
Design Patterns
in .NET 6

Reusable Approaches in C# and F#
for Object-Oriented Software Design
—
Third Edition
—
Dmitri Nesteruk

Design Patterns in .NET 6
Reusable Approaches in C# and F#

for Object-Oriented Software Design

Third Edition

Dmitri Nesteruk

Design Patterns in .NET 6: Reusable Approaches in C# and F# for Object-Oriented
Software Design

ISBN-13 (pbk): 978-1-4842-8244-1		 ISBN-13 (electronic): 978-1-4842-8245-8
https://doi.org/10.1007/978-1-4842-8245-8

Copyright © 2022 by Dmitri Nesteruk

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit http://www.
apress.com/source-code.

Printed on acid-free paper

Dmitri Nesteruk
St. Petersburg, c.St-Petersburg, Russia

https://doi.org/10.1007/978-1-4842-8245-8

The forces of light shall overcome the forces of darkness.

v

Table of Contents
About the Author��xv

About the Technical Reviewer��xvii

Introduction���xix

Part I: Introduction�� 1

Chapter 1: �The SOLID Design Principles�� 3

Single Responsibility Principle��� 3

Open-Closed Principle��� 6

Liskov Substitution Principle�� 13

Interface Segregation Principle��� 15

Parameter Object�� 20

Dependency Inversion Principle��� 21

Chapter 2: �The Functional Perspective�� 25

Function Basics�� 25

Functional Literals in C#�� 27

Storing Functions in C#�� 28

Functional Literals in F#��� 30

Composition��� 32

Functional-Related Language Features��� 33

Part II: Creational Patterns�� 35

Chapter 3: �Builder�� 37

Scenario��� 37

Simple Builder�� 40

Fluent Builder��� 41

vi

Static Initialization��� 41

Communicating Intent�� 42

Nested Builder and Immutability�� 44

Composite Builder�� 45

Builder Marker Interfaces�� 49

Stepwise Builder (Wizard)�� 51

Builder Parameter�� 56

Builder Extension with Recursive Generics��� 58

Lazy Functional Builder�� 62

Builder-Decorator��� 65

Scoping Builder Method��� 68

DSL Construction in F#��� 69

Summary��� 70

Chapter 4: �Factories�� 73

Scenario��� 73

Factory Method�� 75

Asynchronous Factory Method�� 76

Factory��� 77

Inner Factory�� 78

Physical Separation�� 79

Abstract Factory��� 79

Delegate Factories in IoC��� 83

Object Tracking and Bulk Replacements�� 85

Object Tracking��� 85

Bulk Modifications�� 87

Functional Factory��� 90

Summary��� 91

Table of Contents

vii

Chapter 5: �Prototype�� 93

Deep vs. Shallow Copying�� 93

ICloneable Is Bad��� 94

Deep Copying via Copy Construction��� 96

Note on Record Classes��� 97

Deep Copying with a Special Interface�� 97

Deep Copying and Inheritance�� 98

Deep Copying Guidelines��� 102

Trivially Copyable Types�� 103

Arrays��� 103

Common Collection Types��� 104

MemberwiseClone Is Not Terrible��� 105

Summary��� 106

Serialization��� 107

Prototype Factory��� 109

Source Generators��� 110

Summary��� 111

Chapter 6: �Singleton�� 113

Singleton by Convention�� 113

Classic Implementation�� 114

Lazy Loading and Thread Safety��� 115

Reusable Base Class�� 116

The Trouble with Singleton�� 117

Per-Thread Singleton��� 121

Ambient Context��� 122

Uses in the .NET Framework�� 126

Singletons and Inversion of Control��� 127

Monostate�� 128

Multiton�� 129

Summary��� 130

Table of Contents

viii

Part III: Structural Patterns��� 131

Chapter 7: �Adapter�� 133

Scenario��� 133

Adapter�� 135

Adapter Temporaries�� 136

The Problem with Hashing��� 140

Property Adapter (Surrogate)��� 142

Generic Value Adapter�� 144

Adapter in Dependency Injection��� 152

Bidirectional Adapter�� 155

Adapters in the .NET Framework��� 156

Summary��� 157

Chapter 8: �Bridge��� 159

Conventional Bridge��� 159

Dynamic Prototyping Bridge�� 163

Summary��� 166

Chapter 9: �Composite�� 167

Grouping Graphic Objects�� 167

Neural Networks�� 170

Shrink Wrapping the Composite�� 173

Composite Specification�� 175

Summary��� 178

Chapter 10: �Decorator��� 179

The Basics of Delegation��� 180

Points and Lines��� 182

Adapter-Decorator�� 185

Simulating Multiple Inheritance��� 185

Multiple Inheritance with Interfaces�� 186

Table of Contents

ix

Multiple Inheritance with Default Interface Members��� 189

Dynamic Decorator Composition�� 191

Decorator Cycle Policies�� 194

Static Decorator Composition�� 200

Functional Decorator�� 201

Summary��� 202

Chapter 11: �Façade�� 205

Magic Squares��� 206

Building a Trading Terminal�� 211

An Advanced Terminal�� 212

Where’s the Façade?��� 214

IoC Modules��� 216

Summary��� 218

Chapter 12: �Flyweight��� 219

User Names�� 219

Text Formatting�� 222

Using Flyweights for Interop�� 225

Summary��� 226

Chapter 13: �Proxy�� 227

Protection Proxy��� 227

Property Proxy�� 229

Composite Proxy: SoA/AoS��� 232

Composite Proxy with Array-Backed Properties�� 235

Virtual Proxy��� 237

Communication Proxy�� 240

Dynamic Proxy for Logging�� 242

Composite Proxy�� 245

Summary��� 248

Table of Contents

x

Chapter 14: �Value Object��� 251

Two-Dimensional Point�� 252

Percentage Value��� 253

Units of Measure�� 255

Summary��� 257

Part IV: Behavioral Patterns�� 259

Chapter 15: �Chain of Responsibility�� 261

Scenario��� 261

Method Chain��� 262

Broker Chain�� 265

Functional Chain of Responsibility��� 270

Summary��� 271

Chapter 16: �Command��� 273

Scenario��� 273

Implementing the Command Pattern��� 274

Undo Operations�� 276

Composite Commands (aka Macros)��� 279

Functional Command��� 283

Queries and Command-Query Separation��� 285

Summary��� 285

Chapter 17: �Interpreter�� 287

Integer Parsing��� 288

Numeric Expression Evaluator��� 289

Lexing��� 290

Parsing��� 292

Using Lexer and Parser�� 296

Interpretation in the Functional Paradigm��� 296

Transpiler��� 300

Summary��� 302

Table of Contents

xi

Chapter 18: �Iterator��� 305

Array-Backed Properties�� 306

Let’s Make an Iterator�� 309

Improved Iteration�� 312

Iterator Specifics�� 314

Iterator Adapter�� 315

Composite Iteration�� 317

Summary��� 319

Chapter 19: �Mediator��� 321

Chat Room��� 321

Mediator with Events��� 326

Introduction to MediatR��� 330

Service Bus as Mediator�� 332

Summary��� 333

Chapter 20: �Memento�� 335

Bank Account��� 335

Undo and Redo��� 337

Memento and Command�� 340

Summary��� 341

Chapter 21: �Null Object�� 343

Scenario��� 343

Intrusive Approaches��� 345

Nullable Virtual Proxy��� 346

Null Object��� 347

Null Object Singleton��� 348

Dynamic Null Object��� 349

Drawbacks�� 350

Summary��� 351

Table of Contents

xii

Chapter 22: �Observer��� 353

Events�� 353

Weak Event Pattern�� 355

Event Streams�� 357

Property Observers�� 361

Basic Change Notification�� 361

Bidirectional Bindings�� 363

Property Dependencies�� 366

Views�� 372

Case Study: Quadratic Equation Solver�� 374

Circular Recalculation Limitations�� 376

Observable Collections�� 377

Observable LINQ��� 378

Declarative Subscriptions in Autofac��� 378

Summary��� 382

Chapter 23: �State��� 383

State-Driven State Transitions��� 384

Enum-Based State Machine��� 387

Switch-Based State Machine��� 390

Encoding Transitions with Switch Expressions�� 392

State Machines with Stateless�� 394

Types, Actions, and Ignoring Transitions��� 395

Reentrancy Again�� 396

Hierarchical States��� 397

More Features�� 397

Concurrent State Machines�� 398

Implicit State Machines��� 399

Summary��� 399

Table of Contents

xiii

Chapter 24: �Strategy�� 401

Dynamic Strategy��� 401

Static Strategy��� 404

Equality and Comparison Strategies�� 406

Functional Strategy�� 408

Declarative Strategies�� 409

Summary��� 410

Chapter 25: �Template Method�� 411

Game Simulation�� 411

Template Method Mixin�� 413

Functional Template Method�� 415

Summary��� 416

Chapter 26: �Visitor��� 417

Intrusive Visitor�� 418

Reflective Visitor�� 419

Extension Methods?��� 422

Functional Reflective Visitor (C#)�� 424

Functional Reflective Visitor (F#)�� 426

Improvements��� 427

What Is Dispatch?�� 428

Dynamic Visitor�� 430

Classic Visitor��� 432

Abstract Classes and Virtual Methods�� 435

Reducing Boilerplate�� 437

Implementing an Additional Visitor��� 437

Type Checks Are Unavoidable�� 439

Acyclic Visitor��� 441

Visitable Null Object��� 443

Table of Contents

xiv

Visitor Adapter�� 447

Reductions and Transforms��� 450

Functional Visitor in F#��� 454

Summary��� 455

Index�� 457

Table of Contents

xv

About the Author

Dmitri Nesteruk is a quantitative analyst, developer, course

instructor, book author, and an occasional conference

speaker. His interests lie in software development

and integration practices in the areas of computation,

quantitative finance, and algorithmic trading. His

technological interests include C# and C++ programming

as well as high-performance computing using technologies

such as CUDA and FPGAs.  

xvii

About the Technical Reviewer

As Microsoft Technical Trainer in Microsoft, Massimo
Bonnani’s main goal is to help customers empower their

Azure skills to achieve more and leverage the power of Azure

in their solutions. He is also a technical speaker at national

and international conferences, and public speaking is one

of his passions. He likes dogs (he has one beautiful female

Labrador that he loves), reading, and biking. He is Microsoft

Certified Trainer, former MVP (for 6 years in Visual Studio

and development technologies and Windows development),

Intel Software Innovator, and Intel Black Belt.  

xix

Introduction

The topic of design patterns sounds dry, academically dull, and, in all honesty, done

to death in almost every programming language imaginable – including programming

languages such as JavaScript that aren’t even properly object-oriented programming

(OOP)! So why another book on it? I know that if you’re reading this, you probably have a

limited amount of time to decide whether this book is worth the investment.

I decided to write this book to fill a gap left by the lack of in-depth patterns books

in the .NET space. Plenty of books have been written over the years, but few have

attempted to research all the ways in which modern C# and F# language features can be

used to implement design patterns and to present corresponding examples. Having just

completed a similar body of work for C++,1 I thought it fitting to replicate the process

with .NET.

Now, on to design patterns – the original Design Patterns book2 was published with

examples in C++ and Smalltalk, and since then, plenty of programming languages

have incorporated certain design patterns directly into the language. For example, C#

directly incorporated the Observer pattern with its built-in support for events (and the

corresponding event keyword).

Design patterns are also a fun investigation of how a problem can be solved in many

different ways, with varying degrees of technical sophistication and different sorts of

trade-offs. Some patterns are more or less essential and unavoidable, whereas other

patterns are more of a scientific curiosity (but nevertheless will be discussed in this book,

since I’m a completionist).

You should be aware that comprehensive solutions to certain problems often result

in overengineering, or the creation of structures and mechanisms that are far more

complicated than is necessary for most typical scenarios. Although overengineering is a

lot of fun (hey, you get to fully solve the problem and impress your co-workers), it’s often

not feasible due to time/cost/complexity constraints.

1 Dmitri Nesteruk, Design Patterns in Modern C++ (New York, NY: Apress, 2017).
2 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software (Reading, MA: Addison-Wesley, 1994).

xx

�Who This Book Is For
This book is designed to be a modern-day update to the classic GoF book, targeting

specifically the C# and F# programming languages. My focus is primarily on C# and the

object-oriented paradigm, but I thought it fair to extend the book in order to cover some

aspects of functional programming and the F# programming language.

The goal of this book is to investigate how we can apply the latest versions of C# and

F# to the implementation of classic design patterns. At the same time, it’s also an attempt

to flesh out any new patterns and approaches that could be useful to .NET developers.

Finally, in some places, this book is quite simply a technology demo for C# and

F#, showcasing how some of the latest features (e.g., default interface methods) make

difficult problems a lot easier to solve.

�On Code Examples
The examples in this book are all suitable for putting into production, but a few

simplifications have been made in order to aid readability:

•	 I use public fields. This is not a coding recommendation, but rather

an attempt to save you time. In the real world, more thought should

be given to proper encapsulation, and in most cases, you probably

want to use properties instead.

•	 I often allow too much mutability either by not using readonly or by

exposing structures in such a way that their modification can cause

threading concerns. We cover concurrency issues for a few select

patterns, but I haven’t focused on each one individually.

•	 I don’t do any sort of parameter validation or exception handling,

again to save some space. Some very clever validation can be done

using C# 8 pattern matching, but this doesn’t have much to do with

design patterns.

You should be aware that most of the examples leverage the latest version of C#

and generally use the latest C# language features that are available to developers. For

example, I use dynamic pattern matching and expression-bodied members liberally.

Introduction

xxi

At certain points in time, I will be referencing other programming languages such as

C++ or Kotlin. It’s sometimes interesting to note how designers of other languages have

implemented a particular feature. C# is no stranger to borrowing generally available

ideas from other languages, so I will mention those when we come to them.

�Preface to the Second Edition
As I write this book, the streets outside are almost empty. Shops are closed, cars are

parked, public transport is rare and empty too. Life is almost at a standstill as the country

endures its first “nonworking month,” a curious occurrence that one (hopefully) only

encounters once in a lifetime. The reason for this is, of course, the COVID-19 pandemic

that will go down in the history books. We use the phrase ”stop the world” a lot when

talking about the Garbage Collector, but this pandemic is a real “stop the world” event.

Of course, it’s not the first. In fact, there’s a pattern there too: a virus emerges, we pay

little heed until it’s spreading around the globe. Its exact nature is different in time, but

the mechanisms for dealing with it remain the same: we try to stop it from spreading and

look for a cure. Only this time around it seems to have really caught us off guard, and

now the whole world is suffering.

What’s the moral of the story? Pattern recognition is critical for our survival. Just

as the hunters and gatherers needed to recognize predators from prey and distinguish

between edible and poisonous plants, so we learn to recognize common engineering

problems – good and bad – and try to be ready for when the need arises.

�Preface to the Third Edition
Design patterns are, for me, a subject of continuous research. Even though the core set

of patterns remains more or less unchanged (though I did include a new one, Value

Object, in this edition), the exact implementations keep varying as new framework and

language features are introduced. With C#, the language has recently made an effort

to focus on conciseness: getting more done with less. On the other hand, features such

as Source Generators also simplify some of the approaches where code repetition is

inevitable. Sadly, we’ve not yet reached the stage where we have a fully functioning

metaprogramming system, so we have to make do with what’s essentially plain-text code

generation.

Introduction

xxii

This edition also includes a lot of new material related to pattern interactions.

Normally, when using patterns, you’re likely to use more than one anyway, and

sometimes these patterns interact in weird and wonderful ways. Sometimes it’s difficult

to determine exactly what pattern is represented by a particular code because it seems to

be covering so many at once. I’ve made explicit in the names of sections which patterns

are involved in an interaction.

Patterns are a fun topic to experiment with and delve into those “what if?”

questions regarding how an implementation can be improved – whether in terms

of maintainability, testability, thread safety, or some other criterion. On the other

hand, comprehensive solutions often result in overengineering, which can weigh

down implementations and make them more difficult to understand and maintain. I

encourage you to consider carefully how much engineering embedded into patterns you

actually need for your purposes. Do not be afraid to cherry-pick, experiment, and adjust

things to your needs.

Oh, and if you find some interesting approach that this book does not cover, be sure

to let me know!

Introduction

PART I

Introduction

3

CHAPTER 1

The SOLID Design
Principles
SOLID is an acronym that stands for the following design principles (and their

abbreviations):

•	 Single Responsibility Principle (SRP)

•	 Open-Closed Principle (OCP)

•	 Liskov Substitution Principle (LSP)

•	 Interface Segregation Principle (ISP)

•	 Dependency Inversion Principle (DIP)

These principles were introduced by Robert C. Martin in the early 2000s – in fact,

they are just a selection of five principles out of dozens that are expressed in Robert’s

books and his blog.1 These five particular topics permeate the discussion of patterns

and software design in general, so before we dive into design patterns (I know you’re all

eager), we’re going to do a brief recap of what the SOLID principles are all about.

�Single Responsibility Principle
Suppose you decide to keep a journal of your most intimate thoughts. The journal is

used to keep a number of entries. You could model it as follows:

public class Journal

{

 private readonly List<string> entries = new();

1 https://blog.cleancoder.com/

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_1

https://blog.cleancoder.com/
https://doi.org/10.1007/978-1-4842-8245-8_1

4

 // just a counter for total # of entries

 private static int count = 0;

}

Now, you could add functionality for adding an entry to the journal, prefixed by the

entry’s ordinal number in the journal. You could also have functionality for removing

entries (implemented in a very crude way in the following). This is easy:

public void AddEntry(string text)

{

 entries.Add($"{++count}: {text}");

}

public void RemoveEntry(int index)

{

 entries.RemoveAt(index);

}

And the journal is now usable as

var j = new Journal();

j.AddEntry("I cried today.");

j.AddEntry("I ate a bug.");

It makes sense to have this method as part of the Journal class because adding

a journal entry is something the journal actually needs to do. It is the journal’s

responsibility to keep entries, so anything related to that is fair game.

Now, suppose you decide to make the journal persist by saving it to a file. You add

this code to the Journal class:

public void Save(string filename, bool overwrite = false)

{

 File.WriteAllText(filename, ToString());

}

This approach is problematic. The journal’s responsibility is to keep journal entries,

not to write them to disk. If you add the persistence functionality to Journal and similar

classes, any change in the approach to persistence (say, you decide to write to the cloud

instead of disk) would require lots of tiny changes in each of the affected classes.

Chapter 1 The SOLID Design Principles

5

I want to pause here and make a point: an architecture that leads you to having to do

lots of tiny changes in lots of classes is generally best avoided if possible. Now, it really

depends on the situation: if you’re renaming a symbol that’s being used in a hundred

places, I’d argue that’s generally OK because ReSharper, Rider, or whatever IDE you use

will actually let you perform a refactoring and have the change propagate everywhere.

But when you need to completely rework an interface…well, that can become a very

painful process!

We therefore state that persistence is a separate concern, one that is better expressed

in a separate class. We use the term Separation of Concerns (sadly, the abbreviation SoC

is already taken2) when talking about the general approach of splitting code into separate

classes by functionality. In the cases of persistence in our example, we would externalize

it like so:

public class PersistenceManager

{

 public void SaveToFile(Journal journal, string filename,

 bool overwrite = false)

 {

 if (overwrite || !File.Exists(filename))

 File.WriteAllText(filename, journal.ToString());

 }

}

And this is precisely what we mean by Single Responsibility: each class has only one

responsibility and therefore has only one reason to change. Journal would need to

change only if there’s something more that needs to be done with respect to in-memory

storage of entries – for example, you might want each entry prefixed by a timestamp, so

you would change the Add() method to do exactly that. On the other hand, if you wanted

to change the persistence mechanic, this would be changed in PersistenceManager.

An extreme example of an anti-pattern3 that violates the SRP is called a God Object. A

God Object is a huge class that tries to handle as many concerns as possible, becoming a

2 SoC is short for System on a Chip, a kind of microprocessor that incorporates all (or most)
aspects of a computer.
3 An anti-pattern is a design pattern that also, unfortunately, shows up in code often enough to be
recognized globally. The difference between a pattern and an anti-pattern is that anti-patterns are
common examples of bad design, resulting in code that’s difficult to understand, maintain, and
refactor.

Chapter 1 The SOLID Design Principles

6

monolithic monstrosity that is very difficult to work with. Strictly speaking, you can take

any system of any size and try to fit it into a single class, but more often than not, you’d

end up with an incomprehensible mess. Luckily for us, God Objects are easy to recognize

either visually or automatically (just count the number of member functions), and

thanks to continuous integration and source control systems, the responsible developer

can be quickly identified and adequately punished.

�Open-Closed Principle
Suppose we have an (entirely hypothetical) range of products in a database. Each

product has a color and size and is defined as

public enum Color { Red, Green, Blue }

public enum Size { Small, Medium, Large, Huge }

public record Product(string Name, Color Color, Size Size);

Now, we want to provide certain filtering capabilities for a given set of products.

We make a ProductFilter service class. To support filtering products by color, we

implement it as follows:

public class ProductFilter

{

 public IEnumerable<Product> FilterByColor

 (IEnumerable<Product> products, Color color)

 {

 foreach (var p in products)

 if (p.Color == color)

 yield return p;

 }

}

Our current approach of filtering items by color is all well and good, though of course

it could be greatly simplified with the use of LINQ. So our code goes into production,

but unfortunately, sometime later, the boss comes in and asks us to implement filtering

by size too. So we jump back into ProductFilter.cs, add the following code, and

recompile:

Chapter 1 The SOLID Design Principles

7

public IEnumerable<Product> FilterBySize

 (IEnumerable<Product> products, Size size)

{

 foreach (var p in products)

 if (p.Size == size)

 yield return p;

}

This feels like outright duplication, doesn’t it? Why don’t we just write a general

method that takes a predicate (i.e., a Predicate<T>)? Well, one reason could be that

different forms of filtering can be done in different ways: for example, some record

types might be indexed and need to be searched in a specific way; some data types are

amenable to search on a Graphics Processing Unit (GPU), while others are not.

Furthermore, you might want to restrict the criteria one can filter on. For example,

if you look at Amazon or a similar online store, you are only allowed to perform filtering

on a finite set of criteria. Those criteria can be added or removed by Amazon if they find

that, say, sorting by number of reviews interferes with the bottom line.

Okay, so our code goes into production, but once again, the boss comes back and

tells us that now there’s a need to search by both size and color. So what are we to do but

add another function?

public IEnumerable<Product> FilterBySizeAndColor(

 IEnumerable<Product> products,

 Size size, Color color)

{

 foreach (var p in products)

 if (p.Size == size && p.Color == color)

 yield return p;

}

What we want, from the preceding scenario, is to enforce the Open-Closed Principle

that states that a type is open for extension but closed for modification. In other words,

we want filtering that is extensible (perhaps in a different assembly) without having to

modify it (and recompiling something that already works and may have been shipped to

clients).

Chapter 1 The SOLID Design Principles

8

How can we achieve it? Well, first of all, we conceptually separate (SRP!) our filtering

process into two parts: a filter (a construct that takes all items and only returns some)

and a specification (a predicate to apply to a data element).

We can make a very simple definition of a specification interface4:

public interface ISpecification<T>

{

 bool IsSatisfied(T item);

}

In this interface, type T is whatever we choose it to be: it can certainly be a Product,

but it can also be something else. This makes the entire approach reusable.

Next up, we need a way of filtering based on an ISpecification<T> – this is done by

defining, you guessed it, an IFilter<T>:

public interface IFilter<T>

{

 IEnumerable<T> Filter(IEnumerable<T> items,

 ISpecification<T> spec);

}

Again, all we are doing is specifying the signature for a method called Filter() that

takes all the items and a specification and returns only those items that conform to the

specification.

Based on this interface, the implementation of an improved filter is really simple:

public class BetterFilter : IFilter<Product>

{

 public IEnumerable<Product> Filter(IEnumerable<Product> items,

 ISpecification<Product> spec)

 {

 foreach (var i in items)

4 At this point, an interesting question is whether you want to use interfaces or abstract classes.
If you do go for interfaces, you lose out on some options (such as custom operators), but you
get being able to use record structs, which absolutely make sense for specification inheritors.
Your choice.

Chapter 1 The SOLID Design Principles

9

 if (spec.IsSatisfied(i))

 yield return i;

 }

}

Again, you can think of an ISpecification<T> that’s being passed in as a strongly

typed equivalent of a Predicate<T> that has a finite set of concrete implementations

suitable for the problem domain.

Now, here’s the easy part. To make a color filter, you make a ColorSpecification:

public class ColorSpecification : ISpecification<Product>

{

 private Color color;

 public ColorSpecification(Color color)

 {

 this.color = color;

 }

 public bool IsSatisfied(Product p)

 {

 return p.Color == color;

 }

}

Armed with this specification, and given a list of products, we can now filter them as

follows:

var apple = new Product("Apple", Color.Green, Size.Small);

var tree = new Product("Tree", Color.Green, Size.Large);

var house = new Product("House", Color.Blue, Size.Large);

Product[] products = {apple, tree, house};

var pf = new ProductFilter();

WriteLine("Green products:");

foreach (var p in pf.FilterByColor(products, Color.Green))

 WriteLine($" - {p.Name} is green");

Chapter 1 The SOLID Design Principles

10

Running this gets us “Apple” and “Tree” because they are both green. Now, the only

thing we haven’t implemented so far is searching for size and color (or, indeed, explained

how you would search for size or color or mix different criteria). The answer is that you

simply make a combinator. For example, for the logical AND, you can make it as follows:

public class AndSpecification<T> : ISpecification<T>

{

 private readonly ISpecification<T> first, second;

 public AndSpecification(ISpecification<T> first, ISpecification<T> second)

 {

 this.first = first;

 this.second = second;

 }

 public override bool IsSatisfied(T t)

 {

 return first.IsSatisfied(t) && second.IsSatisfied(t);

 }

}

And now, you are free to create composite conditions on the basis of simpler

ISpecifications. Reusing the green specification we made earlier, finding something

green and big is now as simple as

foreach (var p in bf.Filter(products,

 new AndSpecification<Product>(

 new ColorSpecification(Color.Green),

 new SizeSpecification(Size.Large))))

{

 WriteLine($"{p.Name} is large");

}

// Tree is large and green

This was a lot of code to do something seemingly simple, but the benefits are well

worth it. The only really annoying part is having to specify the generic argument to

AndSpecification – remember, unlike the color/size specifications, the combinator isn’t

constrained to the Product type.

Chapter 1 The SOLID Design Principles

11

Keep in mind that, thanks to the power of C#, you can simply introduce an operator

& (important: single ampersand here – && is a byproduct) for two ISpecification<T>

objects, thereby making the process of filtering by two (or more!) criteria somewhat

simpler. The only problem is that we need to change from an interface to an abstract

class (feel free to remove the leading I from the name):

public abstract class ISpecification<T>

{

 public abstract bool IsSatisfied(T p);

 public static ISpecification<T> operator &(

 ISpecification<T> first, ISpecification<T> second)

 {

 return new AndSpecification<T>(first, second);

 }

}

If you now avoid making extra variables for size/color specifications, the composite

specification can be reduced to a single line5:

var largeGreenSpec = new ColorSpecification(Color.Green)

 & new SizeSpecification(Size.Large);

Naturally, you can take this approach to extreme by defining extension methods on

all pairs of possible specifications…

public static class CriteriaExtensions

{

 public static AndSpecification<Product> And(this Color color, Size size)

 {

 return new AndSpecification<Product>(

 new ColorSpecification(color),

 new SizeSpecification(size));

 }

}

5 Notice we’re using a single & in the evaluation. If you want to use &&, you’ll also need to override
the true and false operators in ISpecification.

Chapter 1 The SOLID Design Principles

12

…with the subsequent use:

var largeGreenSpec = Color.Green.And(Size.Large);

However, this would require a set of pairs of all possible criteria, something that’s

not particularly realistic, unless you use code generation, of course. Sadly, there is

no way in C# of establishing an implicit relationship between an enum Xxx and an

XxxSpecification.

Figure 1-1 shows a diagram of the entire system we’ve just built.

Figure 1-1.  Specification pattern class diagram

So let’s recap what the OCP is and how this example enforces it. Basically, the OCP

states that you shouldn’t need to go back to code you’ve already written and tested and

change it. And that’s exactly what’s happening here! We made ISpecification<T> and

IFilter<T>, and from then on, all we have to do is implement either of the interfaces

(without modifying the interfaces themselves) to implement new filtering mechanics.

This is what is meant by “open for extension, closed for modification.”

One thing worth noting is that OCP conformance is only possible inside an object-

oriented paradigm. For example, F#’s discriminated unions are by definition not

compliant with the OCP since it is impossible to extend them without modifying their

original definition.

Chapter 1 The SOLID Design Principles

13

�Liskov Substitution Principle
The Liskov Substitution Principle (LSP), named after Barbara Liskov,6 states that if an

interface takes an object of type Parent, it should equally take an object of type Child

without anything breaking. A more formal definition of the LSP is as follows:

Let 𝜙(𝑥) be a property provable about objects 𝑥 of type T.

Then 𝜙(𝑦) should be true for objects 𝑦 of type S where S is a

subtype of T.

This requirement for so-called behavioral subtyping cannot be enforced in an

automatic fashion, though some automated code checks can theoretically be performed

to avoid it being broken. The LSP is therefore best treated as an informal rule rather than

a strict OOP dogma.

Let’s take a look at a situation where the LSP is broken.

Here’s a rectangle; it has width and height and a bunch of getters and setters

calculating the area:

public class Rectangle

{

 public int Width { get; set; }

 public int Height { get; set; }

 public Rectangle() {}

 public Rectangle(int width, int height)

 {

 Width = width;

 Height = height;

 }

 public int Area => Width * Height;

}

6 See https://en.wikipedia.org/wiki/Barbara_Liskov

Chapter 1 The SOLID Design Principles

https://en.wikipedia.org/wiki/Barbara_Liskov

14

Suppose we make a special kind of Rectangle called a Square. This object overrides

the setters to set both width and height:

public class Square : Rectangle

{

 public Square(int side)

 {

 Width = Height = side;

 }

 public new int Width

 {

 set { base.Width = base.Height = value; }

 }

 public new int Height

 {

 set { base.Width = base.Height = value; }

 }

}

Your intuition is probably telling you that this code is not great and potentially

erroneous, but you cannot see any problems just yet because it looks very innocent

indeed: the setters simply set both dimensions (so that a square always remains a

square), and what can possibly go wrong? Well, suppose we introduce a method that

makes use of a Rectangle:

public static void UseIt(Rectangle r)

{

 r.Height = 10;

 WriteLine($"Expected area of {10*r.Width}, got {r.Area}");

}

This method works just fine when used with a Rectangle:

var rc = new Rectangle(2,3);

UseIt(rc);

// Expected area of 20, got 20

Chapter 1 The SOLID Design Principles

15

However, an innocuous method can seriously backfire if used with a Square instead:

var sq = new Square(5);

UseIt(sq);

// Expected area of 50, got 100

This code takes the formula Area = Width × Height as an invariant. It gets the

width, sets the height to 10, and rightly expects the product to be equal to the calculated

area. But calling the preceding function with a Square yields a value of 100 instead of 50.

I’m sure you can guess why this is.

So the problem here is that although UseIt() is happy to take any Rectangle class,

it fails to take a Square because the behaviors inside Square break its operation. So

how would you fix this issue? Well, one approach would be to simply deprecate the

Square class and start treating some Rectangles as special case. For example, you could

introduce an IsSquare property:

public bool IsSquare => Width == Height;

Similarly, instead of having constructors, you could introduce factory methods (see

Chapter 4) that would construct rectangles and squares and would have corresponding

names (e.g., NewRectangle() and NewSquare()), so there would be no ambiguity.

As far as setting the properties is concerned, in this case, the solution would be to

introduce a uniform SetSize(width,height) method and remove Width/Height setters

entirely. This way, you avoid the situation where setting the height via a setter also

stealthily changes the width.

This rectangle/square challenge is, in my opinion, an excellent interview question: it

doesn’t have a correct answer, but allows many interpretations and variations.

�Interface Segregation Principle
The discussion around the Interface Segregation Principle calls for an admittedly

contrived example that is nonetheless suitable for illustrating the problem. Suppose

you decide to define a multifunction printer: a device that can print, scan, and also fax

documents. So you define it like so:

class MyFavouritePrinter /* : IMachine */

{

 void Print(Document d) {}

Chapter 1 The SOLID Design Principles

16

 void Fax(Document d) {}

 void Scan(Document d) {}

};

This is fine. Now, suppose you decide to define an interface that needs to be

implemented by everyone who also plans to make a multifunction printer. So you could

use the Extract Interface refactoring in your favorite IDE, and you’ll get something like

the following:

public interface IMachine

{

 void Print(Document d);

 void Fax(Document d);

 void Scan(Document d);

}

This is a problem. The reason it is a problem is that some implementor of this

interface might not need scanning or faxing, just printing. And yet, you are forcing them

to implement those extra features: sure, they can all be no-op, but why bother with this?

A typical example would be a good old-fashioned printer that doesn’t have any

scanning or fax functionality. Implementing the IMachine interface in this situation

becomes a real challenge. What’s particularly frustrating about this situation is there is

no correct way of leaving things unimplemented – this is actually a good indicator that

interfaces are poorly segregated. I mean, sure, you can throw an exception, and we even

have a dedicated exception precisely for this purpose:

public class OldFashionedPrinter : IMachine

{

 public void Print(Document d)

 {

 // yep

 }

 public void Fax(Document d)

 {

 throw new System.NotImplementedException();

 }

Chapter 1 The SOLID Design Principles

17

 public void Scan(Document d)

 {

 // left empty

 }

}

But you are still confusing the user! They can see OldFashionedPrinter.Fax() as

part of the API, so they can be forgiven for thinking that this type of printer can fax too!

So what else can you do? Well, you can just leave the extra methods as no-op (empty),

just like the Scan() method. This approach violates the Principle of Least Surprise (also

known as the Principle of Least Astonishment, POLA): your users want things to be as

predictable as you can possibly make them. And neither a method that throws by default

nor a method that does nothing is the most predictable solution – even if you make it

explicit in the documentation!

The only option that would categorically work at compile time is the nuclear option

of marking all unnecessary methods obsolete:

[Obsolete("Not supported", true)]

public void Scan(Document d)

{

 throw new System.NotImplementedException();

}

This will prevent compilation if someone does try to use OldFashionedPrinter.

Scan(). In fact, good IDEs will recognize this ahead of time and will often cross out

the method as you call it to indicate that it’s not going to work. The only issue with

this approach is that it’s deeply unidiomatic: the method isn’t really obsolete – it’s

unimplemented. Stop lying to the client!

So what the Interface Segregation Principle suggests you do instead is split up

interfaces, so that implementors can pick and choose depending on their needs. Since

printing and scanning are different operations (e.g., a scanner cannot print), we define

separate interfaces for these:

public interface IPrinter

{

 void Print(Document d);

}

Chapter 1 The SOLID Design Principles

18

public interface IScanner

{

 void Scan(Document d);

}

Then, a printer can implement just the required functionality, nothing else:

public class Printer : IPrinter

{

 public void Print(Document d)

 {

 // implementation here

 }

}

Similarly, if we want to implement a photocopier, we can do so by implementing the

IPrinter and IScanner interfaces:

public class Photocopier : IPrinter, IScanner

{

 public void Print(Document d) { ... }

 public void Scan(Document d) { ... }

}

Now, if we really want a dedicated interface for a multifunction device, we can define

it as a combination of the aforementioned interfaces:

public interface IMultiFunctionDevice

 : IPrinter, IScanner // also IFax etc.

{

 // nothing here

}

And when you make a class for a multifunction device, this is the interface to use. For

example, you could use simple delegation to ensure that Machine reuses the functionality

provided by a particular IPrinter and IScanner (this is actually a good illustration of the

Decorator pattern):

Chapter 1 The SOLID Design Principles

19

public class MultiFunctionMachine : IMultiFunctionDevice

{

 // compose this out of several modules

 private IPrinter printer;

 private IScanner scanner;

 public MultiFunctionMachine(IPrinter printer, IScanner scanner)

 {

 this.printer = printer;

 this.scanner = scanner;

 }

 public void Print(Document d) => printer.Print(d);

 public void Scan(Document d) => scanner.Scan(d);

}

Figure 1-2 is a visual illustration of this entire setup.

Figure 1-2.  Interface Segregation Principle illustrated

Chapter 1 The SOLID Design Principles

20

So, just to recap, the idea here is to split related functionality of a complicated interface

into separate interfaces so as to avoid forcing clients to implement functionality that they

do not really need. Whenever you find yourself writing a plugin for some complicated

application and you’re given an interface with 20 confusing methods to implement with

various no-ops and return nulls, more likely than not the API authors have violated the ISP.

�Parameter Object
When we talk about interfaces, we typically talk about the interface keyword, but the

essence of the ISP can also be applied to a much more local phenomenon: interfaces in

the conventional sense, for example, a parameter list exposed by a constructor.

Consider a (completely arbitrary) example of a constructor that takes a large number

of parameters. Most of these parameters have defaults, but some do not:

public class Foo

{

 public Foo(int a, int b, bool c = false, int d = 42, float e = 1.0f)

 {

 // meaningful code here

 }

}

The problem with the interface of the preceding constructor is that it throws a lot

into the face of an unsuspecting client. The situation becomes even more comical if the

client has to provide arguments a, b, and e because then they’ll end up repeating some of

the defaults (e.g., for c and d) unnecessarily.

In this situation, the core principle of the ISP (do not throw everything into an

interface) also makes sense here, but for different reasons. You need to provide a

sensible set of defaults and help the client avoid repeating them.

Any self-respecting IDE offers you the Parameter Object refactoring – an ability to

take all parameters and put them into a class with all the defaults preserved:

public class MyParams

{

 public int a;

 public int b;

 public bool c = false;

Chapter 1 The SOLID Design Principles

21

 public int d = 42;

 public float e = 1.0f;

 public MyParams(int a, int b)

 {

 this.a = a;

 this.b = b;

 }

}

This parameter object would then be passed into Foo’s constructor:

public Foo(MyParams myParams)

{

 // meaningful work here

}

Notice how MyParams is crafted: it does have a constructor of its own, mandating that

you initialize the first two parameters, but it also exposes other parameters for you to

initialize arbitrarily if you don’t like their default values.

All I’m trying to say is this: principles and patterns don’t have to operate at the macro

(class) scale – they are also good enough to operate on smaller scales, such as the scale of

individual methods.

�Dependency Inversion Principle
The original definition of the Dependency Inversion Principle states the following7:

A. High-level modules should not depend on low-level modules. Both should depend

on abstractions.

What this statement means is that, if you’re interested in logging, your reporting

component should not depend on a concrete ConsoleLogger, but should instead depend

on an ILogger interface. In this case, we are considering the reporting component to be

high level (closer to the business domain), whereas logging, being a fundamental concern

(kind of like file I/O or threading, but not quite), is considered a low-level module.

7 Robert C. Martin, Agile Software Development: Principles, Patterns, and Practices (Prentice Hall,
2003), pp. 127–131.

Chapter 1 The SOLID Design Principles

22

B. Abstractions should not depend on details. Details should depend on abstractions.

This is, once again, restating that dependencies on interfaces or base classes are

better than dependencies on concrete types. Hopefully, the truth of this statement

is obvious, because such an approach supports better configurability and testability,

especially if you are using a good framework to handle these dependencies for you.

Let’s take a look at an example of the DIP in action. Suppose we decide to model a

genealogical relationship between people using the following definitions:

public enum Relationship

{

 Parent,

 Child,

 Sibling

}

public class Person

{

 public string Name;

 // DoB and other useful properties here

}

We create a (low-level) class specifically for storing information about relationships.

If we chose to save parent-child relationships in both directions, it would look something

like the following:

public class Relationships // low-level

{

 public List<(Person,Relationship,Person)> relations = new();

 public void AddParentAndChild(Person parent, Person child)

 {

 relations.Add((parent, Relationship.Parent, child));

 relations.Add((child, Relationship.Child, parent));

 }

}

Chapter 1 The SOLID Design Principles

23

Now, suppose we want to do some research on the relationships we’ve captured.

For example, in order to find all the children of John, we create the following (high-

level) class:

public class Research

{

 public Research(Relationships relationships)

 {

 // high-level: find all of john's children

 var relations = relationships.Relations;

 foreach (var r in relations

 .Where(x => x.Item1.Name == "John"

 && x.Item2 == Relationship.Parent))

 {

 WriteLine($"John has a child called {r.Item3.Name}");

 }

 }

}

The approach illustrated here directly violates the DIP because a high-level

module Research directly depends on the low- level module Relationships. Why is

this bad? Because Research depends directly on the data storage implementation of

Relationships: you can see it iterating the list of tuples. What if you wanted to later

change the underlying storage of Relationships, perhaps by moving it from a list of

tuples to a proper database? Well, you couldn’t, because you have high-level modules

depending on it.

So what do we want? We want our high-level module to depend on an abstraction,

which, in C# terms, means depending on an interface of some kind. But we don’t have

an interface yet! No problem, let’s create one:

public interface IRelationshipBrowser

{

 IEnumerable<Person> FindAllChildrenOf(string name);

}

Chapter 1 The SOLID Design Principles

24

This interface has a single method for finding all children of a particular person

by name. We expect that a low-level module such as Relationships would be able to

implement this method and thereby keep its implementation details private:

public class Relationships : IRelationshipBrowser // low-level

{

 // no longer public!

 private List<(Person,Relationship,Person)> relations = new();

 public IEnumerable<Person> FindAllChildrenOf(string name)

 {

 return relations

 .Where(x => x.Item1.Name == name

 && x.Item2 == Relationship.Parent)

 .Select(r => r.Item3);

 }

}

Now this is something that our Research module can depend upon! We can inject

an IRelationshipBrowser into its constructor and perform the research safely, without

digging into the low-level module’s internals:

public Research(IRelationshipBrowser browser)

{

 foreach (var p in browser.FindAllChildrenOf("John"))

 {

 WriteLine($"John has a child called {p.Name}");

 }

}

Please note that the DIP isn’t the equivalent of dependency injection (DI), which is

another important topic in its own right. DI can facilitate the application of the DIP by

simplifying the representation of dependencies, but those two are separate concepts.

Chapter 1 The SOLID Design Principles

25

CHAPTER 2

The Functional
Perspective
The functional paradigm is supported by both the C# and F# languages. Both languages

can claim to be multi-paradigm since they fully support both OOP and functional

programming, though F# has more of a “functional-first” mindset with object orientation

added for completeness, whereas in C# the integration of functional programming

aspects appears to be much more harmonious.

Here we are going to take a very cursory look at functional programming in the C#

and F# languages. Some of the material may already be familiar to you; in that case, feel

free to skip this part.

�Function Basics
First, a note on notation. In this book, I use the words method and function

interchangeably to mean the same thing: a self-contained operation that takes zero or

more inputs and has zero or more outputs (return values). I will use the word method

when working in the C# domain and likewise will use the word function when dealing

with the functional domain.

In C#, functions are not freestanding: they must be members of some class or other.

For example, to define integer addition, you must pack the Add() method into some

class (let’s call it Ops):

struct Ops

{

 public static int Add(int a, int b)

 {

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_2

https://doi.org/10.1007/978-1-4842-8245-8_2

26

 return a + b;
 }
}

This function is meant to be called as Ops.Add() though you can shorten it to just

Add() if you use C#’s import static instruction. Still, this is a particular pain point for

the mathematicians because, even if you add global using static System.Math; to

your project, you still end up having to use uppercase names for functions like Sin() –

not an ideal situation!1

In F#, the approach is drastically different. The preceding addition function can be

defined as

let add a b = a + b

It may appear as if some magic has happened: we didn’t define a class, nor did we

specify the data types of arguments. And yet, if you were to look at the C#-equivalent

code, you would see something like the following:

[CompilationMapping]

public static class Program

{

 [CompilationArgumentCounts(new int[] {1, 1})]

 public static int add(int a, int b)

 {

 return a + b;

 }

}

As you may have guessed, the static class Program got its name from the name of the

file the code was in (in this case, Program.fs). The types of arguments were chosen as a

guesstimate. What if we were to add a call with different argument types?

let ac = add "abra" "cadabra"

printfn "%s" ac

This code prints “abracadabra,” of course, but what’s interesting is the code

generated… You’ve guessed it already, haven’t you?

1 You could introduce sin() as an alias for Sin(), but unfortunately, aliases cannot be global, so
you’ll end up having to repeat aliases in every single file that needs them.

Chapter 2 The Functional Perspective

27

[CompilationArgumentCounts(new int[] {1, 1})]

public static string add(string a, string b)

{

 return a + b;

}

The reason this is possible is called type inference: the compiler figures out which

types you’re actually using in a function and tries to accommodate by constructing a

function with corresponding parameters. Sadly, this is not a silver bullet. For example, if

you were to subsequently add another call – this time, with integers – it would fail:

let n = add 1 2

// Error: This expression was expected to have type 'string' but here has

type 'int'

�Functional Literals in C#
It’s not always convenient to define functions inside classes: sometimes you want to

create a function exactly where you need it, that is, in another function. These sorts of

functions are called anonymous because they are not given persistent names; instead,

the function is stored in a delegate.

The old-fashioned, C# 2.0 way of defining anonymous functions is with the use of a

delegate keyword, similar to the following:

BinaryOperation multiply = delegate(int a, int b) { return a * b; };

int x = multiply(2, 3); // 6

Of course, since C# 3.0 we have a much more convenient way of defining the

same thing:

BinaryOperation multiply = (a, b) => { return a * b; };

Notice the disappearance of type information next to a and b: this is type inference at

work once again!

Finally, since C# 6 we have expression-bodied members that allow us to omit

the return keyword in single-statement evaluations, shortening the definition to the

following:

BinaryOperation multiply = (a, b) => a * b;

Chapter 2 The Functional Perspective

28

Of course, anonymous functions are useless if you don’t store them somewhere, and

as soon as you’re storing something, that something needs a type. Luckily, we have types

of this too.

�Storing Functions in C#
A key feature of functional programming is being able to refer to functions and call them

through references. In C#, the simplest way to do this is using delegates.

A delegate type is to a function what a class is to an instance. Given our Add()

function from earlier, we can define a delegate similar to the following:

public delegate int BinaryOperation(int a, int b);

A delegate doesn’t have to live inside a C# class: it can exist at a namespace level. So,

in a way, you can treat it as a type declaration. Of course, you can also stick a delegate

into a class, in which case you can treat it as a nested type declaration.

Having a delegate such as this lets us store a reference to a function in a variable:

BinaryOperation op = Ops.Add;

int x = op(2, 3);

Compared with instances of a class, there’s a note that needs to be made here – not

only does a delegate instance know which function needs to be called but it also knows

the instance of the class on which this method should be called. This distinction is

critical because it allows us to distinguish, for example, static and non-static functions.

Any other function, which has the same signature, can also be assigned to this

delegate, regardless of who is its logical owner. For example, you could define a function

called Subtract() virtually anywhere and assign it to the delegate. This includes

defining it as an ordinary member function:

class Program

{

 static int Subtract(int a, int b) => a - b;

 static void Main(string[] args)

 {

 BinaryOperation op = Subtract;

Chapter 2 The Functional Perspective

29

 int x = op(10, 2); // 8

 }

}

However, it can easily be a local (nested) function…

static void Main(string[] args)

{

 int Multiply(int a, int b) => a * b;

 BinaryOperation op = Multiply;

 int x = op(10, 2); // 20

}

…or even an anonymous delegate or a lambda function:

void SomeMethod()

{

 BinaryOperation op = (a, b) => a / b;

 int x = op(10, 2); // 5

}

Now, here’s the important part. Pay attention: in the majority of cases, defining

your own delegates is not necessary. Why? Because the .NET Base Class Library (BCL)

comes with predefined delegates of up to 16 parameters in length (C# has no variadic

templates2), which cover most cases that you might be interested in.

The Action delegate represents a function that doesn’t return a value (is void). Its

generic arguments relate to the types of arguments this function takes. So you can write

something like

Action doStuff = () => Console.WriteLine("doing stuff!");

doStuff(); // prints "doing stuff!"

Action<string> printText = x => Console.WriteLine(x);

printText("hello"); // prints "hello"

2 Variadic templates are primarily a C++ concept. They allow you to define template (generic)
types and methods that take an arbitrary number of type arguments and provide (somewhat
scary) syntax for iterating the argument type list. .NET generics are implemented differently from
C++ templates (their “genericity” is preserved at runtime), so variadics in .NET are not possible.

Chapter 2 The Functional Perspective

30

The generic arguments of Action are needed to specify parameter types. If a function

takes no parameters, just use a nongeneric Action.

If your function does need to return a value, then you can use a predefined delegate

Func<T1, T2, ..., TR>. This is always generic, where TR has the type of the return

value. In our case, we could have defined a binary operation as

Func<int, int, int> mul = Multiply;

// or

Func<int, int, int> div = (a, b) => a / b;

Together, Action and Func cover all the realistic needs you might encounter for a

delegate. Since C# 10, these delegates can also be deduced into “natural delegate types.”

In other words, you can write

var div = (int a, int b) => a / b;

And after compiling, div will be of type Func<int, int, int> because, absent

type information, the compiler will go off looking for a compatible Action/Func and,

assuming it finds one, will set the variable’s type accordingly.

�Functional Literals in F#
In F#, the process of defining a function is a lot more harmonized. For example, there

is no real distinction between the syntax for defining a variable and that for defining a

method in the global scope:

let add a b = a + b

[<EntryPoint>]

let main argv =

 let z = add

 let result = z 1 2 // 3

 0

However, the decompiled results of this code are too frightening to show here. What

is important to realize is that F# does, in fact, automatically map your function to a type

without any extra hints. But instead of mapping it to a Func delegate, it maps it to its own

type called FSharpFunc.

Chapter 2 The Functional Perspective

31

In order to understand the reason for FSharpFunc’s existence, we need to understand

something called currying. Currying (nothing to do with Indian food) is an entirely

different approach from the way functions are defined and called. Remember when our

F# function add a b got turned into a C#-equivalent int add(int a, int b)? Well, let

me show you a very similar situation where this will not happen:

let printValues a b =

 printf "a = %i; b = %i" a b

As you may have guessed, all this code does is print the two integers passed in.

But what does this compile to? Well, without showing extra levels of gore, the compiler

generates, among other things, a class inheriting from FSharpFunc<int, Unit>

(Unit can be seen as F#’s equivalent of void) that also happens to have another

FSharpFunc<int, Unit> as an invocable member. Why?!

To simplify things, your printValues call actually got turned into something like

let printValues a =

 let printValues@10-1 b =

 printf "a = %i; b = %i" a b

 return printValues@10-1

So, in C# terms, instead of making a function callable as printValues(a,b), we

made a function callable as printValues(a)(b).

What’s the advantage of this? Well, let’s come back to our add function:

let add a b = a + b

We can now use this function to define a new function called addFive that adds 5 to a

given number. This function can be defined as follows:

let addFive x = add 5 x

We can now call it as

let z = addFive 5 // z = 10

Having this definition forces the compile to express the invocation of any call of

add x y as being equivalent to add(x) (y). But add(x) (without the y) is already

prepackaged as a standalone FSharpFunc<int,int> that itself yields a function that takes

a y and adds it to the result. Therefore, the implementation of addFive can reuse this

function without spawning any further objects!

Chapter 2 The Functional Perspective

32

And now we come back to the question of why F# uses FSharpFunc instead of

Func. The answer is…inheritance! Since an invocation of arguments involves not just

a single function call but an entire chain, a really useful way of organizing this chain of

invocations is by using good old-fashioned inheritance.

�Composition
F# has special syntax for calling several functions one after another. In C#, if you need

to take the value x and apply to it functions g and then f, you would simply write it as

f(g(x)). In F#, the possibilities are more interesting.

Let us actually take a look at how these functions could be defined and used. We

are going to consider the successive application of two functions, one that adds 5 to a

number and another that doubles it:

let addFive x = x + 5

let timesTwo x = x * 2

printfn "%i" (addFive (timesTwo 3)) // 11

If you think about it, the number 3 goes through a pipeline of operations: first,

it is fed to timesTwo and then to addFive. This notion of a pipeline is represented in

code through the F# forward pipe and backward pipe operators, which can be used to

implement these operations as follows:

printfn "%i" (3 |> timesTwo |> addFive)

printfn "%i" (addFive <| (timesTwo <| 3))

Notice that while the forward operator |> example is very clean, the backward

operator <| is much less so because extra brackets are required due to associativity rules.

We might want to define a new function that applies timesTwo followed by addFive

to any argument. Of course, you could simply define it as

let timesTwoAddFive x =

 x |> timesTwo |> addFive

Chapter 2 The Functional Perspective

33

However, F# also defines function composition operators >> (forward) and <<

(backward) for composing several functions into a single function. Naturally, their

arguments must match:

let timesTwoAddFive = timesTwo >> addFive

printfn "%i" timesTwoAddFive 3 // 11

�Functional-Related Language Features
While not central to the discussion of functional programming, certain features often go

with it hand in hand. This includes the following:

•	 Tail recursion helps with defining algorithms in a recursive fashion.

•	 Discriminated unions allow very quick definitions of related types

with primitive storage mechanics. Sadly, this feature breaks the OCP

because it’s impossible to extend a discriminated union without

changing its original definition.

•	 Pattern matching expands the domain of if statements with an

ability to match against templates. This is omnipresent in F# (for lists,

record types, and others) and is now appearing in C# too.

•	 Functional lists are a unique feature (entirely unrelated to List<T>),

leveraging pattern matching and tail recursion.

These features are synergetic with the functional programming paradigm and can

help the implementation of some of the patterns described in this book.

Chapter 2 The Functional Perspective

PART II

Creational Patterns
In a “managed” language such as C#, the process of creating a new object is simple:

just new it up and forget about it. Now, with the proliferation of dependency injection,

another question is whether creating objects manually is still acceptable, or should we

instead defer the creation of all key aspects of our infrastructure to specialized constructs

such as factories (more on them in just a moment!) or Inversion of Control containers?

Whichever option you choose, creation of objects can still be a chore, especially if the

construction process is complicated or needs to abide by special rules. So that's where

creational patterns come in: they are common approaches related to the creation of

objects in less-than-trivial situations.

Just in case you're rusty on the ways an object can be constructed in C#, let's recap

the main approaches:

•	 Invocation of new creates an object on the managed heap. The object

doesn't need to be destroyed explicitly because the Garbage Collector

(GC) will take care of it for us.

•	 Stack allocation with stackalloc allocates memory on the stack

rather than the heap. Stack-allocated objects only exist in the scope

they were created and get cleaned up auto when they go out of scope.

This construct can only be used with value types.

•	 You can allocate unmanaged (native) memory with Marshal.

AllocHGlobal and CoTaskMemAlloc and must explicitly free it with

Marshal.FreeHGlobal and CoTaskMemFree. This is primarily needed

for interoperation with unmanaged code.

36

Needless to say, some managed component might be working with unmanaged

memory behind the scenes. This is one of the main reasons for the existence of the

IDisposable interface. This interface has a single method, Dispose(), that can contain

cleanup logic. If you are working with an object that implements IDisposable, it might

make sense to wrap its use in a using statement (we now also have using var) so that its

cleanup code gets executed as soon as the object is no longer needed.

PART II CREATIONAL PATTERNS

37

CHAPTER 3

Builder
The Builder pattern is concerned with the creation of complicated objects, that is, objects

that cannot be built up in a single-line constructor call. These types of objects may

themselves be composed of other objects and might involve less-than-obvious logic,

necessitating a separate component specifically dedicated to object construction.

I suppose it’s worth noting beforehand that, while the Builder is concerned with

complicated objects, we’ll be taking a look at a rather trivial example. This is done purely

for the purposes of space optimization, so that the complexity of the domain logic

doesn’t interfere with your ability to appreciate the actual implementation of the pattern.

�Scenario
Let’s imagine that we are building a component that renders web pages. A page might

consist of just a single paragraph (let’s forget all the typical HTML trappings for now),

and to generate it, you’d probably write something like the following:

var hello = "hello";

var sb = new StringBuilder();

sb.Append("<p>");

sb.Append(hello);

sb.Append("</p>");

WriteLine(sb);

This is some serious overengineering, Java style, but it is a good illustration of

one builder that we’ve already got in the .NET Framework: the StringBuilder!

StringBuilder is, of course, a separate component that is used for memory-efficient

string concatenation. It has utility methods such as AppendLine() so you can append

both the text and a line break (as in Enrivonment.NewLine). But the real benefit of

StringBuilder is that, unlike string concatenation that results in lots of temporary

strings, it just allocates a buffer and fills it up with text that is being appended.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_3

https://doi.org/10.1007/978-1-4842-8245-8_3

38

So how about we try to output a simple unordered (bulleted) list with two items

containing the words hello and world? A very simplistic implementation might look as

follows:

var words = new[] { "hello", "world" };

sb.Append("");

foreach (var word in words)

{

 sb.AppendFormat("{0}", word);

}

sb.Append("");

WriteLine(sb);

This does in fact give us what we want, but the approach is not very flexible. How

would we change this from a bulleted list to a numbered list? How can we add another

item to the list after the list has been created? Clearly, in this rigid scheme of ours, this is

not easy once the StringBuilder has been initialized.

We might, therefore, go the OOP route and define an HtmlElement record class to

store information about each HTML tag:

public record HtmlElement(string Name, string Text)

{

 public string Name = Name;

 public string Text = Text;

 private readonly Lazy<List<HtmlElement>> elements = new();

 public List<HtmlElement> Elements => elements.Value;

 private const int indentSize = 2;

 public HtmlElement() : this("", "") { }

}

This class models a single HTML tag that has a name and can also contain either

text or a number of children, which are themselves HtmlElements. The key functionality

here is the ToString() implementation. Since HtmlElement can be infinitely nested,

ToString() needs to be able to handle this recursive nature. But since there is no way to

alter the method signature to add an additional parameter, we simply implement it as…

public override string ToString() => ToStringImpl(0);

Chapter 3 Builder

39

…with the actual implementation hidden in a private method:

private string ToStringImpl(int indent)

{

 var sb = new StringBuilder();

 var i = new string(' ', indentSize * indent);

 sb.Append($"{i}<{Name}>\n");

 if (!string.IsNullOrWhiteSpace(Text))

 {

 sb.Append(new string(' ', indentSize * (indent + 1)));

 sb.Append(Text);

 sb.Append('\n');

 }

 foreach (var e in Elements)

 sb.Append(e.ToStringImpl(indent + 1));

 sb.Append($"{i}</{Name}>\n");

 return sb.ToString();

}

With this approach, we can now create our list in a more sensible fashion:

var words = new[] { "hello", "world" };

var tag = new HtmlElement("ul", null);

foreach (var word in words)

 tag.Elements.Add(new HtmlElement("li", word));

WriteLine(tag); // calls tag.ToString()

This works fine and gives us a more controllable, OOP-driven representation of a

list of items. It also greatly simplifies other operations, such as the removal of entries.

But the process of building up each HtmlElement is not very convenient, especially if

that element has children or some special requirements. Consequently, we turn to the

Builder pattern.

Chapter 3 Builder

40

�Simple Builder
The Builder pattern simply tries to outsource the piecewise construction of an object

into a separate class. Our first attempt might yield something like this:

class HtmlBuilder

{

 protected readonly string rootName;

 protected HtmlElement root = new HtmlElement();

 public HtmlBuilder(string rootName)

 {

 this.rootName = rootName;

 root.Name = rootName;

 }

 public void AddChild(string childName, string childText)

 {

 var e = new HtmlElement(childName, childText);

 root.Elements.Add(e);

 }

 public override string ToString() => root.ToString();

}

This is a dedicated component for building up an HTML element. The constructor

of the builder takes a rootName, which is the name of the root element that’s being built:

this can be "ul" if we are building an unordered list, "p" if we’re making a paragraph,

and so on. Internally, we store the root as an HtmlElement and assign its Name in the

constructor. But we also keep hold of the rootName so we can reset the builder later on if

we want to.

The AddChild() method is the method that’s intended to be used to add additional

children to the current element, each child being specified as a name-text pair. It can be

used as follows:

var builder = new HtmlBuilder("ul");

builder.AddChild("li", "hello");

builder.AddChild("li", "world");

WriteLine(builder.ToString());

Chapter 3 Builder

41

You’ll notice that, at the moment, the AddChild() method is void-returning. There

are many things we could use the return value for, but one of the most common uses of

the return value is to help us build a fluent interface.

�Fluent Builder
Let’s change our definition of AddChild() to the following:

public HtmlBuilder AddChild(string childName, string childText)

{

 var e = new HtmlElement(childName, childText);

 root.Elements.Add(e);

 return this;

}

By returning a reference to the builder itself, the builder calls can now be chained.

This is what’s called a fluent interface:

var builder = new HtmlBuilder("ul");

builder.AddChild("li", "hello")

 .AddChild("li", "world");

WriteLine(builder.ToString());

The “one simple trick” of returning this allows us to build interfaces where several

operations can be crammed into one statement. Note that StringBuilder itself also

exposes a fluent interface. Fluent interfaces are generally nice, but making decorators

that use them (e.g., using an automated tool such as ReSharper or Rider) can be a

problem – we’ll encounter this later.

�Static Initialization
As soon as we start working with fluent interfaces, we have a possibility of invoking the

entire building process in a single line of code. The only annoyance is that, given that we

have to invoke the constructor, the end result is not as pretty as it could be:

var b = new HtmlBuilder("ul")

 .AddChild("li", "hello").AddChild("li", "world");

Chapter 3 Builder

42

We can avoid the new part altogether by introducing a very simple static Init()

method that simply sends the arguments to the constructor:

public static HtmlBuilder Init(string rootName)

{

 return new HtmlBuilder(rootName);

}

This simple factory method (see Chapter 4) lets us write slightly cleaner code:

var b = HtmlBuilder.Init("ul")

 .AddChild("li", "hello").AddChild("li", "world");

An advantage of this approach is that you can have different Init() methods with

different names – a rather niche feature for a builder. Yes, you can have a factory method

with a polymorphic return, but this implies that you have a family of related builders –

also something that’s rather rare. But to be honest, the only advantage seems to be in

being able to avoid the new keyword.

�Communicating Intent
We have a dedicated builder implemented for an HTML element, but how will the users

of our classes know how to use it? One idea is to simply force them to use the builder

whenever they are constructing an object. Here’s what you need to do:

class HtmlElement

{

 protected string Name, Text;

 protected List<HtmlElement> Elements = new();

 protected const int indentSize = 2;

 // hide the constructors!

 protected HtmlElement() {}

 protected HtmlElement(string name, string text)

 {

 Name = name;

 Text = text;

 }

Chapter 3 Builder

43

 // factory method

 public static HtmlBuilder Create(string name) => new HtmlBuilder(name);

}

Our approach is two-pronged. First, we have hidden all constructors, so they are no

longer available. I recommend that if you need to hide things, you make them protected

rather than private just in case you decide to subclass later on.

Second, we have also hidden the implementation details of the builder itself,

something we haven’t done previously. We have, however, created a factory method

(this is a design pattern we shall discuss later) for creating a builder right out of the

HtmlElement. And it’s a static method too! Here’s how one would go about using it:

var builder = HtmlElement.Create("ul");

builder.AddChild("li", "hello")

 .AddChild("li", "world");

WriteLine(builder);

In the preceding example, we are forcing the client to use the static Create() method

because, well, there’s really no other way to construct an HtmlElement – after all, all the

constructors are protected. So the client creates an HtmlBuilder and is then forced to

interact with it in the construction of an object. The last line of the listing simply prints

the object being constructed.

But let’s not forget that our ultimate goal is to build an HtmlElement, and so far

we have no way of getting to it! So the icing on the cake can be an implementation of

implicit operator HtmlElement on the builder to yield the final value:

// the element we're building

protected HtmlElement root = new HtmlElement();

// support for implicit casts

public static implicit operator HtmlElement(HtmlBuilder builder)

{

 return builder.root;

}

Chapter 3 Builder

44

The addition of the operator allows us to write the following:

HtmlElement root = HtmlElement

 .Create("ul")

 .AddChildFluent("li", "hello")

 .AddChildFluent("li", "world");

WriteLine(root);

Regrettably, there is no way of explicitly telling other users to use the API in this

manner. Hopefully, the restriction on constructors coupled with the presence of the

static Create() method encourages the user to use the builder, but in addition to

the operator, it might make sense to also add a corresponding Build() function to

HtmlBuilder itself:

public HtmlElement Build() => root;

�Nested Builder and Immutability
Consider a situation where you want the constructed objects to be immutable. For

example, you want to ensure that the children of an HtmlElement constructed by an

HtmlBuilder cannot be modified after the builder is done.

How can we enforce it? At the moment, it is impossible. After all, the builder needs

access to a mutable interface. However, we can entangle the two together by making the

builder a nested type in the constructed object:

public record HtmlElement(...)

{

 ...

 public static HtmlBuilder Create(string name) => new(name);

 // and then

 public class HtmlBuilder

 {

 ...

 }

}

Chapter 3 Builder

45

This allows for interesting opportunities. First, the publicly exposed set of nested

elements can now be defined as

private readonly Lazy<List<HtmlElement>> elements = new();

// note the type below:

public IReadOnlyList<HtmlElement> Elements => elements.Value;

So we’re now returning an IReadOnlyList. All that remains is to adjust the

AddChildXxx() methods to now use the private elements instead, that is:

public HtmlBuilder AddChildFluent(string childName, string childText)

{

 var e = new HtmlElement(childName, childText);

 root.elements.Value.Add(e);

 // ↑↑↑↑↑↑
 return this;

}

And that’s it!

Now, of course, whether or not something like this is okay to do is a philosophical

discussion. If you are designing both the object and the builder from the outset, it might

be argued that this approach is fine, besides obviously breaking the SRP by entangling

two classes together.

If, however, you are doing this post hoc by breaking the OCP as well as public API

surface (by making a switch from constructors to enforced builders midstream), this, in

my mind, is a more egregious offense and requires careful deliberation.

�Composite Builder
Let us continue the discussion of the Builder pattern with an example where multiple

builders are used to build up a single object. This scenario is relevant to situations where

the building process is so complicated that the builder itself becomes subject to the

Single Responsibility Principle and needs to be fragmented into smaller parts.

Chapter 3 Builder

46

Let’s say we decide to record some information about a person:

public class Person

{

 // address

 public string StreetAddress, Postcode, City;

 // employment info

 public string CompanyName, Position;

 public int AnnualIncome;

}

There are two aspects to Person: their address and employment information. What

if we want to have separate builders for each – how can we provide the most convenient

API? To do this, we’ll construct a composite builder. This construction is not trivial,

so pay attention: even though we want two separate builders for job and address

information, we’ll spawn no fewer than three distinct classes.

We’ll call the first class PersonBuilder:

public class PersonBuilder

{

 // the object we're going to build

 protected Person person; // this is a reference!

 public PersonBuilder() => person = new Person();

 protected PersonBuilder(Person person) => this.person = person;

 public PersonAddressBuilder Lives => new PersonAddressBuilder(person);

 public PersonJobBuilder Works => new PersonJobBuilder(person);

 public static implicit operator Person(PersonBuilder pb)

 {

 return pb.person;

 }

}

Chapter 3 Builder

47

This is much more complicated than our simple builder earlier, so let’s discuss each

member in turn:

•	 The reference person is a reference to the object that’s being built.

This field is marked protected, and this is done deliberately for

the sub-builders. It’s worth noting that this approach only works

for reference types – if person were a struct, we would encounter

unnecessary duplication.

•	 Lives and Works are properties returning builder facets: those

sub-builders that initialize the address and employment information

separately.

•	 operator Person is a trick that we’ve used before.

One very important point to note is the constructors: instead of just initializing

the person reference with a new Person() everywhere, we only do so in the public,

parameterless constructor. There is another constructor that takes a reference and saves

it. This constructor is designed to be used by inheritors and not by the client. That’s why

it is protected. The reason things are set up this way is so that a Person is instantiated

only once per use of the builder, even if the sub-builders are used.

Now, let’s take a look at the implementation of a sub-builder class:

public class PersonAddressBuilder : PersonBuilder

{

 public PersonAddressBuilder(Person person) : base(person)

 {

 this.person = person;

 }

 public PersonAddressBuilder At(string streetAddress)

 {

 person.StreetAddress = streetAddress;

 return this;

 }

 public PersonAddressBuilder WithPostcode(string postcode)

 {

 person.Postcode = postcode;

Chapter 3 Builder

48

 return this;

 }

 public PersonAddressBuilder In(string city)

 {

 person.City = city;

 return this;

 }

};

As you can see, PersonAddressBuilder provides a fluent interface for building up

a person’s address. Note that it actually inherits from PersonBuilder (meaning it has

acquired the Lives and Works properties). It has a constructor that takes and stores a

reference to the object that’s being constructed, so when you use these sub-builders,

you are always working with just a single instance of Person – you are not accidentally

spawning multiple instances. It is critical that the base constructor is called – if it is

not, the sub-builder will call the parameterless constructor automatically, causing the

unnecessary instantiation of additional Person instances.

As you can guess, PersonJobBuilder is implemented in identical fashion, so I’ll omit

it here.

And now, the moment you’ve been waiting for – an example of these builders

in action:

var pb = new PersonBuilder();

Person person = pb

 .Lives

 .At("123 London Road")

 .In("London")

 .WithPostcode("SW12BC")

 .Works

 .At("Fabrikam")

 .AsA("Engineer")

 .Earning(123000);

WriteLine(person);

// StreetAddress: 123 London Road, Postcode: SW12BC, City: London,

// CompanyName: Fabrikam, Position: Engineer, AnnualIncome: 123000

Chapter 3 Builder

49

Can you see what’s happening here? We make a builder and then use the Lives

property to get us a PersonAddressBuilder, but once we’re done initializing the address

information, we simply call Works and switch to using a PersonJobBuilder instead. And

just in case you need a visual illustration of what we just did, it’s rather uncomplicated.

When we’re done with the building process, we use the same implicit conversion

trick as before to get the object being built up as a Person. Alternatively, you can invoke

Build() to get the same result.

There’s one fairly obvious downside to this approach: it’s not extensible. Generally

speaking, it’s a bad idea for a base class to be aware of its own subclasses, yet this

is precisely what’s happening here – PersonBuilder is aware of its own children

by exposing them through special APIs. If you wanted to have an additional sub-

builder (say, a PersonEarningsBuilder), you would have to break the OCP and edit

PersonBuilder directly; you cannot simply subclass it to add an interface member.

�Builder Marker Interfaces
As we mentioned previously, marker interfaces are used to communicate some extra

information about types without necessarily adding anything to the type’s API. So

consider the marker interface for a builder:

interface IBuilder<T>

{

 T Build();

}

Figure 3-1.  Class diagram for a composite builder

Chapter 3 Builder

50

This interface is almost useless because you expect builders to implement Build()

already. It’s a convenient way of indicating that the type is used to build something. The

choice of the interface also enforces the SRP in a strange way: since you cannot overload

methods by return type, attempting to implement two builder interfaces on one type

forces you to implement them explicitly, that is:

class SomeBuilder : IBuilder<Foo>, IBuilder<Bar>

{

 Bar IBuilder<Bar>.Build() { ... }

 Foo IBuilder<Foo>.Build() { ... }

}

This is something we generally want to avoid.

In a similar vein, if we want to indicate that a type is buildable, we could introduce an

interface such as

interface IBuildableUsing<T>

{

 T New { get; }

}

If we want to be pedantic, we can go for an even stronger version that enforces T

being an IBuilder:

interface IBuildableUsing<out TBuilder, TSubject>

 where TBuilder : IBuilder<TSubject>

{

 TBuilder New { get; }

}

If we decide to similarly define IBuildableUsing, we now have to put no fewer than

two constraints on types: one on the builder and another on the subject being built:

interface IBuildableUsing<out TBuilder, TSubject>

 where TBuilder : IBuilder<TSubject>

 where TSubject : IBuildableUsing<IBuilder<TSubject>, TSubject>

{

 TBuilder New { get; }

}

Chapter 3 Builder

51

Again, this is not something we can overload, so we cannot easily specify that a type

has two different alternative builders.

And sure, we can go even further, producing abstract classes such as Builder<T>

that would instantiate the target object (subject to a new() constraint) and a

BuildableUsing<T> class that would default-construct a builder and return it through a

property getter.

In my opinion, the examples here (especially the ones with generic constraints) are

overengineered, especially considering that these interfaces, by themselves, add very

little benefit to the application while increasing complexity.

�Stepwise Builder (Wizard)
The Builder examples we have seen so far all allow us to define the elements of the

constructed object in any order we want. There are situations, however, when the builder

is order-sensitive. In other words, the order in which things are configured actually

matters. Thus, what we need is some kind of stepwise builder that enforces configuration

order. We often see such builders in UI construction – they are often called wizards, for

some reason.

Why do we need to enforce order? One situation where this may be relevant is where

only certain configurations are valid. Here is a very trivial scenario:

•	 A builder can construct a car that is a sedan or a crossover.

•	 A sedan can have wheels in the 15”–17” range, whereas a crossover

can have wheels from 17” to 20”.

Notice that the second build step is only actionable if the first build step has been

completed. Adding wheels to a car where the car type is unknown (because nobody

called the prior build step) is a scenario we simply cannot process, because we cannot

apply validation post hoc: it has to happen in the right build step. Thus, builder method

invocation order is critical.

This scenario has three steps (choose type, choose wheel size, build car) and so

implies three different builder methods, and all of them need to return distinct types

in order to allow the order to be followed. And we are certainly not going to have three

different builders in order to achieve this!

Chapter 3 Builder

52

So what’s the solution to this problem? Why, we’ve met it before – it’s the Interface

Segregation Principle (ISP)! Each builder step needs to constrain the interface of the

object returned from its step.

A simple model of a car is as follows:

public enum CarType { Sedan, Crossover };

public class Car

{

 public CarType Type;

 public int WheelSize;

}

The interfaces that allow us to guide the user step-by-step through the car

configuration are the following:

public interface ISpecifyCarType

{

 public ISpecifyWheelSize OfType(CarType type);

} // ↓
 // ↓
public interface ISpecifyWheelSize

{

 public IBuildCar WithWheels(int size);

} // ↓
 // ↓
public interface IBuildCar

{

 public Car Build();

}

I’ve added arrows to show how the control flow keeps switching types.

Now, we need a starting point for the builder, which we’ll call CarBuilder. Here

we’ll adopt an approach of completely hiding the builder implementation behind a

private class:

public class CarBuilder

{

 public static ISpecifyCarType Create()

Chapter 3 Builder

53

 {

 return new Impl();

 }

 interface ISpecifyCarType { ... }

 // other interfaces here

 private class Impl :

 ISpecifyCarType,

 ISpecifyWheelSize,

 IBuildCar

 {

 private Car car = new Car();

 // soon

 }

}

Take a moment to read through this code listing. It starts simply with a static

Create() method, but what it returns is an instance of a private class whose name

doesn’t really matter – all it matters is this private class implements all the required

interfaces.

Furthermore, you’ll notice that we use composition instead of aggregation for the

interfaces: since the interfaces make sense only for the builder, it makes sense to have

them within the builder class. Nested types are not convenient when you need to use

their type names, but here we plan on never seeing them being explicit, so we may as

well hide them somewhat from the client – they are still public, of course.

Now, it is in this Impl class that all of the builder methods are implemented:

private class Impl :

 ISpecifyCarType,

 ISpecifyWheelSize,

 IBuildCar

{

 private readonly Car car = new();

Chapter 3 Builder

54

 public ISpecifyWheelSize OfType(CarType type)

 {

 car.Type = type;

 return this;

 }

 public IBuildCar WithWheels(int size)

 {

 switch (car.Type)

 {

 case CarType.Crossover when size < 17 || size > 20:

 case CarType.Sedan when size < 15 || size > 17:

 �throw new ArgumentException($"Wrong size of wheels for {car.

Type}.");

 }

 car.WheelSize = size;

 return this;

 }

 public Car Build()

 {

 return car;

 }

}

So now the game is up, and you hopefully have realized just how a stepwise builder is

created. What we do is provide a constrained fluent interface: yes, we do return this, but

typed to several interfaces, one after another.

The end result is you can write something like

var car = CarBuilder.Create() // ISpecifyCarType

 .OfType(CarType.Crossover) // ISpecifyWheelSize

 .WithWheels(18) // IBuildCar

 .Build();

Chapter 3 Builder

55

I have added comments to the preceding listing to show the return types of the

different methods. Note that this builder allows only a single build order: the client must

specify the car type and then the wheel size, and then and only then are they allowed to

build the car. They have no way of accessing the Impl builder so as to interfere with this

order. See Figure 3-2 for a visual illustration of our step-by-step builder.

Figure 3-2.  Stepwise builder class diagram

As always, if we wanted Car to have private fields only set from the builder, we could

introduce CarBuilder as a private nested class – had we done this, the use of the Impl

class would have become unnecessary because the only reason we’ve introduced an

inner class in the first place is to have an implementation that’s private. What I mean

is that…

public class Car

{

 // private constructor

 private Car(){}

 private CarType Type;

 // other private fields here, then...

Chapter 3 Builder

56

 public static ISpecifyCarType Create()

 {

 return new CarBuilder();

 }

 private class CarBuilder :

 ISpecifyCarType,

 ISpecifyWheelSize,

 IBuildCar

 {

 // as before

 }

}

…is an equally viable alternative provided you are prepared to tightly couple the car

and its builder. The advantage here is you can hide Car members and even disallow its

direct creation with a constructor.

�Builder Parameter
As I have demonstrated, the only way to coerce the client to use a builder rather than

constructing the object directly is to make the object’s constructors inaccessible. There

are situations, however, when you want to explicitly force the user to interact with the

builder from the outset, possibly concealing even the object they’re actually building.

For example, suppose you have an API for sending emails, where each email is

described internally like this:

public class Email

{

 public string From, To, Subject, Body;

 // other members here

}

Chapter 3 Builder

57

Note that I said internally here – you have no desire to let the user interact with this

class directly, perhaps because there is some additional service information stored in

it. Keeping it public is fine though, provided you expose no API that allows the client to

send an Email directly. Some parts of the email (e.g., the Subject) are optional, so the

object doesn’t have to be fully specified.

You decide to implement a fluent builder that people will use for constructing an

Email behind the scenes. It may appear as follows:

public class EmailBuilder

{

 private readonly Email email;

 public EmailBuilder(Email email) => this.email = email;

 public EmailBuilder From(string from)

 {

 email.From = from;

 return this;

 }

 // other fluent members here

}

Now, to coerce the client to use only the builder for sending emails, you can

implement a MailService as follows:

public class MailService

{

 public class EmailBuilder { ... }

 private void SendEmailInternal(Email email) {}

 public void SendEmail(Action<EmailBuilder> builder)

 {

 var email = new Email();

 builder(new EmailBuilder(email));

 SendEmailInternal(email);

 }

}

Chapter 3 Builder

58

As you can see, the SendEmail() method that clients are meant to use takes a

function, not just a set of parameters or a prepackaged object. This function takes an

EmailBuilder and then is expected to use the builder to construct the body of the

message. Once that is done, we use the internal mechanics of MailService to process a

fully initialized Email.

You’ll notice there’s a clever bit of subterfuge here: instead of storing a reference

to an email internally, the builder gets that reference in the constructor argument. The

reason we implement it this way is so that EmailBuilder wouldn’t have to expose an

Email publicly anywhere in its API.

Here’s what the use of this API looks like from the client’s perspective:

var ms = new MailService();

ms.SendEmail(email => email.From("foo@bar.com")

 .To("bar@baz.com")

 .Body("Hello, how are you?"));

Long story short, the Builder Parameter approach forces the consumer of your API to

use a builder, whether they like it or not. This Action trick that we employ ensures that

the client has a way of receiving an already-initialized builder object.

�Builder Extension with Recursive Generics
One interesting problem that doesn’t just affect the fluent builder but any class with a

fluent interface is the problem of inheritance. Is it possible (and realistic) for a fluent

builder to inherit from another fluent builder? It is, but it’s not easy.

Here is the problem. Suppose you start out with the following (very trivial) object

that you want to build up:

public class Person

{

 public string Name;

 public string Position;

}

You make a base class Builder that facilitates the construction of Person objects:

Chapter 3 Builder

59

public abstract class PersonBuilder

{

 protected Person person = new Person();

 public Person Build()

 {

 return person;

 }

}

This is followed by a dedicated class for specifying the Person’s name:

public class PersonInfoBuilder : PersonBuilder

{

 public PersonInfoBuilder Called(string name)

 {

 person.Name = name;

 return this;

 }

}

This works, and there is absolutely no issue with it. But now, suppose we decide to

subclass PersonInfoBuilder so as to also specify employment information. You might

write something like this:

public class PersonJobBuilder : PersonInfoBuilder

{

 public PersonJobBuilder WorksAsA(string position)

 {

 person.Position = position;

 return this;

 }

}

Sadly, we’ve now broken the fluent interface and rendered the entire setup unusable:

var me = Person.New

 .Called("Dmitri") // returns PersonInfoBuilder

 .WorksAsA("Quant") // will not compile

 .Build();

Chapter 3 Builder

60

Why won’t the preceding code compile? It’s simple: Called() returns this,

which is an object of type PersonInfoBuilder; that object simply doesn’t have the

WorksAsA() method!

You might think the situation is hopeless, but it’s not: you can design your fluent

APIs with inheritance in mind, but it’s going to be a bit tricky. Let’s take a look at what’s

involved by redesigning the PersonInfoBuilder class. Here is its new incarnation:

public class PersonInfoBuilder<SELF> : PersonBuilder

 where SELF : PersonInfoBuilder<SELF>

{

 public SELF Called(string name)

 {

 person.Name = name;

 return (SELF) this;

 }

}

If you’re not familiar with recursive generics, this code may seem rather

overwhelming, so let’s discuss what we actually did and why.

Firstly, we essentially introduced a new generic argument, SELF. What’s more

curious is that this SELF is specified to be an inheritor of PersonInfoBuilder<SELF>; in

other words, the generic argument of the class is required to inherit from this exact class.

This may seem like madness, but is actually a very popular trick for doing CRTP-style

inheritance in C#.1 Essentially, we are enforcing an inheritance chain: we are saying that

Foo<Bar> is only an acceptable specialization if Foo derives from Bar, and all other cases

should fail the where constraint.

The biggest problem in fluent interface inheritance is being able to return a this

reference that is typed to the class you’re currently in, even if you are calling a fluent

interface member of a base class.2 The only way to efficiently propagate this is by having

a generic parameter (the SELF) that permeates the entire inheritance hierarchy.

To appreciate this, we need to look at PersonJobBuilder too:

1 The CRTP – Curiously Recurring Template Pattern – is a popular C++ pattern that looks like
this: class Foo<T> : T. In other words, you inherit from a generic parameter, something that’s
impossible in C#.
2 In our example, the top-level class of the hierarchy is not generic. Had we made it generic such
that it, too, received the SELF argument, we could use its constructor to cache a value of (SELF)
this in a protected member. This would make the casts in the builder methods redundant.

Chapter 3 Builder

61

public class PersonJobBuilder<SELF>

 : PersonInfoBuilder<PersonJobBuilder<SELF>>

 where SELF : PersonJobBuilder<SELF>

{

 public SELF WorksAsA(string position)

 {

 person.Position = position;

 return (SELF) this;

 }

}

Look at its base class! It’s not just an ordinary PersonInfoBuilder as before. Instead,

it’s a PersonInfoBuilder<PersonJobBuilder<SELF>>! So when we inherit from a

PersonInfoBuilder, we set its SELF to PersonJobBuilder<SELF> so that all of its fluent

interfaces return the correct type, not just the type of the owning class.

Does this make sense? If not, take your time and look through the source code once

again. Here, let’s test your understanding: Suppose I introduce another member called

DateOfBirth and a corresponding PersonDateOfBirthBuilder. What class would it

inherit from?

If you answered…

PersonInfoBuilder<PersonJobBuilder<PersonBirthDateBuilder<SELF>>>

…then you are wrong, but I cannot blame you for trying. Think about it:

PersonJobBuilder is already a PersonInfoBuilder, so that information doesn’t need to

be restated explicitly as part of the inheritance type list. Instead, you would define the

builder as follows:

public class PersonBirthDateBuilder<SELF>

 : PersonJobBuilder<PersonBirthDateBuilder<SELF>>

 where SELF : PersonBirthDateBuilder<SELF>

{

 public SELF Born(DateTime dateOfBirth)

 {

 person.DateOfBirth = dateOfBirth;

 return (SELF)this;

 }

}

Chapter 3 Builder

62

The final question we have is this: how do we actually construct such a builder,

considering that it always takes a generic argument? Well, I’m afraid you now need a

new type, not just a variable. So, for example, the implementation of Person.New (the

property that starts off the construction process) can be as follows:

public class Person

{

 public class Builder : PersonJobBuilder<Builder>

 {

 internal Builder() {}

 }

 public static Builder New => new Builder();

 // other members omitted

}

This is probably the most annoying implementation detail: the fact that you need to

have a nongeneric inheritor of a recursive generic type in order to use it.

That said, putting everything together, you can now use the builder, leveraging all

methods in the inheritance chain:

var builder = Person.New

 .Called("Natasha")

 .WorksAsA("Doctor")

 .Born(new DateTime(1981, 1, 1));

�Lazy Functional Builder
The previous example of using recursive generics requires a lot of work. A fair question

to ask is: should inheritance have been used to extend the builders? After all, we could

have used extension methods instead.

If we adopt a functional approach, the implementation becomes a lot simpler,

without the need for recursive generics. Let’s once again build up a Person class defined

as follows:

Chapter 3 Builder

63

public class Person

{

 public string Name, Position;

}

This time round, we’ll define a lazy builder that only constructs the object when its

Build() method is called. Until that time, it will simply keep a list of Actions that need to

be performed when an object is built:

public sealed class PersonBuilder

{

 private readonly List<Func<Person, Person>> actions = new ();

 public PersonBuilder Do(Action<Person> action)

 => AddAction(action);

 public Person Build()

 => actions.Aggregate(new Person(), (p, f) => f(p));

 private PersonBuilder AddAction(Action<Person> action)

 {

 actions.Add(p => { action(p); return p; });

 return this;

 }

}

The idea is simple: instead of having a mutable “object under construction” that is

modified as soon as any builder method is invoked, we simply store a list of actions that

need to be applied upon an initialized object whenever someone calls Build(). But

there are additional complications in our implementation.

The first complication is that the action taken upon the person, while taken as

an Action<T> parameter, is actually stored as a Func<T,T>. The motivation behind

this is that by providing this fluent interface, we’re allowing for the Aggregate() call

inside Build() to work correctly. Of course, we could have used a good old-fashioned

ForEach() instead.

The second complication is that, in order to allow OCP-conformant extensibility,

we really don’t want to expose actions as a public member, since this would allow far

too many operations (e.g., arbitrary removal) on the list that we don’t necessarily want

Chapter 3 Builder

64

exposed to whoever extends this builder in the future. Instead, we publicly expose only a

single operation, Do(), that allows you to specify an action to be performed on the object

under construction. That action is then added to the overall set of actions.

Under this paradigm, we can now give this builder a concrete method for specifying

a Person’s name:

public PersonBuilder Called(string name)

 => Do(p => p.Name = name);

But now, thanks to the way the builder is structured, we can use extension methods

instead of inheritance to give the builder additional functionality, such as an ability to

specify a person’s position:

public static class PersonBuilderExtensions

{

 public static PersonBuilder WorksAs

 (this PersonBuilder builder, string position)

 => builder.Do(p => p.Position = position);

}

With this approach, there are no inheritance issues and no recursive magic. Any time

we want additional behaviors, we simply add them as extension methods, preserving

adherence to the OCP.

And here is how you would use this setup:

var person = new PersonBuilder()

 .Called("Dmitri")

 .WorksAs("Programmer")

 .Build();

This functional approach can be made into a generic base class that can be reused

for building different objects. The only issue is that you’ll have to propagate the derived

type into the base class, which, once again, requires recursive generics.

You would define the base FunctionalBuilder as…

public abstract class FunctionalBuilder<TSubject, TSelf>

 where TSelf: FunctionalBuilder<TSubject, TSelf>

 where TSubject : new()

Chapter 3 Builder

65

{

 private readonly List<Func<TSubject, TSubject>> actions = new();

 public TSelf Do(Action<TSubject> action)

 => AddAction(action);

 private TSelf AddAction(Action<TSubject> action)

 {

 actions.Add(p => { action(p); return p; });

 return (TSelf) this;

 }

 public TSubject Build()

 => actions.Aggregate(new TSubject(), (p, f) => f(p));

}

…with PersonBuilder now simplifying to…

public sealed class PersonBuilder

 : FunctionalBuilder<Person, PersonBuilder>

{

 public PersonBuilder Called(string name)

 => Do(p => p.Name = name);

}

…and the PersonBuilderExtensions class remaining as it was. With this approach,

you could easily reuse FunctionalBuilder as a base class for other functional builders

in your application. Notice that, under the functional paradigm, we’re still sticking to the

idea that the derived builders are all sealed and extended through the use of extension

methods.

�Builder-Decorator
Suppose you’re into code generation and you want to extend StringBuilder in order to

offer additional utility methods such as supporting indentation or scopes or whatever

code generation functionality makes sense. It would be nice to simply inherit from

Chapter 3 Builder

66

StringBuilder, but it’s sealed for security reasons. Also, since you might want to store

the current indentation level (say, to provide Indent()/Unindent() methods), you

cannot simply go ahead and use extension methods, since those are stateless.3

So the solution is to create a brand-new class that aggregates a StringBuilder but

also stores and exposes the same members as StringBuilder did and a few more. This is

the Decorator pattern that you’ll meet later in the book.

From the outset, the class can look as follows:

public class CodeBuilder

{

 private StringBuilder builder = new StringBuilder();

 private int indentLevel = 0;

 public CodeBuilder Indent()

 {

 indentLevel++;

 return this;

 }

}

As you can see, we have both the “underlying” StringBuilder and some additional

members related to the extended functionality. What we need to do now is expose

the members of StringBuilder as members of CodeBuilder, delegating the calls.

StringBuilder has a very large API, so doing this by hand is unreasonable: instead,

what you would do is use code generation (e.g., ReSharper/Rider’s Delegated Members

generator) to automatically create the necessary API.

This operation can be applied to every single member of StringBuilder and will

generate the following signatures:

public class CodeBuilder

{

 public StringBuilder Append(string value)

3 Strictly speaking, it is possible to store state in extension methods, albeit in a very roundabout
way. Essentially, what you’d do is have your extension class keep a static member of type
ConditionalWeakTable and then modify the entries in this dictionary to map an object to its
set of properties (e.g., a Dictionary<string, object>). Plenty of fiddling is required here, both
in terms of working with weak references (we don’t want this store to extend the lifetime of the
original object, right?) and the boxing and unboxing that comes with storing a bunch of objects.

Chapter 3 Builder

67

 {

 return builder.Append(value);

 }

 public StringBuilder AppendLine()

 {

 return builder.AppendLine();

 }

 // other generated members omitted

}

This might seem great at first glance, but in actual fact, the implementation is

incorrect. Remember, StringBuilder exposes a fluent API in order to be able to write

things like

myBuilder.Append("Hello").AppendLine(" World");

In other words, it provides a fluent interface. But our decorator does not! For

example, it won’t let us write myBuilder.Append("x").Indent() because the result of

Append(), as generated by ReSharper/Rider, is a StringBuilder that doesn’t have an

Indent() member. That’s right – ReSharper does not know that we want a proper fluent

interface. What you want is the fluent calls in CodeBuilder to appear as

public class CodeBuilder

{

 public CodeBuilder Append(char value, int repeatCount)

 {

 builder.Append(value, repeatCount);

 return this; // return a CodeBuilder, not a StringBuilder!

 }

 ...

}

This is something that you’d need to fix by hand or possibly through regular

expressions. This modification, when applied to every single call that’s delegated to

StringBuilder, would allow us to chain StringBuilder’s calls together with our unique,

CodeBuilder-specific ones.

Chapter 3 Builder

68

�Scoping Builder Method
As part of implementing a CodeBuilder, we may wish to generate code that has scopes,

like this:

class Foo

{

 // inside the scope

}

Inside the scope created by curly braces, the indentation level is increased; it is

decreased when we leave the scope. How can we implement this?

One possibility is that our builder can implement a scoping method, that is, a

method that takes a function that is then executed by the builder with pre- and post-

actions applied:

public CodeBuilder Scope(Action<CodeBuilder> builder)

{

 AppendLine("{");

 indentLevel++;

 builder(this);

 indentLevel--;

 return AppendLine("}");

}

We would use the scoping builder method as

var cb = new CodeBuilder();

cb.AppendLine("class Foo")

 .Scope(b =>

 {

 b.AppendLine("int bar;");

 });

This way, a scope in your code is reflected by the scope generated by the code itself.

Whether or not you actually need the scoping method to take this in the call is up to

you – we could equally have captured the original cb object. The reason I have it here is

because, sometimes, the object passed into the Action is a completely different object

Chapter 3 Builder

69

that operates according to different rules. It may define special rules, be an inheritor of

the original object, have its own pre-/postprocessing steps, and so on. Writing code this

way is better because you can refactor your solution to start using this substitute object.

Of course, that’s not the only way we can set a value temporarily within a given

scope. One approach would be to create some Scope class inheriting from IDisposable,

whose constructor increments the indentation level, while the destructor decrements it.

Our approach is a little neater.

�DSL Construction in F#
Many programming languages (such as Groovy, Kotlin, or F#) try to throw in a language

feature that will simplify the process of creating domain-specific languages (DSLs), that

is, small languages that help describe a particular problem domain. Many applications

of such embedded DSLs are used to implement the Builder pattern. For example, if you

want to build an HMTL page, you don’t have to fiddle with classes and methods directly;

instead, you can write something that very much approaches HTML right in your code!

The way this is made possible in F# is using list comprehensions: the ability to define

lists without any explicit calls to builder methods. For example, if you wanted to support

HTML paragraphs and images, you could define the following builder functions:

let p args =

 let allArgs = args |> String.concat "\n"

 ["<p>"; allArgs; "</p>"] |> String.concat "\n"

let img url = ""

Notice that whereas the img tag only has a single textual parameter, the <p> tag

accepts a sequence of args, allowing it to contain any number of inner HTML elements,

including ordinary plain text. We could therefore construct a paragraph containing both

text and an image:

let html =

 p [

 "Check out this picture";

 img "pokemon.com/pikachu.png"

]

printfn "%s" html

Chapter 3 Builder

70

This results in the following output:

<p>

Check out this picture

</p>

This approach is used in web frameworks such as WebSharper. There are many

variations of this approach, including the use of record types (letting people use curly

braces instead of lists), custom operators for specifying plain text, and more.4

It’s important to note that this approach is only convenient when we are working

with an immutable, append-only structure. Once you start dealing with mutable objects

(e.g., using a DSL to construct a definition for a Microsoft project document), you end up

falling back into OOP. Sure, the end-result DSL syntax is still very convenient to use, but

the plumbing required to make it work is anything but pretty.

�Summary
The goal of the Builder pattern is to define a component dedicated entirely to piecewise

construction of a complicated object or set of objects. We have observed the following

key characteristics of a builder:

•	 Builders can have a fluent interface that is usable for complicated

construction using a single invocation chain. To support this, builder

functions should return this.

•	 To force the user of the API to use a builder, we can make the target

class constructors inaccessible and then define a static Create()

method that returns an instance of the builder. (The naming is up to

you. You can call it Make(), New(), or something else.)

•	 A builder can be coerced to the object itself by defining the

appropriate implicit conversion operator.

4 For an example, see Tomas Petricek’s snippet for an F#-based HTML-constructing DSL at
http://fssnip.net/hf

Chapter 3 Builder

http://fssnip.net/hf

71

•	 You can force the client to use a builder by specifying it as part of a

parameter function. This way you can hide the object that’s being

built entirely.

•	 A single builder interface can expose multiple sub-builders. Through

clever use of inheritance and fluent interfaces, one can jump from

one builder to another with ease.

•	 Inheritance of fluent interfaces (not just for builders) is possible

through recursive generics.

Just to reiterate something that I’ve already mentioned, the use of the Builder

pattern makes sense when the construction of the object is a nontrivial process. Simple

objects that are unambiguously constructed from a limited number of sensibly named

constructor parameters should probably use a constructor (or dependency injection)

without necessitating a builder as such.

Chapter 3 Builder

73

CHAPTER 4

Factories
I had a problem and tried to use Java. Now I have a ProblemFactory.

—Old Java joke

This chapter covers two GoF patterns: Factory Method and Abstract Factory. These

patterns are closely related, so we’ll discuss them together. The truth, though, is that

the real design pattern is called Factory and that both Factory Method and Abstract

Factory are simply variations that are important, but certainly not as important as the

main thing.

�Scenario
Let’s begin with a motivating example. Suppose you want to store information about a

Point in Cartesian (X-Y) space. So you go ahead and implement something like this:

public class Point

{

 private double x, y;

 public Point(double x, double y)

 {

 this.x = x;

 this.y = y;

 }

}

So far, so good. But now, you also want to initialize the point from polar coordinates

instead. You need another constructor with the following signature:

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_4

https://doi.org/10.1007/978-1-4842-8245-8_4

74

Point(float r, float theta)

{

 x = r * Math.Cos(theta);

 y = r * Math.Sin(theta);

}

Unfortunately, you’ve already got a constructor with two floats, so you cannot have

another one.1 What do you do? One approach is to introduce an enumeration:

public enum CoordinateSystem

{

 Cartesian,

 Polar

}

And then add another parameter to the point constructor:

public Point(double a,

 double b, // names do not communicate intent

 CoordinateSystem cs = CoordinateSystem.Cartesian)

{

 switch (cs)

 {

 case CoordinateSystem.Polar:

 x = a * Math.Cos(b);

 y = a * Math.Sin(b);

 break;

 default:

 x = a;

 y = b;

 break;

 }

}

1 Some programming languages, most notably Objective-C and Swift, do allow overloading
of functions that only differ by parameter names. Unfortunately, this idea results in a viral
propagation of parameter names in all calls. I still prefer positional parameters, most of the time.

Chapter 4 Factories

75

Notice how the names of the first two arguments were changed to a and b: we can

no longer afford telling the user which coordinate system those values should come

from. This is a clear loss of expressivity when compared with using x, y, rho, and theta to

communicate intent.

Overall, our constructor design is usable, but ugly. In particular, in order to add some

third coordinate system, for example, you would need to

•	 Give CoordinateSystem a new enumeration value.

•	 Change the constructor to support the new coordinate system.

There must be a better way of doing this.

�Factory Method
The trouble with the constructor is that its name always matches the type. This means

we cannot communicate any extra information in it, unlike in an ordinary method. Also,

given the name is always the same, we cannot have two overloads, one taking x,y and

another taking r,theta.

So what can we do? Well, how about making the constructor protected2 and then

exposing some static functions for creating new points?

public class Point

{

 protected Point(double x, double y)

 {

 this.x = x;

 this.y = y;

 }

 public static Point NewCartesianPoint(double x, double y)

 {

 return new Point(x, y);

 }

2 Whenever you want to prevent a client from accessing something, I always recommend you
make it protected rather than private because then you make the class inheritance-friendly.

Chapter 4 Factories

76

 public static Point NewPolarPoint(double rho, double theta)

 {

 return new Point(rho*Math.Cos(theta), rho*Math.Sin(theta));

 }

 // other members omitted

}

Each of these static functions is called a factory method. All it does is create a Point

and return it, the advantages being that both the name of the method and the names of

the arguments clearly communicate what kind of coordinates are required.

Now, to create a point, you simply write

var point = Point.NewPolarPoint(5, Math.PI / 4);

From this line of code, we can clearly surmise that we are creating a new point with

polar coordinates r = 5 and 𝜃 = 𝜋/4.

�Asynchronous Factory Method
When we talk about constructors, we always assume that the body of the constructor is

synchronous. A constructor always returns the type of the constructed object – it cannot

return a Task or Task<T>. Therefore, it cannot be asynchronous. And yet, there are

situations where you do want the object to be initialized in an asynchronous fashion.

There are (at least) two ways this can be handled. The first is by convention:

we simply agree that any asynchronously initialized type has a method called, say,

InitAsync():

public class Foo

{

 private async Task InitAsync()

 {

 await Task.Delay(1000);

 }

}

The assumption here is that the client would recognize this member and will

remember to call it, as in the following:

Chapter 4 Factories

77

var foo = new Foo();

await foo.InitAsync();

But this is very optimistic. A second and better approach is to hide the constructor

(make it protected) and then create a static factory method that both creates an

instance of Foo and initializes it. We can even give it a fluent interface so that the

resulting object is ready to use:

public class Foo

{

 protected Foo() { /* init here */ }

 public static Task<Foo> CreateAsync()

 {

 var result = new Foo();

 return result.InitAsync();

 }

}

This can now be used as

var foo = await Foo.CreateAsync();

Naturally, if you need constructor arguments, you can add them to the constructor

and forward them from the factory method.

�Factory
Just like with Builder, we can take all the Point-creating functions out of Point into a

separate class that we call a factory. It’s actually very simple:

class PointFactory

{

 public static Point NewCartesianPoint(float x, float y)

 {

 return new Point(x, y); // needs to be public

 }

 // same for NewPolarPoint

}

Chapter 4 Factories

78

It’s worth noting that the Point constructor can no longer be private or protected

because it needs to be externally accessible. Unlike C++, there is no friend keyword for

us to use; we’ll resort to a different trick later on.

But for now, that’s it – we have a dedicated class specifically designed for creating

Point instances, to be used as follows:

var myPoint = PointFactory.NewCartesian(3, 4);

�Inner Factory
An inner factory is simply a factory that is an inner (nested) class within the type it

creates. The reason inner factories exist is because a nested class can access the outer

class’ private/protected members and, conversely, an outer class can access an inner

class’ private/protected members. This means that our Point class can also be defined

as follows:

public class Point

{

 // typical members here

 // note the constructor is again private

 private Point(double x, double y) { ... }

 public static class Factory

 {

 public static Point NewCartesianPoint(double x, double y)

 {

 return new Point(x, y); // using a private constructor

 }

 // similar for NewPolarPoint()

 }

}

Okay, so what’s going on here? Well, we’ve stuck the factory right into the class the

factory creates. This is convenient if a factory only works with one single type and not

so convenient if a factory relies on several types (and pretty much impossible if it needs

their private members too).

Chapter 4 Factories

79

With this approach, we can now write

var point = Point.Factory.NewCartesianPoint(2, 3);

You might find this approach familiar because several parts of the .NET Framework

use this approach to expose factories. For example, the TPL lets you spin up new tasks

with Task.Factory.StartNew().

�Physical Separation
If you don’t like the idea of having the entire definition of the Factory being placed into

your Point.cs file, you can use the partial keyword because, guess what, it works on

inner classes too. First, in Point.cs, you would modify the Point type to now read

public partial class Point { ... }

Then, simply make a new file (e.g., Point.Factory.cs) and, inside it, define another

part of Point, that is:

public partial class Point

{

 public static class Factory

 {

 // as before

 }

}

That’s it! You’ve now physically separated the factory from the type itself, even

though logically they are still entwined since one contains the other.

�Abstract Factory
So far, we’ve been looking at the construction of a single object. Sometimes, you might

be involved in the creation of families of objects. This is actually a pretty rare case, so

unlike Factory Method and the plain old Factory pattern, Abstract Factory is a pattern

that only shows up in complicated systems. We need to talk about it, regardless,

primarily for historical reasons.

Chapter 4 Factories

80

The scenario we’re going to take a look at here is a scenario that is shown by

many sources all over the Web, so I hope you’ll forgive the repetition. We’ll consider a

hierarchy of geometrical shapes that we want to draw. We’ll consider only shapes that

have lines joining at right angles:

public interface IShape

{

 void Draw();

}

// these two are needed for IoC

public interface ISquare {}

public interface IRectangle {}

public class Square : ISquare

{

 public void Draw() => Console.WriteLine("Basic square");

}

public class Rectangle : IRectangle

{

 public void Draw() => Console.WriteLine("Basic rectangle");

}

Both Square and Rectangle, which transitively implement the IShape interface, form

a kind of family: they are simple geometric shapes drawn using straight lines connected

at right angles. We can now imagine another parallel reality where right angles are

considered aesthetically displeasing and where both squares and rectangles would have

their corners rounded:

public class RoundedSquare : ISquare

{

 public void Draw() => Console.WriteLine("Rounded square");

}

public class RoundedRectangle : IRectangle

{

 public void Draw() => Console.WriteLine("Rounded rectangle");

}

Chapter 4 Factories

81

You’ll notice that the two hierarchies are related conceptually, but there’s no code

element to indicate that they are part of the same thing. We could introduce such an

element in a number of ways, one being a simple enumeration with all the possible

shapes that the system supports:

public enum Shape

{

 Square,

 Rectangle

}

So we now have two families of objects: a family of basic shapes and a family of

rounded shapes. With that in mind, we can create a factory for basic shapes…

public class BasicShapeFactory : ShapeFactory

{

 public override IShape Create(Shape shape)

 {

 switch (shape)

 {

 case Shape.Square:

 return new Square();

 case Shape.Rectangle:

 return new Rectangle();

 default:

 throw new ArgumentOutOfRangeException(

 nameof(shape), shape, null);

 }

 }

}

…and a similar RoundedShapeFactory for rounded shapes. Since the methods of

these two factories would be identical, they can both inherit from an abstract factory

defined as follows:

public abstract class ShapeFactory

{

 public abstract IShape Create(Shape shape);

}

Chapter 4 Factories

82

What we’ve ended up with is a situation where a hierarchy of shapes got a

corresponding hierarchy of factories. We can now create a method that will yield a

particular type of factory on the basis of whether shape rounding is actually required:

public static ShapeFactory GetFactory(bool rounded)

{

 if (rounded)

 return new RoundedShapeFactory();

 else

 return new BasicShapeFactory();

}

And that’s it! We now have a configurable way of instantiating not just individual

objects, but entire families of objects:

var basic = GetFactory(false);

var basicRectangle = basic.Create(Shape.Rectangle);

basicRectangle.Draw(); // Basic rectangle

var roundedSquare = GetFactory(true).Create(Shape.Square); roundedSquare.

Draw(); // Rounded square

Naturally, the kind of manual configuration that we’ve done here could easily

be done using an Inversion of Control (IoC) container – you simply define whether

requests for a ShapeFactory should yield instances of BasicShapeFactory,

RoundedShapeFactory, or some other factory type. In fact, unlike this GetFactory()

method, the use of an IoC container will not suffer from a (trivial) OCP violation since

no code other than the container configuration would have to be rewritten if a new

ShapeFactory was to be introduced.

There’s an additional thing that has to be said about the relationship between the

Shape enum and the IShape inheritors. Strictly speaking, though our example works,

there’s no real enforcement that the enum members correspond one-to-one to the entire

set of possible hierarchies. You could introduce such validations at compile time, but to

derive the set of enum members (via T4/Roslyn, perhaps?), you would probably have

to introduce additional IShape-implementing abstract classes (e.g., BasicShape and

RoundedShape) so you have clear delineation between the two different hierarchies. It’s

up to you to decide whether or not this approach makes sense in your particular case.

Chapter 4 Factories

83

�Delegate Factories in IoC
One problem that we encounter when we work with dependency injection and IoC

containers is that, sometimes, you have an object that has a bunch of services it depends

on (that can be injected) but also has some constructor arguments that you need.

For example, given a service such as…

public class Service

{

 public string DoSomething(int value)

 {

 return $"I have {value}";

 }

}

…imagine a domain object that depends on this service, but also has a constructor

argument that needs to be provided and is subsequently used in the dependent service:

public class DomainObject

{

 private Service service;

 private int value;

 public DomainObject(Service service, int value)

 {

 this.service = service;

 this.value = value;

 }

 public override string ToString()

 {

 return service.DoSomething(value);

 }

}

How would you configure your DI container (e.g., Autofac) to construct an instance

of DomainObject that injects the service and also specifies the value of 42 for the value?

Well, there’s a brute-force approach, but it’s rather ugly:

Chapter 4 Factories

84

var cb = new ContainerBuilder();

cb.RegisterType<Service>();

cb.RegisterType<DomainObject>();

using var container = cb.Build();

var dobj = container.Resolve<DomainObject>(

 new PositionalParameter(1, 42));

Console.WriteLine(dobj); // I have 42

This works, but this code is brittle and not refactoring-friendly. What if the position

of the parameter value changes? This would invalidate the Resolve() step. And, yes,

we can try getting the parameter by name, but then again, the ability to refactor (e.g.,

rename) the constructor will suffer.

Luckily, there is a solution for this problem, and it’s called a delegate factory. A

delegate factory is, quite simply, a delegate that initializes an object, but it only requires

you to pass the parameters that are not injected automatically. For example, a delegate

factory for our domain object is as simple as

public class DomainObject

{

 public delegate DomainObject Factory(int value);

 // other members here

}

Now, when you use the DomainObject in your IoC container, instead of resolving the

object itself, you resolve the factory!

var factory = container.Resolve<DomainObject.Factory>();

var dobj2 = factory(42);

Console.WriteLine(dobj2); // I have 42

The registration steps remain exactly the same. What happens behind the scenes is

this: The IoC container initializes the delegate to construct an instance of an object that

makes use of both the dependent services and the values provided in the delegate. Then,

when you resolve it, the delegate is fully initialized and is ready to use!

Chapter 4 Factories

85

�Object Tracking and Bulk Replacements
Up to now, we’ve primarily looked at factories that could all be made static without loss

of generality. After all, most factories do not have any state, and it’s not obvious how a

factory having state would benefit the client.

Perhaps the most obvious example is configurable factories, where some presets

are defined before any factory methods are invoked. This takes us close to the Prototype

Factory design pattern (see Chapter 5).

Another useful feature is when a factory can keep track of the objects it has

constructed and can make adjustments to objects after they’ve been put to use. Even if

the factory does not offer any construction-specific functionality, this ability has benefits

because it allows us to, at the very least, keep track of the objects in the system and,

furthermore, lets us perform modifications on constructed objects if they are needed.

�Object Tracking
One advantage of objects constructed through a factory is that every instance of an

object can be tracked. Given a model such as the following…

public interface ITheme

{

 string TextColor { get; }

 string BgrColor { get; }

}

class LightTheme : ITheme

{

 public string TextColor => "black";

 public string BgrColor => "white";

}

class DarkTheme : ITheme

{

 public string TextColor => "white";

 public string BgrColor => "dark gray";

}

Chapter 4 Factories

86

…we can easily construct a factory that keeps track of the objects it has created:

public class TrackingThemeFactory

{

 private readonly List<WeakReference<ITheme>> themes = new();

 public ITheme CreateTheme(bool dark)

 {

 ITheme theme = dark ? new DarkTheme() : new LightTheme();

 themes.Add(new WeakReference<ITheme>(theme));

 return theme;

 }

 public string Info

 {

 get

 {

 // pretty-print what's in themes

 }

 }

}

This lets you get arbitrary info about the objects that the factory has created, for

example:

var factory = new TrackingThemeFactory();

var theme = factory.CreateTheme(true);

var theme2 = factory.CreateTheme(false);

Console.WriteLine(factory.Info);

// Dark theme

// Light theme

This by itself is already useful because you can get all sorts of diagnostic data without

using a profiler. You can collect information about how many objects are created and

the way they are created. You can also collect statistics about the parameter use and, of

course, perform caching if necessary.

Chapter 4 Factories

87

But all these operations are read-only: the factory does not try to affect the objects it

has given out. There are, however, situations where a factory may wish to adjust objects

post hoc (think of factory recalls in the real world).

�Bulk Modifications
You can also perform bulk modifications: for example, if you decide that LightTheme

should use dark-gray text color instead of black, you can simply iterate the set of

references, go through each one, and modify it or even overwrite its entire object state.

What you cannot do is replace each instance with an entirely different instance for

every object that has been made by the factory. It would be cool to be able to replace

LightTheme by DarkTheme application-wide, but WeakReference does not help here.

If you want to perform this kind of bulk replacement, you’ll need double

indirection – a kind of WeakReference<Ref<T>> with Ref<T> defined as3

public class Ref<T> where T : class

{

 public T Value;

 public Ref(T value) { Value = value; }

}

Now, a bulk replacement factory can keep a list of weak references of Ref<ITheme>

objects and, in its factory method, would return a Ref<ITheme> instead of an

ordinary theme:

public class ReplaceableThemeFactory

{

 private readonly List<WeakReference<Ref<ITheme>>> themes

 = new();

 private ITheme createThemeImpl(bool dark)

 {

 return dark ? new DarkTheme() : new LightTheme();

 }

3 A viable alternative could be to instead define a WeakRef<T> class that would inherit directly
from WeakReference<T>.

Chapter 4 Factories

88

 public Ref<ITheme> CreateTheme(bool dark)

 {

 var r = new Ref<ITheme>(createThemeImpl(dark));

 themes.Add(new(r));

 return r;

 }

}

Given this implementation, we can now replace every returned instance of ITheme

with a different one:

public void ReplaceTheme(bool dark)

{

 foreach (var wr in themes)

 {

 if (wr.TryGetTarget(out var reference))

 {

 reference.Value = createThemeImpl(dark);

 }

 }

}

In real-world terms, you can think of this functionality as a factory recall: if a car

factory finds that cars sold up to now have a defective part, it collects your car and

replaces the part, for free. The same principle is applied here:

var factory2 = new ReplaceableThemeFactory();

var magicTheme = factory2.CreateTheme(true);

Console.WriteLine(magicTheme.Value.BgrColor); // dark gray

factory2.ReplaceTheme(false);

Console.WriteLine(magicTheme.Value.BgrColor); // white

Lucky for us, there are no safety issues here. If there is an ongoing operation on the

old variable, that operation can continue as before while we update the new value. The

Garbage Collector (GC) will take care of lifetimes, correctly retiring old values when

there isn’t anyone referencing them.

Chapter 4 Factories

89

There is one problem with this example: there’s really nothing preventing people

from unwrapping a Ref<T>, getting its Value, and storing it independently, in which

case bulk replacement will of course not work. How can we solve this? We can build a

transparent proxy4 (see Chapter 13 for a general description of the Proxy pattern). We

already have one of the building blocks of an indirection proxy in our Ref<T> class, so

now all we have to do is make a new class that also implements the ITheme interface:

public class ThemeRef : Ref<ITheme>, ITheme

{

 public ThemeRef(ITheme value) : base(value) {}

 public string TextColor => Value.TextColor;

 public string BgrColor => Value.BgrColor;

}

With this modification, things become a lot simpler. Our factory now keeps a List

<WeakReference<ThemeRef>>, and the factory method simplifies to

public ITheme CreateTheme(bool dark)

{

 var r = new ThemeRef(createThemeImpl(dark));

 themes.Add(new(r));

 return r;

}

Notice the return value – it’s a genuine ITheme that the client can use straight away

without unpacking. They do not have direct access to the underlying reference:

Console.WriteLine(magicTheme.BgrColor); // dark gray

factory2.ReplaceTheme(false);

Console.WriteLine(magicTheme.BgrColor); // white

Now, if you keep Ref<T> publicly accessible, the client could cast to it and get at the

Value. If you really want to prevent this, my suggestion would be to move Ref<T> into

either your factory or a designated factory base class, make it private, and make Value

private, and then you’d have more protection against clients messing with your designs.

Mind you, the persistent ones can still get to the value using reflection.

4 This has nothing to do with TransparentProxy in System.Runtime.Remoting.

Chapter 4 Factories

90

Another argument can be that Ref<T> is simply unnecessary. It’s not polymorphic, so

if you wanted your factory to manage disjoint classes of objects, you would still introduce

a marker interface by having Ref<T> implement some IRef interface.

�Functional Factory
Under the purely functional paradigm, the Factory pattern is of limited use, since F#

prefers to work with concrete types whenever possible, using functions and functional

composition to express variability in implementation.

If you wanted to go with interfaces (which F# allows), then, given the following

definition…

type ICountryInfo =

 abstract member Capital : string

type Country =

 | USA

 | UK

…you could define a factory function that, for a given country, yields a properly

initialized ICountryInfo object:

let make country =

 match country with

 | USA -> { new ICountryInfo with

 member x.Capital = "Washington" }

 | UK -> { new ICountryInfo with

 member x.Capital = "London" }

Suppose you want to be able to create a country by specifying its name as a string. In

this case, in addition to having a freestanding function that gives you the right Country

type, you can have a static factory method very similar to the ones we have in the

OOP world:

type Country =

 | USA

 | UK

with

Chapter 4 Factories

91

 static member Create = function

 | "USA" | "America" -> USA

 | "UK" | "England" -> UK

 | _ -> failwith "No such country"

let usa = Country.Create "America"

Naturally, the Abstract Factory approach is similarly implementable using functional

composition instead of inheritance.

�Summary
Let’s recap the terminology:

•	 A factory method is a class member that creates instances of some

object. It typically replaces a constructor and is static. Asynchronous

factory methods are awaitable (Task-returning) factory methods.

•	 A factory is typically a separate class that knows how to construct

objects, though if you pass a function (as in Func<T> or similar) that

constructs objects, this argument is also called a factory.

•	 A nested factory (aka inner factory) lives inside the object it creates.

This allows us to hide all of the object’s constructors and ensure that

the object can only be created with a factory.

•	 An abstract factory is, as its name suggests, an abstract class that can

be inherited by concrete classes that offer a family of types. Abstract

factories are rare in the wild.

•	 A delegate factory is a delegate that is initialized by an IoC container

to create an object using the provided parameters, excluding those

parameters directly initialized through constructor injection.

Factory is different from Builder in that, with Factory, you typically create an object

in one go (i.e., a single statement), whereas with Builder, you construct the object

piecewise – either through several statements or, possibly, in a single statement if the

builder supports a fluent interface.

Chapter 4 Factories

92

A factory has several critical advantages over a constructor call, namely:

•	 A factory can say no, meaning that instead of actually returning

an object, it can return, for example, a null or None of some

Option<T> type.

•	 Naming is better and unconstrained, unlike constructor name.

•	 A single factory can make objects of many different types.

•	 A factory can exhibit polymorphic behavior, instantiating a class and

returning it through a reference to its base class or interface.

•	 A factory can implement caching and other storage optimizations;

it is also a natural choice for approaches such as pooling or the

Singleton pattern.

•	 A factory can change its behavior at runtime; new is expected to

always yield a new instance.

Chapter 4 Factories

93

CHAPTER 5

Prototype
Think about something you use every day, like a car or a mobile phone. Chances are it

wasn’t designed from scratch; instead, the manufacturer chose an existing design, made

some improvements, made it visually distinctive from the old design (so people could

show off), and started selling it, eventually retiring the old product. It’s a natural state

of affairs, and in the software world, we get a similar situation: sometimes, instead of

creating an entire object from scratch (the Factory and Builder patterns can help here),

you want to take a preconstructed object and either use a copy of it (which is easy) or,

alternatively, customize it a little.

And this leads us to the idea of having a prototype: a model object that we can make

copies of. We can customize these copies and then use them. The challenge of the

Prototype pattern is really the copying part; everything else is easy.

�Deep vs. Shallow Copying
Suppose we define a class Person as…

public class Person

{

 public readonly string Name;

 public readonly Address Address;

 public Person(string name, Address address) { ... }

}

…with the Address defined as

public class Address

{

 public readonly string StreetName;

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_5

https://doi.org/10.1007/978-1-4842-8245-8_5

94

 public int HouseNumber;

 public Address(string streetName, int houseNumber) { ... }

}

Assume John Smith and Jane Smith are neighbors. It should be possible to construct

John, then just copy him, and change the name and house number, right? Well, using the

assignment operator (=) certainly won’t help:

var john = new Person(

 "John Smith",

 new Address("London Road", 123));

var jane = john;

jane.Name = "Jane Smith"; // John's name changed!

jane.Address.HouseNumber = 321; // John's address changed!

This does not work because now john and jane refer to the same object, so all

changes to jane affect john too. This is what is known as a shallow copy – it is called

shallow because all it does is copy the memory in john to jane, without going any deeper

and copying the nested structures recursively. This is a fast operation (a raw memory

copy), but it means the two objects are now sharing references, which is not what

we want.

What we want instead, of course, is for jane to become a new, independent object,

whose modifications do not affect john in any way. This requires us to make a deep

copy – a recursive copy where each member of john is replicated in memory. Doing this

by hand means we have to follow different rules for different data types – we’ll discuss

them soon enough.

�ICloneable Is Bad
The .NET Framework comes with an interface called ICloneable. This interface has a

single method, Clone(), but this method is ill-specified: the documentation does not say

whether this should be a shallow copy or a deep copy, which is a problem because the

clients could have different expectations on how it actually works. Also, the name of the

method, Clone, does not really help here since we don’t know exactly what cloning does.

The typical implementation of ICloneable for a type (say, Person) is something like this:

Chapter 5 Prototype

95

public class Person : ICloneable

{

 // members as before

 public Person Clone()

 {

 return (Person)MemberwiseClone();

 }

}

The method Object.MemberwiseClone() is a protected method of Object, so it’s

automatically inherited by every single reference type. It creates a shallow copy of the

object. Essentially, it makes a new object and then copies every non-static field as is. If

the field is a value type, the copy happens by value, but if the field is a reference type, the

reference will be copied, rather than the entire object being referenced.

In other words, if you were to implement it on Address and Person in our example,

you’d hit the following problem:

var john = new Person(

 "John Smith",

 new Address("London Road", 123));

var jane = john.Clone();

jane.Name = "Jane Smith"; // John's name DID NOT change (good!)

jane.Address.HouseNumber = 321; // John's address changed :(

This helped, but not a lot. Even though the name was now assigned correctly, john

and jane now share an Address reference – it was simply copied over, so they both

point to the same Address. So shallow copy is not for us: we want deep copying, that is,

recursive copying of all object’s members and the construction of shiny new counterpart

objects, each initialized with identical data.

It’s worth noting that, in spite of the fact that ICloneable is not recommended,

plenty of classes in the BCL do in fact implement it. Furthermore, it is OK to call Clone()

on those types provided a shallow copy is what you want.

Chapter 5 Prototype

96

�Deep Copying via Copy Construction
One of the simplest code constructs you can use for deep copying is copy construction. A

copy constructor is an artifact straight from the C++ world – a constructor that takes another

instance of the type we’re in and copies that type into the current object, for example…

public Address(Address other)

{

 StreetAddress = other.StreetAddress;

 City = other.City;

 Country = other.Country;

}

…and similarly:

public Person(Person other)

{

 Name = other.Name;

 Address = new Address(other.Address); // uses a copy constructor here

}

This allows us to perform a deep copy of john to jane:

var john = new Person(

 "John Smith",

 new Address("London Road", 123));

var jane = new Person(john); // copy constructor!

jane.Name = "Jane Smith";

jane.Address.HouseNumber = 321; // john is still at 123

Now, the copy constructor is pretty good in that it provides a unified copying

interface, but it is of little help if the client is unable to discover it. At least, when the

developer sees some IDeepCopyable interface with a DeepCopy() method, they know

what they are getting; discoverability of a copy constructor, on the other hand, is suspect.

Another problem with this approach is that it’s very intrusive: it requires that every

single class in the composition chain implement a copy constructor and will likely

malfunction if any class doesn’t do it correctly. As such, it’s a very challenging approach

to use on preexisting data structures, as you’d be violating the OCP on a massive scale if

you wanted to support this post hoc.

Chapter 5 Prototype

97

Finally, it’s worth noting that, in the BCL, copy constructors typically provide shallow

copy operations. This is a problem because, by doing deep copying in our constructors,

we may be violating the Principle of Least Surprise.

�Note on Record Classes
In creating record classes, the C# team had an excellent opportunity to provide some

out-of-the-box deep copying support…and they blew it! Long story sort, record classes

only provide shallow copying out of the box.1

The way they do it is not very intuitive, either. Behind the scenes, a record type

generates lots of members, one of them being <Clone>$() – yeah, with the weird

symbols. It’s not meant to be called directly, but it is meant to be called in with

statements such as

var john = new Person("John", "123 London Road");

var jane = john with { Name = "Jane" };

The Clone method uses, drumroll please…a synthesized protected copy constructor!

And, regrettably, the copy constructor does shallow copying, just like all those BCL

collection types.

None of this really helps us with our copying troubles.

�Deep Copying with a Special Interface
If you want to have an interface specifically to indicate that your objects support the

notion of deep copying, I recommend you be explicit about it,2 that is:

public interface IDeepCopyable<out T>

{

 T DeepCopy();

}

1 Record structs, being value types, provide deep copying out of the box, provided they are
themselves composed exclusively of value types.
2 Sometimes you’ll see people call this interface as ICloneable<T>. I do not like this approach
because if you’re making your own interface, you want to be as specific as you can. Cloning is a
very vague concept, whereas deep copying is clearly defined.

Chapter 5 Prototype

98

where T is the type of object to clone. Here is an example implementation:

public class Person : IDeepCopyable<Person>

{

 public string[] Names;

 public Address Address;

 public Person DeepCopy()

 {

 var copy = new Person();

 copy.Names = Names.Clone(); // string[] is not IDeepCopyable

 copy.Address = Address.DeepCopy(); // Address is IDeepCopyable

 return copy;

 }

 // other members here

}

This has two benefits compared with ICloneable:

•	 It is explicit in its intent: it talks specifically about deep copying.

•	 It is strongly typed, whereas ICloneable returns an object that you

are expected to cast.

You’ll notice that, in the implementation of DeepCopy(), we adopt different strategies

depending on whether or not the members are themselves IDeepCopyable. If they are,

things are fairly straightforward. If they are not, we need to use an appropriate deep copy

mechanic for the given type. For example, for an array of trivially copyable types such as

string, you can simply call Clone().

�Deep Copying and Inheritance
Suppose we decide to inherit from Person and make an Employee class with a single

salary field:

public class Employee : Person

{

 public int Salary;

 public Employee(string[] names, Address address, int salary)

Chapter 5 Prototype

99

 : base(names, address)

 {

 Salary = salary;

 }

}

We now have an odd situation: Employee, by virtue of inheriting from Person,

implements IDeepCopyable<Person>. Without intervention, this can lead to odd

behavior:

var john = new Employee(

 new []{"John", "Smith"},

 new Address("London Road", 123),

 100000);

 Person copy = john.DeepCopy();

 Console.WriteLine(copy is Employee); // False

To get the desired behavior, we need to do the following:

•	 Mark the DeepCopy() method as virtual in the base class.

•	 Implement IDeepCopyable<Employee>.

•	 Perform deep copying in the overridden DeepCopy() method:

public override Employee DeepCopy()

{

 return new Employee(

 (string[]) Names.Clone(),

 Address.DeepCopy(),

 Salary);

}

This entire approach hinges on one very important assumption: all classes in the

hierarchy have fully initializing constructors (or public members), and the implementor

isn’t bothered by having to pass these arguments around. In a large enough hierarchy,

this could become a real problem, so much so that it would make more sense for each

element in the hierarchy to do its part.

Chapter 5 Prototype

100

In order to construct an implementation of this approach that would actually scale,

we shall redefine the IDeepCopyable interface to the following:

public interface IDeepCopyable<T> where T : new()

{

 void CopyTo(T target);

 public T DeepCopy()

 {

 T t = new T();

 CopyTo(t);

 return t;

 }

}

There are now two methods in the interface:

•	 The CopyTo() method that copies the concepts of the class into the

variable provided.

•	 The default-implemented DeepCopy() method that creates an empty

object (subject to the new() constraint) and calls CopyTo() to copy

data into it.

With this implementation, T can no longer be an out parameter, which means we

lose return-type covariance in DeepCopy() but what we gain is not having to type it out

for every single type.

Now, here is how you would implement this class for Person (I omit implementation

for Address)…

public class Person : IDeepCopyable<Person>

{

 public string[] Names;

 public Address Address;

 // other members as before

 public void CopyTo(Person target)

 {

Chapter 5 Prototype

101

 target.Names = (string[]) Names.Clone();

 target.Address = Address.DeepCopy(); // <-- extension method call

 }

}

…and similarly for Employee:

public class Employee : Person, IDeepCopyable<Employee>

{

 public int Salary;

 public void CopyTo(Employee target)

 {

 base.CopyTo(target); // <-- extension method call on base class

 target.Salary = Salary;

 }

}

In both previous listings, we call DeepCopy(), but it most certainly is not an interface

member – remember, with default interface implementations, you need to cast the

variable to the interface type. So where is this cast happening? The answer is we’ve had

to define an additional extension method for this to work:

public static T DeepCopy<T>(this IDeepCopyable<T> item)

 where T : new()

{

 return item.DeepCopy();

}

But that’s not all! This extension method may work within the CopyTo() bodies, but

you’re still not able to write code like this:

var john = new Employee();

var copy = john.DeepCopy(); // will not compile

Chapter 5 Prototype

102

Don’t be sad, because this problem highlights something very powerful: our john

variable can be deep copied not just into Employee, but it can also be partially copied

into Person (and any other class up the hierarchy):

var john = new Employee();

Person p = john.DeepCopy<Person>();

Employee e = john.DeepCopy<Employee>();

Now, if you want to ensure that, by default, an object of type T gets copied into

an object also of type T without explicit generic definitions, you can add yet another

extension method:

public static T DeepCopy<T>(this T person)

 where T : Person, new()

{

 return ((IDeepCopyable<T>) person).DeepCopy();

}

So now we finally see an explicit cast! And with this, our example is complete. Here is

how one would use this functionality:

var john = new Employee();

john.Names = new[] {"John", "Doe"};

john.Address = new Address {

 HouseNumber = 123, StreetName = "London Road"

};

john.Salary = 321000;

var copy = john.DeepCopy(); // of type Employee

Of course, there are other approaches to this problem, including the use of recursive

generics, but with the default interface member, we keep things reasonably clean and usable.

�Deep Copying Guidelines
It would be great if .NET had a uniform way of deep copying an object regardless of its

type. Sadly, this is far from reality, which is why we must discuss ways of deep copying

objects. We’ve seen some approaches already in the preceding implementations, but

now we need to cover the entire spectrum of different data types.

Chapter 5 Prototype

103

�Trivially Copyable Types
First of all, let me introduce the concept of trivially copyable types. A trivially

copyable type is

•	 A primitive type (bool, int, etc.)

•	 A string

•	 A value type (struct) composed solely of trivially copyable types

Trivially copyable types are easy to deep copy because all you need is an assignment

(=) operator:

var dt = DateTime.UtcNow; // DateTime is a struct

var copy = dt; // deep copy

Notice that string is also a trivially copyable type. Even though strings are reference

types, they have value semantics, so there is no risk of two classes sharing a mutable

reference to a single string.

It’s important to note that if you have a reference type composed exclusively of

trivially copyable members, then deep and shallow copying are the same. This means

you can use shallow copying mechanisms such as MemberwiseClone() with impunity.

�Arrays
Let us consider the following class that we want to copy:

public class Person

{

 public string [] Names;

 public Address [] Addresses;

}

There are, as in all collections, two cases here. If an array is composed of a trivially

copyable type, we can copy it by value using its own Clone() method – yes, that’s the

“evil” method from ICloneable that performs a shallow copy.

It’s important to remember that since ICloneable does not have a generic

ICloneable<T> counterpart, the return value of Clone() needs to be cast into the correct

array. We’ll see it in just a moment.

Chapter 5 Prototype

104

Now, if an array is composed of types that are not trivially copyable, we need to

create a brand-new array where each member is deep copied. You can do this using

•	 The static Array.ConvertAll() method

•	 The ToArray() LINQ extension method

Consequently, a deep copy method for Person would appear as follows:

public Person DeepCopy()

{

 var copy = new Person();

 copy.Names = (string[]) Names.Clone();

 copy.Addresses = Array.ConvertAll(Addresses, a => a.DeepCopy());

 return copy;

}

�Common Collection Types
When it comes to common collection types, such as List, Dictionary, and others,

shallow copying is implemented in the copy constructor. This means that a collection

such as List<int> can be copied like this:

List<int> items = new(){1, 2, 3};

List<int> replica = new(items); // copy constructor

When it comes to collections containing types that are not trivially copyable,

there are many choices. For example, just like arrays, List<T> has a method called

ConvertAll(). A Dictionary, on the other hand, can be copied using the LINQ

ToDictionary() method:

var people = new Dictionary<string, Address>

{

 ["John"] = new(38, "London Road"),

 ["Jane"] = new(72, "Jane Street")

};

var peopleCopies = people.ToDictionary(

 x => x.Key,

 x => x.Value.DeepCopy());

Chapter 5 Prototype

105

As for other collections, it depends on what you’re working with. For example, one-

dimensional collections quite often support the LINQ Select() operator, which can be

useful to perform a “double hop” where you

•	 Materialize a temporary IEnumerable with deep copied values from

original.

•	 Use an IEnumerable-taking shallow copy constructor in the

requisite type.

Here’s an example of what I mean:

var addresses = new HashSet<Address>{

 new(38, "London Road"),

 new(72, "Jane Street")

};

var replicas = new HashSet<Address>(

 addresses.Select(a => a.DeepCopy()));

�MemberwiseClone Is Not Terrible
While implementing ICloneable or just having a member called Clone() is probably

a bad idea, exposing a MemberwiseClone() call is okay provided you know what

you’re doing – creating a complete memory copy of an existing object. This is 100%

acceptable in cases where all members of your object are trivially copyable types: in such

classes, shallow and deep copy operations are one and the same, which means that by

performing a memberwise copy, you are, in fact, performing deep copying.

A direct implementation of this may appear as follows:

public class Person

{

 public Person DeepCopy()

 {

 return (Person)MemberwiseClone();

 }

}

Chapter 5 Prototype

106

For an object without any parents, you can introduce an abstract base class to expose

this functionality:

public abstract class TriviallyCopyable<T>

 : IDeepCopyable<T>

{

 public T DeepCopy()

 {

 return (T) MemberwiseClone();

 }

}

For a record type, the synthesized Clone() method works through a copy constructor

but, in essence, does pretty much the same thing. The cloning name is mangled, but you

can expose it like this:

public record Person

{

 public Person DeepCopy()

 {

 return this with {};

 // or

 return new Person(this);

 }

}

�Summary
Let us summarize the key aspects of deep copying of objects:

•	 A trivially copyable type is a primitive type, a string, or a struct that

only contains trivially copyable members.

•	 For trivially copyable types, deep and shallow copy are the same,

since they’re effectively “by value.”

Chapter 5 Prototype

107

•	 For a reference type that contains only trivially copyable members,

deep and shallow copying are the same, which means that

–– In your own types of such a nature, you can use MemberwiseClone(); just

don’t implement ICloneable.

–– In common collection types, you can typically use their copy constructor.

–– Record types can expose a copy constructor, or you can use the with

keyword.

•	 For a reference type that contains non-trivially copyable members,

you need to ensure you are copying things correctly, that is,

performing deep copying where relevant.

�Serialization
We need to thank the designers of C# for the fact that most objects in C#, whether they

be primitive types or collections, are “trivially serializable” – by default, you are able to

take a class and save it to a file or to memory without adding extra code to the class (well,

maybe an attribute or two, at most) or having to fiddle with reflection.

Why is this relevant to the problem at hand? Because if you can serialize something

to a file or to memory, you can then deserialize it, preserving all the information,

including all the dependent objects. Isn’t this convenient? For example, you could define

an extension method (this is formally known as a Behavioral Mixin) for in-memory

cloning using binary serialization:

public static T DeepCopy<T>(this T self)

{

 if (!typeof(T).IsSerializable)

 throw new ArgumentException("Type must be serializable", nameof(self));

 if (ReferenceEquals(self, null)) return default;

var stream = new MemoryStream();

BinaryFormatter formatter = new BinaryFormatter(); formatter.

Serialize(stream, self);

stream.Seek(0, SeekOrigin.Begin);

return (T) formatter.Deserialize(stream);

}

Chapter 5 Prototype

108

This code simply takes an object of any type T, performs binary serialization into

memory, and then deserializes from that memory, thereby gaining a deep copy of the

original object.

This approach is fairly universal and will let you easily clone your objects:

var foo = new Foo { Stuff = 42, Whatever = new Bar { Baz = "abc"} };

var foo2 = foo.DeepCopy();

foo2.Whatever.Baz = "xyz"; // works fine

There is just one catch: binary serialization requires every class to be marked with

[Serializable]; otherwise, the serializer simply throws an exception (not a good thing).

So, if we wanted to use this approach on an existing set of classes, including those not

marked as [Serializable], we might go with a different approach that doesn’t require

the aforementioned attribute. For example, you could use XML serialization instead:

public static T DeepCopyXml<T>(this T self)

{

 using var ms = new MemoryStream()

 XmlSerializer s = new XmlSerializer(typeof(T));

 s.Serialize(ms, self);

 ms.Position = 0;

 return (T) s.Deserialize(ms);

}

You can use any serializer you want. The only requirement is that it knows how to

traverse every single element in the object graph. Most serializers are smart enough to

go over things that shouldn’t be serialized (like read-only properties), but sometimes

they need a little help in order to make sense of trickier structures. For example, the XML

serializer will not serialize an IDictionary, so if you are using a dictionary in your class,

you’d need to mark it as [XmlIgnore] and create a Property Surrogate that we discuss in

Chapter 7.

Chapter 5 Prototype

109

�Prototype Factory
If you have predefined objects that you want to replicate, where do you actually store

them? A static field of some class? Perhaps. In fact, suppose our company has both main

and auxiliary offices. Now we could try to declare some static variables, for example:

static Person main = new Person(null,

 new Address("123 East Dr", "London", 0));

static Person aux = new Person(null,

 new Address("123B East Dr", "London", 0));

We could stick these members into Person so as to provide a hint that, when you need

a person working at a main office, just clone main and, similarly for the auxiliary office,

one can clone aux. But this is far from intuitive: what if we want to prohibit the creation

of Person instances working anywhere other than these two offices? And, from the SRP

perspective, it would also make sense to keep the set of possible addresses separate.

This is where a prototype factory comes into play. Just like an ordinary factory, it can

store these static members and provide convenience methods for creating new employees:

public class EmployeeFactory

{

 private static Person main =

 new Person(null, new Address("123 East Dr", "London", 0));

 private static Person aux =

 new Person(null, new Address("123B East Dr", "London", 0));

 public static Person NewMainOfficeEmployee(string name, int suite) =>

 NewEmployee(main, name, suite);

 public static Person NewAuxOfficeEmployee(string name, int suite) =>

 NewEmployee(aux, name, suite);

 private static Person NewEmployee(Person proto, string name, int suite)

 {

 var copy = proto.DeepCopy();

 copy.Name = name;

 copy.Address.Suite = suite;

 return copy;

 }

}

Chapter 5 Prototype

110

Notice how, following the DRY principle, we don’t call DeepCopy() in more than one

location: all the different NewXxxEmployee() methods simply forward their arguments to

one private NewEmployee() method, passing it the prototype to use when constructing a

new object.

The preceding prototype factory can now be used as

var john = EmployeeFactory.NewMainOfficeEmployee("John Doe", 100);

var jane = EmployeeFactory.NewAuxOfficeEmployee("Jane Smith", 123);

Naturally, this implementation assumes that the constructors of Person are

accessible; if you want to keep them private/protected, you’ll need to implement the

Inner Factory approach as outlined in Chapter 4.

�Source Generators
The latest advances in the C# language introduce the concept of source generators.

These are assemblies similar to Roslyn analyzer assemblies that can be used to

dynamically generate code behind the scenes and add it to the existing projects, with

features such as code completion available as soon as an edit is made.

While computationally expensive and requiring lots of caching tricks to ensure

regeneration doesn’t happen too often, source generators have been adopted by creators

of various serialization frameworks to ensure that, instead of using reflection at runtime,

serialization code is generated at compile time. This gives significant performance

advantages.

You can benefit from source generators in two ways. The first is that you can

use existing serialization frameworks to encode data, in which case you get better

performance, but also traceability in that you can examine the generated source

code if any issues occur. The second option is to write your own source generators for

serialization and similar operations.

Chapter 5 Prototype

111

�Summary
The Prototype design pattern embodies the notion of deep copying of objects so that,

instead of doing full initialization each time, you can take a premade object, copy it,

fiddle it a little bit, and then use it independently of the original.

There are really only two ways of implementing the Prototype pattern. They are as

follows:

•	 Write code that correctly duplicates your object, that is, performs a

deep copy. This can be done in a copy constructor, or you can define

an appropriately named method, possibly with a corresponding

interface (but not ICloneable).

•	 Write code for the support of serialization/deserialization and

then use this mechanism to implement cloning as serialization

immediately followed by deserialization. This carries the extra

computational cost; its significance depends on how often you need

to do the copying. The advantage of this approach is that you can

get away without significantly modifying existing structures. It’s also

much safer, because you’re less likely to forget to clone a member

properly.

Don’t forget that, for value types, the cloning problem doesn’t really exist: if you want

to clone a struct, just assign it to a new variable. Also, strings are immutable, so you can

use the assignment operator = on them without worrying that subsequent modification

will affect more objects than it should.

Chapter 5 Prototype

113

CHAPTER 6

Singleton
When discussing which patterns to drop, we found that we still love them
all. (Not really – I’m in favor of dropping Singleton. Its use is almost always
a design smell.)

—Erich Gamma

Singleton is by far the most hated design pattern in the (rather limited) history of design

patterns. Just stating that fact, however, doesn’t mean you shouldn’t use Singleton: a

toilet brush is not the most pleasant device either, but sometimes it is simply necessary.

The Singleton design pattern grew out of a very simple idea that you should only

have one instance of a particular component in your application. For example, a

component that loads a database into memory and offers a read-only interface is a prime

candidate for a singleton since it really doesn’t make sense to waste memory storing

several identical datasets. In fact, your application might have constraints such that two

or more instances of the database simply won’t fit into memory or will result in such a

lack of memory as to cause the program to malfunction.

�Singleton by Convention
The naïve approach to this problem is to simply agree that we are not going to instantiate

this object more than once, that is:

public class Database

{

 /// <summary>

 /// Please do not create more than one instance.

 /// </summary>

 public Database() {}

};

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_6

https://doi.org/10.1007/978-1-4842-8245-8_6

114

The problem with this approach, apart from the fact that your developer colleagues

might simply ignore the advice, is that objects can be created in stealthy ways where the

call to the constructor isn’t immediately obvious. This can be anything – a call through

reflection, creation in a factory (e.g., Activator.CreateInstance), or injection of the

type by an IoC container.

The most obvious idea that comes to mind is to offer a single, static global object:

public static class Globals

{

 public static Database Database = new Database();

}

However, this really doesn’t do much in terms of safety: clients are not in any way

prevented from constructing additional Databases as they see fit. And how will the client

find the Globals class?

�Classic Implementation
So now that we know what the problem is, how can we prevent all clients from making

more than one instance of an object? We can, for example, put a static counter right in

the constructor and throw an exception if the value is ever incremented:

public class Database

{

 private static int instanceCount = 0;

 public Database()

 {

 if (++instanceCount > 1)

 throw new InvalidOperationExeption("Cannot make >1 database!");

 }

};

This is a particularly hostile approach to solving this problem: even though it

prevents the creation of more than one instance by throwing an exception, it fails to

communicate the fact that we don’t want anyone calling the constructor more than

once. Even if you adorn it with plenty of XML documentation, I guarantee there will still

be some poor soul trying to call this more than once in some nondeterministic setting.

Probably in production too!

Chapter 6 Singleton

115

The only way to prevent explicit construction of a Database is to make its constructor

inaccessible (private/protected) and introduce a property or method to return the one

and only instance:

public class Database

{

 private Database() { ... }

 public static Database Instance { get; } = new();

}

Note how we removed the possibility of directly creating Database instances by

hiding the constructor. Of course, you can use reflection to access private members,

so construction of this class isn’t quite impossible, but it does require extra hoops to

jump through, and hopefully this is enough to prevent most people trying to invoke the

constructor directly.

By declaring the instance as static, we removed any possibility of controlling the

lifetime of the database: it now lives as long as the program does. This choice is forced

upon all clients, even those who need the Database to be short-lived.

�Lazy Loading and Thread Safety
The implementation shown in the previous section happens to be thread-safe. After

all, static constructors are guaranteed to run only once per AppDomain, before any

instances of the class are created or any static members accessed.

But what if you don’t want initialization in the static constructor? What if, instead,

you want to initialize the singleton (i.e., call its constructor) only when the object is first

accessed? In this case, you can use Lazy<T>1:

public class MyDatabase

{

 private MyDatabase()

 {

 Console.WriteLine("Initializing database");

1 Note that, similar to C#, F# has the lazy keyword. The only difference is that F# has a somewhat
more concise syntax: writing lazy(x + y()) automatically constructs a Lazy<’T> behind
the scenes.

Chapter 6 Singleton

116

 }

 private static Lazy<MyDatabase> instance =

 new ();

 public static MyDatabase Instance => instance.Value;

}

This is also a thread-safe approach because the objects Lazy<T> creates are thread-

safe by default. In a multi-threaded setting, the first thread to access the Value property

of a Lazy<T> is the one that initializes it for all subsequent accesses on all threads.

�Reusable Base Class
Seeing how every singleton will have more or less the same contents (e.g., a static lazy

variable and an exposed public static property), why not turn it into a base class? In a

simple case, this is entirely possible! Consider the following base class:

public abstract class Singleton<T> where T : Singleton<T>

{

 private static readonly Lazy<T> Lazy =

 new Lazy<T>(() => Activator.CreateInstance(typeof(T), true) as T);

 public static T Instance => Lazy.Value;

}

The only thing we need to use this class is a derived class that has a single nonpublic

parameterless constructor, for example:

class MyDatabase : Singleton<MyDatabase>

{

 private MyDatabase() { /* load data here */ }

}

The only downside to this implementation is the fact that the constructor call is not

statically checked. Sadly, this isn’t something we can do anything about: while we can

certainly add a new() constraint to Singleton<T>’s type parameter, this would force the

singleton’s constructor to be public.

Chapter 6 Singleton

117

�The Trouble with Singleton
Let us now consider a concrete example of a singleton. Suppose that our database

contains a list of capital cities and their populations. The interface that our singleton

database is going to conform to is

public interface IDatabase

{

 int GetPopulation(string name);

}

We have a single method that gives us the population of a given city. Now,

let us suppose that this interface is adopted by a concrete implementation called

SingletonDatabase that implements the singleton the same way as we’ve done before:

public class SingletonDatabase : IDatabase

{

 private Dictionary<string, int> capitals;

 private SingletonDatabase()

 {

 WriteLine("Initializing database");

 capitals = File.ReadAllLines(

 Path.Combine(

 new FileInfo(typeof(IDatabase).Assembly.Location).DirectoryName,

 "capitals.txt")

)

 .Batch(2) // from MoreLINQ

 .ToDictionary(

 list => list.ElementAt(0).Trim(),

 list => int.Parse(list.ElementAt(1)));

 }

 public int GetPopulation(string name)

 {

 return capitals[name];

 }

Chapter 6 Singleton

118

 private static Lazy<SingletonDatabase> instance =

 new Lazy<SingletonDatabase>(() =>

 {

 return new SingletonDatabase();

 });

 public static IDatabase Instance => instance.Value;

}

The constructor of the database reads the names and populations of various capitals

from a text file and stores them in a Dictionary<>. The GetPopulation() method is used

as an accessor to get the population of a given city.

As we noted before, the real problem with singletons like the preceding one is

their use in other components. Here’s what I mean – suppose that, on the basis of the

preceding singleton, we build a component for calculating the sum total population of

several different cities:

public class SingletonRecordFinder

{

 public int TotalPopulation(IEnumerable<string> names)

 {

 int result = 0;

 foreach (var name in names)

 result += SingletonDatabase.Instance.GetPopulation(name);

 return result;

 }

}

The trouble is that SingletonRecordFinder is now firmly dependent on

SingletonDatabase. This presents an issue for testing – if we want to check that

SingletonRecordFinder works correctly, we need to use data from the actual database,

that is:

[Test]

public void SingletonTotalPopulationTest()

{

 // testing on a live database

 var rf = new SingletonRecordFinder();

Chapter 6 Singleton

119

 var names = new[] {"Seoul", "Mexico City"};

 int tp = rf.TotalPopulation(names);

 Assert.That(tp, Is.EqualTo(17500000 + 17400000));

}

This is a terrible unit test. It tries to read a live database (something that you typically

don’t want to do too often), but it’s also very fragile, because it depends on the concrete

values in the database. What if the population of Seoul changes (as a result of North

Korea opening its borders, perhaps)? Then the test will break. But of course, many

people run tests on continuous integration systems that are isolated from live databases,

so that fact makes the approach even more dubious.

This test is also bad for ideological reasons. Remember, we want a unit test where

the unit we’re testing is the SingletonRecordFinder. However, the test we wrote is not

a unit test but an integration test because the record finder uses SingletonDatabase,

so in effect we’re testing both systems at the same time. Nothing wrong with that if an

integration test is what you wanted, but we would really prefer to test the record finder in

isolation.

So we know we don’t want to use an actual database in a test. Can we replace the

database with some dummy component that we can control from within our tests?

Well, in our current design, this is impossible, and it is precisely this inflexibility that is

Singleton’s downfall.

So what can we do? Well, for one, we need to stop depending on SingletonDatabase

explicitly. Since all we need is something implementing the Database interface, we

can create a new ConfigurableRecordFinder that lets us configure where the data

comes from:

public class ConfigurableRecordFinder

{

 private IDatabase database;

 public ConfigurableRecordFinder(IDatabase database)

 {

 this.database = database;

 }

Chapter 6 Singleton

120

 public int GetTotalPopulation(IEnumerable<string> names)

 {

 int result = 0;

 foreach (var name in names)

 result += database.GetPopulation(name);

 return result;

 }

}

We now use the database reference instead of using the singleton explicitly. This lets

us make a dummy database specifically for testing the record finder:

public class DummyDatabase : IDatabase

{

 public int GetPopulation(string name)

 {

 return new Dictionary<string, int>

 {

 ["alpha"] = 1,

 ["beta"] = 2,

 ["gamma"] = 3

 }[name];

 }

}

And now, we can rewrite our unit test to take advantage of this DummyDatabase:

[Test]

public void DependentTotalPopulationTest()

{

 var db = new DummyDatabase();

 var rf = new ConfigurableRecordFinder(db);

 Assert.That(

 rf.GetTotalPopulation(new[]{"alpha", "gamma"}),

 Is.EqualTo(4));

}

Chapter 6 Singleton

121

This test is more robust because if data changes in the actual database, we won’t

have to adjust our unit test values – the dummy data stays the same. Also, it opens

interesting possibilities. We can now run tests against an empty database or, say, a

database whose size is greater than the available RAM. You get the idea.

�Per-Thread Singleton
We’ve talked about thread safety in relation to the construction of the singleton, but what

about thread safety with respect to a singleton’s own operations? It might be the case

that, instead of one singleton shared between all threads in an application, you need one

singleton to exist per thread.

The construction of the per-thread singleton is identical to that which we’ve already

seen before, except that Lazy<T> is replaced by ThreadLocal<T> – it also provides lazy

initialization semantics, but on a thread-local basis:

public sealed class PerThreadSingleton

{

 private static ThreadLocal<PerThreadSingleton> threadInstance

 = new(() => new PerThreadSingleton());

 public int Id;

 private PerThreadSingleton()

 {

 Id = Thread.CurrentThread.ManagedThreadId;

 }

 public static PerThreadSingleton Instance => threadInstance.Value;

}

My listing preserves the thread id for illustration purposes: you don’t need to keep it

if you don’t want to. Now, to verify we’re really getting one instance per thread, we can

run something like

var t1 = Task.Factory.StartNew(() =>

{

 Console.WriteLine("t1: " + PerThreadSingleton.Instance.Id);

});

Chapter 6 Singleton

122

var t2 = Task.Factory.StartNew(() =>

{

 Console.WriteLine("t2: " + PerThreadSingleton.Instance.Id);

 Console.WriteLine("t2 again: " + PerThreadSingleton.Instance.Id);

});

Task.WaitAll(t1, t2);

This gives the output

t2: 5

t1: 4

t2 again: 5

Thread-local singletons solve peculiar problems. For example, say you’ve got a

dependency graph similar to the following:

 Needs needs

A ------> B ------> C

 needs

A ------> C

Now, you spawn off 20 threads, which all use A. The component A needs C twice:

directly and also indirectly through B. Now, if C is stateful and mutated in each thread,

you cannot have one global CSingleton, but what you can do is create per-thread

singletons. That way, an operation A will use the same instance of C both by itself and

indirectly through B.

And, of course, an added benefit is that within a thread-local singleton, you

don’t have to worry about thread safety, so you can use, say, a Dictionary instead of

ConcurrentDictionary.

�Ambient Context
Say you’re making building plans. You need to add walls to the ground floor of a house.

Those walls will have different positions, but the wall height for the entire floor will

probably remain the same.

Chapter 6 Singleton

123

You can keep typing in the same value into dozens of method calls, but you don’t

want to. Nor do you want to declare a variable and pass that instead. You want to have

some sort of global setting for wall height, the requirements being that

	 1.	 You can set a wall height, and it will be used as the default value.

	 2.	 But sometimes you want to do a few walls with a different height

and then revert to the previous value.

	 3.	 And sometimes you want to specify the exact height via the API.

The height of the wall in this scenario is part of an ambient context: a set of states

that are meaningful to a certain set of operations being undertaken at a particular point

in time.

You can pass in an ambient context as an injected parameter into dozens of APIs, but

this involves having lots of parameters and probably lots of delegate factories too! The

only way to avoid this is to create a static construct addressable from within every point

within the application.

Let’s start defining the ambient context class:

public sealed class BuildingContext : IDisposable

{

 // make this inaccessible

 private BuildingContext() {}

 public int Height { get; private set; }

As you can see, our ambient context class

•	 Is sealed: typically it makes very little sense to support inheritance of

ambient contexts.

•	 Has a private constructor, so it cannot be instantiated directly.

•	 Has a property for the height of the walls we plan to build.

•	 Implements IDisposable – we’ll see why in a moment.

Moving on, we see some interesting members:

private static readonly Stack<BuildingContext> stack = new();

static BuildingContext() { stack.Push(new BuildingContext()); }

Chapter 6 Singleton

124

Our ambient context statically stores several instances in a Stack<T>. Why? Take a

look at Requirement 2 from our earlier list. Sometimes we want to build several walls

(e.g., a chimney) at a height drastically different from the currently used height. How do

we do this? We create a new state and push it on the stack. When we’re done, we pop the

stack and return to the old value.

Speaking of which, here is how one would do this:

public static IDisposable WithHeight(int height)

{

 var copy = Current.DeepCopy();

 copy.Height = height;

 stack.Push(copy);

 return copy;

}

This method is just a helper piece of API that you can wrap in a using statement. It

creates a deep copy2 of the current context, changes a particular value, pushes it onto the

stack, and also returns it as an IDisposable, so we can call Dispose() when we’re done

using it.

Now, given that we have a stack of states, the current ambient context is simply

whatever exists on top of the stack. Notice our previously defined static constructor

ensures that there’s always at least one state there:

public static BuildingContext Current => stack.Peek();

And, finally, the mystery of why we use the IDisposable interface: calling Dispose()

pops the state off the stack, making sure that there’s at least one state always available:

public void Dispose()

{

 if (stack.Count > 1) stack.Pop();

 }

}

2 See Chapter 5 for examples of how to implement deep copying.

Chapter 6 Singleton

125

I will omit most of the plumbing required for this demo to work (see the source code

for details), but I want to show you how you would handle Requirement 3 – an ability to

override the ambient context value if needed. A Wall class with an optionally ambient

height could be defined as

public class Wall

{

 public Point Start;

 public Point End;

 public int Height;

 public Wall(Point start, Point end, int? height = null)

 {

 Start = start;

 End = end;

 Height = height ?? BuildingContext.Current.Height;

 }

}

Thus, you can either provide your own value (in which case, height will be non-

null) or let the class take it from the ambient context.

The use of the ambient context would appear as follows:

using (BuildingContext.WithHeight(2000))

{

 building.Walls.Add(new Wall(

 new Point(0, 1000), new Point(1000, 1000)));

 using (BuildingContext.WithHeight(1000))

 {

 building.Walls.Add(new Wall(

 new Point(1000, 2000), new Point(2000, 3000)));

 }

 building.Walls.Add(new Wall(

 new Point(0, 1000), new Point(1000, 1000)));

}

Chapter 6 Singleton

126

Something worth noting is that an ambient context, in our case, is not a singleton

but is singleton-like in that, even though many instances may exist in the stack, only

one instance, exposed through the Current property, is ever returned at any given time.

Furthermore, if you wanted to construct several buildings in parallel, you could simply

change the stack from static to ThreadLocal while most of the code would remain

the same.

It goes without saying that an ambient context introduces quite a bit of coupling

into many classes. On the other hand, unlike the “canonical” singleton that we’ve seen

in earlier parts of this chapter, an ambient context is actually good for testability: it is

designed to be “mutable” (in the Stack sense), so you can write unit tests on the basis

of its states – provided, of course, that it doesn’t rely on external states (such as reading

from a database), which it really shouldn’t be, since an ambient context is typically just

a container for states (and possibly strategies) that need to be taken within some finite

lifetime. Furthermore, note the provision for value overrides (Requirement 3) allows us

to bypass the ambient context entirely, should we need to.

�Uses in the .NET Framework
The Ambient Context pattern is used in many places in the .NET Framework:

•	 CultureInfo stores the current culture and allows you to switch the

culture of an application deliberately, rather than accepting defaults

taken from the operating system.

•	 ActivationContext, which contains an ApplicationIdentity and

provides access to the application manifest.

•	 ExecutionContext and SynchronizationContext.

•	 TransactionScope, used for SQL transactions.

•	 HttpContext encapsulates HTTP-specific information about a

request.

Many other ambient contexts are used in the BCL and various frameworks such as

ASP.NET.

Chapter 6 Singleton

127

�Singletons and Inversion of Control
The approach of explicitly making a component a singleton is distinctly invasive, and if

you make a decision to stop treating the component as a singleton later on, the changes

required may end up being very expensive to implement. An alternative solution is to

adopt a convention where, instead of directly enforcing the lifetime of a class, this is

outsourced to an Inversion of Control (IoC) container.

Here’s what defining a singleton component looks like when using the Autofac

dependency injection framework:

var builder = new ContainerBuilder();

builder.RegisterType<Database>().SingleInstance(); // <-- singleton!

builder.RegisterType<RecordFinder>();

var container = builder.Build();

var finder = container.Resolve<RecordFinder>();

var finder2 = container.Resolve<RecordFinder>();

// finder and finder2 refer to the same database!

The key here is that Database is defined in the container as SingletInstance(),

which makes it a thread-safe singleton. Thus, when it is injected into any number of

RecordFinder types, the same instance will be injected everywhere.

Many people believe that using a singleton in a DI container is the only socially

acceptable use of a singleton. At least, with this approach, if you need to replace a

singleton object with something else, you can do it in one central place: the container

configuration code. An added benefit is that you won’t have to implement any singleton

logic yourself, which prevents possible errors. Oh, and did I mention that all container

operations in Autofac are thread-safe?

In actual fact, one thing IoC containers highlight is the fact that a singleton is only

a unique case of lifetime management (one object per lifetime of entire application).

Different lifetimes are possible – you can have one object per thread, one object per

web request, and so on. You can also have pooling – situations where the number of live

object instances can be between 0 and X, whatever X happens to be.

Chapter 6 Singleton

128

�Monostate
The Monostate pattern, also known as the Borg pattern,3 is a variation on the Singleton

pattern. It is a class that behaves like a singleton while appearing as an ordinary class.

For example, suppose you are modeling a company structure, and a company

typically has only one CEO. What you can do is define the following class:

public class ChiefExecutiveOfficer

{

 private static string name;

 private static int age;

 public string Name

 {

 get => name;

 set => name = value;

 }

 public int Age

 {

 get => age;

 set => age = value;

 }

}

Can you see what’s happening here? The class appears as an ordinary class with

getters and setters, but they actually work on static data!

This might seem like a really neat trick: you let people instantiate

ChiefExecutiveOfficer as many times as they want, but all the instances refer to

the same data. However, how are users supposed to know this? A user will happily

instantiate two CEOs, assign them different ids, and will be very surprised when both of

them are identical!

3 In the Star Trek television series, the Borg is a fictional race of partially robotic beings that are
assimilated into a single collective. The Borg collective has no individuals: everyone shares a
single consciousness, that is, every drone within the collective has access to the same data.

Chapter 6 Singleton

129

The Monostate approach works to some degree and has a couple of advantages. For

example, it is easy to inherit, it can leverage polymorphism, and its lifetime is reasonably

well-defined (but then again, you might not always wish it so). Its greatest advantage is

that you can take an existing object that’s already used throughout the system and patch

it up to behave in a Monostate way, and provided your system works fine with the non-

plurality of object instances, you’ve got yourself a singleton-like implementation with no

extra code needing to be rewritten.

But that’s all that Monostate really is: a Band-Aid when you want one component

to become a singleton throughout the entire codebase without any large-scale changes.

This pattern is not meant for production, as it can cause too much confusion. If you need

centralized control over things, a DI container is your best bet.

�Multiton
Multiton, like its name suggests, is a pattern that, instead of forcing us to have just

one instance, gets us to have a finite number of named instances of some particular

component. For example, suppose we have two subsystems – the main one and another

for backup:

enum Subsystem

{

 Main,

 Backup

}

If only a single printer is meant to exist for every subsystem, we can define the

Printer class as follows:

class Printer

{

 private Printer() { }

 public static Printer Get(Subsystem ss)

 {

 if (instances.ContainsKey(ss))

 return instances[ss];

Chapter 6 Singleton

130

 var instance = new Printer();

 instances[ss] = instance;

 return instance;

 }

 private static Dictionary<Subsystem, Printer> instances = new ();

}

As before, we’ve hidden the constructor and made an accessor method that

lazily constructs and returns a printer corresponding to the required subsystem. This

implementation is, of course, not thread-safe, but that can be easily corrected via the use

of, say, a ConcurrentDictionary.

Notice also that our implementation has the same problems as the singleton in

terms of direct dependencies. If your code relies on Printer.Get(Subsystem.Main),

how would you substitute the result with a different implementation? Well, just as with

the database example we looked at, the best solution would be to extract some IPrinter

interface and to depend on that instead.

�Summary
Singletons are not completely evil, but when used carelessly, they’ll mess up the

testability and refactorability of your application. If you really must use a singleton, try

avoiding using it directly (as in writing SomeComponent.Instance.Foo) and instead keep

specifying it as a dependency (e.g., a constructor argument) where all dependencies

are satisfied from a single location in your application (ideally, an Inversion of Control

container). Relying on abstractions (interfaces/abstract classes) conforms with the DIP

and is generally a good idea if you want to perform a substitution later on.

Finally, it’s worth mentioning that the Singleton pattern is, traditionally, just one

expression of a concept of a “lifetime” of a particular component, suggesting that

just one instance exists from the moment it is required (assuming it is lazy) until the

instance is garbage-collected or the program terminates. As we have seen, other lifetime

expressions (such as per-thread objects) are also possible. A competent DI framework

provides much finer control over the lifetime of components than any handwritten

singleton ever could.

Chapter 6 Singleton

PART III

Structural Patterns
As the name suggests, structural patterns are all about setting up the structure of your

application so as to improve SOLID conformance as well as general usability and

maintainability of your code.

When it comes to determining the structure of an object, we can apply these fairly

well-known methods:

•	 Inheritance: An object automagically acquires all members’ base

class or classes. To allow instantiation, the object must implement

every abstract member from its parent; if it does not, it is abstract and

cannot be created (but you can inherit from it).

•	 Composition: Generally implies that the child cannot exist without

the parent. This is typically implemented with nested classes. For

example, a class Car can have a nested class Wheel. Ever since the

introduction of default interface methods, interfaces themselves can

also contain classes.

•	 Aggregation: An object can contain another object, but that object

can also exist independently. Think of a Car having a driver field or

property.

Nowadays, both composition and aggregation are treated in an identical fashion.

If you have a Person class with a field of type Address, you have a choice as to whether

Address is an external type or a nested type. In either case, provided it's public, you can

refer to it as either Address or Person.Address.

I would argue that using the word composition when we really mean aggregation

has become so commonplace that we may as well use them in interchangeable fashion.

Here's some proof: when we talk about IoC containers, we speak of a composition root.

But wait. Doesn't the IoC container control the lifetime of each object individually? It

does, and so we're using the word composition when we really mean aggregation.

132

There are, fundamentally, three ways in which data structures can be defined in C#:

•	 Statically, when you simply write the classes and they get compiled.

This is the most common case out there.

•	 Via code generation. This happens when structures get created from

T4 templates or databases or some user scripts (source generators,

custom tools). Plenty of code gets generated behind the scenes when

you edit UI, for example, in a WinForms or WPF application.

•	 Dynamically, that is, at runtime. This is the most sophisticated

option. Advanced libraries are capable of constructing data

structures and compiling them into executable code right at the

moment when the application is executing.

It's worth noting that many data structures are created implicitly behind the scenes

by the compiler. This includes things like ValueTuples, classes for anonymous types, as

well as state machines in charge of orchestrating enumerators (yield functionality) or

asynchronous (async/await) operations.

In F#, the amount of data structures (and corresponding allocations) created behind

the scenes is huge, as is the complexity of those data structures. For example, any sort of

currying operations generate deep inheritance hierarchies. Or, let's say, you decide to

pass an operator such as (+) as a parameter to a function – in this case, an entire struct

will be created purely for the purpose of housing a method that would in turn call this

operator. And it would be very naive to think that all such allocations are automatically

inlined during JIT compilation!

PART III STRUCTURAL PATTERNS

133

CHAPTER 7

Adapter
I used to travel quite a lot, and quite often only when you arrive in a new country you

remember that their sockets are different and you didn’t prepare for this. This is why

airport travel shops carry travel adapters and also why some hotels (the better ones)

have at least one outlet of a nonlocal type just in case a customer has forgotten to get an

adapter, but needs to, say, work on their laptop without interruption.

A travel adapter that lets me plug a European plug into a UK or USA socket1 is very

good analogy to what’s going on with the Adapter pattern in the software world: we

are given an interface, but we want a different one, and building an adapter over the

interface is what gets us to where we want to be.

�Scenario
Suppose you’re working with a library that’s great at drawing pixels. You, on the other

hand, work with geometric objects – lines, rectangles, that sort of thing. You want to keep

working with those objects but also need the rendering, so you need to adapt your vector

geometry to pixel-based representation.

Let us begin by defining the (rather simple) domain objects of our example:

public class Point

{

 public int X, Y;

 // other members omitted

}

public class Line

1 Just in case you’re European like me and want to complain that everyone should be using
European plugs and sockets: no, the UK plug design is technically better and safer, so if we did
want just one standard, the UK one would be the one to go for.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_7

https://doi.org/10.1007/978-1-4842-8245-8_7

134

{

 public Point Start, End;

 // other members omitted

}

A typical vector object is likely to be defined by a collection of Line objects. Thus, we

can make a class that would simply inherit from Collection<Line>:

public abstract class VectorObject : Collection<Line> {}

So, this way, if you want to define, say, a Rectangle, you can simply inherit from this

type, and there’s no need to define additional storage:

public class VectorRectangle : VectorObject

{

 public VectorRectangle(int x, int y, int width, int height)

 {

 Add(new Line(new Point(x,y), new Point(x+width, y)));

 Add(new Line(new Point(x+width,y), new Point(x+width, y+height)));

 Add(new Line(new Point(x,y), new Point(x, y+height)));

 Add(new Line(new Point(x,y+height), new Point(x+width, y+height)));

 }

}

Now, here’s the setup. Suppose we want to draw lines on-screen. Rectangles, even!

Unfortunately, we cannot, because the only interface for drawing is literally this:

// the interface we have

public static void DrawPoint(Point p)

{

 bitmap.SetPixel(p.X, p.Y, Color.Black);

}

I’m using the Bitmap class here for illustration, but the actual implementation

doesn’t matter. Let’s just take this at face value: we only have an API for drawing pixels.

That’s it.

Chapter 7 Adapter

135

�Adapter
All right, so let’s suppose we want to draw a couple of rectangles:

private static readonly List<VectorObject> vectorObjects

 = new()

{

 new VectorRectangle(1, 1, 10, 10),

 new VectorRectangle(3, 3, 6, 6)

};

In order to draw these objects, we need to convert every one of them from a series

of lines into a rather large number of points, because the only interface that we have for

drawing is a DrawPoint() method. For this, we make a separate class that will store the

points and expose them as a collection. That’s right – this is our Adapter pattern!

public class LineToPointAdapter : Collection<Point>

{

 private static int count = 0;

 public LineToPointAdapter(Line line)

 {

 WriteLine($"{++count}: Generating points for line"

 + $" [{line.Start.X},{line.Start.Y}]-"

 + $"[{line.End.X},{line.End.Y}] (no caching)");

 int left = Math.Min(line.Start.X, line.End.X);

 int right = Math.Max(line.Start.X, line.End.X);

 int top = Math.Min(line.Start.Y, line.End.Y);

 int bottom = Math.Max(line.Start.Y, line.End.Y);

 if (right - left == 0)

 {

 for (int y = top; y <= bottom; ++y)

 {

 Add(new Point(left, y));

 }

 } else if (line.End.Y - line.Start.Y == 0)

 {

Chapter 7 Adapter

136

 for (int x = left; x <= right; ++x)

 {

 Add(new Point(x, top));

 }

 }

 }

}

This code is simplified: we only handle perfectly vertical or horizontal lines and

ignore everything else. The conversion from a line to a number of points happens right

in the constructor, so our adapter is eager. Don’t worry. We’ll make it lazy toward the end

of this chapter.

We can now use this adapter to actually render some objects. We take the two

rectangles from earlier and simply render them like this:

private static void DrawPoints()

{

 foreach (var vo in vectorObjects)

 {

 foreach (var line in vo)

 {

 var adapter = new LineToPointAdapter(line);

 adapter.ForEach(DrawPoint);

 }

 }

}

Beautiful! All we do is, for every vector object, get each of its lines, construct a

LineToPointAdapter for that line, and then iterate the set of points produced by the

adapter, feeding them to DrawPoint(). And it works! (Trust me it does.)

�Adapter Temporaries
There’s a major problem with our code, though: DrawPoints() gets called on literally

every screen refresh that we might need, which means the same data for same line

objects gets regenerated by the adapter, like a zillion times. What can we do about it?

Chapter 7 Adapter

137

Well, on one hand, we can make some lazy-loading method, for example:

private static List<Point> points = new ();

private static bool prepared = false;

private static void Prepare()

{

 if (prepared) return;

 foreach (var vo in vectorObjects)

 {

 foreach (var line in vo)

 {

 var adapter = new LineToPointAdapter(line);

 adapter.ForEach(p => points.Add(p));

 }

 }

 prepared = true;

}

And then the implementation of DrawPoints() simplifies to

private static void DrawPointsLazy()

{

 Prepare();

 points.ForEach(DrawPoint);

}

But let’s suppose, for a moment, that the original set of vectorObjects can change.

Saving those points forever makes no sense then, but we still want to avoid the incessant

regeneration of potentially repeating data. How do we deal with this? With caching,

of course!

First of all, to avoid regeneration, we need unique ways of identifying lines, which

transitively means we need unique ways of identifying points. ReSharper/Rider’s

Equality Members generator to the rescue2:

2 The implementation of GetHashCode() is likely to be different depending on the .NET
Framework being used. For example, in .NET 6, the Combine() method from System.Runtime.
HashCode is likely to be used instead.

Chapter 7 Adapter

138

public class Point

{

 // other members here

 protected bool Equals(Point other) { ... }

 public override bool Equals(object obj) { ... }

 public override int GetHashCode()

 {

 unchecked { return (X * 397) ^ Y; }

 }

}

public class Line

{

 // other members here

 protected bool Equals(Line other) { ... }

 public override bool Equals(object obj) { ... }

 public override int GetHashCode()

 {

 unchecked

 {

 return ((Start != null ? Start.GetHashCode() : 0) * 397)

 ^ (End != null ? End.GetHashCode() : 0);

 }

 }

}

As you can see, ReSharper (or Rider, if you prefer that IDE) has generated

different implementations of Equals() as well as GetHashCode(). The latter is more

important because it allows us to uniquely (to some degree) identify an object by

its hash code without performing a direct comparison. Now, we can build a new

LineToPointCachingAdapter such that it caches the points and regenerates them only

when necessary, that is, when their hashes differ. The implementation is almost the

same except for the following nuances.

Chapter 7 Adapter

139

First, the adapter now has a static cache of points that correspond to

particular lines:

static Dictionary<int, List<Point>> cache = new();

The type int here is precisely the type returned from GetHashCode(). Now, when

processing a Line in the constructor, we first check whether or not the line is already

cached. If it is, we don’t need to do anything:

hash = line.GetHashCode();

if (cache.ContainsKey(hash)) return; // we already have it

Notice that we actually store the hash of the current adapter in its non-static

field. This allows us to store and use adapters that correspond to individual lines.

Alternatively, we could make the entire adapter static.

The full implementation of the constructor is as before, except that instead of calling

Add() for the generated points, we simply add them to the cache:

public LineToPointAdapter(Line line)

{

 hash = line.GetHashCode();

 if (cache.ContainsKey(hash)) return; // we already have it

 List<Point> points = new();

 // points are added to the 'points' member as before, then...

 cache.Add(hash, points);

}

Lastly, we need to implement IEnumerable<Point>. This is easy: we use the hash

field to reach into the cache and yield the right set of points:

public IEnumerator<Point> GetEnumerator()

{

 return cache[hash].GetEnumerator();

}

Chapter 7 Adapter

140

Yay! Thanks to hash functions and caching, we’ve drastically cut down on the

number of conversions being made. The only issue with this implementation is that, in a

long-running program, the cache can accumulate a huge number of unnecessary point

collections. How would you clean it up? One idea would be to set up a timer to wipe the

entire cache at regular intervals. See if you can come up with other possible solutions to

this problem.

�The Problem with Hashing
One reason we implemented the adapter the way we did is that our current

implementation is robust with respect to changes in objects. If any aspect of a Rectangle

changes, the adapter will calculate a different hash value and will regenerate the

appropriate set of points.

This is effectively done by polling: any time an adapted dataset is required, we take

the target object and recalculate its hash. The assumption is always that the hash can

be calculated quickly and that hash collisions – situations where two different objects

have identical hashes – are unlikely. Let’s remind ourselves of how Point hashes are

calculated:

public override int GetHashCode()

{

 unchecked

 {

 return (X * 397) ^ Y;

 }

}

The truth is the hash function for a Point is a pretty bad hash function and will give

us lots of collisions. For example, points (0,0) and (1, 397) will give the same hash value

of 0, which means, in turn, that two lines with these Start points and an identical End

point will end up overwriting each other’s generated set of points with incorrect data,

inevitably causing problems.

How would you solve this issue? Well, you could pick a prime number N that is larger

than 397. That way, if you can guarantee that your values are less than this larger N, you

won’t have any collisions. Alternatively, you could go for a more robust hashing function.

In the case of a Point, assuming positive X and Y, this could be as simple as

Chapter 7 Adapter

141

public int GetHashCode()

{

 return (X << 32) | Y;

}

This hash code calculation is robust provided that a coordinate value fits inside

16 bits and is positive – which is very likely if, for example, we’re talking about screen

coordinates. There are plenty of sophisticated functions out there (Cantor pairing

function, Szudzik function, etc.) that are able to handle situations at the boundaries of

the range of numbers.

The point I’m trying to make here is that the calculation of hashing functions is a

slippery slope: the code generated by IDEs might not be as robust as you think. What can

we do to avoid all of this? Why, we can hold a reference to the adaptee, rather than the

hash, in our cache. It’s as simple as

public class LineToPointAdapter : IEnumerable<Point>

{

 static Dictionary<Line, List<Point>> cache = ();

 private Line line;

 public LineToPointAdapter(Line line)

 {

 if (cache.ContainsKey(line)) return; // we already have it

 this.line = line;

 // as before

 cache.Add(line, points);

 }

 public IEnumerator<Point> GetEnumerator()

 {

 return cache[line].GetEnumerator();

 }

}

Chapter 7 Adapter

142

What’s the difference? Well, the difference is that, when searching through the

dictionary, both GetHashCode() and Equals() are used to find the right item. As a result,

collisions can still occur, but they won’t mess up the final value. This approach does

have its downsides though: for example, the lifetime of lines is now bound to the adapter

because it has strong references to them.

This approach of holding on to the reference gives us an additional benefit: laziness.

Instead of calculating everything in the constructor, we can split the preparation of

points into a separate function that only gets invoked when adapter points are iterated:

public class LineToPointAdapter : IEnumerable<Point>

{

 ...

 private void Prepare()

 {

 if (cache.ContainsKey(line)) return; // we already have it

 // rest of code as before

 }

 public IEnumerator<Point> GetEnumerator()

 {

 Prepare();

 return cache[line].GetEnumerator();

 }

}

�Property Adapter (Surrogate)
One very common application of the Adapter design pattern is to get your class to

provide additional properties that serve only one purpose: to take existing fields or

properties and expose them in some useful way, quite often as projections to a different

data type. And while it often makes sense to do this in a separate class (e.g., when

building a ViewModel), sometimes you’re forced to do this right in the class where the

original data is kept.

Consider the following example: if you have an IDictionary member in your class,

you cannot use an XmlSerializer because Microsoft didn’t implement this functionality

“due to schedule constraints.” Consequently, if you want a serializable dictionary,

Chapter 7 Adapter

143

you have two options: you either go online and search for a SerializableDictionary

implementation, or alternatively, you build a property adapter (or surrogate), which

exposes the dictionary in a way that’s easy to serialize.

For example, suppose you need to serialize the following property:

public Dictionary<string, string> Capitals { get; set; }

To make it happen, you would first of all mark the property with [XmlIgnore]. You

would then construct another property of a type that can be serialized, such as an array

of tuples:

public (string, string)[] CapitalsSerializable

{

 get

 {

 return Capitals.Keys.Select(country =>

 (country, Capitals[country])).ToArray();

 }

 set

 {

 Capitals = value.ToDictionary(x => x.Item1, x => x.Item2);

 }

}

I have made very careful choice of types for serialization here:

•	 The overall type of the variable is an array. If you made this a List,

the serializer would never call the setter and would instead try to

use the getter and then Add() to that getter – we definitely don’t

want that.

•	 We are using a ValueTuple instead of an ordinary Tuple.

Conventional tuples cannot be serialized because they do not have

parameterless constructors, whereas ValueTuples don’t have this

problem.

Chapter 7 Adapter

144

In case you’re wondering, here’s how a serialized class would look in XML:

<?xml version="1.0" encoding="utf-16"?>

<CountryStats xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <CapitalsSerializable>

 <ValueTupleOfStringString>

 <Item1>France</Item1>

 <Item2>Paris</Item2>

 </ValueTupleOfStringString>

 </CapitalsSerializable>

</CountryStats>

The adapter presented here is quite different from what you might expect because

the API we’re trying to adapt the class to is implicit – serialization mechanics are

concealed by the serializer we’re using, so the only way to know about this issue is

through trial and error.3

This example is a bit ambiguous with respect to SOLID principles: On the one hand,

we’re separating out the serialization concern. On the other hand, should this really be

part of the class itself? It would be a lot neater if we could decorate the member with

some [SerializeThisDictionary] attribute and have the conversion process handled

elsewhere. Alas, such are the limitations of the way serialization is implemented in .NET.

�Generic Value Adapter
In C++, unlike in C#, generic arguments don’t have to be types: they can be literals

instead. For example, you can write template <int n> class X {} and then instantiate

a class of type X<42>. There are cases where this sort of functionality is necessary in C#,

and even though the language does not allow the use of values in generic arguments, we

can build adapters that help us adapt values to generic types.

3 You really want to use third-party serialization components if you can. The support for both
binary and XML serialization in .NET is very patchy and has lots of unpleasant caveats. If you
were to take a JSON serializer such as Json.NET, none of the problems described previously would
be an issue.

Chapter 7 Adapter

145

The idea behind this is very simple, so to make it interesting, I’m going to throw in an

added bonus: not only are we going to work with the Generic Value Adapter pattern but

we’ll also make use of some advanced generic magic just to spice things up.

First, here’s the scenario I propose. Say you’re working in a mathematical or graphics

domain and you want to have (geometric) vectors of different sizes and use different data

types. For example, you want Vector2i to be a vector with two integer values, whereas a

Vector3f would be a three-dimensional vector with floating-point values.

What we really want is to have a class Vector<T, D> (T = type, D = dimensions) that

would be defined as…

public class Vector<T, D>

{

 protected T[] data;

 public Vector()

 {

 data = new T[D]; // impossible

 }

}

…and then instantiated it as

var v = new Vector<int, 2>(); // impossible

Both the constructor initialization and the instantiation are impossible in C#. The

solution to this problem is not pretty: we basically wrap literals like 2, 3, and so on inside

classes. To do this, first of all, we define an interface for returning an integer:

public interface IInteger

{

 int Value { get; }

}

And now this interface can be implemented by concrete structures (no reason to use

classes here)4 that would yield values of 2, 3, and so on. To make it a bit neater to use, I’ll

put all of those inside a class that would act as an enum-like entity:

4 Sadly, it is impossible to declare these classes as ref structs for two reasons. They cannot
implement interfaces, and furthermore, they cannot be used as type arguments.

Chapter 7 Adapter

146

public static class Dimensions

{

 public readonly struct Two : IInteger

 {

 public int Value => 2;

 }

 public readonly struct Three : IInteger

 {

 public int Value => 3;

 }

}

So now we can finally define a working Vector<T, D> class that would initialize the

data correctly:

public class Vector<T, D>

 where D : IInteger, new()

{

 protected T[] data;

 public Vector()

 {

 data = new T[new D().Value];

 }

}

This approach may be convoluted, but it does, in fact, work. We require that D is an

IInteger that also has a default constructor, and when it comes to initializing the data

storage, we spin up an instance of D and take its value.

To make use of this new class, you’d write something like the following:

var v = new Vector<int, Dimensions.Two>();

Alternatively, you could make things reusable by defining inheriting types, for

example:

public class Vector2i : Vector<int, Dimensions.Two> {}

// and then

var v = new Vector2i();

Chapter 7 Adapter

147

So that’s it. We are done with the discussion of the Generic Value Adapter pattern as

such. As I’m sure you can appreciate, the idea is both trivial and, unfortunately, ugly at

the same time. Imagine having to make Dimensions.Three, Dimensions.Four, and so on!

Maybe some code generation can help here, though.

Now, it would be grossly unfair of me to abandon this example and just let you fend

for yourself from this point on, so let’s discuss a few ideas on how to get this example to

production status. Even though these ideas are not central to design patterns, an attempt

to get this Vector fully functional brings up one of the tricky aspects of C# – namely,

recursive generics.

Let’s start with the obvious things: we want to somehow access and modify data

in the vector as if it were an array. A simple approach would be to simply expose an

indexer:

public class Vector<T, D>

 where D : IInteger, new()

{

 // ... other members omitted

 public T this[int index]

 {

 get => data[index];

 set => data[index] = value;

 }

}

Similarly, if you decide to inherit, you can create additional getters and setters for

having named coordinates:

public class Vector2i : Vector<int, Dimensions.Two>

{

 public int X

 {

 get => data[0];

 set => data[0] = value;

 }

 // similarly for Y

}

Chapter 7 Adapter

148

You could, theoretically, stick predictable properties such as X,Y,Z into the base

class, too, but that would be a bit confusing because then you could have a one-

dimensional vector with an exposed Z coordinate that would simply throw an exception

when accessed.

Anyways, with this all set, you can now initialize a vector as follows:

var v = new Vector2i();

v[0] = 123; // using an indexer

v.Y = 456; // using a property

Of course, it would really be nice if we could somehow initialize data in the

constructor. Thanks to the params keyword, our base Vector can have a constructor

taking an arbitrary number of arguments. We just need to make sure that the data being

initialized is of the right size:

public Vector(params T[] values)

{

 var requiredSize = new D().Value;

 data = new T[requiredSize];

 var providedSize = values.Length;

 for (int i = 0; i < Math.Min(requiredSize, providedSize); ++i)

 data[i] = values[i];

}

Now we can initialize a vector using a constructor; we cannot really initialize the

derived Vector2i this way, though, not until we create a forwarding constructor:

public class Vector2i : Vector<int, Dimensions.Two>

{

 public Vector2i() {}

 public Vector2i(params int[] values) : base(values) {}

}

So now we can finally make a new Vector2i(2, 3), and everything will compile.

This is actually one of the two possible approaches to instantiating these vectors, the

other involving the use of a factory method. But, before we get there, let’s first of all

consider one problem that will throw a fairly big spanner in the works.

Chapter 7 Adapter

149

Here’s what I want to be able to write:

var v = new Vector2i(1, 2);

var vv = new Vector2i(3, 2);

var result = v + vv;

Now, this is a sad story. We cannot go into our Vector<T, D> and give it an

operator +. Why not? Well, because T is not constrained to numerics. It could be a

Guid or something, and the operation to add two GUIDs is undefined. There is no way

for us to tell C# to constrain T to numeric types (other languages, such as Rust, have

solved this problem), so the only way we can get this all to work is to create more types

derived from Vector – types such as VectorOfInt, VectorOfFloat, and so on:

public class VectorOfInt<D> : Vector<int, D>

 where D : IInteger, new()

{

 public VectorOfInt() {}

 public VectorOfInt(params int[] values) : base(values) {}

 public static VectorOfInt<D> operator +

 (VectorOfInt<D> lhs, VectorOfInt<D> rhs)

 {

 var result = new VectorOfInt<D>();

 var dim = new D().Value;

 for (int i = 0; i < dim; i++)

 {

 result[i] = lhs[i] + rhs[i];

 }

 return result;

 }

}

Chapter 7 Adapter

150

As you can see from this listing, we’ve had to replicate the constructor API of Vector,

but we managed to provide a good operator + implementation that adds the two

vectors together. Now all we need to do is modify our Vector2i, and we’re good to go:

public class Vector2i : VectorOfInt<Dimensions.Two>

{

 public Vector2i(params int[] values) : base(values)

 {

 }

}

Notice something interesting: we removed the parameterless constructor because

it’s no longer required, as it’s now contained in VectorOfInt. However, we still have to

keep the params constructor so we can initialize a Vector2i instance.

Here’s a final complication that we can consider. Suppose you’re not really interested

in doing this constructor propagation all over the place. Say you decide that, instead of

constructors, all derived classes (VectorOfInt, VectorOfFloat, Vector2i, etc.) will have

no constructors in their bodies. Instead, we decide that the creation of all these types

will be handled by a single Vector<T, D>.Create() factory method. How can we get

this done?

This situation is not simple and calls for the use of recursive generics. Why? Because

the static Vector.Create() method needs to return the right type. If I call Vector3f.

Create(), I expect a Vector3f to be returned, not a Vector<float, Dimensions.Three>

and not VectorOfFloat<Dimensions.Three> either.

This means that we need to make several modifications. First, Vector now gets a new

generic parameter TSelf referring to the class deriving from it:

public abstract class Vector<TSelf, T, D>

 where D : IInteger, new()

 where TSelf : Vector<TSelf, T, D>, new()

{

 // ...

}

Chapter 7 Adapter

151

As you can see, TSelf is constrained to be an inheritor of Vector<TSelf, T, D>.

Now, any derived type (say, VectorOfFloat) needs to be changed to

public class VectorOfFloat<TSelf, D>

 : Vector<TSelf, float, D>

 where D : IInteger, new()

 where TSelf : Vector<TSelf, float, D>, new()

{

 // wow, such empty!

}

Notice that this class no longer has any forwarding constructors, since we plan

on using a factory method. Similarly, you’d have to modify any class that derives from

VectorOfFloat, for example:

public class Vector3f

 : VectorOfFloat<Vector3f, Dimensions.Three>

{

 // empty again

}

Notice how the TSelf gets propagated up the hierarchy: first, Vector3f travels up to

VectorOfFloat and then up to Vector. This way, we can be sure that Vector knows that

its factory method needs to return a Vector3f. Oh, and speaking of the factory method,

we can finally write it!

public static TSelf Create(params T[] values)

{

 var result = new TSelf();

 var requiredSize = new D().Value;

 result.data = new T[requiredSize];

 var providedSize = values.Length;

 for (int i = 0; i < Math.Min(requiredSize, providedSize); ++i)

 result.data[i] = values[i];

 return result;

}

Chapter 7 Adapter

152

This is where TSelf comes in handy – it is the return type of our factory method.

Now, whichever derived class you create, making an instance of this class is as simple

as writing

var coord = Vector3f.Create(3.5f, 2.2f, 1);

And there you have it! Naturally, the type of the preceding coord is a Vector3f – no

need for casts or any other magic. This is the kind of functionality recursive generics

allow you to have. Figure 7-1 is an illustration of our entire scenario.

Figure 7-1.  Generic value adapter class diagram

�Adapter in Dependency Injection
There are certain advanced adapter scenarios that are handled nicely by dependency

injection frameworks such as Autofac. The approach here is, admittedly, somewhat different

from the “adapt component X to interface Y” that is discussed in the rest of the chapter.

Consider a scenario where your application has a bunch of commands that you want

to invoke. Each command is able to execute itself, and that’s about it:

public interface ICommand

{

 void Execute();

}

Chapter 7 Adapter

153

public class SaveCommand : ICommand

{

 public void Execute()

 {

 Console.WriteLine("Saving current file");

 }

}

public class OpenCommand : ICommand

{

 public void Execute()

 {

 Console.WriteLine("Opening a file");

 }

}

Now, in your editor, you want to create a bunch of buttons. Each button, when

pressed, executes the corresponding command. We can represent the button as follows:

public class Button

{

 private ICommand command;

 private string name;

 public Button(ICommand command, string name)

 {

 this.command = command;

 this.name = name;

 }

 public void Click() { command.Execute(); }

 public void PrintMe()

 {

 Console.WriteLine($"I am a button called {name}");

 }

}

Chapter 7 Adapter

154

So here is a challenge: how do you make an editor that has a single button created for

each of the commands registered in the system? We can begin by defining it as follows:

public class Editor

{

 public IEnumerable<Button> Buttons { get; }

 public Editor(IEnumerable<Button> buttons)

 {

 Buttons = buttons;

 }

}

We can set up a dependency injection container with all the possible commands. We

can also add a bit of metadata to each command, storing its name:

var b = new ContainerBuilder();

b.RegisterType<OpenCommand>()

 .As<ICommand>()

 .WithMetadata("Name", "Open");

b.RegisterType<SaveCommand>()

 .As<ICommand>()

 .WithMetadata("Name", "Save");

We can register an adapter inside the DI container that will construct a Button for

each registered command and, furthermore, will take the metadata Name value from each

command and pass it as the second constructor argument:

b.RegisterAdapter<Meta<ICommand>, Button>(cmd =>

 new Button(cmd.Value, (string)cmd.Metadata["Name"]));

Now we register the Editor itself and build the container. When we resolve the

editor, its constructor will receive an IEnumerable<Button> with one button per

registered command:

b.RegisterType<Editor>();

using var c = b.Build();

var editor = c.Resolve<Editor>();

foreach (var btn in editor.Buttons)

Chapter 7 Adapter

155

 btn.PrintMe();

// I am a button called Open

// I am a button called Save

So, as you can see, while this is not an adapter in the classic sense, it allows us to

enforce one-to-one correspondence between a set of types conforming to some criteria

and a set of instances related to those types.

�Bidirectional Adapter
A bidirectional adapter adapts the interface both ways. This means that, one way or another,

two components can interact with one another both ways through an intermediary.

The most common example is a numeric text field on a form. A text field, by

definition, works with text. But if you bind it to an integer variable, you need to perform

conversions: when the user enters input, you need to check it’s actually an integer and

assign it to the variable; when the user changes the variable behind the scenes, you need

to turn it into a string to actually show on-screen.

In the WPF framework, we have the IValueConverter interface designed for this

exact purpose:

public interface IValueConverter

{

 �object Convert(object value, Type targetType, object parameter,

CultureInfo culture);

 �object ConvertBack(object value, Type targetType, object parameter,

CultureInfo culture);

}

The implementation of, say, a string-to-int converter could be something like

public class IntToString : IValueConverter

{

 �public object Convert(object value, Type targetType, object parameter,

CultureInfo culture)

 {

 return value.ToString();

 }

Chapter 7 Adapter

156

 �public object ConvertBack(object value, Type targetType, object

parameter, CultureInfo culture)

 {

 return int.TryParse((string)value, out int ret) ? ret : 0;

 }

}

WPF also has an IMultiValueConverter to convert multiple values to/from a

particular type. Both interfaces take input values as objects, that is, they are weakly

typed. If I needed such a converter in my application, I would most likely go for

something like an IValueConverter<TFrom, TTo> interface and use those type

parameters in the methods.

�Adapters in the .NET Framework
There are many uses of the Adapter pattern in the .NET Framework, including the

following:

•	 ADO.NET providers living in System.Data, such as SqlCommand,

adapt an OOP-defined database command or query to be executed

using SQL. Each ADO.NET provider is an adapter for a particular

database type.

•	 Database data adapters – types that inherit from DbDataAdapter –

perform a similar, higher-level operation. Internally, they represent

a set of data commands and a connection to a particular data source

(a database, typically), their goal being to populate a DataSet and

update the data source.

•	 LINQ providers are also adapters, each adapting some underlying

storage technology to be usable through LINQ operators (Select,

Where, etc.). Expression trees exist with the central purpose of

translating conventional C# lambda functions into other query

languages and mechanisms such as SQL.

Chapter 7 Adapter

157

•	 Stream adapters (e.g., TextReader, StreamWriter) adapt a stream to

read a particular type of data (binary, text) into a particular type of

object. For example, a StringWriter writes into a buffer held by a

StringBuilder.

•	 WPF uses the IValueConverter interface to allow scenarios such

as a text field being bound to a numeric value. Unlike most of the

adapters here, this one is bidirectional, meaning that the interface is

adapted in both directions: changes to a numeric field/property get

turned into text displayed in the control and, conversely, text entered

into the control gets parsed and converted into a numeric value.

•	 Interop-related entities in C# represent the Adapter pattern. For

example, that dummy P/Invoke type that you write allows you to

adapt a C/C++ library to your C# needs. Same goes for Runtime

Callable Wrappers (RCWs), which allow managed classes and COM

components to interact despite their obvious interface differences.

�Summary
Adapter is a very simple concept: it allows you to adapt the interface you have to the

interface you need. The only real issue with adapters is that, in the process of adaptation,

you sometimes end up generating temporary data so as to satisfy requirements related

to representation of data in a form palatable for the target API. And when this happens,

we turn to caching: ensuring that new data is only generated when necessary. If we are

implementing caching with a special key, we need to ensure that collisions are either

impossible or handled appropriately. If we are using the object itself as the underlying

key, the presence of both GetHashCode() and Equals() solves this problem for us.

As an additional optimization, we can ensure that the adapter doesn’t generate

the temporaries immediately, but instead only generates them when they are actually

required. Further optimizations are possible but are domain-specific: for example, in our

case lines can be parts of other lines, which would let us to further save on the number of

Point objects created.

Chapter 7 Adapter

159

CHAPTER 8

Bridge
One very common situation that occurs when designing software is the so-called state

space explosion where the number of related entities required to represent all possible

states “explodes” in a Cartesian product fashion. For example, if you have circles

and squares of different colors, you might end up with classes such as RedSquare,

BlueSquare, RedCircle, BlueCircle, etc. Clearly, nobody wants that.

What we do instead is we connect things together, and there are different ways of

doing that. For example, if object color is simply a trait, we create an enum. But if color

has mutable fields, properties, or behaviors, we cannot restrict ourselves to an enum: if

we do, we’ll have plenty of if/switch statements in unrelated classes. Again, it’s not

something that we want.

The Bridge pattern essentially connects constituent aspects of an object using, ahem,

references. Not very exciting, is it? Well, I can offer some excitement toward the end of

our exploration, but we first need to take a look at a conventional implementation of the

pattern.

�Conventional Bridge
Let’s imagine that we are interested in drawing different kinds of shapes on the screen.

Suppose that we have a variety of shapes (circle, square, etc.) and also different APIs for

rendering these (say, raster vs. vector rendering).

We want to create objects that specify both the type of shape and the rendering

mechanism the shape should use for rendering. How can we do this? Well, on the one

hand, we can define an infinite bunch of classes (RasterSquare, VectorCircle, etc.) and

provide an implementation for each. Or we could somehow get each shape to refer to

which renderer it’s using.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_8

https://doi.org/10.1007/978-1-4842-8245-8_8

160

Let’s begin by defining an IRenderer. This interface will determine how different

shapes are rendered by whatever mechanism is required1:

public interface IRenderer

{

 void RenderCircle(float radius);

 // RenderSquare, RenderTriangle, etc.

}

And, on the other side, we can define an abstract class (not an interface) for our

shape hierarchy. Why an abstract class? Because we want to keep a reference to the

renderer:

public abstract class Shape

{

 protected IRenderer renderer;

 // a bridge between the shape that's being drawn an

 // the component which actually draws it

 public Shape(IRenderer renderer)

 {

 this.renderer = renderer;

 }

 public abstract void Draw();

 public abstract void Resize(float factor);

}

This may seem counterintuitive, so let’s take a pause and ask ourselves: what are we

trying to guard against, exactly? Well, we’re trying to handle two situations: when new

renderers get added and when new shapes get added to the system. We don’t want either

of these to spawn multiple changes. So here are the two situations:

1 I am being sly here by using a calling convention. This is done purely for illustration purposes.
If every rendered shape is neither parent nor child of another shape, you can simplify this by
making a series of similarly named overloads, that is, Render(Circle c), Render(Square s), and
so on. The choice is up to you.

Chapter 8 Bridge

161

•	 If a new shape gets added, all it has to do is inherit Shape and

implement its members (say there are M different ones). Each

renderer then has to implement just one new member (RenderXxx).

So if there are M different renderers, the total number of operations

required for a new shape is M+N.

•	 If a new renderer gets added, all it has to do is implement M different

members, one for every shape.

As you can see, we either implement M members or M+N members. At no point do

we get an M×N situation, which is what the pattern actively tries to avoid. Another added

benefit is that renderers always know how to render all the shapes available in the system

because each shape Xxx has a Draw() method that explicitly calls RenderXxx().

So here is the implementation of the Circle:

public class Circle : Shape

{

 private float radius;

 public Circle(IRenderer renderer, float radius) : base(renderer)

 {

 this.radius = radius;

 }

 public override void Draw()

 {

 renderer.RenderCircle(radius);

 }

 public override void Resize(float factor)

 {

 radius *= factor;

 }

}

Chapter 8 Bridge

162

And here is a sample implementation of one of the renderers:

public class VectorRenderer : IRenderer

{

 public void RenderCircle(float radius)

 {

 WriteLine($"Drawing a circle of radius {radius}");

 }

}

Notice that the Draw() method simply uses the bridge: it calls the

corresponding renderer’s drawing implementation for this particular object.

The entire arrangement is illustrated in Figure 8-1.

In order to use this setup, you have to instantiate both an IRenderer and the shape.

This can be done directly:

var raster = new RasterRenderer();

var vector = new VectorRenderer();

var circle = new Circle(vector, 5);

circle.Draw(); // Drawing a circle of radius 5

circle.Resize(2);

circle.Draw(); // Drawing a circle of radius 10

Or, if you are using a dependency injection framework, you can define a default

renderer to be used throughout the application. This way, all constructed instances of a

Circle will be preinitialized with a renderer that is centrally defined. Here is an example

that uses the Autofac container:

var cb = new ContainerBuilder();

cb.RegisterType<VectorRenderer>().As<IRenderer>();

cb.Register((c, p) => new Circle(c.Resolve<IRenderer>(),

 p.Positional<float>(0)));

using (var c = cb.Build())

{

 var circle = c.Resolve<Circle>(

 new PositionalParameter(0, 5.0f)

);

Chapter 8 Bridge

163

 circle.Draw();

 circle.Resize(2);

 circle.Draw();

}

This specifies that, by default, a new VectorRenderer instance should be provided

when someone asks for an IRenderer. Furthermore, since shapes take an additional

parameter (their size, presumably), we specify that such a parameter must be provided.

There are alternatives to this approach, such as defining a default value (e.g., zero) or

creating a delegate factory (see Chapter 4) and resolving that instead.

�Dynamic Prototyping Bridge
You may have noticed that the bridge is nothing more than the application of

the Dependency Inversion Principle, where you connect two distinct hierarchies

together through a common parameter. So now we are going to take a look at a more

sophisticated example involving something called Dynamic Prototyping.

Dynamic Prototyping is a technique for editing .NET programs while they are

running. You have already experienced this as the “Edit & Continue” feature in Visual

Studio. The idea of Dynamic Prototyping is to allow the user to make immediate changes

to the program that’s currently running by editing and runtime-compiling the program’s

source code.

Figure 8-1.  Bridge class diagram

Chapter 8 Bridge

164

How does it work? Well, imagine you are sticking to “one class per file” approach and

you know in advance that your DI container can satisfy all dependencies of a given class.

What you can do in this case is as follows:

•	 Allow the user to edit the source code of this class. This works best if

there is one-to-one correspondence between the class and the file.

Most modern IDEs try to enforce this approach.

•	 After you edit and save the new source code, you use the C# compiler

to compile just that class and get an in-memory implementation

of the new type. You basically get a System.Type. You could, if you

wanted, just instantiate that new type and use it to update some

reference, or…

•	 You change the registration options in the DI container so that your

new type is now a replacement for the original type. This naturally

requires that you are using abstractions of some kind.

The last point needs explaining. If you have a concrete type Foo.Bar and you build a

brand-new, in-memory type Foo.Bar, then, even if the APIs of those types stay the same,

those types are incompatible. You cannot assign a reference to the old Bar with the new

one. The only way to use them interchangeably is via dynamic or reflection, and both of

those are niche cases.

Let me illustrate how the entire process works. Suppose you have a Log class being

used by a Payroll class. Using hypothetical dependency injection, you could define it as

// Log.cs

public class Log

{

 void Info(string msg) { ... }

}

// Payroll.cs

public class Payroll

{

 [Service]

 public Log Log { get; set; }

}

Chapter 8 Bridge

165

Notice that I’m defining the Log as an injected property, not via constructor

injection. Now, to make a dynamic bridge, you would introduce an interface, that is:

// ILog.cs

public interface ILog

{

 void Info(string msg);

}

// Log.cs

public class Log : ILog { /* as before */ }

// Payroll.cs

public class Payroll

{

 [Service]

 public ILog Log { get; set; }

}

Pay attention to the names of files too. This is important; each type is in its own file.

Now, as you run this program, suppose you want to change the implementation of Log

without stopping the application. What you would do is

•	 Open up an editor with the Log.cs file and edit the file.

•	 Close the editor. Now Log.cs gets compiled into an in-memory

assembly.

•	 Create the first type found in this new assembly. It will be a Log, for

sure, but incompatible with the previous Log! However, it implements

an ILog, which is good enough for us.

•	 Go over the objects already created by the container and update all

[Service]-marked references to an ILog with the new object.

This last part could be tricky. First, you need a container that can go over its own

injection points, though, to be honest, you could use good old-fashioned reflection for

this purpose too. The reason I’m referring to a container is that it’s more convenient to

use. Also, notice this approach only works for property injection, and there’s an implicit

Chapter 8 Bridge

166

assumption that the service is immutable (has no state). If the service had state, you’d

have to serialize it and then deserialize the data into the new object – not impossible, but

a robust implementation needs to handle many corner cases.

So the moral of this story is that, in order to be able to substitute one runtime-

constructed type for another, they both need to implement the same interface. And

before you ask, no, you cannot dynamically change any base type (class or interface).

�Summary
The principal goal of the Bridge design pattern, as we have seen, is to avoid excessive

proliferation of data types where there are two or more “dimensions,” that is, aspects of a

system that can potentially multiply in number. The best approach to Bridge is still active

avoidance (e.g., replace classes with enums, if possible), but if that’s not possible, we

simply abstract away both hierarchies and find a way of connecting them.

Chapter 8 Bridge

167

CHAPTER 9

Composite
It’s a fact of life that objects are quite often composed of other objects (or, in other

words, they aggregate other objects). Remember, we agreed to equate aggregation and

composition at the start of this part of the book.

There are a few ways for an object to advertise that it’s composed of something.

The most obvious approach is for an object to either implement IEnumerable<T>

(where T is whatever you’re prepared to expose) or, alternatively, to expose public

members that themselves implement IEnumerable<T>. This is not the only interface

that communicates the idea of having multiple objects (there are many others, e.g.,

IAsyncEnumerable), but it’s probably the most well-known.

Another option for advertising being a composite is to inherit from a known

collection class such as Collection<T>, List<T>, or similar. This of course lets you not

just implement IEnumerable<T> implicitly but also provides you with an internal storage

mechanism, so issues such as adding new objects to the collection are automatically

handled for you.

So what is the Composite pattern about? Essentially, we try to give single objects and

groups of objects an identical interface and have those interface members work correctly

regardless of which class is the underlying.

�Grouping Graphic Objects
Think of an application such as PowerPoint where you can select several different

objects and drag them as one. And yet, if you were to select a single object, you could

grab that object too. Same goes for rendering: you can render an individual graphic

object, or you can group several shapes together, and they get drawn as one group.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_9

https://doi.org/10.1007/978-1-4842-8245-8_9

168

The implementation of this approach is rather easy because it relies on just a single

base class such as the following:

public class GraphicObject

{

 public virtual string Name { get; set; } = "Group";

 public string Color;

 // todo members

}

public class Circle : GraphicObject

{

 public override string Name => "Circle";

}

public class Square : GraphicObject

{

 public override string Name => "Square";

}

This appears to be a fairly ordinary example with nothing standing out except for the

fact that GraphicObject is abstract, as well as the virtual string Name property, which

is, for some reason, set to “Group”. So even though the inheritors of GraphicObject are,

obviously, scalar entities, GraphicObject itself reserves the right to act as a container for

further items.

The way this is done is by furnishing GraphicObject with a lazily constructed list of

children:

public class GraphicObject

{

 ...

 private readonly Lazy<List<GraphicObject>> children = new();

 public List<GraphicObject> Children => children.Value;

}

Chapter 9 Composite

169

So GraphicObject can act as both a singular, scalar element (e.g., you inherit it, and

you get a Circle) and a container of elements. We can implement some methods that

would print its contents:

public class GraphicObject

{

 private void Print(StringBuilder sb, int depth)

 {

 sb.Append(new string('*', depth))

 �.Append(string.IsNullOrWhiteSpace(Color) ? string.Empty :

$"{Color} ")

 .AppendLine($"{Name}");

 foreach (var child in Children)

 child.Print(sb, depth + 1);

 }

 public override string ToString()

 {

 var sb = new StringBuilder();

 Print(sb, 0);

 return sb.ToString();

 }

}

This code uses asterisks (*) for indicating the level of depth of each element. Armed

with this, we can now construct a drawing that consists of both shapes and a group of

shapes and print it out:

var drawing = new GraphicObject {Name = "My Drawing"};

drawing.Children.Add(new Square {Color = "Red"});

drawing.Children.Add(new Circle{Color="Yellow"});

var group = new GraphicObject();

group.Children.Add(new Circle{Color="Blue"});

group.Children.Add(new Square{Color="Blue"});

drawing.Children.Add(group);

WriteLine(drawing);

Chapter 9 Composite

170

And here is the output we get:

My Drawing

*Red Square

*Yellow Circle

*Group

**Blue Circle

**Blue Square

So this is the simplest implementation of the Composite design pattern that is based

on inheritance and optional containment of a list of sub-elements. The only issue, which

the astute reader will point out, is that it makes absolutely no sense for scalar classes

such as Circle or Square to have a Children member. What if someone were to use such

an API? It would make very little sense.

In the next example, we’re going to look at scalar objects that are truly scalar, with no

extraneous members in their interface.

�Neural Networks
Machine learning is the hot new thing, and I hope it stays this way, or I’ll have to update

this paragraph. Part of machine learning is the use of artificial neural networks: software

constructs that attempt to mimic the way neurons work in our brains.

The central concept of neural networks is, of course, a neuron. A neuron can produce

a (typically numeric) output as a function of its inputs, and we can feed that value on to

other connections in the network. We’re going to concern ourselves with connections

only, so we’ll model the neuron like so:

public class Neuron

{

 public List<Neuron> In, Out;

}

Chapter 9 Composite

171

This is a simple neuron with outgoing and incoming connections to other neurons.

What you probably want to do is to be able to connect one neuron to another, which can

be done using

public void ConnectTo(Neuron other)

{

 Out.Add(other);

 other.In.Add(this);

}

This method does fairly predictable things: it sets up connections between the

current (this) neuron and some other one. So far, so good.

Now, suppose we also want to create neuron layers. A layer is quite simply a specific

number of neurons grouped together. This can easily be done just by inheriting from a

Collection<T>, that is:

public class NeuronLayer : Collection<Neuron>

{

 public NeuronLayer(int count)

 {

 while (count --> 0)

 Add(new Neuron());

 }

}

Looks good, right? I’ve even thrown in the arrow --> operator for you to enjoy.1 But

now, we’ve got a bit of a problem.

The problem is this: we want to be able to have neurons connectable to neuron

layers (in both directions), and we also want layers to be connectable to other layers.

Broadly speaking, we want this to work:

var neuron1 = new Neuron();

var neuron2 = new Neuron();

var layer1 = new NeuronLayer(3);

1 There is, of course, no --> operator; it’s quite simply the postfix decrement -- followed by the
greater than >. The effect, though, is exactly as the --> arrow suggests: in while (count --> 0)
we iterate until count reaches zero.

Chapter 9 Composite

172

var layer2 = new NeuronLayer(4);

neuron1.ConnectTo(neuron2); // works already :)

neuron1.ConnectTo(layer1);

layer2.ConnectTo(neuron1);

layer1.ConnectTo(layer2);

As you can see, we’ve got four distinct cases to take care of:

	 1.	 Neuron connecting to another neuron

	 2.	 Neuron connecting to layer

	 3.	 Layer connecting to neuron

	 4.	 Layer connecting to another layer

As you may have guessed, there’s no way in Baator that we’ll be making four

overloads of the ConnectTo() method. What if there were three distinct classes? Would

we realistically consider creating nine methods? I do not think so.

The way to have a single-method solution to this problem is to realize that both

Neuron and NeuronLayer can be treated as enumerables. In the case of NeuronLayer,

there’s no problem – it is already enumerable. But in the case of Neuron, well…we need

to do some work.

In order to get Neuron ready, we are going to

•	 Remove its own ConnectTo() method, since it’s not general enough.

•	 Implement the IEnumerable<Neuron> interface, yielding…ourself (!)

when someone wants to enumerate us.

Here’s what the new Neuron class looks like:

public class Neuron : IEnumerable<Neuron>

{

 public readonly List<Neuron> In = new(), Out = new();

 public IEnumerator<Neuron> GetEnumerator()

 {

 yield return this;

 }

 IEnumerator IEnumerable.GetEnumerator()

Chapter 9 Composite

173

 {

 return GetEnumerator();

 }

}

And now, the piece de resistance: since both Neuron and NeuronLayer now conform

to IEnumerable<Neuron>, all that remains for us to do is to implement a single extension

method that connects the two enumerables together:

public static class ExtensionMethods

{

 public static void ConnectTo(

 this IEnumerable<Neuron> self, IEnumerable<Neuron> other)

 {

 if (ReferenceEquals(self, other)) return;

 foreach (var from in self)

 foreach (var to in other)

 {

 from.Out.Add(to);

 to.In.Add(from);

 }

 }

}

And that’s it! We now have a single method that can be called to glue together any

entities consisting of Neuron classes. Now, if we decided to make some NeuronRing,

provided it supports IEnumerable<Neuron>, we could easily connect it to either a Neuron,

a NeuronLayer, or another NeuronRing!

�Shrink Wrapping the Composite
No doubt many of you want some kind of prepackaged solution that would allow scalar

objects to be treated as enumerables. Well, if your scalar class doesn’t derive from

another class, you can simply define a base class similar to the following:

public abstract class Scalar<T> : IEnumerable<T>

Chapter 9 Composite

174

 where T : Scalar<T>

{

 public IEnumerator<T> GetEnumerator()

 {

 yield return (T) this;

 }

 IEnumerator IEnumerable.GetEnumerator()

 {

 return GetEnumerator();

 }

}

This class is generic, and the type parameter T refers to the object we’re trying to

“scalarize.” Now, making any object expose itself as a collection of one element is as

simple as…

public class Foo : Scalar<Foo> {}

…and the object is immediately available for use in, say, a foreach loop:

var foo = new Foo();

foreach (var x in foo)

{

 // will yield only one value of x

 // where x == foo referentially :)

}

This approach only works if your type doesn’t have a parent because multiple

inheritance is impossible. It would, of course, be nice to have some marker interface

(inheriting from IEnumerable<T>, perhaps, though that’s not strictly necessary) that

would implement GetEnumerator() as extension methods. Sadly, the C# language

designers did not leave this option available – GetEnumerator()s must be strictly

instance methods to be picked up by foreach.

Chapter 9 Composite

175

Lucky for us, we can abuse the C# default interface member mechanism in

order to provide a default IEnumerable implementation in an interface instead of an

abstract class:

public interface IScalar<out T> : IEnumerable<T>

{

 IEnumerator<T> IEnumerable<T>.GetEnumerator()

 {

 yield return (T) this;

 }

 IEnumerator IEnumerable.GetEnumerator()

 {

 return GetEnumerator();

 }

}

We can now greatly simplify our Neuron class:

public class Neuron : IScalar<Neuron>

{

 public readonly List<Neuron> In = new(), Out = new();

}

With this modification, our example continues to work without any problems.

ConnectTo() correctly identifies that an IScalar is an IEnumerable and connects the

different pieces of the application.

Of course, this example leverages a certain amount of trickery. Even though foreach

works on an IScalar, a call to neuron.GetEnumerator() will not compile because

accessing default interface members requires an explicit cast to the related interface. In

our case, we can let it slide because foreach is all that we need to work.

�Composite Specification
When I introduced the Open-Closed Principle, I gave a demo of the Specification pattern.

The key aspects of the pattern were base types IFilter and ISpecification that allowed

us to use inheritance to build an extensible filtering framework that conformed to the

Chapter 9 Composite

176

OCP. Part of that implementation involved combinators – specifications that would

combine several specifications together under an AND or OR operator mechanic.

Both AndSpecification and OrSpecification made use of two operands (which we

called left and right), but that restriction was completely arbitrary: in fact, we could

have combined more than two elements together, and furthermore, we could improve

the OOP model with a reusable base class such as the following:

public abstract class CompositeSpecification<T> : ISpecification<T>

{

 protected readonly ISpecification<T>[] items;

 public CompositeSpecification(params ISpecification<T>[] items)

 {

 this.items = items;

 }

}

This should feel familiar because we’ve implemented the approach before. We made

an ISpecification that is, in fact, a combination of different specifications passed as

params in the constructor.

With this approach, the AndSpecification combinator can now be implemented

with a bit of LINQ:

public class AndSpecification<T> : CompositeSpecification<T>

{

 �public AndSpecification(params ISpecification<T>[] items) :

base(items) {}

 public override bool IsSatisfied(T t)

 {

 return items.All(i => i.IsSatisfied(t));

 }

}

Similarly, if you wanted an OrSpecification, you would replace the call to All()

with a call to Any(). You could even make specifications that would support other,

more complicated criteria. For example, you could make a composite such that the

item is required to satisfy at most/at least/specifically a number of specifications

contained within.

Chapter 9 Composite

177

You can now create composites of any size using the constructor with any number of

arguments. If you want, you can make a utility factory method that would save you from

typing generic arguments and make the syntax a bit neater:

public static class All

{

 [MethodImpl(MethodImplOptions.AggressiveInlining)]

 public static AndSpecification<T> Of<T>(params Specification<T>[] items)

 {

 return new(items);

 }

}

This would be usable as

var spec = All.Of(

 new ColorSpecification(Color.Green),

 new SizeSpecification(Size.Tiny)

);

Of course, when it comes to syntax helpers, in C# there are many different

alternatives. For example, you could define an extension method on a ValueTuple

composed of any number of different specifications, for example:

public static class CompositeSpecificationExtensions

{

 // extension method on typed value tuple

 public static AndSpecification<T> All<T>(

 this (Specification<T> first, Specification<T> second) specs)

 {

 return new(specs.first, specs.second);

 }

}

This could be used as

var spec = (

 new ColorSpecification(Color.Green),

 new SizeSpecification(Size.Tiny)

).All();

Chapter 9 Composite

178

However, of course, to handle different numbers of arguments, you would have to

generate a lot of these extension methods!

�Summary
The Composite design pattern allows us to provide identical interfaces for individual

objects and collections of objects. This can be accomplished in one of two ways:

•	 Make every scalar object you intend to work with a collection, or

alternatively, get it to contain a collection and expose it somehow.

You can use Lazy<T> so you don’t allocate too many data structures

if they are not actually needed. This is a very simple approach and is

somewhat unidiomatic.

•	 Teach scalar objects to appear and act as collections. This is done by

implementing IEnumerable<T> and then calling yield return this

in GetEnumerator(). Strictly speaking, having a scalar value expose

IEnumerable is also unidiomatic, but it is aesthetically better and has

a smaller computational cost.

Chapter 9 Composite

179

CHAPTER 10

Decorator
Suppose you’re working with a class your colleague wrote and you want to extend that

class’ functionality. How would you do it, without modifying the original code? Well, one

approach is inheritance: you make a derived class, add the functionality you need, and

maybe even override something, and you’re good to go.

Right, except this doesn’t always work, and there are many reasons. The most

common reason is that you cannot inherit the class – either because your target class

needs to inherit something else (and multiple inheritance is impossible) or because the

class you want to extend is sealed.

The Decorator pattern allows us to enhance existing types including, possibly,

multiple enhancements applied on top of one another, without either modifying the

original types (Open-Closed Principle) or causing an explosion of the number of

derived types.

Here is what I mean by multiple enhancements: suppose we have a class called

Shape that represents graphical shapes (circle, square, etc.) and we need to give shapes

color or a transparency value. We can make two inheritors called ColoredShape and

TransparentShape, but then we also need to take into account the fact that someone

will want a ColoredTransparentShape. So we’ve generated three classes to support two

enhancements; if we had three enhancements, we would need seven distinct classes.

This can be illustrated as a Venn diagram (Figure 10-1) showing all the partitions

generated by an intersection of three sets.

And let’s not forget that we actually want different shapes (Square, Circle, etc.) –

what base class would those inherit from? With three enhancements and two distinct

shapes, the number of classes would jump up to 14. Clearly, this is an unmanageable

situation – even if you are using a tool for code generation!

We’ll consider this Shape scenario a bit later on, but for now, we’ll take a look at

different examples.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_10

https://doi.org/10.1007/978-1-4842-8245-8_10

180

�The Basics of Delegation
Before we talk about decorators, we need to discuss the concept of delegation.

Delegation means, simply, that an object takes on the responsibilities of another object.

There are two ways it can do this: it can inherit the original object, or it can aggregate it.

Aggregation naturally implies that we try to expose the original object’s API as much

as it is feasible. For example, given an object Person defined as…

public sealed class Person

{

 public void SayHello() { ... }

}

…any object that seeks to aggregate Person and needs to expose SayHello() has two

choices:

•	 Expose the underlying Person object as public.

•	 Duplicate the SayHello() method, calling the underlying

implementation.

Figure 10-1.  Number of possible combinations of three different classes

Chapter 10 Decorator

181

In most cases, one would write something like the following:

public class Employee

{

 private Person person;

 public void SayHello() { person.SayHello(); }

}

This is delegation: the responsibility for saying hello is delegated to a different object.

In our example, we can just write the implementation by hand. But imagine that, instead

of Person, you had a class with dozens of methods that need to be delegated. In this case,

doing it by hand is tedious, which is why developer tools such as Rider and ReSharper

offer the Generate | Delegated Members functionality for automating the process.

Delegation is, in most cases, a simple affair. One challenge that comes up is to do

with fluent interfaces. If you decide to aggregate a StringBuilder and delegate its

AppendLine() call (which, I remind you, is fluent), developer tools will incorrectly

generate the following:

public class SomeClass

{

 private StringBuilder builder;

 �public StringBuilder AppendLine(string s) { return builder.

AppendLine(s); }

}

What you’re actually looking for is

public SomeClass AppendLine(string s)

{

 builder.AppendLine(s);

 return this;

}

I’m afraid you’ll just have to fix this part yourself!

Apart from the hiccup with fluent interfaces, expect possibly incorrect code being

generated around calls that are unsafe or unsafe language syntax such as pointers. And

don’t forget you don’t have to replicate the underlying API exactly.

Chapter 10 Decorator

182

�Points and Lines
To gain a fundamental appreciation for the Decorator design pattern, consider a

graphics application that performs some mathematical modeling using points and

lines and then needs to output points and lines to the screen. It may appear as though

we ought to only have two classes (Point and Line), but in practice, graphical objects

contain more information than mathematical ones.

For example, a 2D point only has x and y coordinates and in most circumstances can

probably be passed by value without loss of performance. A graphical point, on the other

hand, may need to specify the point size (since a point is typically rendered as a small

circle), and a graphical line can also specify line thickness; whether it’s solid, dotted, or

dashed; and so on.

Our first instinct is to use inheritance. If we define a Point as…

class Point

{

 public double X, Y;

}

…then a graphical point, which I shall simply call GPoint, may be defined as

class GPoint : Point

{

 public string Color;

}

This may seem like a great idea from the outset, but it’s really not, and I wouldn’t

recommend writing code like this. While the OOP approach is very appealing, we’re

losing out on the ability to turn Point into a struct. A Point is nothing more than a pair

of values, and if you were to introduce any members, most of them would be ones it’s

not worth inheriting. For example, if you were to give Point a ToString() member, you

would definitely override it in the inheritor, and calling base.ToString() is really the

same as calling someReference.ToString(), so there’s no advantage there.

Also, though we have polymorphism, we’re unlikely to ever use it, since the

mathematical and graphical representations are used in different areas of application.

Chapter 10 Decorator

183

Our typical scenarios are as follows:

•	 Turn a Point into a GPoint to show it on the screen.

•	 Get a Point from a GPoint in case we need some info about it.

•	 Have GPoint expose the same members as Point, but without

inheritance.

public readonly struct Point

{

 public readonly double X, Y;

}

class GPoint

{

 public Point Point;

 public string Color;

 // add some useful constructors, then...

 public double X => Point.X;

 public double Y => Point.Y;

}

GPoint is a decorator. It decorates Point, giving it additional functionality,

aggregating the original Point, and exposing its members. Notice that X and Y are

getters. Our original Point is read-only; it cannot be modified, only replaced wholesale,

the motivation being that mutable structs are generally dangerous (they introduce

unexpected temporaries) and so are best avoided.

If, for some reason, you’re concerned about lack of polymorphism, you can

introduce an implicit conversion operator that simply takes the Point part out of GPoint:

public static implicit operator Point(GPoint gp)

{

 return gp.Point;

}

Whether or not the opposite implicit conversion makes sense is up for debate – I’d

argue that it’s better to simply introduce a well-made constructor.

Chapter 10 Decorator

184

Now, consider a Line class (note: class, not struct) implemented as

class Line

{

 public Point Start, End;

}

Once again, in addition to a mathematical line, we want a graphical line that defines,

for example, the line thickness. This time round, the ideal solution is not so obvious. For

example, we can simply implement GLine as

class GLine

{

 public Line Line = new();

 public double Thickness = 1.0;

}

This is a decorator similar to the one we’ve made for Point, but it assumes that the

Points that make up the underlying Line do not need to be wrapped as GPoints. What if

they do? In this case, we could go for a different definition:

class GLine

{

 public GPoint Start = new(), End = new();

 public double Thickness = 1.0;

}

Once again, an implicit conversion can be made though, this time round, this will

make a copy of object state:

public static implicit operator Line(GLine gl)

{

 return new Line() { Start = gl.Start, End = gl.End };

}

Chapter 10 Decorator

185

�Adapter-Decorator
You can also have a decorator that acts as an adapter. For example, suppose we want to

use the CodeBuilder, but we want it to start acting as a string. Perhaps we want to take a

CodeBuilder and stick it into an API that expects our object to implement the = operator

for assigning from a string and a += operator for appending additional strings. Can we

adapt CodeBuilder to these requirements? We sure can. All we have to do is add the

appropriate functionality:

public static implicit operator CodeBuilder(string s)

{

 var cb = new CodeBuilder();

 cb.sb.Append(s);

 return cb;

}

public static CodeBuilder operator +(CodeBuilder cb, string s)

{

 cb.Append(s);

 return cb;

}

With this implementation, we can now start working with a CodeBuilder as if it were

a string:

CodeBuilder cb = "hello";

cb += " world";

WriteLine(cb); // prints "hello world"

Curiously enough, the second line in the preceding code will work even if we didn’t

implement operator + explicitly. Why? You figure it out!

�Simulating Multiple Inheritance
One of the simplest uses of the Decorator pattern is to use it in the context of multiple

inheritance.

Chapter 10 Decorator

186

�Multiple Inheritance with Interfaces
In addition to extending sealed classes, the Decorator pattern also shows up when you

want to have multiple base classes…which of course you cannot have because C# does

not support multiple inheritance. For example, suppose you have a Dragon that’s both a

Bird and a Lizard. It would make sense to write something like

public class Bird

{

 public void Fly() { ... }

}

public class Lizard

{

 public void Crawl() { ... }

}

public class Dragon : Bird, Lizard {} // cannot do this!

Sadly, this is impossible, so what do you do? Well, you extract interfaces from both

Bird and Lizard:

public interface IBird

{

 void Fly();

}

public interface ILizard

{

 void Crawl();

}

Then, you make a Dragon class that implements these interfaces, aggregates

instances of Bird and Lizard, and delegates the calls:

public class Dragon: IBird, ILizard

{

 private readonly IBird bird;

 private readonly ILizard lizard;

Chapter 10 Decorator

187

 public Dragon(IBird bird, ILizard lizard)

 {

 this.bird = bird;

 this.lizard = lizard;

 }

 public void Crawl() => lizard.Crawl();

 public void Fly() => bird.Fly();

}

You’ll notice that there are two options here: either you initialize the default

instances of Bird and Lizard right inside the class or you offer the client more flexibility

by taking both of those objects in the constructor. This would allow you to construct

more sophisticated IBird/ILizard classes and make a dragon out of them. Also, this

approach automatically supports constructor injection, should you go the IoC route.

One interesting problem with the decorator is the “diamond inheritance” problem

of C++. Suppose a dragon crawls only until it’s 10 years old and, from then on, it only

flies. In this case, you’d have both the Bird and Lizard classes have an Age property with

independent implementations:

public interface ICreature

{

 int Age { get; set; }

}

public interface IBird : ICreature

{

 void Fly();

}

public interface ILizard : ICreature

{

 void Crawl();

}

public class Bird : IBird

{

 public int Age { get; set; }

Chapter 10 Decorator

188

 public void Fly()

 {

 if (Age >= 10)

 WriteLine("I am flying!");

 }

}

public class Lizard : ILizard

{

 public int Age { get; set; }

 public void Crawl()

 {

 if (Age < 10)

 WriteLine("I am crawling!");

 }

}

Notice that we’ve had to introduce a new interface ICreature just so we could

expose the Age as part of both the IBird and ILizard interfaces. The real problem here is

the implementation of the Dragon class, because if you use the code generation features

of ReSharper or a similar tool, you will simply get

public class Dragon : IBird, ILizard

{

 ...

 public int Age { get; set; }

}

This once again shows that generated code isn’t always what you want. Remember,

both Bird.Fly() and Lizard.Crawl() have their own implementations of Age, and

those implementations need to be kept consistent in order for those methods to operate

correctly. This means that the correct implementation of Dragon.Age is the following:

public int Age

{

 get => bird.Age;

 set => bird.Age = lizard.Age = value;

}

Chapter 10 Decorator

189

Notice that our setter assigns both, whereas the getter simply uses the underlying

bird – this choice is arbitrary, and we could have easily taken the lizard’s age instead.

The setter ensures consistency, so in theory, both values would always be equal…except

during initialization, a place we haven’t taken care of yet. A lazy man’s solution to this

problem would be to redefine the Dragon constructor thus:

public Dragon(IBird bird, ILizard lizard)

{

 this.bird = bird;

 this.lizard = lizard;

 bird.Age = lizard.Age;

}

As you can see, building a decorator is generally easy, except for two nuances: the

difficulties in preserving a fluent interface and the challenge of diamond inheritance. I

have demonstrated here how to solve both of these problems.

�Multiple Inheritance with Default Interface Members
The collision between the Age properties of Bird and Lizard can be partially mitigated

with C# 8’s default interface members. While they do not give us “proper,” C++-style

multiple inheritance, they give us enough to go by.

First of all, we implement a base interface for a creature:

public interface ICreature

{

 int Age { get; set; }

}

This step is essential, because now we can define interfaces IBird and ILizard that

have default method implementations that actually make use of the property:

public interface IBird : ICreature

{

 void Fly()

 {

Chapter 10 Decorator

190

 if (Age >= 10)

 WriteLine("I am flying");

 }

}

public interface ILizard : ICreature

{

 void Crawl()

 {

 if (Age < 10)

 WriteLine("I am crawling!");

 }

}

Finally, we can make a class that implements both of these interfaces. Of course, this

class has to provide an implementation of the Age property, since no interface is able

to do so:

public class Dragon : IBird, ILizard

{

 public int Age { get; set; }

}

And now we have a class that inherits the behavior of two interfaces. The only caveat

is that explicit casts are required to actually make use of those behaviors:

var d = new Dragon {Age = 5};

if (d is IBird bird)

 bird.Fly();

if (d is ILizard lizard)

 lizard.Crawl();

It is possible to expose those methods directly on the object, but this requires that

you introduce mirroring extension methods on Dragon that perform the cast to the right

interface and call the underlying.

Chapter 10 Decorator

191

�Dynamic Decorator Composition
Of course, as soon as we start building decorators over existing types, we come to the

question of decorator composition, that is, whether or not it’s possible to decorate a

decorator with another decorator. I certainly hope it’s possible – decorators should be

flexible enough to do this!

For our scenario, let’s imagine that we have an abstract base class called Shape with

a single member called AsString() that returns a string describing this shape (Iap

deliberately avoiding ToString() here):

public abstract class Shape

{

 public virtual string AsString() => string.Empty;

}

I chose to make Shape an abstract class with a default, no-op implementation. We

could equally use an IShape interface for this example.

We can now define a concrete shape like, say, a circle or a square:

public sealed class Circle : Shape

{

 private float radius;

 public Circle() : this(0) {}

 public Circle(float radius)

 {

 this.radius = radius;

 }

 public void Resize(float factor)

 {

 radius *= factor;

 }

 public override string AsString() => $"A circle of radius {radius}";

}

// similar implementation of Square with 'side' member omitted

Chapter 10 Decorator

192

I deliberately made Circle and similar classes sealed so we cannot simply inherit

from them. Instead, we are once again going to build decorators: this time, we’ll build

two of them – one for adding color to a shape…

public class ColoredShape : Shape

{

 private readonly Shape shape;

 private readonly string color;

 public ColoredShape(Shape shape, string color)

 {

 this.shape = shape;

 this.color = color;

 }

 public override string AsString()

 => $"{shape.AsString()} has the color {color}";

}

…and another to give a shape transparency:

public class TransparentShape : Shape

{

 private readonly Shape shape;

 private readonly float transparency;

 public TransparentShape(Shape shape, float transparency)

 {

 this.shape = shape;

 this.transparency = transparency;

 }

 public override string AsString() =>

 $"{shape.AsString()} has {transparency * 100.0f}% transparency";

}

Chapter 10 Decorator

193

As you can see, both of these decorators inherit from the abstract Shape class, so they

are themselves Shapes and they decorate other Shapes by taking them in the constructor.

This allows us to use them together, for example:

var circle = new Circle(2);

WriteLine(circle.AsString());

// A circle of radius 2

var redSquare = new ColoredShape(circle, "red");

WriteLine(redSquare.AsString());

// A circle of radius 2 has the color red

var redHalfTransparentSquare = new TransparentShape(redSquare, 0.5f);

WriteLine(redHalfTransparentSquare.AsString());

// A circle of radius 2 has the color red has 50% transparency

As you can see, the decorators can be applied to other Shapes in any order you wish,

preserving consistent output of the AsString() method. One thing they do not guard

against is cyclic repetition: you can construct a ColoredShape(ColoredShape(Square)),

and the system will not complain; we could not detect this situation either, even if we

wanted to.

So this is the dynamic decorator implementation: the reason we call it dynamic is

because these decorators can be constructed at runtime, objects wrapping objects as

layers of an onion. It is, on the one hand, very convenient, but on the other hand, you

lose all type information as you decorate the object. For example, a decorated Circle no

longer has access to its Resize() member:

var redSquare = new ColoredShape(circle, "red");

redCircle.Resize(2); // oops!

This problem is impossible to solve: since ColoredShape takes a Shape, the only way

to allow resizing is to add Resize() to Shape itself, but this operation might not make

sense for all shapes. This is a limitation of the dynamic decorator.

Chapter 10 Decorator

194

�Decorator Cycle Policies
I want to show you a more sophisticated example of an interaction of two patterns –

Dynamic Decorator and Strategy. We are going to continue the Dynamic Decorator

approach to decorating classes with additional behaviors. Just as a reminder, the gist of

Dynamic Decorator is an ability to write code similar to the following:

var circle = new Circle(3);

WriteLine(circle); // A circle of radius 3

var redCircle = new ColoredCircle(circle, "red");

WriteLine(redCircle); // A circle of radius 3 has the color red

The implementation of these wrappers was shown already, so I will not repeat them

here. The problem I want to investigate now is related to the following scenario:

var weirdCircle = new ColoredCircle(redCircle, "blue");

WriteLine(weirdCircle);

// A circle of radius 3 has the color red has the color blue

As you can see, the output is a bit bizarre. Should we even be allowing to apply the

same decorator twice? Clearly, we have no way of detecting this at compile time, but

perhaps we can at least do something about it at runtime?

Well, we can certainly use a bit of reflection so that a decorator does not wrap itself.

That’s easy. But what about a situation where the decorator wraps itself cyclically, for

example, ColoredShape(TransparentShape(ColoredShape(X)))? This cannot be

detected easily and requires the traversal of the entire chain of decorators that have been

applied thus far.

I can see three different strategies (we’ll call them policies) of handling repetitions in

the decorator chain:

•	 CyclesAllowedPolicy: Allows cycles. It’s exactly what we have

right now.

•	 ThrowOnCyclePolicy: Throws an exception when cycles are detected.

This needs to be done as early as possible, that is, in the constructor

of the offending decorator.

•	 AbsorbCyclePolicy: The cycles are allowed, but effects from

additional decorators beyond the first one are not applied.

Chapter 10 Decorator

195

We can try to define a general-purpose policy class such as the following:

public abstract class ShapeDecoratorCyclePolicy

{

 �public abstract bool TypeAdditionAllowed(Type type, IList<Type>

allTypes);

 public abstract bool ApplicationAllowed(Type type, IList<Type> allTypes);

}

This allows each policy to define two aspects: whether the decorator can be

instantiated and whether the instantiated decorator can actually be applied. Each

method takes two arguments: the type of the current decorator that we’re attempting to

construct and a list of allTypes, which is a list of all the types in the wrapper chain.

For example, suppose you’re trying to make a ColoredShape(TransparentShape(Squ

are)). Then, when applying the outermost decorator, we’ll have

•	 type == ColoredShape and

•	 allTypes == [TransparentShape, Square]

We can now take all the three policies previously mentioned and define them in

code. The implementation of CyclesAllowedPolicy is the simplest:

public class CyclesAllowedPolicy : ShapeDecoratorCyclePolicy

{

 public override bool TypeAdditionAllowed

 (Type type, IList<Type> allTypes) => true;

 }

 public override bool ApplicationAllowed

 (Type type, IList<Type> allTypes) => true;

}

The implementation of ThrowOnCyclePolicy attempts to throw an exception both on

construction and on invocation as soon as the cycle is detected:

public class ThrowOnCyclePolicy : ShapeDecoratorCyclePolicy

{

 private bool handler(Type type, IList<Type> allTypes)

 {

Chapter 10 Decorator

196

 if (allTypes.Contains(type))

 throw new InvalidOperationException(

 $"Cycle detected! Type is already a {type.FullName}!");

 return true;

 }

 public override bool TypeAdditionAllowed(Type type, IList<Type> allTypes)

 {

 return handler(type, allTypes);

 }

 public override bool ApplicationAllowed(Type type, IList<Type> allTypes)

 {

 return handler(type, allTypes);

 }

}

Finally, AbsorbCyclePolicy allows the chaining of decorators but lets you know that

application is not allowed if a cycle is detected:

public class AbsorbCyclePolicy : ShapeDecoratorCyclePolicy

{

 public override bool TypeAdditionAllowed(Type type, IList<Type> allTypes)

 {

 return true;

 }

 public override bool ApplicationAllowed(Type type, IList<Type> allTypes)

 {

 return !allTypes.Contains(type);

 }

}

So far, it may not be clear how these policies are to be applied. In order to get them

into the game, we’ll introduce two ShapeDecorator base classes: one nongeneric and the

other generic.

Chapter 10 Decorator

197

By the way, a generic-nongeneric pair of classes is a “pattern” that you will see quite

often when programming. Why? Because of type checks. Given a generic type Foo<>,

you cannot write x is Foo – all you can do is write x is Foo<Bar>. In other words, you

have to explicitly specify the generic parameter.

This is a problem if you’re doing any sort of cast where you don’t care what that

generic parameter actually is. And, yes, you can fiddle with reflection, but quite often the

generic-nongeneric duality makes life a lot simpler.

So back to the problem at hand. We first define our ShapeDecorator as follows:

public abstract class ShapeDecorator : Shape

{

 protected internal readonly List<Type> types = new();

 protected internal Shape shape;

 public ShapeDecorator(Shape shape)

 {

 this.shape = shape;

 if (shape is ShapeDecorator sd)

 types.AddRange(sd.types);

 }

}

Despite having no abstract members, ShapeDecorator is an abstract class. It has two

members. The first is the Shape that we intend to wrap. The second is more tricky: it is

a list of all the additional decorator types that we’re wrapping, assuming there are any.

This is a recursive process: if we’re wrapping a ShapeDecorator, we simply take its list of

wrapped types.

You’ll notice something interesting here – at no point do we actually add anything

to the types collection. This is because the very process of addition is governed by

appropriate policy, and in our implementation, policies only appear in the generic

version of our ShapeDecorator. Here it is:

public abstract class ShapeDecorator<TSelf, TCyclePolicy> : ShapeDecorator

 where TCyclePolicy : ShapeDecoratorCyclePolicy, new()

{

 private readonly TCyclePolicy policy = new();

Chapter 10 Decorator

198

 public ShapeDecorator(Shape shape) : base(shape)

 {

 if (policy.TypeAdditionAllowed(typeof(TSelf), types))

 types.Add(typeof(TSelf));

 }

}

Okay, there’s quite a lot to take in here.

First, ShapeDecorator<> takes two generic arguments. The first argument

TSelf refers to the name of the class we’re actually using to inherit this. We use this

approach in many sections of the book. The second argument is the type of policy

that we want to use when we detect cycles: this needs to be a type that inherits from

ShapeDecoratorCyclePolicy and defines a default constructor.

The constructor of this type is a bit sophisticated too. First, it calls the base class, which

we’ve already seen doing things with the types collection. But, assuming our chosen policy

allows us to add the type to the list of types, we actually perform the addition.

What this means in practice is that, if you choose a policy that allows cycles in the

construction of decorators and you create a ColoredShape(ColoredShape(Square)),

your types list will contain [ColoredShape, ColoredShape].

With all that implemented, we can now finally create a ColoredShape:

public class ColoredShape

 : ShapeDecorator<ColoredShape, AbsorbCyclePolicy>

{

 private readonly string color;

 public ColoredShape(Shape shape, string color) : base(shape)

 {

 this.color = color;

 }

 public override string AsString()

 {

 var sb = new StringBuilder($"{shape.AsString()}");

 if (policy.ApplicationAllowed(types[0], types.Skip(1).ToList()))

 sb.Append($" has the color {color}");

Chapter 10 Decorator

199

 return sb.ToString();

 }

}

As you can see, functionally, it’s the same wrapper as before. The only difference

is that when constructing it, you can specify a cycle policy – in this particular case, we

specify an AbsorbCyclePolicy because we want to allow cycles, but we don’t want

AsString() having any extraneous text in it.

Of course, the choice of where to place the policy is purely stylistic. If you want to

define one policy per the entire hierarchy of decorators, for example, you can simply

introduce another base class.

Now, an interesting thing happens in our implementation of AsString(). First,

by default, AsString() always calls itself on the wrapped object. But then, it makes a

decision on whether to apply the current decorator depending on the policy at hand.

Remember that, at this stage, the types list has already been initialized with the types

of the entire wrapper chain. types[0] is our current class, and types.Skip(1) contains

the classes we’re wrapping. Consequently, we can pass this information into the policy

and determine whether the application of the current decorator is warranted. If it is, we

apply it!

With all of this put together, we now get the following behavior:

var circle = new Circle(2);

var colored1 = new ColoredShape(circle, "red");

var colored2 = new ColoredShape(colored1, "blue");

WriteLine(circle.AsString());

// A circle of radius 2

WriteLine(colored1.AsString());

// A circle of radius 2 has the color red

WriteLine(colored2.AsString());

// A circle of radius 2 has the color red

The implementation here is completely ad hoc and makes a large number of design

decisions. For example, policies are specified in a static way via generics. This is great if

you plan to choose one policy and stick with it, but if you plan to alter policies at runtime

(perhaps with the use of an IoC container?), then you can instead adopt a dynamic

approach – see the “Dynamic Strategy” section of Chapter 24.

Chapter 10 Decorator

200

�Static Decorator Composition
When you are given a dynamically decorated ColoredShape, there’s no way to tell

whether this shape is a circle, square, or something else without looking at the output of

AsString(). So how would you “bake in” the underlying type of the decorated objects

into the type of the object you have? Turns out you can do so with generics.

The idea is simple: our decorator, say ColoredShape, takes a generic argument that

specifies what type of object it’s decorating. Naturally, that object has to be a Shape, and

since we’re aggregating it, it’s also going to need a constructor:

public class ColoredShape<T> : Shape

 where T : Shape, new()

{

 private readonly string color;

 private readonly T shape = new T();

 public ColoredShape() : this("black") {}

 public ColoredShape(string color) { this.color = color; }

 public override string AsString() =>

 return $"{shape.AsString()} has the color {color}";

}

Okay, so what’s going on here? We have a new ColoredShape that’s generic; it takes

a T that’s supposed to inherit a Shape. Internally, it stores an instance of T as well as

color information. We’ve provided two constructors for flexibility: since C#, unlike C++,

doesn’t support constructor forwarding, the default constructor is going to be useful for

composition (see, we have the new() requirement).

We can now provide a similar implementation of TransparentShape<T>, and armed

with both, we can now build static decorators of the following form:

var blueCircle = new ColoredShape<Circle>("blue");

WriteLine(blueCircle.AsString());

// A circle of radius 0 has the color blue

var blackHalfSquare = new TransparentShape<ColoredShape<Square>>(0.4f);

WriteLine(blackHalfSquare.AsString());

// A square with side 0 has the color black has transparency 40

Chapter 10 Decorator

201

This static approach has certain advantages and disadvantages. The advantage

is that we preserve the type information: given a Shape we can tell that the shape is a

ColoredShape<Circle>, and perhaps we can act on this information somehow. Sadly,

this approach has plenty of disadvantages:

•	 Notice how the radius/side values in the preceding example are

both zero. This is because we cannot initialize those values in the

constructor: C# does not have constructor forwarding.

•	 We still don’t have access to the underlying members; for example,

blueCircle.Resize() is still not legal.

•	 These sorts of decorators cannot be composed at runtime.

All in all, in the absence of CRTP and mixin inheritance,1 the uses for static

decorators in C# are very, very limited. Oh, and before you ask: cycle detection in this

scenario is very difficult to do. It is certainly impossible to detect cycles at compile time,

and trying to detect them at runtime will require very heavy use of reflection.

�Functional Decorator
A functional decorator is a natural consequence of functional composition. If we can

compose functions, we can equally wrap functions with other functions in order, for

example, to provide before-and-after functionality such as logging.

Here’s a very simple implementation. Imagine you have some work that needs to

be done:

let doWork() =

 printfn "Doing some work"

We can now create a decorator function (a functional decorator!) that, given any

function, measures how long it takes to execute:

let logger work name =

 let sw = Stopwatch.StartNew()

1 Mixin inheritance is a C++ technique for adding functionality to classes by using inheritance.
In the context of the decorator, it would allow us to compose a class of type T<U<V>> that would
inherit from both U and V, giving us access to all the underlying members. Also, constructors
would work correctly, thanks to constructor forwarding and C++’s variadic templates.

Chapter 10 Decorator

202

 printfn "%s %s" "Entering method" name

 work()

 sw.Stop()

 printfn "Exiting method %s; %fs elapsed" name sw.Elapsed.TotalSeconds

We can now use this wrapper around doWork, replacing a unit -> unit function

with one with the same interface but that also performs some measurements:

let loggedWork() = logger doWork "doWork"

loggedWork()

// Entering method doWork

// Doing some work

// Exiting method doWork; 0.097824s elapsed

Pay attention to the round brackets in this example: it might be tempting to remove

them, but that would drastically alter the types of data structures. Remember, any let x

= ... construct will always evaluate to a variable (possibly of a unit type!) instead of a

parameterless function unless you add an empty parameter list.

There are a couple of catches in this implementation. For one, doWork does not

return a value; if it did, we would have to cache it in a type-independent manner,

something that’s possible to implement in C++ but extremely difficult to do in any .NET

language. Another issue is that we have no way of determining the name of the wrapped

function, so we end up passing it as a separate argument – not an ideal solution!

�Summary
A decorator gives a class additional functionality while adhering to the OCP and

mitigating issues related to sealed classes and multiple inheritance. Its crucial aspect is

composability: several decorators can be applied to an object in any order. We’ve looked

at the following types of decorators:

•	 Dynamic decorators, which can store references to the decorated

objects and provide dynamic (runtime) composability.

•	 Static decorators, which preserve the information about the type of

the objects involved in the decoration; these are of limited use since

they do not expose underlying objects’ members, nor do they allow

us to efficiently compose constructor calls.

Chapter 10 Decorator

203

We also looked at detecting cycles in dynamic decorators and various policies (as per

the Strategy pattern) that can be adopted when multiple decorators of the same type are

applied in a sequence.

Finally, we discussed functional decorators. These are, essentially, just functions that

wrap other functions.

Chapter 10 Decorator

205

CHAPTER 11

Façade
First of all, let’s get the linguistic issue out of the way: that little curve under the letter

Ç is called a cedilla, and the letter itself is pronounced as an S, so the word façade is

pronounced as “fah-saad.” The particularly pedantic among you are welcome to use the

letter ç in your code, since compilers treat this just fine.1

Now, about the pattern itself… Essentially, the best analogy I can think of is a typical

house. When you buy a house, you generally care about the exterior and the interior. You are

less concerned about the internals: electrical systems, insulation, sanitation, that sort of thing.

Those parts are all equally important, but we want them to “just work” without breaking.

You’re much more likely to be buying new furniture than changing the wiring of your boiler.

The same idea applies to software: sometimes you need to interact with a

complicated system in a simple way. By “system” we could mean a set of components

or just a single component with a rather complicated API. For example, think about the

seemingly simple task of downloading a string of text from a URL. The fully fleshed-out

solution to this problem using various System.Net data types looks something like this:

string url = "http://www.google.com/robots.txt";

var request = WebRequest.Create(url);

request.Credentials = CredentialCache.DefaultCredentials;

var response = request.GetResponse();

var dataStream = response.GetResponseStream();

var reader = new StreamReader(dataStream);

string responseFromServer = reader.ReadToEnd();

Console.WriteLine(responseFromServer);

reader.Close();

response.Close();

1 Over the years I have seen many silly tricks involving the use of Unicode (typically UTF-8)
encoding in C# source files. The most insidious case is one where a developer insisted on calling
his extension methods’ first argument this – it was, of course, a completely valid identifier
because the letter i in this was a Ukrainian letter i, not a Latin one.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_11

https://doi.org/10.1007/978-1-4842-8245-8_11

206

This is a lot of work! Furthermore, I almost guarantee that most of you wouldn’t be able

to write this code without looking it up online. That’s because there are several underlying

data types that make the operation possible. And if you wanted to do it all asynchronously,

you would have to use a complementary API set comprised of XxxAsync() methods.

So whenever we encounter a situation where a complex interaction of different parts

is required for something to get done, we might want to put it behind a façade, that is, a

much simpler interface. In the case of downloading web pages, all of the preceding code

reduces to a single line:

new WebClient().DownloadString(url);

In this example, the WebClient class is a façade, that is, a nice, user-friendly interface

that does what you want quickly and without ceremony. Of course, the original APIs are

also available to you so that, if you need something more complicated (e.g., to provide

credentials), you can use the more technical parts to fine-tune the operation of your program.

With this one example, you’ve already grasped the gist of the Façade design pattern.

However, just to illustrate the matter further (as well as tell the story of how OOP is used

and abused in practice), I would like to present yet another example.

�Magic Squares
While a proper Façade demo requires that we make super-complicated systems that

actually warrant a façade to be put in front of them, let us consider a trivialized example:

the process of making magic squares. A magic square is a matrix such as

	

1 14 14 4

11 8 6 9

8 10 10 5

13 2 3 15



















	

If you add up the values in any row, any column, or any diagonal, you’ll get the same

number – in this case, 33. If we want to generate our own magic squares, we can imagine

it as an interplay of three different subsystems:

•	 Generator: A component that simply generates a sequence of

random numbers of a particular size.

Chapter 11 Façade

207

•	 Splitter: A component that takes a rectangular matrix and outputs

a set of lists representing all rows, columns, and diagonals in

the matrix.

•	 Verifier: A component that checks that the sums of all lists passed

into it are the same.

We begin by implementing the Generator:

public class Generator

{

 private static readonly Random random = new Random();

 public List<int> Generate(int count)

 {

 return Enumerable.Range(0, count)

 .Select(_ => random.Next(1, 6))

 .ToList();

 }

}

Note that the generator yields one-dimensional lists, whereas the next component,

Splitter, accepts a matrix:

public class Splitter

{

 public List<List<int>> Split(List<List<int>> array)

 {

 // implementation omitted

 }

}

The implementation of Splitter is rather long-winded, so I’ve omitted it here –

take a look at the source code for its exact details. As you can see, the Splitter returns

a list of lists. Our final component, Verifier, checks that those lists all add up to the

same number:

public class Verifier

{

 public bool Verify(List<List<int>> array)

Chapter 11 Façade

208

 {

 if (!array.Any()) return false;

 var expected = array.First().Sum();

 return array.All(t => t.Sum() == expected);

 }

}

So there you have it – we have three different subsystems that are expected to work in

concert in order to generate random magic squares. But are they easy to use? If we gave

these classes to a client, they would really struggle to operate them correctly. So how can

we make their lives better?

The answer is simple: we build a façade, essentially a wrapper class that hides all

these implementation details and provides a very simple interface. Of course, it uses all

the three classes behind the scenes:

public class MagicSquareGenerator

{

 public List<List<int>> Generate(int size)

 {

 var g = new Generator();

 var s = new Splitter();

 var v = new Verifier();

 List<List<int>> square;

 do

 {

 square = new List<List<int>>();

 for (int i = 0; i < size; ++i)

 square.Add(g.Generate(size));

 }

 while (!v.Verify(s.Split(square)));

 return square;

 }

}

Chapter 11 Façade

209

And there you have it! Now, if the client wants to generate a 3 × 3 magic square, all

they have to do is call

var gen = new MagicSquareGenerator();

var square = gen.Generate(3);

And they’ll get something like

	

3 1 5

5 3 1

1 5 3















 	

Okay, so this is a magic square, but maybe the user of this API has an additional

requirement: they do not want numbers to repeat. How can we make it easy for them

to implement this? First of all, we change Generate() to take each of the subsystems as

generic parameters:

private List<List<int>> generate

 <TGenerator, TSplitter, TVerifier>(int size)

 where TGenerator : Generator, new()

 where TSplitter : Splitter, new()

 where TVerifier : Verifier, new()

{

 var g = new TGenerator();

 var s = new TSplitter();

 var v = new TVerifier();

 // rest of code as before

}

And now we simply make an overloaded Generate() that applies all three default

generic parameters:

public List<List<int>> Generate(int size)

{

 return Generate<Generator, Splitter, Verifier>(size);

}

Chapter 11 Façade

210

In the absence of default generic parameters, this is the only way we can provide

sensible defaults and, at the same time, allow customization. Now, if the user wants to

ensure all the values are unique, they can make a UniqueGenerator…

public class UniqueGenerator : Generator

{

 public override List<int> Generate(int count)

 {

 List<int> result;

 do

 {

 result = base.Generate(count);

 } while (result.Distinct().Count() != result.Count);

 return result;

 }

}

…and then feed it into the façade, thereby getting a better magic square:

var gen = new MagicSquareGenerator();

var square = gen

 .Generate<UniqueGenerator, Splitter, Verifier>(3);

This gives us

	

8 1 6

3 5 7

4 9 2















 	

Of course, it’s really impractical to generate magic squares this way, but what

this example demonstrates is that you can hide complicated interactions between

different systems behind a façade and that you can also incorporate a certain amount

of configurability so that users can customize the internal operations of the mechanism

should the need arise.

One thing to note: If you never intended to use virtual members inside your classes

(say, by defining only interfaces), you could use structs instead of classes without loss

of generality.

Chapter 11 Façade

211

�Building a Trading Terminal
I’ve spent a lot of time working in areas of quant finance and algorithmic trading. As

you can probably guess, what’s required of a good trading terminal is quick delivery

of information into a trader’s brain: you want things to be rendered as fast as possible,

without any lag.

Most of financial data (except for the charts) is actually rendered in plain text: white

characters on a black screen. This is, in a way, similar to the way the terminal/console/

command-line interface works in your own operating system, but there is a subtle

difference.

The first part of a terminal window is the buffer. This is where the rendered

characters are stored. A buffer is a rectangular area of memory, typically a 1D or 2D char

array.2 A buffer can be much larger than the visible area of the terminal window, so it can

store some historical output that you can scroll back to.

Typically, a buffer has a pointer (e.g., an integer) specifying the current input line.

That way, a full buffer doesn’t reallocate all lines; it just overwrites the oldest one.

Then there’s the idea of a viewport. A viewport renders a part of the particular buffer.

A buffer can be huge, so a viewport just takes a rectangular area out of that buffer and

renders that. Naturally, the size of the viewport has to be less than or equal to the size of

the buffer.

Finally, there’s the console (terminal window) itself. The console shows the viewport,

allows scrolling up and down, and even accepts user input. The console is, in fact,

a façade: a simplified representation of what is a rather complicated setup behind

the scenes.

Typically, most users interact with a single buffer and viewport. It is, however,

possible to have a console window where you have, say, the area split vertically between

two viewports, each having their corresponding buffers. This can be done using utilities

such as the screen Linux command.

2 Most buffers are typically one-dimensional. The reason for this is that it’s easier to pass a
single pointer somewhere than a double pointer, and using an array or vector doesn’t make
much sense when the size of the structure is deterministic and immutable. Another advantage
to the 1D approach is that, when it comes to GPU processing, a system such as CUDA uses
up to six dimensions for addressing anyway, so after a while, computing a 1D index from an
N-dimensional block/grid position becomes second nature.

Chapter 11 Façade

212

�An Advanced Terminal
One problem with a typical operating system terminal is that it is extremely slow if you

pipe a lot of data into it. For example, a Windows terminal window (cmd.exe) uses

GDI to render the characters, which is completely unnecessary. In a fast-paced trading

environment, you want the rendering to be hardware-accelerated: characters should be

presented as pre-rendered textures placed on a surface using an API such as OpenGL.3

A trading terminal consists of multiple buffers and viewports. In a typical setup,

different buffers might be getting updated concurrently with data from various

exchanges or trading bots, and all of this information needs to be presented on a

single screen.

Buffers also provide functionality that is a lot more exciting than just a 1D or 2D

linear storage. For example, a TableBuffer might be defined as

3 We also use ASCII, since Unicode is rarely, if ever, required. Having 1 char = 1 byte is a good
practice if you don’t need to support extra character sets. While not relevant to the discussion at
hand, it also greatly simplifies the implementation of string processing algorithms on both GPUs
and FPGAs.

Figure 11-1.  One way a text console can be logically organized

Chapter 11 Façade

213

public class TableBuffer : IBuffer

{

 private readonly TableColumnSpec[] spec;

 private readonly int totalHeight;

 private readonly List<string[]> buffer;

 private static readonly Point invalidPoint = new Point(-1,-1);

 private readonly short[,] formatBuffer;

 public TableBuffer(TableColumnSpec [] spec, int totalHeight)

 {

 this.spec = spec;

 this.totalHeight = totalHeight;

 buffer = new List<string[]>();

 for (int i = 0; i < (totalHeight - 1); ++i)

 {

 buffer.Add(new string[spec.Length]);

 }

 formatBuffer = new short[spec.Max(s => s.Width),totalHeight];

 }

 public struct TableColumnSpec

 {

 public string Header;

 public int Width;

 public TableColumnAlignment Alignment;

 }

}

In other words, a buffer can take some specification and build a table (yes, a good

old-fashioned ASCII-formatted table!) and present it on-screen.4

4 Many trading terminals have abandoned pure ASCII representation in favor of more mixed-
mode approaches, such as simply using monospace fonts in ordinary UI controls or rendering
many little text-based consoles in separate windowing API rather than sticking to a single canvas.

Chapter 11 Façade

214

A viewport is in charge of getting data from the buffer. Some of its characteristics

include the following:

•	 A reference to the buffer it’s showing.

•	 Its size.

•	 If the viewport is smaller than the buffer, it needs to specify which

part of the buffer it is going to show. This is expressed in absolute x-y

coordinates.

•	 The location of the viewport on the overall console window.

•	 The location of the cursor, assuming this viewport is currently taking

user input.

�Where’s the Façade?
The console itself is the façade in this particular system. Internally, the console has to

manage a lot of different internal settings:

public class Console : Form

{

 private readonly Device device;

 private readonly PresentParameters pp;

 private IList<Viewport> viewports;

 private Size charSize;

 private Size gridSize;

 // many more fields here

}

Initialization of the console is also, typically, a very nasty affair. At the very least, you

need to specify the size of individual characters and the width and height of the console

(in terms of the number of characters). In some situations, you do actually want to

specify console parameters in excruciating detail, but when in a hurry, you just want a

sensible set of defaults.

Chapter 11 Façade

215

However, since it’s a façade, it actually tries to give a really accessible API. This might

either take a number of sensible parameters to initialize all the guts from:

private Console(bool fullScreen, int charWidth, int charHeight,

 int width, int height, Size? clientSize)

{

 int windowWidth =

 clientSize == null ? charWidth*width : clientSize.Value.Width;

 int windowHeight =

 clientSize == null ? charHeight*height : clientSize.Value.Height;

 // and a lot more code

 // single buffer and viewport created here

 // linked together and added to appropriate collections

 // image textures generated

 // grid size calculated depending on whether we want fullscreen mode

}

Alternatively, one might pack all those arguments into a single object, which, again,

has some sensible defaults:

public static Console Create(ConsoleCreationParameters ccp) { ... }

public class ConsoleCreationParameters

{

 public Size? ClientSize;

 public int CharacterWidth = 10;

 public int CharacterHeight = 14;

 public int Width = 20;

 public int Height = 30;

 public bool FullScreen;

 public bool CreateDefaultViewAndBuffer = true;

}

Chapter 11 Façade

216

As you can see, with the façade we’ve built, there are no less than three ways of

setting up the console:

•	 Use the low-level API to configure the console explicitly, viewports

and buffers included.

•	 Use the Console constructor that requires you to provide fewer values

and makes a couple of useful assumptions (e.g., that you want just

one viewport with an underlying buffer).

•	 Use the constructor that takes a ConsoleCreationParameters object.

This requires you to provide even fewer pieces of information, as

every field of that structure has a suitable default.

�IoC Modules
Let’s look back at the Abstract Factory example we discussed in Chapter 4. There, we had

different shapes (circle, square) and different ways of rendering shapes: whether with 90°

or rounded corners. This time round, we’ll consider the situation that there is no abstract

factory to help us because we decided to use an IoC container instead.

Now, if you were to configure an IoC container such as Autofac directly, you would

probably write something like

var cb = new ContainerBuilder();

cb.RegisterType<Rectangle>().As<IRectangle>();

cb.RegisterType<Square>().As<ISquare>();

// more similar lines

// ...

// and then build the container

var c = cb.Build();

Now, at some point in time, you decide to switch to rounded shapes. How would you

do it? One approach would be to simply rewrite the code to

cb.RegisterType<RoundedRectangle>().As<IRectangle>()

// and so on

Chapter 11 Façade

217

But rewriting code is not a robust approach. Instead, what we can do is define an

IoC module: a separate class that serves as a de facto façade, grouping configurations

together.

In Autofac, you could define a module like this:

class BasicModule : Module

{

 protected override void Load(ContainerBuilder builder)

 {

 builder.RegisterType<Square>().As<ISquare>();

 builder.RegisterType<Rectangle>().As<IRectangle>();

 }

}

Similarly, you could define a RoundedModule so that rounded shapes are returned

instead. Now, all you have to do is RegisterModule() when the container is being built

and then use the registrations therein!

var b = new ContainerBuilder();

//b.RegisterModule<BasicModule>();

b.RegisterModule<RoundedModule>();

var c = b.Build();

var square = c.Resolve<ISquare>();

square.Draw(); // Rounded square

As the code shows, if you want to switch between ordinary and rounded shapes,

you would simply swap one module for another. This way, the modules act as de facto

façades for types that will be resolved by the application.

In addition to basic registrations, modules can themselves be configurable: you’d just

have to use the nongeneric RegisterModule() call if you want to give them parameters.

Chapter 11 Façade

218

�Summary
The Façade design pattern is a way of putting a simple interface in front of one or more

complicated subsystems. As we have seen in the magic square example, in addition

to providing a convenient interface, it’s possible to expose the internal mechanics and

allow for further customization by advanced users. Similarly, in our final example, a

complicated setup involving many buffers and viewports can be used directly, or if you

just want a simple console with a single buffer and associated viewport, you can get it

through a very accessible and intuitive API.

Chapter 11 Façade

219

CHAPTER 12

Flyweight
A flyweight (also sometimes called a token or a cookie) is a temporary component that

acts as a “smart reference” to something. Typically, flyweights are used in situations

where you have a very large number of very similar objects and you want to minimize

the amount of memory that is dedicated to storing all those values.

Let’s take a look at some scenarios where this pattern becomes relevant.

�User Names
Imagine a massively multiplayer online game. I bet you 1 bitcoin there’s more than one

user called John Smith – quite simply because it is a very common name. So, if we were

to store that name over and over (in UTF-16), we would be spending ten characters per

name (plus a few more bytes for every string). Instead, we could store the name once

and then store a reference to every user with that name. That’s quite a saving.

Furthermore, the last name Smith is very popular on its own. Thus, instead of storing

full names, splitting the name into first and last would allow further optimizations, as

you could simply store "Smith" in an indexed store and then simply store the index

instead of the actual string.

Let’s see how we can implement such a space-saving system. We’re going to measure

the results by forcing garbage collection and measuring the amount of memory taken

using dotMemory.

So here’s the first, naive implementation of a User class. Notice that the full name is

kept as a single string:

public class User

{

 public string FullName { get; }

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_12

https://doi.org/10.1007/978-1-4842-8245-8_12

220

 public User(string fullName)

 {

 FullName = fullName;

 }

}

The implication of this code is that “John Smith” and “Jane Smith” are distinct

strings, each occupying their own memory. Now, we can construct an alternative type,

User2, that is a little bit smarter in terms of its storage while exposing the same API (I’ve

avoided extracting an IUser interface here for brevity):

public class User2

{

 private static List<string> strings = new();

 private int[] names;

 public User2(string fullName)

 {

 int getOrAdd(string s)

 {

 int idx = strings.IndexOf(s);

 if (idx != -1) return idx;

 else

 {

 strings.Add(s);

 return strings.Count - 1;

 }

 }

 names = fullName.Split(' ').Select(getOrAdd).ToArray();

 }

 �public string FullName => string.Join(" ", names.Select(i =>

strings[i]));

}

As you can see, the actual strings are stored in a single List. The full name, as it is fed

into the constructor, is split into the constituent parts. Each part gets inserted (unless it’s

already there) into the list of strings, and the names array simply stores the indices of the

Chapter 12 Flyweight

221

names in the list, however many there are. This means that, strings notwithstanding, the

amount of non-static memory User2 takes up is 64 bits (two Int32s).

Now is a good time to pause and explain where exactly the flyweight is. Essentially,

the flyweight is the index that we are storing. A flyweight is a tiny object with a very small

memory footprint that points to something larger that is stored elsewhere.

The only question remaining is whether or not this approach actually makes sense.

While it’s very difficult to simulate this on actual users (this would require a live data set),

we are going to do the following:

•	 Generate 100 first and 100 last names as random strings. The

algorithm for making a random string is as follows:

public static string RandomString()

{

 Random rand = new();

 return new string(

 Enumerable.Range(0, 10)

 .Select(i => (char) ('a' + rand.Next(26))).ToArray());

}

•	 Make a concatenation (cross product) of every first and last name

and initialize 100 × 100 users:

var users = new List<User>(); // or User2

foreach (var firstName in firstNames)

foreach (var lastName in lastNames)

 users.Add(new User($"{firstName} {lastName}"));

•	 Just to be safe, we force GC at this point.

•	 Finally, we use the dotMemory unit testing API to output the total

amount of memory taken up by the program.

Running this entirely unscientific (but indicative) test on my machine tells me that

the User2 implementation saves us 329,305 bytes. Is this significant? Well, let’s try to

calculate: a single ten-character string takes up 34 bytes (14 bytes1 + 2 × 10 bytes for

1 The size of a string actually depends on the bitness of the operating system as well as the
version of .NET that you are using.

Chapter 12 Flyweight

222

the letters), so 340,000 bytes for all the strings. This means we reduced the amount of

memory taken by 97%! If this isn’t cause for celebration, I don’t know what is.

It’s important to note that the result may vary drastically between different .NET

platform incarnations.

�Text Formatting
Say you’re working with a text editor and you want to add formatting to text – for

example, make text bold or italic or capitalize it. How would you do this? One option is

to treat each character individually: if your text is composed of X characters, you make a

bool array of size X and simply flip each of the flags if you want to alter text. This would

lead to the following implementation:

public class FormattedText

{

 private string plainText;

 public FormattedText(string plainText)

 {

 this.plainText = plainText;

 capitalize = new bool[plainText.Length];

 }

 public void Capitalize(int start, int end)

 {

 for (int i = start; i <= end; ++i)

 capitalize[i] = true;

 }

 private bool[] capitalize;

}

I’m using capitalization here (because that’s what a text console can render), but you

can think of other forms of formatting being here too. For every type of formatting, you’d

be making another Boolean array, initializing it to the right size in the constructor (and

imagine the nightmare if the text changes!) and then, of course, you would need to take

into account those Boolean flags whenever you actually want to show the text somewhere:

Chapter 12 Flyweight

223

public override string ToString()

{

 var sb = new StringBuilder();

 for (var i = 0; i < plainText.Length; i++)

 {

 var c = plainText[i];

 sb.Append(capitalize[i] ? char.ToUpper(c) : c);

 }

 return sb.ToString();

}

This approach does in fact work:

var ft = new FormattedText("This is a brave new world");

ft.Capitalize(10, 15);

WriteLine(ft); // This is a BRAVE new world

But of course we are wasting memory. Even if the text has no formatting whatsoever,

we still allocate the array. True, we could have made it lazy so that it’s only created

whenever someone uses the Capitalize() method, but then we would still lose a lot of

memory on first use, particularly with large texts.

This is precisely the situation the Flyweight design pattern is made for! In this

particular case, we’re going to define a flyweight as a Range class that stores information

about the start and end positions of a substring within a string, as well as all the

formatting information we desire:

public class TextRange

{

 public int Start, End;

 public bool Capitalize; // also Bold, Italic, etc.

 public bool Covers(int position)

 {

 return position >= Start && position <= End;

 }

}

Chapter 12 Flyweight

224

Now, we can define a BetterFormattedText class that simply stores a list of all the

formatting that was applied:

public class BetterFormattedText

{

 private readonly string plainText;

 private readonly List<TextRange> formatting

 = new List<TextRange>();

 public BetterFormattedText(string plainText)

 {

 this.plainText = plainText;

 }

 public TextRange GetRange(int start, int end)

 {

 var range = new TextRange {Start = start, End = end};

 formatting.Add(range);

 return range;

 }

 public class TextRange { ... }

}

Notice that TextRange is an inner class – this is a design decision, and you could

easily keep it external. Now, instead of a dedicated Capitalize() method, we simply

have a method called GetRange() that does three things: it creates a new range, adds it to

the formatting list, but also returns it to the client to be operated upon.

All that remains now is to make a new implementation of ToString() that

incorporates this flyweight-based approach. Here it is:

public override string ToString()

{

 var sb = new StringBuilder();

 for (var i = 0; i < plainText.Length; i++)

 {

 var c = plainText[i];

 foreach (var range in formatting)

Chapter 12 Flyweight

225

 if (range.Covers(i) && range.Capitalize)

 c = char.ToUpperInvariant(c);

 sb.Append(c);

 }

 return sb.ToString();

}

As you can see, we simply iterate each of the characters. For each character, we check

all the ranges with the Covers() method, and if that range covers this point and has special

formatting, we show that formatting to the end user. Here is how you would use the new API:

var bft = new BetterFormattedText("This is a brave new world");

bft.GetRange(10, 15).Capitalize = true;

WriteLine(bft); // This is a BRAVE new world

Admittedly, ours is a fairly inefficient implementation of Flyweight (traversal of every

character is just too tedious), but hopefully it’s obvious that the general approach saves a

lot of memory in the long run.

�Using Flyweights for Interop
Sometimes, managed code is not enough. For example, you need to run some

calculations on the GPU, and those are (typically) programmed using CUDA C and the

like. You end up having to use a C or C++ library from your C# code, so you make calls

from the managed (.NET) side to the unmanaged (native code) side.

This isn’t really a problem if you want to pass simple bits of data, such as numbers or

arrays, back and forth. .NET has functionality for pinning an array and sending it to the

“unmanaged” side for processing. It works fine, most of the time.

The problems arise when you allocate some object-oriented construct (i.e., a class)

inside unmanaged code and want to return it to the managed caller. Nowadays, this is

typically handled by serializing (encoding) all the data on one side and then unpacking it on

the other side. This can be done in many formats, including simple ones such as returning

XML or JSON or complicated, industry-grade solutions such as Google’s Protocol Buffers.

In some cases, though, you don’t really need to return the full object itself. Instead,

you simply want to return a handle so that this handle can be subsequently used on the

unmanaged side again. You don’t even need the extra memory traffic passing objects

Chapter 12 Flyweight

226

back and forth. There are many reasons you’d want to do this, but the main reason is that

you want only one side to manage the object’s lifetime, since managing it on both sides is

a nightmare that nobody really needs.

What you do in this case is you return a flyweight. This can be anything – a string

identifier, an integer, a GUID – anything that lets you refer to the object later on. The

managed side then holds on to the token and uses that token to pass back to the

unmanaged side when some operations on the underlying object are required.

This approach introduces an issue with lifetime management. Suppose we want the

underlying object to live for as long as we have the token. How can we implement this?

Well, this would mean that, on the unmanaged side, the token lives forever, whereas on

the managed side, we wrap it in an IDisposable with the Dispose() method sending a

message back to the unmanaged side that the token has been disposed. But what if we

copy the token and have two or more instances of it? Then we end up having to build a

reference-counted system for tokens: something that is quite possible, but introduces

extra complexity in our system.

There is also a symmetric problem: what if the managed side has destroyed the

object that the token represents? If we try to use the token, additional checks need to

be made to ensure the token is actually valid, and some sort of meaningful return value

needs to be given to the unmanaged call in order to tell the managed side that the token

has gone stale. Again, this is extra work.

�Summary
The Flyweight pattern is fundamentally a space-saving technique. Its exact incarnations

are diverse: sometimes you have the flyweight being returned as an API token that allows

you to perform modifications of whoever has spawned it, whereas at other times the

flyweight is implicit, hiding behind the scenes – as in the case of our User, where the

client isn’t meant to know about the flyweight actually being used.

In the .NET Framework, the principal flyweight-like object is, of course, Span<T>. Just

like the TextRange we implemented when working with strings, Span<T> is a type that

has information about a part of an array: the starting position and length. Operations

on the Span get applied to the object the Span refers to, and .NET provides a rich API for

creating spans on different types of objects. Span also makes heavy use of C# 7’s ref-

related APIs (such as ref returns).

Chapter 12 Flyweight

227

CHAPTER 13

Proxy
When we looked at the Decorator design pattern, we saw different ways of enhancing the

functionality of an object. The Proxy design pattern is similar, but its goal is generally to

preserve exactly (or as closely as possible) the object’s original API while offering certain

internal enhancements.

Proxy is an unusual design pattern in that it isn’t really homogeneous. The different

kinds of proxies people build are quite numerous and serve entirely different purposes.

In this chapter we’ll take a look at a selection of different proxy types, and you can find

more online.

�Protection Proxy
The idea of a protection proxy, as the name suggests, is to provide access control to an

existing object. For example, you might be starting out with an object called Car that has

a single Drive() method that lets you drive the car unconditionally (here we go, another

synthetic example):

public class Car // : ICar

{

 public void Drive()

 {

 WriteLine("Car being driven");

 }

}

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_13

https://doi.org/10.1007/978-1-4842-8245-8_13

228

But, later on, you decide that you want to only let people drive the car if they are old

enough. What if you don’t want to change Car itself and you want the extra checks to be

done somewhere else (SRP)? Let’s see… First, you extract the ICar interface (note this

operation doesn’t affect Car in any significant way):

public interface ICar

{

 void Drive();

}

The protection proxy we’re going to build is going to depend on a Driver that’s

defined like this:

public class Driver

{

 public int Age { get; set; }

 public Driver(int age)

 {

 Age = age;

 }

}

The proxy itself is going to take a Driver in the constructor and is going to expose

the same ICar interface as the original car, the only difference being that some internal

checks occur making sure the driver is old enough:

public class CarProxy : ICar

{

 private Car car = new Car();

 private Driver driver;

 public CarProxy(Driver driver)

 {

 this.driver = driver;

 }

 public void Drive()

 {

Chapter 13 Proxy

229

 if (driver.Age >= 16)

 car.Drive();

 else

 WriteLine("Driver too young");

 }

}

Here is how one would use this proxy:

ICar car = new CarProxy(new Driver(12));

car.Drive(); // Driver too young

There’s one piece of the puzzle that we haven’t really addressed. Even though both

Car and CarProxy implement ICar, their constructors are not identical! This means that

the interfaces of the two objects are the same. Is this a problem? This depends:

•	 If your code was dependent on Car rather than ICar (violating the

DIP), then you would need to search and replace every use of this

type in your code. Not impossible with tools like ReSharper/Rider,

just really annoying.

•	 If your code was dependent on ICar but you were explicitly invoking

Car constructors, you would have to find all those constructor

invocations and feed each of them a Driver.

•	 If you were using dependency injection, you are good to go provided

you register a Driver in the container.

So, among other things, the protection proxy we’ve built is an illustration of the

benefits of using an IoC container with constructor injection support.

�Property Proxy
C# makes the use of properties easy: you can use either “full” or automatic properties, and

now there’s expression-based notation for getters and setters, so you can keep properties

really concise. However, that’s not always what you want: sometimes, you want a getter or

setter of each property in your code to do something in addition to just the default actions.

For example, you might want setters that prevent self-assignment and also (for illustrative

purposes) output some info about what value is being assigned and to what property.

Chapter 13 Proxy

230

So instead of using ordinary properties, you might want to introduce a property

proxy – a class that, for all intents and purposes, behaves like a property but is actually a

separate class with domain-specific behaviors (and associated performance costs). You

would start building this class by wrapping a simple value and adding whatever extra

information you want the property to have (e.g., the property name):

public class Property<T> where T : new()

{

 private T value;

 private readonly string name;

 public T Value

 {

 get => value;

 set

 {

 if (Equals(this.value, value)) return;

 Console.WriteLine($"Assigning {value} to {name}");

 this.value = value;

 }

 }

 public Property() : this(default(T)) {}

 public Property(T value, string name = "")

 {

 this.value = value;

 this.name = name;

 }

}

For now, all we have is a simple wrapper, but where’s the proxy part of it all? After all,

we want a Property<int> to behave as close to an int as possible. To that end, we can

define a couple of implicit conversion operators:

public static implicit operator T(Property<T> property)

{

 return property.Value; // int n = p_int;

}

Chapter 13 Proxy

231

public static implicit operator Property<T>(T value)

{

 return new Property<T>(value); // Property<int> p = 123;

}

The first operator lets us implicitly convert the property type to its underlying value;

the second operator lets us initialize a property from a value (without a name, of course).

Sadly, C# does not allow us to override the assignment = operator.

How would you use this property proxy? Well, there are two ways I can think of. One,

and the most obvious, is to expose the property as a public field:

public class Creature

{

 public Property<int> Agility = new(10, nameof(Agility))

}

Unfortunately, this approach is not a “proper” proxy because, while it replicates the

interface of an ordinary property, it doesn’t give us the behavior we want:

var c = new Creature();

c.Agility = 12; // <nothing happens!>

When you assign a value, as you would with an ordinary property, absolutely nothing

happens. Why? Well, the reason is that we invoked the implicit conversion operator,

which, instead of changing an existing property, just gave us a new property instead! It’s

definitely not what we wanted, and furthermore, we’ve lost the name value as it was never

propagated by the operator.

So the solution here, if we really want the property to both look like a duck and quack

like a duck, is to create a wrapper (delegating) property and keep the proxy as a private

backing field:

public class Creature

{

 private readonly Property<int> agility = new(10, nameof(agility));

 public int Agility

 {

Chapter 13 Proxy

232

 get => agility.Value;

 set => agility.Value = value;

 }

}

With this approach, we finally get the desired behavior:

var c = new Creature();

c.Agility = 12; // Assigning 12 to Agility

Purists might argue that this isn’t an ideal proxy (since we’ve had to both generate

a new class and rewrite an existing property), but this is purely a limitation of the C#

programming language.

�Composite Proxy: SoA/AoS
Many applications, such as game engines, are very sensitive to data locality. For example,

consider the following class:

class Creature

{

 public byte Age;

 public int X, Y;

}

If you had several creatures in your game, kept in an array, the memory layout of

your data would appear as

Age X Y Age X Y Age X Y ... and so on

This means that, if you wanted to update the X coordinate of all objects in an array,

your iteration code would have to jump over the other fields to get each of the Xs.

Turns out that CPUs generally like data locality, that is, data being kept together. This

is often called the AoS/SoA (Array of Structures/Structure of Arrays) problem. For us, it

would be much better if the memory layout was in SoA form, as follows:

Age Age Age ... X X X ... Y Y Y

Chapter 13 Proxy

233

How can we achieve this? Well, we can build a data structure that keeps exactly such

a layout and then expose Creature objects as proxies.

Here’s what I mean. First of all, we create a Creatures collection (arrays are used for

simplicity) that enforces data locality for each of the “fields”:

class Creatures

{

 private readonly int size;

 private byte [] age;

 private int[] x, y;

 public Creatures(int size)

 {

 this.size = size;

 age = new byte[size];

 x = new int[size];

 y = new int[size];

 }

}

Now, a Creature type can be constructed as a proxy that points to an element within

the Creatures container:

public struct Creature

{

 private readonly Creatures creatures;

 private readonly int index;

 public Creature(Creatures creatures, int index)

 {

 this.creatures = creatures;

 this.index = index;

 }

 public ref byte Age => ref creatures.age[index];

 public ref int X => ref creatures.x[index];

 public ref int Y => ref creatures.y[index];

}

Chapter 13 Proxy

234

This data structure is what’s called a hollow proxy. It is a data structure that doesn’t

store any useful (actionable) information, nor does it provide any special behaviors. All it

does is provide a level of indirection. It is essentially a bunch of pointers into an existing

data structure. Its existence is only motivated by syntactic convenience.

Note that the preceding class is nested within Creatures. The reason for this is that

its property getters need to access private members of Creatures, which would be

impossible if the class was on the same scope as the container.

So now that we have this proxy, we can give the Creatures container additional

features, such as an indexer or a GetEnumerator() implementation:

public class Creatures

{

 // members here

 public Creature this[int index]

 => new Creature(this, index);

 public IEnumerator<Creature> GetEnumerator()

 {

 for (int pos = 0; pos < size; ++pos)

 yield return new Creature(this, pos);

 }

}

And that’s it! We can now look at a side-by-side comparison of the AoS approach and

the new SoA approach:

// AoS

var creatures = new Creature[100];

foreach (var c in creatures)

{

 c.X++; // not memory-efficient

}

// SoA

var creatures2 = new Creatures(100);

foreach (var c in creatures2)

{

 c.X++; // better!

}

Chapter 13 Proxy

235

Naturally, what I’ve shown here is a simplistic model. It would be more useful with

arrays replaced by more flexible data structures like List<T>, and a lot more features

could be added in order to make Creatures even more user-friendly.

�Composite Proxy with Array-Backed Properties
Suppose you’re working on an application that generates bricklaying designs. You need

to decide what surfaces you want to cover with bricks, so you make a list of checkboxes

as follows:

◻◻ Pillars

◻◻ Walls

◻◻ Floors

◻◻ All

Most of these are easy and can be bound one-to-one to Boolean variables, but the

last option, All, cannot. How would you implement it in code? Well, you could try

something like the following:

public class MasonrySettings

{

 public bool Pillars, Walls, Floors;

 public bool All

 {

 get { return Pillars && Walls && Floors; }

 set {

 Pillars = value;

 Walls = value;

 Floors = value;

 }

 }

}

Chapter 13 Proxy

236

This implementation might work, but it’s not 100% correct. The last checkbox called

All is actually not even boolean because it can be in three states:

•	 Checked if all items are checked

•	 Unchecked if all items are unchecked

•	 Grayed if some items are checked and others are not

This makes it a bit of a challenge: how do we make a variable for the state of this

element that can be reliably bound to UI?

First of all, those combinations using && are ugly. We already have a tool called array-

backed properties that can help us take care of that, transforming the class to

public class MasonrySettings

{

 private bool[] flags = new bool[3];

 public bool Pillars

 {

 get => flags[0];

 set => flags[0] = value;

 }

 // similar for Floors and Walls

}

Now, care to guess that type the All variable should have? Personally I’d go for a

bool? (aka Nullable<bool>) where the null can indicate an indeterminate state. This

means that we check the homogeneity of each element in the array and return its first

element if it’s homogeneous (i.e., all elements are the same) and null otherwise:

public bool? All

{

 get

 {

 if (flags.Skip(1).All(f => f == flags[0]))

 return flags[0];

 return null;

 }

Chapter 13 Proxy

237

 set

 {

 if (!value.HasValue) return;

 for (int i = 0; i < flags.Length; ++i)

 flags[i] = value.Value;

 }

}

The getter here is fairly self-explanatory. When it comes to the setter, its value gets

assigned to every element in the array. If the argument is null, we don’t do anything. An

alternative implementation could, for example, flip every Boolean member inside the

array – your choice!

�Virtual Proxy
There are situations where you only want the object constructed when it’s accessed

and you don’t want to allocate it prematurely. If this was your starting strategy, you

would typically use a Lazy<T> or similar mechanism, feeding the initialization code

into its constructor lambda. However, there are situations where you are adding lazy

instantiation at a later point in time and you cannot change the existing API.

In this situation, what you end up building is a virtual proxy: an object that has the

same API as the original, giving the appearance of an instantiated object, but behind the

scenes the proxy only instantiates the object when it’s actually necessary.

Imagine a typical image interface:

interface IImage

{

 void Draw();

}

An eager (opposite of lazy) implementation of a Bitmap (nothing to do with System.

Drawing.Bitmap!) would load the image from a file on construction, even if that image

isn’t actually required for anything. And, yes, the following code is an emulation:

class Bitmap : IImage

{

 private readonly string filename;

Chapter 13 Proxy

238

 public Bitmap(string filename)

 {

 this.filename = filename;

 WriteLine($"Loading image from {filename}");

 }

 public void Draw()

 {

 WriteLine($"Drawing image {filename}");

 }

}

The very act of construction of this Bitmap will trigger the loading of the image:

var img = new Bitmap("pokemon.png");

// Loading image from pokemon.png

That’s not quite what we want. What we want is the kind of bitmap that only loads

itself when the Draw() method is used. Now, I suppose we could jump back into Bitmap

and make it lazy, but we’re going to assume the original implementation is set in stone

and is not modifiable.

So what we can then build is a virtual proxy that will use the original Bitmap, provide

an identical interface, and also reuse the original Bitmap’s functionality:

class LazyBitmap : IImage

{

 private readonly string filename;

 private Bitmap bitmap;

 public LazyBitmap(string filename)

 {

 this.filename = filename;

 }

 public void Draw()

 {

Chapter 13 Proxy

239

 if (bitmap == null) // lazy loading

 bitmap = new Bitmap(filename);

 bitmap.Draw();

 }

}

Here we are. As you can see, the constructor of this LazyBitmap is a lot less “heavy”:

all it does is store the name of the file to load the image from, and that’s it – the image

doesn’t actually get loaded.1

All of the magic happens in Draw(): this is where we check the bitmap reference

to see whether the underlying (eager!) bitmap has been constructed. If it hasn’t, we

construct it and then call its Draw() function to actually draw the image.

Now imagine you have some API that uses an IImage type:

public static void DrawImage(IImage img)

{

 WriteLine("About to draw the image");

 img.Draw();

 WriteLine("Done drawing the image");

}

We can use this API with an instance of LazyBitmap instead of Bitmap (hooray,

polymorphism!) to render the image, loading it in a lazy fashion:

var img = new LazyBitmap("pokemon.png");

DrawImage(img); // image loaded here

// About to draw the image

// Loading image from pokemon.png

// Drawing image pokemon.png

// Done drawing the image

1 Not that it matters for this particular example, but this implementation is not thread-safe.
Imagine two threads that both do a null check, pass it, and then both assign bitmap one after
another – the constructor will be called twice. This is why we use System.Lazy, which is thread-
safe by design.

Chapter 13 Proxy

240

�Communication Proxy
Suppose you call a method Foo() on an object of type Bar. Your typical assumption is

that Bar has been allocated on the same machine as the one running your code, and you

similarly expect Bar.Foo() to execute in the same process.

Now imagine that you make a design decision to move Bar and all its members off to

a different machine on the network. But you still want the old code to work! If you want

to keep going as before, you’ll need a communication proxy – a component that proxies

the calls “over the wire” and of course collects results, if necessary.

Let’s implement a simple ping-pong service to illustrate this. First, we define an

interface:

interface IPingable

{

 string Ping(string message);

}

If we are building ping-pong in-process, we can implement Pong as follows:

class Pong : IPingable

{

 public string Ping(string message)

 {

 return message + " pong";

 }

}

Basically, you ping a Pong, and it appends the word “ pong” to the end of the

message and returns that message. Notice that I’m not using a StringBuilder here, but

instead making a new string on each turn: this lack of mutation helps replicate this API

as a web service.

We can now try out this setup and see how it works in-process:

void UseIt(IPingable pp)

{

 WriteLine(pp.ping("ping"));

}

Chapter 13 Proxy

241

var pp = new Pong();

for (int i = 0; i < 3; ++i)

{

 UseIt(pp);

}

And the end result is that we print "ping pong" three times, just as we wanted.

So now, suppose you decide to relocate the Pingable service to a web server, far, far

away. Perhaps you even decide to expose it through a special framework such as ASP.NET:

[Route("api/[controller]")]

public class PingPongController : Controller

{

 [HttpGet("{msg}")]

 public string Get(string msg)

 {

 return msg + " pong";

 }

}

With this setup, we’ll build a communication proxy called RemotePong that will be

used in place of Pong:

class RemotePong : IPingable

{

 string Ping(string message)

 {

 string uri = "http://localhost:9149/api/pingpong/" + message;

 return new WebClient().DownloadString(uri);

 }

}

With this implemented, we can now make a single change:

var pp = new RemotePong(); // was Pong

for (int i = 0; i < 3; ++i)

{

 UseIt(pp);

}

Chapter 13 Proxy

242

And that’s it. You get the same output, but the actual implementation can be running

on Kestrel in a Docker container somewhere halfway around the world.

�Dynamic Proxy for Logging
Say you’re testing a piece of code and you want to record the number of times particular

methods are called and what arguments they are called with. You have a couple of

options, including the following:

•	 Using AOP approaches such as PostSharp or Fody to create

assemblies where the required functionality is weaved into the code

•	 Using profiling/tracing software instead

•	 Creating dynamic proxies for your objects in tests

A dynamic proxy is a proxy created at runtime. It allows us to take an existing object

and, provided a few rules are followed, to override or wrap some of its behaviors to

perform additional operations.

So imagine that you are writing tests that cover the operation of a BankAccount, a

class that implements the following interface:

public interface IBankAccount

{

 void Deposit(int amount);

 bool Withdraw(int amount);

}

Suppose that your starting point is a test such as the following:

var ba = new BankAccount();

ba.Deposit(100);

ba.Withdraw(50);

WriteLine(ba);

When performing those operations, you also want a count of the number of methods

that have been called. So, effectively, you want to wrap a BankAccount with some sort of

dynamically constructed proxy that implements the IBankAccount interface and keeps a

log of all the methods called.

Chapter 13 Proxy

243

We shall construct a new class that we’ll call Log<T> that is going to be a dynamic

proxy for any type T:

public class Log<T> : DynamicObject

 where T : class, new()

{

 private readonly T subject;

 private Dictionary<string, int> methodCallCount = new ();

 // ↑ not thread-safe, obviously

 protected Log(T subject)

 {

 this.subject = subject;

 }

}

Our class takes a subject, which is the class it is wrapping, and has a simple

dictionary of method call counts.

Now this class inherits from DynamicObject, which is great because we want to make

a log of the calls made to its various methods, and only then does it actually invoke those

methods. Here’s how we can implement this:

public override bool TryInvokeMember(

 InvokeMemberBinder binder, object[] args, out object result)

{

 try

 {

 if (methodCallCount.ContainsKey(binder.Name))

 methodCallCount[binder.Name]++;

 else

 methodCallCount.Add(binder.Name, 1);

 result = subject

 ?.GetType()

 ?.GetMethod(binder.Name)

 ?.Invoke(subject, args);

 return true;

 }

Chapter 13 Proxy

244

 catch

 {

 result = null;

 return false;

 }

}

As you can see, all we’re doing is logging the number of calls made to a particular

method and then invoking the method itself using reflection.

Now, there’s only one tiny problem for us to handle: how do we get our Log<T>

to pretend as if it were implementing some interface I? This is where dynamic proxy

frameworks come in. The one we’re going to be using is called ImpromptuInterface.2

This framework provides an extension method called ActLike() that allows a dynamic

object to pretend that it implements a particular interface.

Armed with this, we can give our Log<T> a static factory method that would construct

a new instance of T, wrap it in a Log<T>, and then expose it as some interface I:

public static I As<I>() where I : class

{

 if (!typeof(I).IsInterface)

 throw new ArgumentException("I must be an interface type");

 // duck typing here!

 return new Log<T>(new T()).ActLike<I>();

}

The end result of it all is that we can now perform a simple replacement and get a

record of all the calls made to the bank account class:

//var ba = new BankAccount();

var ba = Log<BankAccount>.As<IBankAccount>();

ba.Deposit(100);

ba.Withdraw(50);

WriteLine(ba);

2 You can get it from NuGet; the source code is at https://github.com/ekonbenefits/
impromptu-interface

Chapter 13 Proxy

https://github.com/ekonbenefits/impromptu-interface
https://github.com/ekonbenefits/impromptu-interface

245

// Deposit called 1 time(s)

// Withdraw called 1 time(s)

Naturally, in order for this to work, we’ve had to override Log<T>.ToString() to

output call counts. Sadly, the wrapper we’ve made will not automatically proxy over calls

to ToString()/Equals()/GetHashCode() because every object has them intrinsically

built in. If you do want to connect these to the underlying, you’d have to add overrides in

Log<T> and then use the subject field to make the appropriate calls.

�Composite Proxy
Having met the Composite design pattern earlier in the book, you might be wondering

just how Composite is able to interact with Proxy, considering how different the two

patterns and their uses are. Well, let me show you an example.

Quite often, when using a StringBuilder, I find it necessary to put specific lines

of text into specific locations in the builder. Sometimes, I need to insert lines at the

beginning and end up having to use Insert() in doing so. If I have to compose a large

file with many parts, what I do is typically construct a separate StringBuilder for each

part and then merge them into a final builder toward the end.

Having to declare lots of different StringBuilder entities is tiring. You may end up

writing to the wrong one and not even notice. It is far better to simply have some sort

of prioritized StringBuilder where, when adding entries, you can optionally refer to

the order of the entries. For example, we can assume that smaller integer values mean

the builder is earlier in the file and larger integer values mean the data is kept at a later

position.

What does this have to do with the Composite pattern, though? The answer is this:

behind the scenes we, of course, keep several StringBuiler entities. These are created

on demand as you use the API.

To get this to work, we’re going to have to trick the system a little. First of all, we’ll

define a class as follows:

public class PriorityStringBuilder

{

 private StringBuilder sb = new StringBuilder();

}

Chapter 13 Proxy

246

Now, we use Rider/R#/your favorite IDE to generate Delegating Members for sb.

Having done so, we now need to do some cleanup: for example, the IDEs may forget to

mark StringBuilder methods that take pointers as unsafe, or it may mess up nullability

annotations. For this particular example, we do not need to try and recover a fluent

interface – you’ll see why in a moment.

Having created the sb field, we now replace it with the following:

public class PriorityStringBuilder

{

 private readonly int defaultPriority;

 private readonly SortedDictionary<int, StringBuilder> data = new ();

 private StringBuilder sb => data[defaultPriority];

 public PriorityStringBuilder(int defaultPriority = 100)

 {

 this.defaultPriority = defaultPriority;

 data[defaultPriority] = new StringBuilder();

 }

 // generated members here

}

There’s quite a lot going on here, so let me explain what we did:

•	 The class was given a constructor where you get to specify the default

priority for adding text. By default, this has a value of 100, meaning

that, to add text at an earlier stage, you’d use some priority <100 and,

to add it later, you can use a higher value. We’ll see in a moment how

to use those.

•	 We removed the StringBuilder field and replaced it with a

SortedDictionary, which stores not one but any number of

StringBuilder objects with different priorities.

•	 The sb field is no longer a field: it’s a property that returns the builder

associated with default priority. This should remind you of the Array-

Backed Properties approach we met earlier.

Chapter 13 Proxy

247

In order to support priority, we’re going to break the interface somewhat by

removing the current indexer. By default, StringBuilder’s indexer works just like that

of a string: it returns a character at a specified position. We don’t want that. Instead,

we’ll use the index value to specify the priority we need, resulting in the following

implementation:

public StringBuilder this[int priority]

{

 get

 {

 if (!data.ContainsKey(priority))

 data.Add(priority, new StringBuilder());

 return data[priority];

 }

}

And, finally, the icing on the cake: we implement ToString(), which simply takes

the data from all the StringBuilders and puts it into one string:

public override string ToString()

{

 return string.Join(string.Empty,

 data.Values.Select(s => s.ToString()));

}

To demonstrate the use of this, consider a simple HTML document where you first

construct the body of the page, but then need to wrap it with appropriate tags:

var b = new PriorityStringBuilder();

b.AppendLine("<p>Hello, World!</p>");

b[50].AppendLine("<html>")

 .AppendLine("<body>");

b[150].AppendLine("</body")

 .AppendLine("</html>");

Console.WriteLine(b);

Chapter 13 Proxy

248

This gives the predictable output:

<html>

<body>

<p>Hello, World!</p>

</body

</html>

Naturally, the approach presented here can do with some improvements. For

example, our use of the term priority is imprecise since one might argue that text with

higher priority should come earlier in the output, not later. But the solution presented

here works well, and we leave it up to you to figure out how to best avoid magic numbers.

�Summary
This chapter has presented a number of proxies. Unlike the Decorator pattern, Proxy

doesn’t try to expand the public API surface of an object by adding new members

(unless it can’t be helped). All it tries to do is enhance or modify the underlying behavior

of existing members.

Plenty of different proxies exist:

•	 Protection proxies provide access control wrappers to control access

to resources.

•	 Property proxies are stand-in objects that can replace fields and

perform additional operations during assignment and/or access.

•	 Composite proxies are stand-in objects that help you access

composite objects.

•	 Virtual proxies provide virtual access to the underlying object

and can implement behaviors such as lazy object loading. You

may feel like you’re working with a real object, but the underlying

implementation may not have been created yet and can, for example,

be loaded on demand.

Chapter 13 Proxy

249

•	 Communication proxies allow us to change the physical location

of the object (e.g., move it to the cloud) but allow us to use pretty

much the same API. Of course, in this case the API is just a shim for a

remote service such as some available REST API.

•	 Logging proxies allow you to perform logging in addition to calling

the underlying functions.

•	 Dynamic proxies are proxies constructed at runtime, for whatever

purpose. Plenty of different implementations exist, including explicit

dynamic proxy support in popular IoC containers.

There are lots of other proxy types out there, and chances are that the ones you build

yourself will not fall into a preexisting category, but will instead perform some action

specific to your domain.

Chapter 13 Proxy

251

CHAPTER 14

Value Object
The decision as to whether to make an object a class or a struct is very important, and

not just from the performance perspective. Quite often what we really want is a “value

plus” – to be able to provide a wrapper around a single value (such as an int) that would

do one of the following:

•	 Carry additional information (data or metadata).

•	 Provide additional behaviors.

•	 Provide additional levels of indirection.

Some fairly obvious examples of value object types include

•	 Money: Carries information about monetary value (likely as integer

rather than FP) and currency

•	 DateTime, TimeSpan, and similar classes

•	 System.Guid (essentially a 128-bit value)

The vehicle for this is, of course, a struct, which enjoys the well-known trappings

such as pass-by-value, value (rather than referential) equality, and others.

There are, in fact, several different struct incarnations, which are all very similar:

•	 An ordinary struct

•	 A record struct, which is a struct with many useful

synthesized members

•	 A ref struct, which is a special, stack-only structure

In addition, each of these also has its readonly variation (readonly struct,

readonly record struct, and readonly ref struct, respectively) that helps enforce

immutability. It is best practice to keep structs immutable, since modifications of

mutable struct members can often lead to no-op effects, where the developer thinks

they’ve modified a variable, whereas they’ve inadvertently made a copy instead.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_14

https://doi.org/10.1007/978-1-4842-8245-8_14

252

Whichever type of struct we choose, we can use it to construct an object that is

intended to be passed by value and to convey additional information and functions.

From a certain perspective, a value object can be considered as a proxy or decorator.

�Two-Dimensional Point
Let us take a look at how to implement a value object that represents a simple two-

dimensional point in Cartesian space. We’ll start with a simple (non-record) definition:

public readonly struct Point

{

 public readonly double X, Y;

 public Point(double x, double y) => (X, Y) = (x, y);

 public static Point Origin = new Point(0, 0);

}

With such a definition, we must provide this structure with a bare minimum of

operations, including

•	 Equality operations: An implementation of IEquatable<T>, the

Equals(), and the == and != operators

•	 Support for GetHashCode()

You may also optionally choose to provide

•	 A sensible ToString() implementation

•	 A deconstruction method

•	 Relational members: The IComparable<T> interface, the CompareTo()

method, and various relational operators

Most of these constructs can be automatically generated by either opting for a

record struct or, alternatively, by using Rider or ReSharper. In any case, there is no

need to type all this boilerplate code manually.

At this point, you could also furnish your type with whatever operators may be

applicable. For example, in the case of a 2D point, you could add support for adding two

points together or for multiplying a point by a number:

Chapter 14 Value Object

253

public static Point operator +(in Point p1, in Point p2)

{

 return new Point(p1.X + p2.X, p1.Y + p2.Y);

}

public static Point operator *(in Point p, double value)

{

 return new Point(p.X * value, p.Y * value);

}

The type can now be used as follows:

Point p = new Point(1, 2);

var p2 = p + p * 3.5;

Console.WriteLine(p2); // (4.5,9)

�Percentage Value
Primitive values can have special meanings. Consider percentages: multiplying by 50

is different from multiplying by 50% because the latter is really multiplication by 0.5.

But you still want to refer to 50% as 50% in your code, right? Let’s see if we can build a

Percentage type.

First of all, we need to agree on construction. Let’s assume that we do, in fact, store

a decimal behind the scenes that is actually a multiplier. In that case, we can begin our

Percentage class as follows:

[DebuggerDisplay("{value*100.0f}%")]

public readonly record struct Percentage(decimal value)

{

 private readonly decimal value = value;

 // more members here

}

We have different choices for how to actually construct percentage values. One

approach would be to adopt extension methods:

Chapter 14 Value Object

254

public static class PercentageExtensions

{

 public static Percentage Percent(this int value)

 {

 return new Percentage(value/100.0m);

 }

 public static Percentage Percent(this decimal value)

 {

 return new Percentage(value/100.0m);

 }

}

We want this percentage to act the same as percentage values in, for example,

Microsoft Excel. Multiplying by 50% should effectively multiply by 0.5; other operations

should work in a similar fashion. Thus, we need to define many operators such as

public static decimal operator *(decimal f, Percentage p)

{

 return f * p.value;

}

Let’s not forget that the percentage can also operate on other percentages: for

example, you can add 5% and 10% together, and similarly, you can take 50% of 50%

(getting 25%). So you need more operators such as

public static Percentage operator +(Percentage a, Percentage b)

{

 return new Percentage(a.value + b.value);

}

In addition, we need a meaningful ToString() implementation, since Equals(),

GetHashCode(), and other members are generated automatically:

public override string ToString()

{

 return $"{value*100}%";

}

Chapter 14 Value Object

255

And that’s your percentage value object. Now, if you need to operate on percentages

in your application and store them explicitly as percentages, you can do so:

Console.WriteLine(10m * 5.Percent()); // 0.50

Console.WriteLine(2.Percent() + 3m.Percent()); // 5.00%

With this approach, you can write methods that specifically take percentage values

rather than general-purpose floating- point values:

public void GiveSalaryBonus(Percentage pc) { ... }

You can enhance this model further. For example, a Discount type can inherit from

the Percentage type and allow only a limited range of values between 0% and 100%,

since neither negative discounts nor discounts above 100% make any sense.

�Units of Measure
You might have heard about major disasters, such as the loss of a $125 million

Mars Climate Orbiter spacecraft, being due to mismatches in measurement units.

Measurement units show up all over the place in software engineering projects and are a

prime candidate for the Value Object pattern.

What we want to do, put simply, is to somehow attach information about the

measurement units and their dimensions directly to the actual value. Exactly how it gets

attached to a unit is up for debate. Broadly speaking, programming languages could

implement this by

•	 Using unit information only at compile time and completely throwing

it away at runtime

•	 Performing the checks at compile time, but leaving the unit

information intact so it can be reused (e.g., as a library)

While the latter option is arguably more usable, F# goes for the former option, that

is, being able to attach unit information to numeric values but almost completely wiping

out all the unit data during compilation.

Chapter 14 Value Object

256

In F#, you can decorate a type with a [<Measure>] attribute to denote that it is some

measurement unit:

[<Measure>] type kg // kilograms

[<Measure>] type m // meters

[<Measure>] type s // seconds

Notice that measurement units do not specify their underlying numeric type: a

weight measurement can use a float, decimal, uint16, or any other numeric type.

Naturally, such calculations are constrained such that a uniform type has to be used

everywhere in the calculation, since F# does not allow implicit conversions, even if those

conversions are widening (e.g., int to float):

let more_weight = 3<kg> + 4.0<kg>

// The type 'float<kg>' does not match the type 'int<kg>'

Having defined a set of units, these can be applied to numeric values:

let length = 3.0<m>

let time = 5.0<s>

let weight = 2.0<kg>

Measurements involving several units can be expressed as such. For instance, force

is measured in Newtons
kg m
s
⋅






2 :

[<Measure>] type N = kg m / s^2 // Newtons

This allows us to perform calculations with compile-time dimensional analysis.

Dimensional analysis ensures that the data you’re assigning has the right units, so that,

for example, dividing distance by time gives you speed, but assigning this value to a force

variable is simply not possible and will not pass compile-time checks.

For example, this will work just fine:

let force: float<N> = (weight * length) / (time*time)

printf $"%f{force}" // 0.24

On the other hand, this will not compile:

let force: float<N> = (weight * length) / (time)

// The unit of measure 'N' does not match the unit of measure 'kg m/s'

Chapter 14 Value Object

257

It’s important to understand that units of measure in F# are used for static (compile-

time) checking. When the code is compiled, all measurement information attached to

values is eliminated completely so you cannot, for example, implement a ToString()

that incorporates unit information.

If we did want to incorporate unit information at compile time, it would require us

to create an endless number of struct definitions that would all specify explicitly their

measurement units, then use those types instead of the plain numeric data types.

�Summary
Value Object is a pattern that promotes a primitive value into an OOP-like construct

with the express purpose of providing additional information. At the very least, you’re

including type information, but in addition you can adorn it with attributes and

behaviors (including extension methods) that make it more usable than a plain value.

Value objects also often arise out of efficiency concerns. If you have a piece of code

that generates a large number of small objects, you end up increasing pressure on the

Garbage Collector to take care of these constructs once you’re done with them. Value

objects instead allow you to allocate everything on the stack, provided, of course, that

you do not exceed stack space.

Chapter 14 Value Object

PART IV

Behavioral Patterns
When most people hear about behavioral patterns, it's often related to pet training or

general behavioral psychology, which often boils down to biological entities doing what

you want them to do. Well, in a way, all of coding is about programs doing what you

want, so behavioral software design patterns cover a very wide range of behaviors that

are, nonetheless, quite common in programming.

As an example, consider the domain of software engineering. We have languages that

are compiled, which involves lexing, parsing, and a million other things (the Interpreter

pattern), and having constructed an abstract syntax tree (AST) for a program, you might

want to analyze the program for possible bugs (the Visitor pattern). All of these are

behaviors that are common enough to be expressed as patterns, and this is why we are

here today.

Unlike creational patterns (which are concerned exclusively with the creation of

objects) or structural patterns (which are concerned with composition/aggregation/

inheritance of objects), behavioral design patterns do not follow a central theme. While

there are certain similarities between different patterns (e.g., Strategy and Template

Method do the same thing in different ways), most patterns present unique approaches

to solving a particular problem.

261

CHAPTER 15

Chain of Responsibility
Consider the typical example of corporate malpractice: insider trading. Say a particular

trader has been caught red-handed trading on inside information. Who is to blame for

this? If management didn’t know, it’s the trader. But maybe the trader’s peers were in

on it, in which case the group manager might be the one responsible. Or perhaps the

practice is institutional, in which case it’s the CEO who would take the blame.1

This is an example of a responsibility chain: you have several different elements of

a system who can all process a piece of information one after another. As a concept, it’s

rather easy to implement, since all that’s implied is the use of an ordinary list.

�Scenario
Imagine a computer game where each creature has a name and two characteristic

values – Attack and Defense:

public class Creature

{

 public string Name;

 public int Attack, Defense;

 public Creature(string name, int attack, int defense) { ... }

}

Now, as the creature progresses through the game, it might pick up an item (e.g., a

magic sword), or it might end up getting enchanted. In either case, its attack and defense

values will be modified by something we’ll call a CreatureModifier.

1 In all likelihood, if we’re talking about banking, nobody gets punished. Nobody was punished
for the subprime mortgage crisis. In the LIBOR fixing scandal, only one trader got convicted
(six bankers were accused in the UK but later cleared). What does this have to do with design
patterns? Absolutely nothing! Just wanted to share.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_15

https://doi.org/10.1007/978-1-4842-8245-8_15

262

Furthermore, situations where several modifiers are applied are not uncommon, so

we need to be able to stack modifiers on top of a creature, allowing them to be applied in

the order they were attached.

Let’s see how we can implement this.

�Method Chain
In the classic Chain of Responsibility (CoR) implementation, we shall define

CreatureModifier as follows:

public class CreatureModifier

{

 protected Creature creature;

 protected CreatureModifier next;

 public CreatureModifier(Creature creature)

 {

 this.creature = creature;

 }

 public void Add(CreatureModifier cm)

 {

 if (next != null) next.Add(cm);

 else next = cm;

 }

 public virtual void Handle() => next?.Handle();

}

There are a lot of things happening here, so let’s discuss them in turn:

•	 The class takes and stores a reference to the Creature it plans

to modify.

•	 The class doesn’t really do much, but it’s not abstract: all its members

have implementations.

•	 The next member points to an optional CreatureModifier following

this one. The implication is, of course, that the modifier can also be

some inheritor of CreatureModifier.

Chapter 15 Chain of Responsibility

263

•	 The Add() method adds another creature modifier to the modifier

chain. This is done iteratively: if the current modifier is null, we set it

to that; otherwise, we traverse the entire chain and put it on the end.

Naturally, this traversal has O(n) complexity.

•	 The Handle() method simply handles the next item in the chain, if it

exists; it has no behavior of its own. The fact that it’s virtual implies

that it’s meant to be overridden.

So far, all we have is an implementation of a poor man’s append-only singly linked

list. But when we start inheriting from it, things will hopefully become clearer. For

example, here is how you would make a modifier that would double the creature’s

attack value:

public class DoubleAttackModifier : CreatureModifier

{

 public DoubleAttackModifier(Creature creature)

 : base(creature) {}

 public override void Handle()

 {

 WriteLine($"Doubling {creature.Name}'s attack");

 creature.Attack *= 2;

 base.Handle();

 }

}

All right, finally we’re getting somewhere. So this modifier inherits from

CreatureModifier and in its Handle() method does two things: doubles the attack value

and calls Handle() from the base class. That second part is critical: the only way in which

a chain of modifiers can be applied is if every inheritor remembers to call the base at the

end of its own Handle() implementation.

Here is another, more complicated modifier. This modifier increases the defense of

creatures with attack of 2 or less by 1:

public class IncreaseDefenseModifier : CreatureModifier

{

 public IncreaseDefenseModifier(Creature creature)

 : base(creature) {}

Chapter 15 Chain of Responsibility

264

 public override void Handle()

 {

 if (creature.Attack <= 2)

 {

 WriteLine($"Increasing {creature.Name}'s defense");

 creature.Defense++;

 }

 base.Handle();

 }

}

Again we call the base class at the end. Putting it all together, we can now make a

creature and apply a combination of modifiers to it:

var goblin = new Creature("Goblin", 1, 1);

WriteLine(goblin); // Name: Goblin, Attack: 1, Defense: 1

var root = new CreatureModifier(goblin);

root.Add(new DoubleAttackModifier(goblin));

root.Add(new DoubleAttackModifier(goblin));

root.Add(new IncreaseDefenseModifier(goblin));

// eventually...

root.Handle();

WriteLine(goblin); // Name: Goblin, Attack: 4, Defense: 1

As you can see, the preceding goblin is a 4/1 because its attack got doubled and the

defense modifier, while added, did not affect its defense score.

Here’s another curious point. Suppose you decide to cast a spell on a creature such

that no bonus can be applied to it. Is it easy to do? Quite easy, actually, because all you

have to do is avoid calling the base handle() – this avoids executing the entire chain:

public class NoBonusesModifier : CreatureModifier

{

 public NoBonusesModifier(Creature creature)

 : base(creature) {}

Chapter 15 Chain of Responsibility

265

 public override void Handle()

 {

 WriteLine("No bonuses for you!");

 // no call to base.Handle() here

 }

}

That’s it! Now, if you slot the NoBonusesModifier at the beginning of the chain, no

further elements will be applied.

�Broker Chain
The example with the pointer chain is very artificial. In the real world, you’d want

creatures to be able to take on and lose bonuses arbitrarily, something that an append-

only linked list doesn’t support. Furthermore, you don’t want to modify the underlying

creature stats permanently (as we did) – instead, you want to keep modifications

temporary.

One way to implement Chain of Responsibility is through a centralized component.

This component can keep a list of all modifiers available in the game and can facilitate

queries for a particular creature’s attack or defense by ensuring that all relevant bonuses

are applied.

The component that we are going to build is called an event broker. Since it’s

connected to every participating component, it represents the Mediator design pattern.

And, further, since it responds to queries through events, it leverages the Observer

design pattern.

Let’s build one. First of all, we’ll define a structure called Game that will represent,

well, a game that’s being played:

public class Game // mediator pattern

{

 public event EventHandler<Query> Queries; // effectively a chain

 public void PerformQuery(object sender, Query q)

 {

 Queries?.Invoke(sender, q);

 }

}

Chapter 15 Chain of Responsibility

266

The class Game is what we generally call an event broker: a central component that

brokers (passes) events between different parts of the system. Here it is implemented

using ordinary .NET events, but you can equally imagine an implementation using some

sort of message queue.

In the game, we are using an event called Queries. Essentially, this lets us raise

this event and have it handled by every subscriber (listening component). But what do

events have to do with querying a creature’s attack or defense?

Well, imagine that you want to query a creature’s statistic. You could certainly try to

read a field, but remember, we need to apply all the modifiers before the final value is

known. So instead we’ll encapsulate a query in a separate object (this is the Command

pattern2) defined as follows:

public class Query

{

 public string CreatureName;

 public enum Argument

 {

 Attack, Defense

 }

 public Argument WhatToQuery;

 public int Value; // bidirectional!

}

All we’ve done in the preceding class is encapsulated the concept of querying a

particular value from a creature. All we need to provide is the name of the creature and

which statistic we’re interested in. It is precisely this value (well, a reference to it) that

will be constructed and used by Game.Queries to apply the modifiers and return the

final Value.

Now, let’s move on to the definition of Creature. It’s very similar to what we had

before. The only difference in terms of fields is a reference to a Game:

2 Actually, there’s a bit of confusion here. The concept of Command-Query Separation (CQS)
suggests the separation of operations into commands (which mutate state and yield no value)
and queries (which do not mutate anything but yield a value). The GoF does not have a concept
of a query, so we let any encapsulated instruction to a component be called a command.

Chapter 15 Chain of Responsibility

267

public class Creature

{

 private Game game;

 public string Name;

 private int attack, defense;

 public Creature(Game game, string name, int attack, int defense)

 {

 // obvious stuff here

 }

 // other members here

}

Notice how attack and defense are private fields now. This means that, to get at the

final (post-modifier) attack value, you would need to call a separate read-only property,

for example:

public int Attack

{

 get

 {

 var q = new Query(Name, Query.Argument.Attack, attack);

 game.PerformQuery(this, q);

 return q.Value;

 }

}

This is where the magic happens! Instead of just returning a value or statically applying

some reference-based chain, what we do is create a Query with the right arguments and

then send the query off to be handled by whoever is subscribed to Game.Queries. Every

single listening component gets a chance to modify the baseline attack value.

So let’s now implement the modifiers. Once again, we’ll make a base class, but this

time round it won’t have a body for the Handle() method:

public abstract class CreatureModifier : IDisposable

{

 protected Game game;

 protected Creature creature;

Chapter 15 Chain of Responsibility

268

 protected CreatureModifier(Game game, Creature creature)

 {

 this.game = game;

 this.creature = creature;

 game.Queries += Handle; // subscribe

 }

 protected abstract void Handle(object sender, Query q);

 public void Dispose()

 {

 game.Queries -= Handle; // unsubscribe

 }

}

Right, so this time round the CreatureModifier class is even more sophisticated.

It obviously keeps a reference to the creature it’s meant to modify, but also to the

Game that’s being played. Why? Well, as you can see, what’s happening is that, in the

constructor, it subscribes to the Queries event so that its inheritors can inject themselves

as a set of modifiers is applied one after another. We also implement IDisposable so as

to unsubscribe from the query events and prevent memory leaks.3

The CreatureModifier.Handle() method is deliberately made abstract so that

inheritors can implement it and handle the modification process depending on

the Query that’s being sent. Let’s take a look at how this is used by reimplementing

DoubleCreatureModifier in this new paradigm:

public class DoubleAttackModifier : CreatureModifier

{

 public DoubleAttackModifier(Game game, Creature creature)

 : base(game, creature) {}

 protected override void Handle(object sender, Query q)

 {

 if (q.CreatureName == creature.Name &&

 q.WhatToQuery == Query.Argument.Attack)

3 This is precisely what is done in Reactive Extensions. See Chapter 20 for more information.

Chapter 15 Chain of Responsibility

269

 q.Value *= 2;

 }

}

Right, so now we have a concrete implementation of Handle(). Extra care needs to

be taken here to identify that the query is, in fact, a query that we want to process. Since

a DoubleAttackModifier only cares about queries for an attack value, we verify this

particular argument (WhatToQuery) and also make sure that the query is related to the

creature we’re meant to investigate.

If we now add an IncreaseDefenseModifier (increases defense by 2,

implementation omitted), we can now run the following scenario:

var game = new Game();

var goblin = new Creature(game, "Strong Goblin", 2, 2);

WriteLine(goblin); // Name: Strong Goblin, attack: 2, defense: 2

using (new DoubleAttackModifier(game, goblin))

{

 WriteLine(goblin); // Name: Strong Goblin, attack: 4, defense: 2

 using (new IncreaseDefenseModifier(game, goblin))

 {

 WriteLine(goblin); // Name: Strong Goblin, attack: 4, defense: 4

 }

}

WriteLine(goblin); // Name: Strong Goblin, attack: 2, defense: 2

What’s happening here? Well, prior to being modified, the goblin is a 2/2. Then, we

manufacture a scope, within which the goblin is affected by a DoubleAttackModifier,

so inside the scope, it is a 4/2 creature. As soon as we exit the scope, the modifier’s

destructor triggers, and it disconnects itself from the broker and thus no longer affects

the values when they are queried. Consequently, the goblin itself reverts to being a 2/2

creature once again.

Chapter 15 Chain of Responsibility

270

�Functional Chain of Responsibility
Functional composition in F# allows us to use the >> operator to define a chain of

functions that can be invoked in sequential fashion, thus representing a chain of

responsibilities in processing some data.

For example, this can be used in validation. Consider a Person record type defined as

type Person = {

 Age : int

 IsCitizen : bool

}

A person can only vote if they are 16 or older and are a citizen; furthermore, we

want to ensure their age is a reasonable number so as to avoid the fraudulent case of the

dead voting.

Each of the validation requirements can be formalized by a function:

let oldEnough person = person.Age >= 16

let ageReasonable person = person.Age < 130

let isCitizen person = person.IsCitizen

A higher-order function can then be used to chain-apply each of these validators and

propagate a true value if everything is OK and false if one of the validations has been

tripped:

let check(f : Person -> bool) (person, result) =

 if not result then (person, false)

 else (person, f(person))

All the validation functions can now be wrapped with check() and composed

together using the >> operator:

let validationChain = check(oldEnough) >> check(ageReasonable) >>

check(isCitizen)

And now the entire validation chain can be invoked with a single function call.

We pass in the object to validate and then check the second tuple value, which tells us

whether the entire chain succeeded or not:

Chapter 15 Chain of Responsibility

271

let sam = { Age = 40; IsCitizen = true };

printf "Can Sam vote? %b" ((validationChain(sam, true)) |> snd)

// Can Sam vote? true

It’s important to note that this form of functional composition is pretty much

immutable, meaning that it’s impossible to modify at runtime. If you want to make it

modifiable, you’d have to give up on the idea of compile-time composition and use a

mutable data structure, thus negating the benefits that F# brings to the table.

�Summary
Chain of Responsibility is a very simple design pattern that lets components process a

command (or a query) in turn. The simplest implementation of CoR is one where you

simply make a reference chain and, in theory, you could replace it with just an ordinary

List or, perhaps, a LinkedList if you wanted fast removal as well.

A more sophisticated Broker Chain implementation that also leverages Mediator

and Observer patterns allows us to process queries on an event, letting each subscriber

perform modifications of the originally passed object (it’s a single reference that goes

through the entire chain) before the final values are returned to the client.

Chapter 15 Chain of Responsibility

273

CHAPTER 16

Command
Think about a trivial variable assignment, such as meaningOfLife = 42. The variable

got assigned, but there’s no record anywhere that the assignment took place. Nobody

can give us the previous value. We cannot take the fact of assignment and serialize it

somewhere. This is problematic, because without a record of the change, we are unable

to roll back to previous values, perform audits, or do history-based debugging.1

The Command design pattern proposes that, instead of working with objects directly

by manipulating them through their APIs, we send them commands: instructions on

how to do something. A command is nothing more than a data class with its members

describing what to do and how to do it. Let’s take a look at a typical scenario.

�Scenario
Let’s try to model a typical bank account that has a balance and an overdraft limit. We’ll

implement Deposit() and Withdraw() methods on it:

public class BankAccount

{

 private int balance;

 private int overdraftLimit = -500;

 public void Deposit(int amount)

 {

 balance += amount;

 WriteLine($"Deposited ${amount}, balance is now {balance}");

 }

1 We do have dedicated historical debugging tools such as Visual Studio’s IntelliTrace or UndoDB.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_16

https://doi.org/10.1007/978-1-4842-8245-8_16

274

 public void Withdraw(int amount)

 {

 if (balance - amount >= overdraftLimit)

 {

 balance -= amount;

 WriteLine($"Withdrew ${amount}, balance is now {balance}");

 }

 }

 public override string ToString()

 {

 return $"{nameof(balance)}: {balance}";

 }

}

Now we can call the methods directly, of course, but let us suppose that, for audit

purposes, we need to make a record of every deposit and withdrawal made and we

cannot do it right inside BankAccount because – guess what – we’ve already designed,

implemented, and tested that class.2

�Implementing the Command Pattern
We’ll begin by defining an interface for a command:

public interface ICommand

{

 void Call();

}

Having made the interface, we can now use it to define a BankAccountCommand that

will encapsulate information about what to do with a bank account:

public class BankAccountCommand : ICommand

{

 private BankAccount account;

2 You can design your code in a command-first fashion, that is, ensure that commands are the
only publicly accessible API that your objects provide.

Chapter 16 Command

275

 public enum Action

 {

 Deposit, Withdraw

 }

 private Action action;

 private int amount;

 public BankAccountCommand

 (BankAccount account, Action action, int amount) { ... }

}

The information contained in the command includes the following:

•	 The account to operate upon.

•	 The action to take; both the set of options and the variable to store

the action are defined in the class.

•	 The amount to deposit or withdraw.

Once the client provides this information, we can take it and use it to perform the

deposit or withdrawal:

public void Call()

{

 switch (action)

 {

 case Action.Deposit:

 account.Deposit(amount);

 succeeded = true;

 break;

 case Action.Withdraw:

 succeeded = account.Withdraw(amount);

 break;

 default:

 throw new ArgumentOutOfRangeException();

 }

}

Chapter 16 Command

276

With this approach, we can create the command and then perform modifications of

the account right on the command:

var ba = new BankAccount();

var cmd = new BankAccountCommand(ba,

 BankAccountCommand.Action.Deposit, 100);

cmd.Call(); // Deposited $100, balance is now 100

WriteLine(ba); // balance: 100

This will deposit 100 dollars into our account. Easy! And if you’re worried that

we’re still exposing the original Deposit() and Withdraw() member functions to

the client, well, the only way to hide them is to make commands inner classes of the

BankAccount itself.

�Undo Operations
Since a command encapsulates all information about some modification to a

BankAccount, it can equally roll back this modification and return its target object to its

prior state.

To begin with, we need to decide whether to stick undo-related operations into our

Command interface. I will do it here for purposes of brevity, but in general, this is a design

decision that needs to respect the Interface Segregation Principle that we discussed at

the beginning of the book. For example, if you envisage some commands being final

and not subject to undo mechanics, it might make sense to split ICommand into, say,

ICallable and IUndoable.

Anyways, here’s the updated ICommand:

public interface ICommand

{

 void Call();

 void Undo();

}

And here is a naive (but working) implementation of BankAccountCommand.Undo(),

motivated by the assumption that Deposit() and Withdraw() are symmetric operations:

Chapter 16 Command

277

public void Undo()

{

 switch (action)

 {

 case Action.Deposit:

 account.Withdraw(amount);

 break;

 case Action.Withdraw:

 account.Deposit(amount);

 break;

 default:

 throw new ArgumentOutOfRangeException();

 }

}

Why is this implementation broken? Because if you tried to withdraw an amount

equal to the GDP of a developed nation, you would not be successful, but when rolling

back the transaction, we don’t have a way of telling that it failed!

To get this information, we modify Withdraw() to return a success flag:

public bool Withdraw(int amount)

{

 if (balance - amount >= overdraftLimit)

 {

 balance -= amount;

 Console.WriteLine($"Withdrew ${amount}, balance is now {balance}");

 return true; // succeeded

 }

 return false; // failed

}

That’s much better! We can now modify the entire BankAccountCommand to do

two things:

•	 Store internally a succeeded flag when a withdrawal is made. We

assume that Deposit() cannot fail.

•	 Use this flag when Undo() is called.

Chapter 16 Command

278

Here we go:

public class BankAccountCommand : ICommand

{

 ...

 private bool succeeded;

}

Okay, so now that we have the flag, we can improve our implementation of Undo():

public void Undo()

{

 if (!succeeded) return;

 switch (action)

 {

 case Action.Deposit:

 account.Deposit(amount); // assumed to always succeed

 succeeded = true;

 break;

 case Action.Withdraw:

 succeeded = account.Withdraw(amount);

 break;

 default:

 throw new ArgumentOutOfRangeException();

 }

}

Tada! We can finally undo withdrawal commands in a consistent fashion:

var ba = new BankAccount();

var cmdDeposit = new BankAccountCommand(ba,

 BankAccountCommand.Action.Deposit, 100);

var cmdWithdraw = new BankAccountCommand(ba,

 BankAccountCommand.Action.Withdraw, 1000);

cmdDeposit.Call();

cmdWithdraw.Call();

WriteLine(ba); // balance: 100

cmdWithdraw.Undo();

Chapter 16 Command

279

cmdDeposit.Undo();

WriteLine(ba); // balance: 0

The goal of this exercise was, of course, to illustrate that in addition to storing

information about the action to perform, a command can also store some intermediate

information that is, once again, useful for things like audits. If you detect a series of 100

failed withdrawal attempts, you can investigate a potential hack.

�Composite Commands (aka Macros)
A transfer of money from account A to account B can be simulated with two commands:

	 1.	 Withdraw $X from A.

	 2.	 Deposit $X to B.

It would be nice if, instead of creating and calling these two commands, we could just

create and call a single command that encapsulates both of the preceding commands.

This is the essence of the Composite design pattern that we’ll discuss later.

Let’s define a skeleton composite command. I’m going to inherit from

List<BankAccountCommand> and, of course, implement the ICommand interface:

abstract class CompositeBankAccountCommand

 : List<BankAccountCommand>, ICommand

{

 public virtual void Call()

 {

 ForEach(cmd => cmd.Call());

 }

 public virtual void Undo()

 {

 foreach (var cmd in

 ((IEnumerable<BankAccountCommand>)this).Reverse())

 {

 cmd.Undo();

 }

 }

}

Chapter 16 Command

280

As you can see, the CompositeBankAccountCommand is both a list and a Command,

which fits the definition of the Composite design pattern. I’ve implemented both Undo()

and Redo() operations. Note that the Undo() process goes through commands in reverse

order; hopefully, I don’t have to explain why you’d want this as default behavior. The

cast is there because a List<T> has its own, void-returning, mutating Reverse() that

we definitely do not want. If you don’t like what you see here, you can use a for loop or

some other base type that doesn’t do in-place reversal.

So now, how about a composite command specifically for transferring money? I

would define it as follows:

class MoneyTransferCommand : CompositeBankAccountCommand

{

 public MoneyTransferCommand(BankAccount from,

 BankAccount to, int amount)

 {

 AddRange(new []

 {

 new BankAccountCommand(from,

 BankAccountCommand.Action.Withdraw, amount),

 new BankAccountCommand(to,

 BankAccountCommand.Action.Deposit, amount)

 });

 }

}

All we’re doing here is providing a constructor to initialize the object

with. We keep reusing the base class Undo() and Redo() implementations.

The entire arrangement is illustrated in Figure 16-1.

But wait. That’s not right, is it? The base class implementations don’t quite cut it

because they don’t incorporate the idea of failure. If I fail to withdraw money from A,

I shouldn’t deposit that money to B: the entire chain should cancel itself.

Chapter 16 Command

281

Figure 16-1.  Composite command class diagram

To support this idea, more drastic changes are required. We need to

•	 Add a Success flag to Command. This of course implies that we can no

longer use an interface – we need an abstract class.

•	 Record the success or failure of every operation.

•	 Ensure that the command can only be undone if it originally

succeeded.

•	 Introduce a new in-between class called

DependentCompositeCommand that is very careful about actually

rolling back the commands.

Let’s assume that we’ve performed the refactoring such that Command is now an

abstract class with a Boolean Success member; the BankAccountCommand now overrides

both Undo() and Redo().

Chapter 16 Command

282

When calling each command, we only do so if the previous one succeeded;

otherwise, we simply set the success flag to false:

public override void Call()

{

 bool ok = true;

 foreach (var cmd in this)

 {

 if (ok)

 {

 cmd.Call();

 ok = cmd.Success;

 }

 else

 {

 cmd.Success = false;

 }

 }

}

There is no need to override the Undo() because each of our commands checks its

own Success flag and undoes the operation only if it’s set to true. Here’s a scenario that

demonstrates the correct operation of the new scheme when the source account doesn’t

have enough funds for the transfer to succeed:

var from = new BankAccount();

from.Deposit(100);

var to = new BankAccount();

var mtc = new MoneyTransferCommand(from, to, 1000);

mtc.Call();

WriteLine(from); // balance: 100

WriteLine(to); // balance: 0

One can imagine an even stronger form of this paradigm where a composite command

only succeeds if all of its parts succeed (think about a transfer where the withdrawal

succeeds but the deposit fails because the account is locked – would you want it to go

through?) – this is a bit harder to implement, and I leave it as an exercise for you.

Chapter 16 Command

283

The entire purpose of this section was to illustrate how a simple command-based

approach can get quite complicated when real-world business requirements are taken

into account. Whether or not you actually need this complexity…well, that is up to you.

�Functional Command
The Command design pattern is typically implemented using classes. It is, however,

possible to also implement this pattern in a functional way.

First of all, one might argue that an ICommand interface with a single Call() method

is simply unnecessary: we already have delegates such as Func and Action that can

serve as de facto interfaces for our purposes. Similarly, when it comes to invoking the

commands, we can invoke said delegates directly instead of calling a member of some

interface.

Here’s a trivial illustration of the approach. We begin by defining a BankAccount

simply as

public class BankAccount

{

 public int Balance;

}

We can then define different commands to operate on the bank account as

independent methods. These could, alternatively, be packaged into ready-made

function objects – there’s no real difference between the two:

public void Deposit(BankAccount account, int amount)

{

 account.Balance += amount;

}

public void Withdraw(BankAccount account, int amount)

{

 if (account.Balance >= amount)

 account.Balance -= amount;

}

Chapter 16 Command

284

Every single method represents a command. We can therefore bundle up the

commands in a simple list and process them one after another:

var ba = new BankAccount();

var commands = new List<Action>();

commands.Add(() => Deposit(ba, 100));

commands.Add(() => Withdraw(ba, 100));

commands.ForEach(c => c());

You may feel that this model is a great simplification of the one we had previously

when talking about ICommand. After all, any invocation can be reduced to a parameterless

Action that simply captures the needed elements in the lambda. However, this approach

has significant downsides, namely:

•	 Direct references: A lambda that captures a specific object by necessity

extends its lifetime. While this is great in terms of correctness (you’ll

never invoke a command with a nonexistent object), there are

situations where you want commands to persist longer than the

objects they need to affect.

•	 Logging: If you wanted to record every single action being performed

on an account, you would still need some sort of command processor.

But how can you determine which command is being invoked? All

you’re looking at is an Action or similarly nondescript delegate. How

do you determine whether it’s a deposit or a withdrawal or something

entirely different, like a composite command?

•	 Marshaling: Quite simply, you cannot marshal a lambda. You could

maybe marshal an expression tree (as in an Expression<Func<>>),

but even then, parsing expression trees is not the easiest of things. A

conventional OOP-based approach is easier because a class can be

deterministically (de)serialized.

•	 Secondary operations: Unlike functional objects, an OOP command

(or its interface) can define operations other than invocation. We’ve

looked at examples such as Undo(), but other operations could

include things like Log(), Print(), or something else. A functional

approach doesn’t give you this sort of flexibility.

Chapter 16 Command

285

To sum up, while the functional pattern does represent some action that needs to

be done, it only encapsulates its principal behavior. A function is difficult to inspect/

traverse, it is difficult to serialize, and if it captures context, this has obvious lifetime

implications. Use with caution!

�Queries and Command-Query Separation
The notion of Command-Query Separation (CQS) is the idea that operations in a system

fall broadly into the following two categories:

•	 Commands, which are instructions for the system to perform some

operation that involves mutation of state, but yields no value

•	 Queries, which are requests for information that yield values but do

not mutate state

The GoF book does not define a query as a separate pattern, so in order to settle this

issue once and for all, I propose the following, very simple, definition:

A query is a special type of command that does not mutate

state. Instead, a query instructs components to provide some

information, such as a value calculated on the basis of interaction

with one or more components.

There. We can now argue that both parts of CQS fall under the Command design

pattern, the only difference being that queries have a return value – not in the return

sense, of course, but rather in having a mutable field/property that any command

processor can initialize or modify.

�Summary
The Command design pattern is simple: what it basically suggests is that components

can communicate with one another using special objects that encapsulate instructions,

rather than specifying those same instructions as arguments to a method.

Sometimes, you don’t want such an object to mutate the target or cause it to do

something specific; instead, you want to use such an object to get some info from the

target, in which case we typically call such an object a query. While, in most cases, a

query is an immutable object that relies on the return type of the method, there are

Chapter 16 Command

286

situations (see, e.g., the Chain of Responsibility “Broker Chain” example) where you

want the result that’s being returned to be modified by other components. But the

components themselves are still not modified; only the result is.

Commands are used a lot in UI systems to encapsulate typical actions (e.g., copy or

paste), and then a single command to be invoked by several different means is allowed.

For example, you can copy by using the top-level application menu, a button on the

toolbar, the context menu, or pressing a keyboard shortcut.

Finally, these actions can be combined into composite commands (macros) –

sequences of actions that can be recorded and then replayed at will. Notice that a

composite command can itself be composed of other composite commands (as per the

Composite design pattern).

Chapter 16 Command

287

CHAPTER 17

Interpreter
Any good software engineer will tell you that a compiler and an interpreter
are interchangeable.

—Tim Berners-Lee

The goal of the Interpreter design pattern is, you guessed it, to interpret input,

particularly textual input, although to be fair it really doesn’t matter. The notion of

an interpreter is greatly linked to Compiler Theory and similar courses taught at

universities. Since we don’t have nearly enough space here to delve into the complexities

of different types of parsers and whatnot, the purpose of this chapter is to simply show

some examples of the kinds of things you might want to interpret.

Here are a few fairly obvious ones:

•	 Numeric literals such as 42 or 1.234e12 need to be interpreted to be

stored efficiently in binary. In C#, these operations are covered via

methods such as Int.Parse().

•	 Regular expressions help us find patterns in text, but what you

need to realize is that regular expressions are essentially a separate,

embedded domain-specific language (DSL). And naturally, before

using them, they must be interpreted correctly.

•	 Any structured data, be it CSV, XML, JSON, or something more

complicated, requires interpretation before it can be used.

•	 At the pinnacle of the application of Interpreter, we have fully fledged

programming languages. After all, a compiler or interpreter for a

language like C or Python must actually understand the language

before compiling something executable.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_17

https://doi.org/10.1007/978-1-4842-8245-8_17

288

Given the proliferation and diversity of challenges related to interpretation, we shall

simply look at some examples. These serve to illustrate how one can build an interpreter:

making one from scratch or using a specialized library or parser framework.

�Integer Parsing
The parsing of numbers is the number one operation that gets redefined (optimized)

by developers of algorithmic trading systems. The default implementations are very

powerful and can handle many different number formats, but in real life the stock

market typically feeds you data with a single uniform format (e.g., just positive integers),

allowing the construction of much faster (orders of magnitude) parsers.

Consider a method such as uint.Parse(). This method is very powerful – not only

can it parse the string "12345" but it can do the following:

•	 Perform validation, throwing an exception if the number

doesn’t parse.

•	 Parse numbers prefixed by zero (e.g., 007) or with a plus (e.g., +3).

•	 Parse numbers that have a decimal point (provided

AllowDecimalPoint is set).

•	 Detect numbers greater than maximum or less than minimum,

resulting in OverflowException.

A further complication is that uint.Parse() is a wrapper for an entire call chain that

provides number styles or default NumberFormatInfo arguments, implements a try/

catch for throwing overflow exceptions, and so on.

This is great, but if you know that the market price is coming in as a well-formatted

positive integer within some specific range, you can write your own parsing method that

will be several times faster. Here is a completely naïve implementation:

public uint ParseNaive(string s)

{

 uint result = 0;

 foreach (char c in s)

 {

 result *= 10;

Chapter 17 Interpreter

289

 result += (uint)(c - '0');

 }

 return result;

}

On my machine, a comparison between uint.Parse() and the preceding

ParseNaive() using BenchmarkDotNet gives the following result:

Method Mean Error StdDev

UintParse 25.539 ns 0.3983 ns 0.8743 ns

ParseNaive 8.589 ns 0.2082 ns 0.2557 ns

This zero-effort method offers a threefold increase in performance, and a real-

world integer parsing method used “in anger” in an algorithmic trading system gives

subnanosecond performance, which implies a 25× performance improvement when

compared with the BCL uint.Parse() call. Unfortunately, even with the SIMD support

currently available in .NET, such operations are typically written in C++ using SIMD

intrinsics (or directly in Assembler).1

�Numeric Expression Evaluator
Let’s imagine that we decide to parse very simple mathematical expressions such as

3+(5-4), that is, we’ll restrict ourselves to addition, subtraction, and brackets. We want

a program that can read such an expression and, of course, calculate the expression’s

final value.

We are going to build the calculator by hand, without resorting to any parsing

framework. This should hopefully highlight some of the complexity involved in parsing

textual input.

1 It’s also worth noting that when markets transmit textual information, they do not use Unicode,
but prefer 1-byte-per-char encodings. In most cases that would be ASCII, whereas regional
exchanges such as the Moscow Exchange (MOEX) are likely to use their respective 1-byte
encodings (e.g., Windows-1251). This is an issue because .NET uses UTF-16, which is why
quite often we define our own 1-byte str ASCII string type, a kind of bidirectional proxy to an
ordinary string.

Chapter 17 Interpreter

290

�Lexing
The first step to interpreting an expression is called lexing, and it involves turning

a sequence of characters into a sequence of tokens. A token is typically a primitive

syntactic element, and we should end up with a flat sequence of these. In our case, a

token can be

•	 An integer

•	 An operator (plus or minus)

•	 An opening or closing parenthesis

Thus, we can define the following structure:

public record Token(Token.Type MyType, string Text)

{

 public enum Type

 {

 Integer, Plus, Minus, Lparen, Rparen

 }

 public readonly Type MyType = MyType;

 public readonly string Text = Text;

 public override string ToString() => $"`{Text}`";

}

You’ll note that Token is not an enum because, apart from the type, we also want

to store the text that this token relates to, since it is not always predefined. (We could,

alternatively, store some Range that would refer to the original string.)

So now, given a string containing an expression, we can define a lexing process that

will turn a text into a List<Token>:

static List<Token> Lex(string input)

{

 var result = new List<Token>();

 for (int i = 0; i < input.Length; i++)

 {

Chapter 17 Interpreter

291

 switch (input[i])

 {

 case '+':

 result.Add(new Token(Token.Type.Plus, "+"));

 break;

 case '-':

 result.Add(new Token(Token.Type.Minus, "-"));

 break;

 case '(':

 result.Add(new Token(Token.Type.Lparen, "("));

 break;

 case ')':

 result.Add(new Token(Token.Type.Rparen, ")"));

 break;

 default:

 // todo

 }

 }

 return result;

}

Parsing predefined tokens is easy. In fact, we could have added them as a…

Dictionary<BinaryOperation.Type, char>

…to simplify things. But parsing a number is not so easy. If we hit a 1, we should wait

and see what the next character is. For this we define a separate routine:

var sb = new StringBuilder(input[i].ToString());

for (int j = i + 1; j < input.Length; ++j)

{

 if (char.IsDigit(input[j]))

 {

 sb.Append(input[j]);

 ++i;

 }

Chapter 17 Interpreter

292

 else

 {

 result.Add(new Token(Token.Type.Integer, sb.ToString()));

 break;

 }

}

Essentially, while we keep reading (pumping) digits, we add them to the buffer.

When we’re done, we make a Token out of the entire buffer and add it to the resulting list.

�Parsing
The process of parsing turns a sequence of tokens into meaningful, typically object-

oriented, structures. At the top, it’s often useful to have an abstract class or interface that

all elements of the tree implement:

public interface IElement

{

 int Value { get; }

}

The type’s Value evaluates this element’s numeric value. Next, we can create an

element for storing integral values (such as 1, 5, or 42):

public class Integer : IElement

{

 public Integer(int value)

 {

 Value = value;

 }

 public int Value { get; }

}

If we don’t have an Integer, we must have an operation such as addition

or subtraction. In our case, all operations are binary, meaning they have two

parts. For example, 2+3 in our model can be represented in pseudocode as

BinaryOperation{Literal{2}, Literal{3}, addition}:

Chapter 17 Interpreter

293

public class BinaryOperation : IElement

{

 public enum Type

 {

 Addition,

 Subtraction

 }

 public Type MyType;

 public IElement Left, Right;

 public int Value

 {

 get

 {

 switch (MyType)

 {

 case Type.Addition:

 return Left.Value + Right.Value;

 case Type.Subtraction:

 return Left.Value - Right.Value;

 default:

 throw new ArgumentOutOfRangeException();

 }

 }

 }

}

But anyways, on to the parsing process. All we need to do is turn a sequence of

Tokens into a binary tree of IExpressions. From the outset, it can look as follows:

static IElement Parse(IReadOnlyList<Token> tokens)

{

 var result = new BinaryOperation();

 bool haveLHS = false;

 for (int i = 0; i < tokens.Count; i++)

 {

 var token = tokens[i];

Chapter 17 Interpreter

294

 // look at the type of token

 switch (token.MyType)

 {

 // process each token in turn

 }

 }

 return result;

}

The only thing we need to discuss from the preceding code is the haveLHS variable.

Remember, what we are trying to get is a tree, and at the root of that tree we expect a

BinaryExpression, which, by definition, has left and right sides. But when we are on a

number, how do we know if it’s the left or right side of an expression? That’s right. We

don’t, which is why we track this using haveLHS.

Now let’s go through these case by case. First, integers – these map directly to our

Integer construct, so all we have to do is turn text into a number. (Incidentally, we could

have also done this at the lexing stage if we wanted to.)

case Token.Type.Integer:

 var integer = new Integer(int.Parse(token.Text));

 if (!haveLHS)

 {

 result.Left = integer;

 haveLHS = true;

 } else

 {

 result.Right = integer;

 }

 break;

The plus and minus tokens simply determine the type of the operation we’re

currently processing, so they’re easy:

case Token.Type.Plus:

 result.MyType = BinaryOperation.Type.Addition;

 break;

Chapter 17 Interpreter

295

case Token.Type.Minus:

 result.MyType = BinaryOperation.Type.Subtraction;

 break;

And then there’s the left parenthesis. Yep, just the left. We don’t detect the right

one explicitly. Basically, the idea here is simple: find the closing right parenthesis

(I’m ignoring nested brackets for now), rip out the entire subexpression, Parse() it

recursively, and set as the left- or right-hand side of the expression we’re currently

working with:

case Token.Type.Lparen:

 int j = i;

 for (; j < tokens.Count; ++j)

 if (tokens[j].MyType == Token.Type.Rparen)

 break; // found it!

 // process subexpression w/o opening

 var subexpression = tokens.Skip(i+1).Take(j - i - 1).ToList();

 var element = Parse(subexpression);

 if (!haveLHS)

 {

 result.Left = element;

 haveLHS = true;

 } else result.Right = element;

 i = j; // advance

 break;

In a real-world scenario, you’d want a lot more safety features in here: not just

handling nested parentheses (which I think is a must), but handling incorrect

expressions where the closing parenthesis is missing. If it is indeed missing, how would

you handle it? Throw an exception? Try to parse whatever’s left and assume the closing is

at the very end?

Something else? All of these issues are left as the exercise to you.

Chapter 17 Interpreter

296

�Using Lexer and Parser
With both Lex() and Parse() implemented, we can finally parse the expression and

calculate its value:

var input = "(13+4)-(12+1)";

var tokens = Lex(input);

WriteLine(string.Join("\t", tokens));

// `(` `13` `+` `4` `)` `-` `(` `12` `+` `1` `)`

var parsed = Parse(tokens);

WriteLine($"{input} = {parsed.Value}");

// (13-4)-(12+1) = -4

�Interpretation in the Functional Paradigm
If you look at a set of elements that are produced by either the lexing or the parsing

process, you will quickly see that they are trivial structures that would map very neatly

onto F#’s discriminated unions. This, in turn, allows us to subsequently use pattern

matching when there comes a time to traverse a (recursive) discriminated union in order

to transform it into something else.

Here’s an example: suppose you are given a definition of a mathematical expression

and you want to print or evaluate it.2 Let’s define the structure in XML so we don’t have

to go through a difficult parsing process:

<math>

 <plus>

 <value>2</value>

 <value>3</value>

 </plus>

</math>

2 This is a small illustration of something that’s a real-life commercial product called MathSharp –
a tool that converts MathML notation to ready-to-compile code. See http://activemesa.net/
mathsharp for more information.

Chapter 17 Interpreter

http://activemesa.net/mathsharp
http://activemesa.net/mathsharp

297

We can create a recursive discriminated union to represent this structure:

type Expression =

 Math of Expression list

 | Plus of lhs:Expression * rhs:Expression

 | Value of value:string

There is a one-to-one correspondence between the XML elements and the

corresponding Expression cases (e.g., <math> → Math). In order to instantiate cases,

we would need to use reflection. One trick I adopt here is to precompute the case

constructors using APIs from the Microsoft.FSharp.Reflection namespace:

let cases = FSharpType.GetUnionCases (typeof<Expression>)

 |> Array.map(fun f ->

 (f.Name, FSharpValue.PreComputeUnionConstructor(f)))

 |> Map.ofArray

We can then write a function that constructs a union case given a name and a set of

parameters:

let makeCase parameters =

 try

 let caseInfo = cases.Item name

 (caseInfo parameters) :?> Expression

 with

 | exp -> raise <| new Exception(String.Format(

 "Failed to create {0} : {1}", name, exp.Message))

In this listing, the name variable is captured implicitly, since the makeCase function

is an inner function. But let’s not jump ahead. What we’re interested in is, of course,

parsing and transforming some piece of XML. Here’s how that process would begin:

use stringReader = new StringReader(text)

use xmlReader = XmlReader.Create(stringReader)

let doc = XDocument.Load(xmlReader)

let parsed = recursiveBuild doc.Root

Chapter 17 Interpreter

298

So what is this recursiveBuild function? As the name suggests, it’s a function that

recursively turns an XML element into a case of our discriminated union. Here is the full

listing:

let rec recursiveBuild (root:XElement) =

 let name = root.Name.LocalName |> makeCamelCase

 let makeCase parameters =

 // as before

 let elems = root.Elements() |> Seq.toArray

 let values = elems |> Array.map(fun f -> recursiveBuild f)

 if elems.Length = 0 then

 let rootValue = root.Value.Trim()

 makeCase [| box rootValue |]

 else

 try

 values |> Array.map box |> makeCase

 with

 | _ -> makeCase [| values |> Array.toList |]

Let’s try to go slowly through what’s going on here:

•	 Since our union cases are camel-cased and the XML file is lowercase,

I convert the name of the XML element (which we call root) to

camel case.

•	 We materialize the sequence of child elements of the current

elements into an array.

•	 For each inner element, we call recursiveBuild recursively

(surprise!).

•	 Now we check how many child elements the current element has. If

it’s zero, it could be just a <value> with text in it. If it’s not, there are

two possibilities:

–– The item takes a bunch of primitives that can all be boxed into parameters.

–– The item takes a bunch of expressions.

Chapter 17 Interpreter

299

This constructs the expression tree. If we want to evaluate the numeric value of the

expression, this is now simple, thanks to pattern matching:

let rec eval expr =

 match expr with

 | Math m -> eval m.Head

 | Plus (lhs, rhs) -> eval lhs + eval rhs

 | Value v -> v |> int

Similarly, you could define a function for printing an expression:

let rec print expr =

 match expr with

 | Math m -> print m.Head

 | Plus (lhs, rhs) -> String.Format("({0}+{1})", print lhs, print rhs)

 | Value v -> v

Putting it all together, we can now print the expression in human-readable form and

evaluate its result:

let parsed = recursiveBuild doc.Root

printf "%s = %d" (print parsed) (eval parsed)

// (2+3) = 5

Both functions are, of course, crude implementations of the Visitor design pattern

without any traditional OOP trappings (though they are, of course, present behind the

scenes). Some things to note are

•	 Our Value case is of string. If we wanted it to store an integer or

a floating-point number, our parsing code would have to pry this

information away using trial and error.

•	 Instead of making top-level functions, we can give Expression its

own methods and even properties. For example, we can give it a

property called Val that evaluates its numeric value:

type Expression =

 // union members here

 member self.Val =

 let rec eval expr =

Chapter 17 Interpreter

300

 match expr with

 | Math m -> eval(m.Head)

 | Plus (lhs, rhs) -> eval lhs + eval rhs

 | Value v -> v |> int

 eval self

•	 Strictly speaking, discriminated unions violate the Open-Closed

Principle since there is no way to augment them through inheritance.

As a result, if you decide to support new cases, you’d have to modify

the original union type.

To sum up, discriminated unions, pattern matching, and also list comprehensions

(which we haven’t used in our demo, but you’d typically use them in a scenario like this)

all make the Interpreter and Visitor patterns easy to implement under the functional

paradigm.

�Transpiler
Transpilation is the process of translation of one programming language into another.

This can be done in different ways, including proper compilation (transpilation = trans-

compilation) or just the textual conversion from one language to another.

The reasons for doing this are numerous:

•	 Having a single language that can be represented on every platform

(e.g., Haxe).

•	 Converting one language into another where the supported

paradigms are different. For example, C# has a ready-made parser

(Roslyn) but is unable to operate on GPUs. Thus, a transpiler from C#

to CUDA C makes sense.

•	 Converting languages as part of legacy code migration/rewrite.

In the context of .NET, it is perhaps best to reduce our discussion to the C#

programming language, since we have Roslyn as a ready-made toolkit for parsing and

emitting C#. While emitting C# is probably outside the bounds of this discussion (unless

we’re talking code generation), converting C# to some other language is something we

can discuss in the context of Roslyn.

Chapter 17 Interpreter

301

The first thing we do if we want to parse C# is to turn it into an abstract syntax tree

(AST). With Roslyn, this is rather simple:

var tree = CSharpSyntaxTree.ParseText(sourceCode);

The trouble with an AST is that, by itself, it’s often useless. It tells us the structure

of the code, but doesn’t tell us how that code behaves. For example, if I encounter a

function call to Foo(), I cannot say where Foo() is or what its signature is.

What you’re after is a semantic model. To get a semantic model, you need to

compile a project that includes both the syntax tree you’ve just parsed and any required

references. The following listing compiles an in-memory DLL:

var compilation = CSharpCompilation.Create("whatever")

 �.WithOptions(new CSharpCompilationOptions(OutputKind.

DynamicallyLinkedLibrary))

 �.WithReferences(MetadataReference.CreateFromFile(typeof (Int32).Assembly.

Location))

 .AddSyntaxTrees(tree);

Once compilation is done, we get the model:

var model = compilation.GetSemanticModel(tree, true);

We can now walk the model we’ve built using a visitor (see the Visitor pattern later

in the book). In the case of C# syntax, the type we’re after is CSharpSyntaxWalker. This

type is very neatly designed: it has dozens of overridable methods for visiting every type

of node that the C# syntax has. For example, if we want to process a using directive, we

choose an override in our derived class:

public override void VisitUsingDirective(UsingDirectiveSyntax node)

{

 ...

}

Inside each VisitXxx() method, you can examine the node and perform various

actions, such as building your own translation in a StringBuilder-like member. Now,

it’s important to understand that once you override something, this replaces the default

behavior of the walker. By default, the walker traverses source code in a “natural” way:

inside a class declaration, it will traverse members; inside method declarations, it

Chapter 17 Interpreter

302

will traverse statements. Notice that the default traversal is a no-op, because it relies

entirely on your overrides to do actual work. Therefore, you will be calling a lot of base.

VisitXxx() methods to ensure all the elements are covered appropriately.

The typical use of a syntax walker is as follows: we inherit from CSharpSyntaxWalker

and pass in the constructor anything that the walker needs to do its work. At the very

least, you want to pass in the Compilation and the SemanticModel, as well as any service

data you might need. And then, once you’ve made your walker, you simply call walker.

Visit(tree.GetRoot()) to process your entire AST.

For a complete example of how to use Roslyn to convert C# into another language,

take a look at Blackmire,3 which is a demo project for converting C# to C++.

�Summary
First, it needs to be said that, comparatively speaking, the Interpreter design pattern

is somewhat uncommon – the challenges of building parsers are today considered

inessential, which is why we see the topic being removed from Computer Science

courses in many universities. So, unless you plan to work in language design or, say,

making tools for static code analysis, you are unlikely to find the skills in building parsers

in high demand.

One particular domain where interpreters do come in handy is in the so-called ETL

(Extract, Transform, and Load) tasks. An ETL operation typically extracts data from one

source, transforms that data, and then loads it into a different container. For example,

a program might download an XML from a predefined location, parse it, extract the

necessary bits, change them, and put them into a database.

ETL tasks are not always done by hand. These tasks can be handled by

•	 Mapping libraries such as AutoMapper that map objects onto

one another

•	 Dedicated software such as Altova MapForce for visual editing of data

mapping rules

•	 Heavyweight data integration suites such as Microsoft BizTalk that

handle a multitude of different formats and rules

3 http://github.com/activemesa/blackmire

Chapter 17 Interpreter

http://github.com/activemesa/blackmire

303

That said, the challenge of interpretation is a whole separate field of Computer

Science that a single chapter of a design patterns book cannot reasonably do justice to. If

you are interested in the subject, I recommend you check out frameworks such as Lex/

Yacc, ANTLR, and many others that are specifically geared for lexer/parser construction.

I can also recommend writing static analysis plugins for popular IDEs – this is a great

way to get a feel for how real ASTs look, how they are traversed and modified.

Chapter 17 Interpreter

305

CHAPTER 18

Iterator
An iterator, put simply, is an object that is used to traverse some structure or another.

Typically, the iterator references the currently accessed element and has a method to

move forward. A bidirectional iterator also lets you walk backward, and a random-access

iterator allows you to access an element at an arbitrary position.

In .NET, that thing that enables an iterator typically implements the IEnumerator<T>

interface. It has the following members:

•	 Current refers to the element at the current position.

•	 MoveNext() lets you move on to the next element of the collection

and returns true if we succeeded and false otherwise.

•	 Reset() sets the enumerator to the initial position.

The enumerator is also disposable, but we don’t care about that too much. The point

is any time you write…

foreach (x in y)

 Console.WriteLine(x);

…what you’re really doing is the equivalent of

var enumerator = ((IEnumerable<Foo>)y).GetEnumerator();

while (enumerator.MoveNext())

{

 temp = enumerator.Current;

 Console.WriteLine(temp);

}

In other words, a class that implements IEnumerable<T> is required to have a

method called GetEnumerator() that returns an IEnumerator<T>. And you use that

enumerator to traverse the object.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_18

https://doi.org/10.1007/978-1-4842-8245-8_18

306

Needless to say, it is very rare for you to have to make your own IEnumerator.

Typically, you can write code such as…

IEnumerable<int> GetSomeNumbers()

{

 yield return 1;

 yield return 2;

 yield return 3;

}

…and the rest of the operations will be taken care of by the compiler. Alternatively,

you can just use an existing collection class (array, List<T>, etc.), which already has all

the plumbing you need.

In addition to IEnumerable, .NET also comes with an IAsyncEnumerable, which is

a way of letting the client iterate over an IEnumerable but in an asynchronous way. We

won’t focus on it in this book.

�Array-Backed Properties
Not all things are easy to iterate. For example, you cannot iterate all fields in a class

unless you’re using reflection. But sometimes you need to. Here, let me show you a

scenario.

Suppose you’re making a game with creatures in it. These creatures have various

attributes, such as strength, agility, and intelligence. You could implement them as

public class Creature

{

 public int Strength { get; set; }

 public int Agility { get; set; }

 public int Intelligence { get; set; }

}

But now you also want to output some aggregate statistics about the creature. For

example, you decide to calculate the sum of all its abilities:

public double SumOfStats => Strength + Agility + Intelligence;

Chapter 18 Iterator

307

This code is impossible to automatically refactor if you add an additional Wisdom

property (ooh, is that too much D&D nerdiness for you?), but let me show you something

that’s even worse. If you want the average of all the abilities, you would write

public double AverageStat => SumOfStats / 3.0;

Whoa there! That 3.0 is a bona fide magic number, completely unsafe if the structure

of the code changes. Let me show you yet another example of ugliness. Suppose

you decide to calculate the maximum ability value of a creature. You’d need to write

something like

public double MaxStat => Math.Max(

 Math.Max(Strength, Agility), Intelligence);

Well, you get the idea. This code is not robust and will break on any small change,

so we’re going to fix it, and the implementation is going to make use of array-backed

properties.

The idea of array-backed properties is simple – all the backing fields of related

properties exist in one array:

private int [] stats = new int[3];

Each of the properties then projects its getter and setter into the array. To avoid using

integral indices, you can introduce private constants:

private const int strength = 0;

public ref int Strength => ref stats[strength];

// same for other properties

And now, of course, calculating the sum/average/maximum statistics is really easy

because the underlying field is an array, and arrays are supported in LINQ:

public double AverageStat => stats.Average();

public double SumOfStats => stats.Sum();

public double MaxStat => stats.Max();

If you want to add an extra property, all you need to do is

•	 Extend the array by one element.

•	 Create a property with a getter and setter.

Chapter 18 Iterator

308

And that’s it! The stats will still be calculated correctly. Furthermore, if you want, you

can eschew all of those methods we made in favor of…

public IEnumerable<int> Stats => stats;

…and just let the client perform their own LINQ queries directly, for example,

creature.Stats.Average().

Finally, if you want stats to be the enumerable collection, that is, letting people

write foreach (var stat in creature), you can simply implement IEnumerable (and

perhaps an indexer too):

public class Creature : IEnumerable<int>

{

 // as before

 public IEnumerator<int> GetEnumerator()

 => stats.AsEnumerable().GetEnumerator();

 IEnumerator IEnumerable.GetEnumerator()

 => GetEnumerator();

 public ref int this[int index] => ref stats[index];

}

This approach is functional, but there are plenty of downsides. One of those

downsides has to do with change notifications. For example, suppose that your UI

application binds a UI element to the SumOfStats property. You change Strength, but

how would SumOfStats let you know that it did, in fact, change too? If SumOfStats was

defined as a basic sum of different properties, we could have treated that summation

as an expression tree, parsed it, and extracted the dependencies. But because we’re

using LINQ, this is now impossible or, at the very least, very difficult. We could attempt

to supply some special metadata to indicate that some properties are array-backed and

then read this metadata when determining dependencies, but as you can guess, this has

both computational and cognitive costs.

The biggest issue with this approach is the amount of typing that’s required in

order to get this to work. All I can suggest here is, rather than attempting to fiddle with

attribute-based decorations and either source generators or IL weaving, consider simply

defining your entities externally – in XML, T4, or something similar. This allows for

Chapter 18 Iterator

309

ultimate flexibility in defining whatever adornments you want for your entities, whether

it’s change notification, validation, implementation of array-backed properties, or any

other aspect of a myriad of things entities might need to incorporate.

�Let’s Make an Iterator
In order to appreciate just how ugly iterators can get if you do decide to make them

directly, we are going to implement a classic Comp Sci example – tree traversal. Let’s

begin by defining a single node of a binary tree:

public class Node<T>

{

 public T Value;

 public Node<T> Left, Right, Parent;

 public Node(T value)

 {

 Value = value;

 }

 public Node(T value, Node<T> left, Node<T> right)

 {

 Value = value;

 Left = left;

 Right = right;

 left.Parent = right.Parent = this;

 }

}

I’ve thrown in an additional constructor that initializes its node with both left and

right child nodes. This allows us to define a tree using chained constructors such as

// 1

// / \

// 2 3

var root = new Node<int>(1,

 new Node<int>(2), new Node<int>(3));

Chapter 18 Iterator

310

Okay, so now we want to traverse the tree. If you remember your Data Structures and

Algorithms courses, you’ll know that there are (at least) three ways: in-order, preorder,

and postorder. Suppose we decide to define an InOrderIterator. Here’s what it would

look like:

public class InOrderIterator<T>

{

 public Node<T> Current { get; set; }

 private readonly Node<T> root;

 private bool yieldedStart;

 public InOrderIterator(Node<T> root)

 {

 this.root = Current = root;

 while (Current.Left != null)

 Current = Current.Left;

 }

 public bool MoveNext()

 {

 // todo

 }

}

Not bad so far: just as if we were implementing IEnumerator<T>, we have a property

called Current and a MoveNext() method. But here’s the thing: since the iterator is

stateful, every invocation of MoveNext() has to take us to the next element in our current

traversal scheme. This isn’t as easy as it sounds:

public bool MoveNext()

{

 if (!yieldedStart)

 {

 yieldedStart = true;

 return true;

 }

Chapter 18 Iterator

311

 if (Current.Right != null)

 {

 Current = Current.Right;

 while (Current.Left != null)

 Current = Current.Left;

 return true;

 }

 else

 {

 var p = Current.Parent;

 while (p != null && Current == p.Right)

 {

 Current = p;

 p = p.Parent;

 }

 Current = p;

 return Current != null;

 }

}

Whoa there! Bet you didn’t expect this! Well, this is exactly what you get if you

implement your own iterators directly: an unreadable mess. But it works! We can use the

iterator directly, C++ style:

var it = new InOrderIterator<int>(root);

while (it.MoveNext())

{

 Write(it.Current.Value);

 Write(',');

}

WriteLine();

// prints 213

Chapter 18 Iterator

312

Or, if we want, we can construct a dedicated BinaryTree class that exposes this in-

order iterator as a default one:

public class BinaryTree<T>

{

 private Node<T> root;

 public BinaryTree(Node<T> root)

 {

 this.root = root;

 }

 public InOrderIterator<T> GetEnumerator()

 {

 return new InOrderIterator<T>(root);

 }

}

Notice we don’t even have to implement IEnumerable (thanks to duck typing1). We

can now write

var root = new Node<int>(1,

 new Node<int>(2), new Node<int>(3));

var tree = new BinaryTree<int>(root);

foreach (var node in tree)

 WriteLine(node.Value); // 2 1 3

�Improved Iteration
Our implementation of in-order iteration is virtually unreadable and is nothing like what

you read in textbooks. Why? Lack of recursion. After all, MoveNext() cannot preserve

its state, so every time it gets invoked, it starts from scratch without remembering its

1 Duck typing is the idea that “if it walks like a duck and it quacks like a duck, it is a duck.” In
programming parlance, duck typing implies that the right code will be used even when it doesn’t
implement any particular interface to identify it. In our case, the foreach keyword doesn’t
care in the least whether your type implements IEnumerable or not – all it’s looking for is the
implementation of GetEnumerator() in the iterated class. If it finds it, everything works.

Chapter 18 Iterator

313

context: it only remembers the previous element, which needs to be found before we

find the next one in the iteration scheme we’re using.

And this is why yield return exists: you can construct a state machine behind the

scenes. This means that if I wanted to create a more natural in-order implementation, I

could simply write it as

public IEnumerable<Node<T>> NaturalInOrder

{

 get

 {

 IEnumerable<Node<T>> TraverseInOrder(Node<T> current)

 {

 if (current.Left != null)

 {

 foreach (var left in TraverseInOrder(current.Left))

 yield return left;

 }

 yield return current;

 if (current.Right != null)

 {

 foreach (var right in TraverseInOrder(current.Right))

 yield return right;

 }

 }

 foreach (var node in TraverseInOrder(root))

 yield return node;

 }

}

Notice that all the calls here are recursive. Now what we can do is use this directly,

for example:

var root = new Node<int>(1,

 new Node<int>(2), new Node<int>(3));

var tree = new BinaryTree<int>(root);

WriteLine(string.Join(",", tree.NaturalInOrder.Select(x => x.Value)));

// 2,1,3

Chapter 18 Iterator

314

Woo-hoo! This is way better. The algorithm itself is readable, and once again, we can

take the property and just do LINQ on it, no problem.

�Iterator Specifics
The state machine generated behind the scenes by foreach results in a strictly forward-

only iterator, which may not necessarily be what you want. Close by, in C++ land, there is

a hierarchy of sorts, which consists, among other things, of the following:

•	 Forward iterator, which only moves from the start of the collection to

the end. A typical example of a collection that would only support a

forward-only iterator is a singly linked list, which cannot be traversed

easily in any other way.

•	 Bidirectional iterator, which allows iteration both forward and

backward. A typical structure that supports this is a doubly linked list

(e.g., C#’s LinkedList<T>).

•	 Random-access iterator, an iterator that allows lookup of an arbitrary

position in the collection. This would also allow backward and

forward iteration, but also lets you jump into an arbitrary (possibly

nonexistent) location within, for example, a List<T>.

These more advanced forms of iteration are supported by frameworks such as

LINQ. For example, LINQ defines both a Reverse() method for reverse iteration and

an ElementAt() for random access. Curiously enough, an attempt is made to provide

these operations in a universal manner, meaning that ElementAt() is available on all

underlying collections, even collections such as a linked list for which random-access

iteration, while possible, is not computationally cheap.

The implementation of LINQ has also run afoul of some natural interface

restrictions, which in turn has driven the creation of default interface methods. For

example, a LINQ method for ElementAt() may have a default implementation that

simply does MoveNext N times from the start of a collection. LINQ does, however,

provide optimizations, so that calling ElementAt() on an array or an IList<T> results

in much faster code. This implementation only works faster because, at some point, the

LINQ method tries to cast the underlying IEnumerable<T> to an IList<T> and return

myList[N] if the cast succeeds.

Chapter 18 Iterator

315

But imagine a situation where a new interface – say, IReadOnlyList<T> – has been

created. This is a different interface that we do not check for. We could go directly into

the BCL sources (specifically, Enumerable.cs) and fix ElementAt(), adding yet another

type check, but it obviously breaks the OCP and also doesn’t scale very well: imagine if

we have more and more special interfaces in the future that need to be optimized.

This is where default interface members come in: we can give the ElementAt()

random-access behavior to IReadOnlyList<T>. This way, the original LINQ

implementation is untouched, yet if we statically know that we are working with this

exact interface, we can ensure that it gets processed in a faster way, by adding the code

right to the interface. It is, naturally, a half-measure: since this method and the original

one are unrelated (they are both just extension methods), as soon as you cast the

reference to an IEnumerable<T>, all the magic disappears.

�Iterator Adapter
Quite often you want an object to be iterable in some special way. For example, suppose

you want to calculate the sum of all elements in a matrix – LINQ doesn’t provide a Sum()

method over a rectangular array, so what you can do is build an adapter such as

public class OneDAdapter<T> : IEnumerable<T>

{

 private readonly T[,] arr;

 private int w, h;

 public OneDAdapter(T[,] arr)

 {

 this.arr = arr;

 w = arr.GetLength(0);

 h = arr.GetLength(1);

 }

 public IEnumerator<T> GetEnumerator()

 {

 for (int y = 0; y < h; ++y)

 for (int x = 0; x < w; ++x)

 yield return arr[x, y];

 }

Chapter 18 Iterator

316

 IEnumerator IEnumerable.GetEnumerator()

 {

 return GetEnumerator();

 }

}

This adapter could then be used whenever you want to iterate a 2D array in 1D

manner. It could be improved further by having the function yield return ref the

values, but sadly this is not possible.

Having implemented the adapter, calculation of the sum of all elements in a 2D

rectangular array is now as simple as

var data = new [,] { { 1, 2 }, { 3, 4 } };

var sum = new OneDAdapter<int>(data).Sum(); // 10

Of course, we’re still stuck with C#’s inability to derive type arguments in

constructors, so perhaps a factory method could be useful here.

Here’s another example – this one supports reverse iteration of a 1D array:

public class ReverseIterable<T> : IEnumerable<T>

{

 private readonly T[] arr;

 public ReverseIterable(T[] arr) => this.arr = arr;

 public IEnumerator<T> GetEnumerator()

 {

 for (int i = arr.Length - 1; i >= 0; --i)

 yield return arr[i];

 }

 IEnumerator IEnumerable.GetEnumerator()

 {

 return GetEnumerator();

 }

}

Again, if you don’t want to specify the type parameter explicitly, you’d have to create

another, nongeneric ReverseIterable class and provide a factory method:

Chapter 18 Iterator

317

public static class ReverseIterable

{

 public static ReverseIterable<T> From<T>(T[] arr)

 {

 return new ReverseIterable<T>(arr);

 }

}

Of course, as we’ve discussed countless times before, this implies that the

constructor is made public, and the only way to make it private is to make the factory a

nested class of the iterator adapter.

�Composite Iteration
We are now going to solve a real-world programming problem that has to do with access

and iteration of nested objects.

Picture a simple scenario in the Building Information Modeling (BIM) space: a

building that has floors and a floor that has rooms. Assuming the existence of classes

(in pseudocode) Building{Floors}, Floor{Rooms}, and Room, what exactly can we

determine, given a particular object?

•	 Given a Building, we can get its Floors. To get every single room, we

would probably use LINQ’s SelectMany().

•	 Given a Floor, we can iterate its Rooms, but we cannot reliably (by

default) determine the building this floor is in.

•	 Given a Room, we cannot determine what floor it’s on, nor the

building it’s in, without making special accommodations for this.

These missing requirements that we cannot yet do are very common. If you look at

an API of an application such as Microsoft Excel, you often see that “everything refers

to everything else.” In other words, a worksheet cell in an Excel spreadsheet may have a

reference not just to the containing worksheet but also the containing document.

It is entirely possible to implement all of this functionality by hand. However, a lot of

it would take quite a bit of time to do, which is unnecessary, considering that a lot of the

code is trivial. So let’s instead consider how we would go about automating this process

using source generators.

Chapter 18 Iterator

318

The Building is an obvious starting point:

public partial class Building

{

 public string Name;

 public List<Floor> Floors = new();

}

A Floor, on the other hand, needs to refer to the containing Building, so we can

initially define it as

public partial class Floor

{

 public int Index;

 public List<Room> Rooms = new();

 public Building Building;

}

Now, onto source generators. The first thing a source generator can determine (by

using Roslyn to analyze the class) is that a Building is made up of several Floors. It can

therefore synthesize a partial Building class containing

public Building AddFloor(Floor floor)

{

 floor.Building = this;

 floors.Add(floor);

 return this;

}

This ensures that, when adding a floor, the Building reference is set correctly. A

similarly synthesized AddRoom() method can be given to Floor, and additional methods

(e.g., Remove()) can be synthesized in a similar fashion to avoid potential dangling

references.

But that’s not all! There are two more things we want to do. One of them is related

to iteration (we’re discussing the Iterator pattern, after all), and another has to do with

finding parent references. Both of these features rely on the source analyzer knowing that

a Building contains Floors, which contain Rooms – this is not difficult to implement with

Roslyn, since we have all the building blocks already.

Chapter 18 Iterator

319

Thus, with this knowledge, Building would get an additional member that lets you

iterate all the rooms (this is effectively a composite iterator):

public IEnumerable<Room> Rooms => Floors.SelectMany(f => f.Rooms);

With this member synthesized, we can now write foreach (var room in building.

Rooms) and go through every single room. Naturally, this relies on a public member

called Rooms, which is in contrast with our member rooms. How you choose to synthesize

the public member is up to you. The most natural choice would be an IReadOnlyList<>.

The only thing that remains is backward references, that is, how a room can tell what

building it’s in. Sure, you can write room.Floor.Building, but if you want to avoid the

extra work, you can give Room a synthesized member such as…

public Building Building => Floor.Building;

…and then write room.Building instead.

The examples presented here can be automatically synthesized to arbitrary depth.

They can also be enhanced so that, for example, we also get all sorts of useful constructor

overloads, unpacked methods (e.g., an AddFloor() that takes Floor constructor

arguments rather than a preconstructed object), and so on.

�Summary
The Iterator design pattern has been deliberately hidden in C# in favor of the simple

IEnumerator/IEnumerable duopoly upon which everything is built. Notice that these

interfaces only support forward iteration – there is no MoveBack() in IEnumerator. The

existence of yield allows you to very quickly return elements as a collection that can be

consumed by someone else while being blissfully unaware of the state machine that gets

built behind the scenes.

Chapter 18 Iterator

321

CHAPTER 19

Mediator
A large proportion of the code we write has different components (classes)

communicating with one another through direct references. However, there are

situations where you don’t want objects to be aware of each other’s presence. Or

perhaps you do want them to be aware of one another, but you still don’t want them to

communicate through references, because as soon as you keep and hold a reference

to an object, you extend that object’s lifetime beyond what might originally be desired

(unless you use a WeakReference, of course).

So the mediator is a mechanism for facilitating communication between the

components. Naturally, the mediator itself needs to be accessible to every component

taking part, which means it should either be a publicly available static variable or,

alternatively, just a reference that gets injected into every component.

�Chat Room
Your typical Internet chat room is the classic example of the Mediator design pattern, so

let’s implement this before we move on to the more complicated stuff.

The most trivial implementation of a participant in a chat room can be as simple as

public class Person

{

 public string Name;

 public ChatRoom Room;

 private List<string> chatLog = new List<string>();

 public Person(string name) => Name = name;

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_19

https://doi.org/10.1007/978-1-4842-8245-8_19

322

 public void Receive(string sender, string message)

 {

 string s = $"{sender}: '{message}'";

 WriteLine($"[{Name}'s chat session] {s}");

 chatLog.Add(s);

 }

 public void Say(string message) => Room.Broadcast(Name, message);

 public void PrivateMessage(string who, string message)

 {

 Room.Message(Name, who, message);

 }

}

So we’ve got a person with a Name (user id), a chat log, and a reference to the actual

ChatRoom. We have a constructor and then three methods:

•	 Receive() allows us to receive a message. Typically what this

function would do is show the message on the user’s screen and also

add it to the chat log.

•	 Say() allows the person to broadcast a message to everyone in

the room.

•	 PrivateMessage() is private messaging functionality. You need to

specify the name of the person the message is intended for.

Both Say() and PrivateMessage()1 just relay operations to the chat room. Speaking

of which, let’s actually implement ChatRoom – it’s not particularly complicated:

public class ChatRoom

{

 private List<Person> people = new();

 public void Broadcast(string source, string message) { ... }

 public void Join(Person p) { ... }

1 In the real world, I would probably call the method PM(), considering how commonplace that
acronym has become.

Chapter 19 Mediator

323

 public void Message(string source, string destination,

 string message) { ... }

}

So I have decided to go with pointers here. The ChatRoom API is very simple:

•	 Join() gets a person to join the room. We are not going to implement

Leave(), instead deferring the idea to a subsequent example in this

chapter.

•	 Broadcast() sends the message to everyone…well, not quite

everyone: we don’t need to send the message back to the person who

sent it.

•	 Message() sends a private message.

The implementation of Join() is as follows:

public void Join(Person p)

{

 string joinMsg = $"{p.Name} joins the chat";

 Broadcast("room", joinMsg);

 p.Room = this;

 people.Add(p);

}

Just like a classic IRC chat room, we broadcast the message that someone has joined

to everyone in the room. The first argument of Broadcast(), the origin parameter, in

this case, is specified as "room" rather than the person who’s joined. We then set the

person’s room reference and add them to the list of people in the room.

Now, let’s look at Broadcast(): this is where a message is sent to every room

participant. Remember, each participant has its own Person.Receive() method for

processing the message, so the implementation is somewhat trivial:

public void Broadcast(string source, string message)

{

 foreach (var p in people)

 if (p.Name != source)

 p.Receive(source, message);

}

Chapter 19 Mediator

324

Whether or not we want to prevent a broadcast message to be relayed to

ourselves is a point of debate, but I’m actively avoiding it here. Everyone else gets the

message, though.

Finally, here’s private messaging implemented with Message():

public void Message(string source, string destination, string message)

{

 people.FirstOrDefault(p => p.Name == destination)

 ?.Receive(source, message);

}

This searches for the recipient in the list of people and, if the recipient is found

(because who knows, they could have left the room), dispatches the message to

that person.

Coming back to Person’s implementations of Say() and PrivateMessage(), here

they are:

public void Say(string message) => Room.Broadcast(Name, message);

public void PrivateMessage(string who, string message)

{

 Room.Message(Name, who, message);

}

As for Receive(), well, this is a good place to actually display the message on-screen

as well as add it to the chat log:

public void Receive(string sender, string message)

{

 string s = $"{sender}: '{message}'";

 WriteLine($"[{Name}'s chat session] {s}");

 chatLog.Add(s);

}

We go the extra mile here by displaying not just whom the message came from but

whose chat session we’re currently in – this will be useful for diagnosing who said what

and when.

Chapter 19 Mediator

325

Here’s the scenario that we’ll run through:

var room = new ChatRoom();

var john = new Person("John");

var jane = new Person("Jane");

room.Join(john);

room.Join(jane);

john.Say("hi room");

jane.Say("oh, hey john");

var simon = new Person("Simon");

room.Join(simon);

simon.Say("hi everyone!");

jane.PrivateMessage("Simon", "glad you could join us!");

Here is the output:

[john's chat session] room: "jane joins the chat"

[jane's chat session] john: "hi room"

[john's chat session] jane: "oh, hey john"

[john's chat session] room: "simon joins the chat"

[jane's chat session] room: "simon joins the chat"

[john's chat session] simon: "hi everyone!"

[jane's chat session] simon: "hi everyone!"

[simon's chat session] jane: "glad you could join us, simon"

Figure 19-1 an illustration of the chat room operations.

Chapter 19 Mediator

326

Figure 19-1.  Chat room operations

�Mediator with Events
In the chat room example, we’ve encountered a consistent theme: the participants need

notification whenever someone posts a message. This seems like a perfect scenario

for the Observer pattern, which is discussed later in the book: the idea of the mediator

having an event that is shared by all participants – participants can then subscribe to the

event to receive notifications, and they can also cause the event to fire, thus triggering

said notifications.

Instead of redoing the chat room once again, let’s go for a simpler example: imagine

a game of football (soccer for my readers in the USA) with players and a football coach.

When the coach sees their team scoring, they naturally want to congratulate the player.

Of course, they need some information about the event, like who scored the goal and

how many goals they have scored so far.

Chapter 19 Mediator

327

We can introduce a base class for any sort of event data:

abstract class GameEventArgs : EventArgs

{

 public abstract void Print();

}

I’ve added the Print() method deliberately to print the event’s contents to

the command line. Now, we can derive from this class in order to store some goal-

related data:

class PlayerScoredEventArgs : GameEventArgs

{

 public string PlayerName;

 public int GoalsScoredSoFar;

 public PlayerScoredEventArgs

 (string playerName, int goalsScoredSoFar)

 {

 PlayerName = playerName;

 GoalsScoredSoFar = goalsScoredSoFar;

 }

 public override void Print()

 {

 WriteLine($"{PlayerName} has scored! " +

 $"(their {GoalsScoredSoFar} goal)");

 }

}

We are once again going to build a mediator, but it will have no behaviors! Seriously,

with an event-driven infrastructure, they are no longer needed:

class Game

{

 public event EventHandler<GameEventArgs> Events;

 public void Fire(GameEventArgs args)

 {

Chapter 19 Mediator

328

 Events?.Invoke(this, args);

 }

}

As you can see, we’ve just made a central place where all game events are being

generated. The generation itself is polymorphic: the event uses a GameEventArgs type,

and you can test the argument against the various types available in your application.

The Fire() utility method just helps us safely raise the event.

We can now construct the Player class. A player has a name, the number of goals

they scored during the match, and a reference to the mediator Game, of course:

class Player

{

 private string name;

 private int goalsScored = 0;

 private Game game;

 public Player(Game game, string name)

 {

 this.name = name;

 this.game = game;

 }

 public void Score()

 {

 goalsScored++;

 var args = new PlayerScoredEventArgs(name, goalsScored);

 game.Fire(args);

 }

}

The Player.Score() method is where we make PlayerScoredEventArgs and post

them for all subscribers to see. Who gets this event? Why, a Coach, of course:

class Coach

{

 private Game game;

Chapter 19 Mediator

329

 public Coach(Game game)

 {

 this.game = game;

 // celebrate if player has scored <3 goals

 game.Events += (sender, args) =>

 {

 if (args is PlayerScoredEventArgs scored

 && scored.GoalsScoredSoFar < 3)

 {

 WriteLine($"coach says: well done, {scored.PlayerName}");

 }

 };

 }

}

The implementation of the Coach class is trivial; our coach doesn’t even get a name.

But we do give them a constructor where a subscription is created to the game’s Events

such that, whenever something happens, the coach gets to process the event data in the

provided lambda.

Notice that the argument type of the lambda is GameEventArgs – we don’t know if

a player has scored or has been sent off, so we need a cast to determine we’ve got the

right type.

The interesting thing is that all the magic happens at the setup stage: there’s no need

to explicitly subscribe to particular events. The client is free to create objects using their

constructors, and then when the player scores, the notifications are sent:

var game = new Game();

var player = new Player(game, "Sam");

var coach = new Coach(game);

player.Score(); // coach says: well done, Sam

player.Score(); // coach says: well done, Sam

player.Score();

The output is only two lines long because, on the third goal, the coach isn’t

impressed anymore.

Chapter 19 Mediator

330

�Introduction to MediatR
MediatR is one of a number of libraries written to provide a shrink-wrapped Mediator

implementation in .NET.2 It provides the client a central Mediator component, as well as

interfaces for requests and request handlers. It supports both synchronous and async/

await paradigms and provides support for both directed messages and broadcasting.

MediatR is designed to work with an IoC container. It comes with examples for how

to get it running with most popular containers out there; I’ll be using Autofac for my

examples.

The first steps are general: we simply set up MediatR under our IoC container and

also register our own types through the interfaces they implement:

var builder = new ContainerBuilder();

builder.RegisterType<Mediator>()

 .As<IMediator>()

 .InstancePerLifetimeScope(); // singleton

builder.Register<ServiceFactory>(context =>

{

 var c = context.Resolve<IComponentContext>();

 return t => c.Resolve(t);

});

builder.RegisterAssemblyTypes(typeof(Demo).Assembly)

 .AsImplementedInterfaces();

The central Mediator, which we registered as a singleton, is in charge of routing

requests to request handlers and getting responses from them. Each request is expected

to implement the IRequest<T> interface, where T is the type of the response that is

expected for this request. If there is no data to return, you can use a nongeneric IRequest

instead.

Here’s a simple example:

public class PingCommand : IRequest<PongResponse> {}

2 MediatR is available on NuGet; source code can be found at https://github.com/
jbogard/MediatR

Chapter 19 Mediator

https://github.com/jbogard/MediatR
https://github.com/jbogard/MediatR

331

So in our trivial demo, we intend to send a PingCommand and receive a PongResponse.

The response doesn’t have to implement any interface; we’ll define it like this:

public record struct PongResponse(DateTime Timestamp);

The glue that connects requests and responses together is MediatR’s

IRequestHandler interface. It has a single member called Handle that takes a request

and a cancellation token and returns the result of the call:

[UsedImplicitly]

public class PingCommandHandler

 : IRequestHandler<PingCommand, PongResponse>

{

 public async Task<PongResponse> Handle(PingCommand request,

 CancellationToken cancellationToken)

 {

 return await Task

 .FromResult(new PongResponse(DateTime.UtcNow))

 .ConfigureAwait(false);

 }

}

Note the use of the async/await paradigm, with the Handle method returning a

Task<T>. If you don’t need your request to produce a response, then, instead of using an

IRequestHandler, you can use the AsyncRequestHandler base class, whose Handle()

method returns a humble nongeneric Task. Oh, and in case your request is synchronous,

you can inherit from the RequestHandler<TRequest, TResponse> class instead.

This is all that you need to do to actually set up two components and get them

talking through a central mediator. Note that the mediator itself does not feature in any

of the classes we’ve created: it works behind the scenes.

Putting everything together, we can use our setup as follows:

var container = builder.Build();

var mediator = container.Resolve<IMediator>();

var response = await mediator.Send(new PingCommand());

Console.WriteLine($"We got a pong at {response.Timestamp}");

Chapter 19 Mediator

332

You’ll notice that request/response messages are targeted: they are dispatched to a

single handler. MediatR also supports notification messages, which can be dispatched

to multiple handlers. In this case, your request needs to implement the INotification

interface:

public class Ping : INotification {}

And now you can create any number of INotification<Ping> classes that get to

process these notifications:

public class Pong : INotificationHandler<Ping>

{

 public Task Handle(Ping notification,

 CancellationToken cancellationToken)

 {

 Console.WriteLine("Got a ping");

 return Task.CompletedTask;

 }

}

public class AlsoPong : INotificationHandler<Ping> { ... }

For notifications, instead of using the Send() method, we use the Publish() method:

await mediator.Publish(new Ping());

There is more information about MediatR available on its official Wiki page.

�Service Bus as Mediator
All of our discussions of Mediator have centered on in-process implementations: as one

component generates some sort of event, another component in the same process gets

to process it. This isn’t quite how it works in the real world. For example, in a chat room,

the chat room participants reside on different corners of the world, whereas the chat

room itself is hosted on some central server. The participants send messages and receive

replies over the wire.

Chapter 19 Mediator

333

In practice, what you have is a form of bidirectional communication that leverages

much more functionality than the programming language alone provides. In the case

of general-purpose textual communication on the Internet, for example, you could use

SignalR, which would, in turn, leverage one of the underlying web-based mechanisms

(WebSockets, server-sent events, long polling) for performing remote procedure calls

from a server to its clients.

In the case of a corporate message exchange system, a mediator would leverage

whatever underlying technology is used to send messages: something like Microsoft

Message Queuing (MSMQ), Azure Service Bus, or something similar.

As soon as these forms of communication become asynchronous, we end up

encountering yet another problem: how do we know that a message has been delivered?

In our synchronous call example, we could have certainty, but in a setup where you

fire off a message, you need a mechanism that ensures durability: in other words, you

need to ensure that, even in the case of a power outage that takes out some participant,

the message still persists somewhere and gets to stick around until whoever is meant

to process it comes back online. This is ensured by separate mechanisms such as

Transactional Message Queuing.

Of course, sometimes you simply do not care. You fire off messages into the abyss.

And, if they’re lost, well, that’s just tough luck.

�Summary
The Mediator design pattern is all about having an in-between component that everyone

in a system has access to and can use to communicate with one another. Instead of direct

references, communication can happen through identifiers (usernames, unique ids,

GUIDs, etc.).

The simplest implementation of a mediator is a member list and a function that goes

through the list and does what it’s intended to do – whether on every element of the list

or selectively.

A more sophisticated implementation of Mediator can use events to allow

participants to subscribe to (and unsubscribe from) things happening in the system.

This way, messages sent from one component to another can be treated as events. In

this setup, it is also easy for participants to unsubscribe from certain events if they are no

longer interested in them or if they are about to leave the system altogether.

Chapter 19 Mediator

335

CHAPTER 20

Memento
When we looked at the Command design pattern, we noted that recording a list of every

single change theoretically allows you to roll back the system to any point in time – after

all, you’ve kept a record of all the modifications.

Sometimes, though, you don’t really care about playing back through all the states of

the system, but you do care about being able to roll back the system to a particular state,

if need be.

This is precisely what the Memento pattern does: it typically stores the state of the

system and returns it as a dedicated, read-only object with no behavior of its own. This

“token,” if you will, can be used only for feeding it back into the system to restore it to the

state it represents.

Let’s look at an example.

�Bank Account
Let’s use an example of a bank account that we’ve made before…

public class BankAccount

{

 private int balance;

 public BankAccount(int balance)

 {

 this.balance = balance;

 }

 // todo: everything else :)

}

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_20

https://doi.org/10.1007/978-1-4842-8245-8_20

336

…but now we decide to make a bank account with a Deposit(). Instead of it being

void as in previous examples, Deposit() will now be made to return a Memento…

public Memento Deposit(int amount)

{

 balance += amount;

 return new Memento(balance);

}

…and the memento will then be usable for rolling back the account to the

previous state:

public void Restore(Memento m)

{

 balance = m.Balance;

}

As for the memento itself, we can go for a trivial implementation:

public class Memento

{

 public int Balance { get; }

 public Memento(int balance)

 {

 Balance = balance;

 }

}

You’ll notice that the Memento class is immutable. Imagine if you could, in fact,

change the balance: you could roll back the account to a state it was never in!

And here is how one would go about using such a setup:

var ba = new BankAccount(100);

var m1 = ba.Deposit(50);

var m2 = ba.Deposit(25);

WriteLine(ba); // 175

// restore to m1

ba.Restore(m1);

Chapter 20 Memento

337

WriteLine(ba); // 150

// restore back to m2

ba.Restore(m2);

WriteLine(ba); // 175

This implementation is good enough, through there are some things missing.

For example, you never get a memento representing the opening balance because a

constructor cannot return a value. You could add an out parameter, of course, but that’s

just too ugly.

�Undo and Redo
What if you were to store every memento generated by BankAccount? In this case, you’d

have a situation similar to our implementation of the Command pattern, where undo and

redo operations are a byproduct of this recording. Let’s see how we can get undo/redo

functionality with a memento.

We’ll introduce a new BankAccount class that’s going to keep hold of every single

memento it ever generates:

public class BankAccount

{

 private int balance;

 private List<Memento> changes = new();

 private int current;

 public BankAccount(int balance)

 {

 this.balance = balance;

 changes.Add(new Memento(balance));

 }

}

We have now solved the problem of returning to the initial balance: the memento for

the initial change is stored as well. Of course, this memento isn’t actually returned, so in

order to roll back to it, well, I suppose you could implement some Reset() function or

something – totally up to you.

Chapter 20 Memento

338

The BankAccount class has a current member that stores the index of the latest

memento. Hold on. Why do we need this? Isn’t it the case that current will always be

one less than the list of changes? Only if you want to support undo/rollback operations;

if you want redo operations, too, you need this!

Now, here’s the implementation of the Deposit() method:

public Memento Deposit(int amount)

{

 balance += amount;

 var m = new Memento(balance);

 changes.Add(m);

 ++current;

 return m;

}

There are several things that happen here:

•	 The balance is increased by the amount you want to deposit.

•	 A new memento is constructed with the new balance and added to

the list of changes.

•	 We increase the current value (you can think of it as a pointer into

the list of changes).

Now here comes the fun stuff. We add a method to restore the account state based on

a memento:

public void Restore(Memento m)

{

 if (m != null)

 {

 balance = m.Balance;

 changes.Add(m);

 current = changes.Count - 1;

 }

}

Chapter 20 Memento

339

The restoration process is significantly different from the one we’ve looked at earlier.

First, we actually check that the memento is initialized – this is relevant because we

now have a way of signaling no-ops: just return a default value. Also, when we restore a

memento, we actually add that memento to the list of changes so an undo operation will

work correctly on it.

Now, here is the (rather tricky) implementation of Undo():

public Memento Undo()

{

 if (current > 0)

 {

 var m = changes[--current];

 balance = m.Balance;

 return m;

 }

 return null;

}

We can only Undo() if current points to a change that is greater than zero. If that’s

the case, we move the pointer back, grab the change at that position, apply it, and then

return that change. If we cannot roll back to a previous memento, we return null, which

should explain why we check for null in Restore().

The implementation of Redo() is very similar:

public Memento Redo()

{

 if (current + 1 < changes.Count)

 {

 var m = changes[++current];

 balance = m.Balance;

 return m;

 }

 return null;

}

Chapter 20 Memento

340

Again, we need to be able to redo something: if we can, we do it safely; if not, we do

nothing and return null. Putting it all together, we can now start using the undo/redo

functionality:

var ba = new BankAccount(100);

ba.Deposit(50);

ba.Deposit(25);

WriteLine(ba);

ba.Undo();

WriteLine($"Undo 1: {ba}"); // Undo 1: 150

ba.Undo();

WriteLine($"Undo 2: {ba}"); // Undo 2: 100

ba.Redo();

WriteLine($"Redo 2: {ba}"); // Redo 2: 150

�Memento and Command
As I’m sure you’ve guessed, the creation of mementoes for every single change in the

system is quite often unrealistic. But we’ve already seen the way undo/redo operations

are defined in the Command design pattern. Just to recap, our approach to defining

undo operations for Command basically meant that we would do the opposite of what

the operation entailed. So, for a deposit operation, Undo() would take that money out of

the account.

This is not always a realistic option either. Sometimes, the effects of an executed

command are far-reaching and difficult to predict. Thus, it would make sense to use the

Memento pattern to preserve the entire state of the system.

We can therefore put the Command and Memento approaches together as follows:

public class WithdrawCommand : ICommand

{

 public BankAccount Account;

 public decimal Amount;

 private Memento memento;

 private bool succeeded;

Chapter 20 Memento

341

 public override void Call()

 {

 succeeded = Account.Withdraw(Amount);

 memento = Account.Snapshot(); // memento-creating method

 }

 public override void Undo()

 {

 if (succeeded && memento != null)

 {

 Account.RestoreTo(memento);

 memento = null; // prevent second undo

 }

 }

}

One might argue that this approach simply added an extra level of indirection:

instead of saving the state of the account directly, it is saved indirectly through the use

of a memento. In this example, though, instead of having individual operations return

memento objects, we create a memento explicitly. This process, in turn, could also

leverage the Prototype pattern in situations where the state of the object you’re trying to

preserve is so complicated that writing explicit serialization code is tedious. But if that

is the approach you take, you must distinguish between two types of data: the salient

information about the system that must be persisted and any temporary information

(e.g., private fields storing some temporary indicators) that need not be. The best advice

I can give is to put all temporary information on the stack as return values – that way, you

don’t hold on to it longer than necessary.

�Summary
The Memento pattern is all about handing out tokens that can be used to restore the

system to a prior state. Typically, the token contains all the information necessary to

move the system to a particular state, and if it’s small enough, you can also use it to

record all the states of the system so as to allow not just the arbitrary resetting of the

system to a prior state, but controlled navigation backward (undo) and forward (redo) of

all the states the system was in.

Chapter 20 Memento

342

One design decision that I made in the preceding demos is to make the memento

a class. This allows me to use the null value to encode the absence of a memento to

operate upon. If we wanted to make it a struct instead, we would have to redesign

the API so that, instead of null, the Restore() method would be able to take either a

Nullable<Memento>, some Option<Memento> type (.NET doesn’t have a built-in option

type yet), or a memento possessing some easily identifiable trait (e.g., a balance of int.

MinValue).

Chapter 20 Memento

343

CHAPTER 21

Null Object
We don’t always choose the interfaces we work with. For example, I’d rather have my car

drive me to my destination by itself, without me having to give 100% of my attention to

the road and the dangerous lunatics driving next to me. And it’s the same with software:

sometimes you don’t really want a piece of functionality, but it’s built into the interface.

This means you have to provide some value even if you don’t need this particular piece

of functionality.

So what do you do? You make a null object.

�Scenario
Suppose you inherited a library that uses the following interface:

public interface ILog

{

 void Info(string msg);

 void Warn(string msg);

}

The library uses this interface to operate on bank accounts such as

public class BankAccount

{

 private ILog log;

 private int balance;

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_21

https://doi.org/10.1007/978-1-4842-8245-8_21

344

 public BankAccount(ILog log)

 {

 this.log = log;

 }

 // more members here

}

In fact, BankAccount can have methods similar to

public void Deposit(int amount)

{

 balance += amount;

 log.Info($"Deposited ${amount}, balance is now {balance}");

}

So what’s the problem here? Well, if you do need logging, there’s no problem. You

just implement your own logging class…

class ConsoleLog : ILog

{

 public void Info(string msg)

 {

 WriteLine(msg);

 }

 public void Warn(string msg)

 {

 WriteLine("WARNING: " + msg);

 }

}

…and you can use it straight away. But what if you don’t want logging at all?

Chapter 21 Null Object

345

�Intrusive Approaches
If you are prepared to break the Open-Closed Principle, there are a couple of intrusive

approaches (with varying degrees of intrusiveness) that help you navigate around this

situation.

The simplest approach, and also the ugliest, is to change the interface to an abstract

class, that is, change ILog to

public abstract class ILog

{

 void Info(string msg) {}

 void Warn(string msg) {}

}

You might want to follow up this change with a rename refactoring from ILog to Log,

but hopefully, the approach is obvious: by providing default no-op implementations in

the base class, you can now simply make a dummy inheritor of this new ILog and supply

it to whoever needs it. Or you can go further and make it non-abstract, and then ILog is

your null object insofar as no-op behavior is concerned.

This approach can easily break things – after all, you might have clients who

are explicitly assuming that ILog is an interface, so they could be implementing it

together with other interfaces in their classes, which means this modification will break

existing code.

Another alternative to this is to simply add null checks everywhere. You could then

rewrite the BankAccount constructor to have a default null argument:

public BankAcccount(ILog log = null) { ... }

With this change, you now need to change every single call on the log to a safe

call, for example, log?.Info(...). This will work, but it can result in a huge number

of changes if the log is used all over the place. There’s also a small issue with the fact

that using null for absence is not idiomatically correct (not obvious) – perhaps a better

approach would be to use some Option<T> type, but such use would result in even more

drastic changes across the codebase.

Chapter 21 Null Object

346

�Nullable Virtual Proxy
The final intrusive approach requires just one change inside the BankAccount class

and is the least harmful: it involves the construction of a virtual proxy (see Chapter 13)

over an ILog. Essentially, we make a proxy/decorator over a log where the underlying is

allowed to be null:

class OptionalLog : ILog

{

 private ILog impl;

 public OptionalLog(ILog impl) { this.impl = impl; }

 public void Info(string msg) { impl?.Info(msg); }

 public void Warn(string msg) { impl?.Warn(msg); }

}

Then, we change the BankAccount constructor, adding both an optional null value

and the use of the wrapper in the body. In fact, if you can bear just one more line in the

BankAccount class, we can do a neat trick by introducing a nice, descriptive constant

called NoLogging and using it instead:

private const ILog NoLogging = null;

public BankAccount([CanBeNull] ILog log = NoLogging)

{

 this.log = new OptionalLog(log);

}

This approach is probably the least intrusive and most hygienic, allowing a null

where such a value was hitherto not allowed while, at the same time, using the name of

the default value to hint at what’s going on.1

1 [CanBeNull] is an attribute that is part of the JetBrains.Annotations NuGet package. It is used to
hint to the ReSharper/Rider static analyzers that the parameter can be assigned a null value.

Chapter 21 Null Object

347

�Null Object
There are situations where none of the intrusive approaches will work, the most

obvious being the case where you don’t actually own the code that is using the relevant

component. In this case, we need to construct a separate null object, which gives rise to

the pattern we are discussing.

Look at BankAccount’s constructor once again:

public BankAccount(ILog log)

{

 this.log = log;

}

Since the constructor takes a logger, it is unsafe to assume that you can get away with

just passing it a null. BankAccount could be checking the reference internally before

dispatching on it, but you don’t know that it does, and without extra documentation it’s

impossible to tell.

As a consequence, the only thing that would be reasonable to pass into BankAccount

is a null object – a class that conforms to the interface but contains no functionality:

public sealed class NullLog : ILog

{

 public void Info(string msg) { }

 public void Warn(string msg) { }

}

Notice that the class is sealed: this is a design choice that presupposes that there

is no point in inheriting from an object that deliberately has no behavior. Essentially,

NullLog is a worthless parent.

You would use such a class as follows:

var ba = new BankAccount(new NullLog());

ba.Deposit(100);

ba.Withdraw(200);

Chapter 21 Null Object

348

�Null Object Singleton
It is completely reasonable to have a singleton null object, since making separate

instances of null objects makes no sense. Furthermore, it would be beneficial if the Null

class itself was not exposed directly as a type to the client.

We can easily implement this approach whether our null object inherits a class or

implements an interface. Since in this chapter ILog is an interface, we can use default

interface members to supply both the relevant member and an inner private class:

interface ILog

{

 void Info(string msg);

 void Warn(string msg);

 public static ILog Null => NullLog.Instance;

 private sealed class NullLog : ILog

 {

 private NullLog() {}

 private static readonly Lazy<NullLog> instance = new ());

 public static ILog Instance => instance.Value;

 public void Info(string msg) { }

 public void Warn(string msg) { }

 }

}

I bet you never expected this! Our implementation augments the ILog interface to

expose a Null member as a static member; furthermore, the interface contains within

it a private class (not intended to be consumed directly) that, in turn, implements ILog

with no-op operations.

The private class is constructed as a lazy singleton that is exposed as a static property

in the class, which is further exposed as a static property by the containing interface.

The end result is you can write

var ba = new BankAccount(ILog.Null);

// as before

Chapter 21 Null Object

349

Of course, it would be a bit more intuitive if we had a Log abstract class instead,

because most C# developers, especially experienced ones, are unlikely to expect a static

member incorporated within an interface!

�Dynamic Null Object
In order to construct a correct null object, you have to implement every member of the

required interface. Booo-ring! Can’t we just write a single method that says “please just

do nothing on any call”? Turns out we can, thanks to the DLR.

For this example, we are going to make a type called Null<T> that will inherit from

DynamicObject and simply provide a no-op response to any method that’s called on it:

public class Null<T> : DynamicObject where T:class

{

 public override bool TryInvokeMember(InvokeMemberBinder binder,

 object[] args, out object result)

 {

 // cannot rely on binder.ReturnType

 �var returnType = GetUnderlyingType(typeof(T).GetMember

(binder.Name)[0]);

 if (returnType == typeof(void) || !returnType.IsValueType)

 result = null;

 else

 result = Activator.CreateInstance(returnType);

 return true;

 }

}

The result out parameter needs to be of the right type, and this presents a bit of a

problem. Normally we’d look into binder.ReturnType for the type expected by the caller,

but with ImpromptuInterface, this isn’t an option. So what we do here is something

different: we get the first member of the type with a matching name (because binder.

Name is correct, luckily) and then attempt to get the underlying type by casting the

MemberInfo into FieldInfo, PropertyInfo, and so on. Then, if it’s a reference type we

simply assign null, but if it’s a value type we create a default instance of it: this way, an

int will be 0 (zero), a bool will be false, and so on.

Chapter 21 Null Object

350

Now, I have neglected to mention what the T in Null<T> actually is. As you may

have guessed, that’s the interface that we need a no-op object for. We can create a utility

property getter to actually construct instances of Null<T> that satisfy the interface T. For

this, we are going to use the ImpromptuInterface library2:

public static T Instance

{

 get

 {

 if (!typeof(T).IsInterface)

 throw new ArgumentException("I must be an interface type");

 return new Null<T>().ActLike<T>();

 }

}

In the preceding code, the ActLike() method from ImpromptuInterface takes a

dynamic object and conforms it at runtime to the required interface T.

Putting everything together, we can now write the following:

var log = Null<ILog>.Instance;

var ba = new BankAccount(log);

ba.Deposit(100);

ba.Withdraw(200);

Once again, this code has a computational cost related to the construction of a

dynamic object that not only does no-ops but also conforms to the chosen interface.

�Drawbacks
The dynamic null object has a large number of disadvantages.

First of all, it has a reasonably high computational cost because of the use of dynamic.

This means that, while being suitable in settings where performance is not critical (e.g.,

tests), its use in production is not the best idea.

2 ImpromptuInterface is an open source dynamic “duck casting” library built on top of the DLR
and Reflection.Emit. Its source code is available at https://github.com/ekonbenefits/
impromptu-interface, and you can install it directly from NuGet.

Chapter 21 Null Object

https://github.com/ekonbenefits/impromptu-interface,%20
https://github.com/ekonbenefits/impromptu-interface,%20

351

The second problem is that the dynamic null object is not a singleton. We ought to

refactor it so that, for any given type T, only one adaptation (using ActLike()) is ever

constructed. But even this optimization will not help much due to the dynamic nature of

all the member calls.

Finally, it might be argued that a dynamic implementation is unnecessary. Assuming

we are working with dependencies on interfaces rather than concrete classes, it is

cleaner and much more efficient to use compile-time code generation (via T4 or source

generators) to manufacture a “proper” null object without any use of the DLR.

�Summary
The Null Object pattern raises an issue of API design: what kinds of assumptions can

we make about the objects we depend upon? If we are taking a reference, do we then

have an obligation to check this reference on every use? Or is it better to turn on C#’s

nullability checks and assume that nothing can be null unless explicitly marked as such?

If you feel no such obligation, then the only way the client can implement a null

object is to construct a no-op implementation of the required interface and pass that

instance in. That said, this only works well with methods: if the object’s fields are also

being used, for example, then you are in real trouble. Same goes for non-void methods

where the return values are actually used for something.

If you want to proactively support the idea of null objects being passed as arguments,

you need to be explicit about it: either specify the parameter type as some Optional, give

the parameter a default value that hints at a possible null, or just write documentation

that explains what kind of value is expected at this location.

Chapter 21 Null Object

353

CHAPTER 22

Observer
The Observer pattern, quite simply, lets one component notify other components that

something happened. The pattern is used all over the place: for example, when binding

data to UI, we can program domain objects such that, when they change, they generate

notifications that the UI can subscribe to and update the visuals. On the other hand,

editing data in the UI should modify data behind the scenes, which requires the reverse

set of operations to occur.

�Events
The Observer pattern is a popular and necessary pattern, so it is not surprising that the

designers of C# decided to incorporate it directly into the language wholesale with the

event keyword. The use of events in C# typically employs a convention that mandates

the following:

•	 Events can be members of a class and are decorated with the event

keyword.

•	 Event handlers – methods that are called whenever an event is

raised – are attached to the event with the += operator and are

detached with the -= operator.

•	 An event handler typically takes two arguments:

–– An object reference to who exactly fired the event

–– An object that (typically) derives from EventArgs that contains any neces-

sary information about the event

The exact type of an event that is used is typically a delegate. Just like the Action/

Func wrappers for lambdas, the delegate wrappers for events are called EventHandler

and exist in both a nongeneric (that takes an EventArgs) and a generic (that takes a type

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_22

https://doi.org/10.1007/978-1-4842-8245-8_22

354

parameter that derives from EventArgs) second argument. The first argument is always

an object:

public delegate void EventHandler(object sender, EventArgs e);

public delegate void EventHandler<TEventArgs>(object? sender,

TEventArgs e);

Here is a trivial example: suppose, whenever a person falls ill, we call a doctor.

First of all we define event arguments; in our case we just need the address to send the

doctor to:

public class FallsIllEventArgs : EventArgs

{

 public string Address;

}

Now, we can implement a Person type, which can look like this:

public class Person

{

 public void CatchACold()

 {

 FallsIll?.Invoke(this,

 new FallsIllEventArgs { Address = "123 London Road" });

 }

 public event EventHandler<FallsIllEventArgs> FallsIll;

}

We are using a strongly typed EventHandler delegate to expose a public event.

The CatchACold() method is used to raise the event, with the safe access ?. operator

being used to ensure that, if the event doesn’t have any subscribers, we don’t get a

NullReferenceException.

All that remains is to set up a scenario and provide an event handler:

static void Main()

{

 var person = new Person();

 person.FallsIll += CallDoctor;

Chapter 22 Observer

355

 person.CatchACold();

}

private static void CallDoctor(object sender, FallsIllEventArgs eventArgs)

{

 Console.WriteLine($"A doctor has been called to {eventArgs.Address}");

}

The event handler can be an ordinary (static or member) method, a local function,

or a lambda – your choice. The signature is mandated by the original delegate; since

we’re using a strongly typed EventHandler variant, the second argument of the handler

is FallsIllEventArgs. As soon as CatchACold() is called, the CallDoctor() method is

triggered.

Any given event can have more than one handler (C# delegates are multicast,

after all). Removal of event handlers is typically done with the -= operator. When all

subscribers have unsubscribed from an event, the event instance is set to null.

�Weak Event Pattern
Did you know that .NET programs can have memory leaks? Not in the C++ sense, of

course, but it is possible to keep holding on to an object for longer than necessary.

Specifically, you can make an object and set its reference to null, but it will still be alive,

and events specifically are to blame for this. Why? Let me show you.

First, let’s make a Button class:

public class Button

{

 public event EventHandler Clicked;

 public void Fire()

 {

 Clicked?.Invoke(this, EventArgs.Empty);

 }

}

Chapter 22 Observer

356

In this class, Fire() simply fires the Clicked event. Now let’s suppose we have this

button shown inside a window. For the sake of simplicity, I’ll just stick it into a Window

constructor and subscribe to its Clicked event:

public class Window

{

 public Window(Button button)

 {

 button.Clicked += ButtonOnClicked;

 }

 private void ButtonOnClicked(object sender, EventArgs eventArgs)

 {

 WriteLine("Button clicked (Window handler)");

 }

 ~Window() { WriteLine("Window finalized"); }

}

Looks innocent enough, except it’s not. If you make a button and a window and then

set the window to null, the window will still be alive even though you no longer hold

explicit references to it! Proof:

var btn = new Button();

var window = new Window(btn);

var windowRef = new WeakReference(window);

btn.Fire();

window = null;

FireGC(); // this forces GC

WriteLine($"Is window alive after GC? {windowRef.IsAlive}"); // True

The reason the window reference is still alive is that it has a subscription to the

button. When a button is clicked, the expectation is that something sensible happens:

since there is a subscription to this event, the object that happens to have made this

subscription cannot be allowed to die, even if the only reference to that object has been

set to null. This is a memory leak in the .NET sense.

Chapter 22 Observer

357

How can we fix this? One approach would be to use the WeakEventManager class

from System.Windows. This class is specifically designed to allow the listener’s handlers

to be garbage-collected even if the source object persists. This class is very simple to use:

public class Window2

{

 public Window2(Button button)

 {

 WeakEventManager<Button, EventArgs>

 .AddHandler(button, nameof(Button.Clicked), ButtonOnClicked);

 }

 // rest of class same as before

}

Repeating the scenario again, this Window2 implementation gives a windowRef.

IsAlive result of False, as desired.

�Event Streams
With all these discussions of Observer, you might be interested to learn that the .NET

Framework comes with two interfaces: IObserver<T> and IObservable<T>. These

interfaces, which were coincidental with the release of Reactive Extensions (Rx), are

meant primarily to deal with reactive streams. While it is not my intention to discuss the

entirety of Reactive Extensions, these two interfaces are worth mentioning.

Let’s start with IObservable<T>. This is an interface that is generally similar to the

interface of a typical .NET event. The only difference is that, instead of using the +=

operator for subscription, this interface requires that you implement a method called

Subscribe(). This method takes an IObserver<T> as its only parameter. Remember, this

is an interface, and unlike in the case of events/delegates, there is no prescribed storage

mechanism. You are free to use anything you want.

There is some extra icing on the cake: the notion of unsubscription is explicitly

supported in the interface. The Subscribe() method returns an IDisposable with the

understanding that the return token (the Memento pattern at work!) has a Dispose()

method that unsubscribes the observer from the observable.

Chapter 22 Observer

358

The second piece of the puzzle is the IObserver<T> interface. It is designed to

provide push-based notifications through three specific methods:

•	 OnNext(T) gets invoked whenever a new event occurs.

•	 OnCompleted() gets invoked when the source has no more data

to give.

•	 OnError() gets invoked whenever the observer has experienced an

error condition.

Once again, this is just an interface, and how you handle this is up to you. For

example, you can completely ignore both OnCompleted() and OnError().

So, given these two interfaces, the implementation of our trivial doctor-patient

example is suddenly a lot less trivial. First of all, we need to encapsulate the idea of an

event subscription. The reason this is required is because we need a memento1 that

implements IDisposable through which unsubscription can happen:

private class Subscription : IDisposable

{

 private Person person;

 public IObserver<Event> Observer;

 public Subscription(Person person, IObserver<Event> observer)

 {

 this.person = person;

 Observer = observer;

 }

 public void Dispose()

 {

 person.subscriptions.Remove(this);

 }

}

This class is an inner class of Person, which is a good hint at the growing complexity

of any object that wants to support event streams. Now, coming back to Person, we want

it to implement the IObservable<T> interface. But what is T? Unlike the conventional

1 See Chapter 20 for more details.

Chapter 22 Observer

359

events, there are no guidelines mandating that we inherit from EventArgs – sure, we

could continue using that type,2 or we could construct our own, completely arbitrary,

hierarchy:

public class Event

{

 // anything could be here

}

public class FallsIllEvent : Event

{

 public string Address;

}

Moving on, we now have a base class Event, so we can declare Person to be

a generator of such events. As a consequence, our Person type would implement

IObservable<Event> and would take an IObserver<Event> in its Subscribe() method.

Here is the entire Person class with the body of the Subscription inner class omitted:

public class Person : IObservable<Event>

{

 private readonly HashSet<Subscription> subscriptions = new ();

 public IDisposable Subscribe(IObserver<Event> observer)

 {

 var subscription = new Subscription(this, observer);

 subscriptions.Add(subscription);

 return subscription;

 }

 public void CatchACold()

 {

 foreach (var sub in subscriptions)

 sub.Observer.OnNext(new FallsIllEvent {Address = "123 London Road"});

 }

2 By the way, System.EventArgs is an empty type. All it has is a default constructor (empty) and
a static member EventArgs.Empty that is a singleton null object (double pattern headshot!) that
indicates the event arguments have no data.

Chapter 22 Observer

360

 private class Subscription : IDisposable { ... }

}

I’m sure you’ll agree that this is a lot more complicated than just publishing a

single event for clients to subscribe to! But there are advantages to this: for example,

you can choose your own policy with respect to repeat subscriptions, that is, situations

where a subscriber is trying to subscribe to some event again. One thing worth noting

is that HashSet<Subscription> is not a thread-safe container. This means that if you

want Subscribe() and CatchACold() to be callable concurrently, you would need to

either use a thread-safe collection, locking, or perhaps something even fancier, like an

ImmutableList.

The problems don’t end there. Remember, a subscriber has to implement an

IObserver<Event> now. This means that, to support the scenario we’ve had previously

shown, we would have to write the following:

public class Demo : IObserver<Event>

{

 static void Main(string[] args)

 {

 new Demo();

 }

 public Demo()

 {

 var person = new Person();

 var sub = person.Subscribe(this);

 }

 public void OnNext(Event value)

 {

 if (value is FallsIllEvent args)

 WriteLine($"A doctor has been called to {args.Address}");

 }

 public void OnError(Exception error){}

 public void OnCompleted(){}

}

Chapter 22 Observer

361

This is, once again, quite a mouthful. We could have simplified the subscription by

using a special Observable.Subscribe() static method, but Observable (without the I)

is part of Reactive Extensions, a separate library that you may or may not want to use.

So this is how you can build an Observer pattern using .NET’s own interfaces,

without using the event keyword. The main advantage of this approach is that the

stream of events that is generated by an IObservable can be directly fed into various Rx

operators. For example, using System.Reactive, the entire demo program we’ve written

can turn into a single statement:

person

 .OfType<FallsIllEvent>()

 .Subscribe(args =>

 WriteLine($"A doctor has been called to {args.Address}"));

�Property Observers
One of the most common Observer implementations in .NET is getting notifications

when a property changes. This is necessary, for example, to update UI when the

underlying data changes. This mechanism uses ordinary events as well as some

interfaces that have become standard within .NET.

Property observers can get really complicated, so we’ll cover them in steps, starting

from basic interfaces and operations and moving on to the more complicated scenarios.

�Basic Change Notification
The central piece of change notification in .NET is an interface called

INotifyPropertyChanged:

public interface INotifyPropertyChanged

{

 /// <summary>Occurs when a property value changes.</summary>

 event PropertyChangedEventHandler PropertyChanged;

}

All this interface does is expose an event that you’re expected to use, defined as

public delegate void PropertyChangedEventHandler

 (object sender, PropertyChangedEventArgs e);

Chapter 22 Observer

362

PropertyChangedEventArgs has a single member, PropertyName, that stores the

name of the property that has been changed. Note that any additional information,

such as information about the previous value, the new value, or who owns this property,

simply isn’t here. The owner of the property is typically the sender of the event (provided

as the first argument to the handler). As for any extra information, well, if you do need

it, you’d have to subclass PropertyChangedEventArgs and give it additional members

yourself.

Given a class Person having a property called Age, the typical implementation of this

interface looks as follows:

public class Person : INotifyPropertyChanged

{

 private int age;

 public int Age

 {

 get => age;

 set

 {

 if (value == age) return;

 age = value;

 OnPropertyChanged();

 }

 }

 public event PropertyChangedEventHandler PropertyChanged;

 [NotifyPropertyChangedInvocator]

 protected virtual void OnPropertyChanged(

 [CallerMemberName] string propertyName = null)

 {

 PropertyChanged?.Invoke(this,

 new PropertyChangedEventArgs(propertyName));

 }

}

Chapter 22 Observer

363

There is a lot to discuss here. First of all, the property gets a backing field. This is

required in order to look at the previous value of the property before it is assigned.

Notice that the invocation of the OnPropertyChanged() method happens only if the

property did change. If it didn’t, there’s no notification.

As far as the IDE-generated OnPropertyChanged() method is concerned, this

method is designed to take in the name of the affected property via [CallerMemberName]

metadata and then, provided the PropertyChanged event has subscribers, notify those

subscribers that the property with that name did, in fact, change.

You can, of course, build your own change notification mechanisms, but both

WinForms and WPF are intrinsically aware of INotifyPropertyChanged, as are many

other frameworks. So, if you need change notifications, I’d stick to this interface.

A special note needs to be added about INotifyPropertyChanging – an interface

that is intended to send events indicating that a property is in the process of changing.

This interface is very rarely used, if ever. It would have been nice to be able to use this

property to cancel a property change, but sadly the interface makes no provisions for

this. In actual fact, cancelation of property changes can be one of the reasons you would

want to implement your own interfaces instead of these.

�Bidirectional Bindings
The INotifyPropertyChanged is very useful for notifying the user interface about the

change of a property some label is bound to. But what if you have an edit box instead and

that edit box also needs to update the code element behind the scenes?

This is actually doable and doesn’t even result in infinite recursion! This problem

generalizes to the following: how do you bind two properties such that changing the one

changes the other, in other words, their values are always identical?

Let’s try this. Suppose we have a Product that has a Name and we also have a Window

that has a ProductName. We want Name and ProductName to be bound together:

var product = new Product{Name="Book"};

var window = new Window{ProductName = "Book"};

product.PropertyChanged += (sender, eventArgs) =>

{

 if (eventArgs.PropertyName == "Name")

 {

Chapter 22 Observer

364

 Console.WriteLine("Name changed in Product");

 window.ProductName = product.Name;

 }

};

window.PropertyChanged += (sender, eventArgs) =>

{

 if (eventArgs.PropertyName == "ProductName")

 {

 Console.WriteLine("Name changed in Window");

 product.Name = window.ProductName;

 }

};

Common sense dictates that this code, when triggered, would cause a

StackOverflowException: window affects product, product affects window, and so on.

Except it doesn’t happen. Why? Because the setter in both properties has a guard that

checks that the value did, in fact, change. If it didn’t, it does a return, and no further

notifications take place. So we’re safe here.

This solution works, but frameworks such as WinForms try to shrink-wrap situations

such as these into separate data binding objects. In a data binding, you specify the

objects and their properties and how they tie together. Windows Forms, for example,

uses property names (as strings), but nowadays we can be a little bit smarter and use

expression trees instead.

So let’s construct a BidirectionalBinding class that will, in its constructor, bind

together two properties. For this, we need four pieces of information:

•	 The owner of the first property

•	 An expression tree accessing the first object’s property

•	 The owner of the second property

•	 An expression tree accessing the second object’s property

Sadly, it is impossible to reduce the number of parameters in this scenario, but at

least they will be more or less human-readable. We’ll also avoid using generics here,

though they can, in theory, introduce additional type safety.

Chapter 22 Observer

365

So here is the entire class:

public sealed class BidirectionalBinding : IDisposable

{

 private bool disposed;

 public BidirectionalBinding(

 INotifyPropertyChanged first, Expression<Func<object>> firstProperty,

 INotifyPropertyChanged second, Expression<Func<object>> secondProperty)

 {

 if (firstProperty.Body is MemberExpression firstExpr

 && secondProperty.Body is MemberExpression secondExpr)

 {

 if (firstExpr.Member is PropertyInfo firstProp

 && secondExpr.Member is PropertyInfo secondProp)

 {

 first.PropertyChanged += (sender, args) =>

 {

 if (!disposed)

 secondProp.SetValue(second, firstProp.GetValue(first));

 };

 second.PropertyChanged += (sender, args) =>

 {

 if (!disposed)

 firstProp.SetValue(first, secondProp.GetValue(second));

 };

 }

 }

 }

 public void Dispose()

 {

 disposed = true;

 }

}

Chapter 22 Observer

366

This code depends on a number of preconditions regarding the expression trees,

specifically:

•	 Each expression tree is expected to be a MemberExpression.

•	 Each member expression is expected to access a property (thus,

PropertyInfo).

If these conditions are met, we subscribe each property to each other’s changes.

There’s an additional dispose guard added to this class to allow the user to stop

processing the subscriptions if necessary.

This is a trivial example of the kinds of things that can happen behind the scenes in

frameworks that intend to intrinsically support data binding.

�Property Dependencies
In Microsoft Excel, spreadsheet cells can contain calculations using values from

other cells. This is very convenient: whenever a particular cell value changes, Excel

recalculates every single cell (including cells on other sheets) that this cell affects. And

then those cells cause the recalculation of every cell dependent on them. And so it

goes forever until the entire dependency graph is traversed, however long it takes. It’s

beautiful.

The problem with properties (and with the Observer pattern generally) is exactly the

same: sometimes a part of a class not only generates notifications but affects other parts

of the class, and then those members also generate their own event notifications. Unlike

Excel, .NET doesn’t have a built-in way of handling this, so such a situation can quickly

turn into a real mess.

Let me illustrate. People aged 16 or older (could be different in your country) can

vote, so suppose we want to be notified of changes to a person’s voting rights:

public class Person : PropertyNotificationSupport

{

 private int age;

 public int Age

 {

 get => age;

Chapter 22 Observer

367

 set

 {

 if (value == age) return;

 age = value;

 OnPropertyChanged();

 }

 }

 public bool CanVote => Age <= 16;

}

Clearly, changes to a person’s age should affect their ability to vote. Thus, we would

also need to generate appropriate change notifications for CanVote…but where? After all,

CanVote has no setter!

You could try to put them into the Age setter, for example:

public int Age

{

 get => age;

 set

 {

 if (value == age) return;

 age = value;

 OnPropertyChanged();

 OnPropertyChanged(nameof(CanVote));

 }

}

This will work, but consider a scenario: what if age changes from 5 to 6? Sure, the age

has changed, but CanVote has not, so why are we unconditionally doing a notification

on it? This is incorrect. A functionally correct implementation would have to look

something like the following:

set

{

 if (value == age) return;

 var oldCanVote = CanVote;

Chapter 22 Observer

368

 age = value;

 OnPropertyChanged();

 if (oldCanVote != CanVote)

 OnPropertyChanged(nameof(CanVote));

}

As you can see, the only way to determine that CanVote has been affected is to cache

its old value, perform the changes on age, then get its new value and check if it’s been

modified, and only then perform the notification.

Even without this particular pain point, the approach we’ve taken with property

dependencies does not scale. In a complicated scenario where properties depend on

other properties, how are we expected to track all the dependencies and make all the

notifications? Clearly, some sort of centralized mechanism is needed to track all of this

automatically.

Let us build such a mechanism. We’ll construct a base class called

PropertyNotificationSupport that will implement INotifyPropertyChanged and will

also take care of dependencies. Here is its implementation:

public class PropertyNotificationSupport : INotifyPropertyChanged

{

 private readonly Dictionary<string, HashSet<string>> affectedBy = new();

 public event PropertyChangedEventHandler PropertyChanged;

 [NotifyPropertyChangedInvocator]

 protected virtual void OnPropertyChanged

 ([CallerMemberName] string propertyName = null)

 {

 PropertyChanged?.Invoke(this,

 new PropertyChangedEventArgs(propertyName));

 foreach (var affected in affectedBy.Keys)

 if (affectedBy[affected].Contains(propertyName))

 OnPropertyChanged(affected);

 }

Chapter 22 Observer

369

 protected Func<T> property<T>(string name,

 Expression<Func<T>> expr) { ... }

 private class MemberAccessVisitor : ExpressionVisitor { ... }

}

This class is complicated, so let’s go through this slowly and figure out what’s going

on here.

First, we have affectedBy, which is a dictionary that lists every property and a

HashSet of properties affected by it. For example, if voting ability is affected by age and

whether or not you’re a citizen, this dictionary will contain a key of "CanVote" and values

of {"Age", "Citizen"}.

We then modify the default OnPropertyChanged() implementation to ensure that

the notifications happen both on the property itself and all properties it affects. The only

question now is, How do properties get enlisted in this dictionary?

It would be too much to ask the developers to populate this dictionary by hand.

Instead, we do it automatically with the use of expression trees. A getter for a read-only

property is provided to the base class as an expression tree, which completely changes

the way dependent properties are constructed:

public class Person : PropertyNotificationSupport

{

 private readonly Func<bool> canVote;

 public bool CanVote => canVote();

 public Person()

 {

 canVote = property(nameof(CanVote),

 () => Citizen && Age >= 16);

 }

 // other members here

}

Clearly, everything has changed. The property is now initialized inside the

constructor using the base class’ property() method. This method takes an expression

tree, parses it to find the dependent properties, and then compiles the expression into an

ordinary Func<T>:

Chapter 22 Observer

370

protected Func<T> property<T>(string name, Expression<Func<T>> expr)

{

 Console.WriteLine($"Creating computed property for expression {expr}");

 var visitor = new MemberAccessVisitor(GetType());

 visitor.Visit(expr);

 if (visitor.PropertyNames.Any())

 {

 if (!affectedBy.ContainsKey(name))

 affectedBy.Add(name, new HashSet<string>());

 foreach (var propName in visitor.PropertyNames)

 if (propName != name)

 affectedBy[name].Add(propName);

 }

 return expr.Compile();

}

The parsing of the expression tree is done using a MemberAccessVisitor, a private,

nested class that we’ve created. This class goes through the expression tree looking for

member access and collects all the property names into a simple list:

private class MemberAccessVisitor : ExpressionVisitor

{

 private readonly Type declaringType;

 public readonly IList<string> PropertyNames = new List<string>();

 public MemberAccessVisitor(Type declaringType)

 {

 this.declaringType = declaringType;

 }

 public override Expression Visit(Expression expr)

 {

 if (expr != null && expr.NodeType == ExpressionType.MemberAccess)

 {

 var memberExpr = (MemberExpression)expr;

Chapter 22 Observer

371

 if (memberExpr.Member.DeclaringType == declaringType)

 {

 PropertyNames.Add(memberExpr.Member.Name);

 }

 }

 return base.Visit(expr);

 }

}

Notice that we restrict ourselves to the declaring type of the owning class – handling

a situation with property dependencies between classes is doable, but a lot more

complicated.

Putting all of this together, we can now write something like the following:

var p = new Person();

p.PropertyChanged += (sender, eventArgs) =>

{

 Console.WriteLine($"{eventArgs.PropertyName} has changed");

};

p.Age = 16;

// Age has changed

// CanVote has changed

p.Citizen = true;

// Citizen has changed

// CanVote has changed

So it works. But our implementation is still far from ideal. If we were to change the

age to 10, CanVote would still receive a notification, even though it shouldn’t! That’s

because, at the moment, we’re firing these notifications unconditionally. If we wanted to

fire these only when the dependent properties have changed, we would have to resort to

INotifyPropertyChanging (or a similar interface) where we would have to cache the old

value of every affected property until the INotifyPropertyChanged call and then check

that those have, in fact, changed. I leave this as an exercise for you.

Chapter 22 Observer

372

Finally, a small note: You can see some overcrowding happening inside property

setters. Three lines is already a lot, but if you factor in additional calls, such as the use

of INotifyPropertyChanging, then it makes sense to externalize the entire property

setter. Turning each property into a Property<T> (see the “Property Proxy” section of

Chapter 13) is a bit overkill, but we can imbue the base class with something like…

protected void setValue<T>(T value, ref T field,

 [CallerMemberName] string propertyName = null)

{

 if (value.Equals(field)) return;

 OnPropertyChanging(propertyName);

 field = value;

 OnPropertyChanged(propertyName);

}

…with properties now simplifying to

public int Age

{

 get => age;

 set => setValue(value, ref age);

}

Notice that, in this code, we must perform propertyName propagation in calls to

OnPropertyXxx() because the [CallerMemberName] attribute inside the method will no

longer work for us out of the box.

�Views
There’s a big, huge, glaring problem with property observers: the approach is intrusive

and clearly goes against the idea of Separation of Concerns. Change notification

is a separate concern, so adding it right into your domain objects might not be the

best idea – especially considering that it is only one of a number of concerns (others

including validation, automatic data type conversions, etc.) that may become evident at

a later stage once the domain is already well-defined.

Chapter 22 Observer

373

Suppose you decide to change your mind and move from the use of INPC to the use

of the IObservable interface. If you were to scatter INPC use throughout your domain

objects, you’d have to meticulously go through each one, modifying each property to use

the new paradigm, not to mention the fact that you’d have to modify the owning classes

as well to stop using the old interfaces and start using the new ones. This is tedious and

error-prone and precisely the kind of thing we want to avoid.

So, if you want change notifications handled outside of the objects that change,

where would you add them? It shouldn’t be hard – after all, we’ve seen patterns such as

Decorator that are designed for this exact purpose.

One approach is to put another object in front of your domain object that would

handle change notifications and other things besides. This is what we would typically

call a view – it is this thing that would be bound to UI, for example.

To use views, you would keep your objects simple, using ordinary properties (or even

public fields!) without embellishing them with any extra behaviors:

public class Person

{

 public string Name;

}

The view is then simply a wrapper, of sorts, around the underlying object that can

incorporate other concerns, including property observers:

public class PersonView : View

{

 protected Person person;

 public PersonView(Person person)

 {

 this.person = person;

 }

 public string Name

 {

 get => person.Name;

 set => setValue(value, () => person.Name);

 }

}

Chapter 22 Observer

374

This view is, of course, a decorator. It wraps the underlying object with mirroring

getters/setters that perform the necessary notifications. If you need even more

complexity, this is the place to add it. For example, if you want property dependencies

tracked in an expression tree, you’d do it in the view constructor rather than in the

constructor of the underlying object.

You’ll notice that, in the preceding listing, we’re trying to be sly by hiding

implementation details. We simply inherit from some class View, and we don’t really

care how it handles notifications: maybe it uses INotifyPropertyChanged, maybe it

uses IObservable, or maybe something else. This accentuates adherence to the DIP: we

separate the low-level modules that implement basic mechanics from the higher-level

View construct.

The only real issue is how to call this class’ setter considering that we want it to

have information about both the name of the property we’re assigning (just in case it’s

needed) and the value being assigned. There’s no uniform solution to this problem; and,

obviously, the more information you pack into this improvised setValue() method, the

better. If person.Name had been a field, things would be greatly simplified because we

could simply pass a reference to that field to be assigned, but we’d still have to pass a

nameof() for the base class to notify via INPC if necessary.

�Case Study: Quadratic Equation Solver
Consider a piece of code designed to solve quadratic equations, that is, equations in

the form ax2 + bx + c = 0. This equation can have one or two solutions depending on

the values of a, b and c; furthermore, the solutions may be real numbers or complex

numbers.

Ignoring data loss issues,3 we shall adopt the closed-form solution most of us know

from our school years

	
x b

a1 2
2

,
=
− ± ∆

	

3 Real-world implementations of a quadratic equation solver use a different formula than the one
you learned in school so as to preserve numerical stability, particularly in cases where the value
of a is really small.

Chapter 22 Observer

375

where the so-called discriminant Δ is defined as Δ = b2 − 4ac. A quadratic equation yields

two complex roots if Δ < 0, a single real solution if Δ = 0, and two real solutions if Δ > 0.

For the sake of simplicity, we’ll use the Complex type for all calculations.

We begin our implementation by defining a simple class that exposes both the

equation’s inputs (a, b, and c) and its outputs (x1 and x2) as public fields:

public class QuadraticEquationSolver

{

 public Complex A, B, C;

 public Complex Discriminant => B * B - 4 * A * C;

 public Tuple<Complex, Complex> Solve()

 {

 var rootDisc = Complex.Sqrt(Discriminant);

 return Tuple.Create(

 (-B + rootDisc) / (2 * A),

 (-B - rootDisc) / (2 * A));

 }

}

If we decide to build a user interface around a class such as this, the approach we

would take is a lot more flexible than simply making a static method. Imagine a simple

user interface such as

 a: | 1

 ----+-----

 b: | 10

 ----+-----

 c: | 16

 ----+-----

 x1: | -2

 ----+-----

 x2: | -8

Chapter 22 Observer

376

Now let’s introduce some requirements to our application:

	 1.	 When any of the a, b, or c values is changed, the values of x1 and x2

are recalculated.

	 2.	 If x1,2 are not complex (i.e., are real), they are shown as real and not

as complex numbers with a zero and an imaginary component.

These requirements are presentation requirements, not related directly

to the domain model as such. It makes no sense to incorporate them into the

QuadraticEquationSolver. What we do instead is build a view that takes care of

some of these requirements. Notice that, since the equation data does not need to be

transformed in any way, we won’t need to build a separate model (as part of MVVM) for

this example.

�Circular Recalculation Limitations
Our example presents an interesting challenge. We know that the solutions x1,2 depend

on a,b,c and vice versa. However, the underlying data type of Complex is double,

which has finite precision. This means that, were we to base our recalculations on

PropertyChanged subscriptions, we would cause an infinite loop! Here, let me illustrate:

•	 We try to solve the (rather trivial) equation x2 − 2 = 0.

•	 We plug in the coefficients a = 1, b = 0, and c = -2.

•	 A PropertyChanged notification fires, causing the recalculation of x1,2.

•	 The values of x1,2 are set to ± 2 .

•	 Another PropertyChanged notification fires to recalculate the

values a,b,c.

•	 We calculate a and b correctly, but when calculating c = x1x2, we hit a

problem because

> Math.Sqrt(2)*Math.Sqrt(2)

2.0000000000000004

Oops! So instead of getting c = -2, we get c = -2.0000000000000004, which causes

another round of recalculation, then another and another, and so on.

Chapter 22 Observer

377

�Observable Collections
If you bind a List<T> to a list box in either WinForms or WPF, changing the list won’t

update the UI. Why not? Because List<T> does not support the Observer pattern, of

course – its individual members might, but the list as a whole has no explicit way of

notifying that its contents have changed. Admittedly, you could just make a wrapper

where methods such as Add() and Remove() generate notifications. However, both

WinForms and WPF come with observable collections – the BindingList<T> and

ObservableCollection<T> classes, respectively.

Both of these types behave as a Collection<T>, but the operations generate

additional notifications that can be used, for example, by UI components to update the

presentation layer when the collections change. For example, ObservableCollection<T>

implements the INotifyCollectionChanged interface, which, in turn, has a

CollectionChanged event. This event will tell you what action has been applied to the

collection and will give you a list of both old and new items, as well as information about

old and new starting indices: in other words, you get everything that you need in order

to, say, redraw a list box correctly depending on the operation.

This functionality must be used with care! If you modify a collection many times

over in, say, some iterative setting, it’s best to temporarily disable notifications so that

the bound UI gets redrawn only ones instead of hundreds of times! This functionality is

available in the frameworks themselves (e.g., WinForms’ SuspendLayout() temporarily

suspends the processing of change notifications), but a more robust strategy is to simply

subclass the observable collection and introduce a flag that you can toggle to prevent

notifications. For example, you could inherit from ObservableCollection<T> and

override its OnCollectionChanged() method, calling the base method conditionally.

One important thing to note is that neither BindingList<T> nor

ObservableCollection<T> is thread-safe. So if you plan to read/write these collections

from multiple threads, you’d need to build a threading proxy (hey, Proxy pattern!). There

are, in fact, two options here:

•	 Inherit from an observable collection and just put common

collection operations such as Add() behind a lock.

•	 Inherit from a concurrent collection (e.g., a ConcurrentBag<T>) and

add INotifyCollectionChanged functionality.

You can find implementations of both of these approaches on Stack Overflow and

elsewhere. I prefer the first option as it’s a lot simpler.

Chapter 22 Observer

378

�Observable LINQ
When we discussed property observers, we also managed to discuss the idea of

properties that affect other properties. But that’s not all they affect. For example, a

property might be involved in a LINQ query, which yields some result. So how can we

know that we need to re-query the data in a particular query when a property it depends

on changes?

Over time, there had been frameworks such as CLINQ (Continuous LINQ) and

Bindable LINQ that attempted to solve the problem of a LINQ query generating the

necessary events (i.e., CollectionChanged) when one of its constituent parts failed.

Other frameworks exist, and I can offer no recommendations here about which one

you use. Keep in mind that these frameworks are attempting to solve a really difficult

problem.

�Declarative Subscriptions in Autofac
So far, most of our discussions have centered around the idea of explicit, imperative

subscription to events, whether via the usual .NET mechanisms, Reactive Extensions, or

something else. However, that’s not the only way event subscriptions can happen.

You can also define event subscriptions declaratively. This is often made possible by

the fact that applications make use of a central IoC container where the declarations can

be found and event wireups can be made behind the scenes.

There are two popular approaches for declarative event wireups. The first uses

attribute: you simply mark some method as [Publishes("foo")] and some other

method, in some other class, as [Subscribes("foo")]; and the IoC container makes a

connection behind the scenes.

The second is to use interfaces, and that is what we are going to demonstrate,

together with the use of the Autofac library. First, we define the notion of an event and

flesh out interfaces for the sending of the event and its handling:

public interface IEvent {}

public interface ISend<TEvent> where TEvent : IEvent

{

 event EventHandler<TEvent> Sender;

}

Chapter 22 Observer

379

public interface IHandle<TEvent> where TEvent : IEvent

{

 void Handle(object sender, TEvent args);

}

We can now manufacture concrete implementations of events. For example, suppose

we are handling click events, where a user can click a button a certain number of times

(e.g., double-click it):

public class ButtonPressedEvent : IEvent

{

 public int NumberOfClicks;

}

We can now make a Button class that generates such events. For simplicity, we’ll

simply add a Fire() method that fires off the event. Adopting a declarative approach, we

decorate the Button with the ISend<ButtonPressedEvent> interface:

public class Button : ISend<ButtonPressedEvent>

{

 public event EventHandler<ButtonPressedEvent> Sender;

 public void Fire(int clicks)

 {

 Sender?.Invoke(this, new ButtonPressedEvent

 {

 NumberOfClicks = clicks

 });

 }

}

And now, for the receiving side. Suppose we want to log button clicks. This means we

want to handle ButtonPressedEvents. Luckily, we already have an interface for this too:

public class Logging : IHandle<ButtonPressedEvent>

{

 public void Handle(object sender, ButtonPressedEvent args)

 {

 Console.WriteLine(

Chapter 22 Observer

380

 $"Button clicked {args.NumberOfClicks} times");

 }

}

Now, what we want, behind the scenes, is for our IoC container to automatically

subscribe Logging to the Button.Sender event behind the scenes, without us having to

do this manually. Let me first of all show you the monstrous piece of code that you would

require to do this:

var cb = new ContainerBuilder();

var ass = Assembly.GetExecutingAssembly();

// register publish interfaces

cb.RegisterAssemblyTypes(ass)

 .AsClosedTypesOf(typeof(ISend<>))

 .SingleInstance();

// register subscribers

cb.RegisterAssemblyTypes(ass)

 .Where(t =>

 t.GetInterfaces()

 .Any(i =>

 i.IsGenericType &&

 i.GetGenericTypeDefinition() == typeof(IHandle<>)))

 .OnActivated(act =>

 {

 var instanceType = act.Instance.GetType();

 var interfaces = instanceType.GetInterfaces();

 foreach (var i in interfaces)

 {

 if (i.IsGenericType

 && i.GetGenericTypeDefinition() == typeof(IHandle<>))

 {

 var arg0 = i.GetGenericArguments()[0];

 var senderType = typeof(ISend<>).MakeGenericType(arg0);

 var allSenderTypes =

 typeof(IEnumerable<>).MakeGenericType(senderType);

 var allServices = act.Context.Resolve(allSenderTypes);

Chapter 22 Observer

381

 foreach (var service in (IEnumerable) allServices)

 {

 var eventInfo = service.GetType().GetEvent("Sender");

 var handleMethod = instanceType.GetMethod("Handle");

 var handler = Delegate.CreateDelegate(

 eventInfo.EventHandlerType, null, handleMethod);

 eventInfo.AddEventHandler(service, handler);

 }

 }

 }

 })

 .SingleInstance()

 .AsSelf();

Let’s go through what’s happening in the preceding code step-by-step:

•	 First, we register all assembly types that implement ISend<>. There

are no special steps that need to be taken there because they just

need to exist somewhere. For the sake of simplicity, we register them

as singletons – if that were not the case, the situation with the wireups

would become even more complicated because the system would

have to track each constructed instance.4

•	 We then register the types that implement IHandle<>. This is where

things get crazy because we specify an additional OnActivated() step

that must be performed before an object is returned.

•	 In this step, given this IHandle<Foo> type, we locate all types that

implement the ISend<Foo> interface using reflection. This is a rather

tedious process.

•	 For each of the located types, we wire up the subscription. Again,

this is done using reflection, and you can also see some magic strings

here and there.

4 From personal experience, there are many situations where you do need your IoC container
to track all instances that have been constructed. One example is the Dynamic Prototyping
approach (see the “Dynamic Prototyping Bridge” section of Chapter 8), where an in-process
change of an object mandates an immediate replacement of all such objects that have been
constructed during the application’s lifetime.

Chapter 22 Observer

382

With this setup in place, we can build the container and resolve both a Button and a

Logging component, and the subscriptions will be done behind the scenes:

var container = cb.Build();

var button = container.Resolve<Button>();

var logging = container.Resolve<Logging>();

button.Fire(1); // Button clicked 1 times

button.Fire(2); // Button clicked 2 times

In a similar fashion, you could implement declarative subscriptions using attributes

instead. And if you don’t use Autofac, don’t worry: most popular IoC containers are

capable of implementing these sorts of declarative event wireups.

�Summary
Generally speaking, we could have avoided discussing the Observer pattern in

C# because the pattern itself is baked right into the language. That said, I have

demonstrated some of the practical uses of Observer (property change notifications)

as well as some of the issues related to that (dependent properties). Furthermore, we

looked at the way in which the Observer pattern is supported for reactive streams.

Thread safety is one concern when it comes to Observer, whether we are talking

about individual events or entire collections. The reason it shows up is because several

observers on one component form a list (or similar structure), and then the question

immediately arises as to whether that list is thread-safe and what exactly happens when

it’s being modified and iterated upon (for purposes of notification) at the same time.

Chapter 22 Observer

383

CHAPTER 23

State
I must confess: my behavior is governed by my state. If I didn’t get enough sleep, I’m

going to be a bit tired. If I had a drink, I wouldn’t get behind the wheel. All of these are

states, and they govern my behavior: how I feel and what I can and cannot do.

I can, of course, transition from one state to another. I can go get a coffee, and this

will take me from sleepy to alert (I hope!). So we can think of coffee as a trigger that

causes a transition of yours truly from sleepy to alert. Here, let me clumsily illustrate it

for you:

 coffee

sleepy --------> alert

The State design pattern is a very simple idea: state controls behavior, state can be

changed, and the only thing that the jury is out on is who triggers the change from one

state to another.

There are two ways in which we can model states:

•	 States are actual classes with behaviors, and these behaviors cause

the transition from this state to another. In other words, a state’s

members are the options in terms of where we can go from that state.

•	 States and transitions are just enumerations. We have a special

component called a state machine that performs the actual

transitions.

Both of these approaches are viable, but it’s really the second approach that is the

most common. We’ll take a look at both of them, but I must warn that I’ll glance over the

first one, since this isn’t how people typically do things.

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_23

https://doi.org/10.1007/978-1-4842-8245-8_23

384

�State-Driven State Transitions
We’ll begin with the most trivial example out there: a light switch that can only be in

the on and off states. The reason we are choosing such a simple domain is that I want to

highlight the madness (there’s no other word for it) that a classic implementation of State

brings, and this example is simple enough to do so without generating pages of code

listings.

We are going to build a model where any state is capable of switching to some other

state: this reflects the “classic” implementation of the State design pattern (as per the

GoF book). First, let’s model the light switch. All it has is a state and some means of

switching from one state to another:

public class Switch

{

 public State State = new OffState();

}

This all looks perfectly reasonable. We have a switch that’s in some state (either on

or off). We can now define the State, which, in this particular case, is going to be an

actual class:

public abstract class State

{

 public virtual void On(Switch sw)

 {

 Console.WriteLine("Light is already on.");

 }

 public virtual void Off(Switch sw)

 {

 Console.WriteLine("Light is already off.");

 }

}

This implementation is far from intuitive, so much so that we need to discuss

it slowly and carefully, because from the outset, nothing about the State class

makes sense.

Chapter 23 State

385

While the State is abstract (meaning you cannot instantiate it), it has non-abstract

members that allow the switching from one state to another. This, to a reasonable

person, makes no sense. Imagine the light switch: it’s the switch that changes states. The

state itself isn’t expected to change itself, and yet it appears this is exactly what it does.

Perhaps most bewildering, though, the default behavior of State.On()/Off() claims

that we are already in this state! Note that these methods are virtual. This will come

together, somewhat, as we implement the rest of the example.

We now implement the on and off states:

public class OnState : State

{

 public OnState()

 {

 Console.WriteLine("Light turned on.");

 }

 public override void Off(Switch sw)

 {

 Console.WriteLine("Turning light off...");

 sw.State = new OffState();

 }

}

// similarly for OffState

The constructor of each state simply informs us that we have completed the

transition. But the transition itself happens in OnState.Off() and OffState.On(). That

is where the switching happens.

We can now complete the Switch class by giving it methods to actually switch the

light on and off:

public class Switch

{

 public State State = new OffState();

 public void On() { State.On(this); }

 public void Off() { State.Off(this); }

}

Chapter 23 State

386

So, putting it all together, we can run the following scenario:

LightSwitch ls = new LightSwitch(); // Light turned off

ls.On(); // Switching light on...

 // Light turned on

ls.Off(); // Switching light off...

 // Light turned off

ls.Off(); // Light is already off

Here is an illustrated transition from OffState to OnState:

 LightSwitch.On() -> OffState.On()

OffState -----------------------------------> OnState

On the other hand, the transition from OnState to OnState uses the base State class,

the one that tells you that you are already in that state:

 LightSwitch.On() -> State.On()

OnState --------------------------------> OnState

Let me be the first to say that the implementation presented here is terrible. While

being a nice demonstration of OOP equilibristics, it is an unreadable, unintuitive mess

that goes against everything we learn about both OOP generally and design patterns in

particular, specifically:

•	 A state typically does not switch itself.

•	 A list of possible transitions should not appear all over the place; it’s

best to keep it in one place (SRP).

•	 There is no need to have actual classes modeling states unless they

have class-specific behaviors; this example could be reduced to

something much simpler.

Maybe we should have been using enums to begin with?

Chapter 23 State

387

�Enum-Based State Machine
Let’s try to define a state machine for a typical phone conversation.

First of all, we’ll describe the states of a phone:

public enum State

{

 OffHook,

 Connecting,

 Connected,

 OnHold

}

We can now also define transitions between states, also as an enum:

public enum Trigger

{

 CallDialed,

 HungUp,

 CallConnected,

 PlacedOnHold,

 TakenOffHold,

 LeftMessage

}

Now, the exact rules of this state machine, that is, what transitions are possible, need

to be stored somewhere. Here is a UML state machine diagram showing what kind of

transitions we want.

Chapter 23 State

388

Let’s use a dictionary of state-to-trigger/state pairs to model the state diagram

presented in Figure 23-1:

private static Dictionary<State, List<(Trigger, State)>> rules

 = new() { /* todo */ }

This is a little clumsy, but essentially the key of the dictionary is the State we’re

moving from, and the value is a list of Trigger-State pairs representing possible triggers

while in this state and the state you move into when you use a trigger.

Let’s initialize this data structure:

private static Dictionary<State, List<(Trigger, State)>> rules

 = new ()

 {

 [State.OffHook] = new()

 {

 (Trigger.CallDialed, State.Connecting)

 },

 [State.Connecting] = new()

 {

Figure 23-1.  Phone call state diagram

Chapter 23 State

389

 (Trigger.HungUp, State.OffHook),

 (Trigger.CallConnected, State.Connected)

 },

 // more rules here

 };

We also need a starting (current) state, and we can also add an exit (terminal) state if

we want the state machine to stop executing once that state is reached:

State state = State.OffHook, exitState = State.OnHook;

So in the preceding line, we start out with the OffHook state (when you’re ready

to make the call), and the exit state is when the phone is placed OnHook and the call is

finished.

Having made this, we don’t necessarily have to build a separate component for

actually running (we use the term orchestrating) a state machine. For example, if we

wanted to build an interactive model of the telephone, we could do it like this:

do

{

 Console.WriteLine($"The phone is currently {state}");

 Console.WriteLine("Select a trigger:");

 for (var i = 0; i < rules[state].Count; i++)

 {

 var (t, _) = rules[state][i];

 Console.WriteLine($"{i}. {t}");

 }

 int input = int.Parse(Console.ReadLine());

 var (_, s) = rules[state][input];

 state = s;

} while (state != exitState);

Console.WriteLine("We are done using the phone.");

Here’s how it works: we let the user select one of the available triggers on the current

state, and provided the trigger is valid, we transition to the right state by using that rules

dictionary that we created earlier.

Chapter 23 State

390

If the state we’ve reached is the exit state, we just jump out of the loop. Here’s a

sample interaction with the program:

The phone is currently OffHook

Select a trigger:

0. CallDialed

0

The phone is currently Connecting

Select a trigger:

0. HungUp

1. CallConnected

1

The phone is currently Connected

Select a trigger:

0. LeftMessage

1. HungUp

2. PlacedOnHold

2

The phone is currently OnHold

Select a trigger:

0. TakenOffHold

1. HungUp

1

We are done using the phone.

This hand-rolled state machine’s main benefit is that it is very easy to understand:

states and transitions are ordinary enumerations, the set of transitions is defined in a

Dictionary, and the start and end states are simple variables. I’m sure you’ll agree this is

much easier to understand than the example we started the chapter with.

�Switch-Based State Machine
In our exploration of state machines, we have progressed from the needlessly complicated

classic example where states are represented by classes to a handcrafted example where

states are represented as enumeration members, and now we shall experience one final

step of degradation as we stop using dedicated data types for transitions.

Chapter 23 State

391

But our simplifications won’t end there: instead of jumping from one method call to

another, we’ll confine ourselves to an infinitely repeating switch statement where state

will be examined and transitions will happen by virtue of the state changing.

The scenario I want you to consider is a combination lock. The lock has a four-digit

code (e.g., 1234) that you enter one digit at a time. As you enter the code, if you make

a mistake, you get the "FAILED" output, but if you enter all digits correctly, you get

"UNLOCKED" instead and you exit the state machine.

We shall still encode the states using an enumeration:

enum State

{

 Locked,

 Failed,

 Unlocked

}

The entire scenario that we want to run can fit into a single listing:

string code = "1234";

var state = State.Locked;

var entry = new StringBuilder();

while (true)

{

 switch (state)

 {

 case State.Locked:

 entry.Append(Console.ReadKey().KeyChar);

 if (entry.ToString() == code)

 {

 state = State.Unlocked;

 break;

 }

 if (!code.StartsWith(entry.ToString()))

 {

 // the code is blatantly wrong

Chapter 23 State

392

 state = State.Failed;

 }

 break;

 case State.Failed:

 Console.CursorLeft = 0;

 Console.WriteLine("FAILED");

 entry.Clear();

 state = State.Locked;

 break;

 case State.Unlocked:

 Console.CursorLeft = 0;

 Console.WriteLine("UNLOCKED");

 return;

 }

}

As you can see, this is very much a state machine, albeit one that lacks any structure.

You couldn’t examine it from the top level and be able to tell what all the possible states

and transitions are. It is not clear, unless you really examine the code, how the transitions

happen – and we’re lucky there are no goto statements here to make jumps between

the cases!

This Switch-Based State Machine approach is viable for scenarios with very

small numbers of states and transitions. It loses out on structure, readability, and

maintainability, but can work as a quick patch if you do need a state machine quickly

and are too lazy to make enum cases.

Overall, this approach does not scale and is difficult to manage, so I would not

recommend it in production code. The only exception would be if such a machine was

made using code generation on the basis of some external model.

�Encoding Transitions with Switch Expressions
The switch-based state machine may be unwieldy, but that’s partly due to the way

information about states and transitions is structured (because it’s not). But there is a

different kind of switch – a switch expression (as opposed to statement) that, thanks to

pattern matching, allows us to neatly define state transitions.

Chapter 23 State

393

Okay, time for a simple example. You’re on a hunt for treasure and find a treasure

chest that you can open or close…unless it’s locked, in which case the situation is a

bit more complicated (you need to have a key to lock or unlock a chest). Thus, we can

encode the states and possible transitions as follows:

enum Chest { Open, Closed, Locked }

enum Action { Open, Close }

With this definition, we can write a method called Manipulate that takes us from one

state to another. The general rules of chest operation are as follows:

•	 If the chest is locked, you can only open it if you have the key.

•	 If the chest is open and you close it while having the key, you lock it.

•	 If the chest is open and you don’t have the key, you just close it.

•	 A closed (but not locked) chest can be opened whether you have the

key or not.

The set of possible transitions can be encoded right in the structure of the pattern

matching expression. Without further ado, here it is:

static Chest Manipulate(Chest chest,

 Action action, bool haveKey) =>

 (chest, action, haveKey) switch

 {

 (Chest.Closed, Action.Open, _) => Chest.Open,

 (Chest.Locked, Action.Open, true) => Chest.Open,

 (Chest.Open, Action.Close, true) => Chest.Locked,

 (Chest.Open, Action.Close, false) => Chest.Closed,

 _ => chest

 };

This approach has a number of advantages and disadvantages. The advantages

are that

•	 This state machine is easy to read.

•	 Guard conditions such as haveKey are easy to incorporate and fit nice

into pattern matching.

Chapter 23 State

394

There are disadvantages too:

•	 The formal set of rules for this state machine is defined in a way that

cannot be extracted. There’s no data store where the rules are kept,

so you cannot generate a report or a diagram or run any verification

checks beyond those that are done by the compiler (it only checks for

exhaustiveness).

•	 If you need any behaviors, such as state entry or exit behaviors, this

cannot be done easily in a switch expression – you would need to

define a good old-fashioned method with a switch statement in it.

To sum up, this approach is great for simple state machines because it results in very

readable code. But it’s not exactly an “enterprise” solution.

�State Machines with Stateless
While hand-rolling a state machine works for the simplest of cases, you probably

want to leverage an industrial-strength state machine framework. That way, you get a

tested library with a lot more functionality. It’s also fitting because we need to discuss

additional state machine–related concepts, and implementing them by hand is rather

tedious.

Before we move on to the concepts I want to discuss, let us first of all reconstruct

our previous phone call example using Stateless.1 Assuming the existence of the

same enumerations State and Trigger as before, the definition of a state machine is

very simple:

var call = new StateMachine<State, Trigger>(State.OffHook);

phoneCall.Configure(State.OffHook)

 .Permit(Trigger.CallDialed, State.CallConnected);

// and so on, then, to cause a transition, we do

call.Fire(Trigger.CallDialed); // call.State is now State.CallConnected

1 Stateless can be found at https://github.com/dotnet-state-machine/stateless. It’s worth
noting that the phone call example actually comes from the authors of SimpleStateMachine, a
project on which Stateless is based.

Chapter 23 State

https://github.com/dotnet-state-machine/stateless

395

As you can see, Stateless’ StateMachine class is a builder with a fluent interface.

The motivation behind this API design will become apparent as we discuss the different

intricacies of Stateless.

�Types, Actions, and Ignoring Transitions
Let’s talk about the many features of Stateless and state machines generally.

First and foremost, Stateless supports states and triggers of any .NET type – it’s not

constrained to enums. You can use strings, numbers, anything you want. For example, a

light switch could use a bool for states (false = off, true = on); we’ll keep using enums for

triggers. Here is how one would implement the LightSwitch example:

enum Trigger { On, Off }

var light = new StateMachine<bool, Trigger>(false);

light.Configure(false) // if the light is off...

 .Permit(Trigger.On, true) // we can turn it on

 .Ignore(Trigger.Off); // but if it's already off we do nothing

// same for when the light is on

light.Configure(true)

 .Permit(Trigger.Off, false)

 .Ignore(Trigger.On)

 .OnEntry(() => timer.Start())

 .OnExit(() => timer.Stop()); // calculate time spent in this state

light.Fire(Trigger.On); // Turning light on

light.Fire(Trigger.Off); // Turning light off

light.Fire(Trigger.Off); // Light is already off!

There are a few interesting things worth discussing here. First of all, this state

machine has actions – things that happen as we enter a particular state. These are

defined in OnEntry(), where you can provide a lambda that does something; similarly,

you could invoke something at the moment the state is exited using OnExit(). One use

of such transition actions would be to start a timer when entering a transition and stop

it when exiting one, which could be used for tracking the amount of time spent in each

state. For example, you might want to measure the time the light stays on for purposes of

verifying electricity costs.

Chapter 23 State

396

Another thing worth noting is the use of Ignore() builder methods. This basically

tells the state machine to ignore the transition completely: if the light is already off and

we try to switch it off (as in the last line of the preceding listing), we instruct the state

machine to simply ignore it, so no output is produced in that case.

Why is this important? Because, if you forget to Ignore() this transition or fail to

specify it explicitly, Stateless will throw an InvalidOperationException:

“No valid leaving transitions are permitted from state ‘False’ for

trigger ‘False.’ Consider ignoring the trigger.”

�Reentrancy Again
Another alternative to the “redundant switching” conundrum is Stateless’ support for

reentrant states. To replicate the light switch example from the start of this chapter, we

can configure the state machine so that, in the case of reentry into a state (meaning that

we transition, say, from false to false), an action is invoked. Here is how one would

configure it:

var light = new StateMachine<bool, Trigger>(false);

light.Configure(false) // if the light is off...

 .Permit(Trigger.On, true) // we can turn it on

 .OnEntry(transition =>

 {

 if (transition.IsReentry)

 WriteLine("Light is already off!");

 else

 WriteLine("Turning light off");

 })

 .PermitReentry(Trigger.Off);

// same for when the light is on

light.Fire(Trigger.On); // Turning light on

light.Fire(Trigger.Off); // Turning light off

light.Fire(Trigger.Off); // Light is already off!

Chapter 23 State

397

In the last line of the configuration code, PermitReentry() allows us to return

to the false (off) state on a Trigger.Off trigger. Notice that, in order to output a

corresponding message to the console, we use a different lambda: one that has a

parameter of type Transition. The parameter has public members that describe the

transition fully. This includes Source (the state we’re transitioning from), Destination

(the state we’re going to), Trigger (what caused the transition), and IsReentry, a

Boolean flag that we use to determine if this is a reentrant transition.

�Hierarchical States
In the context of a phone call, it can be argued that the OnHold state is a substate of the

Connected state, implying that when we’re on hold, we’re also connected. Stateless lets

us configure the state machine like this:

phoneCall.Configure(State.OnHold)

 .SubstateOf(State.Connected)

 // etc.

Now, if we are in the OnHold state, phoneCall.State will give us OnHold, but there’s

also a phoneCall.IsInState(State) method that will return true when called with

either State.Connected or State.OnHold.

�More Features
Let’s talk about a few more features related to state machines that are implemented in

Stateless.

Guard clauses allow you to enable and disable transitions at will by calling

PermitIf() and providing bool-returning lambda functions, for example:

phoneCall.Configure(State.OffHook)

 .PermitIf(Trigger.CallDialled, State.Connecting, () => IsValidNumber)

 .PermitIf(Trigger.CallDialled, State.Beeping, () => !IsValidNumber);

Parameterized triggers are an interesting concept. Essentially, you can attach

parameters to triggers such that, in addition to the trigger itself, there’s also additional

information that can be passed along. For example, if a state machine needs to notify a

particular employee, you can specify an email to be used for notification:

Chapter 23 State

398

var notifyTrigger = workflow.SetTriggerParameters<string>(Trigger.Notify);

workflow.Configure(State.Notified)

 .OnEntryFrom(assignTrigger, email => SendEmail(email));

workflow.Fire(notifyTrigger, "foo@bar.com");

External storage is a feature of Stateless that lets you store the internal state of a state

machine externally (e.g., in a database) instead of using the StateMachine class itself. To

use it, you simply define the getter and setter methods in the StateMachine constructor:

var stateMachine = new StateMachine<State, Trigger>(

 () => database.ReadState(),

 s => database.WriteState(s));

Introspection allows us to actually look at the table of triggers that can be fired from

the current state through the PermittedTriggers property.

This is far from an exhaustive list of features that Stateless offers, but it covers all the

important parts.

�Concurrent State Machines
Due to the conciseness of our examples, we may have given the impression that any

given system has just one, rather manageable, state machine that governs the overall

behavior of the system. This is not always correct: sometimes the operation of the system

is governed by several independent states. As soon as such a situation is reached, the

level of complexity jumps since the interaction between two or more state machines may

introduce additional logic that must be incorporated.

For example, consider an automated trading system that trades cryptocurrency. We

can have one state machine for the status of our connection to the system (connected,

disconnected, faulted, etc.) and another state machine indicating our trading strategies

(not in market, high-frequency trading, holding on to long-term positions).

Now imagine our reaction to a surprise disconnect. If we don’t have a position open,

a disconnection may not be such a big deal. A disconnection with long-term positions is

also manageable, though we definitely need to inform the system owner just in case. But

a disconnection in the middle of a trading session with many positions open (especially

when not governed by server-side stop-loss rules) can be a disaster, so we need to try

and salvage the situation – reconnect as quickly as possible to recover a situation; notify

Chapter 23 State

399

the owner ASAP; if the reconnection fails after X attempts, let the owner know so they

may attempt other means of closing positions (either by using a different terminal/client

or by physically calling the broker or exchange).

�Implicit State Machines
The C# programming language has two language constructs that turn into state

machines behind the scenes.

The first construct is yield, which allows resumable iteration by constructing a state

machine behind the scenes. Check out the decompiled version of MoveNext() to see the

internal implementation details.

The second construct is, of course, async/await. Prior to its introduction in

C#, asynchronous processing of this sort was effectively emulated using yield, as

demonstrated by AsyncEnumerator in Jeffrey Richter’s PowerThreading library.2

�Summary
The operation of state machines extends way beyond simple transitions: it allows a lot of

complexity to handle the most demanding business cases. Let us recap some of the state

machine features we’ve discussed:

•	 State machines involve two collections: states and triggers. States

model the possible states of the system, and triggers transition us

from one state to another. You are not limited to enumerations: you

can use ordinary data types.

•	 Attempting a transition that’s not configured will result in an

exception.

•	 It is possible to explicitly configure entry and exit actions for

each state.

•	 Reentrancy can be explicitly allowed in the API, and furthermore,

you can determine whether or not a reentry is occurring in the entry/

exit action.

2 https://github.com/Wintellect/PowerThreading

Chapter 23 State

https://github.com/Wintellect/PowerThreading

400

•	 Transitions can be turned on an off through guard conditions. They

can also be parameterized.

•	 States can be hierarchical, that is, they can be substates of other

states. An additional method is then required to determine whether

you’re in a particular (parent) state.

While most of the preceding features might seem like overengineering, these features

provide great flexibility in defining real-world state machines.

Chapter 23 State

401

CHAPTER 24

Strategy
Suppose you decide to take an array or vector of several strings and output them as a list:

•	 just

•	 like

•	 this

If you think about the different output formats, you probably know that you need to

take each element and output it with some additional markup. But in the case of languages

such as HTML or LaTeX, the list will also need the start and end tags or markers.

We can formulate a strategy for rendering a list:

•	 Render the opening tag/element.

•	 For each of the list items, render that item.

•	 Render the closing tag/element.

Different strategies can be formulated for different output formats, and these

strategies can be then fed into a general, non-changing algorithm to generate the text.

This is yet another pattern that exists in dynamic (runtime-replaceable) and static

(generics-based, fixed) incarnations. Let’s take a look at both of them.

�Dynamic Strategy
So our goal is to print a simple list of text items in the following formats:

public enum OutputFormat

{

 Markdown,

 Html

}

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_24

https://doi.org/10.1007/978-1-4842-8245-8_24

402

The skeleton of our strategy will be defined in the following base class:

public interface IListStrategy

{

 void Start(StringBuilder sb);

 void AddListItem(StringBuilder sb, string item);

 void End(StringBuilder sb);

}

Now let us jump to our text processing component. This component would have a

list-specific method called, say, AppendList():

public class TextProcessor

{

 private StringBuilder sb = new StringBuilder();

 private IListStrategy listStrategy;

 public void AppendList(IEnumerable<string> items)

 {

 listStrategy.Start(sb);

 foreach (var item in items)

 listStrategy.AddListItem(sb, item);

 listStrategy.End(sb);

 }

 public override string ToString() => sb.ToString();

}

So we’ve got a buffer called sb where all the output goes, the listStrategy that we’re

using for rendering lists, and of course AppendList(), which specifies the set of steps

that need to be taken to actually render a list with a given strategy.

Now, pay attention here. Composition, as used previously, is one of two possible

options that can be taken to allow concrete implementations of a skeleton algorithm.

Instead, we could add functions such as AddListItem() as abstract or virtual members

to be overridden by derived classes: that’s what the Template Method pattern does.

Anyways, back to our discussion. We can now go ahead and implement different

strategies for lists, such as a HtmlListStrategy:

Chapter 24 Strategy

403

public class HtmlListStrategy : IListStrategy

{

 public void Start(StringBuilder sb) => sb.AppendLine("");

 public void End(StringBuilder sb) => sb.AppendLine("");

 public void AddListItem(StringBuilder sb, string item)

 {

 sb.AppendLine($" {item}");

 }

}

By implementing the overrides, we fill in the gaps that specify how to process lists.

We implement a MarkdownListStrategy in a similar fashion, but because Markdown

does not need opening/closing tags, we only do work in the AddListItem() method:

public class MarkdownListStrategy : IListStrategy

{

 // markdown doesn't require list start/end tags

 public void Start(StringBuilder sb) {}

 public void End(StringBuilder sb) {}

 public void AddListItem(StringBuilder sb, string item)

 {

 sb.AppendLine($" * {item}");

 }

}

We can now start using the TextProcessor, feeding it different strategies and getting

different results, for example:

var tp = new TextProcessor();

tp.SetOutputFormat(OutputFormat.Markdown);

tp.AppendList(new []{"foo", "bar", "baz"});

WriteLine(tp);

// Output:

// * foo

// * bar

// * baz

Chapter 24 Strategy

404

We can make provisions for strategies to be switchable at runtime – this is

precisely why we call this implementation a dynamic strategy. This is done in the

SetOutputFormat() method, whose implementation is trivial:

public void SetOutputFormat(OutputFormat format)

{

 switch (format) {

 case OutputFormat.Markdown:

 listStrategy = new MarkdownListStrategy();

 break;

 case OutputFormat.Html:

 listStrategy = new HtmlListStrategy();

 break;

 default:

 throw new ArgumentOutOfRangeException(nameof(format), format, null);

 }

}

Now, switching from one strategy to another is trivial, and you get to see the results

straight away:

tp.Clear(); // erases underlying buffer

tp.SetOutputFormat(OutputFormat.Html);

tp.AppendList(new[] { "foo", "bar", "baz" });

WriteLine(tp);

// Output:

//

// foo

// bar

// baz

//

�Static Strategy
Thanks to the magic of generics, you can bake any strategy right into the type. Only

minimal changes are necessary to the TextStrategy class:

Chapter 24 Strategy

405

public class TextProcessor<LS>

 where LS : IListStrategy, new()

{

 private StringBuilder sb = new StringBuilder();

 private IListStrategy listStrategy = new LS();

 public void AppendList(IEnumerable<string> items)

 {

 listStrategy.Start(sb);

 foreach (var item in items)

 listStrategy.AddListItem(sb, item);

 listStrategy.End(sb);

 }

 public override string ToString() => return sb.ToString();

}

What changed in the dynamic implementation is as follows: we added the LS generic

argument, made a listStrategy member with this type, and started using it instead of

the reference we had previously. The results of calling the adjusted AppendList() are

identical to what we had before:

var tp = new TextProcessor<MarkdownListStrategy>();

tp.AppendList(new []{"foo", "bar", "baz"});

WriteLine(tp);

var tp2 = new TextProcessor<HtmlListStrategy>();

tp2.AppendList(new[] { "foo", "bar", "baz" });

WriteLine(tp2);

The textual output of this example is exactly the same as for the dynamic strategy.

Note that we’ve had to make two instances of TextProcessor, each with a distinct list-

handling strategy, since it is impossible to switch a type’s strategy midstream: it is baked

right into the type.

Chapter 24 Strategy

406

�Equality and Comparison Strategies
The most well-known use of the Strategy pattern inside .NET is, of course, the use of

equality and comparison strategies.

Consider a simple class such as the following:

class Person

{

 public int Id;

 public string Name;

 public int Age;

}

As it stands, you can put several Person instances inside a List, but calling Sort()

on such a list would be meaningless:

var people = new List<Person>();

people.Sort(); // does not do what you want

The same goes for comparisons using the == and != operators: at the moment, all

these involve reference-based comparison.

We need to clearly distinguish two types of operations:

•	 Equality checks whether or not two instances of an object are

equal, according to the rules you define. This is covered by the

IEquatable<T> interface (the Equals() method) as well as operators

== and !=, which typically use the Equals() method internally.

•	 Comparison allows you to compare two objects and find which one

is less than, equal to, or greater than another. This is covered by the

IComparable<T> interface and is required for things like sorting.

By implementing IEquatable<T> and IComparable<T>, every object can expose its

own comparison and equality strategies. For example, if we assume that people have

unique Ids, we can use this value for comparison:

Chapter 24 Strategy

407

public int CompareTo(Person other)

{

 if (ReferenceEquals(this, other)) return 0;

 if (ReferenceEquals(null, other)) return 1;

 return Id.CompareTo(other.Id);

}

So now, calling people.Sort() makes sense – it will use the built-in CompareTo()

method that we’ve written. But there is a problem: a typical class can only have one

default CompareTo() implementation for comparing the class with itself. The same goes

for equality. So what if your comparison strategy changes at runtime?

Luckily, BCL designers have thought of that too. We can specify the comparison

strategy right at the call site, simply by passing in a lambda:

people.Sort((x, y) => x.Name.CompareTo(y.Name));

This way, even though Person’s default comparison behavior is to compare by id, we

can compare by name if we need to.

But that’s not all! There is a third way in which a comparison strategy can be defined.

This way is useful if some strategies are common and you want to preserve them inside

the class itself.

The idea is this: you define a nested class that implements the IComparer<T>

interface. You then expose this class as a static variable:

public class Person

{

 // ... other members here

 private sealed class NameRelationalComparer : IComparer<Person>

 {

 public int Compare(Person x, Person y)

 {

 if (ReferenceEquals(x, y)) return 0;

 if (ReferenceEquals(null, y)) return 1;

 if (ReferenceEquals(null, x)) return -1;

 return string.Compare(x.Name, y.Name,

 StringComparison.Ordinal);

 }

 }

Chapter 24 Strategy

408

 public static IComparer<Person> NameComparer { get; }

 = new NameRelationalComparer();

}

As you can see, this class (which could easily be a struct instead) defines a

standalone strategy for comparing two Person instances using their names. We can now

simply take a static instance of this class and feed it into the Sort() method:

people.Sort(Person.NameComparer);

As you may have guessed, the situation with equality comparison is fairly similar:

you can use an IEquatable<T>, pass in a lambda, or generate a class that implements an

IEqualityComparer<T>. Your choice!

�Functional Strategy
The functional variation of the Strategy pattern is simple: all OOP constructs are simply

replaced by functions. First of all, TextProcessor devolves from being a class to being

a function. This is actually idiomatic (i.e., the right thing to do) because TextProcessor

has a single operation:

let processList items startToken itemAction endToken =

 let mid = items |> (Seq.map itemAction) |> (String.concat "\n")

 [startToken; mid; endToken] |> String.concat "\n"

In functional programming parlance, any function that takes one or more functions

as parameters is called a higher-order function. processList() is precisely this type of

function, as it takes four arguments: a sequence of items, the starting token (note: it’s a

token, not a function), a function for processing each element, and the ending token.

Since this is a function, this approach assumes that processList is stateless, that is, it

does not keep any state beyond the duration of the call.

The algorithm presented here is the same as before, but since it’s in functional form,

let’s discuss how it is implemented:

•	 The set of items is first “mapped” using Seq.map (this is equivalent to

LINQ’s Select()) using the itemAction provided.

•	 All items are concatenated together with the line break separator.

Chapter 24 Strategy

409

•	 The start token, middle part (from the previous step), and end token

are all concatenated together using the line break separator.

Our strategy is not just a single, neatly self-contained element, but rather a

combination of three different items: the start and end tokens as well as a function

that operates upon each of the elements in the sequence. We can now specialize

processList in order to implement HTML and Markdown processing as before:

let processListHtml items =

 processList items "" (fun i -> " " + i + "") ""

let processListMarkdown items =

 processList items "" (fun i -> " * " + i) ""

Here is how you would use these specializations, with predictable results:

let items = ["hello"; "world"]

printfn "%s" (processListHtml items)

printfn "%s" (processListMarkdown items)

This approach, admittedly, lacks in usability because the interface of processList

gives absolutely no hints whatsoever as to what the client is supposed to provide as the

itemAction. All they know is it’s an 'a -> string, so we rely on them to guess correctly

what it’s actually for.

�Declarative Strategies
We’ve looked at two ways of specifying strategies: either as references provided directly

into a class constructor or as a type parameter in a generic class. Another very common

way of specifying a strategy is declarative, for example, by using attributes.

There is no one true way of specifying strategies in a declarative way because

different frameworks do it differently. Here are a few examples of using attributes as

strategies:

•	 Compile-time decorations using packages such as JetBrains.

Annotations are used to specify analysis strategies that need to be

adopted by static analysis tools such as JetBrains ReSharper or Rider.

Chapter 24 Strategy

410

•	 Attributes applied to types can be parsed by an IoC container and

incorporated during the construction of the object. This is mentioned

in Chapter 22, where we auto-wire event subscriptions.

•	 Attributes applied to properties, specifying validation rules, are

located and used by frameworks such as ASP.NET.

•	 Additional strategies, often affecting large areas of code, can be

specified using attributes and then applied using IL weavers such as

Fody or PostSharp.

Just like the Static Strategy approach, the declarative approach is more or less set

in stone at compile time. Of course, if you are using reflection to detect the attributes at

runtime, then you can affect the resulting behavior.

�Summary
The Strategy design pattern allows you to define a skeleton of an algorithm and then

use composition to supply the missing implementation details related to a particular

strategy. This approach exists in two incarnations:

•	 Dynamic strategy simply keeps a reference to the strategy currently

being used. Want to change to a different strategy? Just change the

reference. Easy!

•	 Static strategy requires that you choose the strategy at compile time

and stick with it – there is no scope for changing your mind later on.

•	 Functional strategy receives a function or function wrapper and

invokes it whenever required. This reference is typically not kept

beyond the duration of the higher-order function.

Should one use dynamic or static strategies? Well, dynamic ones allow you

reconfiguration of the objects after they have been constructed. Imagine a UI setting

that controls the form of the textual output: what would you rather have, a switchable

TextProcessor or two variables of type TextProcessor<MarkdownStrategy> and

TextProcessor<HtmlStrategy>? It’s really up to you.

Chapter 24 Strategy

411

CHAPTER 25

Template Method
The Strategy and Template Method design patterns are very similar, so much so that, just

like with factories, I would be very tempted to merge those patterns into some sort of

“Skeleton Method” design pattern. I will resist the urge.

The difference between Strategy and Template Method is that Strategy uses

composition (whether static or dynamic), whereas Template Method uses inheritance.

But the core principle of defining the skeleton of an algorithm in one place and its

implementation details in other places remains, once again observing the OCP (we

simply extend systems).

�Game Simulation
Most board games are very similar: the game starts (some sort of setup takes place),

players take turns until a winner is decided, and then the winner can be announced. It

doesn’t matter what the game is – chess, checkers, something else. We can define the

algorithm as follows:

public abstract class Game

{

 public void Run()

 {

 Start();

 while (!HaveWinner)

 TakeTurn();

 WriteLine($"Player {WinningPlayer} wins.");

 }

}

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_25

https://doi.org/10.1007/978-1-4842-8245-8_25

412

As you can see, the run() method, which runs the game, simply uses a set of other

methods and properties. Those methods are abstract and also have protected visibility,

so they don’t get called from the outside:

protected abstract void Start();

protected abstract bool HaveWinner { get; }

protected abstract void TakeTurn();

protected abstract int WinningPlayer { get; }

To be fair, some of the preceding members, especially void-returning ones, do not

necessarily have to be abstract. For example, if some games have no explicit start()

procedure, having start() as abstract violates the ISP since members that do not need

it would still have to implement it. In Chapter 24 we deliberately made an interface, but

with Template Method, the case is not so clear-cut.

Now, in addition to the preceding members, we can have certain protected fields

that are relevant to all games – the number of players and the index of the current player:

public abstract class Game

{

 public Game(int numberOfPlayers)

 {

 this.numberOfPlayers = numberOfPlayers;

 }

 protected int currentPlayer;

 protected readonly int numberOfPlayers;

 // other members omitted

}

From here on out, the Game class can be extended to implement a game of chess:

public class Chess : Game

{

 public Chess() : base(2) { /* 2 players */ }

 protected override void Start()

 {

 WriteLine($"Starting a game of chess with {numberOfPlayers} players.");

 }

Chapter 25 Template Method

413

 protected override bool HaveWinner => turn == maxTurns;

 protected override void TakeTurn()

 {

 WriteLine($"Turn {turn++} taken by player {currentPlayer}.");

 currentPlayer = (currentPlayer + 1) % numberOfPlayers;

 }

 protected override int WinningPlayer => currentPlayer;

 private int maxTurns = 10;

 private int turn = 1;

}

A game of chess involves two players, so that’s the value fed into the base class’

constructor. We then proceed to override all the necessary methods, implementing some

very simple simulation logic for ending the game after ten turns. We can now use the

class with new Chess().Run() – here is the output:

Starting a game of chess with 2 players

Turn 0 taken by player 0

Turn 1 taken by player 1

...

Turn 8 taken by player 0

Turn 9 taken by player 1

Player 0 wins.

And that’s pretty much all there is to it!

�Template Method Mixin
The scenario we have looked at so far had a class with a single template method, the

presumed implementation of which would be done through subclassing. But, thanks to

default interface methods, there is an alternative implementation that we’ll call Template

Method Mixin. The idea is to construct a functional equivalent of a base class, but in an

interface! For example, instead of baking an abstract Game, you’d make an IGame:

Chapter 25 Template Method

414

interface IGame

{

 public void Run()

 {

 Start();

 while (!HaveWinner)

 TakeTurn();

 WriteLine($"Player {WinningPlayer} wins.");

 }

 void Start();

 bool HaveWinner { get; }

 void TakeTurn();

 int WinningPlayer { get; }

}

Of course, interfaces don’t have constructors, but apart from that, this is something

that can now be mixed (hence the mixin part) into any class, including classes that have

inheritors already. Thus, a class can implement a template method without using its

inheritance characteristics directly, but using an interface instead.

The implementation of the IGame interface in the Chess and similar classes is almost

identical to Game inheritance from before, but with subtle differences. The interface

members are likely to be public; this is somewhat annoying since you probably want to

hide details and not let anyone use them.

The implementation of empty methods is the same as with abstract classes: you

either leave a method signature with no body, or you give it an empty body. If you do not

implement it in the related class (note there is no override keyword), you will get a no-

op, and things will function just fine, and there will be no warning.

The invocation is also different; you need to make sure the variable is of the interface

type before you use it, that is:

IGame chess = new Chess();

chess.Run();

This approach is great in terms of flexibility. You can now add a template method to

a class without modifying its parent or if a parent already exists. Also, a class can now be

given two or more template methods without any contention over inheritance. Overall,

Chapter 25 Template Method

415

it’s a very flexible mechanism provided you are happy with the way default interface

methods function in C#.

�Functional Template Method
As you may have guessed, the functional approach to Template Method is to simply

define a standalone function runGame() that takes the templated parts as parameters.

The only problem is that a game is an inherently mutable scenario, which means we have

to have some sort of container representing the state of the game. We can try using a

record type:

type GameState = {

 CurrentPlayer: int;

 NumberOfPlayers: int;

 WinningPlayer: int;

}

With this setup, we end up having to pass an instance of GameState into every

function that is part of the template method. The method itself, mind you, is

rather simple:

let runGame initialState startAction takeTurnAction haveWinnerAction =

 let state = initialState

 startAction state

 while not (haveWinnerAction state) do

 takeTurnAction state

 printfn "Player %i wins." state.WinningPlayer

The implementation of a chess game isn’t a particularly difficult affair either, the only

real problem being the initialization and modification of internal state:

let chess() =

 let mutable turn = 0

 let mutable maxTurns = 10

 let state = {

 NumberOfPlayers = 2;

 CurrentPlayer = 0;

 WinningPlayer = -1;

Chapter 25 Template Method

416

 }

 let start state =

 �printfn "Starting a game of chess with %i players" state.

NumberOfPlayers

 let takeTurn state =

 printfn "Turn %i taken by player %i." turn state.CurrentPlayer

 state.CurrentPlayer <- (state.CurrentPlayer+1) % state.NumberOfPlayers

 turn <- turn + 1

 state.WinningPlayer <- state.CurrentPlayer

 let haveWinner state =

 turn = maxTurns

 runGame state start takeTurn haveWinner

So, just to recap, what we’re doing here is initializing all the functions required by the

method/function right inside the outer function (this is completely legitimate in both C#

and F#) and then passing each of those functions into runGame. Notice also that we have

some mutable state that is used throughout the sub-function calls.

Overall, implementation of Template Method using functions instead of objects

is quite possible if you’re prepared to introduce record types and mutability into your

code. And sure, theoretically, you could rewrite this example and get rid of mutable

state by essentially storing a snapshot of each game state and passing that in a recursive

setting – this would effectively turn a template method into a kind of templated state

pattern. Try it!

�Summary
Unlike Strategy, which uses composition and thus branches into static and dynamic

variations, Template Method uses inheritance, and as a consequence, it can only be

static, since there is no way to manipulate the inheritance characteristics of an object

once it’s been constructed.

The only design decision in a template method is whether you want the methods

used by the template method to be abstract or actually have a body, even if that body is

empty. If you foresee some methods unnecessary for all inheritors, go ahead and make

them empty/non-abstract so as to comply with the ISP.

Chapter 25 Template Method

417

CHAPTER 26

Visitor
To explain this pattern, I’m going to jump into an example first and then discuss

the pattern itself. Hope you don’t mind! Suppose you have parsed a mathematical

expression (with the use of the Interpreter pattern, of course!) composed of double

values and addition operators, for example:

(1.0 + (2.0 + 3.0))

This expression can be represented using an object hierarchy similar to the

following:

public abstract class Expression { /* nothing here (yet) */ }

public class DoubleExpression : Expression

{

 private double value;

 public DoubleExpression(double value) { this.value = value; }

}

public class AdditionExpression : Expression

{

 private Expression left, right;

 public AdditionExpression(Expression left, Expression right)

 {

 this.left = left;

 this.right = right;

 }

}

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8_26

https://doi.org/10.1007/978-1-4842-8245-8_26

418

Given this setup, you are interested in two things:

•	 Printing the OOP expression as text

•	 Evaluating the expression’s value

You also want to do those two things (and many other possible operations on these

trees) as uniformly and succinctly as possible. How would you do it? Well, there are

many ways, and we’ll take a look at them all, starting with the implementation of the

printing operation.

�Intrusive Visitor
The simplest solution is to take the base Expression class and add an abstract

member to it:

public abstract class Expression

{

 // adding a new operation

 public abstract void Print(StringBuilder sb);

}

In addition to breaking the OCP, this modification hinges on the assumption that

you actually have access to the hierarchy’s source code – something that’s not always

guaranteed. But we’ve got to start somewhere, right? So with this change, we need to

implement Print() in DoubleExpression (that’s easy, so I’ll omit it here) as well as in

AdditionExpression:

public class AdditionExpression : Expression

{

 ...

 public override void Print(StringBuilder sb)

 {

 sb.Append(value: "(");

 left.Print(sb);

 sb.Append(value: "+");

Chapter 26 Visitor

419

 right.Print(sb);

 sb.Append(value: ")");

 }

}

Ooh, this is fun! We are polymorphically and recursively calling Print() on

subexpressions. Wonderful, let’s test this out:

var e = new AdditionExpression(

 new DoubleExpression(1),

 new AdditionExpression(

 new DoubleExpression(2),

 new DoubleExpression(3)));

var sb = new StringBuilder();

e.Print(sb);

WriteLine(sb); // (1.0 + (2.0 + 3.0))

Well, this was easy. But now imagine you’ve got ten inheritors in the hierarchy (not

uncommon, by the way, in real-world scenarios) and you need to add some new Eval()

operation. That’s ten modifications that need to be done in ten different classes. But the

OCP isn’t the real problem.

The real problem is the SRP. You see, a problem such as printing is a special

concern. Rather than stating that every expression should print itself, why not introduce

an ExpessionPrinter that knows how to print expressions? And, later on, you can

introduce an ExpressionEvaluator that knows how to perform the actual calculations.

All without affecting the Expression hierarchy in any way.

�Reflective Visitor
Now that we’ve decided to make a separate printer component, let’s get rid of Print()

member functions (but keep the base class, of course):

abstract class Expression

{

 // nothing here!

};

Chapter 26 Visitor

420

Now let’s try to implement an ExpressionPrinter. My first instinct would be to write

something like this1:

public static class ExpressionPrinter

{

 public static void Print(DoubleExpression e, StringBuilder sb)

 {

 sb.Append(de.Value);

 }

 public static void Print(AdditionExpression ae, StringBuilder sb)

 {

 sb.Append("(");

 Print(ae.Left, sb); // will not compile!!!

 sb.Append("+");

 Print(ae.Right, sb); // will not compile!!!

 sb.Append(")");

 }

}

This code will not compile. C# knows that, say, ae.Left is an Expression, but since

it doesn’t check the type at runtime (unlike various dynamically typed languages), it

doesn’t know which overload to call. Too bad!

What can be done here? Well, only one thing – remove the overloads and check the

type at runtime:

public static class ExpressionPrinter

{

 public static void Print(Expression e, StringBuilder sb)

 {

 switch (e)

 {

 case DoubleExpression de:

 sb.Append(de.Value);

 break;

1 Notice that in this example, and in all further examples in this book, we have broken
encapsulation by exposing the members of visitable classes as public and mutable.

Chapter 26 Visitor

421

 case AdditionExpression ae:

 sb.Append("(");

 Print(ae.Left, sb);

 sb.Append("+");

 Print(ae.Right, sb);

 sb.Append(")");

 break;

 default:

 // your choice what to do here

 throw new Exception("Unsupported expression type");

 }

 }

}

Using a fancy switch statement, we try to typecast to every known expression type

and process things accordingly. The choice of what to do in the default case is yours,

with the two most obvious choices being the following:

•	 Do nothing. Kust skip over a type if you don’t know it.

•	 Throw an exception.

With all that said, we’ve actually arrived at a viable solution that we can use:

var e = new AdditionExpression(

 left: new DoubleExpression(1),

 right: new AdditionExpression(

 left: new DoubleExpression(2),

 right: new DoubleExpression(3)));

var sb = new StringBuilder();

ExpressionPrinter.Print(e, sb);

WriteLine(sb);

This approach is simple, but has several disadvantages.

First, there are no compiler checks that you have, in fact, implemented printing

for every single element in the hierarchy. When a new element gets added, you can

keep using ExpressionPrinter without modification, and it will just revert to whatever

behavior the default case defines, and you end up with either a no-op or a runtime

exception – neither of those is desirable.

Chapter 26 Visitor

422

Second, the case statements are order-sensitive and dependent on the hierarchy

of types. If you have types Parent and Child, the check against Child has to come first

before Parent. If it comes after, Child nodes will never be processed. This may be easy

to handle in simple hierarchies, but in complicated ones, having to manage this list

correctly can be a challenge.

Nonetheless, this is a viable solution. Seriously, it’s quite possible to stop here and

never go any further in the Visitor pattern: the is operator isn’t that expensive, and

I think many developers will remember to cover every single type of object in that if

statement.

�Extension Methods?
You could be forgiven for thinking that the problem of separating out an

ExpressionPrinter can be somehow solved without the use of type checks. Sadly, this

setup also devolves to the use of the reflective visitor.

Sure, you can take both DoubleExpression and AdditionExpression and give them

Print() extension methods that would be callable directly on the object, while residing

elsewhere. However, your implementation of AdditionExpression.Print() will still

have several problems:

public static void Print(this AdditionExpression ae, StringBuilder sb)

{

 sb.Append("(");

 ae.Left.Print(sb); // oops

 sb.Append("+");

 ae.Right.Print(sb);

 sb.Append(")");

}

The first problem is that, since this is an extension method, we need to make the

Left and Right members public so that the extension method can access them.

But that’s not the real problem. The main issue here is that ae.Left.Print() cannot

be called because ae.Left is a general Expression. How would you support it? Well, this

is where you would devolve to a reflective printer by implementing an extension method

on the root element of the hierarchy and perform type checks:

Chapter 26 Visitor

423

public static void Print(this Expression e, StringBuilder sb)

{

 switch (e)

 {

 case DoubleExpression de:

 de.Print(sb);

 break;

 case AdditionExpression ae:

 ae.Print(sb);

 break;

 // and so on

 }

}

This solution runs into the same problem as the original, namely, the issue that

there’s no verification to ensure that every inheritor of Expression is covered by the

switch statement. Now, admittedly, this is something that we can actually force, thus

lending the reflective printer its true name by using…reflection!

Extension method classes are static and can have both static fields and constructors,

so we can map out all the inheritors and attempt to find the methods that handle them:

public static class ExpressionPrinter

{

 private static Dictionary<Type, MethodInfo> methods

 = new Dictionary<Type, MethodInfo>();

 static ExpressionPrinter()

 {

 var a = typeof(Expression).Assembly;

 var classes = a.GetTypes()

 .Where(t => t.IsSubclassOf(typeof(Expression)));

 var printMethods = typeof(ExpressionPrinter).GetMethods();

 foreach (var c in classes)

 {

 // find extension method that takes this class

 var pm = printMethods.FirstOrDefault(m =>

Chapter 26 Visitor

424

 m.Name.Equals(nameof(Print)) &&

 m.GetParameters()?[0]?.ParameterType == c);

 methods.Add(c, pm);

 }

 }

}

With this setup, the extension method Print() implemented for the base type

Expression now devolves to

public static void Print(this Expression e, StringBuilder sb)

{

 methods[e.GetType()].Invoke(null, new object[] {e, sb});

}

Naturally, this approach has significant performance costs. There are ways to

offset these costs, such as using Delegate.CreateDelegate() to avoid storing those

MethodInfo objects and instead having ready-to-call delegates when the need arises.

Finally, there’s always the “nuclear option”: generating code that creates those calls

at runtime. Of course, this comes with its own set of problems: you’ll be generating

code either on the basis of reflection (which means that you’re almost always one step

behind, because you need a binary in order to extract type information), or alternatively,

you’ll be inspecting actual written code using a parser framework provided by Roslyn,

ReSharper, Rider, or some similar mechanism.

�Functional Reflective Visitor (C#)
In our discussion of the reflective visitor variation, we saw that with a lot of type casts,

we can keep all visitor logic constrained to the visitor itself, at the expense of the visitor

having to be aware of the structure of the hierarchy it’s working with. The weakness of

that approach is that any other visitor has to, in effect, replicate this, since knowledge of

how to handle a particular hierarchy is not kept in a central place.

Since this knowledge is necessary, we can delegate it to the root of our hierarchy.

This is no greater an OCP violation than that implied in the reflective visitor and, in

fact, directly supports the SRP since there is only one place that needs to be modified to

incorporate a new type. Yes, the root being aware of its descendants is not the prettiest of

things, but assuming the hierarchy is stable, you only have to define it once.

Chapter 26 Visitor

425

What I propose is embellishing the root of the hierarchy with a method such as the

following:

public void Match(

 Action<DoubleExpression> visitDoubleExpression,

 Action<AdditionExpression> visitAdditionExpression,

 Action<Expression> visitUnknownExpression = null)

{

 switch (this)

 {

 case DoubleExpression e:

 visitDoubleExpression(e);

 break;

 case AdditionExpression e:

 visitAdditionExpression(e);

 break;

 default:

 visitUnknownExpression?.Invoke(this);

 break;

 }

}

This method takes a set of Actions corresponding to the different types of the

hierarchy. It then performs a type cast equivalent to the reflective visitor to determine

which type we received and calls the appropriate function. The functions are provided

externally. I have also included an optional handler for unknown hierarchy types, so the

caller can provide an action to process that type if needed.

As always, this method is order-sensitive: any Child class must appear before its

Parent in order to maintain correct functioning.

With this approach, our visitor is able to provide a single entry point and invoke a

single method to get its work done:

public class ExpressionPrinter

{

 private readonly StringBuilder sb = new();

Chapter 26 Visitor

426

 public string Print(Expression e)

 {

 e.Match(VisitDoubleExpression, VisitAdditionExpression);

 return sb.ToString();

 }

 private void VisitAdditionExpression(AdditionExpression ae) { ... }

 private void VisitDoubleExpression(DoubleExpression de) { ... }

}

Now, an ExpressionPrinter can just call Print() on any Expression and have some

meaningful output. While this approach does not check for exhaustiveness, it is robust in

the sense that, if some type is not handled, this will not cause a crash.

An interesting point here is that the naming of VisitXxx methods is redundant.

We could have overloaded a single Visit() method and invoke e.Match(Visit, Visit)

with no loss of generality, since C# is smart enough to figure out which overload to take

for each argument. It will work just fine even if some classes in the hierarchy inherit

from others, and if you want one parent handler to handle several children, that’s not a

problem either – you’ll just have to provide the same argument in all locations where the

specific types are expected.

A possible variation of this approach is to modify the Match() method to turn it into

a generic Match<T>(...), accepting a set of Func<T, Expression> delegates. Such a

method could propagate return values without temporaries (allowing visitors to become

static/singleton-like) and handle map-reduce behaviors as described in the “Reductions

and Transforms” section of this chapter.

�Functional Reflective Visitor (F#)
It’s worth noting that the approach adopted in the reflective visitor implementation is

precisely the approach you would adopt in a language such as F#, the only difference

being that, instead of inheritance hierarchies, you would mainly be dealing with

functions.

If, instead of a hierarchy, you defined your expression types in a discriminated union

such as…

Chapter 26 Visitor

427

type Expression =

 | Add of Expression * Expression

 | Mul of Expression * Expression

..

…then any visitor you would implement would, most likely, have a structure similar

to the following:

let rec process expr =

 match expr with

 | And(lhs, rhs) -> ...

 | Mul(lhs, rhs) -> ...

 ...

This approach is precisely equivalent to the approach taken in our C#

implementation. Each of the cases in a match expression would effectively be turned into

an is check. There are major differences, however. First of all, concrete case filters and

guard conditions in F# are easier to read than nested if statements in C#. The possible

recursiveness of the entire process is a lot more expressive, particularly with the use of

partial patterns, should you need them. Also note that a discriminated union cannot

leverage proper inheritance/polymorphism, so it is not possible to group several cases

by functionality unless you introduce additional discriminated unions.

�Improvements
While it’s not possible to statically enforce the presence of every single necessary type

check in the preceding example, it is possible to generate exceptions if the appropriate

implementation is missing. To do this, simply make a dictionary that maps the supported

types to lambda functions that process those types, that is:

private static DictType actions = new DictType

{

 [typeof(DoubleExpression)] = (e, sb) =>

 {

 var de = (DoubleExpression) e;

 sb.Append(de.Value);

 },

Chapter 26 Visitor

428

 [typeof(AdditionExpression)] = (e, sb) =>

 {

 var ae = (AdditionExpression) e;

 sb.Append("(");

 Print(ae.Left, sb);

 sb.Append("+");

 Print(ae.Right, sb);

 sb.Append(")");

 }

};

Now you can implement a top-level Print() method in a much simpler fashion.

In fact, for bonus points, you can use the C# extension method mechanic to add Print()

as a method of any Expression:

public static void Print(this Expression e, StringBuilder sb)

{

 actions[e.GetType()](e, sb);

}

// sample use:

myExpression.Print(sb);

Whether or not you use extension methods or just ordinary static or instance

methods on a Printer is completely irrelevant for the purposes of the SRP. Both an

ordinary class and an extension method class serve to isolate printing functionality from

the data structures themselves, the only difference being whether or not you consider

printing part of Expression’s API, which I personally think is reasonable: I like the idea

of expression.Print(), expression.Eval(), and so on. However, if you are an OOP

purist, you might hate this approach.

�What Is Dispatch?
Whenever people speak of visitors, the word dispatch is brought up. What is it? Well, put

simply, “dispatch” is a problem of figuring out which methods to call – specifically, how

many pieces of information are required in order to make the call.

Chapter 26 Visitor

429

Here’s a simple example:

interface IStuff { }

class Foo : IStuff { }

class Bar : IStuff { }

public class Something

{

 static void func(Foo foo) { }

 static void func(Bar bar) { }

}

Now, if I make an ordinary Foo object, I’ll have no problem calling func() with it:

Foo foo = new Foo();

func(foo); // this is fine

But if I decide to cast it to a base type (interface or class), the compiler will not know

which overload to call:

Stuff stuff = new Foo;

func(stuff); // oops!

Now, let’s think about this polymorphically: is there any way we can coerce the

system to invoke the correct overload without any runtime (is, as, and similar) checks?

Turns out there is.

See, when you call something on an IStuff, that call can be polymorphic, and it

can be dispatched right to the necessary component. This in turn can call the necessary

overload. This is called double dispatch because

	 1.	 First, you do a polymorphic call on the actual object.

	 2.	 Inside the polymorphic call, you call the overload. Since, inside

the object, this has a precise type (e.g., a Foo or Bar), the right

overload is triggered.

Here’s what I mean:

interface Stuff {

 void call();

}

Chapter 26 Visitor

430

class Foo : Stuff {

 void call() { func(this); }

}

class Bar : Stuff {

 void call() { func(this); }

}

void func(Foo foo) {}

void func(Bar bar) {}

Can you see what’s happening here? We cannot just stick one generic call()

implementation into Stuff: the distinct implementations must be in their respective

classes so that the this pointer is suitably typed.

This implementation lets you write the following:

Stuff foo = new Foo;

foo.call();

And here is a schematic showing what’s going on:

 this = Foo

foo.call() ------------> func(foo)

�Dynamic Visitor
Let’s come back to the ExpressionPrinter example that I claimed has no zero chance of

working:

public class ExpressionPrinter

{

 public void Print(AdditionExpression ae, StringBuilder sb)

 {

 sb.Append("(");

 Print(ae.Left, sb);

 sb.Append("+");

 Print(ae.Right, sb);

 sb.Append(")");

 }

Chapter 26 Visitor

431

 public void Print(DoubleExpression de, StringBuilder sb)

 {

 sb.Append(de.Value);

 }

}

What if I told you I could make it work as is just by adding two keywords and raising

the computational cost of the Print(ae,sb) method? I’m sure you can guess what I’m

talking about already. Yeah, I’m talking about dynamic dispatch:

public void Print(AdditionExpression ae, StringBuilder sb)

{

 sb.Append("(");

 Print((dynamic)ae.Left, sb); // <-- look closely here

 sb.Append("+");

 Print((dynamic)ae.Right, sb); // <-- and here

 sb.Append(")");

}

The whole business of dynamic was added to C# in order to support dynamically

typed languages. One aspect of some of those languages is the ability to dynamically

dispatch, that is, to make call decisions at runtime as opposed to compile- time. And

that’s exactly what we’re doing here!

Here’s how you would call it:

var e = ...; // as before

var ep = new ExpressionPrinter();

var sb = new StringBuilder();

ep.Print((dynamic)e, sb); // <-- note the cast here

WriteLine(sb);

By casting a variable to dynamic, we defer dispatch decisions until runtime. Thus,

we get the correct calls happening; there are only a few problems, namely:

•	 There is a fairly significant performance penalty related to this type of

dispatching.

•	 If a needed method is missing, you will get a runtime error.

Chapter 26 Visitor

432

A dynamic visitor is a good solution if you expect the object graph you visit to be

small and the calls to be infrequent. Otherwise, the performance penalty might make the

entire endeavor untenable.

�Classic Visitor
The “classic” implementation of the Visitor design pattern uses double dispatch.

There are conventions as to what the visitor member functions are called:

•	 Methods of the visitor are typically called Visit().

•	 Methods implemented throughout the hierarchy are typically called

Accept().

So now, once again, we have something to put into the base Expression class – the

Accept() method:

public abstract class Expression

{

 public abstract void Accept(IExpressionVisitor visitor);

}

As you can see, the preceding code refers to an interface type named

IExpressionVisitor that can serve as a base type for various visitors such as

ExpressionPrinter, ExpressionEvaluator, and similar. Now, every single implementor

of Expression is now required to implement Accept() in an identical way, specifically:

public override void Accept(IExpressionVisitor visitor)

{

 visitor.Visit(this);

}

On the surface of it, this looks like a violation of DRY (Don’t Repeat Yourself),

another self-descriptive principle. However, if you think about it, every implementor

will have a differently typed this reference, so this is not another case of cut-and-paste

programming that static analysis tools like to complain about so much.

Now, on the other side, we can define the IExpressionVisitor interface as follows:

Chapter 26 Visitor

433

public interface IExpressionVisitor

{

 void Visit(DoubleExpression de);

 void Visit(AdditionExpression ae);

}

Notice that we absolutely must define overloads for all expression objects; otherwise,

we would get a compilation error when implementing the corresponding Accept().

We can now implement this interface to define our ExpressionPrinter:

public class ExpressionPrinter : IExpressionVisitor

{

 StringBuilder sb = new();

 public void Visit(DoubleExpression de)

 {

 sb.Append(de.Value);

 }

 public void Visit(AdditionExpression ae)

 {

 // wait for it!

 }

 public override string ToString() => sb.ToString();

}

The implementation for a DoubleExpression is fairly obvious, but here’s the

implementation for an AdditionExpression:

public void Visit(AdditionExpression ae)

{

 sb.Append("(");

 ae.Left.Accept(this);

 sb.Append("+");

 ae.Right.Accept(this);

 sb.Append(")");

}

Chapter 26 Visitor

434

Notice how the calls now happen on the subexpressions themselves, leveraging

double dispatch once again. As for the usage of the new double-dispatch visitor,

here it is:

var e = new AdditionExpression(

 new DoubleExpression(1),

 new AdditionExpression(

 new DoubleExpression(2),

 new DoubleExpression(3)));

var ep = new ExpressionPrinter();

ep.Visit(e);

WriteLine(ep.ToString()); // (1 + (2 + 3))

Sadly, it’s impossible to construct an extension method analogue to the preceding

implementation because extension methods are static and cannot implement interfaces.

If you want to hide the expression printer behind a slightly nicer API, you can go with the

following:

public static class ExtensionMethods

{

 public static string Print(this DoubleExpression e)

 {

 var ep = new ExpressionPrinter();

 ep.Visit(e);

 return ep.ToString();

 }

}

This allows you to write e.Print() to get a string representation of the expression;

sadly, using ToString() is not possible because extension methods cannot override it.

Of course, it’s up to you to implement all the correct overloads, so this approach

doesn’t really help much and provides no safety checks to ensure you’ve overloaded for

every single Expression inheritor.

Chapter 26 Visitor

435

�Abstract Classes and Virtual Methods
One very important discussion to be had is whether the Visitor pattern is better using

interfaces or with abstract classes. After all, if you don’t need the root of the hierarchy to

contain anything, why not make it an interface?

This mainly depends on what kind of hierarchy of visitable objects we want to create.

If we have a hierarchy with a single root and several inheritors, where the root serves

as a kind of marker interface glue to join together objects with similar functionality,

everything is fine: we can continue using an interface or, if need be, an abstract class with

an abstract Accept() member.

If we do plan for inheritance, however, I would argue that there is a clear advantage

of having the base of the hierarchy be an abstract class. This advantage has to do with the

way Accept() is defined in our hierarchy of classes.

You see, in order to adhere to the LSP, any inheritor of our hierarchy of nodes has to

function correctly when substituted for the original node. So if I define something like…

public class AbsoluteDoubleExpression : DoubleExpression

{

 public AbsoluteDoubleExpression(double value) : base(value) {}

}

…then, unfortunately, any Accept() call on this will invoke Visitor.

VisitDoubleExpression because the implementation will be taken from the base class.

As it stands, it is impossible to override Accept() if it’s defined in an interface.

Now consider when the root of the hierarchy is an abstract class that provides a

default no-op Accept() implementation.2 Now, IExpressionVisitor.Visit(Absolute

DoubleExpression) makes sense because we can invoke it:

public class AbsoluteDoubleExpression : DoubleExpression

{

 public AbsoluteDoubleExpression(double value) : base(value) {}

 public override void Accept(IExpressionVisitor visitor)

2 Sure, we could continue using interfaces and just selectively make some Accept() methods
virtual in the implemented classes. But this is a very wishy-washy approach. How do we know
which methods to make virtual? We typically do not. And if we make them all virtual? That’s right,
and it’s a lot easier to do it in an abstract base class!

Chapter 26 Visitor

436

 {

 visitor.Visit(this);

 }

}

This allows us to get the intended results provided we adjust the visitor hierarchy to

accommodate the new type:

var e = new AbsoluteDoubleExpression(-3);

var ev = new ExpressionCalculator();

var ep = new ExpressionPrinter();

e.Accept(ep, ev); // extension method!

WriteLine($"{ep} = {ev.Result}"); // |-3| = 3

This listing uses a variadic extension method for Accept(), which is completely

superfluous except for this particular demo or similar situations where one object needs

to be fed to more than one visitor at the same time.

There are two more options that are available to you if you decide to use virtual

members.

First, you can deliberately opt in to have the visitor process your class as a base

class. To do this, simply avoid overriding Accept(), and you’re good to go. This may

be relevant in situations where you are forced to create two nodes that mean the same

thing: to save effort, you can inherit PlusExpression from SumExpression – there is no

need for a separate visitor method, so you can allow the system to treat those two in the

same way.

The other option is the visitable null object where you don’t want the node to

be processed. In this particular case, you can override Accept(), but leave the body

empty. This approach is similar to the all-cancelling element we discussed in Chain of

Responsibility, the one that fails to propagate processing on the entire chain. Well, it’s a

similar idea here: if Accept() doesn’t call Visit(), the visitor just ignores it.

Finally, when it comes to the base type of visitors, is it worth having an interface

or a class? Once again, I would argue that it’s better to have a base class with virtual

members. First, you get some convenient no-op implementations, should you wish

to skip on a node. And of course your visitors can now be efficiently inherited and

customized in the inheriting methods. Just make sure to avoid private visitor members in

favor of protected ones, and you’re good to go!

Chapter 26 Visitor

437

�Reducing Boilerplate
Every single class of our visitable hierarchy implements the same exact Accept() method

that simply calls visitor.Visit(this). It is very tempting to somehow reduce the

number of places where this line of code is repeated, perhaps by defining something like

interface IVisitable<T>

{

 public void Accept(IExpressionVisitor v)

 {

 v.Visit((T)this);

 }

}

Unfortunately, unlike in C++, C# will not be able to determine at compile time that

an overload for type T actually exists. We could, of course, cast v to a dynamic, but this

just turns it into a reflective visitor with unnecessary extra steps.

Another way of fixing this is with source generators. We would need to declare every

visitable class as partial and find a place in our code where we want to indicate that the

source generator should do its work – there are many options here, for example,

we could decorate every class with [Visitable]. We would then use a source generator

to generate an Accept() for every class behind the scenes.

�Implementing an Additional Visitor
So what is the advantage of the double-dispatch approach? The advantage is you have

to implement the Accept() member through the hierarchy just once. You’ll never have

to touch a member of the hierarchy again. For example, suppose you now want to have a

way of evaluating the result of the expression. This is easy…

public class ExpressionCalculator : IExpressionVisitor

{

 public double Result;

 public void Visit(DoubleExpression de)

 {

 Result = de.Value;

 }

Chapter 26 Visitor

438

 public void Visit(AdditionExpression ae)

 {

 // in a moment!

 }

}

…but one needs to keep in mind that Visit() is currently declared as a void

method, so the implementation for an AdditionExpression might look a little bit weird:

public void Visit(AdditionExpression ae)

{

 ae.Left.Accept(this);

 var a = Result;

 ae.Right.Accept(this);

 var b = Result;

 Result = a + b;

}

The preceding code is a byproduct of an inability to return from Accept(), so we

cache the results in variables a and b and then return their sum. It works just fine:

var calc = new ExpressionCalculator();

calc.Visit(e);

WriteLine($"{ep} = {calc.Result}");

// prints "(1+(2+3)) = 6"

The interesting thing about this approach is that you can now write new visitors,

in separate classes, even if you don’t have access to the source code of the hierarchy

itself. This lets you stay true to both the SRP and OCP, in addition to making your code

a lot easier to understand. Figure 26-1 shows all the classes involved in our Visitor

construction.

Chapter 26 Visitor

439

Figure 26-1.  Classic visitor implementation

�Type Checks Are Unavoidable
In practice, regardless of which implementation of visitor you go for, type checks are often

unavoidable. For example, in our demo, we print the expression 1+2+3 as ((1+2)+3), while

the parentheses, in this case, are completely unnecessary. They are only really necessary

if, for example, we have a MultiplicationExpression also as part of a hierarchy. Then,

(1+2)*3 and 1+2*3 would have different results, so braces would be required.

So, assuming we’ve created a MultiplicationExpression class (not exactly difficult),

how can we make a printer that only adds parentheses when they actually matter?

This requires, first of all, a modification of the base Expression class to

public abstract class Expression

{

 public Expression Parent;

 public abstract void Accept(IExpressionVisitor visitor);

}

Chapter 26 Visitor

440

The construction of AdditionExpression then needs to be modified to

public AdditionExpression(Expression left, Expression right)

{

 Left = left;

 Right = right;

 Left.Parent = Right.Parent = this;

}

Same goes for MultiplicationExpression, naturally. Now, we assume that we only

need braces when

•	 The expression we’re in is an AdditionExpression.

•	 The parent expression is of type MultiplicationExpression.

This means that a print visitor for AdditionExpression would be performing type

checks, that is:

public void Visit(AdditionExpression ae)

{

 bool needBraces = ae.Parent is MultiplicationExpression;

 if (needBraces) sb.Append("(");

 ae.Left.Accept(this);

 sb.Append("+");

 ae.Right.Accept(this);

 if (needBraces) sb.Append(")");

}

This now gives us the correct set of braces:

var e2 = new MultiplicationExpression(

 new DoubleExpression(1),

 new AdditionExpression(

 new DoubleExpression(2),

 new DoubleExpression(3)));

ep = new ExpressionPrinter();

ep.Visit(e2);

WriteLine(ep.ToString()); // 1*(2+3)

Chapter 26 Visitor

441

See? Type checks are often unavoidable. And in this particular case, we’re only

considering a very simplistic case of looking at a parent node. Now imagine if we have to

start traversing the tree in an arbitrary manner, say, with pattern matching.

�Acyclic Visitor
Now is a good time to mention that there are actually two strains, if you will, of the Visitor

design pattern. They are

•	 Cyclic visitor, which is based on function overloading. Due to the

cyclic dependency between the hierarchy (which must be aware

of the visitor’s type) and the visitor (which must be aware of every

class in the hierarchy), the use of the approach is limited to stable

hierarchies that are infrequently updated.

•	 Acyclic visitor, which is also based on type casting. The advantage

here is the absence of limitations on visited hierarchies, but, as you

may have guessed, there are performance implications.

The first step in the implementation of the acyclic visitor is the actual visitor

interface. Instead of defining a Visit() overload for every single type in the hierarchy,

we make things as generic as possible:

public interface IVisitor<in TVisitable>

{

 void Visit(TVisitable obj);

}

We need each element in our domain model to be able to accept such a visitor, but

since every specialization is unique, what we do is introduce a marker interface – an

empty interface with absolutely nothing in it:

public interface IVisitor {} // marker interface

This interface has no members, but we will use it as an argument to an Accept()

method in whichever object we want to actually visit. Now, what we can do is redefine

our Expression class from before as follows:

Chapter 26 Visitor

442

public abstract class Expression

{

 public virtual void Accept(IVisitor visitor)

 {

 if (visitor is IVisitor<Expression> typed)

 typed.Visit(this);

 }

}

So here’s how the new Accept() method works: we take an IVisitor but then try to

cast it to an IVisitor<T> where T is the type we’re currently in. If the cast succeeds, the

visitor in question knows how to visit our type, and so we call its Visit() method. If it

fails, it’s a no-op. It is critical to understand why typed itself does not have a Visit() that

we could call on it. If it did, it would require an overload for every single type that would

be interested in calling it, which is precisely what introduces a cyclic dependency.

After implementing Accept() in other parts of our model (once again, the

implementation in each Expression class is identical), we can put everything together

by once again defining an ExpressionPrinter, but this time round, it would look as

follows:

public class ExpressionPrinter : IVisitor,

 IVisitor<Expression>,

 IVisitor<DoubleExpression>,

 IVisitor<AdditionExpression>

{

 StringBuilder sb = new StringBuilder();

 public void Visit(DoubleExpression de) { ... }

 public void Visit(AdditionExpression ae) { ... }

 public void Visit(Expression obj)

 {

 // default handler?

 }

 public override string ToString() => sb.ToString();

}

Chapter 26 Visitor

443

As you can see, we implement the IVisitor marker interface as well as a Visitor<T>

for every T that we like to visit. If we omit a particular type T (e.g., suppose I comment

out Visitor<DoubleExpression>), the program will still compile, and the corresponding

Accept() call, if it comes, will simply execute as a no-op.

In the preceding code, the implementations of the Visit() methods are identical to

what we had in the classic visitor implementation, and so are the results.

There is, however, a fundamental difference between this example and the classic

visitor. The classic visitor used an interface, whereas our acyclic visitor has an abstract

class as the root of the hierarchy. What does this mean? Well, an abstract class can

have an implementation that can be used as a “fallback,” which is why in the definition

of ExpressionPrinter, I can implement IVisitor<Expression> and provide a

Visit(Expression obj) method that can be used to handle a missing Visit() overload.

For example, you could add logging there or throw an exception.

Figure 26-2 provides a visual illustration of the classes used to construct the acyclic

visitor.

Figure 26-2.  Acyclic visitor class diagram

�Visitable Null Object
The Null Object pattern can sometimes interact with the Visitor design pattern. Let us

construct a very simple example where a null object is necessary in order for things to

function properly.

Chapter 26 Visitor

444

Consider mathematical expressions such as 1+2-3 and similar. Let’s assume that

every mathematical expression is represented by either a Literal, representing a value,

or a BinaryExpression, representing an addition or a subtraction:

public interface INode {}

public record Literal(double Value) : INode;

public record BinaryExpression(INode Left, INode Right, char Op) : INode;

Thus, an expression 1+2-3 would be defined, in code, as

var exp = new BinaryExpression(

 new BinaryExpression(new Literal(1), new Literal(2), '+'),

 new Literal(3), '-'

);

A printer visitor defined, say, as a dynamic visitor would traverse this expression and

print ((1+2)-3), assuming that we want to bracket each binary expression for safety. We

can expand our model to support named variables such as

public record Variable(string Name) : INode;

But now consider a more complicated example. Let’s say we decide to support unary

expressions. A unary expression such as -5 is easy because it is simply a Literal(-5),

since a numeric value carries the sign with it. But what about the expression -X? We

could try to express this as BinaryExpression(Literal(0), Variable("X"), '-').

And, if we use an evaluation visitor, we’ll get the correct value, since in fact 0 - X ==

-X. But if we feed this to a printer visitor, our output will be 0-X, which is not what

we want!

So how to fix this? There are several ways of handling this:

	 1.	 Introduce a new type called UnaryExpression that knows how

to print itself correctly. Note that any new type automatically

requires that any visitor that processes a hierarchy of types be

modified to handle this new type.

	 2.	 Reuse the BinaryExpression type, but instead of Literal(0)

use a null on the left side of the printer. This is a very expensive

approach because it requires every visitor in the application to be

modified to perform null checks on every node being accessed.

Chapter 26 Visitor

445

	 3.	 Reuse the BinaryExpression type, but instead of Literal(0)

use a null object on the left side that the printer and other

visitors simply ignore. This implies that all the visitors need to be

modified.

While in many cases the first option is quite sensible, we shall instead consider the

third option – creating a reusable null object that does nothing at all as far as expression

processing goes:

public sealed class Null : INode {}

Our expression can now be defined thus:

var exp = new BinaryExpression(new Null(), new Variable("X"), '-');

Now, the final question is how to get any visitor to successfully ignore any Null it

encounters. This largely depends on the kind of visitor implementation you choose to

use, since there are many. If you decide to go for the dynamic variation, your expression

printer can appear as follows:

public class ExpressionPrinter

{

 private readonly StringBuilder sb = new();

 public void Visit(INode node) {}

 public void Visit(BinaryExpression exp)

 {

 sb.Append("(");

 Visit((dynamic)exp.Left);

 sb.Append(exp.Op);

 Visit((dynamic)exp.Right);

 sb.Append(")");

 }

 // other Visit() members omitted

 public override string ToString() => sb.ToString();

}

Chapter 26 Visitor

446

What’s interesting about the preceding implementation is a Visit() method taking

an INode. This method happens to be the catch-all method for all arguments for which

overloads cannot be found after they’re cast to a dynamic. Consequently, providing

a Null here results in a no-op. Putting everything together, we can finally get the

desired output:

var exp = new BinaryExpression(new Null(), new Variable("X"), '-');

var printer = new ExpressionPrinter();

printer.Visit(exp);

Console.WriteLine(printer); // (-X)

One disappointing thing about the dynamic visitor variation is that we would have

to be putting this catch-all Visit() method manually into every single visitor class that

we need. It is impossible to put it into a base class and then reuse it because we are doing

a dynamic call, which will simply fail, and as mentioned earlier, dynamic calls do not

happen on inherited members.

Now, consider a scenario where you are using double dispatch. Would it be possible

to simply define such a Null class that would work unintrusively with existing structures?

Sadly, the answer is no. What we would ideally want is something like

public sealed record NullLiteral() : Literal(0)

{

 public override void Accept(IVisitor visitor)

 {

 if (visitor is not ExpressionPrinter)

 base.Accept(visitor);

 }

}

This may seem as a null visitable of last resort, because it tightly couples itself to

the type of visitor it accepts. But the reason it cannot exist is because of the override

keyword. Sure, inheriting from Literal is a great idea to sneak this class into the

hierarchy, but it is extremely unlikely that the author of Literal deliberately made the

Accept() method virtual (unless they followed my advice, of course). If they did, well,

great. We can override it in our class, and everything works. If they didn’t, there’s no way

we can affect visitation behavior.

Chapter 26 Visitor

447

Interestingly, we have a symmetrical problem if we decide to preserve the OCP on

the visitor side. Suppose we decide to introduce an ExpressionAwarePrinter through

inheritance. But, by default, our original printer doesn’t have any virtual members, so we

cannot override things as we see fit – all we can do is reimplement every single Visit()

method, and in this case, why do we need inheritance at all?

�Visitor Adapter
All our visitor examples have been based on strong typing: each element of the hierarchy

has a concrete type, and when you need to process something new, you introduce a

new type. This maximizes flexibility (e.g., in terms of adding new visitors), but raises

additional concerns. For example, should our visitables or visitors have virtual methods?

Does inheritance make sense? Should we, perhaps, replace interfaces by abstract classes

just in case?

If all we want from a hierarchy is traversal with a visitor and our situation is

sufficiently simple, instead of building a hierarchy we can have just a single, suitably

general, type. Say we’re using a web service that returns a logical expression as JSON:

{ "Name": "Operator",

 "Value": "And",

 "Children": [

 {

 "Name": "Operator",

 "Value": "Greater",

 "Children": [

 {

 "Name": "Age",

 "Value": "16",

 "Children": []

 }

]

 },

 {

 "Name": "Operator",

 "Value": "Equal",

Chapter 26 Visitor

448

 "Children": [

 {

 "Name": "Citizen",

 "Value": "True",

 "Children": []

 }]}]} // compacted braces to save space

Now, we could create types such as AndOperator, EqualOperator, etc. in order to

process this. But bear in mind that the construction of these types would have to involve

reflection (finding the type by name), and if all you’re interested in is just transforming

this JSON into some other textual expression, there’s little point in constructing an OOP-

heavy solution. Perhaps something as simple as the following will suffice:

public sealed record Node(string Name, string Value, List<Node> Children);

Our node is a simple record that we don’t want to imbue with additional behaviors.

It works just fine – we can easily serialize the aforementioned piece of JSON into it.

Now what we need is to be able to convert it to some other format using a visitor.

As always, there are many possibilities here, but let us assume that we still want our

visitor to be organized and to process each of the operators in a distinct method.

To accommodate this, we can introduce the following types:

public interface IVisitable

{

 void Accept(IVisitor visitor);

}

public interface IVisitor

{

 void VisitAnd(IVisitable visitable);

 void VisitEquals(IVisitable visitable);

 void VisitGreater(IVisitable visitable);

}

Only one problem remains: Node does not implement IVisitable, and the process

of calling Accept() on it is not particularly straightforward. After all, we need to first

check its internals and then dispatch onto the appropriate VisitXxx() method.

Where to do this?

Chapter 26 Visitor

449

The answer is that we’ll have to construct an additional object: a visitor adapter.

This adapter will implement IVisitable and handle the dispatch for us:

public class VisitableNode : IVisitable

{

 private readonly Node node;

 public VisitableNode(Node node) => this.node = node;

 public void Accept(IVisitor visitor)

 {

 if (node.Name == "Operator")

 {

 switch (node.Value)

 {

 case "And": visitor.VisitAnd(node); break;

 case "Greater": visitor.VisitGreater(node); break;

 case "Equal": visitor.VisitEquals(node); break;

 }

 }

 }

}

Such an adapter can be constructed in situ or with the help of an extension method:

public static class NodeExtensions

{

 public static IVisitable ToVisitable(this Node node)

 {

 return new VisitableNode(node);

 }

}

The rest of the implementation would be pretty much the same as it is in an

ordinary visitor implementation. The only difference is that whenever we visit the nodes

recursively, we need to use the adapter, that is:

public class NodePrinter : IVisitor

{

 ...

Chapter 26 Visitor

450

 public void VisitBinaryOp(Node node, string op)

 {

 sb.Append("(");

 node.Children[0].ToVisitable().Accept(this); // here

 sb.Append($" {op} ");

 node.Children[1].ToVisitable().Accept(this); // here

 sb.Append(")");

 }

}

And that’s it. We can now deserialize into our record class, create a visitor, cast the

top node to a visitable, and use it:

var node = JsonConvert.DeserializeObject<Node>(

 File.ReadAllText("input.json"));

NodePrinter p = new();

node.ToVisitable().Accept(p);

Console.WriteLine(p);

// ((Age > 16) && (Citizen == True))

This example, like a few others, essentially investigates the cat-and-mouse game of

introducing some part of the Visitor pattern post hoc. Of course, it’s nice when you plan

for it from the outset, but sometimes that’s just not possible, so you end up having to go

around various C# limitations.

�Reductions and Transforms
When we calculated the final numeric value in our ExpressionEvaluator, we relied on

this value being stored inside the visitor as a temporary. This led to some rather strange-

looking code where, at times, we had to cache the result because it was about to be

overwritten by the next step of the calculation. That was because the only way we could

collate the results of a traversal was by taking its side effect.

An alternative to this approach is to implement a transformer. This interface is

similar to an ordinary visitor, except that it attempts to perform what’s essentially a

reduce operation. Reduction operations can be defined in a generic manner such as

Chapter 26 Visitor

451

public abstract class Expression

{

 public abstract T Reduce<T>(ITransformer<T> transformer);

}

This means that we can choose different data types depending on what we need to

reduce our hierarchy to:

•	 For evaluation, the entire expression will reduce to a double.

•	 For printing, the expression will reduce to a string.

•	 For calculating the depth of our expression tree or the number of

elements in it, the expression will reduce to a uint.

As in the previous implementations, we shall adopt a double-dispatch dual interface

such that

•	 Visitable members will implement Reduce<T>(ITransformer<T>).

•	 Visitors shall implement overloaded versions of Transform for

different node types.

We shall define our visitor interface as

public interface ITransformer<T>

{

 T Transform(DoubleExpression de);

 T Transform(AdditionExpression ae, T left, T right);

}

Notice that, since AdditionExpression is a composite that deterministically

produces values of type T in its Left and Right reductions, we can incorporate them

directly into the interface.

With this setup, AdditionExpression can be implemented as follows:

public class AdditionExpression : Expression

{

 public Expression Left, Right;

 public AdditionExpression(Expression left, Expression right)

 {

Chapter 26 Visitor

452

 Left = left;

 Right = right;

 }

 public override T Reduce<T>(ITransformer<T> transformer)

 {

 var left = Left.Reduce(transformer);

 var right = Right.Reduce(transformer);

 return transformer.Transform(this, left, right);

 }

}

The key difference here is that the method returns something, and that something is

a generic that will be defined later.3

Our evaluation visitor now has slightly more sensible code:

public class EvaluationTransformer : ITransformer<double>

{

 public double Transform(DoubleExpression de) => de.Value;

 public double Transform(AdditionExpression ae, double left, double right)

 {

 return left + right;

 }

}

The evaluator is a specialization for double. Here’s a printer, which specializes for

a string:

public class PrintTransformer : ITransformer<string>

{

 public string Transform(DoubleExpression de)

 {

 return de.Value.ToString();

 }

3 We must take pause and thank C# designers for virtual generic methods. We take these
methods for granted in languages such as C# or Java, but in languages such as C++ where they
are unavailable, their lack leads to the creation of additional IVisitable<T>-related interfaces –
something that we luckily don’t have to worry about.

Chapter 26 Visitor

453

 public string Transform(AdditionExpression ae, string left, string right)

 {

 return $"({left} + {right})";

 }

}

We can use both of these transformers exactly as before, that is:

var expr = new AdditionExpression(

 new DoubleExpression(1), new DoubleExpression(2));

var et = new EvaluationTransformer();

var result = expr.Reduce(et);

var pt = new PrintTransformer();

var text = expr.Reduce(pt);

Console.WriteLine($"{text} = {result}"); // (1 + 2) = 3

But there’s a burning question: why did we call the visitors transformers? It looks

like they just evaluate things, not really transform them into anything. Well, the answer

is that, in this paradigm, we’ve made it really easy to replace one tree with another,

modified tree, should we need to. All we have to do in this case is set T = Expression,

and we’re good to go.

Here’s a simple example: we’ll take each double value in the tree and square it – not

by changing the Value of the original node but by replacing the node entirely. Here is

how this can be done:

public class SquareTransformer : ITransformer<Expression>

{

 public Expression Transform(DoubleExpression de)

 {

 // square the value and return a new object

 return new DoubleExpression(de.Value * de.Value);

 }

 public Expression Transform(AdditionExpression ae)

 {

 return new AdditionExpression(

Chapter 26 Visitor

454

 ae.Left.Reduce(this),

 ae.Right.Reduce(this));

 }

}

This is a rather different implementation from what we’ve seen before because this

time round we’re leveraging polymorphism! Consequently, running this transformer on

an expression tree gives you a brand-new tree:

var expr = new AdditionExpression(

 new DoubleExpression(2), new DoubleExpression(3));

var st = new SquareTransformer();

var newExpr = expr.Reduce(st);

var text = newExpr.Reduce(pt);

Console.WriteLine(text); // (4 + 9)

Wholesale tree transformations are quite common in the real world. For example, if

you wished to calculate ax2 + bx, a compiler might transform an expression a*x*x + b*x

into the expression (a*x + b)*x so as to reduce the number of multiplications.

You’ll notice that we changed the nomenclature from Visitor/Visit/Accept to

Transformer/Transform/Reduce. This is a stylistic choice: you can continue using prior

nomenclature if all your visitor use cases involve a reduce-style operation. If, however,

you envisage having visitors that do not perform any transforms, you can adapt a dual

interface that would support both modalities.

�Functional Visitor in F#
We have already looked at implementing a visitor in F# when we discussed the

Interpreter design pattern, so I won’t repeat it here. The general approach boils down to

a traversal of a recursive discriminated union using pattern matching on types together

with other useful features such as list comprehensions (assuming you’re using lists, of

course).

The visitor in a functional paradigm is fundamentally different from that in OOP. In

object-oriented programming, a visitor is a mechanism for giving a set of related classes

additional functionality “on the side” while ideally being able to

Chapter 26 Visitor

455

•	 Group the functionality together.

•	 Avoid type checks, instead relying on interfaces.

Pattern matching on a discriminated union is the equivalent of using the is C#

keyword (isinst IL instruction) to check each type. Unlike C#, however, F# will tell you

about the missing cases, so it offers greater compile-time safety.

Thus, compared with the OOP implementation, the canonical F# visitor would

implement a reflective visitor approach.

The implementation of Visitor in F# is problematic for many reasons. First, as we’ve

mentioned before, discriminated unions themselves break the OCP since there’s no way

to extend them other than to change their definitions. But the Visitor implementation

compounds the problem further: since our functional visitor is essentially a huge switch

statement, the only way to add support for a particular type is to violate the OCP in the

visitor too!

�Summary
The Visitor design pattern allows us to add some distinct behavior to every element in a

hierarchy of objects. The approaches we have seen include

•	 Intrusive: Adding a method to every single object in the hierarchy.

Possible (assuming you have access to source code) but breaks

the OCP.

•	 Reflective: Adding a separate visitor that requires no changes to the

objects; uses is/as whenever runtime dispatch is needed.

•	 Dynamic: Forces runtime dispatch via the DLR by casting hierarchy

objects to dynamic. This gives the nicest interface at very large

computational cost.

•	 Classic (double dispatch): The entire hierarchy does get modified,

but just once and in a very generic way. Each element of the

hierarchy learns to Accept() a visitor. We then subclass the visitor to

enhance the hierarchy’s functionality in all sorts of directions. This

approach also has a transforming variation where visitor methods

return values.

Chapter 26 Visitor

456

•	 Acyclic: Just like the reflective variety, it performs casting in order

to dispatch correctly. However, it breaks the circular dependency

between visitor and visitee and allows for more flexible composition

of visitors.

Visitor appears quite often in tandem with the Interpreter pattern: having interpreted

some textual input and transformed it into object-oriented structures, we need to, for

example, render the abstract syntax tree in a particular way. Visitor helps propagate a

StringBuilder (or similar accumulator object) throughout the entire hierarchy and

collate the data together.

Chapter 26 Visitor

457

Index

A
AbsorbCyclePolicy, 194, 196, 199
Abstract factory, 73, 79–82, 91, 216
Accept() method, 432, 433, 436, 437, 442, 446
ActLike() method, 244, 350
Acyclic visitor, 441–443
Adapter

decorator, 185
definition, 135
dependency injection, 152–155
hashing problem, 140–142
iterator, 315, 316
.NET Framework, 156, 157
scenario, 133, 134
temporaries, 136–140

Add() method, 5, 25, 28, 263
AddChild() method, 40, 41
AddListItem(), 402, 403
AddRoom() method, 318
Aggregation, 53, 131, 180
Ambient Context pattern, 122–126
Anonymous functions, 27, 28
Array-backed properties, 235–237, 306–309
AsString() method, 191–193, 199, 200
Asynchronous factory method, 76, 77
Azure Service Bus, 333

B
Behavioral subtyping, 13
BetterFormattedText class, 224, 225
Bidirectional adapter, 155, 156

Bidirectional bindings, 363–366
Bidirectional iterator, 305, 314
Binary serialization, 107, 108
Bitmap class, 134, 237–239
Bridge class diagram, 163
Bridge pattern, 159
Broker chain, 265–269
Build() method, 44, 49, 63
Builder

communicating intent, 42, 44
component, renders web pages, 37–39
decorator, 65–67
DSL construction in F#, 69, 70
extension with recursive generics, 58–62
marker interfaces, 49
parameter, 56, 58
piecewise construction, 40, 41
static initialization, 41

Builder interfaces, 50, 51
Builder marker interfaces, 49–51
Builder pattern

marker interfaces, 51
Bulk modifications, 87, 88, 90

C
Capitalize() method, 223, 224
CatchACold() method, 354, 355, 360
Chain of Responsibility (CoR)

broker chain, 265–269
functional, 270–271
method chain, 262–265
scenario, 261

© Dmitri Nesteruk 2022
D. Nesteruk, Design Patterns in .NET 6, https://doi.org/10.1007/978-1-4842-8245-8

https://doi.org/10.1007/978-1-4842-8245-8

458

Chat room, 321–326, 332
Classic visitor

abstract classes and virtual
methods, 435–436

implementation, 437, 439
reducing boilerplate, 437

Clone() method, 94, 95, 98, 103, 105, 106
Collection types, 97, 104, 105
Combinator, 10, 176
Command design pattern

composite, 279–283
implementation, 274–276
queries, 285
scenario, 273
undo operations, 276–279

Command-query separation (CQS),
266, 285

Communication proxy, 240–242, 249
Complicated objects, 37
Composite

grouping graphic objects, 167–170
shrink wrapping, 173, 175
specification, 175, 177, 178

Composite builder, 45–49
Composite commands (aka

Macros), 279–283
Composite iteration, 317–319
Composite proxy

array-backed properties, 235–237
priority, 248
sb field, 246
SoA/AoS, 232–235
StringBuilder, 245
ToString(), 247

Concurrent state machines, 398, 399
ConnectTo() method, 172, 175
Console constructor, 216
Conventional bridge, 159–163

Copy construction, 96, 97
CopyTo() method, 100, 101
Covers() method, 225
Create() method, 43, 44, 53
CreatureModifier, 261–263, 268
CreatureModifier.Handle() method, 268
Creatures collection, 233
Creatures container, 233, 234
CyclesAllowedPolicy, 194, 195
Cyclic visitor, 441

D
Declarative strategies, 409, 410
Declarative subscriptions in

Autofac, 378–382
Decorator design pattern

adapter, 185
cycle policies, 194–199
multiple inheritance

with default interface
members, 189, 190

with interfaces, 186–189
points and lines, 182–184

DeepCopy() method, 96, 98–101, 110
Deep copying

copy construction, 96, 97
guidelines

arrays, 103
common collection types, 104, 105
MemberwiseClone, 105, 106
trivially copyable types, 103

and inheritance, 98, 100–102
objects, 106
vs. shallow copying, 93, 94
special interface, 97, 98

Delegate.CreateDelegate(), 424
Delegate factory, 83, 84, 163

INDEX

459

Delegate type, 28, 30
Delegation, 18, 180–181
Dependency injection (DI), 24, 35, 83,

127, 152–155, 162, 229
Dependency inversion principle (DIP),

3, 21–24, 130, 163
Discriminated unions, 12, 33, 296–298,

300, 426, 427, 454, 455
Dispatch, 332, 428, 429, 431, 449
Dispose() method, 36, 124, 226, 357
Domain-specific languages (DSLs),

69, 70, 287
DoubleAttackModifier, 269
Double dispatch, 429, 432, 434, 437, 446, 451
DoubleExpression, 418, 422, 433
Draw() method, 161, 162, 238, 239, 273, 276
DrawPoint() method, 135, 136
DummyDatabase, 120
Dynamic decorator composition, 191–193
Dynamic Language Runtime, 351
Dynamic null object, 349–351
Dynamic prototyping bridge, 163–166, 381
Dynamic proxy for logging, 242–245
Dynamic strategy, 401–404, 410
Dynamic visitor, 430, 432, 444, 446

E
EmailBuilder, 57, 58
Encoding transitions with switch

expressions, 392–394
Enum-based state machine, 387–390
Equality and comparison strategies, 406–408
Equality operations, 252
Event broker, 265, 266
Events, 266, 325, 353–355, 359, 377, 378
Event streams, 357–361
Event subscription, 358, 378
External storage, 398

F
Façade design pattern

advanced terminal, 212–214
magic squares, 206–210
parameters, 215
setting up, console, 214, 216
trading terminal, 211

Factory, 77
Factory method, 15, 43, 73, 75–77, 79, 85,

89, 91, 148, 151, 316–317
Fluent builder, 41, 57, 58
Fluent interface, 41, 48, 58, 60, 63, 67, 77,

181, 246
Flyweight pattern

interop, 225, 226
space-saving technique, 226
text formatting, 222–225
user names, 219–222

Forward iterator, 314
FSharpFunc, 30–32
Function

basics, 25–27
composition, 33
storing in C#, 28–30

Functional chain of
responsibility, 270–271

Functional command, 283–285
Functional decorator, 201, 202
Functional factory, 90, 91
Functional lists, 33
Functional literals

C#, 27, 28
F#, 30–32

Functional-related language features, 33
Functional strategy, 408–410
Functional template method, 415–416
Functional visitor, 454, 455

INDEX

460

G
Garbage Collector (GC), 35, 88, 219, 257
Generic value adapter, 144–152
GetEnumerator(), 174, 175, 234, 305, 312
GetFactory() method, 82
GetPopulation() method, 118, 138, 139
God object, 5, 6
GraphicObject, 168
Graphics processing unit (GPU), 7, 211,

212, 225, 300
Grouping graphic objects, 167–170

H
Handle() method, 263, 269, 331
Higher-order function, 270, 408
HtmlElement, 38–40, 43, 44

I, J, K
ICloneable, 94, 95, 97, 98, 103, 105
ICommand interface, 279, 283, 284
IDeepCopyable interface, 96, 100
IEnumerator<T> interface, 305, 310
IExpressionVisitor interface, 432
Implicit state machines, 399
Init() methods, 42
Inner factory, 78–79, 91, 110
InOrderIterator, 310
INotifyPropertyChanged, 361–363, 365,

368, 371, 374
Integer parsing, 288, 289
Interface segregation principle (ISP)

definition, 15
illustration, 19
IMachine interface, 16
interface, 16
IPrinter and IScanner interfaces, 18

OldFashionedPrinter.Scan(), 17
parameter object, 20, 21
Scan() method, 17

Interpreter design pattern
functional paradigm, 296–300
integer parsing, 288, 289
transpilation, 300–302

Introspection, 398
Intrusive approaches, 345–347
Intrusive visitor, 418, 419
Inversion of control (IoC) container,

82–84, 114, 127, 131, 187, 216–217,
229, 330, 378, 380, 410

IObservable interface, 373
IRelationshipBrowser, 24
IRenderer, 160, 162
Iterator

adapter, 315, 316
array-backed properties, 306–309
BinaryTree class, 312
composite, 317–319
foreach results, 314
hierarchy of sorts, 314
IEnumerable, 312
IEnumerator<T> interface, 305
in-order implementation, 313, 314
InOrderIterator, 310
node of binary tree, 309
traversal scheme, 310
traverse tree, 310

IUser interface, 220
IValueConverter interface, 155–157

L
Lazy functional builder, 62–65
Lazy-loading method, 137
Lexing, 290–292

INDEX

461

LineToPointAdapter, 136
LineToPointCachingAdapter, 138
LINQ’s Select() operator, 105, 408
Liskov substitution principle (LSP),

 3, 13–15, 435

M
Machine learning, 170
Magic squares, 206–210
Measurement units, 255, 256
Mediator

chat room, 321–325
with events, 325–329
service bus, 332, 333

MediatR, 330–332
MemberwiseClone(), 95, 105–107
Memento

bank account, 335–337
and command, 340, 341
undo and redo, 337–340

Method chain, 262–265
MethodInfo objects, 424
Microsoft Message Queuing (MSMQ), 333
Model states, 383
Monostate pattern, 128, 129
MoveNext() method, 305, 310, 312, 399
Multiton, 129–130

N
Nested type declaration, 28
Nested builder and immutability, 44–45
.NET base class library (BCL), 29, 95, 97,

126, 289, 315, 407
Neural networks, 170–173
NewEmployee() method, 110
Nullable virtual proxy, 346

Null object, 343–351
Null object singleton, 348, 349
Numeric expression evaluator

lexing, 290–292
parsing, 292–295

Numeric literals, 287

O
Object tracking, 85–87
Observable collections

CollectionChanged event, 377
observable LINQ, 378
OnCollectionChanged() method, 377

Observer pattern
events, 353–355
event streams, 357–361
property (see Property observers)
weak event pattern, 355–357

OnCollectionChanged() method, 377
OnPropertyChanged() method, 363, 369
Open-Closed Principle (OCP), 6–12, 175,

179, 300, 345

P
Parameterized triggers, 397
Parsing, 259, 288, 289, 291–297, 300, 370
Pattern matching, 33, 296, 299, 300, 392,

393, 441, 454, 455
Percentage values, 253–255
PersonAddressBuilder, 48, 49
PersonJobBuilder, 48, 49, 60, 61
Per-thread singleton, 121, 122
Ping-pong service, 240
Point constructor, 74, 78
Point-creating functions, 77
Points and lines, 182–184

INDEX

462

Primitive values, 253
property() method, 369
Property adapter (surrogate), 142–144
Property dependencies, 366–372, 374
Property observers

bidirectional bindings, 363–366
change notification in .NET, 361, 363
circular recalculation limitations, 376
property dependencies, 366–372
quadratic equation solver, 374–376
views, 372–374

Property proxy, 229–232, 372
Protection proxy, 227–229
Prototype factory, 85, 109, 110
Publish() method, 332

Q
Quadratic equation solver, 374–376
Queries, 156, 265–269, 285, 308, 378

R
Random-access iterator, 314, 315
Record classes, 38, 97, 450
RecordFinder types, 127
Recursive generics, 58–62, 64, 102, 147,

150, 152
Reflective visitor

extension methods, 422–424
functional reflective visitor (C#), 424–426
functional reflective visitor (F#), 426, 427
improvements, 427, 428
fancy switch statement, 421
separate printer component, 419

RegisterModule(), 217
Regular expressions, 287
Reverse() method, 280, 314

RoundedModule, 217
RoundedShapeFactory, 81, 82
Run() method, 412

S
Scoping builder method, 68–69
SendEmail() method, 58
Serialization, 107–108, 110, 111, 143,

144, 341
SetOutputFormat() method, 404
Shallow copying, 93–94, 97, 103, 104, 107
ShapeDecorator, 196, 197
ShapeDecoratorCyclePolicy, 198
SingletInstance(), 127
Single responsibility principle (SRP), 3–6,

45, 50, 109, 228, 386, 419, 424,
428, 438

Singleton
classic implementation, 114–116
by convention, 113
and inversion of control, 127
lazy loading and thread safety, 115
reusable base class, 116
trouble, 117–121

SingletonDatabase, 117, 119
SingletonRecordFinder, 118, 119
SOLID principles, 3, 144
Source generators, 110, 308, 318, 437
Specification pattern class diagram, 12
StackOverflowException, 364
State-driven state transitions, 384–386
State machines with stateless

features, 397, 398
hierarchical states, 397
redundant switching, 396, 397
types, actions and ignoring

transitions, 395–396

INDEX

463

State space explosion, 159
Static decorator

composition, 200–201
Static strategy, 404, 405, 410
Stepwise builder (wizard), 51–56
Storing functions in C#, 28–30
StringBuilder, 37, 38, 41, 65–67, 157, 181,

240, 245–247, 301, 456
Subscribe() method, 357, 359–361
SumOfStats property, 308
Switch-based state

machine, 390–392
Switch expressions, 392–394

T
Tail recursion, 33
Template Method Mixin, 413–415
Text formatting, 222–225
TextRange, 224, 226
ThrowOnCyclePolicy, 194, 195
LINQ ToDictionary() method, 104
Token, 226, 290–296, 331, 335, 408, 409
ToString(), 38, 182, 191, 224, 245, 247, 252,

254, 257, 434
Trading terminal, 211–213
Transpilation, 300–302
Travel adapter, 133
Trivially copyable types, 98, 103, 105, 106
Twin design pattern, 191
Type checks, 197, 315, 422, 427, 439–441

U
Undo operations, 276–279, 340
UniqueGenerator, 210
Unit test, 119, 126

V
Value object

percentage value, 253–255
two-dimensional point, 252, 253
types, 251
units of measure, 255–257

VectorRenderer instance, 163
Viewport, 211, 214
Virtual proxy, 237–239, 346
Visit() method, 426, 432, 436, 438,

441–443, 446, 447
Visitable null object, 436, 443–447
Visitor

reductions and transforms, 450, 452–454
type checks, 439, 441

Visitor adapter, 447–450

W, X, Y
WeakEventManager class, 357
Weak event pattern, 355–357

Z
Zero-effort method, 289

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Part I: Introduction
	Chapter 1: The SOLID Design Principles
	Single Responsibility Principle
	Open-Closed Principle
	Liskov Substitution Principle
	Interface Segregation Principle
	Parameter Object

	Dependency Inversion Principle

	Chapter 2: The Functional Perspective
	Function Basics
	Functional Literals in C#
	Storing Functions in C#
	Functional Literals in F#
	Composition
	Functional-Related Language Features

	Part II: Creational Patterns
	Chapter 3: Builder
	Scenario
	Simple Builder
	Fluent Builder
	Static Initialization
	Communicating Intent
	Nested Builder and Immutability
	Composite Builder
	Builder Marker Interfaces
	Stepwise Builder (Wizard)
	Builder Parameter
	Builder Extension with Recursive Generics
	Lazy Functional Builder
	Builder-Decorator
	Scoping Builder Method
	DSL Construction in F#
	Summary

	Chapter 4: Factories
	Scenario
	Factory Method
	Asynchronous Factory Method
	Factory
	Inner Factory
	Physical Separation

	Abstract Factory
	Delegate Factories in IoC
	Object Tracking and Bulk Replacements
	Object Tracking
	Bulk Modifications

	Functional Factory
	Summary

	Chapter 5: Prototype
	Deep vs. Shallow Copying
	ICloneable Is Bad
	Deep Copying via Copy Construction
	Note on Record Classes
	Deep Copying with a Special Interface
	Deep Copying and Inheritance

	Deep Copying Guidelines
	Trivially Copyable Types
	Arrays
	Common Collection Types
	MemberwiseClone Is Not Terrible

	Summary
	Serialization
	Prototype Factory
	Source Generators
	Summary

	Chapter 6: Singleton
	Singleton by Convention
	Classic Implementation
	Lazy Loading and Thread Safety
	Reusable Base Class

	The Trouble with Singleton
	Per-Thread Singleton
	Ambient Context
	Uses in the .NET Framework

	Singletons and Inversion of Control
	Monostate
	Multiton
	Summary

	Part III: Structural Patterns
	Chapter 7: Adapter
	Scenario
	Adapter
	Adapter Temporaries
	The Problem with Hashing
	Property Adapter (Surrogate)
	Generic Value Adapter
	Adapter in Dependency Injection
	Bidirectional Adapter
	Adapters in the .NET Framework
	Summary

	Chapter 8: Bridge
	Conventional Bridge
	Dynamic Prototyping Bridge
	Summary

	Chapter 9: Composite
	Grouping Graphic Objects
	Neural Networks
	Shrink Wrapping the Composite
	Composite Specification
	Summary

	Chapter 10: Decorator
	The Basics of Delegation
	Points and Lines
	Adapter-Decorator
	Simulating Multiple Inheritance
	Multiple Inheritance with Interfaces
	Multiple Inheritance with Default Interface Members
	Dynamic Decorator Composition
	Decorator Cycle Policies
	Static Decorator Composition
	Functional Decorator
	Summary

	Chapter 11: Façade
	Magic Squares
	Building a Trading Terminal
	An Advanced Terminal
	Where’s the Façade?
	IoC Modules
	Summary

	Chapter 12: Flyweight
	User Names
	Text Formatting
	Using Flyweights for Interop
	Summary

	Chapter 13: Proxy
	Protection Proxy
	Property Proxy
	Composite Proxy: SoA/AoS
	Composite Proxy with Array-Backed Properties
	Virtual Proxy
	Communication Proxy
	Dynamic Proxy for Logging
	Composite Proxy
	Summary

	Chapter 14: Value Object
	Two-Dimensional Point
	Percentage Value
	Units of Measure
	Summary

	Part IV: Behavioral Patterns
	Chapter 15: Chain of Responsibility
	Scenario
	Method Chain
	Broker Chain
	Functional Chain of Responsibility
	Summary

	Chapter 16: Command
	Scenario
	Implementing the Command Pattern
	Undo Operations
	Composite Commands (aka Macros)
	Functional Command
	Queries and Command-Query Separation
	Summary

	Chapter 17: Interpreter
	Integer Parsing
	Numeric Expression Evaluator
	Lexing
	Parsing
	Using Lexer and Parser

	Interpretation in the Functional Paradigm
	Transpiler
	Summary

	Chapter 18: Iterator
	Array-Backed Properties
	Let’s Make an Iterator
	Improved Iteration
	Iterator Specifics
	Iterator Adapter
	Composite Iteration
	Summary

	Chapter 19: Mediator
	Chat Room
	Mediator with Events
	Introduction to MediatR
	Service Bus as Mediator
	Summary

	Chapter 20: Memento
	Bank Account
	Undo and Redo
	Memento and Command
	Summary

	Chapter 21: Null Object
	Scenario
	Intrusive Approaches
	Nullable Virtual Proxy

	Null Object
	Null Object Singleton
	Dynamic Null Object
	Drawbacks

	Summary

	Chapter 22: Observer
	Events
	Weak Event Pattern
	Event Streams
	Property Observers
	Basic Change Notification
	Bidirectional Bindings
	Property Dependencies
	Views
	Case Study: Quadratic Equation Solver
	Circular Recalculation Limitations

	Observable Collections
	Observable LINQ

	Declarative Subscriptions in Autofac
	Summary

	Chapter 23: State
	State-Driven State Transitions
	Enum-Based State Machine
	Switch-Based State Machine
	Encoding Transitions with Switch Expressions
	State Machines with Stateless
	Types, Actions, and Ignoring Transitions
	Reentrancy Again
	Hierarchical States
	More Features

	Concurrent State Machines
	Implicit State Machines
	Summary

	Chapter 24: Strategy
	Dynamic Strategy
	Static Strategy
	Equality and Comparison Strategies
	Functional Strategy
	Declarative Strategies
	Summary

	Chapter 25: Template Method
	Game Simulation
	Template Method Mixin
	Functional Template Method
	Summary

	Chapter 26: Visitor
	Intrusive Visitor
	Reflective Visitor
	Extension Methods?
	Functional Reflective Visitor (C#)
	Functional Reflective Visitor (F#)
	Improvements

	What Is Dispatch?
	Dynamic Visitor
	Classic Visitor
	Abstract Classes and Virtual Methods
	Reducing Boilerplate
	Implementing an Additional Visitor

	Type Checks Are Unavoidable
	Acyclic Visitor
	Visitable Null Object
	Visitor Adapter
	Reductions and Transforms
	Functional Visitor in F#
	Summary

	Index

