 Spinning up Prism

https://designapis.com/ch12/openapi.yml
https://github.com/stoplightio/prism
https://github.com/stoplightio/prism
https://github.com/stoplightio/prism

185Building a frontend based on a mock server
NOTE For GET requests, you can also open up the URL in your browser.

You should see a JSON response similar to the following.

{
 "items": [
 {
 "id": 0,
 "creator_user_id": 0,
 "start_time": "string",
 "end_time": "string",
 "activity": "string",
 "dog": {
 "name": "string",
 "age": 0,
 "breed": "string",
 "size": "string"
 }
 }
]
}

Now that we have a serviceable API, we can hand this over to the frontend team!

12.3 Building a frontend based on a mock server
To work with Prism, you’ll need to accept that you’re dealing with static or canned
responses, not a real API server. By not real, we mean that it doesn’t have any logic to
store data or respond with correctly formed numbers (for example, there will only be
one item in an array). Instead, we’ll just get data that is in the correct shape. This will
give us a crude, but as you’ll see, workable API.

 Our focus, for now, will be on handling the shape of the data and creating the
pipelines from the API into our frontend app. That will include setting up our HTTP
library, state management, view layer, etc. The mock API will work sufficiently to sup-
port a happy path,1 and it will let the team focus on what matters—building the fron-
tend. For triggering errors or simulating smaller or larger amounts of data, we’ll need
to get creative.

 Let’s start by building a page of PetSitter. We have the UI design in figure 12.1 to
work from (courtesy of José). For each job we have a row with some data and a button.

 To populate that page, we need to fetch the list of jobs from the API, with GET
/jobs. Our frontend will naturally expect a 200 response with the data in the correct
shape. And thankfully that’s exactly what Prism will deliver.

Listing 12.2 A 200 response from http:/ /localhost:8080/jobs

1 The steps a user takes that don’t include any errors or failures.

186 CHAPTER 12 Implementing frontend code and reacting to changes
After pointing our code to use the mock server, we may get something like figure 12.2.
That looks … bare. You can see that there is only one row of data, and the contents of
the fields are just string!

If the frontend team got this far, it’s certainly an achievement (the API is wired cor-
rectly, the page renders correctly, etc.). But we’re unable to test anything of substance.
It would be nice if we could see more data, and more realistic data at that. If the data
generated by Prism so far looks strangely familiar, it is because the tool uses similar
rules to build an object from a schema as Swagger UI did for its try-it-out feature,
which we covered in chapter 6. So you may guess what comes next.

 By getting a little creative, we can test more than that “the frontend is wired cor-
rectly to the API.” To test the frontend with more realistic data, we can make use of
examples within the OpenAPI definition. That will get us much further, but we won’t
be able to test all the things a real API offers; we’ll need to make some concessions,
given that it is a static server.

Virtualization
A topic for another day is virtualization and how to fully simulate the business logic,
requests, and responses of an API. While there are some products out there (such
as ReadyAPI and Postman), most are enterprise grade, with many more bells and
whistles than we need for our purposes. They often require more energy than it’s
worth to simulate an API of this size.

Job ID Dog Duration Date Activity

#123 1 day 2022-01-01 APPLYwalk

#234 2 days 2022-01-02 APPLYsit

#345

Fido

Rex

Blossom 1 day 2022-01-03 APPLYwalk

PetSitter

Figure 12.1 The list of
jobs page in PetSitter

Job ID Dog Duration Date Activity

string string string string APPLYstring []

PetSitter

Figure 12.2 The list of
jobs page in PetSitter
with boring data

187Building a frontend based on a mock server
12.3.1 Adding multiple examples into your OpenAPI definition

In chapter 6 we discussed the example field, which you can use to add a bit of color to
your schemas, showing what real-world data can look like. In addition to example,
there is also the examples (plural) field, which was introduced later into the OpenAPI
specification for the obvious purpose of allowing multiple examples in a request,
response, parameter, etc. Later in this chapter we’ll make use of multiple examples in
our mocking server, so let’s learn a bit about how we can describe them.

 In the OpenAPI specification, the examples field can be found under the Media
Type Object (https://designapis.com/oas/3#media-type-object). You can see a Media
Type Object—which is the formal name for a segment of an OpenAPI definition that
describes the content of a request or response body—with examples in the follow-
ing listing.

openapi: 3.0.3
#...
paths:
 /:
 get:
 responses:
 '200':
 content:
 application/json:
 schema:
 type: object
 properties:
 name:
 type: string
 examples:
 john-doe:
 summary: Using John Doe as

➥ example data.
 value:
 name: John Doe
 some-other-example: #...

OpenAPI tools can leverage the examples in the definition. Swagger UI, for instance,
shows the first example by default, which often illustrates the shape of the data more
readily than the schema rules that are used when no examples are present. If there

If you do need more power, though, check out the following links:

 ReadyAPI’s API virtualization services—http://mng.bz/q2AE
 Postman mock servers—www.postman.com/features/mock-api/

Listing 12.3 Shape of examples field

The media type;
examples comes
under this.

The examples
field The name of

the example

The summary describing the
particular example, optional

The value field,
which holds the

example data
We can describe as many
examples as we need.

https://designapis.com/oas/3#media-type-object
http://mng.bz/q2AE
http://www.postman.com/features/mock-api/

188 CHAPTER 12 Implementing frontend code and reacting to changes
are multiple examples, Swagger UI users can pick one from a drop-down menu. The
menu shows the summary and falls back to the name if no summary is present.

 In the previous listing we defined the value with YAML. Here’s how it would look
as JSON.

{"name": "John Doe"}

Now that you know how to describe one or multiple examples, let’s move on to using
them in our mock server.

12.3.2 Using examples in Prism

As you’ve already seen, Prism will generate a simple mock response based on our
schema, using values like string for strings and 0 for numbers—just like Swagger UI.
This is okay, but it limits how much we can test out our frontend. We can use examples
to more clearly showcase data that might come from a real production server.

 Let’s add the following example to our definition to match the data in our UI
design. If Prism is running while you make these changes, it’ll automatically restart
itself.

openapi: 3.0.3
paths:
 #...
 /jobs:
 get:
 #...
 responses:
 '200':
 content:
 application/json:
 schema: #...
 examples:
 with-some-data:
 summary: With some data
 value:
 items:
 - id: 123
 creator_user_id: 345
 start_time: 2020-06-01T00:00:00Z
 end_time: 2020-06-02T00:00:00Z
 dog:
 name: Fido
 age: 3
 breed: Doberman
 size: medium
 activity: walk
 - id: 234

Listing 12.4 Example in JSON

Listing 12.5 First example for our mock server

189Identifying a missing API operation
 creator_user_id: 345
 start_time: 2020-06-01T00:00:00Z
 end_time: 2020-06-03T00:00:00Z
 dog:
 name: Rex
 age: 2
 breed: Rottweiler
 size: large
 activity: sit
 - id: 234
 creator_user_id: 345
 start_time: 2020-06-01T00:00:00Z
 end_time: 2020-06-02T00:00:00Z
 dog:
 name: Blossom
 age: 2
 breed: Rottweiler
 size: large
 activity: walk

Phew! That’s a fair amount of data, so instead of typing it you can grab an updated
OpenAPI definition with these examples here: https://designapis.com/ch12/01.yml.

 When we execute a request against the mock server, we should see a response like
the following (using curl http:/ /localhost:8080/jobs).

{"items":[{"id":123,"creator_user_id":345,"start_time":
"2020-06-01T00:00:00Z","end_time":"2020-06-02T00:00:00Z",
"dog":{"name":"Fido","age":3,"breed":"Doberman","size":"medium"},
"activity":"walk"},{"id":234,"creator_user_id":345,"start_time":
"2020-06-01T00:00:00Z","end_time":"2020-06-03T00:00:00Z","dog":
{"name":"Rex","age":2,"breed":"Rottweiler","size":"large"},
"activity":"sit"},{"id":234,"creator_user_id":345,"start_time":
"2020-06-01T00:00:00Z","end_time":"2020-06-02T00:00:00Z","dog":
{"name":"Blossom","age":2,"breed":"Rottweiler","size":"large"},
"activity":"walk"}]}

It’s not pretty, with the JSON having no whitespace, but we can see that the data
matches our example. Prism will pick the first example it finds instead of using its own
generated data. This is the key to us exploring our API via examples.

12.4 Identifying a missing API operation
Max has the UI mockup in figure 12.3 that he is about to build. He sees that he needs
a way of fetching all the job applications for the logged-in user, but after looking back
at the API design (the OpenAPI definition), he cannot find an operation that will do
that for him. Even though implementation has begun, he wants to suggest a new
change (as we discussed in chapter 11).

Listing 12.6 Prism response after adding an example

https://designapis.com/ch12/01.yml

190 CHAPTER 12 Implementing frontend code and reacting to changes
Here is what Max is going to do:

1 Max needs to clearly state what he needs—a way of fetching all the job applica-
tions for the logged-in user.

2 He needs to do his due diligence and make sure that he really does need a new
operation.

3 Max can then design the new operation.
4 Before suggesting it, he needs to test it and make sure it really satisfies his need.
5 Finally, Max can confidently suggest the new API change and get it merged into

the agreed-upon design.

The first step is easy. Max writes down what he needs: “A way to fetch the job applica-
tions for the logged-in user.” With that, he starts on the due diligence step.

12.4.1 Due diligence for adding the operation

The UI mockup in figure 12.3 shows all the job applications for the logged-in user.
How could Max fetch them?

 The first attempt would be to download the jobs that belong to the user, with
GET /users/{id}/jobs, and then look at their job applications. However,
according to the API definition, these are jobs that were created by a user (as a
pet owner), not those that the user (as a pet sitter) applied to. Unless the user
applied to their own jobs, this is going nowhere.

 He could fetch all the jobs with GET /jobs, then fetch all their job applications,
and filter them by user_id in memory. But that’s a little ludicrous—it clearly
won’t scale well when the data becomes larger.

As neither of these options is viable, Max concludes a new operation is necessary.

12.4.2 Designing the new operation

To fetch all the job applications that are specific to the logged-in user, Max can think
of two different approaches:

 GET /job-applications?user_id={id}
 GET /users/{id}/job-applications

Job ID Status

#123 PENDING CANCEL

PetSitter

My job applications

Figure 12.3 UI mockup of
the job applications page

191Identifying a missing API operation
The first is quite adequate, allowing us to add more query parameters to filter out the
job applications based on other criteria. But we are already using the second pattern
in /jobs/{id}/job-applications, and having consistent patterns in our API is valu-
able (the principle of least surprise). So Max decides to follow the existing pattern
and go with GET /users/{id}/job-applications.

 Starting with our API definition, we can add in the following sketch of an opera-
tion (not a complete description of the operation). In addition to the operation, we’ll
make space for an example that we’ll later flesh out, in order to test whether the oper-
ation satisfies our needs.

openapi: 3.0.3
#...
paths:
 /users/{id}/job-applications:
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: integer
 get:
 summary: List Applications For User
 responses:
 '200':
 application/json:
 schema:
 type: object
 examples:
 two-items:
 summary: Two Job Applications
 value: # ...
 empty:
 summary: Zero Job Applications
 value: # ...
 many:
 summary: A lot of Job Applications
 value: # ...

Let’s get some examples going.

EXAMPLE: TWO JOB APPLICATIONS

This is the happy case, where we can see what our page would look like when it’s pop-
ulated with data.

...
examples:
 two-items:
 summary: Two Job Applications

Listing 12.7 Adding a new operation for getting a user’s job applications

Listing 12.8 Basic happy case

We’re going to simply say it’s an
object, which will be valid. We’ll
flesh out the details later.This is where

we’re going to
add examples to

test out the
frontend.

We’ll put an example of
two job applications here.

This will be an example of
zero job applications.This will be an

example of many
job applications.

192 CHAPTER 12 Implementing frontend code and reacting to changes
 value:
 items:
 - id: 123
 user_id: 123
 job_id: 123
 status: PENDING
 - id: 123
 user_id: 123
 job_id: 123
 status: COMPLETE

EXAMPLE: NO DATA

There may be zero job applications for a user. That’s a case we shouldn’t overlook, as
the UI might have special handling for empty lists (such as showing a message that the
user has no job applications, explaining how they can apply for jobs). We’ll add an
example that’s an empty array.

...
examples:
 empty:
 summary: Zero Job Applications
 value:
 items: []

EXAMPLE: LOTS OF DATA

Using JSON Generator (www.json-generator.com) and JSON to YAML (www.json2yaml
.com), we generated a bunch of data and copied it in here: https://designapis
.com/ch12/02.yml. The following listing shows just the first few lines. We’ve used ran-
domized values for all job_id and user_id, but not for id. The id for job applications
is a serial number, because our web application will require uniqueness.

...
examples:
 many:
 summary: Many Job Applications
 value:
 items:
 - id: 0
 user_id: 358
 job_id: 4012
 status: COMPLETE
 - id: 1
 user_id: 3089
 job_id: 3902
 status: PENDING
 - id: 2
 user_id: 4040

Listing 12.9 No job applications

Listing 12.10 No job applications

Following the
pattern we’ve
established, we’ll
use an object to
wrap “items,”
which will
contain the list of
job applications.

We won’t bother with more
realistic ID values, since we don’t
know what they’ll look like.

We’ve thrown in a status to match
the UI. The values are unknown, so
we’ll start by guessing some.

https://designapis.com/ch12/02.yml
https://designapis.com/ch12/02.yml
https://designapis.com/ch12/02.yml
http://www.json-generator.com
http://www.json2yaml.com
http://www.json2yaml.com
http://www.json2yaml.com

193Identifying a missing API operation
 job_id: 5269
 status: PENDING
 - id: 3
 user_id: 5636
 job_id: 8420
 status: PENDING
 # ... total of 40 items...

12.4.3 Choosing which mock data response to get from Prism

Now it’s time to test the API mock. Using Prism with a single example described works
perfectly, as you’ve seen. But we have described multiple examples and want to be
able to choose which of those examples to use. To help us out, Prism lets us send
options via the Prefer request header. The two ways of using this header that we’ll
focus on are code and example. With those two, we’ll be able to choose which response
code and which example data Prism will return.

 To better highlight how this works, let’s take a step back from the PetSitter API and
use a simple, bare-bones API definition with just enough detail to showcase how Prism
can vary the response data that is returned. You can download the following API defi-
nition from https://designapis.com/ch12/03.yml; save it in a file called tiny.yml.

./tiny.yml
openapi: 3.0.3
info:
 title: Tiny API
 version: "1.0.0"
paths:
 /foo:
 get:
 description: Simple get
 responses:
 '200':
 description: Get Foo
 content:
 application/json:
 examples:
 one:
 value:
 foo: 1
 two:
 value:
 foo: 2
 schema:
 type: object
 '404':
 description: No Foo
 content:
 application/json:
 examples:
 error:

Listing 12.11 Tiny API definition to support Prism/Prefer

https://designapis.com/ch12/03.yml

194 CHAPTER 12 Implementing frontend code and reacting to changes
 value:
 msg: I am an error example

In tiny.yml we can see that GET /foo has two responses described: a 200 response with
two examples, named one and two, and a 404 response with a single example, boringly
named error.

NOTE If you’re still running a Prism mock server, shut it down before run-
ning the next commands to restart it.

Start Prism with prism mock -p 8080 ./tiny.yml so that we can run some experi-
ments. Starting Prism with the new definition should look similar to the following.

$ prism mock -p 8080 ./tiny.yml
[CLI] ... awaiting Starting Prism...
[CLI] i info GET http:/ /127.0.0.1:8080/foo
[CLI] > start Prism is listening on http:/ /127.0.0.1:8080

Using curl (or Postman), we want to execute GET /foo but get different responses
based on the three examples described (one, two, and error). To do that, we’ll exe-
cute the request with the Prefer header set.

 To get the error response back, we’ll use the Prefer: code=404 header and value
to pass an option to Prism, telling it we want a response with a 404 status. Execute the
following with curl.

curl -H "Prefer: code=404" http:/ /localhost:8080/foo
Gives us...
{"msg":"I am an error example"}

You should get back a response with {"msg": "I am an error example"}. If you add
the -i flag to curl, you’ll notice the status code is 404.

 Now try the code in the following two listings to return the other two examples.

curl -H "Prefer: code=200,example=one" http:/ /localhost:8080/foo
Gives us...
{"foo": 1}

curl -H "Prefer: code=200,example=two" http:/ /localhost:8080/foo
Gives us...
{"foo": 2}

Listing 12.12 Starting Prism with tiny.yml

Listing 12.13 Using Prefer: code=404

Listing 12.14 Using Prefer: code=200,example=one

Listing 12.15 Using Prefer: code=200,example=two

Note that -H is
the curl flag for a
request header.

195Identifying a missing API operation
This is a simple technique, but it’s powerful enough for us to control which responses
we get from within our code. In our frontend code we can set these headers during
testing and remove them when the code gets shipped into production.

 For more info on response examples in Prism, see the Prism documentation:
http://mng.bz/wnAW.

12.4.4 Formalizing and suggesting the change

After we’ve gone though our tests and sketches and are happy that the change will
solve our problem, we’re ready to suggest it. Let’s tidy up our definition file and create
a pull request in GitHub to suggest this change to the other stakeholders.

 In our examples we used the following shape, which is an object containing items
and the list of job applications.

items:
- id: 123
 user_id: 123
 job_id: 123
 status: PENDING
- #...

We’ve already defined job applications in our schema, so we’re going to use that and
update our operation as follows.

openapi: 3.0.3
#...
paths:
 /users/{id}/job-applications:
 parameters:
 - name: id
 in: path
 required: true
 schema:
 type: integer
 get:
 summary: List Applications For User
 responses:
 '200':
 application/json:
 schema:
 type: object
 properties:
 items:
 type: array
 items:
 $ref: '#/components

➥ /schemas/JobApplication'

Listing 12.16 Shape of the list of job applications

Listing 12.17 New operation ready for a pull request

This is the property name,
not the OpenAPI keyword
of the same name.This is the keyword that

describes the schema of
the array items. Reference to our

existing schema for
JobApplications

http://mng.bz/wnAW

196 CHAPTER 12 Implementing frontend code and reacting to changes
 examples:
 #...

That will do it! We can suggest a change that we’re confident will work, given that
we’ve had the opportunity to test out different responses from within our frontend
based on our suggested design.

 Finding design issues during implementation is nearly inevitable. What’s import-
ant is to have a way to adapt to these issues, verify new solutions, and fold those solu-
tions back into the API design.

12.4.5 Extra curl examples

If you feel like seeing all the examples we added in action, get the API from
https://designapis.com/ch12/openapi.yml. Run a Prism mock server and execute the
following curl examples to see how it behaves:

 curl http:/ /localhost:8080/jobs. There is only one example defined in GET
/jobs, so you can skip the Prefer header.

 curl -H "Prefer: example=empty" http:/ /localhost:8080/users/1/job-
applications. You can use any number for the user ID inside the URL; Prism
doesn’t mind.

 curl -H "Prefer: example=two-items" http:/ /localhost:8080/users/1/job-
applications

 curl -H "Prefer: example=many" http:/ /localhost:8080/users/1/job-
applications

Summary
 Building a frontend based on a mock server is a great way to start implementa-

tion without having to wait for the backend to be built, as both of those con-
cerns can use the API contract (the OpenAPI definition) as the guideline for
what will be expected.

 Of the three types of mocking in the frontend that we touched on, mocking
in the view layer, mocking in the state layer, and using a mock server, the last
allows us to completely decouple our mocking concerns from our frontend
code.

 The usefulness of generated data from a mock server is limited, but it can be
greatly improved on by using OpenAPI examples. Certain scenarios can be
tested by creating different examples (such as no data, lots of data, typical data,
etc.). Error cases can also be tested in this fashion.

 We can use mock servers to test out new API changes that we’re considering
before suggesting them to other stakeholders. This expedites the process sig-
nificantly, as it allows us to bring solutions, not just questions, to our colleagues
and interested parties.

https://designapis.com/ch12/openapi.yml

197Summary
 Prism allows us to choose which response and which example to return by
using the Prefer header in the incoming request. Prefer: code=404 will return
the 404 response (if one is defined), and Prefer: example=one will return the
example named one. These options can be combined: Prefer: code=200,
example=one.

Building a backend
with Node.js and
Swagger Codegen
José’s PetSitter team has created an OpenAPI definition for the API that connects
the frontend with the backend. They have now reached the stage of the project
where both developers are confident that the API is solid enough to start working
on the implementation. In this chapter we’ll join Nidhi, the backend developer, as
she builds a backend that exposes the API that Max designed in chapter 10 and
that she herself reviewed in chapter 11. While we’ll touch upon backend function-
ality, like database persistence, our primary focus will be the process of going from
API to code.

 Our chosen backend technology is Node.js, which is the server-side version of
JavaScript. There are a lot of other programming languages to choose from, such
as Java, C#, Python, Ruby, Go (which we used for the FarmStall API in part 1), or

This chapter covers
 Generating backend code with Swagger Codegen

 Optimizing an OpenAPI definition for code
generation

 Designing a Mongoose/MongoDB database
based on the domain model

 Implementing a basic API operation in Node.js
198

199Introducing Swagger Codegen
PHP. We picked JavaScript because we expect most developers to have at least a basic
grasp of the language syntax, even if it’s just from the client side.

 We’ll talk about the problem of keeping the API definition and backend in sync,
and then we’ll introduce Swagger Codegen. We’ll feed our current OpenAPI defini-
tion into Codegen, evaluate the backend structure, make some adjustments, regener-
ate the code, and finally extend it to bring the backend to life. In the process, we’ll
also look into testing our API with curl and Postman.

 In José’s team, Nidhi and Max work independently on frontend and backend, so
the development we described in the previous chapter and this one happens in paral-
lel. It also means Nidhi starts with the OpenAPI file from the end of chapter 11, which
does not yet include the additional endpoint introduced in chapter 12.

13.1 The problem
All software is an attempt at building a solution for a business problem (unless, of
course, a developer wrote code just because they were bored or wanted to show their
skills). Sometimes, however, a developer goes astray. They’re writing code, and their
code executes and does something, but it’s not what the business needs. We’re not
talking about bugs here; we’re talking about a program that doesn’t match the
requirements laid out in the user stories.

 Take the example of a very basic script that calculates prices with taxes. The busi-
ness requirement was that the user enters a net price and the software adds sales tax
and shows the final price. The developer, however, built software that takes the final
price and splits it into net price and sales tax. The software works and calculates the
right prices, but it doesn’t perform the calculations that the business needs.

 In PetSitter we started by looking at Job and Dog as two concepts in the domain
model, but while we were writing user stories, we realized that dogs always appear as
part of a job description, and we didn’t need specific actions to create, view, modify, or
delete Dog resources. Our backend developer should not create these operations, but
they should make sure that every Job sent to the API contains a Dog.

 Our goal is to build a backend for a product that follows the API design–first
approach. Therefore, we need to find a path that takes us from the OpenAPI defini-
tion to a running backend. Ideally that path will be one that actively helps us stay on
track and build the right API operations.

13.2 Introducing Swagger Codegen
Swagger is a set of open source tools for working with OpenAPI definitions. We cov-
ered Swagger UI in chapter 8, and we’ve used Swagger Editor throughout this book to
write and validate our OpenAPI specifications. Let’s have a look at another tool in this
belt, Swagger Codegen, which we’ll just call Codegen from now on.

 The name is an abbreviation for “code generation,” and it’s a descriptive name that
tells us what the tool does. It takes an OpenAPI file as its input and then generates code
in various programming languages as its output. There are two primary features in

200 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
Codegen: client code generation and server code generation. Codegen can also gener-
ate documentation, but we’re not going to cover that here.

13.2.1 Client code generation

Client code generated by Codegen is a type of software development kit (SDK). In the
context of APIs, an SDK is a library that wraps an API so that developers creating an
application that integrates the API don’t have to build their API calls as HTTP
requests. Instead, developers can call an SDK method that almost looks like a method
in the standard library of their programming language, and the SDK converts that
into an HTTP request. Codegen automates writing the code that does this conversion.
You give it your OpenAPI file, and it will provide you with a complete library to inte-
grate into your application for interacting with the API.

 In PetSitter, frontend developer Max wanted to use an autogenerated SDK for the
PetSitter API while building his frontend. However, he was unable to find a suitable
template. While Codegen has support for a lot of languages, most will at best be 80%
of what the programmer really wants. This is a reality of code generation, and custom-
ization will become more important as the project grows. Max will need to look at
how he can create his own template in the future, in order to catch API changes
directly in code.

13.2.2 Server code generation

We can describe server code generation as server boilerplate or stub generation. In
programming, a stub is an incomplete method. It already has the interface of the final
method, but it doesn’t yet perform the full functionality. Instead, it returns “mock” or
“dummy” data. For example, imagine a method for getting the details of a job applica-
tion in PetSitter. The method takes an ID as its parameter, makes a database request to
fetch job application details, checks whether the user is allowed to view the applica-
tion (e.g., PetSitter only allows the creator of the job and the pet sitter who applied to
view the application), and finally converts the format of the details and returns it. A
stub would take the ID but not consult the database and, instead, return an example
of what a job application looks like. You can also think of stubs as fill-in-the-blanks
for developers.

 Unlike client code generation, server code generation with Codegen doesn’t gen-
erate a library but rather a draft version of the structure of a server implementation,
with lots of blanks to fill. It’s a starting point for developers, or a template, if you will.
PetSitter backend developer Nidhi decides that it is a good way for her to start coding
her part.

13.2.3 Swagger Generator

Codegen is an open source software tool that you can download from GitHub and run
locally on the command line or integrate into a process. If you build a super-secret (in
other words, private) API, we recommend doing that. There is, however, an easier

201The backend structure
approach for getting started. There is an online version of Codegen called Swagger
Generator that you can access via an API at https://generator.swagger.io/. To make it
even more accessible to developers, Swagger Editor integrates Swagger Generator.
Thanks to that integration, you can directly trigger the generation of the backend in
Swagger Editor and download a zip file with your generated code in your browser.

13.3 The backend structure
Our first step is to take the OpenAPI file (the one from the end of chapter 11), throw it
at Codegen, and see what we get and how we can work with it. We’ll walk through the
generated code to review the structure of the backend that Codegen prepared for us.

13.3.1 Generating the backend

You can get the OpenAPI definition here: https://designapis.com/ch13/01.yml.
Again, this version is identical to the one from the end of chapter 11.

 To generate the backend, follow these steps:

1 Open your OpenAPI file in Swagger Editor.
2 Click Generate Server in the menu bar. Swagger Editor will show the backend

technologies for which it can build code.
3 Click nodejs-server. Within seconds, your browser will prompt you to download

a zip file.
4 Save the file on your drive.
5 Extract the zip file into a directory.
6 Open the directory in a code editor or IDE, such as Visual Studio Code

(https://code.visualstudio.com/).

NOTE We recommend using Visual Studio Code or a similar code editor. Of
course, you could use Vim or Notepad, but a multifile code editor or IDE pro-
vides a better overview of the directory structure of the generated backend.

13.3.2 Investigating the structure

When you open the generated code directory, it’ll look similar to figure 13.1. You’ll
see the following subdirectories and files:

 The .swagger-codegen directory contains a file named VERSION, indicating the
Codegen version that created the project.

 The api directory contains a file called openapi.yaml. If you open this file, you’ll
see that this is the OpenAPI file you used as input, but with some modifications.
We’ll take a look at these modifications in a moment.

 The controllers directory contains a file named Default.js. Inside the file, you’ll
see a list of functions with names based on the paths in the API definition. For
example, GET /jobs has become jobsGET. In each function there’s a block of
code that calls a function with the same name on a Default object, which, as
you can see in the head of the file, comes from the service directory.

https://generator.swagger.io/
https://designapis.com/ch13/01.yml
https://code.visualstudio.com/

202 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
 The service directory contains a file named DefaultService.js. It contains the
functions that the controller functions in Default.js call. So, for each API
operation, there is a controller function and a service function, and both have
the same name. We’ll explain this structure shortly. Each of the service func-
tions contains some code that defines mock responses for the respective API
operation. These are JavaScript objects based on the schemas in our OpenAPI
definition. For example, in jobsGET there is an object that follows the Job
schema.

 The utils directory contains a file named writer.js that defines helper functions
for generating API responses.

 The index.js file is the entry point of the application. You can see in the code
that it references the controllers directory, the api/openapi.yaml file, and a
library called oas3-tools.

 The package.json file is the configuration of a Node.js application. It contains a
few third-party dependencies, the most important being oas3-tools, mentioned
before, which is a library that includes a set of helper functions for OpenAPI.
Broadly speaking, it helps Node.js “understand” OpenAPI.

NOTE It’s possible that future versions of Codegen will follow a slightly dif-
ferent structure or create some additional files. Don’t worry if the output
you’re getting does not look exactly like ours, and try to investigate what-
ever looks similar.

Figure 13.1 Screenshot of the generated nodejs-server files

203The backend structure
From the quick glance at the generated code, we have seen that the backend uses an
application structure with controllers and services. It is a common architectural pat-
tern that you can see in a lot of web application frameworks:

 Client-side requests arrive at the entry point of the application, which is index.js
in this case. The entry point dispatches the request to controllers.

 Every path and method on the server, or every API operation, has its own con-
troller function that handles requests and generates responses. For the gener-
ated code, controllers are functions in files in the controllers directory.

 The functionality of the application resides in services that the controllers can
call as needed. For the generated code, services are functions in files in the ser-
vice directory.

If you’ve worked with other frameworks, such as Express in Node.js or, for example,
Laravel and Symfony in the PHP world, you have probably seen that you need to
define routes that map paths and methods to a controller function. There is no such
mapping here, but there is a reference to openapi.yml in index.js. So, in fact, the
OpenAPI file not only drives the code generation process, it becomes part of the
running application itself and is responsible for the mapping. Let’s find out how
that works.

13.3.3 OpenAPI changes

Open openapi.yaml in the api directory and have a look at the first path definition.
There are two new keywords that we should pay attention to:

 operationId—There is an operationId for each operation. For the first (with
summary set to Register User) it is usersPOST, a name that Codegen selected by
combining the path (/users) with the HTTP method (POST). If you look at the
controllers/Default.js and service/DefaultService.js files, you’ll notice that this
is the function name for the controller that handles the API operation.

 x-swagger-router-controller—The x-swagger-router-controller keyword
is set to Default. As you’ve seen before, Default is the name for the controller
and the service that contains the implementation of the function identified by
the operationId.

To summarize, the combination of these two keywords, x-swagger-router-controller
and operationId, connects the definition in OpenAPI with the implementation that
is behind the respective operation.

 We didn’t have these keywords in our original OpenAPI file, so Codegen put
everything inside the Default controller and generated an operationId before build-
ing the backend. If we don’t like that, we can refactor it. At this point, we would have
to make changes in both the OpenAPI file and in the controllers and services, so
we’ll do something else. We’ll update our OpenAPI file in Swagger Editor and regen-
erate the backend.

204 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
 Another change that you can see is that Codegen added the servers element to
your OpenAPI file. It adds a single server with the relative url value /.

13.4 Updating OpenAPI for the backend
As we saw in the previous section, Codegen creates code based on the OpenAPI defi-
nition, filling in some defaults for OpenAPI keywords that we didn’t use. We can
leverage these keywords to assist Codegen in creating a better backend structure
and, in the process, create a more well-rounded OpenAPI file for other parts of the
API lifecycle.

13.4.1 Adding operation IDs

An operation ID is a unique identifier for an operation, so you cannot use the same
ID more than once in your API definition. Apart from defining its uniqueness, the
OpenAPI specification also says that tools and libraries may use this identifier for
internal purposes and therefore recommends that names should follow common pro-
gramming naming conventions.

 Codegen uses operation IDs for function names in the Node.js code it generates,
so we should provide operation IDs that sound like function names. This means we
should use only alphanumeric characters, no spaces, and start with a lowercase letter.
To connect multiple words, we could use either snake case (register_user) or camel
case (registerUser). This decision is up to the developer’s preference, but it should
be kept consistent throughout the API and, ideally, through all APIs that a developer
or a company creates. Nidhi decides to use camel case for PetSitter.

NOTE Of course, every programming language has slightly different conven-
tions for function names. As we’re working with Node.js, we can look at Java-
Script conventions, but we should keep in mind that the same OpenAPI file
could drive frontends and backends in different languages.

To create good operation IDs that look and feel consistent, you can extend the basic
conventions we already mentioned with an additional set of rules for generating
names. Here are the rules that we use:

 Start the operation ID with the action name from the domain model, followed
by the schema name—singular for resource endpoints and plural for collection
endpoints.

 Suffix the name for resource endpoints with WithId, which is a reference to the
path parameter.

 For subresource endpoints, use the following structure: action name, subre-
source name, For, parent resource name (leave out WithId to shorten the
name).

Table 13.1 shows the operation IDs that we’ll create for the operations in our PetSitter
API, based on the rules we defined.

205Updating OpenAPI for the backend
You can specify your operation IDs by adding an attribute with the operationId
keyword to your operation’s definition, as shown in the following example for
registerUser.

openapi: 3.0.3
#...
paths:
 /users:
 post:
 summary: Register User
 operationId: registerUser
 responses:
 '201':
 description: Created
 headers:
 Location:
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/User'
#...

Table 13.1 List of operation IDs

Method Path Operation ID

POST /users registerUser

GET /users/{id} viewUserWithId

PUT /users/{id} modifyUserWithId

DELETE /users/{id} deleteUserWithId

POST /jobs createJob

GET /jobs listAllJobs

GET /jobs/{id} viewJobWithId

PUT /jobs/{id} modifyJobWithId

DELETE /jobs/{id} deleteJobWithId

GET /jobs/{id}/job-applications viewApplicationsForJob

POST /jobs/{id}/job-applications createJobApplication

GET /users/{id}/jobs listJobsForUser

PUT /job-applications/{id} modifyJobApplicationWithId

Listing 13.1 PetSitter OpenAPI registerUser after adding operationId

206 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
13.4.2 Tagging API operations

When you design a software architecture, you should be careful to not put too much
in a single file and instead break down your code into more manageable units. That
way you have a clearer structure and a better overview of the way your code is orga-
nized. Unless specified otherwise, Codegen puts all controllers and services in a single
file, aptly named Default. We’ve seen that there’s an x-swagger-router-controller
keyword and, as you may guess from the name’s x- prefix, it is not part of the
OpenAPI standard and rather is specific to Swagger Codegen. While we could use that
keyword to structure our API, let’s look at a more standard way to do this—tags.

 Tags are an OpenAPI feature that we used in chapter 8 to document the FarmStall
API. Tools and libraries can use tags in different ways. In the Swagger toolchain, tags
have the following effect:

 As we saw before, Swagger UI shows headings in your API documentation that
split the list of operations—your API reference—into multiple parts. This
makes it easier for the reader to see which operations belong together and to
understand the purpose of the API. If you assign multiple tags to the same oper-
ation, it appears multiple times in the UI.

 Codegen uses tags to create controllers and services. Each API operation has
one designated controller file that contains the function with its implementa-
tion, so the router knows which function to call for a certain route and method.
Unlike documentation, it makes no sense to duplicate code. Codegen only uses
the first tag, and, to avoid ambiguity, it still creates the x-swagger-router-con-
troller attribute. Hence, tags can be changed, such as for documentation pur-
poses, without refactoring the code.

Our general recommendation is to use tags early in the API design process for both
code generation and documentation. If, at any point, tags need to change, you can
still make a decision about either refactoring your code to follow the new tags or rely-
ing on x-swagger-router-controller to maintain the old structure.

CHOOSING TAGS

To choose appropriate tags for your API definition, you can look at your domain model
and the URLs for your operations. In many cases you can use the concepts in your
domain model, or the first segment of the URL paths, as tags. When applying this
approach to PetSitter, we would, for example, have a tag named Users that includes all
the operations for users which, thanks to our design approach from chapter 10, have a
path starting with /users. For a good overview in Swagger UI and manageable code files
in Codegen, you should aim to have around four to eight operations under each tag.

 The PetSitter domain model has four concepts: User, Job, Dog, and JobApplication.
Let’s look at their actions and the respective API operations again:

 There are no specific actions for dogs, so we have no dog-related operations in
our API and don’t need a Dog tag.

207Updating OpenAPI for the backend
 We have five user-specific actions (four operations in the API, as there is no rep-
resentation of “Login”), so including a dedicated Users tag makes sense.

 We also have six job-specific actions and operations, so we should add a Jobs tag.
 Finally, we have just three operations related to job applications. One of them

requires the /job-application prefix, whereas the others are specific to a user
or a job, so they use a subresource endpoint under /users or /jobs. If we con-
sider these factors, we may not need a JobApplication tag, but can instead dis-
tribute those under Users or Jobs.

We add our tag definitions for Users and Jobs in our OpenAPI file as follows.

openapi: 3.0.3
info:
 title: PetSitter API
 version: "0.1"
tags:
 - name: Users
 description: User-related operations
 - name: Jobs
 description: Job-related operations
paths:
#...
components:
#...

ASSIGNING TAGS

We decided we want to group our operations under the Users and Jobs tags. All oper-
ations on paths starting with /users go under the Users tag, whereas operations on
paths starting with /jobs and /job-applications go under the Jobs tag. You can
refer to table 13.2 for a full list.

Listing 13.2 PetSitter OpenAPI tags

Table 13.2 List of tags

Method Path Tags

POST /users Users

GET /users/{id} Users

PUT /users/{id} Users

DELETE /users/{id} Users

POST /jobs Jobs

GET /jobs Jobs

GET /jobs/{id} Jobs

PUT /jobs/{id} Jobs

208 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
The following example shows the assignment of the Users tag to the registerUser
operation.

openapi: 3.0.3
#...
paths:
 /users:
 post:
 tags:
 - Users
 summary: Register User
 operationId: registerUser
 responses:
 '201':
 description: Created
 headers:
 Location:
 schema:
 type: string
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/User'
#...

You can get the definition with its tags at https://designapis.com/ch13/02.yml.

13.4.3 Regenerating the backend stubs

After adding the tags and operation IDs in Swagger Editor, it’s time to generate the
backend again. Remember, you can build your backend directly from Swagger Editor
by clicking Generate Server in the menu bar, selecting nodejs-server, and download-
ing the generated zip file in your browser.

 If you open the new backend directory in your code editor or IDE, you’ll spot the
following differences:

DELETE /jobs/{id} Jobs

GET /jobs/{id}/job-applications Jobs

POST /jobs/{id}/job-applications Jobs

GET /users/{id}/jobs Users

PUT /job-applications/{id} Jobs

Listing 13.3 PetSitter OpenAPI registerUser, tagged

Table 13.2 List of tags (continued)

Method Path Tags

https://designapis.com/ch13/02.yml

209Running and testing the backend
 The controllers directory contains two files, Jobs.js and Users.js, named after
the tags. Likewise, the service directory contains two files, JobsService.js and
UsersService.js.

 The files contain controller and service functions for the operations that you
tagged. These functions now match the operation IDs. For example, jobs-
POST() has become createJob().

That feels much better to work with, doesn’t it? Let’s try and run the backend.

13.5 Running and testing the backend
Our next step is to run the backend, play around, and see what Codegen prepared for
us. As a prerequisite, you need to have Node.js and its package manager, npm,
installed on your computer. If you tried out Prism in chapter 12, you are already good
to go, as it required the same dependencies.

 To run the backend, open the console or terminal and change the working direc-
tory to the one containing the generated Node.js project from Codegen. Then type
the following command:

npm start

If, by any chance, you see npm ERR! Invalid version: "0.1", edit the package.json file
and change the version from 0.1 to 0.1.0. Node.js requires semantic versioning—a
version number with three segments (major, minor, and patch). After changing the
file, run the command again.

 Once the command runs successfully, you’ll see a list of operations in your console.
You’ll also see a URL that hosts an instance of Swagger UI that is part of the generated
project. Open that URL in your browser (it should be http:/ /localhost:8080/docs/)
and you’ll see your API operations, just as you did in Swagger Editor. Let’s try one:

1 Click the View User operation to expand it.
2 Click the Try It Out button.
3 Enter a random value for ID.
4 Click Execute.

You’ll see the response body, which contains dummy data but follows the User
schema. To assure yourself that this was a real API call served from your backend, you
can also copy the curl command shown in Swagger UI and run it in a new console tab
or window. You should get the same output.

13.5.1 Testing with Postman

We can also try out the API in the Postman application that you got to know in chapter 6.
To save some work building API requests in Postman, we can import the OpenAPI file:

1 Start Postman.
2 Click the Import button.

210 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
3 Select your OpenAPI file. Use the one from the api directory of the generated
backend, not your original file.

4 Under Import As, you should see Collection and API selected. Click to remove
the checkbox in front of API so that only Collection is selected. We are not
using Postman’s full API-management capabilities, so having a collection of the
methods is sufficient.

5 If you see the option Folder Organization, change it from Paths to Tags so your
API operations will be organized in the same way as in Swagger UI.

6 Click Import again to confirm.

You can now go to the Collections tab, open PetSitter API, and browse all your API
operations. Before you can try them, you have to tell Postman where to find the
backend. You’ve previously seen that Codegen put a relative URL (/) in the servers
element, which is not sufficient for an external tool like Postman. Follow these
steps:

1 Click the three dots that appear when you hover over the collection name.
2 Click Edit.
3 Go to the Variables tab.
4 For the baseUrl variable, change both the initial and current value from / to

http:/ /localhost:8080.
5 Click Update to save the changes.

Now, finally, we can make an API request with Postman. Try an operation with a GET
method first, such as List All Jobs. Open the operation and click the Send button in
the Request tab. If everything is OK, you should get a sample JSON structure similar
to the one you got in Swagger UI and curl.

13.5.2 Testing input validation

So far we’ve tested only GET operations, so why not turn things up a notch and try a POST
operation? You can do this with Swagger UI or Postman, as you wish. Make a request to
the Register User operation, POST /users, and provide the following request body:

{
 "full_name": "John Doe",
 "roles": "PetSitter",
 "email": "john.doe@designapis.com"
}

Something’s not quite right here. While designing our API, we made the roles attri-
bute an array so that users could have different roles. In other words, the user
resource is invalid. And here’s something awesome: your Codegen-generated backend
code includes input validation, so it should catch that mistake. And indeed, when you
send the request, you’ll get a response with a 400 Bad request status code and the
message “request.body.roles should be array.”

211Running and testing the backend
 Let’s fix the request body so that we get a 200 OK response back:

{
 "full_name": "John Doe",
 "roles": ["PetSitter"],
 "email": "john.doe@designapis.com"
}

NOTE According to our definition, we should get 201 Created instead of 200
OK. This is one of the few things that Codegen doesn’t yet do, so we have to do
this manually. We won’t cover that part of the code in this book, but you can
look at the source code at https://github.com/designapis/petsitter.

If you look in your service or controller files, you will not see any autogenerated input
validation code from Codegen. Instead, the oas3-tools library, which is responsible for
mapping request paths to operations based on your OpenAPI file, also takes care of
input validation. Less custom code for routine work such as input validation keeps
your implementation clearer and more organized, and it saves development time. Yet
another bonus for API design–first!

 So far, your OpenAPI file only specifies data types like integer, string, and array.
To take even more advantage of input validation, you can add additional constraints
in your API definition. We’ll discuss some of them in chapter 20.

13.5.3 Output validation with Prism

Input validation is an extremely important feature, because input to a software system is
never trustworthy as it is outside the developer’s influence. For an API, however, output
validation is equally important. The OpenAPI definition is a contract that specifies
inputs and outputs, and API consumers want to rely on the data that the API returns ful-
filling the contract. Sadly, Codegen and oas3-tools do not provide this automatically.

 One approach to output validation during development that doesn’t require any
code changes is to use Prism, the tool you already got to know in chapter 12 as a mock-
ing tool. Frontend developer Max used it to test his frontend against an API that ful-
fills the contract without having access to a running backend yet. Apart from using it
for mocking purposes, you can also run Prism in a proxy mode, where the tool sits in
between the client and the server.

NOTE Both the backend and proxy need to run simultaneously. Because
these tools take hold of your command line, you’ll need to open a new win-
dow or tab.

You can run Prism in proxy mode with the following command:

prism proxy -p 8081 api/openapi.yaml http:/ /localhost:8080/

The first parameter (-p) indicates the port for the proxy, the second parameter points
to the location of the OpenAPI file, and the third parameter specifies the URL for the

https://github.com/designapis/petsitter

212 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
running API backend (Prism ignores the OpenAPI servers element). When we
tested the API with curl and Postman, we sent our requests directly to http:/ /local-
host:8080/. Instead of that, we have now set up Prism to connect to the API on this
URL, so we need to change the baseUrl in Postman or the URLs we call with curl to
http:/ /localhost:8081/.

 Let’s try getting a user from the backend, both directly and through the proxy:

curl http:/ /localhost:8080/users/test
curl http:/ /localhost:8081/users/test

Both commands should return a valid response. For the second, you should see a mes-
sage similar to the following in the command line where the proxy runs:

[PROXY] info Forwarding "get" request to http:/ /localhost:8080/users/test...

To confirm that output validation works, let’s try and break the backend. Open the
service/UsersService.js file, go to the implementation of viewUserWithId(), and
change the example. You could change "full_name" : "full_name" to "full_name" :
["full_name"], turning a string into an array. After modifying the source code,
you’ll have to stop and restart the backend to load the latest change. Then, executing
the proxy request will still go through, but you’ll be warned by Prism:

[PROXY] info Forwarding "get" request to http:/ /localhost:8080/users/test...
[VALIDATOR] error Violation: response.body.full_name should be string

Awesome, output validation works! As we continue to develop the backend and
replace mock data with the actual application, we can always make test requests
through the proxy and observe validation errors.

 Enough playing with mock data, it’s time to build a real backend.

13.6 Database persistence with Mongoose
Few application backends can do a lot of useful stuff without a persistence layer that
stores application data permanently. That persistence layer typically is a database,
either a relational database or a document-oriented NoSQL database. In this section
we’ll explain the persistence technology we’ll use and also look at the domain model
for the database and how it relates to the schemas in the API.

 As our chosen backend technology is Node.js, we’ll go ahead with MongoDB
(www.mongodb.com), which is often used in combination with that programming lan-
guage. MongoDB is a document-oriented NoSQL database with good support within
the Node.js ecosystem. There is also a library called Mongoose (https://mongoosejs
.com/) that streamlines the integration between database and backend code by
enabling developers to create and interact with models, so we’ll use that as well.

Direct backend request

Proxy request

https://mongoosejs.com/
https://mongoosejs.com/
https://mongoosejs.com/
http://www.mongodb.com

213Database persistence with Mongoose
13.6.1 Another API modification

When Max created the first draft of the OpenAPI file, he assumed that all IDs would
be numeric and set their type field to integer. It was a reasonable assumption from
someone who used to work with relational databases, where auto-incrementing row
numbers are the standard. MongoDB, however, uses a different, unordered approach
to organize the content of the database. Because of that, MongoDB assigns longer,
random, alphanumeric object IDs to documents. That is not a problem itself, but it
makes the implementation incompatible with the type we used in the OpenAPI file.
And, as we learned, the oas3-tools library validates whether inputs match the schema,
so we can’t just ignore that. Doing so would defeat the purpose of the OpenAPI file as
a contract and a single source of truth.

 Hence, we need to update the OpenAPI file and change our schemas:

 In the User schema, change the type field for the id property from integer to
string.

 In the Job schema, set the type for both id and creator_user_id to string.
 In the JobApplication schema, set the type for id, user_id, and job_id to

string.
 In the operations that have a path parameter for the ID, change the type from

integer to string.

As an example, here is the updated JobApplication schema.

JobApplication:
 type: object
 properties:
 id:
 type: string
 status:
 type: string
 user_id:
 type: string
 job_id:
 type: string

We have to make the change both in the original OpenAPI file, using a pull request as
described in chapter 11, and in the openapi.yaml file that is part of the backend proj-
ect. The modification affects input validation but does not change the structure of the
generated code, so we do not have to regenerate the backend.

 The full definition can be found here: https://designapis.com/ch13/openapi.yml.

Listing 13.4 Updated PetSitter JobApplication schema

https://designapis.com/ch13/openapi.yml

214 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
13.6.2 Getting ready to use MongoDB

To use MongoDB, you have different options. The traditional approach is to down-
load the database, or, more specifically, its community server edition, from www.mongodb
.com, and run it locally.

13.6.3 Configuring Mongoose in the project

You can add Mongoose to your project by using npm with the following command:

npm install mongoose --save

You’ll also have to load the library and initialize the database connection in index.js.
To do so, add the following lines in the top part of the file.

const databaseUrl = 'mongodb:/ /127.0.0.1/petsitter_db';
const mongoose = require('mongoose');

mongoose.connect(databaseUrl, {
 useNewUrlParser: true,
 useUnifiedTopology: true
});

13.6.4 Creating models

Before we create our database models, let’s recap what we did when we started design-
ing the PetSitter application:

 We created a domain model. In the domain model we identified the different
concepts for the application: users, jobs, dogs, and job applications.

 We converted the domain model into reusable schemas—User, Job, Dog, and
JobApplication—and we created API endpoints for resources that are based on
the schemas.

Alternatives to installing MongoDB directly
MongoDB offers a hosted service, including a free trial plan, so you could sign up for
a cloud-based database and connect to it from your development machine instead of
installing it locally. However, we have not tried this, so you’re on your own with this
approach.

If you have previously worked with Docker (www.docker.com) and have it running
locally already, we recommend running MongoDB in a container. You can use the fol-
lowing single command to download a MongoDB image from Docker Hub (if you
haven’t yet installed it) and start it in a container:

docker run --name petsitter-db -d -p 27017:27017 mongo:latest

Listing 13.5 Mongoose initialization code

The database
URL for a local
MongoDB
instance

http://www.mongodb.com
http://www.mongodb.com
http://www.mongodb.com
http://www.docker.com

215Database persistence with Mongoose

de

d

We created the domain model based on the outside view of the application and with
the purpose of designing an API. However, we also need an internal domain model to
represent the resources inside the database. It is crucial to understand that the exter-
nal domain model for the API and the internal domain model do not have to be the
same. For some applications, especially complex ones, the differences can be vast.
Still, when following the API design-first approach, the external domain model pro-
vides a good first draft for the database model. For a reasonably small web application
like PetSitter, we can work on the assumption that all concepts from the external
model will appear in the internal model, too. Some of their attributes or their data-
types may be different though.

 MongoDB stores data in documents, and every document belongs to a collection.
To represent a domain model in MongoDB, we can use the following approach:

 For every schema, there is a collection.
 For each resource—each instance of a schema—there is a document in the

respective collection.

In fact, Mongoose follows this approach already. We create Mongoose models from
the schemas we have, and Mongoose creates a MongoDB collection for each model.
So what models do we have to create?

 A User model based on the User schema.
 A Job model based on the Job schema. Because we’ve established that dogs are

always part of a specific job, we can integrate the Dog schema into this model.
 A JobApplication model based on the JobApplication schema.

Let’s create a new directory in our project and call it “models,” so we have a place for
storage, and then we can move on to create the models.

USER MODEL

In the models directory, create a new file called User.js. Here is the content for the
new file, along with some explanations.

'use strict';

const mongoose = require('mongoose');
const Schema = mongoose.Schema;

exports.User = new Schema({
 email: String,
 password: String,
 full_name: String,
 created_at: Date,
 updated_at: Date,
 roles: [String]
});

Listing 13.6 User model code

Imports the
Mongoose library

Creates a local
alias for Schema

Defines User as export so it
can be used in other files

Field
finition
with a
String

atatype
Field definition with a Date datatype,
which didn’t exist in OpenAPI

Field definition with an
array of String datatype

216 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
NOTE You might be wondering why we’re talking about Mongoose models if
we create them with the Schema keyword. In Mongoose terminology, every
model has an underlying schema, so we define a schema, and then later, when
using it, we import it and turn it into a model. You’ll see that import code
later. A schema is used to create a model, much like a class is used to create
an instance.

If you look at the schema constructor in the previous listing—the Mongoose User
model—and compare it with the User schema in OpenAPI, you’ll see that they mostly
have the same field names and datatypes, but there are also the following differences:

 There is no id field in the Mongoose model. The reason for that is that
MongoDB implicitly adds a field called _id to each document so we don’t have
to define it.

 We added two additional fields, created_at and updated_at, which we didn’t
have in the OpenAPI schema. These fields will help us to observe changes in
the database over time. We may add them to the API later, but, as mentioned
before, there is no need to have the same model in the database and in the API.
Unlike OpenAPI, Mongoose has an explicit Date datatype. (There is a way to
express dates in OpenAPI, but it’s not a data type. More on that in chapter 20.)

Our application needs a mapping between the internal and external models. In other
words, we need to generate the API response format from the internal representation,
and this logic could be located in different places in the code. Nidhi decides to add it
directly to the model files. There are good reasons against this approach, because it cre-
ates a strong coupling between the internal model layer and the view layer (in this case,
the API) of the application, but for a new application with a scope like PetSitter, where
the internal and external models bear a lot of similarity, it is a pragmatic solution.

 Mongoose allows developers to add custom functions to the models they create by
attaching them to the methods field. Let’s create a function called toResultFormat()
that returns the external format.

// ...

exports.User.methods.toResultFormat = function() {
 return {
 id : this._id,
 email : this.email,
 full_name : this.full_name,
 roles : this.roles
 };
};

The function ignores the created_at and updated_at fields that we added for inter-
nal use in the database.

Listing 13.7 User model toResultFormat

Function definition
on User.methods

Different field
names: id and _id

Uses the same field
names for the others

217Database persistence with Mongoose
JOB MODEL

Similar to the User model, the Job model goes in a Job.js file in the models directory.
As mentioned before, we’re integrating the Dog schema in this model. Here is the
definition.

// ...

exports.Job = new Schema({
 creator_user_id: Schema.ObjectId,
 starts_at: Date,
 ends_at: Date,
 activity: String,
 created_at: Date,
 updated_at: Date,
 dog: {
 name: String,
 age : Number,
 breed: String,
 size: String
 }
});

There are two interesting things here that we didn’t see in the User model. One is the
use of Schema.ObjectId as a datatype to indicate that a field references another docu-
ment in the database. In our case, that would be an instance of the User model. The
other is the inclusion of an inline schema by nesting the definition.

 Following the same approach we did in the User model, we’ll also define a toResult-
Format() function that converts from the internal to the external format.

// ...

exports.Job.methods.toResultFormat = function() {
 return {
 id : this._id,
 creator_user_id : this.creator_user_id,
 start_time : this.starts_at,
 end_time : this.ends_at,
 activity : this.activity,
 dog : this.dog
 };
};

JOBAPPLICATION MODEL

Last, but not least, we’ll create a JobApplication.js file for the JobApplication model.
There’s nothing conceptually new to see here.

Listing 13.8 Job model code

Listing 13.9 Job model toResultFormat

Reference to
another document

The inline
Dog schema

Different field
names

218 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
// ...

exports.JobApplication = new Schema({
 created_at: Date,
 updated_at: Date,
 user_id: Schema.ObjectId,
 job_id: Schema.ObjectId,
 status: String
});

exports.JobApplication.methods.toResultFormat = function() {
 return {
 id : this._id,
 user_id : this.user_id,
 job_id : this.job_id,
 status : this.status
 };
};

13.7 Implementing API methods
So far we’ve optimized our OpenAPI file, generated stubs for controllers and services,
and created a persistence layer with a database model that looks similar to our exter-
nal model. As we said in this chapter’s introduction, we want to focus here on going
from OpenAPI to backend code with the help of Codegen, but not necessarily to walk
through the full application. Hence, we’ll just show you one of the API operations,
viewJobWithId(), to give you an idea of how to implement any operation. You can
review the full source code of the application on GitHub, at https://github.com/
designapis/petsitter.

 You can find the viewJobWithId() function in the controller file, Jobs.js, and also
in the service file, JobsService.js. Let’s have a look at the controller code first. Here is
what Codegen prepared for us.

module.exports.viewJobWithId = function viewJobWithId (req, res, next, id) {
 Jobs.viewJobWithId(id)
 .then(function (response) {
 utils.writeJson(res, response);
 })
 .catch(function (response) {
 utils.writeJson(res, response);
 });
};

The controller does nothing more than call the service function, pass the ID, and for-
ward the response as a JSON object. But that is sufficient for now, so we don’t have to
make any changes to the controller code.

Listing 13.10 JobApplication model code

Listing 13.11 viewJobWithId controller code

Call the
service
function.

If successful, write
a JSON response.

If an error occurred, write
a JSON response too.

https://github.com/designapis/petsitter
https://github.com/designapis/petsitter
https://github.com/designapis/petsitter

219Implementing API methods
 Because the output is passed through from the service, we have to ensure that our
service function returns a structure that matches the response format we defined for
the API endpoint. Also, the code structure with then() and catch() indicates the use
of promises in JavaScript. The service function must return a promise that can either
resolve or reject. With that said, let’s look at the matching service code that Codegen
created.

exports.viewJobWithId = function(id) {
 return new Promise(function(resolve, reject) {
 var examples = {};
 examples['application/json'] = {
 creator_user_id : 6,
 start_time : "start_time",
 activity : "activity",
 end_time : "end_time",
 id : 0,
 dog : {
 size : "size",
 name : "name",
 age : 1,
 breed : "breed"
 }
 };
 if (Object.keys(examples).length > 0) {
 resolve(examples[Object.keys(examples)[0]]);
 } else {
 resolve();
 }
 });
}

We don’t want to return mock data anymore but rather return a real job from our
database. Before we can write database logic, we need to load the database Jobs model
by including the following lines in the head of our services file.

const mongoose = require(mongoose');
const JobModel = mongoose.model('Job', require('../models/Job').Job);

Then we can update the viewJobWithId() function.

exports.viewJobWithId = function(id) {
 return new Promise(function(resolve, reject) {
 JobModel.findById(id)
 .then(function(job) {
 resolve(job.toResultFormat());

Listing 13.12 viewJobWithId-generated service code

Listing 13.13 Including the Mongoose Job model in a service

Listing 13.14 viewJobWithId updated service code

Create a
promise.

Prepare
a mock
response.

Resolve the
promise with the
mock response.

Find document
with ID.

If successful, resolve the promise
with a job in result format.

220 CHAPTER 13 Building a backend with Node.js and Swagger Codegen
 });
 });
}

The preceding code works, but we can improve it by replacing the promise-related
code with the modern JavaScript async/await syntax, which makes it more readable.
The following listing shows the improved function.

exports.viewJobWithId = async function(id) {
 let job = await JobModel.findById(id);
 return job.toResultFormat();
}

That’s much shorter, isn’t it? And that’s all we have to do to get a working API opera-
tion, at least for successful requests. So far we have not considered failures in our
code. For instance, we have not defined the behavior for invalid inputs, such as non-
existing IDs. If we run the application like this, it would throw exceptions. We’ll cover
error handling in chapter 19.

Summary
 Swagger Codegen takes an OpenAPI definition and turns it into client-side or

server-side code in different languages. In the case of server-side code genera-
tion, the generated code is a full application with a framework based on con-
trollers and services. It contains stubs with mock data so that it runs out of the
box. You need to fill the gaps with the business logic of the application, such as
retrieving data from a database.

 To support the way Codegen organizes code in the backend, you should tag
your operations and provide the operationId attribute. Tags group code into
different controllers and services, and every operationId becomes a function
name. The major concepts in your domain models are good candidates for the
tags you should define.

 The generated code includes input validation based on the schemas in your
OpenAPI definition and rejects input that doesn’t conform. You don’t need to
write custom code for input validation, but it is important to get the schemas
right during API design. There is no output validation, but you can proxy your
requests through Prism to get notified if your custom code violates your schemas.

 The persistence layer of an application, such as a database, requires an internal
data model. This model is often similar to the domain model and contains the
same concepts, but some attributes can be different. Wherever they deviate, you
need custom mapping code to convert objects from the internal model to the
external model.

Listing 13.15 viewJobWithId improved service code

Find document
with ID.

Return the job in
result format.

Integrating
and releasing

the web application
Our PetSitter team has been busy. The two developers created an API definition
and coded a first version of their respective parts. During development, they
encountered various issues with the API design and resolved them through a
change process. Now they’ve reached an exciting point in the project: José wants
to start testing the application to see what Max and Nidhi have been doing. To
check the workflows for the different roles, he also wants to provide additional
test users, both inside and outside the company, access to a small demonstration
instance.

 The two developers will have to run their backend and frontend together for
the first time. Because they used the API design–first approach, they made sure that
all changes to the OpenAPI definition were communicated. The modifications we
described in chapters 12 and 13 happened in parallel. Now they have all been
merged, and we have a common, stable, OpenAPI file in our main branch—the
“latest and greatest” version! This contract should ensure that both components

This chapter covers
 Adding minimum viable authentication

 Managing code and definition repositories

 Serving backend and frontend with a single server
and base URL
221

222 CHAPTER 14 Integrating and releasing the web application
work together, and our team is eager to see that promise fulfilled. You can see the
merged OpenAPI file at https://designapis.com/ch14/01.yml.

 As Nidhi and Max are about to plan their next steps, however, they realize that
there are a few unsolved problems with PetSitter. Most glaringly, they skipped over
one feature in the domain model, which they believe they need for the release:
authentication. Also, they created a GitHub repository to establish a collaborative pro-
cess for the OpenAPI description, and each developer created a separate repository
for the implementation of their part (which we didn’t cover in the book, but this is
naturally what they would’ve done), so there are now three individual repositories. To
facilitate integration and deployment, they want to reconsider this structure and eval-
uate whether the repositories can be consolidated. Finally, they need to discuss setting
up the demonstration instance, and, as a prerequisite for that, figure out how to make
sure that the URLs used for frontend and backend are compatible.

 This chapter differs from the previous chapters insofar as it covers multiple smaller
topics. We’ll first describe the different problems we just mentioned, and then we’ll
look at each in different sections, outlining the solutions.

14.1 The problems
In this chapter, we’ll tackle the three remaining technical questions that the PetSitter
team has to answer before they can set up their first demonstration instance:

 How can we identify a user and implement the “Login” action with minimal
effort, sufficient for demonstration purposes?

 How can we organize and maintain our code and API definition so it is ready
for deployment?

 How can we serve the application, frontend and backend as a whole, from a
server that José and the other beta testers can interact with?

Within this problem section, we’ll explain why it’s important to answer each of these
questions before launch and what each entails. The remainder of the chapter will
cover the solutions.

14.1.1 Authentication

The domain model that the PetSitter team designed in chapter 9 included a “Login”
action in the User concept. When Max converted the domain model to an API design
in chapter 10, he skipped over the “Login” action, under the assumption that there is
no API operation that corresponds to the action.

 Of course, every registered pet sitter and pet owner in the PetSitter application
should prove that they are allowed to access their user accounts before being able to
post jobs, apply for jobs, or do anything else in the system. Without some sort of
security, users could impersonate each other, potentially leading to fraud within the
marketplace. And even when we’re just testing and have no real users yet, we can
expect problems or confusion. Therefore, launching without proper authentication
is not an option.

https://designapis.com/ch14/01.yml

223The problems
 If we look closer, we can identify the following requirements:

 The “Register” action for users (POST /register) should not require authenti-
cation, so that it is available to everyone (because a new user doesn’t have any
account credentials yet).

 Every other action (apart from a “Login” action, which we don’t yet have)
involves an authenticated user, so we must require authentication to access it.

 Due to the CRUD structure, many API calls require the user’s ID, as in GET
/users/{id}. The ID is an arbitrary identifier that the server, or, more specifi-
cally, the database, assigns to its users. On the frontend, however, users typically
use their email address and their password to log in and don’t know their inter-
nal ID.

To fulfill the requirements, we will do the following:

 Create an OpenAPI security scheme that describes how the user can authorize
requests—a secret token in this case.

 Add a “Login” action to our domain model and then an operation to our
OpenAPI that allows users to turn their credentials (an email address and pass-
word) into their ID and a secret token.

 Specify that authorization is required for every operation except “Register” and
“Login.”

We will look at a solution later in this chapter. Our next problem is to decide how to
organize the code.

14.1.2 Organizing code

So far, Max and Nidhi have collaborated on the OpenAPI file using GitHub and the
workflow we described in chapter 11. Each of them also set up a repository for their
component’s code files individually, so there’s a total of three repositories. To decide
whether we should keep the three repositories, let’s take a step back and look at the
options we have:

 Keep the existing structure.
 Create a shared Git repository for the implementation of both components.
 Consolidate the code and API definition in the same repository.

Let’s get one thing out of the way first: because we have an API that acts as a clear
boundary between frontend and backend and we used the API design–first approach,
no developer should need to access the code of a component they aren’t working
on—the OpenAPI definition tells them what they need to know to interact with it. You
could deploy each component separately, exchange the URLs, and the resulting appli-
cation should work without any developer ever seeing the internals of another compo-
nent. So why would we even consider moving both into the same repository?

 The reason for the PetSitter team to share the code is that they want to collaborate
on setting up a single test server that hosts both components together. Ideally, the

224 CHAPTER 14 Integrating and releasing the web application
server should be portable enough that it can be downloaded and run as a local test
instance or uploaded in one step to the company infrastructure. It’s also important
that compatible versions of the code are deployed together, as we haven’t covered ver-
sioning yet. Having both components in one place might be helpful.

 We’ll look at the three options and choose one later in this chapter. Before we do
that, however, let’s look at our third and final problem, serving both components
together.

14.1.3 Serving both components

Currently the application exists as two separate components: frontend and backend.
Both parts expose themselves over the HTTP protocol, so let’s quickly revisit their
URL structure. In general, a URL can be split into two parts. The first part, often
called the base URL, is the common prefix shared by all URLs in a component. The
second part is a specific route to address an API operation, web page, or file.

 An API backend has a base URL, which can be the root URL for a hostname (such
as https://example.com/) or it can have a path prefix (https://example.com/api/v1/).
With OpenAPI, the base URL is set in the servers array. The full URL for an API end-
point is the base URL combined with the path specified for the API operation (such
as /users).

 Because this is a web application, the frontend uses URL paths in two different ways:

 Some URL paths point to real file paths for static assets, such as images, exter-
nal stylesheets, and JavaScript files. For example, if the base URL is https://
example.com/ and the application contains an images/logo.png file, the browser
can retrieve it from https://example.com/images/logo.png.

 Some paths are for different pages in a web application that contain dynamic
content but are not individual files. The web application has a router compo-
nent that handles these URLs. In a traditional web application, the router is
part of the server-side code that dynamically generates the HTML pages. For a
single-page-application (SPA), the server returns the same file—usually named
index.html—for all URLs, and a client-side router handles page generation.
The latter case applies to PetSitter, as it is an SPA that communicates with
an API.

As we mentioned in the previous section, our developer team wants a portable and
flexible solution that ideally serves both components together, so they can set up a sin-
gle test server. As a result, the base URL for frontend and backend might be the same.
Therefore, we have to think about our URL design for the two components in combi-
nation so that there are no ambiguities. For example, the /jobs/{id} path could
mean both the View Job API operation and the page that displays the job details to
the user. To avoid such clashes, here are a few options we could consider:

 Use a different hostname or port for the API and frontend.
 Use a path prefix for the API.

https://example.com/
https://example.com/api/v1/
https://example.com/
https://example.com/
https://example.com/
https://example.com/images/logo.png

225Implementing authorization
 Use a path prefix for the frontend.
 Design different URLs for both components.

Now that we’ve got an overview of the problems we have to tackle, let’s get into solving
them. We’ll start with authorization, move on to the repositories, and finish with the
URL and server setup.

14.2 Implementing authorization
To recap the problem statement, we need to implement authorization for most API
operations in the PetSitter API to make sure that only authorized users can perform
actions inside the application. We already identified a three-step process to do so:

1 Create an OpenAPI security scheme.
2 Add a “Login” action to our domain model.
3 Assign the security scheme to every operation that needs it.

Let’s walk through those steps, one by one. We previously covered authorization in
chapter 7, so you can always refer back to that chapter if necessary.

14.2.1 Creating a security scheme

A security scheme describes a certain method of authorization that API consumers
can use when accessing the API. An OpenAPI definition can contain multiple security
schemes, and there are four types (apiKey, http, oauth2, and openIdConnect).

 In chapter 7 we used the apiKey type, which is very flexible. It describes a single
parameter that API consumers should add to their requests. To further describe a
security scheme for an API key, we can use the following attributes:

 in—By using in, we can specify the kind of the parameter, which is either
query, header, or cookie.

 name—With name, we can specify the name of the parameter—the respective
header, query, or cookie name.

As we don’t want to introduce additional complexity or a new authorization strategy at
this point, we’ll stick to the same approach we used in chapter 7:

 We will use the apiKey type of authorization.
 We will set in to header to use an HTTP header.
 We will set name to Authorization, which is the standard HTTP header name

for this purpose.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 securitySchemes:

Listing 14.1 PetSitter OpenAPI Session security scheme

226 CHAPTER 14 Integrating and releasing the web application
 SessionToken:
 type: apiKey
 in: header
 name: Authorization

We chose the identifier SessionToken for the scheme to emphasize the fact that the
user interacts with a web application. In this context, the word “session” is commonly
used to describe the interactions of authenticated users in a certain time period.

14.2.2 Adding a “Login” action

Now that we have created the SessionToken security scheme, we have to figure out
how the user can get such a token. In the domain model, we called this the “Login”
action. How can we map this action into the CRUD structure of our API operations?

 When designing an API, we try to map actions from the domain model into one of
the CRUD verbs—create, read, update, or delete—as they map well to the HTTP
methods. Sometimes this relationship is somewhat obvious, such as matching a “View”
action with the read verb. At other times, we have to think a little of out the box, such
as when we turned the “Approve” action for job applications into a more generic
“Modify” action, which nicely maps to the update verb.

 The “Login” action neither creates, reads, updates, or deletes a user, nor does it
interact with any other concept within our domain model. Well, you could maybe
argue that it reads a user in order to compare whether the email address and pass-
word match, but it is clearly distinct from the “View” action for users, which reveals all
user details when given an ID.

 Sometimes we have to move away from the CRUD paradigm and design operations
in a different way. Some API designers mix non-CRUD paths into their API design, such
as POST /users/login, while others use a specific prefix to separate these actions,
such as POST /users/actions/login. Before doing so, however, we should investigate
whether we can achieve a more elegant solution by extending our domain model.

 We called our security scheme SessionToken as it identifies the session of a user
interacting with the API. The session is a concept of the web application, so what if we
made it a part of the domain model as well?

 The session concept is connected to a user—by logging in, a session starts for a spe-
cific user. In other words, we create a session. Did you notice? With our new concept in
the domain model, CRUD comes naturally, and we can apply the rules from chapter
10 for turning CRUD actions into HTTP methods and API paths.

 As we did with the other concepts in the domain model, let’s first look at the
attributes we need and add them to the OpenAPI definition. When we discussed the
requirements, we found that we have to get two pieces of information for a usable
session:

 The ID of the user, so we can make API requests to endpoints that require this
ID. Following the naming conventions, we should call it user_id.

Identifier for
the schema

The standard Authorization
HTTP header

227Implementing authorization
 The credential that we use in our security scheme—the value of the Authoriza-
tion header. To state the purpose of this field but still keep it short, we’ll call it
auth_header.

Both attributes are strings. You can see an overview of the session attributes in table 14.1.

When we created the first version of the OpenAPI definition, we added all the con-
cepts from our domain model as reusable schemas in the components section. To
emphasize that we think of the session as another concept in our domain model, we’ll
create a Session schema in the same way, and add it to our OpenAPI definition.

openapi: 3.0.3
#...
components:
 schemas:
 User:
 #...
 Job:
 #...
 Dog:
 #...
 JobApplication:
 #...
 Session:
 type: object
 properties:
 user_id:
 type: string
 auth_header:
 type: string
 securitySchemes:
 #...

Now that we’ve got a Session schema, it’s time to add another operation. Following
the CRUD mapping approach from chapter 10, the path /sessions is a collection
endpoint for sessions, and resources are created with a POST request on the collection
endpoint. Hence, our “Login” action, now known as the “Start” action (see figure 14.1),
is POST /sessions. Before adding this operation to the OpenAPI definition, we should
consider its input and output—the request and response schemas. As the response

Table 14.1 The Session fields and their types

Field Type Description

user_id string Identifier for the user

auth_header string A secret token

Listing 14.2 PetSitter OpenAPI with Session schema

228 CHAPTER 14 Integrating and releasing the web application
schema, we can use the Session schema we just created. For the request, we need
email and password fields, which we find in the User schema.

 At first glance, using the User schema as the request body feels about right. Users
send the required information about themselves and get a session in return. However,
the operation wants a specific subset of the User schema, different from the fields
required for POST /register, which already has the User schema as its request body.
Fields like full_name and roles have no relevance for starting a session. We decide
against using the User schema and choose a naive approach of designing an inline
schema with email and password fields inside the operation.

 As you learned in chapter 13, there are some additional fields that we should add
to API operations, so let’s do that and add an operationId called startSession. What
about tags? It makes no sense to invent a new tag for a single operation. There’s also
no connection to jobs. Therefore, we can group Start Session with the other user-
related operations under the Users tag.

Start

Auth eaderh

Session

Identifies

ID

EmailAddress

Password

Fullname

Roles

User

Register

Login

View

Modify

Delete

JobApplication

ListForJob

Approve

Create

ID

Status

Job

Create

ListMyOwn

View

Modify

Delete

ListAll

ID

StartTime

EndTime

Activity
Dog

Name

Age

Breed

Size

Belongs to

Creates

Creates Applies for

Figure 14.1 Updated PetSitter domain model with Session

229Implementing authorization
 With all the information we’ve gathered and the choices we’ve made, we can
finally add our new operation to the OpenAPI definition for PetSitter.

openapi: 3.0.3
#...
paths:
 #...
 /sessions:
 post:
 tags:
 - Users
 summary: Start Session (Login)
 operationId: startSession
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Session'
 requestBody:
 content:
 application/json:
 schema:
 type: object
 properties:
 email:
 type: string
 password:
 type: string
#...

14.2.3 Defining operation security

As mentioned before, we need authorization for every API operation in the PetSitter
API, except for Register User and Start Session. In chapter 7 we showed you the
security attribute that enables the assignment of one or more security schemes to
each operation. Now, before you go and add this attribute to the 12 operations in Pet-
Sitter that require authentication, let’s look at an alternative: global security.

 A global security declaration is an OpenAPI feature that allows us to make a state-
ment like this: “Unless the operation’s definition says something else, use the follow-
ing security scheme everywhere.” With 12 operations having a security requirement
and 2 operations not having security requirements, it makes sense to define our secu-
rity scheme as the default behavior and then marking the 2 exceptions, instead of
going the other way. Also, as it is likely that we’ll add more functionality for logged-in
users, and thus declare additional API operations that need authorization, we may for-
get to add the security attribute, potentially leaving these endpoints unprotected. By
making authorized access the default, we avoid this problem.

Listing 14.3 PetSitter OpenAPI Start Session (Login)

230 CHAPTER 14 Integrating and releasing the web application
 A global security declaration looks like an operation-specific security declaration.
It even uses the same keyword, security, but the declaration sits at the highest level in
the YAML hierarchy of the OpenAPI definition instead. We can add it to the end of
the file.

openapi: 3.0.3
#...
security:
 - SessionToken: []

If we want to remove the security requirements from an operation, we have to use the
security keyword in a slightly different way. Instead of adding a list of requirements
below it, we have to explicitly set its value to an empty array ([]). Let’s do this for the
two operations that need it.

openapi: 3.0.3
#...
paths:
 /users:
 post:
 #...
 security: []
 #...
 /sessions:
 post:
 #...
 security: []
#...

The OAS tools that we got from Swagger Codegen in the backend understand these
security declarations and automatically return a 401 Unauthorized response when
they detect a request that doesn’t conform to its security requirements. However, OAS
tools do not themselves validate API keys, tokens, or passwords; they just check for
their presence according to the API definition. The rest is up to the backend devel-
oper. We won’t cover the implementation details of handling authorization in this
book, but you can look at the source code for the PetSitter backend as well as the
frontend to see how we did it.

 With the “Start Session” action and all the security configuration integrated in the
API definition, we can consider the application feature complete for its first launch.
We still need to bring the components together, in code and in deployment, so let’s
move on to tackle the question of code repositories.

Listing 14.4 PetSitter OpenAPI global security

Listing 14.5 PetSitter OpenAPI no security operations

Global security
keyword

Identifier for the schema
and empty options array

231Managing repositories
14.3 Managing repositories
When stating the problem, we identified three different options for the code reposito-
ries. Before looking at each of them in more detail, we’d like to introduce two terms
that software teams often use when they talk about organizing code and other assets:
the “monorepo” and the “multirepo” approaches. In the monorepo approach, every-
thing goes into a single repository, whereas in a multirepo approach, individual system
components get their own repositories. With that said, let’s explore our options.

14.3.1 Keeping the existing structure

The advantage of the existing structure, the multirepo approach, is that different
components are isolated from each other, and it is possible to provide limited access
to them. As we mentioned earlier, it’s not necessary for developers to see the source
code of other components when all communication happens over APIs. This approach
works well when companies want to protect their codebase, because they can provide
access to different repositories on a need-to-know basis, or even if they just want to
harden the boundaries between components—something that’s in line with API
design–first.

 On the other hand, as we established earlier, we want to facilitate sharing the code
for joint deployment. When we’re using a separate repository for each component, we
need to access both to set up a server.

14.3.2 Creating a shared Git repository to implement both components

With a single repository for both components, it’s easier to track changes within the
whole project (we’re not calling it a monorepo right now because there’s still another
repository for the OpenAPI definition). Every developer has a complete overview and
a full copy of the codebase to run, test, and inspect.

 The downside is that every developer has to deal with the full content of the repos-
itory, even if they are just working with part of it. As of now, the PetSitter team and
application are not very large or complex, so that downside does not really apply here.

14.3.3 Combining code and API definition in a repository

Keeping your OpenAPI file together with the code in your monorepo ensures that
everybody has the latest version and no developer misses an update. The discovery
of new and updated OpenAPI files is effortless. However, there is the following
caveat: if you use the API design–first approach, your API definition always runs
ahead of the code, because you design new schemas and operations first and only
later implement them.

 Following the process we introduced in chapter 11, changes happen in stake-
holder branches in the OpenAPI definition’s Git repository. This doesn’t mean, how-
ever, that the main (latest and greatest) branch correlates with the state of the
implementation. Design and implementation are different, and the separate reposito-
ries help enforce that.

232 CHAPTER 14 Integrating and releasing the web application
 Keeping the API design of tomorrow and the source code of today on the same
branch can make things complicated. The lifecycle of the API can and should be dif-
ferent from the lifecycle of the source code that implements it. Even if you adopt the
strategy of API design–first that uses Git, we recommend that you decouple the design
of the API from its source code. Decoupling the design also allows other stakeholders,
such as technical writers, to work on the design without working on the source code.

 Another issue is the use of Swagger Codegen and the OAS tools, which, as we saw
in chapter 13, use the OpenAPI file directly in the implementation. Codegen makes
its own modifications to the OpenAPI file. We should not, therefore, use this file
directly to make manual design adjustments but only do so after the API definition
has changed and been approved, and the change has also been implemented. Hence,
we’d need at least two OpenAPI files in the repository: one that the team maintains,
and one that Codegen maintains. Having them both in the monorepo might irritate
developers and lead to modifications of the “wrong” file.

 Developing a workflow for a team that involves design can be overwhelming. Keep
it simple wherever possible. José and his team decided to keep the API design and
source code in separate repositories to help foster their API design–first approach.

14.3.4 Making the choice and refactoring

In line with their focus on simplicity first and being lean and agile, Nidhi and Max
decide to put backend and frontend in the same Git repository, so they can use that to
deploy their application, while keeping the existing API definition repository untouched.
They create a new repository, copy their files into it, and delete the older, personal
repositories. As their codebase still contains two fully separate components, each of
them goes in a different directory:

 A frontend directory for the frontend code
 A backend directory for the backend code

Awesome, the authentication and code questions are settled. Let’s move forward to
the next step.

14.4 Setting up an integrated web server
In the previous section, the PetSitter team created a new repository. With frontend
and backend side by side, we can now integrate them. We will first solve the URL
design problem and then configure the application to serve both frontend and
backend.

14.4.1 URL design

Earlier in this chapter we talked about the problem of potential URL clashes. We have
a few options for solving this problem:

 Use a different hostname or port for the API and the frontend.
 Use a prefix for the API.

233Setting up an integrated web server
 Use a prefix for the frontend.
 Design different URLs for both components.

Let’s look at each of these in turn.

USING A DIFFERENT HOSTNAME OR PORT FOR API AND FRONTEND

If we use one hostname for the web application and another for the API, such as
https://www.example.com/ for the application and https://api.example.com/ for the
API, there will be no URL clashes. If we think about our production environment, an
approach like this has its advantages, because we can use different hosting infrastruc-
ture for both components. However, it isn’t a portable approach. If we run an applica-
tion on a developer’s machine, we typically have to use localhost unless we want to
set up hostnames locally. If we still want to separate backend and frontend, we can run
two web servers on different TCP ports. This can lead to complications if one of the
ports is unavailable, perhaps because another application blocks it on a shared server.

 There’s also another issue. For security reasons, browsers have limitations regard-
ing the kind of API requests that a JavaScript-based frontend can make. By default,
you can only make requests to the same hostname. There is a feature called Cross-
Origin Resource Sharing (CORS) that we could configure in our API to overcome this
restriction, but we don’t want to cover it in the context of this book, so we’ll rule
this option out.

NOTE If you’re curious about how CORS works, we recommend starting with
Mozilla’s documentation: https://developer.mozilla.org/en-US/docs/Web/
HTTP/CORS.

USING A PREFIX FOR THE API
An API prefix is a specific path, such as /api, that we reserve for the API. Following
this approach, the frontend developer has to refrain from using a particular prefix for
their files and routes. As long as they do that, there will be no clashes. Without a pre-
fix rule, the /jobs/{id} path, for example, could mean both the View Job API oper-
ation and the page that displays the job details to the user. With a prefix we’d use
/api/jobs/{id} for the API endpoint, allowing the frontend developer to use
/jobs/{id} for the respective page. This approach also works with any hostname.

USING A PREFIX FOR THE FRONTEND

In the same manner, we could use a prefix like /app for the frontend. In our example,
the “View Job” page in the application would reside at /app/jobs/{id}. The only
issue we have with this option is that end users accessing the application’s frontend
will typically try the root path (/) on the hostname first, so we’ll have to assign that to
the frontend as well.

DESIGNING DIFFERENT URLS FOR BOTH COMPONENTS

All URLs required for the backend are defined in the OpenAPI file, which (thanks to
API design–first) exists before the frontend implementation. There is nothing similar
for the frontend, but we can ask the frontend developer to choose URLs that don’t

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://www.example.com/
https://api.example.com/

234 CHAPTER 14 Integrating and releasing the web application
clash with those in the OpenAPI definition. That works well in the beginning, but as
we proceed, we’ll also have to consider the frontend when updating the OpenAPI
definition, so this could cause problems down the line.

 After investigating these options, it seems that prefixes are the best way to ensure a
clean separation between frontend and backend that still works independently of the
hostname and port used to serve the application. Nidhi and Max decide to strictly use
the /api prefix for the backend and limit the frontend mainly to /app routes, with the
exception of the initial URL that remains at the root (/). For static files (like
images/logo.png), they’ll continue using the original file paths without a prefix.

14.4.2 Server setup

Now that we know how we want our URLs to look, we still have to figure out a way to
implement our chosen approach in a way that is not overly complicated. We’ll look at
two options here:

 Setting up a reverse proxy for both components
 Integrating the frontend as a static part of the backend server

Let’s evaluate the first approach. A reverse proxy is a web server that accepts incoming
requests and forwards them to different servers behind it. It is possible to configure
many web servers, such as Apache or NGINX, as reverse proxies with specific configu-
ration rules (a particular type of reverse proxy for APIs is called an API gateway). For
example, we could configure NGINX to forward every request whose URL starts with
/api to our backend’s Node.js server, and either serve the static frontend pages itself
or forward the request to another static web server.

 Production setups often rely on reverse proxies for scalability and security, but
while the approach is great in production, it can be difficult to set up during develop-
ment. The test server needs to run multiple processes and have all integrations config-
ured correctly. You can’t provide a single application that developers or testers can
run locally on their machine. Remember, we are at the stage where our PetSitter team
wants to release a working prototype as soon as possible. Therefore, let’s evaluate the
second option.

 The Node.js backend serves the different routes defined in the paths section of the
OpenAPI definition. We probably don’t want to add our frontend routes to the
OpenAPI file, but maybe we can instruct Node.js to serve some additional routes. As it
turns out, we can! The Node.js application created by Swagger Codegen uses the
Express web server internally, so we can use Express functionality for that. The backend
serves the frontend, so users can access the whole web application by running the back-
end server. That works well as a pragmatic solution during development and testing.

SETTING THE PREFIX

The backend server mounts all the paths directly to the root of the hostname. For
example, when we run our backend on http:/ /localhost:8080/, the /users path has
the absolute URL http:/ /localhost:8080/users. This is, however, not the URL we want,

235Setting up an integrated web server
because we decided to add an /api prefix. The desired URL would be http:/ /local-
host:8080/api/users. How can we configure this?

 The oas3-tools library looks at the servers element in the OpenAPI file to find a
prefix. If you open the api/openapi.yaml file, you’ll see a single server with its url set
to just a slash (/):

servers:
- url: /

We can change that URL to the desired prefix:

servers:
- url: /api

After making this change and restarting the backend, Node.js will serve our API under
the prefix. Awesome, we’re one step closer to our test server!

CONFIGURING THE EXPRESS FRAMEWORK

As we mentioned before, an SPA often has two kinds of URL paths, and that applies to
the PetSitter frontend as well. The first kind points to real static files, and the second
kind points to application pages that all map to the entry file of the application,
index.html.

 Supporting the first kind doesn’t take much effort. Express has the express.static
built-in middleware function, which automatically adds all static files in a given direc-
tory as routes to the API. We can use the middleware on the root path for the host-
name (/) so that both the starting page and the static files are served, and the routes
defined by the API still work. Also, we can create a rule for every path starting with
/app and map it to the index.html file using Express’s sendFile() function. Note
that, unlike for the API, this setup did not magically move the routes under /app; Max
had already implemented the frontend that way.

 The following code listing shows the two rules in the context of the app initializa-
tion code in the index.js file.

// ...

const expressAppConfig = oas3Tools.expressAppConfig(path.join(__dirname,
'api/openapi.yaml'),

 options);
expressAppConfig.addValidator();
const app = expressAppConfig.getApp();

// Beginning of Frontend integration rules

app.use('/',
 express.static(path.join(__dirname, '../frontend/build')));

Listing 14.6 PetSitter Express static configuration

On the root path, include
the static frontend.

236 CHAPTER 14 Integrating and releasing the web application
app.get(/\/app\/?.*/, (req, res, next) => {
 res.sendFile(path.join(__dirname, '../frontend/build/index.html'))
});

// End of Frontend integration rules

mongoose.connect(databaseUrl, {
 useNewUrlParser: true,
 useUnifiedTopology: true
});

// ...

After adding this code and restarting the API server with npm start, opening http:/ /
localhost:8080/ will serve the frontend. You can confirm that Swagger UI still exists at
http:/ /localhost:8080/docs/ and now references the API at /api.

 You can find the full code here: https://github.com/designapis/petsitter. The API
definition so far can be found here: https://designapis.com/ch14/openapi.yml.

Summary
 No API with user accounts should go live without authentication. For a web

application with authorized users, only the “Register” and “Login” actions are
available to anonymous users. Through the global security keyword, we can
ensure that authentication is required for every API operation. For the few
actions that require none, we can then explicitly disable security. The “Login”
action creates a session that includes the user’s ID and a secret token. To remain
consistent with the CRUD approach, we can make these sessions a part of the
domain model (and rename “Login” to “Start Session” to make that explicit).

 We can use Git and GitHub to maintain implementation code and API defini-
tions, and there are different repository setups, each with various advantages
and disadvantages. For PetSitter, we have decided to use a single repository
for the application. The OpenAPI definition, however, lives in a different
repository, to facilitate collaboration with non-developers and allow it to
clearly represent the agreed-upon latest version of the definition, not the cur-
rent implementation.

 When deploying a web application with a frontend and an API, we have to con-
sider that both components require certain URLs. It’s possible to deploy API
and frontend on different ports and hostnames, but these options impede por-
tability, as they require specific infrastructure to support them. The approach
chosen for PetSitter is an /api prefix in front of the API operations. For
demonstration purposes, the Express server set up by Swagger Codegen can
serve both the API and frontend to users.

For virtual routes
starting with /app,

always load the
main HTML.

https://github.com/designapis/petsitter
https://designapis.com/ch14/openapi.yml

Part 3

Extending APIs

Part 3 continues developing the PetSitter API, but now diving into more
advanced OpenAPI topics. We’ll look at what goes into making an internal API
public.

 We’ll continue the process of domain modeling and mapping it over to
OpenAPI, where we’ll introduce a new change to the API (chapter 15). Then
we’ll encounter more advanced JSON Schema, such as composition with oneOf,
anyOf (chapter 16), and properties for input validation (chapter 19). We’ll look
at pagination, filtering, and sorting parameters (chapter 17). And later we’ll dive
deeper into error handling (chapter 18) as we continue to extend our OpenAPI
vocabulary.

 Any API worth its salt needs to consider versioning and breaking changes
(chapter 20). We’ll finish off this part with an API release checklist and introduce
a few topics not covered in this book but that are worth noting (chapter 21).

Designing the next
API iteration
In the second part of the book, we met José and his PetSitter team and joined them
as they created a web application from scratch. Their journey started with a white-
board draft of a domain model, continued with an initial API design phase, went
through the implementation with various API changes along the way, and finally
ended with the publication of the first prototype. In this, the third part of the book,
we’ll continue our journey with the PetSitter application and some of the more
advanced aspects of OpenAPI. We’ll follow José and the team as they take their
next steps toward domination of the global pet-sitting industry.

 Let’s imagine the demonstration of the software went incredibly well, and the
application worked as designed. Overeager José immediately decided to start using
it in production and posted some jobs where he needed someone to take care of
his dog. Then he recruited a few of his previous pet sitters as beta testers for the

This chapter covers
 Planning the next development sprint with the

PetSitter team

 Reviewing and updating the user stories with
new functional requirements

 Aspects of the developer experience that we’ll
cover in upcoming chapters
239

240 CHAPTER 15 Designing the next API iteration
application, and they willingly applied to the pet-sitting jobs through the new system.
Nidhi and Max didn’t want to stop his enthusiasm and made sure that the server kept
running smoothly.

 While word spreads about the new PetSitter application and feedback begins to
trickle in, José and his team start thinking about the next steps. They want to imple-
ment requested changes, of course, to make their users happy. However, they also
know about the future milestones they want to achieve with PetSitter and that they
prepared for with their API-driven architecture—a mobile application and an even-
tual API release. They should make progress toward that as well.

 In this chapter we’ll look at sprints as a way to understand phases of software devel-
opment. We’ll review the previous sprint and plan the next sprint, which will include
both new functionality and API improvements to make the API ready for future
requirements. For the new functionality, we’ll review our user stories to prepare for
necessary changes to the domain model, the API definition, and the implementation.
For API improvements, we’ll learn about the developer experience and highlight a
few aspects that we will tackle in upcoming chapters.

15.1 Reviewing the first development sprint
The word “sprint” indicates a block of time in a software development project. In
the beginning, the team sets goals that define the scope for the sprint. Then every-
body gets to work. At the end, the team reviews their work and their process before
starting the next sprint. You may recognize this structure from part 2 of this book.
Similarly, part 3 can be considered another sprint, and it follows roughly the same
structure. This highlights the fact that software development and API design are cir-
cular activities.

NOTE You may know the term “sprint” from agile methods like Scrum. The
PetSitter team is not following this method, but it may still be helpful to use
ideas from Scrum as a rough framework to understand how the development
progresses. In Scrum, a sprint is typically two weeks long, but it can be up to
four. The initial event is called sprint planning. At the end of a sprint, two
events take place: the sprint review, in which the team demonstrates their work
(as we did in chapter 14), and a sprint retrospective, in which the team reflects
about the work process and refines it if necessary.

At the beginning of the first sprint, when José first decided to bring his PetSitter proj-
ect idea to life, he collected some initial functional and nonfunctional requirements.
To prepare to start the next sprint, he wants to check both lists to see how much the
team already achieved and what can and should be done next. As a reminder, these
were his original functional requirements that described the features of the app:

 Sign up: as a dog owner or dog walker.
 Dog owners can post jobs.
 Dog walkers can apply for posted jobs.

241Planning the next sprint
José purposefully started with a short list of requirements that his team was able to
implement in a single sprint. The current version of PetSitter already supports the full
set of functional requirements, and José can check them all off.

 Apart from the functional requirements, José wrote down nonfunctional require-
ments for the product and the development process:

 Build web app with in-house team—two people.
 Mobile app—work with other development agency (later!).
 Chance to experiment with new technology.
 Release first working prototype as soon as possible.

In the first development sprint, the developers Nidhi and Max built and released an
app that already works for their boss and many other people. José can happily say that
his requirements of being able to build the app with an in-house team of two people
and releasing a working prototype as soon as possible were fulfilled. It was an inaugu-
ral API design–first project where his company used OpenAPI throughout the whole
lifecycle, which was a great chance to experiment with this new (for his company, at
least) technology. Hence, he can check off three out of four items. The remaining
open item on the list is the mobile app.

15.2 Planning the next sprint
From his review of the requirements, José sees multiple goals for the next sprint. All
current functional requirements have been met, but, as he talked to his friends, col-
leagues, and other people who tested PetSitter, José got a variety of different sugges-
tions for new features. He also wants to get ready to build the mobile app.

 José doesn’t have in-house mobile developers, and he doesn’t want to recruit any
just yet, considering his primary line of business is custom websites, and PetSitter is
still an experiment. As he expects the outsourced development project will take some
time, he wants to be ready as soon as possible. He needs to find an agency and prepare
a contract. Once that’s done, he needs to quickly provide the external team a func-
tional backend and well-documented API so they can build that app efficiently.

 The term “API” did not appear on the list of nonfunctional requirements because
José wrote the requirements without thinking about the technical parts of the imple-
mentation. José’s list, together with the initial discussion with his developers during
the kickoff meeting, provided the motivation for the team’s decision to build an
API-driven application with clear separation of backend and frontend. With that
architectural choice, the team prepared for sharing the API with a third-party con-
tractor who could build a mobile app on top of the same backend. That same choice
put another potential milestone on the horizon: sharing the API with additional par-
ties and eventually opening up to the wider public. At this point, it may be too early
to release the API, but it makes sense to keep that goal in mind and continuously
improve the API. We’ll get back to that later in the chapter, when we talk about the
developer experience.

242 CHAPTER 15 Designing the next API iteration
 We can think of the private API release to the mobile app development contractors
as a stepping stone toward API releases. First, the API is purely for internal use. Then,
we’ll share it with a limited number of external developers. Finally, we’ll open the
floodgates and let any and all developers access the API. José’s primary goal for the
development sprint, which is what we’ll cover in part 3 of this book, is to get the API
ready for the limited release, in which the API will have exactly one external con-
sumer: the mobile developer. And if the team can make the first steps toward a wider
API release (to more developers or the general public) in the process, even better.
Whatever is missing from the API for a public API will be covered chapter 21.

 At the same time, José wants to address feedback from the first release. Obviously,
he would like to make all users happy, but he also knows from past projects with his
web development company that you have to maintain focus and not jump at every cli-
ent request immediately. His plan of action is to look at all his notes from the conver-
sations with beta testers and potential users and put them into some order with the
same or similar ideas grouped together. On that basis, he sorts all ideas in descending
order of priority, where priority is the number of people who made the suggestion.

NOTE We’re aware that strictly following the masses is probably not the best
approach to a great product development strategy, but for our fictional pet
example (pun intended!) it’s fine.

With his intentions set for the sprint, José goes and talks to Nidhi and Max again to
get their opinions and agree on the final plan.

15.3 Preparing for new features
Like they did for the kickoff session at the beginning, José, Nidhi, and Max come
together for another planning session. At the start of this kickoff meeting for the next
sprint, José presents the first three ideas in his prioritized list of suggestions made by
PetSitter users:

 The top missing feature was raised by a few dog owners who have multiple dogs.
Often they need someone to take care of all their dogs, but the application’s
frontend only allowed them to enter details like name, age, and breed for a sin-
gle dog as part of a job description. They had to either resort to mentioning
only one dog or creating multiple jobs for what was essentially a single job.

 The second most requested feature came from pet owners who not only have
dogs but also other pets, like cats. Since they also sometimes need someone to
take care of the cat (or the hamster), they would appreciate being able to select
other species of animals, not just dog breeds, when creating new jobs.

 The third issue was something that was on José’s mind already, but was also
raised by some of the forward-thinking testers with a technical background.
Currently the frontend shows a long list of jobs available in the system, but what
happens if that list gets very long? How will the list be organized? Will there be
multiple result pages, or are there filter and search features?

243Preparing for new features
Hearing about the first two requirements, Max reminds José that the team already
expanded the terminology of the initial functional requirements during the cre-
ation of the domain model so that it was broader than dogs. They could now be for-
mulated like this:

 Sign up: as a pet owner or pet sitter.
 Pet owners can post jobs.
 Pet sitters can apply for posted jobs.

“I see,” says José, “but does that mean we can easily support these new feature requests?”
“No,” Max replies, “we have used the broader terms in our User schema, but we still just
have a Dog schema. We have to update our user stories and the domain model.”

 For the third requirement, Nidhi suggests implementing both filters and pagina-
tion. “That way,” she says, “we can have users select the types of jobs they want to see,
and we can make sure there’s always a limited numbers of posts in the API and the
frontend. That helps with scalability, too.” José nods. He wants to start looking at the
domain model and the user stories right away, so that the team can estimate the
complexity of the changes. He reminds them that his main goal at the moment is to
prepare the API for release, and implementing the new features comes second.
“Well,” Max says, “these could be small but still breaking API changes, so it makes
sense to tackle them now.” A breaking change in an API is anything that requires con-
sumers of that API to change their integration, because otherwise it will no longer
work. We’ll talk more about handling breaking changes later in this chapter and in
chapter 20.

 To summarize, we can describe the new functional requirements like this:

 Pet owners can post jobs containing one or more pets of various types.
 Pet sitters can browse jobs based on certain criteria, divided into pages.

These are now just two items instead of three. How come? Well, what we did was com-
bine two requirements into one, and by doing so we are going further than the user
feedback. Although users asked for multiple types of pets and multiple dogs per job,
it’s probably safe to say that adding more than one pet to a job is useful not just for
dogs but all pet types supported in the system.

15.3.1 Reviewing the domain model

As you know from chapter 9, a domain model is an abstract representation of con-
cepts from the real world that play a role in our software. For each concept, we can
describe attributes, functionality, and relationships to other concepts. The domain
model created at the beginning of part 2 acted as the foundation for the schemas in
our API design, which resulted in a working implementation in chapter 14. The
model had four concepts: user, job, dog, and job application. In chapter 14 we added
a session concept, solely to help with the “Login” action for users.

 In our previous sprint (part 2 of the book), we created the domain model in two
passes. In the first pass, we only looked at the concepts and their attributes. Then, in

244 CHAPTER 15 Designing the next API iteration
the second pass, we wrote the user stories and, based on them, we added actions and
relationships to the domain model. This section can be considered the first pass of the
domain model reviews, before we look at the user stories in the next section.

 The new requirements don’t fundamentally change the way PetSitter works. There
are still users with different roles. Pet owners still create jobs and pet sitters apply for
them. The updated domain model still needs the user, job, job application, and ses-
sion concepts. What about the dog concept, though? Two options appear in the minds
of our PetSitter team:

 Replace dog with a pet concept.
 Add each type of pet as its own concept—dog, cat, etc.

In figure 15.1, we’ve highlighted the segment of the domain model that may need
changes. In fact, in part 3 of this book we will only be working with this segment. It
includes Dog as well as the only concept directly connected to it, Job, because we can
assume that whatever supersedes Dog will similarly be tied to Job.

Figure 15.1 PetSitter current domain model

Start

Auth eaderh

Session

Identifies

ID

EmailAddress

Password

Fullname

Roles

User

Register

Login

View

Modify

Delete

JobApplication

ListForJob

Approve

Create

ID

Status

Job

Create

ListMyOwn

View

Modify

Delete

ListAll

ID

StartTime

EndTime

Activity
Dog

Name

Age

Breed

Size

Belongs to

Creates

Creates Applies for

245Preparing for new features
In the original domain model, the team made the design choice to have dogs tightly
connected to jobs in a one-to-one mapping, and not maintain them separately in the
system; creating and managing dogs individually would require additional user stories
(which turn into actions, and those turn into API operations). With pet owners creat-
ing jobs with multiple dogs or other pets, it may be worth revisiting this design choice
in the future, but as we don’t have a requirement to do that now, we won’t.

 Since we’re already talking about it, let’s stick with the job concept for a moment.
We can expect that jobs will have the same attributes in the new version. The activities
could be different for different pets (for example, you wouldn’t take most cats for a
walk), but we didn’t try to represent different activities in our domain model and
thought of this as more of a “free-text” job description field. Adding a structured data
type with an enumeration of various activities is something we could do in the future,
but the implications for the domain model would be too heavy for the sprint. So,
again, we won’t change the attributes of the job for now.

 At this point, the PetSitter team is unsure which option they should choose for the
dog concept, or whether there are other solutions they haven’t thought of. Hence,
they decide to postpone this discussion for now. Here’s a sneak preview: yes, there are
other options, but they require you to learn additional concepts about domain model-
ing. We’ll dedicate chapter 16 to this problem and its solution.

15.3.2 Reviewing user stories

In chapter 9 the team collected user stories that covered the potential interactions
that users with different roles have in the PetSitter application. Now we need to deter-
mine whether they need to be updated, or if we need additional user stories. Those
modifications may then lead to additional domain model changes. Our first step is to
reduce the full list of user stories into a smaller list of relevant stories to investigate.

 Here’s the long list:

 I can register a new account and choose my role, so that I can log in.
 I can log in to my account, so that I can use the marketplace.
 I can modify my account details.
 I can delete my account.
 As a pet owner, I can post a job on PetSitter, including a description of one of

my dogs, so that pet sitters can apply.
 As a pet owner, I can see a list of jobs I have posted.
 As a pet owner, given that I have posted a job, I can view and modify its details.
 As a pet owner, given that I have posted a job, I can delete it.
 As a pet owner, given that I have posted a job, I can see the pet sitters that applied.
 As a pet owner, given that I have found a suitable candidate, I can approve them.
 As a pet sitter, I can view a list of pets that need looking after.
 As a pet sitter, given that I have found a job, I can apply for it.
 As an administrator, I can modify other users’ account details.

246 CHAPTER 15 Designing the next API iteration
 As an administrator, I can edit jobs that other users have posted.
 As an administrator, I can delete users.

We already stated in the previous section that the way PetSitter works at a high level
doesn’t change with the new features, and the domain model contains more or less
the same concepts, except for Dog, although we haven’t decided yet how to change it.
However, we realized that whatever supersedes it will similarly be tied to Job.

 In a first attempt to reduce the number of user stories to consider, the team looks
at the highlighted concepts in figure 15.1. The user stories including the words “job”
or “dog” seem to be relevant. All the others can be discarded, as they don’t touch on
any of the new concepts. Here’s our new list, which is already much shorter:

 As a pet owner, I can post a job on PetSitter, including a description of one of
my dogs, so that pet sitters can apply.

 As a pet owner, I can see a list of jobs I have posted.
 As a pet owner, given that I have posted a job, I can view and modify its details.
 As a pet owner, given that I have posted a job, I can delete it.
 As a pet owner, given that I have posted a job, I can see the pet sitters that

applied.
 As a pet sitter, I can view a list of pets that need looking after.
 As a pet sitter, given that I have found a job, I can apply for it.
 As an administrator, I can edit jobs that other users have posted.

You may be wondering about the one user story in that list containing neither the
word “job” nor “dog.” Nidhi added it because she noticed the word “pets,” which
appears nowhere else. Also, she vaguely remembers something peculiar about it. Bear
with us—we’ll get to it in a minute.

 Again, in the current domain model, Dog has no actions. The API design from
chapter 10 has no operations for Dog either. With the way the team designed and
implemented PetSitter, dogs are a passive part of job descriptions. There is a reference
to the Dog schema from the Job schema, but nothing else.

 When users interact with PetSitter, they create, view, edit, and delete jobs. These
jobs currently contain a dog inside them. With the new feature implemented, they’ll
refer to one or more pets. That fact doesn’t change with our choice of representation,
which, as mentioned before, will be postponed to chapter 16. Hence, we can safely say
that none of the user stories about jobs will change, so we can eliminate those that
only mention “job” from our review list.

 Suddenly, the list of user stories that need a review only contains those that men-
tion the word “dog,” as well as the one mentioning “pets.” In other words, we shrunk
the list to just two user stories:

 As a pet owner, I can post a job on PetSitter, including a description of one of
my dogs, so that pet sitters can apply.

 As a pet sitter, I can view a list of pets that need looking after.

247Preparing for new features
For comparison, these are our two new functional requirements:

 Pet owners can post jobs containing one or more pets of various types.
 Pet sitters can browse jobs based on certain criteria, divided into pages.

These two lists look very similar, don’t they? Both of the new functional requirements
appears to affect exactly one user story. Of course, that is a coincidence and not a gen-
eral rule. We’re just lucky. Let’s investigate each of the user stories. We’ll first rename
it to accurately reflect the new requirements. Then, based on the new wording, we’ll
look at the implications for our domain model.

PET OWNER REQUIREMENT

The first requirement is, “As a pet owner, I can post a job on PetSitter, including a
description of one of my dogs, so that pet sitters can apply.” In this user story, the cru-
cial segment is “one of my dogs.” It doesn’t fit the new requirement of supporting
multiple pets, which don’t have to be dogs. We can change the wording of the user
story like this: “… I can post a job on PetSitter, including a description of one or more
of my pets …”

 The domain model reflects the original version of the user story in the form of the
“Create” action on the Job model. The action name and the concept it belongs to are
no different with the new requirements (which only affect the Job-Dog relationship—
our task for chapter 16), so we won’t have to make any changes to the Job model.

PET SITTER REQUIREMENT

The second requirement is, “As a pet sitter, I can view a list of pets that need looking
after.” This user story doesn’t contain the word “job,” but it contains the word “pets,”
which wasn’t a part of the original domain model. However, as the team realized in
chapter 9 when they converted the user stories into actions, that was just sloppy word-
ing. Since pets (at that point, exclusively dogs) belong to jobs, what pet sitters are
viewing are, in fact, jobs. Let’s first rephrase the user story to use the same terminol-
ogy as the domain model: “As a pet sitter, I can view a list of available jobs.”

 Based on the user story, we added the “List all” action to the Job model. However,
with the new requirement for browsing jobs based on certain criteria, “List all” doesn’t
cut it anymore. As we discussed earlier in this chapter, a long list of jobs makes it diffi-
cult for pet sitters to find suitable jobs, and it doesn’t scale beyond a certain number
of jobs, so we decided to give them the opportunity to search specific jobs through fil-
ters and view them on different pages through pagination.

 Let’s imagine a user journey in the new app. Instead of seeing a single page listing
all the jobs, pet sitters will see a variety of search criteria. They could filter for jobs with
certain types of pets, in a range of dates, or for specific types of activities like dog walk-
ing, just to give some examples. After selecting their filters, they’ll see jobs that match
their search criteria. If there’s a larger number of jobs, they will only see the first, let’s
say 10, jobs. At the end of the list, they can change to the next page.

 Looking at the user journey, there are two activities. Let’s formulate them as user
stories:

248 CHAPTER 15 Designing the next API iteration
 As a pet sitter, I can specify the kinds of jobs I’m looking for and browse jobs
with those criteria.

 As a pet sitter, given that I’m seeing a list of jobs and there are more jobs avail-
able, I can navigate to the next page to see more jobs.

Representing these two new user stories, we can add two new actions to the Job:

 Search available
 Show more

We can continue letting pet sitters view the list without any fil-
ters, too, but we shouldn’t call it “List all” because that list is
also subject to pagination. Let’s call it “List available” instead,
to get rid of the word “all.” You can see the updated Job
model with the three actions (one renamed and two added)
in figure 15.2.

 We mentioned some examples, but we haven’t decided on
filter criteria yet. We’ll do that when we look at the OpenAPI
changes needed to support them in chapter 17.

 Let’s recap the functional changes. We’ve reviewed our
domain model and our user stories to reflect the new func-
tional requirements brought in by user feedback. We changed
one user story to support multiple pets and added two new
user stories to describe filters and pagination. These changes
will be tackled in chapter 16 for the Pet model and chapter 17
for adding pagination and filtering.

 The PetSitter team is happy and concludes the first part of their sprint planning.
Let’s join them as they move on to the next topic of the sprint.

15.4 Improving the developer experience
Apart from the new features we’ve discussed in this chapter, the PetSitter team plans
to be ready for the mobile app development at the end of the sprint and also wants to
take the necessary steps toward an eventual release of the API.

 José had decided to contract another development agency that has the skills
and knowledge to build a mobile app for PetSitter. The development agency will be
in a similar position as frontend developer Max. They will interact with the back-
end that Nidhi implements through the same PetSitter API. However, compared to
Max, the agency will be at a slight disadvantage. As they were not involved in the
designing process, they will only see the end product without knowing what went
into it. The PetSitter team chose the API design–first approach to let Max and
Nidhi work independently, so they could implement more quickly, but reaching
out and discussing issues with each other was always an option for them. For an
external stakeholder, things are different, because they are further removed from
the original development.

Job

Create

ListMyOwn

View

Modify

Delete

ListAvailable

SearchAvailable

ShowMore

ID

StartTime

EndTime

Activity

Figure 15.2 PetSitter
Job model with actions

249Improving the developer experience
 Every company wants happy users. User satisfaction depends on a variety of factors,
but a key factor is the quality of the product itself. A product that is delightful to use
will get used. A software team should consider the developers who interact via their
APIs as users. Their satisfaction is a key part of the team’s success.

 Whenever we’re talking about developers integrating components from other
developers, such as APIs, we should talk about the “developer experience.” What does
that term mean? For comparison, the “user experience” describes what a general user
experiences while interacting with a piece of software (or another product, such as a
hardware panel). In a similar fashion, the term “developer experience,” often short-
ened to DX, describes the personal experience of a developer interacting with an API,
SDK, library, or other developer tool.

 You may argue that an API connects machines and handles communication
between software components, so it must primarily fulfill that job by being efficient
and performing well. Of course, technical performance matters, but APIs are for
machines and humans. A user’s first impression of the API—understanding its pur-
pose and implementing the integration—counts for a lot. Hence the emphasis on the
developer experience.

 A good developer experience also helps with organizational scalability. The more
developers who consume an API, the more it pays off to invest in good DX. If bad DX
leads to problems for one engineer integrating an API, a support person can help
them. But if that person needs to support everyone, they will be overwhelmed with
requests. Max can walk over to Nidhi’s desk or ping her on the company’s internal
chat. The mobile app contractors can also schedule a call with Nidhi if it’s necessary.
But we can’t expect her to provide support to hundreds of API consumers. With a
good developer experience, those API consumers will be able to solve most of their
problems without additional help from the API provider. It’s still early days for PetSit-
ter, but if the team can improve their DX now, it will pay off later.

 In José’s case, where his company provides an API to an external consumer that
he’s contracted to build a mobile app, any delays due to bad DX will result in wasted
time and frustration. Considering a software developer’s hourly rate, it can quickly
become really expensive. José thinks of his bank account and the money he’s already
spending on debugging, fearing high bills from the contractors. He asks his team,
“What can we do to drive the developer experience forward during this sprint?” Max
and Nidhi start thinking.

 For APIs, the developer experience comes from two primary sources: API design
and API documentation. For public APIs it’s important to consider additional aspects
of the developer experience related to second-order experiences, such as the respon-
siveness of the support team or an active developer community forum. For now, and
for this book, we want to focus on the API design aspects. You can always write addi-
tional documentation after you’ve built an API, and you can continuously enhance
your developer support by establishing a developer relations team, but with API
design–first, you need to think of the API design aspects of DX from the beginning.

250 CHAPTER 15 Designing the next API iteration
 We will look at a few aspects of DX now, expand on them in further chapters in
this part of the book, and touch on the remaining DX issues when we talk about tak-
ing the API public in chapter 21. You can think of these areas as ones that Nidhi and
Max want to focus on during the sprint. They agree that in its current state, the API
is not ready for the mobile development team yet, but after the DX improvements it
will be.

15.4.1 Consistency

The most important aspect of DX is that developers can discover patterns within the
API where similar API endpoints have similar design. In chapters 9 and 10 we outlined
a formal approach to API design that leverages domain modeling and creating end-
points based on specific CRUD design rules. By following that approach in the initial
design and also for updating the API with new features, as we discussed in this chap-
ter, José’s team already scores well in this regard.

15.4.2 Error handling

While talking with the team, Max says, “I remember there was a situation where I was
struggling with the API and couldn’t understand what was wrong. In the end I realized
it was my mistake, but it took me some time to figure out.” This is an all-too-common
situation for software developers—seeing things that don’t work, and trying to debug
to find the underlying cause, which can either be a mistake they made or a bug in
another component. One aspect of a great developer experience is that, in the case of
errors, developers receive as much relevant information as possible to help them
move forward.

 For APIs, that kind of information primarily comes in the form of the error mes-
sages that the API returns when either the input is invalid or something else went
wrong outside the influence of the developer integrating the API. These messages
should be clear, actionable, and, you may have guessed it, consistent.

 As Max described the situation, Nidhi replies, “While developing my backend, I
haven’t looked into error handling yet. I just used what Swagger Codegen provided. I can
overhaul the error messages to make it easier for you and future API consumers.”

 We’ll dedicate chapter 18 to error handling, where we’ll introduce a standard
error format and explain some best practices for error messages.

15.4.3 Input validation

When we created the OpenAPI description with the PetSitter team in chapter 10, we
created schemas with attributes and data types for those attributes. Then, in chapter
13, we looked at input and output validation for API requests and responses using
those schemas. How is this relevant to the developer experience?

 Through schema validation, we can help ensure that the API follows its contract,
the API definition. If the API follows the contract, the (frontend) developer consum-
ing the API can rely on the contract as well. They can be confident that the API acts

251Improving the developer experience
exactly as it should and as it is documented, avoiding unexpected surprises that result
in bad DX.

 There are two relevant principles of software engineering that seem to be at odds,
though. The first one is Postel’s Law, also known as the robustness principle: “Be liberal
in what you accept, and conservative in what you send.” It means that any system should
strictly follow the specified contract when it comes to the output it generates. At the
same time, it should be lenient about the input that it expects from others. Applied to
APIs, this means that, for example, a field defined as string should always be a string in
the API response, but the API may decide to accept input as integer as well.

 The second principle is Hyrum’s Law, which is the observation that any observed
or accepted behavior of the system will be the de facto contract, and someone will prob-
ably depend on it. To follow our previous example, if the API’s contract says that a field
must be a string but accepts integer as well, there will eventually be an API consumer
relying on that behavior. This means that if the implementation in the API changes in
the future and no longer accepts the integer value, it would be a breaking change for
that API consumer. The breaking change would go unnoticed, because the OpenAPI
definition hasn’t changed, and no API design–first change process would catch that.
Hence, it may be better to strictly follow the contract from the beginning, when you’re
still able to enforce it, and schema validation for inputs helps with that.

 So far, we have only talked about data type validations, such as enforcing an input
to be string, integer, or array. However, JSON Schema can do much more. We can
specify required and optional fields, and we can also provide ranges for numbers and
enumerations of allowed string values. In chapter 19 we’ll look at these and more.

15.4.4 Versioning vs. evolvability

Changes in APIs are inevitable as a product grows and expands its set of features. We
need to distinguish between breaking and non-breaking changes. In a nutshell, a non-
breaking change is a change that doesn’t require users of the software to change their
behavior. The most common examples are bug fixes and new features that don’t touch
the existing system. Breaking changes, on the other hand, require users to adapt to
new patterns of interactions.

 Thinking about UI design and human users of a system, the line between breaking
and non-breaking changes can be blurry. When a UI element gets a new color or a
slightly edited caption (such as “Store” instead of “Save”) or two buttons switch places,
human users are typically quick to notice and adapt to the new system. For APIs, it’s
different. API consumers and providers must follow the contract, the OpenAPI defini-
tion, to the letter, quite literally. If the contract changes, integrations may break.
When we consider the developer experience, we see that change management is even
more important than it is for user experience.

 For PetSitter, the frontend and backend are deployed together, at least for now. If
we introduce a new API with breaking changes, both components will need to speak
the new contract at deployment time. Whether we only deploy at the end of the sprint,

252 CHAPTER 15 Designing the next API iteration
or regularly as the development happens, we must only deploy compatible versions.
Breaking changes are still relevant as Max and Nidhi test their components against
each other during the sprint.

 Still, not every change to the API contract is a breaking change. We have to identify
which of the API design changes are breaking and which aren’t, how we can deal with
them, and what the implications for the development process are. There is a choice
between releasing new API versions or trying to evolve our API in a way that avoids
breaking changes. We will investigate these options in detail in chapter 20.

Summary
 The PetSitter application goes into its next development sprint. The objective

of this sprint, and the third part of this book, is to include feature requests from
initial users and improve the API’s developer experience in preparation for
additional API consumers.

 There are two new functional requirements. The first is the support for differ-
ent pets and multiple pets per job. The second is the inclusion of filters and
pagination for finding jobs. To support these requirements, we reviewed all
the user stories, changed one of them, and added two new ones. To support
different pets, we need to modify the concepts in the domain model, which
we’ll do in chapter 16. We already added two actions to the Job concept in the
domain model to support filters and pagination, a topic we’ll discuss further
in chapter 17.

 The term “developer experience” (DX) describes the experience of a developer
working with an API or another developer tool. Good DX helps solve problems
with API integration faster or avoids them from occurring in the first place. The
more developers who consume an API, the more it pays off to invest in DX. The
main ingredients are the API design, API documentation, and developer sup-
port. In this book, our focus is on API design.

 To improve the developer experience prior to sharing the API with the mobile
developers building on top of it, the PetSitter team wants to look at error han-
dling, input validation, and versioning. Each of these topics has its own chapter
coming up in this book. We’ll cover error handling in chapter 18, input valida-
tion in chapter 19, and versioning (or how to avoid it) in chapter 20.

Designing schemas with
composition in OpenAPI
In the last chapter, José and his team identified new requirements from the initial
user tests and planned a new development sprint. Part of that plan involved moving
from a single Dog concept to multiple pets. This requirement implies changes to
the domain model.

 By going through the user stories, the PetSitter team realized that many parts of
the domain model and, thus, the API description, can remain the same. The
affected segment of the model is the Dog concept and its relationship with the Job
concept, which we’ll now update.

 In this chapter we’ll consider different approaches for changing the Dog con-
cept to represent different pets in the domain model and the OpenAPI definition.
We’ll look at cats and dogs for now, but our goal is finding a system that will be
extensible for additional species. You’ll learn about polymorphism in domain

This chapter covers
 Updating the domain model with new concepts

 Using subtypes and inheritance in the domain
model

 Creating composite JSON Schemas from the
domain model
253

254 CHAPTER 16 Designing schemas with composition in OpenAPI
models, the OpenAPI composition keywords, and how to apply them. At the end of
this chapter, we’ll have an updated domain model and OpenAPI description that will
help José’s team implement the new functional requirements.

 So that you know where we’re going, figure 16.1 shows the final domain model
that we’ll have built by the end of this chapter. We’ve outlined the segment of the
domain model that we’ll work on in part 3 of this book.

16.1 The problem
Our objective in this chapter is to find a solution for representing other pets in the
domain model and, subsequently, in the JSON Schemas in our OpenAPI description.
Our focus is on dogs and cats for now, but we should also consider support for other
types, either now or in the future. In this chapter we’ll explore different approaches.

Pet

Name

Age

Dog

Breed

Size

Cat

extends

Breed

Start

Auth eaderh

Session

Identifies

ID

EmailAddress

Password

Fullname

Roles

User

Register

Login

View

Modify

Delete

JobApplication

ListForJob

Approve

Create

ID

Status

Job

Create

ListMyOwn

View

Modify

Delete

ListAll

ID

StartTime

EndTime

Activity

Belongs to

Creates

Creates

Applies for

Figure 16.1 PetSitter final domain model

255The problem
 Before we can decide on a solution, let’s review the Dog concept in the current
domain model. It has four attributes—name, age, breed, and size—no actions, and an
associative relationship with the Job concept, as depicted in figure 16.2.

As José eventually wants to support any pet in PetSitter, we could drop the Dog concept
and replace it with a more generalized Pet concept. This option is in line with the way we
formulated the new requirement, and it seems very straightforward, because if we just
modify or swap out one concept, the domain model doesn’t undergo drastic changes as a
whole. That’s likely to apply for the implementation as well, isn’t it? Let’s try it.

 The basis for this new Pet concept is the existing Dog. If we only use the existing
attributes, however, there is no way to distinguish the species of the animal. Granted,
we could use the breed attribute for that, but, even without diving too deep into
biology here, it’s safe to say that there’s a huge gap between different species and dif-
ferent breeds of the same species. To be more specific and reflect the real world in
our domain model, we can add a dedicated attribute for the species. Let’s look at the
full attribute list for the Pet concept, taken from the existing Dog model with the new
extension:

 Name
 Species (e.g., dog)
 Age (in years)
 Breed
 Size

To describe a dog now, we would use the new Pet model
(depicted in figure 16.3), write “Dog” in the species attribute,
and use all the other attributes as we previously did. Done!
Let’s describe a cat next. First, we write “Cat” in the species
attribute. Quite obviously, cats have a name and an age. There
are also different cat breeds, but fewer than dog breeds—
around 40 to 70 depending on who you ask, compared to
over 450 dog breeds. The difference does not really matter if
the breed attribute is a free-text field, but if we wanted to
build some kind of advanced taxonomy of breeds at some

Job

...

Belongs to

...

Dog

Name

Age

Breed

Size

Figure 16.2 PetSitter Job
and Dog models

Pet

Name

Species

Age

Breed

Size

Figure 16.3 Proposed
PetSitter Pet model

256 CHAPTER 16 Designing schemas with composition in OpenAPI
point in the future, it would very likely look quite different for dogs than for cats.
Related to this, dog breeds come in an enormous variety of sizes, whereas even differ-
ent cat breeds are roughly the same size. The size attribute would not be required for
cats, or if we wanted to give it a specific data type, it would be very different.

 And that’s just cats and dogs. You can easily imagine other types of animals that
would require different sets of attributes. Some species have very picky eaters, so those
would need a food-preference attribute, whereas others will eat just about anything you
throw at them. Does that mean we have to add a food-preference attribute to our Pet
model, even if we often won’t need it? If you let your imagination run wild and add all
the attributes you can think of for various pets, the number of attributes would blow up,
and most of them would be irrelevant most of the time. Trying to put all possible attri-
butes into the single Pet concept seems less than optimal. Do we have other options?

 We could, of course, add every type of pet as its own concept in the domain model.
To stick with two species for now, let’s say we have a Dog model and a Cat model. If we
do that, we can modify each concept separately and adjust it in keeping with our grow-
ing understanding of different pets and the attributes we need within the PetSitter
context. If we do that, we’ll end up with a new domain model with five concepts (and
Session, but we’ll keep that aside for this chapter since it's not one of our initial core
concepts): User, Job, JobApplication, Cat, and Dog. Figure 16.4 shows this domain
model, in which we included the size attribute for dogs but not for cats.

Looking at our general understanding of the terms “pet,” “dog,” and “cat” and their
use in PetSitter, we can say that every dog and every cat can also be considered a pet.
In the updated domain model with five concepts, shown in figure 16.4, the term “pet”
no longer appears, so we lost an explicit representation of that fact, compared to the
Pet model we suggested before. (Once we start adding relationships in this model,
this fact will become implicitly available as we draw similar relationships for Cat, Dog,

...

...

Job

...

...

User

...

...

JobApplication

Dog

Name

Age

Breed

Size

Name

Age

Breed

Cat

Figure 16.4 Full PetSitter model with Cat and Dog

257Polymorphism and inheritance in domain models
and any other pet we add. There will be a relationship from Job to Cat and a relation-
ship between Job and Dog, as jobs can have both dogs and cats.)

 It would be useful to explicitly express the fact that every cat and dog is also a pet—
or broadly, that we have general and more specific concepts in our domain model.
The problem we’ll solve in this chapter is this: how can we put that information into
our domain model and the API definition?

16.2 Polymorphism and inheritance in domain models
Let’s talk about polymorphism or, more specifically, subtype polymorphism, also known
as just subtyping. You may already know these concepts from object-oriented program-
ming. However, if you’re unaware of the concepts, don’t be put off by the fancy jar-
gon. We’ll explain what they mean and how they’ll help us with understanding Pet,
Dog, and Cat in our domain model.

NOTE Remember, your API is not your backend, so you can design a domain
model with polymorphism even if you build your backend in a programming
language that isn’t object oriented.

A subtype is a concept that is more specific than a supertype. Inversely, a supertype is a
concept that is more generic than a subtype. For example, you can think of Pet as the
supertype and Dog and Cat as subtypes. Every Dog is a Pet, but not every Pet is a
Dog—it might be a Cat instead. The name “polymorphism” alludes to the fact that
you can have a reference to the supertype but substitute any subtype for the super-
type. We’ll see later how that is beneficial when we look at relationships, but you may
already be able to see how using subtyping might be a great way to make our under-
standing of cats and dogs as pets explicit. If we apply it, we end up with a new domain
model with six concepts: User, Job, JobApplication, Pet, Cat, and Dog, with the added
information that Cat and Dog are specific subtypes of the generic Pet concept.

 Figure 16.5 shows the updated domain model with Pet as the supertype and Cat
and Dog as its subtypes. Following the style and conventions of Unified Modeling Lan-
guage (UML) class diagrams, an arrow with an empty triangle on the end of the super-
type indicates a subtyping relationship, which is different from what we previously
discussed—associative relationships between different concepts (as in, the Dog belongs
to the Job).

 What about the attributes, which we’ve conveniently left out of figure 16.5? Before
we discuss them, let’s throw another subtyping-related term into the mix: inheritance.
With subtyping, we say that a subtype inherits from its supertype, which means that sub-
types have all the attributes and behavior of their supertype. Of course, they can add
their own attributes and behavior, too. For our domain model, which includes inheri-
tance, it means the following:

 Attributes that every pet has can be added to the Pet concept. We do not need
to explicitly add them to Cat or Dog.

 Attributes that only cats or dogs have can be added to Cat or Dog, as appropri-
ate. This also applies for any type of animal that PetSitter supports in the future.

258 CHAPTER 16 Designing schemas with composition in OpenAPI
Based on our initial thoughts about the attributes of cats and dogs, we’ll make the fol-
lowing attributes common attributes of the Pet concept:

 Name
 Age

Then, we can add the following attributes to Dog:

 Breed
 Size

Finally, we can add the following attribute to Cat:

 Breed

Figure 16.6 shows these attributes in the domain model.
 Why didn’t we make the breed a common attribute? Well, while these attributes

have the same name, we already mentioned that we may represent them differently in
the system later on. Also, there’s always a chance that we’ll add a type of animal later
that doesn’t have or need the separation into different breeds.

 Alright, we have supertypes and subtypes in our domain model now. Due to the
inherent idea of replaceability in polymorphism, we can draw a relationship from
the Job concept to our new Pet concept and immediately know that jobs can have
dogs and cats, without having to draw a relationship from Job to Dog or Cat. Our
full domain model with all the concepts—even those we didn’t touch in this chap-
ter—was already shown in figure 16.5. The one thing that the diagram doesn’t show

...

...

Job

...

...

User

...

...

JobApplication

Cat

...

Dog

...

Pet

...

Figure 16.5 Full PetSitter model with subtyping

259Updating the schemas
yet is that a job can now have multiple pets instead of just one, which was the second
part of the functional requirement we wanted to tackle. However, to be fair, the old
diagram didn’t show that there could only be one dog, either. We used a very high-
level visualization without cardinalities that would indicate how many instances of
one concept are associated with another. Although we can’t see it here, we’ll obvi-
ously have to keep it in mind, as we redesign the schemas in the OpenAPI descrip-
tion later in this chapter.

 Now that we have a full updated domain model, the next step will be to express the
modifications in the OpenAPI definition for the PetSitter API.

16.3 Updating the schemas
In chapter 5 you learned about using JSON Schema to describe the inputs and out-
puts of your API operations within their definition. In chapter 10 you learned about
using reusable schemas to express common data structures and add them to multiple
API requests or responses with the $ref keyword (at that point, we called the previous
approach “inline schema”). By following the API design–first. approach, the concepts
in the domain model became the common schemas in the API definition, and those
became the request and response structures in the API operations.

 Let’s look at the existing Dog schema again and see how it appears in the OpenAPI
definition. Schemas for domain model concepts typically have the type object and
use the properties keyword to list all the properties (attributes) that the object
can have.

openapi: 3.0.3
#...
components:

Listing 16.1 Current PetSitter OpenAPI Dog schema

Pet

Name

Age

Dog

Breed

Size

Cat

Breed

Figure 16.6 PetSitter Pet model with subtypes Dog and Cat

260 CHAPTER 16 Designing schemas with composition in OpenAPI
 schemas:
 #...
 Dog:
 type: object
 properties:
 name:
 type: string
 age:
 type: integer
 breed:
 type: string
 size:
 type: string

We’ll scrap this schema from our OpenAPI definition and create new Pet, Dog, and
Cat schemas based on our updated domain model concepts next. But wait! Since
we’re removing the existing Dog schema, we should look at any references to that
schema by searching for $ref: '#/components/schemas/Dog'. We find one such ref-
erence in the Job schema, expressing our associative relationship between Job and
Dog in the domain model.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Job:
 type: object
 properties:
 id:
 type: integer
 creator_user_id:
 type: integer
 start_time:
 type: string
 end_time:
 type: string
 activity:
 type: string
 dog:
 $ref: '#/components/schemas/Dog'

It’s likely that we’ll have to modify the Job schema, considering that it has a property
named dog, and we want to support other pet types and multiple pets per job. We’ll
skip the Job schema and come back to it later. For now, let’s focus on the Pet, Dog,
and Cat schemas.

Listing 16.2 Current PetSitter OpenAPI Job schema

261Updating the schemas
16.3.1 The Pet schema

According to our new domain model, we need to have two attributes on the Pet schema—
name and age—which are a subset of the original Dog attributes (see table 16.1).

Here it is in OpenAPI.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Pet:
 type: object
 properties:
 name:
 type: string
 age:
 type: integer

16.3.2 The Dog schema

The Dog schema (see table 16.2) has the remainder of the original Dog attributes:
breed and size.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Dog:
 type: object
 properties:

Table 16.1 The Pet fields and their types

Field Type

name string

age integer

Listing 16.3 PetSitter OpenAPI Pet schema

Table 16.2 The Dog fields and their types

Field Type

breed string

size string

Listing 16.4 PetSitter OpenAPI Dog schema

262 CHAPTER 16 Designing schemas with composition in OpenAPI
 breed:
 type: string
 size:
 type: string

16.3.3 The Cat schema

The Cat schema has only the breed attribute, as shown in table 16.3.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Cat:
 type: object
 properties:
 breed:
 type: string

So far we’ve only used the elements of OpenAPI that we learned about in the second
part of this book. However, the inheritance relationship between Pet and Dog as well
as Pet and Cat is missing from the schemas. Expressing it will be our next task, and we
can’t do it with what we know now. It’s time to learn some new OpenAPI keywords.

16.4 Polymorphism and inheritance in OpenAPI
There are four relevant OpenAPI keywords for inheritance, also known as composition
keywords. They are allOf, oneOf, anyOf, and not. Let’s look at their definitions:

 allOf—Indicates that a schema is a composition of multiple other schemas,
which means that it has all the attributes from those schemas. If we checked a
JSON object against a schema with allOf, it would only be valid if it passed the
check against all schemas.

 oneOf—Indicates that a schema is one of multiple alternative schemas, which
means that it has the attributes of exactly one of those schemas. If we check a
JSON object against a schema with oneOf, it would only be valid if it passed the
check against just one of those schemas, not multiple schemas (and obviously
not zero).

 anyOf—Indicates that a schema is a combination of multiple schemas, which
means it can have attributes from any of those schemas. If we checked a JSON

Table 16.3 The Cat field and its type

Field Type

breed string

Listing 16.5 PetSitter OpenAPI Cat schema

263Polymorphism and inheritance in OpenAPI
object against a schema with anyOf, it would be valid as soon as it passed the
check against at least one of the others.

 not—Indicates the inverse. With not, we can confirm that a JSON value isn’t
valid against a schema.

It’s possible to draw analogies that help in understanding the composition keywords
allOf, oneOf, and anyOf, and the differences between them. Let’s look at them through
the lens of set theory, as visualized in figure 16.7, and through logic operators:

 allOf—Indicates an intersection of multiple schemas, or a logical AND.
 anyOf—Indicates a union of multiple schemas, or a logical OR.
 oneOf—Indicates a disjunctive union (also called symmetric difference) of multiple

schemas, or a logical XOR.

Inside the YAML definition of our OpenAPI description, the keywords are used as
first-level elements inside a schema and point to an array of other schemas (except for
not, which points to a single schema). These other schemas can be both references
within in our OpenAPI file or inline schemas. Here is how that looks in a hypothetical
example.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Schema1:

Listing 16.6 OpenAPI composition example

allOf

- circle

- filled

anyOf

- circle

- filled

oneOf

- circle

- filled

not: circle

Input Valid

Figure 16.7 OpenAPI
composition keywords

264 CHAPTER 16 Designing schemas with composition in OpenAPI
 anyOf:
 - $ref: '#/components/schemas/Schema2'
 - type: object
 properties:
 #...

Now that we have a rough idea of how these keywords work, let’s get back to PetSitter.
The fact we want to express is that a pet can be either a dog or a cat, or the inverse fact
that dogs and cats are also pets. Which of the keywords could help us?

 With allOf, we could say that a dog is a composition of all the Pet properties
and the specific Dog properties, which would be correct.

 With oneOf, we could say that a pet should either be represented by the Cat
schema or the Dog schema, which is also correct and indicates the reverse of
the previous statement.

 With anyOf, we could say something along the lines that pets have any combina-
tion of Cat and Dog properties, which doesn’t make sense (unless you are a sci-
entist working on the genetic modification of pets).

 With not, we could say, for example, that a Dog is not a Cat and vice versa.
While that is technically true, it doesn’t help us express the Pet-to-Dog and Pet-
to-Cat relationships.

Considering that we can use two different keywords, and we have two opposite ways of
expressing the fact we want to include in our schemas, we may have different options
for designing our schemas. Let’s take a look at two different approaches:

 Composition inside the Dog and Cat schemas
 Composition inside the Pet schema

The first option attempts to include the generic Pet attributes into Dog (and Cat, but
we’ll only walk through the Dog example). The second option includes the choice of
either Dog or Cat attributes in the Pet schema. Let’s start by looking at the first option.

16.4.1 Composition inside the Dog and Cat schemas

Using allOf, we can convert our Dog schema into a composite schema, which
includes its own properties (as an inline schema) and a reference to the Pet schema
we created earlier. Here’s what that looks like.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Dog:
 allOf:
 - $ref: '#/components/schemas/Pet'

Listing 16.7 PetSitter OpenAPI Dog schema, first option

Keyword
inside

Schema1

Schema
reference

Inline
schema

Keyword
allOf in Dog Reference to

the Pet schema

265Polymorphism and inheritance in OpenAPI
 - type: object
 properties:
 breed:
 type: string
 size:
 type: string

We can do the same with the Cat schema, of course. For every additional pet that we
want to support, we can create a schema and have it inherit the Pet attributes by mak-
ing it a composition of the more generic Pet schema and the respective custom attri-
butes. Great! So far, the Pet schema itself remains unmodified, as its sole purpose is to
provide the common superclass attributes.

REFERENCING FROM JOB

Remember how we skipped the Job schema earlier. This is a good time to come back
to it. As a reminder, we want to support various types of pets and also multiple pets per
job. We can change the property name from dog to pets to express both. Since we
want to support multiple pets, the property cannot be a reference to a single type—it
has to be an array. As you may remember, we can specify the type of individual entries
in the array by using the items keyword. And we have a Pet schema now, so we can
reference it. Seems solid! Here’s our updated Job schema in OpenAPI.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Job:
 type: object
 properties:
 id:
 type: integer
 creator_user_id:
 type: integer
 start_time:
 type: string
 end_time:
 type: string
 activity:
 type: string
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Does that mean we’re done? Sadly, no. Our first approach only expresses one direc-
tion of our original statement about the relationship between the generic concept Pet
and specific concepts like Cat and Dog. The Dog and Cat schemas have references to

Listing 16.8 PetSitter OpenAPI Job schema

Inline schema
with Dog
properties

New property
name is pets
instead of dog

Array to support
multiple pets

Changed reference
from Dog to Pet

266 CHAPTER 16 Designing schemas with composition in OpenAPI
Pet, but Pet doesn’t “know” its subclasses. That means we have to mention all types of
pets here. We can do that with the oneOf keyword inside items and then place a refer-
ence to each pet, as follows.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Job:
 type: object
 properties:
 #...
 pets:
 type: array
 items:
 oneOf:
 - $ref: '#/components/schemas/Dog'
 - $ref: '#/components/schemas/Cat'

With this approach, it will be necessary to edit the Job schema every time we add a new
pet. That doesn’t seem an optimal representation of the domain model, where the
inheritance between Pet and its subtypes keeps everything inside these concepts
alone, and Job has only a single associative relationship with Pet. Maybe we should try
approaching it from a different angle.

16.4.2 Composition inside the Pet schema

Let’s revisit the reference from the Job schema to the Pet schema that we created a lit-
tle earlier. Here’s the relevant part again.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Job:
 type: object
 properties:
 #...
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

It looks like this is a great way to make a reference from the Job schema to the Pet
schema, just as it exists in the domain model, so is there a way to design the Pet, Cat,
and Dog schemas to make this work? Let’s try!

Listing 16.9 PetSitter OpenAPI Job schema, first option with all pets

Listing 16.10 PetSitter OpenAPI Job schema (excerpt)

New property
name is pets
instead of dog

Array to
support

multiple pets
Indicates that
items can be one
of multiple
schemas

Reference to
Cat schema

Reference to
Dog schema

267Polymorphism and inheritance in OpenAPI
 Before looking at our composition keywords, we had set up the Pet, Dog, and Cat
schemas with their respective properties (in section 16.3). Then we decided to change
the Dog and Cat schemas to include a reference to the Pet schema to include the
common properties (in section 16.4.1). We can do it in reverse, and reference the
Dog and Cat schemas from the Pet schema instead, which means that the Dog and Cat
schemas remain unchanged. Instead, we’ll design the Pet schema to express that the
following two must apply to each pet:

 The pet should have common pet attributes.
 The pet can additionally have the attributes of exactly one type of pet (e.g., cat

or dog).

To put this in OpenAPI, we need to formulate it as a nested composition. The outer
composition is an allOf of two things:

 An inline object with the common properties for all pets
 A oneOf with references to all schemas (the inner composition)

Here’s how that looks if we put it into OpenAPI.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Pet:
 allOf:
 - type: object
 properties:
 name:
 type: string
 age:
 type: integer
 - oneOf:
 - $ref: '#/components/schemas/Cat'
 - $ref: '#/components/schemas/Dog'

Both options that we discussed in this chapter would work for PetSitter. The second
option is closer to the domain model, since no changes are required within Job when
we add new pets, and we have all the complex composition logic in a single place,
encapsulated in the Pet schema. On the other hand, the first option doesn’t need
nested composition, so it has a slightly easier structure. We led you through these two
different options to teach you the composition keywords and to highlight that there
are different possibilities for expressing something similar. Our PetSitter team decides
to follow through with the second option.

Listing 16.11 PetSitter OpenAPI Pet schema, second option

Outer composition
with allOf

Inline object
with common
pet properties

Inner composition
with oneOf

Reference to
Cat schema

Reference to
Dog schema

268 CHAPTER 16 Designing schemas with composition in OpenAPI
16.5 Adding discriminators in OpenAPI
Time for a quiz! Take a look at the following JSON object and tell us whether Fluffy is
a cat or a dog:

{
 "name": "Fluffy",
 "age" : 5,
 "breed" : "Border Collie",
 "size" : "50 cm"
}

You probably guessed correctly that Fluffy is a dog. How did you find this out? Maybe
you’ve heard of Border Collies before and know that they are a dog breed. Fair
enough, but let’s assume you’re a machine that knows nothing about dogs in the real
world and only knows about the domain model and the JSON schemas. Within these
constraints, you could still say that Fluffy is a dog because the JSON object has a size
attribute, and we only specified that property for dogs.

 Now imagine you’re a programmer who’s tasked with building an algorithm that
tells you the species of the pet just by looking at the incoming JSON object and the
OpenAPI description. You would have to check all properties against all schemas to
make the distinction. That seems overly complicated, doesn’t it?

 Remember that our first idea in section 16.1 was adding a species attribute to the
Pet concept. Maybe that wasn’t such a bad idea after all! We could add the property to
our Pet schema to have a clear indicator.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Pet:
 allOf:
 - type: object
 properties:
 name:
 type: string
 species:
 type: string
 age:
 type: integer
 - oneOf:
 - $ref: '#/components/schemas/Cat'
 - $ref: '#/components/schemas/Dog'

This seems better, but OpenAPI knows nothing about the semantics of the species
property. That means it would technically be valid to create the following object:

Listing 16.12 PetSitter OpenAPI Pet schema, species property

New property
added

269Adding discriminators in OpenAPI
{
 "name" : "Fluffy",
 "species" : "Cat",
 "age" : 5,
 "breed" : "Border Collie",
 "size" : "50 cm"
}

Luckily the creators of OpenAPI added an additional keyword to the specification that
helps in this type of situation. It’s called discriminator, and its purpose is to define a
property whose value indicates a schema to select. At the time of writing, discrimina-
tors are not widely used yet, and some OpenAPI tools may not support them, but we
expect support to increase, so it’s still useful to add them.

 You need to add the discriminator keyword next to the oneOf keyword on the
same level in the YAML file. The prerequisite for using discriminators is that all the
entries inside that oneOf must be references and not inline schemas, because they
need to have a name that identifies them, and inline schemas don’t have those. The
discriminator definition is an object with two other keywords, propertyName and
mapping:

 With propertyName you specify the name of the property that points to the
respective schema. It must be a string property that exists in each of the
schemas. We’ll show you shortly how that is done.

 The mapping keyword describes which value of that property corresponds to
which referenced schema. For example, it can connect the string “Cat” with the
Cat schema. There is an implicit mapping that automatically connects the
string with a schema whose name is identical to the value of the property in a
JSON object (e.g., “Cat” with the Cat schema, “Dog” with the Dog schema), but
we recommend making things explicit.

There’s another important caveat to consider with the nested structure that we
designed. We added the species attributes to the inline schema with the common pet
attributes. The discriminator, however, doesn’t belong to the outer allOf; it belongs
to the inner oneOf. According to the OpenAPI specification, the property used as the
discriminator must exist individually in every schema that you reference in the oneOf,
so we can no longer have the species attribute where we added it. We have to move it
into the Cat and Dog schemas. Adding it to each schema separately is the price we pay
for the ability to use the discriminator keyword.

 Let’s take a look at the updated Pet schema.

openapi: 3.0.3
#...
components:
 schemas:
 #...

Listing 16.13 PetSitter OpenAPI Pet schema with discriminator

270 CHAPTER 16 Designing schemas with composition in OpenAPI

D
r

 Pet:
 allOf:
 - type: object
 properties:
 name:
 type: string
 age:
 type: integer
 - oneOf:
 - $ref: '#/components/schemas/Cat'
 - $ref: '#/components/schemas/Dog'
 discriminator:
 propertyName: species
 mapping:
 Cat: '#/components/schemas/Cat'
 Dog: '#/components/schemas/Dog'

As mentioned before, we have to add the species property to each of the schemas
between which we are discriminating, which means those listed in the oneOf that the
discriminator belongs to. On top of that, we have to make the property required. So
far we haven’t designated any property in a JSON object as required, so let’s quickly
introduce the required keyword before moving on.

 By default, properties in JSON objects are optional. To make them mandatory, you
can use the required keyword to list a number of properties that a JSON object must
have in order to be valid against the schema. At this point, we’ll add the required key-
word to Cat and Dog, and make only the species attribute required. We’ll get back to
a more thorough discussion of the required keyword, its implications, and other
places to use it in our OpenAPI description in chapter 19.

 Here are the updated Cat and Dog schemas.

openapi: 3.0.3
#...
components:
 schemas:
 #...
 Dog:
 type: object
 properties:
 species:
 type: string
 breed:
 type: string
 size:
 type: string
 required:
 - species
 Cat:
 type: object
 properties:

Listing 16.14 PetSitter OpenAPI Dog and Cat schemas, with species

Species removed
from inline schema
properties

Added
discriminator
next to oneOf

The property name is
species.

Mapping Cat and
og strings to their
espective schemas

New species
property for
dogs

List of required
properties for
dogs

The species
property is
required.

271Summary
 species:
 type: string
 breed:
 type: string
 required:
 - species

Okay, let’s recap. We’ve created new Pet, Cat, and Dog schemas to replace the previ-
ous Dog schema. Our new Pet schema contains the common attributes for all pets,
and it references the list of pet types, currently Cat and Dog. Each pet type has species-
specific properties as well as the species property, which can be used to clearly distin-
guish between them. On the Pet schema, we made the species property a discrimi-
nator to assist in finding the right schema for validation. You can find the complete
API definition based on the updated domain model here: https://designapis.com/
ch16/openapi.yaml.

 The new domain model also provides a blueprint for adding new types of pets. You
can create a new domain model concept for the pet with custom attributes and make
it a subtype of Pet. In the OpenAPI file, you create a JSON Schema for that pet type
with the same attributes as properties. Then you can update the Pet schema and add
a reference to the new schema in the oneOf segment as well as the mapping for the
discriminator. No other parts of the domain model or the API description require
changes. Sounds good! Our work in the domain model and the OpenAPI descrip-
tion is done.

 Our PetSitter team can run through the API changes, and then, as before, Nidhi
can code the backend and Max can code the frontend. We won’t cover the imple-
mentation in this book, though. Apart from this new feature, we have additional
changes to complete in this development sprint, which we’ll go through in the next
chapters.

Summary
 With polymorphism it is possible to add a generic concept, the supertype, to a

domain model, and then describe various more specific concepts as subtypes.
Every subtype inherits the attributes from the supertype and can add their own.
PetSitter’s updated domain model includes Pet as the supertype and Dog and
Cat as specific subtypes.

 We also changed the relationship between Job and Dog in the domain model to
be between Job and Pet. Thanks to polymorphism, Pet can be replaced with any
subtype, so we don’t have to draw arrows indicating relationships from Job to
Dog, Cat, or any other subtype we may add later.

 The OpenAPI specification includes the composition keywords oneOf, anyOf,
allOf, and not. They can be used individually or in combination to express
polymorphism, and, more generally, describe complex schemas as well as rela-
tionships between different schemas.

New species
property for catsList of

required
properties

for cats The species property
is required.

https://designapis.com/ch16/openapi.yaml
https://designapis.com/ch16/openapi.yaml
https://designapis.com/ch16/openapi.yaml

272 CHAPTER 16 Designing schemas with composition in OpenAPI
 Instead of the existing Dog schema, we added new Pet, Dog, and Cat schemas
to our OpenAPI definition. We looked at two different alternatives for using
composition keywords to implement our domain model. Eventually, we decided
to make the Pet schema a composition of the common pet properties and
include references to the Cat and Dog schemas for specific attributes. With the
discriminator keyword, we designated the species property as an indicator of
the subtype.

Scaling collection
endpoints with

filters and pagination
As the PetSitter application grows, a lot of jobs will eventually be posted in the sys-
tem at the same time. Pet sitters will have a hard time going through all the job
postings to find those they are interested in. Also, the API response for listing all
jobs may get too large to handle and slow down the app. The PetSitter team real-
ized this during their sprint planning in chapter 16. At that time they decided to
implement filters and pagination to solve the issue. While discussing these, we’re
also going to look at a third related topic: sorting.

 Before we start with the API design, though, let’s make sure we’re all thinking
about the same things when we refer to filtering, pagination, and sorting:

 Filtering is a way to add search criteria that identify a subset from a collection
of resources. If the API consumer sends filters with their API request, the API
includes only matching resources in its response.

 Pagination divides a collection into chunks, and an API call returns only the
first chunk in the response. When the API consumer wants to see additional

This chapter covers
 Designing filters, pagination, and sorting for APIs

 Enhancing the PetSitter OpenAPI definition with
these features
273

274 CHAPTER 17 Scaling collection endpoints with filters and pagination
resources, they send another request and ask for the next chunk of data. These
chunks are called “pages.”

 Sorting specifies the order in which the API lists resources in a collection. The
default order may not be what the API consumer needs, so the API can provide
options to change the ordering.

These definitions are visualized in
figure 17.1. The three options are
not mutually exclusive—they can be
used in any combination. When com-
bined, the following order applies:

1 Filters reduce the full dataset to
a subset.

2 Sorting puts that subset in a
specifically ordered collection.

3 Pagination returns a section of
that ordered collection.

In this chapter we’ll look at filtering,
pagination, and sorting in general, as
well as their specific implementations
in PetSitter. Our approach will be to
switch between theory and practice
throughout. We’ll introduce each
topic and talk about the different pos-
sibilities and options for including it in
our API design. Then we’ll get practi-
cal and look at how that topic can be
added to PetSitter, weighing the differ-
ent options.

17.1 The problem
Many well-designed APIs follow the
CRUD style, and we’re focusing on
this type of API design in this book.
There are other API design para-
digms, such as query-based APIs—you
may have heard of GraphQL. Those
types of APIs include native support for queries, so filters and pagination come some-
what naturally. For RESTful, CRUD-style APIs, we have to include filters and pagina-
tion in our API design. The question is, how do we do that? Following the CRUD
concepts from chapter 10, we have the following conditions:

Filtering

Pagination

limit=2

Sorting (asc)

Filtering

Pagination

limit=3

Sorting (asc)

Figure 17.1 Filters, pagination, and sorting

275The problem
 With filters, pagination, and sorting, we’re looking at lists, or collections, of
resources. Hence, we are dealing with collection endpoints, not individual
resource endpoints.

 No resources are created, updated, or deleted in the process. We’re just retriev-
ing data. Therefore, we should use the GET method. Apart from the semantic
meaning, using the GET method gives us the benefit of HTTP caching.

So far, we’ve used collection endpoints to list all resources of a specific type. For exam-
ple, in PetSitter, we had a “List all” action for the Job model and turned it into the GET
/jobs operation. We also had a “List my own” action, which we transformed into “List
for user” and made it the subresource collection operation GET /users/{id}/jobs.

 In the updated domain model, we renamed “List all” to “List available” to clarify
that it won’t return all jobs at once, but only the first page. We also added two actions,
“Search available” and “Show more.” So far, every action we’ve listed in the domain
model corresponds to an operation in the API. Considering that, we might naively
extend the design with additional endpoints:

 GET /jobs/search or GET /search-jobs?
 GET /jobs/more or GET /more-jobs?

Adding additional endpoints produces potential namespace clashes, either between
the action keywords “search” and “more” and resource identifiers, or with a schema
called “search-jobs.” These may be theoretical concerns and not applicable in PetSit-
ter, but there’s another good reason against adding additional endpoints. If we
wanted to fulfill the requirement of combining filters, pagination, and sorting in this
way, we couldn’t do so, or we would require even more endpoints, such as GET
/jobs/search/more, or is it GET /jobs/more/search? Adding additional paths seems
to lead us down a complicated rabbit hole.

 For filtering, we can picture the “List available” action as a special case of the “Search
available” action. The unfiltered list of available jobs is a superset of any filtered list. In
other words, it’s the list where no filters are applied. We can use the same collection
endpoint—the standard collection endpoint for a resource (/{schema}s)—for both,
and add the filters as optional parameters.

 Any type of collection can be paginated. By default, we can assume the collection
endpoint returns the first page of results. We can then add parameters to indicate that
we want to see more results.

 Finally, for sorting, we can also add parameters to any type of collection endpoint.
If those sorting parameters are absent, we apply the default order for resources.

 Now that we’ve decided not to add any new endpoints and to use parameters
instead, we must decide on the type of parameter. Sending our filter, pagination, or
sort parameters in the request body is not an option because GET requests, which we
want to use to adhere to HTTP semantics, do not have a request body (if you see some
that do, run …). That leaves two options:

276 CHAPTER 17 Scaling collection endpoints with filters and pagination
 Query parameters
 HTTP headers

Throughout the course of this book, you’ve encountered both of these types of
parameters already. While it’s technically possible to use both, they come with certain
RESTful semantics that you’ve seen in our previous use of query parameters and
HTTP headers. Let’s make those explicit now:

 Query parameters are a part of the URL and, thus, an input to the API request.
In other words, they help in identifying the resource or resources to access.

 HTTP headers are for meta information that does not identify the resource but
adds additional information to the API request, such as authorization.

With these semantics, query parameters are the obvious choice. So, to recap, to imple-
ment filtering, pagination, and sorting for resource collections in an API, we don’t
need additional endpoints. Instead, we can extend our collection endpoints with
query parameters. The crucial part is how we design those parameters to be intuitive
and consistent.

 There are some standards and frameworks for designing APIs that go beyond
the basic RESTful principles and CRUD conventions we’ve introduced in this book.
Two well-known specifications are JSON:API (https://jsonapi.org/) and OData
(www.odata.org). They cover a lot of ground, but some of their conventions are too
heavy for simpler APIs. We won’t discuss them in detail but will briefly touch on some
of their ideas in this chapter. Other sources for suggestions on parameter design come
from famous APIs (such as Stripe’s) and from API style guides from companies who
publish them.

 The OpenAPI specification in its current iteration doesn’t prescribe how to
design filtering, pagination, or sorting parameters. It also doesn’t let you express the
semantics of query parameters, just their syntactical format. For example, you could
say that there’s a parameter called sort that accepts (among others) the string
start_time, but there’s no way to indicate in a machine-readable way that this
start_time corresponds to the start_time property in your response schema.
Therefore, you have to add human-readable descriptions and additional documen-
tation to explain to your developers what the parameters mean. With that said, let’s
dive into the first topic, filtering.

17.2 Designing filters
We encountered our first filter parameter very early in this book. In chapter 2 we
introduced the FarmStall API as a way to get ratings for various farm stalls. In that API,
you can use GET /reviews to get a list of public reviews. Also, you can filter reviews by
their rating using the maxRating query parameter. The FarmStall API design already
follows some of the standard conventions we introduced in section 17.1: it uses the
GET method and a query parameter. The parameter remains optional, so we can use
the same collection endpoint for both filtered and unfiltered requests.

https://jsonapi.org/
http://www.odata.org

277Designing filters
 This API design also raises some questions. The schema for reviews contains a
numeric rating field, and there is a query parameter called maxRating that appears
related to the rating field and defines an upper bound for ratings. Is that an arbi-
trary choice, or is there a pattern or convention that the API introduces? For exam-
ple, could you use minRating to define a lower bound? What if you wanted to get
reviews with a specific rating number? Let’s take a step back and see how we can best
design filters.

 First of all, let’s consider two types of filters. The primary type we’re looking at is a
selection filter, which means it selects a subset of resources from a collection. In the
FarmStall API, that would be all reviews with specific ratings. There’s another type of
filter, called a projection filter, that selects a subset of fields to specify what’s shown for
each resource—it doesn’t affect which resources the API returns. It allows API con-
sumers to say that they’re only interested in some fields for the resources in the collec-
tion. For example, imagine you have an API for an online shop with a Customer
schema. The Customer schema most likely contains the full postal address of the cus-
tomer, so that you can ship goods to them. However, email marketing software as an
API consumer would not be interested in a postal address. It just needs the customer’s
name and email address. This would be a use case for projection filters.

17.2.1 Projection filters

Projection filters are not as common as selection filters, and they are only useful if you
have heavy schemas with a lot of fields. Large schemas, however, could be an indica-
tion that the domain model concepts are too big and that you should break them
down into smaller, more specific concepts. We’re discussing projection filters in this
chapter for the sake of completeness, but we won’t implement them in PetSitter.

 A common convention for handling projections that many APIs use is a query
parameter called fields. The value for the parameter is a comma-separated list of
properties from the schema. For example, imagine the Customer schema having
id, name, email, and address fields. To receive data from all customers but only
their names and emails, the API consumer could request GET /customers?fields=
name,email.

NOTE You may sometimes have fields in your schema that not all of your API
consumers can see, due to permissions checks. That’s also a kind of projec-
tion, though unrelated to a filter parameter. While implementing your API,
make sure nobody can use projections to access fields they shouldn’t see.

That’s all there is to say about projection filters, so let’s move back to selection filters,
which are slightly more elaborate.

17.2.2 Selection filters

All selection filters look at a feature of a resource. Only resources matching certain
conditions for that filter should be included in the response. The filter can define a

278 CHAPTER 17 Scaling collection endpoints with filters and pagination
single acceptable value, or a range of acceptable values. We can formulate ranges in
different ways:

 For any data type—An enumeration of acceptable values
 For numbers—Exact matches (=), less than (<), greater than (>), less than or

equal (< =), greater than or equal (> =), between
 For strings of text—Exact matches, case-insensitive matches, text starting with,

text ending with, text containing

Of course, not every API needs every option from this list, and you don’t need to pro-
vide the same options everywhere. Remember, we’re dealing with CRUD-style APIs,
and it’s your API design, not a generic query language. Providing too many options
can be as detrimental to the developer experience (due to the increased complexity)
as is not providing enough. However, it’s important to keep these options in mind,
especially considering an evolvable API design. The challenge is mapping these differ-
ent ranges to query parameters, which are simple key/value pairs.

 Many APIs follow a naive and straightforward approach, where they give the query
parameter the same name as the field itself. To return to the FarmStall example, that
would mean that GET /reviews?rating=3 fetches all reviews where rating is exactly 3.
If most requests ask for exact matches and not ranges, this is the easiest option to
understand and implement for the API.

 When following this approach, there’s one thing you have to keep in mind: you’re
now mixing query parameters having names that correspond to fields from the
schema with parameters referencing other things. For example, if you have a fields
query parameter for projections, as mentioned previously, you couldn’t do filtering on
a schema property named fields. A better option would be putting a prefix on the
query parameter, such as calling it filter:fields or filter[fields] instead of just
fields. On the other hand, such collisions are rare. Even popular APIs like Twilio and
Stripe mostly use the simple parameter design. We won’t show a filter prefix in our
examples, but you can always add one if you prefer.

 Let’s look at an example from Stripe’s API a little more closely, because they have
an interesting way to support ranges. Assuming there’s a field named created that
indicates when a resource was created, they accept the following query parameters:

 created for an exact match
 created.gt for a greater match
 created.gte for a greater-or-equal match
 created.lt for a lesser match
 created.lte for a lesser-or-equal match

You can find the Stripe API documentation here: https://stripe.com/docs/api/.
These parameters can be found in the description of most endpoints for collections—
here is an example: https://stripe.com/docs/api/events/list#list_events-created.

https://stripe.com/docs/api/
https://stripe.com/docs/api/events/list#list_events-created

279Designing filters
 Using suffixes like gt and gte is an explicit way to provide ranges without ambigu-
ity. With maxRating and minRating, a developer may wonder whether that’s an inclu-
sive or an exclusive minimum or maximum. The suffixes are also applicable to all sorts
of fields with ranges. They are not very human readable, though. We can probably do
better. For dates, for example, we could use the following:

 created_before for dates before the given value (a lesser match)
 created_after for dates after the given value (greater match)

The before/after terminology isn’t necessarily the best choice for every data type, so
it’s more difficult to be consistent here. Another approach we’ve seen in some APIs is
to move the range to the right side—to the value part of the query parameter. Let’s
look at an example of that, which could be a redesign of the FarmStall API:

 rating=eq:5 or rating=5 for an exact match
 rating=gt:3 or rating?3 for a greater-than match
 rating=lt:3 or rating=<3 for a lesser-than match

There’s an advantage to putting the range indicator on the left or key side. Often an
API consumer wants to provide two conditions to define an upper and a lower bound
for the filter parameter; for example, all ratings from 2 to 4, or all dates from last
week, Monday to Friday. Compare the following three approaches:

 rating.gte=2&rating.lte=4

 rating=gte:2&rating=lte:4

 rating=gte:2,lte:4

The first option obviously indicates two filter criteria, and we’d recommend this
approach over the others. The second can be confusing, since it uses the same key twice.
We are technically allowed by the HTTP specification to use the same query parameter
more than once, and it’s not uncommon, but it doesn’t follow our intuitive sense of how
key/value pairs work. Finally, the third one uses a complex comma-separated value for-
mat that requires additional explanation.

 Another potential filter input is an enumeration. With an enumeration, the API
consumer provides a set of specific values that they want to accept. For these, it’s best
practice to use comma-separated values. For example, the following query would
return all reviews with ratings 1, 3, and 5:

rating=1,3,5

With so many different options, it can be difficult to make a choice, and it’s equally
hard for us to give you actionable advice. The most important thing is that you should
be internally consistent, which means that you must use the same syntactical structure
for every parameter and endpoint. Once your API consumers have identified pat-
terns, they will expect them everywhere.

280 CHAPTER 17 Scaling collection endpoints with filters and pagination
17.2.3 Handling nested schemas

Let’s consider the following data and its implied structure:

{
 "name": "John Doe",
 "email": "johndoe@example.com",
 "address": {
 "country": "US",
 "zip_code": "12345",
 "city": "Boomtown"
 }
}

Using the query parameters name and email to filter by name and email, respectively,
seems straightforward. However, what about filtering by address? Since the address is a
complex data structure with multiple fields, you may want to support each field indi-
vidually. There are a few naming options to refer to the nested structure. For example,
the query parameter for filtering by country could be one of the following:

 country

 address_country

 address.country

 address[country]

The first option drops the name address entirely, which may lead to namespace
clashes. Just imagine you have multiple addresses, such as billing_address and
shipping_address. Therefore, we’d strongly advise against it. We’d also advise
against using the underscore (_), as it clashes with snake-case naming conventions
for fields. There’s nothing that indicates whether address_country is a single or
nested field name.

 Choosing either of the other two options can be a matter of taste or native support
in your implementation framework. The dot notation is common in JavaScript and
many other object-oriented languages for accessing nested data structures. On the
other hand, PHP natively parses the square bracket style into arrays. Either way, you’re
not shipping your backend—you’re designing an API that everybody can talk to. Still,
the advantage of bracket notation is that it allows you to use the dot notation for other
things, such as a suffix for range indicators (e.g., created.gte).

 Also, starting with OpenAPI version 3.0, there is a very compelling reason for using
the square bracket style. It supports object schemas for parameters and the deep-
Object serialization style. OpenAPI’s support might make this a de facto standard. We
will demonstrate it later in this chapter when we create the parameters for PetSitter.
With the square bracket style, suffixes should be part of the inner field name and not
appear at the end. For example, the parameter should be address[zip_code.gte],
not address[zip_code].gte.

281Designing filters
 We should also look at another nested format, where we have an array of items
inside the resource schema, such as the following data, which has multiple addresses:

{
 "name": "John Doe",
 "email": "johndoe@example.com",
 "addresses": [
 {
 "country": "US",
 "zip_code": "12345",
 "city": "Boomtown"
 },
 {
 "country": "US",
 "zip_code": "54321",
 "city": "Complexity City"
 },
]
}

In this case, we can either add some indicator, like [], to point to the array, or we can
simplify and ignore the array structure and just use the addresses framework. We’d
consider the following all good options for a country filter:

 addresses.country

 addresses[][country]

 addresses[country]

17.2.4 Query languages

Finally, some APIs use a single parameter that accepts some sort of query language.
For example, the aforementioned OData API framework suggests a parameter named
$filter for all API calls with filters. The value of this parameter can be a more or less
advanced query. A basic query could be something like this:

$filter=name eq 'José'

Other APIs have such complex filter languages that they break the maximum URL
lengths that some clients and servers enforce. Those APIs need to use POST for queries,
which violates HTTP semantics and prevents caching. We advise against these con-
structs and advocate for the simplest query parameter design that you can get away
with, while still supporting your major use cases.

17.2.5 Special conventions

Before we end this section, there are two more conventions that we’d like to mention.
The first brings us back to chapter 10, where we designed the “List my own” endpoint
for jobs in PetSitter. At the time, we briefly considered implementing a filter and
supporting GET /jobs?user_id={id} before settling on the subresource collection

282 CHAPTER 17 Scaling collection endpoints with filters and pagination
endpoint GET /users/{id}/jobs. Whenever a field refers to another schema, as
user_id does in the Job schema, you should preferably use subresource collection
endpoints instead of filters, as that leads to a nicer URL design that reflects the rela-
tionships in your domain model. In some cases, however, it may be necessary to sup-
port both, especially when there are different fields that API consumers may want to
combine. Also, subresource collection endpoints obviously don’t support ranges.
We’ll look at an example in the next section when we design filters for PetSitter.

 The other convention is the parameter q (which can be short for question or query).
Sometimes you’ll want to support full-text search in your API, covering multiple fields.
For example, when you have a schema in which first name and last name are two sepa-
rate fields, you may want to offer searching over both. In these cases, support the q
parameter to search through all fields.

17.3 Filters for PetSitter
As we mentioned in section 17.1, we will implement filtering, pagination, and sorting
by adding query parameters to some of the collection endpoints. While reviewing the
domain model in chapter 16, the PetSitter team discussed the “List all” action for the
Job model. They renamed it “List available” and added “Search available” and “Show
more” actions to indicate that they want filters and pagination at this point. There are,
however, other API endpoints that return collections of resources. Hence, the PetSit-
ter team needs to look at their existing API design to see if there are other endpoints
that could benefit from filtering.

 As you can see in table 17.1, there are three endpoints. “List available” is the only
“root” collection endpoint. The other two are subresource collection endpoints, so
they already have a filter built in. Nidhi and Max decide to start with the first, most
important endpoint they already identified, and focus solely on that endpoint for the
current sprint. They don’t think that a single user will create so many jobs, or that a
single job will have so many applications that it’s impossible to look at them without
filters. We agree with their assessment.

17.3.1 Finding filter fields

For potential pet sitters, the primary use case when interacting with PetSitter is find-
ing and applying for jobs. Finding jobs in the first place is the crucial part, which is

Table 17.1 PetSitter API operations returning collections

Schema Action API operation

Job “List available” GET /jobs

Job “List for user” GET /users/{id}/jobs

JobApplication “List for job” GET /jobs/{id}/job-applications

283Filters for PetSitter
why the “List available” action received a “Search available” counterpart. To deter-
mine the fields that could be potential filters, let’s look at the Job schema again.

Job:
 type: object
 properties:
 id:
 type: integer
 creator_user_id:
 type: integer
 start_time:
 type: string
 end_time:
 type: string
 activity:
 type: string
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

As you’ll remember, the pet or pets that the job is about are an essential part of the job
description. That means we can add filters covering the Pet schema as well. Let’s take
a look at that schema.

Pet:
 allOf:
 - type: object
 properties:
 name:
 type: string
 age:
 type: integer
 - oneOf:
 - $ref: '#/components/schemas/Cat'
 - $ref: '#/components/schemas/Dog'
 discriminator:
 propertyName: species
 mapping:
 Cat: '#/components/schemas/Cat'
 Dog: '#/components/schemas/Dog'

We could go even deeper and look at the Cat and Dog schemas, but we’ll stop here.
The reason is that the composition of Dog and Cat into Pet from chapter 16 adds
additional complexity, and each subtype has different fields. We’d have to document
them all as query parameters for the same endpoint (GET /jobs), which not only

Listing 17.1 PetSitter Job schema

Listing 17.2 PetSitter Pet schema

284 CHAPTER 17 Scaling collection endpoints with filters and pagination
creates a long list of fields but also breaks the separation of pet species that we
intended.

 Before we walk through all the fields in the Job and Pet schemas to investigate
whether we want to add them as filter parameters, we will set two general conventions.
First, we will not add a general prefix like filter in front of the query parameter
names. Second, we will use the square bracket style ([]) to access nested fields and
ignore array structures. This will allow us to define parameters as objects, too. Also,
we will only add selection filters, no projection filters. The PetSitter team believes the
current schemas are small enough to include the resources in all responses without
reducing their size.

NOTE It’s a good practice to write down conventions in a style guide that you
share with everyone who collaborates on the API design, perhaps in the API
definition repository.

Let’s get started now and make cases for or against specifying a filter, based on the
different fields.

FILTERING ON THE ID FIELD FROM JOB

IDs are internal identifiers that rarely make sense to users. We already have the
resource endpoint GET /jobs/{id} to access one job with a specific id, which means
we don’t need a filter for that specific case. And there’s no apparent use case for list-
ing multiple selected jobs or a range of identifiers. Hence, we won’t add a filter for id.

FILTERING ON THE CREATOR_USER_ID FIELD FROM JOB

We already have the subresource collection endpoint GET /users/{id}/jobs to list all
jobs for a specific user. The current approach to permissions for this endpoint says
that it’s only for listing one’s own jobs. If we wanted pet sitters to look at all the jobs for
a specific pet owner, we could grant permissions on that endpoint instead of adding a
filter. Hence, we won’t add a query parameter for creator_user_id either.

FILTERING ON THE START_TIME FIELD FROM JOB

Searching by date is a likely use case. For example, a pet sitter may be free to look
after pets only on specific dates or during specific times. Therefore, we should add a
filter parameter for start_time, which needs to support ranges with both upper
and lower bounds.

 Based on our discussion earlier in this chapter, we should add two query parame-
ters: one for the lower bound and one for the upper. The following two options seem
like good choices:

 start_time.lt and start_time.gt (also maybe lte and gte variants)
 start_time_before and start_time_after

We’ll pick one of these options after gathering all the filters.

285Filters for PetSitter
FILTERING ON THE END_TIME FIELD FROM JOB

It may seem that start_time is enough for a date filter, but there are certainly use
cases where API consumers may want to search for end_time, such as if a pet sitter has
another appointment and needs to set a boundary when the job ends. Adding the
parameter is straightforward and should be analogous to start_time, so we’ll pick
one of the following later:

 end_time.lt and end_time.gt (also maybe lte and gte variants)
 end_time_before and end_time_after

FILTERING ON THE ACTIVITY FIELD FROM JOB

Pet sitters may be interested in specific activities, such as taking dogs for a walk. There-
fore, adding a filter for activity would be useful. In the current version of the Pet-
Sitter application, it is a free-text field, which means that pet owners enter some text
here instead of selecting from a predefined range of activities.

 Due to the free-text nature of the field, we should allow full-text search. For
example, if a potential pet sitter enters “walk” as a filter, it should find all of the fol-
lowing activities:

 “walk”
 “walking”
 “dog-walking”
 “take my dog for a walk”

On the other hand, we don’t need ranges. There’s no semantic value in finding activi-
ties that are alphabetically close to “walk,” so we can do with a single filter parameter
called activity.

FILTERING ON THE NAME FIELD FROM PET

Searching by a pet’s name doesn’t make sense if a pet sitter is looking for jobs in gen-
eral. If they’re searching for a specific pet, the pet’s name may not be unique enough.
In the latter case, searching by its owner is a better approach, which would have been
the creator_owner_id filter we’ve already decided against.

FILTERING ON THE AGE FIELD FROM PET

A pet’s age may be a useful filter. For example, a pet sitter may specifically want an
older pet with the expectation that those are tamer and easier to handle. Providing
both an upper and lower bound is also useful, so we’ll need two parameters. Let’s col-
lect the options:

 pets[age.gt] and pets[age.lt]
 pets[age_below] and pets[age_above]

FILTERING ON THE SPECIES DISCRIMINATOR FROM PET

The species attribute isn’t part of the Pet schema itself, but as the discriminator it is
present in all of the specific pet schemas, so we can include it in our scope. Filtering

286 CHAPTER 17 Scaling collection endpoints with filters and pagination
by a pet’s species could be the most important filter, considering that the PetSitter app
project originally started as a dog-walking app. There may be users who are only inter-
ested in dogs. On the other hand, some people may be allergic to cats and dogs but
would be able to take care of someone’s fish tank.

 There is a well-defined set of species in the OpenAPI definition, so we don’t need
full-text search. We also don’t need a search with alphabetical upper and lower
bounds. An enumeration, however, could be useful. We’ll add a query parameter
pets[species] and allow ranges such as pets[species]=Cat,Dog.

17.3.2 Adding filters to OpenAPI

Putting together the filters we’ve collected so far, we get the following:

 start_time.lt and .gt; start_time_before and _after
 end_time.lt and .gt; end_time_before and _after
 activity

 pets[age.gt] and pets[age.lt]; pets[age_below] and pets[age_above]
 pets[species]

We still need to finalize the naming for the parameters with boundaries, so let’s do
that. There are three filter fields: two are dates and one is a number. For all of them,
there are prepositions like before, after, above, and below that can be attached to create
a natural-language, human-readable name. They are, however, not indicative of
whether they define an inclusive or exclusive maximum or minimum, respectively.
Suffixes like lt, gt, lte, and gte are more specific. We could change the human-
readable versions into specific parameters and use, for example, start_time_at_or_
before. These versions would be quite long, though. After some back-and-forth dis-
cussion, the PetSitter team decides to use the human-readable versions and make
them inclusive boundaries without lengthening the parameter name. Instead, they
will describe the behavior in the API documentation. Eventually, we’ll end up with
the following parameters for the PetSitter API:

 start_time_before

 start_time_after

 end_time_before

 end_time_after

 activity

 pets[age_below]

 pets[age_above]

 pets[species]

Now, how do we add those to our OpenAPI definition? We saw our first query parame-
ter back in chapter 3 in the FarmStall API. Since that was a while back, let’s quickly
recap the general query parameter format.

287Filters for PetSitter
openapi: 3.0.3
#...
paths:
 /resources:
 get:
 description: Description of operation
 parameters:
 - name: parameterName
 in: query
 description: Description of parameter
 required: false
 schema:
 type: number

As we’re reusing a collection endpoint that API consumers can also call without
parameters, we want all filter parameters to be optional. In OpenAPI, that’s the
default behavior for parameters if the required keyword is missing, so we can omit
required: false from our parameter definitions.

 Also, as we mentioned earlier in this chapter, OpenAPI has limited capabilities for describ-
ing the semantics of query parameters. This emphasizes the need for the description field,
where we can explain to API consumers how to use the parameters.

 Now let’s look at the current definition of the “List all jobs” operation.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:
 #...
 get:
 summary: List All Jobs
 operationId: listAllJobs
 #...

As this operation currently covers two actions in our domain model, we should
change the summary and the operationId to something more inclusive. Also, we have
to add the parameters keyword.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:

Listing 17.3 Query parameters in OpenAPI

Listing 17.4 PetSitter List All Jobs

Listing 17.5 PetSitter List/Search Available Jobs

This keyword
indicates the
parameters for
an operation.

The in keyword
defines the type
of parameter,
such as query.

The human-readable
description of the
parameter

Indicates
whether
or not a

parameter
is required

The schema describes the
data type and constraints.

288 CHAPTER 17 Scaling collection endpoints with filters and pagination
 #...
 get:
 summary: List/Search Available Jobs
 operationId: listOrSearchAvailableJobs
 parameters:
 #...
 #...

That looks better already. Now let’s move on and add our parameters.

ADDING START_TIME AND END_TIME FILTERS

We decided to allow upper and lower bounds for both start and end times, so we have
to add four parameters in total, which look quite similar. Their schema should have
type: string. We will add another property, format: date-time, to specify that the
string has the format of a timestamp. We haven’t covered this particular use for
the format keyword yet, but we’ll get back to it in chapter 19 when we improve our
schemas. The following listing shows all four parameters and the user-friendly descrip-
tions we chose for them.

- name: start_time_before
 in: query
 description: Search jobs starting before this date and time.
 schema:
 type: string
 format: date-time
- name: start_time_after
 in: query
 description: Search jobs starting after this date and time.
 schema:
 type: string
 format: date-time
- name: end_time_before
 in: query
 description: Search jobs ending before this date and time.
 schema:
 type: string
 format: date-time
- name: end_time_after
 in: query
 description: Search jobs ending after this date and time.
 schema:
 type: string
 format: date-time

ADDING THE ACTIVITY FILTER

For the activity filter, we need a single query parameter with a string data type. We
will not add further constraints, but we’ll add a description that explains how the
search works. That’s the simplest kind of filter parameter an API can have (from an
API design viewpoint).

Listing 17.6 PetSitter job search date and time filters

This is the place to add filter,
pagination, and sorting parameters.

289Filters for PetSitter
- name: activity
 in: query
 description: |
 Performs a full-text search for the phrase entered in job activities.
 schema:
 type: string

ADDING PETS[AGE] AND PETS[SPECIES] FILTERS

We’ll tackle all the filters that belong to the Pet schema in one step, as we want to
demonstrate adding a parameter with an object schema. We can create these param-
eters in the same way as parameters with string data types. We can create an object
with three properties as an inline schema.

- name: pets
 in: query
 description: Searches for pets matching specific criteria.
 schema:
 type: object
 properties:
 age_below:
 type: integer
 description: Return only pets with this age or younger.
 age_above:
 type: integer
 description: Return only pets with this age or older.
 species:
 type: string
 description: |
 Return only pets with this species.
 Provide multiple species as comma-separated values.

Apart from adding type: object, however, we also have to specify how we want the
object serialized into key/value pairs. For this purpose, there’s the style keyword,
and by default OpenAPI assumes the form style. This style flattens the object, which
means that the query parameter is called, for example, age_below. If we want to make
sure the object converts its properties to something like pets[age_below], we have to
add style: deepObject to it.

- name: pets
 in: query
 description: Searches for pets matching specific criteria.
 style: deepObject
 schema:
 type: object
 properties:
 #...

Listing 17.7 PetSitter job search activity filter

Listing 17.8 PetSitter job search pets filter

Listing 17.9 PetSitter job search pets filter (with style)

Allocates memory
for an array on
the GPU

290 CHAPTER 17 Scaling collection endpoints with filters and pagination
17.3.3 Making a request

Here’s an example of a request that combines some of the filters we’ve added, imagin-
ing a potential pet sitter who would like to look after a cat sometime in July 2022:

curl -H "Authorization: {Auth}" "https:/ /petsitter.designapis.com/jobs \
 ?start_time_after=2022-07-01T00:00:00+00:00 \
 &end_time_before=2022-07-31T00:00:00+00:00&pets[species]=Cat"

The backend receives these parameters, parses them, and somehow (depending on
the implementation) turns them into a database query. This is what the result may
look like:

{
 "items" : [
 {
 "start_time" : "2022-07-02T10:00:00+00",
 "end_time" : "2022-07-04T19:00:00+00",
 "pets" : [
 {
 //...
 "species" : "Cat"
 }
]
 //...
 },
 //...
]
}

Let’s take a breath and move on to the next topic: pagination.

17.4 Designing pagination
Pagination is the practice of dividing a long list of results into pages. You can often take
the word “page” quite literally. You’ve probably seen websites where you see the first
page of results and, at the bottom, there’s a list of numbers indicating all the result
pages, and you can skip to the next or the previous page. On other websites and apps,
you may have seen the practice of infinite scrolling. The first results are displayed and,
as you scroll down, the website or app loads additional lists and adds them to the
bottom of the results. These are different user interface approaches, but the underly-
ing API design is almost the same. We’re saying “almost” because, as you’ll see later in
this section, different approaches to user interfaces correspond better to different
pagination API designs.

 When it comes to pagination, we have to consider the two sides of an API call. On
the one hand, we need query parameters to indicate the results that we want to
retrieve. On the other hand, we need to extend the response to give some indication
where we are in the dataset and whether further pages are available.

291Designing pagination
 Generally speaking, we can differentiate two different approaches to pagination,
which we’ll call offset-based pagination (including its close cousin page-based pagina-
tion) and cursor-based pagination. Let’s look at them in turn.

17.4.1 Offset-based and page-based pagination

APIs with offset-based or page-based pagination (this discussion of offset-based
applies to page-based as well) accept two common query parameters for their col-
lection endpoints:

 The first parameter indicates the maximum number of results to return. Typi-
cally this is called limit or per_page. It’s common to make the parameter
optional and set a default value in its absence. There should also be a maximum
limit that the API is willing to serve in a single request.

 The second parameter indicates either the number of results (offset-based) or
the number of pages (page-based), starting from the beginning, to skip before
returning any. In the former case it’s generally called offset, and in the second
case it’s often called page. If you omit this parameter, the offset is 0, meaning
results are returned from the beginning.

NOTE OData requires offset parameters to be named $top and $skip.
JSON:API doesn’t have any requirements, but it reserves the parameter name
page and suggests using it as a prefix for any pagination inputs, such as
page[offset] and page[limit].

As both parameters have default values, a client can send either of them or both and
the API will know how to respond. Let’s take a closer look to understand how the
parameters work.

 Assume you have 40 potential results in a collection. Calling the collection end-
point with limit=20 (or per_page=20, depending on the name used in the API)
would return the first page with resources 1 to 20. To get resources 21 to 40, you’d call
the API with limit=20&offset=20 for resource offsets or limit=20&page=2 for page-
based pagination.

 A specific attribute of offset-based pagination is that it always looks at the full set
of results and calculates the offset from the beginning. To understand why this
sometimes leads to unwanted behavior, imagine a collection endpoint that returns a
set of results starting with the latest entry. Think of a blog with multiple posts, where
you always see the newest post first. Now let’s look at the following interactions of
multiple clients:

1 A client asks for the 10 latest blog posts, and the API returns them.
2 Another client (the author) publishes a new post, which means that all older

items shift down. The 10 latest blog posts are now different—the page con-
tains a new post and nine older posts, and the tenth post has moved onto the
second page.

292 CHAPTER 17 Scaling collection endpoints with filters and pagination
3 The first client wants to get the 10 next blog posts, so it asks for an offset of 10.
The API calculates that offset with the new collection, so the first post on the
second page is the original tenth post, which the client has already seen.

Looking back at the user interface options we mentioned earlier, a repeated post on
the second page might not be too bad. In an infinite scrolling interface, however, the
duplicate entry would immediately look out of place. Also, imagine deleting an item
instead of adding an item. That would shift items upward instead of downward and
may mean the client never sees some of the results. You have to weigh in these disad-
vantages with the familiarity and ease of implementation that are the advantages of
this pagination style.

NOTE If the terms “limit” and “offset” sound strangely familiar, you may have
some experience with relational databases. In Structured Query Language
(SQL), there are the same keywords. API requests might internally map to
queries like SELECT * FROM collection LIMIT 20 OFFSET 20. This equivalence
has two advantages. First, many developers are already familiar with offset-
based pagination from SQL. Second, it’s easy to implement the APIs, espe-
cially when there’s a relational database management system in the back-
ground. However, it’s time for a word of caution. As we previously mentioned,
your API design should not reflect the internal implementation but the needs
of the customer. It’s okay to go the opposite route and implement your first
backend close to the API design, as we did ourselves in chapter 13, but your
backend may evolve quickly, while your API should remain consistent.

Before moving on to cursor-based pagination, let’s look at response formats. From the
beginning of our API design process, we have always recommended wrapping the
result array for a collection endpoint into an object with a property called items, argu-
ing that other properties may be necessary for pagination. What are those?

 For offset-based pagination, it’s helpful to return the total result count in a prop-
erty named something like count or total_results. For page-based pagination, the
API can alternatively return the number of pages, perhaps named page_count. These
values help determine how many pages are available, and they are most useful if you
expect API consumers to display all available pages in the navigation. An API con-
sumer can use the offset and limit values from its previous request in combination
with the counter to determine whether it can fetch additional results:

{
 "items": [
 {
 //...
 }
],
 "total_results" : 20
}

Items for
current page
would go here.

293Designing pagination
17.4.2 Cursor-based pagination

Similar to offset-based pagination, cursor-based pagination supports two query param-
eters for the collection endpoints:

 The first parameter is exactly the same as with offset-based pagination: it indi-
cates the maximum number of results to return (such as limit or per_page).

 The second parameter is the cursor that identifies the page. The cursor comes
from the previous request.

To explain how cursors work, let’s look at an example. In fact, the blog post example
from the previous section is a great one. Imagine there are 30 posts in the blog, and
they have numeric IDs from 1 to 30 (which assumes none have been deleted yet). An
API client makes a request with limit=10. Because the blog shows the latest posts first,
it would reveal the 10 posts from ID 30 to 21. Then it returns the cursor abcd:

{
 "items": [
 {
 // item 30
 },
 ...
 {
 // item 21
 }
],
 "cursor" : "abcd"
}

To get more results, the API client takes the cursor value from the previous response
and adds it to the query for the next request. Then, with the request parameters
limit=10&cursor=abcd, it receives the blog posts with IDs from 20 to 11, as well as a
new cursor, bcde. The client can repeat these steps until they reach the last page,
which omits the cursor or sets it to null to indicate that there are no more results.

 In the preceding example, the cursor doesn’t have any meaning to the consumer,
but the API backend knows that it should only look at posts with ID 20 or less (i.e.,
older posts). As a general rule, cursors should be opaque to the consumer, so that the
backend can evolve as needed. Consumers can simply treat them as an identifier for
“the next page.” In the backend, you can think of it as a pointer to a specific position
or a row in the database from which you will continue delivering results. Cursors can
come from the underlying database technology or could be the ID of the last item in
the returned list.

NOTE OData has a so-called “next link” in each API response that describes
how to make the request for more data. JSON:API suggests providing links for
next, previous, first, and last to allow API clients to move between pages.
Such links can be helpful even when using offset-based pagination. Providing

294 CHAPTER 17 Scaling collection endpoints with filters and pagination
not just a cursor but a whole link is related to the idea of hypermedia, which
we briefly mentioned in chapter 1.

Our example shows an advantage of cursor-based pagination over offset-based pagi-
nation. If the blog author publishes a new post with ID 31, the second page still
starts with the next oldest post that the user hasn’t read (ID 20), instead of an offset
of 10 posts from the beginning (ID 21). The same applies when a post is deleted.
Thanks to these attributes, cursor-based pagination works very well with infinite-
scrolling user interfaces.

 There’s a downside to cursor-based pagination, however: it isn’t designed for skip-
ping over pages. You can just move from one page to the next and maybe back, but
even if there were a maximum count of results in the response and you could deduce
the number of pages, you couldn’t jump to one of the later pages immediately. This
makes it hard or even impossible to use with traditional pagination designs where
jumping to different result pages is common.

 As you’ve seen in this section, there are a lot of things to consider when designing
pagination. The style may be affected by the type of user interface, so UI designers
should be involved. The defaults and maximum limits for a single page will depend on
the backend, the database, and operations, because the API shouldn’t let consumers
request so much data that it violates internal constraints or request timeouts. Hence,
the whole team should be involved in the API design, which again drives home the
importance of API design–first and using a single source of truth that’s accessible to
the whole team.

17.5 Pagination for PetSitter
We’re back in José’s office now. As he doesn’t feel strongly about the type of user
interface or the need to jump to specific pages, he left the decision about the pagi-
nation approach to his developers. Max is willing to work with any approach and
believes that the external mobile developers and eventual public API consumers
would probably accept both too.

 Even though the backend architecture shouldn’t necessarily prescribe the API
design, Nidhi does some research into implementing pagination with MongoDB, the

What are keyset and seek pagination?
Keyset and seek pagination can be considered “lazy” variants of cursor-based pagi-
nation. The API backend only supports a limit parameter and asks the API consumer
to figure out how to find the next page through filter parameters. For example, the API
client would look at the ID or the date of the last item on the first page and use filter
parameters like created_before, since, or before_id to get the next page. To pro-
vide a better developer experience, we recommend using an explicit cursor or next
attribute in the result so that API consumers don’t have to figure things out and only
need to pass the parameter.

295Pagination for PetSitter
database management system she used to implement the PetSitter backend (see chap-
ter 13). As it’s important to remain consistent, choosing a pagination approach that is
difficult to implement or doesn’t scale well with larger sets of data would be a prob-
lem. If the team decides on a different pagination approach later, every API consumer
will need to adapt their code.

 As Nidhi looks into MongoDB, she finds that it supports the limit() and
skip() operations in its interface. As skip() is just an offset by another name,
implementing offset-based pagination would be easy. However, she also learns that
skip() can become slow and inefficient for larger datasets, due to the way that
MongoDB works internally. That may not be a problem now, but it may eventually
become one, so if the team decides to use offset-based pagination, they may have to
solve this later, such as by adding some sort of index system on top of the database.
Building a cursor-based pagination system that uses MongoDB’s ObjectId is appar-
ently more efficient.

 It’s also possible to combine different styles of pagination. For example, you could
support an offset query parameter but also provide a cursor as part of the response.
While this provides the most flexibility for the API consumer, it also makes the API
design more complex. That, in turn, negatively affects the developer experience. The
PetSitter team doesn’t want that either.

17.5.1 Adding pagination to OpenAPI

Eventually, Nidhi and Max decide to use cursor-based pagination for PetSitter. To
recap, for cursor-based pagination, we need at least the following:

 A limit parameter, so that the API consumer can decide how much data they
want. This parameter always has an integer data type. The API provider also
decides on a default and a maximum value for the parameter. For PetSitter,
backend developer Nidhi cannot say yet how much load her system can with-
stand, so she recommends being conservative and setting small values for these.
Eventually, the developers agree on a default of 20 and a maximum of 100.

 A cursor parameter that the API consumer can pass with every request, except
the first, to decide from which point they want additional items. In general, this
should be a string.

 A cursor attribute in the response, which indicates that more items are avail-
able and how to get them. As the cursor in the response is the input for the next
request, it needs the same data type: string. The team decides that the value
should be null if there are no further results, so they add nullable: true.

With these initial decisions made, it’s time to add the parameters. There are already
some parameters—our filters—defined for the API operation GET /jobs, so we can
now extend this list with two additional entries.

296 CHAPTER 17 Scaling collection endpoints with filters and pagination
openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:
 #...
 get:
 tags:
 - Jobs
 summary: List/Search Available Jobs
 operationId: listOrSearchAvailableJobs
 parameters:
 #...
 - name: limit
 in: query
 description: The maximum number of results to return.
 schema:
 type: integer
 default: 20
 maximum: 100
 - name: cursor
 in: query
 description: |
 Use the cursor from the response to access more results.
 schema:
 type: string

We also have to touch the responses part of the same API operation to add the cur-
sor to the inline schema object next to the items array. Here’s what that looks like.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:
 #...
 get:
 #...
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 type: object
 properties:
 items:
 type: array

Listing 17.10 PetSitter GET /jobs request with pagination

Listing 17.11 PetSitter GET /jobs response with pagination

Filter parameters are omitted in this listing.

Limit parameter with constraints.

Cursor parameter

Omitted the request
configuration in this
listing

Inline response
schema to modify

Existing items array

297Designing sorting
 items:
 $ref: '#/components/schemas/Job'
 cursor:
 type: string
 description: Cursor for the next result page.
 nullable: true

Awesome, we’ve included pagination in our API design for the GET /jobs endpoint,
which covers the “Show more” action in the Job concept of our domain model.

17.5.2 Extending our request example

As we’ve mentioned before, API consumers can combine filters and pagination. Let’s
take the sample request from section 17.3.3 and add a limit parameter:

curl -H "Authorization: {Auth}" "https:/ /petsitter.designapis.com/jobs \
 ?start_time_after=2022-07-01T00:00:00+00:00 \
 &end_time_before=2022-07-31T00:00:00+00:00&pets[species]=Cat&limit=10"

This time, the result also includes a cursor:

{
 "items" : [
 //...
],
 "cursor" : "507f1f77bcf86cd799439011"
}

With that cursor, the API consumer can make a subsequent request:

curl -H "Authorization: {Auth}" "https:/ /petsitter.designapis.com/jobs \
 ?start_time_after=2022-07-01T00:00:00+00:00 \
 &end_time_before=2022-07-31T00:00:00+00:00&pets[species]=Cat \
 &limit=10&cursor=507f1f77bcf86cd799439011"

Last but not least, let’s discuss sorting.

17.6 Designing sorting
Just like filters and pagination, sorting helps API consumers get the data they need in
the most efficient manner. Every collection requires an order in which the API
returns the resources. The items element that we used for collection endpoints
when designing the PetSitter API is an array, which is, by definition, an ordered list—
there’s always a default sort order. Even if, for some odd reason, the underlying database
doesn’t have an order, you’d probably define one in your API. What we want to discuss
in this section is whether consumers can instruct the API to change that order and how.

NOTE There are data structures like sets that don’t have an order, or where
the order doesn’t matter, but they aren’t relevant for collection endpoints in
CRUD APIs—they always use array, an ordered structure.

New cursor
parameter

298 CHAPTER 17 Scaling collection endpoints with filters and pagination
In general, if we want to give instructions for sorting, we need to specify two inputs:

 The field or property that we want to use as the sorting key
 The desired direction for sorting

Let’s unpack those. In CRUD APIs, the schemas for resources are typically compound
data structures with the object type. There is no inherent order for these structures,
so we need to choose a property with a simple data type like string or number to sort
by. For example, if we take the PetSitter User schema, we could use the full_name
property and sort users by their names. The direction for sorting is generally specified
as either ascending or descending, and what each direction means depends on the data
type. For numbers, the meaning is obvious, and for strings it generally refers to alpha-
betical order. For date and time fields, the direction is either from oldest to newest
(ascending) or from newest to oldest (descending).

NOTE Sorting has a straight mapping to SQL much like offset-based pagina-
tion does: SELECT * FROM collection ORDER BY field_name ASC.

Let’s go back to our example of paginating blog posts. The expectation is that the user
wants to see the newest posts first. Hence, a descending sort on a field indicating the
creation date would make sense as the default. For simplicity, the blog might also give
an incrementing ID to each post, so returning posts with a descending ID order would
have the same effect.

 However, imagine an API client that wants to find the oldest post. If there’s a small
number of posts, enough to fit on one page, they could just retrieve them all in one
API call and pick the last item. If there’s more content, however, they would have to go
through all the result pages until they reach the last page. By adding a parameter to
indicate that they want to get the oldest posts first, they could achieve the same thing
in a single API call. This example illustrates that sorting is most useful when combined
with pagination, and it’s especially useful with cursor-based pagination, where it’s
impossible to skip ahead.

17.6.1 Single-field sorting

As with filters and pagination, we have to face the challenge of mapping the two
inputs for our sorting algorithm in a key/value pair. The most common solution we’ve
seen in the wild is a single query parameter, typically named sort or sort_by. As its
value, the API expects the field name, suffixed or prefixed with an indicator for the
direction. Here are some examples of what the query might look like:

 sort_by=name:asc, sort_by=name:desc
 sort=+created_at, sort=-created_at

Another option is to separate field and direction into two different parameters,
removing the need for a separator character (like “:”):

 sort_by=name&order_by=asc, sort_by=name&order_by=desc

299Designing sorting
The version with two parameters will require you to think about the behavior when
the API consumer provides just one parameter but not the other. You could choose to
reject requests where one parameter is missing, but you could also decide to make
one direction, such as ascending, the default if there’s just sort_by but no order_by
in the request.

17.6.2 Multifield sorting

There may also be a requirement to use multiple sort parameters. For instance, if you
have a database of contacts, you may want to sort them by the city they live in, and
within a city you might also want to sort them alphabetically by name. If you need to
support this kind of behavior, you’ll require another separator character (like “,”).
Then, your API could look like this:

sort_by=city:asc,name:asc

When there are multiple sorting keys, separating them and the order in different
query parameters makes no sense, so that option is taken off the table.

NOTE OData and JSON:API also use a single parameter. OData calls it
$orderby and JSON:API uses sort. Both specifications support sorting with
multiple fields (comma-separated) as well. OData requires the Asc or Desc
suffix for field names. JSON:API makes ascending the default and asks for a
minus (“-”) as the prefix if the order should be descending.

As you can see, the design of sorting parameters can get quite involved. Before you
make choices for the APIs you design, there are a few things you should keep in mind.

 As usual, API design starts with customer requirements, and you should only add
to your API what your customers need. There’s no need to overcomplicate things and
hurt your developer experience without having a strong use case.

 Also, as we mentioned earlier, there’s no native way in OpenAPI to document com-
plex strings like city:asc,name:asc (except maybe with regular expressions, but they
only cover syntax and not semantics). This means you may have to rely on prose in the
description to explain your format to developers. As a result of it being prose, there
are no tools to assist developers.

17.6.3 Consistency throughout parameter types

Consistency, as usual, is the crucial part of parameter design. It means that not only
should your sorting parameters look the same for every endpoint, they should also
feel consistent with other parameters, such as filters. To understand what that means,
have a look at the following API call parameter strings and think about how they “feel”
before reading on:

1 created_before=2020-07-01&sort_by=author&order_by=desc

2 created=lt:2020-07-01&sort=author:desc

3 created=<2020-07-01&sort=-desc

300 CHAPTER 17 Scaling collection endpoints with filters and pagination
4 created=<2020-07-01&sort_by=author&order_by=desc

5 created.lt=2020-07-01&sort_by=-author

6 created=lt:2020-07-01&sort_by=-author

7 created=<2020-07-01&sort_by=author:desc

8 created=lt:2020-07-01&sort_by=author.desc

The first three options follow a certain style throughout all parameters used in the
query. If we wanted to describe each of these lines, we might want to do it like this:

1 Long, nicely human-readable keys, avoiding special characters
2 Putting all details in the value part with keywords (lt, desc) and a consistent

separator (:)
3 Similarly putting details in the value part, using single special characters as pre-

fixes (<, -)

For the other five, there is no specific style; the naming conventions, special charac-
ters, and separators are used in inconsistent ways. We won’t discuss them in detail, but
we believe that any of the first three—no matter which style you prefer—provide a
more joyful developer experience.

 Again, at the risk of sounding like a broken record, your API design need not be
a direct reflection of your backend and your database, but you must obviously sup-
port the capabilities. As with filters, you may need indexes in your database to effi-
ciently support queries with sorting, and you generally won’t want to index your
database on all fields. Also, once you’ve added a capability to your API, it’s impossi-
ble to remove it without breaking at least one integration, because someone will rely
on it. That means it’s probably better to err on the side of offering fewer capabili-
ties, such as only supporting some designated fields for sorting. You can always add
more sorting options later.

NOTE We’ve shown how API parameters can map to SQL parameters in the
backend, but that doesn’t mean you should blindly convert all input into a
database query. Beware of SQL injections!

17.7 Sorting for PetSitter
For sorting, the PetSitter team needs to identify the properties that can be used as
sorting keys and decide on a format for the sort parameters. As in previous sections,
we’ll only look at the GET /jobs endpoint for this sprint.

17.7.1 Finding sorting fields

All fields from the Job and Pet schema are potentially relevant for sorting. Nidhi and
Max decide to go through the fields in the same way they did for filters.

SORTING ON THE ID FIELD FROM JOB

As PetSitter doesn’t use auto-incrementing numeric IDs, the IDs are arbitrary strings
from the user’s perspective. Even if they have an alphabetic order in the underlying

301Sorting for PetSitter
database, this is an implementation detail that could change. If the API consumer is
interested in newly added jobs, it would make more sense to filter on a field like
created_time, but there is no such field in the Job schema. As long as that’s the case,
there will be no sorting for IDs.

SORTING ON THE CREATOR_USER_ID FIELD FROM JOB

Much like id, there isn’t necessarily any semantic meaning to the creator_user_id
identifier. Even if there were, there is no use case for sorting on users.

SORTING ON THE START_TIME AND END_TIME FIELDS FROM JOB

Pet sitters may look for jobs starting soon or may plan in advance. In combination with
a filter for start_time, using start_time as a sort criteria makes sense, so we’ll allow
it. For consistency with the filters we created for end_time, we should also allow sort-
ing by end time.

SORTING ON THE ACTIVITY FIELD FROM JOB

As we explained earlier, activity is a free-text field. While there may not be any pre-
defined terms, sorting on activity can help group together terms, such as “walk” and
“walking.” Sorting alphabetically makes sense here.

SORTING ON THE NAME, AGES, AND SPECIES FIELDS FROM PET

The PetSitter team is unsure about the use cases for sorting on pets[name], pets
[ages], or pets[species]. To keep things simpler for now, we will not add sorting on
any Pet field.

17.7.2 Designing the sort parameter

When designing the sort parameter, we need to decide on its name, whether to use
one or two parameters, how to identify the direction, and whether to allow multiple
sorting keys in one request. So far we have decided to allow sorting on start_time,
end_time, and activity.

 With only three sortable fields, we don’t necessarily need multifield sorting (sec-
tion 17.6.2); including single-field sorting in our API should be enough. Still, there’s a
potential future use case when we have more fields that we could use for sorting, so
we’ll use a single sort parameter—two parameters (one for the key and one for the
direction) wouldn’t work well if we need to support multifield sorting later. This is a
great example of forward-thinking API design.

 The PetSitter team decides to name the parameter sort—no frills! They also
decide to use :asc and :desc as the suffixes.

17.7.3 Adding sorting to OpenAPI

To integrate sorting into the OpenAPI definition, we just need to add a single param-
eter to the existing parameter list for the GET /jobs operation. The parameter is a
string, and we won’t provide any constraints; instead we’ll rely on the description to
explain how it works.

302 CHAPTER 17 Scaling collection endpoints with filters and pagination
openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:
 #...
 get:
 tags:
 - Jobs
 summary: List/Search Available Jobs
 operationId: listOrSearchAvailableJobs
 parameters:
 #...
 - name: sort
 in: query
 description: |
 Indicate the sorting key and direction for the results.
 Use the field name, suffixed with ":asc" for ascending
 or ":desc" for descending order.
 Valid fields: start_time, end_time, activity
 schema:
 type: string

17.7.4 The final request example

Once again, let’s extend the sample request that we created for filters (section 17.3.3)
and pagination (section 17.5.2). Imagine our cat sitter primarily wants to find jobs
ending late in the month that he selected with filters. He can add sorting for end_time
in descending order, in addition to the existing parameters:

curl -H "Authorization: {Auth}" "https:/ /petsitter.designapis.com/jobs \
 ?start_time_after=2022-07-01T00:00:00+00:00 \
 &end_time_before=2022-07-31T00:00:00+00:00&pets[species]=Cat&limit=10 \
 &sort=end_time:desc"

This time, the API will return jobs ending late in the month first:
{
 "items" : [
 {
 "start_time" : "2022-07-20T10:00:00+00",
 "end_time" : "2022-07-30T22:00:00+00",
 //...
 },
 //...
],
 "cursor" : "addedfeed000000000000000"
}

Listing 17.12 PetSitter List/Search Available Jobs

303Summary
Summary
 Filtering, pagination, and sorting give API consumers the ability to control the

results that the API returns, how many resources are included in the collection
per request, and how to sort them. In CRUD-style APIs, query parameters
should be optional for collection endpoints. This way, API consumers can add
any combination of these three features to their API calls.

 Not every endpoint needs these parameters, and it’s not necessary to allow fil-
tering and sorting for every field. As part of the API design process, API provid-
ers should choose the parameters that they believe their API consumers need
and that they can continually support, even when the backend of the API
changes. For PetSitter, we added filters, pagination, and sorting for the GET
/jobs endpoint, using a subset of fields from the Job and Pet schemas.

 Filters are typically query parameters named after fields. Wherever it doesn’t
make sense to only filter for explicit values, it’s necessary to add suffixes to the
field names or use a specific value syntax to allow upper and lower bounds.

 Pagination can either be offset-based or cursor-based. Both options have their
advantages and disadvantages. For PetSitter, we chose cursor-based pagination.

 Sorting typically requires a single parameter, in which the field to sort by is suf-
fixed by the direction—ascending or descending.

 There are a lot of ways to design parameters, and there isn’t a single right or
wrong answer when it comes to parameter naming, ranges, and so on. For a
great developer experience, the crucial aspect is to create a parameter design
that follows a recognizable overall style and therefore feels internally consistent.

Supporting the unhappy
path: Error handling

with problem+json
As we have designed and implemented the PetSitter API, we’ve mostly looked at
the happy path, which is when everything works according to plan and things are
200 OK. Obviously we want the interactions between our API and its users to be on
this path as often as possible, but we cannot always guarantee that. In this chapter
we’ll look at the ways things can go wrong and how to handle those situations.

 The OpenAPI definition of an API is a contract that both sides, client and
server, have to follow. If you look outside the field of technology and into contracts
as legal documents, you’ll notice that they don’t just describe the happy path. In
fact, the greater part of the legalese in the document usually describes all the
potential problems and how to mitigate them. It’s when things go wrong that con-
tracts are the most relevant. Error handling is equally important.

This chapter covers
 Finding and categorizing API errors

 The error-handling format from the OAS tools
library

 The problem+json format

 Adding error responses to the PetSitter OpenAPI
definition
304

305The problem
 The same process that developers use to collaborate on the happy path, which
includes designing schemas and API operations, can and should also guide their
approach toward error handling. Each developer can bring their perspective to the
table (and so can non-developers involved in the API design process).

 In this chapter we’ll look at why error handling is crucial and at the negative
effects of not having proper handling. Then we’ll attempt to categorize types of
errors and look at the API operations in our PetSitter API to find out which errors
could occur for each of them. We’ll also talk about the requirements for useful
error responses.

 Because we get some error handling from the OAS tools in the PetSitter back-
end, thanks to Swagger Codegen, we’ll discuss that format and see if it fulfills our
requirements. For additional error handling we’ll introduce the problem+json for-
mat. At the end of the chapter, we’ll have documented the error responses in the
PetSitter OpenAPI definition. We’ll conclude with some advice on implementing
error handling.

18.1 The problem
It is a fact of life that things can go wrong. We cannot always avoid failures, but we
should make sure that we notice them, recover, and find ways to fix them. This applies
to technology in general and to the world of APIs in particular.

 Let’s look at a specific example in PetSitter. The first thing a user needs to do to
use the software is to register an account. What does this look like from a user’s
point of view, ignoring the implementation details and the API for a moment? They
go to the PetSitter website, enter their details into a registration form, and submit
that form. The system informs them that they registered successfully and can log
in. That is the happy path.

 It’s also possible that registering an account fails. Let’s consider a few reasons why
we may have entered an unhappy path:

 The user did not fill all the required inputs.
 The user entered some invalid information, such as a malformed email address.
 The user entered an email address that already exists in the system and can-

not register again.
 There’s a bug in the frontend code.
 There’s a bug in the backend code.
 The backend is temporarily unavailable, perhaps because of a redeployment or

due to maintenance work.
 The database crashed.
 A router in the datacenter crashed.
 The user’s internet connection stopped working, perhaps because they moved

out of Wi-Fi coverage.

306 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
Wow, so many unhappy paths! I’m sure you could make this list even longer (try it, if
you want). But don’t let this discourage you. Some of these problems are quickly fixed
by the user. For example, they could complete the form or fix a typo in their email
address in seconds and then retry. It would be helpful for them, though, if they knew
which field was missing or invalid.

 If a user registers with an existing email address, they should see a message indicat-
ing that they cannot register again. Maybe the user just forgot that they registered an
account for PetSitter before? We can point them in the right direction, such as by ask-
ing them to log in to their existing account.

 There are other problems that the user cannot fix, such as when there are bugs in
the code, or the server infrastructure has problems. In that case, however, the user will
be less frustrated if the application can tell them it’s not their fault and that they
should wait and try again later.

 In any case, the most negative user experience would be if they saw a vague message
along the lines of “Something went wrong” (regardless of which unhappy path they’re
on); if they entered an unexpected state inside the application; if they got a blank screen;
or, even worse, if they were left with the impression that everything went well.

 The first user of an application is the developer who creates it. In a web application
like PetSitter, where a backend and a frontend developer work separately to build
their parts, the frontend developer is both the first user of the frontend and the first
consumer of the backend developer’s API. If something goes wrong while they’re test-
ing the application, they have to ask themselves a few questions:

 Did I do something wrong as a user?
 Is there a bug within my code that I have to fix?
 Is there a bug in the backend API? Does it behave differently from the mock

server I used before, and do I have to report that to the backend developer?

Without error handling, it is difficult for the frontend developer to answer these
questions, so they get stuck and waste additional time debugging. To solve this prob-
lem and get the developer (or any API consumer) unstuck, error handling is already
essential during development and shouldn’t be an afterthought. As a first step
toward the solution, we will try to categorize the potential issues so we can tackle
error handling strategically.

18.2 Error categories
If we look at interactions with APIs, we can find three general types of errors:

 Client errors—The user made a request that the API doesn’t understand or can-
not fulfill, such as a call to an undefined API operation, a request for a nonexis-
tent resource, an invalid authentication, or a request body that doesn’t conform
to the schema that the operation requires.

 Server errors—The user made a perfectly valid API request, but something is
wrong with the API itself or its underlying infrastructure. For example, perhaps

307Error categories
there is a lack of server-side resources like memory, an unavailable dependency
like a database, or a bug in the (server-side) code.

 Network errors—The transmission of the API request or API response between
client and server failed.

If you want, you can look at the list of issues from the previous section and try to
group them into these three categories. While network errors are important to
keep in mind, they are outside the scope of API design and development, so we
won’t cover them in this chapter. We’ll also mostly gloss over server errors, because
their cause is usually a bug in the code or faulty infrastructure—things unrelated to
API design. Both of these error types can also indiscriminately affect every API
operation. As there’s sometimes no clear distinction between server errors and net-
work errors, don’t get caught up in their differences—you can put them in the
same bucket if you want. For the remainder of the chapter, our focus will be on cli-
ent errors.

18.2.1 Finding unhappy paths

If we want to understand which API operations can cause which client errors, one
way to go about it is to look at each of them individually and ask ourselves what
could go wrong. Our plan is to collect various client errors and then establish a sys-
tem of categorization. The following list identifies all PetSitter operations with
their potential problems:

 POST /register potential errors:
– Malformed input (e.g., no JSON or invalid JSON), missing fields, or invalid

data types
– User already exists

 GET /users/{id} potential errors:
– User does not exist
– User is not allowed to access another user

 PUT /users/{id} potential errors:
– Malformed input (e.g., no JSON or invalid JSON), missing fields, or invalid

data types
– User does not exist
– User is not allowed to access another user

 DELETE /users/{id} potential errors:
– User does not exist
– User is not allowed to access another user

 POST /jobs potential errors:
– Malformed input (e.g., no JSON or invalid JSON), missing fields, or invalid

data types
– User is not allowed to create a job because they don’t have the “pet owner” role

308 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
 GET /jobs potential errors:
– Invalid input for the query parameters we added in chapter 18 (to support

filters, pagination, and sorting)
 GET /jobs/{id} potential errors:

– Job does not exist
 PUT /jobs/{id} potential errors:

– Malformed input (e.g., no JSON or invalid JSON), missing fields, or invalid
data types

– Job does not exist
– User is not allowed to modify the job, and they are not an admin

 DELETE /jobs/{id} potential errors:
– Job does not exist
– User is not allowed to delete the job, and they are not an admin

 GET /jobs/{id}/job-applications potential errors:
– Job does not exist

NOTE Is it an error if the job has no applications? In chapter 10 we stated
the following: “For collection endpoints, every API call should return status
code 200, even if the collection is empty.” Therefore, no, we won’t consider
that an error, and we’ll return a collection with no items as our success
response.

 POST /jobs/{id}/job-applications potential errors:
– Malformed input (e.g., no JSON or invalid JSON), missing fields, or invalid

data types
– Job does not exist
– User is not allowed to apply for the job because they don’t have the “pet sit-

ter” role or it is a job they posted themselves
 GET /users/{id}/jobs potential errors:

– User does not exist
– User is not allowed to access another user

NOTE As mentioned before, an empty collection is not an error.

 PUT /job-applications/{id} potential errors:
– Malformed input (e.g., no JSON or invalid JSON), missing fields, or invalid

data types
– Job application does not exist
– User is not allowed to modify the job application (because it’s not theirs and

they are not an admin)

309Requirements for error responses
 POST /sessions potential errors:
– Malformed input (e.g., no JSON or invalid JSON), missing fields, or invalid

data types
– Invalid credentials

18.2.2 Common error patterns

Looking at the list in the previous section, we can identify four major groups of cli-
ent errors:

 Structurally invalid inputs, such as missing fields or malformed data
 Semantically invalid inputs, such as a user trying to register when they’ve already

registered
 Requests for resources that don’t exist
 Permission issues (wrong user role or missing access grants)

When we decrease the number of groups from four to three by subsuming both
invalid input types into one, each group corresponds to a common HTTP status code
from the client error range: 400 Bad request for invalid input, 404 Not found for non-
existent resources, and 403 Forbidden for permission problems.

 We can also recognize patterns concerning the type of API operations where these
errors occur. Invalid input errors can happen in every write operation that requires a
request body—operations that use the POST, PUT, or PATCH methods. They also occur
in GET requests that support query parameters. Nonexistent resources are common
errors for individual resource endpoints with a path parameter identifying a specific
resource, and they affect every operation (GET, PUT, DELETE). They also appear in sub-
resource collection endpoints if the original resource doesn’t exist, but not if the col-
lection is empty. Finally, permission issues can arise for every resource, collection, and
endpoint, depending on the business logic for the permission system of the applica-
tion. We’ve summarized all these error types in table 18.1. Later in this chapter we’ll
look at the error codes for each method.

18.3 Requirements for error responses
Whenever an API fails gracefully, it should return a useful error response to the API
consumer. Our next step is to look at the requirements for designing error responses
that support developers when they get stuck integrating an API, so they can get
unstuck and return to the happy path.

Table 18.1 Common API client errors

Status Description Occurrence

400 Invalid input POST and PUT; GET with query parameters

403 Access forbidden Any endpoint with permission-related business logic

404 Resource not found Individual resource endpoints and subresource collection endpoints

310 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
 First of all, an error response should be clearly distinguishable from a successful
response. HTTP status codes help make this distinction. Successful responses (includ-
ing redirects) have status codes ranging from 200 to 399, whereas errors have status
codes ranging from 400 to 599.

 Next, both success and error responses should have the same data serialization for-
mat. Most APIs, including all those we created or discussed in this book, use JSON for
responses. Using the same format reduces the effort required by the consumer to
understand different formats; they can run every response through a JSON parser and
then work with the result. Also, malformed JSON can be treated as an unexpected
error in the same way as a network error.

 Finally, the data structure (the JSON Schema) should be similar for all error
responses. Let’s look at a fictitious API with two error responses that demonstrates
how not to do it. The first is a nonexistent resource.

curl "https:/ /example.com/api/resources/nonExisting"

{
 "error": "Path /resources/nonExisting not found."
}

The next is an invalid input.

curl -d "email=test@example.com" "https:/ /example.com/api/resources"

{
 "code": "invalid_field",
 "field": "email"
}

Having a common and consistent structure helps the API consumer because they
can reuse more of their error-handling code. In listing 18.1, there’s a field called
error, but then in listing 18.2 it’s called code. What should the developer look for?
Also, do these error messages convey enough information, or can more be added to
help the developer?

 An error response should have a field with a human-readable error message
describing the error in an understandable way (listing 18.1 has one, but listing 18.2
doesn’t). Optionally, the error message could come in a short version, such as a single
sentence, and a longer description with explanations about how to fix the error.
Including a human-readable error message has the following advantages:

 The developer consuming the API can immediately understand what’s hap-
pening, even if they don’t understand the rest of the error response or the
HTTP status code.

Listing 18.1 Request/response example for bad error handling 1

Listing 18.2 Request/response example for bad error handling 2

311Requirements for error responses
 In many cases, the default behavior for error handling—at least for client errors,
which are likely caused by user input—is to display this message verbatim to the
end user, so they can also understand what’s wrong.

Including a human-readable message is, however, not sufficient for a great error
response, because things that are easy for humans to understand are often rather
difficult for machines to understand. Which machines could be interested in under-
standing errors?

 The client-side code, if it doesn’t just want to relay the error message but imple-
ment some additional error handling. For example, if a field is missing input, it
can highlight the field in the UI by adding a red frame or underlining the input.

 An API gateway or proxy that stands between the client and the server, or an
API testing or monitoring system that wants to create and analyze log files to
indicate how often particular errors occur in an API.

There are various ways to create groups of errors so they can be handled in particular
ways or can be distinguished in log files. HTTP status codes are a helpful first step, but
they are not granular enough. For example, a 404 Not Found response could mean
either that a certain path doesn’t exist in the API or that a resource was not found.

 While introducing the problem in section 18.1, we looked at the use case of a per-
son registering a new PetSitter account and at all the things that could go wrong. For
this API operation, we can consider the following questions to which the error
response could be machine readable:

 What’s the overall type of error? The 400 Bad Request status code indicates that
something is wrong with the client input. Specific types could be “Missing field,”
“Invalid syntax for field,” “Duplicate data,” and so on (a common code like
"invalid_field" in listing 18.2 works well).

 Which field is the error related to? The answer could be “email,” “name,” etc.,
which allows the client-side code to point the user to the input for that field
(the field property in listing 18.2 seems useful).

 What exactly is wrong with the field? The answer could be “too long,” “too
short,” “missing an @,” “already exists in database,” “on a blocklist,” etc.

If we want to answer these questions without applying natural language processing to
the human-readable error message, we should accompany the message with a set of
structured data in a consistent format. What would be an appropriate schema though?

 In this chapter we’ll look at two formats:

 The error format that’s built into the OAS tools, used by the error handling we
get for free from using Codegen.

 An open standard called “Problem Details for HTTP APIs,” specified in RFC 7807
(https://datatracker.ietf.org/doc/html/rfc7807). We’ll call this problem+json
(short for the media type of application/problem+json).

https://datatracker.ietf.org/doc/html/rfc7807

312 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
If you design and implement an API from scratch and you have enough resources, the
gold standard to aim for would obviously be a single error format. That way, all errors
have a consistent schema. For PetSitter, however, we’ll ignore our own advice and use two
formats. The PetSitter team can justify this as a pragmatic decision that allows them to
reuse the error handling from Codegen and the OAS tools, which we discussed in chap-
ter 13, but also follow a well-defined standard for their custom error messages. Also, from
our perspective as authors of this book, we believe there’s educational value in teaching
you both these formats. We’ll take a look at each in turn.

18.4 The OAS tools format
We used Codegen to autogenerate a backend implementation from our OpenAPI defini-
tion, and we got some functionality from this process for free, such as input validation.
On top of that, we can expect any web application framework to handle nonexistent
paths or unsupported API operations. Back then, we didn’t focus on the format of these
error messages, but now that we’re talking about error handling, we should analyze how
these error messages are created and whether they fulfill the requirements we outlined
in the previous section. If you’ve created or tested the autogenerated backend code from
chapter 13, you have likely seen some of these error responses already.

NOTE It is possible that newer versions of Codegen or the OAS tools will
implement a different format. The examples in this chapter are from a Code-
gen project that used oas3-tools version 2.2.3.

Let’s look at operation-related errors first. Try the following:

 Make a request to a nonexistent route, such as GET /pets.
 Make a request to an existing route but with an unsupported verb, such as

DELETE /users.

{
 "message": "not found",
 "errors": [
 {
 "path": "/pets",
 "message": "not found"
 }
]
}

{
 "message": "DELETE method not allowed",
 "errors": [
 {

Listing 18.3 PetSitter response to GET /pets—HTTP/1.1 404 Not Found

Listing 18.4 Response to DELETE /users—HTTP/1.1 405 Method Not Allowed

313The OAS tools format
 "path": "/users",
 "message": "DELETE method not allowed"
 }
]
}

If you look at these responses, they tick a lot of boxes:

 They contain the HTTP status code we expect (not in the body, but in the
HTTP headers, which aren’t shown in the examples).

 They are in JSON, just as the successful responses are.
 Both have a consistent schema. In this case, it contains message and errors fields.
 There is a human-readable error message. It’s found in two message fields, one

on the root level and one for the individual error in the errors array. In the 404
and 405 examples, both message fields contain the same text. It feels redun-
dant, but you’ll soon see an example where it is different.

Now let’s look at an input validation error. We’ll reuse the sample from chapter 13 in
which we called the Register User action located at POST /users, but we’ll send a
string instead of the expected array for the roles field:

{
 "full_name": "John Doe",
 "roles": "PetSitter",
 "email": "john.doe@designapis.com"
}

As expected, we get a 400 response.

{
 "message": "request.body.roles should be array",
 "errors": [
 {
 "path": ".body.roles",
 "message": "should be array",
 "errorCode": "type.openapi.validation"
 }
]
}

On the surface, this looks roughly the same as the two previous error responses. An
interesting aspect is the path field, which now doesn’t refer to a URL but to a position
within a JSON request body. The syntax is based upon the JSONPath standard
(https://goessner.net/articles/JsonPath/).

Listing 18.5 Response to invalid POST /users—HTTP/1.1 400 Bad Request

The JSONPath pointing to
the faulty request field

A short and specific
error description
related to the fieldA code that identifies this

as a validation error

https://goessner.net/articles/JsonPath/

314 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
 Also, there is a message field with a human-readable error description, and there’s
an errors array. The item inside errors provides an errorCode field with a specific
type identifier called type.openapi.validation so that clients can immediately
understand that this is a validation error and connect all validation errors, regardless
of path and message, with the same error-handling implementation. A point worthy
of criticism is that the errorCode was absent from the errors array for the 404 Not
Found and 405 Method Not Allowed responses, so there’s no full consistency here. Still,
the format fulfills enough of our expectations. Also, we’re now seeing how the mes-
sage on the root level and for the individual error are different; the outer message is a
full description, whereas the inner only makes sense in combination with other infor-
mation such as path. Hence, if we only focus on the human-readable message, we
should use the outer one.

 We summarized the fields we’ve observed in these error messages in table 18.2 and
the schema for each error in the array in table 18.3.

We’ve looked at the schema for errors handled by the OAS tools. As mentioned
before, we won’t use the same for our custom error handling, so let’s move on to the
other format.

18.5 The problem+json format
The “Problem Details for HTTP APIs” specification, published in RFC 7807
(https://datatracker.ietf.org/doc/html/rfc7807), exists as a minimal but extensible
standardized approach toward error responses. It has XML and JSON serialization,
though we’ll only consider the JSON version here. The specification suggests setting
the Content-Type to application/problem+json instead of application/json for
error responses as an additional indicator that it’s an error response and that it’s fol-
lowing a specified standard. Therefore, we’ll call the format problem+json. In chapter
20 you’ll learn more about custom content types like that.

Table 18.2 OAS tools error schema

Field Type Description

message string Human-readable error message describing the full error

errors array List of errors (see subschema)

Table 18.3 OAS tools error subschema

Field Type Description

path string For input validation errors, identifies where in the JSON request
body the error occurred. Otherwise, the URL path.

message string Human-readable error message describing the specific error.

errorCode string Code indicating error type.

https://datatracker.ietf.org/doc/html/rfc7807

315The problem+json format
 As with all API-related best practices and open standards, using them helps with
API design consistency not just within the scope of a single API but also among multi-
ple APIs in an organization or even across various API providers. We recommend
using this format for error responses whenever possible.

 The problem is serialized as an object with several well-defined fields, which we’ve
listed in table 18.4.

There are a few interesting things to note about the schema:

 It uses URIs for the type and instance fields. One advantage of URIs is that
they are globally unique identifiers. The other advantage is that they can be
“dereferenced,” which is a fancy way of saying that you can put them in a
browser and retrieve a page with information. For example, you could create a
URI that identifies a certain problem and, at the same time, links to an API doc-
umentation page on your website or developer portal that has additional infor-
mation about the type of error. The format we discussed in the previous section
had a similar notion of a unique type identifier with the errorCode field, but it
used string tokens like type.openapi.validation instead of URIs.

 The human-readable part of the error comes in two parts: a short title and a
longer detail field. The format we discussed in the previous section only had a
single message field for this purpose.

 The JSON structure contains a copy of the HTTP status code. In most cases, this
information is redundant because that code should be identical between the
HTTP header and the JSON body. In other cases, however, if someone in
between the API and its consumer tampers with the HTTP protocol, you can
retrieve the code from the body.

Developers can extend the format with additional fields. They can provide more
machine-readable information, and the type URI should define the semantics for
interpreting these fields. The specification for the problem+json format does not go
into further details.

 These problem responses tick all the boxes laid out in our requirements: they are
in JSON, just like the successful responses; they are applicable consistently for different

Table 18.4 JSON schema for problems

Field Type Description

type string A URI describing the type of the error

title string A short, human-readable title for the error

status integer The HTTP status code

detail string A human-readable longer explanation of the error

instance string A URI identifying the occurrence of the problem

316 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
types of errors; and they contain a human-readable error message. To look at an
example for a failing request in PetSitter, we’ll use curl to make an API request to GET
/jobs/{id} with a job ID that doesn’t exist:

curl -H "Authorization: {Auth}" \
 "https:/ /petsitter.designapis.com/jobs/nonExistingJobId"

And this is what the problem response body looks like for the request we just made:

{
 "type": "https:/ /petsitter.designapis.com/problem/not-found",
 "status": 404,
 "title": "Job not found."
}

Now that we have our two schemas, it’s time to include them in our OpenAPI definition.

18.6 Adding error responses to OpenAPI
When you design API operations, you add them under the paths attribute in your
OpenAPI file with the URL path and the HTTP method. For each API operation,
there is a responses field. So far in this book, we have always added a single entry in
responses, typically named 200 for the 200 OK status code. At some points we also used
201 Created and 204 No Content status codes, which still belong to the success range.
Then, within that response, we added the content field, which either included an
inline schema or a reference (using $ref) to a common reusable schema from the
components section of the OpenAPI file.

 To support an unhappy path, or, more precisely, different unhappy paths, we can
add any number of additional responses as part of the responses object. Consider-
ing that the OpenAPI specification uses the HTTP status codes as keys in that object,
we can describe exactly one response for every status code. On top of that, we can
use the default key to describe a default response, implying that API responses with
an HTTP status code other than those included in the API definition should follow
the default format.

 Of course, we could blindly add a default response for errors to every method
and call it a day. Technically, that would cover everything and the contract would be
valid. Would the contract be useful, though? If we get into the shoes of the frontend
developer, or an API consumer in general, it wouldn’t be. They would know that
something can go wrong (they probably already knew that), but they would have no
idea what problems could occur and which status codes they can expect for each
method. If we want to help the API consumer in writing specific error-handling code,
we should tell them more about the unhappy paths. Also, even if we don’t care about
the developer experience, specific error documentation in OpenAPI also helps the
API provider uphold their side of the contract.

317Adding error responses to OpenAPI
 As we’ve mentioned before, we want consistent error messages throughout our
API. Therefore, it doesn’t make a lot of sense to use an inline schema and copy it into
every operation. Instead, we should create common schemas.

Another thing worth mentioning is that the structure of an OpenAPI definition allows
us to provide error responses in the responses field for all API operations that exist.
However, the specification doesn’t provide a way to describe errors for nonexistent
paths and methods. This means that the 404 (if it means the operation was not found,
not that a resource was not found) and 405 errors from Codegen that we looked at ear-
lier don’t find their way to the OpenAPI file. However, they are no less relevant, and
we should make them consistent with other responses wherever possible.

 Our next steps are to add the two formats we introduced earlier as common sche-
mas, and then add error responses to our paths.

18.6.1 Creating error schemas

All the schemas we’ve created so far were the result of the intricate API design process
that our PetSitter team went through in chapters 9 and 10 (and updated in chapters
16 and 17). For error handling, we don’t have to design schemas, since we can reuse
what’s already out there. For the problem+json schema, we can use the official specifi-
cation as our definition. For the errors thrown by the OAS tools, we can create the
schema from what we observed. We listed all the fields for these schemas in tables 18.2
and 18.4. Now let’s add them to our OpenAPI file.

openapi: 3.0.3
#...
components:
 schemas:
 OASError:
 type: object
 properties:
 message:
 type: string
 description: Human-readable error message
 errors:
 type: array
 items:

Common schemas in external files
We are using $ref to reference components within the same OpenAPI file. It is also
possible to make references to external files or URLs. For example, if you are in an
organization with multiple APIs, and you want to reuse various schemas such as, but
not limited to, error response formats, it makes sense to keep the common elements
in separate files. As we’re working with a single API, we’ll stick to a common schema
within the same file for now.

Listing 18.6 PetSitter OpenAPI with OAS error and problem schemas

Common schema for the
OAS tools error format

318 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
 type: object
 properties:
 path:
 type: string
 description: |
 For input validation errors, identifies where
 in the JSON request body the error occurred.
 message:
 type: string
 description: Human-readable error message.
 errorCode:
 type: string
 description: Code indicating error type.
 Problem:
 type: object
 properties:
 type:
 type: string
 description: URI indicating error type.
 title:
 type: string
 description: Human-readable error title.
 status:
 type: integer
 description: HTTP status code.
 detail:
 type: string
 description: Human-readable error details.
 instance:
 type: string
 description: URI indicating error instance.

Now that we have error schemas that we can reference—OASError and Problem—we
should look at the operations and add the necessary error responses.

18.6.2 Adding errors to operations

We’ve already gone through the operations earlier in this chapter and answered the
question, “What could go wrong?” Based on the answers, we categorized the types of
client errors and the types of API operations where they typically occur. We also
learned that we can rely on the OAS tools for some of our error handling, mainly
input validation, whereas we’ll need to write custom code for others. Finally, we
know now that the errors that OAS tools handle need to reference the OASError
schema, and our custom errors will reference the Problem schema. Therefore, we
should be good with the following rules:

 All POST and PUT operations, as well as the parameter-heavy endpoint for job
searches, rely on input validation and could therefore potentially throw 400
errors with the OASError schema.

 For operations that contain an {id} placeholder, we may find the user trying to
request a resource that doesn’t exist. As we handle this in custom code, there
might be 404 errors with the Problem schema.

Common schema for the
problem+json format

319Adding error responses to OpenAPI
 Similarly, the user may not be allowed to access the resource based on authori-
zation business logic (permissions or roles). Therefore, the same resource end-
points may also throw 403 errors with the Problem schema.

 Every API operation that needs authentication could cause a 401 error with the
OASError schema.

When we apply these rules, we get the error responses shown in table 18.5.

We can now add the operations and errors we’ve identified to our OpenAPI file. We
will not include all the updated operations in the following listing, but you can see
them all in the OpenAPI file: https://designapis.com/ch18/openapi.yaml.

 The following listing shows one example—the POST /jobs method—to illustrate
how it works.

openapi: 3.0.3
#...
paths:
 #...
 /jobs:
 post:
 #...

Table 18.5 Operations with errors

Operation 400 401 403 404

POST /users Yes No No

GET /users/{id} No Yes Yes

PUT /users/{id} Yes Yes Yes

DELETE /users/{id} No Yes Yes

POST /jobs Yes Yes Yes No

GET /jobs Yes Yes No Yes

GET /jobs/{id} No Yes No Yes

PUT /jobs/{id} Yes Yes Yes Yes

DELETE /jobs/{id} No Yes Yes Yes

GET /jobs/{id}/job-applications No Yes Yes Yes

POST /jobs/{id}/job-applications Yes Yes Yes Yes

GET /users/{id}/jobs No Yes Yes Yes

PUT /job-applications/{id} No Yes Yes Yes

POST /sessions Yes Yes No No

Listing 18.7 PetSitter POST /jobs with errors

https://designapis.com/ch18/openapi.yaml

320 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json

A

A 401
OAS
from

op
 summary: Create Job
 operationId: createJob
 responses:
 '201':
 description: Created
 headers:
 Location:
 schema:
 type: string
 '400':
 description: Bad request
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/OASError'
 '401':
 description: Unauthorized
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/OASError'
 '403':
 description: Forbidden
 content:
 application/problem+json:
 schema:
 $ref: '#/components/schemas/Problem'
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Job'

Once we’ve added errors to all the operations, we’ll have thorough documentation
for the unhappy paths in the PetSitter API. PetSitter frontend developer Max, the
external contractors developing the PetSitter mobile app, and the eventual public API
users will now know what they can expect.

18.7 Error-handling guidance
You’ve learned how to find and categorize errors, and how to document them in your
OpenAPI definition. Let’s look at some things that frontend and backend developers
need to consider when it comes to dealing with errors during their implementation.

18.7.1 Frontend development

First of all, frontend developers integrating an API should be aware that things can
go wrong, and that things can fail ungracefully, even if the backend developers
have done their homework. The API should return the errors specified in the
OpenAPI definition, but frontend developers must implement some generic error
handling as well, to fall back on if the error-handling code they wrote doesn’t cover
the API responses.

The success response
we created earlier

 400 error using
the OASError

schema—from
the framework

input validation

 error using the
Error schema—
 the framework
eration security

check

A 403 error with the
application/problem+json
content type and using the
Problem schema—from the
PetSitter business logic

321Error-handling guidance
 Client errors can come from two different sources:

 The client-side code, which may contain bugs. Fixing those is obviously the
responsibility of the frontend developer.

 The end user interacting with the application may provide invalid inputs. Some-
times the client-side code can detect these problems, but other times the appli-
cation has to rely on the API.

Let’s look at one example of an invalid input error. The POST /register endpoint
expects, among other things, an email field. The client-side HTML code contains an
input box for an email address. The client-side JavaScript code reads the user’s input
and sends it to the API. Here are some things that might happen:

 Due to a misunderstanding or a typo in the code (maybe Max developed this on
a Friday afternoon, exhausted from his week), the client-side code sends the
email address in a field named e-mail. The server responds with a 400 Bad
request error, indicating that the input is invalid because the email field is
missing. This type of error is relatively easy to spot because it prevents the happy
path too. The frontend developer must fix this issue.

 The user enters an empty or invalid email address and submits the registration.
The client-side code sends this to the API, and the API responds that the input
is invalid because it contains a malformed value for the email field. It’s the
frontend developer’s responsibility to relay that information to the user so that
they know what they did wrong and can rectify the issue. For this type of error,
the frontend developer can also do additional client-side validation to spot
invalid input, so that the UI can provide immediate feedback to the user with-
out waiting for the API to respond. We’ll briefly touch on how OpenAPI can
help with these validations in chapter 19.

 The user enters an email address that already exists. The API responds that the
input is invalid because the email address is already registered. The frontend
developer must properly relay that information to the user so they can either
switch from registration to login or can change the email address. For this type
of error, the frontend developer can do nothing else, because there is no way
that this problem could be recognized on the client side.

For server errors and network errors, the situation is different. The fault is clearly
outside of the client scope, so neither the frontend developer nor the end user can
do anything to fix these issues. However, the frontend developer should make sure
that their client-side code relays to the user the information that an error has
occurred. They need to decide how much information to show to a user. Since
server errors can be transient failures, an option to retry the request is helpful.

NOTE The failure of non-essential functionality on the server or network,
such as logging or analytics, need not be reported on the client end. These
can fail without affecting users, so there is no need to inform them.

322 CHAPTER 18 Supporting the unhappy path: Error handling with problem+json
18.7.2 Backend development

For the backend developer, it’s important to realize that error-handling code can exist
in various places throughout the codebase:

 If the framework has built-in functionality for things like input validation, such as
our code generated by Swagger Codegen (from chapter 13), the error handling
happens outside the usual developer’s codebase in a library or dependency.

 When something fails unexpectedly, the code throws an exception or low-level
error. If there’s no exception handling, the framework will apply its own error
handling or will fail in unexpected ways.

 The developer may have written conditional code, such as if-else blocks, which
may indicate success or failure. This code can be adjacent to code that gener-
ates the API response, in which case it can similarly generate error responses.
Other times the error code is hidden deeper in the architecture, such as in a
service class. In this case, it’s the responsibility of those classes to carry the error
forward to the code that generates the response.

To summarize, the backend developer has these responsibilities:

 Whenever they check for success or error conditions themselves, they also need
to generate error responses. If the code that determines whether a request is
successful or not is spread throughout the codebase, a common approach
could be to throw a custom exception and then centralize error handling in
exception-handling code (a “catch” block).

 Wherever error handling is outside the developer’s control, they should learn
about their framework’s default behavior, and whether and where they can
change it. If they can’t change it, they should document it for their API consum-
ers, which is what we did with the OAS tools format in PetSitter.

 Since API input is inherently untrusted (as we already discussed in chapter 13),
developers need to make sure that some component takes care of input valida-
tion on the server side—either their framework or custom code. What the cli-
ent code does is irrelevant at this point.

The question of whether it’s the backend developer’s sole responsibility to write error
handlers or whether they get support from their framework does not have a general
answer, because different frameworks vary in the depth of their functionality. Gener-
ally speaking, a machine-readable API description can help with validation, so a
framework that understands OpenAPI can handle some client errors but not all.

 As an example, take the PetSitter backend, which uses OAS tools. It can automati-
cally detect whether the user provided an email field and whether that field contains
an email address (although we still have to teach it that trick, which we’ll do in chap-
ter 19). If any of these checks fails, the Node.js code automatically returns a 400 error.
However, since we wired up the database in our service code, we have to check there if
a user with that email address already exists, and if so throw the 400 error ourselves.

323Summary
We also need to handle all 403 and 404 errors ourselves, as they’re related to our data-
base code and business logic.

 When we added authentication to the API in chapter 14, we learned that the
OAS tools automatically check for the presence of the Authorization header if we
define operation security in OpenAPI. This is another thing that the framework
takes care of, and it returns a 401 Unauthorized response if a necessary authentica-
tion parameter is absent.

Summary
 Error handling is an essential part of the API definition. Useful error responses

and their documentation help API consumers, such as frontend developers,
understand and solve problems as well as relay problems related to user input
to the end user of an application integrating the API.

 It’s possible to roughly categorize errors as client errors, server errors, and net-
work errors. Network errors are outside the scope of APIs, but API consumers
must recognize their occurrence. Server errors can happen for every API call
due to problems with the server-side code or the infrastructure. Client errors
are related to client-side bugs or user input. They can be different for each API
operation and can be further categorized into invalid inputs (400), permission
errors (403), and requests for nonexistent resources (404).

 The OAS tools provide input validation with a custom error format. We ana-
lyzed the format and documented it in the OpenAPI definition for PetSitter.
Then we added a reference to this schema as a 400 response for all operations
with potential input errors.

 For errors not handled by the OAS tools, we looked at an open standard for
describing errors called problem+json and added its specification to the
OpenAPI definition for PetSitter. Then we added a reference to this schema as
a 404 response for all resource endpoints and a 403 response for all operations
that may require specific user permissions (roles).

Improving input
validation with

advanced JSON Schema
The PetSitter team’s journey started with a domain model. Building upon that
domain model, they created a set of common, reusable schemas in their OpenAPI
definition. Then they referenced those schemas in the requests and responses of
their API operations. We learned in chapter 13 that we can autogenerate backend
code that automatically performs input validation based on the schemas. We also
used Prism, an OpenAPI-powered mocking and testing tool, to detect whether the
API responses follow the schemas and whether our API backend upholds the con-
tract described with OpenAPI.

 In this third part of the book, our focus has been on improving the developer
experience, with the goal of making the API easier and more delightful for con-
sumers to use, including those outside the PetSitter team. We discussed the devel-
oper experience in chapter 15, and we identified input validation as one of the
important aspects. Let’s restate Postel’s Law (the robustness principle): “Be liberal
in what you accept, and conservative in what you send.” Output validation helps
with the second part—follow your contract and don’t surprise your API consumers

This chapter covers
 JSON Schema keywords for validation

 Enhancing PetSitter schemas with those
keywords
324

325The problem
with unexpected behavior. In an API, we don’t necessarily want to follow the first part.
That’s because of Hyrum’s Law, which says that some consumers will rely on undocu-
mented behavior. Hence, we should be strict with input validation too.

 In the previous chapter we talked about the importance of error handling and
helping developers understand what is wrong when they send invalid input. The OAS
tools provide good error responses that describe all the schema validations. We should
continue to leverage that as much as we possibly can—more than we’re currently
doing. Even though we’ve introduced some helpful validation functionality in the
OpenAPI specification throughout the book, we stuck to the basics for the schemas in
PetSitter. Additional validation can further specify scalar data types like strings and
numbers or provide field constraints such as making fields required or read-only. In
this chapter we’ll walk through the following points, which we’ll add to the PetSitter
schemas:

 Marking properties read-only or write-only
 Enforcing number constraints
 Enforcing string formats
 Enforcing array constraints
 Defining enumerations
 Listing required and optional properties
 Setting defaults

We’ll start by providing some more motivation regarding the usefulness of schema val-
idation. Then we’ll go through each of these topics and introduce the capabilities that
OpenAPI and JSON Schema provide and consider why they’re useful. Then we’ll go
through all the schemas in PetSitter and enhance them with the new keywords.

19.1 The problem
In this chapter we’ll keep this problem section a bit shorter than usual. We’ve already
talked more than once about the importance of following OpenAPI as a contract for
both API consumers and API providers, and about how schema validations help. As
additional motivation, let’s consider another potential problem.

 In chapter 18 we differentiated between client errors and server errors. Imagine you
have a database that limits a field, such as the user’s full name, to 50 characters. With
relational databases, these constraints are common. Now assume an API consumer
sends a name with 51 characters. Is that a client error or a server error? If you don’t do
anything about it, the database might complain about input that’s too long and that
registers as a server error—maybe a 500 Internal server error.

 Did you ever communicate to your users that names should be 50 characters or
less? You should have! When you designed your database schema, you made a con-
scious choice to limit the length of the field. Your API consumers should know that, so
that they don’t send you invalid data. With the API design–first approach, in fact, you
would have made the decision from the API consumer’s perspective first, and then

326 CHAPTER 19 Improving input validation with advanced JSON Schema
configured your database accordingly. If the limit is part of the OpenAPI description,
your API server will clearly report it as invalid input—a 400 Bad request error—with-
out you having to write any code for it.

 Having the limit in your OpenAPI definition enables even more. Because
OpenAPI is a machine-readable definition format, it’s not just the server that can vali-
date the input. Your server does always need to validate, because client-side input is
untrusted by definition, but doing some additional input validation on the client side
helps, so that invalid data never even goes to the server, and erroneous API calls don’t
clog the network.

 API gateways and proxies, as well as testing tools, are other parts of your techni-
cal stack that can leverage OpenAPI definitions. Any autogenerated code for data
models can benefit from refined data types, too, by choosing appropriately sized
types for variables or creating constants for enumerations. Given these additional
possibilities, we hope you’re intrigued to find out more about the validations we can
design into our APIs.

19.2 Supported validations
As you learned in part 1 of this book, OpenAPI references the JSON Schema specifica-
tion for describing the data structures used as parameters, request bodies, and
responses. The format supported in OpenAPI 3.0 is subtly different from JSON Schema,
but those differences are resolved in version 3.1 of OpenAPI. At the time of writing,
OpenAPI 3.1 is still pretty new and tooling support is limited. We’ve used version 3.0.3
for PetSitter. All the essential validations we describe in this chapter should work with
either version of OpenAPI. With that said, let’s get started looking at the validations.

19.2.1 Read-only and write-only properties

For every property in an object, JSON Schema provides the readOnly field. You can
set it to true to indicate that the value of a property can be read but not written. If you
set readOnly to false, it indicates that clients can both read and write the field.

 A common use case for read-only fields is an id attribute, which we find in the
User and Job schemas in PetSitter. One thing we can assume in most implementations
is that the backend generates the ID to guarantee its uniqueness. Clients don’t often
decide what their ID is, and in PetSitter they never do. In other words, from the per-
spective of the client, an ID is read-only.

SchemaName:
 type: object
 properties:
 id:
 type: integer
 readOnly: true
 # more fields ...

Listing 19.1 JSON Schema with readOnly: true

327Supported validations
In the same fashion, there is the writeOnly field. If you set it to true, the value for
that property can be written but not read. With a value of false, you have read and
write access to the field.

 A typical use case for write-only fields is the password attribute, which you find in
the User schema in PetSitter. Of course, the user needs to provide their password
when registering, and we may also ask for the password when they want to change the
profile. But, as a best practice, the server stores the password as an encrypted hash and
is unable to return it to the client.

SchemaName:
 type: object
 properties:
 password:
 type: integer
 writeOnly: true
 # more fields ...

In previous schema definitions we haven’t seen either readOnly or writeOnly, so what
does their absence mean? As with other optional attributes, there is a default behavior
that applies when the property is not specified. For readOnly and writeOnly, that
behavior is false. Therefore, setting readOnly: false has the same effect as leaving it
out. In our OpenAPI description, we’ll only use readOnly: true when necessary and
refrain from specifying readOnly in all other cases. The same goes for writeOnly. A
field can either have readOnly: true or writeOnly: true but not both.

 Where is it important to use readOnly and writeOnly? They’re mostly relevant if
we want to design a reusable schema that can be referenced from multiple places in
the same API. This means we can use them for a request body in the same way as for a
response body. Response bodies come from the server and contain, for example, the
ID, which is a readOnly field. A client making an API request, however, should not
provide the ID. The field is read-only, indicating that the client does not have the abil-
ity to set the id field in request bodies. For fields that we expect the client to send
(like passwords) but that the server never returns, we should add writeOnly.

 You can also think of the keywords in the following way:

 readOnly—For responses only
 writeOnly—For request bodies only

If you use an inline schema, which means you are specifying an object and its proper-
ties as part of the operation, you typically will not need readOnly. Inline schemas for
responses are implicitly read-only and inline schemas for request bodies can drop the
fields they don’t want the requestor to send. It can be extremely useful and a best
practice to use a common schema with readOnly and writeOnly when the request
and response bodies differ only slightly. When they differ greatly, separate schemas
works best.

Listing 19.2 JSON Schema with writeOnly: true

328 CHAPTER 19 Improving input validation with advanced JSON Schema
19.2.2 Enforcing number constraints

In JSON Schema and OpenAPI, you can use number for type to indicate that the
JSON data is of any numeric type and use integer for whole numbers (including neg-
ative, positive, and zero). You’ve seen both types already throughout this book, and
we’ve even shown you some constraints—as far back as chapter 5 in the context of the
FarmStall API. To give you a better overview of various validations in this chapter, let’s
recap them.

 You can specify maximum and minimum to define the smallest and largest valid num-
bers for a field’s value. Is that maximum or minimum exclusive (<, >) or non-exclusive
(?, >=) though? As it turns out, by default the limits are non-exclusive. If you want to
make them exclusive, you can add exclusiveMaximum: true or exclusiveMinimum:
true to your schema definition. As usual, the absence of these parameters and a false
value have the same effect.

 There’s another keyword, multipleOf, which you can use with integers. It indi-
cates that the number must be a multiple of another number, or, in other words, it
must be divisible by that number with modulo 0 and an integer result.

 As an example, the following listing shows a schema with an integer field named
my_number, which can contain anything between 2 and 20 (but not these exact num-
bers) that is a multiple of 2 (in other words, an even number).

SchemaName:
 type: object
 properties:
 my_number:
 type: integer
 multipleOf: 2
 minimum: 2
 maximum: 20
 exclusiveMinimum: true
 exclusiveMaximum: true

NOTE A neat trick is to use multiples of decimals when you want to limit the
precision of a number. A multipleOf of 0.1 would limit numbers to have a
maximum precision of tenths, so 12.3 would be valid but 12.34 would be
invalid, because 12.34 is not a multiple of 0.1.

19.2.3 Enforcing string formats

There are two constraints for the string format:

 minLength and maxLength indicate the minimum and maximum number of
characters in a string.

 pattern is a regular expression for the value of the string.

Listing 19.3 JSON Schema with various numeric constraints

329Supported validations
You may argue that pattern covers everything, even maximum and minimum lengths,
as you can express them as regular expressions. However, don’t you think that
minLength: 1 and maxLength: 10 is more approachable than pattern: ^.{1,10}$?
And that was a rather simple regular expression. Could you write a regular expression
handling, let’s say, an email address, off the top of your head? Probably not. It should
be easier than that.

 JSON Schema and OpenAPI provide the format keyword and a set of predefined
formats with accessible, human-readable names, for common formats that you’ll need
to validate in APIs. In chapter 17, for example, we used format: date-time to indicate
that the string parameters for filtering jobs in the PetSitter API accept timestamps.
JSON Schema defines some formats and OpenAPI defines other formats. Table 19.1
lists some commonly used format values and whether either OpenAPI or JSON
Schema considers them standard. For those not supported by both, make sure your
tool chain understands them.

For date, time, and date-time, the valid ways to format them are documented in sec-
tion 5.6 of RFC 3339 (https://datatracker.ietf.org/doc/html/rfc3339), which itself refers
to the ISO 8601 standard. Here’s the gist of it. Dates have the YYYY-MM-DD format (e.g.,
2021-07-31). Times have the 24-hour HH:MM:SS format (e.g, 16:17:00 for 4:17 p.m.) fol-
lowed by either “Z” or a UTC offset to indicate the time zone. For a full timestamp in
date-time, you’d write both, separated with a “T” (e.g., 2021-07-31T16:17:00Z).

Table 19.1 Common string formats

Format Purpose OpenAPI standard JSON Schema standard

byte Base64-encoded data Yes No

binary Other string-encoded binary data Yes No

date Date (RFC 3339) Yes No

time Time (RFC 3339) No Yes

date-time Date and time (RFC 3339) Yes Yes

duration Duration No Yes

email Email address No Yes

password Password—hide from UI Yes No

hostname Internet hostname No Yes

ipv4 IP V4 address No Yes

ipv6 IP V6 address No Yes

uri URI/URL No Yes

uuid UUID No Yes

https://datatracker.ietf.org/doc/html/rfc3339

330 CHAPTER 19 Improving input validation with advanced JSON Schema
WARNING If your API uses a different way to format dates and times, do not
use the date, time, or date-time formats. In those cases you could use pat-
tern and define the format as a regular expression.

Beyond that, you are allowed to add custom values for format. Not every OpenAPI
tool understands those, of course, but as long as your tool chain does, it can be valu-
able. And formats can be used for more than input validation. An example that we saw
in chapter 7 is password. While there are no validations attached to it, Swagger UI
hides user input for parameters with this format, and so could other tools that gener-
ate user interfaces from OpenAPI definitions.

 As another complete example, let’s specify a password field with a minimum of six
characters.

SchemaName:
 type: object
 properties:
 password:
 type: string
 format: password
 minLength: 6

Most common formats are already constrained enough, and adding extra conditions,
such as minLength, will give mixed results. For example, an empty string is never a
valid email address, and a UUID always has 36 characters.

19.2.4 Enforcing array constraints

You already learned that you can use the items keyword to define the type of data that
an array contains. Can we also set constraints on the array itself? Yes, we can! The fol-
lowing keywords are available:

 minItems and maxItems indicate the minimum and maximum number of items
in the array.

 uniqueItems specifies whether all items in the array must be unique (true) or
if it’s acceptable to have duplicates (false).

The common behavior of JSON Schema validation keywords applies here as well,
meaning their absence indicates that there shouldn’t be any constraints. Hence, by
default, an array could have as few as 0 items, and there’s no upper bound except
what the client or server can handle (which is a good hint that you should probably
specify an upper bound before someone tries to break your API). Also, uniqueItems:
false and the absence of uniqueItems have the same effect.

 As a concluding example, let’s define an array that can contain from 1 to 10
unique integers.

Listing 19.4 JSON Schema with string constraints

331Supported validations
MyBingoNumbers:
 type: object
 properties:
 my_numbers:
 type: array
 minItems: 1
 maxItems: 10
 uniqueItems: true
 items:
 type: integer

19.2.5 Defining enumerations

It’s one thing to define lengths for strings and arrays, and boundaries for numbers,
but what if we just want a few specifically defined values? If you want to approach enu-
merations from a UI perspective, you could imagine a drop-down menu or radio but-
tons where the user selects one value from a predefined set. For example, if you need
to collect a user’s gender, you could offer male, female, and other options. In
OpenAPI definitions, you can use the enum keyword to specify the available options.

 The enum itself is an array listing all the possible values. You can use enumera-
tions with any type, so they don’t just work for string but also for number, for
example. Here’s the gender scenario expressed in OpenAPI to illustrate how enumer-
ations work.

SchemaName:
 type: object
 properties:
 gender:
 type: string
 enum:
 - male
 - female
 - other

19.2.6 Listing required and optional properties

Finally, let’s look at required and optional fields in objects. By default, JSON Schema
assumes all properties of an object are optional. If they are present, they must con-
form to the type, format, and other constraints. However, if they are not present, the
schema is still valid. You have to make requirements explicit, and that’s what the
required keyword is for.

 You might assume that you can add something like required: true in the same
way you can add readOnly: true. But be careful! That’s not how the required key-
word works. Unlike, for example, the readOnly or format keywords, which are set for
individual properties, requirements are specified in a separate list (an array), and you

Listing 19.5 JSON Schema with array constraints

Listing 19.6 JSON Schema with enumeration

332 CHAPTER 19 Improving input validation with advanced JSON Schema
add this list to the object. To add to the confusion, OpenAPI does use required:
true, but that’s just for parameters, not schemas.

 To illustrate how required works, have a look at the following listing, where we
have a Contact schema with name, email, phone and address properties. Only name
and email are required; the others are optional.

Contact:
 type: object
 properties:
 name:
 type: string
 email:
 type: string
 format: email
 phone:
 type: string
 address:
 type: object
 # schema omitted
 required:
 - name
 - email

Let’s quickly consider what happens when we make a field read-only and add it to the
list of required fields. One might think that this is an impossible situation for input
validation, but the OpenAPI specification has covered this. The required only applies
to the response in this case. You can find the details in the specification: https://desig-
napis.com/oas/3.0#fixed-fields-20.

19.2.7 Setting defaults

Whenever fields are optional, a question arises: what does the absence of the field
mean? We discussed this in the context of the OpenAPI specification itself, which
says that, for example, the absence of readOnly means false. We can encode simi-
lar behavior in our OpenAPI definitions with the default keyword. In fact, we
already did that in chapter 17 in the context of query parameters for pagination,
where we set a default page size for the cases where the API request includes no
limit parameter.

 That concludes our journey through the world of JSON Schema validation
keywords.

19.3 Updating PetSitter schemas
Now that you’ve learned a lot of new OpenAPI keywords and how to use them, let’s
move from theory to practice and update our PetSitter schemas with some enhanced
validation.

Listing 19.7 JSON Schema with required fields

All the
properties

Only these are
required.

https://designapis.com/oas/3.0#fixed-fields-20
https://designapis.com/oas/3.0#fixed-fields-20

333Updating PetSitter schemas
19.3.1 User schema

The User schema has the id, email, password, full_name, and roles properties. As
we mentioned before, the id is server generated and not client input. Hence, we can
make it read-only.

 For email and password, which are both strings, we learned that the format key-
word supports the email and password formats, so we can add those. For security
reasons, we could also demand a minimum length for passwords, so let’s put the mini-
mum length as 8 characters. For full_name, a minimum length is also useful. Be care-
ful though—a lot of what developers think about names is wrong because it’s based on
a limited cultural understanding. Some people don’t have official last names, and oth-
ers have very short names, such as just two characters. Let’s assume the combination
of these as a worst case and, hence, set the minimum length to only 2 characters. Sim-
ilarly, let’s not set the upper bound too low—some people like to enter their middle
names and hyphenated surnames. In our case, 50 seems okay.

 Let’s talk requirements now. When a user registers, we want them to provide their
email address, full name, and the roles they want to have within the PetSitter market-
place. When they update their profile, they should still provide a full profile but not
have to repeat the password if they don’t want to change it. Therefore we’ll make
email, full_name, and roles required but not password. Will we ask for the password
when the user first registers, though? Yes, we will. We could create a required password
schema on its own and use the allOf composition to add it to the “Register” action
but not the “Update” action. In this case, the complexity of describing it in OpenAPI
for the single operation (one that shouldn’t often be used by consumers) isn’t justi-
fied. As such, we won’t mark it as required in the User schema. That’s where the bal-
ance of describing things precisely versus managing complexity needs to be a team
decision. In any case, we will mark the password field as write-only.

 There’s still one field missing, roles, but since we’ve collected a lot of validation
requirements already, let’s first look at them in the context of the User schema in the
OpenAPI definition.

User:
 type: object
 properties:
 id:
 type: integer
 readOnly: true
 email:
 type: string
 format: email
 password:
 type: string
 format: password
 writeOnly: true
 minLength: 8

Listing 19.8 PetSitter OpenAPI enhanced User schema

IDs are read-only
because the server
generates them.

Using email format
for the email field

Using password format
for the password field

Password is also write-only
and has at least 8 characters.

334 CHAPTER 19 Improving input validation with advanced JSON Schema

dup
 full_name:
 type: string
 minLength: 2
 maxLength: 50
 roles:
 # to be done ...
 required:
 - email
 - full_name
 - roles

Let’s talk about roles now. Its type is array, because a user can have multiple roles.
We also indicated that the type for each item is string with the items keyword. How-
ever, the schema description doesn’t say anything else. As of now, the roles property
could contain arbitrary values that are not valid roles. It could contain any number of
roles, or 0, which doesn’t make sense as users cannot do anything without a role. To
improve our definition, we need to cover the following constraints:

 It can only contain the predefined values PetOwner, PetSitter, and Admin.
 While it can contain any combination of these values (for example, a person

might be both a pet owner and a pet sitter), it doesn’t make sense to indicate
the same role more than once. In other words, no duplicates.

 At least one role is required.

Let’s combine the material we have. For the first constraint, we can use an enumera-
tion. It needs to be applied to the items, not the array itself. For the second, we can
disable duplicate items. Finally, for the third constraint we can set the minimum count
of items to 1. Putting it all together, the requirements can be expressed as follows.

roles:
 type: array
 minItems: 1
 uniqueItems: true
 items:
 type: string
 enum:
 - PetOwner
 - PetSitter
 - Admin

WARNING Be careful not to confuse an empty array with a nonexistent array
(we talked about this earlier in the book regarding collection endpoints). If
you set minItems to 1 but don’t include your array in required, both a nonex-
istent array (missing from the object) and an array with one item are valid,
but not an empty array. Similarly, if you include the array in required but
have no minItems value, the array must be present, even if it’s empty.

Listing 19.9 User roles specification

Full names can be from
2 to 50 characters long.

Email, full name, and
roles are required.

The field will support
multiple roles.

At least 1 role
is required.

No
licate
roles

Each role is
a string.

These literal values are
allowed for the string.

335Updating PetSitter schemas
Awesome, we can combine everything and have an enhanced User schema with a lot
of helpful validations. Let’s move forward to the next schema, Job.

19.3.2 Job schema

Our Job schema has id, creator_user_id, start_time, end_time, activity, and
pets properties. What we said about identifiers applies to id and creator_user_id
alike, so they can both be read-only.

 But wait, wouldn’t the rule only apply to the primary ID of the resource? The
creator_user_id comes from the ID for the user, so it’s read-only in the User schema.
In another schema, however, the API consumer may send an ID to associate with a
resource.

 In general, that is correct. In this particular case, however, the server also sets
creator_user_id based on the ID of the currently authenticated user. The business
logic doesn’t allow entry of any other user, so read-only is valid in our case. If we
allowed administrators to create jobs on behalf of pet owners, though, we wouldn’t set
it as read-only.

 Onward to the other fields! So far, start_time and end_time are string fields,
but we know they contain date and time information. That’s where the date-time for-
mat comes in. For activity, which is also a string field, we don’t need a format, but
we should add some constraints. To support various types of text, from a single word
to a longer job description, let’s make it 5 to 500 characters. All three fields are
required.

 For pets, we have the items keyword that points to the Pet schema, which we’ll
discuss further shortly. A job without pets makes no sense, so we should also clarify
that pets is a required field, and the array should contain at least 1 entry—and at
most 10, just to give some upper bound. Let’s put that all together in the OpenAPI
definition.

Job:
 type: object
 properties:
 id:
 type: integer
 readOnly: true
 creator_user_id:
 type: integer
 readOnly: true
 start_time:
 type: string
 format: date-time
 end_time:
 type: string
 format: date-time
 activity:
 type: string

Listing 19.10 PetSitter OpenAPI enhanced Job schema

IDs are read-only, because the
server generates them, which
applies to both Job and User IDs.

For the start and end
times, we enforce the
timestamp format.

336 CHAPTER 19 Improving input validation with advanced JSON Schema
 minLength: 5
 maxLength: 500
 pets:
 type: array
 minItems: 1
 maxItems: 10
 items:
 $ref: '#/components/schemas/Pet'
 required:
 - id
 - creator_user_id
 - start_time
 - end_time
 - pets

19.3.3 JobApplication schema

In the JobApplication schema, there are four fields, three of which (id, user_id,
job_id) are IDs, and we’ve already discussed them in detail. The primary id is read-
only, but what about the others? Again, user_id comes from the currently authenti-
cated user. Whether or not job_id is read-only depends on the API design:

 If our API design required applying to jobs through POST /job-applications,
the user would have to mention the job they’re applying to with the job_id
field in the request body. In chapter 10 we decided against this variant.

 The current PetSitter API design uses POST /jobs/{id}/job-applications as
the operation endpoint. In other words, the job they apply for is part of the
URL. Adding it to the body would be a duplication, so we can declare it as a
read-only field.

The fourth property on the JobApplication schema, status, is a string with specific
values. Sounds like a candidate for an enumeration, right? According to chapter 9,
there are two states for applications: applying and approved. We may want to add some-
thing like rejected (pet owner doesn’t want this pet sitter) and canceled (pet sitter
changed their mind or doesn’t have time anymore) too. Also, this is a good candidate
for a default value: any new job application from a pet sitter is in the applying status
until the pet owner decides to do something with it. Let’s update our JobApplication
schema with all these constraints.

JobApplication:
 type: object
 properties:
 id:
 type: string
 readOnly: true
 status:
 type: string
 default: applying

Listing 19.11 PetSitter OpenAPI enhanced JobApplication schema

Activity descriptions can be
from 5 to 500 characters.

Jobs must have at least 1 Pet associated
with them (and no more than 10).

id and creator_user_id are
required, even though they will
only appear in response bodies.

ID is read-only.

The default status
is “applying.”

337Updating PetSitter schemas
 enum:
 - applying
 - approved
 - rejected
 - canceled
 user_id:
 type: string
 readOnly: true
 job_id:
 type: string
 readOnly: true
 required:
 - id
 - status
 - user_id
 - job_id

19.3.4 Pet, Dog, and Cat schemas

A Pet has name (a string) and age (an integer) properties. We can add constraints to
both, such as setting the name length from 2 to 20 characters and age from 1 to 100
(to account for pets like tortoises, who can get pretty old). We’ll keep both fields
optional, just to cover edge cases, such as a pet owner not knowing the age of their pet
or not giving them a name (what a terrible thought!).

Pet:
 allOf:
 - type: object
 properties:
 name:
 type: string
 minLength: 2
 maxLength: 20
 age:
 type: integer
 minimum: 1
 maximum: 100
 - oneOf:
 # references omitted

Within the scope of this book, we will not edit the Dog and Cat schemas to add any con-
straints. Do you think there should be any? You can try editing them for yourself. If you
want to improve on these schemas, one starting point could be a thing we considered
earlier in this book: making the breed an enumerator. Once we start doing that, it
becomes obvious why it made sense to keep it in Dog and Cat and not add it to Pet.

 The species attribute in Cat and Dog was already made required in chapter 16—
it had to be a required property to act as a discriminator.

 You can find the updated OpenAPI definition for PetSitter with all constraints
here: https://designapis.com/ch19/openapi.yaml.

Listing 19.12 PetSitter OpenAPI enhanced Pet schema

These are all the
alternatives.

User ID can be
read-only.

Job ID is also
read-only.

All fields are required,
but only status would be
needed in request bodies.

https://designapis.com/ch19/openapi.yaml

338 CHAPTER 19 Improving input validation with advanced JSON Schema
Summary
 Schema validations in OpenAPI help to stop erroneous requests as early as pos-

sible, ideally through client-side validation or at least on arrival at the server
through input validation, rather than when they hit a backend system (like a
database) that can’t handle them.

 Apart from data types and the structure for objects, JSON Schema and OpenAPI
allow us to mark properties read-only or write-only; to support number, string,
and array constraints such as lengths; to create enumerations of valid input
values; to list properties as required or optional; and to set defaults for
optional fields.

 All schemas in PetSitter can benefit from additional validations, and we extended
them accordingly.

Versioning an API
and handling

breaking changes
We added support for multiple pets and pets other than dogs in chapter 16. In the
OpenAPI definition for the PetSitter API, the Job schema had a property changed
from dog to pets. José noticed that this had a knock-on effect with Max, the front-
end developer. If Nidhi had released the backend change before Max was ready, a
large portion of the PetSitter website would have stopped working. But because the
team communicates often, this was hardly a problem—they could easily coordinate
how to roll those changes out. But what will happen when the API is made public?
How can those breaking changes be avoided? And if the team makes such changes
after outsourcing the mobile project, how would that be handled?

 In the team’s case, they have a small and easily managed API between the front-
end and backend, as well as between José’s team and the mobile developers, but as
it grows to include more consumers (and more developers), things will get harder

This chapter covers
 Changing an API and understanding the impact

of changes

 Supporting multiple versions of APIs and
schemas

 Avoiding breaking changes
339

340 CHAPTER 20 Versioning an API and handling breaking changes
to manage. After they release the API to the public, they won’t have that control any-
more and will need to be considerate when making changes.

 The team decided to look at this change as an example of a breaking change, and
to explore what sorts of actions they should take in future and whether there is any-
thing they can do ahead of time to prepare for that eventuality.

 In this chapter we’re going to look at breaking changes and the different ways we
can handle them. Ultimately we want to avoid breaking changes entirely (it just
makes for a better world), so at the end of the chapter we’ll discuss a few tips on how
to do that.

20.1 The problem
In chapter 16 we discussed adding multiple pets into the OpenAPI definition by add-
ing the Pet schema. That on it’s own isn’t a breaking change, but modifying the Job
schema to reference Pet instead of Dog was. Our goal in this chapter is to introduce
this change without breaking the consumers of the PetSitter API.

 We’ll also consider and keep in mind the cost required for API consumers to
accommodate this change. Specifically, how can we avoid adding code that isn’t
directly related to the core business (pet sitting, in this case)—extraneous infrastruc-
ture code?

 At the end of this chapter the team will describe the Job schema change with the
least impact on consumers of the API as well as on the development team. The prob-
lem we’ll focus on is taking the schema from what you see in listing 20.1—where the dog
property directly references the Dog schema—to the revised version in listing 20.2—
where the pets property with an array references the Pet schema—without breaking
the API for consumers.

openapi: 3.0.3
#...
components:
 schemas:
 Job:
 type: object
 properties:
 #...
 dog:
 $ref: '#/components/schemas/Dog'

openapi: 3.0.3
#...
components:
 schemas:
 Job:
 type: object

Listing 20.1 Describing the Job schema with dog

Listing 20.2 Describing the Job schema with pets

341Releasing a breaking change
 properties:
 #...
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

20.2 What is a breaking change?
We define a breaking change as anything that requires consumers to do something. If
they don’t update their integration after a breaking change, they’ll experience a
degraded service due to the API no longer working as expected. It can result in a bad
end-user experience or, quite commonly, downtime for the service.

 Breaking changes, in other words, break consumer integrations. In the world of
APIs, and particularly APIs with JSON (and XML) bodies, a breaking change usually
involves one of the following changes:

 Removing a field from a response (consumers will try to read a field and won’t
find it)

 Changing a field’s constraints in a request or response
 Adding a required field to a request (API servers will now send a client error in

response to what used to be a valid API request)

The following aren’t typically breaking changes, though some consumers may be a lit-
tle more finicky and consider them breaking:

 Adding a new field to a response (not breaking because API consumers will
generally ignore fields they don’t understand or expect)

 Adding an optional field to a request (API requests without an optional field
will remain valid)

 Removing a field from a request (the API server will ignore it, but this might
change behavior in unexpected ways, so removing a field can sometimes be
breaking too)

The best way to think about breaking changes is to imagine what the consumer will
need to do if you make a change. Are you asking the consumer to do something
more? Or are you taking away something the consumer might be relying on? Building
this intuition takes time, but those are the fundamentals.

 If a breaking change has been decided on, there are options. Let’s take a look at
some of them.

20.3 Releasing a breaking change
It’s the API designer’s responsibility to release and describe breaking changes so as to
minimize the impact on consumers and cost the least to maintain in the future. The
API designer should consider both API consumers and the development team behind
the API.

342 CHAPTER 20 Versioning an API and handling breaking changes
 Nidhi has been put in charge of releasing this API change. She’ll be both the
designer of the API and its implementer. She’ll take a look at the following approaches:

 Coordinated breaking changes
 Multiple API versions
 Media types for schema versions
 Adding and deprecating features

20.3.1 Coordinated breaking changes

Internal APIs aren’t released to the public, and typically the producers have direct
communication with all the teams and consumers involved. For those APIs, changing
the API without backward support may be the cleanest approach. However, it is not
free—the hidden cost is coordinating that change.

 Some cases will be easily coordinated, such as when the consumer rarely uses the
API (a consumer that generates a weekly report, for example). Some will have regular
release cadences, so coordination would involve fitting into that schedule. And some
cases will need special attention to coordinate. The challenge is when both the con-
sumer and the producer (the server) need to be released at the same time. Because of
the downtime that might incur, organizations have been known to do these types of
deployments at midnight, to minimize the impact.

 For public APIs we can generally assume that somewhere a consumer depends on
our service and will have downtime if the API has a breaking change. This assumption
can be supported with metrics to further identify how many consumers would be
impacted.

 Nidhi considers the impact of changing the Job schema from listing 20.1—with the
dog property—to listing 20.2—with the pets property—to see how large it actually is.
This change would impact all operations that reference the Job schema, which so far
include the following:

 GET /jobs
 POST /jobs
 GET /jobs/{id}
 PUT /jobs/{id}
 GET /users/{id}/jobs

That’s quite a few operations!

NOTE You may find one operation for the resource endpoint /jobs/{id} miss-
ing from the preceding list—the DELETE method. However, this method has
neither a request body nor a response body (it replies with 204 No Content), so
it doesn’t reference the Job schema.

If the consumer’s codebase is well structured, the impact may not be so large, but
without looking at their systems, that’s only a guess. The size of the API change pro-
vides only a rough estimate of the impact.

343Releasing a breaking change
 A coordinated breaking change approach works best when you’re able to assess
the impact on consumers and when the cost of coordinating the change is lower than
the implementation cost for any of the other alternatives we’ll discuss in this chapter.

20.3.2 Multiple API versions

Nidhi now considers the purist’s approach. “This is a breaking change, so it must
mean a new version of the API,” she thinks out loud. What does she mean by that?

 She wants to communicate to consumers that when the version of the API changes,
it will be incompatible with the previous version. Consumers of version 1 will need to
change their code before they can use version 2.

 However, unlike downloadable code libraries, where multiple versions of the
libraries can be hosted statically (on services like Maven, npm, or GitHub), serving
multiple versions of an API is far more costly in terms of resources, code setup, and
maintenance. Due to these costs, API providers generally don’t keep every version
around indefinitely; they deprecate and phase out older versions after some time.
Finding good release and deprecation schedules for APIs is yet another challenge that
we won’t discuss further.

 Assuming we have multiple versions of the API, let’s run through the options for
letting consumers target the API version they want to use:

 Using different base paths, such as /v1/…, /v2/…, etc.
 Using a query parameter, such as ?version=1, ?version=2, etc.
 Using a header, such as Version=1, Version=2, etc.

Versioning APIs with query parameters and headers is quite similar, in that they can
apply to the entire API (all operations) or they can be used for individual operations.
We’ll take a look at versioning individual operations next, but first let’s look at chang-
ing the base path, as that will always affect the entire API.

 The first option, of changing the URL, can often be seen in the wild (although
rarely does the version go beyond v3). Because we are changing the base path, all
operations will have a new URL. This requires consumers to choose which version of
the entire API they will use.

 To describe that in OpenAPI, we will need two separate OpenAPI definitions—one
for each version. Version 1 will have the original API definition, from before the
change.

openapi: 3.0.3
info:
 version: 1.0.0
 title: PetSitter API
servers:
 - url: https:/ /petsitter.designapis.com/
paths:
 #...

Listing 20.3 API version 1

344 CHAPTER 20 Versioning an API and handling breaking changes
components:
 schemas:
 Job:
 type: object
 properties:
 #...
 dog:
 $ref: '#/components/schemas/Dog'

Version 2 of the API will include a new base URL as well as the breaking changes.

openapi: 3.0.3
info:
 version: 2.0.0
 title: PetSitter API
servers:
 - url: https:/ /petsitter.designapis.com/v2
paths:
 #...
components:
 schemas:
 Job:
 type: object
 properties:
 #...
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

As you can see, this is already starting to be a lot of work, and we haven’t considered
how the development team (Nidhi, herself) will handle this. With all of these changes,
what is gained and what is lost?

 The benefit of this approach is that the existing API remains exactly as is, with no
changes to it. The negative is the cost involved. The development team has to effec-
tively manage two separate APIs, the documentation has to include both versions, and
we will possibly need a migration guide to get developers from version 1 to version 2.
These are nontrivial costs, even if you consider that you can generate your documen-
tation from OpenAPI. The migration guide and putting everything together still
requires a human’s technical writing skills.

 The only time we’d recommend this approach is if the new version of the API is so
radically different that it is practically a new API and you still want this new API to fall
under the original name, brand, or domain. For other cases there are cheaper
approaches. We can start by looking at versioning individual operations instead of the
entire API.

Listing 20.4 API version 2

The new base
URL with v2

The breaking
change

345Releasing a breaking change
VERSION STRINGS

Before we continue, let’s take a quick look at version strings. We’ve been mixing and
matching different strings to represent a version: 2.0.0, v2, 2, to name a few. Let’s
consider which is better and why.

 The dominant standard for version strings is Semantic Versioning (or SemVer for
short; https://semver.org/). The SemVer format communicates three core things:
breaking changes (major changes), added features (minor changes), and bug or secu-
rity fixes (patch changes). This is done with three numbers in the following format:

<Major>.<Minor>.<Patch>

For example, version 2.3.0 has 2 for the major version, 3 for the minor version, and 0
for the patch number.

 To compare which version is newer, we look first at which has the higher major
number. If they’re the same, then we check which has the higher minor number.
Finally, if those are also the same, we check which has the higher patch number.

 Here are some examples:

 2.0.0 is greater than 1.99.99.
 3.1.10 is greater than 3.0.18.
 3.2.1 is greater than 3.2.0.

Changes to the major number indicate that there is a breaking change, so caution
should be used when upgrading or migrating to that version. Changes to the minor
number indicate new features were added, but no breaking changes. And finally, a
change in the patch number indicates bug or security fixes.

 Versions are linear, so when the major number changes, it resets the minor and
patch numbers, as a breaking change encompasses any added features and bug fixes.
For example, if the current version is 1.2.3 and we want to communicate a breaking
change, we’d bump the major number and end up with 2.0.0 (not 2.2.3).

 Should we use SemVer for everything? Well, one place that it doesn’t work well is
in your URLs. For example, if api.example.com/2.0.0/users is changed to api
.example.com/2.1.0/users, consumers will need to change their code to use it, even
though the version communicates no breaking change, which is kind of ironic!
Instead of using SemVer in URLs, it is a better idea to use the major version only. For
example, api.example.com/2/users allows the URL to remain the same for all minor
and patch version changes.

 Finally, notice how that last URL didn’t look like a versioned URL? Numbers on
their own might be confused for IDs or other parameters, so a final flourish is to pre-
fix the version number with v (for version, of course). This makes the URL look like
it’s got a version in there: api.example.com/v2/users. Much better!

 Let’s jump back into versioning APIs.

https://semver.org/

346 CHAPTER 20 Versioning an API and handling breaking changes
20.3.3 Using media types to version operations

Instead of creating entirely new APIs each time there is a breaking change, we could
instead just create new operations and version them accordingly. When Nidhi looked
at using query parameters or headers to version the API, she clearly saw that they
could also be used to version the operations on their own, since they aren’t necessarily
API-wide.

 A query parameter is a quick way to version, so we could change the original defi-
nition into the following.

openapi: 3.0.3
#...
paths:
 /jobs:
 parameters:
 - name: version
 in: query
 schema:
 type: number
 default: 1
 enum: [1,2]
 get:
 summary: List All Jobs
 responses:
 '200':
 description: |
 The response will depend on the version parameter.
 content:
 application/json:
 schema:
 oneOf:
 - $ref: '#/components/schemas/Job'
 - $ref: '#/components/schemas/Job2'

components:
 schemas:
 Job:
 type: object
 properties:
 #...
 dog:
 $ref: '#/components/schemas/Dog'
 Job2:
 type: object
 properties:
 #...
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

Listing 20.5 Versioning the operation with a query parameter

We add a parameter to
our path (this affects all
operations under it).

We can prescribe a default
value and limit the options
to only 1 and 2.

We need to somehow
tell the consumer how

this works.

We have to say it’s either Job or Job2 and rely
on the description to tell the consumer that
it’s based on the version parameter.

Our original
schema

Our new
schema

347Releasing a breaking change
With this approach, we have a way to version the operation by using the version
query parameter, but we still need to tell the consumers about this novel approach.
There is a better (more semantic) way of doing this—one that can use OpenAPI’s
structure and HTTP semantics to better communicate this. We can use custom
media types.

 We introduced media types in chapter 5 and mostly used the JSON media type
(application/json), but we’ve also seen more specific media types (like application/
problem+json). We can also define our own custom media types that follow the format
application/vnd.some.cool.example+json—anything between the vnd. and +json
is available for us to use. API consumers can ask for content to be returned in a spe-
cific format with the Accept header, whose value is a standard or custom media type.
Using Accept is a nifty way for consumers to request specific versions of a schema. The
complement of Accept is Content-Type, which is where the producer will put the actual
version of the schema. To version our schema, we could create a media type like this:
application/vnd.petsitter.v1+json. Here we specify the vendor name petsitter
and the version v1.

Let’s version our new change to the Job schema with our custom media types.

openapi: 3.0.3
info:
 #...
paths:
 /jobs:
 post:
 #...

Structure of media types
A media type has the following structure:

type "/" [tree "."] subtype ["+" suffix]* [";" parameter]

By using the vendor tree (vnd. prefix), we can use our own media types in a standard-
ized way. Other trees include standard (no prefix), personal or vanity (prs. prefix),
and unregistered (x. prefix). The vendor tree is the one designated for creating cus-
tom data types for public consumption. We’re also using the +json suffix, so that
coding libraries can more easily parse the data. Without that (if we used applica-
tion/vnd.example.cats), most code libraries would need to register the media
type and associate it with a base format. There are a few standard suffixes, the most
common ones being +xml and +json. By adding the suffix, most serializers will know
how to parse it—treating application/vnd.example.cats+json as application/
json, for example.

Listing 20.6 Versioning the change with custom media types

348 CHAPTER 20 Versioning an API and handling breaking changes

s
s
 requestBody:
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/Job'
 application/vnd.petsitter.v2+json:
 schema:
 $ref: '#/components/schemas/Job2'
 get:
 summary: List All Jobs
 responses:
 '200':
 description: OK
 content:
 application/json:
 schema:
 type: object
 properties:
 items:
 type: array
 items:
 $ref: '#/components/schemas/Job'
 application/vnd.petsitter.v2+json:
 schema:
 type: object
 properties:
 items:
 type: array
 items:
 $ref: '#/components/schemas/Job2'

... Other changed operations left out
 Job:
 type: object
 properties:
 #...
 dog:
 $ref: '#/components/schemas/Dog'

 Job2:
 type: object
 properties:
 #...
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

That’s a fair number of changes to the OpenAPI definition, considering we left out all
the other operations affected. Despite the amount of work done in the definition, this
approach may mean less work for the consumer. They can decide which versions of
the operations they want to use, and if they do nothing, they’ll continue to use the
older versions.

Schemas in
both request
and response
can have
different
media types.

The older
version with
the standard

media type The new version
with the custom
media type

The new
Job schema,
titled Job2

Each operation will need
to be updated to include
both media types.

349Releasing a breaking change
 We don’t need to specify a version query parameter or custom header because the
HTTP semantics say that API consumers can use standard headers:

 Content-Type—To indicate the format of their request body
 Accept—To indicate the response format that they want the server to return

Something that also needs to be addressed in this instance: what does v2 actually
mean? Does it refer to the version of the entire API or just the operation? For exam-
ple, if we update another operation, do we move to v3 across everything or only
update that operation? Do we update the operation to v2 so that only the operation is
updated?

 These are not well-defined areas. Versioning by schema is an easier plan for con-
sumers to manage, but it can still be a challenge for producers to manage, despite the
support we see in OpenAPI for it. How teams version their operations would need to
be defined and documented.

 This leaves the last option we’ll explore, and we’ve left the best for last. Never
break the API.

20.3.4 Adding and deprecating features

Managing multiple versions of an API, or even of its operations, is a huge overhead
and should rarely be your first choice when dealing with a breaking change. Instead,
consider the simpler (in almost every way) approach of adding the new feature and
deprecating the older feature, which turns it from a breaking change into a non-
breaking change.

 Let’s see what the PetSitter team could do if they wanted to keep their consumers
happy by not breaking the API.

components:
 schemas:
 Job:
 type: object
 properties:
 #...
 dog:
 $ref: '#/components/schemas/Dog'
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

That’s it. Well, mostly.
 The only thing left to do is to tell the consumer how to use this schema, since there

is now a bit of ambiguity. We’ll need to add a description.

Listing 20.7 Adding pets to the schema

This is the old
feature, as is.

Here is the new feature
added on top of the old.

350 CHAPTER 20 Versioning an API and handling breaking changes
components:
 schemas:
 Job:
 type: object
 properties:
 #...
 dog:
 allOf:
 - $ref: '#/components/schemas/Dog'
 - description: |
 This is deprecated, prefer to use `pets`.
 If both exist, `dog` will be ignored and `pets` will be used.
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

We can do more, though. We can indicate the change to tools (and documentation
builders) with the deprecated property. It’ll better highlight the change and discour-
age the use of that field.

components:
 schemas:
 Job:
 type: object
 properties:
 #...
 dog:
 allOf:
 - $ref: '#/components/schemas/Dog'
 - description: |
 This is deprecated, prefer to use pets.
 If both exist, dog will be ignored and pets will be used.
 deprecated: true
 pets:
 type: array
 items:
 $ref: '#/components/schemas/Pet'

This is the approach to take to add the new feature of multiple pets without breaking
older consumers. It does beg the question of when this is possible. Or an even better
question might be, what can be done to encourage these types of changes in the future?

OBJECTS FOR THE WIN

The best way to prepare the schemas in your OpenAPI definitions for resilience against
breaking changes is to use the object type wherever you can. Objects are awesome:
you can always add more fields without needing to remove older ones, which allows
the types of changes that aren’t breaking.

Listing 20.8 Adding a description to the Job schema

Listing 20.9 Adding the deprecated field

We need to use allOf to
combine a description
with our $ref.The new

behavior around
dog, which still

allows older
consumers to

use it

The deprecated
flag, deprecating
this field

351Summary
 As a simple example, always wrap your arrays inside an object. We already intro-
duced this as a best practice in chapter 10, but we’ll discuss it again to demonstrate
breaking and non-breaking changes. Here is an example.

["one", "two", "three"]

If we want to add pagination, we have to break the API to make that change, as follows.

{
 "total": 3,
 "cursor": null,
 "items": ["one", "two", "three"]
}

Even if we may never need pagination, wrapping arrays inside objects allows us the
option to add more data to the schema later on.

{
 "items": ["one", "two", "three"]
}

Going from an array to an object is a breaking change. However, going from an object
with just the items field to an object with items, cursor, and total fields isn’t,
because API consumers can still read the items and ignore the total field. Note that
pagination can still degrade the experience, because older clients who were used to
getting all the data will only get the first page and have no way of accessing further
pages. That’s still less breaking than getting no items at all because you don’t under-
stand the data type.

Summary
 API changes are inevitable, but the way in which APIs change can help keep or

potentially lose consumers.
 A breaking change is one that requires consumers to do work, or their integra-

tion will begin to fail. Avoiding breaking changes is the best approach.
 A coordinated breaking change is one where all stakeholders agree on a time

and plan for the breaking change to occur. This can work well for internal APIs
with fewer stakeholders, but there may come a point at which the coordination
takes more effort than introducing a breaking change.

 OpenAPI supports multiple versions of an API by using multiple definition files.
Typically this involves changing the URL to use a different base path, such as v2.

Listing 20.10 Example array response

Listing 20.11 Changing an array to a paginated list

Listing 20.12 Example array wrapped in object

A naked array, not
wrapped in an object

Our root schema has changed from an
array to an object—a breaking change.

Our original array is still
here, nested under items.

Array wrapped in an object
for future-proofing

352 CHAPTER 20 Versioning an API and handling breaking changes
 You can use custom media types to version the entire API or, with a bit of
finesse, only individual operations. OpenAPI supports declaring different
media types with different schemas in both the requestBody and responses.

 Only adding fields to schemas is a great strategy for avoiding breaking changes.
This approach relies on using objects wherever possible and avoiding unwrapped
arrays or other primitives.

 Schemas in OpenAPI can have the deprecated flag, which indicates that the
schema (or subschema) should be avoided, as it will be removed someday.

The API
prerelease checklist
After the success of the web and mobile products, José is now considering releasing
the API to the general public. He wants to allow others to build on the PetSitter
platform and give it more exposure to different audiences and marketplaces.

 As excited as José and the team are, they need to consider what they’ll release
and how they’ll release it before jumping in.

21.1 Pros and cons of a public API
There are several challenges involved in releasing an API to the general public.
The chief problem is surely that consumers cannot change their code immediately
after the API has a breaking change. Add to that, there isn’t a direct communica-
tion channel between the API team and the consumers, so we’re left with a pickle
jar and no way of opening it. Topics like security, testing, and monitoring also need
to be considered to keep the API healthy and engaging.

This chapter covers
 Going through the prerelease API checklist

 Short introductions to topics not further covered
in this book

 Releasing the PetSitter API
353

354 CHAPTER 21 The API prerelease checklist
 All these challenges may make releasing an API a little wearisome. But there are
benefits from increased use of the platform: new and innovative use cases not consid-
ered before. We, as authors of an API book, are naturally a little biased, but even so,
releasing an API is generally good.

 These are some pros and cons of releasing a public API:

 Pros
– Access to more people using the service.
– Allows for more innovative uses of the service.
– Developers invested in the platform won’t quickly change to a competitor’s

API.
 Cons

– The security surface area increases.
– Changes to the API involve increased overheads.
– Less predictable API traffic leads to heavier loads and may require a different

approach toward scalability of the backend.

Releasing an API to the public is generally a trade-off. You’ll be giving up full control
of the end user’s experience with your platform, while at the same time greatly
increasing the reach that your platform will have. Based on our personal experience,
releasing an API generally has a positive impact on a service.

 José has decided that his core value is in the people who use his system—the more
people who use it, the more valuable it becomes. By opening up the API, he allows for
more engagement at the risk of others creating better portals to his platform. For
example, someone could build a website that combines PetSitter with Airbnb, which
may be a better experience for users. This is a potential risk for José’s business, which
may not offer all those features. This is a risk he needs to balance and account for, and
in practice this can usually be made to benefit all parties.

 In this chapter we’ll look at releasing an API and how that relates to what we’ve
covered in this book so far. We’ll also look at what we haven’t covered that is still very
much worth exploring.

21.2 The checklist
José wants to make sure he’s aware of all the bits and bobs that he and the team need
to cover before releasing the PetSitter API. He’s not sure if the API is in a good state to
release, and he’s not sure if he should release the entire API or just part of it. In short,
he’s not sure.

 In this chapter the problem we’re tackling is getting the confidence to release the
PetSitter API. We’ll tackle it by doing our due diligence and looking at the different
aspects of an API release. We’ll start by drawing up a checklist, and then we’ll consider
each of the items in that list in turn. We’ll end up with a completed checklist, and José
will have the confidence to decide when and how to release his API. To create the
checklist, we’ll start with the end goal and work our way backwards.

355The checklist
NOTE This reminds us of a fun little game to play—take popular stories and
tell them in reverse. For example, Godzilla in reverse is about a benevolent
lizard that rebuilds Tokyo and then moonwalks back into the ocean. Use this
game with caution.

José tries to imagine the ideal situation. The API is released and is well received by all.
He knows this because he has metrics showing good growth. Developers are reaching
out via email less often because the error messages are clear and show how to solve the
problems. He and his team are confident in making API changes, as they know what is
considered a breaking change and what’s not, and they know what to do if there is a
breaking change. There isn’t much to fear from nefarious folks trying to attack the sys-
tem, as their security is up to scratch. And new users are excited to integrate with the
API because they know what’s available now and what will be available in the future.
José sure knows how to dream big!

 Let’s break down the dream into areas worth investigating some more:

 Set up metric collection.
 Get secure.
 Create an API change strategy.
 Provide documentation and communication.
 Provide an API roadmap.

This is an excellent start, although some things were implicit in José’s dream that may
not be obvious when thinking about the API. For instance, it may be obvious, but if
the API isn’t working, it’s probably not a good idea to release it to the public. We’ll
add the following items to the list:

 Get the API working.
 Get the API consistent.
 Set up API monitoring.
 Determine what to release.

At the end of this chapter, we’ll fill out table 21.1.

Table 21.1 The prerelease API checklist

Item How to deal with it

Working API

Consistent API

Security

Versioning/change strategy

Documentation

API roadmap/release plan

Metrics and monitoring

Communication channels

356 CHAPTER 21 The API prerelease checklist
21.3 Getting the API working
In this section we’ll talk about the functional side of the API and make sure it’s ready
for a general release. Typically this involves testing both manually and with automa-
tion. The outcome of testing is confidence that the system works as you expect it to.

 We’ll only briefly cover testing, as it is a large topic that’s mostly outside the scope
of this book. We’ll take a look at two different styles of testing and how they work
together to form a testing strategy. The two styles are unit testing and end-to-end (e2e)
testing.

21.3.1 Unit testing your API

Unit testing aims to limit your test space to one thing or “unit.” In software we think of
units as being functions, and in APIs we can consider an operation (a path and a
method) as the unit under test. You can choose to define a unit differently—we may
be abusing the term here to refer to a single operation, but it works well for us.

 To test an operation, you may need to isolate that operation. Consider the data-
base queries and third-party API requests that your backend makes when you call your
API operation—could those potentially interfere with your testing, and should they be
replaced with mock code? Isolation ensures that the unit tests run quickly, as they
won’t depend on any external network calls.

 Unit testing an API can take the following approach:

 Test by making a request and asserting that the response is correct.
 Test as many edge cases as you have an appetite for.
 Mock or stub out as much as you choose, to best isolate your function.

Every programming language will have different libraries to help with API testing, as
well as different frameworks for running unit tests, so we won’t go into too much
detail about that. For our Node.js APIs, we use a library called supertest (https://
github.com/visionmedia/supertest), which is based on an HTTP client called super-
agent. It works well for unit testing API calls. The following listing shows an example.

const app = require('./our-expressjs-server.js')
const request = require('superagent')

describe('POST /foos', function() {
 it('should create a new Foo', function(done) {
 app.mockDb(true)
 request(app)
 .post('/foos')
 .send({ foo: 'A Foo' })
 // Expect status code 201
 .expect(201)
 // Expect a JSON response body
 .expect('Content-Type', /json/)
 // Expect the response body to have fooId

Listing 21.1 An example unit test in Node.js using supertest

https://github.com/visionmedia/supertest
https://github.com/visionmedia/supertest
https://github.com/visionmedia/supertest

357Getting the API working
 .expect({ fooId: 'abc'}, () => {
 // Should also assert the DB was updated
 expect(app.mockDb.foos).toBe([{foo: 'A Foo'}])
 // Finish the test
 done()
 })
 })

 // ...
})

The preceding test is loosely written and is only meant to convey the gist of how unit
tests can be written for operations.

21.3.2 End-to-end testing

With unit tests, we are testing that the code works the way we expect it to for each
operation. However, unit tests don’t capture what happens when all the units are com-
posed together. For that, we need to do end-to-end testing. This tests the entire appli-
cation, much like our consumers will.

 The first and most straightforward way to test the API is to sit down and use it as
your users would. Fortunately, HTTP APIs are incredibly standardized, and most (if
not all) HTTP clients have the same behavior. That means you can test it with any
HTTP client. Sit down, grab your favorite API client (such as curl, Postman, or Swag-
ger UI) and make some requests against the API.

 José isn’t technical enough to be comfortable working with many of the features of
an API client, but with the help of his team he can use one to see what data is provided
and returned. That’s enough to think through some edge cases that his consumers
might encounter.

 With this manual exploratory testing, the team is more able to empathize with the
consumers, but running through the same flows over and over again won’t scale well,
so automation is needed, particularly in areas that are well established. Automation
suites are a curated tool that the team will need to maintain and cultivate for them to
continue to yield value.

 We’re going to show you a little tool that is surprisingly useful in testing small- to
medium-sized APIs. Then we’ll point you toward other tools that can handle larger,
more complicated flows.

USING STREST

The first flow José considers is creating a new job and then fetching the list of avail-
able jobs. His goal is to see what a consumer would see and to put himself in the con-
sumer’s shoes. After creating a job, he expects that job to be in the list returned. For
that to happen, we’ll need to assert that the list contains the automatically generated
ID. The tool to help us is called strest.

 Strest is an open source tool (https://github.com/eykrehbein/strest). It consumes
a YAML file that describes a series of API requests to make, and then it asserts that the

https://github.com/eykrehbein/strest

358 CHAPTER 21 The API prerelease checklist
responses are correct. What makes strest even more useful is it’s ability to chain
requests together. This suits our purposes perfectly—we can make one request, cap-
ture the generated ID, and use it in the assertion of the next request.

 Here is a simple example.

petsitter.strest.yaml
version: 2
requests:
 createSession: #...

 createJob:
 request:
 url: '<$ Env("URL") $>/jobs'
 method: POST
 headers:
 - name: Authorization
 value: |
 <$ createSession.content.auth_header $>
 postData:
 mimeType: application/json
 text:
 activities: [walk]
 description: A friendly pooch
 ends_at: 2021-01-01T00:00:00
 starts_at: 2021-02-01T00:00:00
 validate:
 - jsonpath: status
 expect: 201

 getJobFromLocation:
 request:
 url:
➥ '<$ Env("URL") $><$ createJob.headers.location $>'
 method: GET
 headers:
 - name: Authorization
 value: <$ createSession.content.auth_header $>
 validate:
 - jsonpath: content.description
 expect: A friendly pooch

We can run the preceding example as follows.

$> URL=http:/ /petsitter.designapis.com/api strest ./petsitter.strest.yml

[Strest] Found 1 test file(s)
[Strest] Schema validation: 1 of 1 file(s) passed

Listing 21.2 Simple strest example

Listing 21.3 Running the strest example

createSession
is omitted for
brevity.

The name of
our example
request

Using the response
body of a previous
example request

Validating that
the status code
was 201

Using a header
from a previous
request

Validating the
response body

359Getting the API working
✔ Testing createSession succeeded (5.69s)
✔ Testing createJob succeeded (5.657s)
✔ Testing getJobFromLocation succeeded (5.644s)
[Strest] ? Done in 17.012s

Naturally, if the test fails, we will see some output based on that.

$> URL=http:/ /petsitter.designapis.com/api strest ./petsitter.strest.yml

[Strest] Found 1 test file(s)
[Strest] Schema validation: 1 of 1 file(s) passed

✔ Testing createSession succeeded (5.748s)
? Testing createJob failed (5.692s)
[Validation] The JSON response value should be 201 but was 400

Request: "curl 'http:/ /petsitter.designapis.com/api/jobs'

➥ -H 'accept: application/json' ...
Response:
{
 "status": 400,
 "statusText": "Bad Request",
 "headers": {
 "x-powered-by": "Express",
 "content-type": "application/json; charset=utf-8",
 "content-length": "205",
 "etag": "W/\"cd-MzLFwusgBhz3l4tewJyoekBJWvI\"",
 "date": "Fri, 04 Jun 2021 09:20:41 GMT",
 "connection": "close"
 },
 "content": {
 "message": "request.body should have required property 'activities'",
 "errors": [
 {
 "path": ".body.activities",
 "message": "should have required property 'activities'",
 "errorCode": "required.openapi.validation"
 }
]
 }
}
[Strest] Failed before finishing all requests

Overall we’ve had a good experience with strest, particularly with how easy it is to get
started testing an API from end to end. We wrote a simple test suite for the PetSitter
API, and if you’re interested you can check out the .strest.yaml file here: https://
github.com/designapis/petsitter/blob/main/.strest.yml.

Listing 21.4 Failed output

The response shows 400
instead of 201, causing
the test run to fail.

https://github.com/designapis/petsitter/blob/main/.strest.yml
https://github.com/designapis/petsitter/blob/main/.strest.yml
https://github.com/designapis/petsitter/blob/main/.strest.yml

360 CHAPTER 21 The API prerelease checklist
USING POSTMAN’S NEWMAN OR SMARTBEAR’S READYAPI
Building on the same idea of end-to-end testing by executing requests and asserting
on the response, there are more “production grade” tools that can do what strest did
in the previous section. These are two notable options:

 Postman’s Newman—https://github.com/postmanlabs/newman
 ReadyAPI’s TestEngine—https://github.com/SmartBear/testengine-cli

Both follow a similar pattern: using a GUI tool (Postman or ReadyAPI), you can test
an API by simply making requests. Both tools also allow you to expand on that by writ-
ing scripts (Newman uses JavaScript, and ReadyAPI uses Groovy/JavaScript) to com-
pose a suite of tests that can be executed from the command line. This is critical for
automating test runs.

 Both tools have pros and cons. Both are used by many companies to automate
their end-to-end testing, and both build on the patterns we discussed in the strest sec-
tion with additional scripting abilities. End-to-end API testing is still nascent, and we
look forward to even more powerful ways to verify a working API.

 With some testing in place, José feels confident that the API does as he expects (as
far as he and the team have tested it). But just because it’s tested doesn’t mean that
anyone will know how to use it. That’s where documentation becomes important.

21.4 Documentation
To grossly misuse a famous quotation, “If an API exists but no one knows how to use it,
does it really exist at all?” An API needs documentation in some form or fashion. The
better the documentation, the more quickly and effectively consumers will be able to
use it. Let’s talk about docs.

Documentation is your API’s entry point for consumers. From the docs, your consum-
ers should learn the following key information:

 Can I do what I want? (For example, can I list all jobs in the PetSitter API?)
 How can I gain access? (URL + authentication/authorization)
 What is the request that I want, and what are its details?

The importance of understanding your API consumers
One of our favorite Quality Assurance (QA) jokes goes something like this:

A QA walks into a bar. Orders a beer. Orders 0 beers. Orders 99999999999 beers.
Orders a lizard. Orders –1 beers. Orders an asdfasdf.

A customer walks in and asks where the bathroom is. The bar bursts into flames and
explodes.

The lesson? Users often do their own thing. It’s worth watching how they use your API
and for what purposes!

https://github.com/postmanlabs/newman
https://github.com/SmartBear/testengine-cli

361Documentation
This is where OpenAPI shines. It has the nitty-gritty details of the operations captured,
and the fact that it’s a standard allows consumers to read it in many different ways:
using the documentation provided by the service, using documentation tools like
Swagger UI or Redocly, or using something bespoke to the consumer.

 As you’ve seen so far, describing your API gives you 80% of what consumers need
to get going. The remaining 20% is the human touch, helping with the pieces of an
API that are more complex and need extra explanation not covered by OpenAPI. For
that 20%, we recommend you consider the following:

 With your API docs, how soon can a consumer start using your API? How much
do they need to read, and how many pages do they need to visit?

 Can they play with your API? Some APIs are serious (those involving money, the
launching of rockets, etc.), so is there a sandbox where users can experiment?

 How is your API versioned? Are different versions available, and if so how can
consumers know which to use?

 How can they reach out for help? A Contact Us form, a Discord or Slack group,
or even an email address will help.

An area where OpenAPI comes up short is describing related operations, such as if you
need to make several requests in a particular order to achieve a single goal. For those
cases, you can use the Markdown description field in your OpenAPI definitions. Or
you can create dedicated pages where consumers can more clearly see those flows.

 Consumers will want to explore your API docs to see what is available and to see if
it satisfies their requirements. Much like the home page of a website, the API docs
home page should inspire users to engage the service. It can inspire them by being
simple and by making it clear to them what is possible. It is important for the API doc-
umentation to be easy to get started with, and it should be comprehensive enough to
show how viewers can solve their problems.

 The following example shows a good API introduction.

PetSitter API

Hosted at https:/ /petsitter.designapis.com

PetSitter connects Pet owners with Pet sitters using Jobs.
A Job describes a Pet and time period for when the pet needs attention.
A Job can be applied for with a Job Application, which can then be approved
or rejected by the owner.

The PetSitter API requires an API token.
To get one, signup (over here)[petsitter.designapis.com/app/signup]
then (visit here)[petsitter.designapis.com/app/token] to create a token.
You can then add the header: `Authorization: Bearer <token>` to requests.

Listing 21.5 Example of an API introduction

The name of the
API or service

Where is this API hosted?
Multiple servers can be

linked to.
What is the
high-level
description of
the service?

Is there authentication? If
so, how can readers get it.

362 CHAPTER 21 The API prerelease checklist
PetSitter has only one version at present.

See list of operations...
...<swagger-ui>...

21.5 Getting your API consistent
In previous chapters we looked at ensuring our API was consistent. We did this for a
number of reasons, and the one we’ll discuss now is related to releasing the API.

 Before an API is released, we have full control and can make changes whenever we
choose. As soon as the API is released, we have to consider the impact that further
changes will have on existing consumers. As such, it pays to make the API as consistent
as possible before release, not only as good practice, but also to avoid having to “fix”
the API after it’s released.

 Let’s consider pagination, and expand on the suggestion of always using objects
from the end of chapter 20.

#...
/foos:
 get:
 description: A list of Foos
 responses
 200:
 application/json:
 schema:
 type: array
 items:
 type: object
 properties:
 foo:
 type: string
 example: A Foo

In the preceding example we have a response that returns a flat array. This might be
perfectly adequate if the number of items is stable and low. But what happens in the
future if the number of items increases, to the point where we need to use pagination?
In that case we’d likely have to make a breaking change. If instead we include pagina-
tion now, before we release, we’ll save ourselves that hassle.

 It is said in software development that pre-optimization is the root of all evil. And
by adding pagination before we need it, we’re definitely dabbling in this dark art. So
what do we do? How can we balance the idea of optimizing for the future to avoid
future pain with keeping our API lean and mean for the present problems it is trying
to solve?

 Our approach to this conundrum is to be consistent. If we have a response that
returns a list of items, always make it paginated. This consistency does two things:
First, it removes the need to consider each response and repeatedly ask whether this

Listing 21.6 A response that contains a list of items

Are there multiple versions
of this API in the wild?

The details of
the operations

This response
returns an
array.

363An API roadmap and exposure index
needs to be paginated. Second, it gives us the excuse we need to optimize now for a
future that might or might not happen. The list of Foos may never need to be pagi-
nated, but it can be.

 Within reason, strive to make your API consistent before you release so as to reduce
the amount of future pain. There may be some outliers—requests or responses that
you think may need extra complexity to address possible future pains. For those indi-
vidual operations, you should consider that extra complication carefully. For opera-
tions that are similar (such as responses that return a list of items), simply opt to be
consistent. It’s generally cheaper.

 Consistency does another good deed for us and our consumers. It makes our API
predictable. To quote yet another software development best practice, aim for the
approach of least surprise.

 With the schema consistent, there are also other ways to be consistent, such as in
error reporting.

21.6 Validation and error reporting
Errors are an important communication channel with your users, and in chapter 19
you learned how to include both user-readable and machine-readable errors. If users
do something wrong, you can help them fix it by returning good error messages. If
they’re missing a token, tell them they are unauthenticated. If they hit the wrong end-
point, give them some alternatives. Errors can be highly effective at ensuring your
consumers are comfortable with and confident in your API.

 With the errors in place, José tries to break the system and read the errors himself.
After each error, José asks, “Am I able to fix this by reading the error?”

 Validation plays a big role in error messages, and there are often small issues with a
request that validation can catch. Your error responses should detail exactly why the
request failed. The only exception would be related to security, as sometimes it’s
unwise to share that information.

21.7 An API roadmap and exposure index
José initially put the API in the PetSitter service to decouple the frontend and back-
end from each other. He also used it as way of outsourcing the mobile app develop-
ment, allowing that team to use the API instead of more complicated options. This
was the API’s informal roadmap—the plan José and his team had for the architecture
of the system.

 Now that José is releasing the API to the public, he is faced with more options. He
doesn’t have to release the entire PetSitter API right away. Instead he considers what
sort of actions he’d like to initially expose to his users. He should release enough
actions to give his users real value, while still allowing him and his team to get com-
fortable with a public API. The smaller the API is, the easier it is to manage. José grabs
a piece of paper and scribbles down the following endpoints.

364 CHAPTER 21 The API prerelease checklist
/users
/users/{id}
/jobs
/jobs/{id}
/jobs/{id}/job-applications
/users/{id}/jobs
/job-applications/{id}
/sessions

In the list, José can see a dividing line between endpoints that are related to the activi-
ties of specific users (such as job-applications and sessions) and those that are
more general (such as all jobs). The smallest subset of the API that José could release
and that still would deliver value would be to show all jobs available, as well as the
details of individual jobs.

GET /jobs
GET /jobs/{id}

This version of the API wouldn’t require consumers to have an API token, nor an
identity. This information is public and can be retrieved anonymously.

NOTE Even though you don’t need to use authentication for public data, and
it’s nice to offer it anonymously, it may still be useful to hand out API keys
and require them for requests. If you receive a lot of traffic to your API, it
could be useful to find out which consumers cause it, and, if necessary,
impose rate limits or add usage plans.

There is value in exposing anonymous data to consumers, but José is interested in
more. The next piece of value he could add would be to allow users to create jobs and
job applications, as well as manage existing ones and see all jobs for the current user.
This would include the following operations.

POST /jobs
POST /jobs/{id}/job-applications
GET /jobs/{id}
GET /jobs/{id}/job-applications
GET /users/{id}/job-applications
PUT /jobs/{id}
PUT /jobs/{id}/job-applications

These operations would all require an API token to authenticate the user creating jobs
and job applications. Such a token is available from the POST /sessions endpoint.

Listing 21.7 List of endpoints to consider

Listing 21.8 Smallest API to release

Listing 21.9 List of user-based endpoints

365An API roadmap and exposure index
 This is closer to what José imagines the initial public API release to be. But then he
starts thinking ahead to when users may want to use third-party applications that inte-
grate seamlessly with the PetSitter API. Or possibly when enterprises wish to create
and manage PetSitter accounts for multiple people.

 For seamless integration, scoped tokens would help limit access to resources. We’ll
call this “granular scopes.” Such a token could read Bob’s job applications, but it
couldn’t read other job applications or create new job applications for Bob. This
token could more easily be shared than the current token that permits everything Bob
is allowed to do. These scopes set the foundation for OAuth, where developers inte-
grating third-party applications with PetSitter can request varying levels of access, and
end users can control whether or not they grant access according to the scope.

 We briefly touched upon OAuth in chapter 7 when we talked about setting up
security schemes. With OAuth we can move past the empty array (security: []) in
operation-specific security declarations and explicitly list the required scopes for each
endpoint. This is just to give you a rough idea—we won’t go into more details about
OAuth in this book.

 With scoped access to user endpoints, other vendors could build systems on top of
the PetSitter API and manage users’ jobs and job applications. If OAuth was added
too, it would allow end users to simply click a button and allow the vendor access (the
“OAuth dance”). With that level of integration, the PetSitter API would surely become
a staple of everyone’s lives.

POST /tokens {
 scopes: [jobs:read, jobs:write, profile:read, etc]
}

Finally, we can think of larger organizations that may wish to manage user accounts col-
lectively. You may think this is unlikely for PetSitter, which is a consumer app. However,
a lot of business-related SaaS need this, as organizations need a way to onboard their
employees and contractors to third-party products. For PetSitter, a scenario could be
animal shelters that want to create accounts for their members in bulk so they can out-
source some caretaking tasks to outside volunteers. That functionality would involve
exposing operations like the following, with scopes and permissions similar to those of
the administrator role (which, admittedly, we haven’t discussed much).

GET /users
POST /users
PUT /users/{id}

Doing this would involve making changes to the API and service to allow for some
higher entity, such as an organization or company, that would have full control over its
own users. It could view them all, add new users, and make changes to them.

Listing 21.10 Granularly scoped tokens

Listing 21.11 The user-management side of the API

This is only a doodle
and not currently part
of the PetSitter API.

366 CHAPTER 21 The API prerelease checklist
 Figure 21.1 captures this progression of exposing more and more of the API. It
provides a rough guideline for how much of an API you should expose.

The key takeaway is that you (or José) don’t have to release the entire API all up front.
Instead, it’s better to consider what value you can expose initially and get feedback on
that first. It’s cheaper, and it keeps the rest of your internal API agile while you gain
the experience and confidence of having released a public API.

 José has decided to release an authenticated API (API exposure index 2), and he’ll
consider further exposure later on.

21.8 Getting a change strategy
José knows his API will eventually change, hopefully for the better. As you saw in the
previous chapter, he decided on an evolutionary change strategy: add and deprecate.
Should a breaking change need to occur, it’ll be communicated the best way possible,
deprecated, and removed, all without adding any new versions to the API. He and the
team will strive to build their API in a way that doesn’t require breaking changes, but
he, the team, and the consumers are confident in knowing how a breaking change will
be rolled out. They may use SemVer internally and change version numbers to com-
municate their changelog, but they will not expose version numbers in the URL, as it’s
not required for this change strategy.

 Because of this decision, he’s going to be extra careful in what he releases. He’ll
keep feature releases as small as possible to minimize the commitment of the API.

21.9 Improving security
Securing an API can be tough. Like fashion, it’s never finished. Ensuring a few basics
will get you going, but it’s important to be diligent and proactive in your security
stance. While the risk of a breach may be reasonably low (it does depend on the cir-
cumstances), the cost of a breach is most certainly high.

No API
Gotta start somewhere...

Anonymous
(e.g., Weather API)

Has user accounts

Has scopes
(e.g., OAuth) Administrates users

Fully exposed Figure 21.1 API exposure index

367Improving security
 Here are a few pointers:

 Ensure that your API has access control measures, and run tests that verify that
they prevent unauthorized users from doing things they shouldn’t.

 Denial of service (DDoS) attacks can be mitigated with a web application fire-
wall (WAF) or some other protection at the edge of your system.

 Keep your development and staging environments secure. There have been recent
attacks and several large breaches because of insecure dev/stage environments.

 Avoid leaking information in your error responses (see the sidebar on 404 vs.
403 status codes). Definitely avoid stack traces in your errors, as they tell a lot
about the type of code you’re running.

To combat weak security and increase awareness, take a look at the wonderful Open
Web Application Security Project (OWASP; https://owasp.org). It has resources to
help you establish stronger security across the web. To keep things simple, they main-
tain a top-ten list of security issues to consider, which we highly recommend everyone
take a look at: https://owasp.org/www-project-top-ten/. They have set a standard, and
we should all aim to consider each item in their top-ten list, for our benefit as well
as others’.

Using 404 vs. 403 responses for access denial
Attackers are good at exploiting systems by testing them—poking and prodding them
to discover information. In an age of automation, we have to be careful about what
information we expose.

Consider the following URLs:

 /foos/bobs-thing—Resource exists and only Bob has access
 /foos/franks-thing—Resource exists and only Frank has access
 /foos/does-not-exist—Resource does not exist

If a user requests /foos/does-not-exist, the service will return 404 Not Found.

If Bob has access to /foos/bobs-thing but not to /foos/franks-thing, what status
code should the service respond with when Bob requests /foos/franks-thing? If you
responded with 403 (or 401) you wouldn’t be wrong, but there is a problem with return-
ing those status codes. A 403 or 401 response code reveals that /foos/franks-thing
exists. Compare that to the 404 Not Found we get if we request /foos/does-not-exist.
Instead, we should return a 404 Not Found, so as to protect the information that
/foos/franks-thing exists from prying eyes.

Let’s consider another example: if Bob is allowed to read /foos/bobs-thing with a
GET, but is not allowed to update it, what status code should we respond with when
Bob tries PUT /foos/bobs-thing? Here, a 403 Forbidden response is perfectly
acceptable, as there is no information leak. Bob is allowed to know about the
resource, and the status code does not leak any further information. It is, in fact,
helpful, as Bob will know that he cannot update the resource and perhaps should
seek some higher authority.

https://owasp.org
https://owasp.org/www-project-top-ten/

368 CHAPTER 21 The API prerelease checklist
21.10 Monitoring your API
Knowing that your API is alive and well isn’t a given. During working hours, and with
an active testing and development team, you will likely discover rather quickly if your
API isn’t responding to requests. But over the weekend, you may not discover an out-
age until many hours or even days have passed. As API providers, we often set up some
sort of monitoring to make sure that we’re notified as soon as our API goes down. We
generally have a call list of who should be notified and what they’re responsible for.

 API monitoring tools basically ping your website at one or more endpoints, and
they will send you an email or message as soon as the website stops responding, or if it
responds with an error. PagerDuty (www.pagerduty.com) and AlertSite (https://smart-
bear.com/product/alertsite/overview/) are two such tools. You’ll also find an article
titled “14 Best API Monitoring Tools for Your Business” that lists some other options
here: https://geekflare.com/api-monitoring-tools/.

NOTE PagerDuty has the best ringtones for when something bad happens.
You’ll find the list here: http://mng.bz/xvx7.

21.10.1 Setting up metric collection

How will you know if you’ve succeeded? Or if you’re failing? Metrics are always the
answer. Here are a few metrics we’re particularly fond of:

 Unique users
 User engagement
 Churn rate (those no longer using the API)
 Acquisition rate (new users)

We look at these metrics for a monthly period to keep things simple, so a monthly
view of unique users, of churn rate, and so on.

 For the technical team, there are other important metrics that will improve the
quality of the API:

 CPU usage
 Memory usage
 Mean response time
 Error rate (400s and 500s)

Setting up API metrics is one of those topics we’d love to talk about, but it’s outside
the scope of this book. Instead we’ll point you to the following resources:

 “13 API Metrics That Every Platform Team Should be Tracking,” Moesif blog
(August 26, 2021), http://mng.bz/VlQN.

 Raushan Kumar, “Top API Performance Metrics Every Development Team
Should Use” (December 15, 2020), http://mng.bz/raDx.

With these metrics you can own your API completely and see the impact of the deci-
sions you make in the future. Go get some metrics!

https://smartbear.com/product/alertsite/overview/
https://smartbear.com/product/alertsite/overview/
https://geekflare.com/api-monitoring-tools/
http://mng.bz/xvx7
http://mng.bz/VlQN
http://mng.bz/raDx
http://www.pagerduty.com

369Summary
21.11 Releasing the API
Let’s recap our checklist, shown in table 21.2.

José is as excited as one can imagine. The hard work of considering and preparing are
now complete, and he has a clearer picture of what makes a successful API. He and
the team have done their due diligence and completed the checklist. All that remains
is to release the API.

 As they embark on the journey of releasing a public API, we wish you the same joy
and success!

Summary
 Once you decide to release an API, you need to run through a prerelease

checklist. Going over these points now will save you some pain down the road.
Before releasing, ensure that your API is complete and consistent, that it has
correct input validation, that it has human- and machine-readable errors, that it
has a versioning and breaking-change strategy, and that it is secure. Also con-
sider how your API will be monitored and what metrics you want to collect.

 Ensure your API works with testing. Decide on what types of testing you’ll
require, from unit testing to end-to-end testing. Investigate the different end-to-
end tooling available to see which tools will suit your process, such as Newman
or ReadyAPI.

 Ensure your API is documented (OpenAPI!), and include a human touch. A
metric of success can be the amount of time it takes a developer from their first
reading to the first request their consumer can make.

 Ensure your API is consistent with common patterns, such as pagination. Con-
sider your error messages, as they should both be human and machine readable
to guide your consumers.

Table 21.2 The prerelease API checklist

Item How to deal with it

Working API Test it!

Consistent API Have an API design process and think ahead.

Security Use OWASP and be continuously vigilant.

Versioning/change strategy Avoid breaking changes and communicate clearly.

Documentation Provide both reference and additional docs.

API roadmap/release plan Slowly expose your API and provide value.

Metrics and monitoring Provide both business and technical monitoring.

Communication channels Communicate your roadmap and versioning strategy clearly, have all
information available, and open feedback channels.

370 CHAPTER 21 The API prerelease checklist
 Consider the API exposure index (figure 21.1) when you release your API. How
much of your API do you really need to release immediately, versus what value
is added for your consumers? Releasing a smaller API is easier to manage and
adapt, whereas releasing a larger API usually gives consumers more value.

appendix
Swagger 2.0,

OpenAPI 3.0,
and OpenAPI 3.1

The OpenAPI specification has been through several different major versions. The
one covered in this book is OpenAPI 3.0. We chose this version because it’s a bal-
ance between what’s currently supported by tools while still being close to the latest
version, which is 3.1. OpenAPI can be a lot to type out, so we’ll be using OAS
(OpenAPI Specification) as shorthand for referring to the spec: OAS 2.0, OAS 3.0,
and OAS 3.1.

 In this appendix we’ll go over the major differences between the specification
versions, using OpenAPI 3.0 as a base reference. Going into detail about each point
of difference is beyond the scope of this book, but we’ll link to some great
resources you can look into if you want to know more.

 Recall that Swagger (the specification part) was donated and renamed as
OpenAPI, so the Swagger 2.0 specification is also known as OpenAPI 2.0. You may
see both names used across the internet.

 Lastly, an OpenAPI definition is a YAML file describing a single API. The
OpenAPI specification is how you write that YAML/JSON file.

 The following sources provide more information on the differences between
the schema versions:

 Differences between OAS 2.0 and OAS 3.0—Gregory Koberger, “A Visual Guide
to What’s New in Swagger 3.0,” https://blog.readme.com/an-example-filled-
guide-to-swagger-3-2/.
371

https://blog.readme.com/an-example-filled-guide-to-swagger-3-2/
https://blog.readme.com/an-example-filled-guide-to-swagger-3-2/

372 APPENDIX Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1
 OAS 2.0, 3.0, and 3.1—Janet Wagner, “What’s the difference between OpenAPI
2.0, 3.0, and 3.1?” https://blog.stoplight.io/difference-between-open-v2-v3-v31.

 Learn more about the JSON Schema in OAS 3.1—JSON Schema, https://json-schema
.org/learn/.

The specifications can be found at the following links:

 OpenAPI Specification 2.0—https://designapis.com/oas/2.0
 OpenAPI Specification 3.0—https://designapis.com/oas/3.0
 OpenAPI Specification 3.1—https://designapis.com/oas/3.1

A.1 The main differences between versions
Going from OAS 2.0 (Swagger 2.0) to OAS 3.0, the following changes were made:

 Changed document identifier: swagger: "2.0" changed to openapi: 3.0.x.
 Some structural changes; mainly the addition of the components container.
 Support for several API URLs instead of just one.
 Request and response bodies can describe a different schema for each media

type.
 Added oneOf and anyOf to schemas.
 New feature: callbacks (not covered in this book).
 New feature: links (not covered in this book).

Going from OAS 3.0 to OAS 3.1, the following changes were made:

 Removed Semantic Versioning constraint (technically, version 3.1 has a break-
ing change).

 Added full JSON Schema 2020-12 support, with OpenAPI extras. There is lots
of new stuff for schemas.

 New feature: webhooks.

Before we dive in, it’s useful to note that the YAML/JSON syntax is the same across all
three specifications. You may have noticed that the OAS 2.0 spec did not specify an
official YAML spec. That was remedied in OAS 3.0, so YAML 1.2 is the official version
with some minor caveats.

 Let’s start with the most widely adopted version, OAS 2.0.

A.2 OpenAPI 2.0 (Swagger 2.0)
OAS 2.0 is the most widely adopted OAS specification (at time of writing). Its success
played a major role leading up to the OpenAPI standard.

 You’ve learned about OAS 3.0 in this book, so the following example should look a
little bit different. It’s the classic Petstore example—the one you’ll see mentioned in
the official documentation and that loads as a template when you first launch Swagger
Editor—and it’s written against OAS 2.0.

https://blog.stoplight.io/difference-between-open-v2-v3-v31
https://json-schema.org/learn/
https://json-schema.org/learn/
https://json-schema.org/learn/
https://designapis.com/oas/2.0
https://designapis.com/oas/3.0
https://designapis.com/oas/3.1

373OpenAPI 2.0 (Swagger 2.0)
swagger: "2.0"
info:
 description: |
 This is a sample server Petstore server
 version: 1.0.0
 title: Swagger Petstore
 contact:
 email: apiteam@swagger.io
host: "petstore.swagger.io"
basePath: "/v2"
tags:
- name: "pet"
 description: "Everything about your Pets"
 externalDocs:
 description: "Find out more"
 url: "http:/ /swagger.io"
schemes:
- "https"
- "http"
paths:
 /pet:
 post:
 tags:
 - "pet"
 summary: "Add a new pet to the store"
 consumes:
 - application/json
 - application/xml
 # ...

You can see that it’s very close to what you know. There is an obvious difference in how
we declare what type of document it is—the spec got a new name (OpenAPI) and
adopted the three-digit versions (x.x.x) from semantic versioning. So instead of
swagger: "2.0" we now declare documents with openapi: x.x.x.

WARNING A common frustration with writing out swagger: "2.0" in YAML
documents was remembering to wrap the 2.0 value in quotes, or it would be
interpreted as a number, not a string. This would result in a validation error.
Fortunately the newer version strings, 3.0.0, aren’t ever interpreted as a
number, so you can choose to wrap it in quotes or not. If you ever write an
OAS 2.0 document, don’t forget those quotes!

A.2.1 Non-changes

There are a lot of shared features between OpenAPI 2.0 and 3.0. Here are the highlights:

 info—Has remained the same.
 tags—Has remained the same.
 externalDocs—Has remained the same.

Listing A.1 Petstore OpenAPI 2.0 example

The first difference is the
name, swagger: "2.0".

host was removed
in favor of servers.

basePath was removed
in favor of servers.

schemes was removed
in favor of servers.

consumes (and produces) were removed;
media types can be specified in request
and response bodies.

374 APPENDIX Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1
 security—securityDefinitions have changed, but this field itself has the
same structure.

 paths—Mostly the same, but the fields within operations are different.

You can see the overall structure of an OAS file with the differences between OAS 2.0
and 3.0 in figure A.1.

A.2.2 host, basePath, and schemes → servers

OAS 3.0 introduced a new way of describing where the API is hosted, allowing for mul-
tiple locations (such as sandbox and production) and changing the syntax somewhat.

 In OAS 2.0, the trio host, basePath, and schemes is how you describe where the
API is hosted, at what URI, and over what protocols (such as HTTP or HTTPS). The
downside is that you can only describe one location (unless you count the same server
with http and https as two locations).

 In OAS 3.0, servers was introduced, which besides allowing you to describe multi-
ple servers, also has support for variables.

 The following listing shows equivalent examples (except for the extra servers) for
both versions. We also show the variable support, which is how we can more easily
describe ad hoc server locations.

definitions

schemes

OpenAPI (Swagger) 2.0 vs. OpenAPI 3.0

info*

swagger: “2.0”

host

basePath

paths*

security

securityDefinitions

tags externalDocs

produces consumes

parameters

responses

info*

openapi: 3.0.X

servers

paths*

security

tags externalDocs

schemas

parameters

responses

securitySchemes

requestBodies

headers

examples

links

callbacks

components

Required*

Figure A.1 Structural differences between an OAS 2.0 and 3.0 file

375OpenAPI 2.0 (Swagger 2.0)
OpenAPI 2.0
host: one.example.com
basePath: /foo
schemes:
- https
- http

OpenAPI 3.0
servers:
- url: {bar}:/ /one.example.com/foo
 variables:
 bar:
 default: https
 enum:
 - http
 - https
Can add more servers...
- url: http:/ /two.example.com/bob
- url: http:/ /three.example.com/alice/jane

See the OpenAPI 3.0 documentation on the server object for more info: https://
designapis.com/oas/3.0.3#serverObject.

A.2.3 Responses

There are several innovations in OpenAPI 3.0 when it comes to responses. Here is a
quick example.

OpenAPI 2.0
paths:
 /foo:
 get:
 produces:
 - application/json
 responses:
 '200':
 description: ok
 schema:
 type: object
 examples:
 application/json:
 foo: bar
 one: 1

OpenAPI 3.0
paths:
 /foo:
 get:
 responses:
 2XX:

Listing A.2 host, basePath, schemes → servers

Listing A.3 Responses in OAS 2.0 and 3.0

https://designapis.com/oas/3.0.3#serverObject
https://designapis.com/oas/3.0.3#serverObject
https://designapis.com/oas/3.0.3#serverObject

376 APPENDIX Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1
 description: Ok
 examples:
 one:
 description: The number one.
 value: 1
 content:
 application/json:
 schema:
 type: object
 # ...

The biggest shift between OpenAPI 2.0 and 3.0 is going from produces, which was a
keyword specifying what types of media the server would respond with (or produce), to
defining a schema for each different media type in OAS 3.0.

 A smaller innovation is the ability to use 4XX (uppercase X’s) as a way of describing
an entire range of HTTP status codes: 400–499. You can do the same with the other
ranges too (1XX, 2XX, 3XX, and 5XX).

 The structure of examples was changed as well. Instead of having a single exam-
ple per media type, you can have any number of examples with arbitrary names in
OAS 3.0.

OpenAPI 2.0
get:
 responses:
 200:
 examples:
 application/json:
 foo: 1
 bar: 2
 application/xml:
 foo: 100
 bar: 200

OpenAPI 3.0
get:
 responses:
 200:
 examples:
 AnExample:
 description: Descriptions were added too.
 value:
 foo: 1
 bar: 2
 AnotherExample:
 value:
 foo: 100
 bar: 100

Listing A.4 Example of examples

In OAS 2.0
examples are one
per media type.

In OAS 3.0 you can use
arbitrary names for
examples.

377OpenAPI 2.0 (Swagger 2.0)
A.2.4 parameter/in-body → requestBody

For requests, OAS 2.0 has consumes as a complement to produces, and you describe
request bodies inside the parameters keyword. OAS 3.0 moved that into requestBody,
which ensures fewer complications, particularly around how OAS 2.0 supported two
types of request bodies.

 OAS 3.0 removed consumes to enable the addition of different schemas to each
media type. We can think of examples where the XML and the JSON may be slightly
different. Or we could even stretch the idea with having extended or minimal datasets
based on mediaType, such as application/vnd.example.full+json vs. application/
json, where full+json includes more metadata in the request. Using different media
types for different content can get wild—the sky is the limit.

OpenAPI 2.0
paths:
 /foo:
 post:
 consumes:
 - application/json
 - application/xml
 parameters:
 - in: body
 name: body
 description: a request body
 schema:
 type: object

OpenAPI 3.0
paths:
 /foo:
 post:
 requestBody:
 content:
 application/json:
 schema:
 type: object
 # ...
 application/xml:
 schema:
 type: array
 # ...

Using in: body in the preceding example applies for all request bodies other than
application/x-www-form-data (form data) and application/multipart (think file
uploads). For these types of requests, OAS 2.0 has in: formData and type: file.
These are hairy and complicated—see the details in the spec here: https://designapis
.com/oas/2.0#parameter-object. In short, you need to add application/x-www-
form-data and/or application/multipart to your consumes keyword, and then
describe a parameter with in: formData. Fortunately it is now easier with OAS 3.x.

Listing A.5 Request bodies in OAS 2.0 and 3.0

consumes shows which
media types are accepted
in the request body.

in: body makes it a request
body and not a query, path,
or header parameter.

The name here doesn’t
matter, but it’s still
required.

https://designapis.com/oas/2.0#parameter-object
https://designapis.com/oas/2.0#parameter-object
https://designapis.com/oas/2.0#parameter-object

378 APPENDIX Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1
A.2.5 Components and structure

OAS 3.0 introduced the components keyword, which is a way to reuse different compo-
nents within the API definition. Before that, OAS 2.0 used several root-level keywords
to hold those components: definitions (renamed to schemas), parameters, responses,
and securityDefinitions. These were combined in the components keyword, along
with several new keywords that previously weren’t around.

 OAS 2.0 components:

 definitions—Moved to components/schemas
 responses—Moved to components/responses
 parameters—Moved to components/parameters
 securityDefinitions—Moved to components/securitySchemes

OAS 3.0 components:

 schemas (renamed from definitions)
 responses
 parameters

 examples (new)
 requestBodies (new)
 headers

 securitySchemes (derived from securityDefinitions)
 links (new)
 callbacks (new)

OpenAPI 2.0
swagger: "2.0"
#...
definitions:
 Foo:
 type: object
parameters:
 Skip:
 in: query
 name: skip
 type: string
responses:
 Error:
 schema:
 type: object
securityDefinitions:
 SuperSecret:
 type: apiKey
 name: Authorization
 in: header

Listing A.6 Components

379OpenAPI 3.1
OpenAPI 3.0
openapi: 3.0.3
#...
components:
 schemas:
 Foo:
 type: object
 parameters:
 Skip:
 in: query
 name: skip
 schema:
 type: string
 responses:
 Error:
 content:
 application/json:
 schema:
 type: object
 securitySchemes:
 SuperSecret:
 type: apiKey
 name: Authorization
 in: header

 # New components
 examples: {} #...
 requestBodies: {} #...
 headers: {} #....
 links: {} #...
 callbacks: {} #...

In the preceding listing you can see the equivalents between the definitions, param-
eters, responses, and securityDefinitions in OAS 2.0, and the schemas, parame-
ters, responses, and securitySchemes in OAS 3.0. The new components include
examples, requestBodies, headers, links, and callbacks.

A.2.6 anyOf, oneOf

OAS 2.0 doesn’t have any equivalents for anyOf or oneOf, so you’re out of luck if you
need to describe those in OAS 2.0. You’ll need to upgrade to OAS 3+.

 It is worth noting, however, that allOf is supported in OAS 2.0.

A.3 OpenAPI 3.1
OAS 3.1 introduces two major changes:

 Full support for JSON Schema (draft 2020-12)
 Webhooks

You can review the structure of an OAS file with the differences between OAS 3.0 and
3.1 in figure A.2. As you can see, the structural changes are smaller compared to the
differences between OAS 2.0 and 3.0 that were shown in figure A.1.

380 APPENDIX Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1
The biggest change between OAS 3.0 and 3.1 is in how we define schemas. OAS 2.0
and 3.0 both support a variation of JSON Schema (draft 04). This variation kept the
JSON Schema and OpenAPI communities a little apart when it came to sharing tools
and approaches. Differences meant we needed to convert between the JSON Schema
and OpenAPI flavors of JSON Schema.

 With OAS 3.1 gaining full support for JSON Schema (draft 2020-12), we now have
the potential for better interoperability between JSON Schema tooling and OpenAPI
tooling. JSON Schema 2020-12 also introduces a powerful abstraction called vocabular-
ies. This abstraction allows OpenAPI to add extra keywords that are useful for APIs but
not described in the core JSON Schema.

 While a version bump may not sound like much, there is a lot of new stuff in JSON
Schema draft 2020-12.

A.3.1 JSON Schema 2020-12

This version of the JSON Schema spec adds quite a few cool new ideas to OpenAPI:

 if, then, else—For validating schemas depending on whether some validation
is true or not

 $anchor, $id—For giving referenceable names to subschemas, which allows for
more powerful uses of $ref

jsonSchemaDialect

OpenAPI 3.0 vs. OpenAPI 3.1

info*

openapi: 3.1.X

servers

paths

security

tags externalDocs

info*

openapi: 3.0.X

servers

paths*

security

tags externalDocs

webhooks

schemas

parameters

responses

securitySchemes

requestBodies

headers

examples

links

callbacks

components

schemas

parameters

responses

securitySchemes

requestBodies

headers

examples

links

callbacks

pathItems

components

Required*

Figure A.2 Differences between an OAS 3.0 and 3.1 file

381OpenAPI 3.1
 prefixItems, contains, minContains, maxContains, unevaluatedItems, unique-
Items—Additional constraints for working with arrays

 dependentSchemas, propertyNames, patternProperties, unevaluated-

Properties, minProperties, maxProperties—Additional constraints for work-
ing with objects

 const—Like an enum of one value, for when a field can only ever be one value

A.3.2 Vocabularies

JSON Schema 2020-12 offers the ability to extend itself via something called vocabular-
ies. This is an advanced feature that may not be needed when describing most APIs,
but it can be very powerful for large organizations or even whole industries (travel,
banking, etc.). The idea is that you can add (or remove) keywords for schemas. If
you’ve ever wanted to add a bespoke keyword to your schemas, this would be how you
can do it. This doesn’t mean tooling will magically do what you want with new key-
words, but vocabularies do offer the ability to at least add them to the language and
validate that they meet certain criteria (like being a string, or matching a pattern).

 An example given in the JSON Schema specification is adding a minDate, which
could be useful for describing a minimum date for fields that have a date format.

 A vocabulary consists of two parts: one specifies how to validate the definition, and
the other provides the semantics of that keyword. Determining what needs to be done
with the semantics is left up to authors and tool makers. JSON Schema itself is defined
as a list of vocabularies: a Core schema that defines just enough to create vocabularies,
and then a Validation vocabulary that includes all the goodies we’ve come to expect
from JSON Schema.

A.3.3 OpenAPI extending JSON Schema (via a vocabulary)

The schemas for OpenAPI are described as a vocabulary on top of the JSON Schema
Core and Validation vocabularies. This is because there are keywords that only make
sense for APIs and not for JSON Schema in other contexts.

 OAS 3.1 notably adds the following, which are carried over from OAS 3.0:

 discriminator keyword
 xml keyword
 externalDocs keyword
 example (singular) keyword (mostly for backward compatibility; it’s been depre-

cated in favor of JSON Schema’s examples)

OAS 3.1 has the root-level jsonSchemaDialect keyword to define a default dialect (a
list of vocabularies) for all the schemas within it. This is quite an advanced feature,
and it’s unlikely to influence your day-to-day API design.

382 APPENDIX Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1
A.3.4 Webhooks

Webhooks are a top-level item, similar to path operations. They are the reverse of
operations—they describe requests that the server will make to your service. Web-
hooks are a useful and simple way to register for events from some service. They look
incredibly similar to path operations.

 The following example is taken from the OpenAPI GitHub repository.

openapi: 3.1.0
info:
 title: Webhook Example
 version: 1.0.0
Since OAS 3.1.0 the paths element isn’t necessary.
Now a valid OpenAPI Document can describe only paths,
webhooks, or even only reusable components.
webhooks:
 # Each webhook needs a name
 newPet:
 # This is a Path Item Object, the only difference is that the request is

initiated by the API provider
 post:
 requestBody:
 description: Information about a new pet in the system
 content:
 application/json:
 schema:
 $ref: "#/components/schemas/Pet"
 responses:
 "200":
 description: Return a 200 status to indicate that the data was

received successfully

Listing A.7 Example of a webhook

New top-level keyword for
the new webhook resources

Webhooks are just like operations, with
the same set of keywords within them.

index
API endpoints

/job-applications/{id}, PUT 319
/jobs

GET 296–297, 300, 302, 319
POST 319

/jobs/{id}
GET 284, 319
PUT 319

/jobs/{id}/job-applications
GET 319
POST 319

/jobs/{id}DELETE 177
/register, POST 321
/review/{reviewId}, GET 75–78, 145
/reviews, GET 41–45, 50–51, 59, 112, 153
/reviews, POST 70–71, 94
/sessions, POST 227
/tokens, POST 86–87, 90, 102, 111–112
/users, POST 83, 86, 102, 111, 113, 119, 319
/users/{id}

DELETE 319
GET 319
PUT 319

/users/{id}/job-applications, GET 190–191
/users/{id}/jobs, GET 275, 282, 284, 319

A

Accept header 347, 349
actions 129
activity filter parameter 285
activity property 335
address property 332
age attribute 261
age property 337
allOf keyword 262–264

allowReserved property 77
$anchor, $id 380
anyOf keyword 262–264, 379
API gateway 234
apiKey security 92–94, 97, 225
APIs (application programming interfaces)

adding metadata to definition 103–105
creating design using OpenAPI 143–145

API operations for PetSitter 156–167
converting domain model into OpenAPI

143–144
creating schemas 145–152
CRUD approach to API operations 152–156
ensuring reusability 144–145

describing things 4–5
designing next iteration

improving developer experience 248–252
planning next sprint 241–242
preparing for new features 242–248
reviewing first development sprint 240–241

domain modeling 130
ecosystem 3–4
hosting API documentation 114–117

Netlify.com 116–117
Swagger UI 115–116

identifying missing operations 189–196
choosing mock data response to get from

Prism 193–195
curl examples 196
designing new operation 190–192
due diligence for adding operation 190
formalizing and suggesting change 195–196

Markdown, writing description in 105–111
adding rich text description to FarmStall API

definition 108–111
overview 106–107
383

INDEX384
APIs, Swagger Editor (continued)
multiple versions 343–345
OpenAPI 5–7

definitions fitting in 7–8
example definition 6–7
when to use 10–11

prerelease
change strategy 366
checklist 354–355
consistency 362–363
documentation 360–362
getting API working 356–360
improving security 366–367
monitoring 368
pros and cons of public API 353–354
releasing 369
roadmap and exposure index 363–366
validation and error reporting 363

repository, setting up 175
requests 14–15

FarmStall API 16–18
HTTP 23–25
Postman 15–16
practice 21–22

REST (representational state transfer) 9–10
Swagger Editor, interacting with 42–45

adding servers to definition 44–45
executing GET /reviews 43, 45

Swagger toolset 8–9
tags 111–114

adding descriptions to 112–113
adding rest of 113–114
adding Reviews tag to GET /reviews 112

application/json media type 49, 56–57, 347
application/problem+json media type 347
application/vnd.petsitter.v1+json media type 347
application/xml media type 56
application/x-www-form-data (form-data) 377
applying status 336
Approve action 164
array constraints 330
array data type 211
array references 340
array structures 284
attributes 129
authentication 85–91

changes in definitions 88
POST /tokens operation 86–87
POST /users operation 86
verifying user creation and getting tokens

89–91
web applications 222–223

authorization 91–96
adding Authorization header security

scheme 93

adding security requirements to POST
/reviews 94

implementing for web applications 225–230
adding “Login” action 226–229
creating security scheme 225–226
global security declaration 229–230

OpenAPI handling 92
types supported in OpenAPI 3.0.x 92–93
using security feature of try-it-out 94–96

Authorization header 82–85, 91, 93, 97, 227,
323

Auth section, Markdown 109–110
avatar API 22

B

backend 126
backend branch 175, 177
backend code

database persistence with Mongoose 212–217
API modification 213
configuring Mongoose in project 214
creating models 214–217
getting ready to use MongoDB 214

error handling 322–323
implementing API methods 218–220
structure 201–204

generating 201
investigating 201–203
OpenAPI changes 203–204

Swagger Codegen 199–201
client code generation 200
server code generation 200
Swagger Generator 200–201

testing 209–212
input validation 210–211
output validation with Prism 211–212
with Postman 209–210

updating OpenAPI for 204–209
adding operation IDs 204–205
regenerating backend stubs 208–209
tagging API operations 206–208

basePath 374–375
baseUrl variable 210
before_id filter parameter 294
branches 173, 179–180
breaking changes 243

overview 341
releasing 341–351

adding and deprecating features 349–351
coordinated breaking changes 342–343
multiple API versions 343–345
using media types to version operations

346–349
breed attribute 261–262

INDEX 385
C

callbacks component 378–379
catch() function 219
cat facts API 21
Cat schema, Petsitter

composition inside 264–266
updating 262, 337

change workflow
API prerelease strategy for 366
breaking changes

overview 341
releasing 341–351

communicating and reacting to change
171–172

formalizing and suggesting 195–196
GitHub 172–177

agreeing on change 173–174
setting up 175–176
source of truth 173
steps in workflow 176–177
suggesting change 173
viewing changes 174

practical look at 177–180
comparing older branches to latest 179–180
creating and suggesting DELETE

/jobs/{id} 177
reviewing and accepting changes 178–179

client code generation 200
client errors 306, 311, 325
collecting user stories 134–136
collection endpoint 153
communicating 171–172
community server edition, MongoDB 214
components 227, 316, 372, 378
composition keywords 262
consistency 250

API prerelease 362–363
throughout parameter types 299–300

consumers, API 10–11
consumes keyword 377
Content-Type header 19, 56, 349
conventions, filters 281–282
coordinated breaking changes 342–343
CORS (Cross-Origin Resource Sharing) 154, 233
count property 292
Create action 159, 165–167
created_before filter parameter 294
created.gte query parameter 278
created.gt query parameter 278
created.lte query parameter 278
created.lt query parameter 278
created query parameter 278
createJob() function 209
Create operation 153, 155

creator_owner_id filter 285
creator_user_id identifier 301
creator_user_id property 335
Cross-Origin Resource Sharing (CORS) 154,

233
CRUD (Create-Read-Update-Delete)

approach 152–156
from user stories to 156
requests 154
responses 154–155

cursor attribute 295
cursor-based pagination 291, 293–294
cursor parameter 295

D

database persistence with Mongoose 212–217
API modification 213
configuring Mongoose in project 214
creating models 214–217

JobApplication model 217
job model 217
user model 215–216

getting ready to use MongoDB 214
data schemas 51
Date datatype 216
date-time format 335
DDoS (Denial of service) 367
deepObject serialization style 280
Default controller 203
default key 316
default keyword 332
Default object 201
definition root-level keyword 378
definitions 26

describing first operation 32–33
example of 6–7
extending first operation 33–34
fitting in OpenAPI 7–8
specification 29
Swagger Editor writing

adding GET /reviews to definition 41–42
features of 37–38
interacting with API 42–45
smallest OpenAPI definition in Swagger

Editor 38–41
YAML 29–32

definitions component 378
DELETE /jobs/{id} 177
DELETE /users/{id} 319
Delete action 157–158
DELETE method 205, 207–208, 342
DELETE operation 157, 178
deprecated property 77, 350
deprecating features 349–351

INDEX386
describing API responses
data schemas 51
example of 4–5
GET /reviews response 57–63

adding rating field to response body
58–59

describing message and userId 59–63
GET /reviews 200 response body 57
smallest response in OpenAPI 57

HTTP responses 49–50
JSON Schema 51–55

adding field to object 53
minimum and maximum keywords

53–54
number vs. integer 54–55
type field 52–53

media types (MIME) 56–57
status codes 55–56

description tags 107
designers, API 11
developer experience 248–252

consistency 250
error handling 250
input validation 250–251
versioning vs. evolvability 251–252

discriminators 269, 381
adding 268–271
filter fields for 285–286

disjunctive unions 263
documentation, API prerelease 360–362
Dog model, PetSitter 133
Dog schema, PetSitter 150–151

composition inside 264–266
updating 261, 337

domain modeling 128–131
FarmStall 130–131
for APIs 130
for PetSitter 131–133

concepts in 131
Job and Dog models 133
User model 132

polymorphism and inheritance in
257–259

reviewing 243–245
DuckDuckGo search engine API 22
due diligence 190

E

ecosystem, APIs 3–4
Editor panel, Swagger Editor 37
email format 333
email property 332–333
email query parameter 280
end_time property 335

end-to-end testing 357–360
using Postman Newman or SmartBear

ReadyAPI 360
using Strest 357–359

enumerations 331
enum keyword 331
error handling 250

adding error responses to OpenAPI
316–320

adding errors to operations 318–320
creating error schemas 317–318

error categories 306–309
common error patterns 309
finding unhappy paths 307–309

guidance for 320–323
backend development 322–323
frontend development 320–321

OAS tools format 312–314
problem+json format 314–316
reporting errors 363
requirements for error responses 309–312

error response 194
errors array 313–314
evolvability, versioning vs. 251–252
example keyword 381
example property 76
Example reviews section 108
examples component 378–379
examples property 77
explode property 77
exposure index 363–366
Express framework 235–236
express.static built-in middleware function

235
externalDocs keyword 381

F

FarmStall API 16–18
adding review to 18–21

forming POST request in Postman 19–20
verification 21

adding rich text description to definition
108–111

Auth section 109–110
example Reviews section 110–111
Header section 109
Reviews section 110

domain modeling 130–131
first two operations of 14–15
forming GET request in Postman 17–18
overview 14
verification 18

fields property 277–278
$filter parameter 281

INDEX 387
filters
designing 276–282

handling nested schemas 280–281
projection filters 277
query languages 281
selection filters 277–279
special conventions 281–282

for PetSitter 282–290
adding filters to OpenAPI 286–289
finding filter fields 282–286
making request 290

flow types 30
format: date-time property 288
format keyword 288, 329, 331, 333
form style 289
frontend 125
frontend branch 175
frontend code

building based on mock server 185–189
adding multiple examples into OpenAPI

definition 187–188
using examples in Prism 188–189

error handling 320–321
identifying missing API operation 189–196

choosing mock data response to get from
Prism 193–195

curl examples 196
designing new operation 190–192
due diligence for adding operation 190
formalizing and suggesting change 195–196

Prism 183–185
installing 183–184

using different hostname or port for API
and 233

full_name property 298, 333
functional type 125–126, 135

G

GET /jobs/{id}/job-applications operation 319
GET /jobs/{id} operation 319
GET /jobs/{id} resource endpoint 284
GET /jobs endpoint 297, 300
GET /jobs operation 275, 295, 301, 319
GET /jobs potential errors 308
GET /review/{reviewId} operation 145
GET /reviews/{reviewId} 75–78

describing reviewId path parameter 77–78
path parameters 76–77

GET /reviews endpoint 59, 153
GET /reviews operation

adding Reviews tag to 112
adding to definition 41–42
describing response 57–63

adding rating field to response body 58–59

describing message, UUID, and userId
59–63

GET /reviews 200 response body 57
smallest response in OpenAPI 57

executing 43, 45
GET /reviews response 50–51
GET /users/{id}/jobs operation 275, 282, 284,

319
GET /users/{id} operation 319
GET method 9, 15–16, 28, 32, 66, 144, 205,

207–208, 210, 275–276
GET operation 6, 16, 26, 39, 64, 157, 159, 161
GET request 17, 25, 66, 185, 275, 309
GET verb 160, 163
GFM (GitHub Flavored Markdown) 106
GitHub 172–177

agreeing on change 173–174
setting up and source of truth 175–176

naming conventions 175–176
setting up API repository 175

source of truth 173
steps in workflow 176–177
suggesting change 173
viewing changes 174

Git repository 231
global security declaration 229–230

H

headers component 378–379
header section, Markdown 109
host, OpenAPI 2.0 (Swagger 2.0) 374–375
hosting API documentation 114–117

Netlify.com 116–117
Swagger UI 115–116

hostname 233
HTTP

API requests 23–25
responses 49–50

http security 92, 225
http type 97
hypermedia 10

I

id attribute 326
idempotent, defined 66
id property 213, 333, 335
image/png media type 56
image/svg+xml media type 57
in: body, OpenAPI 2.0 (Swagger 2.0) 377
in attribute 225
infinite scrolling 290
info object 38–39
info section 99, 104–105, 145

INDEX388
inheritance
in domain models 257–259
in OpenAPI 262–267

composition inside Dog and Cat schemas
264–266

composition inside Pet schema 266–267
input validation

improving developer experience 250–251
JSON Schema, improving with

supported validations 326–332
updating PetSitter schemas 332–337

testing 210–211
installing Prism 183–184
integer type 54, 144, 151, 211
integrated web servers 232–236

server setup 234–236
configuring Express framework 235–236
setting prefix 234–235

URL design 232–234
designing different URLs for both

components 233–234
using different hostname or port for API and

frontend 233
using prefix for API 233
using prefix for frontend 233

items array 296
items element 297
items keyword 147, 265, 330, 334–335
items property 292

J

JavaScript Object Notation (JSON) 31–32
JobApplication model 217
JobApplication operations, PetSitter 163–167

Approve 164
Create 165–167
List for job 163–164

JobApplication schema, PetSitter 151–152,
336–337

job-applications format 164
JobApplication tag 207
Job model, PetSitter 133, 217
Job operations, PetSitter 159–163

Create 159
List all 162–163
List my own 159–161
Modify 161
View 161

Job schema, PetSitter 148–149, 265–266, 335–336
jobsPOST() function 209
Jobs tag 207
JSON Schema 51–55, 380–381

adding field to object 53
improving input validation with advanced

supported validations 326–332
updating PetSitter schemas 332–337

minimum and maximum keywords 53–54
number vs. integer 54–55
type field 52–53

jsonSchemaDialect keyword 381

L

limit() operation 295
limit parameter 294–295, 332
links component 378–379
List all action 162–163
List for job action 163–164
listing properties 331–332
List my own action 159–161
Location header 157
Login action 157, 226–229

M

main branch 174–176, 179, 231
mapping keyword 269
mapping user stories 136–140
Markdown 105–111

adding rich text description to FarmStall API
definition 108–111

Auth section 109–110
example Reviews section 110–111
header section 109
Reviews section 110

overview 106–107
maximum constraint 71, 75
maximum keyword 53–54
maxItems keyword 330
maxLength constraint 328
maxRating parameter 14, 16, 28, 33, 153, 276
media types

overview 56–57
using to version operations 346–349

message field 7, 14, 19, 59–63
message property 144
<meta> tag 115
metadata, adding to definition 103–105
metric collection 368
MIME (Multipurpose Internet Mail Extensions)

type 56
minimum constraint 71, 75
minimum keyword 53–54
minItems keyword 330
minLength constraint 328
missing operations 189–196

choosing mock data response to get from
Prism 193–195

curl examples 196

INDEX 389
missing operations (continued)
designing new operation 190–192

lots of data example 192
no data example 192
two job applications example 191–192

due diligence for adding operation 190
formalizing and suggesting change 195–196

mock data response 193–195
mock servers 185–189

adding multiple examples into OpenAPI
definition 187–188

using examples in Prism 188–189
models

JobApplication model 217
job model 217
user model 215–216

Modify action 157, 161
MongoDB 214
Mongoose 212–217

API modification 213
configuring Mongoose in project 214
creating models 214–217
getting ready to use MongoDB 214

multifield sorting 299
multipleOf keyword 328
Multipurpose Internet Mail Extensions (MIME)

type 56

N

name attribute 225
name property 332, 337
name query parameter 280
naming conventions 175–176
Netlify.com 116–117
network errors 307
next attribute 294
nonfunctional requirements 124
nonfunctional type 125–126, 135
not keyword 262–264
nullable keyword 61–63
number

constraints 328
integer vs. 54–55

number type 54

O

OASError schema 318–319
OAS tools format 312–314
oauth2 security 92, 225
object-relational mapper (ORM) 130
objects

adding and deprecating features 350–351
adding field to 53

object schema 147, 280, 289
object type 259, 298, 350
offset-based pagination 291–292
offset query parameter 295
oneOf keyword 262–264, 266, 269, 379
OpenAPI 5–7

adding error responses to 316–320
adding errors to operations 318–320
creating error schemas 317–318

adding multiple examples into definition
187–188

creating API design using 143–145
API operations for PetSitter 156–167
converting domain model into

OpenAPI 143–144
creating schemas 145–152
CRUD approach to API operations 152–156
ensuring reusability 144–145

definitions
describing first operation 32–33
example 6–7
extending first operation 33–34
fitting in 7–8
specification 29
YAML 29–32

handling authorization 92
schemas with composition in

adding discriminators in OpenAPI 268–271
polymorphism and inheritance in domain

models 257–259
polymorphism and inheritance in

OpenAPI 262–267
updating schemas 259–262

Swagger Editor writing definitions
adding GET /reviews to definition 41–42
features of 37–38
interacting with API 42–45
smallest OpenAPI definition in Swagger

Editor 38–41
updating for backend code 204–209

adding operation IDs 204–205
regenerating backend stubs 208–209
tagging API operations 206–208

when to use 10–11
for API consumers 10–11
for API designers 11
for API producers 11

OpenAPI 2.0 (Swagger 2.0) 372–379
anyOf, oneOf 379
components and structure 378–379
host, basePath, schemes, and servers 374–375
non-changes 373–374
parameter/in-body, requestBody 377
responses 375–376

OpenAPI 3.0.x 92–93

INDEX390
OpenAPI 3.1 379–382
extending JSON Schema via vocabulary

381
JSON Schema 2020-12 380–381
vocabularies 381
webhooks 382

openIdConnect 92, 97, 225
openssl command 24
operationId keyword 203, 205
operation IDs 204–205
operations

adding errors to 318–320
describing first 32–33
extending first 33–34

$orderby single parameter 299
ORM (object-relational mapper) 130
output validation with Prism 211–212
OWASP (Open Web Application Security

Project) 367

P

page-based pagination 291–292
page parameter name 291
pagination

designing 290–294
cursor-based pagination 293–294
offset-based and page-based pagination

291–292
for PetSitter 294–297

adding pagination to OpenAPI 295–297
extending request example 297

parameters
consistency with types of 299–300
describing GET /reviews/{reviewId} with path

parameter 75–78
designing sort parameter 301
OpenAPI 2.0 (Swagger 2.0) 377

parameters keyword 287, 377–378
password attribute 327
password format 333
password property 333
PATCH method 309
paths 38, 64, 75, 80, 145, 234, 316
pattern constraint 328
pattern property 61
persistence 212–217

API modification 213
configuring Mongoose in project 214
creating models 214–217

JobApplication model 217
job model 217
user model 215–216

getting ready to use MongoDB 214
Swagger Editor 38

Pet schema
composition inside 266–267
updating 261, 337

PetSitter 124–127
API-driven architecture 126
creating schemas 145–152

Dog schema 150–151
JobApplication schema 151–152
Job schema 148–149
referencing common schemas 146
starting OpenAPI file with schemas

145–146
User schema 146–148

CRUD approach to API operations 152–156
from user stories to 156
requests 154
responses 154–155

domain modeling 131–133
concepts in 131
Job and Dog models 133
User model 132

filters for 282–290
adding to OpenAPI 286–289
finding filter fields 282–286
making request 290

improving developer experience 248–252
consistency 250
error handling 250
input validation 250–251
versioning vs. evolvability 251–252

operations for 156–167
JobApplication operations 163–167
job operations 159–163
user operations 156–158

overview 124
pagination for 294–297

adding pagination to OpenAPI 295–297
extending request example 297

plan 127
planning next sprint 241–242
preparing for new features 242–248

reviewing domain model 243–245
reviewing user stories 245–248

requirements 124
reviewing first development sprint 240–241
sorting for 300–302

adding sorting to OpenAPI 301
designing sort parameter 301
finding sorting fields 300–301

team structure 125–126
updating schemas 332–337

JobApplication schema 336–337
Job schema 335–336
Pet, Dog, and Cat schemas 337
User schema 333–335

INDEX 391
PetSitter (continued)
user stories 134–140

collecting 134–136
mapping 136–140
overview 134

pets property 335, 342
pirate talk API 22
polymorphism

in domain models 257–259
in OpenAPI 262–267

composition inside Dog and Cat schemas
264–266

composition inside Pet schema 266–267
port 233
POST /jobs/{id}/job-applications operation 319
POST /jobs method 319
POST /jobs operation 319
POST /register endpoint 321
POST /reviews

adding security requirements to 94
describing with request body 66–71

describing schema for POST /reviews
requestBody 70–71

finding request bodies 69
POST /tokens operation 86–87, 90, 102, 111, 113
POST /users operation 83, 86, 102, 111, 113, 319
Postman

forming GET request in 17–18
forming POST request in 19–20
getting set up with 15–16
testing backend code with 209–210

Postman, Newman 360
POST method 9, 15, 18, 66, 153, 165, 205,

207–208, 309
POST operation 156, 159, 210
POST request 16, 18–20, 25, 66–67, 227
Prefer header 193, 196
prefix

server setup 234–235
using for API 233
using for frontend 233

Prism 183–185
choosing mock data response to get from 193–195
installing 183–184
output validation with 211–212
using examples in 188–189
verifying 184–185

problem+json format 314–316
Problem schema 318–319
producers, API 11
produces keyword 376
projection filters 277
properties 331–332
properties keyword 259
propertyName keyword 269

public APIs 353–354
pull requests, GitHub 174
PUT /job-applications/{id} operation 319
PUT /jobs/{id} operation 319
PUT /users/{id} operation 319
PUT method 164, 205, 207–208, 309
PUT operation 157–158, 318

Q

q parameter 282
query languages 281
query parameter 16

R

rating field 14, 19, 58–59
rating property 144
readOnly keyword 331
read-only properties 326–327
Read operation 153, 155
refactoring 232
$ref keyword 146, 160, 259
Register action 156–157
registerUser operation 208
releasing APIs 369
repositories 231–232

combining code and API definition in
repository 231–232

creating shared Git repository to implement
both components 231

keeping existing structure 231
refactoring 232

request bodies
describing POST /reviews with 66–71

describing schema for POST /reviews
requestBody 70–71

finding request bodies 69
executing operations with 71–75

requestBodies component 377–379
requests, API 14–15

CRUD (Create-Read-Update-Delete)
approach 154

FarmStall API 16–18
adding review to 18–21
first two operations of 14–15
forming GET request in Postman 17–18
overview 14
verification 18

HTTP 23–25
Postman 15–16
practice 21–22

avatar API 22
cat facts API 21
DuckDuckGo search engine API 22
pirate talk API 22

INDEX392
required keyword 270, 287, 331
required password schema 333
required property 76, 270
resource endpoint 153
resources 153

describing GET /reviews/{reviewId} with path
parameter 75–78

describing reviewId path parameter 77–78
path parameters 76–77

describing POST /reviews with request
body 66–71

describing schema for POST /reviews
requestBody 70–71

finding request bodies 69
executing operations with request bodies 71–75
verifying reviews are getting created 78–80

response bodies 327
responses

CRUD approach 154–155
OpenAPI 2.0 (Swagger 2.0) 375–376

responses, error
adding to OpenAPI 316–320

adding errors to operations 318–320
creating error schemas 317–318

requirements for 309–312
responses component 378
responses object 316
responses root-level keyword 378
REST (representational state transfer) 9–10
reviewId input box 79
reviewId path parameter 77–78
Review object 65
reviews

adding to FarmStall API 18–21
forming POST request in Postman 19–20
verification 21

verifying creation of 78–80
Reviews operations 111
Reviews section, Markdown 110–111
Reviews tag 103, 112–114
roadmap 363–366
roles 210, 333–334

S

Schema keyword 216
schemas

creating error schemas 317–318
for POST /reviews requestBody 70–71
handling nested 280–281
OpenAPI 2.0 (Swagger 2.0) 374–375
PetSitter 145–152

Dog schema 150–151
JobApplication schema 151–152
Job schema 148–149

referencing common schemas 146
starting OpenAPI file with schemas 145–146
User schema 146–148

with composition in OpenAPI
adding discriminators in OpenAPI 268–271
polymorphism and inheritance in domain

models 257–259
polymorphism and inheritance in

OpenAPI 262–267
updating schemas 259–262

SDKs (software development kits) 200
secrets 87
security 366–367
security attribute 229
securityDefinitions component 378
security keyword 230
security object 91
security schemas

adding 97–98
adding Authorization header 93
creating 225–226
types of 97

securitySchemes component 91, 97, 378
selection filters 277–279
sendFile() function 235
server code generation 199–200
server errors 306, 325
servers

adding to definition 44–45
integrated web servers 232–236

server setup 234–236
URL design 232–234

mock servers 185–189
OpenAPI 2.0 (Swagger 2.0) 374–375

servers array 224
servers object 44, 204, 210, 235
SessionToken scheme 226
since filter parameter 294
single error format 312
single-field sorting 298–299
skip() operation 295
small OpenAPI definitions 38–41

features of 38–39
responses 57
validation 40–41
writing in Swagger Editor 39–40

SmartBear ReadyAPI 360
software development kits (SDKs) 200
sort_by parameter 298
sorting

designing 297–300
consistency throughout parameter types

299–300
multifield sorting 299
single-field sorting 298–299

INDEX 393
sorting (continued)
for PetSitter 300–302

adding sorting to OpenAPI 301
designing sort parameter 301
finding sorting fields 300–301

sort parameter 276, 298, 301
sort single parameter 299
source of truth 173, 175–176
species attribute 269–270, 285, 337
species property 270–271
specification, OpenAPI 29
sprints

planning next 241–242
reviewing first development 240–241

SQL (Structured Query Language) 292
start_time property 276, 335
status codes 55–56
status field 7
Strest 357–359
string data type 211, 288–289, 295
string formats 328–330
string property 269
strings, version 345
string type 144, 147
structure, OpenAPI 2.0 (Swagger 2.0) 378–379
stubs 200
style keyword 289
style property 77
subresource collection endpoint 160
subtype polymorphism 257
subtyping 257
Swagger 2.0. See OpenAPI 2.0
Swagger Codegen 199–201

client code generation 200
server code generation 200
Swagger Generator 200–201

Swagger Editor
adding GET /reviews to definition 41–42
features of 37–38

Editor panel 37
persistence 38
toolbar 38
UI Docs panel 37

interacting with API 42–45
adding servers to definition 44–45
executing GET /reviews 43, 45

writing smallest OpenAPI definition in Swagger
Editor 38–41

smallest yet valid OpenAPI definition 38–39
validation 40–41
writing in Swagger Editor 39–40

Swagger Generator 200–201
Swagger toolset 8–9
Swagger UI 115–116
symmetric difference 263

T

tags 111–114
adding descriptions to 112–113
adding rest of 113–114
adding Reviews tag to GET /reviews 112
API operations 206–208

assigning tags 207–208
choosing tags 206–207

team structure, PetSitter 125–126
telnet command 24
testing backend code 209–212

input validation 210–211
output validation with Prism 211–212
with Postman 209–210

text/csv media type 56
text/html media type 56
title OpenAPI definition 42
Token object 87
tokens, verifying user creation and 89–91
toolbar, Swagger Editor 38
toResultFormat() function 216–217
total_results property 292
trailing commas 73
type constraint 331
type field 52–53
type.openapi.validation string token 315
type URI 315

U

UI Docs panel, Swagger Editor 37
UML (Unified Modeling Language) 129, 257
uniqueItems keyword 330
unit testing 356–357
Update operation 153, 155
updating

OpenAPI for backend code 204–209
adding operation IDs 204–205
regenerating backend stubs 208–209
tagging API operations 206–208

PetSitter schemas 332–337
JobApplication schema 336–337
Job schema 335–336
Pet, Dog, and Cat schemas 337
User schema 333–335

schemas 259–262
Cat schema 262
Dog schema 261
Pet schema 261

URL design 232–234
designing different URLs for both

components 233–234
using different hostname or port for API and

frontend 233

INDEX394
URL design (continued)
using prefix for API 233
using prefix for frontend 233

userId 59–63
User model, PetSitter 132, 215–216
User operations, PetSitter 156–158

Delete 157–158
Login 157
Modify 157
Register 156–157
View 157

User response object 86
users, verifying creation of 89–91
User schema, PetSitter 146–148, 333–335
Users operations 111
Users tag 103, 113–114, 207–208, 228
user stories 134–140

collecting 134–136
CRUD approach from 156
mapping 136–140
overview 134
reviewing 245–248

pet owner requirement 247
pet sitter requirement 247–248

UUID (universally unique identifier) 59–63

V

validation
API prerelease 363
small OpenAPI definitions 40–41
supported validations 326–332

defining enumerations 331
enforcing array constraints 330
enforcing number constraints 328
enforcing string formats 328–330
listing required and optional properties

331–332
read-only and write-only properties 326–327
setting defaults 332

updating PetSitter schemas 332–337
JobApplication schema 336–337
Job schema 335–336
Pet, Dog, and Cat schemas 337
User schema 333–335

verification
adding review to FarmStall API 21
FarmStall API 18

versioning
breaking change

overview 341
releasing 341–351

differences between versions 372
evolvability vs. 251–252
multiple API versions 343–345
version strings 345

version query parameter 347
View action 157, 161
viewJobWithId 218–220
virtualization 186
vocabularies 380

extending JSON Schema via 381
OpenAPI 3.1 381

W

WADL (Web Application Description
Language) 9

WAF (web application firewall) 367
web applications 222–225

authentication 222–223
domain modeling 128–131

FarmStall 130–131
for APIs 130

implementing authorization 225–230
adding “Login” action 226–229
creating security scheme 225–226
global security declaration 229–230

managing repositories 231–232
combining code and API definition in

repository 231–232
creating shared Git repository to implement

both components 231
keeping existing structure 231
refactoring 232

organizing code 223–224
PetSitter 124–127

API-driven architecture 126
domain model for 131–133
mapping user stories 136–140
overview 124
plan 127
requirements 124
team structure 125–126

serving both components 224–225
setting up integrated web server 232–236

server setup 234–236
URL design 232–234

user stories 134–140
collecting 134–136
overview 134

webhooks 382
write-only properties 326–327

X

xml keyword 381
x-swagger-router-controller 203, 206

Y

YAML (YAML Ain't Markup Language) 29–32

...continued

'403':

description: Forbidden

content:

application/problem+json:

schema:

$ref: '#/components/schemas/Error'

components:

securitySchemes:

MyToken:

type: apiKey

in: header

name: Authorization

schemas:

User:

type: object

required []: id, name

properties:

id:

type: string

readOnly: true

name:

type: string

password:

type: string

format: password

writeOnly: true

Employee:

allOf:

- $ref: '#/components/schemas/User'

- type: object

required:

- employee_id

properties:

employee_id:

type: string

Customer:

allOf:

- $ref: '#/components/schemas/User'

- type: object

properties:

sales_rep_id:

type: string

Error:

type: object

properties:

title:

type: string

description: Error title

Can have a different
schema per media type

Components don’t
impact the API directly;
they are for referencing.

A security type for the
Authorization header

User schema readOnly = only for
responses

Anywhere a schema
is required, a $ref or
a schema can be used.

Another schema

Arrays can be written
on a single line.

writeOnly = only for
requests

Reusable schemas

allOf is used for composing
schemas together.

Composers include allOf,
oneOf, anyOf, and not.

Ponelat ● Rosenstock ● Foreword by Tony Tam

ISBN-13: 978-1-61729-628-4

C
reate web APIs that customers and developers will love!
Using Swagger, a collection of tools for defi ning and
documenting REST APIs, you will build safe, controlled

access to your software. And because Swagger implements
the vendor-neutral OpenAPI specifi cation, you’ll be building
to the same standards adopted by Google, Microsoft, and
Amazon.

Designing APIs with Swagger and OpenAPI introduces a design-
fi rst approach. Written for developers new to API design, it
follows the lifecycle of an API project from concept to produc-
tion. You’ll explore the dos and don’ts of APIs through pro-
gressively complete examples. You’ll get hands on experience
designing APIs for specifi c business needs, using open source
tools to generate documentation, and building developer-
friendly components like mocks and client SDKs.

What’s Inside
● OpenAPI syntax and structure
● Using Swagger to create OpenAPI defi nitions
● Automating processes and generating code
● Working with cross-functional teams

For web developers. No prior knowledge of Swagger or
OpenAPI required.

Josh Ponelat is the Swagger Open Source lead at SmartBear.
Lukas Rosenstock is an independent software developer and
API consultant.

Register this print book to get free access to all ebook formats.
Visit https://www.manning.com/freebook

Designing APIs
with Swagger and OpenAPI

APIS/WEB DEVELOPMENT

M A N N I N G

“Th is book clearly presents
patterns and techniques that
will enhance the experience

for all software developers who
need to work with APIs!”—From the Foreword by Tony Tam

 Founder of Swagger

“Everyone in the business
of designing APIs should

 read this book!”—Pierre-Michel Ansel, 8x8

“Essential advice for design-
fi rst API development.”—Ian Lovell, Cutover

“A must-read for individuals
and teams that are
building APIs.”—Foster Haines

Senior Consultant at J2 Interactive

See first page

	Designing APIs with Swagger and OpenAPI
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum
	Other online resources

	about the authors
	about the cover illustration
	Part 1—Describing APIs
	1 Introducing APIs and OpenAPI
	1.1 What is an API ecosystem?
	1.2 Describing things
	1.2.1 Bridget’s task
	1.2.2 The potential of Bridget’s solution

	1.3 What is OpenAPI?
	1.3.1 Example OpenAPI definition

	1.4 Where do OpenAPI definitions fit in?
	1.5 What is Swagger?
	1.6 What about REST?
	1.7 When to use OpenAPI
	1.7.1 For API consumers
	1.7.2 For API producers
	1.7.3 For API designers

	1.8 This book
	Summary

	2 Getting set up to make API requests
	2.1 The problem
	2.1.1 FarmStall API overview
	2.1.2 The first two operations of the FarmStall API

	2.2 Getting set up with Postman
	2.3 FarmStall API
	2.4 Our first request
	2.4.1 Forming a GET request in Postman
	2.4.2 Verification

	2.5 Adding a review to the FarmStall API
	2.5.1 Forming a POST request in Postman
	2.5.2 Verification

	2.6 Practice
	2.6.1 Cat (and other animal) facts API
	2.6.2 Random avatar API
	2.6.3 DuckDuckGo’s search engine API
	2.6.4 Pirate talk API

	2.7 HTTP for the brave
	Summary

	3 Our first taste of OpenAPI definitions
	3.1 The problem
	3.2 Introducing the OpenAPI specification
	3.3 A quick refresher on YAML
	3.3.1 From JSON to YAML

	3.4 Describing our first operation
	3.5 Extending our first operation
	Summary

	4 Using Swagger Editor to write OpenAPI definitions
	4.1 Introducing Swagger Editor
	4.1.1 The Editor panel
	4.1.2 The UI Docs panel
	4.1.3 The toolbar
	4.1.4 Persistence

	4.2 Writing the smallest OpenAPI definition in Swagger Editor
	4.2.1 The smallest valid OpenAPI definition
	4.2.2 Writing in Swagger Editor
	4.2.3 A word on validation

	4.3 Adding GET /reviews to our definition
	4.4 Interacting with our API
	4.4.1 Executing GET /reviews
	4.4.2 Adding servers to our definition
	4.4.3 Executing GET /reviews (again)

	Summary

	5 Describing API responses
	5.1 HTTP responses
	5.2 The problem
	5.3 The mind-blowing world of data schemas
	5.4 JSON Schema
	5.4.1 The type field
	5.4.2 Adding a field to an object
	5.4.3 The minimum and maximum keywords
	5.4.4 Number vs. integer

	5.5 Status codes
	5.6 Media types (aka MIME)
	5.7 Describing the GET /reviews response
	5.7.1 Smallest response in OpenAPI
	5.7.2 The GET /reviews 200 response body
	5.7.3 Adding the rating field to our response body
	5.7.4 Describing message, uuid, and userId

	Summary

	6 Creating resources
	6.1 The problem
	6.2 Describing POST /reviews with a request body
	6.2.1 Where to find request bodies
	6.2.2 Describing the schema for POST /reviews requestBody

	6.3 Executing operations with request bodies
	6.3.1 Adding examples to make try-it-out look pretty

	6.4 Describing GET /reviews/{reviewId} with a path parameter
	6.4.1 Path parameters
	6.4.2 Describing the reviewId path parameter

	6.5 Verifying our reviews are getting created
	Summary

	7 Adding authentication and authorization
	7.1 The problem
	7.2 Getting set up for authentication
	7.2.1 Challenge: Describe POST /users
	7.2.2 Challenge: Describe POST /tokens
	7.2.3 Solution: Definition changes
	7.2.4 Verifying we can create users and get a token

	7.3 Adding the Authorization header
	7.3.1 How OpenAPI handles authorization
	7.3.2 Types of authorization (securities) supported in OpenAPI 3.0.x
	7.3.3 Adding the Authorization header security scheme
	7.3.4 Adding the security requirements to POST /reviews
	7.3.5 Using the security feature of try-it-out

	7.4 Optional security
	7.5 Other types of security schemas
	7.6 How to add security schemes in general
	Summary

	8 Preparing and hosting API documentation
	8.1 The problem
	8.2 Adding metadata to the definition
	8.3 Writing the description in Markdown
	8.3.1 Markdown basics
	8.3.2 Adding a rich text description to the FarmStall API definition

	8.4 Organizing operations with tags
	8.4.1 Adding the Reviews tag to GET /reviews
	8.4.2 Adding descriptions to tags
	8.4.3 Adding the rest of the tags

	8.5 Hosting our API documentation using Netlify.com and Swagger UI
	8.5.1 Preparing Swagger UI with our definition
	8.5.2 Hosting on Netlify.com

	8.6 The end of part 1
	Summary

	Part 2—Design-first
	9 Designing a web application
	9.1 The PetSitter idea
	9.2 PetSitter project kickoff
	9.2.1 Additional requirements
	9.2.2 Team structure
	9.2.3 API-driven architecture
	9.2.4 The plan

	9.3 Domain modeling and APIs
	9.3.1 Domain modeling for APIs
	9.3.2 Looking back on FarmStall

	9.4 A domain model for PetSitter
	9.4.1 Concepts in the model
	9.4.2 The User model
	9.4.3 The Job and Dog models

	9.5 User stories for PetSitter
	9.5.1 What are user stories?
	9.5.2 Collecting user stories
	9.5.3 Mapping user stories

	Summary

	10 Creating an API design using OpenAPI
	10.1 The problem
	10.1.1 Converting a domain model to OpenAPI
	10.1.2 Ensuring reusability

	10.2 Creating the schemas
	10.2.1 Starting an OpenAPI file with schemas
	10.2.2 Referencing common schemas
	10.2.3 The User schema
	10.2.4 The Job schema
	10.2.5 The Dog schema
	10.2.6 The JobApplication schema

	10.3 The CRUD approach to API operations
	10.3.1 Defining API requests and responses
	10.3.2 From user stories to CRUD design

	10.4 API operations for PetSitter
	10.4.1 User operations
	10.4.2 Job operations
	10.4.3 JobApplication operations

	Summary

	11 Building a change workflow around API design–first
	11.1 The problem
	11.2 Communicating and reacting to change
	11.3 GitHub as our workflow engine
	11.3.1 A single source of truth
	11.3.2 Suggesting a change
	11.3.3 Agreeing on a change
	11.3.4 A way of viewing changes (based on an older version)

	11.4 Tying the GitHub workflow together
	11.4.1 Setting up GitHub and the source of truth
	11.4.2 Steps in our GitHub workflow

	11.5 A practical look at the workflow
	11.5.1 Creating and suggesting DELETE /jobs/{id}
	11.5.2 Reviewing and accepting changes
	11.5.3 Comparing older branches to the latest
	11.5.4 What we’ve done

	Summary

	12 Implementing frontend code and reacting to changes
	12.1 The problem
	12.2 Setting up Prism
	12.2.1 Installing Prism
	12.2.2 Verifying that Prism works

	12.3 Building a frontend based on a mock server
	12.3.1 Adding multiple examples into your OpenAPI definition
	12.3.2 Using examples in Prism

	12.4 Identifying a missing API operation
	12.4.1 Due diligence for adding the operation
	12.4.2 Designing the new operation
	12.4.3 Choosing which mock data response to get from Prism
	12.4.4 Formalizing and suggesting the change
	12.4.5 Extra curl examples

	Summary

	13 Building a backend with Node.js and Swagger Codegen
	13.1 The problem
	13.2 Introducing Swagger Codegen
	13.2.1 Client code generation
	13.2.2 Server code generation
	13.2.3 Swagger Generator

	13.3 The backend structure
	13.3.1 Generating the backend
	13.3.2 Investigating the structure
	13.3.3 OpenAPI changes

	13.4 Updating OpenAPI for the backend
	13.4.1 Adding operation IDs
	13.4.2 Tagging API operations
	13.4.3 Regenerating the backend stubs

	13.5 Running and testing the backend
	13.5.1 Testing with Postman
	13.5.2 Testing input validation
	13.5.3 Output validation with Prism

	13.6 Database persistence with Mongoose
	13.6.1 Another API modification
	13.6.2 Getting ready to use MongoDB
	13.6.3 Configuring Mongoose in the project
	13.6.4 Creating models

	13.7 Implementing API methods
	Summary

	14 Integrating and releasing the web application
	14.1 The problems
	14.1.1 Authentication
	14.1.2 Organizing code
	14.1.3 Serving both components

	14.2 Implementing authorization
	14.2.1 Creating a security scheme
	14.2.2 Adding a “Login” action
	14.2.3 Defining operation security

	14.3 Managing repositories
	14.3.1 Keeping the existing structure
	14.3.2 Creating a shared Git repository to implement both components
	14.3.3 Combining code and API definition in a repository
	14.3.4 Making the choice and refactoring

	14.4 Setting up an integrated web server
	14.4.1 URL design
	14.4.2 Server setup

	Summary

	Part 3—Extending APIs
	15 Designing the next API iteration
	15.1 Reviewing the first development sprint
	15.2 Planning the next sprint
	15.3 Preparing for new features
	15.3.1 Reviewing the domain model
	15.3.2 Reviewing user stories

	15.4 Improving the developer experience
	15.4.1 Consistency
	15.4.2 Error handling
	15.4.3 Input validation
	15.4.4 Versioning vs. evolvability

	Summary

	16 Designing schemas with composition in OpenAPI
	16.1 The problem
	16.2 Polymorphism and inheritance in domain models
	16.3 Updating the schemas
	16.3.1 The Pet schema
	16.3.2 The Dog schema
	16.3.3 The Cat schema

	16.4 Polymorphism and inheritance in OpenAPI
	16.4.1 Composition inside the Dog and Cat schemas
	16.4.2 Composition inside the Pet schema

	16.5 Adding discriminators in OpenAPI
	Summary

	17 Scaling collection endpoints with filters and pagination
	17.1 The problem
	17.2 Designing filters
	17.2.1 Projection filters
	17.2.2 Selection filters
	17.2.3 Handling nested schemas
	17.2.4 Query languages
	17.2.5 Special conventions

	17.3 Filters for PetSitter
	17.3.1 Finding filter fields
	17.3.2 Adding filters to OpenAPI
	17.3.3 Making a request

	17.4 Designing pagination
	17.4.1 Offset-based and page-based pagination
	17.4.2 Cursor-based pagination

	17.5 Pagination for PetSitter
	17.5.1 Adding pagination to OpenAPI
	17.5.2 Extending our request example

	17.6 Designing sorting
	17.6.1 Single-field sorting
	17.6.2 Multifield sorting
	17.6.3 Consistency throughout parameter types

	17.7 Sorting for PetSitter
	17.7.1 Finding sorting fields
	17.7.2 Designing the sort parameter
	17.7.3 Adding sorting to OpenAPI
	17.7.4 The final request example

	Summary

	18 Supporting the unhappy path: Error handling with problem+json
	18.1 The problem
	18.2 Error categories
	18.2.1 Finding unhappy paths
	18.2.2 Common error patterns

	18.3 Requirements for error responses
	18.4 The OAS tools format
	18.5 The problem+json format
	18.6 Adding error responses to OpenAPI
	18.6.1 Creating error schemas
	18.6.2 Adding errors to operations

	18.7 Error-handling guidance
	18.7.1 Frontend development
	18.7.2 Backend development

	Summary

	19 Improving input validation with advanced JSON Schema
	19.1 The problem
	19.2 Supported validations
	19.2.1 Read-only and write-only properties
	19.2.2 Enforcing number constraints
	19.2.3 Enforcing string formats
	19.2.4 Enforcing array constraints
	19.2.5 Defining enumerations
	19.2.6 Listing required and optional properties
	19.2.7 Setting defaults

	19.3 Updating PetSitter schemas
	19.3.1 User schema
	19.3.2 Job schema
	19.3.3 JobApplication schema
	19.3.4 Pet, Dog, and Cat schemas

	Summary

	20 Versioning an API and handling breaking changes
	20.1 The problem
	20.2 What is a breaking change?
	20.3 Releasing a breaking change
	20.3.1 Coordinated breaking changes
	20.3.2 Multiple API versions
	20.3.3 Using media types to version operations
	20.3.4 Adding and deprecating features

	Summary

	21 The API prerelease checklist
	21.1 Pros and cons of a public API
	21.2 The checklist
	21.3 Getting the API working
	21.3.1 Unit testing your API
	21.3.2 End-to-end testing

	21.4 Documentation
	21.5 Getting your API consistent
	21.6 Validation and error reporting
	21.7 An API roadmap and exposure index
	21.8 Getting a change strategy
	21.9 Improving security
	21.10 Monitoring your API
	21.10.1 Setting up metric collection

	21.11 Releasing the API
	Summary

	Appendix—Swagger 2.0, OpenAPI 3.0, and OpenAPI 3.1
	A.1 The main differences between versions
	A.2 OpenAPI 2.0 (Swagger 2.0)
	A.2.1 Non-changes
	A.2.2 host, basePath, and schemes → servers
	A.2.3 Responses
	A.2.4 parameter/in-body → requestBody
	A.2.5 Components and structure
	A.2.6 anyOf, oneOf

	A.3 OpenAPI 3.1
	A.3.1 JSON Schema 2020-12
	A.3.2 Vocabularies
	A.3.3 OpenAPI extending JSON Schema (via a vocabulary)
	A.3.4 Webhooks

	index
	API endpoints
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Adobe Gray - 20% Dot Gain)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA39 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /RUS <FEFF005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020005b041d04300020043e0441043d043e043204350020044104420438043b044f00200027005000720069006e00650072006700790020005000610067006500730027005d0020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

