
	Preface












	Who This Book Is For














	What You Need to Know














	What You Will Learn














	O’Reilly Online Learning














	How to Contact Us










	Foreword
	I. Deep Learning in Practice
	1. Your Deep Learning Journey










	Deep Learning Is for Everyone














	Neural Networks: A Brief History














	Who We Are














	How to Learn Deep Learning





























	Your Projects and Your Mindset






















	The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)














	Your First Model












	Getting a GPU Deep Learning Server














	Running Your First Notebook














	What Is Machine Learning?














	What Is a Neural Network?














	A Bit of Deep Learning Jargon














	Limitations Inherent to Machine Learning














	How Our Image Recognizer Works














	What Our Image Recognizer Learned














	Image Recognizers Can Tackle Non-Image Tasks














	Jargon Recap






















	Deep Learning Is Not Just for Image Classification














	Validation Sets and Test Sets































	Use Judgment in Defining Test Sets






















	A Choose Your Own Adventure Moment














	Questionnaire












	Further Research


















	2. From Model to Production












	The Practice of Deep Learning

















	Starting Your Project














	The State of Deep Learning














	The Drivetrain Approach






















	Gathering Data














	From Data to DataLoaders




















































































	Data Augmentation






















	Training Your Model, and Using It to Clean Your Data














	Turning Your Model into an Online Application











	Using the Model for Inference














	Creating a Notebook App from the Model














	Turning Your Notebook into a Real App














	Deploying Your App






















	How to Avoid Disaster




































	Unforeseen Consequences and Feedback Loops






















	Get Writing!














	Questionnaire










	Further Research


















	3. Data Ethics


























	Key Examples for Data Ethics














	Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits














	Feedback Loops: YouTube’s Recommendation System














	Bias: Professor Latanya Sweeney “Arrested”














	Why Does This Matter?






















	Integrating Machine Learning with Product Design














	Topics in Data Ethics















	Recourse and Accountability














	Feedback Loops














	Bias














	Disinformation






















	Identifying and Addressing Ethical Issues

















	Analyze a Project You Are Working On














	Processes to Implement














	The Power of Diversity














	Fairness, Accountability, and Transparency






















	Role of Policy











	The Effectiveness of Regulation














	Rights and Policy














	Cars: A Historical Precedent






















	Conclusion














	Questionnaire










	Further Research






















	Deep Learning in Practice: That’s a Wrap!










	II. Understanding fastai’s Applications
	4. Under the Hood: Training a Digit Classifier
















	Pixels: The Foundations of Computer Vision














	First Try: Pixel Similarity
















































































































	NumPy Arrays and PyTorch Tensors






















	Computing Metrics Using Broadcasting














	Stochastic Gradient Descent

























































	Calculating Gradients














	Stepping with a Learning Rate














	An End-to-End SGD Example














	Summarizing Gradient Descent






















	The MNIST Loss Function




































































































































	Sigmoid














	SGD and Mini-Batches






















	Putting It All Together














































































































	Creating an Optimizer






















	Adding a Nonlinearity





































































	Going Deeper






















	Jargon Recap














	Questionnaire










	Further Research


















	5. Image Classification


















	From Dogs and Cats to Pet Breeds














	Presizing

































	Checking and Debugging a DataBlock






















	Cross-Entropy Loss















	Viewing Activations and Labels














	Softmax














	Log Likelihood














	Taking the log






















	Model Interpretation














	Improving Our Model













	The Learning Rate Finder














	Unfreezing and Transfer Learning














	Discriminative Learning Rates














	Selecting the Number of Epochs














	Deeper Architectures






















	Conclusion














	Questionnaire










	Further Research


















	6. Other Computer Vision Problems














	Multi-Label Classification

















	The Data














	Constructing a DataBlock














	Binary Cross Entropy






















	Regression

















	Assembling the Data














	Training a Model






















	Conclusion














	Questionnaire










	Further Research


















	7. Training a State-of-the-Art Model














	Imagenette














	Normalization














	Progressive Resizing














	Test Time Augmentation














	Mixup














	Label Smoothing














	Conclusion














	Questionnaire










	Further Research


















	8. Collaborative Filtering Deep Dive


















	A First Look at the Data














	Learning the Latent Factors














	Creating the DataLoaders














	Collaborative Filtering from Scratch
































































	Weight Decay














	Creating Our Own Embedding Module






















	Interpreting Embeddings and Biases
































	Using fastai.collab














	Embedding Distance






















	Bootstrapping a Collaborative Filtering Model














	Deep Learning for Collaborative Filtering














	Conclusion














	Questionnaire










	Further Research


















	9. Tabular Modeling Deep Dive












	Categorical Embeddings














	Beyond Deep Learning














	The Dataset













	Kaggle Competitions














	Look at the Data






















	Decision Trees























	Handling Dates














	Using TabularPandas and TabularProc














	Creating the Decision Tree














	Categorical Variables






















	Random Forests





















	Creating a Random Forest














	Out-of-Bag Error






















	Model Interpretation















	Tree Variance for Prediction Confidence














	Feature Importance














	Removing Low-Importance Variables














	Removing Redundant Features














	Partial Dependence














	Data Leakage














	Tree Interpreter






















	Extrapolation and Neural Networks











	The Extrapolation Problem














	Finding Out-of-Domain Data














	Using a Neural Network






















	Ensembling



























	Boosting














	Combining Embeddings with Other Methods






















	Conclusion














	Questionnaire










	Further Research


















	10. NLP Deep Dive: RNNs



























	Text Preprocessing























	Tokenization














	Word Tokenization with fastai














	Subword Tokenization














	Numericalization with fastai














	Putting Our Texts into Batches for a Language Model






















	Training a Text Classifier













	Language Model Using DataBlock














	Fine-Tuning the Language Model














	Saving and Loading Models














	Text Generation














	Creating the Classifier DataLoaders














	Fine-Tuning the Classifier






















	Disinformation and Language Models














	Conclusion














	Questionnaire










	Further Research


















	11. Data Munging with fastai’s Mid-Level API










	Going Deeper into fastai’s Layered API




















	Transforms














	Writing Your Own Transform














	Pipeline






















	TfmdLists and Datasets: Transformed Collections











	TfmdLists














	Datasets






















	Applying the Mid-Level Data API: SiamesePair














	Conclusion














	Questionnaire










	Further Research






















	Understanding fastai’s Applications: Wrap Up










	III. Foundations of Deep Learning
	12. A Language Model from Scratch












	The Data














	Our First Language Model from Scratch



































	Our Language Model in PyTorch














	Our First Recurrent Neural Network






















	Improving the RNN













	Maintaining the State of an RNN














	Creating More Signal






















	Multilayer RNNs



















	The Model














	Exploding or Disappearing Activations






















	LSTM

















	Building an LSTM from Scratch














	Training a Language Model Using LSTMs






















	Regularizing an LSTM













	Dropout














	Activation Regularization and Temporal Activation Regularization














	Training a Weight-Tied Regularized LSTM






















	Conclusion














	Questionnaire










	Further Research


















	13. Convolutional Neural Networks












	The Magic of Convolutions

















































































	Mapping a Convolutional Kernel














	Convolutions in PyTorch














	Strides and Padding














	Understanding the Convolution Equations






















	Our First Convolutional Neural Network













	Creating the CNN














	Understanding Convolution Arithmetic














	Receptive Fields














	A Note About Twitter






















	Color Images














	Improving Training Stability





























	A Simple Baseline














	Increase Batch Size














	1cycle Training














	Batch Normalization






















	Conclusion














	Questionnaire










	Further Research


















	14. ResNets












	Going Back to Imagenette














	Building a Modern CNN: ResNet











	Skip Connections














	A State-of-the-Art ResNet














	Bottleneck Layers






















	Conclusion














	Questionnaire










	Further Research


















	15. Application Architectures Deep Dive














	Computer Vision











	cnn_learner














	unet_learner














	A Siamese Network






















	Natural Language Processing














	Tabular














	Conclusion














	Questionnaire










	Further Research


















	16. The Training Process


















	Establishing a Baseline














	A Generic Optimizer














	Momentum














	RMSProp














	Adam














	Decoupled Weight Decay














	Callbacks













































	Creating a Callback














	Callback Ordering and Exceptions






















	Conclusion














	Questionnaire










	Further Research






















	Foundations of Deep Learning: Wrap Up










	IV. Deep Learning from Scratch
	17. A Neural Net from the Foundations












	Building a Neural Net Layer from Scratch











	Modeling a Neuron














	Matrix Multiplication from Scratch














	Elementwise Arithmetic














	Broadcasting














	Einstein Summation






















	The Forward and Backward Passes











	Defining and Initializing a Layer














	Gradients and the Backward Pass














	Refactoring the Model














	Going to PyTorch






















	Conclusion














	Questionnaire










	Further Research


















	18. CNN Interpretation with CAM












	CAM and Hooks














	Gradient CAM














	Conclusion














	Questionnaire










	Further Research


















	19. A fastai Learner from Scratch














	Data



















































	Dataset






















	Module and Parameter



















































































	Simple CNN






















	Loss














	Learner



































	Callbacks














	Scheduling the Learning Rate






















	Conclusion














	Questionnaire











	Further Research


















	20. Concluding Thoughts
	A. Creating a Blog














	Blogging with GitHub Pages













	Creating the Repository














	Setting Up Your Home Page














	Creating Posts














	Synchronizing GitHub and Your Computer






















	Jupyter for Blogging










	B. Data Project Checklist

















	Data Scientists














	Strategy














	Data














	Analytics














	Implementation














	Maintenance














	Constraints










	Index






  
Praise for Deep Learning for Coders with fastai and PyTorch



If you are looking for a guide that starts at the ground floor and takes you to the cutting edge of research, this is the book for you. Don’t let those PhDs have all the fun—you too can use deep learning to solve practical problems.


Hal Varian, Emeritus Professor, UC Berkeley; Chief Economist, Google





As artificial intelligence has moved into the era of deep learning, it behooves all of us to learn as much as possible about how it works. Deep Learning for Coders provides a terrific way to initiate that, even for the uninitiated, achieving the feat of simplifying what most of us would consider highly complex.


Eric Topol, Author, Deep Medicine; Professor, Scripps Research





Jeremy and Sylvain take you on an interactive—in the most literal sense as each line of code can be run in a notebook—journey through the loss valleys and performance peaks of deep learning. Peppered with thoughtful anecdotes and practical intuitions from years of developing and teaching machine learning, the book strikes the rare balance of communicating deeply technical concepts in a conversational and light-hearted way. In a faithful translation of fast.ai’s award-winning online teaching philosophy, the book provides you with state-of-the-art practical tools and the real-world examples to put them to use. Whether you’re a beginner or a veteran, this book will fast-track your deep learning journey and take you to new heights—and depths.


Sebastian Ruder, Research Scientist, Deepmind





Jeremy Howard and Sylvain Gugger have authored a bravura of a book that successfully bridges the AI domain with the rest of the world. This work is a singularly substantive and insightful yet absolutely relatable primer on deep learning for anyone who is interested in this domain: a lodestar book amongst many in this genre.


Anthony Chang, Chief Intelligence and Innovation Officer, Children’s Hospital of Orange County





How can I “get” deep learning without getting bogged down? How can I quickly learn the concepts, craft, and tricks-of-the-trade using examples and code? Right here. Don’t miss the new locus classicus for hands-on deep learning.


Oren Etzioni, Professor, University of Washington; CEO, Allen Institute for AI





This book is a rare gem—the product of carefully crafted and highly effective teaching, iterated and refined over several years resulting in thousands of happy students. I’m one of them. fast.ai changed my life in a wonderful way, and I’m convinced that they can do the same for you.


Jason Antic, Creator, DeOldify





Deep Learning for Coders is an incredible resource. The book wastes no time and teaches how to use deep learning effectively in the first few chapters. It then covers the inner workings of ML models and frameworks in a thorough but accessible fashion, which will allow you to understand and build upon them. I wish there was a book like this when I started learning ML, it is an instant classic!


Emmanuel Ameisen, Author, Building Machine Learning Powered Applications





“Deep Learning is for everyone,” as we see in Chapter 1, Section 1 of this book, and while other books may make similar claims, this book delivers on the claim. The authors have extensive knowledge of the field but are able to describe it in a way that is perfectly suited for a reader with experience in programming but not in machine learning. The book shows examples first, and only covers theory in the context of concrete examples. For most people, this is the best way to learn.The book does an impressive job of covering the key applications of deep learning in computer vision, natural language processing, and tabular data processing, but also covers key topics like data ethics that some other books miss. Altogether, this is one of the best sources for a programmer to become proficient in deep learning.


Peter Norvig, Director of Research, Google





Gugger and Howard have created an ideal resource for anyone who has ever done even a little bit of coding. This book, and the fast.ai courses that go with it, simply and practically demystify deep learning using a hands-on approach, with pre-written code that you can explore and re-use. No more slogging through theorems and proofs about abstract concepts. In Chapter 1 you will build your first deep learning model, and by the end of the book you will know how to read and understand the Methods section of any deep learning paper.


Curtis Langlotz, Director, Center for Artificial Intelligence in Medicine and Imaging, Stanford University





This book demystifies the blackest of black boxes: deep learning. It enables quick code experimentations with a complete python notebook. It also dives into the ethical implication of artificial intelligence, and shows how to avoid it from becoming dystopian.


Guillaume Chaslot, Fellow, Mozilla





As a pianist turned OpenAI researcher, I’m often asked for advice on getting into Deep Learning, and I always point to fastai. This book manages the seemingly impossible—it’s a friendly guide to a complicated subject, and yet it’s full of cutting-edge gems that even advanced practitioners will love.


Christine Payne, Researcher, OpenAI





An extremely hands-on, accessible book to help anyone quickly get started on their deep learning project. It’s a very clear, easy to follow and honest guide to practical deep learning. Helpful for beginners to executives/managers alike. The guide I wished I had years ago!


Carol Reiley, Founding President and Chair, Drive.ai





Jeremy and Sylvain’s expertise in deep learning, their practical approach to ML, and their many valuable open-source contributions have made then key figures in the PyTorch community. This book, which continues the work that they and the fast.ai community are doing to make ML more accessible, will greatly benefit the entire field of AI.


Jerome Pesenti, Vice President of AI, Facebook





Deep Learning is one of the most important technologies now, responsible for many amazing recent advances in AI. It used to be only for PhDs, but no longer! This book, based on a very popular fast.ai course, makes DL accessible to anyone with programming experience. This book teaches the “whole game”, with excellent hands-on examples and a companion interactive site. And PhDs will also learn a lot.


Gregory Piatetsky-Shapiro, President, KDnuggets





An extension of the fast.ai course that I have consistently recommended for years, this book by Jeremy and Sylvain, two of the best deep learning experts today, will take you from beginner to qualified practitioner in a matter of months. Finally, something positive has come out of 2020!


Louis Monier, Founder, Altavista; former Head of Airbnb AI Lab





We recommend this book! Deep Learning for Coders with fastai and PyTorch uses advanced frameworks to move quickly through concrete, real-world artificial intelligence or automation tasks. This leaves time to cover usually neglected topics, like safely taking models to production and a much-needed chapter on data ethics.


John Mount and Nina Zumel, Authors, Practical Data Science with R





This book is “for Coders” and does not require a PhD. Now, I do have a PhD and I am no coder, so why have I been asked to review this book? Well, to tell you how friggin awesome it really is!

Within a couple of pages from Chapter 1 you’ll figure out how to get a state-of-the-art network able to classify cat vs. dogs in 4 lines of code and less than 1 minute of computation. Then you land Chapter 2, which takes you from model to production, showing how you can serve a webapp in no time, without any HTML or JavaScript, without owning a server.

I think of this book as an onion. A complete package that works using the best possible settings. Then, if some alterations are required, you can peel the outer layer. More tweaks? You can keep discarding shells. Even more? You can go as deep as using bare PyTorch. You’ll have three independent voices accompanying you around your journey along this 600 page book, providing you guidance and individual perspective.


Alfredo Canziani, Professor of Computer Science, NYU





Deep Learning for Coders with fastai and PyTorch is an approachable conversationally-driven book that uses the whole game approach to teaching deep learning concepts. The book focuses on getting your hands dirty right out of the gate with real examples and bringing the reader along with reference concepts only as needed. A practitioner may approach the world of deep learning in this book through hands-on examples in the first half, but will find themselves naturally introduced to deeper concepts as they traverse the back half of the book with no pernicious myths left unturned.


Josh Patterson, Patterson Consulting









  
Deep Learning for Coders with fastai and PyTorch


AI Applications Without a PhD

Jeremy Howard and Sylvain Gugger







  
  Deep Learning for Coders with fastai and PyTorch

  
    by 
    Jeremy 
    Howard
     and 
    Sylvain 
    Gugger
  

  Copyright © 2020 Jeremy Howard and Sylvain Gugger. All rights reserved.

  Printed in Canada.

  
    Published by 
    O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
  

  
    O’Reilly books may be purchased for educational, business, or sales
    promotional use. Online editions are also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional sales
    department: 800-998-9938 or 
    corporate@oreilly.com.
  

  
    	
      Acquisitions Editor:
       Jonathan Hassell
    

    	
      Development Editor:
       Melissa Potter
    

    	
      Production Editor:
       Christopher Faucher
    

    	
      Copyeditor:
       Rachel Head
    

    	
      Proofreader:
       Sharon Wilkey
    

    	
      Indexer:
       Sue Klefstad
    

    	
      Interior Designer:
       David Futato
    

    	
      Cover Designer:
       Karen Montgomery
    

    	
      Illustrator:
       Rebecca Demarest
    

  

  
    	
      July 2020:
       First Edition
    

  

  
  
    Revision History for the First Edition

    
      	
        2020-06-29:
         First Release
      

    

  

  
    See 
    http://oreilly.com/catalog/errata.csp?isbn=9781492045526
     for release details.
  

  
    
      The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Deep
      Learning for Coders with fastai and PyTorch, the cover image, and related
      trade dress are trademarks of O’Reilly Media, Inc.
    

    
      The views expressed in this work are those of the authors, and do not
      represent the publisher’s views. While the publisher and the
      authors have used good faith efforts to ensure that the information and
      instructions contained in this work are accurate, the publisher and the
      authors disclaim all responsibility for errors or omissions, including
      without limitation responsibility for damages resulting from the use of or
      reliance on this work. Use of the information and instructions contained
      in this work is at your own risk. If any code samples or other technology
      this work contains or describes is subject to open source licenses or the
      intellectual property rights of others, it is your responsibility to
      ensure that your use thereof complies with such licenses and/or rights.
      
      
    

  

  
    978-1-492-04552-6

    [TI]

  







  
Preface



Deep learning is a powerful new technology, and we believe it should be
applied across many disciplines. Domain experts are the most likely to
find new applications of it, and we need more people from all backgrounds
to get involved and start using it.


That’s why Jeremy cofounded fast.ai, to make deep learning easier to use
through free online courses and software. Sylvain is a research engineer at Hugging Face. Previously he was a research scientist at fast.ai and a former mathematics and computer science teacher in a program that prepares students for entry into France’s elite universities. Together, we wrote this book in the hope of putting deep learning into the hands of as many people as possible.








Who This Book Is For


If you are a complete beginner to deep learning and machine learning, you are most welcome here. Our only expectation is that you already know how to code, preferably in Python.

No Experience? No Problem!

If you don’t have any experience coding, that’s OK too! The first three chapters
have been explicitly written in a way that will allow executives, product
managers, etc. to understand the most important things they’ll need to know about
deep learning. When you see bits of code in the text, try to look them over to
get an intuitive sense of what they’re doing. We’ll explain them line by line.
The details of the syntax are not nearly as important as a high-level
understanding of what’s going on.




If you are already a confident deep learning practitioner, you will
also find a lot here. In this book, we will be showing you how to achieve
world-class results, including techniques from the latest research. As
we will show, this doesn’t require advanced mathematical
training or years of study. It just requires a bit of common sense and
tenacity.

















What You Need to Know


As we said before, the only prerequisite is that you know how to code (a year of
experience is enough), preferably in Python, and that you have at least followed
a high school math course. It doesn’t matter if you remember little of it right
now; we will brush up on it as needed. Khan Academy has great free resources
online that can help.


We are not saying that deep learning doesn’t use math beyond high school level,
but we will teach you (or direct you to resources that will teach you) the
basics you need as we cover the subjects that require them.


The book starts with the big picture and progressively digs beneath the surface,
so you may need, from time to time, to put it aside and go learn some additional
topic (a way of coding something or a bit of math). That is completely
OK, and it’s the way we intend the book to be read. Start browsing it, and consult additional resources only as needed.


Please note that Kindle or other ereader users may need to double-click images to view the full-sized versions.

Online Resources

All the code examples shown in this book are available online in the form of Jupyter notebooks (don’t worry; you will learn all about what Jupyter is in Chapter 1). This is an interactive version of the book, where you can actually execute the code and experiment with it. See the book’s website for more information. The website also contains up-to-date information on setting up the various tools we present and some additional bonus 
chapters.



















What You Will Learn


After reading this book, you will know the following:



	
How to train models that achieve state-of-the-art results in



	
Computer vision, including image classification (e.g., classifying pet photos by
breed) and image localization and detection (e.g., finding the
animals in an image)



	
Natural language processing (NLP), including document classification
(e.g., movie review sentiment analysis) and language modeling



	
Tabular data (e.g., sales prediction) with categorical data,
continuous data, and mixed data, including time series



	
Collaborative filtering (e.g., movie recommendation)







	
How to turn your models into web applications



	
Why and how deep learning models work, and how to use that knowledge
to improve the accuracy, speed, and reliability of your models



	
The latest deep learning techniques that really matter in practice



	
How to read a deep learning research paper



	
How to implement deep learning algorithms from scratch



	
How to think about the ethical implications of your work, to help ensure
that you’re making the world a better place and that your
work isn’t misused for harm






See the table of contents for a complete list, but to give you a taste,
here are some of the techniques covered (don’t
worry if none of these words mean anything to you yet—you’ll learn them all soon):



	
Affine functions and nonlinearities



	
Parameters and activations



	
Random initialization and transfer learning



	
SGD, Momentum, Adam, and other optimizers



	
Convolutions



	
Batch normalization



	
Dropout



	
Data augmentation



	
Weight decay



	
ResNet and DenseNet architectures



	
Image classification and regression



	
Embeddings



	
Recurrent neural networks (RNNs)



	
Segmentation



	
U-Net



	
And much more!





Chapter Questionnaires

If you look at the end of each chapter, you’ll find a questionnaire. That’s a great place to see what we cover in each chapter, since (we hope!) by the end of each one, you’ll be able to answer all the questions there. In fact, one of our reviewers (thanks, Fred!) said that he likes to read the questionnaire first, before reading the chapter, so he knows what to look out for.



















O’Reilly Online Learning

Note

For more than 40 years, O’Reilly Media has provided technology and business training, knowledge, and insight to help companies succeed.




Our unique network of experts and innovators share their knowledge and expertise through books, articles, and our online learning platform. O’Reilly’s online learning platform gives you on-demand access to live training courses, in-depth learning paths, interactive coding environments, and a vast collection of text and video from O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

















How to Contact Us


Please address comments and questions concerning this book to the publisher:


  	O’Reilly Media, Inc.

  	1005 Gravenstein Highway North

  	Sebastopol, CA 95472

  	800-998-9938 (in the United States or Canada)

  	707-829-0515 (international or local)

  	707-829-0104 (fax)




We have a web page for this book, where we list errata, examples, and any additional information. You can access this page at https://oreil.ly/deep-learning-for-coders.



Email bookquestions@oreilly.com to comment or ask technical questions about this book.


For news and information about our books and courses, visit http://oreilly.com.


Find us on Facebook: http://facebook.com/oreilly


Follow us on Twitter: http://twitter.com/oreillymedia


Watch us on YouTube: http://www.youtube.com/oreillymedia
















  
Foreword



In a very short time, deep learning has become a widely useful technique, solving and automating problems in computer vision, robotics, healthcare, physics, biology, and beyond. One of the delightful things about deep learning is its relative simplicity. Powerful deep learning software has been built to make getting started fast and easy. In a few weeks, you can understand the basics and get comfortable with the 
techniques.


This opens up a world of creativity. You start applying it to problems that have data at hand, and you feel wonderful seeing a machine solving problems for you. However, you slowly feel yourself getting closer to a giant barrier. You built a deep learning model, but it doesn’t work as well as you had hoped. This is when you enter the next stage, finding and reading state-of-the-art research on deep learning.


However, there’s a voluminous body of knowledge on deep learning, with three decades of theory, techniques, and tooling behind it. As you read through some of this research, you realize that humans can explain simple things in really complicated ways. Scientists use words and mathematical notation in these papers that appear foreign, and no textbook or blog post seems to cover the necessary background that you need in accessible ways. Engineers and programmers assume you know how GPUs work and have knowledge about obscure tools.


This is when you wish you had a mentor or a friend that you could talk to. Someone who was in your shoes before, who knows the tooling and the math—someone who could guide you through the best research, state-of-the-art techniques, and advanced engineering, and make it comically simple. I was in your shoes a decade ago, when I was breaking into the field of machine learning. For years, I struggled to understand papers that had a little bit of math in them. I had good mentors around me, which helped me greatly, but it took me many years to get comfortable with machine learning and deep learning. That motivated me to coauthor PyTorch, a software framework to make deep learning accessible.


Jeremy Howard and Sylvain Gugger were also in your shoes. They wanted to learn and apply deep learning, without any previous formal training as ML scientists or engineers. Like me, Jeremy and Sylvain learned gradually over the years and eventually became experts and leaders. But unlike me, Jeremy and Sylvain selflessly put a huge amount of energy into making sure others don’t have to take the painful path that they took. They built a great course called fast.ai that makes cutting-edge deep learning techniques accessible to people who know basic programming. It has graduated hundreds of thousands of eager learners who have become great practitioners.


In this book, which is another tireless product, Jeremy and Sylvain have constructed a magical journey through deep learning. They use simple words and introduce every concept. They bring cutting-edge deep learning and state-of-the-art research to you, yet make it very accessible.


You are taken through the latest advances in computer vision, dive into natural language processing, and learn some foundational math in a 500-page delightful ride. And the ride doesn’t stop at fun, as they take you through shipping your ideas to production. You can treat the fast.ai community, thousands of practitioners online, as your extended family, where individuals like you are available to talk and ideate small and big solutions, whatever the problem may be.


I am very glad you’ve found this book, and I hope it inspires you to put deep learning to good use, regardless of the nature of the problem.


Soumith Chintala


Cocreator of PyTorch







  
Part I. Deep Learning in Practice









  
Chapter 1. Your Deep Learning Journey



Hello, and thank you for letting us join you on your deep learning
journey, however far along that you may be! In this chapter, we will
tell you a little bit more about what to expect in this book, introduce
the key concepts behind deep learning, and train our first models
on different tasks. It doesn’t matter if you
don’t come from a technical or a mathematical background
(though it’s OK if you do too!); we wrote this book to make deep learning accessible to as many people as possible.








Deep Learning Is for Everyone


A lot of people assume that you need all kinds of hard-to-find stuff to
get great results with deep learning, but as you’ll see in
this book, those people are wrong. Table 1-1 lists a few
things you absolutely don’t need for world-class deep
learning.


Table 1-1. What you don’t need for deep learning


	Myth (don’t need)
	Truth





	Lots of math

	High school math is sufficient.




	Lots of data

	We’ve seen record-breaking results with <50 items of data.




	Lots of expensive computers

	You can get what you need for state-of-the-art work for free.







Deep learning is a computer technique to extract and transform data—with use cases ranging from human speech recognition to animal imagery
classification—by using multiple layers of neural networks. Each of
these layers takes its inputs from previous layers and progressively
refines them. The layers are trained by algorithms that minimize their
errors and improve their accuracy. In this way, the network learns to
perform a specified task. We will discuss training algorithms in detail
in the next section.


Deep learning has power, flexibility, and simplicity. That’s
why we believe it should be applied across many disciplines. These
include the social and physical sciences, the arts, medicine, finance,
scientific research, and many more. To give a personal example, despite
having no background in medicine, Jeremy started Enlitic, a company that
uses deep learning algorithms to diagnose illness and disease. Within
months of starting the company, it was announced that its algorithm
could identify malignant tumors
more
accurately than radiologists.


Here’s a list of some of the thousands of tasks in different areas for which deep
learning, or methods heavily using deep learning, is now the best in the
world:


	Natural language processing (NLP)

	
Answering questions; speech recognition; summarizing documents; classifying documents; finding
names, dates, etc. in documents; searching for articles mentioning a concept



	Computer vision

	
Satellite and drone imagery interpretation (e.g., for disaster resilience), face recognition, image
captioning, reading traffic signs, locating pedestrians and vehicles in autonomous vehicles



	Medicine

	
Finding anomalies in radiology images, including CT, MRI, and X-ray images; counting features in
pathology slides; measuring features in ultrasounds; diagnosing diabetic retinopathy



	Biology

	
Folding proteins; classifying proteins; many genomics tasks, such as tumor-normal sequencing and
classifying clinically actionable genetic mutations; cell classification; analyzing protein/protein interactions



	Image generation

	
Colorizing images, increasing image resolution, removing noise from images, converting images to art in the style of
famous artists



	Recommendation systems

	
Web search, product recommendations, home page layout



	Playing games

	
Chess, Go, most Atari video games, and many real-time strategy games



	Robotics

	
Handling objects that are challenging to locate (e.g., transparent, shiny, lacking texture) or hard to pick up



	Other applications

	
Financial and logistical forecasting, text to speech, and much, much more…






What is remarkable is that deep learning has such varied applications, yet
nearly all of deep learning is based on a single innovative type of model: the
neural network.


But neural networks are not, in fact, completely new. In order to have a
wider perspective on the field, it is worth starting with a bit of
history.

















Neural Networks: A Brief History


In 1943 Warren McCulloch, a neurophysiologist, and Walter Pitts, a
logician, teamed up to develop a mathematical model of an artificial
neuron. In their paper “A Logical Calculus of the Ideas Immanent in Nervous Activity,” they declared the following:


Because of the “all-or-none” character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms.



McCulloch and Pitts realized that a simplified model of a real neuron could be
represented using simple addition and thresholding, as shown in
Figure 1-1. Pitts was self-taught, and by age 12, had received
an offer to study at Cambridge University with the great Bertrand Russell. He did
not take up this invitation, and indeed throughout his life did not
accept any offers of advanced degrees or positions of authority. Most of
his famous work was done while he was homeless. Despite his lack of an
officially recognized position and increasing social isolation, his work
with McCulloch was influential and was taken up by a psychologist named
Frank Rosenblatt.



[image: Natural and artificial neurons]
Figure 1-1. Natural and artificial neurons




Rosenblatt further developed the artificial neuron to give it the
ability to learn. Even more importantly, he worked on building the first
device that used these principles, the Mark I Perceptron. In “The Design of an Intelligent Automaton,” 
Rosenblatt wrote about this work: “We are now about to witness the birth of such a machine—a machine capable of perceiving, recognizing and identifying its surroundings without any human training or control.” The perceptron was built and was able to successfully recognize simple shapes.


An MIT professor named Marvin Minsky (who was a grade behind Rosenblatt
at the same high school!), along with Seymour Papert, wrote a book called
Perceptrons (MIT Press) about Rosenblatt’s invention. They showed
that a single layer of these devices was unable to learn some simple but
critical mathematical functions (such as XOR). In the same book, they
also showed that using multiple layers of the devices would allow these
limitations to be addressed. Unfortunately, only the first of these
insights was widely recognized. As a result, the global academic
community nearly entirely gave up on neural networks for the next two
decades.


Perhaps the most pivotal work in neural networks in the last 50 years was
the multi-volume Parallel Distributed Processing (PDP) by David Rumelhart, James McClelland, and the PDP Research Group, released in
1986 by MIT Press. Chapter 1 lays out a similar hope to that shown by
Rosenblatt:


People are smarter than today’s computers because the brain employs a basic computational architecture that is more suited to deal with a central aspect of the natural information processing tasks that people are so good at.…We will introduce a computational framework for modeling cognitive processes that seems…closer than other frameworks to the style of computation as it might be done by the brain.



The premise that PDP is using here is that traditional computer programs
work very differently from brains, and that might be why computer programs
had been (at that point) so bad at doing things that brains find easy
(such as recognizing objects in pictures). The authors claimed that the
PDP approach was “closer than other frameworks” to how the brain works,
and therefore it might be better able to handle these kinds of tasks.


In fact, the approach laid out in PDP is very similar to the approach
used in today’s neural networks. The book defined parallel
distributed processing as requiring the following:



	
A set of processing units



	
A state of activation



	
An output function for each unit



	
A pattern of
connectivity among units



	
A propagation rule for propagating
patterns of activities through the network of connectivities



	
An
activation rule for combining the inputs impinging on a unit with the
current state of that unit to produce an output for the unit



	
A
learning rule whereby patterns of connectivity are modified by
experience



	
An environment within which the system must
operate






We will see in this book that modern neural networks handle each of
these 
requirements.


In the 1980s, most models were built with a second layer of
neurons, thus avoiding the problem that had been identified by Minsky and Papert
(this was their “pattern of connectivity among units,” to use the preceding
framework). And indeed, neural networks were widely used during
the ’80s and ’90s for real, practical projects. However, again a
misunderstanding of the theoretical issues held back the field. In
theory, adding just one extra layer of neurons was enough to allow any
mathematical function to be approximated with these neural networks, but
in practice such networks were often too big and too slow to be useful.


Although researchers showed 30 years ago that to get practical, good
performance you need to use even more layers of neurons, it is only in
the last decade that this principle has been more widely appreciated and
applied. Neural networks are now finally living up to their potential,
thanks to the use of more layers, coupled with the capacity to do so because of improvements in computer hardware, increases in data availability,
and algorithmic tweaks that allow neural networks to be trained faster
and more easily. We now have what Rosenblatt promised: “a machine
capable of perceiving, recognizing, and identifying its surroundings
without any human training or control.”


This is what you will learn how to build in this book. But first, since we are
going to be spending a lot of time together, let’s get to
know each other a bit…

















Who We Are


We are Sylvain and Jeremy, your guides on this journey. We hope that you
will find us well suited for this position.


Jeremy has been using and teaching machine learning for around 30 years.
He started using neural networks 25 years ago. During this time, he has
led many companies and projects that have machine learning at their
core, including founding the first company to focus on deep learning and
medicine, Enlitic, and taking on the role of president and chief
scientist at the world’s largest machine learning community,
Kaggle. He is the cofounder, along with Dr. Rachel Thomas, of fast.ai,
the organization that built the course this book is based on.


From time to time, you will hear directly from us in sidebars, like this
one from Jeremy:

Jeremy Says

Hi, everybody; I’m Jeremy! You might be interested to know that I do not have any formal technical education. I completed a BA with a major in philosophy, and didn’t have great grades. I was much more interested in doing real projects than theoretical studies, so I worked full time at a management consulting firm called McKinsey and Company throughout my university years. If you’re somebody who would rather get their hands dirty building stuff than spend years learning abstract concepts, you will understand where I am coming from! Look out for sidebars from me to find information most suited to people with a less mathematical or formal technical background—that is, people like me…




Sylvain, on the other hand, knows a lot about formal technical
education. He has written 10 math textbooks, covering the
entire advanced French math curriculum!

Sylvain Says

Unlike Jeremy, I have not spent many years coding and applying machine learning algorithms. Rather, I recently came to the machine learning world by watching Jeremy’s fast.ai course videos. So, if you are somebody who has not opened a terminal and written commands at the command line, you will understand where I am coming from! Look out for sidebars from me to find information most suited to people with a more mathematical or formal technical background, but less real-world coding experience—that is, people like me…




The fast.ai course has been studied by hundreds of thousands of
students, from all walks of life, from all parts of the world. Sylvain
stood out as the most impressive student of the course that Jeremy had
ever seen, which led to him joining fast.ai and then becoming the
coauthor, along with Jeremy, of the fastai software library.


All this means that between us, you have the best of both worlds: the people who
know more about the software than anybody else, because they wrote it; an
expert on math, and an expert on coding and machine learning; and also
people who understand both what it feels like to be a relative outsider in
math, and a relative outsider in coding and machine learning.


Anybody who has watched sports knows that if you have a two-person
commentary team, you also need a third person to do “special
comments.” Our special 
commentator is Alexis Gallagher. Alexis has a
very diverse background: he has been a researcher in mathematical
biology, a screenplay writer, an improv performer, a McKinsey consultant
(like Jeremy!), a Swift coder, and a CTO.

Alexis Says

I’ve decided it’s time for me to learn about this AI stuff! After all, I’ve tried pretty much everything else.…But I don’t really have a background in building machine learning models. Still…how hard can it be? I’m going to be learning throughout this book, just like you are. Look out for my sidebars for learning tips that I found helpful on my journey, and hopefully you will find helpful too.



















How to Learn Deep Learning


Harvard professor David Perkins, who wrote Making Learning Whole (Jossey-Bass), has
much to say about teaching. The basic idea is to teach the whole game.
That means that if you’re teaching baseball, you first take
people to a baseball game or get them to play it. You don’t
teach them how to wind twine to make a baseball from scratch, the physics of a parabola, or
the coefficient of friction of a ball on a bat.


Paul Lockhart, a Columbia math PhD, former Brown professor, and K–12
math teacher, imagines in the influential essay “A Mathematician’s Lament”
a nightmare world where music and art
are taught the way math is taught. Children are not allowed to
listen to or play music until they have spent over a decade mastering
music notation and theory, spending classes transposing sheet music into
a different key. In art class, students study colors and applicators,
but aren’t allowed to actually paint until college. Sound
absurd? This is how math is taught—we require students to spend years
doing rote memorization and learning dry, disconnected fundamentals
that we claim will pay off later, long after most of them quit the
subject.


Unfortunately, this is where many teaching resources on deep learning
begin—asking learners to follow along with the definition of the Hessian
and theorems for the Taylor approximation of your loss functions,
without ever giving examples of actual working code. We’re
not knocking calculus. We love calculus, and Sylvain has even taught it at the
college level, but we don’t think it’s the best
place to start when learning deep learning!


In deep learning, it really helps if you have the motivation to fix your
model to get it to do better. That’s when you start learning
the relevant theory. But you need to have the model in the first place.
We teach almost everything through real examples. As we build out those
examples, we go deeper and deeper, and we’ll show you how to
make your projects better and better. This means that you’ll
be gradually learning all the theoretical foundations you need, in
context, in such a way that you’ll see why it matters and how it
works.


So, here’s our commitment to you. Throughout this book, we follow these principles:


	Teaching the whole game

	
We’ll start off by showing you how to use a
complete, working, usable, state-of-the-art deep learning network
to solve real-world problems using simple, expressive tools. And
then we’ll gradually dig deeper and deeper into understanding how those
tools are made, and how the tools that make those tools are made, and so
on…



	Always teaching through examples

	
We’ll ensure that there is a context and
a purpose that you can understand intuitively, rather than starting with
algebraic symbol manipulation.



	Simplifying as much as possible

	
We’ve spent years
building tools and teaching methods that make previously complex topics simple.



	Removing barriers

	
Deep learning has, until now, been an exclusive
game. We’re breaking it open and ensuring that everyone can
play.






The hardest part of deep learning is artisanal: how do you know if
you’ve got enough data, whether it is in the right format,
if your model is training properly, and, if it’s not, what
you should do about it? That is why we believe in learning by doing. As
with basic data science skills, with deep learning you get better only
through practical experience. Trying to spend too much time on the
theory can be counterproductive. The key is to just code and try to
solve problems: the theory can come later, when you have context and
motivation.


There will be times when the journey feels hard. Times when you
feel stuck. Don’t give up! Rewind through the book to find
the last bit where you definitely weren’t stuck, and then
read slowly through from there to find the first thing that
isn’t clear. Then try some code experiments yourself, and
Google around for more tutorials on whatever the issue
you’re stuck with is—often you’ll find a
different angle on the material that might help it to click. Also,
it’s expected and normal to not understand everything
(especially the code) on first reading. Trying to understand the
material serially before proceeding can sometimes be hard. Sometimes
things click into place after you get more context from parts down the
road, from having a bigger picture. So if you do get stuck on a section,
try moving on anyway and make a note to come back to it later.


Remember, you don’t need any particular academic background
to succeed at deep learning. Many important breakthroughs are made in
research and industry by folks without a PhD, such as the paper
“Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”—one of the
most influential papers of the last decade, with over 5,000 citations—which was 
written by Alec Radford when he was an undergraduate. Even at
Tesla, where they’re trying to solve the extremely tough
challenge of making a self-driving car, CEO
Elon Musk says:


A PhD is definitely not required. All that matters is a deep understanding of AI & ability to implement NNs in a way that is actually useful (latter point is what’s truly hard). Don’t care if you even graduated high school.



What you will need to do to succeed, however, is to apply what you learn in this
book to a personal project, and always persevere.










Your Projects and Your Mindset


Whether you’re excited to identify if plants are diseased
from pictures of their leaves, autogenerate knitting patterns, diagnose
TB from X-rays, or determine when a raccoon is using your cat door, we
will get you using deep learning on your own problems (via pretrained
models from others) as quickly as possible, and then will progressively
drill into more details. You’ll learn how to use deep
learning to solve your own problems at state-of-the-art accuracy within
the first 30 minutes of the next chapter! (And feel free to skip
straight there now if you’re dying to get coding right
away.) There is a pernicious myth out there that you need to have
computing resources and datasets the size of those at Google to be able
to do deep learning, but it’s not true.


So, what sorts of tasks make for good test cases? You could train your
model to distinguish between Picasso and Monet paintings or to pick out
pictures of your daughter instead of pictures of your son. It helps to
focus on your hobbies and passions—setting yourself four or five little
projects rather than striving to solve a big, grand problem tends to
work better when you’re getting started. Since it is easy to
get stuck, trying to be too ambitious too early can often backfire.
Then, once you’ve got the basics mastered, aim to complete
something you’re really proud of!

Jeremy Says

Deep learning can be set to work on almost any problem. For instance, my first startup was a company called FastMail, which provided enhanced email services when it launched in 1999 (and still does to this day). In 2002, I set it up to use a primitive form of deep learning, single-layer neural networks, to help categorize emails and stop customers from receiving spam.




Common character traits in the people who do well at deep learning
include playfulness and curiosity. The late physicist Richard Feynman is
an example of someone we’d expect to be great at deep
learning: his development of an understanding of the movement of
subatomic particles came from his amusement at how plates wobble when
they spin in the air.


Let’s now focus on what you will learn, starting with the
software.
























The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)


We’ve completed hundreds of machine learning projects using
dozens of packages, and many programming languages.
At fast.ai, we have written courses using most of the main deep learning
and machine learning packages used today. After PyTorch came out in 2017,
we spent over a thousand hours testing it before deciding that we would
use it for future courses, software development, and research. Since
that time, PyTorch has become the world’s fastest-growing
deep learning library and is already used for most research papers at
top conferences. This is generally a leading indicator of usage in
industry, because these are the papers that end up getting used in
products and services commercially. We have found that PyTorch is the
most flexible and expressive library for deep learning. It does not
trade off speed for simplicity, but provides both.


PyTorch works best as a low-level foundation library, providing the
basic operations for higher-level functionality. The fastai library is
the most popular library for adding this higher-level functionality on
top of PyTorch. It’s also particularly well suited to the
purposes of this book, because it is unique in providing a deeply
layered software architecture (there’s even a
peer-reviewed academic paper about
this layered API). In this book, as we go deeper and deeper into the
foundations of deep learning, we will also go deeper and deeper into the
layers of fastai. This book covers version 2 of the fastai library,
which is a from-scratch rewrite providing many unique features.


However, it doesn’t really matter what software you learn,
because it takes only a few days to learn to switch from one library to
another. What really matters is learning the deep learning foundations
and techniques properly. Our focus will be on using code that, as
clearly as possible, expresses the concepts that you need to learn. Where
we are teaching high-level concepts, we will use high-level fastai code.
Where we are teaching low-level concepts, we will use low-level PyTorch
or even pure Python code.


Though it may seem like new deep learning libraries are appearing at a rapid
pace nowadays, you need to be prepared for a much faster rate of
change in the coming months and years. As more people enter the field,
they will bring more skills and ideas, and try more things. You should
assume that whatever specific libraries and software you learn today
will be obsolete in a year or two. Just think about the number of
changes in libraries and technology stacks that occur all the time in
the world of web programming—a much more mature and
slow-growing area than deep 
learning. We strongly believe that the focus
in learning needs to be on understanding the underlying techniques and
how to apply them in practice, and how to quickly build expertise in new
tools and techniques as they are released.


By the end of the book, you’ll understand nearly all the
code that’s inside fastai (and much of PyTorch too), because
in each chapter we’ll be digging a level deeper to show you
exactly what’s going on as we build and train our models.
This means that you’ll have learned the most important best
practices used in modern deep learning—not just how to use them, but how
they really work and are implemented. If you want to use those
approaches in another framework, you’ll have the knowledge
you need to do so if needed.


Since the most important thing for learning deep learning is writing
code and experimenting, it’s important that you have a great
platform for experimenting with code. The most popular programming
experimentation platform is called Jupyter. This is what we will be
using throughout this book. We will show you how you can use Jupyter to
train and experiment with models and introspect every stage of the data
preprocessing and model development pipeline. Jupyter is the most
popular tool for doing data science in Python, for good reason. It is
powerful, flexible, and easy to use. We think you will love it!


Let’s see it in practice and train our first model.

















Your First Model


As we said before, we will teach you how to do things before we explain why
they work. Following this top-down approach, we will begin by actually
training an image classifier to recognize dogs and cats with almost 100%
accuracy. To train this model and run our experiments, you will need to do
some initial setup. Don’t worry; it’s not as
hard as it looks.

Sylvain Says

Do not skip the setup part even if it looks intimidating at first, especially if you have little or no experience using things like a terminal or the command line. Most of that is not necessary, and you will find that the easiest servers can be set up with just your usual web browser. It is crucial that you run your own experiments in parallel with this book in order to learn.












Getting a GPU Deep Learning Server


To do nearly everything in this book, you’ll need access to
a computer with an 
NVIDIA GPU (unfortunately, other brands of GPU are not
fully supported by the main deep learning libraries). However, we
don’t recommend you buy one; in fact, even if you already
have one, we don’t suggest you use it just yet! Setting up a
computer takes time and energy, and you want all your energy to focus on
deep learning right now. Therefore, we instead suggest you rent access
to a computer that already has everything you need preinstalled and
ready to go. Costs can be as little as $0.25 per hour while
you’re using it, and some options are even free.

Jargon: Graphics Processing Unit (GPU)

Also known as a graphics card. A special kind of processor in your computer that can handle thousands of single tasks at the same time, especially designed for displaying 3D environments on a computer for playing games. These same basic tasks are very similar to what neural networks do, such that GPUs can run neural networks hundreds of times faster than regular CPUs. All modern computers contain a GPU, but few contain the right kind of GPU necessary for deep learning.




The best choice of GPU servers to use with this book will change over
time, as companies come and go and prices change. We maintain a list of our
recommended options on the book’s website, so go
there now and follow the instructions to get connected to a GPU deep
learning server. Don’t worry; it takes only about two
minutes to get set up on most platforms, and many don’t even
require any payment or even a credit card to get started.

Alexis Says

My two cents: heed this advice! If you like computers, you will be tempted to set up your own box. Beware! It is feasible but surprisingly involved and distracting. There is a good reason this book is not titled Everything You Ever Wanted to Know About Ubuntu System Administration, NVIDIA Driver Installation, apt-get, conda, pip, and Jupyter Notebook Configuration. That would be a book of its own. Having designed and deployed our production machine learning infrastructure at work, I can testify it has its satisfactions, but it is as unrelated to modeling as maintaining an airplane is to flying one.




Each option shown on the website includes a tutorial; after
completing the tutorial, you will end up with a screen looking like
Figure 1-2.



[image: Initial view of Jupyter Notebook]
Figure 1-2. Initial view of Jupyter Notebook




You are now ready to run your first Jupyter notebook!

Jargon: Jupyter Notebook

A piece of software that allows you to include formatted text, code, images, videos, and much more, all within a single interactive document. Jupyter received the highest honor for software, the ACM Software System Award, thanks to its wide use and enormous impact in many academic fields and in industry. Jupyter Notebook is the software most widely used by data scientists for developing and interacting with deep learning models.



















Running Your First Notebook


The notebooks are numbered by chapter in the same order as they are presented in this book. So,
the very first notebook you will see listed is the notebook that you
need to use now. You will be using this notebook to train a model that
can recognize dog and cat photos. To do this, you’ll be
downloading a dataset of dog and cat photos, and using that to train
a model.


A dataset is simply a bunch of data—it could be
images, emails, financial indicators, sounds, or anything else. There
are many datasets made freely available that are suitable for training
models. Many of these datasets are created by academics to help advance
research, many are made available for competitions (there are
competitions where data scientists can compete to see who has the most
accurate model!), and some are byproducts of other processes (such as
financial filings).

Full and Stripped Notebooks

There are two folders containing different versions of the notebooks. The full folder contains the exact notebooks used to create the book you’re reading now, with all the prose and outputs. The stripped version has the same headings and code cells, but all outputs and prose have been removed. After reading a section of the book, we recommend working through the stripped notebooks, with the book closed, and seeing if you can figure out what each cell will show before you execute it. Also try to recall what the code is demonstrating.




To open a notebook, just click it. The notebook will open, and it
will look something like Figure 1-3 (note that there may be
slight differences in details across different platforms; you can ignore
those differences).



[image: An example of notebook]
Figure 1-3. A Jupyter notebook




A notebook consists of cells. There are two main types of cell:



	
Cells containing formatted text, images, and so forth. These use a
format called Markdown, which you will learn about soon.



	
Cells containing code that can be executed, and outputs will appear
immediately underneath (which could be plain text, tables, images,
animations, sounds, or even interactive applications).






Jupyter notebooks can be in one of two modes: edit mode or command
mode. In edit mode, typing on your keyboard enters the letters
into the cell in the usual way. However, in command mode, you will not
see any flashing cursor, and each key on your keyboard will have a
special function.


Before continuing, press the Escape key on your keyboard to switch to command
mode (if you are already in command mode, this does nothing, so
press it now just in case). To see a complete list of all the
functions available, press H; press Escape to remove this help
screen. Notice that in command mode, unlike in most programs, commands do
not require you to hold down Control, Alt, or similar—you
simply press the required letter key.


You can make a copy of a cell by pressing C (the cell needs to be selected
first, indicated with an outline around it; if it is not already
selected, click it once). Then press V to paste a copy of it.


Click the cell that begins with the line “# CLICK ME” to select it. The first character in that
line indicates that what follows is a comment in Python, so it is ignored when executing the
cell. The rest of the cell is, believe it or not, a complete system for
creating and training a state-of-the-art model for recognizing cats
versus dogs. So, let’s train it now! To do so, just press
Shift-Enter on your keyboard, or click the Play button on the
toolbar. Then wait a few minutes while the following things happen:


	
A dataset called the
Oxford-IIIT Pet Dataset that
contains 7,349 images of cats and dogs from 37 breeds will be
downloaded from the fast.ai datasets collection to the GPU server you
are using, and will then be extracted.



	
A pretrained model that has already been trained on 1.3
million images using a competition-winning model will be downloaded from the internet.



	
The pretrained
model will be fine-tuned using the latest advances in transfer
learning to create a model that is specially customized for recognizing
dogs and cats.







The first two steps need to be run only once on your GPU server. If you
run the cell again, it will use the dataset and model that have already
been downloaded, rather than downloading them again.  Let’s take a look at the contents of the cell and the results (Table 1-2):


# CLICK ME
from fastai.vision.all import *
path = untar_data(URLs.PETS)/'images'

def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
    path, get_image_files(path), valid_pct=0.2, seed=42,
    label_func=is_cat, item_tfms=Resize(224))

learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)


  Table 1-2. Results from the first training
  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.169390
      	0.021388
      	0.005413
      	00:14
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.058748
      	0.009240
      	0.002706
      	00:19
    

  



You will probably not see exactly the same results shown here.
A lot of sources of small random variation are involved in
training models. We generally see an error rate of well less than 0.02
in this example, however.

Training Time

Depending on your network speed, it might take a few minutes to download the pretrained model and dataset. Running fine_tune might take a minute or so. Often models in this book take a few minutes to train, as will your own models, so it’s a good idea to come up with good techniques to make the most of this time. For instance, keep reading the next section while your model trains, or open up another notebook and use it for some coding experiments.




This Book Was Written in Jupyter Notebooks

We wrote this book using Jupyter notebooks, so for nearly every chart,
table, and calculation in this book, we’ll be showing you the exact code required to replicate it yourself. That’s
why very often in this book, you will see some code immediately followed
by a table, a picture, or just some text. If you go on the
book’s website, you will find all the code, and you
can try running and modifying every example yourself.


You just saw how a cell that outputs a table looks in the book. Here
is an example of a cell that outputs text:


1+1


2


Jupyter will always print or show the result of the last line (if there
is one). For instance, here is an example of a cell that outputs an
image:


img = PILImage.create('images/chapter1_cat_example.jpg')
img.to_thumb(192)



[image: ]







So, how do we know if this model is any good? In the last column of the
table, you can see the error rate, which is the proportion of images that
were incorrectly identified. The error rate serves as our metric—our
measure of model quality, chosen to be intuitive and comprehensible. As
you can see, the model is nearly perfect, even though the training time
was only a few seconds (not including the one-time downloading of the
dataset and the pretrained model). In fact, the accuracy
you’ve achieved already is far better than anybody had ever
achieved just 10 years ago!


Finally, let’s check that this model actually works. Go and
get a photo of a dog or a cat; if you don’t have one handy,
just search Google Images and download an image that you find there. Now
execute the cell with uploader defined. It will output a button you
can click, so you can select the image you want to classify:


uploader = widgets.FileUpload()
uploader



[image: An upload button]





Now you can pass the uploaded file to the model. Make sure that it is a clear photo of a single dog or a cat, and not a
line drawing, cartoon, or similar. The notebook will tell
you whether it thinks it is a dog or a cat, and how confident it is.
Hopefully, you’ll find that your model did a great job:


img = PILImage.create(uploader.data[0])
is_cat,_,probs = learn.predict(img)
print(f"Is this a cat?: {is_cat}.")
print(f"Probability it's a cat: {probs[1].item():.6f}")


Is this a cat?: True.
Probability it's a cat: 0.999986


Congratulations on your first classifier!


But what does this mean? What did you actually do? In order to
explain this, let’s zoom out again to take in the big
picture.

















What Is Machine Learning?


Your classifier is a deep learning model. As was already mentioned, deep
learning models use neural networks, which originally date from the
1950s and have become powerful very recently thanks to recent
advancements.


Another key piece of context is that deep learning is just a modern area
in the more general discipline of machine learning. To understand the
essence of what you did when you trained your own classification model,
you don’t need to understand deep learning. It is enough to
see how your model and your training process are examples of the
concepts that apply to machine learning in general.


So in this section, we will describe machine learning. We will
explore the key concepts and see how they can be traced back to the
original essay that introduced them.


Machine learning is, like regular programming, a way to get computers
to complete a specific task. But how would we use regular programming
to do what we just did in the preceding section: recognize dogs versus cats in
photos? We would have to write down for the computer the exact steps
necessary to complete the task.


Normally, it’s easy enough for us to write down the steps to
complete a task when we’re writing a program. We just think
about the steps we’d take if we had to do the task by hand,
and then we translate them into code. For instance, we can write a
function that sorts a list. In general, we’d write a function that looks
something like Figure 1-4 (where inputs might be an
unsorted list, and results a sorted list).



[image: Pipeline inputs, program, results]
Figure 1-4. A traditional program




But for recognizing objects in a photo, that’s a bit tricky;
what are the steps we take when we recognize an object in a
picture? We really don’t know, since it all happens in our
brain without us being consciously aware of it!


Right back at the dawn of computing, in 1949, an IBM researcher named
Arthur Samuel started working on a different way to get computers to
complete tasks, which he called machine learning. In his classic 1962
essay “Artificial Intelligence: A Frontier of Automation,” he wrote:


Programming a computer for such computations is, at best, a difficult task, not primarily because of any inherent complexity in the computer itself but, rather, because of the need to spell out every minute step of the process in the most exasperating detail. Computers, as any programmer will tell you, are giant morons, not giant brains.



His basic idea was this: instead of telling the computer the exact steps
required to solve a problem, show it examples of the problem to
solve, and let it figure out how to solve it itself. This turned out to
be very effective: by 1961, his checkers-playing program had learned so
much that it beat the Connecticut state champion! Here’s how
he described his idea (from the same essay as noted previously):


Suppose we arrange for some automatic means of testing the effectiveness of any current weight assignment in terms of actual performance and provide a mechanism for altering the weight assignment so as to maximize the performance. We need not go into the details of such a procedure to see that it could be made entirely automatic and to see that a machine so programmed would “learn” from its experience.



There are a number of powerful concepts embedded in this short
statement:



	
The idea of a “weight assignment”



	
The fact that every weight assignment has some “actual performance”



	
The requirement that there be an “automatic means” of testing that
performance



	
The need for a “mechanism” (i.e., another automatic
process) for improving the performance by changing the weight
assignments






Let’s take these concepts one by one, in order to understand how they
fit together in practice. First, we need to understand what Samuel means
by a weight assignment.


Weights are just variables, and a weight assignment is a particular
choice of values for those variables. The program’s inputs
are values that it processes in order to produce its results—for
instance, taking image pixels as inputs, and returning the
classification “dog” as a result. The program’s weight
assignments are other values that define how the program will operate.


Because they will affect the program, they are in a sense another kind of
input. We will update our basic picture in Figure 1-4
and replace it with Figure 1-5 in order to take this
into account.



[image: ]
Figure 1-5. A program using weight assignment




We’ve changed the name of our box from program to model.
This is to follow modern terminology and to reflect that the model is
a special kind of program: it’s one that can do many
different things, depending on the weights. It can be implemented in
many different ways. For instance, in Samuel’s checkers
program, different values of the weights would result in different
checkers-playing strategies.


(By the way, what Samuel called “weights” are most generally referred to
as model parameters these days, in case you have encountered that
term. The term weights is reserved for a particular type of model
parameter.)


Next, Samuel said we need an automatic means of testing the effectiveness
of any current weight assignment in terms of actual performance. In the
case of his checkers program, the “actual performance” of a model
would be how well it plays. And you could automatically test the
performance of two models by setting them to play against each other,
and seeing which one usually wins.


Finally, he says we need a mechanism for altering the weight assignment
so as to maximize the performance. For instance, we could look at the
difference in weights between the winning model and the losing model,
and adjust the weights a little further in the winning direction.


We can now see why he said that such a procedure could be made entirely
automatic and…a machine so programmed would “learn” from its
experience. Learning would become entirely automatic when the
adjustment of the weights was also automatic—when instead of us
improving a model by adjusting its weights manually, we relied on an
automated mechanism that produced adjustments based on performance.


Figure 1-6 shows the full picture of Samuel’s
idea of training a machine learning model.



[image: The basic training loop]
Figure 1-6. Training a machine learning model




Notice the distinction between the model’s results (e.g.,
the moves in a checkers game) and its performance (e.g., whether it
wins the game, or how quickly it wins).


Also note that once the model is trained—that is, once
we’ve chosen our final, best, favorite weight assignment—then we can think of the weights as being part of the model, since
we’re not varying them anymore.


Therefore, actually using a model after it’s trained looks
like Figure 1-7.



[image: ]
Figure 1-7. Using a trained model as a program




This looks identical to our original diagram in
Figure 1-4, just with the word program replaced with
model. This is an important insight: a trained model can be treated
just like a regular computer program.

Jargon: Machine Learning

The training of programs developed by allowing a computer to learn from its experience, rather than through manually coding the individual steps.



















What Is a Neural Network?


It’s not too hard to imagine what the model might look like
for a checkers program. There might be a range of checkers strategies
encoded, and some kind of search mechanism, and then the weights could
vary how strategies are selected, what parts of the board are focused on
during a search, and so forth. But it’s not at all obvious
what the model might look like for an image recognition program, or for
understanding text, or for many other interesting problems we might
imagine.


What we would like is some kind of function that is so flexible that it
could be used to solve any given problem, just by varying its weights.
Amazingly enough, this function actually exists! It’s the
neural network, which we already discussed. That is, if you regard a
neural network as a mathematical function, it turns out to be a function
that is extremely flexible depending on its weights. A mathematical
proof called the universal approximation theorem shows that this
function can solve any problem to any level of accuracy, in theory. The
fact that neural networks are so flexible means that, in practice, they
are often a suitable kind of model, and you can focus your effort on the
process of training them—that is, of finding good weight assignments.


But what about that process? One could imagine that you might need to
find a new “mechanism” for automatically updating weight for every
problem. This would be laborious. What we’d like here as
well is a completely general way to update the weights of a neural
network, to make it improve at any given task. Conveniently, this also
exists!


This is called stochastic gradient descent (SGD). We’ll
see how neural networks and SGD work in detail in
Chapter 4, as well as explaining the universal
approximation theorem. For now, however, we will instead use
Samuel’s own words: We need not go into the details of such
a procedure to see that it could be made entirely automatic and to see
that a machine so programmed would “learn” from its experience.

Jeremy Says

Don’t worry; neither SGD nor neural nets are mathematically complex. Both nearly entirely rely on addition and multiplication to do their work (but they do a lot of addition and multiplication!). The main reaction we hear from students when they see the details is: “Is that all it is?”




In other words, to recap, a neural network is a particular kind of
machine learning model, which fits right in to Samuel’s
original conception. Neural networks are special because they are highly
flexible, which means they can solve an unusually wide range of problems
just by finding the right weights. This is powerful, because stochastic
gradient descent provides us a way to find those weight values
automatically.


Having zoomed out, let’s now zoom back in and revisit our
image classification problem using Samuel’s framework.


Our inputs are the images. Our weights are the weights in
the neural net. Our model is a neural net. Our results are the
values that are calculated by the neural net, like “dog” or “cat.”


What about the next piece, an automatic means of testing the
effectiveness of any current weight assignment in terms of actual
performance? Determining “actual performance” is easy enough: we can
simply define our model’s performance as its accuracy at
predicting the correct answers.


Putting this all together, and assuming that SGD is our mechanism for
updating the weight assignments, we can see how our image classifier is
a machine learning model, much like Samuel envisioned.

















A Bit of Deep Learning Jargon


Samuel was working in the 1960s, and since then terminology has changed. Here is the
modern deep learning terminology for all the pieces we have discussed:



	
The functional form of the model is called its architecture (but
be careful—sometimes people use model as a synonym of architecture,
so this can get confusing).



	
The weights are called parameters.



	
The predictions are calculated from the independent variable,
which is the data not including the labels.



	
The results of the model are called predictions.



	
The measure of performance is called the loss.



	
The loss depends not only on the predictions, but also on the correct
labels (also known as targets or the dependent variable); e.g., “dog”
or “cat.”






After making these changes, our diagram in Figure 1-6
looks like Figure 1-8.



[image: ]
Figure 1-8. Detailed training loop



















Limitations Inherent to Machine Learning


From this picture, we can now see some fundamental things about training
a deep learning model:



	
A model cannot be created without data.



	
A model can learn to operate on only the patterns seen in the input
data used to train it.



	
This learning approach creates only predictions, not recommended
actions.



	
It’s not enough to just have examples of input data; we
need labels for that data too (e.g., pictures of dogs and cats
aren’t enough to train a model; we need a label for each
one, saying which ones are dogs and which are cats).






Generally speaking, we’ve seen that most organizations that
say they don’t have enough data actually mean they
don’t have enough labeled data. If any organization is
interested in doing something in practice with a model, then presumably
they have some inputs they plan to run their model against. And
presumably they’ve been doing that some other way for a
while (e.g., manually, or with some heuristic program), so they have data
from those processes! For instance, a radiology practice will almost
certainly have an archive of medical scans (since they need to be able
to check how their patients are progressing over time), but those scans
may not have structured labels containing a list of diagnoses or
interventions (since radiologists generally create free-text natural
language reports, not structured data). We’ll be discussing
labeling approaches a lot in this book, because it’s such an
important issue in practice.


Since these kinds of machine learning models can only make predictions
(i.e., attempt to replicate labels), this can result in a significant gap
between organizational goals and model capabilities. For instance, in
this book you’ll learn how to create a 
recommendation
system that can predict what products a user might purchase. This is
often used in ecommerce, such as to customize products shown on a home
page by showing the highest-ranked items. But such a model is generally
created by looking at a user and their buying history (inputs) and
what they went on to buy or look at (labels), which means that the
model is likely to tell you about products the user already has, or already
knows about, rather than new products that they are most likely to be
interested in hearing about. That’s very different from what,
say, an expert at your local bookseller might do, where they ask
questions to figure out your taste, and then tell you about authors or
series that you’ve never heard of before.


Another critical insight comes from considering how a model interacts
with its environment. This can create feedback loops, as described here:


	
A predictive policing model is created based on where arrests have
been made in the past. In practice, this is not actually predicting
crime, but rather predicting arrests, and is therefore partially simply
reflecting biases in existing policing 
processes.



	
Law enforcement officers then might use that model to decide where to
focus their policing activity, resulting in increased arrests in those
areas.



	
Data on these additional arrests would then be fed back in to retrain future
versions of the model.







This is a positive feedback loop: the more the model is used,
the more biased the data becomes, making the model even more biased, and
so forth.


Feedback loops can also create problems in commercial settings. For instance, a
video recommendation system might be biased toward recommending content
consumed by the biggest watchers of video (e.g., conspiracy
theorists and extremists tend to watch more online video content than the
average), resulting in those users increasing their video consumption,
resulting in more of those kinds of videos being recommended. We’ll consider this topic in more detail in Chapter 3.


Now that you have seen the base of the theory, let’s go back
to our code example and see in detail how the code corresponds to the
process we just described.

















How Our Image Recognizer Works


Let’s see just how our image recognizer code maps to these
ideas. We’ll put each line into a separate cell, and look at
what each one is doing (we won’t explain every detail of
every parameter yet, but will give a description of the important bits;
full details will come later in the book). The first line imports all of the fastai.vision library:


from fastai.vision.all import *


This gives us all of the functions and classes we will need to create a wide variety
of computer vision models.

Jeremy Says

A lot of Python coders recommend avoiding importing a whole library like this (using the import * syntax) because in large software projects it can cause problems. However, for interactive work such as in a Jupyter notebook, it works great. The fastai library is specially designed to support this kind of interactive use, and it will import only the necessary pieces into your environment.




The second line downloads a standard dataset from the
fast.ai datasets collection (if not
previously downloaded) to your server, extracts it (if not previously
extracted), and returns a Path object with the extracted location:


path = untar_data(URLs.PETS)/'images'

Sylvain Says

Throughout my time studying at fast.ai, and even still today, I’ve learned a lot about productive coding practices. The fastai library and fast.ai notebooks are full of great little tips that have helped make me a better programmer. For instance, notice that the fastai library doesn’t just return a string containing the path to the dataset, but a Path object. This is a really useful class from the Python 3 standard library that makes accessing files and directories much easier. If you haven’t come across it before, be sure to check out its documentation or a tutorial and try it out. Note that the book’s website contains links to recommended tutorials for each chapter. I’ll keep letting you know about little coding tips I’ve found useful as we come across them.




In the third line, we define a function, is_cat, that labels cats based on a filename rule provided by the dataset’s creators:


def is_cat(x): return x[0].isupper()


We use that function in the fourth line, which tells fastai what kind of dataset we have and how it is structured:


dls = ImageDataLoaders.from_name_func(
    path, get_image_files(path), valid_pct=0.2, seed=42,
    label_func=is_cat, item_tfms=Resize(224))


There are various classes for different kinds of
deep learning datasets and problems—here we’re using
ImageDataLoaders. The first part of the class name will generally be
the type of data you have, such as image or text.


The other important piece of information that we have to tell fastai is
how to get the labels from the dataset. Computer vision datasets are
normally structured in such a way that the label for an image is part of
the filename or path—most commonly the parent folder name. fastai
comes with a number of standardized labeling methods, and ways to write
your own. Here we’re telling fastai to use the is_cat function we just defined.


Finally, we define the Transforms that we need. A Transform contains
code that is applied automatically during training; fastai includes many
predefined Transforms, and adding new ones is as simple as creating a
Python function. There are two kinds: item_tfms are applied to each
item (in this case, each item is resized to a 224-pixel square), while
batch_tfms are applied to a batch of items at a time using the GPU,
so they’re particularly fast (we’ll see many
examples of these throughout this book).


Why 224 pixels? This is the standard size for historical reasons (old
pretrained models require this size exactly), but you can pass pretty
much anything. If you increase the size, you’ll often get a
model with better results (since it will be able to focus on more
details), but at the price of speed and memory consumption; the opposite is true
if you decrease the size.

Jargon: Classification and Regression

Classification and regression have very specific meanings in machine learning. These are the two main types of model that we will be investigating in this book. A classification model is one that attempts to predict a class, or category. That is, it’s predicting from a number of discrete possibilities, such as “dog” or “cat.” A regression model is one that attempts to predict one or more numeric quantities, such as a temperature or a location. Sometimes people use the word regression to refer to a particular kind of model called a linear regression model; this is a bad practice, and we won’t be using that terminology in this book!




The Pet dataset contains 7,390 pictures of dogs and cats, consisting of
37 breeds. Each image is labeled using its filename: for
instance, the file great_pyrenees_173.jpg is the 173rd example of an
image of a Great Pyrenees breed dog in the dataset. The filenames start
with an uppercase letter if the image is a cat, and a lowercase letter
otherwise. We have to tell fastai how to get labels from the filenames,
which we do by calling from_name_func (which means that filenames can
be extracted using a function applied to the filename) and passing
x[0].isupper(), which evaluates to True if the first letter is
uppercase (i.e., it’s a cat).


The most important parameter to mention here is valid_pct=0.2. This
tells fastai to hold out 20% of the data and not use it for training
the model at all. This 20% of the data is called the validation set;
the remaining 80% is called the training set. The 
validation set is
used to measure the accuracy of the model. By default, the 20% that is
held out is selected randomly. The parameter seed=42 sets the random
seed to the same value every time we run this code, which means we get
the same validation set every time we run it—this way, if we change our model and retrain it, we know that any differences are due to the changes to the
model, not due to having a different random validation set.


fastai will always show you your model’s accuracy using
only the validation set, never the training set. This is absolutely
critical, because if you train a large enough model for a long enough
time, it will eventually memorize the label of every item in
your dataset! The result will not be a useful model, because what we care
about is how well our model works on previously unseen images. That is
always our goal when creating a model: for it to be useful on data that the
model sees only in the future, after it has been trained.


Even when your model has not fully memorized all your data, earlier on
in training it may have memorized certain parts of it. As a result, the
longer you train for, the better your accuracy will get on the training
set; the validation set accuracy will also improve for a while, but
eventually it will start getting worse as the model starts to memorize
the training set rather than finding generalizable underlying patterns
in the data. When this happens, we say that the model is overfitting.


Figure 1-9 shows what happens when you overfit, using a
simplified example where we have just one parameter and some randomly
generated data based on the function x**2. As you see, although the
predictions in the overfit model are accurate for data near the observed
data points, they are way off when outside of that range.



[image: Example of overfitting]
Figure 1-9. Example of overfitting




Overfitting is the single most important and challenging issue when
training for all machine learning practitioners, and all algorithms. As
you will see, it is easy to create a model that does a great job at
making predictions on the exact data it has been trained on, but
it is much harder to make accurate predictions on data the model has never seen
before. And of course, this is the data that will matter in
practice. For instance, if you create a handwritten digit classifier
(as we will soon!) and use it to recognize numbers written on
checks, then you are never going to see any of the numbers that the
model was trained on—every check will have slightly different
variations of writing to deal with.


You will learn many methods to avoid
overfitting in this book. However, you should use those methods only
after you have confirmed that overfitting is occurring
(i.e., if you have observed the validation accuracy getting worse
during training). We often see practitioners using overfitting
avoidance techniques even when they have enough data that they
didn’t need to do so, ending up with a model that may be
less accurate than what they could have achieved.

Validation Set

When you train a model, you must always have both a training set and a validation set, and you must measure the accuracy of your model only on the validation set. If you train for too long, with not enough data, you will see the accuracy of your model start to get worse; this is called overfitting. fastai defaults valid_pct to 0.2, so even if you forget, fastai will create a validation set for you!




The fifth line of the code training our image recognizer tells fastai to create a convolutional neural network
(CNN) and specifies what architecture to use (i.e., what kind of model
to create), what data we want to train it on, and what metric to use:


learn = cnn_learner(dls, resnet34, metrics=error_rate)


Why a CNN? It’s the current state-of-the-art approach to creating
computer vision models. We’ll be learning all about how CNNs
work in this book. Their structure is inspired by how the human vision
system works.


There are many architectures in fastai, which we will introduce in this book (as well as discussing how to create your
own). Most of the time, however, picking an architecture
isn’t a very important part of the deep learning process.
It’s something that academics love to talk about, but in
practice it is unlikely to be something you need to spend much time on.
There are some standard architectures that work most of the time, and in
this case we’re using one called ResNet that
we’ll be talking a lot about in the book; it is both
fast and accurate for many datasets and problems. The 34 in
resnet34 refers to the number of layers in this variant of the
architecture (other options are 18, 50, 101, and 152).
Models using architectures with more layers take longer to train and
are more prone to overfitting (i.e., you can’t train them for
as many epochs before the accuracy on the validation set starts getting
worse). On the other hand, when using more data, they can be quite a bit
more accurate.


What is a metric? A metric is a function that measures the quality of the
model’s predictions using the validation set, and will be
printed at the end of each epoch. In this case, we’re
using error_rate, which is a function provided by fastai that does
just what it says: tells you what percentage of images in the validation
set are being classified incorrectly. Another common metric for
classification is accuracy (which is just 1.0 - error_rate). fastai
provides many more, which will be discussed throughout this book.


The concept of a metric may remind you of loss, but there is an
important distinction. The entire purpose of loss is to define a
“measure of performance” that the training system can use to update
weights automatically. In other words, a good choice for loss is a
choice that is easy for stochastic gradient descent to use. But a metric
is defined for human consumption, so a good metric is one that is easy
for you to understand, and that hews as closely as possible to what you
want the model to do. At times, you might decide that the loss function
is a suitable metric, but that is not necessarily the case.


cnn_learner also has a parameter pretrained, which defaults to
True (so it’s used in this case, even though we haven’t specified it), which sets the weights
in your model to values that have already been trained by experts to
recognize a thousand different categories across 1.3 million photos
(using the famous ImageNet dataset). A model that has weights that
have already been trained on another dataset is called a pretrained
model. You should nearly always use a pretrained model, because it
means that your model, before you’ve even shown it any of
your data, is already very capable. And as you’ll see, in a
deep learning model, many of these capabilities are things
you’ll need, almost regardless of the details of your
project. For instance, parts of pretrained models will handle edge,
gradient, and color detection, which are needed for many tasks.


When using a pretrained model, cnn_learner will remove the last layer,
since that is always specifically customized to the original training
task (i.e., ImageNet dataset classification), and replace it with one or
more new layers with randomized weights, of an appropriate size for the
dataset you are working with. This last part of the model is known as
the head.


Using pretrained models is the most important method we have to allow
us to train more accurate models, more quickly, with less data and less
time and money. You might think that would mean that using pretrained
models would be the most studied area in academic deep learning…but
you’d be very, very wrong! The importance of pretrained
models is generally not recognized or discussed in most courses, books,
or software library features, and is rarely considered in academic
papers. As we write this at the start of 2020, things are just starting
to change, but it’s likely to take a while. So be careful:
most people you speak to will probably greatly underestimate what you
can do in deep learning with few resources, because they probably
won’t deeply understand how to use pretrained models.


Using a pretrained model for a task different from what it was originally
trained for is known as transfer learning. Unfortunately, because
transfer learning is so under-studied, few domains have pretrained
models available. For instance, few pretrained
models are currently available in medicine, making transfer learning challenging to
use in that domain. In addition, it is not yet well understood how to
use transfer learning for tasks such as time series analysis.

Jargon: Transfer Learning

Using a pretrained model for a task different from what it was originally trained for.




The sixth line of our code tells fastai how to fit the model:


learn.fine_tune(1)


As we’ve
discussed, the architecture only describes a template for a
mathematical function; it doesn’t actually do anything
until we provide values for the millions of parameters it contains.


This is the key to deep learning—determining how to fit the parameters of a model
to get it to solve your problem. To fit a model, we have to
provide at least one piece of information: how many times to look at
each image (known as number of epochs). The number of epochs you
select will largely depend on how much time you have available, and how
long you find it takes in practice to fit your model. If you select a
number that is too small, you can always train for more epochs later.


But why is the method called fine_tune, and not fit? fastai
does have a method called fit, which does indeed fit a model
(i.e., look at images in the training set multiple times, each time
updating the parameters to make the predictions closer and closer to
the target labels). But in this case, we’ve started with a
pretrained model, and we don’t want to throw away all those
capabilities that it already has. As you’ll learn in this
book, there are some important tricks to adapt a pretrained model for a
new dataset—a process called fine-tuning.

Jargon: Fine-Tuning

A transfer learning technique that updates the parameters of a pretrained model by training for additional epochs using a different task from that used for pretraining.




When you use the fine_tune method, fastai will use these tricks for
you. There are a few parameters you can set (which we’ll
discuss later), but in the default form shown here, it does two steps:


	
Use one epoch to fit just those parts of the model necessary to get
the new random head to work correctly with your dataset.



	
Use the number of epochs requested when calling the method to fit the entire
model, updating the weights of the later layers (especially the head)
faster than the earlier layers (which, as we’ll see,
generally don’t require many changes from the pretrained
weights).







The head of a model is the part that is newly added to be specific to
the new dataset. An epoch is one complete pass through the dataset.
After calling fit, the results after each epoch are printed, showing
the epoch number, the training and validation set losses (the “measure
of performance” used for training the model), and any metrics
you’ve requested (error rate, in this case).


So, with all this code, our model learned to recognize cats and dogs just
from labeled examples. But how did it do it?

















What Our Image Recognizer Learned


At this stage, we have an image recognizer that is working well, but
we have no idea what it is doing! Although many people complain
that deep learning results in impenetrable “black box” models (that
is, something that gives predictions but that no one can understand),
this really couldn’t be further from the truth. There is a
vast body of research showing how to deeply inspect deep learning
models and get rich insights from them. Having said that, all kinds of
machine learning models (including deep learning and traditional
statistical models) can be challenging to fully understand, especially
when considering how they will behave when coming across data that is
very different from the data used to train them. We’ll be
discussing this issue throughout this book.


In 2013, PhD student Matt Zeiler and his supervisor, Rob Fergus,
published “Visualizing and
Understanding Convolutional Networks”, which showed how to visualize the
neural network weights learned in each layer of a model. They carefully
analyzed the model that won the 2012 ImageNet competition, and used this
analysis to greatly improve the model, such that they were able to go on
to win the 2013 competition! Figure 1-10 is the picture that
they published of the first layer’s weights.



[image: Activations of early layers of a CNN]
Figure 1-10. Activations of the first layer of a CNN (courtesy of Matthew D. Zeiler and Rob Fergus)




This picture requires some explanation. For each layer, the image part
with the light gray background shows the reconstructed weights,
and the larger section at the bottom shows the parts of the training images that most
strongly matched each set of weights. For layer 1, what we can see is
that the model has discovered weights that represent diagonal,
horizontal, and vertical edges, as well as various gradients.
(Note that for each layer, only a subset of the features is shown; in
practice there are thousands across all of the layers.)


These are the basic building blocks that the model has learned for computer
vision. They have been widely analyzed by neuroscientists and computer
vision researchers, and it turns out that these learned building blocks
are very similar to the basic visual machinery in the human eye, as well
as the handcrafted computer vision features that were developed prior to
the days of deep learning. The next layer is represented in
Figure 1-11.



[image: Activations of early layers of a CNN]
Figure 1-11. Activations of the second layer of a CNN (courtesy of Matthew D. Zeiler and Rob Fergus)




For layer 2, there are nine examples of weight reconstructions for each
of the features found by the model. We can see that the model has
learned to create feature detectors that look for corners, repeating
lines, circles, and other simple patterns. These are built from the
basic building blocks developed in the first layer. For each of these,
the righthand side of the picture shows small patches from actual
images that these features most closely match. For instance, the
particular pattern in row 2, column 1 matches the gradients and textures
associated with sunsets.


Figure 1-12 shows the image from the paper showing the results
of reconstructing the features of layer 3.



[image: Activations of medium layers of a CNN]
Figure 1-12. Activations of the third layer of a CNN (courtesy of Matthew D. Zeiler and Rob Fergus)




As you can see by looking at the righthand side of this picture, the
features are now able to identify and match with higher-level semantic
components, such as car wheels, text, and flower petals. Using these
components, layers 4 and 5 can identify even higher-level
concepts, as shown in Figure 1-13.



[image: Activations of end layers of a CNN]
Figure 1-13. Activations of the fourth and fifth layers of a CNN (courtesy of Matthew D. Zeiler and Rob Fergus)




This article was studying an older model called AlexNet that
contained only five layers. Networks developed since then can have hundreds
of layers—so you can imagine how rich the features developed by these
models can be!


When we fine-tuned our pretrained model earlier, we adapted what those
last layers focus on (flowers, humans, animals) to specialize on the
cats versus dogs problem. More generally, we could specialize such a
pretrained model on many different tasks. Let’s have a
look at some examples.

















Image Recognizers Can Tackle Non-Image Tasks


An image recognizer can, as its name suggests, only recognize images.
But a lot of things can be represented as images, which means that an
image recognizer can learn to complete many tasks.


For instance, a sound can be converted to a spectrogram, which is a
chart that shows the amount of each frequency at each time in an audio
file. Fast.ai student Ethan Sutin used this approach to
easily beat the published accuracy of a state-of-the-art environmental sound detection model
using a dataset of 8,732 urban sounds.
fastai’s show_batch clearly shows how each sound
has a quite distinctive spectrogram, as you can see in
Figure 1-14.



[image: show_batch with spectrograms of sounds]
Figure 1-14. show_batch with spectrograms of sounds




A time series can easily be converted into an image by simply plotting the
time series on a graph. However, it is often a good idea to try to
represent your data in a way that makes it as easy as possible to pull
out the most important components. In a time series, things like
seasonality and anomalies are most likely to be of interest.


Various transformations are available for time series data. For instance,
fast.ai student Ignacio Oguiza created images from a time series dataset for olive oil classification, using a technique called Gramian
Angular Difference Field (GADF); you can see the result in Figure 1-15.
He then fed those images to an image classification model just like the
one you see in this chapter. His results, despite having only 30
training set images, were well over 90% accurate, and close to the
state of the art.



[image: Converting a time series into an image]
Figure 1-15. Converting a time series into an image




Another interesting fast.ai student project example comes from Gleb
Esman. He was working on fraud detection at Splunk, using
a dataset of users’ mouse movements and mouse clicks. He
turned these into pictures by drawing an image displaying the position, speed,
and acceleration of the mouse pointer by using colored lines, and
the clicks were displayed using
small
colored circles, as shown in Figure 1-16. He fed this into
an image recognition model just like the one we’ve used in
this chapter, and it worked so well that it led to a patent for this
approach to fraud analytics!



[image: Converting computer mouse behavior to an image]
Figure 1-16. Converting computer mouse behavior to an image




Another example comes from the paper
“Malware
Classification with Deep Convolutional Neural Networks” by Mahmoud Kalash et al., which explains
that “the malware binary file is divided into 8-bit sequences which are
then converted to equivalent decimal values. This decimal vector is
reshaped and [a] gray-scale image is generated that represent[s] the malware
sample,” in Figure 1-17.



[image: Malware classification process]
Figure 1-17. Malware classification process




The authors then show “pictures” generated through this process of malware in
different categories, as shown in Figure 1-18.



[image: Malware examples]
Figure 1-18. Malware examples




As you can see, the different types of malware look very distinctive to
the human eye. The model the researchers trained based on this image representation
was more accurate at malware classification than any previous approach
shown in the academic literature. This suggests a good rule of thumb for
converting a dataset into an image representation: if the human eye can
recognize categories from the images, then a deep learning model should
be able to do so too.


In general, you’ll find that a small number of general
approaches in deep learning can go a long way, if you’re a
bit creative in how you represent your data! You shouldn’t
think of approaches like the ones described here as “hacky workarounds,” because they often (as here) beat previously state-of-the-art results.
These really are the right ways to think about these problem domains.

















Jargon Recap


We just covered a lot of information, so let’s recap briefly.
Table 1-3 provides a handy vocabulary list.


Table 1-3. Deep learning vocabulary


	Term
	Meaning





	Label

	The data that we’re trying to predict, such as “dog” or “cat”




	Architecture

	The template of the model that we’re trying to fit; i.e., the actual mathematical function that we’re passing the input data and parameters to




	Model

	The combination of the architecture with a particular set of parameters




	Parameters

	The values in the model that change what task it can do and that are updated through model training




	Fit

	Update the parameters of the model such that the predictions of the model using the input data match the target labels




	Train

	A synonym for fit




	Pretrained model

	A model that has already been trained, generally using a large dataset, and will be fine-tuned




	Fine-tune

	Update a pretrained model for a different task




	Epoch

	One complete pass through the input data




	Loss

	A measure of how good the model is, chosen to drive training via SGD




	Metric

	A measurement of how good the model is using the validation set, chosen for human consumption




	Validation set

	A set of data held out from training, used only for measuring how good the model is




	Training set

	The data used for fitting the model; does not include any data from the validation set




	Overfitting

	Training a model in such a way that it remembers specific features of the input data, rather than generalizing well to data not seen during training




	CNN

	Convolutional neural network; a type of neural network that works particularly well for computer vision tasks







With this vocabulary in hand, we are now in a position to bring together
all the key concepts introduced so far. Take a moment to review those definitions
and read the following summary. If you can follow the explanation,
you’re well equipped to understand the discussions to come.


Machine learning is a discipline in which we define a program not by
writing it entirely ourselves, but by learning from data. Deep
learning is a specialty within machine learning that uses neural
networks with multiple layers. Image classification is a
representative example (also known as image recognition). We start
with labeled data—a set of images for which we have assigned a
label to each image, indicating what it represents. Our goal is to
produce a program, called a model, that, given a new image, will make
an accurate prediction regarding what that new image represents.


Every model starts with a choice of architecture, a general template
for how that kind of model works internally. The process of training
(or fitting) the model is the process of finding a set of parameter
values (or weights) that specialize that general architecture into
a model that works well for our particular kind of data. To
define how well a model does on a single prediction, we need to define a
loss function, which determines how we score a prediction as good or bad.


To make the training process go faster, we might start with a
pretrained model—a model that has already been trained on someone
else’s data. We can then adapt it to our data by training it a
bit more on our data, a process called fine-tuning.


When we train a model, a key concern is to ensure that our model
generalizes: it learns general lessons from our data
that also apply to new items it will encounter, so it can make
good predictions on those items. The risk is that if we train our model
badly, instead of learning general lessons, it effectively memorizes what
it has already seen, and then it will make poor predictions about new
images. Such a failure is called overfitting.


To avoid this, we always divide our data into two parts, the training set and the
validation set. We train the model by showing it only the training
set, and then we evaluate how well the model is doing by seeing how well
it performs on items from the validation set. In this way, we check
if the lessons the model learns from the training set are lessons that
generalize to the validation set. In order for a person to assess how
well the model is doing on the validation set overall, we define a
metric. During the training process, when the model has seen every
item in the training set, we call that an epoch.


All these concepts apply to machine learning in general. They
apply to all sorts of schemes for defining a model by training it with
data. What makes deep learning distinctive is a particular class of
architectures: the architectures based on neural networks. In
particular, tasks like image classification rely heavily on
convolutional neural networks, which we will discuss shortly.
























Deep Learning Is Not Just for Image Classification


Deep learning’s effectiveness for classifying images has
been widely discussed in recent years, even showing superhuman
results on complex tasks like recognizing malignant tumors in CT scans.
But it can do a lot more than this, as we will show here.


For instance, let’s talk about something that is critically
important for autonomous vehicles: localizing objects in a picture. If a
self-driving car doesn’t know where a pedestrian is, then it
doesn’t know how to avoid one! Creating a model that can
recognize the content of every individual pixel in an image is called
segmentation. Here is how we can train a segmentation model with
fastai, using a subset of the CamVid dataset from the paper
“Semantic Object Classes in Video: A High-Definition Ground Truth Database” by Gabriel J. Brostow et al.:


path = untar_data(URLs.CAMVID_TINY)
dls = SegmentationDataLoaders.from_label_func(
    path, bs=8, fnames = get_image_files(path/"images"),
    label_func = lambda o: path/'labels'/f'{o.stem}_P{o.suffix}',
    codes = np.loadtxt(path/'codes.txt', dtype=str)
)

learn = unet_learner(dls, resnet34)
learn.fine_tune(8)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	2.906601
      	2.347491
      	00:02
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	1.988776
      	1.765969
      	00:02
    

    
      	1
      	1.703356
      	1.265247
      	00:02
    

    
      	2
      	1.591550
      	1.309860
      	00:02
    

    
      	3
      	1.459745
      	1.102660
      	00:02
    

    
      	4
      	1.324229
      	0.948472
      	00:02
    

    
      	5
      	1.205859
      	0.894631
      	00:02
    

    
      	6
      	1.102528
      	0.809563
      	00:02
    

    
      	7
      	1.020853
      	0.805135
      	00:02
    

  



We are not even going to walk through this code line by line, because it
is nearly identical to our previous example! (We will be doing a deep dive into segmentation models in
Chapter 15, along with all of the other models that
we are briefly introducing in this chapter and many, many more.)


We can visualize how well it achieved its task by asking the model to
color-code each pixel of an image. As you can see, it nearly perfectly
classifies every pixel in every object. For instance, notice that all of
the cars are overlaid with the same color, and all of the trees are
overlaid with the same color (in each pair of images, the lefthand
image is the ground truth label, and the right is the prediction from
the model):


learn.show_results(max_n=6, figsize=(7,8))



[image: ]





One other area where deep learning has dramatically improved in the last
couple of years is natural language processing (NLP). Computers can now
generate text, translate automatically from one language to another,
analyze comments, label words in sentences, and much more. Here is all
of the code necessary to train a model that can classify the sentiment
of a movie review better than anything that existed in the world just
five years ago:


from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')
learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5, metrics=accuracy)
learn.fine_tune(4, 1e-2)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.594912
      	0.407416
      	0.823640
      	01:35
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.268259
      	0.316242
      	0.876000
      	03:03
    

    
      	1
      	0.184861
      	0.246242
      	0.898080
      	03:10
    

    
      	2
      	0.136392
      	0.220086
      	0.918200
      	03:16
    

    
      	3
      	0.106423
      	0.191092
      	0.931360
      	03:15
    

  



This model is using the IMDb Large Movie Review dataset from “Learning Word Vectors for Sentiment Analysis” by Andrew Maas et al. It works well with movie reviews of many thousands of words, but let’s test it on a short one to see how it works:


learn.predict("I really liked that movie!")


('pos', tensor(1), tensor([0.0041, 0.9959]))


Here we can see the model has considered the review to be positive. The
second part of the result is the index of “pos” in our data vocabulary,
and the last part is the probabilities attributed to each class (99.6%
for “pos” and 0.4% for “neg”).


Now it’s your turn! Write your own mini movie review, or
copy one from the internet, and you can see what this model thinks about
it.


The Order Matters

In a Jupyter notebook, the order you execute each cell is
important. It’s not like Excel, where everything gets
updated as soon as you type something anywhere—it has an inner
state that gets updated each time you execute a cell. For instance, when
you run the first cell of the notebook (with the “CLICK ME” comment), you
create an object called learn that contains a model and data for an image
classification problem.


If we were to run the cell just shown in the text (the one
that predicts whether a review is good) straight after, we would get
an error as this learn object does not contain a text classification
model. This cell needs to be run after the one containing this:


from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')
learn = text_classifier_learner(dls, AWD_LSTM, drop_mult=0.5,
                                metrics=accuracy)
learn.fine_tune(4, 1e-2)


The outputs themselves can be deceiving, because they include the results of the
last time the cell was executed; if you change the code inside a
cell without executing it, the old (misleading) results will remain.


Except when we mention it explicitly, the notebooks provided on the book’s website are meant to be run in order, from top to bottom. In general,
when experimenting, you will find yourself executing cells in any order
to go fast (which is a super neat feature of Jupyter Notebook), but once
you have explored and arrived at the final version of your code, make
sure you can run the cells of your notebooks in order (your future self
won’t necessarily remember the convoluted path you took
otherwise!).


In command mode, typing 0 twice will restart the kernel (which is the engine powering your notebook). This will wipe your state clean and
make it as if you had just started in the notebook. Choose Run All Above from the Cell menu to run all cells above the
point where you are. We have found this to be useful when
developing the fastai library.




If you ever have any questions about a fastai method, you should use the
function doc, passing it the method name:


doc(learn.predict)



[image: ]





A window pops up containing a brief one-line explanation. The “Show in docs” link takes you to the full documentation, where you’ll find all the details and lots of examples. Also,
most of fastai’s methods are just a handful of lines, so you
can click the “source” link to see exactly what’s going on
behind the scenes.


Let’s move on to something much less sexy, but perhaps
significantly more widely commercially useful: building models from
plain tabular data.

Jargon: Tabular

Data that is in the form of a table, such as from a spreadsheet, database, or a comma-separated values (CSV) file. A tabular model is a model that tries to predict one column of a table based on information in other columns of the table.




It turns out that looks very similar too. Here is
the code necessary to train a model that will predict whether a person
is a high-income earner, based on their socioeconomic background:


from fastai.tabular.all import *
path = untar_data(URLs.ADULT_SAMPLE)

dls = TabularDataLoaders.from_csv(path/'adult.csv', path=path, y_names="salary",
    cat_names = ['workclass', 'education', 'marital-status', 'occupation',
                 'relationship', 'race'],
    cont_names = ['age', 'fnlwgt', 'education-num'],
    procs = [Categorify, FillMissing, Normalize])

learn = tabular_learner(dls, metrics=accuracy)


As you see, we had to tell fastai which columns are categorical (contain values that are one of a discrete set of choices, such
as occupation) versus continuous (contain a number
that represents a quantity, such as age).


There is no pretrained model available for this task (in general,
pretrained models are not widely available for any tabular modeling
tasks, although some organizations have created them for internal use),
so we don’t use fine_tune in this case. Instead, we use
fit_one_cycle, the most commonly used method for training fastai
models from scratch (i.e., without transfer learning):


learn.fit_one_cycle(3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.359960
      	0.357917
      	0.831388
      	00:11
    

    
      	1
      	0.353458
      	0.349657
      	0.837991
      	00:10
    

    
      	2
      	0.338368
      	0.346997
      	0.843213
      	00:10
    

  



This model is using the Adult dataset from the paper
“Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid” by Ron Kohavi, which contains some
demographic data about individuals (like their education, marital status, race,
sex and whether they have an annual income greater than
$50k). The model is over 80% accurate and took around 30 seconds to
train.


Let’s look at one more. Recommendation systems are
important, particularly in ecommerce. Companies like Amazon and Netflix
try hard to recommend products or movies that users might like.
Here’s how to train a model that will predict movies people
might like based on their previous viewing habits, using
the MovieLens dataset:


from fastai.collab import *
path = untar_data(URLs.ML_SAMPLE)
dls = CollabDataLoaders.from_csv(path/'ratings.csv')
learn = collab_learner(dls, y_range=(0.5,5.5))
learn.fine_tune(10)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	1.554056
      	1.428071
      	00:01
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	1.393103
      	1.361342
      	00:01
    

    
      	1
      	1.297930
      	1.159169
      	00:00
    

    
      	2
      	1.052705
      	0.827934
      	00:01
    

    
      	3
      	0.810124
      	0.668735
      	00:01
    

    
      	4
      	0.711552
      	0.627836
      	00:01
    

    
      	5
      	0.657402
      	0.611715
      	00:01
    

    
      	6
      	0.633079
      	0.605733
      	00:01
    

    
      	7
      	0.622399
      	0.602674
      	00:01
    

    
      	8
      	0.629075
      	0.601671
      	00:00
    

    
      	9
      	0.619955
      	0.601550
      	00:01
    

  



This model is predicting movie ratings on a scale of 0.5 to 5.0 to
within around 0.6 average error. Since we’re predicting a
continuous number, rather than a category, we have to tell fastai what
range our target has, using the y_range parameter.


Although we’re not actually using a pretrained model (for
the same reason that we didn’t for the tabular model), this
example shows that fastai lets us use fine_tune anyway in this case
(you’ll learn how and why this works in
Chapter 5). Sometimes it’s best to
experiment with fine_tune versus fit_one_cycle to see which works
best for your dataset.


We can use the same show_results call we saw earlier to view a few
examples of user and movie IDs, actual ratings, and predictions:


learn.show_results()


  
    
      	
      	userId
      	movieId
      	rating
      	rating_pred
    

  
  
    
      	0
      	157
      	1200
      	4.0
      	3.558502
    

    
      	1
      	23
      	344
      	2.0
      	2.700709
    

    
      	2
      	19
      	1221
      	5.0
      	4.390801
    

    
      	3
      	430
      	592
      	3.5
      	3.944848
    

    
      	4
      	547
      	858
      	4.0
      	4.076881
    

    
      	5
      	292
      	39
      	4.5
      	3.753513
    

    
      	6
      	529
      	1265
      	4.0
      	3.349463
    

    
      	7
      	19
      	231
      	3.0
      	2.881087
    

    
      	8
      	475
      	4963
      	4.0
      	4.023387
    

    
      	9
      	130
      	260
      	4.5
      	3.979703
    

  



Datasets: Food for Models

You’ve already seen quite a few models in this section, each one trained
using a different dataset to do a different task. In machine learning
and deep learning, we can’t do anything without data. So, the people
who create datasets for us to train our models on are the (often
underappreciated) heroes. Some of the most useful and important
datasets are those that become important academic baselines—
datasets that are widely studied by researchers and used to compare
algorithmic changes. Some of these become household names (at least,
among households that train models!), such as MNIST, CIFAR-10, and
ImageNet.


The datasets used in this book have been selected because they provide
great examples of the kinds of data that you are likely to encounter, and
the academic literature has many examples of model results using these
datasets to which you can compare your work.


Most datasets used in this book took the creators a lot of work to
build. For instance, later in the book we’ll be showing you how to
create a model that can translate between French and English. The key
input to this is a French/English parallel text corpus prepared in
2009 by Professor Chris Callison-Burch of the University of
Pennsylvania. This dataset contains over 20 million sentence pairs in
French and English. He built the dataset in a really clever way: by
crawling millions of Canadian web pages (which are often multilingual)
and then using a set of simple heuristics to transform URLs of French content to URLs pointing to the same content in English.


As you look at datasets throughout this book, think about where they
might have come from and how they might have been curated. Then think
about what kinds of interesting datasets you could create for your own
projects. (We’ll even take you step by step through the process of
creating your own image dataset soon.)


fast.ai has spent a lot of time creating cut-down versions of popular
datasets that are specially designed to support rapid prototyping and
experimentation, and to be easier to learn with. In this book, we will
often start by using one of the cut-down versions and later scale
up to the full-size version (just as we’re doing in this
chapter!). This is how the world’s top practitioners do their
modeling in practice; they do most of their experimentation
and prototyping with subsets of their data, and use the full
dataset only when they have a good understanding of what they have to do.




Each of the models we trained showed a training and validation loss. A
good validation set is one of the most important pieces of the training process. Let’s see why and learn how to create one.

















Validation Sets and Test Sets


As we’ve discussed, the goal of a model is to make
predictions about data. But the model training process is fundamentally
dumb. If we trained a model with all our data and then evaluated the
model using that same data, we would not be able to tell how well our
model can perform on data it hasn’t seen. Without this very valuable
piece of information to guide us in training our model, there is a very
good chance it would become good at making predictions about that data
but would perform poorly on new data.


To avoid this, our first step was to split our
dataset into two sets: the training set (which our model sees in
training) and the validation set, also known as the development set
(which is used only for evaluation). This lets us test that the model
learns lessons from the training data that generalize to new data, the
validation data.


One way to understand this situation is that, in a sense, we
don’t want our model to get good results by “cheating.” If it makes an accurate prediction for a data item, that should be because it has learned characteristics of that kind of item, and not because the model has
been shaped by actually having seen that particular item.


Splitting off our validation data means our model never sees it in
training and so is completely untainted by it, and is not cheating in
any way. Right?


In fact, not necessarily. The situation is more subtle. This is because in realistic scenarios we rarely build a model just by training its parameters once. Instead, we are likely to explore many versions
of a model through various modeling choices regarding network
architecture, learning rates, data augmentation strategies, and other
factors we will discuss in upcoming chapters. Many of these choices can
be described as choices of hyperparameters. The word reflects that
they are parameters about parameters, since they are the higher-level
choices that govern the meaning of the weight parameters.


The problem is that even though the ordinary training process is
looking at only predictions on the training data when it learns values for
the weight parameters, the same is not true of us. We, as modelers,
are evaluating the model by looking at predictions on the validation
data when we decide to explore new hyperparameter values! So subsequent
versions of the model are, indirectly, shaped by us having seen the
validation data. Just as the automatic training process is in danger of
overfitting the training data, we are in danger of overfitting the
validation data through human trial and error and exploration.


The solution to this conundrum is to introduce another level of even
more highly reserved data: the test set. Just as we hold back the
validation data from the training process, we must hold back the test
set data even from ourselves. It cannot be used to improve the model; it
can be used only to evaluate the model at the very end of our efforts.
In effect, we define a hierarchy of cuts of our data, based on how fully
we want to hide it from training and modeling processes: training data
is fully exposed, the validation data is less exposed, and test data is
totally hidden. This hierarchy parallels the different kinds of
modeling and evaluation processes themselves—the automatic training
process with backpropagation, the more manual process of trying
different hyperparameters between training sessions, and the assessment
of our final result.


The test and validation sets should have enough data to ensure that you
get a good estimate of your accuracy. If you’re creating a
cat detector, for instance, you generally want at least 30 cats in your
validation set. That means that if you have a dataset with thousands of
items, using the default 20% validation set size may be more than you
need. On the other hand, if you have lots of data, using some of it for validation probably doesn’t have any downsides.


Having two levels of “reserved data”—a validation set and a test set, with one level representing data that you are virtually hiding from
yourself—may seem a bit extreme. But it is often necessary because models tend to gravitate toward the simplest way to do good
predictions (memorization), and we as fallible humans tend to gravitate
toward fooling ourselves about how well our models are performing. The
discipline of the test set helps us keep ourselves intellectually
honest. That doesn’t mean we always need a separate test
set—if you have very little data, you may need just a validation
set—but generally it’s best to use one if at all possible.


This same discipline can be critical if you intend to hire a third party
to perform modeling work on your behalf. A third party might not
understand your requirements accurately, or their incentives might even
encourage them to misunderstand them. A good test set can greatly
mitigate these risks and let you evaluate whether their work solves your
actual problem.


To put it bluntly, if you’re a senior decision maker in your
organization (or you’re advising senior decision makers), the most important takeaway is this: if you ensure that you really
understand what test and validation sets are and why
they’re important, you’ll avoid the single
biggest source of failures we’ve seen when organizations
decide to use AI. For instance, if you’re considering
bringing in an external vendor or service, make sure that you hold out
some test data that the vendor never gets to see. Then you check
their model on your test data, using a metric that you choose based on
what actually matters to you in practice, and you decide what level of
performance is adequate. (It’s also a good idea for you to
try out simple baseline yourself, so you know what a really simple
model can achieve. Often it’ll turn out that your simple
model performs just as well as one produced by an external “expert”!)










Use Judgment in Defining Test Sets


To do a good job of defining a validation set (and possibly a test set),
you will sometimes want to do more than just randomly grab a fraction of
your original dataset. Remember: a key property of the validation and
test sets is that they must be representative of the new data you will
see in the future. This may sound like an impossible order! By
definition, you haven’t seen this data yet. But you usually still do
know some things.


It’s instructive to look at a few example cases. Many of
these examples come from predictive modeling competitions on the
Kaggle platform, which is a good representation of problems and
methods you might see in practice.


One case might be if you are looking at time series data. For a time
series, choosing a random subset of the data will be both too easy (you
can look at the data both before and after the dates you are trying to
predict) and not representative of most business use cases (where you
are using historical data to build a model for use in the future). If
your data includes the date and you are building a model to use in the
future, you will want to choose a continuous section with the latest
dates as your validation set (for instance, the last two weeks or last
month of available data).


Suppose you want to split the time series data in Figure 1-19
into training and validation sets.



[image: A serie of values]
Figure 1-19. A time series




A random subset is a poor choice (too easy to fill in the gaps, and not
indicative of what you’ll need in production), as we can see
in Figure 1-20.



[image: Random training subset]
Figure 1-20. A poor training subset




Instead, use the earlier data as your training set (and the later data for the
validation set), as shown in Figure 1-21.



[image: Training subset using the data up to a certain timestamp]
Figure 1-21. A good training subset




For example, Kaggle had a competition to
predict the
sales in a chain of Ecuadorian grocery stores. Kaggle’s
training data ran from Jan 1, 2013 to Aug 15, 2017, and the test data
spanned from Aug 16, 2017 to Aug 31, 2017. That way, the competition organizer
ensured that entrants were making predictions for a time period that was
in the future, from the perspective of their model. This is similar to
the way quantitative hedge fund traders do backtesting to check whether
their models are predictive of future periods, based on past data.


A second common case occurs when you can easily
anticipate ways the data you will be making predictions for in
production may be qualitatively different from the data you have to
train your model with.


In the Kaggle
distracted driver competition, the independent variables are pictures of drivers
at the wheel of a car, and the dependent variables are categories such as
texting, eating, or safely looking ahead. Lots of pictures are of the
same drivers in different positions, as we can see in
Figure 1-22. If you were an insurance company building a
model from this data, note that you would be most interested in how the
model performs on drivers it hasn’t seen before (since you
would likely have training data for only a small group of people). In recognition of this, the test data for the competition consists of
images of people that don’t appear in the training set.



[image: Two pictures from the training data, showing the same driver]
Figure 1-22. Two pictures from the training data




If you put one of the images in Figure 1-22 in your training set and one in the
validation set, your model will have an easy time making a prediction for the one in the validation set, so it will seem to be performing better than it
would on new people. Another perspective is that if you used all the
people in training your model, your model might be overfitting to
particularities of those specific people and not just learning the
states (texting, eating, etc.).


A similar dynamic was at work in the
Kaggle
fisheries competition to identify the species of fish caught by fishing
boats in order to reduce illegal fishing of endangered populations. The
test set consisted of images from boats that didn’t appear in the
training data, so in this case you’d want your validation
set to also include boats that are not in the training set.


Sometimes it may not be clear how your validation data will differ. For
instance, for a problem using satellite imagery, you’d need
to gather more information on whether the training set contained just
certain geographic locations or came from geographically
scattered data.


Now that you have gotten a taste of how to build a model, you can decide
what you want to dig into next.
























A Choose Your Own Adventure Moment


If you would like to learn more about how to use deep learning models in
practice, including how to identify and fix errors, create a real
working web application, and avoid your model causing unexpected
harm to your organization or society more generally, then keep reading
the next two chapters. If you
would like to start learning the foundations of how deep learning works
under the hood, skip to Chapter 4. (Did you ever read Choose Your Own
Adventure books as a kid? Well, this is kind of like that…except with
more deep learning than that book series contained.)


You will need to read all these chapters to
progress further in the book, but the order in which you read them is totally up to you. They don’t depend on each other. If you
skip ahead to Chapter 4, we will remind you
at the end to come back and read the chapters you
skipped over before you go any further.

















Questionnaire


After reading pages and pages of prose, it can be hard to know which key
things you really need to focus on and remember. So, we’ve
prepared a list of questions and suggested steps to complete at the end
of each chapter. All the answers are in the text of the chapter, so if
you’re not sure about anything here, reread that part of
the text and make sure you understand it. Answers to all these questions
are also available on the book’s website. You can
also visit the forums if you get stuck to get
help from other folks studying this material.


	
Do you need these for deep learning?



	
Lots of math T/F



	
Lots of data T/F



	
Lots of expensive computers T/F



	
A PhD T/F







	
Name five areas where deep learning is now the best tool in the world.



	
What was the name of the first device that was based on the principle of the artificial neuron?



	
Based on the book of the same name, what are the requirements for parallel distributed processing (PDP)?



	
What were the two theoretical misunderstandings that held back the field of neural networks?



	
What is a GPU?



	
Open a notebook and execute a cell containing: 1+1. What happens?



	
Follow through each cell of the stripped version of the notebook for this chapter. Before executing each cell, guess what will happen.



	
Complete the Jupyter Notebook online appendix.



	
Why is it hard to use a traditional computer program to recognize images in a photo?



	
What did Samuel mean by “weight assignment”?



	
What term do we normally use in deep learning for what Samuel called “weights”?



	
Draw a picture that summarizes Samuel’s view of a machine learning model.



	
Why is it hard to understand why a deep learning model makes a particular 
prediction?



	
What is the name of the theorem that shows that a neural network can solve any mathematical problem to any level of accuracy?



	
What do you need in order to train a model?



	
How could a feedback loop impact the rollout of a predictive policing model?



	
Do we always have to use 224×224-pixel images with the cat recognition model?



	
What is the difference between classification and regression?



	
What is a validation set? What is a test set? Why do we need them?



	
What will fastai do if you don’t provide a validation set?



	
Can we always use a random sample for a validation set? Why or why not?



	
What is overfitting? Provide an example.



	
What is a metric? How does it differ from loss?



	
How can pretrained models help?



	
What is the “head” of a model?



	
What kinds of features do the early layers of a CNN find? How about the later layers?



	
Are image models useful only for photos?



	
What is an architecture?



	
What is segmentation?



	
What is y_range used for? When do we need it?



	
What are hyperparameters?



	
What’s the best way to avoid failures when using AI in an organization?















Further Research


Each chapter also has a “Further Research” section that poses some questions that
aren’t fully answered in the text, or gives more advanced
assignments. Answers to these questions aren’t on the book’s
website; you’ll need to do your own research!


	
Why is a GPU useful for deep learning? How is a CPU different, and why is it less effective for deep learning?



	
Try to think of three areas where feedback loops might impact the use of machine learning. See if you can find documented examples of that happening in practice.




























  
Chapter 2. From Model to Production



The six lines of code we saw in Chapter 1 are just one
small part of the process of using deep learning in practice. In this
chapter, we’re going to use a computer vision example to
look at the end-to-end process of creating a deep learning application.
More specifically, we’re going to build a bear classifier!
In the process, we’ll discuss the capabilities and
constraints of deep learning, explore how to create datasets, look
at possible gotchas when using deep learning in practice, and more. Many
of the key points will apply equally well to other deep learning
problems, such as those in Chapter 1. If you work
through a problem similar in key respects to our example problems, we
expect you to get excellent results with little code, quickly.


Let’s start with how you should frame your problem.








The Practice of Deep Learning


We’ve seen that deep learning can solve a lot of challenging
problems quickly and with little code. As a beginner, there’s
a sweet spot of problems that are similar enough to our example problems
that you can very quickly get extremely useful results. However, deep
learning isn’t magic! The same six lines of code
won’t work for every problem anyone can think of today.


Underestimating the constraints and overestimating the capabilities of
deep learning may lead to frustratingly poor results, at least until you
gain some experience and can solve the problems that arise. Conversely, overestimating
the constraints and underestimating the capabilities of deep learning
may mean you do not attempt a solvable problem because you talk yourself
out of it.


We often talk to people who underestimate both the constraints and the
capabilities of deep learning. Both of these can be problems:
underestimating the capabilities means that you might not even try
things that could be very beneficial, and underestimating the 
constraints might mean that you fail to consider and react to important issues.


The best thing to do is to keep an open mind. If you remain open to the
possibility that deep learning might solve part of your problem with
less data or complexity than you expect, you can design a
process through which you can find the specific capabilities and constraints
related to your particular problem. This
doesn’t mean making any risky bets—we will show you how
you can gradually roll out models so that they don’t create
significant risks, and can even backtest them prior to putting them in
production.










Starting Your Project


So where should you start your deep learning journey? The most important
thing is to ensure that you have a project to work on—it is only through working on your own projects that you will get
real experience building and using models. When selecting a project,
the most important consideration is data availability.


Regardless of
whether you are doing a project just for your own learning or for
practical application in your organization, you want to be able to start quickly. We have seen many students, researchers, and
industry practitioners waste months or years while they attempt to find
their perfect dataset. The goal is not to find the “perfect” dataset or
project, but just to get started and iterate from there. If you take this approach, you will be on your third iteration of
learning and improving while the perfectionists are still in the
planning stages!


We also suggest that you iterate from end to end in your project; don’t spend months fine-tuning your model, or polishing
the perfect GUI, or labeling the perfect dataset.…Instead, complete
every step as well as you can in a reasonable amount of time, all the
way to the end. For instance, if your final goal is an application that
runs on a mobile phone, that should be what you have after each
iteration. But perhaps in the early iterations you take shortcuts;
for instance, by doing all of the processing on a remote server and
using a simple responsive web application. By completing the project end
to end, you will see where the trickiest bits are, and which bits make
the biggest difference to the final result.


As you work through this book, we suggest that you complete lots of
small experiments, by running and adjusting the notebooks we provide, at
the same time that you gradually develop your own projects. That way,
you will be getting experience with all of the tools and techniques that
we’re explaining as we discuss them.

Sylvain Says

To make the most of this book, take the time to experiment between each chapter, whether on your own project or by exploring the notebooks we provide. Then try rewriting those notebooks from scratch on a new dataset. It’s only by practicing (and failing) a lot that you will develop intuition of how to train a model.




By using the end-to-end iteration approach, you will also get a better
understanding of how much data you really need. For instance, you may
find you can easily get only 200 labeled data items, and you
can’t really know until you try whether that’s
enough to get the performance you need for your application to work well
in practice.


In an organizational context, you will be able to show your colleagues
that your idea can work by showing them a real working
prototype. We have repeatedly observed that this is the secret to
getting good organizational buy-in for a project.


Since it is easiest to get started on a project for which you already have
data available, that means it’s probably easiest to get
started on a project related to something you are already doing, because
you already have data about things that you are doing. For instance, if
you work in the music business, you may have access to many recordings.
If you work as a radiologist, you probably have access to lots of
medical images. If you are interested in wildlife preservation, you may
have access to lots of images of wildlife.


Sometimes you have to get a bit creative. Maybe you can find a
previous machine learning project, such as a Kaggle competition, that is
related to your field of interest. Sometimes you have to compromise.
Maybe you can’t find the exact data you need for the precise
project you have in mind; but you might be able to find something from a
similar domain, or measured in a different way, tackling a slightly
different problem. Working on these kinds of similar projects will still
give you a good understanding of the overall process, and may help you
identify other shortcuts, data sources, and so forth.


Especially when you are just starting out with deep learning,
it’s not a good idea to branch out into very different areas,
to places that deep learning has not been applied to before.
That’s because if your model does not work at first, you
will not know whether it is because you have made a mistake, or if the
very problem you are trying to solve is simply not solvable with deep
learning. And you won’t know where to look to get help.
Therefore, it is best at first to start by finding an example online of something that somebody has had good results with
and that is at least somewhat similar to what you are trying to
achieve, by converting your data into a format similar to
what someone else has used before (such as creating an image from your
data). Let’s have a look at the state of deep learning, just
so you know what kinds of things deep learning is good at right now.

















The State of Deep Learning


Let’s start by considering whether deep learning can be any
good at the problem you are looking to work on. This section provides a
summary of the state of deep learning at the start of 2020. However,
things move very fast, and by the time you read this, some of these
constraints may no longer exist. We will try to keep the book’s website
up-to-date; in addition, a Google search for “what can AI do now” is
likely to provide current information.












Computer vision


There are many domains in which deep learning has not been used to
analyze images yet, but those where it has been tried have nearly
universally shown that computers can recognize items in an
image at least as well as people can—even specially trained people,
such as radiologists. This is known as object recognition. Deep
learning is also good at recognizing where objects in an image
are, and can highlight their locations and name each found object. This
is known as object detection (in a variant of this that we saw
in Chapter 1, every pixel is categorized based on
the kind of object it is part of—this is called segmentation).


Deep
learning algorithms are generally not good at recognizing images that
are significantly different in structure or style from those used to train
the model. For instance, if there were no black-and-white images in the
training data, the model may do poorly on black-and-white images. Similarly, if the
training data did not contain hand-drawn images, the model will
probably do poorly on hand-drawn images. There is no general way to
check which types of images are missing in your training set, but we will
show in this chapter some ways to try to recognize when unexpected image
types arise in the data when the model is being used in production (this
is known as checking for out-of-domain data).


One major challenge for object detection systems is that image labeling
can be slow and expensive. There is a lot of work at the moment going
into tools to try to make this labeling faster and easier, and to require
fewer handcrafted labels to train accurate object detection models. One
approach that is particularly helpful is to synthetically generate
variations of input images, such as by rotating them or changing their
brightness and contrast; this is called data augmentation and also
works well for text and other types of models. We will be discussing it
in detail in this chapter.


Another point to consider is that although your problem might not look
like a computer vision problem, it might be possible with a little
imagination to turn it into one. For instance, if what you are trying to
classify are sounds, you might try converting the sounds into images of
their acoustic waveforms and then training a model on those images.

















Text (natural language processing)


Computers are good at classifying
both short and long documents based on categories such as spam or not spam,
sentiment (e.g., is the review positive or negative), author, source
website, and so forth. We are not aware of any rigorous work done in
this area to compare computers to humans, but anecdotally it seems to
us that deep learning performance is similar to human performance on these tasks.


Deep learning is also good at generating context-appropriate text, such as replies to social media posts, and imitating a particular
author’s style. It’s good at making this content
compelling to humans too—in fact, even more compelling than
human-generated text. However, deep learning is not good at
generating correct responses! We don’t have a
reliable way to, for instance, combine a knowledge base of medical
information with a deep learning model for generating medically
correct natural language responses. This is dangerous, because it
is so easy to create content that appears to a layman to be compelling,
but actually is entirely incorrect.


Another concern is that context-appropriate, highly compelling responses
on social media could be used at massive scale—thousands of times
greater than any troll farm previously seen—to spread disinformation,
create unrest, and encourage conflict. As a rule of thumb, text
generation models will always be technologically a bit ahead of models for recognizing
automatically generated text. For instance, it is
possible to use a model that can recognize artificially generated
content to actually improve the generator that creates that content,
until the classification model is no longer able to complete its task.


Despite these issues, deep learning has many applications in NLP: it can be used to translate text from
one language to another, summarize long documents into something that
can be digested more quickly, find all mentions of a concept of
interest, and more. Unfortunately, the translation or summary could
well include completely incorrect information! However, the performance is already
good enough that many people are using these systems—for instance,
Google’s online translation system (and every other online
service we are aware of) is based on deep learning.

















Combining text and images


The ability of deep learning to combine text and images into a single
model is, generally, far better than most people intuitively expect. For
example, a deep learning model can be trained on input images with
output captions written in English, and can learn to generate
surprisingly appropriate captions automatically for new images! But
again, we have the same warning that we discussed in the previous
section: there is no guarantee that these captions will be
correct.


Because of this serious issue, we generally recommend that deep learning
be used not as an entirely automated process, but as part of a process
in which the model and a human user interact closely. This can
potentially make humans orders of magnitude more productive than they
would be with entirely manual methods, and result in more
accurate processes than using a human alone.


For instance, an automatic
system can be used to identify potential stroke victims directly from CT scans,
and send a high-priority alert to have those scans looked at quickly.
There is only a three-hour window to treat strokes, so this fast
feedback loop could save lives. At the same time, however, all scans
could continue to be sent to radiologists in the usual way, so there
would be no reduction in human input. Other deep learning models could
automatically measure items seen on the scans and insert those
measurements into reports, warning the radiologists about findings that
they may have missed and telling them about other cases that
might be relevant.

















Tabular data


For analyzing time series and tabular data, deep learning has recently
been making great strides. However, deep learning is generally used as
part of an ensemble of multiple types of model. If you already have a
system that is using random forests or gradient boosting machines
(popular tabular modeling tools that you will learn about soon), then
switching to or adding deep learning may not result in any dramatic
improvement.


Deep learning does greatly increase the variety of columns
that you can include—for example, columns containing natural language
(book titles, reviews, etc.) and high-cardinality categorical
columns (i.e., something that contains a large number of discrete
choices, such as zip code or product ID). On the down side, deep learning
models generally take longer to train than random forests or gradient
boosting machines, although this is changing thanks to libraries such as
RAPIDS, which provides GPU acceleration for the
whole modeling pipeline. We cover the pros and cons of all these methods
in detail in Chapter 9.

















Recommendation systems


Recommendation systems are really just a special type of tabular data.
In particular, they generally have a high-cardinality categorical
variable representing users, and another one representing products (or
something similar). A company like Amazon represents every purchase that
has ever been made by its customers as a giant sparse matrix, with customers as the rows
and products as the columns. Once they have the data in this format,
data scientists apply some form of collaborative filtering to fill in
the matrix. For example, if customer A buys products 1 and 10, and
customer B buys products 1, 2, 4, and 10, the engine will recommend that
A buy 2 and 4.


Because deep learning models are good at handling high-cardinality categorical variables, they are quite good at handling
recommendation systems. They particularly come into their own, just like
for tabular data, when combining these variables with other kinds of
data, such as natural language or images. They can also do a good job of
combining all of these types of information with additional metadata
represented as tables, such as user information, previous transactions,
and so forth.


However, nearly all machine learning approaches have the downside that
they tell you only which products a particular user might like, rather
than what recommendations would be helpful for a user. Many kinds of
recommendations for products a user might like may not be at all
helpful—for instance, if the user is already familiar with the
products, or if they are simply different packagings of products they
have already purchased (such as a boxed set of novels, when they
already have each of the items in that set). Jeremy likes reading books
by Terry Pratchett, and for a while Amazon was recommending nothing but
Terry Pratchett books to him (see Figure 2-1), which really
wasn’t helpful because he was already aware of these books!



[image: Terry Pratchett books recommendation]
Figure 2-1. A not-so-useful recommendation



















Other data types


Often you will find that domain-specific data types
fit very nicely into existing categories. For instance, protein chains
look a lot like natural language documents, in that they are long
sequences of discrete tokens with complex relationships and meaning
throughout the sequence. And indeed, it does turn out that using NLP
deep learning methods is the current state-of-the-art approach for many
types of protein analysis. As another example, sounds can be represented
as spectrograms, which can be treated as images; standard deep learning
approaches for images turn out to work really well on spectrograms.






















The Drivetrain Approach


Many accurate models are of no use to anyone, and many
inaccurate models are highly useful. To ensure that your modeling
work is useful in practice, you need to consider how your work will be
used. In 2012, Jeremy, along with Margit Zwemer and Mike Loukides,
introduced a method called the Drivetrain Approach for thinking about
this issue.


The Drivetrain Approach, illustrated in Figure 2-2, was
described in detail in
“Designing
Great Data Products”. The basic idea is to start with considering your
objective, then think about what actions you can take to meet that objective and what data you have (or can acquire) that can help, and then build a model that you can use to determine the best actions to take to get the best results in terms of your objective.



[image: ]
Figure 2-2. The Drivetrain Approach




Consider a model in an autonomous vehicle: you want to help a car drive
safely from point A to point B without human intervention. Great
predictive modeling is an important part of the solution, but it
doesn’t stand on its own; as products become more
sophisticated, it disappears into the plumbing. Someone using a
self-driving car is completely unaware of the hundreds (if not
thousands) of models and the petabytes of data that make it work. But as
data scientists build increasingly sophisticated products, they need a
systematic design approach.


We use data not just to generate more data (in the form of predictions),
but to produce actionable outcomes. That is the goal of the Drivetrain
Approach. Start by defining a clear objective. For instance, Google,
when creating its first search engine, considered “What is the user’s
main objective in typing in a search query?” This led to Google’s objective, which was to
“show the most relevant search result.” The next step is to consider
what levers you can pull (i.e., what actions you can take) to better
achieve that objective. In Google’s case, that was the
ranking of the search results. The third step was to consider what new
data they would need to produce such a ranking; they realized that the
implicit information regarding which pages linked to which other pages
could be used for this purpose.


Only after these first three steps do we
begin thinking about building the predictive models. Our objective and
available levers, what data we already have and what additional data we
will need to collect, determine the models we can build. The models will
take both the levers and any uncontrollable variables as their inputs;
the outputs from the models can be combined to predict the final state
for our objective.


Let’s consider another example: recommendation systems. The
objective of a recommendation engine is to drive additional sales by
surprising and delighting the customer with recommendations of items
they would not have purchased without the recommendation. The lever is
the ranking of the recommendations. New data must be collected to
generate recommendations that will cause new sales. This will require
conducting many randomized experiments in order to collect data about a
wide range of recommendations for a wide range of customers. This is a
step that few organizations take; but without it, you don’t
have the information you need to optimize recommendations based
on your true objective (more sales!).


Finally, you could build two models for purchase probabilities,
conditional on seeing or not seeing a recommendation. The difference
between these two probabilities is a utility function for a given
recommendation to a customer. It will be low in cases where the
algorithm recommends a familiar book that the customer has already
rejected (both components are small) or a book that they would have
bought even without the recommendation (both components are large and
cancel each other out).


As you can see, in practice often the practical implementation of your
models will require a lot more than just training a model!
You’ll often need to run experiments to collect more data,
and consider how to incorporate your models into the overall system
you’re developing. Speaking of data, let’s now
focus on how to find data for your project.
























Gathering Data


For many types of projects, you may be able to find all the data you
need online. The project we’ll be completing in this chapter
is a bear detector. It will discriminate between three types of bear:
grizzly, black, and teddy bears. There are many images on the internet of
each type of bear that we can use. We just need a way to find them and
download them.


We’ve provided a tool you can use for this
purpose, so you can follow along with this chapter and create your own
image recognition application for whatever kinds of objects
you’re interested in. In the fast.ai course, thousands of
students have presented their work in the course forums, displaying
everything from hummingbird varieties in Trinidad to bus types in Panama—one student even created an application that would help his fiancée recognize
his 16 cousins during Christmas vacation!


At the time of writing, Bing Image Search is the best option we know of
for finding and downloading images. It’s free for up to 1,000
queries per month, and each query can download up to 150 images.
However, something better might have come along between when we wrote
this and when you’re reading the book, so be sure to check
out this book’s website for our current recommendation.

Keeping in Touch with the Latest Services

Services that can be used for creating datasets come and go all the time, and their features, interfaces, and pricing change regularly too. In this section, we’ll show how to use the Bing Image Search API available as part of Azure Cognitive Services at the time this book was written.




To download images with Bing Image Search, sign up at
Microsoft for a free account. You will be given a key, which you can copy and enter in a cell as follows (replacing XXX with your key and executing it):


key = 'XXX'


Or, if you’re comfortable at the command line, you can set
it in your terminal with

export AZURE_SEARCH_KEY=your_key_here


and then restart the Jupyter server, type this in a cell, and execute it:


key = os.environ['AZURE_SEARCH_KEY']


Once you’ve set key, you can use search_images_bing.
This function is provided by the small utils class included with the notebooks online (if you’re not sure where a function is
defined, you can just type it in your notebook to find out, as shown here):


search_images_bing


<function utils.search_images_bing(key, term, min_sz=128)>


Let’s try this function out:


results = search_images_bing(key, 'grizzly bear')
ims = results.attrgot('content_url')
len(ims)


150


We’ve successfully downloaded the URLs of 150 grizzly bears
(or, at least, images that Bing Image Search finds for that search
term). Let’s look at one:


dest = 'images/grizzly.jpg'
download_url(ims[0], dest)


im = Image.open(dest)
im.to_thumb(128,128)



[image: ]





This seems to have worked nicely, so let’s use
fastai’s download_images to download all the URLs for
each of our search terms. We’ll put each in a separate
folder:


bear_types = 'grizzly','black','teddy'
path = Path('bears')


if not path.exists():
    path.mkdir()
    for o in bear_types:
        dest = (path/o)
        dest.mkdir(exist_ok=True)
        results = search_images_bing(key, f'{o} bear')
        download_images(dest, urls=results.attrgot('content_url'))


Our folder has image files, as we’d expect:


fns = get_image_files(path)
fns


(#421) [Path('bears/black/00000095.jpg'),Path('bears/black/00000133.jpg'),Path('
 > bears/black/00000062.jpg'),Path('bears/black/00000023.jpg'),Path('bears/black
 > /00000029.jpg'),Path('bears/black/00000094.jpg'),Path('bears/black/00000124.j
 > pg'),Path('bears/black/00000056.jpeg'),Path('bears/black/00000046.jpg'),Path(
 > 'bears/black/00000045.jpg')...]

Jeremy Says

I just love this about working in Jupyter notebooks! It’s so easy to gradually build what I want, and check my work every step of the way. I make a lot of mistakes, so this is really helpful to me.




Often when we download files from the internet, a few are
corrupt. Let’s check:


failed = verify_images(fns)
failed


(#0) []


To remove all the failed images, you can use unlink. Like most fastai functions that return a collection, verify_images
returns an object of type L, which includes the map method. This
calls the passed function on each element of the collection:


failed.map(Path.unlink);


Getting Help in Jupyter Notebooks

Jupyter notebooks are great for experimenting and immediately seeing the
results of each function, but there is also a lot of functionality to
help you figure out how to use different functions, or even directly look
at their source code. For instance, say you type this in a cell:

??verify_images


A window will pop up with this:

Signature: verify_images(fns)
Source:
def verify_images(fns):
    "Find images in `fns` that can't be opened"
    return L(fns[i] for i,o in
             enumerate(parallel(verify_image, fns)) if not o)
File:      ~/git/fastai/fastai/vision/utils.py
Type:      function


This tells us what argument the function accepts (fns), and then shows us the
source code and the file it comes from. Looking at that source code, we
can see it applies the function verify_image in parallel and
keeps only the image files for which the result of that function is False, which
is consistent with the doc string: it finds the images in fns that
can’t be opened.


Here are some other features that are very useful in Jupyter notebooks:



	
At any point, if you don’t remember the exact spelling of
a function or argument name, you can press Tab to get autocompletion suggestions.



	
When inside the parentheses of a function, pressing Shift and
Tab simultaneously will display a window with the signature of the
function and a short description. Pressing these keys twice will expand the
documentation, and pressing them three times will open a full window with
the same information at the bottom of your screen.



	
In a cell, typing ?func_name and executing will open a window with
the signature of the function and a short description.



	
In a cell, typing ??func_name and executing will open a window with
the signature of the function, a short description, and the source
code.



	
If you are using the fastai library, we added a doc function for
you: executing doc(func_name) in a cell will open a window with the
signature of the function, a short description, and links to the source
code on GitHub and the full documentation of the function in the
library docs.



	
Unrelated to the documentation but still very useful: to get help at
any point if you get an error, type %debug in the next cell and
execute to open the Python
debugger, which will let you inspect the content of every variable.








One thing to be aware of in this process: as we discussed in
Chapter 1, models can reflect only the data used to train
them. And the world is full of biased data, which ends up reflected in,
for example, Bing Image Search (which we used to create our dataset).
For instance, let’s say you were interested in creating an
app that could help users figure out whether they had healthy skin, so
you trained a model on the results of searches for (say) “healthy skin.”
Figure 2-3 shows you kind of the results you would get.



[image: ]
Figure 2-3. Data for a healthy skin detector?




With this as your training data, you would end up not with a healthy
skin detector, but a young white woman touching her face detector! Be
sure to think carefully about the types of data that you might expect to
see in practice in your application, and check carefully to ensure that
all these types are reflected in your model’s source data. (Thanks to Deb Raji, who came up with the healthy skin
example. See her paper “Actionable Auditing: Investigating the Impact of Publicly Naming Biased Performance Results of Commercial AI Products”
for more fascinating insights into model bias.)


Now that we have downloaded some data, we need to assemble it in a
format suitable for model training. In fastai, that means creating an
object called DataLoaders.

















From Data to DataLoaders


DataLoaders is a thin
class that just stores whatever DataLoader objects you pass to it
and makes them available as train and valid. Although
it’s a simple class, it’s important in
fastai: it provides the data for your model. The key functionality in
DataLoaders is provided with just these four lines of code (it has some
other minor functionality we’ll skip over for now):


class DataLoaders(GetAttr):
    def __init__(self, *loaders): self.loaders = loaders
    def __getitem__(self, i): return self.loaders[i]
    train,valid = add_props(lambda i,self: self[i])

Jargon: DataLoaders

A fastai class that stores multiple DataLoader objects you pass to it—normally a train and a valid, although it’s possible to have as many as you like. The first two are made available as properties.




Later in the book, you’ll also learn about the Dataset and Datasets classes,
which have the same relationship. To turn our downloaded data into a DataLoaders object, we need to tell fastai at
least four things:



	
What kinds of data we are working with



	
How to get the list of items



	
How to label these items



	
How to create the validation set






So far we have seen a number of factory methods for particular
combinations of these things, which are convenient when you have an
application and data structure that happen to fit into those predefined
methods. For when you don’t, fastai has an extremely
flexible system called the data block API. With this API, you can fully
customize every stage of the creation of your DataLoaders. Here is what
we need to create a DataLoaders for the dataset that we just downloaded:


bears = DataBlock(
    blocks=(ImageBlock, CategoryBlock),
    get_items=get_image_files,
    splitter=RandomSplitter(valid_pct=0.2, seed=42),
    get_y=parent_label,
    item_tfms=Resize(128))


Let’s look at each of these arguments in turn. First we provide a tuple specifying the types we want for the
independent and dependent variables:


blocks=(ImageBlock, CategoryBlock)


The independent variable is
the thing we are using to make predictions from, and the dependent
variable is our target. In this case, our independent variable is a set
of images, and our dependent variables are the categories (type of bear)
for each image. We will see many other types of block in the rest of
this book.


For this DataLoaders, our underlying items will be file paths. We have to
tell fastai how to get a list of those files. The get_image_files
function takes a path, and returns a list of all of the images in that
path (recursively, by default):


get_items=get_image_files


Often, datasets that you download will already have a validation set
defined. Sometimes this is done by placing the images for the training
and validation sets into different folders. Sometimes it is done by
providing a CSV file in which each filename is listed along with which
dataset it should be in. There are many ways that this can be done, and
fastai provides a general approach that allows you to use one of
its predefined classes for this or to write your own.


In this case, we want to split our training and
validation sets randomly. However, we would like to have the same
training/validation split each time we run this notebook, so we fix the
random seed (computers don’t really know how to create
random numbers at all, but simply create lists of numbers that look
random; if you provide the same starting point for that list each time—called the seed—then you will get the exact same list each time).


splitter=RandomSplitter(valid_pct=0.2, seed=42)


The independent variable is often referred to as x, and the dependent
variable is often referred to as y. Here, we are
telling fastai what function to call to create the labels in our
dataset:


get_y=parent_label


parent_label is a function provided by fastai that simply
gets the name of the folder a file is in. Because we put each of
our bear images into folders based on the type of bear, this is going to
give us the labels that we need.


Our images are all different sizes, and this is a problem for deep
learning: we don’t feed the model one image at a time but
several of them (what we call a mini-batch). To group them in a big
array (usually called a tensor) that is going to go through our model,
they all need to be of the same size. So, we need to add a transform
that will resize these images to the same size. Item transforms are
pieces of code that run on each individual item, whether it be an
image, category, or so forth. fastai includes many predefined
transforms; we use the Resize transform here and specify a size of 128 pixels:


item_tfms=Resize(128)


This command has given us a DataBlock object. This is like a
template for creating a DataLoaders. We still need to tell fastai
the actual source of our data—in this case, the path where the images
can be found:


dls = bears.dataloaders(path)


A DataLoaders includes validation and training DataLoaders. A
DataLoader is a class that provides batches of a few items at a
time to the GPU. We’ll be learning a lot more about this
class in the next chapter. When you loop through a DataLoader, fastai
will give you 64 (by default) items at a time, all stacked up into a
single tensor. We can take a look at a few of those items by calling the
show_batch method on a 
DataLoader:


dls.valid.show_batch(max_n=4, nrows=1)



[image: ]





By default, Resize crops the images to fit a square shape of the size
requested, using the full width or height. This can result in losing
some important details. Alternatively, you can ask fastai to pad the
images with zeros (black), or squish/stretch them:


bears = bears.new(item_tfms=Resize(128, ResizeMethod.Squish))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)



[image: ]





bears = bears.new(item_tfms=Resize(128, ResizeMethod.Pad, pad_mode='zeros'))
dls = bears.dataloaders(path)
dls.valid.show_batch(max_n=4, nrows=1)



[image: ]





All of these approaches seem somewhat wasteful or problematic. If we
squish or stretch the images, they end up as unrealistic shapes,
leading to a model that learns that things look different from how they
actually are, which we would expect to result in lower accuracy. If we
crop the images, we remove some of the features that allow us to
perform recognition. For instance, if we were trying to recognize breeds
of dog or cat, we might end up cropping out a key part of the body or the
face necessary to distinguish between similar breeds. If we pad the
images, we have a whole lot of empty space, which is just wasted
computation for our model and results in a lower effective resolution
for the part of the image we actually use.


Instead, what we normally do in practice is to randomly select part of
the image and then crop to just that part. On each epoch (which is one
complete pass through all of our images in the dataset), we randomly
select a different part of each image. This means that our model can
learn to focus on, and recognize, different features in our images. It
also reflects how images work in the real world: different photos of the
same thing may be framed in slightly different ways.


In fact, an entirely untrained neural network knows nothing whatsoever
about how images behave. It doesn’t even recognize that when
an object is rotated by one degree, it still is a picture of the
same thing! So training the neural network with examples of
images in which the objects are in slightly different places and are slightly different
sizes helps it to understand the basic concept of what an object is,
and how it can be represented in an image.


Here is another example where we replace Resize with RandomResizedCrop, which is the transform that
provides the behavior just described. The most important parameter to
pass in is min_scale, which determines how much of the image to select
at minimum each time:


bears = bears.new(item_tfms=RandomResizedCrop(128, min_scale=0.3))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=4, nrows=1, unique=True)



[image: ]





Here, we used unique=True to have the same image repeated with different
versions of this RandomResizedCrop transform.


RandomResizedCrop is a specific example of a more general technique, called data augmentation.










Data Augmentation


Data augmentation refers to creating random variations of our input
data, such that they appear different but do not change
the meaning of the data. Examples of common data augmentation techniques for images
are rotation, flipping, perspective warping, brightness changes, and
contrast changes. For natural photo images such as the
ones we are using here, a standard set of augmentations that
we have found work pretty well are provided with the
aug_transforms function.


Because our images are now all the same size,
we can apply these augmentations to an entire batch of them using the
GPU, which will save a lot of time. To tell fastai we want to use these
transforms on a batch, we use the batch_tfms parameter (note that
we’re not using RandomResizedCrop in this example, so you
can see the differences more clearly; we’re also using
double the amount of augmentation compared to the default, for the same
reason):


bears = bears.new(item_tfms=Resize(128), batch_tfms=aug_transforms(mult=2))
dls = bears.dataloaders(path)
dls.train.show_batch(max_n=8, nrows=2, unique=True)



[image: ]





Now that we have assembled our data in a format fit for model training,
let’s train an image classifier using it.
























Training Your Model, and Using It to Clean Your Data


Time to use the same lines of code as in Chapter 1 to
train our bear classifier. We don’t have a lot of data for our problem (150 pictures of
each sort of bear at most), so to train our model, we’ll use
RandomResizedCrop, an image size of 224 pixels, which is fairly standard for image classification, and the default aug_transforms:


bears = bears.new(
    item_tfms=RandomResizedCrop(224, min_scale=0.5),
    batch_tfms=aug_transforms())
dls = bears.dataloaders(path)


We can now create our Learner and fine-tune it in the usual way:


learn = cnn_learner(dls, resnet18, metrics=error_rate)
learn.fine_tune(4)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	1.235733
      	0.212541
      	0.087302
      	00:05
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.213371
      	0.112450
      	0.023810
      	00:05
    

    
      	1
      	0.173855
      	0.072306
      	0.023810
      	00:06
    

    
      	2
      	0.147096
      	0.039068
      	0.015873
      	00:06
    

    
      	3
      	0.123984
      	0.026801
      	0.015873
      	00:06
    

  



Now let’s see whether the mistakes the model is making are
mainly thinking that grizzlies are teddies (that would be bad for
safety!), or that grizzlies are black bears, or something else. To visualize this, we can
create a confusion matrix:


interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix()



[image: ]





The rows represent all the black, grizzly, and teddy bears in our
dataset, respectively. The columns represent the images that the model
predicted as black, grizzly, and teddy bears, respectively. Therefore,
the diagonal of the matrix shows the images that were classified
correctly, and the off-diagonal cells represent those that were
classified incorrectly. This is one
of the many ways that fastai allows you to view the results of your
model. It is (of course!) calculated using the validation set. With the
color-coding, the goal is to have white everywhere except the diagonal,
where we want dark blue. Our bear classifier isn’t making
many mistakes!


It’s helpful to see where exactly our errors are occurring,
to see whether they’re due to a dataset problem (e.g., images
that aren’t bears at all, or are labeled incorrectly) or a model problem (perhaps it isn’t handling
images taken with unusual lighting, or from a different angle, etc.). To
do this, we can sort our images by their loss.


The loss is a number that is higher if the model is incorrect
(especially if it’s also confident of its incorrect answer),
or if it’s correct but not confident of its correct answer.
In the beginning of Part II, we’ll learn in depth how loss is
calculated and used in the training process. For now, plot_top_losses
shows us the images with the highest loss in our dataset. As the title
of the output says, each image is labeled with four things: prediction,
actual (target label), loss, and probability. The probability here is
the confidence level, from zero to one, that the model has assigned to
its prediction:


interp.plot_top_losses(5, nrows=1)



[image: ]





This output shows that the image with the highest loss is one that has been
predicted as “grizzly” with high confidence. However, it’s
labeled (based on our Bing image search) as “black.” We’re
not bear experts, but it sure looks to us like this label is incorrect!
We should probably change its label to “grizzly.”


The intuitive approach to doing data cleaning is to do it before you
train a model. But as you’ve seen in this case, a model can help you find data issues more quickly and easily. So, we
normally prefer to train a quick and simple model first, and then use it
to help us with data cleaning.


fastai includes a handy GUI for data cleaning called
ImageClassifierCleaner that allows you to choose a category and the
training versus validation set and view the highest-loss images (in order),
along with menus to allow images to be selected for removal or
relabeling:


cleaner = ImageClassifierCleaner(learn)
cleaner



[image: Cleaner widget]





We can see that among our “black bears” is an image that contains two
bears: one grizzly, one black. So, we should choose <Delete> in the
menu under this image. ImageClassifierCleaner doesn’t do the deleting or changing of labels for you; it just returns
the indices of items to change. So, for instance, to delete (unlink)
all images selected for deletion, we would run this:


for idx in cleaner.delete(): cleaner.fns[idx].unlink()


To move images for which we’ve selected a different category, we
would run this:


for idx,cat in cleaner.change(): shutil.move(str(cleaner.fns[idx]), path/cat)

Sylvain Says

Cleaning the data and getting it ready for your model are two of the biggest challenges for data scientists; they say it takes 90% of their time. The fastai library aims to provide tools that make it as easy as possible.




We’ll be seeing more examples of model-driven data cleaning
throughout this book. Once we’ve cleaned up our data, we can
retrain our model. Try it yourself, and see if your accuracy improves!

No Need for Big Data

After cleaning the dataset using these steps, we generally are seeing 100% accuracy on this task. We even see that result when we download a lot fewer images than the 150 per class we’re using here. As you can see, the common complaint that you need massive amounts of data to do deep learning can be a very long way from the truth!




Now that we have trained our model, let’s see how we can
deploy it to be used in practice.

















Turning Your Model into an Online Application


We are now going to look at what it takes to turn this model into a
working online application. We will just go as far as creating a basic
working prototype; we do not have the scope in this book to teach you
all the details of web application development generally.










Using the Model for Inference


Once you’ve got a model you’re happy with, you
need to save it so you can then copy it over to a server where
you’ll use it in production. Remember that a model consists
of two parts: the architecture and the trained parameters. The
easiest way to save a model is to save both of these, because that way,
when you load the model, you can be sure that you have the matching
architecture and parameters. To save both parts, use the export
method.


This method even saves the definition of how to create your
DataLoaders. This is important, because otherwise you would have to
redefine how to transform your data in order to use your model in
production. fastai automatically uses your validation set DataLoader
for inference by default, so your data augmentation will not be applied,
which is generally what you want.


When you call export, fastai will save a file called export.pkl:


learn.export()


Let’s check that the file exists, by using the ls
method that fastai adds to Python’s Path class:


path = Path()
path.ls(file_exts='.pkl')


(#1) [Path('export.pkl')]


You’ll need this file wherever you deploy your app to. For
now, let’s try to create a simple app within our notebook.


When we use a model for getting predictions, instead of training, we
call it inference. To create our inference learner from the exported
file, we use load_learner (in this case, this isn’t really
necessary, since we already have a working Learner in our notebook;
we’re doing it here so you can see the whole process
end to end):


learn_inf = load_learner(path/'export.pkl')


When we’re doing inference, we’re generally
getting predictions for just one image at a time. To do this, pass a filename
to predict:


learn_inf.predict('images/grizzly.jpg')


('grizzly', tensor(1), tensor([9.0767e-06, 9.9999e-01, 1.5748e-07]))


This has returned three things: the predicted category in the same
format you originally provided (in this case, that’s a
string), the index of the predicted category, and the probabilities of
each category. The last two are based on the order of categories in the
vocab of the DataLoaders; that is, the stored list of all possible
categories. At inference time, you can access the DataLoaders as an
attribute of the Learner:


learn_inf.dls.vocab


(#3) ['black','grizzly','teddy']


We can see here that if we index into the vocab with the integer
returned by predict, we get back “grizzly,” as expected. Also,
note that if we index into the list of probabilities, we see a nearly
1.00 probability that this is a grizzly.


We know how to make predictions from our saved model, so we have
everything we need to start building our app. We can do it directly in a
Jupyter notebook.

















Creating a Notebook App from the Model


To use our model in an application, we can simply treat the predict
method as a regular function. Therefore, creating an app from the model
can be done using any of the myriad of frameworks and techniques
available to application developers.


However, most data scientists are not familiar with the world of web
application development. So let’s try using something that
you do, at this point, know: it turns out that we can
create a complete working web application using nothing but Jupyter
notebooks! The two things we need to make this happen are as follows:



	
IPython widgets (ipywidgets)



	
Voilà






IPython widgets are GUI components that bring together JavaScript and
Python functionality in a web browser, and can be created and used
within a Jupyter notebook. For instance, the image cleaner that we saw
earlier in this chapter is entirely written with IPython widgets.
However, we don’t want to require users of our application
to run Jupyter themselves.


That is why Voilà exists. It is a system for making applications
consisting of IPython widgets available to end users, without them
having to use Jupyter at all. Voilà is taking advantage of the fact that
a notebook already is a kind of web application, just a rather complex
one that depends on another web application: Jupyter itself.
Essentially, it helps us automatically convert the complex web
application we’ve already implicitly made (the
notebook) into a simpler, easier-to-deploy web application, which
functions like a normal web application rather than like a notebook.


But we still have the advantage of developing in a notebook, so with
ipywidgets, we can build up our GUI step by step. We will use this
approach to create a simple image classifier. First, we need a file
upload widget:


btn_upload = widgets.FileUpload()
btn_upload



[image: An upload button]





Now we can grab the image:


img = PILImage.create(btn_upload.data[-1])



[image: Output widget representing the image]





We can use an Output widget to display it:


out_pl = widgets.Output()
out_pl.clear_output()
with out_pl: display(img.to_thumb(128,128))
out_pl



[image: Output widget representing the image]





Then we can get our predictions:


pred,pred_idx,probs = learn_inf.predict(img)


And use a Label to display them:


lbl_pred = widgets.Label()
lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'
lbl_pred


Prediction: grizzly; Probability: 1.0000


We’ll need a button to do the classification. It looks
exactly like the Upload button:


btn_run = widgets.Button(description='Classify')
btn_run


We’ll also need a click event handler; that is, a function that will be called
when it’s pressed. We can just copy over the previous lines of code:


def on_click_classify(change):
    img = PILImage.create(btn_upload.data[-1])
    out_pl.clear_output()
    with out_pl: display(img.to_thumb(128,128))
    pred,pred_idx,probs = learn_inf.predict(img)
    lbl_pred.value = f'Prediction: {pred}; Probability: {probs[pred_idx]:.04f}'

btn_run.on_click(on_click_classify)


You can test the button now by clicking it, and you should see the image
and predictions update automatically!


We can now put them all in a vertical box (VBox) to complete our GUI:


VBox([widgets.Label('Select your bear!'),
      btn_upload, btn_run, out_pl, lbl_pred])



[image: The whole widget]





We have written all the code necessary for our app. The next step is to
convert it into something we can deploy.

















Turning Your Notebook into a Real App


Now that we have everything working in this Jupyter notebook, we can
create our application. To do this, start a new notebook and add to it
only the code needed to create and show the widgets that you need, and
Markdown for any text that you want to appear. Have a look at the
bear_classifier notebook in the book’s repo to see the simple notebook
application we created.


Next, install Voilà if you haven’t already by copying these lines into
a notebook cell and executing it:

!pip install voila
!jupyter serverextension enable voila --sys-prefix


Cells that begin with a ! do not contain Python code, but instead
contain code that is passed to your shell (bash, Windows PowerShell, etc.).
If you are comfortable using the command line, which we’ll discuss more
in this book, you can
of course simply type these two lines (without the ! prefix) directly
into your terminal. In this case, the first line installs the voila
library and application, and the second connects it to your existing
Jupyter notebook.


Voilà runs Jupyter notebooks just like the Jupyter notebook server you
are using now does, but it also does something very important: it
removes all of the cell inputs, and shows only output (including
ipywidgets), along with your Markdown cells. So what’s left
is a web application! To view your notebook as a Voilà web application,
replace the word “notebooks” in your browser’s URL with
“voila/render”. You will see the same content as your notebook, but
without any of the code cells.


Of course, you don’t need to use Voilà or ipywidgets. Your
model is just a function you can call (pred,pred_idx,probs = learn.predict(img)), so you can use it with any
framework, hosted on any platform. And you can take something
you’ve prototyped in ipywidgets and Voilà and later convert
it into a regular web application. We’re showing you this
approach in the book because we think it’s a great way for
data scientists and other folks who aren’t web development
experts to create applications from their models.


We have our app; now let’s deploy it!

















Deploying Your App


As you now know, you need a GPU to train nearly any useful deep learning
model. So, do you need a GPU to use that model in production? No! You
almost certainly do not need a GPU to serve your model in production.
There are a few reasons for this:



	
As we’ve seen, GPUs are useful only when they do lots of
identical work in parallel. If you’re doing (say) image
classification, you’ll normally be classifying just one
user’s image at a time, and there isn’t normally
enough work to do in a single image to keep a GPU busy for long enough
for it to be very efficient. So, a CPU will often be more cost-effective.



	
An alternative could be to wait for a few users to submit their
images, and then batch them up and process them all at once on a GPU. But
then you’re asking your users to wait, rather than getting
answers straight away! And you need a high-volume site for this to be
workable. If you do need this functionality, you can use a tool such as
Microsoft’s ONNX Runtime or AWS SageMaker.



	
The complexities of dealing with GPU inference are significant. In
particular, the GPU’s memory will need careful manual
management, and you’ll need a careful queueing system to
ensure you process only one batch at a time.



	
There’s a lot more market competition in CPU than
GPU servers, and as a result, there are much cheaper options available for
CPU servers.






Because of the complexity of GPU serving, many systems have sprung up to
try to automate this. However, managing and running these systems is
also complex, and generally requires compiling your model into a
different form that’s specialized for that system. It’s typically preferable to avoid dealing
with this complexity until/unless your app gets popular enough that it makes clear financial sense for you
to do so.


For at least the initial prototype of your application, and for any
hobby projects that you want to show off, you can easily host them for
free. The best place and the best way to do this will vary over time, so
check the book’s website for the most up-to-date recommendations. As
we’re writing this book in early 2020, the simplest (and free!)
approach is to use Binder. To publish your web
app on Binder, you follow these steps:


	
Add your notebook to a GitHub repository.



	
Paste the URL of that repo into Binder’s URL field, as shown in Figure 2-4.



	
Change the File drop-down to instead select URL.



	
In the “URL to open” field, enter /voila/render/name.ipynb (replacing name with the name of your notebook).



	
Click the clipboard button at the bottom right to copy the URL and paste it somewhere safe.



	
Click Launch.








[image: Deploying to Binder]
Figure 2-4. Deploying to Binder




The first time you do this, Binder will take around 5 minutes to build
your site. Behind the scenes, it is finding a virtual machine that can run
your app, allocating storage, and collecting the files needed for Jupyter,
for your notebook, and for presenting your notebook as a web
application.


Finally, once it has started the app running, it will navigate your
browser to your new web app. You can share the URL you copied to allow
others to access your app as well.


For other (both free and paid) options for deploying your web app, be
sure to take a look at the book’s website.


You may well want to deploy your application onto mobile devices, or
edge devices such as a Raspberry Pi. There are a lot of libraries and
frameworks that allow you to integrate a model directly into a mobile
application. However, these approaches tend to require a lot of extra
steps and boilerplate, and do not always support all the PyTorch and
fastai layers that your model might use. In addition, the work you do
will depend on the kinds of mobile devices you are targeting for
deployment—you might need to do some work to run on iOS devices,
different work to run on newer Android devices, different work for older
Android devices, etc. Instead, we recommend wherever possible that you
deploy the model itself to a server, and have your mobile or edge
application connect to it as a web service.


There are quite a few upsides to this approach. The initial installation
is easier, because you have to deploy only a small GUI application,
which connects to the server to do all the heavy lifting. More
importantly perhaps, upgrades of that core logic can happen on your
server, rather than needing to be distributed to all of your users. Your
server will have a lot more memory and processing capacity than most edge
devices, and it is far easier to scale those resources if your model
becomes more demanding. The hardware that you will have on a server is also
going to be more standard and more easily supported by fastai and
PyTorch, so you don’t have to compile your model into a
different form.


There are downsides too, of course. Your application will require a
network connection, and there will be some latency each time the model
is called. (It takes a while for a neural network model to run anyway, so
this additional network latency may not make a big difference to your
users in practice. In fact, since you can use better hardware on the
server, the overall latency may even be less than if it were running locally!) Also, if your application uses
sensitive data, your users may be concerned about an approach that
sends that data to a remote server, so sometimes privacy considerations
will mean that you need to run the model on the edge device (it may be possible to avoid this by having an on-premise server, such as inside a
company’s firewall). Managing the complexity and scaling the
server can create additional overhead too, whereas if your model runs on the
edge devices, each user is bringing their own compute resources,
which leads to easier scaling with an increasing number of users (also
known as horizontal scaling).

Alexis Says

I’ve had a chance to see up close how the mobile ML landscape is changing in my work. We offer an iPhone app that depends on computer vision, and for years we ran our own computer vision models in the cloud. This was the only way to do it then since those models needed significant memory and compute resources and took minutes to process inputs. This approach required building not only the models (fun!), but also the infrastructure to ensure a certain number of “compute worker machines” were absolutely always running (scary), that more machines would automatically come online if traffic increased, that there was stable storage for large inputs and outputs, that the iOS app could know and tell the user how their job was doing, etc. Nowadays Apple provides APIs for converting models to run efficiently on devices, and most iOS devices have dedicated ML hardware, so that’s the strategy we use for our newer models. It’s still not easy, but in our case it’s worth it for a faster user experience and to worry less about servers. What works for you will depend, realistically, on the user experience you’re trying to create and what you personally find is easy to do. If you really know how to run servers, do it. If you really know how to build native mobile apps, do that. There are many roads up the hill.




Overall, we’d recommend using a simple CPU-based server
approach where possible, for as long as you can get away with it. If
you’re lucky enough to have a very successful application, you’ll be able to justify the investment in more
complex deployment approaches at that time.


Congratulations—you have successfully built a deep learning model and
deployed it! Now is a good time to take a pause and think about what
could go wrong.
























How to Avoid Disaster


In practice, a deep learning model will be just one piece of a much
bigger system. As we discussed at the start of this chapter, building a data
product requires thinking about the entire end-to-end process, from conception to use in production. In this book, we can’t hope to cover
all the complexity of managing deployed data products, such as managing
multiple versions of models, A/B testing, canarying, refreshing the data
(should we just grow and grow our datasets all the time, or should we
regularly remove some of the old data?), handling data labeling,
monitoring all this, detecting model rot, and so forth.


In this section, we will give an overview of some of the most important issues
to consider; for a more detailed discussion of deployment issues, we refer you to the excellent Building Machine Learning Powered Applications by Emmanuel Ameisin (O’Reilly).


One of the biggest issues to consider is that understanding and testing
the behavior of a deep learning model is much more difficult than with most other code you write. With normal software development, you can
analyze the exact steps that the software is taking, and carefully study
which of these steps match the desired behavior that you are trying to
create. But with a neural network, the behavior emerges from the
model’s attempt to match the training data, rather than
being exactly defined.


This can result in disaster! For instance, let’s say we
really were rolling out a bear detection system that will be attached
to video cameras around campsites in national parks and will warn campers of incoming
bears. If we used a model trained with the dataset we downloaded, there would be all kinds of problems in practice, such as these:



	
Working with video data instead of images



	
Handling nighttime images, which may not appear in this dataset



	
Dealing with low-resolution camera images



	
Ensuring results are returned fast enough to be useful in practice



	
Recognizing bears in positions that are rarely seen in photos that
people post online (for example from behind, partially covered by
bushes, or a long way away from the camera)






A big part of the issue is that the kinds of photos that people are most
likely to upload to the internet are the kinds of photos that do a good
job of clearly and artistically displaying their subject matter—which isn’t the kind of input this system is going to be getting. So, we
may need to do a lot of our own data collection and labeling to create
a useful system.


This is just one example of the more general problem of out-of-domain
data. That is to say, there may be data that our model sees in
production that is very different from what it saw during training. There
isn’t a complete technical solution to this problem;
instead, we have to be careful about our approach to rolling out the
technology.


There are other reasons we need to be careful too. One very common
problem is domain shift, whereby the type of data that our model
sees changes over time. For instance, an insurance company may use a
deep learning model as part of its pricing and risk algorithm, but
over time the types of customers the company attracts and the types of risks
it represents may change so much that the original training data
is no longer relevant.


Out-of-domain data and domain shift are examples of a larger problem: that
you can never fully understand all the possible behaviors of a neural network, because they have far too many parameters.
This is the natural downside of their best feature—their flexibility, which enables them to solve complex problems where we may not even be able to fully specify our preferred solution approaches. The good news, however, is
that there are ways to mitigate these risks using a carefully thought-out process. The details of this will vary depending on the details of
the problem you are solving, but we will attempt to lay out a
high-level approach, summarized in Figure 2-5, which we
hope will provide useful guidance.



[image: Deployment process]
Figure 2-5. Deployment process




Where possible, the first step is to use an entirely manual process,
with your deep learning model approach running in parallel but not
being used directly to drive any actions. The humans involved in the
manual process should look at the deep learning outputs and check
whether they make sense. For instance, with our bear classifier, a park
ranger could have a screen displaying video feeds from all the cameras, with any possible bear sightings simply highlighted in red.
The park ranger would still be expected to be just as alert as before
the model was deployed; the model is simply helping to check for
problems at this point.


The second step is to try to limit the scope of the model, and have it
carefully supervised by people. For instance, do a small geographically
and time-constrained trial of the model-driven approach. Rather than
rolling out our bear classifier in every national park throughout the
country, we could pick a single observation post, for a one-week period, and have
a park ranger check each alert before it goes out.


Then, gradually increase the scope of your rollout. As you do so, ensure
that you have really good reporting systems in place, to make sure that
you are aware of any significant changes to the actions being taken
compared to your manual process. For instance, if the number of bear
alerts doubles or halves after rollout of the new system in some
location, you should be very concerned. Try to think about all the ways in
which your system could go wrong, and then think about what measure or
report or picture could reflect that problem, and ensure that your
regular reporting includes that information.

Jeremy Says

I started a company 20 years ago called Optimal Decisions that used machine learning and optimization to help giant insurance companies set their pricing, impacting tens of billions of dollars of risks. We used the approaches described here to manage the potential downsides of something going wrong. Also, before we worked with our clients to put anything in production, we tried to simulate the impact by testing the end-to-end system on their previous year’s data. It was always quite a nerve-wracking process putting these new algorithms into production, but every rollout was 
successful.












Unforeseen Consequences and Feedback Loops


One of the biggest challenges in rolling out a model is that your model
may change the behavior of the system it is a part of. For instance,
consider a “predictive policing” algorithm that predicts more crime in
certain neighborhoods, causing more police officers to be sent to those
neighborhoods, which can result in more crimes being recorded in those
neighborhoods, and so on. In the Royal Statistical Society paper
“To
Predict and Serve?” Kristian Lum and William Isaac observe that “predictive
policing is aptly named: it is predicting future policing, not future
crime.”


Part of the issue in this case is that in the presence of bias (which
we’ll discuss in depth in the next chapter), feedback loops
can result in negative implications of that bias getting worse and
worse. For instance, there are concerns that this is already happening
in the US, where there is significant bias in arrest rates on racial
grounds.
According
to the ACLU, “despite roughly equal usage rates, Blacks are 3.73 times
more likely than whites to be arrested for marijuana.” The impact of
this bias, along with the rollout of predictive policing algorithms in
many parts of the United States, led Bärí Williams to
write
in the New York Times: “The same technology that’s the source of so much
excitement in my career is being used in law enforcement in ways that
could mean that in the coming years, my son, who is 7 now, is more
likely to be profiled or arrested—or worse—for no reason other than
his race and where we live.”


A helpful exercise prior to rolling out a significant machine learning
system is to consider this question: “What would happen if it went
really, really well?” In other words, what if the predictive power was
extremely high, and its ability to influence behavior was extremely
significant? In that case, who would be most impacted? What would the
most extreme results potentially look like? How would you know what was
really going on?


Such a thought exercise might help you to construct a more careful
rollout plan, with ongoing monitoring systems and human oversight. Of
course, human oversight isn’t useful if it isn’t
listened to, so make sure that reliable and resilient
communication channels exist so that the right people will be aware of issues
and will have the power to fix them.
























Get Writing!


One of the things our students have found most helpful to solidify their
understanding of this material is to write it down. There is no better
test of your understanding of a topic than attempting to teach it to
somebody else. This is helpful even if you never show your writing to
anybody—but it’s even better if you share it! So we
recommend that, if you haven’t already, you start a blog.
Now that you’ve completed this chapter and have learned how to
train and deploy models, you’re well placed to write your
first blog post about your deep learning journey. What’s
surprised you? What opportunities do you see for deep learning in your
field? What obstacles do you see?


Rachel Thomas, cofounder of fast.ai, wrote in the article
“Why You (Yes, You) Should Blog”:


The top advice I would give my younger self would be to start blogging sooner. Here are some reasons to blog:



	
It’s like a resume, only better. I know of a few people who have had blog posts lead to job offers!



	
Helps you learn. Organizing knowledge always helps me synthesize my own ideas. One of the tests of whether you understand something is whether you can explain it to someone else. A blog post is a great way to do that.



	
I’ve gotten invitations to conferences and invitations to speak from my blog posts. I was invited to the TensorFlow Dev Summit (which was awesome!) for writing a blog post about how I don’t like TensorFlow.



	
Meet new people. I’ve met several people who have responded to blog posts I wrote.



	
Saves time. Any time you answer a question multiple times through email, you should turn it into a blog post, which makes it easier for you to share the next time someone asks.







Perhaps her most important tip is this:


You are best positioned to
help people one step behind you. The material is still fresh in your
mind. Many experts have forgotten what it was like to be a beginner (or
an intermediate) and have forgotten why the topic is hard to understand
when you first hear it. The context of your particular background, your
particular style, and your knowledge level will give a different twist
to what you’re writing about.



We’ve provided full details on how to set up a blog in Appendix A. If you don’t have a blog
already, take a look at that now, because we’ve got a
really great approach for you to start blogging for free, with
no ads—and you can even use Jupyter Notebook!

















Questionnaire


	
Where do text models currently have a major deficiency?



	
What are possible negative societal implications of text generation models?



	
In situations where a model might make mistakes, and those mistakes could be harmful, what is a good alternative to automating a process?



	
What kind of tabular data is deep learning particularly good at?



	
What’s a key downside of directly using a deep learning model for recommendation systems?



	
What are the steps of the Drivetrain Approach?



	
How do the steps of the Drivetrain Approach map to a recommendation system?



	
Create an image recognition model using data you curate, and deploy it on the web.



	
What is DataLoaders?



	
What four things do we need to tell fastai to create DataLoaders?



	
What does the splitter parameter to DataBlock do?



	
How do we ensure a random split always gives the same validation set?



	
What letters are often used to signify the independent and dependent variables?



	
What’s the difference between the crop, pad, and squish resize approaches? When might you choose one over the others?



	
What is data augmentation? Why is it needed?



	
Provide an example of where the bear classification model might work poorly in production, due to structural or style differences in the training data.



	
What is the difference between item_tfms and batch_tfms?



	
What is a confusion matrix?



	
What does export save?



	
What is it called when we use a model for making predictions, instead of 
training?



	
What are IPython widgets?



	
When would you use a CPU for deployment? When might a GPU be better?



	
What are the downsides of deploying your app to a server, instead of to a client (or edge) device such as a phone or PC?



	
What are three examples of problems that could occur when rolling out a bear warning system in practice?



	
What is out-of-domain data?



	
What is domain shift?



	
What are the three steps in the deployment process?















Further Research


	
Consider how the Drivetrain Approach maps to a project or problem you’re interested in.



	
When might it be best to avoid certain types of data augmentation?



	
For a project you’re interested in applying deep learning to, consider the thought experiment, “What would happen if it went really, really well?”



	
Start a blog and write your first blog post. For instance, write about what you think deep learning might be useful for in a domain you’re interested in.




























  
Chapter 3. Data Ethics



Acknowledgment: Dr. Rachel Thomas

This chapter was coauthored by Dr. Rachel Thomas, the cofounder of
fast.ai and founding director of the Center for Applied Data Ethics at
the University of San Francisco. It largely follows a subset of the
syllabus she developed for the Introduction to
Data Ethics course.




As we discussed in Chapters 1 and 2, sometimes machine learning models
can go wrong. They can have bugs. They can be presented with data that
they haven’t seen before and behave in ways we
don’t expect. Or they could work exactly as designed, but
be used for something that we would much prefer they were never, ever
used for.


Because deep learning is such a powerful tool and can be used for so
many things, it becomes particularly important that we consider the
consequences of our choices. The philosophical study of ethics is the
study of right and wrong, including how we can define those terms,
recognize right and wrong actions, and understand the connection between
actions and consequences. The field of data ethics has been around for
a long time, and many academics are focused on this field. It is
being used to help define policy in many jurisdictions; it is being used
in companies big and small to consider how best to ensure good societal
outcomes from product development; and it is being used by researchers
who want to make sure that the work they are doing is used for good, and
not for bad.


As a deep learning practitioner, therefore, you will likely at some
point be put in a situation requiring you to consider
data ethics. So what is data ethics? It’s a subfield of
ethics, so let’s start there.

Jeremy Says

At university, philosophy of ethics was my main thing (it would have been the topic of my thesis, if I’d finished it, instead of dropping out to join the real world). Based on the years I spent studying ethics, I can tell you this: no one really agrees on what right and wrong are, whether they exist, how to spot them, which people are good and which bad, or pretty much anything else. So don’t expect too much from the theory! We’re going to focus on examples and thought starters here, not theory.




In answering the question
“What
Is Ethics?” the Markkula Center for Applied Ethics says that the term
refers to the following:



	
Well-founded standards of right and wrong that prescribe what humans should do



	
The study and development of one’s ethical standards






There is no list of right answers. There is no list of
dos and don’ts. Ethics is complicated and
context-dependent. It involves the perspectives of many stakeholders.
Ethics is a muscle that you have to develop and practice. In this
chapter, our goal is to provide some signposts to help you on that
journey.


Spotting ethical issues is best to do as part of a collaborative team.
This is the only way you can really incorporate different perspectives.
Different people’s backgrounds will help them to see things
that may not be obvious to you. Working with a team is helpful for many
“muscle-building” activities, including this one.


This chapter is certainly not the only part of the book where we talk
about data ethics, but it’s good to have a place where we
focus on it for a while. To get oriented, it’s perhaps
easiest to look at a few examples. So, we picked out three that we think
illustrate effectively some of the key topics.








Key Examples for Data Ethics


We are going to start with three specific examples that illustrate three
common ethical issues in tech (we’ll study these issues in more depth later in the chapter):


	Recourse processes

	
Arkansas’s buggy healthcare algorithms left patients stranded.



	Feedback loops

	
YouTube’s recommendation system helped unleash a conspiracy theory boom.



	Bias

	
When a traditionally African-American name is searched for on Google, it displays ads for criminal background checks.






In fact, for every concept that we introduce in this chapter, we are
going to provide at least one specific example. For each one,
think about what you could have done in this situation, and
what kinds of obstructions there might have been to you getting that
done. How would you deal with them? What would you look out for?










Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits


The Verge investigated software used in over half of the US states to
determine how much healthcare people receive, and documented its
findings in the article
“What
Happens When an Algorithm Cuts Your Healthcare”. After implementation of
the algorithm in Arkansas, hundreds of people (many with severe disabilities)
had their healthcare drastically cut.


For instance, Tammy Dobbs, a woman
with cerebral palsy who needs an aide to help her to get out of bed, to
go to the bathroom, to get food, and more, had her hours of help
suddenly reduced by 20 hours a week. She couldn’t get any explanation
for why her healthcare was cut. Eventually, a court case revealed that
there were mistakes in the software implementation of the algorithm,
negatively impacting people with diabetes or cerebral palsy. However,
Dobbs and many other people reliant on these health-care benefits live
in fear that their benefits could again be cut suddenly and
inexplicably.

















Feedback Loops: YouTube’s Recommendation System


Feedback loops can occur when your model is controlling the next round
of data you get. The data that is returned quickly becomes flawed by the
software itself.


For instance, YouTube has 1.9 billion users,
who watch over 1 billion hours of YouTube videos a day. Its recommendation algorithm (built by Google),
which was designed to optimize watch time, is responsible for around 70%
of the content that is watched. But there was a problem: it led to out-of-control feedback loops,
leading the New York Times to run the headline “YouTube Unleashed a Conspiracy Theory Boom. Can It Be Contained?” in February 2019. Ostensibly,
recommendation systems are predicting what content people will like, but
they also have a lot of power in determining what content people even
see.

















Bias: Professor Latanya Sweeney “Arrested”


Dr. Latanya Sweeney is a professor at Harvard and director of the university’s data
privacy lab. In the paper “Discrimination
in Online Ad Delivery” (see Figure 3-1), she describes
her discovery that Googling her name resulted in advertisements saying
“Latanya Sweeney, Arrested?” even though she is the only known Latanya Sweeney
and has never been arrested. However, when she Googled other names, such
as 
“Kirsten Lindquist,” she got more neutral ads, even though Kirsten
Lindquist has been arrested three times.



[image: Google search showing ads about Professor Latanya Sweeney's (nonexistent) arrest record]
Figure 3-1. Google search showing ads about Professor Latanya Sweeney’s (nonexistent) arrest record




Being a computer scientist, she studied this systematically and looked
at over 2,000 names. She found a clear pattern: historically
Black names received advertisements suggesting that the person had a
criminal record, whereas traditionally white names had more neutral advertisements.


This is an example of bias. It can make a big difference to
people’s lives—for instance, if a job applicant is Googled,
it may appear that they have a criminal record when they do not.

















Why Does This Matter?


One very natural reaction to considering these issues is: “So what?
What’s that got to do with me? I’m a data
scientist, not a politician. I’m not one of the senior
executives at my company who make the decisions about what we do.
I’m just trying to build the most predictive model I can.”


These are very reasonable questions. But we’re going to try
to convince you that the answer is that everybody who is training models
absolutely needs to consider how their models will be used, and
consider how to best ensure that they are used as positively as possible.
There are things you can do. And if you don’t do them, things can go pretty badly.


One particularly hideous example of what happens when technologists
focus on technology at all costs is the story of IBM and Nazi Germany. In 2001, a
Swiss judge ruled that it was not unreasonable “to deduce that
IBM’s technical assistance facilitated the tasks of the
Nazis in the commission of their crimes against humanity, acts also
involving accountancy and classification by IBM machines and utilized in
the concentration camps themselves.”


IBM, you see, supplied the Nazis with data tabulation products necessary
to track the extermination of Jews and other groups on a massive scale.
This was driven from the top of the company, with marketing to Hitler
and his leadership team. Company President Thomas Watson personally
approved the 1939 release of special IBM alphabetizing machines to help
organize the deportation of Polish Jews. Pictured in Figure 3-2 is Adolf Hitler
(far left) meeting with IBM CEO Tom Watson Sr. (second from left), shortly
before Hitler awarded Watson a special “Service to the Reich” medal in
1937.



[image: A picture of IBM CEO Tom Watson Sr. meeting with Adolf Hitler]
Figure 3-2. IBM CEO Tom Watson Sr. meeting with Adolf Hitler




But this was not an isolated incident—the organization’s involvement was extensive. IBM and its
subsidiaries provided regular training and maintenance onsite at the
concentration camps: printing off cards, configuring machines, and
repairing them as they broke frequently. IBM set up categorizations on
its punch card system for the way that each person was killed, which
group they were assigned to, and the logistical information necessary to
track them through the vast Holocaust system (see Figure 3-3). IBM’s code for
Jews in the concentration camps was 8: some 6,000,000 were
killed. Its code for Romanis was 12 (they were labeled by the Nazis as
“asocials,” with over 300,000 killed in the Zigeunerlager, or
“Gypsy camp”). General executions were coded as 4, death in the gas
chambers as 6.



[image: Picture of a punch card used by IBM in concentration camps]
Figure 3-3. A punch card used by IBM in concentration camps




Of course, the project managers and engineers and technicians involved
were just living their ordinary lives. Caring for their families, going
to the church on Sunday, doing their jobs the best they could. Following
orders. The marketers were just doing what they could to meet their
business development goals. As Edwin Black, author of IBM and the
Holocaust (Dialog Press) observed: “To the blind technocrat, the means were more
important than the ends. The destruction of the Jewish people became
even less important because the invigorating nature of IBM’s
technical achievement was only heightened by the fantastical profits to
be made at a time when bread lines stretched across the world.”


Step back for a moment and consider: How would you feel if you
discovered that you had been part of a system that ended up hurting
society? Would you be open to finding out? How can
you help make sure this doesn’t happen? We have described
the most extreme situation here, but there are many
negative societal consequences linked to AI and machine learning
being observed today, some of which we’ll describe in this chapter.


It’s not just a moral burden, either. Sometimes
technologists pay very directly for their actions. For instance, the
first person who was jailed as a result of the Volkswagen scandal, in which the car company was revealed to have cheated on its diesel emissions tests, was not the
manager who oversaw the project, or an executive at the helm of the
company. It was one of the engineers, James Liang, who just did what he
was told.


Of course, it’s not all bad—if a project you are involved in turns out to make a
huge positive impact on even one person, this is going to make you feel
pretty great!


OK, so hopefully we have convinced you that you ought to care. But
what should you do? As data scientists, we’re naturally
inclined to focus on making our models better by optimizing some metric or other.
But optimizing that metric may not lead to better outcomes. And
even if it does help create better outcomes, it
almost certainly won’t be the only thing that matters.
Consider the pipeline of steps that occurs between the development of a
model or an algorithm by a researcher or practitioner, and the point at
which this work is used to make a decision. This entire
pipeline needs to be considered as a whole if we’re to
have a hope of getting the kinds of outcomes we want.


Normally, there is a very long chain from one end to the other. This is
especially true if you are a researcher who might not even
know if your research will ever get used for anything, or if
you’re involved in data collection, which is even earlier in
the pipeline. But no one is better placed to inform everyone involved in
this chain about the capabilities, constraints, and details of your work
than you are. Although there’s no “silver bullet” that can
ensure your work is used the right way, by getting involved in the
process, and asking the right questions, you can at the very least
ensure that the right issues are being considered.


Sometimes, the right response to being asked to do a piece of work is to
just say “no.” Often, however, the response we hear is, “If I don’t do
it, someone else will.” But consider this: if you’ve been picked for
the job, you’re the best person they’ve found to do it—so if you don’t do it,
the best person isn’t working on that project. If the first five people they ask
all say no too, so much the better!
























Integrating Machine Learning with Product Design


Presumably, the reason you’re doing this work is that you
hope it will be used for something. Otherwise, you’re just
wasting your time. So, let’s start with the assumption that
your work will end up somewhere. Now, as you are collecting your data
and developing your model, you are making lots of decisions. What level
of aggregation will you store your data at? What loss function should
you use? What validation and training sets should you use? Should you
focus on simplicity of implementation, speed of inference, or accuracy
of the model? How will your model handle out-of-domain data items? Can
it be fine-tuned, or must it be retrained from scratch over time?


These are not just algorithm questions. They are data product design
questions. But the product managers, executives, judges, journalists,
doctors—whoever ends up developing and using the system of which your
model is a part—will not be well-placed to understand the decisions that
you made, let alone change them.


For instance, two studies found that Amazon’s facial recognition software produced
inaccurate and
racially biased results. Amazon claimed that the researchers should have changed the default parameters, without explaining how this would have changed the biased results. Furthermore, it turned out
that Amazon was not instructing police departments that used its software to do this either. There was, presumably, a big distance between the
researchers who developed these algorithms and the Amazon
documentation staff who wrote the guidelines provided to the police.


A lack of tight integration led to serious problems for society at large, the
police, and Amazon. It turned out that its system
erroneously matched 28 members of Congress to criminal mugshots! (And
the Congresspeople wrongly matched to criminal mugshots were
disproportionately people of color, as seen in Figure 3-4.)



[image: Picture of the congresspeople matched to criminal mugshots by Amazon software, they are disproportionatedly people of color]
Figure 3-4. Congresspeople matched to criminal mugshots by Amazon software




Data scientists need to be part of a cross-disciplinary team. And
researchers need to work closely with the kinds of people who will end
up using their research. Better still, domain experts
themselves could learn enough to be able to train and debug some models
themselves—hopefully, a few of you are reading this book right
now!


The modern workplace is a very specialized place. Everybody tends to
have well-defined jobs to perform. Especially in large companies,
it can be hard to know all the pieces of the puzzle.
Sometimes companies even intentionally obscure the overall project goals being worked on, if they know that employees are not
going to like the answers. This is sometimes done by compartmentalizing
pieces as much as possible.


In other words, we’re not saying that any of this is easy.
It’s hard. It’s really hard. We all have to do
our best. And we have often seen that the people who do get involved in
the higher-level context of these projects, and attempt to develop
cross-disciplinary capabilities and teams, become some of the most
important and well rewarded members of their organizations.
It’s the kind of work that tends to be highly appreciated by
senior executives, even if it is sometimes considered rather
uncomfortable by middle management.

















Topics in Data Ethics


Data ethics is a big field, and we can’t cover everything.
Instead, we’re going to pick a few topics that we think are
particularly relevant:



	
The need for recourse and accountability



	
Feedback loops



	
Bias



	
Disinformation






Let’s look at each in turn.










Recourse and Accountability


In a complex system, it is easy for no one person to feel responsible
for outcomes. While this is understandable, it does not lead to good
results. In the earlier example of the Arkansas healthcare system in
which a bug led to people with cerebral palsy losing access to needed
care, the creator of the algorithm blamed government officials, and
government officials blamed those who implemented the software. NYU
professor Danah Boyd described this phenomenon: “Bureaucracy has often
been used to shift or evade responsibility….Today’s algorithmic
systems are extending bureaucracy.”


An additional reason why recourse is so necessary is that data often
contains errors. Mechanisms for audits and error correction are crucial.
A database of suspected gang members maintained by California law
enforcement officials was found to be full of errors, including 42
babies who had been added to the database when they were less than 1
year old (28 of whom were marked as “admitting to being gang
members”). In this case, there was no process in place for correcting
mistakes or removing people after they’d been added. Another example is
the US credit report system: a large-scale study of credit reports by
the Federal Trade Commission (FTC) in 2012 found that 26% of
consumers had at least one mistake in their files, and 5% had errors
that could be devastating.


Yet, the process of getting such errors
corrected is incredibly slow and opaque. When public radio reporter
Bobby Allyn discovered that he was erroneously listed as having a
firearms conviction, it took him “more than a dozen phone calls, the
handiwork of a county court clerk and six weeks to solve the problem.
And that was only after I contacted the company’s communications
department as a journalist.”


As machine learning practitioners, we do not always think of it as our
responsibility to understand how our algorithms end up being implemented
in practice. But we need to.

















Feedback Loops


We explained in Chapter 1 how an algorithm
can interact with its environment to create a feedback loop, making
predictions that reinforce actions taken in the real world, which lead
to predictions even more pronounced in the same direction. As an
example, let’s again consider YouTube’s recommendation
system. A couple of years ago, the Google team talked about how they had
introduced reinforcement learning (closely related to deep learning, but your loss function represents a result potentially a long time
after an action occurs) to improve YouTube’s recommendation system. They
described how they used an algorithm that made recommendations such
that watch time would be optimized.


However, human beings tend to be drawn to controversial content.
This meant that videos about things like conspiracy theories started to
get recommended more and more by the recommendation system. Furthermore,
it turns out that the kinds of people who are interested in conspiracy
theories are also people who watch a lot of online videos! So, they
started to get drawn more and more toward YouTube. The increasing
number of conspiracy theorists watching videos on YouTube resulted in the
algorithm recommending more and more conspiracy theory and other
extremist content, which resulted in more extremists watching videos on
YouTube, and more people watching YouTube developing extremist views,
which led to the algorithm recommending more extremist content. The
system was spiraling out of control.


And this phenomenon was not contained to this particular type of content. In June 2019, the New York Times published an article on YouTube’s
recommendation system titled
“On
YouTube’s Digital Playground, an Open Gate for Pedophiles”. The article
started with this chilling story:


Christiane C. didn’t think anything of it when her 10-year-old daughter and a friend uploaded a video of themselves playing in a backyard pool…A few days later…the video had thousands of views. Before long, it had ticked up to 400,000…“I saw the video again and I got scared by the number of views,” Christiane said. She had reason to be. YouTube’s automated recommendation system…had begun showing the video to users who watched other videos of prepubescent, partially clothed children, a team of researchers has found.



On its own, each video might be perfectly innocent, a home movie, say, made by a child. Any revealing frames are fleeting and appear accidental. But, grouped together, their shared features become unmistakable.



YouTube’s recommendation algorithm had begun curating
playlists for pedophiles, picking out innocent home videos that happened
to contain prepubescent, partially clothed children.


No one at Google planned to create a system that turned family videos
into porn for pedophiles. So what happened?


Part of the problem here is the centrality of metrics in driving a
financially important system. When an algorithm has a metric to
optimize, as you have seen, it will do everything it can to optimize
that number. This tends to lead to all kinds of edge cases, and humans
interacting with a system will search for, find, and exploit these edge
cases and feedback loops for their advantage.


There are signs that this is exactly what has happened with
YouTube’s recommendation system in 2018. The Guardian ran an article called
“How an Ex-YouTube Insider Investigated Its Secret Algorithm” about Guillaume
Chaslot, an ex-YouTube engineer who created a website that
tracks these issues. Chaslot published the chart in
Figure 3-5 following the release of Robert
Mueller’s “Report on the Investigation Into Russian
Interference in the 2016 Presidential Election.”



[image: Coverage of the Mueller report]
Figure 3-5. Coverage of the Mueller report




Russia Today’s coverage of the Mueller report was an extreme
outlier in terms of how many channels were recommending it. This suggests the
possibility that Russia Today, a state-owned Russia media outlet, has
been successful in gaming YouTube’s recommendation
algorithm. Unfortunately, the lack of transparency of systems like this makes it hard
to uncover the kinds of problems that we’re discussing.


One of our reviewers for this book, Aurélien Géron, led
YouTube’s video classification team from 2013 to 2016 (well
before the events discussed here). He pointed out that it’s
not just feedback loops involving humans that are a problem. There can
also be feedback loops without humans! He told us about an example from
YouTube:


One important signal to classify the main topic of a video is the channel it comes from. For example, a video uploaded to a cooking channel is very likely to be a cooking video. But how do we know what topic a channel is about? Well…in part by looking at the topics of the videos it contains! Do you see the loop? For example, many videos have a description which indicates what camera was used to shoot the video. As a result, some of these videos might get classified as videos about “photography.” If a channel has such a misclassified video, it might be classified as a “photography” channel, making it even more likely for future videos on this channel to be wrongly classified as “photography.” This could even lead to runaway virus-like classifications! One way to break this feedback loop is to classify videos with and without the channel signal. Then when classifying the channels, you can only use the classes obtained without the channel signal. This way, the feedback loop is broken.



There are positive examples of people and organizations attempting to
combat these problems. Evan Estola, lead machine learning engineer at
Meetup, discussed the example of men expressing more interest than women in tech meetups.
Taking gender into account could therefore cause Meetup’s algorithm to recommend fewer tech meetups to women, and as a
result, fewer women would find out about and attend tech meetups, which
could cause the algorithm to suggest even fewer tech meetups to women,
and so on in a self-reinforcing feedback loop. So, Evan and his team made
the ethical decision for their recommendation algorithm to not create
such a feedback loop, by explicitly not using gender for that part of
their model. It is encouraging to see a company not just unthinkingly
optimize a metric, but consider its impact. According to Evan, “You need to decide
which feature not to use in your algorithm… the most optimal algorithm
is perhaps not the best one to launch into production.”


While Meetup chose to avoid such an outcome, Facebook provides an
example of allowing a runaway feedback loop to run wild. Like YouTube, it tends to radicalize users interested in one conspiracy theory by introducing
them to more. As Renee DiResta, a researcher on proliferation of disinformation, writes:


Once people join a single conspiracy-minded [Facebook] group, they are algorithmically routed to a plethora of others. Join an anti-vaccine group, and your suggestions will include anti-GMO, chemtrail watch, flat Earther (yes, really), and “curing cancer naturally” groups. Rather than pulling a user out of the rabbit hole, the recommendation engine pushes them further in.



It is extremely important to keep in mind that this kind of behavior can
happen, and to either anticipate a feedback loop or take positive action
to break it when you see the first signs of it in your own projects.
Another thing to keep in mind is bias, which, as we discussed briefly in the
previous chapter, can interact with feedback loops in very troublesome
ways.

















Bias


Discussions of bias online tend to get pretty confusing pretty fast. The
word “bias” means so many different things. Statisticians often think
when data ethicists are talking about bias that they’re
talking about the statistical definition of the term bias—but
they’re not. And they’re certainly not talking
about the biases that appear in the weights and biases that are the
parameters of your model!


What they’re talking about is the social science concept of
bias. In “A Framework for Understanding Unintended Consequences of Machine Learning” MIT’s Harini Suresh
and John Guttag describe six types of bias in machine learning, summarized in
Figure 3-6.



[image: A diagram showing all sources where bias can appear in machine learning]
Figure 3-6. Bias in machine learning can come from multiple sources (courtesy of Harini Suresh and John V. Guttag)




We’ll discuss four of these types of bias, those that
we’ve found most helpful in our own work (see the paper for
details on the others).












Historical bias


Historical bias comes from the fact that people are biased, processes
are biased, and society is biased. Suresh and Guttag say: “Historical
bias is a fundamental, structural issue with the first step of the data
generation process and can exist even given perfect sampling and feature
selection.”


For instance, here are a few examples of historical race
bias in the US, from the New York Times article
“Racial Bias, Even When We Have Good Intentions” by the University of Chicago’s Sendhil Mullainathan:



	
When doctors were shown identical files, they were much less likely to
recommend cardiac catheterization (a helpful procedure) to Black
patients.



	
When bargaining for a used car, Black people were offered initial
prices $700 higher and received far smaller concessions.



	
Responding to apartment rental ads on Craigslist with a Black name
elicited fewer responses than with a white name.



	
An all-white jury was 16 percentage points more likely to convict a
Black defendant than a white one, but when a jury had one Black member, it
convicted both at the same rate.






The COMPAS algorithm, widely used for sentencing and bail decisions in
the US, is an example of an important algorithm that, when tested by
ProPublica, showed clear racial bias in practice (Figure 3-7).



[image: Table showing the COMPAS algorithm is more likely to give bail to white people, even if they re-offend more]
Figure 3-7. Results of the COMPAS algorithm




Any dataset involving humans can have this kind of bias: medical
data, sales data, housing data, political data, and so on. Because
underlying bias is so pervasive, bias in datasets is very pervasive.
Racial bias even turns up in computer vision, as shown in the example
of autocategorized photos shared on Twitter by a Google Photos user shown in Figure 3-8.



[image: Screenshot of the use of Google photos labeling a black user and her friend as gorillas]
Figure 3-8. One of these labels is very wrong…




Yes, that is showing what you think it is: Google Photos classified a
Black user’s photo with their friend as “gorillas”! This
algorithmic misstep got a lot of attention in the media. “We’re
appalled and genuinely sorry that this happened,” a company spokeswoman
said. “There is still clearly a lot of work to do with automatic image
labeling, and we’re looking at how we can prevent these types of
mistakes from happening in the future.”


Unfortunately, fixing problems in machine learning systems when the
input data has problems is hard. Google’s first attempt
didn’t inspire confidence, as coverage by The Guardian suggested (Figure 3-9).



[image: Pictures of headlines from the Guardian when Google removed gorillas and other monkeys from the possible labels of its algorithm]
Figure 3-9. Google’s first response to the problem




These kinds of problems are certainly not limited to Google. MIT
researchers studied the most popular online computer vision APIs to see
how accurate they were. But they didn’t just calculate a
single accuracy number—instead, they looked at the accuracy across four groups, as illustrated in Figure 3-10.



[image: Table showing how various facial recognition systems perform way worse on darker shades of skin and females]
Figure 3-10. Error rate per gender and race for various facial recognition systems




IBM’s system, for instance, had a 34.7% error rate for
darker females, versus 0.3% for lighter males—over 100 times more errors!
Some people incorrectly reacted to these experiments by claiming that
the difference was simply because darker skin is harder for computers to
recognize. However, what happened was that, after the negative
publicity that this result created, all of the companies in question
dramatically improved their models for darker skin, such that one year
later, they were nearly as good as for lighter skin. So what this showed is that the developers failed to utilize datasets
containing enough darker faces, or test their product with darker faces.


One of the MIT researchers, Joy Buolamwini, warned: “We have entered
the age of automation overconfident yet underprepared. If we fail to
make ethical and inclusive artificial intelligence, we risk losing gains
made in civil rights and gender equity under the guise of machine
neutrality.”


Part of the issue appears to be a systematic imbalance in the makeup of
popular datasets used for training models. The abstract of the paper
“No Classification Without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World” by Shreya Shankar et al. states, “We analyze two large, publicly available
image data sets to assess geo-diversity and find that these data sets
appear to exhibit an observable amerocentric and eurocentric
representation bias. Further, we analyze classifiers trained on these
data sets to assess the impact of these training distributions and find
strong differences in the relative performance on images from different
locales.” Figure 3-11 shows one of the charts from the
paper, showing the geographic makeup of what were at the time (and
still are, as this book is being written) the two most important image
datasets for training models.



[image: Graphs showing how the vast majority of images in popular training datasets come from the US or Western Europe]
Figure 3-11. Image provenance in popular training sets




The vast majority of the images are from the US and other
Western countries, leading to models trained on ImageNet performing
worse on scenes from other countries and cultures. For instance,
research found that such models are worse at identifying household items (such as soap, spices, sofas,
or beds) from lower-income countries. Figure 3-12 shows an
image from the paper “Does Object Recognition Work for Everyone?” by Terrance DeVries et al. of Facebook AI Research that illustrates this point.



[image: Figure showing an object detection algorithm performing better on western products]
Figure 3-12. Object detection in action




In this example, we can see that the lower-income soap example is a very
long way away from being accurate, with every commercial image
recognition service predicting “food” as the most likely answer!


As we will discuss shortly, in addition, the vast majority of AI
researchers and developers are young white men. Most projects that we
have seen do most user testing using friends and families of the
immediate product development group. Given this, the kinds of problems
we just discussed should not be surprising.


Similar historical bias is found in the texts used as data for natural
language processing models. This crops up in downstream machine learning
tasks in many ways. For instance, it
was
widely reported that until last year, Google Translate showed systematic
bias in how it translated the Turkish gender-neutral pronoun “o” into
English: when applied to jobs that are often associated
with males, it used “he,” and when applied to jobs that are often
associated with females, it used “she” (Figure 3-13).



[image: Figure showing gender bias in data ets used to train language models showing up in translations]
Figure 3-13. Gender bias in text datasets




We also see this kind of bias in online advertisements. For instance, a
study in 2019 by Muhammad Ali et al. found that even when the person placing the ad does not
intentionally discriminate, Facebook will show ads to very different
audiences based on race and gender. Housing ads with the same text but picturing either a white or a Black family were shown to
racially different audiences.

















Measurement bias


In “Does Machine Learning Automate Moral Hazard and Error” in American Economic
Review, Sendhil Mullainathan and Ziad Obermeyer look at a model that tries to answer this question:
using historical electronic health record (EHR) data, what factors are
most predictive of stroke? These are the top predictors from the model:



	
Prior stroke



	
Cardiovascular disease



	
Accidental injury



	
Benign breast lump



	
Colonoscopy



	
Sinusitis






However, only the top two have anything to do with a stroke! Based on
what we’ve studied so far, you can probably guess why. We
haven’t really measured stroke, which occurs when a region of the
brain is denied oxygen due to an interruption in the blood supply. What
we’ve measured is who had symptoms, went to a doctor, got the
appropriate tests, and received a diagnosis of stroke. Actually having a
stroke is not the only thing correlated with this complete list—it’s also correlated with being the kind of person who goes to the doctor (which is influenced by who has access to
healthcare, can afford their co-pay, doesn’t experience
racial or gender-based medical discrimination, and more)! If you are
likely to go to the doctor for an accidental injury, you are
likely to also go the doctor when you are having a stroke.


This is an example of measurement bias. It occurs when our models make
mistakes because we are measuring the wrong thing, or measuring it in
the wrong way, or incorporating that measurement into the model
inappropriately.

















Aggregation bias


Aggregation bias occurs when models do not aggregate data in a way
that incorporates all of the appropriate factors, or when a model does
not include the necessary interaction terms, nonlinearities, or so
forth. This can particularly occur in medical settings. For instance,
the way diabetes is treated is often based on simple univariate
statistics and studies involving small groups of heterogeneous people.
Analysis of results is often done in a way that does not take into account
different ethnicities or genders. However, it turns out that diabetes
patients have different
complications across ethnicities, and HbA1c levels (widely used to
diagnose and monitor diabetes)
differ in complex ways
across ethnicities and genders. This can result in people being
misdiagnosed or incorrectly treated because medical decisions are based
on a model that does not include these important variables and
interactions.

















Representation bias


The abstract of the paper “Bias in Bios: A Case Study of Semantic Representation Bias in a High-Stakes Setting”
by Maria De-Arteaga et al. notes that there is gender imbalance in occupations (e.g., females are
more likely to be nurses, and males are more likely to be pastors), and
says that “differences in true positive rates between genders are
correlated with existing gender imbalances in occupations, which may
compound these imbalances.”


In other words, the researchers noticed that models
predicting occupation did not only reflect the actual gender imbalance
in the underlying population, but amplified it! This type of representation bias is quite
common, particularly for simple models. When there is a clear,
easy-to-see underlying relationship, a simple model will often
assume that this relationship holds all the time. As
Figure 3-14 from the paper shows, for occupations
that had a higher percentage of females, the model tended to
overestimate the prevalence of that occupation.



[image: Graph showing how model predictions overamplify existing bias]
Figure 3-14. Model error in predicting occupation plotted against percentage of women in said occupation




For example, in the training dataset 14.6% of surgeons were women, yet
in the model predictions only 11.6% of the true positives were women.
The model is thus amplifying the bias existing in the training set.


Now that we’ve seen that those biases exist, what can we do
to mitigate them?

















Addressing different types of bias


Different types of bias require different approaches for mitigation.
While gathering a more diverse dataset can address representation bias,
this would not help with historical bias or measurement bias. All
datasets contain bias. There is no such thing as a completely debiased
dataset. Many researchers in the field have been converging on a set of
proposals to enable better documentation of the decisions, context, and
specifics about how and why a particular dataset was created, what
scenarios it is appropriate to use in, and what the limitations are.
This way, those using a particular dataset will not be caught off guard by its
biases and limitations.


We often hear the question, “Humans are biased, so does algorithmic
bias even matter?” This comes up so often, there must be some reasoning
that makes sense to the people who ask it, but it doesn’t
seem very logically sound to us! Independently of whether this is
logically sound, it’s important to realize that algorithms (particularly machine learning algorithms!)
and people are different. Consider these points about machine learning algorithms:


	Machine learning can create feedback loops

	
Small amounts of bias can rapidly increase exponentially because of feedback loops.



	Machine learning can amplify bias

	
Human bias can lead to larger amounts of machine learning bias.



	Algorithms and humans are used differently

	
Human decision makers and algorithmic decision makers are not used in a plug-and-play interchangeable way in practice. These examples are given in the list on the next page.



	Technology is power

	
And with that comes responsibility.






As the Arkansas healthcare example showed, machine learning is often
implemented in practice not because it leads to better outcomes, but
because it is cheaper and more efficient. Cathy O’Neill, in
her book Weapons of Math Destruction (Crown), described a pattern in which the
privileged are processed by people, whereas the poor are processed by
algorithms. This is just one of a number of ways that algorithms are
used differently than human decision makers. Others include the following:



	
People are more likely to assume algorithms are objective or
error-free (even if they’re given the option of a human override).



	
Algorithms are more likely to be implemented with no appeals process
in place.



	
Algorithms are often used at scale.



	
Algorithmic systems are cheap.






Even in the absence of bias, algorithms (and deep learning especially,
since it is such an effective and scalable algorithm) can lead to
negative societal problems, such as when used for disinformation.






















Disinformation


Disinformation has a history stretching back hundreds or even
thousands of years. It is not necessarily about getting someone to
believe something false, but rather often used to sow disharmony and
uncertainty, and to get people to give up on seeking the truth.
Receiving conflicting accounts can lead people to assume that they can
never know whom or what to trust.


Some people think disinformation is primarily about false information or
fake news, but in reality, disinformation can often contain seeds of
truth, or half-truths taken out of context. Ladislav Bittman was
an intelligence officer in the USSR who later defected to the US and wrote some books in the 1970s and 1980s on the role of
disinformation in Soviet propaganda operations. In The KGB and Soviet Disinformation (Pergamon), he wrote “Most
campaigns are a carefully designed mixture of facts, half-truths,
exaggerations, and deliberate lies.”


In the US, this has hit close to home in recent years, with
the FBI detailing a massive disinformation campaign linked to Russia in
the 2016 election. Understanding the disinformation that was used in
this campaign is very educational. For instance, the FBI found that the
Russian disinformation campaign often organized two separate fake “grass
roots” protests, one for each side of an issue, and got them to protest
at the same time! The Houston Chronicle reported on one of these odd events (Figure 3-15):


A group that called itself the “Heart of Texas” had organized it on social media—a protest, they said, against the “Islamization” of Texas. On one side of Travis Street, I found about 10 protesters. On the other side, I found around 50 counterprotesters. But I couldn’t find the rally organizers. No “Heart of Texas.” I thought that was odd, and mentioned it in the article: What kind of group is a no-show at its own event? Now I know why. Apparently, the rally’s organizers were in Saint Petersburg, Russia, at the time. “Heart of Texas” is one of the internet troll groups cited in Special Prosecutor Robert Mueller’s recent indictment of Russians attempting to tamper with the US presidential election.




[image: Screenshot of an event organized by the group Heart of Texas]
Figure 3-15. Event organized by the group Heart of Texas




Disinformation often involves coordinated campaigns of inauthentic
behavior. For instance, fraudulent accounts may try to make it seem like
many people hold a particular viewpoint. While most of us like to think
of ourselves as independent-minded, in reality we evolved to be
influenced by others in our in-group, and in opposition to those in our
out-group. Online discussions can influence our viewpoints, or alter the
range of what we consider acceptable viewpoints. Humans are social
animals, and as social animals, we are extremely influenced by the people
around us. Increasingly, radicalization occurs in online environments;
so influence is coming from people in the virtual space of online forums
and social networks.


Disinformation through autogenerated text is a particularly significant
issue, due to the greatly increased capability provided by deep
learning. We discuss this issue in depth when we delve into creating
language models in Chapter 10.


One proposed approach is to develop some form of digital signature, to
implement it in a seamless way, and to create norms that we should
trust only content that has been verified. The head of the Allen Institute
on AI, Oren Etzioni, wrote such a proposal in an article titled
“How Will We Prevent AI-Based Forgery?”: “AI is poised to make high-fidelity forgery
inexpensive and automated, leading to potentially disastrous
consequences for democracy, security, and society. The specter of AI
forgery means that we need to act to make digital signatures de rigueur
as a means of authentication of digital content.”


While we can’t hope to discuss all the ethical issues that
deep learning, and algorithms more generally, bring up, hopefully this
brief introduction has been a useful starting point you can build on.
We’ll now move on to the questions of how to identify
ethical issues and what to do about them.
























Identifying and Addressing Ethical Issues


Mistakes happen. Finding out about them, and dealing with them, needs to
be part of the design of any system that includes machine learning (and
many other systems too). The issues raised within data ethics are often
complex and interdisciplinary, but it is crucial that we work to address
them.


So what can we do? This is a big topic, but here are a few steps toward
addressing ethical issues:



	
Analyze a project you are working on.



	
Implement processes at your company to find and address ethical risks.



	
Support good policy.



	
Increase diversity.






Let’s walk through each step, starting with analyzing a
project you are working on.










Analyze a Project You Are Working On


It’s easy to miss important issues when considering ethical
implications of your work. One thing that helps enormously is simply
asking the right questions. Rachel Thomas recommends considering the
following questions throughout the development of a data project:



	
Should we even be doing this?



	
What bias is in the data?



	
Can the code and data be audited?



	
What are the error rates for different subgroups?



	
What is the accuracy of a simple rule-based alternative?



	
What processes are in place to handle appeals or mistakes?



	
How diverse is the team that built it?






These questions may be able to help you identify outstanding issues, and
possible alternatives that are easier to understand and control. In
addition to asking the right questions, it’s also important
to consider practices and processes to implement.


One thing to consider at this stage is what data you are collecting and
storing. Data often ends up being used for different purposes the original intent. For instance, IBM began selling to Nazi
Germany well before the Holocaust, including helping with Germany’s 1933
census conducted by Adolf Hitler, which was effective at identifying far
more Jewish people than had previously been recognized in Germany. Similarly, US census data was used to round up Japanese-Americans (who were US citizens) for internment during World War II. It is important to
recognize how data and images collected can be weaponized later.
Columbia professor Tim Wu wrote “You must assume that any personal data that Facebook or Android keeps are data that governments around the world will try to get or that thieves will try to steal.”

















Processes to Implement


The Markkula Center has released
An Ethical Toolkit for Engineering/Design Practice that includes
concrete practices to implement at your company, including regularly
scheduled sweeps to proactively search for ethical risks
(in a manner similar to cybersecurity penetration testing), expanding
the ethical circle to include the perspectives of a variety of
stakeholders, and considering the terrible people (how could bad actors
abuse, steal, misinterpret, hack, destroy, or weaponize what you are
building?).


Even if you don’t have a diverse team, you can still try to
proactively include the perspectives of a wider group, considering
questions such as these (provided by the Markkula Center):



	
Whose interests, desires, skills, experiences, and values have we
simply assumed, rather than actually consulted?



	
Who are all the stakeholders who will be directly affected by our
product? How have their interests been protected? How do we know what
their interests really are—have we asked?



	
Who/which groups and individuals will be indirectly affected in
significant ways?



	
Who might use this product that we didn’t expect to use it, or for
purposes we didn’t initially intend?
















Ethical lenses


Another useful resource from the Markkula Center is its
Conceptual
Frameworks in Technology and Engineering Practice. This considers how

different foundational ethical lenses can help identify concrete issues,
and lays out the following approaches and key questions:


	The rights approach

	
Which option best respects the rights of all who have a stake?



	The justice approach

	
Which option treats people equally or proportionately?



	The utilitarian approach

	
Which option will produce the most good and do the least harm?



	The common good approach

	
Which option best serves the community as a whole, not just some members?



	The virtue approach

	
Which option leads me to act as the sort of person I want to be?






Markkula’s recommendations include a deeper dive into each
of these perspectives, including looking at a project through the lens of its consequences:



	
Who will be directly affected by this project? Who will
be indirectly affected?



	
Will the effects in aggregate likely create more good than harm, and
what types of good and harm?



	
Are we thinking about all relevant types of harm/benefit
(psychological, political, environmental, moral, cognitive, emotional,
institutional, cultural)?



	
How might future generations be affected by this project?



	
Do the risks of harm from this project fall disproportionately on the
least powerful in society? Will the benefits go disproportionately to
the well-off?



	
Have we adequately considered “dual-use” and unintended downstream effects?






The alternative lens to this is the deontological perspective, which
focuses on basic concepts of right and wrong:



	
What rights of others and duties to others must we respect?



	
How might the dignity and autonomy of each stakeholder be impacted by this project?



	
What considerations of trust and of justice are relevant to this design/project?



	
Does this project involve any conflicting moral duties to others, or conflicting stakeholder rights? How can we prioritize these?






One of the best ways to help come up with complete and thoughtful
answers to questions like these is to ensure that the people asking the
questions are diverse.






















The Power of Diversity


Currently, less than 12% of AI researchers are women, according to a study from Element AI. The statistics are similarly dire when it comes
to race and age. When everybody on a team has similar backgrounds, they
are likely to have similar blind spots around ethical risks. The Harvard
Business Review (HBR) has published a number of studies showing many
benefits of diverse teams, including the 
following:



	
“How Diversity Can Drive Innovation”



	
“Teams Solve Problems Faster When They’re More Cognitively Diverse”



	
“Why Diverse Teams Are Smarter”



	
“Defend Your Research: What Makes a Team Smarter? More Women”






Diversity can lead to problems being identified earlier, and a wider
range of solutions being considered. For instance, Tracy Chou was an
early engineer at Quora. She
wrote
of her experiences, describing how she advocated internally for adding
a feature that would allow trolls and other bad actors to be blocked.
Chou recounts, “I was eager to work on the feature because I personally
felt antagonized and abused on the site (gender isn’t an unlikely reason
as to why)…But if I hadn’t had that personal perspective, it’s possible
that the Quora team wouldn’t have prioritized building a block button so
early in its existence.” Harassment often drives people from
marginalized groups off online platforms, so this functionality has been
important for maintaining the health of Quora’s community.


A crucial aspect to understand is that women leave the tech industry at
over twice the rate that men do. According to the Harvard Business Review, 41% of women working in tech leave, compared to 17% of men. An
analysis of over 200 books, whitepapers, and articles found that the
reason they leave is that “they’re treated unfairly; underpaid, less
likely to be fast-tracked than their male colleagues, and unable to
advance.”


Studies have confirmed a number of the factors that make it harder for
women to advance in the workplace. Women receive more vague
feedback and personality criticism in performance evaluations, whereas
men receive actionable advice tied to business outcomes (which is more
useful). Women frequently experience being excluded from more creative
and innovative roles, and not receiving high-visibility “stretch”
assignments that are helpful in getting promoted. One study found
that men’s voices are perceived as more persuasive, fact-based, and
logical than women’s voices, even when reading identical scripts.


Receiving mentorship has been statistically shown to help men advance,
but not women. The reason behind this is that when women receive
mentorship, it’s advice on how they should change and gain more
self-knowledge. When men receive mentorship, it’s public endorsement of
their authority. Guess which is more useful in getting promoted?


As long as qualified women keep dropping out of tech, teaching more
girls to code will not solve the diversity issues plaguing the field.
Diversity initiatives often end up focusing primarily on white women,
even though women of color face many additional barriers. In interviews
with 60 women of color who work in STEM research, 100% had experienced
discrimination.


The hiring process is particularly broken in tech. One study indicative
of the disfunction comes from Triplebyte, a company that helps place
software engineers in companies, conducting a standardized technical
interview as part of this process. The company has a fascinating dataset: the
results of how over 300 engineers did on their exam, coupled with the
results of how those engineers did during the interview process for a
variety of companies. The number one finding from
Triplebyte’s
research is that “the types of programmers that each company looks for
often have little to do with what the company needs or does. Rather,
they reflect company culture and the backgrounds of the founders.”


This is a challenge for those trying to break into the world of deep
learning, since most companies’ deep learning groups today
were founded by academics. These groups tend to look for people “like
them”—that is, people who can solve complex math problems and
understand dense jargon. They don’t always know how to spot
people who are actually good at solving real problems using deep
learning.


This leaves a big opportunity for companies that are ready to look
beyond status and pedigree, and focus on results!

















Fairness, Accountability, and Transparency


The professional society for computer scientists, the ACM, runs a data ethics conference called the Conference on Fairness,
Accountability, and Transparency (ACM FAccT), which used to go under the acronym FAT but now uses the less objectionable FAccT. Microsoft also has a group focused on Fairness, Accountability, Transparency, and Ethics in AI (FATE). In this section, we’ll use the acronym FAccT to
refer to the concepts of fairness, accountability, and transparency.


FAccT is a lens some people have used for considering ethical

issues. One helpful resource for this is the free online book
Fairness and Machine Learning: Limitations and Opportunities by Solon Barocas et al., which “gives a perspective on machine learning that
treats fairness as a central concern rather than an afterthought.” It
also warns, however, that it “is intentionally narrow in scope…A

narrow framing of machine learning ethics might be tempting to
technologists and businesses as a way to focus on technical
interventions while sidestepping deeper questions about power and
accountability. We caution against this temptation.” Rather than
provide an overview of the FAccT approach to ethics (which is better
done in books such as that one), our focus here will be on
the limitations of this kind of narrow framing.


One great way to consider whether an ethical lens is complete is to try
to come up with an example in which the lens and our own ethical intuitions
give diverging results. Os Keyes et al. explored this in a graphic way
in their paper “A Mulching Proposal: Analysing and Improving an Algorithmic System for Turning the Elderly into High-Nutrient Slurry”. The paper’s abstract says:


The ethical implications of algorithmic systems have been much discussed in both HCI and the broader community of those interested in technology design, development, and policy. In this paper, we explore the application of one prominent ethical framework—Fairness, Accountability, and Transparency—to a proposed algorithm that resolves various societal issues around food security and population aging. Using various standardised forms of algorithmic audit and evaluation, we drastically increase the algorithm’s adherence to the FAT framework, resulting in a more ethical and beneficent system. We discuss how this might serve as a guide to other researchers or practitioners looking to ensure better ethical outcomes from algorithmic systems in their line of work.



In this paper, the rather controversial proposal (“Turning the Elderly
into High-Nutrient Slurry”) and the results (“drastically increase the
algorithm’s adherence to the FAT framework, resulting in a
more ethical and beneficent system”) are at odds… to say the least!


In philosophy, and especially philosophy of ethics, this is one of the
most effective tools: first, come up with a process, definition, set of
questions, etc., which is designed to resolve a problem. Then try to
come up with an example in which that apparent solution results in a
proposal that no one would consider acceptable. This can then lead to a
further refinement of the solution.


So far, we’ve focused on things that you and your
organization can do. But sometimes individual or organizational action
is not enough. Sometimes governments also need to consider policy
implications.
























Role of Policy


We often talk to people who are eager for technical or design fixes to
be a full solution to the kinds of problems that we’ve been
discussing; for instance, a technical approach to debias data, or design
guidelines for making technology less addictive. While such measures can
be useful, they will not be sufficient to address the underlying
problems that have led to our current state. For example, as long as it
is profitable to create addictive technology, companies will
continue to do so, regardless of whether this has the side effect of
promoting conspiracy theories and polluting our information ecosystem.
While individual designers may try to tweak product designs, we will not
see substantial changes until the underlying profit incentives change.










The Effectiveness of Regulation


To look at what can cause companies to take concrete action, consider
the following two examples of how Facebook has behaved. In 2018, a UN
investigation found that Facebook had played a “determining role” in
the ongoing genocide of the Rohingya, an ethnic minority in Mynamar described by UN Secretary-General Antonio Guterres as “one of, if
not the, most discriminated people in the world.” Local activists had
been warning Facebook executives that their platform was being used to
spread hate speech and incite violence since as early as 2013. In 2015,
they were warned that Facebook could play the same role in Myanmar that
the radio broadcasts played during the Rwandan genocide (where a million
people were killed). Yet, by the end of 2015, Facebook employed only four
contractors who spoke Burmese. As one person close to the matter said,
“That’s not 20/20 hindsight. The scale of this problem was significant
and it was already apparent.” Zuckerberg promised during the
congressional hearings to hire “dozens” to address the genocide in
Myanmar (in 2018, years after the genocide had begun, including the
destruction by fire of at least 288 villages in northern Rakhine state
after August 2017).


This stands in stark contrast to Facebook quickly
hiring
1,200 people in Germany to try to avoid expensive penalties (of up to
50 million euros) under a new German law against hate speech. Clearly,
in this case, Facebook was more reactive to the threat of a financial
penalty than to the systematic destruction of an ethnic minority.


In an article on
privacy issues, Maciej Ceglowski draws parallels with the environmental
movement:


This regulatory project has been so successful in the First
World that we risk forgetting what life was like before it. Choking smog
of the kind that today kills thousands in Jakarta and Delhi was
once emblematic of London.
The Cuyahoga River in Ohio used to
reliably catch
fire. In a particularly horrific example of unforeseen consequences,
tetraethyl lead added to gasoline
raised
violent crime rates worldwide for fifty years. None of these harms
could have been fixed by telling people to vote with their wallet, or
carefully review the environmental policies of every company they gave
their business to, or to stop using the technologies in question. It
took coordinated, and sometimes highly technical, regulation across
jurisdictional boundaries to fix them. In some cases, like the
ban on commercial
refrigerants that depleted the ozone layer, that regulation required a
worldwide consensus. We’re at the point where we need a similar shift in
perspective in our privacy law.


















Rights and Policy


Clean air and clean drinking water are public goods that are nearly
impossible to protect through individual market decisions, but rather
require coordinated regulatory action. Similarly, many of the harms
resulting from unintended consequences of misuses of technology involve
public goods, such as a polluted information environment or deteriorated
ambient privacy. Too often privacy is framed as an individual right, yet
there are societal impacts to widespread surveillance (which would still
be the case even if it was possible for a few individuals to opt out).


Many of the issues we are seeing in tech are human rights
issues, such as when a biased algorithm recommends that Black defendants
have longer prison sentences, when particular job ads are shown only to
young people, or when police use facial recognition to identify
protesters. The appropriate venue to address human rights issues is
typically through the law.


We need both regulatory and legal changes, and the ethical behavior of
individuals. Individual behavior change can’t address misaligned profit
incentives, externalities (where corporations reap large profits while
offloading their costs and harms to the broader society), or systemic
failures. However, the law will never cover all edge cases, and it is
important that individual software developers and data scientists are
equipped to make ethical decisions in practice.

















Cars: A Historical Precedent


The problems we are facing are complex, and there are no simple
solutions. This can be discouraging, but we find hope in considering
other large challenges that people have tackled throughout history. One
example is the movement to increase car safety, covered as a case study
in “Datasheets for Datasets” by Timnit Gebru et al. and in the
design podcast
99% Invisible.
Early cars had no seatbelts, metal knobs on the dashboard that could
lodge in people’s skulls during a crash, regular plate glass windows
that shattered in dangerous ways, and noncollapsible steering columns
that impaled drivers. However, car companies were resistant
to even discussing safety as something they could help
address, and the widespread belief was that cars are just the way they
are, and that it was the people using them who caused problems.


It took consumer safety activists and advocates decades of work to change
the national conversation to consider that perhaps car companies had
some responsibility that should be addressed through regulation. When
the collapsible steering column was invented, it was not implemented for
several years as there was no financial incentive to do so. Major car
company General Motors hired private detectives to try to dig up dirt on
consumer safety advocate Ralph Nader. The requirement of seatbelts,
crash test dummies, and collapsible steering columns were major
victories. It was only in 2011 that car companies were required to start
using crash test dummies that would represent the average woman, and not
just average men’s bodies; prior to this, women were 40% more likely to
be injured in a car crash of the same impact compared to a man. This is
a vivid example of the ways that bias, policy, and technology have
important consequences.
























Conclusion


Coming from a background of working with binary logic, the lack of clear
answers in ethics can be frustrating at first. Yet, the implications of
how our work impacts the world, including unintended consequences and
the work becoming weaponized by bad actors, are some of the most
important questions we can (and should!) consider. Even though there
aren’t any easy answers, there are definite pitfalls to
avoid and practices to follow to move toward more ethical behavior.


Many people (including us!) are looking for more satisfying, solid
answers about how to address harmful impacts of technology. However, given
the complex, far-reaching, and interdisciplinary nature of the problems
we are facing, there are no simple solutions. Julia Angwin, former
senior reporter at ProPublica who focuses on issues of algorithmic bias
and surveillance (and one of the 2016 investigators of the COMPAS
recidivism algorithm that helped spark the field of FAccT) said in
a 2019 interview:


I strongly believe that in order to solve a problem,
you have to diagnose it, and that we’re still in the diagnosis phase of
this. If you think about the turn of the century and industrialization,
we had, I don’t know, 30 years of child labor, unlimited work hours,
terrible working conditions, and it took a lot of journalist muckraking
and advocacy to diagnose the problem and have some understanding of what
it was, and then the activism to get laws changed. I feel like we’re in
a second industrialization of data information… I see my role as trying
to make as clear as possible what the downsides are, and diagnosing them
really accurately so that they can be solvable. That’s hard work, and
lots more people need to be doing it.



It’s reassuring that Angwin thinks we are largely still in the diagnosis phase: if your
understanding of these problems feels incomplete, that is normal and
natural. Nobody has a “cure” yet, although it is vital that we
continue working to better understand and address the problems we are
facing.


One of our reviewers for this book, Fred Monroe, used to work in hedge
fund trading. He told us, after reading this chapter, that many of the
issues discussed here (distribution of data being dramatically different
from what a model was trained on, the impact of feedback loops on a model once
deployed and at scale, and so forth) were also key issues for building
profitable trading models. The kinds of things you need to do to
consider societal consequences are going to have a lot of overlap with
things you need to do to consider organizational, market, and customer
consequences—so thinking carefully about ethics can also help you
think carefully about how to make your data product successful more
generally!

















Questionnaire


	
Does ethics provide a list of “right answers”?



	
How can working with people of different backgrounds help when considering ethical questions?



	
What was the role of IBM in Nazi Germany? Why did the company participate as it did? Why did the workers participate?



	
What was the role of the first person jailed in the Volkswagen diesel scandal?



	
What was the problem with a database of suspected gang members maintained by California law enforcement officials?



	
Why did YouTube’s recommendation algorithm recommend videos of partially clothed children to pedophiles, even though no employee at Google had programmed this feature?



	
What are the problems with the centrality of metrics?



	
Why did Meetup.com not include gender in its recommendation system for tech meetups?



	
What are the six types of bias in machine learning, according to Suresh and 
Guttag?



	
Give two examples of historical race bias in the US.



	
Where are most images in ImageNet from?



	
In the paper “Does Machine Learning Automate Moral Hazard and Error?” why is sinusitis found to be predictive of a stroke?



	
What is representation bias?



	
How are machines and people different, in terms of their use for making 
decisions?



	
Is disinformation the same as “fake news”?



	
Why is disinformation through autogenerated text a particularly significant issue?



	
What are the five ethical lenses described by the Markkula Center?



	
Where is policy an appropriate tool for addressing data ethics issues?















Further Research


	
Read the article “What Happens When an Algorithm Cuts Your Healthcare”. How could problems like this be avoided in the future?



	
Research to find out more about YouTube’s recommendation system and its societal impacts. Do you think recommendation systems must always have feedback loops with negative results? What approaches could Google take to avoid them? What about the government?



	
Read the paper “Discrimination in Online Ad Delivery”. Do you think Google should be considered responsible for what happened to Dr. Sweeney? What would be an appropriate response?



	
How can a cross-disciplinary team help avoid negative consequences?



	
Read the paper “Does Machine Learning Automate Moral Hazard and Error?” What actions do you think should be taken to deal with the issues identified in this paper?



	
Read the article “How Will We Prevent AI-Based Forgery?” Do you think 
Etzioni’s proposed approach could work? Why?



	
Complete the section “Analyze a Project You Are Working On”.



	
Consider whether your team could be more diverse. If so, what approaches might help?





























Deep Learning in Practice: That’s a Wrap!


Congratulations! You’ve made it to the end of the first
section of the book. In this section, we’ve tried to show you
what deep learning can do, and how you can use it to create real
applications and products. At this point, you will get a lot more out of
the book if you spend some time trying out what you’ve
learned. Perhaps you have already been doing this as you go along—in
which case, great! If not, that’s no problem either—now
is a great time to start experimenting yourself.


If you haven’t been to the book’s website yet, head over there
now. It’s really important that you get yourself set up to
run the notebooks. Becoming an effective deep learning practitioner is
all about practice, so you need to be training models. So, please go get
the notebooks running now if you haven’t already! And
have a look on the website for any important updates or notices; deep
learning changes fast, and we can’t change the words that
are printed in this book, so the website is where you need to look to
ensure you have the most up-to-date information.


Make sure that you have completed the following steps:


	
Connect to one of the GPU Jupyter servers recommended on the book’s website.



	
Run the first notebook yourself.



	
Upload an image that you find in the first notebook; then try a few images of different kinds to see what happens.



	
Run the second notebook, collecting your own dataset based on image search queries that you come up with.



	
Think about how you can use deep learning to help you with your own projects, including what kinds of data you could use, what kinds of problems may come up, and how you might be able to mitigate these issues in practice.







In the next section of the book, you will learn about how and why deep
learning works, instead of just seeing how you can use it in practice.
Understanding the how and why is important for both practitioners and
researchers, because in this fairly new field, nearly every project
requires some level of customization and debugging. The better you
understand the foundations of deep learning, the better your models will
be. These foundations are less important for executives, product
managers, and so forth (although still useful, so feel free to keep
reading!), but they are critical for anybody who is training
and deploying models themselves.
















  
Part II. Understanding fastai’s Applications









  
Chapter 4. Under the Hood: Training a Digit Classifier



Having seen what it looks like to train a variety of models in
Chapter 2, let’s now look under the hood and see exactly what is going
on. We’ll start by using computer vision to introduce fundamental tools
and concepts for deep learning.


To be exact, we’ll discuss the roles of arrays and tensors
and of broadcasting, a powerful technique for using them expressively.
We’ll explain stochastic gradient descent (SGD), the
mechanism for learning by updating weights automatically.
We’ll discuss the choice of a loss function for our basic
classification task, and the role of mini-batches. We’ll
also describe the math that a basic neural network is doing.
Finally, we’ll put all these pieces together.


In future chapters, we’ll do deep dives into other applications as well,
and see how these concepts and tools generalize. But this chapter is
about laying foundation stones. To be frank, that also makes this one of
the hardest chapters, because of how these concepts all depend on each
other. Like an arch, all the stones need to be in place for the
structure to stay up. Also like an arch, once that happens,
it’s a powerful structure that can support other things. But
it requires some patience to assemble.


Let’s begin. The first step is to consider how images are
represented in a computer.








Pixels: The Foundations of Computer Vision


To understand what happens in a computer vision model, we first
have to understand how computers handle images. We’ll use
one of the most famous datasets in computer vision,
MNIST, for our
experiments. MNIST contains images of handwritten digits, collected by the
National Institute of Standards and Technology and collated into a
machine learning dataset by Yann Lecun and his colleagues. Lecun used
MNIST in 1998 in LeNet-5, the first computer system to demonstrate practically useful
recognition of handwritten digit sequences. This was one of the most
important breakthroughs in the history of AI.


Tenacity and Deep Learning

The story of deep learning is one of tenacity and grit by a handful of
dedicated researchers. After early hopes (and hype!), neural networks
went out of favor in the 1990s and 2000s, and
just a handful of researchers kept trying to make them work well. Three
of them, Yann Lecun, Yoshua Bengio, and Geoffrey Hinton, were awarded the
highest honor in computer science, the Turing Award (generally
considered the “Nobel Prize of computer science”), in 2018 after triumphing
despite the deep skepticism and disinterest of the wider machine
learning and statistics community.


Hinton has told of how academic papers showing dramatically
better results than anything previously published would be rejected by
top journals and conferences, just because they used a neural network.
Lecun’s work on convolutional neural networks, which we
will study in the next section, showed that these models could read
handwritten text—something that had never been achieved before. However,
his breakthrough was ignored by most researchers, even as it was used
commercially to read 10% of the checks in the US!


In addition to these three Turing Award winners, many other
researchers have battled to get us to where we are today. For
instance, Jurgen Schmidhuber (who many believe should have shared in the
Turing Award) pioneered many important ideas, including working with his
student Sepp Hochreiter on the long short-term memory (LSTM) architecture (widely used for
speech recognition and other text modeling tasks, and used in the IMDb
example in Chapter 1). Perhaps most important of all,
Paul Werbos in 1974 invented backpropagation for neural networks, the
technique shown in this chapter and used universally for training neural
networks
(Werbos 1994). His development was almost entirely ignored for decades, but
today it is considered the most important foundation of modern AI.


There is a lesson here for all of us! On your deep learning journey, you
will face many obstacles, both technical and (even more difficult) posed by
people around you who don’t believe you’ll be
successful. There’s one guaranteed way to fail, and
that’s to stop trying. We’ve seen that the only
consistent trait among every fast.ai student who’s gone
on to be a world-class practitioner is that they are all very tenacious.




For this initial tutorial, we are just going to try to create a model
that can classify any image as a 3 or a 7. So let’s
download a sample of MNIST that contains images of just these digits:


path = untar_data(URLs.MNIST_SAMPLE)


We can see what’s in this directory by using ls, a
method added by fastai. This method returns an object of a special
fastai class called L, which has all the same functionality of
Python’s built-in list, plus a lot more. One of its handy
features is that, when printed, it displays the count of items before
listing the items themselves (if there are more than 10 items,
it shows just the first few):


path.ls()


(#9) [Path('cleaned.csv'),Path('item_list.txt'),Path('trained_model.pkl'),Path('
 > models'),Path('valid'),Path('labels.csv'),Path('export.pkl'),Path('history.cs
 > v'),Path('train')]


The MNIST dataset follows a common layout for machine learning
datasets: separate folders for the training set and the validation (and/or test) set. Let’s see what’s
inside the training set:


(path/'train').ls()


(#2) [Path('train/7'),Path('train/3')]


There’s a folder of 3s, and a folder of 7s. In
machine learning parlance, we say that “3” and “7” are the labels
(or targets) in this dataset. Let’s take a look in one of
these folders (using sorted to ensure we all get the same order of
files):


threes = (path/'train'/'3').ls().sorted()
sevens = (path/'train'/'7').ls().sorted()
threes


(#6131) [Path('train/3/10.png'),Path('train/3/10000.png'),Path('train/3/10011.pn
 > g'),Path('train/3/10031.png'),Path('train/3/10034.png'),Path('train/3/10042.p
 > ng'),Path('train/3/10052.png'),Path('train/3/1007.png'),Path('train/3/10074.p
 > ng'),Path('train/3/10091.png')...]


As we might expect, it’s full of image files. Let’s take a
look at one now. Here’s an image of a handwritten number 3, taken from
the famous MNIST dataset of handwritten numbers:


im3_path = threes[1]
im3 = Image.open(im3_path)
im3



[image: ]





Here we are using the Image class from the Python Imaging Library
(PIL), which is the most widely used Python package for opening,
manipulating, and viewing images. Jupyter knows about PIL images, so it
displays the image for us automatically.


In a computer, everything is represented as a number. To view the
numbers that make up this image, we have to convert it to a NumPy
array or a PyTorch tensor. For instance, here’s what a section of the image looks like converted to a NumPy array:


array(im3)[4:10,4:10]


array([[  0,   0,   0,   0,   0,   0],
       [  0,   0,   0,   0,   0,  29],
       [  0,   0,   0,  48, 166, 224],
       [  0,  93, 244, 249, 253, 187],
       [  0, 107, 253, 253, 230,  48],
       [  0,   3,  20,  20,  15,   0]], dtype=uint8)


The 4:10 indicates we requested the rows from index 4 (inclusive) to 10 (noninclusive), and the same for the columns. NumPy indexes from top to bottom and from left to right, so this section is located near the top-left corner of the image. Here’s the same thing as a PyTorch tensor:


tensor(im3)[4:10,4:10]


tensor([[  0,   0,   0,   0,   0,   0],
        [  0,   0,   0,   0,   0,  29],
        [  0,   0,   0,  48, 166, 224],
        [  0,  93, 244, 249, 253, 187],
        [  0, 107, 253, 253, 230,  48],
        [  0,   3,  20,  20,  15,   0]], dtype=torch.uint8)


We can slice the array to pick just the part with the top of the digit in
it, and then use a Pandas DataFrame to color-code the values using a
gradient, which shows us clearly how the image is created from the pixel
values:


im3_t = tensor(im3)
df = pd.DataFrame(im3_t[4:15,4:22])
df.style.set_properties(**{'font-size':'6pt'}).background_gradient('Greys')



[image: ]





You can see that the background white pixels are stored as the number
0, black is the number 255, and shades of gray are between the two.
The entire image contains 28 pixels across and 28 pixels down, for a
total of 768 pixels. (This is much smaller than an image that you would
get from a phone camera, which has millions of pixels, but is a
convenient size for our initial learning and experiments. We will build
up to bigger, full-color images soon.)


So, now you’ve seen what an image looks like to a computer,
let’s recall our goal: create a model that can recognize
3s and 7s. How might you go about getting a computer to do that?

Stop and Think!

Before you read on, take a moment to think about how a computer might be able to recognize these two digits. What kinds of features might it be able to look at? How might it be able to identify these features? How could it combine them? Learning works best when you try to solve problems yourself, rather than just reading somebody else’s answers; so step away from this book for a few minutes, grab a piece of paper and pen, and jot some ideas down.



















First Try: Pixel Similarity


So, here is a first idea: how about we find the average pixel value for
every pixel of the 3s, then do the same for the 7s. This
will give us two group averages, defining what we might call the
“ideal” 3 and 7. Then, to classify an image as one digit or the other, we see which of
these two ideal digits the image is most similar to. This certainly
seems like it should be better than nothing, so it will make a good
baseline.

Jargon: Baseline

A simple model that you are confident should perform reasonably well. It should be simple to implement and easy to test, so that you can then test each of your improved ideas and make sure they are always better than your baseline. Without starting with a sensible baseline, it is difficult to know whether your super-fancy models are any good. One good approach to creating a baseline is doing what we have done here: think of a simple, easy-to-implement model. Another good approach is to search around to find other people who have solved problems similar to yours, and download and run their code on your dataset. Ideally, try both of these!




Step 1 for our simple model is to get the average of pixel values for
each of our two groups. In the process of doing this, we will learn a
lot of neat Python numeric programming tricks!


Let’s create a tensor containing all of our 3s stacked
together. We already know how to create a tensor containing a single
image. To create a tensor containing all the images in a directory, we
will first use a Python list comprehension to create a plain list of the
single image tensors.


We will use Jupyter to do some little checks of our work along the way—in this case, making sure that the number of returned items seems
reasonable:


seven_tensors = [tensor(Image.open(o)) for o in sevens]
three_tensors = [tensor(Image.open(o)) for o in threes]
len(three_tensors),len(seven_tensors)


(6131, 6265)

List Comprehensions

List and dictionary comprehensions are a wonderful feature of Python. Many Python programmers use them every day, including the authors of this book—they are part of “idiomatic Python.” But programmers coming from other languages may have never seen them before. A lot of great tutorials are just a web search away, so we won’t spend a long time discussing them now. Here is a quick explanation and example to get you started. A list comprehension looks like this: new_list = [f(o) for o in a_list if o>0]. This will return every element of a_list that is greater than 0, after passing it to the function f. There are three parts here: the collection you are iterating over (a_list), an optional filter (if o>0), and something to do to each element (f(o)). It’s not only shorter to write, but also way faster than the alternative ways of creating the same list with a loop.




We’ll also check that one of the images looks OK. Since we
now have tensors (which Jupyter by default will print as values), rather
than PIL images (which Jupyter by default will display images), we
need to use fastai’s show_image function to display it:


show_image(three_tensors[1]);



[image: ]





For every pixel position, we want to compute the average over all the
images of the intensity of that pixel. To do this, we first combine all
the images in this list into a single three-dimensional tensor. The most
common way to describe such a tensor is to call it a rank-3 tensor. We
often need to stack up individual tensors in a collection into a single
tensor. Unsurprisingly, PyTorch comes with a function called stack that we can use for this purpose.


Some operations in PyTorch, such as taking a mean, require us to cast
our integer types to float types. Since we’ll be needing
this later, we’ll also cast our stacked tensor to float
now. Casting in PyTorch is as simple as writing the name of the type you
wish to cast to, and treating it as a method.


Generally, when images are floats, the pixel values are expected to be between
0 and 1, so we will also divide by 255 here:


stacked_sevens = torch.stack(seven_tensors).float()/255
stacked_threes = torch.stack(three_tensors).float()/255
stacked_threes.shape


torch.Size([6131, 28, 28])


Perhaps the most important attribute of a tensor is its shape. This
tells you the length of each axis. In this case, we can see that we have
6,131 images, each of size 28×28 pixels. There is nothing specifically
about this tensor that says that the first axis is the number of images,
the second is the height, and the third is the width—the semantics of
a tensor are entirely up to us, and how we construct it. As far as
PyTorch is concerned, it is just a bunch of numbers in memory.


The length of a tensor’s shape is its rank:


len(stacked_threes.shape)


3


It is really important for you to commit to memory and practice these
bits of tensor jargon: rank is the number of axes or dimensions in a
tensor; shape is the size of each axis of a tensor.

Alexis Says

Watch out because the term “dimension” is sometimes used in two ways. Consider that we live in “three-dimensional space,” where a physical position can be described by a vector v, of length 3. But according to PyTorch, the attribute v.ndim (which sure looks like the “number of dimensions” of v) equals one, not three! Why? Because v is a vector, which is a tensor of rank one, meaning that it has only one axis (even if that axis has a length of three). In other words, sometimes dimension is used for the size of an axis (“space is three-dimensional”), while other times it is used for the rank, or the number of axes (“a matrix has two dimensions”). When confused, I find it helpful to translate all statements into terms of rank, axis, and length, which are unambiguous terms.




We can also get a tensor’s rank directly with ndim:


stacked_threes.ndim


3


Finally, we can compute what the ideal 3 looks like. We calculate
the mean of all the image tensors by taking the mean along dimension
0 of our stacked, rank-3 tensor. This is the dimension that indexes
over all the images.


In other words, for every pixel position, this will compute the average
of that pixel over all images. The result will be one value for every
pixel position, or a single image. Here it is:


mean3 = stacked_threes.mean(0)
show_image(mean3);



[image: ]





According to this dataset, this is the ideal number 3! (You may not
like it, but this is what peak number 3 performance looks like.) You can
see how it’s very dark where all the images agree it should
be dark, but it becomes wispy and blurry where the images disagree.


Let’s do the same thing for the 7s, but put all the steps together at once to save time:


mean7 = stacked_sevens.mean(0)
show_image(mean7);



[image: ]





Let’s now pick an arbitrary 3 and measure its
distance from our “ideal digits.”

Stop and Think!

How would you calculate how similar a particular image is to each of our ideal digits? Remember to step away from this book and jot down some ideas before you move on! Research shows that recall and understanding improve dramatically when you are engaged with the learning process by solving problems, experimenting, and trying new ideas yourself.




Here’s a sample 3:


a_3 = stacked_threes[1]
show_image(a_3);



[image: ]





How can we determine its distance from our ideal 3? We can’t just add up the differences between the pixels of
this image and the ideal digit. Some differences will be positive, while others will be negative, and
these differences will cancel out, resulting in a situation where an image
that is too dark in some places and too light in others might be shown
as having zero total differences from the ideal. That would be

misleading!


To avoid this, data scientists use two main ways to measure
distance in this context:



	
Take the mean of the absolute value of differences (absolute value
is the function that replaces negative values with positive values).
This is called the mean absolute difference or L1 norm.



	
Take the mean of the square of differences (which makes everything
positive) and then take the square root (which undoes the squaring).
This is called the root mean squared error (RMSE) or L2 norm.





It’s OK to Have Forgotten Your Math

In this book, we generally assume that you have completed high school math, and remember at least some of it—but everybody forgets some things! It all depends on what you happen to have had reason to practice in the meantime. Perhaps you have forgotten what a square root is, or exactly how they work. No problem! Anytime you come across a math concept that is not explained fully in this book, don’t just keep moving on; instead, stop and look it up. Make sure you understand the basic idea, how it works, and why we might be using it. One of the best places to refresh your understanding is Khan Academy. For instance, Khan Academy has a great introduction to square roots.




Let’s try both of these now:


dist_3_abs = (a_3 - mean3).abs().mean()
dist_3_sqr = ((a_3 - mean3)**2).mean().sqrt()
dist_3_abs,dist_3_sqr


(tensor(0.1114), tensor(0.2021))


dist_7_abs = (a_3 - mean7).abs().mean()
dist_7_sqr = ((a_3 - mean7)**2).mean().sqrt()
dist_7_abs,dist_7_sqr


(tensor(0.1586), tensor(0.3021))


In both cases, the distance between our 3 and the “ideal” 3 is
less than the distance to the ideal 7, so our simple model will give
the right prediction in this case.


PyTorch already provides both of these as loss functions.
You’ll find these inside torch.nn.functional, which the
PyTorch team recommends importing as F (and is available by default
under that name in fastai):


F.l1_loss(a_3.float(),mean7), F.mse_loss(a_3,mean7).sqrt()


(tensor(0.1586), tensor(0.3021))


Here, MSE stands for mean squared error,
and l1 refers to the standard mathematical jargon for mean absolute
value (in math it’s called the L1 norm).

Sylvain Says

Intuitively, the difference between L1 norm and mean squared error (MSE) is that the latter will penalize bigger mistakes more heavily than the former (and be more lenient with small mistakes).



Jeremy Says

When I first came across this L1 thingie, I looked it up to see what on earth it meant. I found on Google that it is a vector norm using absolute value, so I looked up “vector norm” and started reading: Given a vector space V over a field F of the real or complex numbers, a norm on V is a nonnegative-valued any function p: V → \[0,+∞) with the following properties: For all a ∈ F and all u, v ∈ V, p(u + v) ≤ p(u) + p(v)…Then I stopped reading. “Ugh, I’ll never understand math!” I thought, for the thousandth time. Since then, I’ve learned that every time these complex mathy bits of jargon come up in practice, it turns out I can replace them with a tiny bit of code! Like, the L1 loss is just equal to (a-b).abs().mean(), where a and b are tensors. I guess mathy folks just think differently than I do…I’ll make sure in this book that every time some mathy jargon comes up, I’ll give you the little bit of code it’s equal to as well, and explain in common-sense terms what’s going on.




We just completed various mathematical operations on
PyTorch tensors. If you’ve done numeric programming
in PyTorch before, you may recognize these as being similar to NumPy
arrays. Let’s have a look at those two important
data structures.










NumPy Arrays and PyTorch Tensors


NumPy is the most widely used library for scientific
and numeric programming in Python. It provides similar
functionality and a similar API to that provided by PyTorch;
however, it does not support using the GPU or calculating gradients,
which are both critical for deep learning. Therefore, in this book, we
will generally use PyTorch tensors instead of NumPy arrays, where
possible.


(Note that fastai adds some features to NumPy and PyTorch to make them a
bit more similar to each other. If any code in this book
doesn’t work on your computer, it’s possible
that you forgot to include a line like this at the start of your notebook:
from 
fastai.vision.all import *.)


But what are arrays and tensors, and why should you care?


Python is slow compared to many languages. Anything fast in Python,
NumPy, or PyTorch is likely to be a wrapper for a compiled object written
(and optimized) in another language—specifically, C. In fact, NumPy
arrays and PyTorch tensors can finish computations many thousands of
times faster than using pure Python.


A NumPy array is a multidimensional table of data, with all items of the
same type. Since that can be any type at all, they can even be arrays
of arrays, with the innermost arrays potentially being different sizes—this is called a jagged array. By “multidimensional table,” we
mean, for instance, a list (dimension of one), a table or matrix
(dimension of two), a table of tables or cube (dimension of
three), and so forth. If the items are all of simple type such as
integer or float, NumPy will store them as a compact C data
structure in memory. This is where NumPy shines. NumPy has a wide
variety of operators and methods that can run computations on these
compact structures at the same speed as optimized C, because they are
written in optimized C.


A PyTorch tensor is nearly the same thing as a NumPy array, but with an
additional restriction that unlocks additional capabilities.
It’s the same in that it, too, is a multidimensional table
of data, with all items of the same type. However, the restriction is
that a tensor cannot use just any old type—it has to use a single
basic numeric type for all components. As a result, a tensor is not as
flexible as a genuine array of arrays. For example, a PyTorch tensor cannot
be jagged. It is always a regularly shaped multidimensional rectangular
structure.


The vast majority of methods and operators supported by NumPy on these
structures are also supported by PyTorch, but PyTorch tensors have
additional capabilities. One major capability is that these structures
can live on the GPU, in which case their computation will be optimized
for the GPU and can run much faster (given lots of values to work on).
In addition, PyTorch can automatically calculate derivatives of these
operations, including combinations of operations. As you’ll
see, it would be impossible to do deep learning in practice without this
capability.

Sylvain Says

If you don’t know what C is, don’t worry: you won’t need it at all. In a nutshell, it’s a low-level  (low-level means more similar to the language that computers use internally) 
language that is very fast compared to Python. To take advantage of its speed while programming in Python, try to avoid as much as possible writing loops, and replace them by commands that work directly on arrays or tensors.




Perhaps the most important new coding skill for a Python programmer to
learn is how to effectively use the array/tensor APIs. We will be
showing lots more tricks later in this book, but here’s a
summary of the key things you need to know for now.


To create an array or tensor, pass a list (or list of lists, or list of
lists of lists, etc.) to array or tensor:


data = [[1,2,3],[4,5,6]]
arr = array (data)
tns = tensor(data)


arr  # numpy


array([[1, 2, 3],
       [4, 5, 6]])


tns  # pytorch


tensor([[1, 2, 3],
        [4, 5, 6]])


All the operations that follow are shown on tensors, but the syntax and results
for NumPy arrays are identical.


You can select a row (note that, like lists in Python, tensors are 0-indexed, so 1 refers to the second row/column):


tns[1]


tensor([4, 5, 6])


Or a column, by using : to indicate all of the first axis (we
sometimes refer to the dimensions of tensors/arrays as axes):


tns[:,1]


tensor([2, 5])


You can combine these with Python slice syntax ([start:end], with end being excluded) to select part of a row or column:


tns[1,1:3]


tensor([5, 6])


And you can use the standard operators, such as +, -, *, and /:


tns+1


tensor([[2, 3, 4],
        [5, 6, 7]])


Tensors have a type:


tns.type()


'torch.LongTensor'


And will automatically change that type as needed; for example, from int to float:


tns*1.5


tensor([[1.5000, 3.0000, 4.5000],
        [6.0000, 7.5000, 9.0000]])


So, is our baseline model any good? To quantify this, we must define a
metric.
























Computing Metrics Using Broadcasting


Recall that a metric is a number that is calculated based on the
predictions of our model and the correct labels in our dataset, in
order to tell us how good our model is. For instance, we could use
either of the functions we saw in the previous section, mean squared
error or mean absolute error, and take the average of them over the
whole dataset. However, neither of these are numbers that are very
understandable to most people; in practice, we normally use accuracy
as the metric for classification models.


As we’ve discussed, we want to calculate our metric
over a validation set. This is so that we don’t
inadvertently overfit—that is, train a model to work well only on our
training data. This is not really a risk with the
pixel similarity model we’re using here as a first try,
since it has no trained components, but we’ll use a
validation set anyway to follow normal practices and to be ready for our
second try later.


To get a validation set, we need to remove some of the data from training
entirely, so it is not seen by the model at all. As it turns out, the
creators of the MNIST dataset have already done this for us. Do you
remember how there was a whole separate directory called valid?
That’s what this directory is for!


So to start, let’s create tensors for our 3s and
7s from that directory. These are the tensors we will use to
calculate a metric measuring the quality of our first-try model, which
measures distance from an ideal image:


valid_3_tens = torch.stack([tensor(Image.open(o))
                            for o in (path/'valid'/'3').ls()])
valid_3_tens = valid_3_tens.float()/255
valid_7_tens = torch.stack([tensor(Image.open(o))
                            for o in (path/'valid'/'7').ls()])
valid_7_tens = valid_7_tens.float()/255
valid_3_tens.shape,valid_7_tens.shape


(torch.Size([1010, 28, 28]), torch.Size([1028, 28, 28]))


It’s good to get in the habit of checking shapes as you go.
Here we see two tensors, one representing the 3s validation set of
1,010 images of size 28×28, and one representing the 7s validation
set of 1,028 images of size 28×28.


We ultimately want to write a function, is_3, that will decide whether an
arbitrary image is a 3 or a 7. It will do this by deciding which of our
two “ideal digits” that arbitrary image is closer to. For that we
need to define a notion of distance—that is, a function that
calculates the distance between two images.


We can write a simple function that calculates the mean
absolute error using an expression very similar to the one we wrote in
the last section:


def mnist_distance(a,b): return (a-b).abs().mean((-1,-2))
mnist_distance(a_3, mean3)


tensor(0.1114)


This is the same value we previously calculated for the distance between
these two images, the ideal 3 mean_3 and the arbitrary sample
3 a_3, which are both single-image tensors with a shape of
[28,28].


But to calculate a metric for overall accuracy, we will need to
calculate the distance to the ideal 3 for every image in the
validation set. How do we do that calculation? We could write a loop
over all of the single-image tensors that are stacked within our
validation set tensor, valid_3_tens, which has a shape of [1010,28,28]
representing 1,010 images. But there is a better way.


Something interesting happens when we take this exact same distance
function, designed for comparing two single images, but pass in as an
argument valid_3_tens, the tensor that represents the 3s
validation set:


valid_3_dist = mnist_distance(valid_3_tens, mean3)
valid_3_dist, valid_3_dist.shape


(tensor([0.1050, 0.1526, 0.1186,  ..., 0.1122, 0.1170, 0.1086]),
 torch.Size([1010]))


Instead of complaining about shapes not matching, it returned the
distance for every single image as a vector (i.e., a rank-1 tensor) of
length 1,010 (the number of 3s in our validation set). How did that
happen?


Take another look at our function mnist_distance, and
you’ll see we have there the subtraction (a-b). The magic trick is that PyTorch, when it tries to perform a simple
subtraction operation between two tensors of different ranks, will use
broadcasting: it will
automatically expand the tensor with the smaller rank to have the same
size as the one with the larger rank. Broadcasting is an important
capability that makes tensor code much easier to write.


After broadcasting so the two argument tensors have the same
rank, PyTorch applies its usual logic for two tensors of the same rank: it performs
the operation on each corresponding element of the
two tensors, and returns the tensor result. For instance:


tensor([1,2,3]) + tensor([1,1,1])


tensor([2, 3, 4])


So in this case, PyTorch treats mean3, a rank-2 tensor representing a
single image, as if it were 1,010 copies of the same image, and then
subtracts each of those copies from each 3 in our validation
set. What shape would you expect this tensor to have? Try to figure it
out yourself before you look at the answer here:


(valid_3_tens-mean3).shape


torch.Size([1010, 28, 28])


We are calculating the difference between our ideal 3 and each of the
1,010 3s in the validation set, for each of 28×28 images,
resulting in the shape [1010,28,28].


There are a couple of important points about how broadcasting is
implemented, which make it valuable not just for expressivity but also
for performance:



	
PyTorch doesn’t actually copy mean3 1,010 times.
It pretends it were a tensor of that shape, but
doesn’t allocate any additional memory.



	
It does the whole calculation in C (or, if you’re using a
GPU, in CUDA, the equivalent of C on the GPU), tens of thousands of
times faster than pure Python (up to millions of times faster on a GPU!).






This is true of all broadcasting and elementwise operations and
functions done in PyTorch. It’s the most important
technique for you to know to create efficient PyTorch code.


Next in mnist_distance we see abs. You might be able to guess now
what this does when applied to a tensor. It applies the method to each
individual element in the tensor, and returns a tensor of the results
(that is, it applies the method elementwise). So in this case,
we’ll get back 1,010 absolute values.


Finally, our function calls mean((-1,-2)). The tuple (-1,-2)
represents a range of axes. In Python, -1 refers to the last element,
and -2 refers to the second-to-last. So in this case, this tells PyTorch
that we want to take the mean ranging over the values indexed by the
last two axes of the tensor. The last two axes are the horizontal and
vertical dimensions of an image. After taking the mean over the last
two axes, we are left with just the first tensor axis, which indexes
over our images, which is why our final size was (1010). In other
words, for every image, we averaged the intensity of all the pixels in
that image.


We’ll be learning lots more about broadcasting throughout
this book, especially in Chapter 17, and will be
practicing it regularly too.


We can use mnist_distance to figure out whether an image is a
3 by using the following logic: if the distance between the
digit in question and the ideal 3 is less than the distance to the ideal
7, then it’s a 3. This function will automatically do
broadcasting and be applied elementwise, just like all PyTorch functions
and operators:


def is_3(x): return mnist_distance(x,mean3) < mnist_distance(x,mean7)


Let’s test it on our example case:


is_3(a_3), is_3(a_3).float()


(tensor(True), tensor(1.))


Note that when we convert the Boolean response to a float, we get
1.0 for True and 0.0 for False.


Thanks to broadcasting, we can also test it on the full validation set
of 3s:


is_3(valid_3_tens)


tensor([True, True, True,  ..., True, True, True])


Now we can calculate the accuracy for each of the 3s and 7s, by
taking the average of that function for all 3s and its
inverse for all 7s:


accuracy_3s =      is_3(valid_3_tens).float() .mean()
accuracy_7s = (1 - is_3(valid_7_tens).float()).mean()

accuracy_3s,accuracy_7s,(accuracy_3s+accuracy_7s)/2


(tensor(0.9168), tensor(0.9854), tensor(0.9511))


This looks like a pretty good start! We’re getting over 90%
accuracy on both 3s and 7s, and we’ve seen how to
define a metric conveniently using broadcasting. But let’s be honest: 3s and 7s are very different-looking digits. And we’re classifying only 2 out of the
10 possible digits so far. So we’re going to need to do
better!


To do better, perhaps it is time to try a system that does some real
learning—one that can automatically modify itself to improve its
performance. In other words, it’s time to talk about the
training process and SGD.

















Stochastic Gradient Descent


Do you remember the way that Arthur Samuel described machine learning,
which we quoted in Chapter 1?


Suppose we arrange for some automatic means of testing the effectiveness of any current weight assignment in terms of actual performance and provide a mechanism for altering the weight assignment so as to maximize the performance. We need not go into the details of such a procedure to see that it could be made entirely automatic and to see that a machine so programmed would “learn” from its experience.



As we discussed, this is the key to allowing us to have a model that
can get better and better—that can learn. But our pixel similarity approach
does not really do this. We do not have any kind of weight assignment,
or any way of improving based on testing the effectiveness of a weight
assignment. In other words, we can’t really improve our
pixel similarity approach by modifying a set of parameters. To
take advantage of the power of deep learning, we will first have to
represent our task in the way that Samuel described it.


Instead of trying to find the similarity between an image and an “ideal
image,” we could instead look at each individual pixel and come up with
a set of weights for each, such that the highest weights are
associated with those pixels most likely to be black for a particular
category. For instance, pixels toward the bottom right are not very
likely to be activated for a 7, so they should have a low weight for
a 7, but they are likely to be activated for an 8, so they
should have a high weight for an 8. This can be represented as a
function and set of weight values for each possible category—for
instance, the probability of being the number 8:

def pr_eight(x,w) = (x*w).sum()


Here we are assuming that X is the image, represented as a vector—in
other words, with all of the rows stacked up end to end into a single
long line. And we are assuming that the weights are a vector W. If we
have this function, we just need some way to update the weights to
make them a little bit better. With such an approach, we can repeat that
step a number of times, making the weights better and better, until they
are as good as we can make them.


We want to find the specific values for the vector W that cause the result of our
function to be high for those images that are 8s, and low
for those images that are not. Searching for the best vector W is a way
to search for the best function for recognizing 8s. (Because we are
not yet using a deep neural network, we are limited by what our function
can do—we are going to fix that constraint later in this
chapter.)


To be more specific, here are the steps required to
turn this function into a machine learning classifier:


	
Initialize the weights.



	
For each image, use these weights to predict whether it appears to be a 3 or a 7.



	
Based on these predictions, calculate how good the model is (its loss).



	
Calculate the gradient, which measures for each weight how changing that weight would change the loss.



	
Step (that is, change) all the weights based on that calculation.



	
Go back to step 2 and repeat the process.



	
Iterate until you decide to stop the training process (for instance, because the model is good enough or you don’t want to wait any longer).







These seven steps, illustrated in Figure 4-1, are the
key to the training of all deep learning models. That deep learning
turns out to rely entirely on these steps is extremely surprising and
counterintuitive. It’s amazing that this process can solve
such complex problems. But, as you’ll see, it really does!



[image: Graph showing the steps for Gradient Descent]
Figure 4-1. The gradient descent process




There are many ways to do each of these seven steps, and we
will be learning about them throughout the rest of this book. These are
the details that make a big difference for deep learning practitioners,
but it turns out that the general approach to each one follows
some basic principles. Here are a few guidelines:


	Initialize

	
  We initialize the parameters to random values. This
may sound surprising. There are certainly other choices we could make,
such as initializing them to the percentage of times that pixel is
activated for that category—but since we already know that we have a
routine to improve these weights, it turns out that just starting with
random weights works perfectly well.



	Loss

	
  This is what Samuel referred to when he spoke of testing the effectiveness of any
current weight assignment in terms of actual performance. We need
a function that will return a number that is small if the performance
of the model is good (the standard approach is to treat a small loss as
good and a large loss as bad, although this is just a convention).



	Step

	
  A simple way to figure out whether a weight should be
increased a bit or decreased a bit would be just to try it: increase
the weight by a small amount, and see if the loss goes up or down. Once
you find the correct direction, you could then change that amount by a
bit more, or a bit less, until you find an amount that works well.
However, this is slow! As we will see, the magic of calculus allows us
to directly figure out in which direction, and by roughly how much, to change
each weight, without having to try all these small changes. The way to
do this is by calculating gradients. This is just a performance
optimization; we would get exactly the same results by using the slower
manual process as well.



	Stop

	
Once we’ve decided how many epochs to train the model for (a few suggestions for this were given in the earlier list), we apply that decision. For our digit classifier, we would keep training until the accuracy of the model started getting worse, or we ran out of time.






Before applying these steps to our image classification problem,
let’s illustrate what they look like in a simpler case.
First we will define a very simple function, the quadratic—let’s pretend that this is our loss function, and x is a
weight parameter of the function:


def f(x): return x**2


Here is a graph of that function:


plot_function(f, 'x', 'x**2')



[image: ]





The sequence of steps we described earlier starts by picking a random
value for a parameter, and calculating the value of the loss:


plot_function(f, 'x', 'x**2')
plt.scatter(-1.5, f(-1.5), color='red');



[image: ]





Now we look to see what would happen if we increased or decreased our
parameter by a little bit—the adjustment. This is simply the slope
at a particular point:



[image: A graph showing the squared function with the slope at one point]





We can change our weight by a little in the direction of the slope,
calculate our loss and adjustment again, and repeat this a few times.
Eventually, we will get to the lowest point on our curve:



[image: An illustration of gradient descent]





This basic idea goes all the way back to Isaac Newton, who pointed out
that we can optimize arbitrary functions in this way. Regardless of how
complicated our functions become, this basic approach of gradient
descent will not significantly change. The only minor changes we will
see later in this book are some handy ways we can make it faster, by
finding better steps.










Calculating Gradients


The one magic step is the bit where we calculate the gradients. As we
mentioned, we use calculus as a performance optimization; it allows us
to more quickly calculate whether our loss will go up or down when we
adjust our parameters up or down. In other words, the gradients will
tell us how much we have to change each weight to make our model better.


You may remember from your high school calculus class that the
derivative of a function tells you how much a change in its parameters will change its result. If not, don’t worry; lots of
us forget calculus once high school is behind us! But you will need some intuitive understanding of what a derivative is before you
continue, so if this is all very fuzzy in your head, head over to Khan
Academy and complete the lessons on basic derivatives. You
won’t have to know how to calculate them yourself; you
just have to know what a derivative is.


The key point about a derivative is this: for any function, such as the
quadratic function we saw in the previous section, we can calculate its derivative. The
derivative is another function. It calculates the change, rather than
the value. For instance, the derivative of the quadratic function at the
value 3 tells us how rapidly the function changes at the value
3. More specifically, you may recall that
gradient is defined as rise/run; that is, the change in the value of
the function, divided by the change in the value of the parameter. When
we know how our function will change, we know what we need to do to
make it smaller. This is the key to machine learning: having a way to
change the parameters of a function to make it smaller. Calculus
provides us with a computational shortcut, the derivative, which lets us
directly calculate the gradients of our functions.


One important thing to be aware of is that our function has lots of weights
that we need to adjust, so when we calculate the derivative, we
won’t get back one number, but lots of them—a gradient for
every weight. But there is nothing mathematically tricky here; you can
calculate the derivative with respect to one weight and treat all the
other ones as constant, and then repeat that for each other weight. This is how
all of the gradients are calculated, for every weight.


We mentioned just now that you won’t have to calculate any
gradients yourself. How can that be? Amazingly enough, PyTorch is able
to automatically compute the derivative of nearly any function!
What’s more, it does it very fast. Most of the time, it will
be at least as fast as any derivative function that you can create by
hand. Let’s see an example.


First, let’s pick a tensor value at which we want gradients:


xt = tensor(3.).requires_grad_()


Notice the special method requires_grad_? That’s the
magical incantation we use to tell PyTorch that we want to calculate
gradients with respect to that variable at that value. It is essentially
tagging the variable, so PyTorch will remember to keep track of how to
compute gradients of the other direct calculations on it that you will
ask for.

Alexis Says

This API might throw you off if you’re coming from math or physics. In those contexts, the “gradient” of a function is just another function (i.e., its derivative), so you might expect gradient-related APIs to give you a new function. But in deep learning, “gradient” usually means the value of a function’s derivative at a particular argument value. The PyTorch API also puts the focus on the argument, not the function you’re actually computing the gradients of. It may feel backward at first, but it’s just a different perspective.




Now we calculate our function with that value. Notice how PyTorch prints
not just the value calculated, but also a note that it has a gradient
function it’ll be using to calculate our gradients when
needed:


yt = f(xt)
yt


tensor(9., grad_fn=<PowBackward0>)


Finally, we tell PyTorch to calculate the gradients for us:


yt.backward()


The “backward” here refers to backpropagation, which is the name
given to the process of calculating the derivative of each layer.
We’ll see how this is done exactly in Chapter 17, when we
calculate the gradients of a deep neural net from scratch. This is
called the backward pass of the network, as opposed to the forward
pass, which is where the activations are calculated. Life would
probably be easier if backward was just called calculate_grad, but
deep learning folks really do like to add jargon everywhere they can!


We can now view the gradients by checking the grad attribute of our
tensor:


xt.grad


tensor(6.)


If you remember your high school calculus rules, the derivative of
x**2 is 2*x, and we have x=3, so the gradients should be 2*3=6,
which is what PyTorch calculated for us!


Now we’ll repeat the preceding steps, but with a vector argument
for our function:


xt = tensor([3.,4.,10.]).requires_grad_()
xt


tensor([ 3.,  4., 10.], requires_grad=True)


And we’ll add sum to our function so it can take a vector (i.e., a
rank-1 tensor) and return a scalar (i.e., a rank-0 tensor):


def f(x): return (x**2).sum()

yt = f(xt)
yt


tensor(125., grad_fn=<SumBackward0>)


Our gradients are 2*xt, as we’d expect!


yt.backward()
xt.grad


tensor([ 6.,  8., 20.])


The gradients tell us only the slope of our function; they don’t tell us exactly how far to adjust the
parameters. But they do give us some idea of how far: if the slope is very
large, that may suggest that we have more adjustments to do,
whereas if the slope is very small, that may suggest that we are close
to the optimal value.

















Stepping with a Learning Rate


Deciding how to change our parameters based on the values of the
gradients is an important part of the deep learning process. Nearly all
approaches start with the basic idea of multiplying the gradient by some
small number, called the learning rate (LR). The learning rate is
often a number between 0.001 and 0.1, although it could be anything.
Often people select a learning rate just by trying a few, and finding
which results in the best model after training (we’ll show
you a better approach later in this book, called the learning rate
finder). Once you’ve picked a learning rate, you can adjust
your parameters using this simple function:

w -= w.grad * lr


This is known as stepping your parameters, using an optimization step.


If you pick a learning rate that’s too low, it can mean
having to do a lot of steps. Figure 4-2 illustrates that.



[image: An illustration of gradient descent with a LR too low]
Figure 4-2. Gradient descent with low LR




But picking a learning rate that’s too high is even
worse—it can result in the loss getting worse, as we see in
Figure 4-3!



[image: An illustration of gradient descent with a LR too high]
Figure 4-3. Gradient descent with high LR




If the learning rate is too high, it may also “bounce” around, rather
than diverging; Figure 4-4 shows how this results in taking many steps to train successfully.



[image: An illustation of gradient descent with a bouncy LR]
Figure 4-4. Gradient descent with bouncy LR




Now let’s apply all of this in an end-to-end example.

















An End-to-End SGD Example


We’ve seen how to use gradients to minimize our loss. Now
it’s time to look at an SGD example and see how finding a
minimum can be used to train a model to fit data 
better.


Let’s start with a simple, synthetic example model. Imagine you were
measuring the speed of a roller coaster as it went over the top of a
hump. It would start fast, and then get slower as it went up the hill; it would be slowest at the top, and it would then speed up again
as it went downhill. You want to build a model of how the speed changes
over time. If you were measuring the speed manually every
second for 20 seconds, it might look something like this:


time = torch.arange(0,20).float(); time


tensor([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12., 13.,
 > 14., 15., 16., 17., 18., 19.])


speed = torch.randn(20)*3 + 0.75*(time-9.5)**2 + 1
plt.scatter(time,speed);



[image: ]





We’ve added a bit of random noise, since measuring things
manually isn’t precise. This means it’s not that
easy to answer the question: what was the roller coaster’s
speed? Using SGD, we can try to find a function that matches our
observations. We can’t consider every possible function, so
let’s use a guess that it will be quadratic; i.e., a function
of the form a*(time**2)+(b*time)+c.


We want to distinguish clearly between the function’s input
(the time when we are measuring the coaster’s speed) and its
parameters (the values that define which quadratic we’re
trying). So let’s collect the parameters in one argument and thus
separate the input, t, and the parameters, params, in the
function’s signature:


def f(t, params):
    a,b,c = params
    return a*(t**2) + (b*t) + c


In other words, we’ve restricted the problem of finding the
best imaginable function that fits the data to finding the best
quadratic function. This greatly simplifies the problem, since every
quadratic function is fully defined by the three parameters a, b,
and c. Thus, to find the best quadratic function, we need to find only
the best values for a, b, and c.


If we can solve this problem for the three parameters of a quadratic
function, we’ll be able to apply the same approach for
other, more complex functions with more parameters—such as a neural net.
Let’s find the parameters for f first, and then
we’ll come back and do the same thing for the MNIST dataset
with a neural net.


We need to define first what we mean by “best.” We define this
precisely by choosing a loss function, which will return a value based
on a prediction and a target, where lower values of the function
correspond to “better” predictions. For continuous data,
it’s common to use mean squared error:


def mse(preds, targets): return ((preds-targets)**2).mean()


Now, let’s work through our seven-step process.












Step 1: Initialize the parameters


First, we initialize the parameters to random values and tell PyTorch
that we want to track their gradients using requires_grad_:


params = torch.randn(3).requires_grad_()

















Step 2: Calculate the predictions


Next, we calculate the predictions:


preds = f(time, params)


Let’s create a little function to see how close our
predictions are to our targets, and take a look:


def show_preds(preds, ax=None):
    if ax is None: ax=plt.subplots()[1]
    ax.scatter(time, speed)
    ax.scatter(time, to_np(preds), color='red')
    ax.set_ylim(-300,100)


show_preds(preds)



[image: ]





This doesn’t look very close—our random parameters suggest
that the roller coaster will end up going backward, since we have
negative speeds!

















Step 3: Calculate the loss


We calculate the loss as follows:


loss = mse(preds, speed)
loss


tensor(25823.8086, grad_fn=<MeanBackward0>)


Our goal is now to improve this. To do that, we’ll need to
know the gradients.

















Step 4: Calculate the gradients


The next step is to calculate the gradients, or an approximation of how the parameters need to change:


loss.backward()
params.grad


tensor([-53195.8594,  -3419.7146,   -253.8908])


params.grad * 1e-5


tensor([-0.5320, -0.0342, -0.0025])


We can use these gradients to improve our parameters. We’ll
need to pick a learning rate (we’ll discuss how to do that
in practice in the next chapter; for now, we’ll just use
1e-5 or 0.00001):


params


tensor([-0.7658, -0.7506,  1.3525], requires_grad=True)

















Step 5: Step the weights


Now we need to update the parameters based
on the gradients we just calculated:


lr = 1e-5
params.data -= lr * params.grad.data
params.grad = None

Alexis Says

Understanding this bit depends on remembering recent history. To calculate the gradients, we call backward on the loss. But this loss was itself calculated by mse, which in turn took preds as an input, which was calculated using f taking as an input params, which was the object on which we originally called required_grads_—which is the original call that now allows us to call backward on loss. This chain of function calls represents the mathematical composition of functions, which enables PyTorch to use calculus’s chain rule under the hood to calculate these gradients.




Let’s see if the loss has improved:


preds = f(time,params)
mse(preds, speed)


tensor(5435.5366, grad_fn=<MeanBackward0>)


And take a look at the plot:


show_preds(preds)



[image: ]





We need to repeat this a few times, so we’ll create a
function to apply one step:


def apply_step(params, prn=True):
    preds = f(time, params)
    loss = mse(preds, speed)
    loss.backward()
    params.data -= lr * params.grad.data
    params.grad = None
    if prn: print(loss.item())
    return preds

















Step 6: Repeat the process


Now we iterate. By looping and performing many
improvements, we hope to reach a good result:


for i in range(10): apply_step(params)


5435.53662109375
1577.4495849609375
847.3780517578125
709.22265625
683.0757446289062
678.12451171875
677.1839599609375
677.0025024414062
676.96435546875
676.9537353515625


The loss is going down, just as we hoped! But looking only at these loss
numbers disguises the fact that each iteration represents an entirely
different quadratic function being tried, on the way to finding the best
possible quadratic function. We can see this process visually if,
instead of printing out the loss function, we plot the function at every
step. Then we can see how the shape is approaching the best possible
quadratic function for our data:


_,axs = plt.subplots(1,4,figsize=(12,3))
for ax in axs: show_preds(apply_step(params, False), ax)
plt.tight_layout()



[image: ]




















Step 7: Stop


We just decided to stop after 10 epochs
arbitrarily. In practice, we would watch the training and validation losses
and our metrics to decide when to stop, as we’ve 
discussed.






















Summarizing Gradient Descent


Now that you’ve seen what happens in each step, let’s take another look at our graphical representation of the gradient descent process (Figure 4-5) and do a quick recap.



[image: Graph showing the steps for Gradient Descent]
Figure 4-5. The gradient descent process




At the beginning, the weights of our model can be random
(training from scratch) or come from a pretrained model (transfer
learning). In the first case, the output we will get from our inputs
won’t have anything to do with what we want, and even in the
second case, it’s likely the pretrained model
won’t be very good at the specific task we are targeting. So
the model will need to learn better weights.


We begin by comparing the outputs the model gives us with our
targets (we have labeled data, so we know what result the model should
give) using a loss function, which returns a number that we want to make as low as possible by improving our weights. To do this, we take
a few data items (such as images) from the training set and feed them to our model. We compare the corresponding targets using our
loss function, and the score we get tells us how wrong our predictions were.
We then change the weights a little bit to make it slightly better.


To find how to change the weights to make the loss a bit better, we use
calculus to calculate the gradients. (Actually, we let PyTorch do it
for us!) Let’s consider an analogy. Imagine you are lost in the mountains with
your car parked at the lowest point. To find your way back to it, you might wander
in a random direction, but that probably wouldn’t help much.
Since you know your vehicle is at the lowest point, you would be better
off going downhill. By always taking a step in the direction of the steepest
downward slope, you should eventually arrive at your destination. We use
the magnitude of the gradient (i.e., the steepness of the slope) to tell
us how big a step to take; specifically, we multiply the gradient by a
number we choose called the learning rate to decide on the step size. We then iterate until we have reached the lowest point, which will be our parking lot; then we can stop.


All of what we just saw can be transposed directly to the MNIST dataset, except for the loss function. Let’s now see how we can define a good training objective.
























The MNIST Loss Function


We already have our xs—that is, our independent variables, the images themselves.
We’ll concatenate them all into a single tensor, and also
change them from a list of matrices (a rank-3 tensor) to a list of
vectors (a rank-2 tensor). We can do this using view, which is a
PyTorch method that changes the shape of a tensor without changing its
contents. -1 is a special parameter to view that means “make this
axis as big as necessary to fit all the data”:


train_x = torch.cat([stacked_threes, stacked_sevens]).view(-1, 28*28)


We need a label for each image. We’ll use 1 for 3s and 0
for 7s:


train_y = tensor([1]*len(threes) + [0]*len(sevens)).unsqueeze(1)
train_x.shape,train_y.shape


(torch.Size([12396, 784]), torch.Size([12396, 1]))


A Dataset in PyTorch is required to return a tuple of (x,y) when
indexed. Python provides a zip function that, when combined with
list, provides a simple way to get this functionality:


dset = list(zip(train_x,train_y))
x,y = dset[0]
x.shape,y


(torch.Size([784]), tensor([1]))


valid_x = torch.cat([valid_3_tens, valid_7_tens]).view(-1, 28*28)
valid_y = tensor([1]*len(valid_3_tens) + [0]*len(valid_7_tens)).unsqueeze(1)
valid_dset = list(zip(valid_x,valid_y))


Now we need an (initially random) weight for every pixel (this is the
initialize step in our seven-step process):


def init_params(size, std=1.0): return (torch.randn(size)*std).requires_grad_()


weights = init_params((28*28,1))


The function weights*pixels won’t be flexible enough—it is
always equal to 0 when the pixels are equal to 0
(i.e., its intercept is 0). You might remember from
high school math that the formula for a line is y=w*x+b; we still need
the b. We’ll initialize it to a random number too:


bias = init_params(1)


In neural networks, the w in the equation y=w*x+b is called the
weights, and the b is called the bias. Together, the weights and
bias make up the parameters.

Jargon: Parameters

The weights and biases of a model. The weights are the w in the equation w*x+b, and the biases are the b in that equation.




We can now calculate a prediction for one image:


(train_x[0]*weights.T).sum() + bias


tensor([20.2336], grad_fn=<AddBackward0>)


While we could use a Python for loop to calculate the prediction for
each image, that would be very slow. Because Python loops
don’t run on the GPU, and because Python is a slow language
for loops in general, we need to represent as much of the computation in
a model as possible using higher-level functions.


In this case, there’s an extremely convenient mathematical
operation that calculates w*x for every row of a
matrix—it’s called matrix multiplication.
Figure 4-6 shows what matrix multiplication looks like.



[image: Matrix multiplication]
Figure 4-6. Matrix multiplication




This image shows two matrices, A and B, being multiplied together.
Each item of the result, which we’ll call AB, contains
each item of its corresponding row of A multiplied by each item of its
corresponding column of B, added together. For instance, row 1, column
2 (the yellow dot with a red border) is calculated as

  
    a 1,1 
    *
    b 1,2 
    +
    a 1,2 
    *
    b 2,2 
  
. If you need a
refresher on matrix multiplication, we suggest you take a look at the
“Intro to Matrix Multiplication” on Khan Academy, since
this is the most important mathematical operation in deep learning.


In Python, matrix multiplication is represented with the @ operator.
Let’s try it:


def linear1(xb): return xb@weights + bias
preds = linear1(train_x)
preds


tensor([[20.2336],
        [17.0644],
        [15.2384],
        ...,
        [18.3804],
        [23.8567],
        [28.6816]], grad_fn=<AddBackward0>)


The first element is the same as we calculated before, as
we’d expect. This equation, batch @ weights + bias, is one
of the two fundamental equations of any neural network (the other one is
the activation function, which we’ll see in a moment).


Let’s check our accuracy. To decide if an output represents
a 3 or a 7, we can just check whether it’s greater than
0, so our accuracy for each item can be calculated (using
broadcasting, so no loops!) as follows:


corrects = (preds>0.0).float() == train_y
corrects


tensor([[ True],
        [ True],
        [ True],
        ...,
        [False],
        [False],
        [False]])


corrects.float().mean().item()


0.4912068545818329


Now let’s see what the change in accuracy is for a small
change in one of the weights:


weights[0] *= 1.0001


preds = linear1(train_x)
((preds>0.0).float() == train_y).float().mean().item()


0.4912068545818329


As we’ve seen, we need gradients in order to improve our
model using SGD, and in order to calculate gradients we need a loss
function that represents how good our model is. That is because the
gradients are a measure of how that loss function changes with small
tweaks to the weights.


So, we need to choose a loss function. The obvious approach would be to
use accuracy, which is our metric, as our loss function as well. In this
case, we would calculate our prediction for each image, collect these
values to calculate an overall accuracy, and then calculate the
gradients of each weight with respect to that overall accuracy.


Unfortunately, we have a significant technical problem here. The
gradient of a function is its slope, or its steepness, which can be
defined as rise over run—that is, how much the value of the function
goes up or down, divided by how much we changed the input. We can write
this mathematically as:


(y_new – y_old) / (x_new – x_old)


This gives a good approximation of the gradient when x_new is very similar to x_old, meaning that their difference is very small. But accuracy changes at all only when a
prediction changes from a 3 to a 7, or vice versa. The problem is
that a small change in weights from x_old to x_new isn’t
likely to cause any prediction to change, so (y_new – y_old) will almost always be 0.
In other words, the gradient is 0 almost everywhere.


A very small change in the value of a weight will often not change the accuracy at all. This means it is not useful to use
accuracy as a loss function—if we do,
most of the time our gradients will be 0, and the model will
not be able to learn from that 
number.

Sylvain Says

In mathematical terms, accuracy is a function that is constant almost everywhere (except at the threshold, 0.5), so its derivative is nil almost everywhere (and infinity at the threshold). This then gives gradients that are 0 or infinite, which are useless for updating the model.




Instead, we need a loss function that, when our weights result in
slightly better predictions, gives us a slightly better loss. So what
does a “slightly better prediction” look like, exactly? Well, in this
case, it means that if the correct answer is a 3, the score is a
little higher, or if the correct answer is a 7, the score is a
little lower.


Let’s write such a function now. What form does it take?


The loss function receives not the images themselves, but the predictions
from the model. So let’s make one argument, prds, of values between 0 and 1, where each value is the prediction that an image is a 3. It is a vector (i.e., a rank-1 tensor) indexed over the images.


The purpose of the loss function is to measure the difference between
predicted values and the true values—that is, the targets (aka
labels). Let’s therefore make another
argument, trgts, with values of 0 or 1 that tells whether an image actually is a 3 or not. It is also a vector (i.e., another rank-1 tensor) indexed over the images.


For instance, suppose we had three images that we knew were a 3, a
7, and a 3. And suppose our model predicted with high confidence (0.9) that
the first was a 3, with slight confidence (0.4) that the second was a 7, and
with fair confidence (0.2), but incorrectly, that the last was a 7. This
would mean our loss function would receive these values as its inputs:


trgts  = tensor([1,0,1])
prds   = tensor([0.9, 0.4, 0.2])


Here’s a first try at a loss function that measures the
distance between predictions and targets:


def mnist_loss(predictions, targets):
    return torch.where(targets==1, 1-predictions, predictions).mean()


We’re using a new function, torch.where(a,b,c). This is
the same as running the list comprehension
[b[i] if a[i] else c[i] for i in range(len(a))], except it works on
tensors, at C/CUDA speed. In plain English, this function will measure
how distant each prediction is from 1 if it should be 1, and how distant
it is from 0 if it should be 0, and then it will take the mean of all
those distances.

Read the Docs

It’s important to learn about PyTorch functions like this, because looping over tensors in Python performs at Python speed, not C/CUDA speed! Try running help(torch.where) now to read the docs for this function,
or, better still, look it up on the PyTorch documentation site.




Let’s try it on our prds and trgts:


torch.where(trgts==1, 1-prds, prds)


tensor([0.1000, 0.4000, 0.8000])


You can see that this function returns a lower number when predictions
are more accurate, when accurate predictions are more confident (higher
absolute values), and when inaccurate predictions are less confident. In
PyTorch, we always assume that a lower value of a loss function is
better. Since we need a scalar for the final loss, mnist_loss takes the mean of the previous tensor:


mnist_loss(prds,trgts)


tensor(0.4333)


For instance, if we change our prediction for the one “false” target
from 0.2 to 0.8, the loss will go down, indicating that this is a
better prediction:


mnist_loss(tensor([0.9, 0.4, 0.8]),trgts)


tensor(0.2333)


One problem with mnist_loss as currently defined is that it assumes that
predictions are always between 0 and 1. We need to ensure, then,
that this is actually the case! As it happens, there is a function that
does exactly that—let’s take a look.










Sigmoid


The sigmoid function always outputs a number between 0 and 1. It’s defined as 
follows:


def sigmoid(x): return 1/(1+torch.exp(-x))


PyTorch defines an accelerated version for us, so we don’t really need our own. This is an important function in deep learning, since
we often want to ensure that values are between 0 and 1. This is what it
looks like:


plot_function(torch.sigmoid, title='Sigmoid', min=-4, max=4)



[image: ]





As you can see, it takes any input value, positive or negative, and
smooshes it into an output value between 0 and 1. It’s also
a smooth curve that only goes up, which makes it easier for SGD to find
meaningful gradients.


Let’s update mnist_loss to first apply sigmoid to the
inputs:


def mnist_loss(predictions, targets):
    predictions = predictions.sigmoid()
    return torch.where(targets==1, 1-predictions, predictions).mean()


Now we can be confident our loss function will work, even if the
predictions are not between 0 and 1. All that is required is that a
higher prediction corresponds to higher confidence.


Having defined a loss function, now is a good moment to recapitulate why
we did this. After all, we already had a metric, which was overall
accuracy. So why did we define a loss?


The key difference is that the metric is to drive human understanding
and the loss is to drive automated learning. To drive automated
learning, the loss must be a function that has a meaningful derivative.
It can’t have big flat sections and large jumps, but
instead must be reasonably smooth. This is why we designed a loss
function that would respond to small changes in confidence level. This
requirement means that sometimes it does not really reflect
exactly what we are trying to achieve, but is rather a compromise
between our real goal and a function that can be optimized using its
gradient. The loss function is calculated for each item in our dataset,
and then at the end of an epoch, the loss values are all averaged and the overall
mean is reported for the epoch.


Metrics, on the other hand, are the numbers that we care about.
These are the values that are printed at the end of each epoch that
tell us how our model is doing. It is important that we learn to
focus on these metrics, rather than the loss, when judging the
performance of a model.

















SGD and Mini-Batches


Now that we have a loss function suitable for driving SGD, we can
consider some of the details involved in the next phase of the learning
process, which is to change or update the weights based
on the gradients. This is called an optimization step.


To take an optimization step, we need to calculate the loss over
one or more data items. How many should we use? We could calculate it
for the whole dataset and take the average, or we could calculate it
for a single data item. But neither of these is ideal. Calculating it
for the whole dataset would take a long time. Calculating it for a
single item would not use much information, so it would result in an imprecise and unstable gradient. You’d be
going to the trouble of updating the weights, but taking into account
only how that would improve the model’s performance on that
single item.


So instead we compromise: we calculate the
average loss for a few data items at a time. This is called a
mini-batch. The number of data items in the mini-batch is called the
batch size. A larger batch size means that you will get a more
accurate and stable estimate of your dataset’s gradients from
the loss function, but it will take longer, and you will process fewer
mini-batches per epoch. Choosing a good batch size is one of the
decisions you need to make as a deep learning practitioner to train your
model quickly and accurately. We will talk about how to make this choice
throughout this book.


Another good reason for using mini-batches rather than calculating the
gradient on individual data items is that, in practice, we nearly always
do our training on an accelerator such as a GPU. These accelerators
perform well only if they have lots of work to do at a time, so it’s helpful
if we can give them lots of data items to work on. Using
mini-batches is one of the best ways to do this. However, if you give
them too much data to work on at once, they run out of memory—making
GPUs happy is also tricky!


As you saw in our discussion of data augmentation in Chapter 2, we
get better generalization if we can vary things during training. One
simple and effective thing we can vary is what data
items we put in each mini-batch. Rather than simply enumerating our
dataset in order for every epoch, instead what we normally do is
randomly shuffle it on every epoch, before we create mini-batches.
PyTorch and fastai provide a class that will do the shuffling and mini-batch collation for you, called DataLoader.


A DataLoader can take any Python collection and turn it into an
iterator over many batches, like so:


coll = range(15)
dl = DataLoader(coll, batch_size=5, shuffle=True)
list(dl)


[tensor([ 3, 12,  8, 10,  2]),
 tensor([ 9,  4,  7, 14,  5]),
 tensor([ 1, 13,  0,  6, 11])]


For training a model, we don’t just want any Python
collection, but a collection containing independent and dependent
variables (the inputs and targets of the model). A collection
that contains tuples of independent and dependent variables is known in
PyTorch as a Dataset. Here’s an example of an extremely
simple Dataset:


ds = L(enumerate(string.ascii_lowercase))
ds


(#26) [(0, 'a'),(1, 'b'),(2, 'c'),(3, 'd'),(4, 'e'),(5, 'f'),(6, 'g'),(7,
 > 'h'),(8, 'i'),(9, 'j')...]


When we pass a Dataset to a DataLoader we will get back many batches
that are themselves tuples of tensors representing batches of
independent and dependent 
variables:


dl = DataLoader(ds, batch_size=6, shuffle=True)
list(dl)


[(tensor([17, 18, 10, 22,  8, 14]), ('r', 's', 'k', 'w', 'i', 'o')),
 (tensor([20, 15,  9, 13, 21, 12]), ('u', 'p', 'j', 'n', 'v', 'm')),
 (tensor([ 7, 25,  6,  5, 11, 23]), ('h', 'z', 'g', 'f', 'l', 'x')),
 (tensor([ 1,  3,  0, 24, 19, 16]), ('b', 'd', 'a', 'y', 't', 'q')),
 (tensor([2, 4]), ('c', 'e'))]


We are now ready to write our first training loop for a model using SGD!
























Putting It All Together


It’s time to implement the process we saw in
Figure 4-1. In code, our process will be implemented
something like this for each epoch:


for x,y in dl:
    pred = model(x)
    loss = loss_func(pred, y)
    loss.backward()
    parameters -= parameters.grad * lr


First, let’s reinitialize our parameters:


weights = init_params((28*28,1))
bias = init_params(1)


A DataLoader can be created from a Dataset:


dl = DataLoader(dset, batch_size=256)
xb,yb = first(dl)
xb.shape,yb.shape


(torch.Size([256, 784]), torch.Size([256, 1]))


We’ll do the same for the validation set:


valid_dl = DataLoader(valid_dset, batch_size=256)


Let’s create a mini-batch of size 4 for testing:


batch = train_x[:4]
batch.shape


torch.Size([4, 784])


preds = linear1(batch)
preds


tensor([[-11.1002],
        [  5.9263],
        [  9.9627],
        [ -8.1484]], grad_fn=<AddBackward0>)


loss = mnist_loss(preds, train_y[:4])
loss


tensor(0.5006, grad_fn=<MeanBackward0>)


Now we can calculate the gradients:


loss.backward()
weights.grad.shape,weights.grad.mean(),bias.grad


(torch.Size([784, 1]), tensor(-0.0001), tensor([-0.0008]))


Let’s put that all in a function:


def calc_grad(xb, yb, model):
    preds = model(xb)
    loss = mnist_loss(preds, yb)
    loss.backward()


And test it:


calc_grad(batch, train_y[:4], linear1)
weights.grad.mean(),bias.grad


(tensor(-0.0002), tensor([-0.0015]))


But look what happens if we call it twice:


calc_grad(batch, train_y[:4], linear1)
weights.grad.mean(),bias.grad


(tensor(-0.0003), tensor([-0.0023]))


The gradients have changed! The reason for this is that loss.backward adds the gradients of loss to any gradients that are
currently stored. So, we have to set the current gradients to 0 first:


weights.grad.zero_()
bias.grad.zero_();

In-Place Operations

Methods in PyTorch whose names end in an underscore modify their objects in place. For instance, bias.zero_ sets all elements of the tensor bias to 0.




Our only remaining step is to update the weights and biases based on
the gradient and learning rate. When we do so, we have to tell PyTorch
not to take the gradient of this step too—otherwise, things will get confusing when we try to compute the derivative at the next batch!
If we assign to the data attribute of a tensor, PyTorch will not
take the gradient of that step. Here’s our basic training
loop for an epoch:


def train_epoch(model, lr, params):
    for xb,yb in dl:
        calc_grad(xb, yb, model)
        for p in params:
            p.data -= p.grad*lr
            p.grad.zero_()


We also want to check how we’re doing, by looking at the
accuracy of the validation set. To decide if an output represents a 3 or
a 7, we can just check whether it’s greater than 0. So
our accuracy for each item can be calculated (using broadcasting, so no
loops!) as follows:


(preds>0.0).float() == train_y[:4]


tensor([[False],
        [ True],
        [ True],
        [False]])


That gives us this function to calculate our validation accuracy:


def batch_accuracy(xb, yb):
    preds = xb.sigmoid()
    correct = (preds>0.5) == yb
    return correct.float().mean()


We can check it works:


batch_accuracy(linear1(batch), train_y[:4])


tensor(0.5000)


And then put the batches together:


def validate_epoch(model):
    accs = [batch_accuracy(model(xb), yb) for xb,yb in valid_dl]
    return round(torch.stack(accs).mean().item(), 4)


validate_epoch(linear1)


0.5219


That’s our starting point. Let’s train for one
epoch and see if the accuracy improves:


lr = 1.
params = weights,bias
train_epoch(linear1, lr, params)
validate_epoch(linear1)


0.6883


Then do a few more:


for i in range(20):
    train_epoch(linear1, lr, params)
    print(validate_epoch(linear1), end=' ')


0.8314 0.9017 0.9227 0.9349 0.9438 0.9501 0.9535 0.9564 0.9594 0.9618 0.9613
 > 0.9638 0.9643 0.9652 0.9662 0.9677 0.9687 0.9691 0.9691 0.9696


Looking good! We’re already about at the same accuracy as
our “pixel similarity” approach, and we’ve created a
general-purpose foundation we can build on. Our next step will be to
create an object that will handle the SGD step for us. In PyTorch,
it’s called an optimizer.










Creating an Optimizer


Because this is such a general foundation, PyTorch provides some useful
classes to make it easier to implement. The first thing we can do is replace our linear function with PyTorch’s
nn.Linear module. A module is an object of a class that inherits
from the PyTorch nn.Module class. Objects of this class behave
identically to standard Python functions, in that you can call them using
parentheses, and they will return the activations of a model.


nn.Linear does the same thing as our init_params and linear
together. It contains both the weights and biases in a single class.
Here’s how we replicate our model from the previous section:


linear_model = nn.Linear(28*28,1)


Every PyTorch module knows what parameters it has that can be trained;
they are available through the parameters method:


w,b = linear_model.parameters()
w.shape,b.shape


(torch.Size([1, 784]), torch.Size([1]))


We can use this information to create an optimizer:


class BasicOptim:
    def __init__(self,params,lr): self.params,self.lr = list(params),lr

    def step(self, *args, **kwargs):
        for p in self.params: p.data -= p.grad.data * self.lr

    def zero_grad(self, *args, **kwargs):
        for p in self.params: p.grad = None


We can create our optimizer by passing in the model’s
parameters:


opt = BasicOptim(linear_model.parameters(), lr)


Our training loop can now be simplified:


def train_epoch(model):
    for xb,yb in dl:
        calc_grad(xb, yb, model)
        opt.step()
        opt.zero_grad()


Our validation function doesn’t need to change at all:


validate_epoch(linear_model)


0.4157


Let’s put our little training loop in a function, to make
things simpler:


def train_model(model, epochs):
    for i in range(epochs):
        train_epoch(model)
        print(validate_epoch(model), end=' ')


The results are the same as in the previous section:


train_model(linear_model, 20)


0.4932 0.8618 0.8203 0.9102 0.9331 0.9468 0.9555 0.9629 0.9658 0.9673 0.9687
 > 0.9707 0.9726 0.9751 0.9761 0.9761 0.9775 0.978 0.9785 0.9785


fastai provides the SGD class that, by default, does the same thing
as our 
BasicOptim:


linear_model = nn.Linear(28*28,1)
opt = SGD(linear_model.parameters(), lr)
train_model(linear_model, 20)


0.4932 0.852 0.8335 0.9116 0.9326 0.9473 0.9555 0.9624 0.9648 0.9668 0.9692
 > 0.9712 0.9731 0.9746 0.9761 0.9765 0.9775 0.978 0.9785 0.9785


fastai also provides Learner.fit, which we can use instead of
train_model. To create a Learner, we first need to create a
DataLoaders, by passing in our training and validation DataLoaders:


dls = DataLoaders(dl, valid_dl)


To create a Learner without using an application (such as
cnn_learner), we need to pass in all the elements that
we’ve created in this chapter: the DataLoaders, the model,
the optimization function (which will be passed the parameters), the
loss function, and optionally any metrics to print:


learn = Learner(dls, nn.Linear(28*28,1), opt_func=SGD,
                loss_func=mnist_loss, metrics=batch_accuracy)


Now we can call fit:


learn.fit(10, lr=lr)


  
    
      	epoch
      	train_loss
      	valid_loss
      	batch_accuracy
      	time
    

  
  
    
      	0
      	0.636857
      	0.503549
      	0.495584
      	00:00
    

    
      	1
      	0.545725
      	0.170281
      	0.866045
      	00:00
    

    
      	2
      	0.199223
      	0.184893
      	0.831207
      	00:00
    

    
      	3
      	0.086580
      	0.107836
      	0.911187
      	00:00
    

    
      	4
      	0.045185
      	0.078481
      	0.932777
      	00:00
    

    
      	5
      	0.029108
      	0.062792
      	0.946516
      	00:00
    

    
      	6
      	0.022560
      	0.053017
      	0.955348
      	00:00
    

    
      	7
      	0.019687
      	0.046500
      	0.962218
      	00:00
    

    
      	8
      	0.018252
      	0.041929
      	0.965162
      	00:00
    

    
      	9
      	0.017402
      	0.038573
      	0.967615
      	00:00
    

  



As you can see, there’s nothing magic about the PyTorch and
fastai classes. They are just convenient prepackaged pieces that make
your life a bit easier! (They also provide a lot of extra functionality
we’ll be using in future chapters.)


With these classes, we can now replace our linear model with a neural
network.
























Adding a Nonlinearity


So far, we have a general procedure for optimizing the parameters of a
function, and we have tried it out on a boring function: a simple
linear classifier. A linear classifier is constrained in terms of
what it can do. To make it a bit more complex (and able to handle more
tasks), we need to add something nonlinear (i.e., different from ax+b) between two linear classifiers—this is what gives us a neural network.


Here is the entire definition of a basic neural network:


def simple_net(xb):
    res = xb@w1 + b1
    res = res.max(tensor(0.0))
    res = res@w2 + b2
    return res


That’s it! All we have in simple_net is two linear
classifiers with a max function between them.


Here, w1 and w2 are weight tensors, and b1 and b2 are bias
tensors; that is, parameters that are initially randomly initialized,
just as we did in the previous section:


w1 = init_params((28*28,30))
b1 = init_params(30)
w2 = init_params((30,1))
b2 = init_params(1)


The key point is that w1 has 30 output activations (which
means that w2 must have 30 input activations, so they match). That
means that the first layer can construct 30 different features, each
representing a different mix of pixels. You can change that 30 to
anything you like, to make the model more or less complex.


That little function res.max(tensor(0.0)) is called a rectified
linear unit, also known as ReLU. We think we can all agree that
rectified linear unit sounds pretty fancy and complicated…But
actually, there’s nothing more to it than
res.max(tensor(0.0))—in other words, replace every negative number
with a zero. This tiny function is also available in PyTorch as
F.relu:


plot_function(F.relu)



[image: ]




Jeremy Says

There is an enormous amount of jargon in deep learning, including terms like rectified linear unit. The vast majority of this jargon is no more complicated than can be implemented in a short line of code, as we saw in this example. The reality is that for academics to get their papers published, they need to make them sound as impressive and sophisticated as possible. One way that they do that is to introduce jargon. Unfortunately, this results in the field becoming far more intimidating and difficult to get into than it should be. You do have to learn the jargon, because otherwise papers and tutorials are not going to mean much to you. But that doesn’t mean you have to find the jargon intimidating. Just remember, when you come across a word or phrase that you haven’t seen before, it will almost certainly turn out to be referring to a very simple concept.




The basic idea is that by using more linear layers, we can have our
model do more computation, and therefore model more complex functions.
But there’s no point in just putting one linear layout directly
after another one, because when we multiply things together and then add
them up multiple times, that could be replaced by multiplying different
things together and adding them up just once! That is to say, a series
of any number of linear layers in a row can be replaced with a single
linear layer with a different set of parameters.


But if we put a nonlinear function between them, such as max, this
is no longer true. Now each linear layer is somewhat decoupled
from the other ones and can do its own useful work. The max function is
particularly interesting, because it operates as a simple if
statement.

Sylvain Says

Mathematically, we say the composition of two linear functions is another linear function. So, we can stack as many linear classifiers as we want on top of each other, and without nonlinear functions between them, it will just be the same as one linear classifier.




Amazingly enough, it can be mathematically proven that this little
function can solve any computable problem to an arbitrarily high level
of accuracy, if you can find the right parameters for w1 and w2 and
if you make these matrices big enough. For any arbitrarily wiggly function, we can approximate it as
a bunch of lines joined together; to make it closer to the wiggly
function, we just have to use shorter lines. This is known as the universal
approximation theorem. The three lines of code that we have here are
known as layers. The first and third are known as linear layers, and
the second line of code is known variously as a nonlinearity, or
activation function.


Just as in the previous section, we can replace this code with something
a bit simpler by taking advantage of PyTorch:


simple_net = nn.Sequential(
    nn.Linear(28*28,30),
    nn.ReLU(),
    nn.Linear(30,1)
)


nn.Sequential creates a module that will call each of the listed
layers or functions in turn.


nn.ReLU is a PyTorch module that does exactly the same thing as the F.relu function. Most functions that can appear
in a model also have identical forms that are modules. Generally,
it’s just a case of replacing F with nn and changing
the capitalization. When using nn.Sequential, PyTorch requires us to
use the module version. Since modules are classes, we have to
instantiate them, which is why you see nn.ReLU in this 
example.


Because nn.Sequential is a module, we can get its parameters, which will return
a list of all the parameters of all the modules it contains. Let’s try it out! As this is a deeper model, we’ll use a
lower learning rate and a few more epochs:


learn = Learner(dls, simple_net, opt_func=SGD,
                loss_func=mnist_loss, metrics=batch_accuracy)


learn.fit(40, 0.1)


We’re not showing the 40 lines of output here to save room;
the training process is recorded in learn.recorder, with the table of
output stored in the values attribute, so we can plot the accuracy
over training:


plt.plot(L(learn.recorder.values).itemgot(2));



[image: ]





And we can view the final accuracy:


learn.recorder.values[-1][2]


0.982826292514801


At this point, we have something that is rather magical:



	
A function that can solve any problem to any level of accuracy (the
neural network) given the correct set of parameters



	
A way to
find the best set of parameters for any function (stochastic gradient
descent)






This is why deep learning can do such fantastic things.
Believing that this combination of simple techniques can really solve
any problem is one of the biggest steps that we find many students
have to take. It seems too good to be true—surely things should
be more difficult and complicated than this? Our recommendation: try it
out! We just tried it on the MNIST dataset, and you’ve seen the results. And since we are doing everything from scratch ourselves (except
for calculating the gradients), you know that there is no special magic
hiding behind the scenes.










Going Deeper


There is no need to stop at just two linear layers. We can add as many
as we want, as long as we add a nonlinearity between each pair of linear
layers. As you will learn, however, the deeper the model gets, the harder
it is to optimize the parameters in practice. Later in this book, you will
learn about some simple but brilliantly effective techniques for
training deeper models.


We already know that a single nonlinearity with two linear layers is
enough to approximate any function. So why would we use deeper models?
The reason is performance. With a deeper model (one with more
layers), we do not need to use as many parameters; it turns out that we
can use smaller matrices, with more layers, and get better results than
we would get with larger matrices and few layers.


That means that we can train the model more quickly, and it will take
up less memory. In the 1990s, researchers were so focused on the
universal approximation theorem that few were experimenting with
more than one nonlinearity. This theoretical but not practical
foundation held back the field for years. Some researchers, however, did
experiment with deep models, and eventually were able to show that these
models could perform much better in practice. Eventually, theoretical
results were developed that showed why this happens. Today, it is
extremely unusual to find anybody using a neural network with just one
nonlinearity.


Here is what happens when we train an 18-layer model using the same approach
we saw in Chapter 1:


dls = ImageDataLoaders.from_folder(path)
learn = cnn_learner(dls, resnet18, pretrained=False,
                    loss_func=F.cross_entropy, metrics=accuracy)
learn.fit_one_cycle(1, 0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.082089
      	0.009578
      	0.997056
      	00:11
    

  



Nearly 100% accuracy! That’s a big difference compared to
our simple neural net. But as you’ll learn in the remainder
of this book, there are just a few little tricks you need to use to get
such great results from scratch yourself. You already know the key
foundational pieces. (Of course, even when you know all the tricks,
you’ll nearly always want to work with the prebuilt classes
provided by PyTorch and fastai, because they save you from having to think
about all the little details yourself.)
























Jargon Recap


Congratulations: you now know how to create and train a deep neural
network from scratch! We’ve gone through quite a few steps to get to this
point, but you might be surprised at how simple it really is.


Now that we are at this point, it is a good opportunity to define, and
review, some jargon and key concepts.


A neural network contains a lot of numbers, but they are only of two types: numbers that are calculated, and the parameters
that these numbers are calculated from. This gives us the two most important
pieces of jargon to learn:


	Activations

	
Numbers that are calculated (both by linear and nonlinear layers)



	Parameters

	
Numbers that are randomly initialized, and optimized (that is, the numbers that define the model)






We will often talk in this book about activations and parameters.
Remember that they have specific meanings. They are numbers. They
are not abstract concepts, but they are actual specific numbers that are
in your model. Part of becoming a good deep learning practitioner is
getting used to the idea of looking at your activations and
parameters, and plotting them and testing whether they are behaving
correctly.


Our activations and parameters are all contained in tensors. These are
simply regularly shaped arrays—for example, a matrix. Matrices have
rows and columns; we call these the axes or dimensions. The number
of dimensions of a tensor is its rank. There are some special tensors:



	
Rank-0: scalar



	
Rank-1: vector



	
Rank-2: matrix






A neural network contains a number of layers. Each layer is either
linear or nonlinear. We generally alternate between these two kinds of
layers in a neural network. Sometimes people refer to both a linear
layer and its subsequent nonlinearity together as a single layer. Yes,
this is confusing. Sometimes a nonlinearity is referred to as an
activation function.


Table 4-1 summarizes the key concepts related to SGD.


Table 4-1. Deep learning vocabulary


	Term
	Meaning





	ReLU

	Function that returns 0 for negative numbers and doesn’t change positive numbers.




	Mini-batch

	A small group of inputs and labels gathered together in two arrays. A gradient descent step is updated on this batch (rather than a whole epoch).




	Forward pass

	Applying the model to some input and computing the predictions.




	Loss

	A value that represents how well (or badly) our model is doing.




	Gradient

	The derivative of the loss with respect to some parameter of the model.




	Backward pass

	Computing the gradients of the loss with respect to all model parameters.




	Gradient descent

	Taking a step in the direction opposite to the gradients to make the model parameters a little bit better.




	Learning rate

	The size of the step we take when applying SGD to update the parameters of the model.






Choose Your Own Adventure Reminder

Did you choose to skip over Chapters 2 and 3, in your excitement to peek
under the hood? Well, here’s your reminder to head back to
Chapter 2 now, because you’ll be needing to know that stuff soon!



















Questionnaire


	
How is a grayscale image represented on a computer? How about a color image?



	
How are the files and folders in the MNIST_SAMPLE dataset structured? Why?



	
Explain how the “pixel similarity” approach to classifying digits works.



	
What is a list comprehension? Create one now that selects odd numbers from a list and doubles them.



	
What is a rank-3 tensor?



	
What is the difference between tensor rank and shape? How do you get the rank from the shape?



	
What are RMSE and L1 norm?



	
How can you apply a calculation on thousands of numbers at once, many thousands of times faster than a Python loop?



	
Create a 3×3 tensor or array containing the numbers from 1 to 9. Double it. Select the bottom-right four numbers.



	
What is broadcasting?



	
Are metrics generally calculated using the training set or the validation set? Why?



	
What is SGD?



	
Why does SGD use mini-batches?



	
What are the seven steps in SGD for machine learning?



	
How do we initialize the weights in a model?



	
What is loss?



	
Why can’t we always use a high learning rate?



	
What is a gradient?



	
Do you need to know how to calculate gradients yourself?



	
Why can’t we use accuracy as a loss function?



	
Draw the sigmoid function. What is special about its shape?



	
What is the difference between a loss function and a metric?



	
What is the function to calculate new weights using a learning rate?



	
What does the DataLoader class do?



	
Write pseudocode showing the basic steps taken in each epoch for SGD.



	
Create a function that, if passed two arguments [1,2,3,4] and 'abcd', returns [(1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]. What is special about that output data structure?



	
What does view do in PyTorch?



	
What are the bias parameters in a neural network? Why do we need them?



	
What does the @ operator do in Python?



	
What does the backward method do?



	
Why do we have to zero the gradients?



	
What information do we have to pass to Learner?



	
Show Python or pseudocode for the basic steps of a training loop.



	
What is ReLU? Draw a plot of it for values from -2 to +2.



	
What is an activation function?



	
What’s the difference between F.relu and nn.ReLU?



	
The universal approximation theorem shows that any function can be approximated as closely as needed using just one nonlinearity. So why do we normally use more?















Further Research


	
Create your own implementation of Learner from scratch, based on the training loop shown in this chapter.



	
Complete all the steps in this chapter using the full MNIST datasets (for all digits, not just 3s and 7s). This is a significant project and will take you quite a bit of time to complete! You’ll need to do some of your own research to figure out how to overcome obstacles you’ll meet on the way.




























  
Chapter 5. Image Classification



Now that you understand what deep learning is, what it’s for,
and how to create and deploy a model, it’s time for us to go
deeper! In an ideal world, deep learning practitioners
wouldn’t have to know every detail of how things work under
the hood. But as yet, we don’t live in an ideal world. The
truth is, to make your model really work, and work reliably,
there are a lot of details you have to get right, and a lot of
details that you have to check. This process requires being able to look
inside your neural network as it trains and as it makes predictions,
find possible problems, and know how to fix them.


So, from here on in the book, we are going to do a deep dive into the
mechanics of deep learning. What is the architecture of a computer
vision model, an NLP model, a tabular model, and so on? How do you
create an architecture that matches the needs of your particular
domain? How do you get the best possible results from the training
process? How do you make things faster? What do you have to change as
your datasets change?


We will start by repeating the same basic applications that we looked at
in the first chapter, but we are going to do two things:



	
Make them better.



	
Apply them to a wider variety of types of data.






To do these two things, we will have to learn all of the pieces
of the deep learning puzzle. This includes different types of layers,
regularization methods, optimizers, how to put layers together into
architectures, labeling techniques, and much more. We are not just
going to dump all of these things on you, though; we will introduce them
progressively as needed, to solve actual problems related to the
projects we are working on.








From Dogs and Cats to Pet Breeds


In our very first model, we learned how to classify dogs versus cats. Just
a few years ago, this was considered a very challenging task—but today, it’s
far too easy! We will not be able to show you the nuances of
training models with this problem, because we get a nearly perfect
result without worrying about any of the details. But it turns out that
the same dataset also allows us to work on a much more challenging
problem: figuring out what breed of pet is shown in each image.


In Chapter 1, we presented the applications as already-solved
problems. But this is not how things work in real life. We start with
a dataset that we know nothing about. We then have to figure out how it
is put together, how to extract the data we need from it, and what that
data looks like. For the rest of this book, we will be showing you how to
solve these problems in practice, including all of the intermediate
steps necessary to understand the data that we are working with and test
your modeling as you go.


We already downloaded the Pets dataset, and we can get a path to this
dataset using the same code as in Chapter 1:


from fastai2.vision.all import *
path = untar_data(URLs.PETS)


Now if we are going to understand how to extract the breed of each pet
from each image, we’re going to need to understand how this
data is laid out. Such details of data layout are a vital piece of the
deep learning puzzle. Data is usually provided in one of these two ways:



	
Individual files representing items of data, such as text documents or
images, possibly organized into folders or with filenames representing
information about those items



	
A table of data (e.g., in CSV format) in which each row is an item and may include filenames providing connections between the
data in the table and data in other formats, such as text documents and
images






There are exceptions to these rules—particularly in domains such as
genomics, where there can be binary database formats or even network
streams—but overall the vast majority of the datasets you’ll work with will use
some combination of these two 
formats.


To see what is in our dataset, we can use the ls method:


path.ls()


(#3) [Path('annotations'),Path('images'),Path('models')]


We can see that this dataset provides us with images and
annotations directories. The website for the dataset tells us that
the annotations directory contains information about where the pets are
rather than what they are. In this chapter, we will be doing
classification, not localization, which is to say that we care about
what the pets are, not where they are. Therefore, we will ignore the
annotations directory for now. So, let’s have a look inside
the images directory:


(path/"images").ls()


(#7394) [Path('images/great_pyrenees_173.jpg'),Path('images/wheaten_terrier_46.j
 > pg'),Path('images/Ragdoll_262.jpg'),Path('images/german_shorthaired_3.jpg'),P
 > ath('images/american_bulldog_196.jpg'),Path('images/boxer_188.jpg'),Path('ima
 > ges/staffordshire_bull_terrier_173.jpg'),Path('images/basset_hound_71.jpg'),P
 > ath('images/staffordshire_bull_terrier_37.jpg'),Path('images/yorkshire_terrie
 > r_18.jpg')...]


Most functions and methods in fastai that return a collection use a
class called L. This class can be thought of as an enhanced version of the
ordinary Python list type, with added conveniences for common
operations. For instance, when we display an object of this class in a
notebook, it appears in the format shown here. The first thing that is
shown is the number of items in the collection, prefixed with a #.
You’ll also see in the preceding output that the list is
suffixed with an ellipsis. This means that only the first few items are
displayed—which is a good thing, because we would not want more than
7,000 filenames on our screen!


By examining these filenames, we can see how they appear to be structured.
Each filename contains the pet breed, then an underscore (_), a
number, and finally the file extension. We need to create a piece of
code that extracts the breed from a single Path. Jupyter notebooks
make this easy, because we can gradually build up something that works,
and then use it for the entire dataset. We do have to be careful to not
make too many assumptions at this point. For instance, if you look
carefully, you may notice that some of the pet breeds contain multiple
words, so we cannot simply break at the first _ character that we
find. To allow us to test our code, let’s pick out one of
these filenames:


fname = (path/"images").ls()[0]


The most powerful and flexible way to extract information from strings
like this is to use a regular expression, also known as a regex. A
regular expression is a special string, written in the regular
expression language, which specifies a general rule for deciding whether
another string passes a test (i.e., “matches” the regular expression),
and also possibly for plucking a particular part or parts out of that
other string. In this case, we need a regular expression that extracts the pet breed
from the filename.


We do not have the space to give you a complete regular expression
tutorial here, but many excellent ones are
online, and we know that many of you will already be familiar with this
wonderful tool. If you’re not, that is totally fine—this
is a great 
opportunity for you to rectify that! We find that regular
expressions are one of the most useful tools in our programming toolkit,
and many of our students tell us that this is one of the things they are
most excited to learn about. So head over to Google and search for
“regular expressions tutorial” now, and then come back here after
you’ve had a good look around. The book’s website also
provides a list of our 
favorites.

Alexis Says

Not only are regular expressions dead handy, but they also have interesting roots. They are “regular” because they were originally examples of a “regular” language, the lowest rung within the Chomsky hierarchy. This is a grammar classification developed by linguist Noam Chomsky, who also wrote Syntactic Structures, the pioneering work searching for the formal grammar underlying human language. This is one of the charms of computing: the hammer you reach for every day may have, in fact, come from a 
spaceship.




When you are writing a regular expression, the best way to start is
to try it against one example at first. Let’s use the
findall method to try a regular expression against the filename of the
fname object:


re.findall(r'(.+)_\d+.jpg$', fname.name)


['great_pyrenees']


This regular expression plucks out all the characters leading up to the
last underscore character, as long as the subsequent characters are
numerical digits and then the JPEG file extension.


Now that we confirmed the regular expression works for the example,
let’s use it to label the whole dataset. fastai comes with
many classes to help with labeling. For labeling with regular
expressions, we can use the RegexLabeller class. In this example, we use
the data block API that we saw in Chapter 2 (in
fact, we nearly always use the data block API—it’s so much
more flexible than the simple factory methods we saw in
Chapter 1):


pets = DataBlock(blocks = (ImageBlock, CategoryBlock),
                 get_items=get_image_files,
                 splitter=RandomSplitter(seed=42),
                 get_y=using_attr(RegexLabeller(r'(.+)_\d+.jpg$'), 'name'),
                 item_tfms=Resize(460),
                 batch_tfms=aug_transforms(size=224, min_scale=0.75))
dls = pets.dataloaders(path/"images")


One important piece of this DataBlock call that we haven’t
seen before is in these two lines:


item_tfms=Resize(460),
batch_tfms=aug_transforms(size=224, min_scale=0.75)


These lines implement a fastai data augmentation strategy that we call
presizing. Presizing is a particular way to do image augmentation that is designed to minimize data destruction while maintaining good
performance.

















Presizing


We need our images to have the same dimensions, so that they can collate
into tensors to be passed to the GPU. We also want to minimize the
number of distinct augmentation computations we perform. The
performance requirement suggests that we should, where possible, compose
our augmentation transforms into fewer transforms (to reduce the number
of computations and the number of lossy operations) and
transform the images into uniform sizes (for more efficient processing on
the GPU).


The challenge is that, if performed after resizing down to the augmented
size, various common data augmentation transforms might introduce
spurious empty zones, degrade data, or both. For instance, rotating an
image by 45 degrees fills corner regions of the new bounds with
emptiness, which will not teach the model anything. Many rotation and
zooming operations will require interpolating to create pixels. These
interpolated pixels are derived from the original image data but are
still of lower quality.


To work around these challenges, presizing adopts two strategies that are
shown in Figure 5-1:


	
Resize images to relatively “large” dimensions—that is,
dimensions significantly larger than the target training dimensions.



	
Compose all of the common augmentation operations
(including a resize to the final target size) into one, and perform
the combined operation on the GPU only once at the end of processing,
rather than performing the operations individually and interpolating multiple
times.







The first step, the resize, creates images large enough that they have
spare margin to allow further augmentation transforms on their inner
regions without creating empty zones. This transformation works by
resizing to a square, using a large crop size. On the training set, the
crop area is chosen randomly, and the size of the crop is selected to
cover the entire width or height of the image, whichever is smaller. In the second step, the GPU is used for all data augmentation, and all
of the potentially destructive operations are done together, with a
single interpolation at the end.



[image: Presizing on the training set]
Figure 5-1. Presizing on the training set




This picture shows the two steps:


	
Crop full width or height: This is in item_tfms, so
it’s applied to each individual image before it is copied to
the GPU. It’s used to ensure all images are the same size.
On the training set, the crop area is chosen randomly. On the validation
set, the center square of the image is always chosen.



	
Random crop and augment: This is in batch_tfms, so it’s applied
to a batch all at once on the GPU, which means it’s fast. On
the validation set, only the resize to the final size needed for the
model is done here. On the training set, the random crop and any other
augmentations are done first.







To implement this process in fastai, you use Resize as an item
transform with a large size, and RandomResizedCrop as a batch
transform with a smaller size. 
RandomResizedCrop will be added for you
if you include the min_scale parameter in your aug_transforms
function, as was done in the DataBlock call in the previous section. Alternatively, you
can use pad or squish instead of crop (the default) for the
initial Resize.


Figure 5-2 shows the difference between an image that has
been zoomed, interpolated, rotated, and then interpolated again (which is the approach used by all other deep learning libraries),
shown here on the right, and an image that has been zoomed and rotated as one operation
and then interpolated once (the fastai approach), shown here on the left.



[image: ]
Figure 5-2. A comparison of fastai’s data augmentation strategy (left) and the traditional approach (right)




You can see that the image on the right is less well defined and
has reflection padding artifacts in the bottom-left corner; also, the grass at
the top left has disappeared entirely. We find that, in practice, using
presizing significantly improves the accuracy of models and often
results in speedups too.


The fastai library also provides simple ways to check how your data looks right before training your model, which is an extremely important step. We’ll look at those next.










Checking and Debugging a DataBlock


We can never just assume that our code is working perfectly. Writing a
DataBlock is like writing a blueprint. You will get an error
message if you have a syntax error somewhere in your code, but you have
no guarantee that your template is going to work on your data source
as you intend. So, before training a model, you should always check your data.


You can do this using the show_batch method:


dls.show_batch(nrows=1, ncols=3)



[image: ]





Take a look at each image, and check that each one seems to have the
correct label for that breed of pet. Often, data scientists work with
data with which they are not as familiar as domain experts may be: for
instance, I actually don’t know what a lot of these pet
breeds are. Since I am not an expert on pet breeds, I would use Google
images at this point to search for a few of these breeds, and make sure
the images look similar to what I see in this output.


If you made a mistake while building your DataBlock,
you likely won’t see it before this step. To debug this, we
encourage you to use the summary method. It will attempt to create a
batch from the source you give it, with a lot of details. Also, if it
fails, you will see exactly at which point the error happens, and the
library will try to give you some help. For instance, one common mistake
is to forget to use a Resize transform, so you end up with pictures of
different sizes and are not able to batch them. Here is what the summary
would look like in that case (note that the exact text may have changed
since the time of writing, but it will give you an idea):


pets1 = DataBlock(blocks = (ImageBlock, CategoryBlock),
                 get_items=get_image_files,
                 splitter=RandomSplitter(seed=42),
                 get_y=using_attr(RegexLabeller(r'(.+)_\d+.jpg$'), 'name'))
pets1.summary(path/"images")

Setting-up type transforms pipelines
Collecting items from /home/sgugger/.fastai/data/oxford-iiit-pet/images
Found 7390 items
2 datasets of sizes 5912,1478
Setting up Pipeline: PILBase.create
Setting up Pipeline: partial -> Categorize

Building one sample
  Pipeline: PILBase.create
    starting from
      /home/sgugger/.fastai/data/oxford-iiit-pet/images/american_bulldog_83.jpg
    applying PILBase.create gives
      PILImage mode=RGB size=375x500
  Pipeline: partial -> Categorize
    starting from
      /home/sgugger/.fastai/data/oxford-iiit-pet/images/american_bulldog_83.jpg
    applying partial gives
      american_bulldog
    applying Categorize gives
      TensorCategory(12)

Final sample: (PILImage mode=RGB size=375x500, TensorCategory(12))

Setting up after_item: Pipeline: ToTensor
Setting up before_batch: Pipeline:
Setting up after_batch: Pipeline: IntToFloatTensor

Building one batch
Applying item_tfms to the first sample:
  Pipeline: ToTensor
    starting from
      (PILImage mode=RGB size=375x500, TensorCategory(12))
    applying ToTensor gives
      (TensorImage of size 3x500x375, TensorCategory(12))

Adding the next 3 samples

No before_batch transform to apply

Collating items in a batch
Error! It's not possible to collate your items in a batch
Could not collate the 0-th members of your tuples because got the following
shapes:
torch.Size([3, 500, 375]),torch.Size([3, 375, 500]),torch.Size([3, 333, 500]),
torch.Size([3, 375, 500])


You can see exactly how we gathered the data and split it, how we went
from a filename to a sample (the tuple (image, category)), then what
item transforms were applied and how it failed to collate those samples
in a batch (because of the different shapes).


Once you think your data looks right, we generally recommend the next
step should be using it to train a simple model. We often see people
put off the training of an actual model for far too long. As a
result, they don’t find out what their
baseline results look like. Perhaps your problem doesn’t require lots of
fancy domain-specific engineering. Or perhaps the data
doesn’t seem to train the model at all. These are things that you want
to know as soon as possible.


For this initial test, we’ll use the same simple model that
we used in Chapter 1:


learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(2)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	1.491732
      	0.337355
      	0.108254
      	00:18
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.503154
      	0.293404
      	0.096076
      	00:23
    

    
      	1
      	0.314759
      	0.225316
      	0.066306
      	00:23
    

  



As we’ve briefly discussed before, the table shown when we
fit a model shows us the results after each epoch of training. Remember,
an epoch is one complete pass through all of the images in the data. The
columns shown are the average loss over the items of the training set,
the loss on the validation set, and any metrics that we requested—in
this case, the error rate.


Remember that loss is whatever function we’ve decided to
use to optimize the parameters of our model. But we haven’t
actually told fastai what loss function we want to use. So what is it
doing? fastai will generally try to select an appropriate loss function
based on the kind of data and model you are using. In this case, we
have image data and a categorical outcome, so fastai will default to
using cross-entropy loss.
























Cross-Entropy Loss


Cross-entropy loss is a loss function that is similar to the one we used in the previous chapter, but (as we’ll see)
has two benefits:



	
It works even when our dependent variable has more than two categories.



	
It results in faster and more reliable training.






To understand how cross-entropy loss works for dependent
variables with more than two categories, we first have to understand
what the actual data and activations that are seen by the loss function
look like.










Viewing Activations and Labels


Let’s take a look at the activations of our model. To get a batch of real data from our DataLoaders, we can use the
one_batch method:


x,y = dls.one_batch()


As you see, this returns the dependent and independent variables,
as a mini-batch. Let’s see what is contained in our
dependent variable:


y


TensorCategory([11,  0,  0,  5, 20,  4, 22, 31, 23, 10, 20,  2,  3, 27, 18, 23,
 > 33,  5, 24,  7,  6, 12,  9, 11, 35, 14, 10, 15,  3,  3, 21,  5, 19, 14, 12,
 > 15, 27,  1, 17, 10,  7,  6, 15, 23, 36,  1, 35,  6,
         4, 29, 24, 32,  2, 14, 26, 25, 21,  0, 29, 31, 18,  7,  7, 17],
 > device='cuda:5')


Our batch size is 64, so we have 64 rows in this tensor. Each row is a
single integer between 0 and 36, representing our 37 possible pet
breeds. We can view the predictions (the activations of the
final layer of our neural network) by using Learner.get_preds. This
function takes either a dataset index (0 for train and 1 for valid) or
an iterator of batches. Thus, we can pass it a simple list with our
batch to get our predictions. It returns predictions and targets by
default, but since we already have the targets, we can effectively
ignore them by assigning to the special variable _:


preds,_ = learn.get_preds(dl=[(x,y)])
preds[0]


tensor([7.9069e-04, 6.2350e-05, 3.7607e-05, 2.9260e-06, 1.3032e-05, 2.5760e-05,
 > 6.2341e-08, 3.6400e-07, 4.1311e-06, 1.3310e-04, 2.3090e-03, 9.9281e-01,
 > 4.6494e-05, 6.4266e-07, 1.9780e-06, 5.7005e-07,
        3.3448e-06, 3.5691e-03, 3.4385e-06, 1.1578e-05, 1.5916e-06, 8.5567e-08,
 > 5.0773e-08, 2.2978e-06, 1.4150e-06, 3.5459e-07, 1.4599e-04, 5.6198e-08,
 > 3.4108e-07, 2.0813e-06, 8.0568e-07, 4.3381e-07,
        1.0069e-05, 9.1020e-07, 4.8714e-06, 1.2734e-06, 2.4735e-06])


The actual predictions are 37 probabilities between 0 and 1, which
add up to 1 in total:


len(preds[0]),preds[0].sum()


(37, tensor(1.0000))


To transform the activations of our model into predictions like this, we
used something called the softmax activation function.

















Softmax


In our classification model, we use the softmax activation function in
the final layer to ensure that the activations are all between 0
and 1, and that they sum to 1.


Softmax is similar to the sigmoid function, which we saw earlier. As a reminder,
sigmoid looks like this:


plot_function(torch.sigmoid, min=-4,max=4)



[image: ]





We can apply this function to a single column of activations from a
neural network and get back a column of numbers between 0 and 1, so it’s a very useful activation function for our final
layer.


Now think about what happens if we want to have more categories in our
target (such as our 37 pet breeds). That means we’ll need
more activations than just a single column: we need an activation per
category. We can create, for instance, a neural net that predicts
3s and 7s that returns two activations, one for each class—this
will be a good first step toward creating the more general approach.
Let’s just use some random numbers with a standard deviation
of 2 (so we multiply randn by 2) for this example, assuming we have
six images and two possible categories (where the first column
represents 3s and the second is 7s):


acts = torch.randn((6,2))*2
acts


tensor([[ 0.6734,  0.2576],
        [ 0.4689,  0.4607],
        [-2.2457, -0.3727],
        [ 4.4164, -1.2760],
        [ 0.9233,  0.5347],
        [ 1.0698,  1.6187]])


We can’t just take the sigmoid of this directly, since we
don’t get rows that add to 1 (we want the probability
of being a 3 plus the probability of being a 7 to add up to 1):


acts.sigmoid()


tensor([[0.6623, 0.5641],
        [0.6151, 0.6132],
        [0.0957, 0.4079],
        [0.9881, 0.2182],
        [0.7157, 0.6306],
        [0.7446, 0.8346]])


In Chapter 4, our neural net created a single
activation per image, which we passed through the sigmoid function. That
single activation represented the model’s 
confidence that the input was a 3.
Binary problems are a special case of classification problem, because
the target can be treated as a single Boolean value, as we did in
mnist_loss. But binary problems can also be thought of in the context of the more
general group of classifiers with any number of categories: in this
case, we happen to have two categories. As we saw in the bear classifier,
our neural net will return one activation per category.


So in the binary case, what do those activations really indicate? A
single pair of activations simply indicates the relative confidence of the input
being a 3 versus being a 7. The overall values, whether they are
both high or both low, don’t matter—all that matters is
which is higher, and by how much.


We would expect that since this is just another way of representing the
same problem, we would be able to use sigmoid
directly on the two-activation version of our neural net. And indeed we
can! We can just take the difference between the neural net
activations, because that reflects how much more sure we are of the input being a 3 than a 7, and then take the sigmoid of that:


(acts[:,0]-acts[:,1]).sigmoid()


tensor([0.6025, 0.5021, 0.1332, 0.9966, 0.5959, 0.3661])


The second column (the probability of it being a 7) will then just be
that value subtracted from 1. Now, we need a way to do all this that also works
for more than two columns. It turns out that this function, called
softmax, is exactly that:


def softmax(x): return exp(x) / exp(x).sum(dim=1, keepdim=True)

Jargon: Exponential Function (exp)

Defined as e**x, where e is a special number approximately equal to 2.718. It is the inverse of the natural logarithm function. Note that exp is always positive and increases very rapidly!




Let’s check that softmax returns the same values as
sigmoid for the first column, and those values subtracted from 1 for the
second column:


sm_acts = torch.softmax(acts, dim=1)
sm_acts


tensor([[0.6025, 0.3975],
        [0.5021, 0.4979],
        [0.1332, 0.8668],
        [0.9966, 0.0034],
        [0.5959, 0.4041],
        [0.3661, 0.6339]])


softmax is the multi-category equivalent of sigmoid—we have to use it
anytime we have more than two categories and the probabilities of the
categories must add to 1, and we often use it even when
there are just two categories, just to make things a bit more
consistent. We could create other functions that have the properties
that all activations are between 0 and 1, and sum to 1; however,
no other function has the same relationship to the sigmoid function,
which we’ve seen is smooth and symmetric. Also,
we’ll see shortly that the softmax function works well
hand in hand with the loss function we will look at in the next section.


If we have three output activations, such as in our bear classifier,
calculating softmax for a single bear image would then look like
something like Figure 5-3.



[image: Bear softmax example]
Figure 5-3. Example of softmax on the bear classifier




What does this function do in practice? Taking the exponential ensures
all our numbers are positive, and then dividing by the sum ensures we
are going to have a bunch of numbers that add up to 1. The exponential
also has a nice property: if one of the numbers in our activations x
is slightly bigger than the others, the exponential will amplify this
(since it grows, well…exponentially), which means that in the softmax,
that number will be closer to 1.


Intuitively, the softmax function really wants to pick one class among
the others, so it’s ideal for training a classifier when we
know each picture has a definite label. (Note that it may be less ideal
during inference, as you might want your model to sometimes tell you it
doesn’t recognize any of the classes that it has seen during
training, and not pick a class because it has a slightly bigger
activation score. In this case, it might be better to train a model
using multiple binary output columns, each using a sigmoid activation.)


Softmax is the first part of the cross-entropy loss—the second part is
log likelihood.

















Log Likelihood


When we calculated the loss for our MNIST example in the preceding chapter, we
used this:


def mnist_loss(inputs, targets):
    inputs = inputs.sigmoid()
    return torch.where(targets==1, 1-inputs, inputs).mean()


Just as we moved from sigmoid to softmax, we need to extend the loss
function to work with more than just binary classification—it needs to be able to classify
any number of categories (in this case, we have 37
categories). Our activations, after softmax, are between 0 and 1,
and sum to 1 for each row in the batch of predictions. Our targets are
integers between 0 and 36.


In the binary case, we used torch.where to select between inputs and
1-inputs. When we treat a binary classification as a general
classification problem with two categories, it becomes even
easier, because (as we saw in the previous section) we now have two
columns containing the equivalent of inputs and 1-inputs. So, all we
need to do is select from the appropriate column. Let’s try
to implement this in PyTorch. For our synthetic 3s and 7s
example, let’s say these are our labels:


targ = tensor([0,1,0,1,1,0])


And these are the softmax activations:


sm_acts


tensor([[0.6025, 0.3975],
        [0.5021, 0.4979],
        [0.1332, 0.8668],
        [0.9966, 0.0034],
        [0.5959, 0.4041],
        [0.3661, 0.6339]])


Then for each item of targ, we can use that to select the appropriate column of
sm_acts using tensor indexing, like so:


idx = range(6)
sm_acts[idx, targ]


tensor([0.6025, 0.4979, 0.1332, 0.0034, 0.4041, 0.3661])


To see exactly what’s happening here, let’s put
all the columns together in a table. Here, the first two columns are our
activations, then we have the targets, the row index, and finally the
result shown in the preceding code:

            	3        	7        	targ        	idx        	loss    

                
                                	0.602469
                        	0.397531
                        	0
                        	0
                        	0.602469
            

            
                                	0.502065
                        	0.497935
                        	1
                        	1
                        	0.497935
            

            
                                	0.133188
                        	0.866811
                        	0
                        	2
                        	0.133188
            

            
                                	0.99664
                        	0.00336017
                        	1
                        	3
                        	0.00336017
            

            
                                	0.595949
                        	0.404051
                        	1
                        	4
                        	0.404051
            

            
                                	0.366118
                        	0.633882
                        	0
                        	5
                        	0.366118
            

    


Looking at this table, you can see that the final column can be
calculated by taking the targ and idx columns as indices into the
two-column matrix containing the 3 and 7 columns. That’s
what sm_acts[idx, targ] is doing.


The really interesting thing here is that this works just as
well with more than two columns. To see this, consider what would happen
if we added an activation column for every digit (0 through
9), and then targ contained a number from 0 to 9. As long as
the activation columns sum to 1 (as they will, if we use softmax), we’ll have a loss function that shows how well
we’re predicting each digit.


We’re picking the loss only from the column containing the
correct label. We don’t need to consider the other columns,
because by the definition of softmax, they add up to 1 minus the
activation corresponding to the correct label. Therefore, making the
activation for the correct label as high as possible must mean
we’re also decreasing the activations of the remaining
columns.


PyTorch provides a function that does exactly the same thing as
sm_acts[range(n), targ] (except it takes the negative, because when
applying the log afterward, we will have negative numbers), called
nll_loss (NLL stands for negative log likelihood):


-sm_acts[idx, targ]


tensor([-0.6025, -0.4979, -0.1332, -0.0034, -0.4041, -0.3661])


F.nll_loss(sm_acts, targ, reduction='none')


tensor([-0.6025, -0.4979, -0.1332, -0.0034, -0.4041, -0.3661])


Despite its name, this PyTorch function
does not take the log. We’ll see why in the next section, but first,
let’s see why taking the logarithm can be useful.

















Taking the log


The function we saw in the previous section works quite well as a loss function, but we can make it a bit
better. The problem is that we are using probabilities, and
probabilities cannot be smaller than 0 or greater than 1. That means our model will not care whether it predicts 0.99 or
0.999. Indeed, those numbers are very close together—but in another sense, 0.999 is 10 times more confident than 0.99. So, we want to
transform our numbers between 0 and 1 to instead be between
negative infinity and infinity. There is a mathematical function that does exactly this: the logarithm (available as torch.log). It is
not defined for numbers less than 0 and looks like this:


plot_function(torch.log, min=0,max=4)



[image: ]





Does “logarithm” ring a bell? The logarithm function has this
identity:

y = b**a
a = log(y,b)


In this case, we’re assuming that log(y,b) returns log y
base b. However, PyTorch doesn’t define log this
way: log in Python uses the special number e (2.718…) as the base.


Perhaps a logarithm is something that you have not thought about for the
last 20 years or so. But it’s a mathematical idea that is
going to be really critical for many things in deep learning, so now
would be a great time to refresh your memory. The key thing to know
about logarithms is this relationship:

log(a*b) = log(a)+log(b)


When we see it in that format, it looks a bit boring; but think
about what this really means. It means that logarithms increase linearly
when the underlying signal increases exponentially or multiplicatively.
This is used, for instance, in the Richter scale of earthquake severity
and the dB scale of noise levels. It’s also often used on
financial charts, where we want to show compound growth rates more
clearly. Computer scientists love using logarithms, because it means
that modification, which can create really, really large and really,
really small numbers, can be replaced by addition, which is much less
likely to result in scales that are difficult for our computers to
handle.

Sylvain Says

It’s not just computer scientists who love logs! Until computers came along, engineers and scientists used a special ruler called a slide rule that did multiplication by adding logarithms. Logarithms are widely used in physics, for multiplying very big or very small numbers, and many other fields.




Taking the mean of the positive or negative log of our probabilities
(depending on whether it’s the correct or incorrect class)
gives us the negative log likelihood loss. In PyTorch, nll_loss
assumes that you already took the log of the softmax, so it
doesn’t do the logarithm for you.

Confusing Name, Beware

The “nll” in nll_loss stands for “negative log likelihood,” but it doesn’t actually take the log at all! It assumes you have already taken the log. PyTorch has a function called log_softmax that combines log and softmax in a fast and accurate way. nll_loss is designed to be used after log_softmax.




When we first take the softmax, and then the log likelihood of that,
that combination is called cross-entropy loss. In PyTorch, this is
available as nn.CrossEntropyLoss (which, in practice, does
log_softmax and then nll_loss):


loss_func = nn.CrossEntropyLoss()


As you see, this is a class. Instantiating it gives you an object that
behaves like a 
function:


loss_func(acts, targ)


tensor(1.8045)


All PyTorch loss functions are provided in two forms, the class form
just shown as well as a plain functional form, available in the F
namespace:


F.cross_entropy(acts, targ)


tensor(1.8045)


Either one works fine and can be used in any situation.
We’ve noticed that most people tend to use the class
version, and that’s more often used in PyTorch’s official docs
and examples, so we’ll tend to use that too.


By default, PyTorch loss functions take the mean of the loss of all
items. You can use reduction='none' to disable
that:


nn.CrossEntropyLoss(reduction='none')(acts, targ)


tensor([0.5067, 0.6973, 2.0160, 5.6958, 0.9062, 1.0048])

Sylvain Says

An interesting feature about cross-entropy loss appears when we consider its gradient. The gradient of cross_entropy(a,b) is softmax(a)-b. Since softmax(a) is the final activation of the model, that means that the gradient is proportional to the difference between the prediction and the target. This is the same as mean squared error in regression (assuming there’s no final activation function such as that added by y_range), since the gradient of (a-b)**2 is 2*(a-b). Because the gradient is linear, we won’t see sudden jumps or exponential increases in gradients, which should lead to smoother training of models.




We have now seen all the pieces hidden behind our loss function. But while
this puts a number on how well (or badly) our model is doing, it does
nothing to help us know if it’s any good.
Let’s now see some ways to interpret our model’s predictions.
























Model Interpretation


It’s very hard to interpret loss functions directly, because
they are designed to be things computers can differentiate and
optimize, not things that people can understand. That’s why
we have metrics. These are not used in the optimization process, but
just to help us poor humans understand what’s going on.
In this case, our accuracy is looking pretty good already! So where are
we making mistakes?


We saw in Chapter 1 that we can use a confusion matrix to
see where our model is doing well and where it’s doing
badly:


interp = ClassificationInterpretation.from_learner(learn)
interp.plot_confusion_matrix(figsize=(12,12), dpi=60)



[image: ]





Oh, dear—in this case, a confusion matrix is very hard to read. We have
37 pet breeds, which means we have 37×37 entries in this
giant matrix! Instead, we can use the most_confused method, which just
shows us the cells of the confusion matrix with the most incorrect
predictions (here, with at least 5 or more):


interp.most_confused(min_val=5)


[('american_pit_bull_terrier', 'staffordshire_bull_terrier', 10),
 ('Ragdoll', 'Birman', 6)]


Since we are not pet breed experts, it is hard for us to know whether
these category errors reflect actual difficulties in recognizing breeds.
So again, we turn to Google. A little bit of Googling tells us that the
most common category errors shown here are breed differences
that even expert breeders sometimes disagree about. So this gives us
some comfort that we are on the right track.


We seem to have a good baseline. What can we do now to make it even
better?

















Improving Our Model


We will now look at a range of techniques to improve the training of our
model and make it better. While doing so, we will explain a little bit
more about transfer learning and how to fine-tune our pretrained model
as best as possible, without breaking the pretrained weights.


The first thing we need to set when training a model is the learning
rate. We saw in the previous chapter that it needs to be just right to
train as efficiently as possible, so how do we pick a good one? fastai
provides a tool for this.










The Learning Rate Finder


One of the most important things we can do when training a model is to
make sure that we have the right learning rate. If our learning rate is
too low, it can take many, many epochs to train our model. Not only does this waste time,
but it also means that we may have problems with overfitting, because
every time we do a complete pass through the data, we give our model a
chance to memorize it.


So let’s just make our learning rate really high, right?
Sure, let’s try that and see what happens:


learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1, base_lr=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	8.946717
      	47.954632
      	0.893775
      	00:20
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	7.231843
      	4.119265
      	0.954668
      	00:24
    

  



That doesn’t look good. Here’s what happened. The optimizer
stepped in the correct direction, but it stepped so far that it totally
overshot the minimum loss. Repeating that multiple times makes it get
further and further away, not closer and closer!


What do we do to find the perfect learning rate—not too high and not
too low? In 2015, researcher Leslie Smith came up with a brilliant
idea, called the learning rate finder. His idea was to start with a
very, very small learning rate, something so small that we would never
expect it to be too big to handle. We use that for one mini-batch, find
what the losses are afterward, and then increase the learning rate by
a certain percentage (e.g., doubling it each time). Then we do another mini-batch,
track the loss, and double the learning rate again. We keep doing
this until the loss gets worse, instead of better. This is the point
where we know we have gone too far. We then select a learning rate a bit
lower than this point. Our advice is to pick either of these:



	
One order of magnitude less than where the minimum loss was achieved
(i.e., the minimum divided by 10)



	
The last point where the loss was clearly decreasing






The learning rate finder computes those points on the curve to help you.
Both these rules usually give around the same value. In the first
chapter, we didn’t specify a learning rate, using the
default value from the fastai library (which is 1e-3):


learn = cnn_learner(dls, resnet34, metrics=error_rate)
lr_min,lr_steep = learn.lr_find()



[image: ]





print(f"Minimum/10: {lr_min:.2e}, steepest point: {lr_steep:.2e}")


Minimum/10: 8.32e-03, steepest point: 6.31e-03


We can see on this plot that in the range 1e-6 to 1e-3, nothing really
happens and the model doesn’t train. Then the loss starts to
decrease until it reaches a minimum, and then increases again. We
don’t want a learning rate greater than 1e-1, as it will cause training to diverge
(you can try for yourself), but 1e-1 is already
too high: at this stage, we’ve left the period where the loss was decreasing
steadily.


In this learning rate plot, it appears that a learning rate around 3e-3
would be appropriate, so let’s choose that:


learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(2, base_lr=3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	1.071820
      	0.427476
      	0.133965
      	00:19
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.738273
      	0.541828
      	0.150880
      	00:24
    

    
      	1
      	0.401544
      	0.266623
      	0.081867
      	00:24
    

  


Logarithmic Scale

The learning rate finder plot has a logarithmic scale, which is why the middle point between 1e-3 and 1e-2 is between 3e-3 and 4e-3. This is because we care mostly about the order of magnitude of the learning rate.




It’s interesting that the learning rate finder
was discovered only in 2015, while neural networks have been under development
since the 1950s. Throughout that time, finding a good learning rate has
been, perhaps, the most important and challenging issue for
practitioners. The solution does not require any advanced math, giant
computing resources, huge datasets, or anything else that would make it
inaccessible to any curious researcher. Furthermore, Smith was
not part of some exclusive Silicon Valley lab, but was working as a
naval researcher. All of this is to say: breakthrough work in deep
learning absolutely does not require access to vast resources, elite
teams, or advanced mathematical ideas. Lots of work remains to be
done that requires just a bit of common sense, creativity, and
tenacity.


Now that we have a good learning rate to train our model,
let’s look at how we can fine-tune the weights of a
pretrained model.

















Unfreezing and Transfer Learning


We discussed briefly in Chapter 1 how transfer learning
works. We saw that the basic idea is that a pretrained model, trained
potentially on millions of data points (such as ImageNet), is fine-tuned
for another task. But what does this really mean?


We now know that a convolutional neural network consists of many linear layers
with a nonlinear activation function between each pair, followed by one or more final
linear layers with an activation function such as softmax at the very
end. The final linear layer uses a matrix with enough columns such that
the output size is the same as the number of classes in our model
(assuming that we are doing classification).


This final linear layer is unlikely to be of any use for us when we are
fine-tuning in a transfer learning setting, because it is specifically
designed to classify the categories in the original pretraining dataset.
So when we do transfer learning, we remove it, throw it away, and replace
it with a new linear layer with the correct number of outputs for our
desired task (in this case, there would be 37 activations).


This newly added linear layer will have entirely random weights.
Therefore, our model prior to fine-tuning has entirely random outputs.
But that does not mean that it is an entirely random model! All of the
layers prior to the last one have been carefully trained to be good at
image classification tasks in general. As we saw in the images from the
Zeiler and Fergus paper in Chapter 1 (see Figures
1-10 through 1-13), the first few layers encode
general concepts, such as finding gradients and edges, and later layers
encode concepts that are still useful for us, such as finding
eyeballs and fur.


We want to train a model in such a way that we allow it to remember all
of these generally useful ideas from the pretrained model, use them to
solve our particular task (classify pet breeds), and adjust them only as
required for the specifics of our particular task.


Our challenge when fine-tuning is to replace the random weights in our
added linear layers with weights that correctly achieve our desired task
(classifying pet breeds) without breaking the carefully pretrained
weights and the other layers. A simple trick can
allow this to happen: tell the optimizer to update the weights in only
those randomly added final layers. Don’t change the weights
in the rest of the neural network at all. This is called freezing
those pretrained layers.


When we create a model from a pretrained network, fastai automatically
freezes all of the pretrained layers for us. When we call the
fine_tune method, fastai does two things:



	
Trains the randomly added layers for one epoch, with all other layers
frozen



	
Unfreezes all the layers, and trains them for the number of
epochs requested






Although this is a reasonable default approach, it is likely that for
your particular dataset, you may get better results by doing things
slightly differently. The fine_tune method has parameters
you can use to change its behavior, but it might be easiest for you to
just call the underlying methods directly if you want to get custom
behavior. Remember that you can see the source code for the method by
using the following syntax:

learn.fine_tune??


So let’s try doing this manually ourselves. First of all, we
will train the randomly added layers for three epochs, using
fit_one_cycle. As mentioned in Chapter 1,
fit_one_cycle is the suggested way to train models without using
fine_tune. We’ll see why later in the book; in short, what
fit_one_cycle does is to start training at a low learning rate,
gradually increase it for the first section of training, and then
gradually decrease it again for the last section of training:


learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fit_one_cycle(3, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	1.188042
      	0.355024
      	0.102842
      	00:20
    

    
      	1
      	0.534234
      	0.302453
      	0.094723
      	00:20
    

    
      	2
      	0.325031
      	0.222268
      	0.074425
      	00:20
    

  



Then we’ll unfreeze the model:


learn.unfreeze()


and run lr_find again, because having more layers to train, and
weights that have already been trained for three epochs, means our
previously found learning rate isn’t appropriate anymore:


learn.lr_find()


(1.0964782268274575e-05, 1.5848931980144698e-06)



[image: ]





Note that the graph is a little different from when we had random
weights: we don’t have that sharp descent that indicates the
model is training. That’s because our model has been trained
already. Here we have a somewhat flat area before a sharp increase, and
we should take a point well before that sharp increase—for instance,
1e-5. The point with the maximum gradient isn’t what we look
for here and should be ignored.


Let’s train at a suitable learning rate:


learn.fit_one_cycle(6, lr_max=1e-5)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.263579
      	0.217419
      	0.069012
      	00:24
    

    
      	1
      	0.253060
      	0.210346
      	0.062923
      	00:24
    

    
      	2
      	0.224340
      	0.207357
      	0.060217
      	00:24
    

    
      	3
      	0.200195
      	0.207244
      	0.061570
      	00:24
    

    
      	4
      	0.194269
      	0.200149
      	0.059540
      	00:25
    

    
      	5
      	0.173164
      	0.202301
      	0.059540
      	00:25
    

  



This has improved our model a bit, but there’s more we can
do. The deepest layers of our pretrained model might not need as high a
learning rate as the last ones, so we should probably use different
learning rates for those—this is known as using discriminative learning
rates.

















Discriminative Learning Rates


Even after we unfreeze, we still care a lot about the quality of those
pretrained weights. We would not expect that the best learning rate for
those pretrained parameters would be as high as for the randomly added
parameters, even after we have tuned those randomly added parameters
for a few epochs. Remember, the pretrained weights have been trained for
hundreds of epochs, on millions of images.


In addition, do you remember the images we saw in
Chapter 1, showing what each layer learns? The first
layer learns very simple foundations, like edge and gradient detectors;
these are likely to be just as useful for nearly any task. The later
layers learn much more complex concepts, like “eye” and “sunset,”
which might not be useful in your task at all (maybe you’re
classifying car models, for instance). So it makes sense to let the
later layers fine-tune more quickly than earlier layers.


Therefore, fastai’s default approach is to use discriminative
learning rates. This technique was originally developed in the ULMFiT approach to
NLP transfer learning that we will introduce in Chapter 10.
Like many good ideas in deep learning, it is extremely simple: use a
lower learning rate for the early layers of the neural network, and a
higher learning rate for the later layers (and especially the randomly
added layers). The idea is based on insights developed by Jason Yosinski et al., who showed in 2014 that with transfer learning, different layers of a neural network should train at different speeds, as seen in Figure 5-4.



[image: Impact of different layers and training methods on transfer learning (Yosinski)]
Figure 5-4. Impact of different layers and training methods on transfer learning (courtesy of Jason Yosinski et al.)




fastai lets you pass a Python slice object anywhere that a learning
rate is expected. The first value passed will be the learning rate in the
earliest layer of the neural network, and the second value will be the
learning rate in the final layer. The layers in between will have
learning rates that are multiplicatively equidistant throughout that
range. Let’s use this approach to replicate the previous
training, but this time we’ll set only the lowest layer of
our net to a learning rate of 1e-6; the other layers will scale up to
1e-4. Let’s train for a while and see what happens:


learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fit_one_cycle(3, 3e-3)
learn.unfreeze()
learn.fit_one_cycle(12, lr_max=slice(1e-6,1e-4))


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	1.145300
      	0.345568
      	0.119756
      	00:20
    

    
      	1
      	0.533986
      	0.251944
      	0.077131
      	00:20
    

    
      	2
      	0.317696
      	0.208371
      	0.069012
      	00:20
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.257977
      	0.205400
      	0.067659
      	00:25
    

    
      	1
      	0.246763
      	0.205107
      	0.066306
      	00:25
    

    
      	2
      	0.240595
      	0.193848
      	0.062246
      	00:25
    

    
      	3
      	0.209988
      	0.198061
      	0.062923
      	00:25
    

    
      	4
      	0.194756
      	0.193130
      	0.064276
      	00:25
    

    
      	5
      	0.169985
      	0.187885
      	0.056157
      	00:25
    

    
      	6
      	0.153205
      	0.186145
      	0.058863
      	00:25
    

    
      	7
      	0.141480
      	0.185316
      	0.053451
      	00:25
    

    
      	8
      	0.128564
      	0.180999
      	0.051421
      	00:25
    

    
      	9
      	0.126941
      	0.186288
      	0.054127
      	00:25
    

    
      	10
      	0.130064
      	0.181764
      	0.054127
      	00:25
    

    
      	11
      	0.124281
      	0.181855
      	0.054127
      	00:25
    

  



Now the fine-tuning is working great!


fastai can show us a graph of the training and validation loss:


learn.recorder.plot_loss()



[image: ]





As you can see, the training loss keeps getting better and better. But
notice that eventually the validation loss improvement slows and
sometimes even gets worse! This is the point at which the model is
starting to overfit. In particular, the model is becoming overconfident
of its predictions. But this does not mean that it is getting less
accurate, necessarily. Take a look at the table of training results per
epoch, and you will often see that the accuracy continues improving,
even as the validation loss gets worse. In the end, what matters is your
accuracy, or more generally your chosen metrics, not the loss. The loss
is just the function we’ve given the computer to help us to
optimize.


Another decision you have to make when training the model is how long to train for. We’ll consider that next.

















Selecting the Number of Epochs


Often you will find that you are limited by time, rather than
generalization and accuracy, when choosing how many epochs to train for.
So your first approach to training should be to simply pick a number of
epochs that will train in the amount of time that you are happy to wait
for. Then look at the training and validation loss plots, as shown
previously, and in particular your metrics. If you see that they are
still getting better even in your final epochs, you know that you
have not trained for too long.


On the other hand, you may well see that the metrics you have chosen are
really getting worse at the end of training. Remember, it’s
not just that we’re looking for the validation loss to get
worse, but the actual metrics. Your validation loss will first get worse
during training because the model gets overconfident, and only later
will get worse because it is incorrectly memorizing the data. We
care in practice about only the latter issue. Remember, our loss function is
something that we use to allow our optimizer to have
something it can differentiate and optimize; it’s not the thing we care about in practice.


Before the days of 1cycle training, it was common to save the model
at the end of each epoch, and then select whichever model had the best
accuracy out of all of the models saved in each epoch. This is known as
early stopping. However, this is unlikely
to give you the best answer, because those epochs in the middle occur
before the learning rate has had a chance to reach the small values,
where it can really find the best result. Therefore, if you find that
you have overfit, what you should do is retrain your model
from scratch, and this time select a total number of epochs based on
where your previous best results were found.


If you have the time to train for more epochs, you may want
to instead use that time to train more parameters—that is, use a deeper
architecture.

















Deeper Architectures


In general, a model with more parameters can model your data more
accurately. (There are lots and lots of caveats to this generalization,
and it depends on the specifics of the architectures you are using, but
it is a reasonable rule of thumb for now.) For most of the architectures
that we will be seeing in this book, you can create larger versions of
them by simply adding more layers. However, since we want to use
pretrained models, we need to make sure that we choose a number of
layers that have already been pretrained for us.


This is why, in practice, architectures tend to come in a small number
of variants. For instance, the ResNet architecture that we are using in
this chapter comes in variants with 18, 34, 50, 101, and 152 layers,
pretrained on ImageNet. A larger (more layers and parameters; sometimes
described as the capacity of a model) version of a ResNet will
always be able to give us a better training loss, but it can suffer more
from overfitting, because it has more parameters to overfit with.


In general, a bigger model has the ability to better capture the real
underlying relationships in your data, as well as to capture and memorize
the specific details of your individual images.


However, using a deeper model is going to require more GPU RAM, so you
may need to lower the size of your batches to avoid an out-of-memory
error. This happens when you try to fit too much inside your GPU and
looks like this:

Cuda runtime error: out of memory


You may have to restart your notebook when this happens. The way to
solve it is to use a smaller batch size, which means passing
smaller groups of images at any given time through your model. You can
pass the batch size you want to the call by creating your DataLoaders with
bs=.


The other downside of deeper architectures is that they take quite a bit
longer to train. One technique that can speed things up a lot is mixed-precision training. This refers to using less-precise numbers (half-precision floating point, also called fp16) where possible during
training. As we are writing these words in early 2020, nearly all current
NVIDIA GPUs support a special feature called tensor cores that can
dramatically speed up neural network training, by 2–3×. They also require
a lot less GPU memory. To enable this feature in fastai, just add
to_fp16() after your Learner creation (you also need to import the
module).


You can’t really know the best
architecture for your particular problem ahead of time—you need to try training
some. So let’s try a ResNet-50 now with mixed precision:


from fastai2.callback.fp16 import *
learn = cnn_learner(dls, resnet50, metrics=error_rate).to_fp16()
learn.fine_tune(6, freeze_epochs=3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	1.427505
      	0.310554
      	0.098782
      	00:21
    

    
      	1
      	0.606785
      	0.302325
      	0.094723
      	00:22
    

    
      	2
      	0.409267
      	0.294803
      	0.091340
      	00:21
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.261121
      	0.274507
      	0.083897
      	00:26
    

    
      	1
      	0.296653
      	0.318649
      	0.084574
      	00:26
    

    
      	2
      	0.242356
      	0.253677
      	0.069012
      	00:26
    

    
      	3
      	0.150684
      	0.251438
      	0.065629
      	00:26
    

    
      	4
      	0.094997
      	0.239772
      	0.064276
      	00:26
    

    
      	5
      	0.061144
      	0.228082
      	0.054804
      	00:26
    

  



You’ll see here we’ve gone back to using
fine_tune, since it’s so handy! We can pass
freeze_epochs to tell fastai how many epochs to train for while
frozen. It will automatically change learning rates appropriately for
most datasets.


In this case, we’re not seeing a clear win from the deeper
model. This is useful to remember—bigger models aren’t
necessarily better models for your particular case! Make sure you try
small models before you start scaling up.
























Conclusion


In this chapter, you learned some important practical tips, both for
getting your image data ready for modeling (presizing, data block
summary) and for fitting the model (learning rate finder, unfreezing,
discriminative learning rates, setting the number of epochs, and using
deeper architectures). Using these tools will help you to build more
accurate image models, more quickly.


We also discussed cross-entropy loss. This part of the book is worth
spending plenty of time on. You aren’t likely to need to implement cross-entropy loss from scratch yourself in practice,
but it’s important you understand the inputs to and
output from that function, because it (or a variant of it, as
we’ll see in the next chapter) is used in nearly every
classification model. So when you want to debug a model, or put a model
in production, or improve the accuracy of a model, you’re
going to need to be able to look at its activations and loss, and
understand what’s going on, and why. You can’t
do that properly if you don’t understand your loss function.


If cross-entropy loss hasn’t “clicked” for you just yet,
don’t worry—you’ll get there! First, go back to
the preceding chapter and make sure you really understand mnist_loss. Then
work gradually through the cells of the notebook for this chapter, where
we step through each piece of cross-entropy loss. Make sure you
understand what each calculation is doing and why. Try creating some
small tensors yourself and pass them into the functions, to see what
they return.


Remember: the choices made in the implementation of cross-entropy loss are not the only
possible choices that could have been made. Just as when we looked at
regression we could choose between mean squared error and mean absolute
difference (L1), we could change the details here too. If you have other ideas for possible functions that you think might
work, feel free to give them a try in this chapter’s
notebook! (Fair warning, though: you’ll probably find that
the model will be slower to train and less accurate. That’s
because the gradient of cross-entropy loss is proportional to the
difference between the activation and the target, so SGD always gets a
nicely scaled step for the weights.)

















Questionnaire


	
Why do we first resize to a large size on the CPU, and then to a smaller size on the GPU?



	
If you are not familiar with regular expressions, find a regular expression tutorial and some problem sets, and complete them. Have a look on the book’s website for suggestions.



	
What are the two ways in which data is most commonly provided for most deep learning datasets?



	
Look up the documentation for L and try using a few of the new methods that it adds.



	
Look up the documentation for the Python pathlib module and try using a few methods of the Path class.



	
Give two examples of ways that image transformations can degrade the quality of the data.



	
What method does fastai provide to view the data in a DataLoaders?



	
What method does fastai provide to help you debug a DataBlock?



	
Should you hold off on training a model until you have thoroughly cleaned your data?



	
What are the two pieces that are combined into cross-entropy loss in PyTorch?



	
What are the two properties of activations that softmax ensures? Why is this important?



	
When might you want your activations to not have these two properties?



	
Calculate the exp and softmax columns of Figure 5-3 yourself (i.e., in a spreadsheet, with a calculator, or in a notebook).



	
Why can’t we use torch.where to create a loss function for datasets where our label can have more than two categories?



	
What is the value of log(–2)? Why?



	
What are two good rules of thumb for picking a learning rate from the learning rate finder?



	
What two steps does the fine_tune method do?



	
In Jupyter Notebook, how do you get the source code for a method or function?



	
What are discriminative learning rates?



	
How is a Python slice object interpreted when passed as a learning rate to 
fastai?



	
Why is early stopping a poor choice when using 1cycle training?



	
What is the difference between resnet50 and resnet101?



	
What does to_fp16 do?















Further Research


	
Find the paper by Leslie Smith that introduced the learning rate finder, and read it.



	
See if you can improve the accuracy of the classifier in this chapter. What’s the best accuracy you can achieve? Look on the forums and the book’s website to see what other students have achieved with this dataset and how they did it.




























  
Chapter 6. Other Computer Vision Problems



In the previous chapter, you learned some important practical techniques
for training models in practice. Considerations like selecting learning rates
and the number of epochs are very important to getting good results.


In this chapter, we are going to look at two other types of computer vision
problems: multi-label classification and regression. The first one occurs
when you want to predict more than one label per image (or sometimes
none at all), and the second occurs when your labels are one or several numbers—a quantity instead of a category.


In the process, we will study more deeply the output activations, targets,
and loss functions in deep learning models.








Multi-Label Classification


Multi-label classification refers to the problem of identifying the
categories of objects in images that may not contain exactly one
type of object. There may be more than one kind of object,
or there may be no objects at all in the classes you are looking
for.


For instance, this would have been a great approach for our bear
classifier. One problem with the bear classifier that we rolled out in
Chapter 2 was that if a user uploaded something that
wasn’t any kind of bear, the model would still say it was
either a grizzly, black, or teddy bear—it had no ability to predict
“not a bear at all.” In fact, after we have completed this chapter, it
would be a great exercise for you to go back to your image classifier
application and try to retrain it using the multi-label technique, and then test it by passing in an image that is not of any of your
recognized classes.


In practice, we have not seen many examples of people training
multi-label classifiers for this purpose—but we often see both
users and developers complaining about this problem. It appears that
this simple solution is not at all widely understood or appreciated!
Because in practice it is probably more common to have some images with
zero matches or more than one match, we should probably expect in
practice that multi-label classifiers are more widely applicable than
single-label classifiers.


First let’s see what a multi-label dataset looks like;
then we’ll explain how to get it ready for our model. You’ll
see that the architecture of the model does not change from the preceding
chapter; only the loss function does. Let’s start with the
data.










The Data


For our example, we are going to use the PASCAL dataset, which can have
more than one kind of classified object per image.


We begin by downloading and extracting the dataset as per usual:


from fastai.vision.all import *
path = untar_data(URLs.PASCAL_2007)


This dataset is different from the ones we have seen before, in that it
is not structured by filename or folder but instead comes with a CSV file telling us what labels to use for each
image. We can inspect the CSV file by reading it into a Pandas
DataFrame:


df = pd.read_csv(path/'train.csv')
df.head()


  
    
      	
      	fname
      	labels
      	is_valid
    

  
  
    
      	0
      	000005.jpg
      	chair
      	True
    

    
      	1
      	000007.jpg
      	car
      	True
    

    
      	2
      	000009.jpg
      	horse person
      	True
    

    
      	3
      	000012.jpg
      	car
      	False
    

    
      	4
      	000016.jpg
      	bicycle
      	True
    

  



As you can see, the list of categories in each image is shown as a space-delimited string.


Pandas and DataFrames

No, it’s not actually a panda! Pandas is a Python library that is used
to manipulate and analyze tabular and time series data. The main class is
DataFrame, which represents a table of rows and columns.


You can get a DataFrame from a CSV file, a database table, Python dictionaries, and
many other sources. In Jupyter, a DataFrame is output as a formatted
table, as shown here.


You can access rows and columns of a DataFrame with the iloc property,
as if it were a matrix:


df.iloc[:,0]


0       000005.jpg
1       000007.jpg
2       000009.jpg
3       000012.jpg
4       000016.jpg
           ...
5006    009954.jpg
5007    009955.jpg
5008    009958.jpg
5009    009959.jpg
5010    009961.jpg
Name: fname, Length: 5011, dtype: object


df.iloc[0,:]
# Trailing :s are always optional (in numpy, pytorch, pandas, etc.),
#   so this is equivalent:
df.iloc[0]


fname       000005.jpg
labels           chair
is_valid          True
Name: 0, dtype: object


You can also grab a column by name by indexing into a DataFrame
directly:


df['fname']


0       000005.jpg
1       000007.jpg
2       000009.jpg
3       000012.jpg
4       000016.jpg
           ...
5006    009954.jpg
5007    009955.jpg
5008    009958.jpg
5009    009959.jpg
5010    009961.jpg
Name: fname, Length: 5011, dtype: object


You can create new columns and do calculations using columns:


df1 = pd.DataFrame()
df1['a'] = [1,2,3,4]
df1


  
    
      	
      	a
    

  
  
    
      	0
      	1
    

    
      	1
      	2
    

    
      	2
      	3
    

    
      	3
      	4
    

  



df1['b'] = [10, 20, 30, 40]
df1['a'] + df1['b']


0    11
1    22
2    33
3    44
dtype: int64


Pandas is a fast and flexible library, and an important part of every
data scientist’s Python toolbox. Unfortunately, its API can be rather
confusing and surprising, so it takes a while to get familiar with it.
If you haven’t used Pandas before, we suggest going through a
tutorial; we are particularly fond of Python for Data Analysis (O’Reilly) by Wes McKinney, the creator of Pandas. It also covers
other important libraries like matplotlib and NumPy. We will try to
briefly describe Pandas functionality we use as we come across it, but
will not go into the level of detail of McKinney’s book.




Now that we have seen what the data looks like, let’s make
it ready for model training.

















Constructing a DataBlock


How do we convert from a DataFrame object to a DataLoaders object?
We generally suggest using the data block API for creating a
DataLoaders object, where possible, since it provides a good mix of
flexibility and simplicity. Here we will show you the steps that we take
to use the data block API to construct a DataLoaders object in
practice, using this dataset as an example.


As we have seen, PyTorch and fastai have two main classes for
representing and accessing a training set or validation set:


	Dataset

	
A collection that returns a tuple of your independent and dependent variable for a single item



	DataLoader

	
An iterator that provides a stream of mini-batches, where each mini-batch is a couple of a batch of independent variables and a batch of dependent variables






On top of these, fastai provides two classes for bringing your training
and validation sets together:


	Datasets

	
An iterator that contains a training Dataset and a validation Dataset



	DataLoaders

	
An object that contains a training DataLoader and a validation DataLoader






Since a DataLoader builds on top of a Dataset and adds additional
functionality to it (collating multiple items into a mini-batch), it’s
often easiest to start by creating and testing Datasets, and then look
at DataLoaders after that’s working.


When we create a DataBlock, we build up gradually, step by step, and
use the notebook to check our data along the way. This is a great way to
make sure that you maintain momentum as you are coding, and that you
keep an eye out for any problems. It’s easy to debug, because you know
that if a problem arises, it is in the line of code you just
typed!


Let’s start with the simplest case, which is a data block created with
no parameters:


dblock = DataBlock()


We can create a Datasets object from this. The only thing needed is a
source—in this case, our DataFrame:


dsets = dblock.datasets(df)


This contains a train and a valid dataset, which we can index
into:


dsets.train[0]


(fname       008663.jpg
 labels      car person
 is_valid    False
 Name: 4346, dtype: object,
 fname       008663.jpg
 labels      car person
 is_valid    False
 Name: 4346, dtype: object)


As you can see, this simply returns a row of the DataFrame, twice. This
is because by default, the data block assumes we have two things: input
and target. We are going to need to grab the appropriate fields from the
DataFrame, which we can do by passing get_x and get_y functions:


dblock = DataBlock(get_x = lambda r: r['fname'], get_y = lambda r: r['labels'])
dsets = dblock.datasets(df)
dsets.train[0]


('005620.jpg', 'aeroplane')


As you can see, rather than defining a function in the usual way, we are
using Python’s lambda keyword. This is just a shortcut for defining
and then referring to a function. The following more verbose approach is identical:


def get_x(r): return r['fname']
def get_y(r): return r['labels']
dblock = DataBlock(get_x = get_x, get_y = get_y)
dsets = dblock.datasets(df)
dsets.train[0]


('002549.jpg', 'tvmonitor')


Lambda functions are great for quickly iterating, but they are not
compatible with serialization, so we advise you to use the more verbose
approach if you want to export your Learner after training (lambdas are
fine if you are just experimenting).


We can see that the independent variable will need to be converted into
a complete path so that we can open it as an image, and the dependent variable will
need to be split on the space character (which is the default for
Python’s split function) so that it becomes a list:


def get_x(r): return path/'train'/r['fname']
def get_y(r): return r['labels'].split(' ')
dblock = DataBlock(get_x = get_x, get_y = get_y)
dsets = dblock.datasets(df)
dsets.train[0]


(Path('/home/sgugger/.fastai/data/pascal_2007/train/008663.jpg'),
 ['car', 'person'])


To actually open the image and do the conversion to tensors, we will
need to use a set of transforms; block types will provide us with those.
We can use the same block types that we have used previously, with one
exception: the ImageBlock will work fine again, because we have a path
that points to a valid image, but the 
CategoryBlock is not going to
work. The problem is that block returns a single integer, but we need
to be able to have multiple labels for each item. To solve this, we use
a MultiCategoryBlock. This type of block expects to receive a list of
strings, as we have in this case, so let’s test it out:


dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),
                   get_x = get_x, get_y = get_y)
dsets = dblock.datasets(df)
dsets.train[0]


(PILImage mode=RGB size=500x375,
 TensorMultiCategory([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.,
 > 0., 0., 0., 0., 0., 0.]))


As you can see, our list of categories is not encoded in the same way
that it was for the regular CategoryBlock. In that case, we had a single
integer representing which category was present, based on its location
in our vocab. In this case, however, we instead have a list of 0s,
with a 1 in any position where that category is present. For example,
if there is a 1 in the second and fourth positions, that means vocab items two and four are present in this image. This is known as one-hot encoding. The reason we can’t easily just use a list of
category indices is that each list would be a different length, and
PyTorch requires tensors, where everything has to be the same length.

Jargon: One-Hot Encoding

Using a vector of 0s, with a 1 in each location that is represented in the data, to encode a list of integers.




Let’s check what the categories represent for this example (we are using
the convenient torch.where function, which tells us all of the indices
where our condition is true or false):


idxs = torch.where(dsets.train[0][1]==1.)[0]
dsets.train.vocab[idxs]


(#1) ['dog']


With NumPy arrays, PyTorch tensors, and fastai’s L class, we can index
directly using a list or vector, which makes a lot of code (such as this
example) much clearer and more concise.


We have ignored the column is_valid up until now, which means that
DataBlock has been using a random split by default. To explicitly
choose the elements of our validation set, we need to write a function
and pass it to splitter (or use one of fastai’s predefined
functions or classes). It will take the items (here our whole DataFrame)
and must return two (or more) lists of integers:


def splitter(df):
    train = df.index[~df['is_valid']].tolist()
    valid = df.index[df['is_valid']].tolist()
    return train,valid

dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),
                   splitter=splitter,
                   get_x=get_x,
                   get_y=get_y)

dsets = dblock.datasets(df)
dsets.train[0]


(PILImage mode=RGB size=500x333,
 TensorMultiCategory([0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0.,
 > 0., 0., 0., 0., 0., 0.]))


As we have discussed, a DataLoader collates the items from a Dataset
into a mini-batch. This is a tuple of tensors, where each tensor simply
stacks the items from that location in the Dataset item.


Now that we have confirmed that the individual items look OK, there’s
one more step, we need to ensure we can create our DataLoaders, which
is to ensure that every item is of the same size. To do this, we can use
RandomResizedCrop:


dblock = DataBlock(blocks=(ImageBlock, MultiCategoryBlock),
                   splitter=splitter,
                   get_x=get_x,
                   get_y=get_y,
                   item_tfms = RandomResizedCrop(128, min_scale=0.35))
dls = dblock.dataloaders(df)


And now we can display a sample of our data:


dls.show_batch(nrows=1, ncols=3)



[image: ]





Remember that if anything goes wrong when you create your
DataLoaders from your DataBlock, or if you want to view exactly what
happens with your DataBlock, you can use the summary method we
presented in the previous chapter.


Our data is now ready for training a model. As we will see, nothing is
going to change when we create our Learner, but behind the scenes the
fastai library will pick a new loss function for us: binary cross
entropy.

















Binary Cross Entropy


Now we’ll create our Learner. We saw in
Chapter 4 that a Learner object contains four
main things: the model, a DataLoaders object, an Optimizer, and the
loss function to use. We already have our DataLoaders, we can
leverage fastai’s resnet models (which we’ll
learn how to create from scratch later), and we know how to create an
SGD optimizer. So let’s focus on ensuring we have a
suitable loss function. To do this, let’s use cnn_learner
to create a Learner, so we can look at its activations:


learn = cnn_learner(dls, resnet18)


We also saw that the model in a Learner is generally an object of a
class inheriting from nn.Module, and that we can call it using
parentheses and it will return the activations of a model. You should
pass it your independent variable, as a mini-batch. We can try it out by
grabbing a mini-batch from our DataLoader and then passing it to the
model:


x,y = dls.train.one_batch()
activs = learn.model(x)
activs.shape


torch.Size([64, 20])


Think about why activs has this shape—we have a batch size of
64, and we need to calculate the probability of each of 20 categories.
Here’s what one of those activations looks like:


activs[0]


tensor([ 2.0258, -1.3543,  1.4640,  1.7754, -1.2820, -5.8053,  3.6130,  0.7193,
 > -4.3683, -2.5001, -2.8373, -1.8037,  2.0122,  0.6189,  1.9729,  0.8999,
 > -2.6769, -0.3829,  1.2212,  1.6073],
       device='cuda:0', grad_fn=<SelectBackward>)

Getting Model Activations

Knowing how to manually get a mini-batch and pass it into a model, and look at the activations and loss, is really important for debugging your model. It is also very helpful for learning, so that you can see exactly what is going on.




They aren’t yet scaled to between 0 and 1, but we learned how to do that in
Chapter 4, using the sigmoid function. We also saw how to calculate a
loss based on this—this is our loss function from
Chapter 4, with the addition of log as discussed
in the preceding chapter:


def binary_cross_entropy(inputs, targets):
    inputs = inputs.sigmoid()
    return -torch.where(targets==1, inputs, 1-inputs).log().mean()


Note that because we have a one-hot-encoded dependent variable, we
can’t directly use nll_loss or softmax (and therefore we
can’t use cross_entropy):



	
softmax, as we saw, requires that all predictions sum to 1, and
tends to push one activation to be much larger than the others (because of
the use of exp); however, we may well have multiple objects that
we’re confident appear in an image, so restricting the
maximum sum of activations to 1 is not a good idea. By the same
reasoning, we may want the sum to be less than 1, if we
don’t think any of the categories appear in an image.



	
nll_loss, as we saw, returns the value of just one activation: the
single activation corresponding with the single label for an item. This
doesn’t make sense when we have multiple labels.






On the other hand, the binary_cross_entropy function, which is just
mnist_loss along with log, provides just what we need, thanks to the
magic of PyTorch’s elementwise operations. Each activation
will be compared to each target for each column, so we don’t
have to do anything to make this function work for multiple columns.

Jeremy Says

One of the things I really like about working with libraries like PyTorch, with broadcasting and elementwise operations, is that quite frequently I find I can write code that works equally well for a single item or a batch of items, without changes. binary_cross_entropy is a great example of this. By using these operations, we don’t have to write loops ourselves, and can rely on PyTorch to do the looping we need as appropriate for the rank of the tensors we’re working with.




PyTorch already provides this function for us. In fact, it provides a
number of versions, with rather confusing names!


F.binary_cross_entropy and its module equivalent
nn.BCELoss calculate cross entropy on a one-hot-encoded target, but
do not include the initial sigmoid. Normally, for one-hot-encoded
targets you’ll want F.binary_cross_entropy_with_logits (or
nn.BCEWithLogitsLoss), which do both sigmoid and binary cross entropy
in a single function, as in the preceding example.


The equivalent for single-label datasets (like MNIST or the Pet dataset), where the
target is encoded as a single integer, is F.nll_loss or nn.NLLLoss
for the version without the initial softmax, and F.cross_entropy or
nn.CrossEntropyLoss for the version with the initial softmax.


Since we have a one-hot-encoded target, we will use BCEWithLogitsLoss:


loss_func = nn.BCEWithLogitsLoss()
loss = loss_func(activs, y)
loss


tensor(1.0082, device='cuda:5', grad_fn=<BinaryCrossEntropyWithLogitsBackward>)


We don’t need to tell fastai to use this loss
function (although we can if we want) since it will be automatically
chosen for us. fastai knows that the DataLoaders has multiple
category labels, so it will use nn.BCEWithLogitsLoss by default.


One change compared to the preceding chapter is the metric we use: because this is a multilabel problem, we can’t use the accuracy
function. Why is that? Well, accuracy was comparing our outputs to our
targets like so:


def accuracy(inp, targ, axis=-1):
    "Compute accuracy with `targ` when `pred` is bs * n_classes"
    pred = inp.argmax(dim=axis)
    return (pred == targ).float().mean()


The class predicted was the one with the highest activation (this is
what argmax does). Here it doesn’t work because we could
have more than one prediction on a single image. After applying the
sigmoid to our activations (to make them between 0 and 1), we need to
decide which ones are 0s and which ones are 1s by picking a threshold.
Each value above the threshold will be considered as a 1, and each value
lower than the threshold will be considered a 0:


def accuracy_multi(inp, targ, thresh=0.5, sigmoid=True):
    "Compute accuracy when `inp` and `targ` are the same size."
    if sigmoid: inp = inp.sigmoid()
    return ((inp>thresh)==targ.bool()).float().mean()


If we pass accuracy_multi directly as a metric, it will use the
default value for 
threshold, which is 0.5. We might want to adjust
that default and create a new version of accuracy_multi that has a
different default. To help with this, there is a function in Python
called partial. It allows us to bind a function with some arguments
or keyword arguments, making a new version of that function that,
whenever it is called, always includes those arguments. For instance,
here is a simple function taking two arguments:


def say_hello(name, say_what="Hello"): return f"{say_what} {name}."
say_hello('Jeremy'),say_hello('Jeremy', 'Ahoy!')


('Hello Jeremy.', 'Ahoy! Jeremy.')


We can switch to a French version of that function by using partial:


f = partial(say_hello, say_what="Bonjour")
f("Jeremy"),f("Sylvain")


('Bonjour Jeremy.', 'Bonjour Sylvain.')


We can now train our model. Let’s try setting the accuracy
threshold to 0.2 for our metric:


learn = cnn_learner(dls, resnet50, metrics=partial(accuracy_multi, thresh=0.2))
learn.fine_tune(3, base_lr=3e-3, freeze_epochs=4)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy_multi
      	time
    

  
  
    
      	0
      	0.903610
      	0.659728
      	0.263068
      	00:07
    

    
      	1
      	0.724266
      	0.346332
      	0.525458
      	00:07
    

    
      	2
      	0.415597
      	0.125662
      	0.937590
      	00:07
    

    
      	3
      	0.254987
      	0.116880
      	0.945418
      	00:07
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy_multi
      	time
    

  
  
    
      	0
      	0.123872
      	0.132634
      	0.940179
      	00:08
    

    
      	1
      	0.112387
      	0.113758
      	0.949343
      	00:08
    

    
      	2
      	0.092151
      	0.104368
      	0.951195
      	00:08
    

  



Picking a threshold is important. If you pick a threshold
that’s too low, you’ll often be failing to
select correctly labeled objects. We can see this by changing our
metric and then calling validate, which returns the validation loss
and metrics:


learn.metrics = partial(accuracy_multi, thresh=0.1)
learn.validate()


(#2) [0.10436797887086868,0.93057781457901]


If you pick a threshold that’s too high, you’ll be selecting only the objects about which the model is very confident:


learn.metrics = partial(accuracy_multi, thresh=0.99)
learn.validate()


(#2) [0.10436797887086868,0.9416930675506592]


We can find the best threshold by trying a few levels and seeing what
works best. This is much faster if we grab the predictions just once:


preds,targs = learn.get_preds()


Then we can call the metric directly. Note that by default
get_preds applies the output activation function (sigmoid, in this
case) for us, so we’ll need to tell 
accuracy_multi to not
apply it:


accuracy_multi(preds, targs, thresh=0.9, sigmoid=False)


TensorMultiCategory(0.9554)


We can now use this approach to find the best threshold level:


xs = torch.linspace(0.05,0.95,29)
accs = [accuracy_multi(preds, targs, thresh=i, sigmoid=False) for i in xs]
plt.plot(xs,accs);



[image: ]





In this case, we’re using the validation set to pick a
hyperparameter (the threshold), which is the purpose of the validation
set. Sometimes students have expressed their concern that we might
be overfitting to the validation set, since we’re trying
lots of values to see which is the best. However, as you see in the
plot, changing the threshold in this case results in a smooth curve, so
we’re clearly not picking an inappropriate outlier. This
is a good example of where you have to be careful of the difference
between theory (don’t try lots of hyperparameter values or
you might overfit the validation set) versus practice (if the
relationship is smooth, it’s fine to do this).


This concludes the part of this chapter dedicated to multi-label
classification. Next, we’ll take a look at a regression problem.
























Regression


It’s easy to think of deep learning models as being
classified into domains, like computer vision, NLP, and so forth.
And indeed, that’s how fastai classifies its
applications—largely because that’s how most people are used
to thinking of things.


But really, that’s hiding a more interesting and deeper
perspective. A model is defined by its independent and dependent
variables, along with its loss function. That means that
there’s really a far wider array of models than just the
simple domain-based split. Perhaps we have an independent variable
that’s an image, and a dependent that’s text
(e.g., generating a caption from an image); or perhaps we have an
independent variable that’s text and a dependent
that’s an image (e.g., generating an image from a
caption—which is actually possible for deep learning to do!); or perhaps
we’ve got images, texts, and tabular data as independent
variables, and we’re trying to predict product purchases…the possibilities really are endless.


To be able to move beyond fixed applications to crafting your own novel
solutions to novel problems, it helps to really understand the data
block API (and maybe also the mid-tier API, which we’ll see
later in the book). As an example, let’s consider the
problem of image regression. This refers to learning from a dataset
in which the independent variable is an image, and the dependent variable
is one or more floats. Often we see people treat image regression as a
whole separate application—but as you’ll see here, we can
treat it as just another CNN on top of the data block API.


We’re going to jump straight to a somewhat tricky variant of
image regression, because we know you’re ready for it!
We’re going to do a key point model. A key point refers
to a specific location represented in an image—in this case, we’ll use images of people and
we’ll be looking for the center of the person’s
face in each image. That means we’ll actually be predicting
two values for each image: the row and column of the face center.










Assembling the Data


We will use the Biwi Kinect
Head Pose dataset for this section. We’ll begin by downloading the dataset as usual:


path = untar_data(URLs.BIWI_HEAD_POSE)


Let’s see what we’ve got!


path.ls()


(#50) [Path('13.obj'),Path('07.obj'),Path('06.obj'),Path('13'),Path('10'),Path('
 > 02'),Path('11'),Path('01'),Path('20.obj'),Path('17')...]


There are 24 directories numbered from 01 to 24 (they correspond to the
different people photographed), and a corresponding .obj file for each (we
won’t need them here). Let’s take a look inside
one of these directories:


(path/'01').ls()


(#1000) [Path('01/frame_00281_pose.txt'),Path('01/frame_00078_pose.txt'),Path('0
 > 1/frame_00349_rgb.jpg'),Path('01/frame_00304_pose.txt'),Path('01/frame_00207_
 > pose.txt'),Path('01/frame_00116_rgb.jpg'),Path('01/frame_00084_rgb.jpg'),Path
 > ('01/frame_00070_rgb.jpg'),Path('01/frame_00125_pose.txt'),Path('01/frame_003
 > 24_rgb.jpg')...]


Inside the subdirectories, we have different frames. Each of them comes
with an image (_rgb.jpg) and a pose file (_pose.txt). We can easily get all the image files recursively with get_image_files, and then write a function that converts an image filename to its associated pose file:


img_files = get_image_files(path)
def img2pose(x): return Path(f'{str(x)[:-7]}pose.txt')
img2pose(img_files[0])


Path('13/frame_00349_pose.txt')


Let’s take a look at our first image:


im = PILImage.create(img_files[0])
im.shape


(480, 640)


im.to_thumb(160)



[image: ]





The Biwi dataset website used to explain the format of the pose text file
associated with each image, which shows the location of the center of
the head. The details of this aren’t important for our
purposes, so we’ll just show the function we use to extract
the head center point:


cal = np.genfromtxt(path/'01'/'rgb.cal', skip_footer=6)
def get_ctr(f):
    ctr = np.genfromtxt(img2pose(f), skip_header=3)
    c1 = ctr[0] * cal[0][0]/ctr[2] + cal[0][2]
    c2 = ctr[1] * cal[1][1]/ctr[2] + cal[1][2]
    return tensor([c1,c2])


This function returns the coordinates as a tensor of two items:


get_ctr(img_files[0])


tensor([384.6370, 259.4787])


We can pass this function to DataBlock as get_y, since it is
responsible for labeling each item. We’ll resize the images
to half their input size, to speed up training a bit.


One important point to note is that we should not just use a random
splitter. The same people appear in
multiple images in this dataset, but we want to ensure that our model
can generalize to people that it hasn’t seen yet. Each
folder in the dataset contains the images for one person. Therefore, we
can create a splitter function that returns True for just one person,
resulting in a validation set containing just that person’s
images.


The only other difference from the previous data block examples is that the
second block is a PointBlock. This is necessary so that fastai knows
that the labels represent coordinates; that way, it knows that when
doing data augmentation, it should do the same augmentation to these
coordinates as it does to the images:


biwi = DataBlock(
    blocks=(ImageBlock, PointBlock),
    get_items=get_image_files,
    get_y=get_ctr,
    splitter=FuncSplitter(lambda o: o.parent.name=='13'),
    batch_tfms=[*aug_transforms(size=(240,320)),
                Normalize.from_stats(*imagenet_stats)]
)

Points and Data Augmentation

We’re not aware of other libraries (except for fastai) that automatically and correctly apply data augmentation to coordinates. So, if you’re working with another library, you may need to disable data augmentation for these kinds of problems.




Before doing any modeling, we should look at our data to confirm it
seems OK:


dls = biwi.dataloaders(path)
dls.show_batch(max_n=9, figsize=(8,6))



[image: ]





That’s looking good! As well as looking at the batch
visually, it’s a good idea to also look at the underlying
tensors (especially as a student; it will help clarify your
understanding of what your model is really seeing):


xb,yb = dls.one_batch()
xb.shape,yb.shape


(torch.Size([64, 3, 240, 320]), torch.Size([64, 1, 2]))


Make sure that you understand why these are the shapes for our
mini-batches.


Here’s an example of one row from the dependent variable:


yb[0]


tensor([[0.0111, 0.1810]], device='cuda:5')


As you can see, we haven’t had to use a separate image
regression application; all we’ve had to do is label the
data and tell fastai what kinds of data the independent and dependent
variables represent.


It’s the same for creating our Learner. We will use the
same function as before, with one new parameter, and we will be
ready to train our model.

















Training a Model


As usual, we can use cnn_learner to create our Learner. Remember way
back in Chapter 1 how we used y_range to tell fastai
the range of our targets? We’ll do the same here (coordinates in fastai and PyTorch are always rescaled between –1 and +1):


learn = cnn_learner(dls, resnet18, y_range=(-1,1))


y_range is implemented in fastai using sigmoid_range, which is
defined as follows:


def sigmoid_range(x, lo, hi): return torch.sigmoid(x) * (hi-lo) + lo


This is set as the final layer of the model, if y_range is defined.
Take a moment to think about what this function does, and why it forces
the model to output activations in the range (lo,hi).


Here’s what it looks like:


plot_function(partial(sigmoid_range,lo=-1,hi=1), min=-4, max=4)



[image: ]





We didn’t specify a loss function, which means
we’re getting whatever fastai chooses as the default.
Let’s see what it picked for us:


dls.loss_func


FlattenedLoss of MSELoss()


This makes sense, since when coordinates are used as the dependent variable,
most of the time we’re likely to be trying to predict
something as close as possible; that’s basically what
MSELoss (mean squared error loss) does. If you want to use a different
loss function, you can pass it to cnn_learner by using the loss_func
parameter.


Note also that we didn’t specify any metrics.
That’s because the MSE is already a useful metric for this
task (although it’s probably more interpretable after we
take the square root).


We can pick a good learning rate with the learning rate finder:


learn.lr_find()



[image: ]





We’ll try an LR of 2e-2:


lr = 2e-2
learn.fit_one_cycle(5, lr)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.045840
      	0.012957
      	00:36
    

    
      	1
      	0.006369
      	0.001853
      	00:36
    

    
      	2
      	0.003000
      	0.000496
      	00:37
    

    
      	3
      	0.001963
      	0.000360
      	00:37
    

    
      	4
      	0.001584
      	0.000116
      	00:36
    

  



Generally, when we run this, we get a loss of around 0.0001, which
corresponds to this average coordinate prediction error:


math.sqrt(0.0001)


0.01


This sounds very accurate! But it’s important to take a look
at our results with Learner.show_results. The left side has the actual
(ground truth) coordinates and the right side has our model’s
predictions:


learn.show_results(ds_idx=1, max_n=3, figsize=(6,8))



[image: ]





It’s quite amazing that with just a few minutes of
computation, we’ve created such an accurate key points model,
and without any special domain-specific application. This is the power
of building on flexible APIs and using transfer learning!
It’s particularly striking that we’ve been able
to use transfer learning so effectively, even between totally different
tasks; our pretrained model was trained to do image classification, and
we fine-tuned for image regression.
























Conclusion


In problems that are at first glance completely different (single-label
classification, multi-label classification, and regression), we end up
using the same model with just different numbers of outputs. The loss
function is the one thing that changes, which is why
it’s important to double-check that you are using the right loss
function for your problem.


fastai will automatically try to pick the right one from
the data you built, but if you are using pure PyTorch to build your
DataLoaders, make sure you think hard about your choice of
loss function, and remember that you most probably want the 
following:



	
nn.CrossEntropyLoss for single-label classification



	
nn.BCEWithLogitsLoss for multi-label classification



	
nn.MSELoss for regression





















Questionnaire


	
How could multi-label classification improve the usability of the bear classifier?



	
How do we encode the dependent variable in a multi-label classification 
problem?



	
How do you access the rows and columns of a DataFrame as if it were a matrix?



	
How do you get a column by name from a DataFrame?



	
What is the difference between a Dataset and DataLoader?



	
What does a Datasets object normally contain?



	
What does a DataLoaders object normally contain?



	
What does lambda do in Python?



	
What are the methods to customize how the independent and dependent variables are created with the data block API?



	
Why is softmax not an appropriate output activation function when using a one-hot-encoded target?



	
Why is nll_loss not an appropriate loss function when using a one-hot-encoded target?



	
What is the difference between nn.BCELoss and nn.BCEWithLogitsLoss?



	
Why can’t we use regular accuracy in a multi-label problem?



	
When is it OK to tune a hyperparameter on the validation set?



	
How is y_range implemented in fastai? (See if you can implement it yourself and test it without peeking!)



	
What is a regression problem? What loss function should you use for such a problem?



	
What do you need to do to make sure the fastai library applies the same data augmentation to your input images and your target point coordinates?















Further Research


	
Read a tutorial about Pandas DataFrames and experiment with a few methods that look interesting to you. See the book’s website for recommended tutorials.



	
Retrain the bear classifier using multi-label classification. See if you can make it work effectively with images that don’t contain any bears, including showing that information in the web application. Try an image with two kinds of bears. Check whether the accuracy on the single-label dataset is impacted using multi-label classification.




























  
Chapter 7. Training a State-of-the-Art Model



This chapter introduces more advanced techniques for training an image
classification model and getting state-of-the-art results. You can skip it
if you want to learn more about other applications of deep learning and
come back to it later—knowledge of this material will not be assumed in later
chapters.


We will look at what normalization is, a powerful data augmentation technique called Mixup, the progressive
resizing approach, and test time augmentation. To show all of this, we
are going to train a model from scratch (not using transfer learning) by using a
subset of ImageNet called
Imagenette. It contains a subset of 10 very
different categories from the original ImageNet dataset, making for
quicker training when we want to experiment.


This is going to be much harder to do well than with our previous datasets
because we’re using full-size, full-color images, which are
photos of objects of different sizes, in different orientations, in
different lighting, and so forth. So, in this chapter we’re
going to introduce important techniques for getting the most out of
your dataset, especially when you’re training from scratch,
or using transfer learning to train a model on a very different kind of dataset than the
pretrained model used.








Imagenette


When fast.ai first started, people
used three main datasets for building and testing computer vision models:


	ImageNet

	
1.3 million images of various sizes, around 500 pixels across, in 1,000 categories, which took a few days to train



	MNIST

	
50,000 28×28-pixel grayscale handwritten digits



	CIFAR10

	
60,000 32×32-pixel color images in 10 classes






The problem was that the smaller datasets didn’t
generalize effectively to the large ImageNet dataset. The approaches
that worked well on ImageNet generally had to be developed and trained
on ImageNet. This led to many people believing that only researchers
with access to giant computing resources could effectively contribute to
developing image classification algorithms.


We thought that seemed very unlikely to be true. We had never
seen a study that showed that ImageNet happens to be exactly the right
size, and that other datasets could not be developed that would provide
useful insights. So we wanted to create a new dataset
that researchers could test their algorithms on quickly and cheaply,
but that would also provide insights likely to work on the full
ImageNet dataset.


About three hours later, we had created Imagenette. We selected 10
classes from the full ImageNet that looked very different from one another. As we had hoped, we were able to quickly and cheaply create a classifier capable of recognizing these classes. We then tried out a few algorithmic tweaks to
see how they impacted Imagenette. We found some that worked pretty well,
and tested them on ImageNet as well—and we were pleased to find that
our tweaks worked well on ImageNet too!


There is an important message here: the dataset you are given is not
necessarily the dataset you want. It’s particularly unlikely
to be the dataset that you want to do your development and prototyping
in. You should aim to have an iteration speed of no more than a couple
of minutes—that is, when you come up with a new idea you want to try
out, you should be able to train a model and see how it goes within a
couple of minutes. If it’s taking longer to do an
experiment, think about how you could cut down your dataset, or simplify
your model, to improve your experimentation speed. The more experiments
you can do, the better!


Let’s get started with this dataset:


from fastai.vision.all import *
path = untar_data(URLs.IMAGENETTE)


First we’ll get our dataset into a DataLoaders object,
using the presizing trick introduced in Chapter 5:


dblock = DataBlock(blocks=(ImageBlock(), CategoryBlock()),
                   get_items=get_image_files,
                   get_y=parent_label,
                   item_tfms=Resize(460),
                   batch_tfms=aug_transforms(size=224, min_scale=0.75))
dls = dblock.dataloaders(path, bs=64)


Then we’ll do a training run that will serve as a baseline:


model = xresnet50()
learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(), metrics=accuracy)
learn.fit_one_cycle(5, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.583403
      	2.064317
      	0.401792
      	01:03
    

    
      	1
      	1.208877
      	1.260106
      	0.601568
      	01:02
    

    
      	2
      	0.925265
      	1.036154
      	0.664302
      	01:03
    

    
      	3
      	0.730190
      	0.700906
      	0.777819
      	01:03
    

    
      	4
      	0.585707
      	0.541810
      	0.825243
      	01:03
    

  



That’s a good baseline, since we are not using a pretrained
model, but we can do better. When working with models that are being
trained from scratch, or fine-tuned to a very different dataset from the one
used for the pretraining, some additional techniques are
really important. In the rest of the chapter, we’ll consider
some key approaches you’ll want to be familiar with.
The first one is normalizing your data.

















Normalization


When training a model, it helps if your input data is normalized—that
is, has a mean of 0 and a standard deviation of 1. But most images and
computer vision libraries use values between 0 and 255 for pixels,
or between 0 and 1; in either case, your data is not going to have a
mean of 0 and a standard deviation of 1.


Let’s grab a batch of our data and look at those values, by
averaging over all axes except for the channel axis, which is axis 1:


x,y = dls.one_batch()
x.mean(dim=[0,2,3]),x.std(dim=[0,2,3])


(TensorImage([0.4842, 0.4711, 0.4511], device='cuda:5'),
 TensorImage([0.2873, 0.2893, 0.3110], device='cuda:5'))


As we expected, the mean and standard deviation are not very close to the
desired values. Fortunately, normalizing the data is easy to do in fastai by adding
the 
Normalize transform. This acts on a whole mini-batch at once, so
you can add it to the batch_tfms section of your data block. You need
to pass to this transform the mean and standard deviation that you want
to use; fastai comes with the standard ImageNet mean and standard
deviation already defined. (If you do not pass any statistics to the
Normalize transform, fastai will automatically calculate them from a
single batch of your data.)


Let’s add this transform (using imagenet_stats, as
Imagenette is a subset of ImageNet) and take a look at one batch now:


def get_dls(bs, size):
    dblock = DataBlock(blocks=(ImageBlock, CategoryBlock),
                   get_items=get_image_files,
                   get_y=parent_label,
                   item_tfms=Resize(460),
                   batch_tfms=[*aug_transforms(size=size, min_scale=0.75),
                               Normalize.from_stats(*imagenet_stats)])
    return dblock.dataloaders(path, bs=bs)


dls = get_dls(64, 224)


x,y = dls.one_batch()
x.mean(dim=[0,2,3]),x.std(dim=[0,2,3])


(TensorImage([-0.0787,  0.0525,  0.2136], device='cuda:5'),
 TensorImage([1.2330, 1.2112, 1.3031], device='cuda:5'))


Let’s check what effect this had on training our model:


model = xresnet50()
learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(), metrics=accuracy)
learn.fit_one_cycle(5, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.632865
      	2.250024
      	0.391337
      	01:02
    

    
      	1
      	1.294041
      	1.579932
      	0.517177
      	01:02
    

    
      	2
      	0.960535
      	1.069164
      	0.657207
      	01:04
    

    
      	3
      	0.730220
      	0.767433
      	0.771845
      	01:05
    

    
      	4
      	0.577889
      	0.550673
      	0.824496
      	01:06
    

  



Although it helped only a little here, normalization becomes especially
important when using pretrained models. The pretrained model knows
how to work with only data of the type that it has seen before. If the
average pixel value was 0 in the data it was trained with, but your data
has 0 as the minimum possible value of a pixel, then the model is
going to be seeing something very different from what is intended!


This means that when you distribute a model, you need to also distribute
the statistics used for normalization, since anyone using it for
inference or transfer learning will need to use the same statistics.
By the same token, if you’re using a model that someone else
has trained, make sure you find out what normalization statistics they
used, and match them.


We didn’t have to handle normalization in previous chapters
because when using a pretrained model through cnn_learner, the fastai
library automatically adds the proper Normalize transform; the model
has been pretrained with certain statistics in Normalize (usually
coming from the ImageNet dataset), so the library can fill those in for
you. Note that this applies to only pretrained models, which is why we
need to add this information manually here, when training from scratch.


All our training up until now has been done at size 224. We could have
begun training at a smaller size before going to that. This is called
progressive resizing.

















Progressive Resizing


When fast.ai and its team of students
won
the DAWNBench competition in 2018, one of the most important innovations was
something very simple: start training using small images, and end
training using large images. Spending most of the epochs training
with small images helps training complete much faster. Completing
training using large images makes the final accuracy much higher. We call
this approach progressive resizing.

Jargon: Progressive Resizing

Gradually using larger and larger images as you train.




As we have seen, the kinds of features that are learned by convolutional
neural networks are not in any way specific to the size of the image—early layers find things like edges and gradients, and later layers may
find things like noses and sunsets. So, when we change image size in the
middle of training, it doesn’t mean that we have to find
totally different parameters for our model.


But clearly there are some differences between small images and big
ones, so we shouldn’t expect our model to continue working
exactly as well, with no changes at all. Does this remind you of
something? When we developed this idea, it reminded us of transfer
learning! We are trying to get our model to learn to do something a
little bit different from what it has learned to do before. Therefore, we
should be able to use the fine_tune method after we resize our images.


Progressive resizing has an additional benefit: it is another
form of data augmentation. Therefore, you should expect to see better
generalization of your models that are trained with progressive
resizing.


To implement progressive resizing, it is most convenient if you first
create a get_dls function that takes an image size and a batch size, as we did in the previous section,
and returns your DataLoaders.


Now you can create your DataLoaders with a small size and use and
fit_one_cycle in the usual way, training for fewer epochs than you might
otherwise do:


dls = get_dls(128, 128)
learn = Learner(dls, xresnet50(), loss_func=CrossEntropyLossFlat(),
                metrics=accuracy)
learn.fit_one_cycle(4, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.902943
      	2.447006
      	0.401419
      	00:30
    

    
      	1
      	1.315203
      	1.572992
      	0.525765
      	00:30
    

    
      	2
      	1.001199
      	0.767886
      	0.759149
      	00:30
    

    
      	3
      	0.765864
      	0.665562
      	0.797984
      	00:30
    

  



Then you can replace the DataLoaders inside the Learner, and
fine-tune:


learn.dls = get_dls(64, 224)
learn.fine_tune(5, 1e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.985213
      	1.654063
      	0.565721
      	01:06
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.706869
      	0.689622
      	0.784541
      	01:07
    

    
      	1
      	0.739217
      	0.928541
      	0.712472
      	01:07
    

    
      	2
      	0.629462
      	0.788906
      	0.764003
      	01:07
    

    
      	3
      	0.491912
      	0.502622
      	0.836445
      	01:06
    

    
      	4
      	0.414880
      	0.431332
      	0.863331
      	01:06
    

  



As you can see, we’re getting much better performance, and
the initial training on small images was much faster on each epoch.


You can repeat the process of increasing size and training more epochs
as many times as you like, for as big an image as you wish—but of
course, you will not get any benefit by using an image size larger than
the size of your images on disk.


Note that for transfer learning, progressive resizing may actually hurt
performance. This is most likely to happen if your pretrained model was quite
similar to your transfer learning task and the dataset and was trained on
similar-sized images, so the weights don’t need to be
changed much. In that case, training on smaller images may damage the
pretrained weights.


On the other hand, if the transfer learning task is going to use
images that are of different sizes, shapes, or styles than those used in
the pretraining task, progressive resizing will probably help. As
always, the answer to “Will it help?” is “Try it!”


Another thing we could try is applying data augmentation to the
validation set. Up until now, we have applied it only on the training
set; the validation set always gets the same images. But maybe we
could try to make predictions for a few augmented versions of the
validation set and average them. We’ll consider this approach next.

















Test Time Augmentation


We have been using random cropping as a way to get some useful data
augmentation, which leads to better generalization, and results in a
need for less training data. When we use random cropping, fastai will
automatically use center-cropping for the validation set—that is, it
will select the largest square area it can in the center of the image,
without going past the image’s edges.


This can often be problematic. For instance, in a multi-label dataset,
sometimes there are small objects toward the edges of an image; these
could be entirely cropped out by center cropping. Even for problems such as our pet breed classification example, it’s possible that a critical feature necessary for identifying the correct breed, such as the color of the nose, could be
cropped out.


One solution to this problem is to avoid random cropping entirely. Instead, we
could simply squish or stretch the rectangular images to fit into a
square space. But then we miss out on a very useful data augmentation,
and we also make the image recognition more difficult for our model,
because it has to learn how to recognize squished and squeezed images,
rather than just correctly proportioned images.


Another solution is to not center crop for validation, but instead
to select a number of areas to crop from the original rectangular image,
pass each of them through our model, and take the maximum or average of
the predictions. In fact, we could do this not just for different crops,
but for different values across all of our test time augmentation
parameters. This is known as test time augmentation (TTA).

Jargon: Test Time Augmentation (TTA)

During inference or validation, creating multiple versions of each image using data augmentation, and then taking the average or maximum of the predictions for each augmented version of the image.




Depending on the dataset, test time augmentation can result in dramatic
improvements in accuracy. It does not change the time required to train
at all, but will increase the amount of time required for validation or inference
by the number of test-time-augmented images requested. By default,
fastai will use the unaugmented center crop image plus four randomly
augmented images.


You can pass any DataLoader to fastai’s tta method; by
default, it will use your validation set:


preds,targs = learn.tta()
accuracy(preds, targs).item()


0.8737863898277283


As we can see, using TTA gives us good a boost in performance, with no
additional training required. However, it does make inference slower—if
you’re averaging five images for TTA, inference will be five times slower.


We’ve seen a few examples of how data augmentation helps train better models. Let’s
now focus on a new data augmentation technique called Mixup.

















Mixup


Mixup, introduced in the 2017 paper
"mixup: Beyond Empirical Risk
Minimization” by Hongyi Zhang et al., is a powerful data augmentation technique that can
provide dramatically higher accuracy, especially when you
don’t have much data and don’t have a
pretrained model that was trained on data similar to your dataset. The
paper explains: “While data augmentation consistently leads to improved
generalization, the procedure is dataset-dependent, and thus requires
the use of expert knowledge.” For instance, it’s common to
flip images as part of data augmentation, but should you flip only
horizontally or also vertically? The answer is that it depends on your
dataset. In addition, if flipping (for instance) doesn’t
provide enough data augmentation for you, you can’t “flip
more.” It’s helpful to have data augmentation techniques
that “dial up” or “dial down” the amount of change, to see what works best for you.


Mixup works as follows, for each image:


	
Select another image from your dataset at random.



	
Pick a weight at random.



	
Take a weighted average (using the weight from step 2) of the selected image with your image; this will be your independent variable.



	
Take a weighted average (with the same weight) of this image’s labels with your image’s labels; this will be your dependent variable.







In pseudocode, we’re doing this (where t is the weight for our
weighted average):

image2,target2 = dataset[randint(0,len(dataset)]
t = random_float(0.5,1.0)
new_image = t * image1 + (1-t) * image2
new_target = t * target1 + (1-t) * target2


For this to work, our targets need to be one-hot encoded. The paper
describes this using the equations in Figure 7-1 (where 
  λ
 is the
same as t in our pseudocode).



[image: An excerpt from the Mixup paper]
Figure 7-1. An excerpt from the Mixup paper




Papers and Math

We’re going to be looking at more and more research papers
from here on in the book. Now that you have the basic jargon, you might
be surprised to discover how much of them you can understand, with a
little practice! One issue you’ll notice is that Greek
letters, such as 
  λ
, appear in most papers.
It’s a good idea to learn the names of all the Greek
letters, since otherwise it’s hard to read the papers
to yourself and remember them (or to read
code based on them, since code often uses the names of the Greek letters
spelled out, such as lambda).


The bigger issue with papers is that they use math, instead of code, to
explain what’s going on. If you don’t have much
of a math background, this will likely be intimidating and confusing at
first. But remember: what is being shown in the math is something that
will be implemented in code. It’s just another way of
talking about the same thing! After reading a few papers,
you’ll pick up more and more of the notation. If you
don’t know what a symbol is, try looking it up in
Wikipedia’s list of mathematical symbols or drawing it in
Detexify, which (using
machine learning!) will find the name of your hand-drawn symbol. Then
you can search online for that name to find out what it’s
for.




Figure 7-2 shows what it looks like when we take a linear
combination of images, as done in Mixup.



[image: An image of a church, a gas station and the two mixed up.]
Figure 7-2. Mixing a church and a gas station




The third image is built by adding 0.3 times the first one and 0.7 times
the second. In this example, should the model predict “church” or “gas
station”? The right answer is 30% church and 70% gas station, since
that’s what we’ll get if we take the linear
combination of the one-hot-encoded targets. For instance, suppose we have 10 classes, and “church” is represented by the index 2 and “gas station” by the index 7. The one-hot-encoded representations are as follows:

[0, 0, 1, 0, 0, 0, 0, 0, 0, 0] and [0, 0, 0, 0, 0, 0, 0, 1, 0, 0]


So here is our final target:

[0, 0, 0.3, 0, 0, 0, 0, 0.7, 0, 0]


This all done for us inside fastai by adding a callback to our
Learner. Callbacks are what is used inside fastai to inject custom
behavior in the training loop (like a learning rate schedule, or
training in mixed precision). You’ll be learning all about
callbacks, including how to make your own, in
Chapter 16. For now, all you need to know is that you
use the cbs parameter to Learner to pass callbacks.


Here is how we train a model with Mixup:


model = xresnet50()
learn = Learner(dls, model, loss_func=CrossEntropyLossFlat(),
                metrics=accuracy, cbs=Mixup)
learn.fit_one_cycle(5, 3e-3)


What happens when we train a model with data that’s “mixed up” in
this way? Clearly, it’s going to be harder to train, because
it’s harder to see what’s in each image. And the
model has to predict two labels per image, rather than just one, as well
as figuring out how much each one is weighted. Overfitting seems less
likely to be a problem, however, because we’re not showing the same
image in each epoch, but are instead showing a random combination of two
images.


Mixup requires far more epochs to train to get better accuracy, compared
to other augmentation approaches we’ve seen. You can try
training Imagenette with and without Mixup by using the
examples/train_imagenette.py script in the fastai repo. At the time of
writing, the leaderboard in the
Imagenette repo is showing that
Mixup is used for all leading results for trainings of >80 epochs, and
for fewer epochs Mixup is not being used. This is in line with our
experience of using Mixup too.


One of the reasons that Mixup is so exciting is that it can be applied
to types of data other than photos. In fact, some people have even shown
good results by using Mixup on activations inside their models, not
just on inputs—this allows Mixup to be used for NLP and other data
types too.


There’s another subtle issue that Mixup deals with for us,
which is that it’s not actually possible with the models
we’ve seen before for our loss to ever be perfect. The
problem is that our labels are 1s and 0s, but the outputs of softmax and sigmoid can never equal 1 or 0. This means training our model pushes our activations ever closer to those values, such that the more
epochs we do, the more extreme our activations become.


With Mixup, we no longer have that problem, because our labels will
be exactly 1 or 0 only if we happen to “mix” with another image of the
same class. The rest of the time, our labels will be a linear
combination, such as the 0.7 and 0.3 we got in the church and gas
station example earlier.


One issue with this, however, is that Mixup is “accidentally” making
the labels bigger than 0 or smaller than 1. That is to say,
we’re not explicitly telling our model that we want to
change the labels in this way. So, if we want to change to make the
labels closer to or further away from 0 and 1, we have to change the
amount of Mixup—which also changes the amount of data augmentation,
which might not be what we want. There is, however, a way to handle this
more directly, which is to use label smoothing.

















Label Smoothing


In the theoretical expression of loss, in classification problems,
our targets are one-hot encoded (in practice, we tend to avoid doing this
to save memory, but what we compute is the same loss as if we had used
one-hot encoding). That means the model is trained to return 0 for all
categories but one, for which it is trained to return 1. Even 0.999 is
not “good enough”; the model will get gradients and learn to predict
activations with even higher confidence. This encourages overfitting
and gives you at inference time a model that is not going to give
meaningful probabilities: it will always say 1 for the predicted
category even if it’s not too sure, just because it was
trained this way.


This can become very harmful if your data is not perfectly labeled. In the
bear classifier we studied in Chapter 2, we saw that
some of the images were mislabeled, or contained two different kinds of
bears. In general, your data will never be perfect. Even if the labels
were manually produced by humans, they could make mistakes, or have
differences of opinions on images that are harder to label.


Instead, we could replace all our 1s with a number a bit less than 1,
and our 0s with a number a bit more than 0, and then train. This is
called label smoothing. By encouraging your model to be less
confident, label smoothing will make your training more robust, even if
there is mislabeled data. The result will be a model that generalizes
better at inference.


This is how label smoothing works in practice: we start with one-hot-encoded labels, then replace all 0s with

  ϵ N
 (that’s the Greek letter
epsilon, which is what was used in the
paper that introduced label
smoothing and is used in the fastai code), where 
  N
 is the
number of classes and 
  ϵ
 is a parameter (usually
0.1, which would mean we are 10% unsure of our labels). Since we want
the labels to add up to 1, we also replace the 1s with

  
    1
    -
    ϵ
    +
    ϵ N
  
. This way, we
don’t encourage the model to predict something
overconfidently. In our Imagenette example that has 10 classes, the
targets become something like this (here for a target that corresponds to the index 3):

[0.01, 0.01, 0.01, 0.91, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]


In practice, we
don’t want to one-hot encode the labels, and fortunately we
won’t need to (the one-hot encoding is just good to explain label smoothing and visualize it).


Label Smoothing, the Paper

Here is how the reasoning behind label smoothing was explained in the
paper by Christian Szegedy et al.:


This maximum is not achievable for finite 
  z k 
 but is
approached if 
  
    z y 
    ≫
    z k 
  
 for all 
  
    k
    ≠
    y
  
—that is, if the logit corresponding to the ground-truth label is much
[greater] than all other logits. This, however, can cause two problems.
First, it may result in over-fitting: if the model learns to assign full
probability to the ground-truth label for each training example, it is
not guaranteed to generalize. Second, it encourages the differences
between the largest logit and all others to become large, and this,
combined with the bounded gradient

  ∂ℓ ∂z k 
, reduces the ability of
the model to adapt. Intuitively, this happens because the model becomes
too confident about its predictions.



Let’s practice our paper-reading skills to try to interpret
this. “This maximum” is referring to the previous part of the paragraph,
which talked about the fact that 1 is the value of the label for the
positive class. So, it’s not possible for any value (except infinity) to result
in 1 after sigmoid or softmax. In a paper, you won’t
normally see “any value” written; instead, it will get a symbol, which in this case is 
  z k 
. This shorthand is helpful in a
paper, because it can be referred to again later, and the reader will know
which value is being discussed.


Then it says: “if 
  
    z y 
    ≫
    z k 
  
 for all 
  
    k
    ≠
    y
  
.” In
this case, the paper immediately follows the math with an English description, which is
handy because you can just read that. In the
math, the 
  y
 is referring to the target (
  y
 is
defined earlier in the paper; sometimes it’s hard to find
where symbols are defined, but nearly all papers will define all their
symbols somewhere), and 
  z y 
 is the activation
corresponding to the target. So to get close to 1, this activation
needs to be much higher than all the others for that 
prediction.


Next, consider the statement “if the model learns to assign full probability to the
ground-truth label for each training example, it is not guaranteed to
generalize.” This is saying that making 
  z y 
 really big
means we’ll need large weights and large activations
throughout our model. Large weights lead to “bumpy” functions, where a
small change in input results in a big change to predictions. This is
really bad for 
generalization, because it means just one pixel changing
a bit could change our prediction entirely!


Finally, we have “it encourages the differences between the largest
logit and all others to become large, and this, combined with the
bounded gradient 
  ∂ℓ ∂z k 
,
reduces the ability of the model to adapt.” The gradient of cross
entropy, remember, is basically output - target. Both output and
target are between 0 and 1, so the difference is between -1 and
1, which is why the paper says the gradient is “bounded” (it
can’t be infinite). Therefore, our SGD steps are bounded too.
“Reduces the ability of the model to adapt” means that it is hard for
it to be updated in a transfer learning setting. This follows because
the difference in loss due to incorrect predictions is unbounded, but we
can take only a limited step each time.




To use this in practice, we just have to change the loss function in our
call to Learner:


model = xresnet50()
learn = Learner(dls, model, loss_func=LabelSmoothingCrossEntropy(),
                metrics=accuracy)
learn.fit_one_cycle(5, 3e-3)


As with Mixup, you won’t generally see significant improvements
from label smoothing until you train more epochs. Try it yourself and
see: how many epochs do you have to train before label smoothing shows
an improvement?

















Conclusion


You have now seen everything you need to train a state-of-the-art model
in computer vision, whether from scratch or using transfer learning. Now
all you have to do is experiment on your own problems! See if training
longer with Mixup and/or label smoothing avoids overfitting and gives
you better results. Try progressive resizing and test time
augmentation.


Most importantly, remember that if your dataset is big, there is no
point prototyping on the whole thing. Find a small subset that is
representative of the whole, as we did with Imagenette, and experiment
on it.


In the next three chapters, we will look at the other applications
directly supported by fastai: collaborative filtering, tabular modeling, and working with text.
We will go back to computer vision in the next section of the book, with
a deep dive into convolutional neural networks in
Chapter 13.

















Questionnaire


	
What is the difference between ImageNet and Imagenette? When is it better to experiment on one versus the other?



	
What is normalization?



	
Why didn’t we have to care about normalization when using a pretrained model?



	
What is progressive resizing?



	
Implement progressive resizing in your own project. Did it help?



	
What is test time augmentation? How do you use it in fastai?



	
Is using TTA at inference slower or faster than regular inference? Why?



	
What is Mixup? How do you use it in fastai?



	
Why does Mixup prevent the model from being too confident?



	
Why does training with Mixup for five epochs end up worse than training without Mixup?



	
What is the idea behind label smoothing?



	
What problems in your data can label smoothing help with?



	
When using label smoothing with five categories, what is the target associated with the index 1?



	
What is the first step to take when you want to prototype quick experiments on a new dataset?















Further Research


	
Use the fastai documentation to build a function that crops an image to a square in each of the four corners; then implement a TTA method that averages the predictions on a center crop and those four crops. Did it help? Is it better than the TTA method of fastai?



	
Find the Mixup paper on arXiv and read it. Pick one or two more recent articles introducing variants of Mixup and read them; then try to implement them on your problem.



	
Find the script training Imagenette using Mixup and use it as an example to build a script for a long training on your own project. Execute it and see if it helps.



	
Read the sidebar “Label Smoothing, the Paper”; then look at the relevant section of the original paper and see if you can follow it. Don’t be afraid to ask for help!




























  
Chapter 8. Collaborative Filtering Deep Dive



One common problem to solve is having a number of users and
a number of products, and you want to recommend which products are most
likely to be useful for which users. Many variations exist:
for example, recommending movies (such as on Netflix), figuring out what
to highlight for a user on a home page, deciding what stories to show in
a social media feed, and so forth. A general solution to this
problem, called collaborative filtering, works like this:
look at which products the current user has used or liked, find other
users who have used or liked similar products, and then recommend other
products that those users have used or liked.


For example, on Netflix, you may have watched lots of movies that are
science fiction, full of action, and were made in the 1970s. Netflix may
not know these particular properties of the films you have watched, but
it will be able to see that other people who have watched the same
movies that you watched also tended to watch other movies that are
science fiction, full of action, and were made in the 1970s. In other
words, to use this approach, we don’t necessarily need to
know anything about the movies except who likes to watch them.


There is a more general class of problems that this approach
can solve, not necessarily involving users and products.
Indeed, for collaborative filtering, we more commonly refer to items,
rather than products. Items could be links that people click,
diagnoses that are selected for patients, and so forth.


The key foundational idea is that of latent factors. In the
Netflix example, we started with the assumption that you like old, action-packed
sci-fi movies. But you never told Netflix that you like these
kinds of movies. And Netflix never needed to add columns to
its movies table saying which movies are of these types. Still, there
must be some underlying concept of sci-fi, action, and movie age, and
these concepts must be relevant for at least some people’s
movie-watching decisions.


For this chapter, we are going to work on this movie recommendation problem. We’ll start by getting some data suitable for a collaborative
filtering model.








A First Look at the Data


We do not have access to Netflix’s entire dataset of movie
watching history, but there is a great dataset that we can use, called
MovieLens. This dataset contains tens of millions of movie rankings
(a combination of a movie ID, a user ID, and a numeric rating),
although we will just use a subset of 100,000 of them for our example.
If you’re interested, it would be a great learning project
to try to replicate this approach on the full 25-million recommendation
dataset, which you can get from their website.


The dataset is available through the usual fastai function:


from fastai.collab import *
from fastai.tabular.all import *
path = untar_data(URLs.ML_100k)


According to the README, the main table is in the file u.data. It is
tab-separated and the columns are, respectively, user, movie, rating, and
timestamp. Since those names are not encoded, we need to indicate them
when reading the file with Pandas. Here is a way to open this table and
take a look:


ratings = pd.read_csv(path/'u.data', delimiter='\t', header=None,
                      names=['user','movie','rating','timestamp'])
ratings.head()


  
    
      	
      	user
      	movie
      	rating
      	timestamp
    

  
  
    
      	0
      	196
      	242
      	3
      	881250949
    

    
      	1
      	186
      	302
      	3
      	891717742
    

    
      	2
      	22
      	377
      	1
      	878887116
    

    
      	3
      	244
      	51
      	2
      	880606923
    

    
      	4
      	166
      	346
      	1
      	886397596
    

  



Although this has all the information we need, it is not a particularly
helpful way for humans to look at this data. Figure 8-1 shows
the same data cross-tabulated into a human-friendly table.



[image: Crosstab of movies and users]
Figure 8-1. Crosstab of movies and users




We have selected just a few of the most popular movies, and users who
watch the most movies, for this crosstab example. The empty cells in
this table are the things that we would like our model to learn to fill
in. Those are the places where a user has not reviewed the movie yet,
presumably because they have not watched it. For each user, we would
like to figure out which of those movies they might be most likely to
enjoy.


If we knew for each user to what degree they liked each important
category that a movie might fall into, such as genre, age, preferred
directors and actors, and so forth, and we knew the same information
about each movie, then a simple way to fill in this table would be to
multiply this information together for each movie and use a combination.
For instance, assuming these factors range between –1 and +1, with positive numbers indicating stronger matches and negative numbers weaker ones, and the
categories are science-fiction, action, and old movies, then we could
represent the movie The Last Skywalker as follows:


last_skywalker = np.array([0.98,0.9,-0.9])


Here, for instance, we are scoring very science-fiction as 0.98, and
very not old as –0.9. We could represent a user who likes modern
sci-fi action movies as follows:


user1 = np.array([0.9,0.8,-0.6])


We can now calculate the match between this combination:


(user1*last_skywalker).sum()


2.1420000000000003


When we multiply two vectors together and add up the results, this is
known as the dot product. It is used a lot in machine learning and
forms the basis of matrix multiplication. We will be looking a lot more
at matrix multiplication and dot products in
Chapter 17.

Jargon: Dot Product

The mathematical operation of multiplying the elements of two vectors together, and then summing up the result.




On the other hand, we might represent the movie Casablanca as follows:


casablanca = np.array([-0.99,-0.3,0.8])


The match between this combination is shown here:


(user1*casablanca).sum()


-1.611


Since we don’t know what the latent factors are,
and we don’t know how to score them for each user and movie,
we should learn them.

















Learning the Latent Factors


There is surprisingly little difference between specifying the structure of a
model, as we did in the preceding section, and learning one, since we can
just use our general gradient descent approach.


Step 1 of this approach is to randomly initialize some parameters.
These parameters will be a set of latent factors for each user and
movie. We will have to decide how many to use. We will discuss how to
select this shortly, but for illustrative purposes, let’s use
5 for now. Because each user will have a set of these factors, and each
movie will have a set of these factors, we can show these randomly
initialized values right next to the users and movies in our crosstab,
and we can then fill in the dot products for each of these combinations
in the middle. For example, Figure 8-2 shows what it looks
like in Microsoft Excel, with the top-left cell formula displayed as an
example.


Step 2 of this approach is to calculate our predictions. As
we’ve discussed, we can do this by simply taking the dot
product of each movie with each user. If, for instance, the first latent
user factor represents how much the user likes action movies and the first
latent movie factor represents whether the movie has a lot of action or not,
the product of those will be particularly high if either the user
likes action movies and the movie has a lot of action in it, or the
user doesn’t like action movies and the movie
doesn’t have any action in it. On the other hand, if we have
a mismatch (a user loves action movies but the movie isn’t an action film,
or the user doesn’t like action movies and it is one), the
product will be very low.



[image: Latent factors with crosstab]
Figure 8-2. Latent factors with crosstab




Step 3 is to calculate our loss. We can use any loss function that
we wish; let’s pick mean squared error for now, since that
is one reasonable way to represent the accuracy of a prediction.


That’s all we need. With this in place, we can optimize our
parameters (the latent factors) using stochastic gradient
descent, such as to minimize the loss. At each step, the stochastic
gradient descent optimizer will calculate the match between each movie
and each user using the dot product, and will compare it to the actual
rating that each user gave to each movie. It will then calculate the
derivative of this value and step the weights by multiplying this
by the learning rate. After doing this lots of times, the loss will get
better and better, and the recommendations will also get better and
better.


To use the usual Learner.fit function, we will need to get our data
into a DataLoaders, so let’s focus on that now.

















Creating the DataLoaders


When showing the data, we would rather see movie titles than their IDs.
The table u.item contains the correspondence of IDs to titles:


movies = pd.read_csv(path/'u.item',  delimiter='|', encoding='latin-1',
                     usecols=(0,1), names=('movie','title'), header=None)
movies.head()



  
    
      	
      	movie
      	title
    

  
  
    
      	0
      	1
      	Toy Story (1995)
    

    
      	1
      	2
      	GoldenEye (1995)
    

    
      	2
      	3
      	Four Rooms (1995)
    

    
      	3
      	4
      	Get Shorty (1995)
    

    
      	4
      	5
      	Copycat (1995)
    

  





We can merge this with our ratings table to get the user ratings by title:


ratings = ratings.merge(movies)
ratings.head()


  
    
      	
      	user
      	movie
      	rating
      	timestamp
      	title
    

  
  
    
      	0
      	196
      	242
      	3
      	881250949
      	Kolya (1996)
    

    
      	1
      	63
      	242
      	3
      	875747190
      	Kolya (1996)
    

    
      	2
      	226
      	242
      	5
      	883888671
      	Kolya (1996)
    

    
      	3
      	154
      	242
      	3
      	879138235
      	Kolya (1996)
    

    
      	4
      	306
      	242
      	5
      	876503793
      	Kolya (1996)
    

  



We can then build a DataLoaders object from this table. By default, it
takes the first column for the user, the second column for the item (here
our movies), and the third column for the ratings. We need to change the
value of item_name in our case to use the titles instead of the IDs:


dls = CollabDataLoaders.from_df(ratings, item_name='title', bs=64)
dls.show_batch()


  
    
      	
      	user
      	title
      	rating
    

  
  
    
      	0
      	207
      	Four Weddings and a Funeral (1994)
      	3
    

    
      	1
      	565
      	Remains of the Day, The (1993)
      	5
    

    
      	2
      	506
      	Kids (1995)
      	1
    

    
      	3
      	845
      	Chasing Amy (1997)
      	3
    

    
      	4
      	798
      	Being Human (1993)
      	2
    

    
      	5
      	500
      	Down by Law (1986)
      	4
    

    
      	6
      	409
      	Much Ado About Nothing (1993)
      	3
    

    
      	7
      	721
      	Braveheart (1995)
      	5
    

    
      	8
      	316
      	Psycho (1960)
      	2
    

    
      	9
      	883
      	Judgment Night (1993)
      	5
    

  



To represent collaborative filtering in PyTorch, we
can’t just use the crosstab representation directly,
especially if we want it to fit into our deep learning framework. We can
represent our movie and user latent factor tables as simple matrices:


n_users  = len(dls.classes['user'])
n_movies = len(dls.classes['title'])
n_factors = 5

user_factors = torch.randn(n_users, n_factors)
movie_factors = torch.randn(n_movies, n_factors)


To calculate the result for a particular movie and user combination, we
have to look up the index of the movie in our movie latent factor
matrix, and the index of the user in our user latent factor matrix;
then we can do our dot product between the two latent factor vectors.
But look up in an index is not an operation our deep learning
models know how to do. They know how to do matrix products and
activation 
functions.


Fortunately, it turns out that we can represent look up in an index as a matrix
product. The trick is to replace our indices with one-hot-encoded
vectors. Here is an example of what happens if we multiply a vector by a
one-hot-encoded vector representing the index 3:


one_hot_3 = one_hot(3, n_users).float()
user_factors.t() @ one_hot_3


tensor([-0.4586, -0.9915, -0.4052, -0.3621, -0.5908])


It gives us the same vector as the one at index 3 in the matrix:


user_factors[3]


tensor([-0.4586, -0.9915, -0.4052, -0.3621, -0.5908])


If we do that for a few indices at once, we will have a matrix of
one-hot-encoded vectors, and that operation will be a matrix
multiplication! This would be a perfectly acceptable way to build models
using this kind of architecture, except that it would use a lot more
memory and time than necessary. We know that there is no real underlying
reason to store the one-hot-encoded vector, or to search through it to
find the occurrence of the number 1—we should just be able to index
into an array directly with an integer. Therefore, most deep learning
libraries, including PyTorch, include a special layer that does just
this; it indexes into a vector using an integer, but has its derivative
calculated in such a way that it is identical to what it would have been
if it had done a matrix multiplication with a one-hot-encoded vector.
This is called an embedding.

Jargon: Embedding

Multiplying by a one-hot-encoded matrix, using the computational shortcut that it can be implemented by simply indexing directly. This is quite a fancy word for a very simple concept. The thing that you multiply the one-hot-encoded matrix by (or, using the computational shortcut, index into directly) is called the embedding matrix.




In computer vision, we have a very easy way to get all the information of
a pixel through its RGB values: each pixel in a colored image is
represented by three numbers. Those three numbers give us the redness,
the greenness, and the blueness, which is enough to get our model to
work afterward.


For the problem at hand, we don’t have the same easy way to
characterize a user or a movie. There are probably relations with genres:
if a given user likes romance, they are likely to give higher scores to
romance movies. Other factors might be whether the movie is more action-oriented versus heavy on
dialogue, or the presence of a specific actor whom a user might
particularly like.


How do we determine numbers to characterize those? The answer is, we
don’t. We will let our model learn them. By analyzing the
existing relations between users and movies, our model can figure out
itself the features that seem important or not.


This is what embeddings are. We will attribute to each of our users and
each of our movies a random vector of a certain length (here,
n_factors=5), and we will make those learnable parameters. That means
that at each step, when we compute the loss by comparing our predictions
to our targets, we will compute the gradients of the loss with respect
to those embedding vectors and update them with the rules of SGD (or
another optimizer).


At the beginning, those numbers don’t mean anything since we
have chosen them randomly, but by the end of training, they will. By
learning on existing data about the relations between users and movies, without having any
other information, we will see that they still get some important
features, and can isolate blockbusters from independent films, action
movies from romance, and so on.


We are now in a position to create our whole model from
scratch.

















Collaborative Filtering from Scratch


Before we can write a model in PyTorch, we first need to learn the
basics of object-oriented programming and Python. If you
haven’t done any object-oriented programming before, we will
give you a quick introduction here, but we would recommend looking up a
tutorial and getting some practice before moving on.


The key idea in object-oriented programming is the class. We have been
using classes throughout this book, such as DataLoader, String, and
Learner. Python also makes it easy for us to create new classes. Here is an
example of a simple class:


class Example:
    def __init__(self, a): self.a = a
    def say(self,x): return f'Hello {self.a}, {x}.'


The most important piece of this is the special method called __init__
(pronounced dunder init). In Python, any method surrounded in double
underscores like this is considered special. It indicates that
some extra behavior is associated with this method name. In the case of
__init__, this is the method Python will call when your new
object is created. So, this is where you can set up any state that
needs to be initialized upon object creation. Any parameters included when the
user constructs an instance of your class will be passed to the
__init__ method as parameters. Note that the first parameter to any
method defined inside a class is self, so you can use this to set and
get any attributes that you will need:


ex = Example('Sylvain')
ex.say('nice to meet you')


'Hello Sylvain, nice to meet you.'


Also note that creating a new PyTorch module requires inheriting from
Module. Inheritance is an important object-oriented concept that we
will not discuss in detail here—in short, it means that we can add
additional behavior to an existing class. PyTorch already provides a
Module class, which provides some basic foundations that we want to
build on. So, we add the name of this superclass after the name of
the class that we are defining, as shown in the following examples.


The final thing that you need to know to create a new PyTorch module is
that when your module is called, PyTorch will call a method in your
class called forward, and will pass along to that any parameters that
are included in the call. Here is the class defining our dot product model:


class DotProduct(Module):
    def __init__(self, n_users, n_movies, n_factors):
        self.user_factors = Embedding(n_users, n_factors)
        self.movie_factors = Embedding(n_movies, n_factors)

    def forward(self, x):
        users = self.user_factors(x[:,0])
        movies = self.movie_factors(x[:,1])
        return (users * movies).sum(dim=1)


If you haven’t seen object-oriented programming before,
don’t worry; you won’t need to use it much in
this book. We are just mentioning this approach here because most
online tutorials and documentation will use the object-oriented syntax.


Note that the input of the model is a tensor of shape batch_size x 2,
where the first column (x[:, 0]) contains the user IDs, and the second
column (x[:, 1]) contains the movie IDs. As explained before, we use
the embedding layers to represent our matrices of user and movie
latent factors:


x,y = dls.one_batch()
x.shape


torch.Size([64, 2])


Now that we have defined our architecture and created our parameter
matrices, we need to create a Learner to optimize our model. In the
past, we have used special functions, such as cnn_learner, which set up
everything for us for a particular application. Since we are doing
things from scratch here, we will use the plain Learner class:


model = DotProduct(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())


We are now ready to fit our model:


learn.fit_one_cycle(5, 5e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	1.326261
      	1.295701
      	00:12
    

    
      	1
      	1.091352
      	1.091475
      	00:11
    

    
      	2
      	0.961574
      	0.977690
      	00:11
    

    
      	3
      	0.829995
      	0.893122
      	00:11
    

    
      	4
      	0.781661
      	0.876511
      	00:12
    

  



The first thing we can do to make this model a little bit better is to
force those predictions to be between 0 and 5. For this, we just need to use
sigmoid_range, as in Chapter 6. One thing we discovered
empirically is that it’s better to have the range go a
little bit over 5, so we use (0, 5.5):


class DotProduct(Module):
    def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):
        self.user_factors = Embedding(n_users, n_factors)
        self.movie_factors = Embedding(n_movies, n_factors)
        self.y_range = y_range

    def forward(self, x):
        users = self.user_factors(x[:,0])
        movies = self.movie_factors(x[:,1])
        return sigmoid_range((users * movies).sum(dim=1), *self.y_range)


model = DotProduct(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.976380
      	1.001455
      	00:12
    

    
      	1
      	0.875964
      	0.919960
      	00:12
    

    
      	2
      	0.685377
      	0.870664
      	00:12
    

    
      	3
      	0.483701
      	0.874071
      	00:12
    

    
      	4
      	0.385249
      	0.878055
      	00:12
    

  



This is a reasonable start, but we can do better. One obvious missing
piece is that some users are just more positive or negative in their
recommendations than others, and some movies are just plain better or
worse than others. But in our dot product representation, we do not have
any way to encode either of these things. If all you can say about a movie is, for instance, that it is very sci-fi, very action-oriented, and very not old, then you don’t really have any
way to say whether most people like it.


That’s because at this point we have only weights; we do not
have biases. If we have a single number for each user that we can add to
our scores, and ditto for each movie, that will handle this missing
piece very nicely. So first of all, let’s adjust our model
architecture:


class DotProductBias(Module):
    def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):
        self.user_factors = Embedding(n_users, n_factors)
        self.user_bias = Embedding(n_users, 1)
        self.movie_factors = Embedding(n_movies, n_factors)
        self.movie_bias = Embedding(n_movies, 1)
        self.y_range = y_range

    def forward(self, x):
        users = self.user_factors(x[:,0])
        movies = self.movie_factors(x[:,1])
        res = (users * movies).sum(dim=1, keepdim=True)
        res += self.user_bias(x[:,0]) + self.movie_bias(x[:,1])
        return sigmoid_range(res, *self.y_range)


Let’s try training this and see how it goes:


model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.929161
      	0.936303
      	00:13
    

    
      	1
      	0.820444
      	0.861306
      	00:13
    

    
      	2
      	0.621612
      	0.865306
      	00:14
    

    
      	3
      	0.404648
      	0.886448
      	00:13
    

    
      	4
      	0.292948
      	0.892580
      	00:13
    

  



Instead of being better, it ends up being worse (at least at the end of
training). Why is that? If we look at both trainings carefully, we can
see the validation loss stopped improving in the middle and started to
get worse. As we’ve seen, this is a clear indication of
overfitting. In this case, there is no way to use data augmentation, so
we will have to use another regularization technique. One approach that
can be helpful is weight decay.










Weight Decay


Weight decay, or L2 regularization, consists of adding to your loss
function the sum of all the weights squared. Why do that? Because when
we compute the gradients, it will add a contribution to them that will
encourage the weights to be as small as possible.


Why would it prevent overfitting? The idea is that the larger the
coefficients are, the sharper canyons we will have in the loss
function. If we take the basic example of a parabola, y = a * (x**2),
the larger a is, the more narrow the parabola is:



[image: Parabolas with various a values]





So, letting our model learn high parameters might cause it to fit all the data
points in the training set with an overcomplex function that has very
sharp changes, which will lead to overfitting.


Limiting our weights from growing too much is going to hinder the
training of the model, but it will yield a state where it generalizes
better. Going back to the theory briefly, weight decay (or just
wd) is a parameter that controls that sum of squares we add to our
loss (assuming parameters is a tensor of all parameters):


loss_with_wd = loss + wd * (parameters**2).sum()


In practice, though, it would be very inefficient (and maybe numerically
unstable) to compute that big sum and add it to the loss. If you
remember a little bit of high school math, you might recall that the
derivative of p**2 with respect to p is 2*p, so adding that big
sum to our loss is exactly the same as doing this:


parameters.grad += wd * 2 * parameters


In practice, since wd is a parameter that we choose, we can make
it twice as big, so we don’t even need the *2 in this
equation. To use weight decay in fastai, pass wd in your call to
fit or fit_one_cycle (it can be passed on both):


model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.972090
      	0.962366
      	00:13
    

    
      	1
      	0.875591
      	0.885106
      	00:13
    

    
      	2
      	0.723798
      	0.839880
      	00:13
    

    
      	3
      	0.586002
      	0.823225
      	00:13
    

    
      	4
      	0.490980
      	0.823060
      	00:13
    

  



Much better!

















Creating Our Own Embedding Module


So far, we’ve used Embedding without thinking about how it
really works. Let’s re-create DotProductBias without using
this class. We’ll need a randomly initialized weight matrix
for each of the embeddings. We have to be careful, however. Recall from
Chapter 4 that optimizers require that they can
get all the parameters of a module from the module’s
parameters method. However, this does not happen fully
automatically. If we just add a tensor as an attribute to a Module, it
will not be included in parameters:


class T(Module):
    def __init__(self): self.a = torch.ones(3)

L(T().parameters())


(#0) []


To tell Module that we want to treat a tensor as a parameter, we have
to wrap it in the nn.Parameter class. This class doesn’t add any functionality (other than automatically calling
requires_grad_ for us). It’s used only as a “marker”
to show what to include in parameters:


class T(Module):
    def __init__(self): self.a = nn.Parameter(torch.ones(3))

L(T().parameters())


(#1) [Parameter containing:
tensor([1., 1., 1.], requires_grad=True)]


All PyTorch modules use nn.Parameter for any trainable parameters,
which is why we haven’t needed to explicitly use this
wrapper until now:


class T(Module):
    def __init__(self): self.a = nn.Linear(1, 3, bias=False)

t = T()
L(t.parameters())


(#1) [Parameter containing:
tensor([[-0.9595],
        [-0.8490],
        [ 0.8159]], requires_grad=True)]


type(t.a.weight)


torch.nn.parameter.Parameter


We can create a tensor as a parameter, with random initialization, like
so:


def create_params(size):
    return nn.Parameter(torch.zeros(*size).normal_(0, 0.01))


Let’s use this to create DotProductBias again, but without
Embedding:


class DotProductBias(Module):
    def __init__(self, n_users, n_movies, n_factors, y_range=(0,5.5)):
        self.user_factors = create_params([n_users, n_factors])
        self.user_bias = create_params([n_users])
        self.movie_factors = create_params([n_movies, n_factors])
        self.movie_bias = create_params([n_movies])
        self.y_range = y_range

    def forward(self, x):
        users = self.user_factors[x[:,0]]
        movies = self.movie_factors[x[:,1]]
        res = (users*movies).sum(dim=1)
        res += self.user_bias[x[:,0]] + self.movie_bias[x[:,1]]
        return sigmoid_range(res, *self.y_range)


Then let’s train it again to check we get around the
same results we saw in the previous section:


model = DotProductBias(n_users, n_movies, 50)
learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.962146
      	0.936952
      	00:14
    

    
      	1
      	0.858084
      	0.884951
      	00:14
    

    
      	2
      	0.740883
      	0.838549
      	00:14
    

    
      	3
      	0.592497
      	0.823599
      	00:14
    

    
      	4
      	0.473570
      	0.824263
      	00:14
    

  



Now, let’s take a look at what our model has learned.
























Interpreting Embeddings and Biases


Our model is already useful, in that it can provide us with movie
recommendations for our users—but it is also interesting to
see what parameters it has discovered. The easiest to interpret are the
biases. Here are the movies with the lowest values in the bias vector:


movie_bias = learn.model.movie_bias.squeeze()
idxs = movie_bias.argsort()[:5]
[dls.classes['title'][i] for i in idxs]


['Children of the Corn: The Gathering (1996)',
 'Lawnmower Man 2: Beyond Cyberspace (1996)',
 'Beautician and the Beast, The (1997)',
 'Crow: City of Angels, The (1996)',
 'Home Alone 3 (1997)']


Think about what this means. What it’s saying is that for each of
these movies, even when a user is very well matched to its latent
factors (which, as we will see in a moment, tend to represent things
like level of action, age of movie, and so forth), they still generally
don’t like it. We could have simply sorted the movies directly
by their average rating, but looking at the learned bias tells us
something much more interesting. It tells us not just whether a movie is
of a kind that people tend not to enjoy watching, but that people tend to not like watching it even if it is of a kind that they would
otherwise enjoy! By the same token, here are the movies with the highest
bias:


idxs = movie_bias.argsort(descending=True)[:5]
[dls.classes['title'][i] for i in idxs]


['L.A. Confidential (1997)',
 'Titanic (1997)',
 'Silence of the Lambs, The (1991)',
 'Shawshank Redemption, The (1994)',
 'Star Wars (1977)']


So, for instance, even if you don’t normally enjoy detective
movies, you might enjoy LA Confidential!


It is not quite so easy to directly interpret the embedding matrices.
There are just too many factors for a human to look at. But there is a
technique that can pull out the most important underlying directions
in such a matrix, called principal component analysis (PCA). We will
not be going into this in detail in this book, because it is not
particularly important for you to understand to be a deep learning
practitioner, but if you are interested, we suggest you check out
the fast.ai course Computational Linear Algebra for Coders.
Figure 8-3 shows what our movies look like based on two of
the strongest PCA components.



[image: Representation of movies based on two strongest PCA components]
Figure 8-3. Representation of movies based on two strongest PCA components




We can see here that the model seems to have discovered a concept of
classic versus pop culture movies, or perhaps it is critically
acclaimed that is represented here.

Jeremy Says

No matter how many models I train, I never stop getting moved and surprised by how these randomly initialized bunches of numbers, trained with such simple mechanics, manage to discover things about my data all by themselves. It almost seems like cheating that I can create code that does useful things without ever actually telling it how to do those things!




We defined our model from scratch to teach you what is inside, but you
can directly use the fastai library to build it. We’ll look at how to do that next.










Using fastai.collab


We can create and train a collaborative filtering model using the
exact structure shown earlier by using fastai’s collab_learner:


learn = collab_learner(dls, n_factors=50, y_range=(0, 5.5))


learn.fit_one_cycle(5, 5e-3, wd=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.931751
      	0.953806
      	00:13
    

    
      	1
      	0.851826
      	0.878119
      	00:13
    

    
      	2
      	0.715254
      	0.834711
      	00:13
    

    
      	3
      	0.583173
      	0.821470
      	00:13
    

    
      	4
      	0.496625
      	0.821688
      	00:13
    

  



The names of the layers can be seen by printing the model:


learn.model


EmbeddingDotBias(
  (u_weight): Embedding(944, 50)
  (i_weight): Embedding(1635, 50)
  (u_bias): Embedding(944, 1)
  (i_bias): Embedding(1635, 1)
)


We can use these to replicate any of the analyses we did in the previous
section—for instance:


movie_bias = learn.model.i_bias.weight.squeeze()
idxs = movie_bias.argsort(descending=True)[:5]
[dls.classes['title'][i] for i in idxs]


['Titanic (1997)',
 "Schindler's List (1993)",
 'Shawshank Redemption, The (1994)',
 'L.A. Confidential (1997)',
 'Silence of the Lambs, The (1991)']


Another interesting thing we can do with these learned embeddings is to
look at 
distance.

















Embedding Distance


On a two-dimensional map, we can calculate the distance between two
coordinates by using the formula of Pythagoras:

  
    
      x 2 
      +
      y 2 
    
  
 (assuming that x and y are the
distances between the coordinates on each axis). For a 50-dimensional
embedding, we can do exactly the same thing, except that we add up the
squares of all 50 of the coordinate distances.


If there were two movies that were nearly identical, their
embedding vectors would also have to be nearly identical, because the
users who would like them would be nearly exactly the same. There is a
more general idea here: movie similarity can be defined by the
similarity of users who like those movies. And that directly means that
the distance between two movies’ embedding vectors can
define that similarity. We can use this to find the most similar movie
to Silence of the Lambs:


movie_factors = learn.model.i_weight.weight
idx = dls.classes['title'].o2i['Silence of the Lambs, The (1991)']
distances = nn.CosineSimilarity(dim=1)(movie_factors, movie_factors[idx][None])
idx = distances.argsort(descending=True)[1]
dls.classes['title'][idx]


'Dial M for Murder (1954)'


Now that we have successfully trained a model, let’s see how
to deal with the situation of having no data for a user. How can we make
recommendations to new users?
























Bootstrapping a Collaborative Filtering Model


The biggest challenge with using collaborative filtering models in
practice is the bootstrapping problem. The most extreme version of
this problem is having no users, and therefore no history to
learn from. What products do you recommend to your very first user?


But even if you are a well-established company with a long history of
user transactions, you still have the question: what do you do when a
new user signs up? And indeed, what do you do when you add a new product
to your portfolio? There is no magic solution to this problem, and
really the solutions that we suggest are just variations of
use your common sense. You could assign new users the mean of all of the embedding vectors of your other users, but this has the problem that that particular combination of latent
factors may be not at all common (for instance, the average for the
science-fiction factor may be high, and the average for the action
factor may be low, but it is not that common to find people who like
science-fiction without action). It would probably be better to pick a
particular user to represent average taste.


Better still is to use a tabular model based on user metadata to
construct your initial embedding vector. When a user signs up, think
about what questions you could ask to help you
understand their tastes. Then you can create a model in which the dependent
variable is a user’s embedding vector, and the independent
variables are the results of the questions that you ask them, along with
their signup metadata. We will see in the next section how to create
these kinds of tabular models. (You may have noticed that when you sign
up for services such as Pandora and Netflix, they tend to ask you a few
questions about what genres of movie or music you like; this is how they
come up with your initial collaborative filtering recommendations.)


One thing to be careful of is that a small number of extremely
enthusiastic users may end up effectively setting the recommendations
for your whole user base. This is a very common problem, for instance,
in movie recommendation systems. People who watch anime tend to watch a
whole lot of it, and don’t watch very much else, and spend a
lot of time putting their ratings on websites. As a result, anime tends to be heavily overrepresented in a lot of
best ever movies lists.
In this particular case, it can be fairly obvious that you have a
problem of representation bias, but if the bias is occurring in the
latent factors, it may not be obvious at all.


Such a problem can change the entire makeup of your user base, and the
behavior of your system. This is particularly true because of positive
feedback loops. If a small number of your users tend to set the
direction of your recommendation system, they are naturally going
to end up attracting more people like them to your system. And that
will, of course, amplify the original representation bias. This type of bias is a
natural tendency to be amplified exponentially. You may have seen
examples of company executives expressing surprise at how their online
platforms rapidly deteriorated in such a way that they expressed values at odds with the values of the founders. In the presence of
these kinds of feedback loops, it is easy to see how such a divergence
can happen both quickly and in a way that is hidden until it is too
late.


In a self-reinforcing system like this, we should probably expect these
kinds of feedback loops to be the norm, not the exception. Therefore,
you should assume that you will see them, plan for that, and identify
up front how you will deal with these issues. Try to think about all of
the ways in which feedback loops may be represented in your system, and
how you might be able to identify them in your data. In the end, this is
coming back to our original advice about how to avoid disaster when
rolling out any kind of machine learning system. It’s all
about ensuring that there are humans in the loop; that there is careful
monitoring, and a gradual and thoughtful rollout.


Our dot product model works quite well, and it is the basis of many
successful real-world recommendation systems. This approach to
collaborative filtering is known as probabilistic matrix factorization
(PMF). Another approach, which generally works similarly well given the
same data, is deep learning.

















Deep Learning for Collaborative Filtering


To turn our architecture into a deep learning model, the first step is to
take the results of the embedding lookup and concatenate those
activations together. This gives us a matrix that we can then pass
through linear layers and nonlinearities in the usual way.


Since we’ll be concatenating the embedding matrices, rather
than taking their dot product, the two embedding
matrices can have different sizes (different numbers of latent
factors). fastai has a function get_emb_sz that returns recommended
sizes for embedding matrices for your data, based on a heuristic that
fast.ai has found tends to work well in practice:


embs = get_emb_sz(dls)
embs


[(944, 74), (1635, 101)]


Let’s implement this class:


class CollabNN(Module):
    def __init__(self, user_sz, item_sz, y_range=(0,5.5), n_act=100):
        self.user_factors = Embedding(*user_sz)
        self.item_factors = Embedding(*item_sz)
        self.layers = nn.Sequential(
            nn.Linear(user_sz[1]+item_sz[1], n_act),
            nn.ReLU(),
            nn.Linear(n_act, 1))
        self.y_range = y_range

    def forward(self, x):
        embs = self.user_factors(x[:,0]),self.item_factors(x[:,1])
        x = self.layers(torch.cat(embs, dim=1))
        return sigmoid_range(x, *self.y_range)


And use it to create a model:


model = CollabNN(*embs)


CollabNN creates our Embedding layers in the same way as previous
classes in this chapter, except that we now use the embs sizes.
self.layers is identical to the mini-neural net we created in
Chapter 4 for MNIST. Then, in forward, we apply
the embeddings, concatenate the results, and pass this through the mini-neural net. Finally, we apply sigmoid_range as we have in previous
models.


Let’s see if it trains:


learn = Learner(dls, model, loss_func=MSELossFlat())
learn.fit_one_cycle(5, 5e-3, wd=0.01)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.940104
      	0.959786
      	00:15
    

    
      	1
      	0.893943
      	0.905222
      	00:14
    

    
      	2
      	0.865591
      	0.875238
      	00:14
    

    
      	3
      	0.800177
      	0.867468
      	00:14
    

    
      	4
      	0.760255
      	0.867455
      	00:14
    

  



fastai provides this model in fastai.collab if you pass use_nn=True
in your call to collab_learner (including calling get_emb_sz for
you), and it lets you easily create more layers. For instance, here
we’re creating two hidden layers, of size 100 and 50,
respectively:


learn = collab_learner(dls, use_nn=True, y_range=(0, 5.5), layers=[100,50])
learn.fit_one_cycle(5, 5e-3, wd=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	1.002747
      	0.972392
      	00:16
    

    
      	1
      	0.926903
      	0.922348
      	00:16
    

    
      	2
      	0.877160
      	0.893401
      	00:16
    

    
      	3
      	0.838334
      	0.865040
      	00:16
    

    
      	4
      	0.781666
      	0.864936
      	00:16
    

  



learn.model is an object of type EmbeddingNN. Let’s take
a look at fastai’s code for this class:


@delegates(TabularModel)
class EmbeddingNN(TabularModel):
    def __init__(self, emb_szs, layers, **kwargs):
        super().__init__(emb_szs, layers=layers, n_cont=0, out_sz=1, **kwargs)


Wow, that’s not a lot of code! This class inherits from
TabularModel, which is where it gets all its functionality from. In
__init__, it calls the same method in TabularModel, passing
n_cont=0 and out_sz=1; other than that, it passes along only
whatever arguments it received.


kwargs and Delegates

EmbeddingNN includes **kwargs as a parameter to __init__. In
Python, **kwargs in a parameter list means “put any additional keyword
arguments into a dict called kwargs.” And **kwargs in an argument list
means “insert all key/value pairs in the kwargs dict as named
arguments here.” This approach is used in many popular libraries, such
as matplotlib, in which the main plot function simply has the
signature plot(*args, **kwargs). The
plot documentation says “The kwargs are Line2D properties” and then
lists those properties.


We’re using **kwargs in EmbeddingNN to avoid having to
write all the arguments to TabularModel a second time, and keep them
in sync. However, this makes our API quite difficult to work with,
because now Jupyter Notebook doesn’t know what parameters
are available. Consequently, things like tab completion of parameter names and
pop-up lists of signatures won’t work.


fastai resolves this by providing a special @delegates decorator,
which automatically changes the signature of the class or function
(EmbeddingNN in this case) to insert all of its keyword arguments into
the signature.




Although the results of EmbeddingNN are a bit worse than the dot
product approach (which shows the power of carefully constructing an
architecture for a domain), it does allow us to do something very
important: we can now directly incorporate other user and movie
information, date and time information, or any other information that may be relevant to the
recommendation. That’s exactly what TabularModel does. In
fact, we’ve now seen that EmbeddingNN is just a
TabularModel, with n_cont=0 and out_sz=1. So, we’d better spend some
time learning about TabularModel, and how to use it to get great
results!  We’ll do that in the next chapter.

















Conclusion


For our first non–computer vision application, we looked at
recommendation systems and saw how gradient descent can learn intrinsic
factors or biases about items from a history of ratings. Those can then
give us information about the data.


We also built our first model in PyTorch. We will do a lot more of this
in the next section of the book, but first, let’s finish our
dive into the other general applications of deep learning, continuing
with tabular data.

















Questionnaire


	
What problem does collaborative filtering solve?



	
How does it solve it?



	
Why might a collaborative filtering predictive model fail to be a very useful recommendation system?



	
What does a crosstab representation of collaborative filtering data look like?



	
Write the code to create a crosstab representation of the MovieLens data (you might need to do some web searching!).



	
What is a latent factor? Why is it “latent”?



	
What is a dot product? Calculate a dot product manually using pure Python with lists.



	
What does pandas.DataFrame.merge do?



	
What is an embedding matrix?



	
What is the relationship between an embedding and a matrix of one-hot-encoded vectors?



	
Why do we need Embedding if we could use one-hot-encoded vectors for the same thing?



	
What does an embedding contain before we start training (assuming we’re not using a pretrained model)?



	
Create a class (without peeking, if possible!) and use it.



	
What does x[:,0] return?



	
Rewrite the DotProduct class (without peeking, if possible!) and train a model with it.



	
What is a good loss function to use for MovieLens? Why?



	
What would happen if we used cross-entropy loss with MovieLens? How would we need to change the model?



	
What is the use of bias in a dot product model?



	
What is another name for weight decay?



	
Write the equation for weight decay (without peeking!).



	
Write the equation for the gradient of weight decay. Why does it help reduce weights?



	
Why does reducing weights lead to better generalization?



	
What does argsort do in PyTorch?



	
Does sorting the movie biases give the same result as averaging overall movie ratings by movie? Why/why not?



	
How do you print the names and details of the layers in a model?



	
What is the “bootstrapping problem” in collaborative filtering?



	
How could you deal with the bootstrapping problem for new users? For new movies?



	
How can feedback loops impact collaborative filtering systems?



	
When using a neural network in collaborative filtering, why can we have different numbers of factors for movies and users?



	
Why is there an nn.Sequential in the CollabNN model?



	
What kind of model should we use if we want to add metadata about users and items, or information such as date and time, to a collaborative filtering model?















Further Research


	
Take a look at all the differences between the Embedding version of DotProductBias and the create_params version, and try to understand why each of those changes is required. If you’re not sure, try reverting each change to see what happens. (NB: even the type of brackets used in forward has changed!)



	
Find three other areas where collaborative filtering is being used, and identify the pros and cons of this approach in those areas.



	
Complete this notebook using the full MovieLens dataset, and compare your results to online benchmarks. See if you can improve your accuracy. Look on the book’s website and the fast.ai forums for ideas. Note that there are more columns in the full dataset—see if you can use those too (the next chapter might give you ideas).



	
Create a model for MovieLens that works with cross-entropy loss, and compare it to the model in this chapter.




























  
Chapter 9. Tabular Modeling Deep Dive



Tabular modeling takes data in the form of a table (like a spreadsheet
or CSV). The objective is to predict the value in
one column based on the values in the other columns. In this chapter, we
will look at not only deep learning, but also more general machine
learning techniques like random forests, as they can give better results
depending on your problem.


We will look at how we should preprocess and clean the data as well as how to
interpret the result of our models after training, but first we will
see how we can feed columns that contain categories into a model that
expects numbers by using embeddings.








Categorical Embeddings


In tabular data, some columns may contain numerical data, like “age,” while
others contain string values, like “sex.” The numerical data can be
directly fed to the model (with some optional preprocessing), but the other
columns need to be converted to numbers. Since the values in those
correspond to different categories, we often call this type of
variables categorical variables. The first type are called continuous

variables.

Jargon: Continuous and Categorical Variables

Continuous variables are numerical data, such as “age,” that can be directly fed to the model, since you can add and multiply them directly. Categorical variables contain a number of discrete levels, such as “movie ID,” for which addition and multiplication don’t have meaning (even if they’re stored as numbers).




At the end of 2015, the
Rossmann sales
competition ran on Kaggle. Competitors were given a wide range of
information about various stores in Germany, and were tasked with trying
to predict sales on a number of days. The goal was to help the company
manage stock properly and be able to satisfy demand
without holding unnecessary inventory. The official training set
provided a lot of information about the stores. It was also permitted
for competitors to use additional data, as long as that data was made
public and available to all participants.


One of the gold medalists used deep learning, in one of the earliest
known examples of a state-of-the-art deep learning tabular model. Their
method involved far less feature engineering, based on domain knowledge,
than those of the other gold medalists. The paper
“Entity Embeddings of Categorical Variables” describes their approach. In an online-only chapter on the book’s website, we show how to replicate it from scratch and attain
the same accuracy shown in the paper. In the abstract of the paper, the authors (Cheng Guo and Felix Bekhahn) say:


Entity embedding not only reduces memory usage and speeds up neural networks compared with one-hot encoding, but more importantly by mapping similar values close to each other in the embedding space it reveals the intrinsic properties of the categorical variables…[It] is especially useful for datasets with lots of high cardinality features, where other methods tend to overfit…As entity embedding defines a distance measure for categorical variables, it can be used for visualizing categorical data and for data clustering.



We have already noticed all of these points when we built our
collaborative filtering model. We can clearly see that these insights go
far beyond just collaborative filtering, however.


The paper also points out that (as we discussed in the preceding chapter)
an embedding layer is exactly equivalent to placing an ordinary
linear layer after every one-hot-encoded input layer. The authors used the
diagram in Figure 9-1 to show this equivalence. Note that
“dense layer” is a term with the same meaning as “linear
layer,” and the one-hot encoding layers represent inputs.


The insight is important because we already know how to train linear
layers, so this shows that from the point of view of the architecture
and our training algorithm, the embedding layer is just another layer. We
also saw this in practice in the preceding chapter, when we built a
collaborative filtering neural network that looks exactly like this
diagram.


Just as we analyzed the embedding weights for movie reviews, the authors
of the entity embeddings paper analyzed the embedding weights for their
sales prediction model. What they found was quite amazing, and
illustrates their second key insight: the embedding transforms
the categorical variables into inputs that are both continuous and meaningful.



[image: Entity embeddings in a neural network]
Figure 9-1. Entity embeddings in a neural network (courtesy of Cheng Guo and Felix Berkhahn)




The images in Figure 9-2 illustrate these ideas. They
are based on the approaches used in the paper, along with some analysis
we have added.



[image: State embeddings and map]
Figure 9-2. State embeddings and map (courtesy of Cheng Guo and Felix Berkhahn)




On the left is a plot of the embedding matrix for the
possible values of the State category. For a categorical variable, we
call the possible values of the variable its “levels” (or
“categories” or “classes”), so here one level is “Berlin,” another
is “Hamburg,” etc. On the right is a map of Germany. The actual
physical locations of the German states were not part of the provided
data, yet the model itself learned where they must be, based only on
the behavior of store sales!


Do you remember how we talked about distance between embeddings? The
authors of the paper plotted the distance between store embeddings against the actual geographic distance between the stores
(see Figure 9-3). They found that they matched very
closely!



[image: Store distances]
Figure 9-3. Store distances (courtesy of Cheng Guo and Felix Berkhahn)




We’ve even tried plotting the embeddings for days of the week
and months of the year, and found that days and months that are near
each other on the calendar ended up close as embeddings too, as shown in
Figure 9-4.


What stands out in these two examples is that we provide the model
fundamentally categorical data about discrete entities (e.g., German states or
days of the week), and then the model learns an embedding for these
entities that defines a continuous notion of distance between them.
Because the embedding distance was learned based on real patterns in the
data, that distance tends to match up with our intuitions.



[image: Date embeddings]
Figure 9-4. Date embeddings (courtesy of Cheng Guo and Felix Berkhahn)




In addition, it is valuable in its own right that embeddings are
continuous, because models are better at understanding
continuous variables. This is unsurprising considering models are built
of many continuous parameter weights and continuous activation values,
which are updated via gradient descent (a learning algorithm for finding
the minimums of continuous functions).


Another benefit is that we can combine our continuous embedding
values with truly continuous input data in a straightforward manner: we
just concatenate the variables and feed the concatenation into our
first dense layer. In other words, the raw categorical data is
transformed by an embedding layer before it interacts with the raw
continuous input data. This is how fastai and Guo and Berkhahn handle tabular models containing continuous and categorical
variables.


An example using this concatenation approach is how Google does its
recommendations on Google Play, as explained in the paper
“Wide & Deep Learning for Recommender
Systems”. Figure 9-5 illustrates this.


Interestingly, the Google team combined both approaches we
saw in the previous chapter: the dot product (which they call cross
product) and neural network approaches.



[image: The Google Play recommendation system]
Figure 9-5. The Google Play recommendation system




Let’s pause for a moment. So far, the solution to all of
our modeling problems has been to train a deep learning model. And
indeed, that is a pretty good rule of thumb for complex unstructured
data like images, sounds, natural language text, and so forth. Deep
learning also works very well for collaborative filtering. But it is not
always the best starting point for analyzing tabular data.

















Beyond Deep Learning


Most machine learning courses will throw dozens of algorithms
at you, with a brief technical description of the math behind them and
maybe a toy example. You’re left confused by the enormous
range of techniques shown and have little practical understanding of how
to apply them.


The good news is that modern machine learning can be distilled down to a
couple of key techniques that are widely applicable. Recent studies have
shown that the vast majority of datasets can be best modeled with just
two methods:



	
Ensembles of decision trees (i.e., random forests and gradient boosting machines), mainly for structured data (such as you might find in a database table at most companies)



	
Multilayered neural networks learned with SGD (i.e., shallow and/or deep learning), mainly for unstructured data (such as audio, images, and natural language)






Although deep learning is nearly always clearly superior for
unstructured data, these two approaches tend to give quite similar
results for many kinds of structured data. But ensembles of decision
trees tend to train faster, are often easier to interpret, do not
require special GPU hardware for inference at scale, and often require
less 
hyperparameter tuning. They have also been popular for quite a lot
longer than deep learning, so there is a more mature ecosystem of
tooling and documentation around them.


Most importantly, the critical step of interpreting a model of tabular
data is significantly easier for decision tree ensembles. There are
tools and methods for answering the pertinent questions, like these: Which columns in the dataset were the most important for your
predictions? How are they related to the dependent variable? How do they
interact with each other? And which particular features were most
important for some particular observation?


Therefore, ensembles of decision trees are our first approach for
analyzing a new tabular dataset.


The exception to this guideline is when the dataset meets one of these
conditions:



	
There are some high-cardinality categorical variables that are very
important (“cardinality” refers to the number of discrete levels
representing categories, so a high-cardinality categorical variable is
something like a zip code, which can take on thousands of possible
levels).



	
There are some columns that contain data that would be best
understood with a neural network, such as plain text data.






In practice, when we deal with datasets that meet these exceptional
conditions, we always try both decision tree ensembles and deep
learning to see which works best. Deep learning will likely
be a useful approach in our example of collaborative filtering, as we
have at least two high-cardinality categorical variables: the users and
the movies. But in practice, things tend to be less cut-and-dried, and
there will often be a mixture of high- and low-cardinality categorical
variables and continuous variables.


Either way, it’s clear that we are going to need to add
decision tree ensembles to our modeling toolbox!


Up to now, we’ve used PyTorch and fastai for pretty much all
of our heavy lifting. But these libraries are mainly designed for
algorithms that do lots of matrix multiplication and derivatives (that
is, stuff like deep learning!). Decision trees don’t depend
on these operations at all, so PyTorch isn’t much use.


Instead, we will be largely relying on a library called scikit-learn
(also known as sklearn). Scikit-learn is a popular library for
creating machine learning models, using approaches that are not covered
by deep learning. In addition, we’ll need to do some tabular
data processing and querying, so we’ll want to use the
Pandas library. Finally, we’ll also need NumPy, since
that’s the main numeric programming library that both
sklearn and Pandas rely on.


We don’t have time to do a deep dive into all these libraries
in this book, so we’ll just be touching on some of the main
parts of each. For a far more in-depth discussion, we strongly suggest
Wes McKinney’s Python for Data Analysis (O’Reilly). McKinney is the creator of Pandas, so you can be
sure that the information is accurate!


First, let’s gather the data we will use.

















The Dataset


The dataset we use in this chapter is from the Blue Book for Bulldozers
Kaggle competition, which has the following description: “The goal of the contest is to predict the sale
price of a particular piece of heavy equipment at auction based on its
usage, equipment type, and configuration. The data is sourced from
auction result postings and includes information on usage and equipment
configurations.”


This is a very common type of dataset and prediction problem,
similar to what you may see in your project or workplace.
The dataset is available for download on Kaggle, a website that hosts
data science competitions.










Kaggle Competitions


Kaggle is an awesome resource for aspiring data scientists or anyone
looking to improve their machine learning skills. There is nothing like
getting hands-on practice and receiving real-time feedback to help you
improve your skills.


Kaggle provides the following:



	
Interesting datasets



	
Feedback on how you’re doing



	
A leaderboard to see what’s good, what’s possible, and what’s state-of-the-art



	
Blog posts by winning contestants sharing useful tips and techniques






Until now, all our datasets have been available to download through
fastai’s integrated dataset system. However, the dataset we
will be using in this chapter is available only from Kaggle. Therefore,
you will need to register on the site, then go to the
page for the
competition. On that page click Rules, and then I Understand
and Accept. (Although the competition has finished, and you will not
be entering it, you still have to agree to the rules to be allowed to
download the data.)


The easiest way to download Kaggle datasets is to use the Kaggle API.
You can install this by using pip and running this in a notebook cell:

!pip install kaggle


You need an API key to use the Kaggle API; to get one, click your profile picture on the Kaggle website and choose My Account; then click Create New API Token. This will save a file called kaggle.json to your PC. You need to copy this key on your GPU server. To do so, open the file you downloaded, copy the contents, and paste them inside the single quotes in the following cell in the notebook associated with this chapter (e.g., creds = '{"username":"xxx","key":"xxx"}'):


creds = ''


Then execute this cell (this needs to be run only once):


cred_path = Path('~/.kaggle/kaggle.json').expanduser()
if not cred_path.exists():
    cred_path.parent.mkdir(exist_ok=True)
    cred_path.write(creds)
    cred_path.chmod(0o600)


Now you can download datasets from Kaggle! Pick a path
to download the dataset to:


path = URLs.path('bluebook')
path


Path('/home/sgugger/.fastai/archive/bluebook')


And use the Kaggle API to download the dataset to that path and
extract it:


if not path.exists():
    path.mkdir()
    api.competition_download_cli('bluebook-for-bulldozers', path=path)
    file_extract(path/'bluebook-for-bulldozers.zip')

path.ls(file_type='text')


(#7) [Path('Valid.csv'),Path('Machine_Appendix.csv'),Path('ValidSolution.csv'),P
 > ath('TrainAndValid.csv'),Path('random_forest_benchmark_test.csv'),Path('Test.
 > csv'),Path('median_benchmark.csv')]


Now that we have downloaded our dataset, let’s take a look
at it!

















Look at the Data


Kaggle provides information about some of the fields of our dataset. The Data
page explains that the key fields in train.csv are as follows:


	SalesID

	
The unique identifier of the sale.



	MachineID

	
The unique identifier of a machine. A machine can be sold multiple times.



	saleprice

	
What the machine sold for at auction (provided only in train.csv).



	saledate

	
The date of the sale.






In any sort of data science work, it’s important to look at
your data directly to make sure you understand the format, how
it’s stored, what types of values it holds, etc. Even if
you’ve read a description of the data, the actual data
may not be what you expect. We’ll start by reading the
training set into a Pandas DataFrame. Generally, it’s a good idea to
also specify low_memory=False unless Pandas actually runs out of
memory and returns an error. The low_memory parameter, which is True
by default, tells Pandas to look at only a few rows of data at a time to
figure out what type of data is in each column. This means that Pandas
can end up using different data types for different rows,
which generally leads to data processing errors or model training
problems later.


Let’s load our data and have a look at the columns:


df = pd.read_csv(path/'TrainAndValid.csv', low_memory=False)


df.columns


Index(['SalesID', 'SalePrice', 'MachineID', 'ModelID', 'datasource',
       'auctioneerID', 'YearMade', 'MachineHoursCurrentMeter', 'UsageBand',
       'saledate', 'fiModelDesc', 'fiBaseModel', 'fiSecondaryDesc',
       'fiModelSeries', 'fiModelDescriptor', 'ProductSize',
       'fiProductClassDesc', 'state', 'ProductGroup', 'ProductGroupDesc',
       'Drive_System', 'Enclosure', 'Forks', 'Pad_Type', 'Ride_Control',
       'Stick', 'Transmission', 'Turbocharged', 'Blade_Extension',
       'Blade_Width', 'Enclosure_Type', 'Engine_Horsepower', 'Hydraulics',
       'Pushblock', 'Ripper', 'Scarifier', 'Tip_Control', 'Tire_Size',
       'Coupler', 'Coupler_System', 'Grouser_Tracks', 'Hydraulics_Flow',
       'Track_Type', 'Undercarriage_Pad_Width', 'Stick_Length', 'Thumb',
       'Pattern_Changer', 'Grouser_Type', 'Backhoe_Mounting', 'Blade_Type',
       'Travel_Controls', 'Differential_Type', 'Steering_Controls'],
      dtype='object')


That’s a lot of columns for us to look at! Try looking
through the dataset to get a sense of what kind of information is in
each one. We’ll shortly see how to “zero in” on the most
interesting bits.


At this point, a good next step is to handle ordinal columns. This
refers to columns containing strings or similar, but where those strings
have a natural ordering. For instance, here are the levels of
ProductSize:


df['ProductSize'].unique()


array([nan, 'Medium', 'Small', 'Large / Medium', 'Mini', 'Large', 'Compact'],
 > dtype=object)


We can tell Pandas about a suitable ordering of these levels like so:


sizes = 'Large','Large / Medium','Medium','Small','Mini','Compact'


df['ProductSize'] = df['ProductSize'].astype('category')
df['ProductSize'].cat.set_categories(sizes, ordered=True, inplace=True)


The most important data column is the dependent variable—the
one we want to predict. Recall that a model’s metric is a function that
reflects how good the predictions are. It’s important to
note what metric is being used for a project. Generally, selecting the
metric is an important part of the project setup. In many cases,
choosing a good metric will require more than just selecting a variable
that already exists. It is more like a design process. You should think
carefully about which metric, or set of metric, actually measures the
notion of model quality that matters to you. If no variable represents
that metric, you should see if you can build the metric from the
variables that are available.


However, in this case, Kaggle tells us what metric to use: the root
mean squared log error (RMLSE) between the actual and predicted auction prices.
We need do only a small amount of processing to use this: we take
the log of the prices, so that the m_rmse of that value will give us what we
ultimately need:


dep_var = 'SalePrice'


df[dep_var] = np.log(df[dep_var])


We are now ready to explore our first machine learning algorithm
for tabular data: decision trees.
























Decision Trees


Decision tree ensembles, as the name suggests, rely on decision trees.
So let’s start there! A decision tree asks a series of
binary (yes or no) questions about the data. After each
question, the data at that part of the tree is split between a Yes
and a No branch, as shown in Figure 9-6. After one or
more questions, either a prediction can be made on the basis of all
previous answers or another question is required.


This sequence of questions is now a procedure for taking any data item,
whether an item from the training set or a new one, and assigning that
item to a group. Namely, after asking and answering the questions, we
can say the item belongs to the same group as all the other training data
items that yielded the same set of answers to the questions. But what
good is this? The goal of our model is to predict values for items, not
to assign them into groups from the training dataset. The value
is that we can now assign a prediction value for each of these
groups—for regression, we take the target mean of the items in the
group.



[image: An example of decision tree]
Figure 9-6. An example of decision tree




Let’s consider how we find the right questions to ask. Of
course, we wouldn’t want to have to create all these
questions ourselves—that’s what computers are for! The
basic steps to train a decision tree can be written down very easily:


	
Loop through each column of the dataset in turn.



	
For each column, loop through each possible level of that column in turn.



	
Try splitting the data into two groups, based on whether they are greater than or less than that value (or if it is a categorical variable, based on whether they are equal to or not equal to that level of that categorical variable).



	
Find the average sale price for each of those two groups, and see how close that is to the actual sale price of each of the items of equipment in that group. Treat this as a very simple “model” in which our predictions are simply the average sale price of the item’s group.



	
After looping through all of the columns and all the possible levels for each, pick the split point that gave the best predictions using that simple model.



	
We now have two groups for our data, based on this selected split. Treat each group as a separate dataset, and find the best split for each by going back to step 1 for each group.



	
Continue this process recursively, until you have reached some stopping criterion for each group—for instance, stop splitting a group further when it has only 20 items in it.







Although this is an easy enough algorithm to implement yourself (and it
is a good exercise to do so), we can save some time by using the
implementation built into sklearn.


First, however, we need to do a little data preparation.

Alexis Says

Here’s a productive question to ponder. If you consider that the procedure for defining a decision tree essentially chooses one sequence of splitting questions about variables, you might ask yourself, how do we know this procedure chooses the correct sequence? The rule is to choose the splitting question that produces the best split (i.e., that most accurately separates the items into two distinct categories), and then to apply the same rule to the groups that split produces, and so on. This is known in computer science as a “greedy” approach. Can you imagine a scenario in which asking a “less powerful” splitting question would enable a better split down the road (or should I say down the trunk!) and lead to a better result overall?












Handling Dates


The first piece of data preparation we need to do is to enrich our
representation of dates. The fundamental basis of the decision tree
that we just described is bisection—dividing a group into two. We
look at the ordinal variables and divide the dataset based on whether
the variable’s value is greater (or lower) than a
threshold, and we look at the categorical variables and divide the
dataset based on whether the variable’s level is a
particular level. So this algorithm has a way of dividing the dataset
based on both ordinal and categorical data.


But how does this apply to a common data type, the date? You might want to
treat a date as an ordinal value, because it is meaningful to say that
one date is greater than another. However, dates are a bit different
from most ordinal values in that some dates are qualitatively different
from others in a way that that is often relevant to the systems we are
modeling.


To help our algorithm handle dates intelligently,
we’d like our model to know more than whether a date is more
recent or less recent than another. We might want our model to make decisions based
on that date’s day of the week, on whether a day is a holiday,
on what month it is in, and so forth. To do this, we replace every date
column with a set of date metadata columns, such as holiday, day of
week, and month. These columns provide categorical data that we suspect
will be useful.


fastai comes with a function that will do this for us—we just have to
pass a column name that contains dates:


df = add_datepart(df, 'saledate')


Let’s do the same for the test set while we’re
there:


df_test = pd.read_csv(path/'Test.csv', low_memory=False)
df_test = add_datepart(df_test, 'saledate')


We can see that there are now lots of new columns in our DataFrame:


' '.join(o for o in df.columns if o.startswith('sale'))


'saleYear saleMonth saleWeek saleDay saleDayofweek saleDayofyear
 > saleIs_month_end saleIs_month_start saleIs_quarter_end saleIs_quarter_start
 > saleIs_year_end saleIs_year_start saleElapsed'


This is a good first step, but we will need to do a bit more cleaning.
For this, we will use fastai objects called TabularPandas and
TabularProc.

















Using TabularPandas and TabularProc


A second piece of preparatory processing is to be sure we can handle
strings and missing data. Out of the box, sklearn cannot do either.
Instead we will use fastai’s class TabularPandas, which
wraps a Pandas DataFrame and provides a few conveniences. To populate a
TabularPandas, we will use two TabularProcs, Categorify and

FillMissing. A TabularProc is like a regular Transform, except
for the following:



	
It returns the exact same object that’s passed to it,
after modifying the object in place.



	
It runs the transform once, when data is first passed in, rather than
lazily as the data is accessed.






Categorify is a TabularProc that replaces a column with a numeric
categorical column. FillMissing is a TabularProc that replaces
missing values with the median of the column, and creates a new Boolean
column that is set to True for any row where the value was missing.
These two transforms are needed for nearly every tabular dataset you
will use, so this is a good starting point for your data
processing:


procs = [Categorify, FillMissing]


TabularPandas will also handle splitting the dataset into training and validation sets for us. However, we need to be very careful about our validation set. We want to design it so that it is like the test set Kaggle will
use to judge the contest.


Recall the distinction between a validation set and a test set, as
discussed in Chapter 1. A validation set is data we
hold back from training in order to ensure that the training process
does not overfit on the training data. A test set is data that is held
back even more deeply, from us ourselves, in order to ensure that we
don’t overfit on the validation data as we explore various
model architectures and hyperparameters.


We don’t get to see the test set. But we do want to define
our validation data so that it has the same sort of relationship to the
training data as the test set will have.


In some cases, just randomly choosing a subset of your data points will
do that. This is not one of those cases, because it is a time series.


If you look at the date range represented in the test set, you will
discover that it covers a six-month period from May 2012, which is later
in time than any date in the training set. This is a good design,
because the competition sponsor will want to ensure that a model is able
to predict the future. But it means that if we are going to have a
useful validation set, we also want the validation set to be later in
time than the training set. The Kaggle training data ends in April 2012, so we will define a
narrower training dataset that consists only of the Kaggle training
data from before November 2011, and we’ll define a validation set consisting of data
from after November 2011.


To do this we use np.where, a useful function that returns (as the
first element of a tuple) the indices of all True values:


cond = (df.saleYear<2011) | (df.saleMonth<10)
train_idx = np.where( cond)[0]
valid_idx = np.where(~cond)[0]

splits = (list(train_idx),list(valid_idx))


TabularPandas needs to be told which columns are continuous and which
are categorical. We can handle that automatically using the helper
function cont_cat_split:


cont,cat = cont_cat_split(df, 1, dep_var=dep_var)


to = TabularPandas(df, procs, cat, cont, y_names=dep_var, splits=splits)


A TabularPandas behaves a lot like a fastai Datasets object,
including providing train and valid attributes:


len(to.train),len(to.valid)


(404710, 7988)


We can see that the data is still displayed as strings for categories
(we show only a few columns here because the full table is too big to fit on a
page):


to.show(3)


  
    
      	
      	state
      	ProductGroup
      	Drive_System
      	Enclosure
      	SalePrice
    

  
  
    
      	0
      	Alabama
      	WL
      	#na#
      	EROPS w AC
      	11.097410
    

    
      	1
      	North Carolina
      	WL
      	#na#
      	EROPS w AC
      	10.950807
    

    
      	2
      	New York
      	SSL
      	#na#
      	OROPS
      	9.210340
    

  



However, the underlying items are all numeric:


to.items.head(3)


  
    
      	
      	state
      	ProductGroup
      	Drive_System
      	Enclosure
    

  
  
    
      	0
      	1
      	6
      	0
      	3
    

    
      	1
      	33
      	6
      	0
      	3
    

    
      	2
      	32
      	3
      	0
      	6
    

  



The conversion of categorical columns to numbers is done by simply
replacing each unique level with a number. The numbers associated with
the levels are chosen consecutively as they are seen in a column, so
there’s no particular meaning to the numbers in categorical
columns after conversion. The exception is if you first convert a column
to a Pandas ordered category (as we did for ProductSize earlier), in
which case the ordering you chose is used. We can see the mapping by
looking at the classes attribute:


to.classes['ProductSize']


(#7) ['#na#','Large','Large / Medium','Medium','Small','Mini','Compact']


Since it takes a minute or so to process the data to get to this point,
we should save it—that way, in the future, we can continue our work from
here without rerunning the previous steps. fastai provides a save
method that uses Python’s pickle system to save nearly any
Python object:


(path/'to.pkl').save(to)


To read this back later, you would type this:


to = (path/'to.pkl').load()


Now that all this preprocessing is done, we are ready to create a
decision tree.

















Creating the Decision Tree


To begin, we define our independent and dependent variables:


xs,y = to.train.xs,to.train.y
valid_xs,valid_y = to.valid.xs,to.valid.y


Now that our data is all numeric, and there are no missing values, we
can create a decision tree:


m = DecisionTreeRegressor(max_leaf_nodes=4)
m.fit(xs, y);


To keep it simple, we’ve told sklearn to create just four leaf nodes. To see what it’s learned, we can display the tree:


draw_tree(m, xs, size=7, leaves_parallel=True, precision=2)



[image: ]





Understanding this picture is one of the best ways to understand
decision trees, so we will start at the top and explain each part
step by step.


The top node represents the initial model before any splits have been
done, when all the data is in one group. This is the simplest possible
model. It is the result of asking zero questions and will always predict the
value to be the average value of the whole dataset. In this case, we can
see it predicts a value of 10.1 for the logarithm of the sales price.
It gives a mean squared error of 0.48. The square root of this is 0.69.
(Remember that unless you see m_rmse, or a root mean squared error, the value you are looking at is before taking the square root, so
it is just the average of the square of the differences.) We can also see
that there are 404,710 auction records in this group—that is the total
size of our training set. The final piece of information shown here is
the decision criterion for the best split that was found, which is
to split based on the 
coupler_system column.


Moving down and to the left, this node shows us that there were 360,847
auction records for equipment where coupler_system was less than 0.5.
The average value of our dependent variable in this group is 10.21.
Moving down and to the right from the initial model takes us to the
records where coupler_system was greater than 0.5.


The bottom row contains our leaf nodes: the nodes with no answers
coming out of them, because there are no more questions to be answered.
At the far right of this row is the node containing records where coupler_system was greater
than 0.5. The average value is 9.21, so we can see
the decision tree algorithm did find a single binary decision that
separated high-value from low-value auction results. Asking only about
coupler_system predicts an average value of 9.21 versus 10.1.


Returning back to the top node after the first decision point, we can
see that a second binary decision split has been made, based on asking
whether YearMade is less than or equal to 1991.5. For the group where
this is true (remember, this is now following two binary decisions, based on
coupler_system and YearMade), the average value is 9.97, and there
are 155,724 auction records in this group. For the group of auctions
where this decision is false, the average value is 10.4, and there are
205,123 records. So again, we can see that the decision tree algorithm
has successfully split our more expensive auction records into two more
groups that differ in value significantly.


We can show the same information using Terence Parr’s
powerful dtreeviz library:


samp_idx = np.random.permutation(len(y))[:500]
dtreeviz(m, xs.iloc[samp_idx], y.iloc[samp_idx], xs.columns, dep_var,
        fontname='DejaVu Sans', scale=1.6, label_fontsize=10,
        orientation='LR')



[image: ]





This shows a chart of the distribution of the data for each split point.
We can clearly see that there’s a problem with our
YearMade data: there are bulldozers made in the year 1000, apparently!
Presumably, this is just a missing value code (a value that doesn’t otherwise appear in
the data and that is used as a placeholder in cases where a value is missing). For modeling purposes,
1000 is fine, but as you can see, this outlier makes visualizing the values we are interested in more difficult. So, let’s replace it with
1950:


xs.loc[xs['YearMade']<1900, 'YearMade'] = 1950
valid_xs.loc[valid_xs['YearMade']<1900, 'YearMade'] = 1950


That change makes the split much clearer in the tree visualization,
even although it doesn’t change the result of the
model in any significant way. This is a great example of how resilient
decision trees are to data issues!


m = DecisionTreeRegressor(max_leaf_nodes=4).fit(xs, y)
dtreeviz(m, xs.iloc[samp_idx], y.iloc[samp_idx], xs.columns, dep_var,
        fontname='DejaVu Sans', scale=1.6, label_fontsize=10,
        orientation='LR')



[image: ]





Let’s now have the decision tree algorithm build a bigger
tree. Here, we are not passing in any stopping criteria such as
max_leaf_nodes:


m = DecisionTreeRegressor()
m.fit(xs, y);


We’ll create a little function to check the root mean
squared error of our model (m_rmse), since that’s how the
competition was judged:


def r_mse(pred,y): return round(math.sqrt(((pred-y)**2).mean()), 6)
def m_rmse(m, xs, y): return r_mse(m.predict(xs), y)


m_rmse(m, xs, y)


0.0


So, our model is perfect, right? Not so fast…remember, we really need to
check the validation set, to ensure we’re not overfitting:


m_rmse(m, valid_xs, valid_y)


0.337727


Oops—it looks like we might be overfitting pretty badly.
Here’s why:


m.get_n_leaves(), len(xs)


(340909, 404710)


We have nearly as many leaf nodes as data points! That
seems a little over-enthusiastic. Indeed, sklearn’s default
settings allow it to continue splitting nodes until there is only one
item in each leaf node. Let’s change the stopping rule to tell
sklearn to ensure every leaf node contains at least 25 auction records:


m = DecisionTreeRegressor(min_samples_leaf=25)
m.fit(to.train.xs, to.train.y)
m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y)


(0.248562, 0.32368)


That looks much better. Let’s check the number of leaves
again:


m.get_n_leaves()


12397


Much more reasonable!

Alexis Says

Here’s my intuition for an overfitting decision tree with more leaf nodes than data items. Consider the game Twenty Questions. In that game, the chooser secretly imagines an object (like, “our television set”), and the guesser gets to pose 20 yes or no questions to try to guess what the object is (like “Is it bigger than a breadbox?”). The guesser is not trying to predict a numerical value, but just to identify a particular object out of the set of all imaginable objects. When your decision tree has more leaves than there are possible objects in your domain, it is essentially a well-trained guesser. It has learned the sequence of questions needed to identify a particular data item in the training set, and it is “predicting” only by describing that item’s value. This is a way of memorizing the training set—i.e., of overfitting.




Building a decision tree is a good way to create a model of our data. It
is very flexible, since it can clearly handle nonlinear relationships
and interactions between variables. But we can see there is a
fundamental compromise between how well it generalizes (which we can
achieve by creating small trees) and how accurate it is on the training
set (which we can achieve by using large trees).


So how do we get the best of both worlds? We’ll show you
right after we handle an important missing detail: how to handle
categorical variables.

















Categorical Variables


In the previous chapter, when working with deep learning networks, we dealt with categorical variables by one-hot encoding them and feeding them to an embedding layer.
The embedding layer helped the model to discover the meaning of the different levels of these variables (the levels of a categorical variable do not have an intrinsic meaning, unless we manually specify an ordering using Pandas). In a decision tree, we don’t have embedding layers—so how can these untreated categorical variables do
anything useful in a decision tree? For instance, how could something
like a product code be used?


The short answer is: it just works! Think about a situation in which one product code is far more expensive at auction than any other
one. In that case, any binary split will result in that one product code
being in some group, and that group will be more expensive than the
other group. Therefore, our simple decision tree building algorithm will
choose that split. Later, during training, the algorithm will be able to
further split the subgroup that contains the expensive product
code, and over time, the tree will home in on that one expensive product.


It is also possible to use one-hot encoding to replace a single
categorical variable with multiple one-hot-encoded columns, where each column
represents a possible level of the variable. Pandas has a get_dummies
method that does just that.


However, there is not really any evidence that such an approach improves
the end result. So, we generally avoid it where possible, because it
does end up making your dataset harder to work with. In 2019, this issue
was explored in the paper “Splitting on Categorical Predictors in Random Forests” by Marvin Wright and Inke König:


The standard approach for nominal predictors is to consider all 2k − 1 − 1 2-partitions of the k predictor categories. However, this exponential relationship produces a large number of potential splits to be evaluated, increasing computational complexity and restricting the possible number of categories in most implementations. For binary classification and regression, it was shown that ordering the predictor categories in each split leads to exactly the same splits as the standard approach. This reduces computational complexity because only k − 1 splits have to be considered for a nominal predictor with k categories.



Now that you understand how decision trees work, it’s time for that best-of-both-worlds solution: random
forests.
























Random Forests


In 1994, Berkeley professor Leo Breiman, one year after his retirement,
published a small technical report called
“Bagging Predictors”, which turned out to be one of the most influential ideas
in modern machine learning. The report began:


Bagging predictors is a method for generating multiple versions of a predictor and using these to get an aggregated predictor. The aggregation averages over the versions…The multiple versions are formed by making bootstrap replicates of the learning set and using these as new learning sets. Tests…show that bagging can give substantial gains in accuracy. The vital element is the instability of the prediction method. If perturbing the learning set can cause significant changes in the predictor constructed, then bagging can improve accuracy.



Here is the procedure that Breiman is proposing:


	
Randomly choose a subset of the rows of your data (i.e., “bootstrap replicates of your learning set”).



	
Train a model using this subset.



	
Save that model, and then return to step 1 a few times.



	
This will give you multiple trained models. To make a
prediction, predict using all of the models, and then take the average
of each of those model’s predictions.







This procedure is known as bagging. It is based on a deep and
important insight: although each of the models trained on a subset of
data will make more errors than a model trained on the full dataset,
those errors will not be correlated with each other. Different models
will make different errors. The average of those errors, therefore, is
zero! So if we take the average of all of the models’
predictions, we should end up with a prediction that gets closer
and closer to the correct answer, the more models we have. This is an
extraordinary result—it means that we can improve the accuracy of
nearly any kind of machine learning algorithm by training it multiple
times, each time on a different random subset of the data, and averaging its
predictions.


In 2001, Breiman went on to demonstrate that this approach to
building models, when applied to decision tree building algorithms, was
particularly powerful. He went even further than just randomly choosing
rows for each model’s training, but also randomly selected
from a subset of columns when choosing each split in each decision tree.
He called this method the random forest. Today it is, perhaps, the
most widely used and practically important machine learning method.


In essence, a random forest is a model that averages the predictions of a
large number of decision trees, which are generated by randomly varying
various parameters that specify what data is used to train the tree and
other tree parameters. Bagging is a 
particular approach to
ensembling, or combining the results
of multiple models together. To see how it works in practice, let’s get started on creating
our own random forest!










Creating a Random Forest


We can create a random forest just like we created a decision tree, except now we are also specifying parameters that indicate how many
trees should be in the forest, how we should subset the data items (the
rows), and how we should subset the fields (the columns).


In the following function definition, n_estimators defines the number of
trees we want, max_samples defines how many rows to sample for
training each tree, and max_features defines how many columns to
sample at each split point (where 0.5 means “take half the total
number of columns”). We can also specify when to
stop splitting the tree nodes, effectively limiting the depth of the tree,
by including the same min_samples_leaf parameter we used in the preceding
section. Finally, we pass n_jobs=-1 to tell sklearn to use all our
CPUs to build the trees in parallel. By creating a little function for
this, we can more quickly try variations in the rest of this
chapter:


def rf(xs, y, n_estimators=40, max_samples=200_000,
       max_features=0.5, min_samples_leaf=5, **kwargs):
    return RandomForestRegressor(n_jobs=-1, n_estimators=n_estimators,
        max_samples=max_samples, max_features=max_features,
        min_samples_leaf=min_samples_leaf, oob_score=True).fit(xs, y)


m = rf(xs, y);


Our validation RMSE is now much improved over our last result produced
by the DecisionTreeRegressor, which made just one tree using all the
available data:


m_rmse(m, xs, y), m_rmse(m, valid_xs, valid_y)


(0.170896, 0.233502)


One of the most important properties of random forests is that they
aren’t very sensitive to the hyperparameter choices, such as
max_features. You can set n_estimators to as high a number as you
have time to train—the more trees you have, the more accurate the model will be.
max_samples can often be left at its default, unless you have over
200,000 data points, in which case setting it to 200,000 will make it
train faster with little impact on accuracy. max_features=0.5 and
min_samples_leaf=4 both tend to work well, although
sklearn’s defaults work well too.


The sklearn docs
show
an example of the effects of different max_features choices, with increasing numbers
of trees. In the plot, the blue plot line uses the fewest features, and
the green line uses the most (it uses all the features). As you can
see in Figure 9-7, the models with the lowest error result
from using a subset of features but with a larger number of trees.



[image: sklearn max_features chart]
Figure 9-7. Error based on max features and number of trees (source: https://oreil.ly/E0Och)




To see the impact of n_estimators, let’s get the
predictions from each individual tree in our forest (these are in the
estimators_ attribute):


preds = np.stack([t.predict(valid_xs) for t in m.estimators_])


As you can see, preds.mean(0) gives the same results as our random
forest:


r_mse(preds.mean(0), valid_y)


0.233502


Let’s see what happens to the RMSE as we add more and more trees. As
you can see, the improvement levels off quite a bit after around 30
trees:


plt.plot([r_mse(preds[:i+1].mean(0), valid_y) for i in range(40)]);



[image: ]





The performance on our validation set is worse than on our training set. But is that because
we’re overfitting, or because the validation set covers a
different time period, or a bit of both? With the existing information
we’ve seen, we can’t tell. However, random
forests have a very clever trick called out-of-bag (OOB) error that can help us with this (and more!).

















Out-of-Bag Error


Recall that in a random forest, each tree is trained on a different subset of the training data. The OOB error is a way of measuring prediction error in the training dataset by including in the calculation of a row’s error trees only where that row was not included in training.
This allows us to see whether the model is overfitting, without needing a separate validation set.

Alexis Says

My intuition for this is that, since every tree was trained with a different randomly selected subset of rows, out-of-bag error is a little like imagining that every tree therefore also has its own validation set. That validation set is simply the rows that were not selected for that tree’s training.




This is particularly beneficial in cases where we have only a small amount of training data, as it allows us to see whether our model generalizes without removing items to create a validation set. The OOB predictions are
available in the oob_prediction_ attribute. Note that we compare them to the training labels, since this is being calculated on trees using
the training set:


r_mse(m.oob_prediction_, y)


0.210686


We can see that our OOB error is much lower than our validation set
error. This means that something else is causing that error, in
addition to normal generalization error. We’ll discuss the
reasons for this later in this chapter.


This is one way to interpret our model’s predictions—let’s
focus on more of those now.
























Model Interpretation


For tabular data, model interpretation is particularly important. For a
given model, we are most likely to be interested in are the following:



	
How confident are we in our predictions using a particular row of
data?



	
For predicting with a particular row of data, what were the most
important factors, and how did they influence that prediction?



	
Which columns are the strongest predictors, which can we ignore?



	
Which columns are effectively redundant with each other, for 
purposes of prediction?



	
How do predictions vary as we vary these columns?






As we will see, random forests are particularly well suited to answering
these questions. Let’s start with the first one!










Tree Variance for Prediction Confidence


We saw how the model averages the individual tree’s predictions to get an
overall prediction—that is, an estimate of the value. But how can we
know the confidence of the estimate? One simple way is to use the
standard deviation of predictions across the trees, instead of just the
mean. This tells us the relative confidence of predictions. In general, we would want to be
more cautious of using the results for rows where trees give very different results (higher standard deviations), compared to cases where they are
more consistent (lower standard deviations).


In “Creating a Random Forest”, we saw how to get
predictions over the validation set, using a Python list comprehension
to do this for each tree in the forest:


preds = np.stack([t.predict(valid_xs) for t in m.estimators_])


preds.shape


(40, 7988)


Now we have a prediction for every tree and every auction in the validation set (40 trees and 7,988 auctions).


Using this, we can get the standard deviation of the predictions over all
the trees, for each auction:


preds_std = preds.std(0)


Here are the standard deviations for the predictions for the first five auctions—that is, the first five rows of the validation set:


preds_std[:5]


array([0.21529149, 0.10351274, 0.08901878, 0.28374773, 0.11977206])


As you can see, the confidence in the predictions varies widely. For
some auctions, there is a low standard deviation because the trees
agree. For others, it’s higher, as the trees
don’t agree. This is information that would be useful
in a production setting; for instance, if you were using this model to
decide which items to bid on at auction, a low-confidence prediction might
cause you to look more carefully at an item before you made a bid.

















Feature Importance


It’s not normally enough to just to know that a model can
make accurate predictions—we also want to know how it’s
making predictions. The feature importances give us this insight. We can get these directly from sklearn’s random
forest by looking in the feature_importances_ attribute.
Here’s a simple function we can use to pop them into a
DataFrame and sort them:


def rf_feat_importance(m, df):
    return pd.DataFrame({'cols':df.columns, 'imp':m.feature_importances_}
                       ).sort_values('imp', ascending=False)


The feature importances for our model show that the first few most
important columns have much higher importance scores than the rest,
with (not surprisingly) YearMade and ProductSize being at the top of
the list:


fi = rf_feat_importance(m, xs)
fi[:10]


  
    
      	
      	cols
      	imp
    

  
  
    
      	69
      	YearMade
      	0.182890
    

    
      	6
      	ProductSize
      	0.127268
    

    
      	30
      	Coupler_System
      	0.117698
    

    
      	7
      	fiProductClassDesc
      	0.069939
    

    
      	66
      	ModelID
      	0.057263
    

    
      	77
      	saleElapsed
      	0.050113
    

    
      	32
      	Hydraulics_Flow
      	0.047091
    

    
      	3
      	fiSecondaryDesc
      	0.041225
    

    
      	31
      	Grouser_Tracks
      	0.031988
    

    
      	1
      	fiModelDesc
      	0.031838
    

  



A plot of the feature importances shows the relative importances more
clearly:


def plot_fi(fi):
    return fi.plot('cols', 'imp', 'barh', figsize=(12,7), legend=False)

plot_fi(fi[:30]);



[image: ]





The way these importances are calculated is quite simple yet elegant.
The feature importance algorithm loops through each tree, and then
recursively explores each branch. At each branch, it looks to see what
feature was used for that split, and how much the model improves as a
result of that split. The improvement (weighted by the number of rows in
that group) is added to the importance score for that feature. This is
summed across all branches of all trees, and finally the scores are
normalized such that they add to 1.

















Removing Low-Importance Variables


It seems likely that we could use a subset of the columns by
removing the variables of low importance and still get good results.
Let’s try keeping just those with a feature importance
greater than 0.005:


to_keep = fi[fi.imp>0.005].cols
len(to_keep)


21


We can retrain our model using just this subset of the
columns:


xs_imp = xs[to_keep]
valid_xs_imp = valid_xs[to_keep]


m = rf(xs_imp, y)


And here’s the result:


m_rmse(m, xs_imp, y), m_rmse(m, valid_xs_imp, valid_y)


(0.181208, 0.232323)


Our accuracy is about the same, but we have far fewer columns to study:


len(xs.columns), len(xs_imp.columns)


(78, 21)


We’ve found that generally the first step to improving a
model is simplifying it—78 columns was too many for us to study them
all in depth! Furthermore, in practice, often a simpler, more
interpretable model is easier to roll out and maintain.


This also makes our feature importance plot easier to interpret.
Let’s look at it again:


plot_fi(rf_feat_importance(m, xs_imp));



[image: ]





One thing that makes this harder to interpret is that there seem to be
some variables with very similar meanings: for example, ProductGroup
and ProductGroupDesc. Let’s try to remove any redundant
features.

















Removing Redundant Features


Let’s start with this:


cluster_columns(xs_imp)



[image: ]





In this chart, the pairs of columns that are most similar are the ones that were merged together early, far from the
“root” of the tree at the left. Unsurprisingly, the fields
ProductGroup and ProductGroupDesc were merged quite early, as were
saleYear and saleElapsed, and fiModelDesc and
fiBaseModel. These might be so closely correlated they are practically
synonyms for each other.

Determining Similarity

The most similar pairs are found by calculating the rank correlation, which means that all the values are replaced with their rank (first, second, third, etc. within the column), and then the correlation is calculated. (Feel free to skip over this minor detail though, since it’s not going to come up again in the book!)




Let’s try removing some of these closely related features to
see if the model can be simplified without impacting the accuracy.
First, we create a function that quickly trains a random forest and
returns the OOB score, by using a lower max_samples and higher
min_samples_leaf. The OOB score is a number returned by sklearn that ranges between
1.0 for a perfect model and 0.0 for a random model. (In statistics
it’s called R2, although the details aren’t
important for this explanation.) We don’t need it to be very
accurate—we’re just going to use it to compare different
models, based on removing some of the possibly redundant columns:


def get_oob(df):
    m = RandomForestRegressor(n_estimators=40, min_samples_leaf=15,
        max_samples=50000, max_features=0.5, n_jobs=-1, oob_score=True)
    m.fit(df, y)
    return m.oob_score_


Here’s our baseline:


get_oob(xs_imp)


0.8771039618198545


Now we try removing each of our potentially redundant variables, one at a time:


{c:get_oob(xs_imp.drop(c, axis=1)) for c in (
    'saleYear', 'saleElapsed', 'ProductGroupDesc','ProductGroup',
    'fiModelDesc', 'fiBaseModel',
    'Hydraulics_Flow','Grouser_Tracks', 'Coupler_System')}


{'saleYear': 0.8759666979317242,
 'saleElapsed': 0.8728423449081594,
 'ProductGroupDesc': 0.877877012281002,
 'ProductGroup': 0.8772503407182847,
 'fiModelDesc': 0.8756415073829513,
 'fiBaseModel': 0.8765165299438019,
 'Hydraulics_Flow': 0.8778545895742573,
 'Grouser_Tracks': 0.8773718142788077,
 'Coupler_System': 0.8778016988955392}


Now let’s try dropping multiple variables. We’ll
drop one from each of the tightly aligned pairs we noticed earlier.
Let’s see what that does:


to_drop = ['saleYear', 'ProductGroupDesc', 'fiBaseModel', 'Grouser_Tracks']
get_oob(xs_imp.drop(to_drop, axis=1))


0.8739605718147015


Looking good! This is really not much worse than the model with all the
fields. Let’s create DataFrames without these columns, and
save them:


xs_final = xs_imp.drop(to_drop, axis=1)
valid_xs_final = valid_xs_imp.drop(to_drop, axis=1)


(path/'xs_final.pkl').save(xs_final)
(path/'valid_xs_final.pkl').save(valid_xs_final)


We can load them back later:


xs_final = (path/'xs_final.pkl').load()
valid_xs_final = (path/'valid_xs_final.pkl').load()


Now we can check our RMSE again, to confirm that the accuracy hasn’t substantially changed:


m = rf(xs_final, y)
m_rmse(m, xs_final, y), m_rmse(m, valid_xs_final, valid_y)


(0.183263, 0.233846)


By focusing on the most important variables and removing some redundant ones, we’ve greatly simplified our model. Now, let’s see how those variables affect our predictions using partial dependence plots.

















Partial Dependence


As we’ve seen, the two most important predictors are ProductSize and YearMade.
We’d like to understand the relationship between these
predictors and sale price. It’s a good idea to first check
the count of values per category (provided by the Pandas value_counts
method), to see how common each category is:


p = valid_xs_final['ProductSize'].value_counts(sort=False).plot.barh()
c = to.classes['ProductSize']
plt.yticks(range(len(c)), c);



[image: ]





The largest group is #na#, which is the label fastai applies to
missing values.


Let’s do the same thing for YearMade. Since this
is a numeric feature, we’ll need to draw a histogram, which
groups the year values into a few discrete bins:


ax = valid_xs_final['YearMade'].hist()



[image: ]





Other than the special value 1950, which we used for coding missing year
values, most of the data is from after 1990.


Now we’re ready to look at partial dependence plots.
Partial dependence plots try to answer the question: if a row varied on
nothing other than the feature in question, how would it impact the
dependent variable?


For instance, how does YearMade impact sale price, all other things
being equal? To answer this question, we can’t just take the average sale
price for each YearMade. The problem with that approach is that many
other things vary from year to year as well, such as which products are
sold, how many products have air-conditioning, inflation, and so forth.
So, merely averaging over all the auctions that have the same YearMade
would also capture the effect of how every other field also changed
along with YearMade and how that overall change affected price.


Instead, what we do is replace every single value in the YearMade
column with 1950, and then calculate the predicted sale price for every
auction, and take the average over all auctions. Then we do the same for
1951, 1952, and so forth until our final year of 2011. This isolates the
effect of only YearMade (even if it does so by averaging over some
imagined records where we assign a YearMade value that might never
actually exist alongside some other values).

Alexis Says

If you are philosophically minded, it is somewhat dizzying to contemplate the different kinds of hypotheticality that we are juggling to make this calculation. First, there’s the fact that every prediction is hypothetical, because we are not noting empirical data. Second, there’s the point that we’re not merely interested in asking how sale price would change if we changed YearMade and everything else along with it. Rather, we’re very specifically asking how sale price would change in a hypothetical world where only YearMade changed. Phew! It is impressive that we can ask such questions. I recommend Judea Pearl and Dana Mackenzie’s recent book on causality, The Book of Why (Basic Books), if you’re interested in more deeply exploring formalisms for analyzing these subtleties.




With these averages, we can then plot each year on the x-axis,
and each prediction on the y-axis. This, finally, is a
partial dependence plot. Let’s take a look:


from sklearn.inspection import plot_partial_dependence

fig,ax = plt.subplots(figsize=(12, 4))
plot_partial_dependence(m, valid_xs_final, ['YearMade','ProductSize'],
                        grid_resolution=20, ax=ax);



[image: ]





Looking first of all at the YearMade plot, and specifically at the
section covering the years after 1990 (since, as we noted, this is where we have
the most data), we can see a nearly linear relationship between year
and price. Remember that our dependent variable is after taking the
logarithm, so this means that in practice there is an exponential
increase in price. This is what we would expect: depreciation is
generally recognized as being a multiplicative factor over time, so for
a given sale date, varying the year made ought to show an exponential
relationship with sale price.


The ProductSize partial plot is a bit concerning. It shows that the
final group, which we saw is for missing values, has the lowest
price. To use this insight in practice, we would want to find out why
it’s missing so often and what that means. Missing values
can sometimes be useful predictors—it entirely depends on what causes
them to be missing. Sometimes, however, they can indicate data leakage.

















Data Leakage


In the paper “Leakage in Data Mining: Formulation, Detection, and Avoidance”, Shachar Kaufman et al. describe leakage as follows:


The introduction of information about the target of a data mining problem, which should not be legitimately available to mine from. A trivial example of leakage would be a model that uses the target itself as an input, thus concluding for example that “it rains on rainy days.” In practice, the introduction of this illegitimate information is unintentional, and facilitated by the data collection, aggregation, and preparation 
process.



They give as an example:


A real-life business intelligence project at IBM where potential customers for certain products were identified, among other things, based on keywords found on their websites. This turned out to be leakage since the website content used for training had been sampled at the point in time where the potential customer has already become a customer, and where the website contained traces of the IBM products purchased, such as the word “Websphere” (e.g., in a press release about the purchase or a specific product feature the client uses).



Data leakage is subtle and can take many forms. In particular, missing
values often represent data leakage.


For instance, Jeremy competed in a Kaggle competition designed to
predict which researchers would end up receiving research grants. The
information was provided by a university and included thousands of
examples of research projects, along with information about the
researchers involved and data on whether or not each grant was eventually
accepted. The university hoped to be able to use the models
developed in this competition to rank which grant applications
were most likely to succeed, so it could prioritize its processing.


Jeremy used a random forest to model the data, and then used feature
importance to find out which features were most predictive. He noticed
three surprising things:



	
The model was able to correctly predict who would receive grants over
95% of the time.



	
Apparently meaningless identifier columns were the most important
predictors.



	
The day of week and day of year columns were also highly predictive;
for instance, the vast majority of grant applications dated on a Sunday
were accepted, and many accepted grant applications were dated on
January 1.






For the identifier columns, a partial dependence plot showed that when
the information was missing, the application was almost always rejected. It
turned out that in practice, the university filled out much of this
information only after a grant application was accepted. Often, for
applications that were not accepted, it was just left blank. Therefore,
this information was not something that was available at the
time that the application was received, and it would not be
available for a predictive model—it was data leakage.


In the same way, the final processing of successful applications was
often done automatically as a batch at the end of the week, or the end
of the year. It was this final processing date that ended up in the
data, so again, this information, while predictive, was not actually
available at the time that the application was received.


This example showcases the most practical and simple approaches to
identifying data leakage, which are to build a model and then do the following:



	
Check whether the accuracy of the model is too good to be true.



	
Look for important predictors that don’t make sense in practice.



	
Look for partial dependence plot results that don’t make sense in practice.






Thinking back to our bear detector, this mirrors the advice that we provided in Chapter 2—it is often a good idea to build a model first and then do your data cleaning, rather than vice versa. The model can help
you identify potentially problematic data issues.


It can also help you identify which factors influence specific
predictions, with tree interpreters.

















Tree Interpreter


At the start of this section, we said that we wanted to be able to
answer five questions:



	
How confident are we in our predictions using a particular row of
data?



	
For predicting with a particular row of data, what were the most
important factors, and how did they influence that prediction?



	
Which columns are the strongest predictors?



	
Which columns are effectively redundant with each other, for purposes
of 
prediction?



	
How do predictions vary as we vary these columns?






We’ve handled four of these already; only the second question remains. To
answer this question, we need to use the treeinterpreter library.
We’ll also use the waterfallcharts library to draw the
chart of the results. You can install these by running these commands in a notebook cell:

!pip install treeinterpreter
!pip install waterfallcharts


We have already seen how to compute feature importances across the
entire random forest. The basic idea was to look at the contribution of
each variable to improving the model, at each branch of every tree,
and then add up all of these contributions per variable.


We can do exactly the same thing, but for just a single row of data. For
instance, let’s say we are looking at a particular item
at auction. Our model might predict that this item will be very
expensive, and we want to know why. So, we take that one row of data and
put it through the first decision tree, looking to see what split is
used at each point throughout the tree. For each split, we find the
increase or decrease in the addition, compared to the parent node of
the tree. We do this for every tree, and add up the total change in
importance by split variable.


For instance, let’s pick the first few rows of our
validation set:


row = valid_xs_final.iloc[:5]


We can then pass these to treeinterpreter:


prediction,bias,contributions = treeinterpreter.predict(m, row.values)


prediction is simply the prediction that the random forest makes.
bias is the prediction based on taking the mean of the
dependent variable (i.e., the model that is the root of every tree).
contributions is the most interesting bit—it tells us the total change
in prediction due to each of the independent variables. Therefore, the
sum of contributions plus bias must equal the prediction, for each
row. Let’s look at just the first row:


prediction[0], bias[0], contributions[0].sum()


(array([9.98234598]), 10.104309759725059, -0.12196378442186026)


The clearest way to display the contributions is with a waterfall
plot. This shows how the positive and negative contributions from all
the independent variables sum up to create the final prediction, which
is the righthand column labeled “net” here:


waterfall(valid_xs_final.columns, contributions[0], threshold=0.08,
          rotation_value=45,formatting='{:,.3f}');



[image: ]





This kind of information is most useful in production, rather than
during model development. You can use it to provide useful information
to users of your data product about the underlying reasoning behind the
predictions.


Now that we covered some classic machine learning techniques to solve this problem,
let’s see how deep learning can help!
























Extrapolation and Neural Networks


A problem with random forests, like all machine learning or deep
learning algorithms, is that they don’t always generalize
well to new data. We’ll see in which situations neural networks generalize
better, but first, let’s look at the extrapolation problem
that random forests have and how they can help identify out-of-domain data.










The Extrapolation Problem


Let’s consider the simple task of making predictions from 40
data points showing a slightly noisy linear relationship:


x_lin = torch.linspace(0,20, steps=40)
y_lin = x_lin + torch.randn_like(x_lin)
plt.scatter(x_lin, y_lin);



[image: ]





Although we have only a single independent variable, sklearn expects a
matrix of independent variables, not a single vector. So we have to turn
our vector into a matrix with one column. In other words, we have to
change the shape from [40] to [40,1]. One way to do that is with
the unsqueeze method, which adds a new unit axis to a tensor at the
requested dimension:


xs_lin = x_lin.unsqueeze(1)
x_lin.shape,xs_lin.shape


(torch.Size([40]), torch.Size([40, 1]))


A more flexible approach is to slice an array or tensor with the special
value None, which introduces an additional unit axis at that location:


x_lin[:,None].shape


torch.Size([40, 1])


We can now create a random forest for this data. We’ll use
only the first 30 rows to train the model:


m_lin = RandomForestRegressor().fit(xs_lin[:30],y_lin[:30])


Then we’ll test the model on the full dataset. The blue dots are the
training data, and the red dots are the predictions:


plt.scatter(x_lin, y_lin, 20)
plt.scatter(x_lin, m_lin.predict(xs_lin), color='red', alpha=0.5);



[image: ]





We have a big problem! Our predictions outside the domain that our
training data covered are all too low. Why do you suppose this is?


Remember, a random forest just averages the predictions of a
number of trees. And a tree simply predicts the average value of the
rows in a leaf. Therefore, a tree and a random forest can never predict
values outside the range of the training data. This is particularly
problematic for data indicating a trend over time, such as
inflation, and you wish to make predictions for a future time. Your
predictions will be systematically too low.


But the problem extends beyond time variables.
Random forests are not able to extrapolate outside the types of data
they have seen, in a more general sense. That’s why we need
to make sure our validation set does not contain out-of-domain data.

















Finding Out-of-Domain Data


Sometimes it is hard to know whether your test set is distributed
in the same way as your training data, or, if it is different, which
columns reflect that difference. There’s an
easy way to figure this out, which is to use a random forest!


But in this case, we don’t use the random forest to predict our
actual dependent variable. Instead, we try to predict whether a row is in
the validation set or the training set. To see this in action,
let’s combine our training and validation sets,
create a dependent variable that represents which dataset each row
comes from, build a random forest using that data, and get its feature
importance:


df_dom = pd.concat([xs_final, valid_xs_final])
is_valid = np.array([0]*len(xs_final) + [1]*len(valid_xs_final))

m = rf(df_dom, is_valid)
rf_feat_importance(m, df_dom)[:6]


  
    
      	
      	cols
      	imp
    

  
  
    
      	5
      	saleElapsed
      	0.859446
    

    
      	9
      	SalesID
      	0.119325
    

    
      	13
      	MachineID
      	0.014259
    

    
      	0
      	YearMade
      	0.001793
    

    
      	8
      	fiModelDesc
      	0.001740
    

    
      	11
      	Enclosure
      	0.000657
    

  



This shows that three columns differ significantly between the
training and validation sets: saleElapsed, SalesID, and MachineID.
It’s fairly obvious why this is the case for saleElapsed: it’s the number of
days between the start of the dataset and each row, so it directly
encodes the date. The difference in SalesID suggests that identifiers for auction sales
might increment over time. MachineID suggests something similar might
be happening for individual items sold in those auctions.


Let’s get a baseline of the original random forest model’s RMSE, and then determine the effect of removing each of these columns in turn:


m = rf(xs_final, y)
print('orig', m_rmse(m, valid_xs_final, valid_y))

for c in ('SalesID','saleElapsed','MachineID'):
    m = rf(xs_final.drop(c,axis=1), y)
    print(c, m_rmse(m, valid_xs_final.drop(c,axis=1), valid_y))


orig 0.232795
SalesID 0.23109
saleElapsed 0.236221
MachineID 0.233492


It looks like we should be able to remove SalesID and MachineID
without losing any accuracy. Let’s check:


time_vars = ['SalesID','MachineID']
xs_final_time = xs_final.drop(time_vars, axis=1)
valid_xs_time = valid_xs_final.drop(time_vars, axis=1)

m = rf(xs_final_time, y)
m_rmse(m, valid_xs_time, valid_y)


0.231307


Removing these variables has slightly improved the model’s
accuracy; but more importantly, it should make it more resilient over
time, and easier to maintain and understand. We recommend that for all
datasets, you try building a model in which your dependent variable is
is_valid, as we did here. It can often uncover subtle domain shift
issues that you may otherwise miss.


One thing that might help in our case is to simply avoid using old data.
Often, old data shows relationships that just aren’t valid
anymore. Let’s try just using the most recent few years of
the data:


xs['saleYear'].hist();



[image: ]





Here’s the result of training on this subset:


filt = xs['saleYear']>2004
xs_filt = xs_final_time[filt]
y_filt = y[filt]


m = rf(xs_filt, y_filt)
m_rmse(m, xs_filt, y_filt), m_rmse(m, valid_xs_time, valid_y)


(0.17768, 0.230631)


It’s a tiny bit better, which shows that you
shouldn’t always use your entire dataset; sometimes a
subset can be better.


Let’s see if using a neural network helps.

















Using a Neural Network


We can use the same approach to build a neural network model.
Let’s first replicate the steps we took to set up the
TabularPandas object:


df_nn = pd.read_csv(path/'TrainAndValid.csv', low_memory=False)
df_nn['ProductSize'] = df_nn['ProductSize'].astype('category')
df_nn['ProductSize'].cat.set_categories(sizes, ordered=True, inplace=True)
df_nn[dep_var] = np.log(df_nn[dep_var])
df_nn = add_datepart(df_nn, 'saledate')


We can leverage the work we did to trim unwanted columns in the random
forest by using the same set of columns for our neural network:


df_nn_final = df_nn[list(xs_final_time.columns) + [dep_var]]


Categorical columns are handled very differently in neural networks,
compared to decision tree approaches. As we saw in
Chapter 8, in a neutral net, a great way to handle categorical variables
is by using embeddings. To create embeddings, fastai needs to
determine which columns should be treated as categorical variables. It does
this by comparing the number of distinct levels in the variable to the value of the max_card parameter.
If it’s lower, fastai will treat the variable as categorical. Embedding sizes larger than 10,000 should generally be used only after you’ve tested whether there are better
ways to group the variable, so we’ll use 9,000 as our max_card value:


cont_nn,cat_nn = cont_cat_split(df_nn_final, max_card=9000, dep_var=dep_var)


In this case, however, there’s one variable that we absolutely do not want to treat as
categorical: saleElapsed. A categorical variable cannot,
by definition, extrapolate outside the range of values that it has seen, but we want to be able to predict auction sale prices in the future.
Therefore, we need to make this a continuous variable:


cont_nn.append('saleElapsed')
cat_nn.remove('saleElapsed')


Let’s take a look at the cardinality of each of the
categorical variables that we have chosen so far:


df_nn_final[cat_nn].nunique()


YearMade                73
ProductSize              6
Coupler_System           2
fiProductClassDesc      74
ModelID               5281
Hydraulics_Flow          3
fiSecondaryDesc        177
fiModelDesc           5059
ProductGroup             6
Enclosure                6
fiModelDescriptor      140
Drive_System             4
Hydraulics              12
Tire_Size               17
dtype: int64


The fact that there are two variables pertaining to the “model” of the
equipment, both with similar very high cardinalities, suggests that they
may contain similar, redundant information. Note that we would not necessarily catch this when analyzing redundant features, since that relies on similar variables being sorted in the same order (that is, they need to have
similarly named levels). Having a column with 5,000 levels means needing
5,000 columns in our embedding matrix, which would be nice to
avoid if possible. Let’s see what the impact of removing one
of these model columns has on the random forest:


xs_filt2 = xs_filt.drop('fiModelDescriptor', axis=1)
valid_xs_time2 = valid_xs_time.drop('fiModelDescriptor', axis=1)
m2 = rf(xs_filt2, y_filt)
m_rmse(m, xs_filt2, y_filt), m_rmse(m2, valid_xs_time2, valid_y)


(0.176706, 0.230642)


There’s minimal impact, so we will remove it as a predictor
for our neural network:


cat_nn.remove('fiModelDescriptor')


We can create our TabularPandas object in the same way as when we
created our random forest, with one very important addition:
normalization. A random forest does not need any normalization—the tree
building procedure cares only about the order of values in a variable,
not at all about how they are scaled. But as we have seen, a neural
network definitely does care about this. Therefore, we add the
Normalize processor when we build our TabularPandas object:


procs_nn = [Categorify, FillMissing, Normalize]
to_nn = TabularPandas(df_nn_final, procs_nn, cat_nn, cont_nn,
                      splits=splits, y_names=dep_var)


Tabular models and data don’t generally require much GPU
RAM, so we can use larger batch sizes:


dls = to_nn.dataloaders(1024)


As we’ve discussed, it’s a good idea to set
y_range for regression models, so let’s find the min and
max of our dependent variable:


y = to_nn.train.y
y.min(),y.max()


(8.465899897028686, 11.863582336583399)


We can now create the Learner to create this tabular model. As usual,
we use the application-specific learner function, to take advantage of
its application-customized defaults. We set the loss function to MSE,
since that’s what this competition uses.


By default, for tabular data fastai creates a neural network with two
hidden layers, with 200 and 100 activations, respectively. This
works quite well for small datasets, but here we’ve got
quite a large dataset, so we increase the layer sizes to 500 and 250:


from fastai.tabular.all import *


learn = tabular_learner(dls, y_range=(8,12), layers=[500,250],
                        n_out=1, loss_func=F.mse_loss)


learn.lr_find()


(0.005754399299621582, 0.0002754228771664202)



[image: ]





There’s no need to use fine_tune, so we’ll
train with fit_one_cycle for a few epochs and see how it looks:


learn.fit_one_cycle(5, 1e-2)


  
    
      	epoch
      	train_loss
      	valid_loss
      	time
    

  
  
    
      	0
      	0.069705
      	0.062389
      	00:11
    

    
      	1
      	0.056253
      	0.058489
      	00:11
    

    
      	2
      	0.048385
      	0.052256
      	00:11
    

    
      	3
      	0.043400
      	0.050743
      	00:11
    

    
      	4
      	0.040358
      	0.050986
      	00:11
    

  



We can use our r_mse function to compare the result to the random forest result
we got earlier:


preds,targs = learn.get_preds()
r_mse(preds,targs)


0.2258


It’s quite a bit better than the random forest (although it
took longer to train, and it’s fussier about
hyperparameter tuning).


Before we move on, let’s save our model in case we want to
come back to it again later:


learn.save('nn')


fastai’s Tabular Classes

In fastai, a tabular model is simply a model that takes columns of
continuous or categorical data, and predicts a category (a
classification model) or a continuous value (a regression model).
Categorical independent variables are passed through an embedding and
concatenated, as we saw in the neural net we used for collaborative
filtering, and then continuous variables are concatenated as well.


The model created in tabular_learner is an object of class
TabularModel. Take a look at the source for tabular_learner now
(remember, that’s tabular_learner?? in Jupyter).
You’ll see that like collab_learner, it first calls
get_emb_sz to calculate appropriate embedding sizes (you can
override these by using the emb_szs parameter, which is a dictionary
containing any column names you want to set sizes for manually), and it
sets a few other defaults. Other than that, it creates the
TabularModel and passes that to TabularLearner (note that
TabularLearner is identical to Learner, except for a customized
predict method).


That means that really all the work is happening in TabularModel, so
take a look at the source for that now. With the exception of the
BatchNorm1d and Dropout layers (which we’ll be learning
about shortly), you now have the knowledge required to understand this
whole class. Take a look at the discussion of EmbeddingNN at the end
of the preceding chapter. Recall that it passed n_cont=0 to TabularModel.
We now can see why that was: because there are zero continuous variables
(in fastai, the n_ prefix means “number of,” and cont is an
abbreviation for “continuous”).




Another thing that can help with generalization is to use several models
and average their predictions—a technique, as mentioned earlier, known as ensembling.
























Ensembling


Think back to the original reasoning behind why random forests work so
well: each tree has errors, but those errors are not correlated with
each other, so the average of those errors should tend toward zero once
there are enough trees. Similar reasoning could be used to consider
averaging the predictions of models trained using different algorithms.


In our case, we have two very different models, trained using very
different algorithms: a random forest and a neural network. It would be
reasonable to expect that the kinds of errors that each one makes would
be quite different. Therefore, we might expect that the average of their
predictions would be better than either one’s individual
predictions.


As we saw earlier, a random forest is itself an ensemble. But we can then
include a random forest in another ensemble—an ensemble of the random
forest and the neural network! While ensembling won’t make the
difference between a successful and an unsuccessful modeling process, it
can certainly add a nice little boost to any models that you have built.


One minor issue we have to be aware of is that our PyTorch model and our
sklearn model create data of different types: PyTorch gives us a rank-2
tensor (a column matrix), whereas NumPy gives us a rank-1 array (a
vector). squeeze removes any unit axes from a tensor, and to_np
converts it into a NumPy array:


rf_preds = m.predict(valid_xs_time)
ens_preds = (to_np(preds.squeeze()) + rf_preds) /2


This gives us a better result than either model achieved on its own:


r_mse(ens_preds,valid_y)


0.22291


In fact, this result is better than any score shown on the Kaggle
leaderboard. It’s not directly comparable, however, because the
Kaggle leaderboard uses a separate dataset that we do not have access
to. Kaggle does not allow us to submit to this old competition to find
out how we would have done, but our results certainly look encouraging!










Boosting


So far, our approach to ensembling has been to use bagging, which
involves combining many models (each trained on a different data subset) by averaging them. As we saw, when this is applied to
decision trees, this is called a random forest.


In another important approach to ensembling, called boosting,
where we add models instead of averaging them. Here is how boosting works:


	
Train a small model that underfits your dataset.



	
Calculate the predictions in the training set for this model.



	
Subtract the predictions from the targets; these are called the residuals and represent the error for each point in the training set.



	
Go back to step 1, but instead of using the original targets, use the residuals as the targets for the training.



	
Continue doing this until you reach a stopping criterion, such as a maximum number of trees, or you observe your validation set error getting worse.







Using this approach, each new tree will be attempting to fit the error
of all of the previous trees combined. Because we are continually
creating new residuals by 
subtracting the predictions of each new tree
from the residuals from the previous tree, the residuals will get
smaller and smaller.


To make predictions with an ensemble of boosted trees, we calculate the
predictions from each tree and then add them all together. There are
many models following this basic approach, and many names for the same
models. Gradient boosting machines (GBMs) and gradient boosted
decision trees (GBDTs) are the terms you’re most likely to
come across, or you may see the names of specific libraries implementing
these; at the time of writing, XGBoost is the most popular.


Note that, unlike with random forests, with this approach, there is nothing to stop us from
overfitting. Using more trees in a random forest does not lead to
overfitting, because each tree is independent of the others. But in a
boosted ensemble, the more trees you have, the better the training error
becomes, and eventually you will see overfitting on the validation set.


We are not going to go into detail on how to train a gradient
boosted tree ensemble here, because the field is moving rapidly, and any
guidance we give will almost certainly be outdated by the time you read
this. As we write this, sklearn has just added a
HistGradientBoostingRegressor class that provides excellent
performance. There are many hyperparameters to tweak for this class, and
for all gradient boosted tree methods we have seen. Unlike random
forests, gradient boosted trees are extremely sensitive to the choices
of these hyperparameters; in practice, most people use a loop
that tries a range of hyperparameters to find the ones that work
best.


One more technique that has gotten great results is to use embeddings
learned by a neural net in a machine learning model.

















Combining Embeddings with Other Methods


The abstract of the entity embedding paper we mentioned at the start of
this chapter states: “The embeddings obtained from the trained neural
network boost the performance of all tested machine learning methods
considerably when used as the input features instead.” It includes
the very interesting table shown in Figure 9-8.



[image: Embeddings combined with other methods]
Figure 9-8. Effects of using neural network embeddings as input to other machine learning methods (courtesy of Cheng Guo and Felix Berkhahn)




This is showing the mean average percent error (MAPE) compared among
four modeling techniques, three of which we have already
seen, along with k-nearest neighbors (KNN), which is a very simple
baseline method. The first numeric column contains the results of using
the methods on the data provided in the competition; the second
column shows what happens if you first train a neural network with
categorical embeddings, and then use those categorical embeddings
instead of the raw categorical columns in the model. As you see, in
every case, the models are dramatically improved by using the
embeddings instead of the raw categories.


This is a really important result, because it shows that you can get
much of the performance improvement of a neural network without having to use a neural network at inference time. You
could just use an embedding, which is literally just an array lookup,
along with a small decision tree ensemble.


These embeddings need not even be necessarily learned separately for
each model or task in an organization. Instead, once a set of embeddings
are learned for a column for a particular task, they could be stored in a
central place and reused across multiple models. In fact, we know from
private communication with other practitioners at large companies that
this is already happening in many places.
























Conclusion


We have discussed two approaches to tabular modeling: decision tree
ensembles and neural networks. We’ve also mentioned two
decision tree ensembles: random forests and gradient boosting machines.
Each is effective but also requires compromises:



	
Random forests are the easiest to train, because they are extremely
resilient to hyperparameter choices and require little
preprocessing. They are fast to train, and should not overfit if
you have enough trees. But they can be a little less accurate,
especially if extrapolation is required, such as predicting future time
periods.



	
Gradient boosting machines in theory are just as fast to train as
random forests, but in practice you will have to try lots of
hyperparameters. They can overfit, but they are often a little more
accurate than random forests.



	
Neural networks take the longest time to train and require extra
preprocessing, such as normalization; this normalization needs to be used
at inference time as well. They can provide great results and
extrapolate well, but only if you are careful with your hyperparameters and take care to avoid overfitting.






We suggest starting your analysis with a random forest. This will give
you a strong baseline, and you can be confident that it’s a
reasonable starting point. You can then use that model for feature
selection and partial dependence analysis, to get a better understanding
of your data.


From that foundation, you can try neural nets and GBMs, and if they give
you significantly better results on your validation set in a reasonable
amount of time, you can use them. If decision tree ensembles are working
well for you, try adding the embeddings for the categorical variables to
the data, and see if that helps your decision trees learn better.

















Questionnaire


	
What is a continuous variable?



	
What is a categorical variable?



	
Provide two of the words that are used for the possible values of a categorical variable.



	
What is a dense layer?



	
How do entity embeddings reduce memory usage and speed up neural networks?



	
What kinds of datasets are entity embeddings especially useful for?



	
What are the two main families of machine learning algorithms?



	
Why do some categorical columns need a special ordering in their classes? How do you do this in Pandas?



	
Summarize what a decision tree algorithm does.



	
Why is a date different from a regular categorical or continuous variable, and how can you preprocess it to allow it to be used in a model?



	
Should you pick a random validation set in the bulldozer competition? If no, what kind of validation set should you pick?



	
What is pickle and what is it useful for?



	
How are mse, samples, and values calculated in the decision tree drawn in this chapter?



	
How do we deal with outliers before building a decision tree?



	
How do we handle categorical variables in a decision tree?



	
What is bagging?



	
What is the difference between max_samples and max_features when creating a random forest?



	
If you increase n_estimators to a very high value, can that lead to overfitting? Why or why not?



	
In the section “Creating a Random Forest”, after Figure 9-7, why did preds.mean(0) give the same result as our random forest?



	
What is out-of-bag error?



	
List the reasons that a model’s validation set error might be worse than the OOB error. How could you test your hypotheses?



	
Explain why random forests are well suited to answering each of the following questions:



	
How confident are we in our predictions using a particular row of data?



	
For predicting with a particular row of data, what were the most important factors, and how did they influence that prediction?



	
Which columns are the strongest predictors?



	
How do predictions vary as we vary these columns?







	
What’s the purpose of removing unimportant variables?



	
What’s a good type of plot for showing tree interpreter results?



	
What is the extrapolation problem?



	
How can you tell if your test or validation set is distributed in a different way than your training set?



	
Why do we make saleElapsed a continuous variable, even though it has fewer than 9,000 distinct values?



	
What is boosting?



	
How could we use embeddings with a random forest? Would we expect this to help?



	
Why might we not always use a neural net for tabular modeling?















Further Research


	
Pick a competition on Kaggle with tabular data (current or past) and try to adapt the techniques seen in this chapter to get the best possible results. Compare your results to the private leaderboard.



	
Implement the decision tree algorithm in this chapter from scratch yourself, and try it on the dataset you used in the first exercise.



	
Use the embeddings from the neural net in this chapter in a random forest, and see if you can improve on the random forest results we saw.



	
Explain what each line of the source of TabularModel does (with the exception of the BatchNorm1d and Dropout layers).




























  
Chapter 10. NLP Deep Dive: RNNs



In Chapter 1, we saw that deep learning can be used to get
great results with natural language datasets. Our example relied on
using a pretrained language model and fine-tuning it to classify reviews. That example highlighted a difference between transfer learning in NLP and computer vision: in general, in NLP the pretrained model is trained on a different task.


What we call a language model is a model that has been trained to guess the next word in a text (having read the ones before). This kind
of task is called self-supervised learning: we do not need to give
labels to our model, just feed it lots and lots of texts. It has a
process to automatically get labels from the data, and this task
isn’t trivial: to properly guess the next word in a
sentence, the model will have to develop an understanding of the English (or other) language. Self-supervised learning can also be used in other
domains; for instance, see
“Self-Supervised Learning and Computer Vision” for an introduction to vision applications.
Self-supervised learning is not usually used for the model that is
trained directly, but instead is used for pretraining a model used for
transfer learning.

Jargon: Self-Supervised Learning

Training a model using labels that are embedded in the independent variable, rather than requiring external labels. For instance, training a model to predict the next word in a text.




The language model we used in Chapter 1 to classify IMDb
reviews was pretrained on Wikipedia. We got great results by directly
fine-tuning this language model to a movie review classifier, but with
one extra step, we can do even better. The Wikipedia English is slightly
different from the IMDb English, so instead of jumping directly to the
classifier, we could fine-tune our pretrained language model to the IMDb
corpus and then use that as the base for our classifier.


Even if our language model knows the basics of the language we are using
in the task (e.g., our pretrained model is in English), it helps to get
used to the style of the corpus we are targeting. It may be more
informal language, or more technical, with new words to learn or
different ways of composing sentences. In the case of the IMDb dataset, there will
be lots of names of movie directors and actors, and often a less formal
style of language than that seen in Wikipedia.


We already saw that with fastai, we can download a pretrained English language model and use it to get state-of-the-art results for NLP
classification. (We expect pretrained models in many more languages to
be available soon; they might well be available by the time you are
reading this book, in fact.) So, why are we learning how to train a
language model in detail?


One reason, of course, is that it is helpful to understand the
foundations of the models that you are using. But there is another very
practical reason, which is that you get even better results if you fine-tune the (sequence-based) language model prior to fine-tuning the
classification model. For instance, for the IMDb sentiment analysis
task, the dataset includes 50,000 additional movie reviews that do not
have any positive or negative labels attached. Since there are 25,000 labeled reviews in the
training set and 25,000 in the validation set, that makes 100,000 movie reviews altogether. We can use all
of these reviews to fine-tune the pretrained language model, which was trained only on Wikipedia articles; this will
result in a language model that is particularly good at predicting the
next word of a movie review.


This is known as the Universal Language Model Fine-tuning (ULMFiT) approach. The paper introducing it showed that this
extra stage of fine-tuning the language model, prior to transfer learning to
a classification task, resulted in significantly better predictions.
Using this approach, we have three stages for transfer learning in NLP,
as summarized in Figure 10-1.



[image: Diagram of the ULMFiT process]
Figure 10-1. The ULMFiT process




We’ll now explore how to apply a neural network to this language modeling problem, using the concepts introduced in the preceding two chapters. But before reading further, pause and think about how you would approach this.








Text Preprocessing


It’s not at all obvious how we’re going to use
what we’ve learned so far to build a language model.
Sentences can be different lengths, and documents can be long. So
how can we predict the next word of a sentence using a neural network?
Let’s find out!


We’ve already seen how categorical variables can be used as
independent variables for a neural network. Here’s the approach we took for a
single categorical variable:


	
Make a list of all possible levels of that categorical variable (we’ll call this list the vocab).



	
Replace each level with its index in the vocab.



	
Create an embedding matrix for this containing a row for each level (i.e., for each item of the vocab).



	
Use this embedding matrix as the first layer of a neural network. (A dedicated embedding matrix can take as inputs the raw vocab indexes created in step 2; this is equivalent to, but faster and more efficient than, a matrix that takes as input one-hot-encoded vectors representing the indexes.)







We can do nearly the same thing with text! What is new is the idea of a
sequence. First we concatenate all of the documents in our dataset into
one big long string and split it into words (or tokens), giving us a very long list
of words. Our independent variable will be the sequence of words
starting with the first word in our very long list and ending with the
second to last, and our dependent variable will be the sequence of words
starting with the second word and ending with the last word.


Our vocab will consist of a mix of common words that are already in the vocabulary of our pretrained model and new words specific to our corpus (cinematographic terms or actor’s names, for instance). Our embedding matrix will be built accordingly: for
words that are in the vocabulary of our pretrained model, we will take
the corresponding row in the embedding matrix of the pretrained model;
but for new words, we won’t have anything, so we will just
initialize the corresponding row with a random vector.


Each of the steps necessary to create a language model has jargon
associated with it from the world of natural language processing, and
fastai and PyTorch classes available to help. The steps are as follows:


	Tokenization

	
Convert the text into a list of words (or characters, or substrings, depending on the granularity of your model).



	Numericalization

	
List all of the unique words that appear (the vocab), and convert each word into a number by looking up its index in the vocab.



	Language model data loader creation

	
fastai provides an LMDataLoader class that automatically handles creating a dependent variable that is offset from the independent variable by one token. It also handles some important details, such as how to shuffle the training data in such a way that the dependent and independent variables maintain their structure as required.



	Language model creation

	
We need a special kind of model that does something we haven’t seen before: handles input lists that could be arbitrarily big or small. There are a number of ways to do this; in this chapter, we will be using a recurrent neural network (RNN). We will get to the details of RNNs in Chapter 12, but for now, you can think of it as just another deep neural network.






Let’s take a look at how each step works in detail.










Tokenization


When we said “convert the text into a list of words,” we left out a lot
of details. For instance, what do we do with punctuation? How do we deal
with a word like “don’t”? Is it one word or two? What
about long medical or chemical words? Should they be split into their
separate pieces of meaning? How about hyphenated words? What about
languages like German and Polish, which can create really long words
from many, many pieces? What about languages like Japanese and Chinese
that don’t use bases at all, and don’t really
have a well-defined idea of word?


Because there is no one correct answer to these questions, there is no
one approach to tokenization. There are three main
approaches:


	Word-based

	
Split a sentence on spaces, as well as applying language-specific rules to try to separate parts of meaning even when there are no spaces (such as turning “don’t” into “do n’t”). Generally, punctuation marks are also split into separate tokens.



	Subword based

	
Split words into smaller parts, based on the most commonly occurring substrings. For instance, “occasion” might be tokenized as “o c ca sion”.



	Character-based

	
Split a sentence into its individual characters.






We’ll look at word and subword tokenization here, and
we’ll leave character-based tokenization for you to
implement in the questionnaire at the end of this chapter.

Jargon: Token

One element of a list created by the tokenization process. It could be a word, part of a word (a subword), or a single character.



















Word Tokenization with fastai


Rather than providing its own tokenizers, fastai provides a
consistent interface to a range of tokenizers in external libraries.
Tokenization is an active field of research, and new and improved
tokenizers are coming out all the time, so the defaults that fastai uses
change too. However, the API and options shouldn’t change
too much, since fastai tries to maintain a consistent API even as the
underlying technology changes.


Let’s try it out with the IMDb dataset that we used in
Chapter 1:


from fastai.text.all import *
path = untar_data(URLs.IMDB)


We’ll need to grab the text files in order to try out a
tokenizer. Just as get_image_files (which we’ve used
many times already), gets all the image files in a path, get_text_files
gets all the text files in a path. We can also optionally pass 
folders
to restrict the search to a particular list of subfolders:


files = get_text_files(path, folders = ['train', 'test', 'unsup'])


Here’s a review that we’ll tokenize
(we’ll print just the start of it here to save space):


txt = files[0].open().read(); txt[:75]


'This movie, which I just discovered at the video store, has apparently sit '


As we write this book, the default English word tokenizer for fastai
uses a library called spaCy. It has a sophisticated rules engine
with special rules for URLs, individual special English words, and
much more. Rather than directly using SpacyTokenizer, however,
we’ll use WordTokenizer, since that will always point to
fastai’s current default word tokenizer (which may not
necessarily be spaCy, depending when you’re reading this).


Let’s try it out. We’ll use fastai’s
coll_repr(collection,n) function to display the results. This displays
the first n items of collection, along with the full
size—it’s what L uses by default. Note that
fastai’s tokenizers take a collection of documents to
tokenize, so we have to wrap txt in a list:


spacy = WordTokenizer()
toks = first(spacy([txt]))
print(coll_repr(toks, 30))


(#201) ['This','movie',',','which','I','just','discovered','at','the','video','s
 > tore',',','has','apparently','sit','around','for','a','couple','of','years','
 > without','a','distributor','.','It',"'s",'easy','to','see'...]


As you see, spaCy has mainly just separated out the words and
punctuation. But it does something else here too: it has split
“it’s” into “it” and “’s”. That makes
intuitive sense; these are separate words, really. Tokenization is a
surprisingly subtle task, when you think about all the little details
that have to be handled. Fortunately, spaCy handles these pretty well for us—for instance, here
we see that “.” is separated when it terminates a sentence, but not in
an acronym or number:


first(spacy(['The U.S. dollar $1 is $1.00.']))


(#9) ['The','U.S.','dollar','$','1','is','$','1.00','.']


fastai then adds some additional functionality to the tokenization
process with the Tokenizer class:


tkn = Tokenizer(spacy)
print(coll_repr(tkn(txt), 31))


(#228) ['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at',
 > 'the','video','store',',','has','apparently','sit','around','for','a','couple
 > ','of','years','without','a','distributor','.','xxmaj','it',"'s",'easy'...]


Notice that there are now some tokens that start with the characters “xx”,
which is not a common word prefix in English. These are special
tokens.


For example, the first item in the list, xxbos, is a special token
that indicates the start of a new text (“BOS” is a standard NLP
acronym that means “beginning of stream”). By recognizing this start
token, the model will be able to learn it needs to “forget” what was
said previously and focus on upcoming words.


These special tokens don’t come from spaCy directly. They
are there because fastai adds them by default, by applying a number of
rules when processing text. These rules are designed to make it easier
for a model to recognize the important parts of a sentence. In a sense,
we are translating the original English language sequence into a
simplified tokenized language—a language that is designed to be easy
for a model to learn.


For instance, the rules will replace a sequence of four exclamation
points with a single exclamation point, followed by a special repeated
character token and then the number four. In this way, the
model’s embedding matrix can encode information about
general concepts such as repeated punctuation rather than requiring a
separate token for every number of repetitions of every punctuation
mark. Similarly, a capitalized word will be replaced with a special
capitalization token, followed by the lowercase version of the word.
This way, the embedding matrix needs only the lowercase versions of the
words, saving compute and memory resources, but can still learn the concept of
capitalization.


Here are some of the main special tokens you’ll see:


	xxbos

	
Indicates the beginning of a text (here, a review)



	xxmaj

	
Indicates the next word begins with a capital (since we lowercased everything)



	xxunk

	
Indicates the next word is unknown






To see the rules that were used, you can check the default rules:


defaults.text_proc_rules


[<function fastai.text.core.fix_html(x)>,
 <function fastai.text.core.replace_rep(t)>,
 <function fastai.text.core.replace_wrep(t)>,
 <function fastai.text.core.spec_add_spaces(t)>,
 <function fastai.text.core.rm_useless_spaces(t)>,
 <function fastai.text.core.replace_all_caps(t)>,
 <function fastai.text.core.replace_maj(t)>,
 <function fastai.text.core.lowercase(t, add_bos=True, add_eos=False)>]


As always, you can look at the source code for each of them in a notebook
by typing the following:

??replace_rep


Here is a brief summary of what each does:


	fix_html

	
  Replaces special HTML characters with a readable version
(IMDb reviews have quite a few of these)



	replace_rep

	
  Replaces any character repeated three times or more
with a special token for repetition (xxrep), the number of times
it’s repeated, then the character



	replace_wrep

	
  Replaces any word repeated three times or more with
a special token for word repetition (xxwrep), the number of times
it’s repeated, then the word



	spec_add_spaces

	
Adds spaces around / and #



	rm_useless_spaces

	
  Removes all repetitions of the space
character



	replace_all_caps

	
  Lowercases a word written in
all caps and adds a special token for all caps (xxcap) in front of it



	replace_maj

	
  Lowercases a capitalized word and adds a
special token for capitalized (xxmaj) in front of it



	lowercase

	
  Lowercases all text and adds a special token at the
beginning (xxbos) and/or the end (xxeos)






Let’s take a look at a few of them in action:


coll_repr(tkn('&copy;   Fast.ai www.fast.ai/INDEX'), 31)


"(#11) ['xxbos','©','xxmaj','fast.ai','xxrep','3','w','.fast.ai','/','xxup','ind
 > ex'...]"


Now let’s take a look at how subword tokenization would
work.

















Subword Tokenization


In addition to the word tokenization approach seen in the preceding
section, another popular tokenization method is subword tokenization.
Word tokenization relies on an assumption that spaces provide a useful
separation of components of meaning in a sentence. However, this
assumption is not always appropriate. For instance, consider this
sentence: 我的名字是郝杰瑞 (“My name is Jeremy Howard” in
Chinese). That’s not going to work very well with a word
tokenizer, because there are no spaces in it! Languages like Chinese and
Japanese don’t use spaces, and in fact they
don’t even have a well-defined concept of a “word.” Other languages, like Turkish and Hungarian, can add many subwords
together without spaces, creating very long words that include a lot
of separate pieces of information.


To handle these cases, it’s generally best to use subword
tokenization. This proceeds in two steps:


	
Analyze a corpus of documents to find the most commonly occurring
groups of letters. These become the vocab.



	
Tokenize the corpus
using this vocab of subword units.







Let’s look at an example. For our corpus, we’ll
use the first 2,000 movie reviews:


txts = L(o.open().read() for o in files[:2000])


We instantiate our tokenizer, passing in the size of the vocab we want
to create, and then we need to “train” it. That is, we need to have it
read our documents and find the common sequences of characters to
create the vocab. This is done with setup. As we’ll see
shortly, setup is a special fastai method that is called automatically
in our usual data processing pipelines. Since we’re doing
everything manually at the moment, however, we have to call it
ourselves. Here’s a function that does these steps for a
given vocab size and shows an example output:


def subword(sz):
    sp = SubwordTokenizer(vocab_sz=sz)
    sp.setup(txts)
    return ' '.join(first(sp([txt]))[:40])


Let’s try it out:


subword(1000)


'▁This ▁movie , ▁which ▁I ▁just ▁dis c over ed ▁at ▁the ▁video ▁st or e , ▁has
 > ▁a p par ent ly ▁s it ▁around ▁for ▁a ▁couple ▁of ▁years ▁without ▁a ▁dis t
 > ri but or . ▁It'


When using fastai’s subword tokenizer, the special character
▁ represents a space character in the original text.


If we use a smaller vocab, each token will represent fewer
characters, and it will take more tokens to represent a sentence:


subword(200)


'▁ T h i s ▁movie , ▁w h i ch ▁I ▁ j us t ▁ d i s c o ver ed ▁a t ▁the ▁ v id e
 > o ▁ st or e , ▁h a s'


On the other hand, if we use a larger vocab, most common English
words will end up in the vocab themselves, and we will not need as many
to represent a sentence:


subword(10000)


"▁This ▁movie , ▁which ▁I ▁just ▁discover ed ▁at ▁the ▁video ▁store , ▁has
 > ▁apparently ▁sit ▁around ▁for ▁a ▁couple ▁of ▁years ▁without ▁a ▁distributor
 > . ▁It ' s ▁easy ▁to ▁see ▁why . ▁The ▁story ▁of ▁two ▁friends ▁living"


Picking a subword vocab size represents a compromise: a larger vocab
means fewer tokens per sentence, which means faster training, less
memory, and less state for the model to remember; but on the downside,
it means larger embedding matrices, which require more data to learn.


Overall, subword tokenization provides a way to easily scale between
character tokenization (i.e., using a small subword vocab) and word
tokenization (i.e., using a large subword vocab), and handles every human
language without needing language-specific algorithms to be developed.
It can even handle other “languages” such as genomic sequences or MIDI
music notation! For this reason, in the last year its 
popularity has
soared, and it seems likely to become the most common tokenization
approach (it may well already be, by the time you read this!).


Once our texts have been split into tokens, we need to convert them to
numbers. We’ll look at that next.

















Numericalization with fastai


Numericalization is the process of mapping tokens to integers.
The steps are basically identical to those necessary to create a
Category variable, such as the dependent variable of digits in MNIST:


	
Make a list of all possible levels of that categorical variable (the vocab).



	
Replace each level with its index in the vocab.







Let’s take a look at this in action on the word-tokenized
text we saw earlier:


toks = tkn(txt)
print(coll_repr(tkn(txt), 31))


(#228) ['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at',
 > 'the','video','store',',','has','apparently','sit','around','for','a','couple
 > ','of','years','without','a','distributor','.','xxmaj','it',"'s",'easy'...]


Just as with SubwordTokenizer, we need to call setup on Numericalize;
this is how we create the vocab. That means we’ll need our
tokenized corpus first. Since tokenization takes a while,
it’s done in parallel by fastai; but for this manual
walk-through, we’ll use a small subset:


toks200 = txts[:200].map(tkn)
toks200[0]


(#228)
 > ['xxbos','xxmaj','this','movie',',','which','i','just','discovered','at'...]


We can pass this to setup to create our vocab:


num = Numericalize()
num.setup(toks200)
coll_repr(num.vocab,20)


"(#2000) ['xxunk','xxpad','xxbos','xxeos','xxfld','xxrep','xxwrep','xxup','xxmaj
 > ','the','.',',','a','and','of','to','is','in','i','it'...]"


Our special rules tokens appear first, and then every word appears once,
in frequency order. The defaults to Numericalize are
min_freq=3 and max_vocab=60000. max_vocab=60000 results in fastai
replacing all words other than the most common 60,000 with a special
unknown word token, xxunk. This is useful to avoid having an overly
large embedding matrix, since that can slow down training and use up too
much memory, and can also mean that there isn’t enough data
to train useful 
representations for rare words. However, this last issue
is better handled by setting min_freq; the default min_freq=3 means
that any word appearing fewer than three times is replaced with xxunk.


fastai can also numericalize your dataset using a vocab that you
provide, by passing a list of words as the vocab parameter.


Once we’ve created our Numericalize object, we can use it
as if it were a function:


nums = num(toks)[:20]; nums


tensor([  2,   8,  21,  28,  11,  90,  18,  59,   0,  45,   9, 351, 499,  11,
 > 72, 533, 584, 146,  29,  12])


This time, our tokens have been converted to a tensor of integers that
our model can receive. We can check that they map back to the original
text:


' '.join(num.vocab[o] for o in nums)


'xxbos xxmaj this movie , which i just xxunk at the video store , has apparently
 > sit around for a'


Now that we have numbers, we need to put them in batches for our model.

















Putting Our Texts into Batches for a Language Model


When dealing with images, we needed to resize them all to the same
height and width before grouping them together in a mini-batch so they
could stack together efficiently in a single tensor. Here
it’s going to be a little different, because one cannot
simply resize text to a desired length. Also, we want our language model
to read text in order, so that it can efficiently predict what the next
word is. This means each new batch should begin precisely where the previous one left off.


Suppose we have the following text:


In this chapter, we will go back over the example of classifying movie reviews we studied in chapter 1 and dig deeper under the surface. First we will look at the processing steps necessary to convert text into numbers and how to customize it. By doing this, we’ll have another example of the PreProcessor used in the data block API.


Then we will study how we build a language model and train it for a while.



The tokenization process will add special tokens and deal with
punctuation to return this text:


xxbos xxmaj in this chapter , we will go back over the example of classifying movie reviews we studied in chapter 1 and dig deeper under the surface . xxmaj first we will look at the processing steps necessary to convert text into numbers and how to customize it . xxmaj by doing this , we ‘ll have another example of the preprocessor used in the data block xxup api . \n xxmaj then we will study how we build a language model and train it for a while .



We now have 90 tokens, separated by spaces. Let’s say we want a batch size of 6. We need to break this text into 6 contiguous parts of length 15:


  
    
      	xxbos
      	xxmaj
      	in
      	this
      	chapter
      	,
      	we
      	will
      	go
      	back
      	over
      	the
      	example
      	of
      	classifying
    

    
      	movie
      	reviews
      	we
      	studied
      	in
      	chapter
      	1
      	and
      	dig
      	deeper
      	under
      	the
      	surface
      	.
      	xxmaj
    

    
      	first
      	we
      	will
      	look
      	at
      	the
      	processing
      	steps
      	necessary
      	to
      	convert
      	text
      	into
      	numbers
      	and
    

    
      	how
      	to
      	customize
      	it
      	.
      	xxmaj
      	by
      	doing
      	this
      	,
      	we
      	‘ll
      	have
      	another
      	example
    

    
      	of
      	the
      	preprocessor
      	used
      	in
      	the
      	data
      	block
      	xxup
      	api
      	.
      	\n
      	xxmaj
      	then
      	we
    

    
      	will
      	study
      	how
      	we
      	build
      	a
      	language
      	model
      	and
      	train
      	it
      	for
      	a
      	while
      	.
    

  



In a perfect world, we could then give this one batch to our model. But
that approach doesn’t scale, because outside this toy example, it’s unlikely that a single batch containing all the tokens would fit in
our GPU memory (here we have 90 tokens, but all the IMDb reviews
together give several million).


So, we need to divide this array more finely into subarrays
of a fixed sequence length. It is important to maintain order within and
across these subarrays, because we will use a model that maintains a state so that it remembers what it read previously when predicting
what comes next.


Going back to our previous example with 6 batches of length 15, if we
chose a sequence length of 5, that would mean we first feed the following
array:


  
    
      	xxbos
      	xxmaj
      	in
      	this
      	chapter
    

    
      	movie
      	reviews
      	we
      	studied
      	in
    

    
      	first
      	we
      	will
      	look
      	at
    

    
      	how
      	to
      	customize
      	it
      	.
    

    
      	of
      	the
      	preprocessor
      	used
      	in
    

    
      	will
      	study
      	how
      	we
      	build
    

  



Then, this one:


  
    
      	,
      	we
      	will
      	go
      	back
    

    
      	chapter
      	1
      	and
      	dig
      	deeper
    

    
      	the
      	processing
      	steps
      	necessary
      	to
    

    
      	xxmaj
      	by
      	doing
      	this
      	,
    

    
      	the
      	data
      	block
      	xxup
      	api
    

    
      	a
      	language
      	model
      	and
      	train
    

  



And finally:


  
    
      	over
      	the
      	example
      	of
      	classifying
    

    
      	under
      	the
      	surface
      	.
      	xxmaj
    

    
      	convert
      	text
      	into
      	numbers
      	and
    

    
      	we
      	‘ll
      	have
      	another
      	example
    

    
      	.
      	\n
      	xxmaj
      	then
      	we
    

    
      	it
      	for
      	a
      	while
      	.
    

  



Going back to our movie reviews dataset, the first step is to transform the individual
texts into a stream by concatenating them together. As with images,
it’s best to randomize the order of the inputs,
so at the beginning of each epoch we will shuffle the entries to make a
new stream (we shuffle the order of the documents, not the order of the
words inside them, or the texts would not make sense anymore!).


We then cut this stream into a certain number of batches (which is
our batch size). For instance, if the stream has 50,000 tokens and we
set a batch size of 10, this will give us 10 mini-streams of 5,000
tokens. What is important is that we preserve the order of the tokens
(so from 1 to 5,000 for the first mini-stream, then from 5,001 to
10,000…), because we want the model to read continuous rows of text (as
in the preceding example). An xxbos token is added at the start of each text during preprocessing, so that the model knows when it reads the
stream when a new entry is beginning.


So to recap, at every epoch we shuffle our collection of documents and
concatenate them into a stream of tokens. We then cut that stream into a
batch of fixed-size consecutive mini-streams. Our model will then read
the mini-streams in order, and thanks to an inner state, it will produce
the same activation, whatever sequence length we picked.


This is all done behind the scenes by the fastai library when we create
an 
LMDataLoader. We do this by first applying our Numericalize
object to the tokenized texts


nums200 = toks200.map(num)


and then passing that to LMDataLoader:


dl = LMDataLoader(nums200)


Let’s confirm that this gives the expected results, by
grabbing the first batch


x,y = first(dl)
x.shape,y.shape


(torch.Size([64, 72]), torch.Size([64, 72]))


and then looking at the first row of the independent variable, which
should be the start of the first text:


' '.join(num.vocab[o] for o in x[0][:20])


'xxbos xxmaj this movie , which i just xxunk at the video store , has apparently
 > sit around for a'


The dependent variable is the same thing offset by one token:


' '.join(num.vocab[o] for o in y[0][:20])


'xxmaj this movie , which i just xxunk at the video store , has apparently sit
 > around for a couple'


This concludes all the preprocessing steps we need to apply to our data.
We are now ready to train our text classifier.
























Training a Text Classifier


As we saw at the beginning of this chapter, there are two steps to training a
state-of-the-art text classifier using transfer learning: first we need to fine-tune our language model pretrained on
Wikipedia to the corpus of IMDb reviews, and then we can use that model to
train a classifier.


As usual, let’s start with assembling our data.










Language Model Using DataBlock


fastai handles tokenization and numericalization automatically when
TextBlock is passed to DataBlock. All of the arguments that can be
passed to Tokenizer and 
Numericalize can also be passed to
TextBlock. In the next chapter, we’ll discuss the easiest
ways to run each of these steps separately, to ease debugging, but you
can always just debug by running them manually on a subset of your data
as shown in the previous sections. And don’t forget about
DataBlock’s handy summary method, which is very useful
for debugging data issues.


Here’s how we use TextBlock to create a language model,
using fastai’s defaults:


get_imdb = partial(get_text_files, folders=['train', 'test', 'unsup'])

dls_lm = DataBlock(
    blocks=TextBlock.from_folder(path, is_lm=True),
    get_items=get_imdb, splitter=RandomSplitter(0.1)
).dataloaders(path, path=path, bs=128, seq_len=80)


One thing that’s different from previous types we’ve used in
DataBlock is that we’re not just using the class directly
(i.e., TextBlock(...), but instead are calling a class method. A
class method is a Python method that, as the name suggests, belongs to
a class rather than an object. (Be sure to search online for more
information about class methods if you’re not familiar with
them, since they’re commonly used in many Python libraries
and applications; we’ve used them a few times previously in
the book, but haven’t called attention to them.) The reason
that TextBlock is special is that setting up the
numericalizer’s vocab can take a long time (we have to read and tokenize
every document to get the vocab).


To be as efficient as possible, fastai performs a few optimizations:



	
It saves the tokenized documents in a temporary folder, so it
doesn’t have to tokenize them more than once.



	
It runs multiple tokenization processes in parallel, to take advantage of
your computer’s CPUs.






We need to tell TextBlock how to access the texts, so that
it can do this initial preprocessing—that’s what
from_folder does.


show_batch then works in the usual way:


dls_lm.show_batch(max_n=2)


  
    
      	
      	text
      	text_
    

  
  
    
      	0
      	xxbos xxmaj it ’s awesome ! xxmaj in xxmaj story xxmaj mode , your going from punk to pro . xxmaj you have to complete goals that involve skating , driving , and walking . xxmaj you create your own skater and give it a name , and you can make it look stupid or realistic . xxmaj you are with your friend xxmaj eric throughout the game until he betrays you and gets you kicked off of the skateboard
      	xxmaj it ’s awesome ! xxmaj in xxmaj story xxmaj mode , your going from punk to pro . xxmaj you have to complete goals that involve skating , driving , and walking . xxmaj you create your own skater and give it a name , and you can make it look stupid or realistic . xxmaj you are with your friend xxmaj eric throughout the game until he betrays you and gets you kicked off of the skateboard xxunk
    

    
      	1
      	what xxmaj i ‘ve read , xxmaj death xxmaj bed is based on an actual dream , xxmaj george xxmaj barry , the director , successfully transferred dream to film , only a genius could accomplish such a task . \n\n xxmaj old mansions make for good quality horror , as do portraits , not sure what to make of the killer bed with its killer yellow liquid , quite a bizarre dream , indeed . xxmaj also , this
      	xxmaj i ‘ve read , xxmaj death xxmaj bed is based on an actual dream , xxmaj george xxmaj barry , the director , successfully transferred dream to film , only a genius could accomplish such a task . \n\n xxmaj old mansions make for good quality horror , as do portraits , not sure what to make of the killer bed with its killer yellow liquid , quite a bizarre dream , indeed . xxmaj also , this is
    

  



Now that our data is ready, we can fine-tune the pretrained language
model.

















Fine-Tuning the Language Model


To convert the integer word indices into activations that we can use
for our neural network, we will use embeddings, just as we did for
collaborative filtering and tabular modeling. Then we’ll feed those embeddings into a recurrent neural network (RNN), using an architecture called
AWD-LSTM (we will show you how to write such a model from scratch in
Chapter 12). As we discussed earlier, the embeddings in
the pretrained model are merged with random embeddings added for words
that weren’t in the pretraining vocabulary. This is handled
automatically inside 
language_model_learner:


learn = language_model_learner(
    dls_lm, AWD_LSTM, drop_mult=0.3,
    metrics=[accuracy, Perplexity()]).to_fp16()


The loss function used by default is cross-entropy loss, since we
essentially have a classification problem (the different categories
being the words in our vocab). The perplexity metric used here is often used in NLP for language
models: it is the exponential of the loss (i.e.,
torch.exp(cross_entropy)). We also include the accuracy metric to see how many
times our model is right when trying to predict the next word, since
cross entropy (as we’ve seen) is both hard to interpret and tells us more about the model’s confidence than its accuracy.


Let’s go back to the process diagram from the beginning of this chapter. The first arrow has been completed for us and
made available as a pretrained model in fastai, and we’ve just
built the DataLoaders and Learner for the second stage. Now
we’re ready to fine-tune our language model!



[image: Diagram of the ULMFiT process]





It takes quite a while to train each epoch, so we’ll be
saving the intermediate model results during the training process. Since
fine_tune doesn’t do that for us, we’ll
use fit_one_cycle. Just like cnn_learner, language_model_learner
automatically calls freeze when using a pretrained model (which is the
default), so this will train only the embeddings (the only part
of the model that contains randomly initialized weights—i.e., embeddings
for words that are in our IMDb vocab, but aren’t in the
pretrained model vocab):


learn.fit_one_cycle(1, 2e-2)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	perplexity
      	time
    

  
  
    
      	0
      	4.120048
      	3.912788
      	0.299565
      	50.038246
      	11:39
    

  



This model takes a while to train, so it’s a good
opportunity to talk about saving intermediary results.

















Saving and Loading Models


You can easily save the state of your model like so:


learn.save('1epoch')


This will create a file in learn.path/models/ named 1epoch.pth. If
you want to load your model in another machine after creating your
Learner the same way, or resume training later, you can load the
content of this file as follows:


learn = learn.load('1epoch')


Once the initial training has completed, we can continue fine-tuning the model after unfreezing:


learn.unfreeze()
learn.fit_one_cycle(10, 2e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	perplexity
      	time
    

  
  
    
      	0
      	3.893486
      	3.772820
      	0.317104
      	43.502548
      	12:37
    

    
      	1
      	3.820479
      	3.717197
      	0.323790
      	41.148880
      	12:30
    

    
      	2
      	3.735622
      	3.659760
      	0.330321
      	38.851997
      	12:09
    

    
      	3
      	3.677086
      	3.624794
      	0.333960
      	37.516987
      	12:12
    

    
      	4
      	3.636646
      	3.601300
      	0.337017
      	36.645859
      	12:05
    

    
      	5
      	3.553636
      	3.584241
      	0.339355
      	36.026001
      	12:04
    

    
      	6
      	3.507634
      	3.571892
      	0.341353
      	35.583862
      	12:08
    

    
      	7
      	3.444101
      	3.565988
      	0.342194
      	35.374371
      	12:08
    

    
      	8
      	3.398597
      	3.566283
      	0.342647
      	35.384815
      	12:11
    

    
      	9
      	3.375563
      	3.568166
      	0.342528
      	35.451500
      	12:05
    

  



Once this is done, we save all of our model except the final layer that
converts activations to probabilities of picking each token in our
vocabulary. The model not including the final layer is called the
encoder. We can save it with save_encoder:


learn.save_encoder('finetuned')

Jargon: Encoder

The model not including the task-specific final layer(s). This term means much the same thing as “body” when applied to vision CNNs, but “encoder” tends to be more used for NLP and generative models.




This completes the second stage of the text classification process:
fine-tuning the language model. We can now use it to fine-tune a classifier
using the IMDb sentiment labels. Before we move on to fine-tuning the classifier, however, let’s quickly try something different: using our model to generate random reviews.

















Text Generation


Because our model is trained to guess the next word of the sentence, we can use it to write new reviews:


TEXT = "I liked this movie because"
N_WORDS = 40
N_SENTENCES = 2
preds = [learn.predict(TEXT, N_WORDS, temperature=0.75)
         for _ in range(N_SENTENCES)]


print("\n".join(preds))


i liked this movie because of its story and characters . The story line was very
 > strong , very good for a sci - fi film . The main character , Alucard , was
 > very well developed and brought the whole story
i liked this movie because i like the idea of the premise of the movie , the (
 > very ) convenient virus ( which , when you have to kill a few people , the "
 > evil " machine has to be used to protect


As you can see, we add some randomness (we pick a random word based on
the probabilities returned by the model) so we don’t get
exactly the same review twice. Our model doesn’t have any
programmed knowledge of the structure of a sentence or grammar rules,
yet it has clearly learned a lot about English sentences: we can see it
capitalizes properly (I is transformed to i because our rules require two characters or more to consider a word as capitalized, so
it’s normal to see it lowercased) and is using consistent
tense. The general review makes sense at first glance, and
it’s only if you read carefully that you can notice something is
a bit off. Not bad for a model trained in a couple of hours!


But our end goal wasn’t to train a model to generate reviews,
but to classify them…so let’s use this model to do just
that.

















Creating the Classifier DataLoaders


We’re now moving from language model fine-tuning to
classifier fine-tuning. To re-cap, a language model predicts the next
word of a document, so it doesn’t need any external labels.
A classifier, however, predicts an external label—in the case of IMDb,
it’s the sentiment of a document.


This means that the structure of our DataBlock for NLP classification
will look very familiar. It’s nearly the same as
we’ve seen for the many image classification datasets
we’ve worked with:


dls_clas = DataBlock(
    blocks=(TextBlock.from_folder(path, vocab=dls_lm.vocab),CategoryBlock),
    get_y = parent_label,
    get_items=partial(get_text_files, folders=['train', 'test']),
    splitter=GrandparentSplitter(valid_name='test')
).dataloaders(path, path=path, bs=128, seq_len=72)


Just as with image classification, show_batch shows the dependent
variable (sentiment, in this case) with each independent variable (movie
review text):


dls_clas.show_batch(max_n=3)


  
    
      	
      	text
      	category
    

  
  
    
      	0
      	xxbos i rate this movie with 3 skulls , only coz the girls knew how to scream , this could ‘ve been a better movie , if actors were better , the twins were xxup ok , i believed they were evil , but the eldest and youngest brother , they sucked really bad , it seemed like they were reading the scripts instead of acting them … . spoiler : if they ‘re vampire ’s why do they freeze the blood ? vampires ca n’t drink frozen blood , the sister in the movie says let ’s drink her while she is alive … .but then when they ‘re moving to another house , they take on a cooler they ‘re frozen blood . end of spoiler \n\n it was a huge waste of time , and that made me mad coz i read all the reviews of how
      	neg
    

    
      	1
      	xxbos i have read all of the xxmaj love xxmaj come xxmaj softly books . xxmaj knowing full well that movies can not use all aspects of the book , but generally they at least have the main point of the book . i was highly disappointed in this movie . xxmaj the only thing that they have in this movie that is in the book is that xxmaj missy ’s father comes to xxunk in the book both parents come ) . xxmaj that is all . xxmaj the story line was so twisted and far fetch and yes , sad , from the book , that i just could n’t enjoy it . xxmaj even if i did n’t read the book it was too sad . i do know that xxmaj pioneer life was rough , but the whole movie was a downer . xxmaj the rating
      	neg
    

    
      	2
      	xxbos xxmaj this , for lack of a better term , movie is lousy . xxmaj where do i start … … \n\n xxmaj cinemaphotography - xxmaj this was , perhaps , the worst xxmaj i ‘ve seen this year . xxmaj it looked like the camera was being tossed from camera man to camera man . xxmaj maybe they only had one camera . xxmaj it gives you the sensation of being a volleyball . \n\n xxmaj there are a bunch of scenes , haphazardly , thrown in with no continuity at all . xxmaj when they did the ' split screen ' , it was absurd . xxmaj everything was squished flat , it looked ridiculous . \n\n xxmaj the color tones were way off . xxmaj these people need to learn how to balance a camera . xxmaj this ' movie ' is poorly made , and
      	neg
    

  



Looking at the DataBlock definition, every piece is familiar
from previous data blocks we’ve built, with two important
exceptions:



	
TextBlock.from_folder no longer has the is_lm=True parameter.



	
We pass the vocab we created for the language model fine-tuning.






The reason that we pass the vocab of the language model is to make sure
we use the same correspondence of token to index. Otherwise, the
embeddings we learned in our fine-tuned language model won’t
make any sense to this model, and the fine-tuning step won’t
be of any use.


By passing is_lm=False (or not passing is_lm at all, since it
defaults to False), we tell TextBlock that we have regular labeled
data, rather than using the next tokens as labels. There is one
challenge we have to deal with, however, which has to do with collating
multiple documents into a mini-batch. Let’s see with an
example, by trying to create a mini-batch containing the first 10
documents. First we’ll numericalize them:


nums_samp = toks200[:10].map(num)


Let’s now look at how many tokens each of these 10 movie
reviews has:


nums_samp.map(len)


(#10) [228,238,121,290,196,194,533,124,581,155]


Remember, PyTorch DataLoaders need to collate all the items in a batch
into a single tensor, and a single tensor has a fixed shape
(i.e., it has a particular length on every axis, and all items must be
consistent). This should sound familiar: we had the same issue with
images. In that case, we used cropping, padding, and/or squishing to make
all the inputs the same size. Cropping might not be a good idea for
documents, because it seems likely we’d remove some key
information (having said that, the same issue is true for images, and we
use cropping there; data augmentation hasn’t been well
explored for NLP yet, so perhaps there are actually opportunities to use
cropping in NLP too!). You can’t really “squish” a
document. So that leaves padding!


We will expand the shortest texts to make them all the same size. To do
this, we use a special padding token that will be ignored by our model. Additionally, to avoid memory
issues and improve performance, we will batch together texts that are
roughly the same lengths (with some shuffling for the training set). We
do this by (approximately, for the training set) sorting the documents
by length prior to each epoch. The result is that the documents
collated into a single batch will tend of be of similar lengths. We won’t pad every batch to the same size, but will instead use the size of the largest document in each batch as the target size.

Dynamically Resize Images

It is possible to do something similar with images, which is especially useful
for irregularly sized rectangular images, but at the time of writing no library provides good support for this yet, and there
aren’t any papers covering it. It’s something
we’re planning to add to fastai soon, however, so keep an eye
on the book’s website; we’ll add information about this
as soon as we have it working well.




The sorting and padding are automatically done by the data block API for
us when using a TextBlock with is_lm=False. (We don’t
have this same issue for language model data, since we concatenate all
the documents together first and then split them into equally sized
sections.)


We can now create a model to classify our texts:


learn = text_classifier_learner(dls_clas, AWD_LSTM, drop_mult=0.5,
                                metrics=accuracy).to_fp16()


The final step prior to training the classifier is to load the encoder
from our fine-tuned language model. We use load_encoder instead of
load because we have only pretrained weights available for the
encoder; load by default raises an exception if an incomplete model is
loaded:


learn = learn.load_encoder('finetuned')

















Fine-Tuning the Classifier


The last step is to train with discriminative learning rates and
gradual unfreezing. In computer vision, we often unfreeze the model
all at once, but for NLP classifiers, we find that unfreezing a few
layers at a time makes a real difference:


learn.fit_one_cycle(1, 2e-2)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.347427
      	0.184480
      	0.929320
      	00:33
    

  



In just one epoch, we get the same result as our training in
Chapter 1—not too bad! We can pass -2 to freeze_to
to freeze all except the last two parameter groups:


learn.freeze_to(-2)
learn.fit_one_cycle(1, slice(1e-2/(2.6**4),1e-2))


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.247763
      	0.171683
      	0.934640
      	00:37
    

  



Then we can unfreeze a bit more and continue training:


learn.freeze_to(-3)
learn.fit_one_cycle(1, slice(5e-3/(2.6**4),5e-3))


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.193377
      	0.156696
      	0.941200
      	00:45
    

  



And finally, the whole model!


learn.unfreeze()
learn.fit_one_cycle(2, slice(1e-3/(2.6**4),1e-3))


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.172888
      	0.153770
      	0.943120
      	01:01
    

    
      	1
      	0.161492
      	0.155567
      	0.942640
      	00:57
    

  



We reached 94.3% accuracy, which was state-of-the-art performance just three years
ago. By training another model on all the texts read backward and averaging
the predictions of those two models, we can even get to 95.1% accuracy,
which was the state of the art introduced by the ULMFiT paper. It was beaten only a few months ago, by fine-tuning a much bigger model and using
expensive data augmentation techniques (translating sentences in another language
and back, using another model for 
translation).


Using a pretrained model let us build a fine-tuned language model that
is pretty powerful, to either generate fake reviews or help classify
them. This is exciting stuff, but it’s good to remember that this technology can also be used for
malign purposes.
























Disinformation and Language Models


Even simple algorithms based on rules, before the days of widely
available deep learning language models, could be used to create
fraudulent accounts and try to influence policymakers. Jeff Kao, now a
computational journalist at ProPublica, analyzed the comments that were
sent to the US Federal Communications Commission (FCC) regarding a 2017 proposal to repeal net
neutrality. In his article
“More than a Million Pro-Repeal Net Neutrality Comments Were Likely Faked”, he reports how he discovered a large cluster of comments opposing net neutrality that
seemed to have been generated by some sort of Mad Libs–style mail merge.
In Figure 10-2, the fake comments have been helpfully
color-coded by Kao to highlight their formulaic nature.



[image: ]
Figure 10-2. Comments received by the FCC during the net neutrality debate




Kao estimated that “less than 800,000 of the 22M+ comments…could be
considered truly unique” and that “more than 99% of the truly unique
comments were in favor of keeping net neutrality.”


Given advances in language modeling that have occurred since 2017, such
fraudulent campaigns could be nearly impossible to catch now. You now
have all the necessary tools at your disposal to create a compelling
language model—something that can generate context-appropriate,
believable text. It won’t necessarily be perfectly accurate
or correct, but it will be plausible. Think about what this technology
would mean when put together with the kinds of disinformation campaigns
we have learned about in recent years. Take a look at the Reddit dialogue shown
in Figure 10-3, where a language model based on
OpenAI’s GPT-2 algorithm is having a conversation with
itself about whether the US government should cut defense spending.



[image: An algorithm talking to itself on Reddit]
Figure 10-3. An algorithm talking to itself on Reddit




In this case, it was explained that an algorithm was being used to generate the dialogue. But
imagine what would happen if a bad actor decided to release such an
algorithm across social networks—they could do it slowly and carefully,
allowing the algorithm to gradually develop followers and trust over
time. It would not take many resources to have literally millions of
accounts doing this. In such a situation, we could easily imagine
getting to a point where the vast majority of discourse online was from
bots, and nobody would have any idea that it was happening.


We are already starting to see examples of machine learning being used
to generate identities. For example, Figure 10-4 shows a
LinkedIn profile for Katie Jones.



[image: ]
Figure 10-4. Katie Jones’s LinkedIn profile




Katie Jones was connected on LinkedIn to several members of mainstream
Washington think tanks. But she didn’t exist. That image you
see was autogenerated by a generative adversarial network, and somebody
named Katie Jones has not, in fact, graduated from the Center for
Strategic and International Studies.


Many people assume or hope that algorithms will come to our defense
here—that we will develop classification algorithms that
can automatically recognize autogenerated content. The problem,
however, is that this will always be an arms race, in which better
classification (or discriminator) algorithms can be used to create
better generation algorithms.

















Conclusion


In this chapter, we explored the last application covered out of the box by the
fastai library: text. We saw two types of models: language models
that can generate texts, and a classifier that determines whether a review is
positive or negative. To build a state-of-the art classifier, we used a
pretrained language model, fine-tuned it to the corpus of our task, then
used its body (the encoder) with a new head to do the 
classification.


Before we end this part of the book, we’ll take a look at how the fastai library can help you assemble your data for your specific problems.

















Questionnaire


	
What is self-supervised learning?



	
What is a language model?



	
Why is a language model considered self-supervised?



	
What are self-supervised models usually used for?



	
Why do we fine-tune language models?



	
What are the three steps to create a state-of-the-art text classifier?



	
How do the 50,000 unlabeled movie reviews help create a better text classifier for the IMDb dataset?



	
What are the three steps to prepare your data for a language model?



	
What is tokenization? Why do we need it?



	
Name three approaches to tokenization.



	
What is xxbos?



	
List four rules that fastai applies to text during tokenization.



	
Why are repeated characters replaced with a token showing the number of repetitions and the character that’s repeated?



	
What is numericalization?



	
Why might there be words that are replaced with the “unknown word” token?



	
With a batch size of 64, the first row of the tensor representing the first batch contains the first 64 tokens for the dataset. What does the second row of that tensor contain? What does the first row of the second batch contain? (Careful—students often get this one wrong! Be sure to check your answer on the book’s website.)



	
Why do we need padding for text classification? Why don’t we need it for language modeling?



	
What does an embedding matrix for NLP contain? What is its shape?



	
What is perplexity?



	
Why do we have to pass the vocabulary of the language model to the classifier data block?



	
What is gradual unfreezing?



	
Why is text generation always likely to be ahead of automatic identification of machine-generated texts?















Further Research


	
See what you can learn about language models and disinformation. What are the best language models today? Take a look at some of their outputs. Do you find them convincing? How could a bad actor best use such a model to create conflict and uncertainty?



	
Given the limitation that models are unlikely to be able to consistently recognize machine-generated texts, what other approaches may be needed to handle large-scale disinformation campaigns that leverage deep learning?




























  
Chapter 11. Data Munging with fastai’s Mid-Level API



We have seen what Tokenizer and Numericalize do to a collection of
texts, and how they’re used inside the data block API, which
handles those transforms for us directly using the TextBlock. But what
if we want to apply only one of those transforms, either to see
intermediate results or because we have already tokenized texts? More
generally, what can we do when the data block API is not flexible enough
to accommodate our particular use case? For this, we need to use
fastai’s mid-level API for processing data. The data block
API is built on top of that layer, so it will allow you to do everything
the data block API does, and much much more.








Going Deeper into fastai’s Layered API


The fastai library is built on a layered API. In the very top layer are applications that allow us to train a model in five lines of
code, as we saw in Chapter 1. In the case of creating
DataLoaders for a text classifier, for instance, we used this line:


from fastai.text.all import *

dls = TextDataLoaders.from_folder(untar_data(URLs.IMDB), valid='test')


The factory method TextDataLoaders.from_folder is very convenient when
your data is arranged the exact same way as the IMDb dataset, but in
practice, that often won’t be the case. The data block API
offers more flexibility. As we saw in the preceding chapter, we can get the
same result with the following:


path = untar_data(URLs.IMDB)
dls = DataBlock(
    blocks=(TextBlock.from_folder(path),CategoryBlock),
    get_y = parent_label,
    get_items=partial(get_text_files, folders=['train', 'test']),
    splitter=GrandparentSplitter(valid_name='test')
).dataloaders(path)


But it’s sometimes not flexible enough. For debugging
purposes, for instance, we might need to apply just parts of the
transforms that come with this data block. Or we might want to create a
DataLoaders for an application that isn’t directly
supported by fastai. In this section, we’ll dig into the
pieces that are used inside fastai to implement the data block API.
Understanding these will enable you to leverage the
power and flexibility of this mid-tier API.

Mid-Level API

The mid-level API does not contain only functionality for creating DataLoaders. It also has the callback system, which allows us to customize the training loop any way we like, and the general optimizer. Both will be covered in Chapter 16.












Transforms


When we studied tokenization and numericalization in the preceding chapter,
we started by grabbing a bunch of texts:


files = get_text_files(path, folders = ['train', 'test'])
txts = L(o.open().read() for o in files[:2000])


We then showed how to tokenize them with a Tokenizer


tok = Tokenizer.from_folder(path)
tok.setup(txts)
toks = txts.map(tok)
toks[0]


(#374) ['xxbos','xxmaj','well',',','"','cube','"','(','1997',')'...]


and how to numericalize, including automatically creating the vocab for
our corpus:


num = Numericalize()
num.setup(toks)
nums = toks.map(num)
nums[0][:10]


tensor([   2,    8,   76,   10,   23, 3112,   23,   34, 3113,   33])


The classes also have a decode method. For instance,
Numericalize.decode gives us back the string tokens:


nums_dec = num.decode(nums[0][:10]); nums_dec


(#10) ['xxbos','xxmaj','well',',','"','cube','"','(','1997',')']


Tokenizer.decode turns this back into a single string (it may
not, however, be exactly the same as the original string; this depends
on whether the tokenizer is reversible, which the default word
tokenizer is not at the time we’re writing this book):


tok.decode(nums_dec)


'xxbos xxmaj well , " cube " ( 1997 )'


decode is used by fastai’s show_batch and
show_results, as well as some other inference methods, to convert
predictions and mini-batches into a human-understandable representation.


For each of tok or num in the preceding examples, we created an object called the setup
method (which trains the tokenizer if needed for tok and creates the
vocab for num), applied it to our raw texts (by calling the object as
a function), and then finally decoded the result back to an understandable
representation. These steps are needed for most data preprocessing
tasks, so fastai provides a class that encapsulates them. This is the
Transform class. Both Tokenize and Numericalize are Transforms.


In general, a Transform is an object that behaves like a function and has
an optional setup method that will initialize an inner state (like the
vocab inside num) and an optional decode method that will
reverse the function (this reversal may not be perfect, as we saw with tok).


A good example of decode is found in the Normalize transform that we
saw in Chapter 7: to be able to plot the images,
its decode method undoes the normalization (i.e., it multiplies by the
standard deviation and adds back the mean). On the other hand, data augmentation
transforms do not have a decode method, since we want to show the
effects on images to make sure the data augmentation is working as we
want.


A special behavior of Transforms is that they always get applied over
tuples. In general, our data is always a tuple (input,target)
(sometimes with more than one input or more than one target). When
applying a transform on an item like this, such as Resize, we don’t want to resize the tuple as a whole; instead, we want to resize the input (if applicable) and the target (if applicable) separately. It’s the same
for batch transforms that do data augmentation: when the input is an
image and the target is a segmentation mask, the transform needs to be
applied (the same way) to the input and the target.


We can see this behavior if we pass a tuple of texts to tok:


tok((txts[0], txts[1]))


((#374) ['xxbos','xxmaj','well',',','"','cube','"','(','1997',')'...],
 (#207)
 > ['xxbos','xxmaj','conrad','xxmaj','hall','went','out','with','a','bang'...])

















Writing Your Own Transform


If you want to write a custom transform to apply to your data, the
easiest way is to write a function. As you can see in this example, a
Transform will be applied only to a matching type, if a type is
provided (otherwise, it will always be applied). In the following code,
the :int in the function signature means that f gets
applied only to ints. That’s why tfm(2.0) returns 2.0, but
tfm(2) returns 3 here:


def f(x:int): return x+1
tfm = Transform(f)
tfm(2),tfm(2.0)


(3, 2.0)


Here, f is converted to a Transform with no setup and no decode
method.


Python has a special syntax for passing a function (like f) to another
function (or something that behaves like a function, known as a
callable in Python), called a decorator. A decorator is used by
prepending a callable with @ and placing it before a function
definition (there are lots of good online tutorials about Python
decorators, so take a look at one if this is a new concept for you). The
following is identical to the previous code:


@Transform
def f(x:int): return x+1
f(2),f(2.0)


(3, 2.0)


If you need either setup or decode, you will need to subclass
Transform to implement the actual encoding behavior in encodes, then
(optionally) the setup behavior in setups and the decoding behavior
in decodes:


class NormalizeMean(Transform):
    def setups(self, items): self.mean = sum(items)/len(items)
    def encodes(self, x): return x-self.mean
    def decodes(self, x): return x+self.mean


Here, NormalizeMean will initialize a certain state during the setup (the
mean of all elements passed); then the transformation is to subtract
that mean. For decoding purposes, we implement the reverse of that
transformation by adding the mean. Here is an example of NormalizeMean
in action:


tfm = NormalizeMean()
tfm.setup([1,2,3,4,5])
start = 2
y = tfm(start)
z = tfm.decode(y)
tfm.mean,y,z


(3.0, -1.0, 2.0)


Note that the method called and the method implemented are different,
for each of these methods:





	Class
	To call
	To implement





	nn.Module (PyTorch)

	() (i.e., call as function)

	forward




	Transform

	()

	encodes




	Transform

	decode()

	decodes




	Transform

	setup()

	setups







So, for instance, you would never call setups directly, but instead
would call setup. The reason is that setup does some work
before and after calling setups for you. To learn more about
Transforms and how you can use them to implement different behavior
depending on the type of input, be sure to check the tutorials in
the fastai docs.

















Pipeline


To compose several transforms together, fastai provides the Pipeline class. We
define a Pipeline by passing it a list of Transforms; it will then
compose the transforms inside it. When you call a Pipeline on an
object, it will automatically call the transforms inside, in order:


tfms = Pipeline([tok, num])
t = tfms(txts[0]); t[:20]


tensor([   2,    8,   76,   10,   23, 3112,   23,   34, 3113,   33,   10,    8,
 > 4477,   22,   88,   32,   10,   27,   42,   14])


And you can call decode on the result of your encoding, to get back
something you can display and analyze:


tfms.decode(t)[:100]


'xxbos xxmaj well , " cube " ( 1997 ) , xxmaj vincenzo \'s first movie , was one
 > of the most interesti'


The only part that doesn’t work the same way as in
Transform is the setup. To properly set up a Pipeline of Transforms
on some data, you need to use a TfmdLists.
























TfmdLists and Datasets: Transformed Collections


Your data is usually a set of raw items (like filenames, or rows in a
DataFrame) to which you want to apply a succession of transformations.
We just saw that a succession of transformations is represented by a
Pipeline in fastai. The class that groups this Pipeline with
your raw items is called TfmdLists.










TfmdLists


Here is the short way of doing the transformation we saw in the previous
section:


tls = TfmdLists(files, [Tokenizer.from_folder(path), Numericalize])


At initialization, the TfmdLists will automatically call the setup
method of each Transform in order, providing each not with the raw items
but the items transformed by all the previous Transforms, in order. We
can get the result of our Pipeline on any raw element just by indexing
into the TfmdLists:


t = tls[0]; t[:20]


tensor([    2,     8,    91,    11,    22,  5793,    22,    37,  4910,    34,
 > 11,     8, 13042,    23,   107,    30,    11,    25,    44,    14])


And the TfmdLists knows how to decode for show purposes:


tls.decode(t)[:100]


'xxbos xxmaj well , " cube " ( 1997 ) , xxmaj vincenzo \'s first movie , was one
 > of the most interesti'


In fact, it even has a show method:


tls.show(t)


xxbos xxmaj well , " cube " ( 1997 ) , xxmaj vincenzo 's first movie , was one
 > of the most interesting and tricky ideas that xxmaj i 've ever seen when
 > talking about movies . xxmaj they had just one scenery , a bunch of actors
 > and a plot . xxmaj so , what made it so special were all the effective
 > direction , great dialogs and a bizarre condition that characters had to deal
 > like rats in a labyrinth . xxmaj his second movie , " cypher " ( 2002 ) , was
 > all about its story , but it was n't so good as " cube " but here are the
 > characters being tested like rats again .

 " nothing " is something very interesting and gets xxmaj vincenzo coming back
 > to his ' cube days ' , locking the characters once again in a very different
 > space with no time once more playing with the characters like playing with
 > rats in an experience room . xxmaj but instead of a thriller sci - fi ( even
 > some of the promotional teasers and trailers erroneous seemed like that ) , "
 > nothing " is a loose and light comedy that for sure can be called a modern
 > satire about our society and also about the intolerant world we 're living .
 > xxmaj once again xxmaj xxunk amaze us with a great idea into a so small kind
 > of thing . 2 actors and a blinding white scenario , that 's all you got most
 > part of time and you do n't need more than that . xxmaj while " cube " is a
 > claustrophobic experience and " cypher " confusing , " nothing " is
 > completely the opposite but at the same time also desperate .

 xxmaj this movie proves once again that a smart idea means much more than just
 > a millionaire budget . xxmaj of course that the movie fails sometimes , but
 > its prime idea means a lot and offsets any flaws . xxmaj there 's nothing
 > more to be said about this movie because everything is a brilliant surprise
 > and a totally different experience that i had in movies since " cube " .


The TfmdLists is named with an “s” because it can handle a training
and a validation set with a splits argument. You just need to pass the indices of the elements that are in the training set and the indices of the elements that are in the validation set:


cut = int(len(files)*0.8)
splits = [list(range(cut)), list(range(cut,len(files)))]
tls = TfmdLists(files, [Tokenizer.from_folder(path), Numericalize],
                splits=splits)


You can then access them through the train and valid attributes:


tls.valid[0][:20]


tensor([    2,     8,    20,    30,    87,   510,  1570,    12,   408,   379,
 > 4196,    10,     8,    20,    30,    16,    13, 12216,   202,   509])


If you have manually written a Transform that performs all of your preprocessing at once, turning raw items into a tuple with inputs and targets, then TfmdLists is the
class you need. You can directly convert it to a DataLoaders object
with the dataloaders method. This is what we will do in our Siamese
example later in this chapter.


In general, though, you will have two (or more) parallel pipelines of
transforms: one for processing your raw items into inputs and one to
process your raw items into targets. For instance, here, the pipeline we
defined processes only the raw text into inputs. If we want to do text
classification, we also have to process the labels into 
targets.


For this, we need to do two things. First we take the label name from the parent
folder. There is a function, parent_label, for this:


lbls = files.map(parent_label)
lbls


(#50000) ['pos','pos','pos','pos','pos','pos','pos','pos','pos','pos'...]


Then we need a Transform that will grab the unique items and build a
vocab with them during setup, then transform the string labels into
integers when called. fastai provides this for us; it’s
called Categorize:


cat = Categorize()
cat.setup(lbls)
cat.vocab, cat(lbls[0])


((#2) ['neg','pos'], TensorCategory(1))


To do the whole setup automatically on our list of files, we can create
a TfmdLists as before:


tls_y = TfmdLists(files, [parent_label, Categorize()])
tls_y[0]


TensorCategory(1)


But then we end up with two separate objects for our inputs and targets,
which is not what we want. This is where Datasets comes to the rescue.

















Datasets


Datasets will apply two (or more) pipelines in parallel to the same
raw object and build a tuple with the result. Like TfmdLists, it will
automatically do the setup for us, and when we index into a Datasets,
it will return us a tuple with the results of each pipeline:


x_tfms = [Tokenizer.from_folder(path), Numericalize]
y_tfms = [parent_label, Categorize()]
dsets = Datasets(files, [x_tfms, y_tfms])
x,y = dsets[0]
x[:20],y


Like a TfmdLists, we can pass along splits to a Datasets to split
our data between training and validation sets:


x_tfms = [Tokenizer.from_folder(path), Numericalize]
y_tfms = [parent_label, Categorize()]
dsets = Datasets(files, [x_tfms, y_tfms], splits=splits)
x,y = dsets.valid[0]
x[:20],y


(tensor([    2,     8,    20,    30,    87,   510,  1570,    12,   408,   379,
 > 4196,    10,     8,    20,    30,    16,    13, 12216,   202,   509]),
 TensorCategory(0))


It can also decode any processed tuple or show it directly:


t = dsets.valid[0]
dsets.decode(t)


('xxbos xxmaj this movie had horrible lighting and terrible camera movements .
 > xxmaj this movie is a jumpy horror flick with no meaning at all . xxmaj the
 > slashes are totally fake looking . xxmaj it looks like some 17 year - old
 > idiot wrote this movie and a 10 year old kid shot it . xxmaj with the worst
 > acting you can ever find . xxmaj people are tired of knives . xxmaj at least
 > move on to guns or fire . xxmaj it has almost exact lines from " when a xxmaj
 > stranger xxmaj calls " . xxmaj with gruesome killings , only crazy people
 > would enjoy this movie . xxmaj it is obvious the writer does n\'t have kids
 > or even care for them . i mean at show some mercy . xxmaj just to sum it up ,
 > this movie is a " b " movie and it sucked . xxmaj just for your own sake , do
 > n\'t even think about wasting your time watching this crappy movie .',
 'neg')


The last step is to convert our Datasets object to a DataLoaders,
which can be done with the dataloaders method. Here we need to pass
along a special argument to take care of the padding problem (as we saw
in the preceding chapter). This needs to happen just before we batch the
elements, so we pass it to before_batch:


dls = dsets.dataloaders(bs=64, before_batch=pad_input)


dataloaders directly calls DataLoader on each subset of our
Datasets. fastai’s 
DataLoader expands the PyTorch class
of the same name and is responsible for collating the items from our
datasets into batches. It has a lot of points of customization, but the
most important ones that you should know are as follows:


	after_item

	
Applied on each item after grabbing it inside the dataset. This is the equivalent of item_tfms in DataBlock.



	before_batch

	
Applied on the list of items before they are collated. This is the ideal place to pad items to the same size.



	after_batch

	
Applied on the batch as a whole after its construction. This is the equivalent of batch_tfms in DataBlock.






As a conclusion, here is the full code necessary to prepare the data for
text 
classification:


tfms = [[Tokenizer.from_folder(path), Numericalize], [parent_label, Categorize]]
files = get_text_files(path, folders = ['train', 'test'])
splits = GrandparentSplitter(valid_name='test')(files)
dsets = Datasets(files, tfms, splits=splits)
dls = dsets.dataloaders(dl_type=SortedDL, before_batch=pad_input)


The two differences from the previous code are the use of
GrandparentSplitter to split our training and validation data, and the
dl_type argument. This is to tell 
dataloaders to use the SortedDL
class of DataLoader, and not the usual one. SortedDL constructs
batches by putting samples of roughly the same lengths into batches.


This does the exact same thing as our previous DataBlock:


path = untar_data(URLs.IMDB)
dls = DataBlock(
    blocks=(TextBlock.from_folder(path),CategoryBlock),
    get_y = parent_label,
    get_items=partial(get_text_files, folders=['train', 'test']),
    splitter=GrandparentSplitter(valid_name='test')
).dataloaders(path)


But now you know how to customize every single piece of
it!


Let’s practice what we just learned about using this mid-level API
for data preprocessing on a computer vision example now.
























Applying the Mid-Level Data API: SiamesePair


A Siamese model takes two images and has to determine whether they are of
the same class. For this example, we will use the Pet dataset
again and prepare the data for a model that will have to predict whether two
images of pets are of the same breed. We will explain here how to
prepare the data for such a model, and then we will train that model in
Chapter 15.


First things first—let’s get the images in our dataset:


from fastai.vision.all import *
path = untar_data(URLs.PETS)
files = get_image_files(path/"images")


If we didn’t care about showing our objects at all, we could
directly create one transform to completely preprocess that list of
files. We will want to look at those images, though, so we need to create
a custom type. When you call the show method on a TfmdLists or a
Datasets object, it will decode items until it reaches a type that
contains a show method and use it to show the object. That show
method gets passed a ctx, which could be a matplotlib axis for images or a row of a DataFrame for texts.


Here we create a SiameseImage object that subclasses Tuple and is
intended to contain three things: two images, and a Boolean
that’s True if the images are of the same breed. We also implement
the special show method, such that it concatenates the two images
with a black line in the middle. Don’t worry too much about
the part that is in the if test (which is to show the SiameseImage
when the images are Python images, not tensors); the important part
is in the last three lines:


class SiameseImage(Tuple):
    def show(self, ctx=None, **kwargs):
        img1,img2,same_breed = self
        if not isinstance(img1, Tensor):
            if img2.size != img1.size: img2 = img2.resize(img1.size)
            t1,t2 = tensor(img1),tensor(img2)
            t1,t2 = t1.permute(2,0,1),t2.permute(2,0,1)
        else: t1,t2 = img1,img2
        line = t1.new_zeros(t1.shape[0], t1.shape[1], 10)
        return show_image(torch.cat([t1,line,t2], dim=2),
                          title=same_breed, ctx=ctx)


Let’s create a first SiameseImage and check that our
show method works:


img = PILImage.create(files[0])
s = SiameseImage(img, img, True)
s.show();



[image: ]





We can also try with a second image that’s not from the same
class:


img1 = PILImage.create(files[1])
s1 = SiameseImage(img, img1, False)
s1.show();



[image: ]





The important thing with transforms that we saw before is that they
dispatch over tuples or their subclasses. That’s precisely
why we chose to subclass Tuple in this instance—this way, we can apply
any transform that works on images to our SiameseImage, and it will be
applied on each image in the tuple:


s2 = Resize(224)(s1)
s2.show();



[image: ]





Here the Resize transform is applied to each of the two images, but not
the Boolean flag. Even if we have a custom type, we can thus benefit
from all the data augmentation transforms inside the library.


We are now ready to build the Transform that we will use to get our
data ready for a Siamese model. First, we will need a function to
determine the classes of all our images:


def label_func(fname):
    return re.match(r'^(.*)_\d+.jpg$', fname.name).groups()[0]


For each image, our transform will, with a
probability of 0.5, draw an image from the same class and return a
SiameseImage with a true label, or draw an image from another class
and return a SiameseImage with a false label. This is all done in the
private _draw function. There is one difference between the training
and validation sets, which is why the transform needs to be initialized
with the splits: on the training set, we will make that random pick each
time we read an image, whereas on the validation set, we make this
random pick once and for all at initialization. This way, we get more
varied samples during training, but always the same validation set:


class SiameseTransform(Transform):
    def __init__(self, files, label_func, splits):
        self.labels = files.map(label_func).unique()
        self.lbl2files = {l: L(f for f in files if label_func(f) == l)
                          for l in self.labels}
        self.label_func = label_func
        self.valid = {f: self._draw(f) for f in files[splits[1]]}

    def encodes(self, f):
        f2,t = self.valid.get(f, self._draw(f))
        img1,img2 = PILImage.create(f),PILImage.create(f2)
        return SiameseImage(img1, img2, t)

    def _draw(self, f):
        same = random.random() < 0.5
        cls = self.label_func(f)
        if not same:
            cls = random.choice(L(l for l in self.labels if l != cls))
        return random.choice(self.lbl2files[cls]),same


We can then create our main transform:


splits = RandomSplitter()(files)
tfm = SiameseTransform(files, label_func, splits)
tfm(files[0]).show();



[image: ]





In the mid-level API for data collection, we have two objects that
can help us apply transforms on a set of items: TfmdLists and
Datasets. If you remember what we have just seen, one applies a
Pipeline of transforms and the other applies several Pipelines of
transforms in parallel, to build tuples. Here, our main transform
already builds the tuples, so we use TfmdLists:


tls = TfmdLists(files, tfm, splits=splits)
show_at(tls.valid, 0);



[image: ]





And we can finally get our data in DataLoaders by calling the
dataloaders method. One thing to be careful of here is that this method
does not take item_tfms and batch_tfms like a DataBlock. The
fastai DataLoader has several hooks that are named after events; here
what we apply on the items after they are grabbed is called
after_item, and what we apply on the batch once it’s built
is called after_batch:


dls = tls.dataloaders(after_item=[Resize(224), ToTensor],
    after_batch=[IntToFloatTensor, Normalize.from_stats(*imagenet_stats)])


Note that we need to pass more transforms than usual—that’s
because the data block API usually adds them automatically:



	
ToTensor is the one that converts images to tensors (again, it’s applied on every part of the tuple).



	
IntToFloatTensor converts the tensor of images containing integers from 0 to 255 to a tensor of floats, and divides by 255 to make the values between 0 and 1.






We can now train a model using this DataLoaders. It will need a bit
more customization than the usual model provided by cnn_learner since
it has to take two images instead of one, but we will see how to create such
a model and train it in Chapter 15.

















Conclusion


fastai provides a layered API. It takes one line of code to grab the
data when it’s in one of the usual settings, making it easy for beginners to focus on training a model
without spending too much time assembling the data. Then, the high-level data block
API gives you more flexibility by allowing you to mix and match building
blocks. Underneath it, the mid-level API gives you greater flexibility to
apply transformations on your items. In your real-world problems,
this is probably what you will need to use, and we hope it makes the
step of data-munging as easy as possible.

















Questionnaire


	
Why do we say that fastai has a “layered” API? What does it mean?



	
Why does a Transform have a decode method? What does it do?



	
Why does a Transform have a setup method? What does it do?



	
How does a Transform work when called on a tuple?



	
Which methods do you need to implement when writing your own Transform?



	
Write a Normalize transform that fully normalizes items (subtract the mean and divide by the standard deviation of the dataset), and that can decode that behavior. Try not to peek!



	
Write a Transform that does the numericalization of tokenized texts (it should set its vocab automatically from the dataset seen and have a decode method). Look at the source code of fastai if you need help.



	
What is a Pipeline?



	
What is a TfmdLists?



	
What is a Datasets? How is it different from a TfmdLists?



	
Why are TfmdLists and Datasets named with an “s”?



	
How can you build a DataLoaders from a TfmdLists or a Datasets?



	
How do you pass item_tfms and batch_tfms when building a DataLoaders from a TfmdLists or a Datasets?



	
What do you need to do when you want to have your custom items work with methods like show_batch or show_results?



	
Why can we easily apply fastai data augmentation transforms to the SiamesePair we built?















Further Research


	
Use the mid-level API to prepare the data in DataLoaders on your own datasets. Try this with the Pet dataset and the Adult dataset from Chapter 1.



	
Look at the Siamese tutorial in the fastai documentation to learn how to customize the behavior of show_batch and show_results for new types of items. Implement it in your own project.





























Understanding fastai’s Applications: Wrap Up


Congratulations—you’ve completed all of the chapters in
this book that cover the key practical parts of training models and using deep
learning! You know how to use all of fastai’s built-in
applications, and how to customize them using the data block API and
loss functions. You even know how to create a neural network from
scratch and train it! (And hopefully you now know some of the questions
to ask to make sure your creations help improve society too.)


The knowledge you already have is enough to create full working
prototypes of many types of neural network application. More
importantly, it will help you understand the capabilities and
limitations of deep learning models, and how to design a system that’s well adapted to them.


In the rest of this book, we will be pulling apart those applications,
piece by piece, to understand the foundations they are built on.
This is important knowledge for a deep learning practitioner, because it allows you to inspect and debug models that you
build and to create new applications that are customized for your
particular projects.
















  
Part III. Foundations of Deep Learning









  
Chapter 12. A Language Model from Scratch



We’re now ready to go deep…deep into deep learning! You
already learned how to train a basic neural network, but how do you go
from there to creating state-of-the-art models? In this part of the book,
we’re going to uncover all of the mysteries, starting with
language models.


You saw in Chapter 10 how to fine-tune a pretrained language
model to build a text classifier. In this chapter, we will explain exactly what is inside that model and what an RNN is. First,
let’s gather some data that will allow us to quickly
prototype our various models.








The Data


Whenever we start working on a new problem, we always first try to think
of the simplest dataset we can that will allow us to try out methods
quickly and easily, and interpret the results. When we started working
on language modeling a few years ago, we didn’t find any
datasets that would allow for quick prototyping, so we made one. We call
it Human Numbers, and it simply contains the first 10,000 numbers
written out in English.

Jeremy Says

One of the most common practical mistakes I see even among highly experienced practitioners is failing to use appropriate datasets at appropriate times during the analysis process. In particular, most people tend to start with datasets that are too big and too complicated.




We can download, extract, and take a look at our dataset in the usual
way:


from fastai.text.all import *
path = untar_data(URLs.HUMAN_NUMBERS)


path.ls()


(#2) [Path('train.txt'),Path('valid.txt')]


Let’s open those two files and see what’s
inside. At first, we’ll join all of the texts together and
ignore the train/valid split given by the dataset (we’ll come back to that later):


lines = L()
with open(path/'train.txt') as f: lines += L(*f.readlines())
with open(path/'valid.txt') as f: lines += L(*f.readlines())
lines


(#9998) ['one \n','two \n','three \n','four \n','five \n','six \n','seven
 > \n','eight \n','nine \n','ten \n'...]


We take all those lines and concatenate them in one big stream. To mark
when we go from one number to the next, we use a
. as a separator:


text = ' . '.join([l.strip() for l in lines])
text[:100]


'one . two . three . four . five . six . seven . eight . nine . ten . eleven .
 > twelve . thirteen . fo'


We can tokenize this dataset by splitting on spaces:


tokens = text.split(' ')
tokens[:10]


['one', '.', 'two', '.', 'three', '.', 'four', '.', 'five', '.']


To numericalize, we have to create a list of all the unique tokens (our
vocab):


vocab = L(*tokens).unique()
vocab


(#30) ['one','.','two','three','four','five','six','seven','eight','nine'...]


Then we can convert our tokens into numbers by looking up the index of
each in the vocab:


word2idx = {w:i for i,w in enumerate(vocab)}
nums = L(word2idx[i] for i in tokens)
nums


(#63095) [0,1,2,1,3,1,4,1,5,1...]


Now that we have a small dataset on which language modeling should
be an easy task, we can build our first model.

















Our First Language Model from Scratch


One simple way to turn this into a neural network would be to specify
that we are going to predict each word based on the previous three
words. We could create a list of every sequence of three
words as our independent variables, and the next word after each sequence as
the dependent variable.


We can do that with plain Python. Let’s do it first with tokens just to
confirm what it looks like:


L((tokens[i:i+3], tokens[i+3]) for i in range(0,len(tokens)-4,3))


(#21031) [(['one', '.', 'two'], '.'),(['.', 'three', '.'], 'four'),(['four',
 > '.', 'five'], '.'),(['.', 'six', '.'], 'seven'),(['seven', '.', 'eight'],
 > '.'),(['.', 'nine', '.'], 'ten'),(['ten', '.', 'eleven'], '.'),(['.',
 > 'twelve', '.'], 'thirteen'),(['thirteen', '.', 'fourteen'], '.'),(['.',
 > 'fifteen', '.'], 'sixteen')...]


Now we will do it with tensors of the numericalized values, which is
what the model will actually use:


seqs = L((tensor(nums[i:i+3]), nums[i+3]) for i in range(0,len(nums)-4,3))
seqs


(#21031) [(tensor([0, 1, 2]), 1),(tensor([1, 3, 1]), 4),(tensor([4, 1, 5]),
 > 1),(tensor([1, 6, 1]), 7),(tensor([7, 1, 8]), 1),(tensor([1, 9, 1]),
 > 10),(tensor([10,  1, 11]), 1),(tensor([ 1, 12,  1]), 13),(tensor([13,  1,
 > 14]), 1),(tensor([ 1, 15,  1]), 16)...]


We can batch those easily using the DataLoader class. For now, we will split the sequences randomly:


bs = 64
cut = int(len(seqs) * 0.8)
dls = DataLoaders.from_dsets(seqs[:cut], seqs[cut:], bs=64, shuffle=False)


We can now create a neural network architecture that takes three words
as input, and returns a prediction of the probability of each possible
next word in the vocab. We will use three standard linear layers, but
with two tweaks.


The first tweak is that the first linear layer will use only the first
word’s embedding as activations, the second layer will use
the second word’s embedding plus the first
layer’s output activations, and the third layer will use the
third word’s embedding plus the second layer’s
output activations. The key effect is that every word is
interpreted in the information context of any words preceding it.


The second tweak is that each of these three layers will use the same
weight matrix. The way that one word impacts the activations from
previous words should not change depending on the position of a word. In
other words, activation values will change as data moves through the
layers, but the layer weights themselves will not change from layer to
layer. So, a layer does not learn one sequence position; it must learn to
handle all positions.


Since layer weights do not change, you might think of the sequential
layers as “the same layer” repeated. In fact, PyTorch makes this
concrete; we can create just one layer and use it multiple times.










Our Language Model in PyTorch


We can now create the language model module that we described earlier:


class LMModel1(Module):
    def __init__(self, vocab_sz, n_hidden):
        self.i_h = nn.Embedding(vocab_sz, n_hidden)
        self.h_h = nn.Linear(n_hidden, n_hidden)
        self.h_o = nn.Linear(n_hidden,vocab_sz)

    def forward(self, x):
        h = F.relu(self.h_h(self.i_h(x[:,0])))
        h = h + self.i_h(x[:,1])
        h = F.relu(self.h_h(h))
        h = h + self.i_h(x[:,2])
        h = F.relu(self.h_h(h))
        return self.h_o(h)


As you see, we have created three layers:



	
The embedding layer (i_h, for input to hidden)



	
The linear layer to create the activations for the next word (h_h, for hidden to hidden)



	
A final linear layer to predict the fourth word (h_o, for hidden to output)






This might be easier to represent in pictorial form, so let’s
define a simple pictorial representation of basic neural networks.
Figure 12-1 shows how we’re going to represent
a neural net with one hidden layer.



[image: Pictorial representation of a simple neural network]
Figure 12-1. Pictorial representation of a simple neural network




Each shape represents activations: rectangle for input, circle for
hidden (inner) layer activations, and triangle for output activations.
We will use those shapes (summarized in Figure 12-2) in all
the diagrams in this chapter.



[image: Shapes used in our pictorial representations]
Figure 12-2. Shapes used in our pictorial representations




An arrow represents the actual layer computation—i.e., the linear layer
followed by the activation function. Using this notation,
Figure 12-3 shows what our simple language model looks like.



[image: Representation of our basic language model]
Figure 12-3. Representation of our basic language model




To simplify things, we’ve removed the details of the layer
computation from each arrow. We’ve also color-coded the
arrows, such that all arrows with the same color have the same weight
matrix. For instance, all the input layers use the same embedding
matrix, so they all have the same color (green).


Let’s try training this model and see how it goes:


learn = Learner(dls, LMModel1(len(vocab), 64), loss_func=F.cross_entropy,
                metrics=accuracy)
learn.fit_one_cycle(4, 1e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.824297
      	1.970941
      	0.467554
      	00:02
    

    
      	1
      	1.386973
      	1.823242
      	0.467554
      	00:02
    

    
      	2
      	1.417556
      	1.654497
      	0.494414
      	00:02
    

    
      	3
      	1.376440
      	1.650849
      	0.494414
      	00:02
    

  



To see if this is any good, let’s check what a very
simple model would give us. In this case, we could always predict the most
common token, so let’s find out which token is most
often the target in our validation set:


n,counts = 0,torch.zeros(len(vocab))
for x,y in dls.valid:
    n += y.shape[0]
    for i in range_of(vocab): counts[i] += (y==i).long().sum()
idx = torch.argmax(counts)
idx, vocab[idx.item()], counts[idx].item()/n


(tensor(29), 'thousand', 0.15165200855716662)


The most common token has the index 29, which corresponds to the token
thousand. Always predicting this token would
give us an accuracy of roughly 15%, so we are faring way better!

Alexis Says

My first guess was that the separator would be the most common token, since there is one for every number. But looking at tokens reminded me that large numbers are written with many words, so on the way to 10,000 you write “thousand” a lot: five thousand, five thousand and one, five thousand and two, etc. Oops! Looking at your data is great for noticing subtle features as well as embarrassingly obvious ones.




This is a nice first baseline. Let’s see how we can refactor
it with a loop.

















Our First Recurrent Neural Network


Looking at the code for our module, we could simplify it by replacing
the duplicated code that calls the layers with a for loop. In addition to
making our code simpler, this will have the benefit that we will be able to
apply our module equally well to token sequences of different lengths—we won’t be restricted to token lists of length three:


class LMModel2(Module):
    def __init__(self, vocab_sz, n_hidden):
        self.i_h = nn.Embedding(vocab_sz, n_hidden)
        self.h_h = nn.Linear(n_hidden, n_hidden)
        self.h_o = nn.Linear(n_hidden,vocab_sz)

    def forward(self, x):
        h = 0
        for i in range(3):
            h = h + self.i_h(x[:,i])
            h = F.relu(self.h_h(h))
        return self.h_o(h)


Let’s check that we get the same results using this
refactoring:


learn = Learner(dls, LMModel2(len(vocab), 64), loss_func=F.cross_entropy,
                metrics=accuracy)
learn.fit_one_cycle(4, 1e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.816274
      	1.964143
      	0.460185
      	00:02
    

    
      	1
      	1.423805
      	1.739964
      	0.473259
      	00:02
    

    
      	2
      	1.430327
      	1.685172
      	0.485382
      	00:02
    

    
      	3
      	1.388390
      	1.657033
      	0.470406
      	00:02
    

  



We can also refactor our pictorial representation in exactly the same
way, as shown in Figure 12-4 (we’re also removing the
details of activation sizes here, and using the same arrow colors as in
Figure 12-3).



[image: Basic recurrent neural network]
Figure 12-4. Basic recurrent neural network




You will see that a set of activations is being updated
each time through the loop, stored in the variable h—this is
called the hidden state.

Jargon: Hidden State

The activations that are updated at each step of a recurrent neural network.




A neural network that is defined using a loop like this is called a
recurrent neural network (RNN). It is important to
realize that an RNN is not a complicated new architecture, but simply
a refactoring of a multilayer neural network using a for loop.

Alexis Says

My true opinion: if they were called “looping neural networks,” or LNNs, they would seem 50% less daunting!




Now that we know what an RNN is, let’s try to make it a
little bit better.
























Improving the RNN


Looking at the code for our RNN, one thing that seems problematic is
that we are initializing our hidden state to zero for every new input
sequence. Why is that a problem? We made our sample sequences short so
they would fit easily into batches. But if we order those samples
correctly, the sample sequences will be read in order by the model,
exposing the model to long stretches of the original sequence.


Another thing we can look at is having more signal: why predict only the
fourth word when we could use the intermediate predictions to also
predict the second and third words? Let’s see how we can implement those changes, starting with
adding some state.










Maintaining the State of an RNN


Because we initialize the model’s hidden state to zero for
each new sample, we are throwing away all the information we have about
the sentences we have seen so far, which means that our model
doesn’t actually know where we are up to in the overall
counting sequence. This is easily fixed; we can simply move the
initialization of the hidden state to __init__.


But this fix will create its own subtle, but important, problem. It
effectively makes our neural network as deep as the entire number of
tokens in our document. For instance, if there were 10,000 tokens in our
dataset, we would be creating a 10,000-layer neural network.


To see why this is the case, consider the original pictorial representation of our
recurrent neural network in Figure 12-3, before refactoring it
with a for loop. You can see each layer corresponds with one token
input. When we talk about the representation of a recurrent neural
network before refactoring with the for loop, we call this the unrolled
representation. It is often helpful to consider the unrolled
representation when trying to understand an RNN.


The problem with a 10,000-layer neural network is that if and when you
get to the 10,000th word of the dataset, you will still need to
calculate the derivatives all the way back to the first layer. This is
going to be slow indeed, and memory-intensive. It is unlikely
that you’ll be able to store even one mini-batch on your GPU.


The solution to this problem is to tell PyTorch that we do not want to backpropagate the derivatives through the entire implicit neural network.
Instead, we will keep just the last three layers of gradients. To remove
all of the gradient history in PyTorch, we use the detach method.


Here is the new version of our RNN. It is now stateful, because it
remembers its activations between different calls to forward, which
represent its use for different samples in the batch:


class LMModel3(Module):
    def __init__(self, vocab_sz, n_hidden):
        self.i_h = nn.Embedding(vocab_sz, n_hidden)
        self.h_h = nn.Linear(n_hidden, n_hidden)
        self.h_o = nn.Linear(n_hidden,vocab_sz)
        self.h = 0

    def forward(self, x):
        for i in range(3):
            self.h = self.h + self.i_h(x[:,i])
            self.h = F.relu(self.h_h(self.h))
        out = self.h_o(self.h)
        self.h = self.h.detach()
        return out

    def reset(self): self.h = 0


This model will have the same activations
whatever sequence length we pick, because the hidden state will
remember the last activation from the previous batch. The only thing
that will be different is the gradients computed at each step: they
will be calculated on only sequence length tokens in the past, instead
of the whole stream. This approach is called backpropagation through time (BPTT).

Jargon: Backpropagation Through Time

Treating a neural net with effectively one layer per time step (usually refactored using a
loop) as one big model, and calculating gradients on it in the usual
way. To avoid running out of memory and time, we usually use truncated
BPTT, which “detaches” the history of computation steps in the hidden
state every few time steps.




To use LMModel3, we need to make sure the samples are going to be seen
in a certain order. As we saw in Chapter 10, if the first
line of the first batch is our dset[0], the second batch should
have dset[1] as the first line, so that the model sees the text
flowing.


LMDataLoader was doing this for us in Chapter 10. This
time we’re going to do it 
ourselves.


To do this, we are going to rearrange our dataset. First we divide the
samples into 
m = len(dset) // bs groups (this is the equivalent of
splitting the whole concatenated dataset into, for example, 64 equally
sized pieces, since we’re using bs=64 here). m is the
length of each of these pieces. For instance, if we’re using
our whole dataset (although we’ll actually split it into
train versus valid in a moment), we have this:


m = len(seqs)//bs
m,bs,len(seqs)


(328, 64, 21031)


The first batch will be composed of the samples

(0, m, 2*m, ..., (bs-1)*m)


the second batch of the samples

(1, m+1, 2*m+1, ..., (bs-1)*m+1)


and so forth. This way, at each epoch, the model will see a chunk of
contiguous text of size 3*m (since each text is of size 3) on each
line of the batch.


The following function does that reindexing:


def group_chunks(ds, bs):
    m = len(ds) // bs
    new_ds = L()
    for i in range(m): new_ds += L(ds[i + m*j] for j in range(bs))
    return new_ds


Then we just pass drop_last=True when building our DataLoaders to
drop the last batch that does not have a shape of bs. We also pass
shuffle=False to make sure the texts are read in order:


cut = int(len(seqs) * 0.8)
dls = DataLoaders.from_dsets(
    group_chunks(seqs[:cut], bs),
    group_chunks(seqs[cut:], bs),
    bs=bs, drop_last=True, shuffle=False)


The last thing we add is a little tweak of the training loop via a
Callback. We will talk more about callbacks in
Chapter 16; this one will call the reset method of
our model at the beginning of each epoch and before each validation
phase. Since we implemented that method to set the hidden state of the
model to zero, this will make sure we start with a clean state before reading
those continuous chunks of text. We can also start training a bit
longer:


learn = Learner(dls, LMModel3(len(vocab), 64), loss_func=F.cross_entropy,
                metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(10, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.677074
      	1.827367
      	0.467548
      	00:02
    

    
      	1
      	1.282722
      	1.870913
      	0.388942
      	00:02
    

    
      	2
      	1.090705
      	1.651793
      	0.462500
      	00:02
    

    
      	3
      	1.005092
      	1.613794
      	0.516587
      	00:02
    

    
      	4
      	0.965975
      	1.560775
      	0.551202
      	00:02
    

    
      	5
      	0.916182
      	1.595857
      	0.560577
      	00:02
    

    
      	6
      	0.897657
      	1.539733
      	0.574279
      	00:02
    

    
      	7
      	0.836274
      	1.585141
      	0.583173
      	00:02
    

    
      	8
      	0.805877
      	1.629808
      	0.586779
      	00:02
    

    
      	9
      	0.795096
      	1.651267
      	0.588942
      	00:02
    

  



This is already better! The next step is to use more targets and compare
them to the intermediate predictions.

















Creating More Signal


Another problem with our current approach is that we predict only one
output word for each three input words. As a result, the amount of
signal that we are feeding back to update weights with is not as large
as it could be. It would be better if we predicted the next word after
every single word, rather than every three words, as shown in
Figure 12-5.



[image: RNN predicting after every token]
Figure 12-5. RNN predicting after every token




This is easy enough to add. We need to first change our data so that the
dependent variable has each of the three next words after each of our
three input words. Instead of 3, we use an attribute, sl (for sequence
length), and make it a bit bigger:


sl = 16
seqs = L((tensor(nums[i:i+sl]), tensor(nums[i+1:i+sl+1]))
         for i in range(0,len(nums)-sl-1,sl))
cut = int(len(seqs) * 0.8)
dls = DataLoaders.from_dsets(group_chunks(seqs[:cut], bs),
                             group_chunks(seqs[cut:], bs),
                             bs=bs, drop_last=True, shuffle=False)


Looking at the first element of seqs, we can see that it contains two
lists of the same size. The second list is the same as the first, but
offset by one element:


[L(vocab[o] for o in s) for s in seqs[0]]


[(#16) ['one','.','two','.','three','.','four','.','five','.'...],
 (#16) ['.','two','.','three','.','four','.','five','.','six'...]]


Now we need to modify our model so that it outputs a prediction after
every word, rather than just at the end of a three-word sequence:


class LMModel4(Module):
    def __init__(self, vocab_sz, n_hidden):
        self.i_h = nn.Embedding(vocab_sz, n_hidden)
        self.h_h = nn.Linear(n_hidden, n_hidden)
        self.h_o = nn.Linear(n_hidden,vocab_sz)
        self.h = 0

    def forward(self, x):
        outs = []
        for i in range(sl):
            self.h = self.h + self.i_h(x[:,i])
            self.h = F.relu(self.h_h(self.h))
            outs.append(self.h_o(self.h))
        self.h = self.h.detach()
        return torch.stack(outs, dim=1)

    def reset(self): self.h = 0


This model will return outputs of shape bs x sl x vocab_sz (since we
stacked on dim=1). Our targets are of shape bs x sl, so we need to
flatten those before using them in F.cross_entropy:


def loss_func(inp, targ):
    return F.cross_entropy(inp.view(-1, len(vocab)), targ.view(-1))


We can now use this loss function to train the model:


learn = Learner(dls, LMModel4(len(vocab), 64), loss_func=loss_func,
                metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(15, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	3.103298
      	2.874341
      	0.212565
      	00:01
    

    
      	1
      	2.231964
      	1.971280
      	0.462158
      	00:01
    

    
      	2
      	1.711358
      	1.813547
      	0.461182
      	00:01
    

    
      	3
      	1.448516
      	1.828176
      	0.483236
      	00:01
    

    
      	4
      	1.288630
      	1.659564
      	0.520671
      	00:01
    

    
      	5
      	1.161470
      	1.714023
      	0.554932
      	00:01
    

    
      	6
      	1.055568
      	1.660916
      	0.575033
      	00:01
    

    
      	7
      	0.960765
      	1.719624
      	0.591064
      	00:01
    

    
      	8
      	0.870153
      	1.839560
      	0.614665
      	00:01
    

    
      	9
      	0.808545
      	1.770278
      	0.624349
      	00:01
    

    
      	10
      	0.758084
      	1.842931
      	0.610758
      	00:01
    

    
      	11
      	0.719320
      	1.799527
      	0.646566
      	00:01
    

    
      	12
      	0.683439
      	1.917928
      	0.649821
      	00:01
    

    
      	13
      	0.660283
      	1.874712
      	0.628581
      	00:01
    

    
      	14
      	0.646154
      	1.877519
      	0.640055
      	00:01
    

  



We need to train for longer, since the task has changed a bit and is
more complicated now. But we end up with a good result…at least,
sometimes. If you run it a few times, you’ll see that you
can get quite different results on different runs. That’s
because effectively we have a very deep network here, which can result
in very large or very small gradients. We’ll see in the next
part of this chapter how to deal with this.


Now, the obvious way to get a better model is to go deeper: we have only one linear layer between the hidden state and the output activations in
our basic RNN, so maybe we’ll get better results with more.
























Multilayer RNNs


In a multilayer RNN, we pass the activations from our recurrent neural
network into a second recurrent neural network, as in
Figure 12-6.



[image: 2-layer RNN]
Figure 12-6. 2-layer RNN




The unrolled representation is shown in Figure 12-7 (similar to Figure 12-3).



[image: 2-layer unrolled RNN]
Figure 12-7. 2-layer unrolled RNN




Let’s see how to implement this in practice.










The Model


We can save some time by using PyTorch’s RNN
class, which implements exactly what we created earlier, but also
gives us the option to stack multiple RNNs, as we have discussed:


class LMModel5(Module):
    def __init__(self, vocab_sz, n_hidden, n_layers):
        self.i_h = nn.Embedding(vocab_sz, n_hidden)
        self.rnn = nn.RNN(n_hidden, n_hidden, n_layers, batch_first=True)
        self.h_o = nn.Linear(n_hidden, vocab_sz)
        self.h = torch.zeros(n_layers, bs, n_hidden)

    def forward(self, x):
        res,h = self.rnn(self.i_h(x), self.h)
        self.h = h.detach()
        return self.h_o(res)

    def reset(self): self.h.zero_()


learn = Learner(dls, LMModel5(len(vocab), 64, 2),
                loss_func=CrossEntropyLossFlat(),
                metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(15, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	3.055853
      	2.591640
      	0.437907
      	00:01
    

    
      	1
      	2.162359
      	1.787310
      	0.471598
      	00:01
    

    
      	2
      	1.710663
      	1.941807
      	0.321777
      	00:01
    

    
      	3
      	1.520783
      	1.999726
      	0.312012
      	00:01
    

    
      	4
      	1.330846
      	2.012902
      	0.413249
      	00:01
    

    
      	5
      	1.163297
      	1.896192
      	0.450684
      	00:01
    

    
      	6
      	1.033813
      	2.005209
      	0.434814
      	00:01
    

    
      	7
      	0.919090
      	2.047083
      	0.456706
      	00:01
    

    
      	8
      	0.822939
      	2.068031
      	0.468831
      	00:01
    

    
      	9
      	0.750180
      	2.136064
      	0.475098
      	00:01
    

    
      	10
      	0.695120
      	2.139140
      	0.485433
      	00:01
    

    
      	11
      	0.655752
      	2.155081
      	0.493652
      	00:01
    

    
      	12
      	0.629650
      	2.162583
      	0.498535
      	00:01
    

    
      	13
      	0.613583
      	2.171649
      	0.491048
      	00:01
    

    
      	14
      	0.604309
      	2.180355
      	0.487874
      	00:01
    

  



Now that’s disappointing…our previous
single-layer RNN performed better. Why? The reason is that we
have a deeper model, leading to exploding or vanishing 
activations.

















Exploding or Disappearing Activations


In practice, creating accurate models from this kind of RNN is
difficult. We will get better results if we call detach less often,
and have more layers—this gives our RNN a longer time horizon to learn
from and richer features to create. But it also means we have a deeper
model to train. The key challenge in the development of deep learning
has been figuring out how to train these kinds of models.


This is challenging because of what happens when you
multiply by a matrix many times. Think about what happens when you
multiply by a number many times. For example, if you multiply by 2,
starting at 1, you get the sequence 1, 2, 4, 8,…and after 32 steps, you
are already at 4,294,967,296. A similar issue happens if you multiply by
0.5: you get 0.5, 0.25, 0.125…and after 32 steps, it’s
0.00000000023. As you can see, multiplying by a number even slightly higher or lower
than 1 results in an explosion or disappearance of our starting number, after
just a few repeated multiplications.


Because matrix multiplication is just multiplying numbers and adding
them up, exactly the same thing happens with repeated matrix
multiplications. And that’s all a deep neural network is—each extra layer is another matrix multiplication. This
means that it is very easy for a deep neural network to end up with
extremely large or extremely small numbers.


This is a problem, because the way computers store numbers (known as
floating point) means that they become less and less accurate the
further away the numbers get from zero. The diagram in
Figure 12-8, from the excellent article
“What You Never Wanted to Know about Floating Point but Will Be Forced to Find Out”, shows how the
precision of floating-point numbers varies over the number line.



[image: Precision of floating-point numbers]
Figure 12-8. Precision of floating-point numbers




This inaccuracy means that often the gradients calculated for updating
the weights end up as zero or infinity for deep networks. This is
commonly referred to as the vanishing gradients or exploding gradients problem. It means that in SGD, the weights are either not updated at all or
jump to infinity. Either way, they won’t improve with training.


Researchers have developed ways to tackle this problem,
which we will be discussing later in the book. One option is to change the definition of a layer in a way that makes it
less likely to have exploding activations. We’ll look at the
details of how this is done in Chapter 13, when we
discuss batch normalization, and Chapter 14, when we
discuss ResNets, although these details don’t generally
matter in practice (unless you are a researcher who is creating new
approaches to solving this problem). Another 
strategy for dealing with this is by
being careful about initialization, which is a topic we’ll
investigate in Chapter 17.


For RNNs, two types of layers are frequently used to avoid
exploding activations: gated recurrent units (GRUs) and
long short-term memory (LSTM) layers. Both of these are available in PyTorch
and are drop-in replacements for the RNN layer. We will cover only LSTMs
in this book; plenty of good tutorials online explain GRUs,
which are a minor variant on the LSTM design.
























LSTM


LSTM is an architecture that was introduced
back in 1997 by Jürgen Schmidhuber and Sepp Hochreiter. In this
architecture, there are not one, but two, hidden states. In our base RNN,
the hidden state is the output of the RNN at the previous time step.
That hidden state is then responsible for two things:



	
Having the right information for the output layer to predict the
correct next token



	
Retaining memory of everything that happened in the sentence






Consider, for example, the sentences “Henry has a dog and he likes his
dog very much” and “Sophie has a dog and she likes her dog very
much.” It’s very clear that the RNN needs to remember the
name at the beginning of the sentence to be able to predict he/she or
his/her.


In practice, RNNs are really bad at retaining memory of what happened
much earlier in the sentence, which is the motivation to have another
hidden state (called cell state) in the LSTM. The cell state will be
responsible for keeping long short-term memory, while the hidden state
will focus on the next token to predict. Let’s take a closer
look at how this is achieved and build an LSTM from scratch.










Building an LSTM from Scratch


In order to build an LSTM, we first have to understand its architecture.
Figure 12-9 shows its inner structure.



[image: A graph showing the inner architecture of an LSTM]
Figure 12-9. Architecture of an LSTM




In this picture, our input 
  x t 
 enters on the left with
the previous hidden state (
  h t-1 
) and cell state
(
  c t-1 
). The four orange boxes represent four layers (our neural nets),
with the activation being either sigmoid (
  σ
) or
tanh. tanh is just a sigmoid function rescaled to the range –1 to 1. Its
mathematical expression can be written like this:



  
    tanh
    
      (
      x
      )
    
    =
    e x +e -x  e x -e -x 
    =
    2
    σ
    
      (
      2
      x
      )
    
    -
    1
  




where 
  σ
 is the sigmoid function. The green circles in the figure are
elementwise operations. What goes out on the right is the new hidden state
(
  h t 
) and new cell state (
  c t 
), ready for our next input. The new hidden state is also used as
output, which is why the arrow splits to go up.


Let’s go over the four neural nets (called gates) one by
one and explain the diagram—but before this, notice how very little the
cell state (at the top) is changed. It doesn’t even go
directly through a neural net! This is exactly why it will carry on a
longer-term state.


First, the arrows for input and old hidden state are joined together. In
the RNN we wrote earlier in this chapter, we were adding them together.
In the LSTM, we stack them in one big tensor. This means the dimension
of our embeddings (which is the dimension of 
  x t 
) can be
different from the dimension of our hidden state. If we call those
n_in and n_hid, the arrow at the bottom is of size n_in + n_hid;
thus all the neural nets (orange boxes) are linear layers with
n_in + n_hid inputs and n_hid 
outputs.


The first gate (looking from left to right) is called the forget gate. Since it’s a linear layer followed by a sigmoid, its output will consist of scalars between 0 and 1. We multiply this result by the cell state to determine which information to keep and which to throw away: values closer to 0 are discarded, and values closer to 1 are kept. This gives the LSTM the ability to forget things about its long-term state. For instance, when crossing a period or an xxbos token, we would expect it to (have learned to) reset its cell state.


The second gate is called the input gate. It works with the third gate (which doesn’t really have a name but is sometimes called the cell gate) to update the cell state. For instance, we may see a new gender pronoun, in which case we’ll need to replace the information about gender that the forget gate removed. Similar to the forget gate, the input gate decides which elements of the cell state to update (values close to 1) or not (values close to 0). The third gate determines what those updated values are, in the range of –1 to 1 (thanks to the tanh function). The result is added to the cell state.


The last gate is the output gate. It determines which information from the cell state to use to generate the output. The cell state goes through a tanh before being combined with the sigmoid output from the output gate, and the result is the new hidden state. In terms of code, we can write the same steps like this:


class LSTMCell(Module):
    def __init__(self, ni, nh):
        self.forget_gate = nn.Linear(ni + nh, nh)
        self.input_gate  = nn.Linear(ni + nh, nh)
        self.cell_gate   = nn.Linear(ni + nh, nh)
        self.output_gate = nn.Linear(ni + nh, nh)

    def forward(self, input, state):
        h,c = state
        h = torch.stack([h, input], dim=1)
        forget = torch.sigmoid(self.forget_gate(h))
        c = c * forget
        inp = torch.sigmoid(self.input_gate(h))
        cell = torch.tanh(self.cell_gate(h))
        c = c + inp * cell
        out = torch.sigmoid(self.output_gate(h))
        h = outgate * torch.tanh(c)
        return h, (h,c)


In practice, we can then refactor the code. Also, in terms of
performance, it’s better to do one big matrix multiplication
than four smaller ones (that’s because we launch the
special fast kernel on the GPU only once, and it gives the GPU more work to do in
parallel). The stacking takes a bit of time (since we have to move one
of the tensors around on the GPU to have it all in a contiguous array),
so we use two separate layers for the input and the hidden state. The
optimized and refactored code then looks like this:


class LSTMCell(Module):
    def __init__(self, ni, nh):
        self.ih = nn.Linear(ni,4*nh)
        self.hh = nn.Linear(nh,4*nh)

    def forward(self, input, state):
        h,c = state
        # One big multiplication for all the gates is better than 4 smaller ones
        gates = (self.ih(input) + self.hh(h)).chunk(4, 1)
        ingate,forgetgate,outgate = map(torch.sigmoid, gates[:3])
        cellgate = gates[3].tanh()

        c = (forgetgate*c) + (ingate*cellgate)
        h = outgate * c.tanh()
        return h, (h,c)


Here we use the PyTorch chunk method to split our tensor into four pieces. It works like this:


t = torch.arange(0,10); t


tensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])


t.chunk(2)


(tensor([0, 1, 2, 3, 4]), tensor([5, 6, 7, 8, 9]))


Let’s now use this architecture to train a language model!

















Training a Language Model Using LSTMs


Here is the same network as LMModel5, using a two-layer LSTM. We can
train it at a higher learning rate, for a shorter time, and get better
accuracy:


class LMModel6(Module):
    def __init__(self, vocab_sz, n_hidden, n_layers):
        self.i_h = nn.Embedding(vocab_sz, n_hidden)
        self.rnn = nn.LSTM(n_hidden, n_hidden, n_layers, batch_first=True)
        self.h_o = nn.Linear(n_hidden, vocab_sz)
        self.h = [torch.zeros(n_layers, bs, n_hidden) for _ in range(2)]

    def forward(self, x):
        res,h = self.rnn(self.i_h(x), self.h)
        self.h = [h_.detach() for h_ in h]
        return self.h_o(res)

    def reset(self):
        for h in self.h: h.zero_()


learn = Learner(dls, LMModel6(len(vocab), 64, 2),
                loss_func=CrossEntropyLossFlat(),
                metrics=accuracy, cbs=ModelResetter)
learn.fit_one_cycle(15, 1e-2)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	3.000821
      	2.663942
      	0.438314
      	00:02
    

    
      	1
      	2.139642
      	2.184780
      	0.240479
      	00:02
    

    
      	2
      	1.607275
      	1.812682
      	0.439779
      	00:02
    

    
      	3
      	1.347711
      	1.830982
      	0.497477
      	00:02
    

    
      	4
      	1.123113
      	1.937766
      	0.594401
      	00:02
    

    
      	5
      	0.852042
      	2.012127
      	0.631592
      	00:02
    

    
      	6
      	0.565494
      	1.312742
      	0.725749
      	00:02
    

    
      	7
      	0.347445
      	1.297934
      	0.711263
      	00:02
    

    
      	8
      	0.208191
      	1.441269
      	0.731201
      	00:02
    

    
      	9
      	0.126335
      	1.569952
      	0.737305
      	00:02
    

    
      	10
      	0.079761
      	1.427187
      	0.754150
      	00:02
    

    
      	11
      	0.052990
      	1.494990
      	0.745117
      	00:02
    

    
      	12
      	0.039008
      	1.393731
      	0.757894
      	00:02
    

    
      	13
      	0.031502
      	1.373210
      	0.758464
      	00:02
    

    
      	14
      	0.028068
      	1.368083
      	0.758464
      	00:02
    

  



Now that’s better than a multilayer RNN! We can still see
there is a bit of overfitting, however, which is a sign that a bit of
regularization might help.
























Regularizing an LSTM


Recurrent neural networks, in general, are hard to train, because of the
problem of vanishing activations and gradients we saw before. Using
LSTM (or GRU) cells makes training easier than with vanilla RNNs, but they
are still very prone to overfitting. Data augmentation, while a possibility, is less often used for text data than for images because in most cases it requires
another model to generate random augmentations (e.g., by translating the text into another
language and then back into the original language). Overall, data
augmentation for text data is currently not a well-explored space.


However, we can use other regularization techniques instead to
reduce overfitting, which were thoroughly studied for use with LSTMs in
the paper “Regularizing and Optimizing LSTM Language Models” by Stephen Merity et al. This paper showed how effective use of dropout,
activation regularization, and temporal activation regularization
could allow an LSTM to beat state-of-the-art results that previously
required much more complicated models. The authors called an LSTM using these
techniques an AWD-LSTM. We’ll look at each of these
techniques in turn.










Dropout


Dropout is a regularization technique that was introduced by Geoffrey
Hinton et al. in “Improving Neural Networks by Preventing Co-Adaptation of Feature Detectors”. The basic
idea is to randomly change some activations to zero at training time.
This makes sure all neurons actively work toward the output, as seen in
Figure 12-10 (from “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” by Nitish Srivastava et al.).



[image: A figure from the article showing how neurons go off with dropout]
Figure 12-10. Applying dropout in a neural network (courtesy of Nitish Srivastava et al.)




Hinton used a nice metaphor when he explained, in an interview, the
inspiration for dropout:


I went to my bank. The tellers kept changing, and I asked one of them why. He said he didn’t know but they got moved around a lot. I figured it must be because it would require cooperation between employees to successfully defraud the bank. This made me realize that randomly removing a different subset of neurons on each example would prevent conspiracies and thus reduce overfitting.



In the same interview, he also explained that neuroscience provided additional 
inspiration:


We don’t really know why neurons spike. One theory is that they want to be noisy so as to regularize, because we have many more parameters than we have data points. The idea of dropout is that if you have noisy activations, you can afford to use a much bigger model.



This explains the idea behind why dropout helps to generalize: first it
helps the neurons to cooperate better together; then it makes the
activations more noisy, thus making the model more robust.


We can see, however, that if we were to just zero those activations without doing
anything else, our model would have problems training: if we go from the
sum of five activations (that are all positive numbers since we apply a
ReLU) to just two, this won’t have the same scale. Therefore,
if we apply dropout with a probability p, we rescale all activations by
dividing them by 1-p (on average p will be zeroed, so it leaves
1-p), as shown in Figure 12-11.



[image: A figure from the article introducing dropout showing how a neuron is on/off]
Figure 12-11. Why we scale the activations when applying dropout (courtesy of Nitish Srivastava et al.)




This is a full implementation of the dropout layer in PyTorch (although
PyTorch’s native layer is actually written in C, not Python):


class Dropout(Module):
    def __init__(self, p): self.p = p
    def forward(self, x):
        if not self.training: return x
        mask = x.new(*x.shape).bernoulli_(1-p)
        return x * mask.div_(1-p)


The bernoulli_ method is creating a tensor of random zeros (with
probability p) and ones (with probability 1-p), which is then multiplied
with our input before dividing by 1-p. Note the use of the training
attribute, which is available in any PyTorch nn.Module, and tells us
if we are doing training or inference.

Do Your Own Experiments

In previous chapters of the book, we’d be adding a code example for bernoulli_ here, so you can see exactly how it works. But now that you know enough to do this yourself, we’re going to be doing fewer and fewer examples for you, and instead expecting you to do your own experiments to see how things work. In this case, you’ll see in the end-of-chapter questionnaire that we’re asking you to experiment with bernoulli_—but don’t wait for us to ask you to experiment to develop your understanding of the code we’re studying; go ahead and do it anyway!




Using dropout before passing the output of our LSTM to the final layer
will help reduce overfitting. Dropout is also used in many other models,
including the default CNN head used in fastai.vision, and is
available in fastai.tabular by passing the ps parameter (where each
“p” is passed to each added Dropout layer), as we’ll see
in Chapter 15.


Dropout has different behavior in training and validation mode, which
we specified using the training attribute in Dropout. Calling
the train method on a Module sets training to True (both for
the module you call the method on and for every module it recursively
contains), and eval sets it to False. This is done automatically
when calling the methods of Learner, but if you are not using that
class, remember to switch from one to the other as needed.

















Activation Regularization and Temporal Activation Regularization


Activation regularization (AR) and temporal activation regularization (TAR) are two regularization methods very similar to weight
decay, discussed in Chapter 8. When applying weight decay, we add a small penalty to the loss
that aims at making the weights as small as possible. For activation
regularization, it’s the final activations produced by the
LSTM that we will try to make as small as possible, instead of the
weights.


To regularize the final activations, we have to store those somewhere,
then add the means of the squares of them to the loss (along with a
multiplier alpha, which is just like wd for weight decay):


loss += alpha * activations.pow(2).mean()


Temporal activation regularization is linked to the fact we are
predicting tokens in a sentence. That means it’s likely that
the outputs of our LSTMs should somewhat make sense when we read them in
order. TAR is there to encourage that behavior by adding a penalty to
the loss to make the difference between two consecutive activations as
small as possible: our activations tensor has a shape bs x sl x n_hid,
and we read consecutive activations on the sequence length axis (the
dimension in the middle). With this, TAR can be expressed as follows:


loss += beta * (activations[:,1:] - activations[:,:-1]).pow(2).mean()


alpha and beta are then two hyperparameters to tune. To make this
work, we need our model with dropout to return three things: the proper
output, the activations of the LSTM pre-dropout, and the activations of
the LSTM post-dropout. AR is often applied on the dropped-out
activations (to not penalize the activations we turned into zeros afterward),
while TAR is applied on the non-dropped-out activations (because those
zeros create big differences between two consecutive time steps). A callback called RNNRegularizer will then apply this
regularization for us.

















Training a Weight-Tied Regularized LSTM


We can combine dropout (applied before we go into our output layer) with
AR and TAR to train our previous LSTM. We just need
to return three things instead of one: the normal output of our LSTM,
the dropped-out activations, and the activations from our LSTMs. The
last two will be picked up by the callback 
RNNRegularization for the
contributions it has to make to the loss.


Another useful trick we can add from the AWD-LSTM paper is weight
tying. In a language model, the input embeddings represent a mapping
from English words to activations, and the output hidden layer
represents a mapping from activations to English words. We might expect,
intuitively, that these mappings could be the same. We can represent
this in PyTorch by assigning the same weight matrix to each of these
layers:

self.h_o.weight = self.i_h.weight


In LMMModel7, we include these final tweaks:


class LMModel7(Module):
    def __init__(self, vocab_sz, n_hidden, n_layers, p):
        self.i_h = nn.Embedding(vocab_sz, n_hidden)
        self.rnn = nn.LSTM(n_hidden, n_hidden, n_layers, batch_first=True)
        self.drop = nn.Dropout(p)
        self.h_o = nn.Linear(n_hidden, vocab_sz)
        self.h_o.weight = self.i_h.weight
        self.h = [torch.zeros(n_layers, bs, n_hidden) for _ in range(2)]

    def forward(self, x):
        raw,h = self.rnn(self.i_h(x), self.h)
        out = self.drop(raw)
        self.h = [h_.detach() for h_ in h]
        return self.h_o(out),raw,out

    def reset(self):
        for h in self.h: h.zero_()


We can create a regularized Learner using the RNNRegularizer
callback:


learn = Learner(dls, LMModel7(len(vocab), 64, 2, 0.5),
                loss_func=CrossEntropyLossFlat(), metrics=accuracy,
                cbs=[ModelResetter, RNNRegularizer(alpha=2, beta=1)])


A TextLearner automatically adds those two callbacks for us (with
those values for alpha and beta as defaults), so we can simplify the preceding line:


learn = TextLearner(dls, LMModel7(len(vocab), 64, 2, 0.4),
                    loss_func=CrossEntropyLossFlat(), metrics=accuracy)


We can then train the model, and add additional regularization by
increasing the weight decay to 0.1:


learn.fit_one_cycle(15, 1e-2, wd=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.693885
      	2.013484
      	0.466634
      	00:02
    

    
      	1
      	1.685549
      	1.187310
      	0.629313
      	00:02
    

    
      	2
      	0.973307
      	0.791398
      	0.745605
      	00:02
    

    
      	3
      	0.555823
      	0.640412
      	0.794108
      	00:02
    

    
      	4
      	0.351802
      	0.557247
      	0.836100
      	00:02
    

    
      	5
      	0.244986
      	0.594977
      	0.807292
      	00:02
    

    
      	6
      	0.192231
      	0.511690
      	0.846761
      	00:02
    

    
      	7
      	0.162456
      	0.520370
      	0.858073
      	00:02
    

    
      	8
      	0.142664
      	0.525918
      	0.842285
      	00:02
    

    
      	9
      	0.128493
      	0.495029
      	0.858073
      	00:02
    

    
      	10
      	0.117589
      	0.464236
      	0.867188
      	00:02
    

    
      	11
      	0.109808
      	0.466550
      	0.869303
      	00:02
    

    
      	12
      	0.104216
      	0.455151
      	0.871826
      	00:02
    

    
      	13
      	0.100271
      	0.452659
      	0.873617
      	00:02
    

    
      	14
      	0.098121
      	0.458372
      	0.869385
      	00:02
    

  



Now this is far better than our previous model!
























Conclusion


You have now seen everything that is inside the AWD-LSTM architecture we
used in text classification in Chapter 10. It uses dropout
in a lot more places:



	
Embedding dropout (just after the embedding layer)



	
Input dropout (after the embedding layer)



	
Weight dropout (applied to the weights of the LSTM at each training step)



	
Hidden dropout (applied to the hidden state between two layers)






This makes it even more regularized. Since fine-tuning those five
dropout values (including the dropout before the output layer) is
complicated, we have determined good defaults and allow the magnitude
of dropout to be tuned overall with the drop_mult parameter you saw in that chapter
(which is multiplied by each dropout).


Another architecture that is very powerful, especially in “sequence-to-sequence” problems (problems in which the dependent variable is
itself a variable-length sequence, such as language translation), is the
Transformers architecture. You can find it in a bonus chapter on
the book’s website.

















Questionnaire


	
If the dataset for your project is so big and complicated that working with it takes a significant amount of time, what should you do?



	
Why do we concatenate the documents in our dataset before creating a language model?



	
To use a standard fully connected network to predict the fourth word given the previous three words, what two tweaks do we need to make to our model?



	
How can we share a weight matrix across multiple layers in PyTorch?



	
Write a module that predicts the third word given the previous two words of a sentence, without peeking.



	
What is a recurrent neural network?



	
What is hidden state?



	
What is the equivalent of hidden state in LMModel1?



	
To maintain the state in an RNN, why is it important to pass the text to the model in order?



	
What is an “unrolled” representation of an RNN?



	
Why can maintaining the hidden state in an RNN lead to memory and performance problems? How do we fix this problem?



	
What is BPTT?



	
Write code to print out the first few batches of the validation set, including converting the token IDs back into English strings, as we showed for batches of IMDb data in Chapter 10.



	
What does the ModelResetter callback do? Why do we need it?



	
What are the downsides of predicting just one output word for each three input words?



	
Why do we need a custom loss function for LMModel4?



	
Why is the training of LMModel4 unstable?



	
In the unrolled representation, we can see that a recurrent neural network has many layers. So why do we need to stack RNNs to get better results?



	
Draw a representation of a stacked (multilayer) RNN.



	
Why should we get better results in an RNN if we call detach less often? Why might this not happen in practice with a simple RNN?



	
Why can a deep network result in very large or very small activations? Why does this matter?



	
In a computer’s floating-point representation of numbers, which numbers are the most precise?



	
Why do vanishing gradients prevent training?



	
Why does it help to have two hidden states in the LSTM architecture? What is the purpose of each one?



	
What are these two states called in an LSTM?



	
What is tanh, and how is it related to sigmoid?



	
What is the purpose of this code in LSTMCell:


h = torch.stack([h, input], dim=1)



	
What does chunk do in PyTorch?



	
Study the refactored version of LSTMCell carefully to ensure you understand how and why it does the same thing as the nonrefactored version.



	
Why can we use a higher learning rate for LMModel6?



	
What are the three regularization techniques used in an AWD-LSTM model?



	
What is dropout?



	
Why do we scale the weights with dropout? Is this applied during training, inference, or both?



	
What is the purpose of this line from Dropout:


if not self.training: return x



	
Experiment with bernoulli_ to understand how it works.



	
How do you set your model in training mode in PyTorch? In evaluation mode?



	
Write the equation for activation regularization (in math or code, as you prefer). How is it different from weight decay?



	
Write the equation for temporal activation regularization (in math or code, as you prefer). Why wouldn’t we use this for computer vision problems?



	
What is weight tying in a language model?















Further Research


	
In LMModel2, why can forward start with h=0? Why don’t we need to say h=torch.zeros(...)?



	
Write the code for an LSTM from scratch (you may refer to Figure 12-9).



	
Search the internet for the GRU architecture and implement it from scratch, and try training a model. See if you can get results similar to those we saw in this chapter. Compare your results to the results of PyTorch’s built-in GRU module.



	
Take a look at the source code for AWD-LSTM in fastai, and try to map each of the lines of code to the concepts shown in this chapter.




























  
Chapter 13. Convolutional Neural Networks



In Chapter 4, we learned how to create a neural
network recognizing images. We were able to achieve a bit over 98%
accuracy at distinguishing 3s from 7s—but we also saw that
fastai’s built-in classes were able to get close to 100%.
Let’s start trying to close the gap.


In this chapter, we will begin by digging into what convolutions are and
building a CNN from scratch. We will then study a range of techniques to
improve training stability and learn all the tweaks the library usually
applies for us to get great results.








The Magic of Convolutions


One of the most powerful tools that machine learning practitioners have
at their disposal is feature engineering. A feature is a
transformation of the data that is designed to make it easier to model.
For instance, the add_datepart function that we used for our tabular
dataset preprocessing in Chapter 9 added date features to the Bulldozers dataset.
What kinds of features might we be able to create from images?

Jargon: Feature Engineering

Creating new transformations of the input data in order to make it easier to model.




In the context of an image, a feature is a visually distinctive
attribute. For example, the number 7 is
characterized by a horizontal edge near the top of the digit, and a
top-right to bottom-left diagonal edge underneath that. On the other
hand, the number 3 is characterized by a diagonal edge in one
direction at the top left and bottom right of the digit, the opposite
diagonal at the bottom left and top right, horizontal edges at the middle, top, and bottom, and so forth. So what if we could
extract information about where the edges occur in each image, and then
use that information as our features, instead of raw pixels?


It turns out that finding the edges in an image is a very common task in
computer vision and is surprisingly straightforward. To do it, we use
something called a convolution. A convolution requires nothing more
than multiplication and addition—two operations that are responsible
for the vast majority of work that we will see in every single deep
learning model in this book!


A convolution applies a kernel across an image. A kernel is a little
matrix, such as the 3×3 matrix in the top right of
Figure 13-1.



[image: Applying a kernel to one location]
Figure 13-1. Applying a kernel to one location




The 7×7 grid to the left is the image we’re going to apply
the kernel to. The convolution operation multiplies each element of the
kernel by each element of a 3×3 block of the image. The results of
these multiplications are then added together. The diagram in Figure 13-1 shows
an example of applying a kernel to a single location in the image, the
3×3 block around cell 18.


Let’s do this with code. First, we create a little 3×3
matrix like so:


top_edge = tensor([[-1,-1,-1],
                   [ 0, 0, 0],
                   [ 1, 1, 1]]).float()


We’re going to call this our kernel (because
that’s what fancy computer vision researchers call these).
And we’ll need an image, of course:


path = untar_data(URLs.MNIST_SAMPLE)


im3 = Image.open(path/'train'/'3'/'12.png')
show_image(im3);



[image: ]





Now we’re going to take the top 3×3-pixel square of our
image, and multiply each of those values by each item in our
kernel. Then we’ll add them up, like so:


im3_t = tensor(im3)
im3_t[0:3,0:3] * top_edge


tensor([[-0., -0., -0.],
        [0., 0., 0.],
        [0., 0., 0.]])


(im3_t[0:3,0:3] * top_edge).sum()


tensor(0.)


Not very interesting so far—all the pixels in the top-left
corner are white. But let’s pick a couple of more interesting spots:


df = pd.DataFrame(im3_t[:10,:20])
df.style.set_properties(**{'font-size':'6pt'}).background_gradient('Greys')



[image: Top section of a digit]





There’s a top edge at cell 5,7. Let’s repeat our
calculation there:


(im3_t[4:7,6:9] * top_edge).sum()


tensor(762.)


There’s a right edge at cell 8,18. What does that give us?


(im3_t[7:10,17:20] * top_edge).sum()


tensor(-29.)


As you can see, this little calculation is returning a high number where
the 3×3-pixel square represents a top edge (i.e., where there are low
values at the top of the square and high values immediately
underneath). That’s because the -1 values in our kernel
have little impact in that case, but the 1 values have a lot.


Let’s look a tiny bit at the math. The filter will take any
window of size 3×3 in our images, and if we name the pixel values
like this



  
    
      
        
          a
          1
        
      
      
        
          a
          2
        
      
      
        
          a
          3
        
      
    
    
      
        
          a
          4
        
      
      
        
          a
          5
        
      
      
        
          a
          6
        
      
    
    
      
        
          a
          7
        
      
      
        
          a
          8
        
      
      
        
          a
          9
        
      
    
  




it will return 
  
    a
    1
    +
    a
    2
    +
    a
    3
    -
    a
    7
    -
    a
    8
    -
    a
    9
  
. If we are in a part
of the image where 
  
    a
    1
  
, 
  
    a
    2
  
, and

  
    a
    3
  
 add up to the same as 
  
    a
    7
  
,

  
    a
    8
  
, and 
  
    a
    9
  
, then the terms will cancel each
other out and we will get 0. However, if 
  
    a
    1
  
 is greater than

  
    a
    7
  
, 
  
    a
    2
  
 is greater than 
  
    a
    8
  
, and

  
    a
    3
  
 is greater than 
  
    a
    9
  
, we will get a bigger
number as a result. So this filter detects horizontal edges—more
precisely, edges where we go from bright parts of the image at the top to
darker parts at the bottom.


Changing our filter to have the row of 1s at the top and the –1s at the
bottom would detect horizontal edges that go from dark to light. Putting
the 1s and –1s in columns versus rows would give us filters that
detect vertical edges. Each set of weights will produce a different kind
of outcome.


Let’s create a function to do this for one location, and
check that it matches our result from before:


def apply_kernel(row, col, kernel):
    return (im3_t[row-1:row+2,col-1:col+2] * kernel).sum()


apply_kernel(5,7,top_edge)


tensor(762.)


But note that we can’t apply it to the corner (e.g.,
location 0,0), since there isn’t a complete 3×3 square
there.










Mapping a Convolutional Kernel


We can map apply_kernel() across the coordinate grid. That is,
we’ll be taking our 3×3 kernel and applying it to each 3×3
section of our image. For instance, Figure 13-2 shows the positions a 3×3 kernel
can be applied to in the first row of a 5×5 image.



[image: Applying a kernel across a grid]
Figure 13-2. Applying a kernel across a grid




To get a grid of coordinates, we can use a nested list comprehension,
like so:


[[(i,j) for j in range(1,5)] for i in range(1,5)]


[[(1, 1), (1, 2), (1, 3), (1, 4)],
 [(2, 1), (2, 2), (2, 3), (2, 4)],
 [(3, 1), (3, 2), (3, 3), (3, 4)],
 [(4, 1), (4, 2), (4, 3), (4, 4)]]

Nested List Comprehensions

Nested list comprehensions are used a lot in Python, so if you haven’t seen them before, take a few minutes to make sure you understand what’s happening here, and experiment with writing your own nested list comprehensions.




Here’s the result of applying our kernel over a coordinate
grid:


rng = range(1,27)
top_edge3 = tensor([[apply_kernel(i,j,top_edge) for j in rng] for i in rng])

show_image(top_edge3);



[image: ]





Looking good! Our top edges are black, and bottom edges are white (since
they are the opposite of top edges). Now that our image contains
negative numbers too, matplotlib has automatically changed our colors
so that white is the smallest number in the image, black the highest,
and zeros appear as gray.


We can try the same thing for left edges:


left_edge = tensor([[-1,1,0],
                    [-1,1,0],
                    [-1,1,0]]).float()

left_edge3 = tensor([[apply_kernel(i,j,left_edge) for j in rng] for i in rng])

show_image(left_edge3);



[image: ]





As we mentioned before, a convolution is the operation of applying such a kernel over a grid. Vincent Dumoulin and Francesco Visin’s paper “A Guide to Convolution Arithmetic for Deep Learning” has many great diagrams
showing how image kernels can be applied. Figure 13-3 is an example
from the paper showing (at the bottom) a light blue 4×4 image with a dark
blue 3×3 kernel being applied, creating a 2×2 green output activation
map at the top.



[image: Result of applying a 3x3 kernel to a 4x4 image]
Figure 13-3. Result of applying a 3×3 kernel to a 4×4 image (courtesy of Vincent Dumoulin and Francesco Visin)




Look at the shape of the result. If the original image has a height of
h and a width of w, how many 3×3 windows can we find? As you can see
from the example, there are h-2 by w-2 windows, so the image we get
as a result has a height of h-2 and a width of w-2.


We won’t implement this convolution function from scratch,
but use PyTorch’s implementation instead (it is way faster
than anything we could do in Python).

















Convolutions in PyTorch


Convolution is such an important and widely used operation that PyTorch
has it built in. It’s called F.conv2d (recall that F is a fastai
import from torch.nn.functional, as recommended by PyTorch). PyTorch
docs tell us that it includes these parameters:


	input

	
input tensor of shape (minibatch, in_channels, iH, iW)



	weight

	
filters of shape (out_channels, in_channels, kH, kW)






Here iH,iW is the height and width of the image (i.e., 28,28), and
kH,kW is the height and width of our kernel (3,3). But apparently
PyTorch is expecting rank-4 tensors for both these arguments, whereas
currently we have only rank-2 tensors (i.e., matrices, or arrays with two
axes).


The reason for these extra axes is that PyTorch has a few tricks up its
sleeve. The first trick is that PyTorch can apply a convolution to
multiple images at the same time. That means we can call it on every
item in a batch at once!


The second trick is that PyTorch can apply multiple kernels at the same
time. So let’s create the diagonal-edge kernels too, and
then stack all four of our edge kernels into a single tensor:


diag1_edge = tensor([[ 0,-1, 1],
                     [-1, 1, 0],
                     [ 1, 0, 0]]).float()
diag2_edge = tensor([[ 1,-1, 0],
                     [ 0, 1,-1],
                     [ 0, 0, 1]]).float()

edge_kernels = torch.stack([left_edge, top_edge, diag1_edge, diag2_edge])
edge_kernels.shape


torch.Size([4, 3, 3])


To test this, we’ll need a DataLoader
and a sample mini-batch. Let’s use the data block API:


mnist = DataBlock((ImageBlock(cls=PILImageBW), CategoryBlock),
                  get_items=get_image_files,
                  splitter=GrandparentSplitter(),
                  get_y=parent_label)

dls = mnist.dataloaders(path)
xb,yb = first(dls.valid)
xb.shape


torch.Size([64, 1, 28, 28])


By default, fastai puts data on the GPU when using data blocks.
Let’s move it to the CPU for our examples:


xb,yb = to_cpu(xb),to_cpu(yb)


One batch contains 64 images, each of 1 channel, with 28×28 pixels.
F.conv2d can handle multichannel (color) images too. A channel is
a single basic color in an image—for regular full-color images, there are
three channels, red, green, and blue. PyTorch represents an image as a
rank-3 tensor, with these dimensions:

[channels, rows, columns]


We’ll see how to handle more than one channel later in this
chapter. Kernels passed to F.conv2d need to be rank-4 tensors:

[channels_in, features_out, rows, columns]


edge_kernels is currently missing one of these: we need to tell PyTorch
that the number of input channels in the kernel is one, which we can do by inserting an axis of size one (this is known as a unit axis) in the first location, where the PyTorch docs show in_channels is
expected. To insert a unit axis into a tensor, we use the unsqueeze
method:


edge_kernels.shape,edge_kernels.unsqueeze(1).shape


(torch.Size([4, 3, 3]), torch.Size([4, 1, 3, 3]))


This is now the correct shape for edge_kernels. Let’s pass
this all to conv2d:


edge_kernels = edge_kernels.unsqueeze(1)


batch_features = F.conv2d(xb, edge_kernels)
batch_features.shape


torch.Size([64, 4, 26, 26])


The output shape shows we have 64 images in the mini-batch, 4 kernels, and
26×26 edge maps (we started with 28×28 images, but lost one pixel from
each side as discussed earlier). We can see we get the same results as
when we did this manually:


show_image(batch_features[0,0]);



[image: ]





The most important trick that PyTorch has up its sleeve is that it can
use the GPU to do all this work in parallel—applying multiple
kernels to multiple images, across multiple channels. Doing lots of
work in parallel is critical to getting GPUs to work efficiently; if we
did each of these operations one at a time, we’d often run hundreds of
times slower (and if we used our manual convolution loop from the
previous section, we’d be millions of times slower!).
Therefore, to become a strong deep learning practitioner, one skill to
practice is giving your GPU plenty of work to do at a time.


It would be nice to not lose those two pixels on each axis. The way we
do that is to add padding, which is simply additional pixels added
around the outside of our image. Most commonly, pixels of zeros are
added.

















Strides and Padding


With appropriate padding, we can ensure that the output activation map
is the same size as the original image, which can make things a lot
simpler when we construct our architectures. Figure 13-4 shows how adding padding allows us to apply the kernel in the image corners.



[image: A convolution with padding]
Figure 13-4. A convolution with padding




With a 5×5 input, 4×4 kernel, and 2 pixels of padding, we end up
with a 6×6 activation map, as we can see in Figure 13-5.



[image: 4x4 kernel with 5x5 input and 2 pixels of padding]
Figure 13-5. A 4×4 kernel with 5×5 input and 2 pixels of padding (courtesy of Vincent Dumoulin and Francesco Visin)




If we add a kernel of size ks by ks (with ks an odd number), the
necessary padding on each side to keep the same shape is ks//2. An
even number for ks would require a different amount of padding on the
top/bottom and left/right, but in practice we almost never use an even
filter size.


So far, when we have applied the kernel to the grid, we have moved it
one pixel over at a time. But we can jump further; for instance, we
could move over two pixels after each kernel application, as in
Figure 13-6. This is known as a stride-2
convolution. The most common kernel size in practice is 3×3, and the
most common padding is 1. As you’ll see, stride-2
convolutions are useful for decreasing the size of our outputs, and
stride-1 convolutions are useful for adding layers without changing the
output size.



[image: 3x3 kernel with 5x5 input, stride 2 convolution, and 1 pixel of padding]
Figure 13-6. A 3×3 kernel with 5×5 input, stride-2 convolution, and 1 pixel of padding (courtesy of Vincent Dumoulin and Francesco Visin)




In an image of size h by w, using a padding of 1 and a
stride of 2 will give us a result of size (h+1)//2 by (w+1)//2. The
general formula for each dimension is


(n + 2*pad - ks) // stride + 1


where pad is the padding, ks is the size of our kernel, and stride is the
stride.


Let’s now take a look at how the pixel values of the result
of our convolutions are computed.

















Understanding the Convolution Equations


To explain the math behind convolutions, fast.ai student Matt Kleinsmith
came up with the very clever idea of showing
CNNs from different viewpoints. In fact, it’s so clever, and so
helpful, we’re going to show it here too!


Here’s our 3×3-pixel image, with each pixel labeled with
a letter:



[image: The image]





And here’s our kernel, with each weight labeled with a Greek letter:



[image: The kernel]





Since the filter fits in the image four times, we have four results:



[image: The activations]





Figure 13-7 shows how we applied the kernel to each section of the image to yield
each result.



[image: Applying the kernel]
Figure 13-7. Applying the kernel




The equation view is in Figure 13-8.



[image: The equation]
Figure 13-8. The equation




Notice that the bias term, b, is the same for each section of the image.
You can consider the bias as part of the filter, just as the weights
(α, β, γ, δ) are part of the filter.


Here’s an interesting insight—a convolution can be
represented as a special kind of matrix multiplication, as illustrated in Figure 13-9. The weight
matrix is just like the ones from traditional neural networks. However,
this weight matrix has two special properties:


	
The zeros shown in gray are untrainable. This means that they’ll stay
zero throughout the optimization process.



	
Some of the weights
are equal, and while they are trainable (i.e., changeable), they must
remain equal. These are called shared weights.







The zeros correspond to the pixels that the filter can’t
touch. Each row of the weight matrix corresponds to one application of
the filter.



[image: Convolution as matrix multiplication]
Figure 13-9. Convolution as matrix multiplication




Now that we understand what convolutions are, let’s use them
to build a neural net.
























Our First Convolutional Neural Network


There is no reason to believe that some particular edge filters are the
most useful kernels for image recognition. Furthermore,
we’ve seen that in later layers, convolutional kernels become
complex transformations of features from lower levels, but we don’t have a
good idea of how to manually construct these.


Instead, it would be best to learn the values of the kernels. We already
know how to do this—SGD! In effect, the model will learn the features
that are useful for classification. When we use convolutions instead of (or in addition to) regular linear
layers, we create a convolutional neural network (CNN).










Creating the CNN


Let’s go back to the basic neural network we had in
Chapter 4. It was defined like this:


simple_net = nn.Sequential(
    nn.Linear(28*28,30),
    nn.ReLU(),
    nn.Linear(30,1)
)


We can view a model’s definition:


simple_net


Sequential(
  (0): Linear(in_features=784, out_features=30, bias=True)
  (1): ReLU()
  (2): Linear(in_features=30, out_features=1, bias=True)
)


We now want to create a similar architecture to this linear model, but
using convolutional layers instead of linear. nn.Conv2d is the module
equivalent of F.conv2d. It’s more convenient than
F.conv2d when creating an architecture, because it creates the weight
matrix for us automatically when we instantiate it.


Here’s a possible architecture:


broken_cnn = sequential(
    nn.Conv2d(1,30, kernel_size=3, padding=1),
    nn.ReLU(),
    nn.Conv2d(30,1, kernel_size=3, padding=1)
)


One thing to note here is that we didn’t need to specify 28*28 as the input size. That’s because a linear layer
needs a weight in the weight matrix for every pixel, so it needs to know
how many pixels there are, but a convolution is applied over each pixel
automatically. The weights depend only on the number of input and output
channels and the kernel size, as we saw in the previous section.


Think about what the output shape is going to be; then let’s try it and see:


broken_cnn(xb).shape


torch.Size([64, 1, 28, 28])


This is not something we can use to do classification, since we need a
single output activation per image, not a 28×28 map of activations. One
way to deal with this is to use enough stride-2 convolutions such that
the final layer is size 1. After one stride-2 convolution, the
size will be 14×14; after two, it will be 7×7; then 4×4, 2×2, and finally
size 1.


Let’s try that now. First, we’ll define a
function with the basic parameters we’ll use in each
convolution:


def conv(ni, nf, ks=3, act=True):
    res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)
    if act: res = nn.Sequential(res, nn.ReLU())
    return res

Refactoring

Refactoring parts of your neural networks like this makes it much less likely you’ll get errors due to inconsistencies in your architectures, and makes it more obvious to the reader which parts of your layers are actually changing.




When we use a stride-2 convolution, we often increase the number of
features at the same time. This is because we’re decreasing
the number of activations in the activation map by a factor of 4; we
don’t want to decrease the capacity of a layer by too much
at a time.

Jargon: Channels and Features

These two terms are largely used interchangeably and refer to the size of the second axis of a weight matrix, which is the number of activations per grid cell after a convolution. Features is never used to refer to the input data, but channels can refer to either the input data (generally, channels are colors) or activations inside the 
network.




Here is how we can build a simple CNN:


simple_cnn = sequential(
    conv(1 ,4),            #14x14
    conv(4 ,8),            #7x7
    conv(8 ,16),           #4x4
    conv(16,32),           #2x2
    conv(32,2, act=False), #1x1
    Flatten(),
)

Jeremy Says

I like to add comments like the ones here after each convolution to show how large the activation map will be after each layer. These comments assume that the input size is 28×28.




Now the network outputs two activations, which map to the two possible
levels in our labels:


simple_cnn(xb).shape


torch.Size([64, 2])


We can now create our Learner:


learn = Learner(dls, simple_cnn, loss_func=F.cross_entropy, metrics=accuracy)


To see exactly what’s going on in the model, we can use summary:


learn.summary()


Sequential (Input shape: ['64 x 1 x 28 x 28'])
================================================================
Layer (type)         Output Shape         Param #    Trainable
================================================================
Conv2d               64 x 4 x 14 x 14     40         True
________________________________________________________________
ReLU                 64 x 4 x 14 x 14     0          False
________________________________________________________________
Conv2d               64 x 8 x 7 x 7       296        True
________________________________________________________________
ReLU                 64 x 8 x 7 x 7       0          False
________________________________________________________________
Conv2d               64 x 16 x 4 x 4      1,168      True
________________________________________________________________
ReLU                 64 x 16 x 4 x 4      0          False
________________________________________________________________
Conv2d               64 x 32 x 2 x 2      4,640      True
________________________________________________________________
ReLU                 64 x 32 x 2 x 2      0          False
________________________________________________________________
Conv2d               64 x 2 x 1 x 1       578        True
________________________________________________________________
Flatten              64 x 2               0          False
________________________________________________________________

Total params: 6,722
Total trainable params: 6,722
Total non-trainable params: 0

Optimizer used: <function Adam at 0x7fbc9c258cb0>
Loss function: <function cross_entropy at 0x7fbca9ba0170>

Callbacks:
  - TrainEvalCallback
  - Recorder
  - ProgressCallback


Note that the output of the final Conv2d layer is 64x2x1x1. We need to
remove those extra 1x1 axes; that’s what Flatten does.
It’s basically the same as PyTorch’s squeeze
method, but as a module.


Let’s see if this trains! Since this is a deeper network
than we’ve built from scratch before, we’ll use
a lower learning rate and more epochs:


learn.fit_one_cycle(2, 0.01)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.072684
      	0.045110
      	0.990186
      	00:05
    

    
      	1
      	0.022580
      	0.030775
      	0.990186
      	00:05
    

  



Success! It’s getting closer to the resnet18 result we had,
although it’s not quite there yet, and it’s
taking more epochs, and we’re needing to use a lower
learning rate. We still have a few more tricks to
learn, but we’re getting closer and closer to being able to
create a modern CNN from scratch.

















Understanding Convolution Arithmetic


We can see from the summary that we have an input of size 64x1x28x28.
The axes are batch,channel,height,width. This is often represented as
NCHW (where N refers to batch size). TensorFlow, on the other hand,
uses NHWC axis order. Here is the first layer:


m = learn.model[0]
m


Sequential(
  (0): Conv2d(1, 4, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
  (1): ReLU()
)


So we have 1 input channel, 4 output channels, and a 3×3 kernel.
Let’s check the weights of the first convolution:


m[0].weight.shape


torch.Size([4, 1, 3, 3])


The summary shows we have 40 parameters, and 4*1*3*3 is 36. What are
the other four parameters? Let’s see what the bias contains:


m[0].bias.shape


torch.Size([4])


We can now use this information to clarify our statement in the previous section: “When we use a stride-2 convolution, we often increase the number of features because we’re decreasing the
number of activations in the activation map by a factor of 4; we
don’t want to decrease the capacity of a layer by too much
at a time.”


There is one bias for each channel. (Sometimes channels are called
features or filters when they are not input channels.) The output
shape is 64x4x14x14, and this will therefore become the input shape to
the next layer. The next layer, according to 
summary, has 296
parameters. Let’s ignore the batch axis to keep things
simple. So, for each of 14*14=196 locations, we are multiplying
296-8=288 weights (ignoring the bias for simplicity), so
that’s 196*288=56_448 multiplications at this layer. The
next layer will have 7*7*(1168-16)=56_448 multiplications.


What happened here is that our stride-2 convolution halved the grid size
from 14x14 to 7x7, and we doubled the number of filters from 8 to
16, resulting in no overall change in the amount of computation. If we
left the number of channels the same in each stride-2 layer, the amount
of computation being done in the net would get less and less as it gets
deeper. But we know that the deeper layers have to compute semantically
rich features (such as eyes or fur), so we wouldn’t expect
that doing less computation would make sense.


Another way to think of this is based on receptive fields.

















Receptive Fields


The receptive field is the area of an image that is involved in the
calculation of a layer. On the book’s website, you’ll find an
Excel spreadsheet called conv-example.xlsx that shows the calculation
of two stride-2 convolutional layers using an MNIST digit. Each layer
has a single kernel. Figure 13-10 shows what we see if we click one of the cells in the conv2
section, which shows the output of the second convolutional layer, and
click trace precedents.



[image: Immediate precedents of conv2 layer]
Figure 13-10. Immediate precedents of Conv2 layer




Here, the cell with the green border is the cell we clicked, and the blue highlighted
cells are its precedents—the cells used to calculate its
value. These cells are the corresponding 3×3 area of cells from the
input layer (on the left), and the cells from the filter (on the right).
Let’s now click trace precedents again, to see what cells
are used to calculate these inputs. Figure 13-11 shows what happens.



[image: Secondary precedents of conv2 layer]
Figure 13-11. Secondary precedents of Conv2 layer




In this example, we have just two convolutional layers, each of stride 2, so this is now tracing right back to the input image.
We can see that a 7×7 area of cells in the input layer is used to calculate the single
green cell in the Conv2 layer. This 7×7 area is the receptive field in
the input of the green activation in Conv2. We can also see that a
second filter kernel is needed now, since we have two layers.


As you see from this example, the deeper we are in the network
(specifically, the more stride-2 convs we have before a layer), the
larger the receptive field for an activation in that layer is. A large
receptive field means that a large amount of the input image is used to
calculate each activation in that layer. We now know that in the
deeper layers of the network, we have semantically rich features,
corresponding to larger receptive fields. Therefore, we’d
expect that we’d need more weights for each of our features
to handle this increasing complexity. This is another way of saying the
same thing we mentioned in the previous section: when we introduce a stride-2
conv in our network, we should also increase the number of channels.


When writing this particular chapter, we had a lot of questions we
needed answers for, to be able to explain CNNs to you as best we
could. Believe it or not, we found most of the answers on Twitter. We’re going to take a quick break to talk to you about that now, before we move on to color images.

















A Note About Twitter


We are not, to say the least, big users of social networks in general.
But our goal in writing this book is to help you become the best deep learning
practitioner you can, and we would be remiss not to mention how
important Twitter has been in our own deep learning journeys.


You see, there’s another part of Twitter, far away from
Donald Trump and the Kardashians, where
deep learning researchers and practitioners talk shop every day. As we
were writing this section, Jeremy wanted to double-check
that what we were saying about stride-2 convolutions was accurate, so he
asked on Twitter:



[image: twitter 1]





A few minutes later, this answer popped up:



[image: twitter 2]





Christian Szegedy is the first author of
Inception, the 2014 ImageNet winner,
and source of many key insights used in modern neural networks. Two
hours later, this appeared:



[image: twitter 3]





Do you recognize that name? You saw it in Chapter 2,
when we were talking about the Turing Award winners who established the
foundations of deep learning today!


Jeremy also asked on Twitter for help checking that our description of label
smoothing in Chapter 7 was accurate, and got a
response again directly from Christian Szegedy (label
smoothing was originally introduced in the Inception paper):



[image: twitter 4]





Many of the top people in deep learning today are Twitter regulars, and
are very open about interacting with the wider community. One good way
to get started is to look at a list of Jeremy’s
recent Twitter likes, or
Sylvain’s. That
way, you can see a list of Twitter users whom we think have interesting
and useful things to say.


Twitter is the main way we both stay up to date with interesting papers,
software releases, and other deep learning news. For making connections
with the deep learning community, we recommend getting involved both in
the fast.ai forums and on Twitter.


That said, let’s get back to the meat of this chapter. Up until now, we have shown you examples of pictures in only black and
white, with one value per pixel. In practice, most colored images
have three values per pixel to define their color. We’ll look at working with color images next.
























Color Images


A color picture is a rank-3 tensor:


im = image2tensor(Image.open('images/grizzly.jpg'))
im.shape


torch.Size([3, 1000, 846])


show_image(im);



[image: ]





The first axis contains the channels red, green, and blue:


_,axs = subplots(1,3)
for bear,ax,color in zip(im,axs,('Reds','Greens','Blues')):
    show_image(255-bear, ax=ax, cmap=color)



[image: ]





We saw what the convolution operation was for one filter on one channel
of the image (our examples were done on a square). A convolutional layer
will take an image with a certain number of channels (three for the first
layer for regular RGB color images) and output an image with a different
number of channels. As with our hidden size that represented the numbers of
neurons in a linear layer, we can decide to have as many filters as we
want, and each will be able to specialize (some to detect
horizontal edges, others to detect vertical edges, and so forth) to give
something like the examples we studied in Chapter 2.


In one sliding window, we have a certain number of channels and we need
as many filters (we don’t use the same kernel for all the
channels). So our kernel doesn’t have a size of 3×3, but
ch_in (for channels in) by 3×3. On each channel, we multiply the
elements of our window by the elements of the corresponding filter, and then
sum the results (as we saw before) and sum over all the filters. In the
example given in Figure 13-12, the result of our conv layer on
that window is red + green + blue.



[image: Convolution over an RGB image]
Figure 13-12. Convolution over an RGB image




So, in order to apply a convolution to a color picture, we require a
kernel tensor with a size that matches the first axis. At each location,
the corresponding parts of the kernel and the image patch are multiplied
together.


These are then all added together to produce a single number for each
grid location for each output feature, as shown in Figure 13-13.



[image: Adding the RGB filters]
Figure 13-13. Adding the RGB filters




Then we have ch_out filters like this, so in the end, the result of
our convolutional layer will be a batch of images with ch_out channels
and a height and width given by the formula outlined earlier. This give us ch_out
tensors of size ch_in x ks x ks that we represent in one big tensor of
four dimensions. In PyTorch, the order of the dimensions for those weights
is ch_out x ch_in x ks x ks.


Additionally, we may want to have a bias for each filter. In the preceding example, the final result for our convolutional layer would be

  
    y R 
    +
    y G 
    +
    y B 
    +
    b
  
 in that case. As in a linear
layer, there are as many biases as we have kernels, so the bias is a
vector of size ch_out.


No special mechanisms are required when setting up a CNN for
training with color images. Just make sure your first layer has three
inputs.


There are lots of ways of processing color images. For instance, you can
change them to black and white, change from RGB to HSV (hue,
saturation, and value) color space, and so forth. In general, it turns
out experimentally that changing the encoding of colors
won’t make any difference to your model results, as long as
you don’t lose information in the transformation. So,
transforming to black and white is a bad idea, since it removes the
color information entirely (and this can be critical; for instance, a pet
breed may have a distinctive color); but converting to HSV generally
won’t make any difference.


Now you know what those pictures in Chapter 1 of “what a
neural net learns” from the Zeiler and Fergus paper mean! As a reminder, this is their
picture of some of the layer 1 weights:



[image: Layer 1 kernels found by Zeiler and Fergus]





This is taking the three slices of the convolutional kernel, for each output
feature, and displaying them as images. We can see that even though
the creators of the neural net never explicitly created kernels to find
edges, for instance, the neural net automatically discovered these
features using SGD.


Now let’s see how we can train these CNNs, and show you all
the techniques fastai uses under the hood for efficient training.

















Improving Training Stability


Since we are so good at recognizing 3s from 7s,
let’s move on to something harder—recognizing all 10 digits.
That means we’ll need to use MNIST instead of

MNIST_SAMPLE:


path = untar_data(URLs.MNIST)


path.ls()


(#2) [Path('testing'),Path('training')]


The data is in two folders named training and testing, so we have to
tell 
GrandparentSplitter about that (it defaults to train and
valid). We do that in the get_dls function, which we define to make it easy to change our
batch size later:


def get_dls(bs=64):
    return DataBlock(
        blocks=(ImageBlock(cls=PILImageBW), CategoryBlock),
        get_items=get_image_files,
        splitter=GrandparentSplitter('training','testing'),
        get_y=parent_label,
        batch_tfms=Normalize()
    ).dataloaders(path, bs=bs)

dls = get_dls()


Remember, it’s always a good idea to look at your data before you use it:


dls.show_batch(max_n=9, figsize=(4,4))



[image: ]





Now that we have our data ready, we can train a simple model on it.










A Simple Baseline


Earlier in this chapter, we built a model based on a conv function
like this:


def conv(ni, nf, ks=3, act=True):
    res = nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)
    if act: res = nn.Sequential(res, nn.ReLU())
    return res


Let’s start with a basic CNN as a baseline.
We’ll use the same as one as earlier, but with
one tweak: we’ll use more activations. Since we have more
numbers to differentiate, we’ll likely need to learn
more filters.


As we discussed, we generally want to double the number of filters each
time we have a stride-2 layer. One way to increase the number of
filters throughout our network is to double the number of activations in
the first layer—then every layer after that will end up twice as big
as in the previous version as well.


But this creates a subtle problem. Consider the kernel that is
being applied to each pixel. By default, we use a 3×3-pixel kernel. Therefore, there are a total of 
3 × 3 = 9 pixels that the kernel is being
applied to at each location. Previously, our first layer had four output filters. So four values were being computed
from nine pixels at each location. Think about what happens if we double
this output to eight filters. Then when we apply our kernel, we will be
using nine pixels to calculate eight numbers. That means it
isn’t really learning much at all: the output size is
almost the same as the input size. Neural networks will create
useful features only if they’re forced to do so—that is, if the
number of outputs from an operation is significantly smaller than the number of
inputs.


To fix this, we can use a larger kernel in the first layer. If we use a
kernel of 5×5 pixels, 25 pixels are being used at each kernel
application. Creating eight filters from this will mean the neural net
will have to find some useful features:


def simple_cnn():
    return sequential(
        conv(1 ,8, ks=5),        #14x14
        conv(8 ,16),             #7x7
        conv(16,32),             #4x4
        conv(32,64),             #2x2
        conv(64,10, act=False),  #1x1
        Flatten(),
    )


As you’ll see in a moment, we can look
inside our models while they’re training in order to try to
find ways to make them train better. To do this, we use the
ActivationStats callback, which records the mean, standard deviation,
and histogram of activations of every trainable layer (as
we’ve seen, callbacks are used to add behavior to the
training loop; we’ll explore how they work in
Chapter 16):


from fastai.callback.hook import *


We want to train quickly, so that means training at a high learning
rate. Let’s see how we go at 0.06:


def fit(epochs=1):
    learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,
                    metrics=accuracy, cbs=ActivationStats(with_hist=True))
    learn.fit(epochs, 0.06)
    return learn


learn = fit()


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.307071
      	2.305865
      	0.113500
      	00:16
    

  



This didn’t train at all well! Let’s find out
why.


One handy feature of the callbacks passed to Learner is that they are
made available automatically, with the same name as the callback class,
except in camel_case. So, our ActivationStats callback can be
accessed through activation_stats. I’m sure you
remember learn.recorder…can you guess how that is implemented?
That’s right, it’s a callback called Recorder!


ActivationStats includes some handy utilities for plotting the
activations during training. plot_layer_stats(idx) plots the mean and
standard deviation of the activations of layer number idx, along with
the percentage of activations near zero. Here’s the first
layer’s plot:


learn.activation_stats.plot_layer_stats(0)



[image: ]





Generally our model should have a consistent, or at least smooth, mean
and standard deviation of layer activations during training. Activations
near zero are particularly problematic, because it means we have
computation in the model that’s doing nothing at all (since
multiplying by zero gives zero). When you have some zeros in one layer,
they will therefore generally carry over to the next layer…which will
then create more zeros. Here’s the penultimate layer of our
network:


learn.activation_stats.plot_layer_stats(-2)



[image: ]





As expected, the problems get worse toward the end of the network, as
the instability and zero activations compound over layers. Let’s look at what we can do to make training more stable.

















Increase Batch Size


One way to make training more stable is to increase the batch size.
Larger batches have gradients that are more accurate, since
they’re calculated from more data. On the downside, though, a
larger batch size means fewer batches per epoch, which means fewer
opportunities for your model to update weights. Let’s see if
a batch size of 512 helps:


dls = get_dls(512)


learn = fit()


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.309385
      	2.302744
      	0.113500
      	00:08
    

  



Let’s see what the penultimate layer looks like:


learn.activation_stats.plot_layer_stats(-2)



[image: ]





Again, we’ve got most of our activations near zero.
Let’s see what else we can do to improve training stability.

















1cycle Training


Our initial weights are not well suited to the task we’re
trying to solve. Therefore, it is dangerous to begin training with a
high learning rate: we may very well make the training diverge
instantly, as we’ve seen. We probably
don’t want to end training with a high learning rate either,
so that we don’t skip over a minimum. But we want to train
at a high learning rate for the rest of the training period, because
we’ll be able to train more quickly that way. Therefore, we should
change the learning rate during training, from low, to high, and then
back to low again.


Leslie Smith (yes, the same guy who invented the learning rate finder!)
developed this idea in his article
“Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates”. He designed a schedule
for learning rate separated into two phases: one where the learning rate
grows from the minimum value to the maximum value (warmup), and
one where it decreases back to the minimum value (annealing). Smith
called this combination of approaches 1cycle training.


1cycle training allows us to use a much higher maximum learning rate
than other types of training, which gives two benefits:



	
By training with higher learning rates, we train faster—a phenomenon Smith calls super-convergence.



	
By training with higher learning rates, we overfit less because we
skip over the sharp local minima to end up in a smoother (and therefore
more generalizable) part of the loss.






The second point is an interesting and subtle one; it is based on the
observation that a model that generalizes well is one whose loss would
not change very much if you changed the input by a small amount. If a
model trains at a large learning rate for quite a while, and can find a
good loss when doing so, it must have found an area that also
generalizes well, because it is jumping around a lot from batch to batch
(that is basically the definition of a high learning rate). The problem
is that, as we have discussed, just jumping to a high learning rate is
more likely to result in diverging losses, rather than seeing your
losses improve. So we don’t jump straight to a high learning
rate. Instead, we start at a low learning rate, where our losses do not
diverge, and we allow the optimizer to gradually find smoother and
smoother areas of our parameters by gradually going to higher and
higher learning rates.


Then, once we have found a nice smooth area for our parameters, we
want to find the very best part of that area, which means we have to
bring our learning rates down again. This is why 1cycle training has a
gradual learning rate warmup, and a gradual learning rate cooldown. Many
researchers have found that in practice this approach leads to more
accurate models and trains more quickly. That is why it is the approach
that is used by default for fine_tune in fastai.


In Chapter 16, we’ll learn all about
momentum in SGD. Briefly, momentum is a technique whereby the optimizer
takes a step not only in the direction of the gradients, but also that
continues in the direction of previous steps. Leslie Smith introduced the idea of
cyclical momentum in “A Disciplined Approach to Neural Network Hyper-Parameters: Part 1”. It suggests that
the momentum varies in the opposite direction of the learning rate: when
we are at high learning rates, we use less momentum, and we use more
again in the annealing phase.


We can use 1cycle training in fastai by calling fit_one_cycle:


def fit(epochs=1, lr=0.06):
    learn = Learner(dls, simple_cnn(), loss_func=F.cross_entropy,
                    metrics=accuracy, cbs=ActivationStats(with_hist=True))
    learn.fit_one_cycle(epochs, lr)
    return learn


learn = fit()


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.210838
      	0.084827
      	0.974300
      	00:08
    

  



We’re finally making some progress! It’s giving
us a reasonable accuracy now.


We can view the learning rate and momentum throughout training by
calling plot_sched on learn.recorder. learn.recorder (as the name
suggests) records everything that happens during training, including
losses, metrics, and hyperparameters such as learning rate and momentum:


learn.recorder.plot_sched()



[image: ]





Smith’s original 1cycle paper used a linear warmup and
linear annealing. As you can see, we adapted the approach in fastai by
combining it with another popular approach: cosine annealing.
fit_one_cycle provides the following parameters you can adjust:


	lr_max

	
  The highest learning rate that will be used (this can
also be a list of learning rates for each layer group, or a Python
slice object containing the first and last layer group learning
rates)



	div

	
  How much to divide lr_max by to get the
starting learning rate



	div_final

	
   How much to divide
lr_max by to get the ending learning rate



	pct_start

	
What percentage of the batches to use for the warmup



	moms

	
  A tuple (mom1,mom2,mom3), where mom1 is the initial
momentum, mom2 is the minimum momentum, and mom3 is the final
momentum






Let’s take a look at our layer stats again:


learn.activation_stats.plot_layer_stats(-2)



[image: ]





The percentage of nonzero weights is getting much better, although
it’s still quite high. We can see even more about what’s going on in our training by
using color_dim, passing it a layer index:


learn.activation_stats.color_dim(-2)



[image: ]





color_dim was developed by fast.ai in conjunction with a student,
Stefano Giomo. Giomo, who refers to the idea as the colorful
dimension, provides an
in-depth explanation of the history and details behind the method. The basic
idea is to create a histogram of the activations of a layer, which we
would hope would follow a smooth pattern such as the normal distribution (Figure 13-14).



[image: Histogram in colorful dimension]
Figure 13-14. Histogram in colorful dimension (courtesy of Stefano Giomo)




To create color_dim, we take the histogram shown on the left here and
convert it into just the colored representation shown at the bottom.
Then we flip it on its side, as shown on the right. We found that the
distribution is clearer if we take the log of the histogram values.
Then, Giomo describes:


The final plot for each layer is made by stacking the histogram of the activations from each batch along the horizontal axis. So each vertical slice in the visualisation represents the histogram of activations for a single batch. The color intensity corresponds to the height of the histogram; in other words, the number of activations in each histogram bin.



Figure 13-15 shows how this all fits together.



[image: Summary of the colorful dimension]
Figure 13-15. Summary of the colorful dimension (courtesy of Stefano Giomo)




This illustrates why log(f) is more colorful than f when f follows a normal
distribution, because taking a log changes the Gaussian curve in a quadratic, which isn’t as narrow.


So with that in mind, let’s take another look at the result
for the penultimate layer:


learn.activation_stats.color_dim(-2)



[image: ]





This shows a classic picture of “bad training.” We start with nearly
all activations at zero—that’s what we see at the far left,
with all the dark blue. The bright yellow at the
bottom represents the near-zero activations. Then, over the first few batches, we
see the number of nonzero activations exponentially increasing. But it
goes too far and collapses! We see the dark blue return, and the bottom
becomes bright yellow again. It almost looks like training restarts from
scratch. Then we see the activations increase again and collapse again. After repeating this a few times, eventually we see a spread
of activations throughout the range.


It’s much better if training can be smooth from the start.
The cycles of exponential increase and then collapse
tend to result in a lot of near-zero activations, resulting in slow
training and poor final results. One way to solve this problem is to
use batch normalization.

















Batch Normalization


To fix the slow training and poor final results we ended up with in the
previous section, we need to fix the initial large percentage of
near-zero activations, and then try to maintain a good distribution of
activations throughout training.


Sergey Ioffe and Christian Szegedy presented a solution to this problem in
the 2015 paper “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”. In the abstract, they describe just the problem that
we’ve seen:


Training Deep Neural Networks is complicated by the fact that the distribution of each layer’s inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization…We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs.



Their solution, they say is as follows:


Making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization.



The paper caused great excitement as soon as it was released, because
it included the chart in Figure 13-16, which clearly
demonstrated that batch normalization could train a model that was even
more accurate than the current state of the art (the Inception
architecture) and around 5× faster.



[image: Impact of batch normalization]
Figure 13-16. Impact of batch normalization (courtesy of Sergey Ioffe and Christian Szegedy)




Batch normalization (often called batchnorm) works by taking an average of the mean and standard deviations of the
activations of a layer and using those to normalize the activations.
However, this can cause problems because the network might want
some activations to be really high in order to make accurate
predictions. So they also added two learnable parameters (meaning they will
be updated in the SGD step), usually called gamma and beta. After
normalizing the activations to get some new activation vector y, a
batchnorm layer returns gamma*y + beta.


That’s why our activations can have any mean or variance,
independent from the mean and standard deviation of the results of the previous layer.
Those statistics are learned separately, making training easier on our
model. The behavior is different during training and validation: during
training we use the mean and standard deviation of the batch to
normalize the data, while during validation we instead use a running mean of
the statistics calculated during training.


Let’s add a batchnorm layer to conv:


def conv(ni, nf, ks=3, act=True):
    layers = [nn.Conv2d(ni, nf, stride=2, kernel_size=ks, padding=ks//2)]
    layers.append(nn.BatchNorm2d(nf))
    if act: layers.append(nn.ReLU())
    return nn.Sequential(*layers)


and fit our model:


learn = fit()


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.130036
      	0.055021
      	0.986400
      	00:10
    

  



That’s a great result! Let’s take a look at
color_dim:


learn.activation_stats.color_dim(-4)



[image: ]





This is just what we hope to see: a smooth development of activations,
with no “crashes.” Batchnorm has really delivered on its promise here!
In fact, batchnorm has been so successful that we see it (or something
very similar) in nearly all modern neural networks.


An interesting observation about models containing batch normalization
layers is that they tend to generalize better than models that
don’t contain them. Although we haven’t as yet
seen a rigorous analysis of what’s going on here, most
researchers believe that the reason is that batch normalization
adds some extra randomness to the training process. Each mini-batch will
have a somewhat different mean and standard deviation than other mini-batches. Therefore, the activations will be normalized by different
values each time. In order for the model to make accurate predictions,
it will have to learn to become robust to these variations. In
general, adding additional randomization to the training process often
helps.


Since things are going so well, let’s train for a few more
epochs and see how it goes. In fact, let’s increase
the learning rate, since the abstract of the batchnorm paper claimed we
should be able to “train at much higher learning rates”:


learn = fit(5, lr=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.191731
      	0.121738
      	0.960900
      	00:11
    

    
      	1
      	0.083739
      	0.055808
      	0.981800
      	00:10
    

    
      	2
      	0.053161
      	0.044485
      	0.987100
      	00:10
    

    
      	3
      	0.034433
      	0.030233
      	0.990200
      	00:10
    

    
      	4
      	0.017646
      	0.025407
      	0.991200
      	00:10
    

  



learn = fit(5, lr=0.1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.183244
      	0.084025
      	0.975800
      	00:13
    

    
      	1
      	0.080774
      	0.067060
      	0.978800
      	00:12
    

    
      	2
      	0.050215
      	0.062595
      	0.981300
      	00:12
    

    
      	3
      	0.030020
      	0.030315
      	0.990700
      	00:12
    

    
      	4
      	0.015131
      	0.025148
      	0.992100
      	00:12
    

  



At this point, I think it’s fair to say we know how to
recognize digits! It’s time to move on to something harder…
























Conclusion


We’ve seen that convolutions are just a type of matrix
multiplication, with two constraints on the weight matrix: some elements
are always zero, and some elements are tied (forced to always have the
same value). In Chapter 1, we saw the eight requirements
from the 1986 book Parallel Distributed Processing; one of them was
“A pattern of connectivity among units.” That’s exactly
what these constraints do: they enforce a certain pattern of
connectivity.


These constraints allow us to use far fewer parameters in our model,
without sacrificing the ability to represent complex visual features.
That means we can train deeper models faster, with less overfitting.
Although the universal approximation theorem shows that it should be
possible to represent anything in a fully connected network in one
hidden layer, we’ve seen now that in practice we can train
much better models by being thoughtful about network architecture.


Convolutions are by far the most common pattern of connectivity we see
in neural nets (along with regular linear layers, which we refer to as
fully connected), but it’s likely that many more will be
discovered.


We’ve also seen how to interpret the activations of layers in the
network to see whether training is going well or not, and how batchnorm helps
regularize the 
training and makes it smoother. In the next chapter, we
will use both of those layers to build the most popular architecture in
computer vision: a residual network.

















Questionnaire


	
What is a feature?



	
Write out the convolutional kernel matrix for a top edge detector.



	
Write out the mathematical operation applied by a 3×3 kernel to a single pixel in an image.



	
What is the value of a convolutional kernel applied to a 3×3 matrix of zeros?



	
What is padding?



	
What is stride?



	
Create a nested list comprehension to complete any task that you choose.



	
What are the shapes of the input and weight parameters to PyTorch’s 2D convolution?



	
What is a channel?



	
What is the relationship between a convolution and a matrix multiplication?



	
What is a convolutional neural network?



	
What is the benefit of refactoring parts of your neural network definition?



	
What is Flatten? Where does it need to be included in the MNIST CNN? Why?



	
What does NCHW mean?



	
Why does the third layer of the MNIST CNN have 7*7*(1168-16) 
multiplications?



	
What is a receptive field?



	
What is the size of the receptive field of an activation after two stride-2 convolutions? Why?



	
Run conv-example.xlsx yourself and experiment with trace precedents.



	
Have a look at Jeremy or Sylvain’s list of recent Twitter “likes,” and see if you find any interesting resources or ideas there.



	
How is a color image represented as a tensor?



	
How does a convolution work with a color input?



	
What method can we use to see that data in DataLoaders?



	
Why do we double the number of filters after each stride-2 conv?



	
Why do we use a larger kernel in the first conv with MNIST (with simple_cnn)?



	
What information does ActivationStats save for each layer?



	
How can we access a learner’s callback after training?



	
What are the three statistics plotted by plot_layer_stats? What does the x-axis represent?



	
Why are activations near zero problematic?



	
What are the upsides and downsides of training with a larger batch size?



	
Why should we avoid using a high learning rate at the start of training?



	
What is 1cycle training?



	
What are the benefits of training with a high learning rate?



	
Why do we want to use a low learning rate at the end of training?



	
What is cyclical momentum?



	
What callback tracks hyperparameter values during training (along with other information)?



	
What does one column of pixels in the color_dim plot represent?



	
What does “bad training” look like in color_dim? Why?



	
What trainable parameters does a batch normalization layer contain?



	
What statistics are used to normalize in batch normalization during training? How about during validation?



	
Why do models with batch normalization layers generalize better?















Further Research


	
What features other than edge detectors have been used in computer vision (especially before deep learning became popular)?



	
Other normalization layers are available in PyTorch. Try them out and see what works best. Learn about why other normalization layers have been developed and how they differ from batch normalization.



	
Try moving the activation function after the batch normalization layer in conv. Does it make a difference? See what you can find out about what order is recommended and why.




























  
Chapter 14. ResNets



In this chapter, we will build on top of the CNNs introduced in the previous chapter and explain to you the
ResNet (residual network) architecture. It was introduced in 2015 by Kaiming He et al. in the article “Deep Residual Learning for Image Recognition” and is by far the most
used model architecture nowadays. More recent developments in image
models almost always use the same trick of residual connections, and
most of the time, they are just a tweak of the original ResNet.


We will first show you the basic ResNet as it was first designed and then
explain the modern tweaks that make it more performant. But first, we
will need a problem a little bit more difficult than the MNIST dataset,
since we are already close to 100% accuracy with a regular CNN on it.








Going Back to Imagenette


It’s going to be tough to judge any improvements we make to our
models when we are already at an accuracy that is as high as we saw on
MNIST in the previous chapter, so we will tackle a tougher image
classification problem by going back to Imagenette. We’ll
stick with small images to keep things reasonably fast.


Let’s grab the data—we’ll use the
already-resized 160 px version to make things faster still, and will
random crop to 128 px:


def get_data(url, presize, resize):
    path = untar_data(url)
    return DataBlock(
        blocks=(ImageBlock, CategoryBlock), get_items=get_image_files,
        splitter=GrandparentSplitter(valid_name='val'),
        get_y=parent_label, item_tfms=Resize(presize),
        batch_tfms=[*aug_transforms(min_scale=0.5, size=resize),
                    Normalize.from_stats(*imagenet_stats)],
    ).dataloaders(path, bs=128)


dls = get_data(URLs.IMAGENETTE_160, 160, 128)


dls.show_batch(max_n=4)



[image: ]





When we looked at MNIST, we were dealing with 28×28-pixel images. For
Imagenette, we are going to be training with 128×128-pixel images.
Later, we would like to be able to use larger images as well—at
least as big as 224×224-pixels, the ImageNet standard. Do you recall
how we managed to get a single vector of activations for each image out
of the MNIST convolutional neural network?


The approach we used was to ensure that there were enough stride-2
convolutions such that the final layer would have a grid size of 1.
Then we just flattened out the unit axes that we ended up with, to get a
vector for each image (so, a matrix of activations for a mini-batch). We
could do the same thing for Imagenette, but that would
cause two problems:



	
We’d need lots of stride-2 layers to make our grid 1×1 at the end—perhaps more than we would otherwise choose.



	
The model would not work on images of any size other than the size we originally trained on.






One approach to dealing with the first issue would be to
flatten the final convolutional layer in a way that handles a grid size
other than 1×1. We could simply flatten a matrix into a
vector as we have done before, by laying out each row after the previous
row. In fact, this is the approach that convolutional neural networks up
until 2013 nearly always took. The most famous example is the 2013 ImageNet
winner VGG, still sometimes used today. But there was another problem
with this architecture: it not only did not work with images other than
those of the same size used in the training set, but also required a lot of
memory, because flattening out the convolutional layer resulted in many
activations being fed into the final layers. Therefore, the weight
matrices of the final layers were enormous.


This problem was solved through the creation of fully convolutional
networks. The trick in fully convolutional networks is to take the
average of activations across a convolutional grid. In other words, we
can simply use this function:


def avg_pool(x): return x.mean((2,3))


As you see, it is taking the mean over the x- and y-axes. This function
will always convert a grid of activations into a single activation per
image. PyTorch provides a slightly more versatile module called
nn.AdaptiveAvgPool2d, which averages a grid of activations into
whatever sized destination you require (although we nearly always use
a size of 1).


A fully convolutional network, therefore, has a number of convolutional
layers, some of which will be stride 2, at the end of which is an
adaptive average pooling layer, a flatten layer to remove the unit axes,
and finally a linear layer. Here is our first fully convolutional
network:


def block(ni, nf): return ConvLayer(ni, nf, stride=2)
def get_model():
    return nn.Sequential(
        block(3, 16),
        block(16, 32),
        block(32, 64),
        block(64, 128),
        block(128, 256),
        nn.AdaptiveAvgPool2d(1),
        Flatten(),
        nn.Linear(256, dls.c))


We’re going to be replacing the implementation of block in
the network with other variants in a moment, which is why
we’re not calling it conv anymore. We’re also
saving some time by taking advantage of fastai’s ConvLayer, which already provides the functionality of conv from the preceding chapter
(plus a lot more!).

Stop and Think

Consider this question: would this approach make sense for an optical character recognition (OCR) problem such as MNIST? The vast majority of practitioners tackling OCR and similar problems tend to use fully convolutional networks, because that’s what nearly everybody learns nowadays. But it really doesn’t make any sense! You can’t decide, for instance, whether a number is a 3 or an 8 by slicing it into small pieces, jumbling them up, and deciding whether on average each piece looks like a 3 or an 8. But that’s what adaptive average pooling effectively does! Fully convolutional networks are really a good choice only for objects that don’t have a single correct orientation or size (e.g., like most natural photos).




Once we are done with our convolutional layers, we will get activations
of size 
bs x ch x h x w (batch size, a certain number of channels,
height, and width). We want to convert this to a tensor of size
bs x ch, so we take the average over the last two dimensions and
flatten the trailing 1×1 dimension as we did in our previous
model.


This is different from regular pooling in the sense that those layers
will generally take the average (for average pooling) or the maximum
(for max pooling) of a window of a given size. For instance, max pooling
layers of size 2, which were very popular in older CNNs, reduce the size of
our image by half on each dimension by taking the maximum of each 2×2
window (with a stride of 2).


As before, we can define a Learner with our custom model and then
train it on the data we grabbed earlier:


def get_learner(m):
    return Learner(dls, m, loss_func=nn.CrossEntropyLoss(), metrics=accuracy
                  ).to_fp16()

learn = get_learner(get_model())


learn.lr_find()


(0.47863011360168456, 3.981071710586548)



[image: ]





3e-3 is often a good learning rate for CNNs, and that appears to
be the case here too, so let’s try that:


learn.fit_one_cycle(5, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.901582
      	2.155090
      	0.325350
      	00:07
    

    
      	1
      	1.559855
      	1.586795
      	0.507771
      	00:07
    

    
      	2
      	1.296350
      	1.295499
      	0.571720
      	00:07
    

    
      	3
      	1.144139
      	1.139257
      	0.639236
      	00:07
    

    
      	4
      	1.049770
      	1.092619
      	0.659108
      	00:07
    

  



That’s a pretty good start, considering we have to pick the
correct one of 10 categories, and we’re training from
scratch for just 5 epochs! We can do way better than this using a
deeper model, but just stacking new layers won’t really
improve our results (you can try and see for yourself!). To work around
this problem, ResNets introduce the idea of skip connections. We’ll explore those and other aspects of ResNets in the next section.

















Building a Modern CNN: ResNet


We now have all the pieces we need to build the models we have been using
in our computer vision tasks since the beginning of this book: ResNets.
We’ll introduce the main idea behind them and show how it
improves accuracy on Imagenette compared to our previous model, before
building a version with all the recent tweaks.










Skip Connections


In 2015, the authors of the ResNet paper noticed something that they
found curious. Even after using batchnorm, they saw that a network using
more layers was doing less well than a network using fewer layers—and
there were no other differences between the models. Most interestingly,
the difference was observed not only in the validation set, but also in
the training set; so it wasn’t just a generalization issue,
but a training issue. As the paper explains:


Unexpectedly, such degradation is not caused by overfitting, and adding more layers to a suitably deep model leads to higher training error, as [previously reported] and thoroughly verified by our experiments.



This phenomenon was illustrated by the graph in Figure 14-1, with training error on
the left and test error on the right.



[image: Training of networks of different depth]
Figure 14-1. Training of networks of different depth (courtesy of Kaiming He et al.)




As the authors mention here, they are not the first people to have
noticed this curious fact. But they were the first to make a very
important leap:


Let us consider a shallower architecture and its deeper counterpart that adds more layers onto it. There exists a solution by construction to the deeper model: the added layers are identity mapping, and the other layers are copied from the learned shallower model.



As this is an academic paper, this process is described in a rather inaccessible way, but the concept is actually very simple: start
with a 20-layer neural network that is trained well, and add another
36 layers that do nothing at all (for instance, they could be linear layers with a
single weight equal to 1, and bias equal to 0). The result will be a 56-layer network that does exactly the same thing as the 20-layer network, proving that there are always deep networks that should be at least
as good as any shallow network. But for some reason, SGD does not seem
able to find them.

Jargon: Identity Mapping

Returning the input without changing it at all. This process is performed by an identity function.




Actually, there is another way to create those extra 36 layers, which is
much more interesting. What if we replaced every occurrence of conv(x)
with x + conv(x), where conv is the function from the previous
chapter that adds a second convolution, then a ReLU, then a batchnorm layer.
Furthermore, recall that batchnorm does gamma*y + beta. What if we
initialized gamma to zero for every one of those final batchnorm layers?
Then our conv(x) for those extra 36 layers will always be equal to
zero, which means x+conv(x) will always be equal to x.


What has that gained us? The key thing is that those 36 extra
layers, as they stand, are an identity mapping, but they have
parameters, which means they are trainable. So, we can start with
our best 20-layer model, add these 36 extra layers that initially do
nothing at all, and then fine-tune the whole 56-layer model. Those extra 36 layers can then learn the parameters that make them most useful!


The ResNet paper proposed a variant of this, which is to
instead “skip over” every second convolution, so effectively we get
x+conv2(conv1(x)). This is shown by the diagram in
Figure 14-2 (from the paper).



[image: A simple ResNet block]
Figure 14-2. A simple ResNet block (courtesy of Kaiming He et al.)




That arrow on the right is just the x part of x+conv2(conv1(x)) and
is known as the identity branch, or skip connection. The path on the
left is the conv2(conv1(x)) part. You can think of the identity path
as providing a direct route from the input to the output.


In a ResNet, we don’t proceed by first training a
smaller number of layers, and then adding new layers on the end and
fine-tuning. Instead, we use ResNet blocks like the one in Figure 14-2 throughout the
CNN, initialized from scratch in the usual way and trained with SGD in
the usual way. We rely on the skip connections to make the network
easier to train with SGD.


There’s another (largely equivalent) way to think of these
ResNet blocks. This is how the paper describes it:


Instead of hoping each few stacked layers directly fit a desired underlying mapping, we explicitly let these layers fit a residual mapping. Formally, denoting the desired 
underlying mapping as H(x), we let the stacked nonlinear layers fit another mapping of F(x) := H(x)−x. The original mapping is recast into F(x)+x. We hypothesize that it is easier to optimize the residual mapping than to optimize the original, unreferenced mapping. To the extreme, if an identity mapping were optimal, it would be easier to push the residual to zero than to fit an identity mapping by a stack of nonlinear layers.



Again, this is rather inaccessible prose—so let’s try to
restate it in plain English! If the outcome of a given layer is x
and we’re using a ResNet block that returns 
y = x + block(x),
we’re not asking the block to predict y; we are asking it
to predict the difference between y and x. So the job of those blocks
isn’t to predict certain features, but to minimize the error between x and the desired y.
A ResNet is, therefore, good at learning about slight differences between
doing nothing and passing through a block of two convolutional layers (with trainable weights). This is how these models got their name: they’re predicting residuals (reminder: “residual” is prediction minus target).


One key concept that both of these two ways of thinking about ResNets
share is the idea of ease of learning. This is an important theme.
Recall the universal approximation theorem, which states that a
sufficiently large network can learn anything. This is still true, but
there turns out to be a very important difference between what a network
can learn in principle, and what it is easy for it to learn with
realistic data and training regimes. Many of the advances in neural
networks over the last decade have been like the ResNet block: the
result of realizing how to make something that was always possible
actually feasible.

True Identity Path

The original paper didn’t actually do the trick of using zero for the initial value of gamma in the last batchnorm layer of each block; that came a couple of years later. So, the original version of ResNet didn’t quite begin training with a true identity path through the ResNet blocks, but nonetheless having the ability to “navigate through” the skip connections did make it train better. Adding the batchnorm gamma init trick made the models train at even higher learning rates.




Here’s the definition of a simple ResNet block (fastai initializes the gamma weights of the last batchnorm layer to zero because of norm_type=NormType.BatchZero):


class ResBlock(Module):
    def __init__(self, ni, nf):
        self.convs = nn.Sequential(
            ConvLayer(ni,nf),
            ConvLayer(nf,nf, norm_type=NormType.BatchZero))

    def forward(self, x): return x + self.convs(x)


This has two problems, however: it can’t handle a
stride other than 1, and it requires that ni==nf. Stop for a moment
to think carefully about why this is.


The issue is that with a stride of, say, 2 on one of the
convolutions, the grid size of the output activations will be half the
size on each axis of the input. So then we can’t add that
back to x in forward because x and the output activations have
different dimensions. The same basic issue occurs if ni!=nf: the
shapes of the input and output connections won’t allow us to
add them together.


To fix this, we need a way to change the shape of x to match the
result of self.convs. Halving the grid size can be done using an
average pooling layer with a stride of 2: that is, a layer that takes
2×2 patches from the input and replaces them with their average.


Changing the number of channels can be done by using a convolution. We
want this skip connection to be as close to an identity map as possible,
however, which means making this convolution as simple as possible. The
simplest possible convolution is one with a kernel size of 1. That
means that the kernel is size ni × nf × 1 × 1, so it’s only
doing a dot product over the channels of each input
pixel—it’s not combining across pixels at all. This kind of
1x1 convolution is widely used in modern CNNs, so take a moment
to think about how it works.

Jargon: 1x1 Convolution

A convolution with a kernel size of 1.




Here’s a ResBlock using these tricks to handle changing
shape in the skip connection:


def _conv_block(ni,nf,stride):
    return nn.Sequential(
        ConvLayer(ni, nf, stride=stride),
        ConvLayer(nf, nf, act_cls=None, norm_type=NormType.BatchZero))


class ResBlock(Module):
    def __init__(self, ni, nf, stride=1):
        self.convs = _conv_block(ni,nf,stride)
        self.idconv = noop if ni==nf else ConvLayer(ni, nf, 1, act_cls=None)
        self.pool = noop if stride==1 else nn.AvgPool2d(2, ceil_mode=True)

    def forward(self, x):
        return F.relu(self.convs(x) + self.idconv(self.pool(x)))


Note that we’re using the noop function here, which simply
returns its input unchanged (noop is a computer science term that
stands for “no operation”). In this case, idconv does nothing at all
if nf==nf, and pool does nothing if stride==1, which is what we
wanted in our skip connection.


Also, you’ll see that we’ve removed the ReLU
(act_cls=None) from the final convolution in convs and from
idconv, and moved it to after we add the skip connection. The
thinking behind this is that the whole ResNet block is like a layer, and
you want your activation to be after your layer.


Let’s replace our block with ResBlock and try it out:


def block(ni,nf): return ResBlock(ni, nf, stride=2)
learn = get_learner(get_model())


learn.fit_one_cycle(5, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.973174
      	1.845491
      	0.373248
      	00:08
    

    
      	1
      	1.678627
      	1.778713
      	0.439236
      	00:08
    

    
      	2
      	1.386163
      	1.596503
      	0.507261
      	00:08
    

    
      	3
      	1.177839
      	1.102993
      	0.644841
      	00:09
    

    
      	4
      	1.052435
      	1.038013
      	0.667771
      	00:09
    

  



It’s not much better. But the whole point of this was to
allow us to train deeper models, and we’re not really
taking advantage of that yet. To create a model
that’s, say, twice as deep, all we need to do is replace our
block with two ResBlocks in a row:


def block(ni, nf):
    return nn.Sequential(ResBlock(ni, nf, stride=2), ResBlock(nf, nf))


learn = get_learner(get_model())
learn.fit_one_cycle(5, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.964076
      	1.864578
      	0.355159
      	00:12
    

    
      	1
      	1.636880
      	1.596789
      	0.502675
      	00:12
    

    
      	2
      	1.335378
      	1.304472
      	0.588535
      	00:12
    

    
      	3
      	1.089160
      	1.065063
      	0.663185
      	00:12
    

    
      	4
      	0.942904
      	0.963589
      	0.692739
      	00:12
    

  



Now we’re making good progress!


The authors of the ResNet paper went on to win the 2015 ImageNet
challenge. At the time, this was by far the most important annual event
in computer vision. We have already seen another ImageNet winner: the
2013 winners, Zeiler and Fergus. It is interesting to note that in both
cases, the starting points for the breakthroughs were experimental
observations: observations about what layers actually learn, in the case
of Zeiler and Fergus, and observations about which kinds of networks can
be trained, in the case of the ResNet authors. This ability to design
and analyze thoughtful experiments, or even just to see an unexpected
result, say, “Hmmm, that’s interesting,” and then, most
importantly, set about figuring out what on earth is going on, with great
tenacity, is at the heart of many scientific discoveries. Deep learning
is not like pure mathematics. It is a heavily experimental field, so
it’s important to be a strong practitioner, not just a
theoretician.


Since the ResNet was introduced, it’s been widely studied and applied to many domains. One of the most
interesting papers, published in 2018, is
“Visualizing the Loss Landscape of Neural Nets” by Hao Li et al. It shows that using skip connections helps smooth the
loss function, which makes training easier as it avoids falling into a
very sharp area. Figure 14-3 shows a stunning picture from
the paper, illustrating the difference between the bumpy terrain that SGD has to navigate to
optimize a regular CNN (left) versus the smooth surface of a ResNet
(right).



[image: Impact of ResNet on loss landscape]
Figure 14-3. Impact of ResNet on loss landscape (courtesy of Hao Li et al.)




Our first model is already good, but further research has discovered
more tricks we can apply to make it better. We’ll look at those next.

















A State-of-the-Art ResNet


In “Bag of Tricks for Image Classification with Convolutional Neural Networks”, Tong He et al. study variations of the ResNet architecture that come at almost no
additional cost in terms of number of parameters or computation. By
using a tweaked ResNet-50 architecture and Mixup, they achieved 94.6%
top-5 accuracy on ImageNet, in comparison to 92.2% with a regular ResNet-50
without Mixup. This result is better than that achieved by regular ResNet models that are
twice as deep (and twice as slow, and much more likely to overfit).

Jargon: Top-5 Accuracy

A metric testing how often the label we want is in the top 5 predictions of our model. It was used in the ImageNet competition because many of the images contained multiple objects, or contained objects that could be easily confused or may even have been mislabeled with a similar label. In these situations, looking at top-1 accuracy may be inappropriate. However, recently CNNs have been getting so good that top-5 accuracy is nearly 100%, so some researchers are using top-1 accuracy for ImageNet too now.




We’ll use this tweaked version as we scale up to the full ResNet, because it’s substantially better. It differs a little bit from our previous implementation, in that instead of just starting with ResNet blocks, it begins with a few
convolutional layers followed by a max pooling layer. This is what the
first layers, called the stem of the network, look like:


def _resnet_stem(*sizes):
    return [
        ConvLayer(sizes[i], sizes[i+1], 3, stride = 2 if i==0 else 1)
            for i in range(len(sizes)-1)
    ] + [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)]


_resnet_stem(3,32,32,64)

[ConvLayer(
   (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
   (1): BatchNorm2d(32, eps=1e-05, momentum=0.1)
   (2): ReLU()
 ), ConvLayer(
   (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (1): BatchNorm2d(32, eps=1e-05, momentum=0.1)
   (2): ReLU()
 ), ConvLayer(
   (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
   (1): BatchNorm2d(64, eps=1e-05, momentum=0.1)
   (2): ReLU()
 ), MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=False)]

Jargon: Stem

The first few layers of a CNN. Generally, the stem has a different structure than the main body of the CNN.




The reason that we have a stem of plain convolutional layers, instead of
ResNet blocks, is based on an important insight about all deep
convolutional neural networks: the vast majority of the computation
occurs in the early layers. Therefore, we should keep the early layers
as fast and simple as possible.


To see why so much computation occurs in the early layers, consider the
very first convolution on a 128-pixel input image. If it is a stride-1
convolution, it will apply the kernel to every one of the 128×128
pixels. That’s a lot of work! In the later layers, however,
the grid size could be as small as 4×4 or even 2×2, so there are far
fewer kernel applications to do.


On the other hand, the first-layer convolution has only 3 input
features and 32 output features. Since it is a 3×3 kernel, this is
3×32×3×3 = 864 parameters in the weights. But the last
convolution will have 256 input features and 512 output features, resulting in 1,179,648 weights! So the first layers contain the vast majority of
the computation, but the last layers contain the vast majority of the
parameters.


A ResNet block takes more computation than a plain convolutional block,
since (in the stride-2 case) a ResNet block has three convolutions and
a pooling layer. That’s why we want to have plain
convolutions to start off our ResNet.


We’re now ready to show the implementation of a modern
ResNet, with the “bag of tricks.” It uses the four groups of ResNet
blocks, with 64, 128, 256, then 512 filters. Each group starts with a
stride-2 block, except for the first one, since it’s just
after a MaxPooling layer:


class ResNet(nn.Sequential):
    def __init__(self, n_out, layers, expansion=1):
        stem = _resnet_stem(3,32,32,64)
        self.block_szs = [64, 64, 128, 256, 512]
        for i in range(1,5): self.block_szs[i] *= expansion
        blocks = [self._make_layer(*o) for o in enumerate(layers)]
        super().__init__(*stem, *blocks,
                         nn.AdaptiveAvgPool2d(1), Flatten(),
                         nn.Linear(self.block_szs[-1], n_out))

    def _make_layer(self, idx, n_layers):
        stride = 1 if idx==0 else 2
        ch_in,ch_out = self.block_szs[idx:idx+2]
        return nn.Sequential(*[
            ResBlock(ch_in if i==0 else ch_out, ch_out, stride if i==0 else 1)
            for i in range(n_layers)
        ])


The _make_layer function is just there to create a series of
n_layers blocks. The first one is going from ch_in to ch_out
with the indicated stride, and all the others are blocks of stride 1
with ch_out to ch_out tensors. Once the blocks are defined, our
model is purely sequential, which is why we define it as a subclass of
nn.Sequential. (Ignore the expansion parameter for
now; we’ll discuss it in the next section. For now,
it’ll be 1, so it doesn’t do anything.)


The various versions of the models (ResNet-18, -34, -50, etc.) just change
the number of blocks in each of those groups. This is the definition of
a ResNet-18:


rn = ResNet(dls.c, [2,2,2,2])


Let’s train it for a little bit and see how it fares
compared to the previous model:


learn = get_learner(rn)
learn.fit_one_cycle(5, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.673882
      	1.828394
      	0.413758
      	00:13
    

    
      	1
      	1.331675
      	1.572685
      	0.518217
      	00:13
    

    
      	2
      	1.087224
      	1.086102
      	0.650701
      	00:13
    

    
      	3
      	0.900428
      	0.968219
      	0.684331
      	00:12
    

    
      	4
      	0.760280
      	0.782558
      	0.757197
      	00:12
    

  



Even though we have more channels (and our model is therefore even
more accurate), our training is just as fast as before thanks to our
optimized stem.


To make our model deeper without taking too much compute or memory, we can use another kind of layer introduced by the
ResNet paper for ResNets with a depth
of 50 or more: the bottleneck layer.

















Bottleneck Layers


Instead of stacking two convolutions with a kernel size of 3,
bottleneck layers use three convolutions: two 1×1 (at the
beginning and the end) and one 3×3, as shown on the right in
Figure 14-4.



[image: Comparison of regular and bottleneck ResNet blocks]
Figure 14-4. Comparison of regular and bottleneck ResNet blocks (courtesy of Kaiming He et al.)




Why is that useful? 1×1 convolutions are much faster, so even if this
seems to be a more complex design, this block executes faster than the
first ResNet block we saw. This then lets us use more filters: as we see
in the illustration, the number of filters in and out is four times higher
(256 instead of 64). The 1×1 convs diminish then restore the number
of channels (hence the name bottleneck). The overall impact is that we
can use more filters in the same amount of time.


Let’s try replacing our ResBlock with this bottleneck design:


def _conv_block(ni,nf,stride):
    return nn.Sequential(
        ConvLayer(ni, nf//4, 1),
        ConvLayer(nf//4, nf//4, stride=stride),
        ConvLayer(nf//4, nf, 1, act_cls=None, norm_type=NormType.BatchZero))


We’ll use this to create a ResNet-50 with group sizes of (3,4,6,3). We now need to
pass 4 into the expansion parameter of ResNet, since we need to
start with four times fewer channels and we’ll end with four
times more channels.


Deeper networks like this don’t generally show improvements
when training for only 5 epochs, so we’ll bump it up to 20
epochs this time to make the most of our bigger model. And to really get
great results, let’s use bigger images too:


dls = get_data(URLs.IMAGENETTE_320, presize=320, resize=224)


We don’t have to do anything to account for the larger 224-pixel images; thanks to our fully convolutional network, it just works.
This is also why we were able to do progressive resizing earlier in
the book—the models we used were fully convolutional, so we were even
able to fine-tune models trained with different sizes. We can now train our model and see the effects:


rn = ResNet(dls.c, [3,4,6,3], 4)


learn = get_learner(rn)
learn.fit_one_cycle(20, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	1.613448
      	1.473355
      	0.514140
      	00:31
    

    
      	1
      	1.359604
      	2.050794
      	0.397452
      	00:31
    

    
      	2
      	1.253112
      	4.511735
      	0.387006
      	00:31
    

    
      	3
      	1.133450
      	2.575221
      	0.396178
      	00:31
    

    
      	4
      	1.054752
      	1.264525
      	0.613758
      	00:32
    

    
      	5
      	0.927930
      	2.670484
      	0.422675
      	00:32
    

    
      	6
      	0.838268
      	1.724588
      	0.528662
      	00:32
    

    
      	7
      	0.748289
      	1.180668
      	0.666497
      	00:31
    

    
      	8
      	0.688637
      	1.245039
      	0.650446
      	00:32
    

    
      	9
      	0.645530
      	1.053691
      	0.674904
      	00:31
    

    
      	10
      	0.593401
      	1.180786
      	0.676433
      	00:32
    

    
      	11
      	0.536634
      	0.879937
      	0.713885
      	00:32
    

    
      	12
      	0.479208
      	0.798356
      	0.741656
      	00:32
    

    
      	13
      	0.440071
      	0.600644
      	0.806879
      	00:32
    

    
      	14
      	0.402952
      	0.450296
      	0.858599
      	00:32
    

    
      	15
      	0.359117
      	0.486126
      	0.846369
      	00:32
    

    
      	16
      	0.313642
      	0.442215
      	0.861911
      	00:32
    

    
      	17
      	0.294050
      	0.485967
      	0.853503
      	00:32
    

    
      	18
      	0.270583
      	0.408566
      	0.875924
      	00:32
    

    
      	19
      	0.266003
      	0.411752
      	0.872611
      	00:33
    

  



We’re getting a great result now! Try adding Mixup, and then
training this for a hundred epochs while you go get lunch.
You’ll have yourself a very accurate image classifier,
trained from scratch.


The bottleneck design we’ve shown here is typically used in only
ResNet-50, -101, and -152 models.
ResNet-18 and -34 models usually use the non-bottleneck design seen in the previous
section. However, we’ve noticed that the bottleneck layer
generally works better even for the shallower networks. This just goes
to show that the little details in papers tend to stick around for
years, even if they’re not quite the best design!
Questioning assumptions and “stuff everyone knows” is always a good
idea, because this is still a new field, and lots of
details aren’t always done well.
























Conclusion


You have now seen how the models we have been using for computer vision since
the first chapter are built, using skip connections to allow deeper
models to be trained. Even though there has been a lot of research into better
architectures, they all use one version or another of this trick to
make a direct path from the input to the end of the network. When using
transfer learning, the ResNet is the pretrained model. In the next chapter,
we will look at the final details of how the models we used
were built from it.

















Questionnaire


	
How did we get to a single vector of activations in the CNNs used for MNIST in previous chapters? Why isn’t that suitable for Imagenette?



	
What do we do for Imagenette instead?



	
What is adaptive pooling?



	
What is average pooling?



	
Why do we need Flatten after an adaptive average pooling layer?



	
What is a skip connection?



	
Why do skip connections allow us to train deeper models?



	
What does Figure 14-1 show? How did that lead to the idea of skip connections?



	
What is identity mapping?



	
What is the basic equation for a ResNet block (ignoring batchnorm and ReLU layers)?



	
What do ResNets have to do with residuals?



	
How do we deal with the skip connection when there is a stride-2 convolution? How about when the number of filters changes?



	
How can we express a 1×1 convolution in terms of a vector dot product?



	
Create a 1×1 convolution with F.conv2d or nn.Conv2d and apply it to an image. What happens to the shape of the image?



	
What does the noop function return?



	
Explain what is shown in Figure 14-3.



	
When is top-5 accuracy a better metric than top-1 accuracy?



	
What is the “stem” of a CNN?



	
Why do we use plain convolutions in the CNN stem instead of ResNet blocks?



	
How does a bottleneck block differ from a plain ResNet block?



	
Why is a bottleneck block faster?



	
How do fully convolutional nets (and nets with adaptive pooling in general) allow for progressive resizing?















Further Research


	
Try creating a fully convolutional net with adaptive average pooling for MNIST (note that you’ll need fewer stride-2 layers). How does it compare to a network without such a pooling layer?



	
In Chapter 17, we introduce Einstein summation notation. Skip ahead to see how this works, and then write an implementation of the 1×1 convolution operation using torch.einsum. Compare it to the same operation using torch.conv2d.



	
Write a top-5 accuracy function using plain PyTorch or plain Python.



	
Train a model on Imagenette for more epochs, with and without label
smoothing. Take a look at the Imagenette leaderboards and see how close
you can get to the best results shown. Read the linked pages describing
the leading approaches.




























  
Chapter 15. Application Architectures Deep Dive



We are now in the exciting position that we can fully understand the architectures that we have been using for our state-of-the-art
models for computer vision, natural language processing, and tabular
analysis. In this chapter, we’re going to fill in all the
missing details on how fastai’s application models work and
show you how to build them.


We will also go back to the custom data preprocessing pipeline we saw in
Chapter 11 for Siamese networks and show you how
to use the components in the fastai library to build custom
pretrained models for new tasks.


We’ll start with computer vision.








Computer Vision


For computer vision applications, we use the functions cnn_learner and
unet_learner to build our models, depending on the task.
In this section, we’ll explore how to build
the Learner objects we used in Parts I and II of this book.










cnn_learner


Let’s take a look at what happens when we use the
cnn_learner function. We begin by passing this function an architecture to use for the body
of the network. Most of the time, we use a ResNet, which you already know
how to create, so we don’t need to delve into that any
further. Pretrained weights are downloaded as required and loaded into
the ResNet.


Then, for transfer learning, the network needs to be cut. This refers
to slicing off the final layer, which is responsible only for
ImageNet-specific categorization. In fact, we do not slice off only this
layer, but everything from the adaptive average pooling layer onward.
The reason for this will become clear in just a moment. Since different
architectures might use different types of pooling layers, or even
completely different kinds of heads, we don’t just search
for the adaptive pooling layer to decide where to cut the pretrained
model. Instead, we have a dictionary of information that is used for
each model to determine where its body ends and its head starts. We call
this model_meta—here it is for resnet50:


model_meta[resnet50]


{'cut': -2,
 'split': <function fastai.vision.learner._resnet_split(m)>,
 'stats': ([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])}

Jargon: Body and Head

The head of a neural net is the part that is specialized for a particular task. For a CNN, it’s generally the part after the adaptive average pooling layer. The body is everything else, and includes the stem (which we learned about in Chapter 14).




If we take all of the layers prior to the cut point of -2, we get the
part of the model that fastai will keep for transfer learning. Now, we
put on our new head. This is created using the function create_head:


create_head(20,2)

Sequential(
  (0): AdaptiveConcatPool2d(
    (ap): AdaptiveAvgPool2d(output_size=1)
    (mp): AdaptiveMaxPool2d(output_size=1)
  )
  (1): Flatten()
  (2): BatchNorm1d(20, eps=1e-05, momentum=0.1, affine=True)
  (3): Dropout(p=0.25, inplace=False)
  (4): Linear(in_features=20, out_features=512, bias=False)
  (5): ReLU(inplace=True)
  (6): BatchNorm1d(512, eps=1e-05, momentum=0.1, affine=True)
  (7): Dropout(p=0.5, inplace=False)
  (8): Linear(in_features=512, out_features=2, bias=False)
)


With this function, you can choose how many additional linear layers are
added to the end, how much dropout to use after each one, and what kind
of pooling to use. By default, fastai will apply both average pooling
and max pooling, and will concatenate the two together (this is the
AdaptiveConcatPool2d layer). This is not a particularly common
approach, but it was developed independently at fastai and other
research labs in recent years and tends to provide a small
improvement over using just average pooling.


fastai is a bit different from most libraries in that by default it adds two linear
layers, rather than one, in the CNN head. The reason
is that transfer learning can still be useful even, as we have seen, when transferring the pretrained model to very different domains.
However, just using a single linear layer is unlikely to be enough in these cases;
we have found that using two linear layers can allow transfer learning
to be used more quickly and easily, in more situations.

One Last Batchnorm

One parameter to create_head that is worth looking at is bn_final. Setting this to True will cause a batchnorm layer to be added as your final layer. This can be useful in helping your model scale appropriately for your output activations. We haven’t seen this approach published anywhere as yet, but we have found that it works well in practice wherever we have used it.




Let’s now take a look at what unet_learner did in the
segmentation problem we showed in Chapter 1.

















unet_learner


One of the most interesting architectures in deep learning is the one
that we used for segmentation in Chapter 1. Segmentation
is a challenging task, because the output required is really an image,
or a pixel grid, containing the predicted label for every pixel. Other tasks share a similar basic design, such as increasing
the resolution of an image (super-resolution), adding color to a
black-and-white image (colorization), or converting a photo into a
synthetic painting (style transfer)—these tasks are covered by an
online chapter of this book, so be sure to check it out after
you’ve read this chapter. In each case, we are starting with
an image and converting it to another image of the same dimensions
or aspect ratio, but with the pixels altered in some way. We refer to
these as generative vision models.


The way we do this is to start with the exact same approach to
developing a CNN head as we saw in the previous section. We start with a ResNet, for
instance, and cut off the adaptive pooling layer and everything after
that. Then we replace those layers with our custom head, which does the
generative task.


There was a lot of handwaving in that last sentence! How on earth do we
create a CNN head that generates an image? If we start with, say, a 224-pixel input image, then at the end of the ResNet body we will have a 7×7
grid of convolutional activations. How can we convert that into a 224-pixel segmentation mask?


Naturally, we do this with a neural network! So we need some kind
of layer that can increase the grid size in a CNN. One simple
approach is to replace every pixel in the 7×7 grid with four
pixels in a 2×2 square. Each of those four pixels will have the same
value—this is known as nearest neighbor interpolation. PyTorch
provides a layer that does this for us, so one option is to create a head that
contains stride-1 convolutional layers (along with batchnorm and ReLU layers
as usual) interspersed with 2×2 nearest neighbor interpolation layers.
In fact, you can try this now! See if you can create a custom head
designed like this, and try it on the CamVid segmentation
task. You should find that you get some reasonable results, although they
won’t be as good as our Chapter 1 results.


Another approach is to replace the nearest neighbor and convolution
combination with a transposed convolution, otherwise known as a stride
half convolution. This is identical to a regular convolution, but first
zero padding is inserted between all the pixels in the input. This is
easiest to see with a picture—Figure 15-1 shows a diagram
from the excellent convolutional arithmetic paper we discussed in Chapter 13,
showing a 3×3 transposed convolution applied to a 3×3 image.



[image: A transposed convolution]
Figure 15-1. A transposed convolution (courtesy of Vincent Dumoulin and Francesco Visin)




As you see, the result is to increase the size of the input. You
can try this out now by using fastai’s ConvLayer class;
pass the parameter transpose=True to create a transposed convolution,
instead of a regular one, in your custom head.


Neither of these approaches, however, works really well. The problem is
that our 7×7 grid simply doesn’t have enough information to
create a 224×224-pixel output. It’s asking an awful lot of
the activations of each of those grid cells to have enough information
to fully regenerate every pixel in the output.


The solution is to use skip connections, as in a ResNet, but skipping from
the activations in the body of the ResNet all the way over to the
activations of the transposed convolution on the opposite side of the
architecture. This approach, illustrated in Figure 15-2, was developed by Olaf Ronneberger et al. in the 2015
paper “U-Net: Convolutional Networks for Biomedical Image Segmentation”. Although the paper focused on medical
applications, the U-Net has revolutionized all kinds of generative
vision models.



[image: The U-Net architecture]
Figure 15-2. The U-Net architecture (courtesy of Olaf Ronneberger, Philipp Fischer, and Thomas Brox)




This picture shows the CNN body on the left (in this case,
it’s a regular CNN, not a ResNet, and they’re
using 2×2 max pooling instead of stride-2 convolutions, since this paper
was written before ResNets came along) and the transposed
convolutional (“up-conv”) layers on the right. The extra skip connections are shown
as gray arrows crossing from left to right (these are sometimes called
cross connections). You can see why it’s called a U-Net!


With this architecture, the input to the transposed convolutions is not
just the lower-resolution grid in the preceding layer, but also the
higher-resolution grid in the ResNet head. This allows the U-Net to use
all of the information of the original image, as it is needed. One
challenge with U-Nets is that the exact architecture depends on the
image size. fastai has a unique DynamicUnet class that autogenerates
an architecture of the right size based on the data provided.


Let’s focus now on an example in which we leverage the fastai
library to write a custom model.

















A Siamese Network


Let’s go back to the input pipeline we set up in
Chapter 11 for a Siamese network. As you may
remember, it consisted of a pair of images with the label being True or
False, depending on whether they were in the same class.


Using what we just saw, let’s build a custom model for this
task and train it. How? We will use a pretrained architecture and pass
our two images through it. Then we can concatenate the results and send
them to a custom head that will return two predictions. In terms of
modules, this looks like this:


class SiameseModel(Module):
    def __init__(self, encoder, head):
        self.encoder,self.head = encoder,head

    def forward(self, x1, x2):
        ftrs = torch.cat([self.encoder(x1), self.encoder(x2)], dim=1)
        return self.head(ftrs)


To create our encoder, we just need to take a pretrained model and cut
it, as we explained before. The function create_body does that for us;
we just have to pass it the place where we want to cut. As we saw earlier, per the dictionary of metadata for pretrained models, the cut value
for a ResNet is –2:


encoder = create_body(resnet34, cut=-2)


Then we can create our head. A look at the encoder tells us the last
layer has 512 features, so this head will need to receive 512*4. Why
4? First we have to multiply by 2 because we have two images. Then we
need a second multiplication by 2 because of our concat-pool trick. So we create the head as follows:


head = create_head(512*4, 2, ps=0.5)


With our encoder and head, we can now build our model:


model = SiameseModel(encoder, head)


Before using Learner, we have two more things to define. First, we
must define the loss function we want to use. It’s regular
cross entropy, but since our targets are Booleans, we need to convert
them to integers or PyTorch will throw an error:


def loss_func(out, targ):
    return nn.CrossEntropyLoss()(out, targ.long())


More importantly, to take full advantage of transfer learning, we have
to define a custom splitter. A splitter is a function that tells the
fastai library how to split the model into parameter groups. These are used behind the scenes to train only the head of a model
when we do transfer learning.


Here we want two parameter groups: one for the encoder and one for the
head. We can thus define the following splitter (params is just a
function that returns all parameters of a given module):


def siamese_splitter(model):
    return [params(model.encoder), params(model.head)]


Then we can define our Learner by passing the data, model, loss
function, splitter, and any metric we want. Since we are not using a
convenience function from fastai for transfer learning (like
cnn_learner), we have to call learn.freeze manually. This will make
sure only the last parameter group (in this case, the head) is trained:


learn = Learner(dls, model, loss_func=loss_func,
                splitter=siamese_splitter, metrics=accuracy)
learn.freeze()


Then we can directly train our model with the usual method:


learn.fit_one_cycle(4, 3e-3)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.367015
      	0.281242
      	0.885656
      	00:26
    

    
      	1
      	0.307688
      	0.214721
      	0.915426
      	00:26
    

    
      	2
      	0.275221
      	0.170615
      	0.936401
      	00:26
    

    
      	3
      	0.223771
      	0.159633
      	0.943843
      	00:26
    

  



Now we unfreeze and fine-tune the whole model a bit more with discriminative learning rates (that is, a lower learning rate for the body and a higher one for the head):


learn.unfreeze()
learn.fit_one_cycle(4, slice(1e-6,1e-4))


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	0.212744
      	0.159033
      	0.944520
      	00:35
    

    
      	1
      	0.201893
      	0.159615
      	0.942490
      	00:35
    

    
      	2
      	0.204606
      	0.152338
      	0.945196
      	00:36
    

    
      	3
      	0.213203
      	0.148346
      	0.947903
      	00:36
    

  



94.8% is very good when we remember that a classifier trained the same way (with no data augmentation) had an error rate of 7%.


Now that we’ve seen how to create complete state-of-the-art
computer vision models, let’s move on to NLP.
























Natural Language Processing


Converting an AWD-LSTM language model into a transfer learning
classifier, as we did in Chapter 10, follows a very
similar process to what we did with cnn_learner in the first section of
this chapter. We do not need a “meta” dictionary in this case, because
we do not have such a variety of architectures to support in the body.
All we need to do is select the stacked RNN for the encoder in the
language model, which is a single PyTorch module. This encoder will
provide an activation for every word of the input, because a language
model needs to output a prediction for every next word.


To create a classifier from this, we use an approach described in the ULMFiT paper as “BPTT for Text Classification (BPT3C)”:


We divide the document into fixed-length batches of size b. At the beginning of each batch, the model is initialized with the final state of the previous batch; we keep track of the hidden states for mean and max-pooling; gradients are back-propagated to the batches whose hidden states contributed to the final prediction. In practice, we use variable length backpropagation sequences.



In other words, the classifier contains a for
loop, which loops over each batch of a sequence. The state is maintained
across batches, and the activations of each batch are stored. At the
end, we use the same average and max concatenated pooling trick that we
use for computer vision models—but this time, we do not pool over CNN
grid cells, but over RNN sequences.


For this for loop, we need to gather our data in batches, but each text
needs to be treated separately, as they each have their own labels.
However, it’s very likely that those texts won’t all be of the same length, which means we
won’t be able to put them all in the same array, as we did
with the language model.


That’s where padding is going to help: when grabbing a bunch
of texts, we determine the one with the greatest length; then we fill the
ones that are shorter with a special token called xxpad. To avoid
extreme cases of having a text with 2,000 tokens in the
same batch as a text with 10 tokens (so a lot of padding, and a lot of
wasted computation), we alter the randomness by making sure texts of
comparable size are put together. The texts will still be in a somewhat random
order for the training set (for the validation set, we can simply sort
them by order of length), but not completely so.


This is done automatically behind the scenes by the fastai library when
creating our DataLoaders.

















Tabular


Finally, let’s take a look at fastai.tabular models. (We don’t
need to look at collaborative filtering separately, since
we’ve already seen that these models are just tabular
models or use the dot product approach, which we implemented earlier
from scratch.)


Here is the forward method for TabularModel:


if self.n_emb != 0:
    x = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)]
    x = torch.cat(x, 1)
    x = self.emb_drop(x)
if self.n_cont != 0:
    x_cont = self.bn_cont(x_cont)
    x = torch.cat([x, x_cont], 1) if self.n_emb != 0 else x_cont
return self.layers(x)


We won’t show __init__ here, since it’s not
that interesting, but will look at each line of code in
forward in turn. The first line is just testing whether there are any embeddings to deal with—we
can skip this section if we have only continuous variables:


if self.n_emb != 0:


self.embeds contains the embedding matrices, so this gets the
activations of each


    x = [e(x_cat[:,i]) for i,e in enumerate(self.embeds)]


and concatenates them into a single tensor:


    x = torch.cat(x, 1)


Then dropout is applied. You can pass emb_drop to __init__ to change
this value:


    x = self.emb_drop(x)


Now we test whether there are any continuous variables to deal with:


if self.n_cont != 0:


They are passed through a batchnorm layer


    x_cont = self.bn_cont(x_cont)


and concatenated with the embedding activations, if there were any:


    x = torch.cat([x, x_cont], 1) if self.n_emb != 0 else x_cont


Finally, this is passed through the linear layers (each of which
includes batchnorm, if use_bn is True, and dropout, if ps is set to
some value or list of values):


return self.layers(x)


Congratulations! Now you know every single piece of the architectures
used in the fastai library!

















Conclusion


As you can see, the details of deep learning architectures need not
scare you now. You can look inside the code of fastai and PyTorch and
see just what is going on. More importantly, try to understand why it’s going on. Take a look at the papers that are referenced in the
code, and try to see how the code matches up to the algorithms that are
described.


Now that we have investigated all of the pieces of a model and the data
that is passed into it, we can consider what this means for practical
deep learning. If you have unlimited data, unlimited memory, and
unlimited time, then the advice is easy: train a huge model on all of
your data for a really long time. But the reason that deep learning is not
straightforward is that your data, memory, and time are typically limited. If
you are running out of memory or time, the solution is to train a
smaller model. If you are not able to train for long enough to overfit, you are not taking advantage of the capacity of your model.


So, step 1 is to get to the point where you can overfit. Then the
question is how to reduce that overfitting. Figure 15-3
shows how we recommend prioritizing the steps from there.



[image: Steps to reducing overfitting]
Figure 15-3. Steps to reducing overfitting




Many practitioners, when faced with an overfitting model, start at exactly
the wrong end of this diagram. Their starting point is to use a smaller
model or more regularization. Using a smaller model should be
absolutely the last step you take, unless training your model is taking up too
much time or memory. Reducing the size of your model reduces the
ability of your model to learn subtle relationships in your data.


Instead, your first step should be to seek to create more data. That
could involve adding more labels to data that you already have, finding additional tasks that your model could be asked to
solve (or, to think of it another way, identifying different kinds of
labels that you could model), or creating additional synthetic data by
using more or different data augmentation techniques. Thanks to the development of
Mixup and similar approaches, effective data augmentation is now
available for nearly all kinds of data.


Once you’ve got as much data as you think you can reasonably
get hold of, and are using it as effectively as possible by taking
advantage of all the labels that you can find and doing all the
augmentation that makes sense, if you are still overfitting, you
should think about using more generalizable architectures. For instance,
adding batch normalization may improve generalization.


If you are still overfitting after doing the best you can at using your
data and tuning your architecture, you can take a look at
regularization. Generally speaking, adding dropout to the last layer or
two will do a good job of regularizing your model. However, as we learned
from the story of the development of AWD-LSTM,
adding dropout of different types throughout your model can often help even more. Generally speaking, a larger model with more
regularization is more flexible, and can therefore be more accurate than
a smaller model with less regularization.


Only after considering all of these options would we recommend that you
try using a smaller version of your architecture.

















Questionnaire


	
What is the head of a neural net?



	
What is the body of a neural net?



	
What is “cutting” a neural net? Why do we need to do this for transfer learning?



	
What is model_meta? Try printing it to see what’s inside.



	
Read the source code for create_head and make sure you understand what each line does.



	
Look at the output of create_head and make sure you understand why each layer is there, and how the create_head source created it.



	
Figure out how to change the dropout, layer size, and number of layers created by create_cnn, and see if you can find values that result in better accuracy from the pet recognizer.



	
What does AdaptiveConcatPool2d do?



	
What is nearest neighbor interpolation? How can it be used to upsample convolutional activations?



	
What is a transposed convolution? What is another name for it?



	
Create a conv layer with transpose=True and apply it to an image. Check the output shape.



	
Draw the U-Net architecture.



	
What is BPTT for Text Classification (BPT3C)?



	
How do we handle different length sequences in BPT3C?



	
Try to run each line of TabularModel.forward separately, one line per cell, in a notebook, and look at the input and output shapes at each step.



	
How is self.layers defined in TabularModel?



	
What are the five steps for preventing overfitting?



	
Why don’t we reduce architecture complexity before trying other approaches to preventing overfitting?















Further Research


	
Write your own custom head and try training the pet recognizer with it. See if you can get a better result than fastai’s default.



	
Try switching between AdaptiveConcatPool2d and AdaptiveAvgPool2d in a CNN head and see what difference it makes.



	
Write your own custom splitter to create a separate parameter group for every ResNet block, and a separate group for the stem. Try training with it, and see if it improves the pet recognizer.



	
Read the online chapter about generative image models, and create your own colorizer, super-resolution model, or style transfer model.



	
Create a custom head using nearest neighbor interpolation and use it to do segmentation on CamVid.




























  
Chapter 16. The Training Process



You now know how to create state-of-the-art architectures for
computer vision, natural image processing, tabular analysis, and
collaborative filtering, and you know how to train them quickly.
So we’re done, right? Not quite yet. We still have to explore a
little bit more of the training process.


We explained in Chapter 4 the basis of stochastic
gradient descent: pass a mini-batch to the model, compare it to our
target with the loss function, then compute the gradients of this loss
function with regard to each weight before updating the weights with
the formula:


new_weight = weight - lr * weight.grad


We implemented this from scratch in a training loop, and saw that
PyTorch provides a simple nn.SGD class that does this calculation for
each parameter for us. In this chapter, we will build some faster
optimizers, using a flexible foundation. But that’s not all we might want to change in the training process. For any tweak of
the training loop, we will need a way to add some code to the basis of
SGD. The fastai library has a system of callbacks to do this, and we
will teach you all about it.


Let’s start with standard SGD to get a
baseline; then we will introduce the most commonly used optimizers.








Establishing a Baseline


First we’ll create a baseline using plain SGD and compare
it to fastai’s default optimizer. We’ll start by
grabbing Imagenette with the same get_data we used in
Chapter 14:


dls = get_data(URLs.IMAGENETTE_160, 160, 128)


We’ll create a ResNet-34 without pretraining and pass along
any arguments received:


def get_learner(**kwargs):
    return cnn_learner(dls, resnet34, pretrained=False,
                    metrics=accuracy, **kwargs).to_fp16()


Here’s the default fastai optimizer, with the usual 3e-3
learning rate:


learn = get_learner()
learn.fit_one_cycle(3, 0.003)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.571932
      	2.685040
      	0.322548
      	00:11
    

    
      	1
      	1.904674
      	1.852589
      	0.437452
      	00:11
    

    
      	2
      	1.586909
      	1.374908
      	0.594904
      	00:11
    

  



Now let’s try plain SGD. We can pass opt_func
(optimization function) to cnn_learner to get fastai to use any
optimizer:


learn = get_learner(opt_func=SGD)


The first thing to look at is lr_find:


learn.lr_find()


(0.017378008365631102, 3.019951861915615e-07)



[image: ]





It looks like we’ll need to use a higher learning rate than
we normally use:


learn.fit_one_cycle(3, 0.03, moms=(0,0,0))


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.969412
      	2.214596
      	0.242038
      	00:09
    

    
      	1
      	2.442730
      	1.845950
      	0.362548
      	00:09
    

    
      	2
      	2.157159
      	1.741143
      	0.408917
      	00:09
    

  



Because accelerating SGD with momentum is such a good idea, fastai does this by default in fit_one_cycle, so we turn it off with
moms=(0,0,0). We’ll be discussing momentum shortly.


Clearly, plain SGD isn’t training as fast as
we’d like. So let’s learn some tricks to get
accelerated training!

















A Generic Optimizer


To build up our accelerated SGD tricks, we’ll need
to start with a nice flexible optimizer foundation. No library prior to
fastai provided such a foundation, but during fastai’s
development, we realized that all the optimizer improvements we’d
seen in the academic literature could be handled using optimizer
callbacks. These are small pieces of code that we can compose, mix, and match in an optimizer to build the optimizer step. They are called by fastai’s
lightweight Optimizer class. These are the definitions in Optimizer of the two key methods that
we’ve been using in this book:


def zero_grad(self):
    for p,*_ in self.all_params():
        p.grad.detach_()
        p.grad.zero_()

def step(self):
    for p,pg,state,hyper in self.all_params():
        for cb in self.cbs:
            state = _update(state, cb(p, **{**state, **hyper}))
        self.state[p] = state


As we saw when training an MNIST model from scratch, zero_grad just
loops through the parameters of the model and sets the gradients to
zero. It also calls detach_, which removes any history of gradient
computation, since it won’t be needed after zero_grad.


The more interesting method is step, which loops through the callbacks
(cbs) and calls them to update the parameters (the _update function
just calls state.update if there’s anything returned by
cb). As you can see, Optimizer doesn’t do
any SGD steps itself. Let’s see how we can add SGD to
Optimizer.


Here’s an optimizer callback that does a single SGD step, by
multiplying -lr by the gradients and adding that to the parameter
(when Tensor.add_ in PyTorch is passed two parameters, they are
multiplied together before the addition):


def sgd_cb(p, lr, **kwargs): p.data.add_(-lr, p.grad.data)


We can pass this to Optimizer using the cbs parameter;
we’ll need to use partial since Learner will call this
function to create our optimizer later:


opt_func = partial(Optimizer, cbs=[sgd_cb])


Let’s see if this trains:


learn = get_learner(opt_func=opt_func)
learn.fit(3, 0.03)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.730918
      	2.009971
      	0.332739
      	00:09
    

    
      	1
      	2.204893
      	1.747202
      	0.441529
      	00:09
    

    
      	2
      	1.875621
      	1.684515
      	0.445350
      	00:09
    

  



It’s working! So that’s how we create SGD from
scratch in fastai. Now let’s see what this “momentum” is.

















Momentum


As described in Chapter 4, SGD can be thought of as standing at the top of a mountain and working your way down by taking a step in the direction of the steepest slope
at each point in time. But what if we have a ball rolling down the
mountain? It won’t, at each given point, exactly follow the
direction of the gradient, as it will have momentum. A ball with more
momentum (for instance, a heavier ball) will skip over little bumps and
holes, and be more likely to get to the bottom of a bumpy mountain. A
ping pong ball, on the other hand, will get stuck in every little
crevice.


So how can we bring this idea over to SGD? We can use a moving
average, instead of only the current gradient, to make our step:


weight.avg = beta * weight.avg + (1-beta) * weight.grad
new_weight = weight - lr * weight.avg


Here beta is some number we choose that defines how much momentum to
use. If beta is 0, the first equation becomes
weight.avg = weight.grad, so we end up with plain SGD. But if
it’s a number close to 1, the main direction chosen
is an average of the previous steps. (If you have done a bit of statistics,
you may recognize in the first equation an exponentially weighted
moving average, which is often used to denoise data and get the
underlying tendency.)


Note that we are writing weight.avg to highlight the fact that we need to
store the moving averages for each parameter of the model (they all
their own independent moving averages).


Figure 16-1 shows an example of noisy data for a single
parameter with the momentum curve plotted in red, and the gradients of
the parameter plotted in blue. The gradients increase, then
decrease, and the momentum does a good job of following the general
trend without getting too influenced by noise.



[image: Graph showing an example of momentum]
Figure 16-1. An example of momentum




It works particularly well if the loss function has narrow canyons we
need to navigate: vanilla SGD would send us bouncing from one side to the other,
while SGD with momentum will average those to roll smoothly down the side. The
parameter beta determines the strength of the momentum we are using:
with a small beta, we stay closer to the actual gradient values, whereas
with a high beta, we will mostly go in the direction of the average of
the gradients and it will take a while before any change in the
gradients makes that trend move.


With a large beta, we might miss that the gradients have changed
directions and roll over a small local minima. This is a desired
side effect: intuitively, when we show a new input to our
model, it will look like something in the training set but
won’t be exactly like it. It will correspond to a
point in the loss function that is close to the minimum we ended up
with at the end of training, but not exactly at that minimum. So, we
would rather end up training in a wide minimum, where nearby points have
approximately the same loss (or if you prefer, a point where the loss is
as flat as possible). Figure 16-2 shows how the chart in
Figure 16-1 varies as we change beta.



[image: Graph showing how the beta value imfluence momentum]
Figure 16-2. Momentum with different beta values




We can see in these examples that a beta that’s too high
results in the overall changes in gradient getting ignored. In SGD with
momentum, a value of beta that is often used is 0.9.


fit_one_cycle by default starts with a beta of 0.95, gradually adjusts
it to 0.85, and then gradually moves it back to 0.95 at the end of
training. Let’s see how our training goes with momentum
added to plain SGD.


To add momentum to our optimizer, we’ll first need
to keep track of the moving average gradient, which we can do with
another callback. When an optimizer callback returns a dict, it is used
to update the state of the optimizer and is passed back to the
optimizer on the next step. So this callback will keep track of the
gradient averages in a parameter called grad_avg:


def average_grad(p, mom, grad_avg=None, **kwargs):
    if grad_avg is None: grad_avg = torch.zeros_like(p.grad.data)
    return {'grad_avg': grad_avg*mom + p.grad.data}


To use it, we just have to replace p.grad.data with grad_avg in our
step function:


def momentum_step(p, lr, grad_avg, **kwargs): p.data.add_(-lr, grad_avg)


opt_func = partial(Optimizer, cbs=[average_grad,momentum_step], mom=0.9)


Learner will automatically schedule mom and lr, so fit_one_cycle
will even work with our custom Optimizer:


learn = get_learner(opt_func=opt_func)
learn.fit_one_cycle(3, 0.03)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.856000
      	2.493429
      	0.246115
      	00:10
    

    
      	1
      	2.504205
      	2.463813
      	0.348280
      	00:10
    

    
      	2
      	2.187387
      	1.755670
      	0.418853
      	00:10
    

  



learn.recorder.plot_sched()



[image: ]





We’re still not getting great results, so let’s
see what else we can do.

















RMSProp


RMSProp is another variant of SGD introduced by Geoffrey Hinton in
Lecture 6e of his Coursera class “Neural Networks for Machine Learning”. The main difference from SGD is that it uses
an adaptive learning rate: instead of using the same learning rate for
every parameter, each parameter gets its own specific
learning rate controlled by a global learning rate. That way, we can
speed up training by giving a higher learning rate to the weights that
need to change a lot, while the ones that are good enough get a lower
learning rate.


How do we decide which parameters should have a high learning rate and
which should not? We can look at the gradients to get an idea. If a parameter’s gradients have been close to zero for a while, that parameter will need a higher learning rate because the loss is flat. On the other hand, if the gradients are all over the place,
we should probably be careful and pick a low learning rate to avoid
divergence. We can’t just average the gradients to see if
they’re changing a lot, because the average of a large
positive and a large negative number is close to zero. Instead, we can use the
usual trick of either taking the absolute value or the squared values
(and then taking the square root after the mean).


Once again, to determine the general tendency behind the noise, we will use a
moving average—specifically, the moving average of the gradients
squared. Then we will update the corresponding weight by using the
current gradient (for the direction) divided by the square root of this
moving average (that way, if it’s low, the effective learning
rate will be higher, and if it’s high, the effective learning
rate will be lower):


w.square_avg = alpha * w.square_avg + (1-alpha) * (w.grad ** 2)
new_w = w - lr * w.grad / math.sqrt(w.square_avg + eps)


The eps (epsilon) is added for numerical stability (usually set at
1e-8), and the default value for alpha is usually 0.99.


We can add this to Optimizer by doing much the same thing we did for
avg_grad, but with an extra **2:


def average_sqr_grad(p, sqr_mom, sqr_avg=None, **kwargs):
    if sqr_avg is None: sqr_avg = torch.zeros_like(p.grad.data)
    return {'sqr_avg': sqr_avg*sqr_mom + p.grad.data**2}


And we can define our step function and optimizer as before:


def rms_prop_step(p, lr, sqr_avg, eps, grad_avg=None, **kwargs):
    denom = sqr_avg.sqrt().add_(eps)
    p.data.addcdiv_(-lr, p.grad, denom)

opt_func = partial(Optimizer, cbs=[average_sqr_grad,rms_prop_step],
                   sqr_mom=0.99, eps=1e-7)


Let’s try it out:


learn = get_learner(opt_func=opt_func)
learn.fit_one_cycle(3, 0.003)


  
    
      	epoch
      	train_loss
      	valid_loss
      	accuracy
      	time
    

  
  
    
      	0
      	2.766912
      	1.845900
      	0.402548
      	00:11
    

    
      	1
      	2.194586
      	1.510269
      	0.504459
      	00:11
    

    
      	2
      	1.869099
      	1.447939
      	0.544968
      	00:11
    

  



Much better! Now we just have to bring these ideas together, and we have
Adam, fastai’s default optimizer.

















Adam


Adam mixes the ideas of SGD with momentum and RMSProp together: it uses
the moving average of the gradients as a direction and divides by the
square root of the moving average of the gradients squared to give an
adaptive learning rate to each parameter.


There is one other difference in how Adam calculates moving averages. It takes the unbiased moving average, which is


w.avg = beta * w.avg + (1-beta) * w.grad
unbias_avg = w.avg / (1 - (beta**(i+1)))


if we are the i-th iteration (starting at 0 as Python does). This
divisor of 
1 - (beta**(i+1)) makes sure the unbiased average looks
more like the gradients at the beginning (since beta < 1, the
denominator is very quickly close to 1).


Putting everything together, our update step looks like this:


w.avg = beta1 * w.avg + (1-beta1) * w.grad
unbias_avg = w.avg / (1 - (beta1**(i+1)))
w.sqr_avg = beta2 * w.sqr_avg + (1-beta2) * (w.grad ** 2)
new_w = w - lr * unbias_avg / sqrt(w.sqr_avg + eps)


As for RMSProp, eps is usually set to 1e-8, and the default for
(beta1,beta2) suggested by the literature is (0.9,0.999).


In fastai, Adam is the default optimizer we use since it allows faster
training, but we’ve found that beta2=0.99 is better suited to the type
of schedule we are using. beta1 is the momentum parameter, which we
specify with the argument moms in our call to fit_one_cycle. As for
eps, fastai uses a default of 1e-5. eps is not just useful for
numerical stability. A higher eps limits the maximum value of the
adjusted learning rate. To take an extreme example, if eps is 1, then
the adjusted learning will never be higher than the base learning rate.


Rather than show all the code for this in the book, we’ll
let you look at the optimizer notebook in fastai’s https://oreil.ly/24_O[GitHub repository] (browse the _nbs folder and search for the notebook called optimizer). You’ll see all the code we’ve shown so
far, along with Adam and other optimizers, and lots of examples and
tests.


One thing that changes when we go from SGD to Adam is the way we apply
weight decay, and it can have important consequences.

















Decoupled Weight Decay


Weight decay, which we’ve discussed in Chapter 8, is equivalent to
(in the case of vanilla SGD) updating the parameters with the following:


new_weight = weight - lr*weight.grad - lr*wd*weight


The last part of that formula explains the name of this technique: each weight is decayed by a factor of lr * wd.


The other name for weight decay is L2 regularization, which consists of adding the sum of all squared weights to the loss (multiplied by the weight decay). As we saw in Chapter 8, this can be directly expressed on the gradients:


weight.grad += wd*weight


For SGD, those two formulas are equivalent. However, this equivalence holds only for standard SGD because, as we’ve seen with momentum, RMSProp, or in Adam, the update has some additional formulas around the gradient.


Most libraries use the second formulation, but it was pointed out in
“Decoupled Weight Decay Regularization” by
Ilya Loshchilov and Frank Hutter that the first one is the only correct
approach with the Adam optimizer or momentum, which is why fastai makes
it its default.


Now you know everything that is hidden behind the line
learn.fit_one_cycle!


Optimizers are only one part of the training process, however. When you need to
change the training loop with fastai, you can’t directly
change the code inside the library. Instead, we have designed a system
of callbacks to let you write any tweaks you like in independent blocks that you can
then mix and match.

















Callbacks


Sometimes you need to change how things work a little bit. In fact, we
have already seen examples of this: Mixup, fp16 training, resetting the
model after each epoch for training RNNs, and so forth. How do we go
about making these kinds of tweaks to the training process?


We’ve seen the basic training loop, which, with the help of
the Optimizer class, looks like this for a single epoch:


for xb,yb in dl:
    loss = loss_func(model(xb), yb)
    loss.backward()
    opt.step()
    opt.zero_grad()


Figure 16-3 shows how to picture that.



[image: Basic training loop]
Figure 16-3. Basic training loop




The usual way for deep learning practitioners to customize the training
loop is to make a copy of an existing training loop, and then insert
the code necessary for their particular changes into it. This is how
nearly all code that you find online will look. But it has serious problems.


It’s not likely that some particular tweaked training
loop is going to meet your particular needs. Hundreds of
changes can be made to a training loop, which means there are
billions and billions of possible permutations. You can’t
just copy one tweak from a training loop here, another from a training
loop there, and expect them all to work together. Each will be based on
different assumptions about the environment that it’s
working in, use different naming conventions, and expect the data to be
in different formats.


We need a way to allow users to insert their own code at any part of the
training loop, but in a consistent and well-defined way. Computer
scientists have already come up with an elegant solution: the
callback. A callback is a piece of code that you write and inject into
another piece of code at a predefined point. In fact, callbacks have
been used with deep learning training loops for years. The problem is
that in previous libraries, it was possible to inject code in only a small subset of places where this may have been required—and, more importantly, callbacks were not able to do all the things they needed to do.


In order to be just as flexible as manually copying and pasting a
training loop and directly inserting code into it, a callback must be
able to read every possible piece of information available in the
training loop, modify all of it as needed, and fully control when a
batch, epoch, or even the whole training loop should be terminated.
fastai is the first library to provide all of this functionality. It
modifies the training loop so it looks like Figure 16-4.



[image: Training loop with callbacks]
Figure 16-4. Training loop with callbacks




The effectiveness of this approach has been borne out over the last
couple of years—by using the fastai callback system, we were able to implement every single new paper we tried and fulfill every user request for modifying the training loop. The training loop itself has not required modifications.
Figure 16-5 shows just a few of the callbacks that have been
added.



[image: Some fastai callbacks]
Figure 16-5. Some fastai callbacks




This is important because it means that
whatever ideas we have in our heads, we can implement them. We need never
dig into the source code of PyTorch or fastai and hack together a
one-off system to try out our ideas. And when we do implement our own
callbacks to develop our own ideas, we know that they will work together
with all of the other functionality provided by fastai—so we will get
progress bars, mixed-precision training, hyperparameter annealing, and
so forth.


Another advantage is that it makes it easy to gradually remove or add
functionality and perform ablation studies. You just need to adjust the
list of callbacks you pass along to your fit function.


As an example, here is the fastai source code that is run for each batch
of the training loop:


try:
    self._split(b);                                  self('begin_batch')
    self.pred = self.model(*self.xb);                self('after_pred')
    self.loss = self.loss_func(self.pred, *self.yb); self('after_loss')
    if not self.training: return
    self.loss.backward();                            self('after_backward')
    self.opt.step();                                 self('after_step')
    self.opt.zero_grad()
except CancelBatchException:                         self('after_cancel_batch')
finally:                                             self('after_batch')


The calls of the form self('...') are where
the callbacks are called. As you see, this happens after every step. The callback will receive the entire state of training and can
also modify it. For instance, the input data and
target labels are in self.xb and self.yb, respectively; a callback
can modify these to modify the data the training loop sees. It can also
modify self.loss or even the gradients.


Let’s see how this works in practice by writing a callback.










Creating a Callback


When you want to write your own callback, the full list of available
events is as 
follows:


	begin_fit

	
Called before doing anything; ideal for initial setup.



	begin_epoch

	
Called at the beginning of each epoch; useful for any behavior you need to reset at each epoch.



	begin_train

	
Called at the beginning of the training part of an epoch.



	begin_batch

	
Called at the beginning of each batch, just after drawing said batch. It can be used to do any setup necessary for the batch (like hyperparameter scheduling) or to change the input/target before it goes into the model (for instance, by applying Mixup).



	after_pred

	
Called after computing the output of the model on the batch. It can be used to change that output before it’s fed to the loss function.



	after_loss

	
Called after the loss has been computed, but before the backward pass. It can be used to add a penalty to the loss (AR or TAR in RNN training, for instance).



	after_backward

	
Called after the backward pass, but before the update of the parameters. It can be used to make changes to the gradients before said update (via gradient clipping, for instance).



	after_step

	
Called after the step and before the gradients are zeroed.



	after_batch

	
Called at the end of a batch, to perform any required cleanup before the next one.



	after_train

	
Called at the end of the training phase of an epoch.



	begin_validate

	
Called at the beginning of the validation phase of an epoch; useful for any setup needed specifically for validation.



	after_validate

	
Called at the end of the validation part of an epoch.



	after_epoch

	
Called at the end of an epoch, for any cleanup before the next one.



	after_fit

	
Called at the end of training, for final cleanup.






The elements of this list are available as attributes of the special variable event, so
you can just type event. and hit Tab in your notebook to see a list of all
the options


Let’s take a look at an example. Do you recall how in
Chapter 12 we needed to ensure that our special reset
method was called at the start of training and validation for each
epoch? We used the ModelResetter callback provided by fastai to do this
for us. But how does it work exactly? Here’s
the full source code for that class:


class ModelResetter(Callback):
    def begin_train(self):    self.model.reset()
    def begin_validate(self): self.model.reset()


Yes, that’s actually it! It just does what we said in the
preceding paragraph: after completing training or validation for
an epoch, call a method named reset.


Callbacks are often “short and sweet” like this one. In fact,
let’s look at one more. Here’s the fastai source
for the callback that adds RNN regularization (AR and TAR):


class RNNRegularizer(Callback):
    def __init__(self, alpha=0., beta=0.): self.alpha,self.beta = alpha,beta

    def after_pred(self):
        self.raw_out,self.out = self.pred[1],self.pred[2]
        self.learn.pred = self.pred[0]

    def after_loss(self):
        if not self.training: return
        if self.alpha != 0.:
            self.learn.loss += self.alpha * self.out[-1].float().pow(2).mean()
        if self.beta != 0.:
            h = self.raw_out[-1]
            if len(h)>1:
                self.learn.loss += self.beta * (h[:,1:] - h[:,:-1]
                                               ).float().pow(2).mean()

Code It Yourself

Go back and reread “Activation Regularization and Temporal Activation Regularization”, and then take another look at the code here. Make sure you understand what it’s doing and why.




In both of these examples, notice how we can access attributes of the
training loop by directly checking self.model or self.pred.
That’s because a Callback will always try to get an
attribute it doesn’t have inside the Learner associated with it. These are shortcuts for self.learn.model or self.learn.pred. Note
that they work for reading attributes, but not for writing
them, which is why when RNNRegularizer changes the loss or the
predictions, you see self.learn.loss = or self.learn.pred =.


When writing a callback, the following attributes of Learner are
available:


	model

	
The model used for training/validation.



	data

	
The underlying DataLoaders.



	loss_func

	
The loss function used.



	opt

	
The optimizer used to update the model parameters.



	opt_func

	
The function used to create the optimizer.



	cbs

	
The list containing all the Callbacks.



	dl

	
The current DataLoader used for iteration.



	x/xb

	
The last input drawn from self.dl (potentially modified by callbacks). xb is always a tuple (potentially with one element), and x is detuplified. You can assign only to xb.



	y/yb

	
The last target drawn from self.dl (potentially modified by callbacks). yb is always a tuple (potentially with one element), and y is detuplified. You can assign only to yb.



	pred

	
The last predictions from self.model (potentially modified by callbacks).



	loss

	
The last computed loss (potentially modified by callbacks).



	n_epoch

	
The number of epochs in this training.



	n_iter

	
The number of iterations in the current self.dl.



	epoch

	
The current epoch index (from 0 to n_epoch-1).



	iter

	
The current iteration index in self.dl (from 0 to n_iter-1).






The following attributes are added by TrainEvalCallback and should be
available unless you went out of your way to remove that callback:


	train_iter

	
The number of training iterations done since the beginning of this training



	pct_train

	
The percentage of training iterations completed (from 0 to 1)



	training

	
A flag to indicate whether we’re in training mode






The following attribute is added by Recorder and should be available
unless you went out of your way to remove that callback:


	smooth_loss

	
An exponentially averaged version of the training loss






Callbacks can also interrupt any part of the training loop by using a
system of 
exceptions.

















Callback Ordering and Exceptions


Sometimes callbacks need to be able to tell fastai to skip over a
batch or an epoch, or stop training altogether. For instance, consider
TerminateOnNaNCallback. This handy callback will automatically stop
training anytime the loss becomes infinite or NaN (not a number).
Here’s the fastai source for this callback:


class TerminateOnNaNCallback(Callback):
    run_before=Recorder
    def after_batch(self):
        if torch.isinf(self.loss) or torch.isnan(self.loss):
            raise CancelFitException


The line raise CancelFitException tells the training loop to interrupt training at this point. The training loop catches this
exception and does not run any further training or validation. The
callback control flow exceptions available are as follows:


	CancelFitException

	
Skip the rest of this batch and go to after_batch.



	CancelEpochException

	
Skip the rest of the training part of the epoch and go to after_train.



	CancelTrainException

	
Skip the rest of the validation part of the epoch and go to after_validate.



	CancelValidException

	
Skip the rest of this epoch and go to after_epoch.



	CancelBatchException

	
Interrupt training and go to after_fit.






You can detect if one of those exceptions has occurred and add code that
executes right after with the following events:


	after_cancel_batch

	
Reached immediately after a CancelBatchException before proceeding to after_batch



	after_cancel_train

	
Reached immediately after a CancelTrainException before proceeding to after_epoch



	after_cancel_valid

	
Reached immediately after a CancelValidException before proceeding to after_epoch



	after_cancel_epoch

	
Reached immediately after a CancelEpochException before proceeding to after_epoch



	after_cancel_fit

	
Reached immediately after a CancelFitException before proceeding to after_fit






Sometimes callbacks need to be called in a particular order. For example, in the
case of TerminateOnNaNCallback, it’s important that
Recorder runs its after_batch after this callback, to avoid
registering an NaN loss. You can specify run_before (this callback
must run before…) or run_after (this callback must run after…) in
your callback to ensure the ordering that you need.
























Conclusion


In this chapter, we took a close look at the training loop, exploring variants of SGD
and why they can be more powerful. At the time of writing, developing new optimizers is an active area of research, so by the time you read
this chapter, there may be an addendum on the book’s website that presents new variants. Be sure to check out how our general
optimizer framework can help you implement new optimizers quickly.


We also examined the powerful callback system that allows you to customize every bit of the training loop by enabling you
to inspect and modify any parameter you like between each step.

















Questionnaire


	
What is the equation for a step of SGD, in math or code (as you prefer)?



	
What do we pass to cnn_learner to use a nondefault optimizer?



	
What are optimizer callbacks?



	
What does zero_grad do in an optimizer?



	
What does step do in an optimizer? How is it implemented in the general 
optimizer?



	
Rewrite sgd_cb to use the += operator, instead of add_.



	
What is momentum? Write out the equation.



	
What’s a physical analogy for momentum? How does it apply in our model training settings?



	
What does a bigger value for momentum do to the gradients?



	
What are the default values of momentum for 1cycle training?



	
What is RMSProp? Write out the equation.



	
What do the squared values of the gradients indicate?



	
How does Adam differ from momentum and RMSProp?



	
Write out the equation for Adam.



	
Calculate the values of unbias_avg and w.avg for a few batches of dummy values.



	
What’s the impact of having a high eps in Adam?



	
Read through the optimizer notebook in fastai’s repo and execute it.



	
In what situations do dynamic learning rate methods like Adam change the behavior of weight decay?



	
What are the four steps of a training loop?



	
Why is using callbacks better than writing a new training loop for each tweak you want to add?



	
What aspects of the design of fastai’s callback system make it as flexible as copying and pasting bits of code?



	
How can you get the list of events available to you when writing a callback?



	
Write the ModelResetter callback (without peeking).



	
How can you access the necessary attributes of the training loop inside a callback? When can you use or not use the shortcuts that go with them?



	
How can a callback influence the control flow of the training loop?



	
Write the TerminateOnNaN callback (without peeking, if possible).



	
How do you make sure your callback runs after or before another callback?















Further Research


	
Look up the “Rectified Adam” paper, implement it using the general optimizer framework, and try it out. Search for other recent optimizers that work well in practice and pick one to implement.



	
Look at the mixed-precision callback inside the documentation. Try to understand what each event and line of code does.



	
Implement your own version of the learning rate finder from scratch. Compare it with fastai’s version.



	
Look at the source code of the callbacks that ship with fastai. See if you can find one that’s similar to what you’re looking to do, to get some inspiration.





























Foundations of Deep Learning: Wrap Up


Congratulations—you have made it to the end of the “foundations of
deep learning” section of the book! You now understand how all of
fastai’s applications and most important architectures are
built, and the recommended ways to train them—and you have all the
information you need to build these from scratch. While you probably
won’t need to create your own training loop or batchnorm
layer, for instance, knowing what is going on behind the scenes is very
helpful for debugging, profiling, and deploying your solutions.


Since you understand the foundations of fastai’s
applications now, be sure to spend some time digging through
the source notebooks and running and experimenting
with parts of them. This will give you a better idea of exactly how everything in
fastai is developed.


In the next section, we will be looking even further under the covers: we’ll explore
how the actual forward and backward passes of a neural network
are done, and we will see what tools are at our disposal to get better
performance. We will then continue with a project that brings together
all the material in the book, which we will use to
build a tool for interpreting convolutional neural networks. Last but not least, we’ll finish by building fastai’s Learner class from scratch.
















  
Part IV. Deep Learning from Scratch









  
Chapter 17. A Neural Net from the Foundations



This chapter begins a journey where we will dig deep into the internals of the models we used in the previous
chapters. We will be covering many of the same things we’ve
seen before, but this time around we’ll be looking much more
closely at the implementation details, and much less closely at the
practical issues of how and why things are as they are.


We will build everything from scratch, using only basic indexing into a
tensor. We’ll write a neural net from the ground up, and then implement backpropagation manually so we know exactly what’s happening in PyTorch when we call loss.backward. We’ll also see how to extend PyTorch with custom autograd
functions that allow us to specify our own forward and backward
computations.








Building a Neural Net Layer from Scratch


Let’s start by refreshing our understanding of how matrix
multiplication is used in a basic neural network. Since
we’re building everything up from scratch, we’ll
use nothing but plain Python initially (except for indexing into PyTorch
tensors), and then replace the plain Python with PyTorch functionality
after we’ve seen how to create it.










Modeling a Neuron


A neuron receives a given number of inputs and has an internal weight
for each of them. It sums those weighted inputs to produce an
output and adds an inner bias. In math, this can be written as



  
    o
    u
    t
    =
    ∑ i=1 n 
    x i 
    w i 
    +
    b
  




if we name our inputs 
  
    (
    x 1 
    ,
    ⋯
    ,
    x n 
    )
  
, our weights

  
    (
    w 1 
    ,
    ⋯
    ,
    w n 
    )
  
, and our bias 
  b
. In code
this translates into the following:


output = sum([x*w for x,w in zip(inputs,weights)]) + bias


This output is then fed into a nonlinear function called an activation function before being sent to
another neuron. In deep learning, the most common of these is the rectified linear unit, or
ReLU, which, as we’ve seen, is a fancy way of saying this:


def relu(x): return x if x >= 0 else 0


A deep learning model is then built by stacking a lot of those neurons
in successive layers. We create a first layer with a certain number of
neurons (known as the hidden size) and link all the inputs to each
of those neurons. Such a layer is often called a fully connected layer
or a dense layer (for densely connected), or a linear layer.


It requires you to compute, for each input and each neuron with a given weight, the dot product:


sum([x*w for x,w in zip(input,weight)])


If you have done a little bit of linear algebra, you may remember that having a lot of those dot products happens when you do a matrix multiplication. More precisely, if our inputs are in a matrix x with a size of batch_size by
n_inputs, and if we have grouped the weights of our neurons in a
matrix w of size n_neurons by n_inputs (each neuron must have the
same number of weights as it has inputs) as well as all the biases in a
vector b of size n_neurons, then the output of this fully connected
layer is


y = x @ w.t() + b


where @ represents the matrix product and w.t() is the transpose
matrix of w. The output y is then of size batch_size by
n_neurons, and in position (i,j) we have this (for the mathy folks out
there):



  
    y i,j 
    =
    ∑ k=1 n 
    x i,k 
    w k,j 
    +
    b j 
  




Or in code:


y[i,j] = sum([a * b for a,b in zip(x[i,:],w[j,:])]) + b[j]


The transpose is necessary because in the mathematical definition of the
matrix product m @ n, the coefficient (i,j) is as follows:


sum([a * b for a,b in zip(m[i,:],n[:,j])])


So the very basic operation we need is a matrix multiplication, as
it’s what is hidden in the core of a neural net.

















Matrix Multiplication from Scratch


Let’s write a function that computes the matrix product of
two tensors, before we allow ourselves to use the PyTorch version of it.
We will use only the indexing in PyTorch tensors:


import torch
from torch import tensor


We’ll need three nested for loops: one for the row indices,
one for the column indices, and one for the inner sum. ac and ar stand
for number of columns of a and number of rows of a, respectively (the same
convention is followed for b), and we make sure calculating the matrix product is possible by
checking that a has as many columns as b has rows:


def matmul(a,b):
    ar,ac = a.shape # n_rows * n_cols
    br,bc = b.shape
    assert ac==br
    c = torch.zeros(ar, bc)
    for i in range(ar):
        for j in range(bc):
            for k in range(ac): c[i,j] += a[i,k] * b[k,j]
    return c


To test this out, we’ll pretend (using random matrices) that
we’re working with a small batch of 5 MNIST images,
flattened into 28*28 vectors, with a linear model to turn them into 10
activations:


m1 = torch.randn(5,28*28)
m2 = torch.randn(784,10)


Let’s time our function, using the Jupyter “magic” command %time:


%time t1=matmul(m1, m2)


CPU times: user 1.15 s, sys: 4.09 ms, total: 1.15 s
Wall time: 1.15 s


And see how that compares to PyTorch’s built-in @?


%timeit -n 20 t2=m1@m2


14 µs ± 8.95 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)


As we can see, in Python three nested loops is a bad idea! Python
is a slow language, and this isn’t going to be
efficient. We see here that PyTorch is around 100,000 times faster than
Python—and that’s before we even start using the GPU!


Where does this difference come from? PyTorch
didn’t write its matrix multiplication in Python, but rather in C++
to make it fast. In general, whenever we do computations on
tensors, we will need to vectorize them so that we can take advantage
of the speed of PyTorch, usually by using two techniques: elementwise
arithmetic and broadcasting.

















Elementwise Arithmetic


All the basic operators (+, -, *, /, >, <, ==) can be applied elementwise.
That means if we write a+b for two tensors a and b that have the
same shape, we will get a tensor composed of the sums of the elements of a and b:


a = tensor([10., 6, -4])
b = tensor([2., 8, 7])
a + b


tensor([12., 14.,  3.])


The Boolean operators will return an array of Booleans:


a < b


tensor([False,  True,  True])


If we want to know if every element of a is less than the
corresponding element in b, or if two tensors are equal, we need to
combine those elementwise operations with torch.all:


(a < b).all(), (a==b).all()


(tensor(False), tensor(False))


Reduction operations like
all, sum, and mean return tensors with only one element, called
rank-0 tensors. If you want to convert this to a plain Python Boolean or
number, you need to call .item:


(a + b).mean().item()


9.666666984558105


The elementwise operations work on tensors of any rank, as long as they
have the same shape:


m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
m*m


tensor([[ 1.,  4.,  9.],
        [16., 25., 36.],
        [49., 64., 81.]])


However, you can’t perform elementwise operations on tensors
that don’t have the same shape (unless they are
broadcastable, as discussed in the next section):


n = tensor([[1., 2, 3], [4,5,6]])
m*n


 RuntimeError: The size of tensor a (3) must match the size of tensor b (2) at
 dimension 0


With elementwise arithmetic, we can remove one of our three nested
loops: we can multiply the tensors that correspond to the i-th row of
a and the j-th column of b before summing all the elements, which
will speed things up because the inner loop will now be executed by
PyTorch at C speed.


To access one column or row, we can simply write a[i,:] or b[:,j]. The
: means take everything in that dimension. We could restrict this and take only a slice of that dimension by passing a range, like
1:5, instead of just :. In that case, we would take the elements in
columns 1 to 4 (the second number is noninclusive).


One simplification is that we can always omit a trailing colon, so
a[i,:] can be abbreviated to a[i]. With all of that in mind, we can write a
new version of our matrix multiplication:


def matmul(a,b):
    ar,ac = a.shape
    br,bc = b.shape
    assert ac==br
    c = torch.zeros(ar, bc)
    for i in range(ar):
        for j in range(bc): c[i,j] = (a[i] * b[:,j]).sum()
    return c


%timeit -n 20 t3 = matmul(m1,m2)


1.7 ms ± 88.1 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)


We’re already ~700 times faster, just by removing that inner for loop!
And that’s just the beginning—with broadcasting, we
can remove another loop and get an even more important speedup.

















Broadcasting


As we discussed in Chapter 4, broadcasting is a
term introduced by the Numpy Library that
describes how tensors of different ranks are treated during arithmetic
operations. For instance, it’s obvious there is no way to
add a 3×3 matrix with a 4×5 matrix, but what if we want to add one
scalar (which can be represented as a 1×1 tensor) with a matrix? Or a
vector of size 3 with a 3×4 matrix? In both cases, we can find a way
to make sense of this operation.


Broadcasting gives specific rules to codify when shapes are compatible
when trying to do an elementwise operation, and how the tensor of the
smaller shape is expanded to match the tensor of the bigger shape.
It’s essential to master those rules if you want to be able
to write code that executes quickly. In this section, we’ll
expand our previous treatment of broadcasting to understand these rules.












Broadcasting with a scalar


Broadcasting with a scalar is the easiest type of broadcasting. When we have a
tensor a and a scalar, we just imagine a tensor of the same shape as
a filled with that scalar and perform the operation:


a = tensor([10., 6, -4])
a > 0


tensor([ True,  True, False])


How are we able to do this comparison? 0 is being broadcast to have
the same dimensions as a. Note that this is done without creating a
tensor full of zeros in memory (that would be inefficient).


This is useful if you want to normalize your dataset by subtracting
the mean (a scalar) from the entire dataset (a matrix) and dividing by
the standard deviation (another scalar):


m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
(m - 5) / 2.73


tensor([[-1.4652, -1.0989, -0.7326],
        [-0.3663,  0.0000,  0.3663],
        [ 0.7326,  1.0989,  1.4652]])


What if you have different means for each row of the matrix? In that case, you will need to broadcast a vector to a matrix.

















Broadcasting a vector to a matrix


We can broadcast a vector to a matrix as follows:


c = tensor([10.,20,30])
m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
m.shape,c.shape


(torch.Size([3, 3]), torch.Size([3]))


m + c


tensor([[11., 22., 33.],
        [14., 25., 36.],
        [17., 28., 39.]])


Here the elements of c are expanded to make three rows that match, making the operation possible. Again, PyTorch
doesn’t actually create three copies of c in memory. This is done
by the expand_as method behind the scenes:


c.expand_as(m)


tensor([[10., 20., 30.],
        [10., 20., 30.],
        [10., 20., 30.]])


If we look at the corresponding tensor, we can ask for its storage
property (which shows the actual contents of the memory used for the
tensor) to check there is no useless data stored:


t = c.expand_as(m)
t.storage()


 10.0
 20.0
 30.0
[torch.FloatStorage of size 3]


Even though the tensor officially has nine elements, only three scalars are stored in memory.
This is possible thanks to the clever trick of giving that dimension a stride of 0.
on that dimension (which means that when PyTorch looks for the next row by
adding the stride, it doesn’t move):


t.stride(), t.shape


((0, 1), torch.Size([3, 3]))


Since m is of size 3×3, there are two ways to do broadcasting. The
fact it was done on the last dimension is a convention that comes from
the rules of broadcasting and has nothing to do with the way we ordered
our tensors. If instead we do this, we get the same result:


c + m


tensor([[11., 22., 33.],
        [14., 25., 36.],
        [17., 28., 39.]])


In fact, it’s only possible to broadcast a vector of size n with a matrix of size m by n:


c = tensor([10.,20,30])
m = tensor([[1., 2, 3], [4,5,6]])
c+m


tensor([[11., 22., 33.],
        [14., 25., 36.]])


This won’t work:


c = tensor([10.,20])
m = tensor([[1., 2, 3], [4,5,6]])
c+m


 RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at
 dimension 1


If we want to broadcast in the other dimension, we have to change the
shape of our vector to make it a 3×1 matrix. This is done with the
unsqueeze method in PyTorch:


c = tensor([10.,20,30])
m = tensor([[1., 2, 3], [4,5,6], [7,8,9]])
c = c.unsqueeze(1)
m.shape,c.shape


(torch.Size([3, 3]), torch.Size([3, 1]))


This time, c is expanded on the column side:


c+m


tensor([[11., 12., 13.],
        [24., 25., 26.],
        [37., 38., 39.]])


As before, only three scalars are stored in memory:


t = c.expand_as(m)
t.storage()


 10.0
 20.0
 30.0
[torch.FloatStorage of size 3]


And the expanded tensor has the right shape because the column dimension has a stride of 0:


t.stride(), t.shape


((1, 0), torch.Size([3, 3]))


With broadcasting, if we need to add dimensions, they are added by default at the beginning. When we were broadcasting
before, PyTorch was executing c.unsqueeze(0) behind the scenes:


c = tensor([10.,20,30])
c.shape, c.unsqueeze(0).shape,c.unsqueeze(1).shape


(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))


The unsqueeze command can be replaced by None indexing:


c.shape, c[None,:].shape,c[:,None].shape


(torch.Size([3]), torch.Size([1, 3]), torch.Size([3, 1]))


You can always omit trailing colons, and ... means all preceding
dimensions:


c[None].shape,c[...,None].shape


(torch.Size([1, 3]), torch.Size([3, 1]))


With this, we can remove another for loop in our matrix multiplication
function. Now, instead of multiplying a[i] with b[:,j], we can multiply
a[i] with the whole matrix b using broadcasting, and then sum the
results:


def matmul(a,b):
    ar,ac = a.shape
    br,bc = b.shape
    assert ac==br
    c = torch.zeros(ar, bc)
    for i in range(ar):
#       c[i,j] = (a[i,:]          * b[:,j]).sum() # previous
        c[i]   = (a[i  ].unsqueeze(-1) * b).sum(dim=0)
    return c


%timeit -n 20 t4 = matmul(m1,m2)


357 µs ± 7.2 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)


We’re now 3,700 times faster than our first implementation!
Before we move on, let’s discuss the rules of broadcasting in a little more detail.

















Broadcasting rules


When operating on two tensors, PyTorch compares their shapes
elementwise. It starts with the trailing dimensions and works its
way backward, adding 1 when it meets empty dimensions. Two dimensions
are compatible when one of the following is true:



	
They are equal.



	
One of them is 1, in which case that dimension is broadcast to make
it the same as the other.






Arrays do not need to have the same number of dimensions. For example,
if you have a 256×256×3 array of RGB values, and you want to scale
each color in the image by a different value, you can multiply the image
by a one-dimensional array with three values. Lining up the sizes of the
trailing axes of these arrays according to the broadcast rules shows
that they are compatible:

Image  (3d tensor): 256 x 256 x 3
Scale  (1d tensor):  (1)   (1)  3
Result (3d tensor): 256 x 256 x 3


However, a 2D tensor of size 256×256 isn’t compatible with
our image:

Image  (3d tensor): 256 x 256 x   3
Scale  (1d tensor):  (1)  256 x 256
Error


In our earlier examples with a 3×3 matrix and a vector of size 3,
broadcasting was done on the rows:

Matrix (2d tensor):   3 x 3
Vector (1d tensor): (1)   3
Result (2d tensor):   3 x 3


As an exercise, try to determine what
dimensions to add (and where) when you need to normalize a batch of
images of size 64 x 3 x 256 x 256 with vectors of three elements (one
for the mean and one for the standard deviation).


Another useful way of simplifying tensor manipulations is the use of Einstein summation convention.






















Einstein Summation


Before using the PyTorch operation @ or torch.matmul, there is one last
way we can implement matrix multiplication: Einstein summation
(einsum). This is a compact representation for combining products and
sums in a general way. We write an equation like this:

ik,kj -> ij


The lefthand side represents the operands dimensions, separated by
commas. Here we have two tensors that each have two dimensions (i,k and
k,j). The righthand side represents the result dimensions, so here we
have a tensor with two dimensions i,j.


The rules of Einstein summation notation are as follows:


	
Repeated indices are implicitly summed over.



	
Each index can
appear at most twice in any term.



	
Each term must contain
identical nonrepeated indices.







So in our example, since k is repeated, we sum over that index.
In the end, the formula represents the matrix obtained when we put
in (i,j) the sum of all the coefficients (i,k) in the first tensor
multiplied by the coefficients (k,j) in the second tensor… which is the
matrix product!


Here is how we can code this in PyTorch:


def matmul(a,b): return torch.einsum('ik,kj->ij', a, b)


Einstein summation is a very practical way of expressing operations
involving indexing and sum of products. Note that you can have one
member on the lefthand side. For instance,


torch.einsum('ij->ji', a)


returns the transpose of the matrix a. You can also have three or more
members:


torch.einsum('bi,ij,bj->b', a, b, c)


This will return a vector of size b, where the k-th coordinate is the sum
of a[k,i] b[i,j] c[k,j]. This notation is particularly
convenient when you have more dimensions because of batches. For example, if you have two batches of matrices and want to compute the matrix
product per batch, you could do this:


torch.einsum('bik,bkj->bij', a, b)


Let’s go back to our new matmul implementation using einsum and look at its speed:


%timeit -n 20 t5 = matmul(m1,m2)


68.7 µs ± 4.06 µs per loop (mean ± std. dev. of 7 runs, 20 loops each)


As you can see, not only is it practical, but it’s very fast.
einsum is often the fastest way to do custom operations in PyTorch,
without diving into C++ and CUDA. (But it’s generally not as
fast as carefully optimized CUDA code, as you see from the results in “Matrix Multiplication from Scratch”.)


Now that we know how to implement a matrix multiplication from scratch,
we are ready to build our neural net—specifically, its forward and
backward passes—using just matrix multiplication.
























The Forward and Backward Passes


As we saw in Chapter 4, to train a model, we will need
to compute all the gradients of a given loss with respect to its
parameters, which is known as the backward pass. In a forward pass,
where we compute the output of the model on a given input, based
on the matrix products. As we define our first neural net, we
will also delve into the problem of properly initializing the weights,
which is crucial for making training start properly.










Defining and Initializing a Layer


We will take the example of a two-layer neural net first. As we’ve seen, one
layer can be expressed as y = x @ w + b, with x our inputs, y our
outputs, w the weights of the layer (which is of size number of inputs
by number of neurons if we don’t transpose as before), and
b is the bias vector:


def lin(x, w, b): return x @ w + b


We can stack the second layer on top of the first, but since mathematically
the composition of two linear operations is another linear operation,
this makes sense only if we put something nonlinear in the middle,
called an activation function. As mentioned at the beginning of this chapter, in deep learning applications the activation function most commonly
used is a ReLU, which returns the maximum of x and 0.


We won’t actually train our model in this chapter, so we’ll use
random tensors for our inputs and targets. Let’s say our
inputs are 200 vectors of size 100, which we group into one batch, and our
targets are 200 random floats:


x = torch.randn(200, 100)
y = torch.randn(200)


For our two-layer model, we will need two weight matrices and two bias
vectors. Let’s say we have a hidden size of 50 and the
output size is 1 (for one of our inputs, the corresponding output is one
float in this toy example). We initialize the weights randomly and the
bias at zero:


w1 = torch.randn(100,50)
b1 = torch.zeros(50)
w2 = torch.randn(50,1)
b2 = torch.zeros(1)


Then the result of our first layer is simply this:


l1 = lin(x, w1, b1)
l1.shape


torch.Size([200, 50])


Note that this formula works with our batch of inputs, and returns a
batch of hidden state: l1 is a matrix of size 200 (our batch size) by 50
(our hidden size).


There is a problem with the way our model was initialized, however. To
understand it, we need to look at the mean and standard deviation (std)
of l1:


l1.mean(), l1.std()


(tensor(0.0019), tensor(10.1058))


The mean is close to zero, which is understandable since both our input
and weight matrices have means close to zero. But the standard
deviation, which represents how far away our activations go from the
mean, went from 1 to 10. This is a really big problem because
that’s with just one layer. Modern neural nets can have
hundreds of layers, so if each of them multiplies the scale of our
activations by 10, we won’t
have numbers representable by a computer by the end of the last layer.


Indeed, if we make just 50 multiplications between x and random matrices
of size 100×100, we’ll have this:


x = torch.randn(200, 100)
for i in range(50): x = x @ torch.randn(100,100)
x[0:5,0:5]


tensor([[nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan],
        [nan, nan, nan, nan, nan]])


The result is nans everywhere. So maybe the scale of our matrix was too
big, and we need to have smaller weights? But if we use too small
weights, we will have the opposite problem—the scale of our activations
will go from 1 to 0.1, and after 100 layers we’ll be left
with zeros everywhere:


x = torch.randn(200, 100)
for i in range(50): x = x @ (torch.randn(100,100) * 0.01)
x[0:5,0:5]


tensor([[0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0.]])


So we have to scale our weight matrices exactly right so that the
standard deviation of our activations stays at 1. We can compute the
exact value to use mathematically, as illustrated by Xavier Glorot and
Yoshua Bengio in “Understanding the Difficulty of Training Deep Feedforward Neural Networks”. The right scale for a given layer is 
  
    1
    /
    
      n in 
    
  
, where

  n in 
 represents the number of inputs.


In our case, if we have 100 inputs, we should scale our weight matrices
by 0.1:


x = torch.randn(200, 100)
for i in range(50): x = x @ (torch.randn(100,100) * 0.1)
x[0:5,0:5]


tensor([[ 0.7554,  0.6167, -0.1757, -1.5662,  0.5644],
        [-0.1987,  0.6292,  0.3283, -1.1538,  0.5416],
        [ 0.6106,  0.2556, -0.0618, -0.9463,  0.4445],
        [ 0.4484,  0.7144,  0.1164, -0.8626,  0.4413],
        [ 0.3463,  0.5930,  0.3375, -0.9486,  0.5643]])


Finally, some numbers that are neither zeros nor nan! Notice how
stable the scale of our activations is, even after those 50 fake layers:


x.std()


tensor(0.7042)


If you play a little bit with the value for scale, you’ll notice that
even a slight variation from 0.1 will get you either to very small or
very large numbers, so initializing the weights properly is extremely
important.


Let’s go back to our neural net. Since we messed
a bit with our inputs, we need to redefine them:


x = torch.randn(200, 100)
y = torch.randn(200)


And for our weights, we’ll use the right scale, which is known as Xavier
initialization (or Glorot initialization):


from math import sqrt
w1 = torch.randn(100,50) / sqrt(100)
b1 = torch.zeros(50)
w2 = torch.randn(50,1) / sqrt(50)
b2 = torch.zeros(1)


Now if we compute the result of the first layer, we can check that the mean and
standard deviation are under control:


l1 = lin(x, w1, b1)
l1.mean(),l1.std()


(tensor(-0.0050), tensor(1.0000))


Very good. Now we need to go through a ReLU, so let’s define
one. A ReLU removes the negatives and replaces them with zeros, which is
another way of saying it clamps our tensor at zero:


def relu(x): return x.clamp_min(0.)


We pass our activations through this:


l2 = relu(l1)
l2.mean(),l2.std()


(tensor(0.3961), tensor(0.5783))


And we’re back to square one: the mean of our activations has
gone to 0.4 (which is understandable since we removed the negatives), and
the std went down to 0.58. So like before, after a few layers we will
probably wind up with zeros:


x = torch.randn(200, 100)
for i in range(50): x = relu(x @ (torch.randn(100,100) * 0.1))
x[0:5,0:5]


tensor([[0.0000e+00, 1.9689e-08, 4.2820e-08, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 1.6701e-08, 4.3501e-08, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 1.0976e-08, 3.0411e-08, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 1.8457e-08, 4.9469e-08, 0.0000e+00, 0.0000e+00],
        [0.0000e+00, 1.9949e-08, 4.1643e-08, 0.0000e+00, 0.0000e+00]])


This means our initialization wasn’t right. Why? At the time Glorot and Bengio wrote their article, the most popular activation in a
neural net was the hyperbolic tangent (tanh, which is the one they used), and
that initialization doesn’t account for our ReLU.
Fortunately, someone else has done the math for us and computed the right
scale for us to use. In
“Delving Deep into Rectifiers: Surpassing Human-Level Performance” (which we’ve seen
before—it’s the article that introduced the ResNet), 
Kaiming He et al. show that we
should use the following scale instead: 
  
    
      2
      /
      n in 
    
  
, where 
  n in 
 is the number of inputs of our model. Let’s see what this gives us:


x = torch.randn(200, 100)
for i in range(50): x = relu(x @ (torch.randn(100,100) * sqrt(2/100)))
x[0:5,0:5]


tensor([[0.2871, 0.0000, 0.0000, 0.0000, 0.0026],
        [0.4546, 0.0000, 0.0000, 0.0000, 0.0015],
        [0.6178, 0.0000, 0.0000, 0.0180, 0.0079],
        [0.3333, 0.0000, 0.0000, 0.0545, 0.0000],
        [0.1940, 0.0000, 0.0000, 0.0000, 0.0096]])


That’s better: our numbers aren’t all
zeroed this time. So let’s go back to the definition of our
neural net and use this initialization (which is named Kaiming
initialization or He initialization):


x = torch.randn(200, 100)
y = torch.randn(200)


w1 = torch.randn(100,50) * sqrt(2 / 100)
b1 = torch.zeros(50)
w2 = torch.randn(50,1) * sqrt(2 / 50)
b2 = torch.zeros(1)


Let’s look at the scale of our activations after going through the first linear layer and ReLU:


l1 = lin(x, w1, b1)
l2 = relu(l1)
l2.mean(), l2.std()


(tensor(0.5661), tensor(0.8339))


Much better! Now that our weights are properly initialized, we can define our whole
model:


def model(x):
    l1 = lin(x, w1, b1)
    l2 = relu(l1)
    l3 = lin(l2, w2, b2)
    return l3


This is the forward pass. Now all that’s left to do is to compare our
output to the labels we have (random numbers, in this example) with a
loss function. In this case, we will use the mean squared error.
(It’s a toy problem, and this is the easiest loss
function to use for what is next, computing the gradients.)


The only subtlety is that our outputs and targets don’t have
exactly the same shape—after going though the model, we get an output
like this:


out = model(x)
out.shape


torch.Size([200, 1])


To get rid of this trailing 1 dimension, we use the squeeze function:


def mse(output, targ): return (output.squeeze(-1) - targ).pow(2).mean()


And now we are ready to compute our loss:


loss = mse(out, y)


That’s all for the forward pass—let’s now look at the gradients.

















Gradients and the Backward Pass


We’ve seen that PyTorch computes all the gradients we need
with a magic call to loss.backward, but let’s explore what’s happening behind the
scenes.


Now comes the part where we need to compute the gradients of the loss
with respect to all the weights of our model, so all the floats in w1,
b1, w2, and b2. For this, we will need a bit of math—specifically,
the chain rule. This is the rule of calculus that guides how we can compute the
derivative of a composed function:



  
    (g∘f) ' 
    
      (
      x
      )
    
    =
    g ' 
    
      (
      f
      
        (
        x
        )
      
      )
    
    f ' 
    
      (
      x
      )
    
  



Jeremy Says

I find this notation hard to wrap my head around, so instead I like to think of it as follows: if y = g(u) and u=f(x), then dy/dx = dy/du * du/dx. The two notations mean the same thing, so use whatever works for you.




Our loss is a big composition of different functions: mean squared error
(which is, in turn, the composition of a mean and a power of two), the
second linear layer, a ReLU, and the first linear layer. For instance, if we
want the gradients of the loss with respect to b2 and our loss is
defined by the following:

loss = mse(out,y) = mse(lin(l2, w2, b2), y)


The chain rule tells us that we have this:



  
    dloss db 2 
    =
    dloss dout
    ×
    dout db 2 
    =
    d dout
    m
    s
    e
    
      (
      o
      u
      t
      ,
      y
      )
    
    ×
    d db 2 
    l
    i
    n
    
      (
      l 2 
      ,
      w 2 
      ,
      b 2 
      )
    
  




To compute the gradients of the loss with respect to

  b 2 
, we first need the gradients of the loss with
respect to our output 
  
    o
    u
    t
  
. It’s the same if we
want the gradients of the loss with respect to 
  w 2 
.
Then, to get the gradients of the loss with respect to

  b 1 
 or 
  w 1 
, we will need the gradients
of the loss with respect to 
  l 1 
, which in turn requires
the gradients of the loss with respect to 
  l 2 
, which
will need the gradients of the loss with respect to 
  
    o
    u
    t
  
.


So to compute all the gradients we need for the update, we need to begin
from the output of the model and work our way backward, one layer
after the other—which is why this step is known as backpropagation.
We can automate it by having each function we implemented (relu,
mse, lin) provide its backward step: that is, how to derive the
gradients of the loss with respect to the input(s) from the gradients of
the loss with respect to the output.


Here we populate those gradients in an attribute of each tensor, a bit
like PyTorch does with .grad.


The first are the gradients of the loss with respect to the output of
our model (which is the input of the loss function). We undo the
squeeze we did in mse, and then we use the formula that gives us the
derivative of 
  x 2 
: 
  
    2
    x
  
. The derivative of
the mean is just 1/n, where n is the number of elements in our input:


def mse_grad(inp, targ):
    # grad of loss with respect to output of previous layer
    inp.g = 2. * (inp.squeeze() - targ).unsqueeze(-1) / inp.shape[0]


For the gradients of the ReLU and our linear layer, we use the gradients
of the loss with respect to the output (in out.g) and apply the chain
rule to compute the gradients of the loss with respect to the output (in
inp.g). The chain rule tells us that
inp.g = relu'(inp) * out.g. The derivative of relu is
either 0 (when inputs are negative) or 1 (when inputs are positive), so
this gives us the following:


def relu_grad(inp, out):
    # grad of relu with respect to input activations
    inp.g = (inp>0).float() * out.g


The scheme is the same to compute the gradients of the loss with respect
to the inputs, weights, and bias in the linear layer:


def lin_grad(inp, out, w, b):
    # grad of matmul with respect to input
    inp.g = out.g @ w.t()
    w.g = inp.t() @ out.g
    b.g = out.g.sum(0)


We won’t linger on the mathematical formulas that define them
since they’re not important for our purposes, but do check
out Khan Academy’s excellent calculus lessons if
you’re interested in this topic.


SymPy

SymPy is a library for symbolic computation that is extremely useful when working with calculus. Per the documentation:


Symbolic computation deals with the computation of mathematical objects symbolically. This means that the mathematical objects are represented exactly, not approximately, and mathematical expressions with unevaluated variables are left in symbolic form.



To do symbolic computation, we define a symbol and then do a
computation, like so:


from sympy import symbols,diff
sx,sy = symbols('sx sy')
diff(sx**2, sx)


2*sx


Here, SymPy has taken the derivative of x**2 for us! It can take
the derivative of complicated compound expressions,
simplify and factor equations, and much more. There’s really
not much reason for anyone to do calculus manually nowadays—for
calculating gradients, PyTorch does it for us, and for showing the
equations, SymPy does it for us!




Once we have defined those functions, we can use them to write the
backward pass. Since each gradient is automatically populated in the
right tensor, we don’t need to store the results of those
_grad functions anywhere—we just need to execute them in the reverse
order of the forward pass, to make sure that in each function out.g
exists:


def forward_and_backward(inp, targ):
    # forward pass:
    l1 = inp @ w1 + b1
    l2 = relu(l1)
    out = l2 @ w2 + b2
    # we don't actually need the loss in backward!
    loss = mse(out, targ)

    # backward pass:
    mse_grad(out, targ)
    lin_grad(l2, out, w2, b2)
    relu_grad(l1, l2)
    lin_grad(inp, l1, w1, b1)


And now we can access the gradients of our model parameters in
w1.g, b1.g, w2.g, and b2.g. We have sucessfuly defined our model—now let’s make it a
bit more like a PyTorch module.

















Refactoring the Model


The three functions we used have two associated functions: a forward
pass and a backward pass. Instead of writing them separately, we can
create a class to wrap them together. That class can also store the
inputs and outputs for the backward pass. This way, we will just have to
call backward:


class Relu():
    def __call__(self, inp):
        self.inp = inp
        self.out = inp.clamp_min(0.)
        return self.out

    def backward(self): self.inp.g = (self.inp>0).float() * self.out.g


__call__ is a magic name in Python that will make our class
callable. This is what will be executed when we type y = Relu()(x). We
can do the same for our linear layer and the MSE loss:


class Lin():
    def __init__(self, w, b): self.w,self.b = w,b

    def __call__(self, inp):
        self.inp = inp
        self.out = inp@self.w + self.b
        return self.out

    def backward(self):
        self.inp.g = self.out.g @ self.w.t()
        self.w.g = self.inp.t() @ self.out.g
        self.b.g = self.out.g.sum(0)


class Mse():
    def __call__(self, inp, targ):
        self.inp = inp
        self.targ = targ
        self.out = (inp.squeeze() - targ).pow(2).mean()
        return self.out

    def backward(self):
        x = (self.inp.squeeze()-self.targ).unsqueeze(-1)
        self.inp.g = 2.*x/self.targ.shape[0]


Then we can put everything in a model that we initiate with our tensors
w1, b1, w2, and b2:


class Model():
    def __init__(self, w1, b1, w2, b2):
        self.layers = [Lin(w1,b1), Relu(), Lin(w2,b2)]
        self.loss = Mse()

    def __call__(self, x, targ):
        for l in self.layers: x = l(x)
        return self.loss(x, targ)

    def backward(self):
        self.loss.backward()
        for l in reversed(self.layers): l.backward()


What is nice about this refactoring and registering things as
layers of our model is that the forward and backward passes are now really
easy to write. If we want to instantiate our model, we just need to
write this:


model = Model(w1, b1, w2, b2)


The forward pass can then be executed as follows:


loss = model(x, y)


And the backward pass with this:


model.backward()

















Going to PyTorch


The Lin, Mse, and Relu classes we wrote have a lot in
common, so we could make them all inherit from the same base class:


class LayerFunction():
    def __call__(self, *args):
        self.args = args
        self.out = self.forward(*args)
        return self.out

    def forward(self):  raise Exception('not implemented')
    def bwd(self):      raise Exception('not implemented')
    def backward(self): self.bwd(self.out, *self.args)


Then we just need to implement forward and bwd in each of our
subclasses:


class Relu(LayerFunction):
    def forward(self, inp): return inp.clamp_min(0.)
    def bwd(self, out, inp): inp.g = (inp>0).float() * out.g


class Lin(LayerFunction):
    def __init__(self, w, b): self.w,self.b = w,b

    def forward(self, inp): return inp@self.w + self.b

    def bwd(self, out, inp):
        inp.g = out.g @ self.w.t()
        self.w.g = self.inp.t() @ self.out.g
        self.b.g = out.g.sum(0)


class Mse(LayerFunction):
    def forward (self, inp, targ): return (inp.squeeze() - targ).pow(2).mean()
    def bwd(self, out, inp, targ):
        inp.g = 2*(inp.squeeze()-targ).unsqueeze(-1) / targ.shape[0]


The rest of our model can be the same as before. This is getting closer and
closer to what PyTorch does. Each basic function we need to
differentiate is written as a torch.autograd.Function object that has
a forward and a backward method. PyTorch will then keep track of any
computation we do to be able to properly run the backward pass, unless we
set the requires_grad attribute of our tensors to False.


Writing one of these is (almost) as easy as writing our original classes. The difference is that
we choose what to save and what to put in a context variable (so that we
make sure we don’t save anything we don’t need),
and we return the gradients in the 
backward pass.
It’s rare to have to write your own Function, but if
you ever need something exotic or want to mess with the gradients of a
regular function, here is how to write one:


from torch.autograd import Function

class MyRelu(Function):
    @staticmethod
    def forward(ctx, i):
        result = i.clamp_min(0.)
        ctx.save_for_backward(i)
        return result

    @staticmethod
    def backward(ctx, grad_output):
        i, = ctx.saved_tensors
        return grad_output * (i>0).float()


The structure used to build a more complex model that takes
advantage of those Functions is a torch.nn.Module. This is the base
structure for all models, and all the neural nets you have seen up until
now were from that class. It mostly helps to register all the trainable
parameters, which as we’ve seen can be used in the training
loop.


To implement an nn.Module you just need to do the following:


	
Make sure the superclass __init__ is called first when you
initialize it.



	
Define any parameters of the model as attributes with nn.Parameter.



	
Define a forward function that returns the output of your model.







As an example, here is the linear layer from scratch:


import torch.nn as nn

class LinearLayer(nn.Module):
    def __init__(self, n_in, n_out):
        super().__init__()
        self.weight = nn.Parameter(torch.randn(n_out, n_in) * sqrt(2/n_in))
        self.bias = nn.Parameter(torch.zeros(n_out))

    def forward(self, x): return x @ self.weight.t() + self.bias


As you see, this class automatically keeps track of what parameters have
been defined:


lin = LinearLayer(10,2)
p1,p2 = lin.parameters()
p1.shape,p2.shape


(torch.Size([2, 10]), torch.Size([2]))


It is thanks to this feature of nn.Module that we can just say
opt.step and have an optimizer loop through the parameters and
update each one.


Note that in PyTorch, the weights are stored as an n_out x n_in
matrix, which is why we have the transpose in the forward pass.


By using the linear layer from PyTorch (which uses the Kaiming
initialization as well), the model we have been building up during this chapter can
be written like this:


class Model(nn.Module):
    def __init__(self, n_in, nh, n_out):
        super().__init__()
        self.layers = nn.Sequential(
            nn.Linear(n_in,nh), nn.ReLU(), nn.Linear(nh,n_out))
        self.loss = mse

    def forward(self, x, targ): return self.loss(self.layers(x).squeeze(), targ)


fastai provides its own variant of Module that is identical to
nn.Module, but doesn’t require you to call
super().__init__() (it does that for you automatically):


class Model(Module):
    def __init__(self, n_in, nh, n_out):
        self.layers = nn.Sequential(
            nn.Linear(n_in,nh), nn.ReLU(), nn.Linear(nh,n_out))
        self.loss = mse

    def forward(self, x, targ): return self.loss(self.layers(x).squeeze(), targ)


In Chapter 19, we will start from such a model and see how to
build a training loop from scratch and refactor it to what
we’ve been using in previous chapters.
























Conclusion


In this chapter, we explored the foundations of deep learning, beginning with
matrix multiplication and moving on to implementing the forward and backward passes of a
neural net from scratch. We then refactored our code to show how PyTorch works
beneath the hood.


Here are a few things to remember:



	
A neural net is basically a bunch of matrix multiplications with
nonlinearities in between.



	
Python is slow, so to write fast code, we have to vectorize it and take
advantage of techniques such as elementwise arithmetic and broadcasting.



	
Two tensors are broadcastable if the dimensions starting from the end
and going backward match (if they are the same, or one of them is 1). To
make tensors broadcastable, we may need to add dimensions of size 1 with
unsqueeze or a None index.



	
Properly initializing a neural net is crucial to get training started.
Kaiming initialization should be used when we have ReLU nonlinearities.



	
The backward pass is the chain rule applied multiple times, computing
the gradients from the output of our model and going back, one layer at
a time.



	
When subclassing nn.Module (if not using fastai’s
Module), we have to call the superclass __init__ method in our
__init__ method and we have to define a forward function that takes
an input and returns the desired result.





















Questionnaire


	
Write the Python code to implement a single neuron.



	
Write the Python code to implement ReLU.



	
Write the Python code for a dense layer in terms of matrix multiplication.



	
Write the Python code for a dense layer in plain Python (that is, with list comprehensions and functionality built into Python).



	
What is the “hidden size” of a layer?



	
What does the t method do in PyTorch?



	
Why is matrix multiplication written in plain Python very slow?



	
In matmul, why is ac==br?



	
In Jupyter Notebook, how do you measure the time taken for a single cell to 
execute?



	
What is elementwise arithmetic?



	
Write the PyTorch code to test whether every element of a is greater than the corresponding element of b.



	
What is a rank-0 tensor? How do you convert it to a plain Python data type?



	
What does this return, and why?


tensor([1,2]) + tensor([1])



	
What does this return, and why?


tensor([1,2]) + tensor([1,2,3])



	
How does elementwise arithmetic help us speed up matmul?



	
What are the broadcasting rules?



	
What is expand_as? Show an example of how it can be used to match the results of broadcasting.



	
How does unsqueeze help us to solve certain broadcasting problems?



	
How can we use indexing to do the same operation as unsqueeze?



	
How do we show the actual contents of the memory used for a tensor?



	
When adding a vector of size 3 to a matrix of size 3×3, are the elements of the vector added to each row or each column of the matrix? (Be sure to check your answer by running this code in a notebook.)



	
Do broadcasting and expand_as result in increased memory use? Why or why not?



	
Implement matmul using Einstein summation.



	
What does a repeated index letter represent on the lefthand side of einsum?



	
What are the three rules of Einstein summation notation? Why?



	
What are the forward pass and backward pass of a neural network?



	
Why do we need to store some of the activations calculated for intermediate layers in the forward pass?



	
What is the downside of having activations with a standard deviation too far away from 1?



	
How can weight initialization help avoid this problem?



	
What is the formula to initialize weights such that we get a standard deviation of 1 for a plain linear layer, and for a linear layer followed by ReLU?



	
Why do we sometimes have to use the squeeze method in loss functions?



	
What does the argument to the squeeze method do? Why might it be important to include this argument, even though PyTorch does not require it?



	
What is the chain rule? Show the equation in either of the two forms presented in this chapter.



	
Show how to calculate the gradients of mse(lin(l2, w2, b2), y) by using the chain rule.



	
What is the gradient of ReLU? Show it in math or code. (You shouldn’t need to commit this to memory—try to figure it using your knowledge of the shape of the function.)



	
In what order do we need to call the *_grad functions in the backward pass? Why?



	
What is __call__?



	
What methods must we implement when writing a torch.autograd.Function?



	
Write nn.Linear from scratch and test that it works.



	
What is the difference between nn.Module and fastai’s Module?















Further Research


	
Implement ReLU as a torch.autograd.Function and train a model with it.



	
If you are mathematically inclined, determine the gradients of a linear layer in mathematical notation. Map that to the implementation in this chapter.



	
Learn about the unfold method in PyTorch, and use it along with matrix multiplication to implement your own 2D convolution function. Then train a CNN that uses it.



	
Implement everything in this chapter by using NumPy instead of PyTorch.




























  
Chapter 18. CNN Interpretation with CAM



Now that we know how to build up pretty much anything from scratch,
let’s use that knowledge to create entirely new (and very
useful!) functionality: the class activation map. It gives a us some insight into why a CNN made the predictions it did.


In the process, we’ll learn about one handy feature of
PyTorch we haven’t seen before, the hook, and
we’ll apply many of the concepts introduced in the rest of the book. If you want to really test out your
understanding of the material in this book, after you’ve
finished this chapter, try putting it aside and re-creating the
ideas here yourself from scratch (no peeking!).








CAM and Hooks


The class activation map (CAM) was introduced by Bolei Zhou et al. in
“Learning Deep Features for
Discriminative Localization”. It uses the output of the last
convolutional layer (just before the average pooling layer) together with the
predictions to give us a heatmap visualization of why the model made
its decision. This is a useful tool for interpretation.


More precisely, at each position of our final convolutional layer, we
have as many filters as in the last linear layer. We can therefore compute the
dot product of those activations with the final weights to get, for each
location on our feature map, the score of the feature that was used to
make a decision.


We’re going to need a way to get access to the activations
inside the model while it’s training. In PyTorch, this can be
done with a hook. Hooks are PyTorch’s equivalent of
fastai’s callbacks. However, rather than allowing you to
inject code into the training loop like a fastai Learner callback, hooks
allow you to inject code into the forward and backward calculations
themselves. We can attach a hook to any layer of the model, and it will
be executed when we compute the outputs (forward hook) or 
during backpropagation (backward hook). A forward hook is a function that takes three things—a module, its input, and its output—and it can
perform any behavior you want. (fastai also provides a handy
HookCallback that we won’t cover here, but take a look at
the fastai docs; it makes working with hooks a little easier.)


To illustrate, we’ll use the same cats and dogs model we trained in
Chapter 1:


path = untar_data(URLs.PETS)/'images'
def is_cat(x): return x[0].isupper()
dls = ImageDataLoaders.from_name_func(
    path, get_image_files(path), valid_pct=0.2, seed=21,
    label_func=is_cat, item_tfms=Resize(224))
learn = cnn_learner(dls, resnet34, metrics=error_rate)
learn.fine_tune(1)


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.141987
      	0.018823
      	0.007442
      	00:16
    

  


  
    
      	epoch
      	train_loss
      	valid_loss
      	error_rate
      	time
    

  
  
    
      	0
      	0.050934
      	0.015366
      	0.006766
      	00:21
    

  



To start, we’ll grab a cat picture and a batch of data:


img = PILImage.create('images/chapter1_cat_example.jpg')
x, = first(dls.test_dl([img]))


For CAM, we want to store the activations of the last convolutional
layer. We put our hook function in a class so it has a state that we can
access later, and just store a copy of the output:


class Hook():
    def hook_func(self, m, i, o): self.stored = o.detach().clone()


We can then instantiate a Hook and attach it to the layer we want,
which is the last layer of the CNN body:


hook_output = Hook()
hook = learn.model[0].register_forward_hook(hook_output.hook_func)


Now we can grab a batch and feed it through our model:


with torch.no_grad(): output = learn.model.eval()(x)


And we can access our stored activations:


act = hook_output.stored[0]


Let’s also double-check our predictions:


F.softmax(output, dim=-1)


tensor([[7.3566e-07, 1.0000e+00]], device='cuda:0')


We know 0 (for False) is “dog,” because the classes are automatically
sorted in fastai, but we can still double-check by looking at dls.vocab:


dls.vocab


(#2) [False,True]


So, our model is very confident this was a picture of a cat.


To do the dot product of our weight matrix (2 by number of activations)
with the activations (batch size by activations by rows by cols), we use
a custom einsum:


x.shape


torch.Size([1, 3, 224, 224])


cam_map = torch.einsum('ck,kij->cij', learn.model[1][-1].weight, act)
cam_map.shape


torch.Size([2, 7, 7])


For each image in our batch, and for each class, we get a 7×7 feature
map that tells us where the activations were higher and where they were lower. This will
let us see which areas of the pictures influenced the model’s decision.


For instance, we can find out which areas made the model decide this animal was a cat (note that we need to decode the input x since
it’s been normalized by the DataLoader, and we need to
cast to TensorImage since at the time this book is written, PyTorch
does not maintain types when indexing—this may be fixed by the time you
are reading this):


x_dec = TensorImage(dls.train.decode((x,))[0][0])
_,ax = plt.subplots()
x_dec.show(ctx=ax)
ax.imshow(cam_map[1].detach().cpu(), alpha=0.6, extent=(0,224,224,0),
              interpolation='bilinear', cmap='magma');



[image: ]





In this case, the areas in bright yellow correspond to high activations, and the areas in purple to low activations. In this case, we can see the head and the front paw were the two main areas that made the model decide it was a picture of a cat.


Once you’re done with your hook, you should remove it as
otherwise it might leak some memory:


hook.remove()


That’s why it’s usually a good idea to have the
Hook class be a context manager, registering the hook when you enter
it and removing it when you exit. A context manager is a Python
construct that calls __enter__ when the object is created in a with
clause, and __exit__ at the end of the with clause. For instance,
this is how Python handles the with open(...) as f: construct that
you’ll often see for opening files without
requiring an explicit close(f) at the end.


If we define Hook as follows


class Hook():
    def __init__(self, m):
        self.hook = m.register_forward_hook(self.hook_func)
    def hook_func(self, m, i, o): self.stored = o.detach().clone()
    def __enter__(self, *args): return self
    def __exit__(self, *args): self.hook.remove()


we can safely use it this way:


with Hook(learn.model[0]) as hook:
    with torch.no_grad(): output = learn.model.eval()(x.cuda())
    act = hook.stored


fastai provides this Hook class for you, as well as some other handy
classes to make working with hooks easier.


This method is useful, but works for only the last layer. Gradient CAM is
a variant that addresses this problem.

















Gradient CAM


The method we just saw lets us compute only a heatmap with the last
activations, since once we have our features, we have to multiply them
by the last weight matrix. This won’t work for inner layers
in the network. A variant introduced in the 2016 paper
“Grad-CAM: Why Did You Say That?” by Ramprasaath R. Selvaraju et al.
uses the gradients of the final activation for the desired class. If you
remember a little bit about the backward pass, the gradients of the
output of the last layer with respect to the input of that layer are
equal to the layer weights, since it is a linear layer.


With deeper layers, we still want the gradients, but they
won’t just be equal to the weights anymore. We have to
calculate them. The gradients of every layer are 
calculated for us by
PyTorch during the backward pass, but they’re not stored
(except for tensors where requires_grad is True). We can, however,
register a hook on the backward pass, which PyTorch will give the
gradients to as a parameter, so we can store them there.
For this, we will use a HookBwd class that works like Hook, but
intercepts and stores gradients instead of activations:


class HookBwd():
    def __init__(self, m):
        self.hook = m.register_backward_hook(self.hook_func)
    def hook_func(self, m, gi, go): self.stored = go[0].detach().clone()
    def __enter__(self, *args): return self
    def __exit__(self, *args): self.hook.remove()


Then for the class index 1 (for True, which is
“cat”), we intercept the features of the last
convolutional layer, as before, and compute the gradients of the output
activations of our class. We can’t just call
output.backward, because gradients make sense only with respect to a
scalar (which is normally our loss), and output is a rank-2
tensor. But if we pick a single image (we’ll use 0) and a
single class (we’ll use 1), we can calculate the
gradients of any weight or activation we like, with respect to that
single value, using output[0,cls].backward. Our hook intercepts the
gradients that we’ll use as weights:


cls = 1
with HookBwd(learn.model[0]) as hookg:
    with Hook(learn.model[0]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored


The weights for Grad-CAM are given by the average of our gradients
across the feature map. Then it’s exactly the same as
before:


w = grad[0].mean(dim=[1,2], keepdim=True)
cam_map = (w * act[0]).sum(0)


_,ax = plt.subplots()
x_dec.show(ctx=ax)
ax.imshow(cam_map.detach().cpu(), alpha=0.6, extent=(0,224,224,0),
              interpolation='bilinear', cmap='magma');



[image: ]





The novelty with Grad-CAM is that we can use it on any layer. For example, here we use it on the
output of the second-to-last ResNet group:


with HookBwd(learn.model[0][-2]) as hookg:
    with Hook(learn.model[0][-2]) as hook:
        output = learn.model.eval()(x.cuda())
        act = hook.stored
    output[0,cls].backward()
    grad = hookg.stored


w = grad[0].mean(dim=[1,2], keepdim=True)
cam_map = (w * act[0]).sum(0)


And we can now view the activation map for this layer:


_,ax = plt.subplots()
x_dec.show(ctx=ax)
ax.imshow(cam_map.detach().cpu(), alpha=0.6, extent=(0,224,224,0),
              interpolation='bilinear', cmap='magma');



[image: ]




















Conclusion


Model interpretation is an area of active research, and we just scraped
the surface of what is possible in this brief chapter. Class activation
maps give us insight into why a model predicted a certain result by
showing the areas of the images that were most responsible for a given
prediction. This can help us analyze false positives and figure out
what kind of data is missing in our training to avoid them.

















Questionnaire


	
What is a hook in PyTorch?



	
Which layer does CAM use the outputs of?



	
Why does CAM require a hook?



	
Look at the source code of the ActivationStats class and see how it uses hooks.



	
Write a hook that stores the activations of a given layer in a model (without peeking, if possible).



	
Why do we call eval before getting the activations? Why do we use no_grad?



	
Use torch.einsum to compute the “dog” or “cat” score of each of the locations in the last activation of the body of the model.



	
How do you check which order the categories are in (i.e., the correspondence of index→category)?



	
Why are we using decode when displaying the input image?



	
What is a context manager? What special methods need to be defined to create one?



	
Why can’t we use plain CAM for the inner layers of a network?



	
Why do we need to register a hook on the backward pass in order to do Grad-CAM?



	
Why can’t we call output.backward when output is a rank-2 tensor of output activations per image per class?















Further Research


	
Try removing keepdim and see what happens. Look up this parameter in the PyTorch docs. Why do we need it in this notebook?



	
Create a notebook like this one, but for NLP, and use it to find which words in a movie review are most significant in assessing the sentiment of a particular movie review.




























  
Chapter 19. A fastai Learner from Scratch



This final chapter (other than the conclusion and the online chapters)
is going to look a bit different. It contains far more code and far
less prose than the previous chapters. We will introduce new Python keywords
and libraries without discussing them. This chapter is meant to be the
start of a significant research project for you. You see, we are going
to implement many of the key pieces of the fastai and PyTorch APIs from
scratch, building on nothing other than the components that we developed
in Chapter 17! The key goal here is to end up with
your own Learner class and some callbacks—enough to be able to train a
model on Imagenette, including examples of each of the key techniques
we’ve studied. On the way to building Learner, we will create our own versions of Module, Parameter and a parallel DataLoader so you’ll have a very good idea of what those PyTorch classes do.


The end-of-chapter questionnaire is particularly important for this
chapter. This is where we will be pointing you in the many
interesting directions that you could take, using this chapter as your
starting point. We suggest that you follow along with
this chapter on your computer, and do lots of experiments,
web searches, and whatever else you need to understand
what’s going on. You’ve built up the skills and
expertise to do this in the rest of this book, so we think you are going
to do great!


Let’s begin by gathering (manually) some data.








Data


Have a look at the source to untar_data to see how it works.
We’ll use it here to access the 160-pixel version of
Imagenette for use in this chapter:


path = untar_data(URLs.IMAGENETTE_160)


To access the image files, we can use get_image_files:


t = get_image_files(path)
t[0]


Path('/home/jhoward/.fastai/data/imagenette2-160/val/n03417042/n03417042_3752.JP
 > EG')


Or we could do the same thing using just Python’s
standard library, with glob:


from glob import glob
files = L(glob(f'{path}/**/*.JPEG', recursive=True)).map(Path)
files[0]


Path('/home/jhoward/.fastai/data/imagenette2-160/val/n03417042/n03417042_3752.JP
 > EG')


If you look at the source for get_image_files, you’ll see
it uses Python’s os.walk; this is a faster and more
flexible function than glob, so be sure to try it out.


We can open an image with the Python Imaging Library’s
Image class:


im = Image.open(files[0])
im



[image: ]





im_t = tensor(im)
im_t.shape


torch.Size([160, 213, 3])


That’s going to be the basis of our independent variable.
For our dependent variable, we can use Path.parent from pathlib. First
we’ll need our vocab


lbls = files.map(Self.parent.name()).unique(); lbls


(#10) ['n03417042','n03445777','n03888257','n03394916','n02979186','n03000684','
 > n03425413','n01440764','n03028079','n02102040']


and the reverse mapping, thanks to L.val2idx:


v2i = lbls.val2idx(); v2i


{'n03417042': 0,
 'n03445777': 1,
 'n03888257': 2,
 'n03394916': 3,
 'n02979186': 4,
 'n03000684': 5,
 'n03425413': 6,
 'n01440764': 7,
 'n03028079': 8,
 'n02102040': 9}


That’s all the pieces we need to put together our Dataset.










Dataset


A Dataset in PyTorch can be anything that supports indexing
(__getitem__) and len:


class Dataset:
    def __init__(self, fns): self.fns=fns
    def __len__(self): return len(self.fns)
    def __getitem__(self, i):
        im = Image.open(self.fns[i]).resize((64,64)).convert('RGB')
        y = v2i[self.fns[i].parent.name]
        return tensor(im).float()/255, tensor(y)


We need a list of training and validation filenames to pass to
Dataset.__init__:


train_filt = L(o.parent.parent.name=='train' for o in files)
train,valid = files[train_filt],files[~train_filt]
len(train),len(valid)


(9469, 3925)


Now we can try it out:


train_ds,valid_ds = Dataset(train),Dataset(valid)
x,y = train_ds[0]
x.shape,y


(torch.Size([64, 64, 3]), tensor(0))


show_image(x, title=lbls[y]);



[image: ]





As you see, our dataset is returning the independent and dependent
variables as a tuple, which is just what we need. We’ll need
to be able to collate these into a mini-batch. Generally, this is done
with torch.stack, which is what we’ll use here:


def collate(idxs, ds):
    xb,yb = zip(*[ds[i] for i in idxs])
    return torch.stack(xb),torch.stack(yb)


Here’s a mini-batch with two items, for testing our
collate:


x,y = collate([1,2], train_ds)
x.shape,y


(torch.Size([2, 64, 64, 3]), tensor([0, 0]))


Now that we have a dataset and a collation function, we’re
ready to create 
DataLoader. We’ll add two more things
here: an optional shuffle for the training set, and a ProcessPoolExecutor
to do our preprocessing in parallel. A parallel data loader is very
important, because opening and decoding a JPEG image is a slow process.
One CPU core is not enough to decode images fast enough to keep a modern
GPU busy. Here’s our DataLoader class:


class DataLoader:
    def __init__(self, ds, bs=128, shuffle=False, n_workers=1):
        self.ds,self.bs,self.shuffle,self.n_workers = ds,bs,shuffle,n_workers

    def __len__(self): return (len(self.ds)-1)//self.bs+1

    def __iter__(self):
        idxs = L.range(self.ds)
        if self.shuffle: idxs = idxs.shuffle()
        chunks = [idxs[n:n+self.bs] for n in range(0, len(self.ds), self.bs)]
        with ProcessPoolExecutor(self.n_workers) as ex:
            yield from ex.map(collate, chunks, ds=self.ds)


Let’s try it out with our training and validation datasets:


n_workers = min(16, defaults.cpus)
train_dl = DataLoader(train_ds, bs=128, shuffle=True, n_workers=n_workers)
valid_dl = DataLoader(valid_ds, bs=256, shuffle=False, n_workers=n_workers)
xb,yb = first(train_dl)
xb.shape,yb.shape,len(train_dl)


(torch.Size([128, 64, 64, 3]), torch.Size([128]), 74)


This data loader is not much slower than
PyTorch’s, but it’s far simpler. So if
you’re debugging a complex data loading process,
don’t be afraid to try doing things manually to help you see
exactly what’s going on.


For normalization, we’ll need image statistics. Generally,
it’s fine to calculate these on a single training
mini-batch, since precision isn’t needed here:


stats = [xb.mean((0,1,2)),xb.std((0,1,2))]
stats


[tensor([0.4544, 0.4453, 0.4141]), tensor([0.2812, 0.2766, 0.2981])]


Our Normalize class just needs to store these stats and apply them (to
see why the to_device is needed, try commenting it out, and see what
happens later in this notebook):


class Normalize:
    def __init__(self, stats): self.stats=stats
    def __call__(self, x):
        if x.device != self.stats[0].device:
            self.stats = to_device(self.stats, x.device)
        return (x-self.stats[0])/self.stats[1]


We always like to test everything we build in a notebook, as soon as we
build it:


norm = Normalize(stats)
def tfm_x(x): return norm(x).permute((0,3,1,2))


t = tfm_x(x)
t.mean((0,2,3)),t.std((0,2,3))


(tensor([0.3732, 0.4907, 0.5633]), tensor([1.0212, 1.0311, 1.0131]))


Here tfm_x isn’t just applying Normalize, but is also
permuting the axis order from NHWC to NCHW (see
Chapter 13 if you need a reminder of what these
acronyms refer to). PIL uses HWC axis order, which we
can’t use with PyTorch, hence the need for this permute.


That’s all we need for the data for our model. So now we
need the model itself!
























Module and Parameter


To create a model, we’ll need Module. To create Module,
we’ll need Parameter, so let’s start there.
Recall that in Chapter 8 we said that the Parameter
class “doesn’t add any functionality (other than
automatically calling requires_grad_ for us). It’s
used only as a ‘marker’ to show what to include in
parameters.” Here’s a definition that does exactly
that:


class Parameter(Tensor):
    def __new__(self, x): return Tensor._make_subclass(Parameter, x, True)
    def __init__(self, *args, **kwargs): self.requires_grad_()


The implementation here is a bit awkward: we have to define the special
__new__ Python method and use the internal PyTorch method
_make_subclass because, at the time of writing, PyTorch
doesn’t otherwise work correctly with this kind of
subclassing or provide an officially supported API to do this. This may
have been fixed by the time you read this, so look on the book’s website to
see if there are updated details.


Our Parameter now behaves just like a tensor, as we wanted:


Parameter(tensor(3.))


tensor(3., requires_grad=True)


Now that we have this, we can define Module:


class Module:
    def __init__(self):
        self.hook,self.params,self.children,self._training = None,[],[],False

    def register_parameters(self, *ps): self.params += ps
    def register_modules   (self, *ms): self.children += ms

    @property
    def training(self): return self._training
    @training.setter
    def training(self,v):
        self._training = v
        for m in self.children: m.training=v

    def parameters(self):
        return self.params + sum([m.parameters() for m in self.children], [])

    def __setattr__(self,k,v):
        super().__setattr__(k,v)
        if isinstance(v,Parameter): self.register_parameters(v)
        if isinstance(v,Module):    self.register_modules(v)

    def __call__(self, *args, **kwargs):
        res = self.forward(*args, **kwargs)
        if self.hook is not None: self.hook(res, args)
        return res

    def cuda(self):
        for p in self.parameters(): p.data = p.data.cuda()


The key functionality is in the definition of parameters:


self.params + sum([m.parameters() for m in self.children], [])


This means that we can ask any Module for its parameters, and it will
return them, including for all its child modules (recursively). But how does
it know what its parameters are? It’s thanks to implementing
Python’s special __setattr__ method, which is called for
us anytime Python sets an attribute on a class. Our implementation
includes this line:


if isinstance(v,Parameter): self.register_parameters(v)


As you see, this is where we use our new Parameter class as a
“marker”—anything of this class is added to our params.


Python’s __call__ allows us to define what happens when
our object is treated as a function; we just call forward (which
doesn’t exist here, so it’ll need to be added by
subclasses). Before we do, we’ll call a hook, if
it’s defined. Now you can see that PyTorch hooks
aren’t doing anything fancy at all—they’re just
calling any hooks have been registered.


Other than these pieces of functionality, our Module also provides
cuda and training attributes, which we’ll use shortly.


Now we can create our first Module, which is ConvLayer:


class ConvLayer(Module):
    def __init__(self, ni, nf, stride=1, bias=True, act=True):
        super().__init__()
        self.w = Parameter(torch.zeros(nf,ni,3,3))
        self.b = Parameter(torch.zeros(nf)) if bias else None
        self.act,self.stride = act,stride
        init = nn.init.kaiming_normal_ if act else nn.init.xavier_normal_
        init(self.w)

    def forward(self, x):
        x = F.conv2d(x, self.w, self.b, stride=self.stride, padding=1)
        if self.act: x = F.relu(x)
        return x


We’re not implementing F.conv2d from scratch, since you
should have already done that (using unfold) in the questionnaire in
Chapter 17. Instead we’re just
creating a small class that wraps it up along with bias and weight
initialization. Let’s check that it works correctly with
Module.parameters:


l = ConvLayer(3, 4)
len(l.parameters())


2


And that we can call it (which will result in forward being
called):


xbt = tfm_x(xb)
r = l(xbt)
r.shape


torch.Size([128, 4, 64, 64])


In the same way, we can implement Linear:


class Linear(Module):
    def __init__(self, ni, nf):
        super().__init__()
        self.w = Parameter(torch.zeros(nf,ni))
        self.b = Parameter(torch.zeros(nf))
        nn.init.xavier_normal_(self.w)

    def forward(self, x): return x@self.w.t() + self.b


And test that it works:


l = Linear(4,2)
r = l(torch.ones(3,4))
r.shape


torch.Size([3, 2])


Let’s also create a testing module to check that if we
include multiple parameters as attributes, they are all correctly
registered:


class T(Module):
    def __init__(self):
        super().__init__()
        self.c,self.l = ConvLayer(3,4),Linear(4,2)


Since we have a conv layer and a linear layer, each of which has weights
and biases, we’d expect four parameters in total:


t = T()
len(t.parameters())


4


We should also find that calling cuda on this class puts all these
parameters on the GPU:


t.cuda()
t.l.w.device


device(type='cuda', index=5)


We can now use those pieces to create a CNN.










Simple CNN


As we’ve seen, a Sequential class makes many architectures
easier to implement, so let’s make one:


class Sequential(Module):
    def __init__(self, *layers):
        super().__init__()
        self.layers = layers
        self.register_modules(*layers)

    def forward(self, x):
        for l in self.layers: x = l(x)
        return x


The forward method here just calls each layer in turn. Note that we
have to use the register_modules method we defined in Module, since
otherwise the contents of 
layers won’t appear in
parameters.

All the Code Is Here

Remember that we’re not using any PyTorch functionality for modules here; we’re defining everything ourselves. So if you’re not sure what register_modules does, or why it’s needed, have another look at our code for Module to see what we wrote!




We can create a simplified AdaptivePool that only handles pooling to
a 1×1 output, and flattens it as well, by just using mean:


class AdaptivePool(Module):
    def forward(self, x): return x.mean((2,3))


That’s enough for us to create a CNN!


def simple_cnn():
    return Sequential(
        ConvLayer(3 ,16 ,stride=2), #32
        ConvLayer(16,32 ,stride=2), #16
        ConvLayer(32,64 ,stride=2), # 8
        ConvLayer(64,128,stride=2), # 4
        AdaptivePool(),
        Linear(128, 10)
    )


Let’s see if our parameters are all being registered
correctly:


m = simple_cnn()
len(m.parameters())


10


Now we can try adding a hook. Note that we’ve left room
for only one hook in 
Module; you could make it a list, or use
something like Pipeline to run a few as a single function:


def print_stats(outp, inp): print (outp.mean().item(),outp.std().item())
for i in range(4): m.layers[i].hook = print_stats

r = m(xbt)
r.shape


0.5239089727401733 0.8776043057441711
0.43470510840415955 0.8347987532615662
0.4357188045978546 0.7621666193008423
0.46562111377716064 0.7416611313819885
torch.Size([128, 10])


We have data and model. Now we need a loss function.
























Loss


We’ve already seen how to define “negative log
likelihood”:


def nll(input, target): return -input[range(target.shape[0]), target].mean()


Well actually, there’s no log here, since
we’re using the same definition as PyTorch. That means we
need to put the log together with softmax:


def log_softmax(x): return (x.exp()/(x.exp().sum(-1,keepdim=True))).log()

sm = log_softmax(r); sm[0][0]


tensor(-1.2790, grad_fn=<SelectBackward>)


Combining these gives us our cross-entropy loss:


loss = nll(sm, yb)
loss


tensor(2.5666, grad_fn=<NegBackward>)


Note that the formula



  
    log
    
      a b
    
    =
    log
    
      (
      a
      )
    
    -
    log
    
      (
      b
      )
    
  




gives a simplification when we compute the log softmax, which was
previously defined as (x.exp()/(x.exp().sum(-1))).log():


def log_softmax(x): return x - x.exp().sum(-1,keepdim=True).log()
sm = log_softmax(r); sm[0][0]


tensor(-1.2790, grad_fn=<SelectBackward>)


Then, there is a more stable way to compute the log of the sum of exponentials, called the
LogSumExp trick. The idea is to
use the following formula



  
    log
    
      ∑ j=1 n 
      e x j  
    
    =
    log
    
      e a 
      ∑ j=1 n 
      e x j -a 
    
    =
    a
    +
    log
    
      ∑ j=1 n 
      e x j -a 
    
  




where a is the maximum of 
  x j 
.


Here’s the same thing in code:


x = torch.rand(5)
a = x.max()
x.exp().sum().log() == a + (x-a).exp().sum().log()


tensor(True)


We’ll put that into a function


def logsumexp(x):
    m = x.max(-1)[0]
    return m + (x-m[:,None]).exp().sum(-1).log()

logsumexp(r)[0]


tensor(3.9784, grad_fn=<SelectBackward>)


so we can use it for our log_softmax function:


def log_softmax(x): return x - x.logsumexp(-1,keepdim=True)


Which gives the same result as before:


sm = log_softmax(r); sm[0][0]


tensor(-1.2790, grad_fn=<SelectBackward>)


We can use these to create cross_entropy:


def cross_entropy(preds, yb): return nll(log_softmax(preds), yb).mean()


Let’s now combine all those pieces to create a
Learner.

















Learner


We have data, a model, and a loss function; we need only one more thing before we
can fit a model, and that’s an optimizer! Here’s
SGD:


class SGD:
    def __init__(self, params, lr, wd=0.): store_attr(self, 'params,lr,wd')
    def step(self):
        for p in self.params:
            p.data -= (p.grad.data + p.data*self.wd) * self.lr
            p.grad.data.zero_()


As we’ve seen in this book, life is easier with a Learner. The Learner needs to know our training and validation sets, which means we
need DataLoaders to store them. We don’t need any other
functionality, just a place to store them and access them:


class DataLoaders:
    def __init__(self, *dls): self.train,self.valid = dls

dls = DataLoaders(train_dl,valid_dl)


Now we’re ready to create our Learner class:


class Learner:
    def __init__(self, model, dls, loss_func, lr, cbs, opt_func=SGD):
        store_attr(self, 'model,dls,loss_func,lr,cbs,opt_func')
        for cb in cbs: cb.learner = self


    def one_batch(self):
        self('before_batch')
        xb,yb = self.batch
        self.preds = self.model(xb)
        self.loss = self.loss_func(self.preds, yb)
        if self.model.training:
            self.loss.backward()
            self.opt.step()
        self('after_batch')

    def one_epoch(self, train):
        self.model.training = train
        self('before_epoch')
        dl = self.dls.train if train else self.dls.valid
        for self.num,self.batch in enumerate(progress_bar(dl, leave=False)):
            self.one_batch()
        self('after_epoch')

    def fit(self, n_epochs):
        self('before_fit')
        self.opt = self.opt_func(self.model.parameters(), self.lr)
        self.n_epochs = n_epochs
        try:
            for self.epoch in range(n_epochs):
                self.one_epoch(True)
                self.one_epoch(False)
        except CancelFitException: pass
        self('after_fit')

    def __call__(self,name):
        for cb in self.cbs: getattr(cb,name,noop)()


This is the largest class we’ve created in the book, but
each method is quite small, so by looking at each in turn,
you should be able to follow what’s going on.


The main method we’ll be calling is fit. This loops with


for self.epoch in range(n_epochs)


and at each epoch calls self.one_epoch for each of train=True and
then train=False. Then self.one_epoch calls self.one_batch for
each batch in dls.train or dls.valid, as appropriate (after wrapping
the DataLoader in 
fastprogress.progress_bar). Finally,
self.one_batch follows the usual set of steps to fit one mini-batch
that we’ve seen throughout this book.


Before and after each step, Learner calls self, which calls
__call__ (which is standard Python functionality). __call__ uses
getattr(cb,name) on each callback in self.cbs, which is a Python
built-in function that returns the attribute (a method, in this case)
with the requested name. So, for instance,
self('before_fit') will call cb.before_fit()
for each callback where that method is defined.


As you can see, Learner is really just using our standard training
loop, except that it’s also calling callbacks at appropriate
times. So let’s define some callbacks!










Callbacks


In Learner.__init__ we have


for cb in cbs: cb.learner = self


In other words, every callback knows what learner it is used in. This is
critical, since otherwise a callback can’t get information
from the learner, or change things in the learner. Because getting
information from the learner is so common, we make that easier by
defining Callback as a subclass of GetAttr, with a default
attribute of learner:


class Callback(GetAttr): _default='learner'


GetAttr is a fastai class that implements
Python’s standard __getattr__ and __dir__ methods for
you, so that anytime you try to access an attribute that
doesn’t exist, it passes the request along to whatever you
have defined as _default.


For instance, we want to move all model parameters to the GPU
automatically at the start of fit. We could do this by defining
before_fit as self.learner.model.cuda; however, because learner
is the default attribute, and we have SetupLearnerCB inherit from
Callback (which inherits from GetAttr), we can remove the .learner
and just call self.model.cuda:


class SetupLearnerCB(Callback):
    def before_batch(self):
        xb,yb = to_device(self.batch)
        self.learner.batch = tfm_x(xb),yb

    def before_fit(self): self.model.cuda()


In SetupLearnerCB, we also move each mini-batch to the GPU, by calling
to_device(self.batch) (we could also have used the longer
to_device(self.learner.batch). Note, however, that in the line
self.learner.batch = tfm_x(xb),yb, we can’t remove
.learner, because here we’re setting the attribute, not
getting it.


Before we try our Learner, let’s create a callback to
track and print progress. Otherwise, we won’t really know if
it’s working properly:


class TrackResults(Callback):
    def before_epoch(self): self.accs,self.losses,self.ns = [],[],[]

    def after_epoch(self):
        n = sum(self.ns)
        print(self.epoch, self.model.training,
              sum(self.losses).item()/n, sum(self.accs).item()/n)

    def after_batch(self):
        xb,yb = self.batch
        acc = (self.preds.argmax(dim=1)==yb).float().sum()
        self.accs.append(acc)
        n = len(xb)
        self.losses.append(self.loss*n)
        self.ns.append(n)


Now we’re ready to use our Learner for the first time!


cbs = [SetupLearnerCB(),TrackResults()]
learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs)
learn.fit(1)


0 True 2.1275552130636814 0.2314922378287042

0 False 1.9942575636942674 0.2991082802547771


It’s quite amazing to realize that we can implement all the
key ideas from fastai’s Learner in so little code!
Let’s now add some learning rate scheduling.

















Scheduling the Learning Rate


If we’re going to get good results, we’ll want
an LR finder and 1cycle training. These are both annealing
callbacks—that is, they are gradually changing hyperparameters as we
train. Here’s LRFinder:


class LRFinder(Callback):
    def before_fit(self):
        self.losses,self.lrs = [],[]
        self.learner.lr = 1e-6

    def before_batch(self):
        if not self.model.training: return
        self.opt.lr *= 1.2

    def after_batch(self):
        if not self.model.training: return
        if self.opt.lr>10 or torch.isnan(self.loss): raise CancelFitException
        self.losses.append(self.loss.item())
        self.lrs.append(self.opt.lr)


This shows how we’re using CancelFitException, which is
itself an empty class, used only to signify the type of exception. You
can see in Learner that this exception is caught. (You should add and
test CancelBatchException, CancelEpochException, etc. yourself.)
Let’s try it out, by adding it to our list of callbacks:


lrfind = LRFinder()
learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs+[lrfind])
learn.fit(2)


0 True 2.6336045582954903 0.11014890695955222

0 False 2.230653363853503 0.18318471337579617


And take a look at the results:


plt.plot(lrfind.lrs[:-2],lrfind.losses[:-2])
plt.xscale('log')



[image: ]





Now we can define our OneCycle training callback:


class OneCycle(Callback):
    def __init__(self, base_lr): self.base_lr = base_lr
    def before_fit(self): self.lrs = []

    def before_batch(self):
        if not self.model.training: return
        n = len(self.dls.train)
        bn = self.epoch*n + self.num
        mn = self.n_epochs*n
        pct = bn/mn
        pct_start,div_start = 0.25,10
        if pct<pct_start:
            pct /= pct_start
            lr = (1-pct)*self.base_lr/div_start + pct*self.base_lr
        else:
            pct = (pct-pct_start)/(1-pct_start)
            lr = (1-pct)*self.base_lr
        self.opt.lr = lr
        self.lrs.append(lr)


We’ll try an LR of 0.1:


onecyc = OneCycle(0.1)
learn = Learner(simple_cnn(), dls, cross_entropy, lr=0.1, cbs=cbs+[onecyc])


Let’s fit for a while and see how it looks (we
won’t show all the output in the book—try it in the notebook
to see the results):


learn.fit(8)


Finally, we’ll check that the learning rate followed the
schedule we defined (as you see, we’re not using cosine
annealing here):


plt.plot(onecyc.lrs);



[image: ]



























Conclusion


We have explored how the key concepts of the fastai library are
implemented by re-implementing them in this chapter. Since
it’s mostly full of code, you should definitely try to
experiment with it by looking at the corresponding notebook on the book’s
website. Now that you know how it’s built, as a next step be sure to check out the intermediate and advanced
tutorials in the fastai documentation to learn how to customize every
bit of the library.

















Questionnaire

Experiments

For the questions here that ask you to explain what a function or
class is, you should also complete your own code experiments.




	
What is glob?



	
How do you open an image with the Python imaging library?



	
What does L.map do?



	
What does Self do?



	
What is L.val2idx?



	
What methods do you need to implement to create your own Dataset?



	
Why do we call convert when we open an image from Imagenette?



	
What does ~ do? How is it useful for splitting training and validation sets?



	
Does ~ work with the L or Tensor classes? How about NumPy arrays, Python lists, or Pandas DataFrames?



	
What is ProcessPoolExecutor?



	
How does L.range(self.ds) work?



	
What is __iter__?



	
What is first?



	
What is permute? Why is it needed?



	
What is a recursive function? How does it help us define the parameters method?



	
Write a recursive function that returns the first 20 items of the Fibonacci sequence.



	
What is super?



	
Why do subclasses of Module need to override forward instead of defining __call__?



	
In ConvLayer, why does init depend on act?



	
Why does Sequential need to call register_modules?



	
Write a hook that prints the shape of every layer’s activations.



	
What is LogSumExp?



	
Why is log_softmax useful?



	
What is GetAttr? How is it helpful for callbacks?



	
Reimplement one of the callbacks in this chapter without inheriting from 
Callback or GetAttr.



	
What does Learner.__call__ do?



	
What is getattr? (Note the case difference from GetAttr!)



	
Why is there a try block in fit?



	
Why do we check for model.training in one_batch?



	
What is store_attr?



	
What is the purpose of TrackResults.before_epoch?



	
What does model.cuda do? How does it work?



	
Why do we need to check model.training in LRFinder and OneCycle?



	
Use cosine annealing in OneCycle.















Further Research


	Write resnet18 from scratch (refer to Chapter 14 as needed), and train it with the Learner in this chapter.


	Implement a batchnorm layer from scratch and use it in your resnet18.


	Write a Mixup callback for use in this chapter.


	Add momentum to SGD.


	Pick a few features that you’re interested in from fastai (or any other library) and implement them with the objects created in this chapter.


	Pick a research paper that’s not yet implemented in fastai or PyTorch and do so with the objects you created in this chapter. Then:

	Port the paper over to fastai.


	Submit a pull request to fastai, or create your own extension module and release it.



Hint: you may find it helpful to use nbdev to create and deploy your package.


























  
Chapter 20. Concluding Thoughts



Congratulations! You’ve made it! If you have worked through
all of the notebooks to this point, you have joined the small, but
growing group of people who are able to harness the power of deep
learning to solve real problems. You may not feel that way—in fact, you
probably don’t. We have seen again and again that
students who complete the fast.ai courses dramatically underestimate
their effectiveness as deep learning practitioners. We’ve
also seen that these people are often underestimated by others with a classic academic background. So if you are to rise above your
own expectations and the expectations of others, what you do next, after
closing this book, is even more important than what you’ve
done to get to this point.


The most important thing is to keep the momentum going. In fact, as you
know from your study of optimizers, momentum is something that can
build upon itself! So think about what you can do now to maintain
and accelerate your deep learning journey. Figure 20-1 can give
you a few ideas.



[image: What to do next]
Figure 20-1. What to do next




We’ve talked a lot in this book about the value of writing,
whether it be code or prose. But perhaps you haven’t quite
written as much as you had hoped so far. That’s OK! Now is
a great chance to turn that around. You have a lot to say at this
point. Perhaps you have tried some experiments on a dataset that other
people don’t seem to have looked at in quite the same way. Tell the world about it! Or perhaps you are thinking about trying out
some ideas that occurred to you while you were reading—now
is a great time to turn those ideas into code.


If you’d like to share your ideas, one fairly low-key place to do so is the fast.ai forums. You will find that the community there is very
supportive and helpful, so please do drop by and let us know what
you’ve been up to. Or see if you can answer a few questions
for those folks who are earlier in their journey than you.


And if you do have some successes, big or small, in your deep learning
journey, be sure to let us know! Posting about them on the forums is especially helpful, because learning about the
successes of other students can be extremely motivating.


Perhaps the most important approach for many people to stay connected
with their learning journey is to build a community around it. For
instance, you could try to set up a small deep learning meetup in your
local neighborhood, or a study group, or even offer to do a talk at a
local meetup about what you’ve learned so far or some
particular aspect that interested you. It’s OK that you are not the
world’s leading expert just yet—the important thing to
remember is that you now know about plenty of stuff that other people
don’t, so they are very likely to appreciate your
perspective.


Another community event that many people find useful is a regular book
club or paper reading club. You might find some in your
neighborhood already, and if not, you could try to get one started. Even if there is just one other person doing it with you, it
will help give you the support and encouragement to get going.


If you are not in a location where it’s easy to get
together with like-minded folks in person, drop by the forums, because
people are always starting up virtual study groups. These
generally involve a bunch of folks getting together over video chat
once a week or so to discuss a deep learning topic.


Hopefully, by this point, you have a few little projects that you’ve put
together and experiments that you’ve run. Our
recommendation for your next step is to pick one of these and make it as good as
you can. Really polish it up into the best piece of work that you can—something you are really proud of. This will force you to go much deeper
into a topic, which will test your understanding and give
you the opportunity to see what you can do when you put your mind
to it.


Also, you may want to take a look at the fast.ai free online course
that covers the same material as this book. Sometimes, seeing the same
material in two ways can really help to crystallize the
ideas. In fact, human learning researchers have found that one
of the best ways to learn material is to see the same thing from
different angles, described in different ways.


Your final mission, should you choose to accept it, is to take this
book and give it to somebody you know—and get somebody else
started on their own deep learning journey!







  
Appendix A. Creating a Blog



In Chapter 2, we suggested that you might want to try blogging as a way to help digest the information you’re reading and practicing. But what if you don’t have a blog already? Which platform should you use?


Unfortunately, when it comes to blogging, it seems like you have to make
a difficult decision: either use a platform that makes it easy but
subjects you and your readers to advertisements, paywalls, and fees, or
spend hours setting up your own hosting service and weeks learning about all
kinds of intricate details. Perhaps the biggest benefit to the
“do-it-yourself” approach is that you really own your own posts,
rather than being at the whim of a service provider and their decisions
about how to monetize your content in the future.


It turns out, however, that you can have the best of both worlds!








Blogging with GitHub Pages


A great solution is to host your blog on a platform called GitHub Pages,
which is free, has no ads or paywall, and makes your data available in
a standard way such that you can at any time move your blog to another
host. But all the approaches we’ve seen to using GitHub Pages have
required knowledge of the command line and arcane tools that only
software developers are likely to be familiar with. For instance,
GitHub’s own documentation on setting up a blog includes a long list of instructions that involve installing the Ruby
programming language, using the git command-line tool, copying over
version numbers, and more—17 steps in total!


To cut down on the hassle, we’ve created an easy approach that allows you to use an entirely
browser-based interface for all your blogging needs. You will be up and
running with your new blog within about five minutes. It doesn’t cost
anything, and you can easily add your own custom domain to it if you
wish to. In this section, we’ll explain how to do it, using a template we’ve created
called fast_template. (NB: be sure to check the
book’s website for the latest blog recommendations,
since new tools are always coming out.)










Creating the Repository


You’ll need an account on GitHub, so head over there now and create an
account if you don’t have one already. Normally, GitHub is used by software developers for writing code, and
they use a sophisticated command-line tool to work with it—but we’re going to show you an approach that doesn’t
use the command line at all!


To get started, point your browser to https://github.com/fastai/fast_template/generate (make sure you’re logged in). This will allow you
to create a place to store your blog, called a repository. You
will see a screen like the one in Figure A-1. Note that you have to enter your repository name
using the exact format shown here—that is, your GitHub username followed by .github.io.



[image: Screebshot of the GitHub page for creating a new repository]
Figure A-1. Creating your repository




Once you’ve entered that, and any description you like, click “Create repository from template.” You have the choice to make the
repository “private,” but since you are creating a blog that you want
other people to read, having the underlying files publicly available
hopefully won’t be a problem for you.


Now, let’s set up your home page!

















Setting Up Your Home Page


When readers arrive at your blog, the first thing that they will
see is the content of a file called index.md. This is a
Markdown file.
Markdown is a powerful yet simple way of creating formatted text, such
as bullet points, italics, hyperlinks, and so forth. It is very widely
used, including for all the formatting in Jupyter notebooks, nearly every
part of the GitHub site, and many other places all over the internet. To
create Markdown text, you can just type in plain English and then add some special characters to add special behavior. For
instance, if you type a * character before and after a word or phrase, that
will put it in italics. Let’s try it now.


To open the file, click its filename in GitHub. To edit it, click the pencil icon at the far righthand side of the
screen, as shown in Figure A-2.



[image: Screenshot showing where to click to edit the file]
Figure A-2. Edit this file




You can add to, edit, or replace the text that you see. Click the
“Preview changes” button (Figure A-3) to see what your Markdown text will look
like in your blog. Lines that you have added or changed will appear with a
green bar on the lefthand side.



[image: Screenshot showing where to click to preview changes]
Figure A-3. Preview changes to catch any mistakes




To save your changes, scroll to the bottom of the page and click “Commit changes,” as shown in Figure A-4. On GitHub, to commit
something means to save it to the GitHub server.



[image: Screenshot showing where to click to commit the changes]
Figure A-4. Commit your changes to save them




Next, you should configure your blog’s settings. To do so, click the
file called 
_config.yml and then click the edit button as you
did for the index file. Change the title, description, and GitHub
username values (see Figure A-5). You need to leave the names before the colons in place,
and type your new values in after the colon (and a space) on each line. You
can also add to your email address and Twitter username if you wish, but note
that these will appear on your public blog if you fill them in here.



[image: Screenshot showing the config file and how to fill it]
Figure A-5. Fill in the config file




After you’re done, commit your changes just as you did with the index
file; then wait a minute or so while GitHub processes your new
blog. Point your web browser to <username>.github.io (replacing <username> with your
GitHub username). You should see your blog, which will look something like Figure A-6.



[image: Screenshot showing the website username.github.io]
Figure A-6. Your blog is online!



















Creating Posts


Now you’re ready to create your first post. All your posts will go in
the _posts folder. Click that now, and then click the “Create
file” button. You need to be careful to name your file using the format <year>-<month>-<day>-<name>.md, as shown in Figure A-7, where <year> is a four-digit number, and <month> and <day> are two-digit numbers. <name> can be anything you
want that will help you remember what this post was about. The .md
extension is for Markdown documents.



[image: Screenshot showing the right syntax to create a new blog post]
Figure A-7. Naming your posts




You can then type the contents of your first post. The only rule is that
the first line of your post must be a Markdown heading. This is created
by putting # at the start of a line, as seen in Figure A-8 (that creates a level-1 heading,
which you should just use once at the start of your document; you can create
level-2 headings using ##, level 3 with ###, and so forth).



[image: Screenshot showing the start of a blog post]
Figure A-8. Markdown syntax for a title




As before, you can click the Preview button to see how your
Markdown formatting will look (Figure A-9).



[image: Screenshot showing the same blog post interpreted in HTML]
Figure A-9. What the previous Markdown syntax will look like on your blog




And you will need to click the “Commit new file” button to save it to
GitHub, as shown in Figure A-10.



[image: Screenshot showing where to click to commit the new file]
Figure A-10. Commit your changes to save them




Have a look at your blog home page again, and you will see that this post
has now appeared—Figure A-11 shows the result with the sample post we just added. Remember that you will need to wait a minute or so
for GitHub to process the request before the file shows up.



[image: Screenshot showing the first post on the blog website]
Figure A-11. Your first post is live!




You may have noticed that we provided a sample blog post, which you can go
ahead and delete now. Go to your _posts folder, as before, and click
2020-01-14-welcome.md. Then click the trash icon on the far
right, as shown in Figure A-12.



[image: Screenshot showing how to delete the mock post]
Figure A-12. Delete the sample blog post




In GitHub, nothing actually changes until you commit—including when you delete
a file! So, after you click the trash icon, scroll down to the bottom of the page
and commit your changes.


You can include images in your posts by adding a line of Markdown like
the 
following:

![Image description](images/filename.jpg)


For this to work, you will need to put the image inside your images
folder. To do this, click the images folder, and then click the “Upload files” button (Figure A-13).



[image: Screenshot showing how to upload new files]
Figure A-13. Upload a file from your computer




Now let’s see how to do all of this directly from your
computer.

















Synchronizing GitHub and Your Computer


There are lots of reasons you might want to copy your blog content from
GitHub to your computer—you might want to be able to read or edit your posts
offline, or maybe you’d like a backup in case something happens to your
GitHub repository.


GitHub does more than just let you copy your repository to your
computer; it lets you synchronize it with your computer. That means you can
make changes on GitHub, and they’ll copy over to your computer; and you
can make changes on your computer, and they’ll copy over to GitHub. You
can even let other people access and modify your blog, and their changes
and your changes will be automatically combined the next time you
sync.


To make this work, you have to install an application called
GitHub Desktop on your computer. It runs on
Mac, Windows, and Linux. Follow the directions to install
it, and when you run, it it’ll ask you to log in to GitHub and select the repository to sync. Click “Clone a repository from the
Internet,” as shown in Figure A-14.



[image: A screenshot showing how to clone your repository]
Figure A-14. Clone your repository on GitHub Desktop




Once GitHub has finished syncing your repo, you’ll be able to click
“View the files of your repository in Explorer” (or Finder), as shown in Figure A-15, and
you’ll see the local copy of your blog! Try editing one of the files on
your computer. Then return to GitHub Desktop, and you’ll see the
Sync button is waiting for you to press it. When you click it, your
changes will be copied over to GitHub, where you’ll see them reflected
on the website.



[image: A screenshot showing the cloned repository]
Figure A-15. Viewing your files locally




If you haven’t used git before, GitHub Desktop is
a great way to get started. As you’ll discover,
it’s a fundamental tool used by most data scientists.
Another tool that we hope you now love is Jupyter Notebook—and there’s a way to write your blog directly with that too!
























Jupyter for Blogging


You can also write blog posts using Jupyter notebooks. Your Markdown
cells, code cells, and all the outputs will appear in your exported blog
post. The best way to do this may have changed by the time you are
reading this book, so check out the book’s website for the latest information. As we write this, the easiest way
to create a blog from notebooks is to use
fastpages, a more advanced version
of fast_template.


To blog with a notebook, just pop it in the _notebooks folder in your
blog repo, and it will appear in your list of blog posts. When you write your
notebook, write whatever you want your audience to see. Since most
writing platforms make it hard to include code and outputs, many
of us are in the habit of including fewer real examples than we should. This is a great way to instead get into the habit of including lots of examples as you write.


Often, you’ll want to hide boilerplate such as import
statements. You can add #hide to the top of any cell to make it not show up in
output. Jupyter displays the result of the last line of a cell, so
there’s no need to include print. (Including extra
code that isn’t needed means there’s more
cognitive overhead for the reader; so don’t include code
that you don’t really need!)
















  
Appendix B. Data Project Checklist



There’s a lot more to creating useful data projects than just training an accurate model! When Jeremy used to do consulting, he’d always seek to understand an organization’s context for developing data projects based on the following considerations, summarized in Figure B-1:


	Strategy

	
What is the organization trying to do (objective), and what can it change to do it better (levers)?



	Data

	
Is the organization capturing the necessary data and making it available?



	Analytics

	
What kinds of insights would be useful to the organization?



	Implementation

	
What organizational capabilities are available?



	Maintenance

	
What systems are in place to track changes in the operational environment?



	Constraints

	
What constraints need to be considered in each of the preceding areas?







[image: The analytics value chain]
Figure B-1. The analytics value chain




He developed a questionnaire that he had clients fill out before a project started, and then throughout the project he’d help them refine their answers. This questionnaire is based on decades of projects across many industries, including agriculture, mining, banking, brewing, telecoms, retail, and more.


Before we go through the analytics value chain, the first part of the questionnaire has to do with the most important employees for your data project: data scientists.








Data Scientists


Data scientists should have a clear path to becoming senior executives, and there should also be hiring plans in place to bring data experts directly into senior executive roles. In a data-driven organization, data scientists should be among the highest-paid employees. Systems should be in place to allow data scientists throughout the organization to collaborate and learn from each other.



	
What data science skills are currently in the organization?



	
How are data scientists being recruited?



	
How are people with data science skills being identified within the organization?



	
What skills are being looked for? How are they being judged? How were those skills selected as being important?



	
What data science consulting is being used? In which situations is data science outsourced? How is this work transferred to the organization?



	
How much are data scientists being paid? Who do they report to? How are their skills kept current?



	
What is the career path for data scientists?



	
How many executives have strong data analysis expertise?



	
How is work for data scientists selected and allocated?



	
What software and hardware do data scientists have access to?





















Strategy


All data projects should be based on solving strategically important problems. Therefore, an understanding of business strategy must come first.



	
What are the five most important strategic issues at the organization today?



	
What data is available to help deal with these issues?



	
Is a data-driven approach being used for these issues? Are data scientists working on these?



	
What are the profit drivers that the organization can most strongly impact? (See Figure B-2.)







[image: Factors that may be important profit drivers at an organization]
Figure B-2. Factors that may be important profit drivers at an organization





	
For each of those key profit drivers identified, what are the specific actions and decisions that the organization can take that might influence that driver, including both operational actions (e.g., call customer) and strategic decisions (e.g., release new product)?



	
For each of the most important actions and decisions, what data might be available (either within the organization, or from a vendor, or that could be collected in the future) that may help to optimize the outcome?



	
Based on the preceding analysis, what are the biggest opportunities for data-driven analysis within the organization?



	
For each opportunity:



	
What value driver is it designed to influence?



	
What specific actions or decisions will it drive?



	
How will these actions and decisions be connected to the project’s results?



	
What is the estimated ROI of the project?



	
What time constraints and deadlines, if any, may impact it?

























Data


Without data, we can’t train models! Data also needs to be available, integrated, and verifiable.



	
What data platforms does the organization have? These may include data marts, OLAP cubes, data warehouses, Hadoop clusters, OLTP systems, departmental spreadsheets, and so forth.



	
Provide any information that has been collated that provides an overview of data availability at the organization, and current work and future plans for building data platforms.



	
What tools and processes are available to move data between systems and formats?



	
How are the data sources accessed by different groups of users and admins?



	
What data access tools (e.g., database clients, OLAP clients, in-house software, SAS) are available to the organization’s data scientists and sysadmins? How many people use each tool, and what are their positions in the organization?



	
How are users informed of new systems, changes to systems, new and changed data elements, and so forth? Provide examples.



	
How are decisions made regarding data access restrictions? How are requests to access secured data managed? By whom? Based on what criteria? How long is the average time to respond? What percentage of requests are accepted? How is this tracked?



	
How does the organization decide when to collect additional data or purchase external data? Provide examples.



	
What data has been used so far to analyze recent data-driven projects? What has been found to be most useful? What was not useful? How was this judged?



	
What additional internal data may provide insights useful for data-driven decision making for proposed projects? What about external data?



	
What are the possible constraints or challenges in accessing or incorporating this data?



	
What changes to data collection, coding, integration, etc. have occurred in the last two years that may have impacted the interpretation or availability of the collected data?





















Analytics


Data scientists need to be able to access up-to-date tools appropriate for their own particular needs. New tools should be regularly assessed to see if they offer a significant improvement over current approaches.



	
What analytics tools are used at the organization and by whom? How are they selected, configured, and maintained?



	
What is the process to get additional analytical tools set up on a client machine? What is the average time to complete this? What percentage of requests are accepted?



	
How are analytical systems built by external consultants transferred to the organization? Are external contractors asked to restrict the systems used to ensure that the results conform to internal infrastructure?



	
In what situations has cloud processing been used? What are the plans for using the cloud?



	
In what situations have external experts been used for specialist analytics? How has this been managed? How have the experts been identified and selected?



	
What analytics tools have been tried for recent projects?



	
What worked, and what didn’t? Why?



	
Provide any outputs that are available from work done to date for these projects.



	
How have the results of this analysis been judged? What metrics? Compared to what benchmarks? How do you know whether a model is “good enough”?



	
In what situations does the organization use visualization, versus tabular reporting, versus predictive modeling (and similar machine learning tools)? For more advanced modeling approaches, how are the models calibrated and tested? Provide examples.





















Implementation


IT constraints are often the downfall of data projects. Consider them up front!



	
Provide some examples of past data-driven projects that have had successful and unsuccessful implementations, and provide details on the IT integration and human capital challenges and how they were faced.



	
How is the validity of analytical models confirmed prior to implementation? How are they benchmarked?



	
How are the performance requirements defined for analytical project implementations (in terms of speed and accuracy)?



	
For the proposed projects, provide information about the following:



	
What IT systems will be used to support the data-driven decisions and actions



	
How this IT integration will be done



	
What alternatives are available that may require less IT integration



	
What jobs will be impacted by the data-driven approaches



	
How these staff will be trained, monitored, and supported



	
What implementation challenges may occur



	
Which stakeholders will be needed to ensure implementation success, and how they might perceive these projects and their potential impact on them

























Maintenance


Unless you track your models carefully, you may find them leading you to disaster.



	
How are analytical systems built by third parties maintained? When are they transferred to internal teams?



	
How are the effectiveness of models tracked? When does the organization decide to rebuild models?



	
How are data changes communicated internally, and how are they managed?



	
How do data scientists work with software engineers to ensure that algorithms are correctly implemented?



	
When are test cases developed, and how are they maintained?



	
When is refactoring performed on code? How is the correctness and performance of models maintained and validated during refactoring?



	
How are maintenance and support requirements logged? How are these logs used?





















Constraints


For each project being considered, enumerate potential constraints that may impact the success of the project.



	
Will IT systems need to be modified or developed to use the results of the project? Are there simpler implementations that could avoid substantial IT changes? If so, how would using a simplified implementation result in a significant reduction in impact?



	
What regulatory constraints exist on data collection, analysis, or implementation? Have the relevant legislation and precedents been examined recently? What workarounds might exist?



	
What organizational constraints exist, including in culture, skills, or structure?



	
What management constraints are there?



	
Have there been any past analytics projects that may impact how the organization views data-driven approaches?




















  Index
A
	academic baseline datasets, Deep Learning Is Not Just for Image Classification
	accountability for ethics violations, Recourse and Accountability, Fairness, Accountability, and Transparency
	accuracy metric	classification models, Computing Metrics Using Broadcasting
	deeper models, Going Deeper
	improving while validation loss worse, Discriminative Learning Rates
	Mixup augmentation improving, Mixup
	more parameters, more accuracy, Deeper Architectures
	multi-label classifier, Binary Cross Entropy
	top 5 accuracy, A State-of-the-Art ResNet
	validation set, How Our Image Recognizer Works, How Our Image Recognizer Works
	validation set size, Validation Sets and Test Sets


	actionable outcomes via Drivetrain Approach, The Drivetrain Approach
	activation function	nonlinear layer, Adding a Nonlinearity, Jargon Recap
	softmax as, Viewing Activations and Labels, Unfreezing and Transfer Learning


	activation regularization, Activation Regularization and Temporal Activation Regularization
	activations	binary problems, Softmax
	definition, Jargon Recap
	forward pass, Calculating Gradients
	hidden state, Our First Recurrent Neural Network
	histogram of, 1cycle Training
	models returning, Creating an Optimizer, Binary Cross Entropy
	plotting during training, A Simple Baseline
	transforming into predictions, Viewing Activations and Labels


	ActivationStats, A Simple Baseline
	Adam, Adam
	AdaptiveAvgPool2d, Going Back to Imagenette
	aggregation bias, Aggregation bias
	algorithm buggy, ethics of, Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits, Recourse and Accountability, Addressing different types of bias
	Ali, Muhammad, Historical bias
	Amazon	batching production operations, Deploying Your App
	facial recognition bias, Integrating Machine Learning with Product Design
	recommendation systems, Recommendation systems


	Ameisin, Emmanuel, How to Avoid Disaster
	Angwin, Julia, Conclusion
	annealing learning rate, 1cycle Training	annealing callbacks, Scheduling the Learning Rate
	cosine annealing, 1cycle Training


	Apple APIs for apps under iOS, Deploying Your App
	applications, Going Deeper into fastai’s Layered API	(see also web applications)


	architecture of model	AWD-LSTM architecture, Fine-Tuning the Language Model
	AWD-LSTM for NLP RNNs, Regularizing an LSTM
	computer vision, Computer Vision	cnn_learner, cnn_learner
	Siamese network, A Siamese Network-A Siamese Network
	unet_learner, unet_learner


	deeper architectures, Deeper Architectures
	definition, A Bit of Deep Learning Jargon, Jargon Recap
	exporting models, Using the Model for Inference
	long short-term memory, Pixels: The Foundations of Computer Vision
	natural language processing, Natural Language Processing
	picking not so important, How Our Image Recognizer Works
	ResNet, How Our Image Recognizer Works, Deeper Architectures, ResNets	(see also ResNet architecture)


	tabular models, Tabular


	argument binding with partial function, Binary Cross Entropy
	Arkansas healthcare buggy algorithm (ethics), Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits, Recourse and Accountability, Addressing different types of bias
	arrays	about, NumPy Arrays and PyTorch Tensors
	APIs, NumPy Arrays and PyTorch Tensors
	arrays within arrays, NumPy Arrays and PyTorch Tensors
	column selected, NumPy Arrays and PyTorch Tensors
	creating an array, NumPy Arrays and PyTorch Tensors
	image section, Pixels: The Foundations of Computer Vision
	operators, NumPy Arrays and PyTorch Tensors
	row selected, NumPy Arrays and PyTorch Tensors
	slicing row or column, NumPy Arrays and PyTorch Tensors


	arrest record Google bias, Bias: Professor Latanya Sweeney “Arrested”
	artificial intelligence (see machine learning)
	Artificial Intelligence: A Frontier of Automation article, What Is Machine Learning?
	autocompletion in notebooks, Gathering Data
	autogenerated text (see text generation)
	autonomous vehicles, Deep Learning Is Not Just for Image Classification, The Drivetrain Approach
	AWD-LSTM architecture	activation regularization, Activation Regularization and Temporal Activation Regularization
	dropout, Dropout
	NLP RNNs, Fine-Tuning the Language Model, Regularizing an LSTM
	temporal activation regularization, Activation Regularization and Temporal Activation Regularization
	training weight-tied regularized LSTM, Training a Weight-Tied Regularized LSTM-Training a Weight-Tied Regularized LSTM


	axis of tensor or matrix, Jargon Recap
	Azure Cognitive Services (Microsoft), Gathering Data


B
	backpropagation	backward hook for custom behavior, CAM and Hooks
	training neural networks, Pixels: The Foundations of Computer Vision


	backpropagation through time (BPTT), Maintaining the State of an RNN	text classification, Natural Language Processing
	truncated BPTT, Maintaining the State of an RNN


	backward hook, CAM and Hooks
	backward pass, Calculating Gradients, Jargon Recap, The Forward and Backward Passes	gradients and, Gradients and the Backward Pass-Gradients and the Backward Pass


	bagging, Random Forests-Ensembling
	Barocas, Solon, Fairness, Accountability, and Transparency
	batch normalization, Batch Normalization
	batch operations	batch size, SGD and Mini-Batches	out-of-memory error, Deeper Architectures


	data augmentation, Data Augmentation
	GPU serving production model, Deploying Your App
	mini-batch, From Data to DataLoaders, Jargon Recap
	PyTorch single item or batch same code, Binary Cross Entropy
	resizing images, How Our Image Recognizer Works
	SGD and mini-batches, SGD and Mini-Batches
	show_batch method, Checking and Debugging a DataBlock
	texts into batches for language model, Putting Our Texts into Batches for a Language Model-Putting Our Texts into Batches for a Language Model


	BCELoss, Binary Cross Entropy
	BCEWithLogitsLoss, Binary Cross Entropy, Conclusion
	bear classifier (see image classifier models)
	beginning	actionable outcomes via Drivetrain Approach, The Drivetrain Approach
	begin in known areas, Starting Your Project
	begin with simple baseline model, First Try: Pixel Similarity, Checking and Debugging a DataBlock
	book website, Deep Learning in Practice: That’s a Wrap!
	deep learning applicability to problem, The State of Deep Learning
	experiments lead to projects, Starting Your Project
	first model, Your First Model-Running Your First Notebook	code for, How Our Image Recognizer Works-How Our Image Recognizer Works
	error rate, Running Your First Notebook
	tested, Running Your First Notebook


	first notebook, Running Your First Notebook-Running Your First Notebook
	GPU servers, Getting a GPU Deep Learning Server	(see also GPU deep learning servers)


	Jupyter Notebook, Getting a GPU Deep Learning Server	(see also Jupyter Notebook)


	pretrained model accuracy, How Our Image Recognizer Works
	process (see process end-to-end)
	steps toward starting, Deep Learning in Practice: That’s a Wrap!


	Bengio, Yoshua, Pixels: The Foundations of Computer Vision, Defining and Initializing a Layer
	Berkhahn, Felix, Categorical Embeddings, Combining Embeddings with Other Methods
	bias	about, Bias, Historical bias, Addressing different types of bias
	aggregation bias, Aggregation bias
	Bing Image Search example, Gathering Data
	facial recognition, Integrating Machine Learning with Product Design, Historical bias
	feedback loops, Limitations Inherent to Machine Learning, Unforeseen Consequences and Feedback Loops	arrest rates on racial grounds, Unforeseen Consequences and Feedback Loops
	recommendation system, Feedback Loops: YouTube’s Recommendation System


	gender and, The Power of Diversity	(see also gender)


	Google advertising, Bias: Professor Latanya Sweeney “Arrested”
	historical bias, Historical bias-Historical bias
	measurement bias, Measurement bias
	mitigation, Addressing different types of bias
	racial bias, Historical bias	(see also racial bias)


	representation bias, Representation bias, Bootstrapping a Collaborative Filtering Model
	socioeconomic bias, Addressing different types of bias


	binary cross entropy loss function, Constructing a DataBlock-Binary Cross Entropy
	binary database format as data type, From Dogs and Cats to Pet Breeds
	Binder free app hosting, Deploying Your App
	Bing Image Search for gathering data, Gathering Data	API, Gathering Data
	biases in data gathering, Gathering Data


	Bittman, Ladislav, Disinformation
	Black, Edwin, Why Does This Matter?
	blogging about deep learning journey	about, Get Writing!
	browser-based interface, Blogging with GitHub Pages
	creating posts, Creating Posts
	GitHub account, Creating the Repository
	GitHub Pages host, Blogging with GitHub Pages
	home page setup, Setting Up Your Home Page
	Jupyter for blogging, Jupyter for Blogging
	synchronizing GitHub and computer, Synchronizing GitHub and Your Computer


	body of a model, cnn_learner	cutting model, cnn_learner


	The Book of Why (Pearl and Mackenzie), Partial Dependence
	book updates on website, Deep Learning in Practice: That’s a Wrap!
	boosting, Boosting
	bootstrapping problem of new users, Bootstrapping a Collaborative Filtering Model
	BPTT (see backpropagation through time)
	Breiman, Leo, Random Forests
	broadcasting, Computing Metrics Using Broadcasting, Computing Metrics Using Broadcasting, Broadcasting	broadcasting with a scalar, Broadcasting with a scalar
	rules of, Broadcasting rules
	vector to matrix, Broadcasting a vector to a matrix-Broadcasting a vector to a matrix


	Brostow, Gabriel J., Deep Learning Is Not Just for Image Classification
	buggy algorithm ethics, Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits, Recourse and Accountability, Addressing different types of bias
	Buolamwini, Joy, Historical bias
	button click event handler, Creating a Notebook App from the Model


C
	C programming language, NumPy Arrays and PyTorch Tensors
	calculus and SymPy, Gradients and the Backward Pass
	California gang database (ethics), Recourse and Accountability
	callbacks	annealing, Scheduling the Learning Rate
	building Learner class from scratch, Callbacks
	creating, Creating a Callback
	exceptions, Callback Ordering and Exceptions
	HookCallback, CAM and Hooks
	language model, Maintaining the State of an RNN
	Learner, Mixup, A Simple Baseline
	mid-level API, Going Deeper into fastai’s Layered API
	training process, Callbacks


	Callison-Burch, Chris, Deep Learning Is Not Just for Image Classification
	CAM (see class activation map)
	capacity of a model, Deeper Architectures
	car safety for ethics inspiration, Cars: A Historical Precedent
	cardinality	decision tree ensembles and, Beyond Deep Learning
	definition, Beyond Deep Learning
	entity embedding and, Categorical Embeddings


	casting in PyTorch, First Try: Pixel Similarity
	categorical outcome cross-entropy loss, Checking and Debugging a DataBlock
	categorical variables	cardinality and decision tree ensembles, Beyond Deep Learning
	definition, Categorical Embeddings
	embedding, Creating the DataLoaders-Weight Decay, Categorical Variables	continuous variables from, Categorical Embeddings
	decision trees, Decision Trees
	tabular data, Categorical Embeddings-Categorical Embeddings
	tabular dataset, The Dataset-Look at the Data
	tabular dataset prep, Handling Dates-Using TabularPandas and TabularProc


	predicting sales from stores (see tabular data)
	recommendation system model (see collaborative filtering)
	time series dataset splitting, Using TabularPandas and TabularProc	(see also tabular data)




	CategoryBlock	image classifier, From Data to DataLoaders, From Dogs and Cats to Pet Breeds
	MultiCategoryBlock, Constructing a DataBlock


	cats and dogs first model, Your First Model-Running Your First Notebook	dataset, Running Your First Notebook, How Our Image Recognizer Works


	Ceglowski, Maciej, The Effectiveness of Regulation
	cells in notebooks	copying, Running Your First Notebook
	execution order, Deep Learning Is Not Just for Image Classification
	first cell CLICK ME, Running Your First Notebook, Deep Learning Is Not Just for Image Classification
	image output by, Running Your First Notebook
	Markdown, Running Your First Notebook
	table output by, Running Your First Notebook
	text ouput by, Running Your First Notebook
	types of, Running Your First Notebook


	census data weaponization, Analyze a Project You Are Working On
	center of person’s face in image (see key point model)
	Chaslot, Guillaume, Feedback Loops
	Chomsky, Noam, From Dogs and Cats to Pet Breeds
	Chou, Tracy, The Power of Diversity
	CIFAR10 dataset, Imagenette
	Cipolla, Roberto, Deep Learning Is Not Just for Image Classification
	class activation map (CAM)	about, CAM and Hooks
	gradient CAM, Gradient CAM
	hooks, CAM and Hooks-CAM and Hooks


	class methods, Language Model Using DataBlock
	classes in object-oriented programming, Collaborative Filtering from Scratch	dunder init, Collaborative Filtering from Scratch


	classification models definition, How Our Image Recognizer Works
	click event handler, Creating a Notebook App from the Model
	CNN (see convolutional neural network)
	cnn_learner	architecture, cnn_learner
	first model, How Our Image Recognizer Works
	image classifier model, Training Your Model, and Using It to Clean Your Data
	loss function parameter, Training a Model
	multi-label classifier, Binary Cross Entropy
	normalization of data, Normalization


	collaborative filtering	about, Collaborative Filtering Deep Dive
	bootstrapping problem, Bootstrapping a Collaborative Filtering Model
	building from scratch, Collaborative Filtering from Scratch-Weight Decay
	collab_learner, Using fastai.collab
	DataLoaders, Creating the DataLoaders
	dataset, A First Look at the Data
	deep learning model, Deep Learning for Collaborative Filtering
	embedding, Creating the DataLoaders-Weight Decay	built from scratch, Creating Our Own Embedding Module-Deep Learning for Collaborative Filtering
	embedding distance, Embedding Distance, Categorical Embeddings


	fitting model, Collaborative Filtering from Scratch
	interpretting embeddings and biases, Interpreting Embeddings and Biases
	items rather than products, Collaborative Filtering Deep Dive
	latent factors, Collaborative Filtering Deep Dive	embedding, Creating the DataLoaders-Weight Decay


	layers via printing model, Using fastai.collab
	learning latent factors, Learning the Latent Factors	embedding, Creating the DataLoaders-Weight Decay


	probabilistic matrix factorization, Bootstrapping a Collaborative Filtering Model
	skew from small number of users, Bootstrapping a Collaborative Filtering Model
	structuring model, A First Look at the Data
	tables as matrices, Creating the DataLoaders	look-up index, Creating the DataLoaders




	collab_learner, Using fastai.collab
	color image as rank-3 tensor, Color Images
	color_dim, 1cycle Training
	community support, Concluding Thoughts
	COMPAS algorithm, Historical bias, Conclusion
	computer vision models	architecture, Computer Vision	cnn_learner, cnn_learner
	Siamese network, A Siamese Network-A Siamese Network
	unet_learner, unet_learner


	autonomous vehicles localizing objects, Deep Learning Is Not Just for Image Classification
	convolutional neural networks for, How Our Image Recognizer Works
	current state of, Computer vision
	dataset image representation rule, Image Recognizers Can Tackle Non-Image Tasks
	datasets for, Imagenette	labels, How Our Image Recognizer Works


	examples of, Deep Learning Is for Everyone	(see also image classifier models)


	fastai vision library in first model, How Our Image Recognizer Works
	finding edges via convolution, The Magic of Convolutions
	image basics, Pixels: The Foundations of Computer Vision-Pixels: The Foundations of Computer Vision
	image classifier (see image classifier models)
	labels in datasets, How Our Image Recognizer Works
	non-image tasks, Image Recognizers Can Tackle Non-Image Tasks-Image Recognizers Can Tackle Non-Image Tasks, Deep Learning Is Not Just for Image Classification
	object detection, Computer vision, Historical bias
	pixels as foundation, Pixels: The Foundations of Computer Vision-Pixels: The Foundations of Computer Vision
	pretrained model weight values, How Our Image Recognizer Works
	Python Imaging Library, Pixels: The Foundations of Computer Vision
	ResNets for, Building a Modern CNN: ResNet-Skip Connections
	self-supervised learning for, NLP Deep Dive: RNNs


	concatenating categorical and continuous variables, Categorical Embeddings	Google Play, Categorical Embeddings


	confusion matrix with image classifiers, Training Your Model, and Using It to Clean Your Data, Model Interpretation
	conspiracy theory feedback loop, Feedback Loops: YouTube’s Recommendation System, Feedback Loops, Feedback Loops
	context manager, CAM and Hooks
	continuous variables	definition, Categorical Embeddings
	embedded categorical combined with, Categorical Embeddings
	embedding transforming categorical into, Categorical Embeddings


	convolutional neural network (CNN)	1cycle training, 1cycle Training
	about, Unfreezing and Transfer Learning, Our First Convolutional Neural Network
	batch size increased, Increase Batch Size
	building a CNN, Creating the CNN-Batch Normalization	batch normalization, Batch Normalization
	channels, Creating the CNN
	color images, Color Images-Color Images
	convolution arithmetic, Understanding Convolution Arithmetic
	dataset, Improving Training Stability
	features, Creating the CNN
	receptive fields, Receptive Fields


	building Learner class from scratch, Simple CNN
	building ResNet CNN, Building a Modern CNN: ResNet-Skip Connections
	computer vision models, How Our Image Recognizer Works
	convolution as matrix multiplication, Understanding the Convolution Equations
	convolution described, The Magic of Convolutions, Mapping a Convolutional Kernel
	definition, Jargon Recap
	equations, Understanding the Convolution Equations
	first model, How Our Image Recognizer Works
	fully convolutional networks, Going Back to Imagenette, Going Back to Imagenette
	head, cnn_learner
	kernel, The Magic of Convolutions-The Magic of Convolutions	convolution described, Mapping a Convolutional Kernel
	mapping, Mapping a Convolutional Kernel-Mapping a Convolutional Kernel


	learning rate for, Going Back to Imagenette
	nested list of comprehensions, Mapping a Convolutional Kernel
	padding, Strides and Padding
	pretrained parameter, How Our Image Recognizer Works	last layer and, How Our Image Recognizer Works


	PyTorch convolutions, Convolutions in PyTorch
	refactoring, Creating the CNN
	stem, A State-of-the-Art ResNet
	top 5 accuracy, A State-of-the-Art ResNet
	training, Creating the CNN	all digits, A Simple Baseline-Batch Normalization
	more stable, A Simple Baseline-Batch Normalization


	visualizing learning, What Our Image Recognizer Learned
	Yann Lecun’s work, Pixels: The Foundations of Computer Vision


	cosine annealing, 1cycle Training
	CPU servers, Deploying Your App, Deploying Your App
	crash test dummies and gender, Cars: A Historical Precedent
	credit report system errors (ethics), Recourse and Accountability
	cross-entropy loss	about, Checking and Debugging a DataBlock, Taking the log, Conclusion
	gradient, Taking the log
	image classifier, Checking and Debugging a DataBlock-Taking the log
	image data and categorical outcome, Checking and Debugging a DataBlock


	CSV data for models	multi-label classification, The Data-The Data
	as tabular data, Deep Learning Is Not Just for Image Classification	(see also tabular data)




	CT scan stroke analysis, Combining text and images
	cutting network, cnn_learner
	cyclical momentum, 1cycle Training


D
	data augmentation	applied to coordinates, Assembling the Data
	definition, Computer vision, Data Augmentation
	image classifier model, Data Augmentation
	Mixup, Mixup
	presizing, From Dogs and Cats to Pet Breeds
	progressive resizing as, Progressive Resizing
	test time augmentation, Test Time Augmentation
	text data complications, Regularizing an LSTM


	data leakage of illegitimate information, Data Leakage	missing values as, Data Leakage


	data project checklist	about, Data Project Checklist
	analytics, Analytics
	constraints, Constraints
	data, Data
	data scientists, Data Scientists
	implementation, Implementation
	maintenance, Maintenance
	strategy, Strategy


	database data for models, Deep Learning Is Not Just for Image Classification	binary database format as data type, From Dogs and Cats to Pet Breeds


	DataBlock	checking, Checking and Debugging a DataBlock-Checking and Debugging a DataBlock
	DataFrame to DataLoaders, Constructing a DataBlock-Constructing a DataBlock
	debugging, Checking and Debugging a DataBlock, Checking and Debugging a DataBlock, Constructing a DataBlock, Constructing a DataBlock, Language Model Using DataBlock
	image classifier model, From Data to DataLoaders
	image regression example, Regression-Training a Model
	language model using, Language Model Using DataBlock
	mid-level API foundation, Data Munging with fastai’s Mid-Level API	(see also mid-level API)


	movie review classifier, Creating the Classifier DataLoaders
	presizing, From Dogs and Cats to Pet Breeds


	DataFrame	color-code image values, Pixels: The Foundations of Computer Vision
	DataLoaders object from, Constructing a DataBlock-Constructing a DataBlock
	multi-label CSV file, The Data
	TabularPandas class, Using TabularPandas and TabularProc


	DataLoader iterator, Constructing a DataBlock	building Learner class from scratch, Dataset


	DataLoaders	customization, From Data to DataLoaders
	DataFrame converted to, Constructing a DataBlock-Constructing a DataBlock
	definition, Constructing a DataBlock
	export method, Using the Model for Inference
	image classifier model, From Data to DataLoaders-From Data to DataLoaders
	movie review classifier, Creating the Classifier DataLoaders
	text classifier, Deep Learning Is Not Just for Image Classification, Deep Learning Is Not Just for Image Classification, Going Deeper into fastai’s Layered API


	Dataset collection	building from scratch, Dataset
	definition, Constructing a DataBlock


	datasets	academic baselines, Deep Learning Is Not Just for Image Classification
	best models for majority of, Beyond Deep Learning
	bias (see bias)
	Bing Image Search for gathering data, Gathering Data
	Blue Book for Bulldozers Kaggle competition, The Dataset
	bootstrapping problem of new users, Bootstrapping a Collaborative Filtering Model
	CIFAR10 dataset, Imagenette
	cleaning	before versus after training, Training Your Model, and Using It to Clean Your Data, Training Your Model, and Using It to Clean Your Data
	fastai GUI for, Training Your Model, and Using It to Clean Your Data
	time required for, Training Your Model, and Using It to Clean Your Data


	computer vision, Imagenette	labels, How Our Image Recognizer Works


	cut-down versions of popular, Deep Learning Is Not Just for Image Classification
	data augmentation definition, Computer vision, Data Augmentation
	data availability, Starting Your Project
	data leakage of illegitimate information, Data Leakage
	data product design integrated with ML, Integrating Machine Learning with Product Design
	date handling, Handling Dates
	definition, Running Your First Notebook
	demographics, Deep Learning Is Not Just for Image Classification
	dependent variable definition, A Bit of Deep Learning Jargon
	domain shift, How to Avoid Disaster
	download first model, Running Your First Notebook, How Our Image Recognizer Works
	ethics, Data Ethics	errors in dataset, Recourse and Accountability
	examples of, Key Examples for Data Ethics
	use of data, Analyze a Project You Are Working On


	examining data importance, Look at the Data, Our Language Model in PyTorch, Improving Training Stability
	facial recognition across races, Historical bias
	feature engineering, The Magic of Convolutions
	filename extraction, From Dogs and Cats to Pet Breeds-From Dogs and Cats to Pet Breeds	regular expressions, From Dogs and Cats to Pet Breeds


	freely available, Running Your First Notebook
	gathering data, Gathering Data-Gathering Data
	handwritten digits, Pixels: The Foundations of Computer Vision, Imagenette, Improving Training Stability, Going Back to Imagenette
	Human Numbers, The Data
	image representation rule of thumb, Image Recognizers Can Tackle Non-Image Tasks
	ImageNet dataset, Imagenette, Going Back to Imagenette	Imagenette subset, Training a State-of-the-Art Model, Going Back to Imagenette, Data
	top 5 accuracy, A State-of-the-Art ResNet


	IMDb Large Movie Review, Deep Learning Is Not Just for Image Classification
	independent variable definition, A Bit of Deep Learning Jargon
	Kaggle as source, Kaggle Competitions
	Kinect Head Pose, Assembling the Data
	label importance, Limitations Inherent to Machine Learning	(see also labels)


	missing values as data leakage, Data Leakage
	MNIST handwritten digits dataset, Pixels: The Foundations of Computer Vision, Imagenette, Improving Training Stability, Going Back to Imagenette
	MovieLens, Deep Learning Is Not Just for Image Classification, A First Look at the Data
	normalization of data, Normalization	statistics distributed with model, Normalization


	other data types, Other data types
	out-of-domain data, Computer vision, How to Avoid Disaster, The Extrapolation Problem
	PASCAL multi-label dataset, The Data
	path to dataset, How Our Image Recognizer Works
	pet images, Running Your First Notebook, How Our Image Recognizer Works, From Dogs and Cats to Pet Breeds, Applying the Mid-Level Data API: SiamesePair
	pretrained model weight values, How Our Image Recognizer Works
	racial balance of, Historical bias
	save method, Using TabularPandas and TabularProc
	structure of, How Our Image Recognizer Works
	tabular data for models	about, Deep Learning Is Not Just for Image Classification, Tabular Modeling Deep Dive
	architecture, Tabular
	current state of, Tabular data
	as data type, From Dogs and Cats to Pet Breeds
	deep dive into (see tabular data)
	multi-label classification, The Data
	recommendation systems as, Recommendation systems


	test set, Validation Sets and Test Sets
	training set, How Our Image Recognizer Works, How Our Image Recognizer Works, Jargon Recap
	training, validation, test, Use Judgment in Defining Test Sets-Use Judgment in Defining Test Sets
	types of data, From Dogs and Cats to Pet Breeds
	validation set, How Our Image Recognizer Works, How Our Image Recognizer Works, Jargon Recap, Validation Sets and Test Sets
	validation set defined, From Data to DataLoaders


	Datasets iterator, Constructing a DataBlock	Transforms, Datasets


	date handling in tabular data, Handling Dates
	De-Arteaga, Maria, Representation bias
	debugging	DataBlock, Checking and Debugging a DataBlock, Constructing a DataBlock, Constructing a DataBlock, Language Model Using DataBlock
	help with errors, Gathering Data
	out-of-memory error, Deeper Architectures
	summary method for, Checking and Debugging a DataBlock, Constructing a DataBlock, Language Model Using DataBlock


	decision trees	about, Beyond Deep Learning, Decision Trees
	displaying tree, Creating the Decision Tree-Creating the Decision Tree
	libraries for, Beyond Deep Learning
	overfitting, Creating the Decision Tree
	random forests, Random Forests-Ensembling	creating a random forest, Creating a Random Forest
	data leakage, Data Leakage
	ensembling, Ensembling
	ensembling, boosting, Boosting
	extrapolation problem, Extrapolation and Neural Networks
	feature importances, Feature Importance
	hyperparameter insensitivity, Creating a Random Forest
	model interpretation, Model Interpretation-Tree Interpreter
	out-of-bag error, Creating a Random Forest
	out-of-domain data, The Extrapolation Problem
	partial dependence, Partial Dependence
	removing low-importance variables, Removing Low-Importance Variables
	removing redundant features, Removing Redundant Features
	tree interpreter, Tree Interpreter
	tree variance for prediction confidence, Tree Variance for Prediction Confidence


	training, Decision Trees-Creating the Decision Tree	creating decision tree, Creating the Decision Tree
	data preparation, Handling Dates-Using TabularPandas and TabularProc
	displaying tree, Creating the Decision Tree-Creating the Decision Tree




	decode method, Transforms
	deep learning	about, Foreword, Deep Learning Is for Everyone-Deep Learning Is for Everyone
	about the importance of parameters, How Our Image Recognizer Works
	architecture not so important, How Our Image Recognizer Works
	beyond deep learning, Beyond Deep Learning
	blogging about journey (see blogging)
	capabilities and constraints, The Practice of Deep Learning
	community support, A Note About Twitter, Concluding Thoughts
	current state of, The State of Deep Learning
	dataset image representation rule, Image Recognizers Can Tackle Non-Image Tasks
	history, Pixels: The Foundations of Computer Vision
	how to learn, How to Learn Deep Learning-Your Projects and Your Mindset
	image recognition (see image classifier models)
	as machine learning, What Is Machine Learning?, Jargon Recap
	machine learning visualized, What Our Image Recognizer Learned
	manual process in parallel, How to Avoid Disaster
	model and human interaction, Combining text and images, How to Avoid Disaster
	neural networks beyond understanding, How to Avoid Disaster
	neural networks used, Deep Learning Is for Everyone, What Is Machine Learning?	(see also neural networks)


	non-image tasks, Image Recognizers Can Tackle Non-Image Tasks-Image Recognizers Can Tackle Non-Image Tasks, Deep Learning Is Not Just for Image Classification
	overview, Jargon Recap
	predicting sales from stores, Categorical Embeddings	(see also tabular data)


	process of creating application (see process end-to-end)
	risk mitigation, How to Avoid Disaster
	scikit-learn library instead, Beyond Deep Learning
	server requirements, Getting a GPU Deep Learning Server
	tabular data needing more, Categorical Embeddings
	terminology, A Bit of Deep Learning Jargon, Jargon Recap, Jargon Recap
	Twitter for help, A Note About Twitter


	deeper models having more layers, Going Deeper
	delegates, Deep Learning for Collaborative Filtering
	demographics dataset, Deep Learning Is Not Just for Image Classification
	dependent variable	definition, A Bit of Deep Learning Jargon, From Data to DataLoaders
	distracted driver model, Use Judgment in Defining Test Sets
	model defined by, Regression
	prediction variable importance, Look at the Data
	viewing in mini-batch, Viewing Activations and Labels
	as y, From Data to DataLoaders


	deployment	app from notebook, Turning Your Notebook into a Real App
	Binder free app hosting, Deploying Your App
	CPU-based server, Deploying Your App
	exporting model, Using the Model for Inference	export.pkl file, Using the Model for Inference


	mobile devices, Deploying Your App
	prediction inference, Using the Model for Inference
	Raspberry Pi, Deploying Your App
	risk mitigation, How to Avoid Disaster
	unforeseen challenges, Unforeseen Consequences and Feedback Loops
	web application, Turning Your Model into an Online Application-Deploying Your App	deployment, Deploying Your App-Deploying Your App
	disaster avoidance, How to Avoid Disaster


	web resource discussing, How to Avoid Disaster


	derivative of a function, Calculating Gradients	backpropagation, Calculating Gradients


	DeVries, Terrance, Historical bias
	diabetes data aggregation bias, Aggregation bias
	digital signature, Disinformation
	dimension multiple meanings, First Try: Pixel Similarity
	DiResta, Renee, Feedback Loops
	disaster avoidance with web applications, How to Avoid Disaster
	discriminative learning rates, Unfreezing and Transfer Learning
	disinformation, Text (natural language processing), Disinformation, Disinformation and Language Models	identity generation, Disinformation and Language Models


	diversity against ethical risks, The Power of Diversity
	doc for method documentation, Deep Learning Is Not Just for Image Classification, Gathering Data
	dogs and cats first model, Your First Model-Running Your First Notebook	dataset, Running Your First Notebook, How Our Image Recognizer Works


	domain shift, How to Avoid Disaster
	dot product of vectors, A First Look at the Data, Categorical Embeddings
	download_images, Gathering Data
	Drivetrain Approach for actionable outcomes, The Drivetrain Approach
	dropout, Dropout
	Dumoulin, Vincent, Mapping a Convolutional Kernel
	dunder init, Collaborative Filtering from Scratch
	Durbin, Meredith, Fairness, Accountability, and Transparency


E
	early stopping, Selecting the Number of Epochs
	Einstein summation, Einstein Summation
	electronic health record measurement bias, Measurement bias
	elementwise arithmetic, Elementwise Arithmetic
	embedding, Creating the DataLoaders-Weight Decay	built from scratch, Creating Our Own Embedding Module-Deep Learning for Collaborative Filtering
	categorical variables transformed into continuous, Categorical Embeddings
	combining with other methods, Combining Embeddings with Other Methods
	continuous values, continuous input, Categorical Embeddings
	delegates, Deep Learning for Collaborative Filtering
	embedding distance, Embedding Distance, Categorical Embeddings	dates on calendar and, Categorical Embeddings
	geographic distance matching, Categorical Embeddings


	embedding layer, Categorical Embeddings
	embedding matrix, Creating the DataLoaders
	entity embedding, Categorical Embeddings
	kwargs, Deep Learning for Collaborative Filtering
	tabular data with categorical columns, Using a Neural Network


	encoder, Saving and Loading Models
	end-to-end process (see process end-to-end)
	Enlitic company malignant tumor identification, Deep Learning Is for Everyone, Who We Are
	ensembles of decision trees (see decision trees)
	ensembling random forests, Ensembling	boosting, Boosting


	entity embedding, Categorical Embeddings
	epochs	definition, How Our Image Recognizer Works, How Our Image Recognizer Works, Jargon Recap
	early stopping, Selecting the Number of Epochs
	fitting models, Checking and Debugging a DataBlock
	image cropping, From Data to DataLoaders	test time augmentation, Test Time Augmentation


	number of, Selecting the Number of Epochs
	overfitting and, How Our Image Recognizer Works


	error debugging, Gathering Data	out-of-memory error, Deeper Architectures


	error rate, Running Your First Notebook, How Our Image Recognizer Works
	errors in data (ethics), Recourse and Accountability
	escape key for command/edit mode, Running Your First Notebook
	Estola, Evan, Feedback Loops
	ethics	accountability, Recourse and Accountability
	addressing ethical issues, Identifying and Addressing Ethical Issues	early stages of, Conclusion
	ethical lenses, Ethical lenses
	fairness, accountability, transparency, Fairness, Accountability, and Transparency
	policy’s role, Role of Policy-Cars: A Historical Precedent
	power of diversity, The Power of Diversity
	processes to implement, Processes to Implement


	bias	about, Bias, Addressing different types of bias
	aggregation bias, Aggregation bias
	facial recognition, Integrating Machine Learning with Product Design, Historical bias
	geo-diversity, Historical bias
	historical bias, Historical bias-Historical bias
	measurement bias, Measurement bias
	mitigation, Addressing different types of bias
	natural language processing, Historical bias
	racial bias (see racial bias)
	representation bias, Representation bias
	socioeconomic bias, Addressing different types of bias


	buggy algorithm, Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits, Recourse and Accountability, Addressing different types of bias
	car safety inspiration, Cars: A Historical Precedent
	consideration of project as whole, Why Does This Matter?
	data ethics, Data Ethics	examples of, Key Examples for Data Ethics


	description of, Data Ethics
	disinformation, Text (natural language processing), Disinformation, Disinformation and Language Models
	healthcare benefits buggy algorithm, Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits, Recourse and Accountability
	IBM and Nazi Germany, Why Does This Matter?, Analyze a Project You Are Working On
	identifying ethical issues, Identifying and Addressing Ethical Issues
	importance of, Why Does This Matter?
	medicine and text generation, Text (natural language processing)
	product design integrated with ML, Integrating Machine Learning with Product Design
	recourse, Recourse and Accountability
	Volkswagen emission test cheating, Why Does This Matter?
	YouTube recommendation feedback loops, Feedback Loops: YouTube’s Recommendation System, Feedback Loops


	Etzioni, Oren, Disinformation
	evaluating models (see testing models)
	exponential function (exp), Softmax
	export method, Using the Model for Inference	export.pkl file, Using the Model for Inference




F
	F (torch.nn.functional), First Try: Pixel Similarity, Convolutions in PyTorch
	face center in image (see key point model)
	Facebook	bias in advertisements, Historical bias
	feedback loop, Feedback Loops
	genocide and, The Effectiveness of Regulation
	hate speech law compliance, The Effectiveness of Regulation


	facial recognition bias, Integrating Machine Learning with Product Design, Historical bias
	factory methods versus customization, From Data to DataLoaders
	Fairness and Machine Learning online book (Barocas, Hardt, and Narayanan), Fairness, Accountability, and Transparency
	fairness, accountability, and transparency, Fairness, Accountability, and Transparency
	fast.ai ML courses	about, Foreword, Who We Are, Who We Are
	free online course, Concluding Thoughts
	image recognition applications, Gathering Data
	website, What You Need to Know


	fastai software library	about, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)
	accuracy with validation set, How Our Image Recognizer Works
	data augmentation, Assembling the Data
	data cleaning GUI, Training Your Model, and Using It to Clean Your Data
	documentation for methods, Deep Learning Is Not Just for Image Classification
	forums for community support, Concluding Thoughts
	import efficiency in notebook, How Our Image Recognizer Works
	L class returning collections, From Dogs and Cats to Pet Breeds
	labeling methods, How Our Image Recognizer Works
	layered API, Going Deeper into fastai’s Layered API
	loss function selected by, Checking and Debugging a DataBlock, Binary Cross Entropy, Training a Model, Conclusion
	metrics, How Our Image Recognizer Works
	Tabular classes, Using a Neural Network
	Transforms, How Our Image Recognizer Works
	validation set, How Our Image Recognizer Works, How Our Image Recognizer Works
	version 2 in book, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)


	Fauqueur, Julien, Deep Learning Is Not Just for Image Classification
	feature engineering, The Magic of Convolutions
	feedback loops	arrest rates on racial grounds, Unforeseen Consequences and Feedback Loops
	conspiracy theories fed by, Feedback Loops: YouTube’s Recommendation System, Feedback Loops, Feedback Loops
	description, Limitations Inherent to Machine Learning, Unforeseen Consequences and Feedback Loops
	Facebook and conspiracy theories, Feedback Loops
	metrics driving algorithms, Feedback Loops
	recommendation system ethics, Feedback Loops: YouTube’s Recommendation System, Feedback Loops
	skew from small number of users, Bootstrapping a Collaborative Filtering Model


	Fergus, Rob, What Our Image Recognizer Learned, Unfreezing and Transfer Learning
	Feynman, Richard, Your Projects and Your Mindset
	file upload to web widget, Creating a Notebook App from the Model
	files as data type, From Dogs and Cats to Pet Breeds
	fine-tuning models	definition, How Our Image Recognizer Works, Jargon Recap
	fine-tune method, How Our Image Recognizer Works
	first model, Running Your First Notebook, How Our Image Recognizer Works
	image classifier model, Training Your Model, and Using It to Clean Your Data
	natural language models, NLP Deep Dive: RNNs	classifier, Fine-Tuning the Classifier
	language model, Fine-Tuning the Language Model-Saving and Loading Models


	non-pretrained, Deep Learning Is Not Just for Image Classification
	pretrained models, How Our Image Recognizer Works, Unfreezing and Transfer Learning	language model, Fine-Tuning the Language Model-Saving and Loading Models
	transfer learning, Unfreezing and Transfer Learning




	first model, Your First Model-Running Your First Notebook	code for, How Our Image Recognizer Works-How Our Image Recognizer Works
	convolutional neural network, How Our Image Recognizer Works
	as deep learning, What Is Machine Learning?
	error rate, Running Your First Notebook
	fine-tuning, Running Your First Notebook, How Our Image Recognizer Works
	GPU servers, Getting a GPU Deep Learning Server
	machine learning visualized, What Our Image Recognizer Learned
	as neural net, What Is a Neural Network?
	process of creating application (see process end-to-end)
	tested, Running Your First Notebook
	Transforms, How Our Image Recognizer Works


	fisheries monitoring model competition, Use Judgment in Defining Test Sets
	fitting models	collaborative filtering system, Collaborative Filtering from Scratch
	definition, Jargon Recap
	fit method, How Our Image Recognizer Works
	pretrained models, How Our Image Recognizer Works	(see also fine-tuning models)


	table of results of each epoch, Checking and Debugging a DataBlock


	fix_html, Word Tokenization with fastai
	floating point numbers	casting in PyTorch, First Try: Pixel Similarity
	half-precision floating point (fp16), Deeper Architectures


	forgery via AI, Disinformation
	forward hook, CAM and Hooks
	forward method, Collaborative Filtering from Scratch
	forward pass, Calculating Gradients, Jargon Recap, The Forward and Backward Passes	defining and initializing a layer, Defining and Initializing a Layer-Defining and Initializing a Layer


	fraud detection, Image Recognizers Can Tackle Non-Image Tasks
	freezing pretrained models, Unfreezing and Transfer Learning
	fully convolutional networks, Going Back to Imagenette, Going Back to Imagenette


G
	Gebru, Timnit, Cars: A Historical Precedent
	gender	bias in Facebook advertising, Historical bias
	crash test dummies, Cars: A Historical Precedent
	facial recognition accuracy, Historical bias
	harassment online, The Power of Diversity
	Meetup recommendation algorithm, Feedback Loops
	occupations and, Historical bias, Representation bias
	representation bias, Representation bias
	tech industry, The Power of Diversity


	generalization by models, Jargon Recap, Extrapolation and Neural Networks
	genocide and Facebook, The Effectiveness of Regulation
	geo-diveristy of datasets, Historical bias
	Géron, Aurélien, Feedback Loops
	get_dummies for categorical variables, Categorical Variables
	get_preds function, Viewing Activations and Labels
	Giomo, Stefano, 1cycle Training
	GitHub Pages hosting blog, Blogging with GitHub Pages	account creation, Creating the Repository
	synchronizing GitHub and computer, Synchronizing GitHub and Your Computer


	Glorot, Xavier, Defining and Initializing a Layer
	Google	bias	advertising bias, Bias: Professor Latanya Sweeney “Arrested”
	Photos label, Historical bias
	Translate, Historical bias


	Play concatenation approach, Categorical Embeddings
	YouTube recommendation feedback loops, Feedback Loops: YouTube’s Recommendation System, Feedback Loops


	GPU deep learning servers	about, Getting a GPU Deep Learning Server
	complexity of running, Deploying Your App
	CPU servers cheaper for production, Deploying Your App
	GPU acceleration, Tabular data
	inference complexity, Deploying Your App
	production model and, Deploying Your App
	PyTorch tensors optimized for, NumPy Arrays and PyTorch Tensors
	recommended options, Getting a GPU Deep Learning Server
	tensor core support, Deeper Architectures


	gradient boosted decision trees (GBDTs), Boosting
	gradient boosting machines (GBMs), Boosting
	gradient descent, Summarizing Gradient Descent, Jargon Recap
	gradients	backward pass and, Gradients and the Backward Pass-Gradients and the Backward Pass
	calculating, Calculating Gradients-Calculating Gradients
	cross-entropy loss, Taking the log
	definition, Jargon Recap
	definition as rise/run, Calculating Gradients, The MNIST Loss Function
	gradient class activation map, Gradient CAM


	Gramian Angular Difference Field (GADF), Image Recognizers Can Tackle Non-Image Tasks
	graphics processing unit (GPU), Getting a GPU Deep Learning Server
	Greek letters, Mixup
	Guo, Cheng, Categorical Embeddings, Combining Embeddings with Other Methods
	Guttag, John, Bias


H
	H for help, Running Your First Notebook
	half-precision floating point (fp16), Deeper Architectures
	handwritten digits dataset, Pixels: The Foundations of Computer Vision, Imagenette, Improving Training Stability, Going Back to Imagenette	downloading, Pixels: The Foundations of Computer Vision


	handwritten text read by models, Pixels: The Foundations of Computer Vision	(see also numerical digit classifier)


	Hardt, Mortiz, Fairness, Accountability, and Transparency
	He, Kaiming, ResNets, Defining and Initializing a Layer
	He, Tong, A State-of-the-Art ResNet
	head of model	cutting model, cnn_learner
	definition, How Our Image Recognizer Works, How Our Image Recognizer Works, cnn_learner
	pretrained models and, How Our Image Recognizer Works
	Siamese model with custom head, A Siamese Network-A Siamese Network


	head pose dataset, Assembling the Data	format of pose text file, Assembling the Data


	healthcare benefits buggy algorithm (ethics), Bugs and Recourse: Buggy Algorithm Used for Healthcare Benefits, Recourse and Accountability, Addressing different types of bias
	help by pressing H, Running Your First Notebook
	hidden state, Our First Recurrent Neural Network
	Hinton, Geoffrey, Pixels: The Foundations of Computer Vision, Dropout, RMSProp
	historical bias, Historical bias-Historical bias
	history	deep learning, Pixels: The Foundations of Computer Vision
	machine learning, What Is Machine Learning?
	neural networks, Neural Networks: A Brief History, The Learning Rate Finder


	Hitler, Adolf, Why Does This Matter?, Analyze a Project You Are Working On
	Hochreiter, Sepp, Pixels: The Foundations of Computer Vision
	HookCallback, CAM and Hooks
	hooks in PyTorch, CAM and Hooks-CAM and Hooks	Hook class as context manager, CAM and Hooks
	memory leak, CAM and Hooks


	horizontal scaling, Deploying Your App
	Human Numbers dataset, The Data
	Hutson, Jevan, Fairness, Accountability, and Transparency
	hyperparameters, Validation Sets and Test Sets	random forest insensitivity, Creating a Random Forest
	validation set picking threshold, Binary Cross Entropy




I
	IBM and Nazi Germany, Why Does This Matter?, Analyze a Project You Are Working On
	IBM and the Holocaust book (Black), Why Does This Matter?
	identity function, Skip Connections
	identity generation by ML, Disinformation and Language Models
	identity mapping, Skip Connections
	Image class, Pixels: The Foundations of Computer Vision
	image classifier model training	activations, Viewing Activations and Labels
	activations into predictions, Viewing Activations and Labels
	baseline simple model, Checking and Debugging a DataBlock
	baseline training run, Imagenette
	cross-entropy loss, Checking and Debugging a DataBlock-Taking the log
	discriminative learning rates, Unfreezing and Transfer Learning
	epochs, number of, Selecting the Number of Epochs, Selecting the Number of Epochs
	freezing pretrained layers, Unfreezing and Transfer Learning
	Imagenette dataset, Training a State-of-the-Art Model
	images sized progressively, Progressive Resizing	transfer learning performance hurt, Progressive Resizing


	improving, Improving Our Model
	label smoothing, Label Smoothing	reasoning behind, Label Smoothing


	learning rate finder, The Learning Rate Finder
	logarithms for loss, Taking the log
	metrics and validation loss, Selecting the Number of Epochs
	Mixup, Mixup	script for training with and without, Mixup


	normalization of data, Normalization	cnn_learner handles, Normalization
	pretrained models, Normalization
	statistics distributed with model, Normalization


	predictions, Viewing Activations and Labels
	process end-to-end, Training Your Model, and Using It to Clean Your Data
	softmax activation function, Viewing Activations and Labels
	test time augmentation, Test Time Augmentation
	testing with confusion matrix, Model Interpretation


	image classifier models	accuracy as metric, Computing Metrics Using Broadcasting
	architecture, Deeper Architectures
	autonomous vehicles localizing objects, Deep Learning Is Not Just for Image Classification
	capabilities and constraints, The Practice of Deep Learning
	convolutional neural networks for, How Our Image Recognizer Works
	CT scan stroke analysis, Combining text and images
	current state of, Computer vision
	data augmentation, Data Augmentation
	data availability, Starting Your Project
	data gathering, Gathering Data-Gathering Data
	DataLoaders, From Data to DataLoaders-From Data to DataLoaders	customization, From Data to DataLoaders


	dataset, From Dogs and Cats to Pet Breeds, Imagenette	checking, Checking and Debugging a DataBlock-Checking and Debugging a DataBlock
	debugging, Checking and Debugging a DataBlock
	examination of, From Dogs and Cats to Pet Breeds-From Dogs and Cats to Pet Breeds
	filename extraction, From Dogs and Cats to Pet Breeds-From Dogs and Cats to Pet Breeds
	image representation rule, Image Recognizers Can Tackle Non-Image Tasks
	labeling, From Dogs and Cats to Pet Breeds
	labels, How Our Image Recognizer Works
	presizing, From Dogs and Cats to Pet Breeds
	regular expressions, From Dogs and Cats to Pet Breeds
	types of data, From Dogs and Cats to Pet Breeds


	distracted driver model, Use Judgment in Defining Test Sets
	download_images, Gathering Data
	facial recognition bias, Integrating Machine Learning with Product Design, Historical bias
	first model, Your First Model-Running Your First Notebook	code for, How Our Image Recognizer Works-How Our Image Recognizer Works
	as deep learning, What Is Machine Learning?
	error rate, Running Your First Notebook
	machine learning visualized, What Our Image Recognizer Learned
	as neural net, What Is a Neural Network?
	tested, Running Your First Notebook


	Google Photos label racial bias, Historical bias
	image basics, Pixels: The Foundations of Computer Vision-Pixels: The Foundations of Computer Vision
	image size, How Our Image Recognizer Works, From Data to DataLoaders, From Data to DataLoaders, From Dogs and Cats to Pet Breeds
	labels in datasets, How Our Image Recognizer Works	(see also labels)


	machine learning explained, What Is Machine Learning?
	manual process in parallel, How to Avoid Disaster
	multi-label classification, Multi-Label Classification
	non-image tasks, Image Recognizers Can Tackle Non-Image Tasks-Image Recognizers Can Tackle Non-Image Tasks, Deep Learning Is Not Just for Image Classification
	numerical digit (see numerical digit classifier)
	performance of model via loss, Training Your Model, and Using It to Clean Your Data
	prediction inference, Using the Model for Inference
	presizing, From Dogs and Cats to Pet Breeds
	pretrained model weight values, How Our Image Recognizer Works
	production complexity, How to Avoid Disaster
	Python Imaging Library, Pixels: The Foundations of Computer Vision
	Siamese model image comparison, Applying the Mid-Level Data API: SiamesePair-Applying the Mid-Level Data API: SiamesePair
	softmax, Softmax
	testing	complexity of, How to Avoid Disaster
	confusion matrix for, Training Your Model, and Using It to Clean Your Data


	training deep dive (see image classifier model training)
	verify_images, Gathering Data
	web application from model, Turning Your Model into an Online Application-Deploying Your App


	image regression	about, Regression
	dataset, Assembling the Data	extracting head center point, Assembling the Data
	splitting, Assembling the Data


	key point model description, Regression


	ImageBlock	image classifier model, From Data to DataLoaders, From Dogs and Cats to Pet Breeds
	key point model, Assembling the Data
	multi-label classifier, Constructing a DataBlock


	ImageClassifierCleaner, Training Your Model, and Using It to Clean Your Data	IPython widgets code, Creating a Notebook App from the Model


	ImageNet dataset, Imagenette, Going Back to Imagenette	Imagenette subset, Training a State-of-the-Art Model, Going Back to Imagenette, Data
	top 5 accuracy, A State-of-the-Art ResNet


	images combined with text, Combining text and images
	IMDb Large Movie Review dataset, Deep Learning Is Not Just for Image Classification	language model using DataBlock, Language Model Using DataBlock
	pretraining NLP on, NLP Deep Dive: RNNs
	word tokenization, Word Tokenization with fastai


	independent variable	definition, A Bit of Deep Learning Jargon
	distracted driver model, Use Judgment in Defining Test Sets
	model defined by, Regression
	predictions, A Bit of Deep Learning Jargon, From Data to DataLoaders
	viewing in mini-batch, Viewing Activations and Labels
	as x, From Data to DataLoaders


	inference	definition, Using the Model for Inference
	GPU inference complexity, Deploying Your App
	image classifier models, Using the Model for Inference
	predictions models, Using the Model for Inference
	test time augmentation, Test Time Augmentation


	inheritance in object-oriented programming, Collaborative Filtering from Scratch
	init (dunder init), Collaborative Filtering from Scratch
	inputs	image classification explanation, What Is a Neural Network?
	label importance, Limitations Inherent to Machine Learning	(see also labels)




	interpretation via class activation map, CAM and Hooks-CAM and Hooks
	Ioffe, Sergey, Batch Normalization
	IPython widgets, Creating a Notebook App from the Model	applications via Voilà, Creating a Notebook App from the Model
	image cleaner written in, Creating a Notebook App from the Model


	Isaac, William, Unforeseen Consequences and Feedback Loops
	item transforms, From Data to DataLoaders
	iterate development end to end, Starting Your Project	iteration speed, Imagenette




J
	jagged arrays, NumPy Arrays and PyTorch Tensors
	jargon, Adding a Nonlinearity	(see also terminology)


	jobs and gender, Historical bias, Representation bias
	Jupyter Notebook, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter), Getting a GPU Deep Learning Server, Running Your First Notebook	(see also notebooks)




K
	Kaggle machine learning community	about, Who We Are
	Blue Book for Bulldozers competition, The Dataset
	datasets and other resources, Kaggle Competitions
	distracted driver model competition, Use Judgment in Defining Test Sets
	fisheries monitoring model competition, Use Judgment in Defining Test Sets
	predicting sales from stores competition, Categorical Embeddings	leaderboard beater, Ensembling


	predictive modeling competitions, Use Judgment in Defining Test Sets
	time series analysis model competition, Use Judgment in Defining Test Sets


	Kalash, Mahmoud, Image Recognizers Can Tackle Non-Image Tasks
	Kao, Jeff, Disinformation and Language Models
	kernel in notebooks	restarting, Deep Learning Is Not Just for Image Classification


	kernel of convolution, The Magic of Convolutions-The Magic of Convolutions	apply_kernel, Mapping a Convolutional Kernel-Mapping a Convolutional Kernel
	convolution described, Mapping a Convolutional Kernel


	Keskar, Nitish Shirish, Regularizing an LSTM
	key point model of image regression	about, Regression
	dataset, Assembling the Data	extracting head center point, Assembling the Data
	splitting, Assembling the Data




	Keyes, Os, Fairness, Accountability, and Transparency
	The KGB and Soviet Disinformation book (Bittman), Disinformation
	Khan Academy math tutorials online, What You Need to Know, First Try: Pixel Similarity	derivatives, Calculating Gradients


	Kinect Head Pose dataset, Assembling the Data	format of pose text file, Assembling the Data


	Kohavi, Ron, Deep Learning Is Not Just for Image Classification
	König, Inke, Categorical Variables
	kwargs, Deep Learning for Collaborative Filtering


L
	L class returning collections, From Dogs and Cats to Pet Breeds
	L1 norm (mean absolute difference), First Try: Pixel Similarity, First Try: Pixel Similarity
	L2 norm (root mean squared error), First Try: Pixel Similarity
	L2 regularization, Weight Decay
	label smoothing, Label Smoothing	reasoning behind, Label Smoothing


	labels	bias in, Historical bias
	challenge of object detection, Computer vision
	checking, Checking and Debugging a DataBlock-Checking and Debugging a DataBlock
	definition, Jargon Recap
	dependent variable definition, A Bit of Deep Learning Jargon
	extraction from dataset	first model, How Our Image Recognizer Works, How Our Image Recognizer Works
	pet breeds dataset, From Dogs and Cats to Pet Breeds-From Dogs and Cats to Pet Breeds
	regular expressions, From Dogs and Cats to Pet Breeds


	incorrect affecting loss, Training Your Model, and Using It to Clean Your Data
	independent variable definition, A Bit of Deep Learning Jargon
	multi-label classification, Multi-Label Classification-Binary Cross Entropy	0s and 1s threshold, Binary Cross Entropy, Binary Cross Entropy
	DataFrame to DataLoaders, Constructing a DataBlock-Constructing a DataBlock
	dataset, The Data-The Data
	loss function, Binary Cross Entropy-Binary Cross Entropy
	metric, Binary Cross Entropy


	need for, Limitations Inherent to Machine Learning


	lambda functions, Constructing a DataBlock
	language model	building from scratch	building model, Our First Language Model from Scratch-Our First Recurrent Neural Network
	building model in PyTorch, Our Language Model in PyTorch
	callback, Maintaining the State of an RNN
	data, The Data-The Data
	hidden state activations, Our First Recurrent Neural Network
	LSTM model, LSTM-Training a Language Model Using LSTMs
	LSTM model, regularizing, Regularizing an LSTM-Training a Weight-Tied Regularized LSTM
	LSTM training, Training a Weight-Tied Regularized LSTM-Training a Weight-Tied Regularized LSTM
	metric, Our Language Model in PyTorch
	multilayer RNNs, Multilayer RNNs-Exploding or Disappearing Activations
	recurrent neural network, first, Our First Recurrent Neural Network
	recurrent neural network, improved, Improving the RNN-Creating More Signal
	training, Our Language Model in PyTorch
	weight tying, Training a Weight-Tied Regularized LSTM


	DataBlock, Language Model Using DataBlock
	definition, NLP Deep Dive: RNNs
	NLP (see natural language processing)


	language translation (see translation of languages)
	latent factors, Collaborative Filtering Deep Dive, Bootstrapping a Collaborative Filtering Model
	law enforcement	arrest rates bias, Unforeseen Consequences and Feedback Loops
	database error ethics, Recourse and Accountability
	environmental regulation working, The Effectiveness of Regulation
	errors in credit report system, Recourse and Accountability
	regulating ethics, The Effectiveness of Regulation
	sentencing and bail algorithm bias, Historical bias


	layered API, Going Deeper into fastai’s Layered API
	layers	backpropagation for derivative, Calculating Gradients
	deeper models having more layers, Going Deeper, Deeper Architectures
	encoding of, Unfreezing and Transfer Learning, Discriminative Learning Rates
	final layer matrix, Unfreezing and Transfer Learning
	forward pass for activations, Calculating Gradients
	last layer and pretrained models, How Our Image Recognizer Works
	more linear layers, more computations, Adding a Nonlinearity, Going Deeper
	nonlinear function between linears, Adding a Nonlinearity, Going Deeper, Unfreezing and Transfer Learning
	optimization and, Going Deeper
	out-of-memory error, Deeper Architectures
	prediction viewing, Viewing Activations and Labels
	printing model to see, Using fastai.collab
	ResNet architecture, How Our Image Recognizer Works
	training, overfitting, and, How Our Image Recognizer Works
	visualizing convolutional networks, What Our Image Recognizer Learned


	Learner	about, Creating an Optimizer, Binary Cross Entropy
	building Learner class from scratch	callbacks, Callbacks
	DataLoader, Dataset
	Dataset, Dataset
	images, Data
	Learner class, Learner
	learning rate scheduling, Scheduling the Learning Rate
	loss function, Loss
	Module, Module and Parameter-Module and Parameter
	Parameter, Module and Parameter-Module and Parameter
	simple CNN, Simple CNN
	stochastic gradient descent, Learner
	untar_data, Data


	callbacks for custom behavior, Mixup, A Simple Baseline
	cnn_learner	architecture, cnn_learner
	first model, How Our Image Recognizer Works
	image classifier model, Training Your Model, and Using It to Clean Your Data
	loss function parameter, Training a Model
	multi-label classifier, Binary Cross Entropy
	normalization of data, Normalization


	collaborative filtering system, Collaborative Filtering from Scratch
	collab_learner, Using fastai.collab
	fully convolutional network, Going Back to Imagenette
	lambda functions and exporting, Constructing a DataBlock
	learn.load, Saving and Loading Models
	learn.model, Deep Learning for Collaborative Filtering	layers printed, Using fastai.collab


	learn.recorder, 1cycle Training
	learn.save, Saving and Loading Models
	numerical digit classifier, Creating an Optimizer
	show_results, Training a Model


	learning rate (LR)	about, Stepping with a Learning Rate-Stepping with a Learning Rate
	building Learner class from scratch, Scheduling the Learning Rate
	changing during training, 1cycle Training
	convolutional neural networks, Going Back to Imagenette
	definition, Jargon Recap
	discriminative learning rates, Unfreezing and Transfer Learning
	learning rate finder, The Learning Rate Finder, Training a Model	building Learner class from scratch, Scheduling the Learning Rate




	Lecun, Yann, Pixels: The Foundations of Computer Vision, Pixels: The Foundations of Computer Vision
	Li, Hao, Skip Connections
	Liang, James, Why Does This Matter?
	linear and nonlinear layers, Adding a Nonlinearity, Adding a Nonlinearity, Jargon Recap, Unfreezing and Transfer Learning
	LinkedIn ML-generated profile, Disinformation and Language Models
	list comprehensions, First Try: Pixel Similarity
	load method, Saving and Loading Models
	load_learner, Using the Model for Inference
	Lockhart, Paul, How to Learn Deep Learning
	logarithmic scale	about, Taking the log
	learning rate finder plot, The Learning Rate Finder
	loss in pet breed image classifier, Taking the log
	slide rules using, Taking the log


	long short-term memory (LSTM), Pixels: The Foundations of Computer Vision
	look-up index as one-hot-encoded vector, Creating the DataLoaders
	loss	BCELoss, Binary Cross Entropy
	BCEWithLogitsLoss, Binary Cross Entropy, Conclusion
	bear image classifier, Training Your Model, and Using It to Clean Your Data
	binary cross entropy, Constructing a DataBlock-Binary Cross Entropy
	building Learner class from scratch, Loss
	categorical outcome cross-entropy loss, Checking and Debugging a DataBlock
	class versus plain functional form, Taking the log
	cross-entropy, Checking and Debugging a DataBlock	(see also cross-entropy loss)


	definition, A Bit of Deep Learning Jargon, Jargon Recap, Jargon Recap
	fastai selecting function, Checking and Debugging a DataBlock, Binary Cross Entropy, Training a Model, Conclusion
	label incorrect, not model, Training Your Model, and Using It to Clean Your Data
	logarithms for, Taking the log
	metrics versus, How Our Image Recognizer Works
	MNIST loss function, The MNIST Loss Function-Sigmoid, Log Likelihood-Log Likelihood
	model defined by, Regression
	MSELoss, Training a Model
	multi-label classifier loss function, Binary Cross Entropy-Binary Cross Entropy
	numerical digit image classifier, The MNIST Loss Function-Sigmoid	sigmoid function, Sigmoid
	softmax function, Log Likelihood-Log Likelihood


	passing to learner, Training a Model
	pet breeds image classifier, Checking and Debugging a DataBlock-Taking the log	negative log likelihood, Taking the log


	probability as confidence level, Training Your Model, and Using It to Clean Your Data
	PyTorch functions for comparisons, First Try: Pixel Similarity
	reinforcement learning, Feedback Loops
	selecting loss function for problem, Conclusion
	validation loss improvement slowing, Discriminative Learning Rates


	lowercase rule, Word Tokenization with fastai
	ls method in Path class, Using the Model for Inference, Pixels: The Foundations of Computer Vision	dataset examination, From Dogs and Cats to Pet Breeds


	LSTM language model	about, LSTM
	building from scratch, LSTM-Training a Language Model Using LSTMs
	regularizing, Regularizing an LSTM-Training a Weight-Tied Regularized LSTM	activation regularization, Activation Regularization and Temporal Activation Regularization
	dropout, Dropout
	temporal activation regularization, Activation Regularization and Temporal Activation Regularization
	training a regularized LSTM, Training a Weight-Tied Regularized LSTM-Training a Weight-Tied Regularized LSTM


	training a language model using, Training a Language Model Using LSTMs


	Lum, Kristian, Unforeseen Consequences and Feedback Loops


M
	Maas, Andrew, Deep Learning Is Not Just for Image Classification
	machine learning (ML)	bagging, Random Forests-Ensembling
	bias, Bias	(see also bias)


	capabilities and constraints, The Practice of Deep Learning
	classification model definition, How Our Image Recognizer Works
	concepts of, What Is Machine Learning?-What Is Machine Learning?
	current state of, The State of Deep Learning
	defined, What Is Machine Learning?
	explained, What Is Machine Learning?-What Is Machine Learning?, Jargon Recap
	fairness and, Fairness, Accountability, and Transparency	(see also ethics)


	feature engineering, The Magic of Convolutions
	first model as neural net, What Is a Neural Network?	(see also first model)


	history of development, What Is Machine Learning?, Pixels: The Foundations of Computer Vision
	key techniques, Beyond Deep Learning
	key to ML via derivatives, Calculating Gradients
	limitations inherent to, Limitations Inherent to Machine Learning-Limitations Inherent to Machine Learning
	manual process in parallel, How to Avoid Disaster
	mobile landscape, Deploying Your App
	neural networks beyond understanding, How to Avoid Disaster
	product design integrated with, Integrating Machine Learning with Product Design
	regression model definition, How Our Image Recognizer Works
	risk mitigation, How to Avoid Disaster
	scikit-learn library, Beyond Deep Learning
	Twitter for help, A Note About Twitter
	visualizing, What Our Image Recognizer Learned
	weights, What Is Machine Learning?-What Is Machine Learning?	via neural networks, What Is a Neural Network?




	Mackenzie, Dana, Partial Dependence
	Making Learning Whole book (Perkins), How to Learn Deep Learning
	malware classification, Image Recognizers Can Tackle Non-Image Tasks
	manual process in parallel, How to Avoid Disaster
	Mark I Perceptron, Neural Networks: A Brief History
	Markdown in notebook cells, Running Your First Notebook
	math tutorials online, What You Need to Know, First Try: Pixel Similarity	derivatives, Calculating Gradients


	matrix multiplication, The MNIST Loss Function	function from scratch, Matrix Multiplication from Scratch


	McClelland, James, Neural Networks: A Brief History
	McCulloch, Warren, Neural Networks: A Brief History
	McKinney, Wes, The Data, Beyond Deep Learning
	mean absolute difference (L1 norm), First Try: Pixel Similarity, First Try: Pixel Similarity
	mean average percent error metric, Combining Embeddings with Other Methods
	mean squared error (MSE), First Try: Pixel Similarity
	measurement bias, Measurement bias
	medicine	aggregation bias, Aggregation bias
	correct responses not ensured, Text (natural language processing)
	measurement bias, Measurement bias
	pretrained model availability, How Our Image Recognizer Works
	stroke analysis, Combining text and images, Measurement bias
	tumor identification, Deep Learning Is for Everyone, Who We Are


	Meetup recommendation algorithm, Feedback Loops
	memory usage	batch operations out-of-memory error, Deeper Architectures
	entity embedding reducing, Categorical Embeddings
	hooks might leak, CAM and Hooks


	Merity, Stephen, Regularizing an LSTM
	methods	class methods, Language Model Using DataBlock
	doc for documentation, Deep Learning Is Not Just for Image Classification
	Python method double underscores, Collaborative Filtering from Scratch
	source code display, Gathering Data, Word Tokenization with fastai
	tab for autocomplete and documentation, Gathering Data


	metrics	about, Look at the Data
	definition, How Our Image Recognizer Works, Jargon Recap, Computing Metrics Using Broadcasting
	fastai library, How Our Image Recognizer Works
	feedback loops driven by, Feedback Loops
	first model declaration, How Our Image Recognizer Works, How Our Image Recognizer Works
	loss versus, How Our Image Recognizer Works
	mean average percent error, Combining Embeddings with Other Methods
	numerical digit classifier, Computing Metrics Using Broadcasting-Computing Metrics Using Broadcasting
	pet breeds image classifier, Selecting the Number of Epochs
	root mean squared log error, Look at the Data, Creating the Decision Tree, Creating a Random Forest
	top 5 accuracy, A State-of-the-Art ResNet


	Microsoft	Azure Cognitive Services, Gathering Data
	batching production operations, Deploying Your App
	Fairness, Accountability, Transparency, and Ethics, Fairness, Accountability, and Transparency


	mid-level API	about, Data Munging with fastai’s Mid-Level API
	callbacks, Going Deeper into fastai’s Layered API
	Datasets, Datasets
	fastai layered API, Going Deeper into fastai’s Layered API
	Pipeline class, Pipeline
	Siamese model image comparison, Applying the Mid-Level Data API: SiamesePair-Applying the Mid-Level Data API: SiamesePair
	TfmdLists, TfmdLists and Datasets: Transformed Collections-TfmdLists
	Transforms	collections, TfmdLists and Datasets: Transformed Collections
	Transform class, Transforms
	writing your own, Writing Your Own Transform, TfmdLists




	mini-batch, From Data to DataLoaders, Jargon Recap	DataLoader variables, Constructing a DataBlock
	dependent and independent variables, Viewing Activations and Labels
	manually grabbing and passing into a model, Binary Cross Entropy
	models returning activations, Binary Cross Entropy


	Minsky, Marvin, Neural Networks: A Brief History
	missing values as data leakage, Data Leakage
	mixed-precision training, Deeper Architectures
	Mixup augmentation technique, Mixup	loss improvement, Mixup


	ML (see machine learning)
	MNIST handwritten digits dataset, Pixels: The Foundations of Computer Vision, Imagenette, Improving Training Stability, Going Back to Imagenette	binary to multiple categories, Log Likelihood-Log Likelihood
	downloading, Pixels: The Foundations of Computer Vision
	read by models, Pixels: The Foundations of Computer Vision	(see also numerical digit classifier)


	validation set, Computing Metrics Using Broadcasting


	mobile device deployment of apps, Deploying Your App
	models	accuracy (see accuracy)
	actionable outcomes via Drivetrain Approach, The Drivetrain Approach
	autonomous vehicles localizing objects, Deep Learning Is Not Just for Image Classification
	begin simply, First Try: Pixel Similarity, Checking and Debugging a DataBlock	(see also beginning)


	best methods for majority of datasets, Beyond Deep Learning
	capacity, Deeper Architectures
	classification model definition, How Our Image Recognizer Works
	data seen changing over time, How to Avoid Disaster, Feedback Loops: YouTube’s Recommendation System
	defined by variables and loss function, Regression
	definition, Jargon Recap
	encoder, Saving and Loading Models
	exporting, Using the Model for Inference
	first model (see first model)
	GPUs and production models, Deploying Your App
	head and pretrained models, How Our Image Recognizer Works
	load method, Saving and Loading Models
	model and human interaction, Combining text and images, How to Avoid Disaster
	modeling competitions, Use Judgment in Defining Test Sets
	more parameters, more accuracy, Deeper Architectures
	overfitting importance, Conclusion	(see also overfitting)


	parameter importance, How Our Image Recognizer Works	(see also parameters)


	printing to see layers, Using fastai.collab
	process of creating application (see process end-to-end)
	programs constrasted, What Is Machine Learning?, What Is Machine Learning?
	regression model definition, How Our Image Recognizer Works
	results versus performance, What Is Machine Learning?
	save method, Saving and Loading Models, Saving and Loading Models
	system behavior changed by, Unforeseen Consequences and Feedback Loops
	tabular data for, Deep Learning Is Not Just for Image Classification	(see also tabular data)
	advice for modeling, Conclusion


	training, What Is Machine Learning?-What Is Machine Learning?	(see also training)


	web application from, Turning Your Model into an Online Application-Deploying Your App


	Module class	activations returned, Binary Cross Entropy
	building Learner class from scratch, Module and Parameter-Module and Parameter
	calling module calls forward method, Collaborative Filtering from Scratch
	inheritance, Collaborative Filtering from Scratch
	Parameter class, Creating Our Own Embedding Module


	modules, Creating an Optimizer
	momentum in SGD, Momentum-Momentum	cyclical momentum, 1cycle Training


	Monroe, Fred, Conclusion
	mouse movements for fraud detection, Image Recognizers Can Tackle Non-Image Tasks
	movie recommendation system	collaborative filtering	about, Collaborative Filtering Deep Dive
	biases, Collaborative Filtering from Scratch
	bootstrapping problem, Bootstrapping a Collaborative Filtering Model
	collab_learner, Using fastai.collab
	DataLoaders, Creating the DataLoaders
	dataset, A First Look at the Data
	deep learning model, Deep Learning for Collaborative Filtering
	embedding, Creating the DataLoaders-Weight Decay
	embedding distance, Embedding Distance
	embedding from scratch, Creating Our Own Embedding Module-Deep Learning for Collaborative Filtering
	fitting model, Collaborative Filtering from Scratch
	interpretting embeddings and biases, Interpreting Embeddings and Biases
	items rather than products, Collaborative Filtering Deep Dive
	latent factors, Collaborative Filtering Deep Dive
	layers via printing model, Using fastai.collab
	Learner from scratch, Collaborative Filtering from Scratch
	learning latent factors, Learning the Latent Factors
	look-up index as one-hot-encoded vector, Creating the DataLoaders
	overfitting, Collaborative Filtering from Scratch
	probabilistic matrix factorization, Bootstrapping a Collaborative Filtering Model
	structuring model, A First Look at the Data
	tables as matrices, Creating the DataLoaders
	weight decay, Weight Decay


	MovieLens sample model, Deep Learning Is Not Just for Image Classification
	skew from small number of users, Bootstrapping a Collaborative Filtering Model


	movie review sentiment model, Deep Learning Is Not Just for Image Classification, NLP Deep Dive: RNNs	(see also natural language processing)


	MovieLens dataset, Deep Learning Is Not Just for Image Classification, A First Look at the Data
	MSELoss, Training a Model, Conclusion
	Mueller report, Feedback Loops, Disinformation
	Mullainathan, Sendhil, Measurement bias
	multi-label classification, Multi-Label Classification-Binary Cross Entropy	0s and 1s threshold, Binary Cross Entropy, Binary Cross Entropy
	DataFrame to DataLoaders, Constructing a DataBlock-Constructing a DataBlock
	dataset, The Data-The Data
	loss function, Binary Cross Entropy-Binary Cross Entropy
	metric, Binary Cross Entropy


	MultiCategoryBlock, Constructing a DataBlock
	multilayer RNNs, Multilayer RNNs-Exploding or Disappearing Activations
	multilayered neural networks learned with SGD, Beyond Deep Learning


N
	Nader, Ralph, Cars: A Historical Precedent
	Narayanan, Arvind, Fairness, Accountability, and Transparency
	National Institute of Standards and Technology, Pixels: The Foundations of Computer Vision
	natural language processing (NLP)	architecture, Natural Language Processing
	backpropagation through time for, Natural Language Processing
	bias in data, Historical bias
	Chomsky’s syntax book, From Dogs and Cats to Pet Breeds
	correct response not ensured, Text (natural language processing)
	current state of, Text (natural language processing)
	data augmentation of text data, Regularizing an LSTM
	disinformation, Text (natural language processing), Disinformation, Disinformation and Language Models
	fine-tuning	classifier, Fine-Tuning the Classifier
	language model before classification model, NLP Deep Dive: RNNs
	pretrained language model, Fine-Tuning the Language Model-Saving and Loading Models


	language model from scratch	building model, Our First Language Model from Scratch-Our First Recurrent Neural Network
	building model in PyTorch, Our Language Model in PyTorch
	callback, Maintaining the State of an RNN
	data, The Data-The Data
	hidden state activations, Our First Recurrent Neural Network
	LSTM model, LSTM-Training a Language Model Using LSTMs
	LSTM model, regularizing, Regularizing an LSTM-Training a Weight-Tied Regularized LSTM
	LSTM training, Training a Weight-Tied Regularized LSTM-Training a Weight-Tied Regularized LSTM
	metric, Our Language Model in PyTorch
	multilayer RNNs, Multilayer RNNs-Exploding or Disappearing Activations
	recurrent neural network, first, Our First Recurrent Neural Network
	recurrent neural network, improved, Improving the RNN-Creating More Signal
	training, Our Language Model in PyTorch
	weight tying, Training a Weight-Tied Regularized LSTM


	Mixup data augmentation, Mixup
	pretrained English language model, NLP Deep Dive: RNNs
	protein chains as, Other data types
	recurrent neural network, Text Preprocessing, Fine-Tuning the Language Model	(see also recurrent neural networks)
	about process, Text Preprocessing
	accuracy, Fine-Tuning the Classifier
	classifier DataLoaders, Creating the Classifier DataLoaders
	fine-tuning classifier, Fine-Tuning the Classifier
	fine-tuning pretrained language model, Fine-Tuning the Language Model-Saving and Loading Models
	language model using DataBlock, Language Model Using DataBlock
	numericalization, Text Preprocessing, Numericalization with fastai
	pretraining, NLP Deep Dive: RNNs
	text generation, Text Generation
	texts into batches for language model, Putting Our Texts into Batches for a Language Model-Putting Our Texts into Batches for a Language Model
	training text classifier, Training a Text Classifier
	unfreezing classifier, Fine-Tuning the Classifier


	sentiment of movie review, Deep Learning Is Not Just for Image Classification, NLP Deep Dive: RNNs
	style of target corpus, NLP Deep Dive: RNNs
	text generation, Text (natural language processing)
	tokenization	approaches to, Tokenization
	definition, Text Preprocessing
	fastai tokenization, Word Tokenization with fastai
	rule explanations, Word Tokenization with fastai
	showing rules used, Word Tokenization with fastai
	special tokens, Word Tokenization with fastai
	subword tokenization, Subword Tokenization
	word tokenization, Word Tokenization with fastai, Subword Tokenization


	unfreezing classifiers, Fine-Tuning the Classifier
	Wikipedia for pretraining, NLP Deep Dive: RNNs


	Nazi Germany and IBM, Why Does This Matter?, Analyze a Project You Are Working On
	negative log likelihood loss (nll_loss), Taking the log
	nested list comprehensions, Mapping a Convolutional Kernel
	net neutrality disinformation, Disinformation and Language Models
	neural networks	beyond understanding, How to Avoid Disaster
	building layer from scratch, Building a Neural Net Layer from Scratch-Einstein Summation	backward pass, The Forward and Backward Passes
	broadcasting, Broadcasting
	broadcasting rules, Broadcasting rules
	broadcasting vector to matrix, Broadcasting a vector to a matrix-Broadcasting a vector to a matrix
	broadcasting with a scalar, Broadcasting with a scalar
	defining and initializing a layer, Defining and Initializing a Layer-Defining and Initializing a Layer
	Einstein summation, Einstein Summation
	elementwise arithmetic, Elementwise Arithmetic
	forward pass, The Forward and Backward Passes
	gradients and backward pass, Gradients and the Backward Pass-Gradients and the Backward Pass
	matrix multiplication, Matrix Multiplication from Scratch
	modeling a neuron, Modeling a Neuron
	PyTorch, Going to PyTorch-Going to PyTorch
	refactoring the model, Refactoring the Model


	Coursera class, RMSProp
	deep learning using, Deep Learning Is for Everyone, What Is Machine Learning?, Jargon Recap
	explained, What Is a Neural Network?-What Is a Neural Network?, Adding a Nonlinearity
	first model as, What Is a Neural Network?	(see also first model)


	fundamental weights and bias equation, The MNIST Loss Function
	GPU running, Getting a GPU Deep Learning Server	(see also GPU)


	history, Neural Networks: A Brief History-Neural Networks: A Brief History, The Learning Rate Finder
	layers (see layers)
	multilayered neural networks learned with SGD, Beyond Deep Learning
	natural language processing, Text Preprocessing	(see also natural language processing)


	refactoring, Creating the CNN
	risk mitigation, How to Avoid Disaster
	RNN definition, Our First Recurrent Neural Network	(see also recurrent neural networks)


	tabular data, Using a Neural Network	categorical columns, Using a Neural Network
	combining with other methods, Combining Embeddings with Other Methods


	testing, complexity of, How to Avoid Disaster
	training via backpropagation, Pixels: The Foundations of Computer Vision
	training with large learning rates, 1cycle Training
	visualizing learning, What Our Image Recognizer Learned


	new user bootstrapping problem, Bootstrapping a Collaborative Filtering Model
	NLP (see natural language processing)
	nonlinear and linear layers, Adding a Nonlinearity, Adding a Nonlinearity, Jargon Recap, Unfreezing and Transfer Learning
	normalization of data, Normalization	cnn_learner handles, Normalization
	pretrained models, Normalization
	statistics distributed with model, Normalization
	Transform class, Transforms


	notebooks	about, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter), Getting a GPU Deep Learning Server
	app from notebook, Turning Your Notebook into a Real App
	Binder free app hosting, Deploying Your App
	blogging with, Jupyter for Blogging
	book written in, Running Your First Notebook
	cell execution order, Deep Learning Is Not Just for Image Classification
	cells, Running Your First Notebook
	code from book, What You Need to Know, Running Your First Notebook, Deep Learning Is Not Just for Image Classification
	command mode, Running Your First Notebook
	edit mode, Running Your First Notebook
	escape key for command/edit mode, Running Your First Notebook
	features for efficiency, Gathering Data
	first cell CLICK ME, Running Your First Notebook, Deep Learning Is Not Just for Image Classification
	first notebook, Running Your First Notebook-Running Your First Notebook	code for, How Our Image Recognizer Works-How Our Image Recognizer Works
	error rate, Running Your First Notebook
	tested, Running Your First Notebook


	full versus stripped, Running Your First Notebook
	GPU server setup, Getting a GPU Deep Learning Server
	H for help, Running Your First Notebook
	kernel	restarting, Deep Learning Is Not Just for Image Classification


	library efficiency, How Our Image Recognizer Works
	Markdown formatting, Running Your First Notebook
	opening, Running Your First Notebook
	out-of-memory error, Deeper Architectures
	process of creating application (see process end-to-end)
	showing source code, Word Tokenization with fastai
	utils class, Gathering Data
	web application deployment, Turning Your Model into an Online Application-Deploying Your App


	number precision and training, Deeper Architectures
	number-related datasets	handwritten digits dataset, Pixels: The Foundations of Computer Vision, Imagenette, Improving Training Stability, Going Back to Imagenette	downloading, Pixels: The Foundations of Computer Vision


	Human Numbers dataset, The Data


	numerical digit classifier	accuracy metric, Computing Metrics Using Broadcasting-Computing Metrics Using Broadcasting
	activations, Softmax
	color-code array or tensor, Pixels: The Foundations of Computer Vision
	comparing with ideal digit, First Try: Pixel Similarity
	convolutional neural network	1cycle training, 1cycle Training
	batch normalization, Batch Normalization
	batch size increased, Increase Batch Size
	building a CNN, Creating the CNN-Batch Normalization
	color images, Color Images
	convolution arithmetic, Understanding Convolution Arithmetic
	convolution described, The Magic of Convolutions
	dataset, Improving Training Stability
	equations, Understanding the Convolution Equations
	kernel, The Magic of Convolutions-The Magic of Convolutions
	kernel mapping, Mapping a Convolutional Kernel-Mapping a Convolutional Kernel
	nested list of comprehensions, Mapping a Convolutional Kernel
	padding, Strides and Padding
	PyTorch convolutions, Convolutions in PyTorch
	receptive fields, Receptive Fields
	training, Creating the CNN
	training more stable, A Simple Baseline-Batch Normalization
	training on all digits, A Simple Baseline-Batch Normalization


	dataset download, Pixels: The Foundations of Computer Vision
	feature engineering, The Magic of Convolutions
	fully convolutional networks and, Going Back to Imagenette
	ideal digit creation, First Try: Pixel Similarity-First Try: Pixel Similarity
	image as array or tensor, Pixels: The Foundations of Computer Vision
	Learner creation, Creating an Optimizer
	MNIST loss function, The MNIST Loss Function-Sigmoid, Log Likelihood-Log Likelihood
	optimization step, SGD and Mini-Batches-Going Deeper
	pixel similarity, First Try: Pixel Similarity-First Try: Pixel Similarity
	stochastic gradient descent, Computing Metrics Using Broadcasting-Summarizing Gradient Descent	calculating gradients, Calculating Gradients-Calculating Gradients
	example end-to-end, An End-to-End SGD Example-Step 7: Stop
	stepping with learning rate, Stepping with a Learning Rate-Stepping with a Learning Rate
	summarizing, Summarizing Gradient Descent


	terminology, Jargon Recap
	validation set, Computing Metrics Using Broadcasting
	viewing dataset images, Pixels: The Foundations of Computer Vision


	numericalization	defaults, Numericalization with fastai
	definition, Text Preprocessing, Numericalization with fastai
	Transform class, Transforms
	word-tokenized text, Numericalization with fastai


	NumPy	arrays	about, NumPy Arrays and PyTorch Tensors
	arrays within arrays, NumPy Arrays and PyTorch Tensors
	image section, Pixels: The Foundations of Computer Vision


	sklearn and Pandas rely on, Beyond Deep Learning


	NVIDIA GPU deep learning server, Getting a GPU Deep Learning Server	(see also GPU)
	tensor core support, Deeper Architectures




O
	Obermeyer, Ziad, Measurement bias
	object detection	current state of, Computer vision
	labeling challenge, Computer vision


	object recognition	current state of, Computer vision
	dataset provenance, Historical bias


	object-oriented programming, Collaborative Filtering from Scratch	classes, Collaborative Filtering from Scratch	dunder init, Collaborative Filtering from Scratch


	inheritance, Collaborative Filtering from Scratch
	superclass, Collaborative Filtering from Scratch


	objectives via Drivetrain Approach, The Drivetrain Approach
	occupations and gender, Historical bias, Representation bias
	OCR (see numerical digit classifier)
	one-hot encoding	definition, Constructing a DataBlock
	embedding categorical variables, Creating the DataLoaders-Weight Decay, Categorical Variables	multiple columns for variable levels, Categorical Variables


	entity embedding contrasted, Categorical Embeddings
	label smoothing, Label Smoothing
	look-up index as one-hot-encoded vector, Creating the DataLoaders
	multi-label classifier, Constructing a DataBlock, Binary Cross Entropy


	online advertisement bias, Historical bias
	online applications (see web applications)
	online resources (see web resources)
	optical character recognition (see numerical digit classifier)
	optimization	Adam as default, Adam
	creating an optimizer, Creating an Optimizer-Going Deeper
	generic optimizer, A Generic Optimizer
	gradient descent, Summarizing Gradient Descent, Jargon Recap
	layers and, Going Deeper
	module parameters, Creating Our Own Embedding Module
	nonlinearity added, Adding a Nonlinearity
	numerical digit classifier, SGD and Mini-Batches-Going Deeper
	pet breeds image classifier, Checking and Debugging a DataBlock-Taking the log
	stochastic gradient descent, SGD and Mini-Batches-Going Deeper


	ordinal columns in tabular data, Look at the Data
	out-of-domain data, Computer vision	image classifier in production, How to Avoid Disaster


	out-of-memory error, Deeper Architectures
	outputs	cells containing executable code, Running Your First Notebook, Deep Learning Is Not Just for Image Classification
	forward hook for custom behavior, CAM and Hooks
	image, Running Your First Notebook
	results of last execution, Deep Learning Is Not Just for Image Classification
	table, Running Your First Notebook
	text, Running Your First Notebook
	web display Output widget, Creating a Notebook App from the Model


	overfitting	avoid only when occurring, How Our Image Recognizer Works
	definition, Jargon Recap
	importance of, How Our Image Recognizer Works, Conclusion
	layers and, How Our Image Recognizer Works
	learning rate finder, The Learning Rate Finder
	model memorizing training set, How Our Image Recognizer Works
	reducing, Conclusion
	regularizing RNNs against, Regularizing an LSTM
	retrain from scratch, Selecting the Number of Epochs
	training versus validation loss, Discriminative Learning Rates
	validation set, Validation Sets and Test Sets	hyperparameter picked by, Binary Cross Entropy


	weight decay against, Weight Decay


	O’Neill, Cathy, Addressing different types of bias


P
	padding a convolution, Strides and Padding
	Pandas library	DataFrame	color-code image values, Pixels: The Foundations of Computer Vision
	DataLoaders object from, Constructing a DataBlock-Constructing a DataBlock
	multi-label CSV file, The Data


	dataset viewing, Look at the Data
	fastai TabularPandas class, Using TabularPandas and TabularProc, Using a Neural Network
	get_dummies for categorical variables, Categorical Variables
	NumPy needed, Beyond Deep Learning
	tabular data processing, Beyond Deep Learning, Using a Neural Network
	tutorial, The Data


	papers (see research papers)
	Papert, Seymour, Neural Networks: A Brief History
	Parallel Distributed Processing (PDP) book (Rumelhart, McClelland, and PDP Research Group), Neural Networks: A Brief History
	parameters	architecture requiring many, How Our Image Recognizer Works
	calling module calls forward method, Collaborative Filtering from Scratch
	deeper models and, Going Deeper
	definition, Jargon Recap, Jargon Recap
	derivative of a function, Calculating Gradients
	exporting models, Using the Model for Inference
	hyperparameters, Validation Sets and Test Sets	random forest insensitivity, Creating a Random Forest
	validation set picking threshold, Binary Cross Entropy


	importance of, How Our Image Recognizer Works
	loss function selected by fastai, Checking and Debugging a DataBlock
	machine learning concepts, What Is Machine Learning?, A Bit of Deep Learning Jargon
	more accuracy from more parameters, Deeper Architectures
	neural networks beyond understanding, How to Avoid Disaster
	Parameter class, Creating Our Own Embedding Module	building Learner class from scratch, Module and Parameter-Module and Parameter




	Parr, Terence, Creating the Decision Tree
	partial function to bind arguments, Binary Cross Entropy
	PASCAL multi-label dataset, The Data
	path to dataset	ls method, Using the Model for Inference, Pixels: The Foundations of Computer Vision, From Dogs and Cats to Pet Breeds
	Path object returned, How Our Image Recognizer Works


	PDP Research Group, Neural Networks: A Brief History
	Pearl, Judea, Partial Dependence
	pedophiles and YouTube, Feedback Loops
	Perceptrons book (Minsky and Papert), Neural Networks: A Brief History
	performance of model as loss, A Bit of Deep Learning Jargon, Jargon Recap
	Perkins, David, How to Learn Deep Learning
	person’s face center in image (see key point model)
	pet breeds image classifier (see image classifier models)
	pet images dataset, Running Your First Notebook, How Our Image Recognizer Works, From Dogs and Cats to Pet Breeds, Applying the Mid-Level Data API: SiamesePair
	pickle system for save method, Using TabularPandas and TabularProc
	PIL images, Pixels: The Foundations of Computer Vision
	Pipeline class, Pipeline
	Pitts, Walter, Neural Networks: A Brief History
	pixels	image basics, Pixels: The Foundations of Computer Vision-Pixels: The Foundations of Computer Vision
	pixel count	image sizes same, From Data to DataLoaders, From Dogs and Cats to Pet Breeds
	pretrained models, How Our Image Recognizer Works
	size tradeoffs, How Our Image Recognizer Works
	sizing difficulties, From Data to DataLoaders
	tensor shape, First Try: Pixel Similarity


	pixel similarity, First Try: Pixel Similarity-First Try: Pixel Similarity


	plain text data approach, Beyond Deep Learning
	PointBlock, Assembling the Data
	policy’s role in ethics, Role of Policy-Cars: A Historical Precedent	rights and policy, Rights and Policy


	positive feedback loop, Limitations Inherent to Machine Learning
	precision of numbers and training, Deeper Architectures
	predictions	activations transformed into, Viewing Activations and Labels
	bagging, Random Forests-Ensembling
	button for web application, Creating a Notebook App from the Model
	definition, A Bit of Deep Learning Jargon
	dependent variable for, Look at the Data
	hypothetical world of, Partial Dependence
	independent variable, A Bit of Deep Learning Jargon, From Data to DataLoaders
	inference instead of training, Using the Model for Inference
	inference with image classifier, Using the Model for Inference
	as machine learning limitation, Limitations Inherent to Machine Learning
	metric measuring quality, How Our Image Recognizer Works
	model changing system behavior, Unforeseen Consequences and Feedback Loops
	model overconfidence, Discriminative Learning Rates
	movie recommendation system, Deep Learning Is Not Just for Image Classification
	overfitting and, How Our Image Recognizer Works
	predictive modeling competitions, Use Judgment in Defining Test Sets
	predictive policing algorithm, Unforeseen Consequences and Feedback Loops
	random forest confidence, Tree Variance for Prediction Confidence
	sales from stores, Categorical Embeddings	(see also tabular data)


	softmax sum of 1 requirement, Binary Cross Entropy
	stroke prediction, Combining text and images, Measurement bias
	viewing, Viewing Activations and Labels


	prerequisite for book, What You Need to Know
	presizing, From Dogs and Cats to Pet Breeds
	pretrained models	accuracy from, How Our Image Recognizer Works
	convolutional neural network parameter, How Our Image Recognizer Works
	definition, How Our Image Recognizer Works, Jargon Recap
	discriminative learning rates, Unfreezing and Transfer Learning
	fine-tuning first model, Running Your First Notebook
	first model, Running Your First Notebook
	freezing, Unfreezing and Transfer Learning
	last layer and, How Our Image Recognizer Works, Unfreezing and Transfer Learning
	NLP English language, NLP Deep Dive: RNNs
	normalization of data, Normalization	statistics distributed with model, Normalization


	pixel count required, How Our Image Recognizer Works
	recommendation system rarity, Deep Learning Is Not Just for Image Classification
	self-supervised learning for, NLP Deep Dive: RNNs
	tabular model rarity, Deep Learning Is Not Just for Image Classification
	transfer learning, How Our Image Recognizer Works, Summarizing Gradient Descent	freezing, Unfreezing and Transfer Learning


	Wikipedia for pretraining NLP, NLP Deep Dive: RNNs


	privacy	deployed apps, Deploying Your App
	regulation needed, The Effectiveness of Regulation
	rights and policy, Rights and Policy


	probabilistic matrix factorization, Bootstrapping a Collaborative Filtering Model
	process end-to-end	actionable outcomes via Drivetrain Approach, The Drivetrain Approach
	applicability of deep learning to problem, The State of Deep Learning
	begin in known areas, Starting Your Project, Deep Learning in Practice: That’s a Wrap!	(see also beginning)


	capabilities and contraints of deep learning, The Practice of Deep Learning
	data availability, Starting Your Project
	data biases, Gathering Data
	data cleaning, Training Your Model, and Using It to Clean Your Data
	data gathering, Gathering Data-Gathering Data
	DataLoaders, From Data to DataLoaders-From Data to DataLoaders	customization, From Data to DataLoaders


	deployment	app from notebook, Turning Your Notebook into a Real App
	Binder free app hosting, Deploying Your App
	deployment file, Using the Model for Inference
	exporting model, Using the Model for Inference
	mobile devices, Deploying Your App
	prediction inference, Using the Model for Inference
	risk mitigation, How to Avoid Disaster
	unforeseen challenges, Unforeseen Consequences and Feedback Loops
	web application, Turning Your Model into an Online Application-Deploying Your App
	web application deployment, Deploying Your App-Deploying Your App
	web application disaster avoidance, How to Avoid Disaster
	web resource discussing issues, How to Avoid Disaster


	experiments lead to projects, Starting Your Project
	image size, From Data to DataLoaders, From Data to DataLoaders, From Dogs and Cats to Pet Breeds
	iterate end to end, Starting Your Project
	model and human interaction, Combining text and images, How to Avoid Disaster
	performance of model via loss, Training Your Model, and Using It to Clean Your Data
	prototyping, Starting Your Project
	risk mitigation, How to Avoid Disaster
	testing with confusion matrix, Training Your Model, and Using It to Clean Your Data
	training the model, Training Your Model, and Using It to Clean Your Data
	web application disaster avoidance, How to Avoid Disaster
	web application from model, Turning Your Model into an Online Application-Deploying Your App


	production	CPU servers cheaper than GPU, Deploying Your App
	data seen changing over time, How to Avoid Disaster, Feedback Loops: YouTube’s Recommendation System
	GPU for model in production, Deploying Your App
	manual process in parallel, How to Avoid Disaster
	out-of-domain data, Computer vision, How to Avoid Disaster
	product design integrated with ML, Integrating Machine Learning with Product Design
	testing, complexity of, How to Avoid Disaster
	web application from model, Turning Your Model into an Online Application-Deploying Your App


	profile identity generated by ML, Disinformation and Language Models
	programs versus models, What Is Machine Learning?, What Is Machine Learning?
	progressive resizing, Progressive Resizing	transfer learning performance hurt, Progressive Resizing


	protein chains as natural language, Other data types
	prototyping	datasets cut down, Deep Learning Is Not Just for Image Classification
	project buy-in, Starting Your Project
	web application from model, Turning Your Model into an Online Application-Deploying Your App


	publishing app on Binder, Deploying Your App
	Python	array APIs, NumPy Arrays and PyTorch Tensors
	class methods, Language Model Using DataBlock
	context manager, CAM and Hooks
	error debugging, Gathering Data
	fastai library efficiency, How Our Image Recognizer Works
	IPython widgets, Creating a Notebook App from the Model	applications via Voilà, Creating a Notebook App from the Model


	Jupyter for, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)
	lambda functions, Constructing a DataBlock
	list comprehensions, First Try: Pixel Similarity
	list type as fastai L class, From Dogs and Cats to Pet Breeds
	loop inefficiency, NumPy Arrays and PyTorch Tensors, The MNIST Loss Function
	method double underscores, Collaborative Filtering from Scratch
	nested list comprehensions, Mapping a Convolutional Kernel
	Pandas library, The Data
	partial function to bind arguments, Binary Cross Entropy
	Path class, How Our Image Recognizer Works, Using the Model for Inference
	tensor APIs, NumPy Arrays and PyTorch Tensors
	web browser functionality, Creating a Notebook App from the Model


	Python for Data Analysis book (McKinney), The Data, Beyond Deep Learning
	Python Imaging Library (PIL), Pixels: The Foundations of Computer Vision
	PyTorch	about, Foreword, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)
	about fastai software library, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)
	building NLP model, Our Language Model in PyTorch
	casting, First Try: Pixel Similarity
	convolutions, Convolutions in PyTorch
	decision trees don’t use, Beyond Deep Learning
	fastai torch.nn.functional import, First Try: Pixel Similarity, Convolutions in PyTorch
	hooks, CAM and Hooks-CAM and Hooks
	loss functions for comparisons, First Try: Pixel Similarity
	most important technique, Computing Metrics Using Broadcasting
	names ending in underscore, Putting It All Together
	object-oriented programming, Collaborative Filtering from Scratch
	optimizer creation, Creating an Optimizer-Going Deeper
	SGD class, The Training Process-A Generic Optimizer
	single item or batch same code, Binary Cross Entropy
	tensors	about, NumPy Arrays and PyTorch Tensors
	broadcasting, Computing Metrics Using Broadcasting, Computing Metrics Using Broadcasting
	image section, Pixels: The Foundations of Computer Vision






R
	racial bias	arrest rates, Unforeseen Consequences and Feedback Loops
	datasets for training models, Historical bias
	Facebook advertising, Historical bias
	facial recognition, Integrating Machine Learning with Product Design, Historical bias
	Google advertising, Bias: Professor Latanya Sweeney “Arrested”
	Google Photos label, Historical bias
	historical, Historical bias
	power of diversity, The Power of Diversity
	sentencing and bail algorithm, Historical bias


	radiologist-model interaction, Combining text and images
	Raji, Deb, Gathering Data
	random forests, Random Forests-Ensembling	creating a random forest, Creating a Random Forest
	ensembling, Ensembling	boosting, Boosting


	extrapolation problem, Extrapolation and Neural Networks	out-of-domain data, The Extrapolation Problem


	hyperparameter insensitivity, Creating a Random Forest
	model interpretation, Model Interpretation	data leakage, Data Leakage
	feature importances, Feature Importance
	partial dependence, Partial Dependence
	removing low-importance variables, Removing Low-Importance Variables
	removing redundant features, Removing Redundant Features
	tree interpreter, Tree Interpreter
	tree variance for prediction confidence, Tree Variance for Prediction Confidence


	out-of-bag error, Creating a Random Forest


	random seed for validation set selection, How Our Image Recognizer Works, From Data to DataLoaders
	RandomResizedCrop	image classifier model, From Data to DataLoaders
	test time augmentation instead, Test Time Augmentation


	rank correlation, Removing Redundant Features
	rank of tensor	definition, First Try: Pixel Similarity, Jargon Recap
	scalar versus vector versus matrix, Jargon Recap


	recommendation systems	about, Limitations Inherent to Machine Learning
	actionable outcomes via Drivetrain Approach, The Drivetrain Approach
	Amazon, Recommendation systems
	collaborative filtering (see collaborative filtering)
	conspiracy theory feedback loops, Feedback Loops: YouTube’s Recommendation System, Feedback Loops, Feedback Loops
	current state of, Recommendation systems
	feedback loop ethics, Feedback Loops: YouTube’s Recommendation System, Feedback Loops
	Google Play concatenation approach, Categorical Embeddings
	Meetup and gender, Feedback Loops
	movies based on viewing habits, Deep Learning Is Not Just for Image Classification
	pretrained model rarity, Deep Learning Is Not Just for Image Classification
	skew from small number of users, Bootstrapping a Collaborative Filtering Model
	as tabular data, Recommendation systems
	YouTube feedback loop ethics, Feedback Loops: YouTube’s Recommendation System, Feedback Loops


	recourse for ethics violations, Recourse and Accountability
	rectified linear unit (ReLU), Adding a Nonlinearity, Jargon Recap
	recurrent neural networks (RNNs)	backpropagation through time, Maintaining the State of an RNN
	creating more signal, Creating More Signal
	definition, Our First Recurrent Neural Network
	language model from scratch	first RNN, Our First Recurrent Neural Network
	improved RNN, Improving the RNN-Creating More Signal
	multilayer RNNs, Multilayer RNNs-Exploding or Disappearing Activations


	LSTM language model, LSTM-Training a Language Model Using LSTMs	regularizing, Regularizing an LSTM-Training a Weight-Tied Regularized LSTM


	maintaining state of, Maintaining the State of an RNN
	multilayer RNNs, Multilayer RNNs-Exploding or Disappearing Activations
	natural language processing using, Text Preprocessing, Fine-Tuning the Language Model	AWD-LSTM architecture, Fine-Tuning the Language Model, Regularizing an LSTM


	training, Regularizing an LSTM


	refactoring parts of neural networks, Creating the CNN, Refactoring the Model
	regression models definition, How Our Image Recognizer Works
	regular expressions (regex), From Dogs and Cats to Pet Breeds
	regulating ethics, The Effectiveness of Regulation
	reinforcement learning, Feedback Loops
	replace_all_caps, Word Tokenization with fastai
	replace_maj, Word Tokenization with fastai
	replace_rep, Word Tokenization with fastai
	replace_wrep, Word Tokenization with fastai
	representation bias, Representation bias, Bootstrapping a Collaborative Filtering Model
	research papers	about, Mixup
	advertising bias, Bias: Professor Latanya Sweeney “Arrested”
	bagging predictors, Random Forests
	batch normalization, Batch Normalization
	bias in machine learning, Bias
	class activation map, CAM and Hooks
	convolution arithmetic, Mapping a Convolutional Kernel
	cyclical momentum, 1cycle Training
	data leakage, Data Leakage
	deep residual learning, ResNets
	demographics dataset, Deep Learning Is Not Just for Image Classification
	ethical lens versus ethical intuitions, Fairness, Accountability, and Transparency
	geo-diversity of datasets, Historical bias
	gradient class activation map, Gradient CAM
	label smoothing, Label Smoothing
	malware classification, Image Recognizers Can Tackle Non-Image Tasks
	measurement bias, Measurement bias
	Mixup, Mixup
	model bias, Gathering Data
	object recognition, Historical bias
	predicting sales from stores, Categorical Embeddings
	predictive policing, Unforeseen Consequences and Feedback Loops
	rectifier deep dive, Defining and Initializing a Layer
	regularizing LSTM language models, Regularizing an LSTM
	representation bias, Representation bias
	ResNet improved, A State-of-the-Art ResNet
	sentiment analysis, Deep Learning Is Not Just for Image Classification
	skip connections smoothing loss, Skip Connections
	training a segmentation model, Deep Learning Is Not Just for Image Classification
	training deep feedforward neural networks, Defining and Initializing a Layer
	training with large learning rates, 1cycle Training
	visualizing neural network weights, What Our Image Recognizer Learned, Unfreezing and Transfer Learning


	Resize, From Data to DataLoaders	image classifier model, From Data to DataLoaders
	presizing, Presizing


	ResNet architecture	about, ResNets, Skip Connections, Skip Connections
	building ResNet CNN, Building a Modern CNN: ResNet-Skip Connections
	building state-of-the-art ResNet, A State-of-the-Art ResNet-Bottleneck Layers	bottleneck layers, Bottleneck Layers-Bottleneck Layers
	top 5 accuracy, A State-of-the-Art ResNet


	ease of learning, Skip Connections
	first model, How Our Image Recognizer Works
	fully convolutional networks, Going Back to Imagenette	first, Going Back to Imagenette
	Learner, Going Back to Imagenette


	image classifier, Deeper Architectures
	Imagenette dataset, Going Back to Imagenette	model approach, Going Back to Imagenette


	layer quantity variants, Deeper Architectures
	ResNet-18, -34, -50 versions, Deeper Architectures, A State-of-the-Art ResNet
	skip connections, Skip Connections-Skip Connections	about, Going Back to Imagenette




	results (see predictions)
	rights and policy, Rights and Policy
	RMSProp, RMSProp
	rm_useless_spaces, Word Tokenization with fastai
	RNN (see recurrent neural networks)
	root mean squared error (RMSE or L2 norm), First Try: Pixel Similarity
	root mean squared log error as metric, Look at the Data, Creating the Decision Tree, Creating a Random Forest
	Rosenblatt, Frank, Neural Networks: A Brief History
	Rumelhart, David, Neural Networks: A Brief History
	Russia and 2016 election, Disinformation
	Russia Today and Mueller report, Feedback Loops


S
	Samuel, Arthur, What Is Machine Learning?
	save method, Using TabularPandas and TabularProc, Saving and Loading Models	encoder, Saving and Loading Models


	Schmidhuber, Jurgen, Pixels: The Foundations of Computer Vision
	scikit-learn library, Beyond Deep Learning
	search_images_bing, Gathering Data
	seed for validation set selection, From Data to DataLoaders
	segmentation, Computer vision	autonomous vehicle training, Deep Learning Is Not Just for Image Classification


	self-driving cars, Deep Learning Is Not Just for Image Classification, The Drivetrain Approach
	self-supervised learning	about, NLP Deep Dive: RNNs
	definition, NLP Deep Dive: RNNs
	language model, NLP Deep Dive: RNNs
	vision applications, NLP Deep Dive: RNNs


	Sequential class, Adding a Nonlinearity, Simple CNN
	server for running code, Getting a GPU Deep Learning Server
	setup	first model, Your First Model	(see also first model)


	Jupyter Notebook, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter), Getting a GPU Deep Learning Server, Running Your First Notebook	(see also beginning)


	NVIDIA GPU deep learning server, Getting a GPU Deep Learning Server


	SGD (see stochastic gradient descent)
	SGD class, Creating an Optimizer, The Training Process-A Generic Optimizer	(see also stochastic gradient descent)


	Shankar, Shreya, Historical bias
	show_batch method, Checking and Debugging a DataBlock
	show_image function, First Try: Pixel Similarity
	Siamese model image comparison, Applying the Mid-Level Data API: SiamesePair-Applying the Mid-Level Data API: SiamesePair	pretrained architecture, custom head, A Siamese Network-A Siamese Network


	sigmoid function	binary decision, Sigmoid, Softmax
	one-hot-encoded targets, Binary Cross Entropy
	softmax for more than two columns, Softmax
	two-activation version, Softmax


	sigmoid_range, Training a Model, Collaborative Filtering from Scratch
	signature of function	creating, An End-to-End SGD Example
	delegates, Deep Learning for Collaborative Filtering
	displaying, Gathering Data, Gathering Data, Word Tokenization with fastai


	skip connections, Skip Connections-Skip Connections
	sklearn	creating decision tree, Creating the Decision Tree
	default leaf node splitting, Creating the Decision Tree
	docs online, Creating a Random Forest
	max_features choices, Creating a Random Forest
	NumPy needed, Beyond Deep Learning
	TabularPandas class, Using TabularPandas and TabularProc


	Smith, Leslie, The Learning Rate Finder, The Learning Rate Finder, 1cycle Training, 1cycle Training
	Socher, Richard, Regularizing an LSTM
	socioeconomic bias, Addressing different types of bias
	softmax activation function, Viewing Activations and Labels, Unfreezing and Transfer Learning	image classifier, Softmax, Log Likelihood-Log Likelihood
	sum of 1 for predictions, Binary Cross Entropy


	sound analyzed as spectrogram, Image Recognizers Can Tackle Non-Image Tasks, Computer vision, Other data types
	source code of function displayed, Word Tokenization with fastai
	special tokens, Word Tokenization with fastai
	spec_add_spaces, Word Tokenization with fastai
	Splunk.com fraud detection, Image Recognizers Can Tackle Non-Image Tasks
	spreadsheet data for models, Deep Learning Is Not Just for Image Classification
	starting (see beginning)
	stem in convolutional neural network, A State-of-the-Art ResNet, cnn_learner
	stochastic gradient descent (SGD)	about, What Is a Neural Network?, Computing Metrics Using Broadcasting-Stochastic Gradient Descent, The Training Process
	backward, Calculating Gradients
	building Learner class from scratch, Learner
	calculating gradients, Calculating Gradients-Calculating Gradients
	cyclical momentum, 1cycle Training
	example end-to-end, An End-to-End SGD Example-Step 7: Stop
	mini-batches, SGD and Mini-Batches
	momentum, Momentum-Momentum
	multilayered neural networks learned with, Beyond Deep Learning
	optimization of numerical digit classifier, SGD and Mini-Batches-Going Deeper
	SGD class, Creating an Optimizer, The Training Process-A Generic Optimizer
	stepping with learning rate, Stepping with a Learning Rate-Stepping with a Learning Rate
	summarizing, Summarizing Gradient Descent


	store sales predictions	embedding distance and store distance, Categorical Embeddings


	stride-1 convolutions, Strides and Padding
	stride-2 convolutions, Strides and Padding	increasing number of features, Understanding Convolution Arithmetic


	stroke prediction, Combining text and images, Measurement bias
	subword tokenization, Subword Tokenization
	summary method	debugging image dataset, Checking and Debugging a DataBlock
	debugging tabular dataset, Constructing a DataBlock
	debugging text dataset, Language Model Using DataBlock


	Suresh, Harini, Bias
	Sweeney, Latanya, Bias: Professor Latanya Sweeney “Arrested”
	symbolic computation library, Gradients and the Backward Pass
	SymPy library and calculus, Gradients and the Backward Pass
	Syntactic Structures book (Chomsky), From Dogs and Cats to Pet Breeds
	Szegedy, Christian, Label Smoothing, Batch Normalization


T
	Tabular classes, Using a Neural Network
	tabular data for models	about, Deep Learning Is Not Just for Image Classification, Tabular Modeling Deep Dive
	advice for modeling, Conclusion
	architecture, Tabular
	categorical embeddings, Categorical Embeddings
	current state of, Tabular data
	as data type, From Dogs and Cats to Pet Breeds
	dataset for deep dive, The Dataset	data leakage, Partial Dependence
	date handling, Handling Dates
	examining data, Look at the Data
	neural network model, Using a Neural Network
	ordinal columns, Look at the Data
	overfitting, Creating the Decision Tree
	TabularPandas class, Using TabularPandas and TabularProc, Using a Neural Network


	decision trees as first approach, Beyond Deep Learning	about, Beyond Deep Learning, Decision Trees
	bagging, Random Forests-Ensembling
	displaying tree, Creating the Decision Tree-Creating the Decision Tree
	libraries for, Beyond Deep Learning
	metric, Look at the Data, Creating the Decision Tree, Creating a Random Forest
	training, Decision Trees-Creating the Decision Tree


	deep learning not best starting point, Categorical Embeddings
	entity embedding, Categorical Embeddings
	model interpretation, Model Interpretation	data leakage, Partial Dependence
	feature importances, Feature Importance
	partial dependence, Partial Dependence
	removing low-importance variables, Removing Low-Importance Variables
	removing redundant features, Removing Redundant Features
	tree interpreter, Tree Interpreter
	tree variance for prediction confidence, Tree Variance for Prediction Confidence


	multi-label classification, The Data-The Data
	neural network model, Using a Neural Network
	ordinal columns, Look at the Data
	predicting sales from stores, Categorical Embeddings
	pretrained model rarity, Deep Learning Is Not Just for Image Classification
	recommendation systems as, Recommendation systems


	TabularPandas class, Using TabularPandas and TabularProc
	TabularProc, Using TabularPandas and TabularProc
	tech industry and gender, The Power of Diversity
	temporal activation regularization, Activation Regularization and Temporal Activation Regularization
	tensor core support by GPUs, Deeper Architectures
	tensors	about, NumPy Arrays and PyTorch Tensors
	all images in directory, First Try: Pixel Similarity
	APIs, NumPy Arrays and PyTorch Tensors
	broadcasting, Computing Metrics Using Broadcasting, Computing Metrics Using Broadcasting
	color image as rank-3 tensor, Color Images
	column selected, NumPy Arrays and PyTorch Tensors
	creating a tensor, NumPy Arrays and PyTorch Tensors
	definition, Jargon Recap
	displaying as images, First Try: Pixel Similarity
	elementwise arithmetic, Elementwise Arithmetic
	image section, Pixels: The Foundations of Computer Vision
	image sizes same, From Data to DataLoaders, From Dogs and Cats to Pet Breeds
	matrix multiplication, The MNIST Loss Function	function from scratch, Matrix Multiplication from Scratch


	operators, NumPy Arrays and PyTorch Tensors
	rank, First Try: Pixel Similarity
	row selected, NumPy Arrays and PyTorch Tensors
	shape, First Try: Pixel Similarity	length for rank, First Try: Pixel Similarity


	slicing row or column, NumPy Arrays and PyTorch Tensors
	type, NumPy Arrays and PyTorch Tensors


	terminology for deep learning, A Bit of Deep Learning Jargon, Jargon Recap, Jargon Recap
	test time augmentation (TTA), Test Time Augmentation
	testing models	build it, test it, Dataset
	complexity of production model testing, How to Avoid Disaster
	confusion matrix, Training Your Model, and Using It to Clean Your Data
	first model, Running Your First Notebook
	test set, Validation Sets and Test Sets	building, Use Judgment in Defining Test Sets-Use Judgment in Defining Test Sets




	text combined with images, Combining text and images
	text data approach, Beyond Deep Learning	(see also natural language processing)


	text generation	correct responses not ensured, Text (natural language processing)
	current state of, Text (natural language processing)
	disinformation, Text (natural language processing), Disinformation, Disinformation and Language Models
	NLP, Text Generation	(see also natural language processing)




	TextBlock, Language Model Using DataBlock
	TextDataLoaders.from_folder, Going Deeper into fastai’s Layered API
	TfmdLists, TfmdLists and Datasets: Transformed Collections-TfmdLists
	Thomas, Rachel, Get Writing!, Analyze a Project You Are Working On
	time series analysis	converting to image, Image Recognizers Can Tackle Non-Image Tasks
	current state of, Tabular data
	sales from stores, Categorical Embeddings	(see also tabular data)


	TabularPandas splitting data, Using TabularPandas and TabularProc
	training and validation sets, Use Judgment in Defining Test Sets, Creating a Random Forest


	tokenization	approaches to, Tokenization
	definition, Text Preprocessing
	fastai interface, Word Tokenization with fastai
	most common token prediction, Our Language Model in PyTorch
	numericalization, Numericalization with fastai
	showing rules used, Word Tokenization with fastai
	special tokens, Word Tokenization with fastai
	subword tokenization, Subword Tokenization
	texts into batches for language model, Putting Our Texts into Batches for a Language Model-Putting Our Texts into Batches for a Language Model
	token definition, Tokenization
	Transform class, Transforms
	unknown word token, Numericalization with fastai
	word tokenization, Word Tokenization with fastai, Subword Tokenization


	top 5 accuracy, A State-of-the-Art ResNet
	torch.nn.functional, First Try: Pixel Similarity, Convolutions in PyTorch
	training	1cycle training, 1cycle Training
	backpropagation for neural networks, Pixels: The Foundations of Computer Vision
	bagging, Random Forests-Ensembling
	baseline, First Try: Pixel Similarity, Checking and Debugging a DataBlock, Establishing a Baseline-Establishing a Baseline
	biases, Gathering Data
	black-and-white or hand-drawn images, Computer vision
	cyclical momentum, 1cycle Training
	data cleanup before versus after, Training Your Model, and Using It to Clean Your Data, Training Your Model, and Using It to Clean Your Data
	decision trees, Decision Trees-Creating the Decision Tree
	deeper models, Going Deeper, Deeper Architectures
	definition, Jargon Recap
	early stopping, Selecting the Number of Epochs
	epochs, number of, How Our Image Recognizer Works
	ethics importance, Why Does This Matter?	(see also ethics)


	experiments lead to projects, Starting Your Project
	fine-tuning definition, How Our Image Recognizer Works	(see also fine-tuning)


	first model, Running Your First Notebook
	head of model, How Our Image Recognizer Works
	image classifier models (see image classifier model training)
	image differences during, From Data to DataLoaders
	labels for examples, Limitations Inherent to Machine Learning
	layers and, How Our Image Recognizer Works, Unfreezing and Transfer Learning
	learning rate, Stepping with a Learning Rate-Stepping with a Learning Rate	changing during training, 1cycle Training
	definition, Jargon Recap
	learning rate finder, The Learning Rate Finder


	machine learning concepts, What Is Machine Learning?-What Is Machine Learning?
	mixed-precision training, Deeper Architectures
	model memorizing data, How Our Image Recognizer Works, Validation Sets and Test Sets
	neural networks and learning rate, 1cycle Training
	numerical digit classifier (see numerical digit classifier)
	out-of-domain data, Computer vision
	overfitting, How Our Image Recognizer Works	importance of, How Our Image Recognizer Works, Conclusion
	reducing, Conclusion
	retrain from scratch, Selecting the Number of Epochs
	weight decay against, Weight Decay


	prediction model inference, Using the Model for Inference
	pretrained models (see pretrained models)
	process	about, The Training Process
	Adam, Adam
	baseline established, Establishing a Baseline-Establishing a Baseline
	callbacks, Callbacks
	callbacks, creating, Creating a Callback
	callbacks, exceptions, Callback Ordering and Exceptions
	decoupled weight decay, Decoupled Weight Decay
	momentum, Momentum-Momentum
	optimizer generic, A Generic Optimizer
	RMSProp, RMSProp
	SGD class, The Training Process-A Generic Optimizer


	random variations, Running Your First Notebook
	recurrent neural networks, Regularizing an LSTM
	self-supervised learning, NLP Deep Dive: RNNs	(see also self-supervised learning)


	stochastic gradient descent, Computing Metrics Using Broadcasting-Stochastic Gradient Descent	calculating gradients, Calculating Gradients-Calculating Gradients
	example end-to-end, An End-to-End SGD Example-Step 7: Stop
	momentum, Momentum-Momentum
	stepping with learning rate, Stepping with a Learning Rate-Stepping with a Learning Rate
	summarizing, Summarizing Gradient Descent


	tensor core support for speed, Deeper Architectures
	text classifier, Training a Text Classifier	fine-tuning language model, Fine-Tuning the Language Model-Saving and Loading Models
	language model using DataBlock, Language Model Using DataBlock


	time spent, Running Your First Notebook
	trained model is program, What Is Machine Learning?
	training set, How Our Image Recognizer Works, How Our Image Recognizer Works, Jargon Recap	building, Use Judgment in Defining Test Sets-Use Judgment in Defining Test Sets
	classes for representing, accessing, Constructing a DataBlock
	cleaning GUI, Training Your Model, and Using It to Clean Your Data
	DataLoaders, From Data to DataLoaders-From Data to DataLoaders
	DataLoaders customization, From Data to DataLoaders
	presizing, From Dogs and Cats to Pet Breeds
	production complexity and, How to Avoid Disaster
	racial balance of, Historical bias
	time series, Using TabularPandas and TabularProc




	transfer learning	about, Unfreezing and Transfer Learning
	cutting network, cnn_learner
	definition, How Our Image Recognizer Works
	final layer, Unfreezing and Transfer Learning
	fine-tuning as, How Our Image Recognizer Works, Unfreezing and Transfer Learning
	image classifier, Unfreezing and Transfer Learning
	natural language processing, NLP Deep Dive: RNNs
	progressive resizing hurting performance, Progressive Resizing
	self-supervised learning, NLP Deep Dive: RNNs
	weights, Summarizing Gradient Descent


	Transforms	collections, TfmdLists and Datasets: Transformed Collections
	Datasets, Datasets
	definition, How Our Image Recognizer Works
	image cropping, From Data to DataLoaders	test time augmentation, Test Time Augmentation


	image size, How Our Image Recognizer Works, From Data to DataLoaders, From Dogs and Cats to Pet Breeds
	item transforms, From Data to DataLoaders
	Pipeline class, Pipeline
	presizing, From Dogs and Cats to Pet Breeds
	Siamese model image comparison, Applying the Mid-Level Data API: SiamesePair-Applying the Mid-Level Data API: SiamesePair
	TabularProc, Using TabularPandas and TabularProc
	TfmdLists, TfmdLists and Datasets: Transformed Collections-TfmdLists
	Transform class, Transforms
	writing your own, Writing Your Own Transform, TfmdLists


	translation of languages	bias in Google Translate, Historical bias
	current state of, Text (natural language processing)
	French/English parallel text data, Deep Learning Is Not Just for Image Classification


	tumor identification, Deep Learning Is for Everyone, Who We Are
	Turing Award, Pixels: The Foundations of Computer Vision
	tutorials	book chapters, How Our Image Recognizer Works
	math tutorials online, What You Need to Know, First Try: Pixel Similarity	derivatives, Calculating Gradients


	Pandas library, The Data


	Twitter for deep learning help, A Note About Twitter


U
	unet_learner architecture, unet_learner
	unfreezing	gradual unfreezing NLP classifier, Fine-Tuning the Classifier
	image classifier, Unfreezing and Transfer Learning


	universal approximation theorem, What Is a Neural Network?, Adding a Nonlinearity, Skip Connections
	Universal Language Model Fine-tuning (ULMFiT) approach, NLP Deep Dive: RNNs
	untar_data, Data


V
	validation set	building, Use Judgment in Defining Test Sets-Use Judgment in Defining Test Sets	numeric digit classifier, Computing Metrics Using Broadcasting


	classes for representing and accessing, Constructing a DataBlock
	cleaning GUI, Training Your Model, and Using It to Clean Your Data
	DataLoaders, From Data to DataLoaders-From Data to DataLoaders
	definition, Jargon Recap, Validation Sets and Test Sets
	error rate, How Our Image Recognizer Works
	export method, Using the Model for Inference
	first model, How Our Image Recognizer Works
	hyperparameter picked by, Binary Cross Entropy
	NLP most common token, Our Language Model in PyTorch
	numeric digit classifier, Computing Metrics Using Broadcasting
	out-of-domain data, The Extrapolation Problem
	overfitting, Validation Sets and Test Sets
	random seed, How Our Image Recognizer Works
	size of, Validation Sets and Test Sets
	splitting from training set, From Data to DataLoaders
	test time augmentation, Test Time Augmentation
	testing with confusion matrix, Training Your Model, and Using It to Clean Your Data
	time series, Using TabularPandas and TabularProc


	variables	categorical variables, Categorical Embeddings	embedding and, Categorical Embeddings


	continuous variables, Categorical Embeddings
	error debugging, Gathering Data
	viewing as mini-batch, Viewing Activations and Labels


	vector dot product, A First Look at the Data, Categorical Embeddings
	verify_images, Gathering Data
	Visin, Francesco, Mapping a Convolutional Kernel
	vocabulary (see terminology)
	Voilà, Creating a Notebook App from the Model
	Volkswagen emission test cheating (ethics), Why Does This Matter?


W
	warmup learning rate, 1cycle Training
	Watson, Thomas, Why Does This Matter?
	Weapons of Math Destruction book (O’Neill), Addressing different types of bias
	web applications	Binder free app hosting, Deploying Your App
	deployment file, Using the Model for Inference
	disaster avoidance, How to Avoid Disaster
	file upload widget, Creating a Notebook App from the Model
	model into, Turning Your Model into an Online Application-Deploying Your App
	recommended hosts, Deploying Your App
	web display Output widget, Creating a Notebook App from the Model


	web resources	actionable outcomes via Drivetrain Approach, The Drivetrain Approach
	bias in machine learning, Bias
	Binder free app hosting, Deploying Your App
	blogging article, Get Writing!
	book updates, Deep Learning in Practice: That’s a Wrap!
	code from book, What You Need to Know, Running Your First Notebook, Deep Learning Is Not Just for Image Classification
	datasets and other Kaggle resources, Kaggle Competitions
	decision tree viewer, Creating the Decision Tree
	deployment issue discussion, How to Avoid Disaster
	documentation for methods, Deep Learning Is Not Just for Image Classification
	ethics description, Data Ethics
	ethics toolkits, Processes to Implement
	Fairness and Machine Learning book, Fairness, Accountability, and Transparency
	fast.ai free online course, Concluding Thoughts
	fast.ai website, What You Need to Know
	fastai forums, Concluding Thoughts
	fraud detection at Splunk.com, Image Recognizers Can Tackle Non-Image Tasks
	GitHub Pages hosting blog, Blogging with GitHub Pages
	GPU servers, Getting a GPU Deep Learning Server
	Jupyter, The Software: PyTorch, fastai, and Jupyter (And Why It Doesn’t Matter)
	Kaggle machine learning community, Who We Are
	malware classification, Image Recognizers Can Tackle Non-Image Tasks
	math tutorials, What You Need to Know, First Try: Pixel Similarity	derivatives, Calculating Gradients


	mathematical symbols, Mixup
	predicting sales from stores paper, Categorical Embeddings
	predictive policing paper, Unforeseen Consequences and Feedback Loops
	Python debugger, Gathering Data
	recommended web app hosts, Deploying Your App
	regular expression tutorials, From Dogs and Cats to Pet Breeds
	segmentation training, Deep Learning Is Not Just for Image Classification
	sklearn docs, Creating a Random Forest
	sound analyzed as spectrogram, Image Recognizers Can Tackle Non-Image Tasks
	SymPy library, Gradients and the Backward Pass
	tutorials for each book chapter, How Our Image Recognizer Works
	visualizing convolutional networks, What Our Image Recognizer Learned


	weights	machine learning, What Is Machine Learning?-What Is Machine Learning?
	neural networks, What Is a Neural Network?
	as parameters, What Is Machine Learning?, A Bit of Deep Learning Jargon
	pretrained parameter, How Our Image Recognizer Works
	random in training from scratch, Summarizing Gradient Descent
	stochastic gradient descent, Computing Metrics Using Broadcasting-Stochastic Gradient Descent	calculating gradients, Calculating Gradients-Calculating Gradients
	example end-to-end, An End-to-End SGD Example-Step 7: Stop
	stepping with learning rate, Stepping with a Learning Rate-Stepping with a Learning Rate
	summarizing, Summarizing Gradient Descent


	transfer learning	freezing pretrained layers, Unfreezing and Transfer Learning
	pretrained models, Summarizing Gradient Descent


	visualizing learning, What Our Image Recognizer Learned
	weight decay, Weight Decay	decoupled, Decoupled Weight Decay


	weight tying, Training a Weight-Tied Regularized LSTM


	Werbos, Paul, Pixels: The Foundations of Computer Vision
	Wikipedia for pretraining NLP, NLP Deep Dive: RNNs
	word tokenization, Word Tokenization with fastai, Subword Tokenization
	Wright, Marvin, Categorical Variables


X
	XGBoost library, Boosting


Y
	YouTube	recommendation feedback loops, Feedback Loops: YouTube’s Recommendation System, Feedback Loops
	Russia Today possibly gaming, Feedback Loops


	y_range	coordinate range, Training a Model
	recommendation system ratings, Deep Learning Is Not Just for Image Classification




Z
	Zeiler, Matt, What Our Image Recognizer Learned, Unfreezing and Transfer Learning
	Zhang, Hongyi, Mixup
	Zhou, Bolei, CAM and Hooks
	Zuckerberg, Mark, The Effectiveness of Regulation









  

About the Authors


Jeremy Howard is an entrepreneur, business strategist, developer, and educator. Jeremy is a founding researcher at fast.ai, a research institute dedicated to making deep learning more accessible. He is also a Distinguished Research Scientist at the University of San Francisco, a faculty member at Singularity University, and a Young Global Leader with the World Economic Forum.


Jeremy’s most recent startup, Enlitic, was the first company to apply deep learning to medicine, and was selected as one of the world’s top 50 smartest companies by MIT Tech Review in both 2015 and 2016. Jeremy was previously president and chief scientist at the data science platform Kaggle, where he was the top-ranked participant in international machine learning competitions for two years running. He was the founding CEO of two successful Australian startups (FastMail and Optimal Decisions Group, purchased by Lexis-Nexis). Before that, he spent eight years in management consulting, at McKinsey & Co and AT Kearney. Jeremy has invested in, mentored, and advised many startups, and contributed to many open source projects.


In addition to being a regular guest on Australia’s highest-rated breakfast news program, he has given a popular talk on TED.com and produced a number of data science and web development tutorials and discussions.


Sylvain Gugger is a research engineer at HuggingFace. He was previously a research scientist at fast.ai, with a focus on making deep learning more accessible by designing and improving techniques that allow models to train fast on limited resources.


Prior to this, he taught computer science and mathematics in a CPGE program in France for seven years. The CPGE are highly selective classes taken by handpicked students after finishing high school to prepare them for the competitive exam to enter the country’s top engineering and business schools. Sylvain has also written several books covering the entire curriculum he was teaching, published at Éditions Dunod.


Sylvain is an alumnus of the École Normale Supérieure (Paris, France), where he studied mathematics, and has a master’s degree in mathematics from the University of Paris XI (Orsay, France).








  
  Acknowledgments


We’d particularly like to highlight the amazing work of Alexis Gallagher and Rachel Thomas. Alexis was far more than a technical editor. His influence is felt in every chapter, and he wrote many of the most insightful and compelling  explanations in this book. He also provided deep insight into the design of the fastai library, especially the data block API. Rachel provided most of the  material for Chapter 3, and also provided input on ethics issues throughout the book.


Thank you to the fast.ai community, including the thirty thousand members of forums.fast.ai, the five hundred contributors to the fastai library, and the hundreds of thousands of course.fast.ai students. Special thanks to fastai contributors who have gone the extra mile, including Zachary Muller, Radek Osmulski, Andrew Shaw, Stas Bekman, Lucas Vasquez, and Boris Dayma. And also to those researchers who have used fastai for groundbreaking research, such as Sebastian Ruder, Piotr Czapla, Marcin Kardas, Julian Eisenschlos, Nils Strodthoff, Patrick Wagner, Markus Wenzel, Wojciech Samek, Paul Maragakis, Hunter Nisonoff, Brian Cole, and David E. Shaw. Thank you also to Hamel Hussain, who has created some of the most inspiring projects with fastai, and has been the driving force behind the fastpages blogging platform. And huge thanks to Chris Lattner, for his inspiration in bringing ideas from Swift and his enormous knowledge of programming language design to our many discussions, which greatly influenced the design of fastai.


Thank you to all the folks at O’Reilly for their work to make this book far better than we could have imagined, including Rebecca Novak, who ensured that all the notebooks for the book would be freely available, and that the book would be published in full color; Rachel Head, whose comments improved every part of the book; and Melissa Potter, who helped ensure that the process kept moving forward.


Thank you to all our technical reviewers—an extraordinary group of people who gave insightful and thoughtful feedback: Aurélien Géron, the author of one of the best machine learning books  we’ve ever read, who was generous enough to help us make our book better too; Joe Spisak, PyTorch product manager; Miguel De Icaza, the legend behind Gnome, Xamarian, and much more; Ross Wightman, creator of our favorite PyTorch model zoo; Radek Osmulski, one of the most brilliant fast.ai alumni we’ve had the pleasure of getting to know; Dmytro Mishkin, cofounder of the Kornia project and author of some of our favorite deep learning papers; Fred Monroe, who has helped us with so many projects; and Andrew Shaw, director at WAMRI and creator of the wonderful musicautobot.com.


Special thanks to Soumith Chintala and Adam Paszke for creating PyTorch, and the whole PyTorch team for making it such a joy to use. And of course, thank you to our families for all their support and patience throughout this big project.








  
  Colophon


The animal on the cover of Deep Learning for Coders with fastai and PyTorch is a boarfish (Capros aper), the only known member of its genus. Mostly found in eastern Atlantic waters, this fish inhabits an area that spans from Norway to as far south as Senegal, including the Aegean and Mediterranean seas. Boarfish can be found at depths ranging from 130–1,968 feet in the pelagic zone: the section of the open sea that is neither close to the sea floor nor the shore and home to the largest aquatic habitat on Earth. 


  The boarfish is small and reddish-orange in coloration, with large eyes and a protractile mouth. Its body is compressed, deep, and rhombic, shaped as wide as it is high. Boarfish typically measure 5 inches long, but as a sexually dimorphic species, the females are larger; the record length stands at 11 inches. Although vulnerable to prey due to their size, these shoaling fish travel in groups, allowing them enhanced defense against predators as well as making it easier for them to mate and find food. Its closest relatives are the shortspine boarfish (Antigonia combatia), a native to tropical and sub-tropical waters and the deepbody boarfish (Antigonia capros), found in the neighboring western Atlantic waters.


  While the current conservation status of the boarfish is of “Least Concern,” many of the animals on O’Reilly covers are endangered; all of them are important to the world.


  The cover illustration is by Karen Montgomery, based on a black and white engraving from Johnson’s Natural History. The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.








  OEBPS/Images/dlcf_13in22.png


OEBPS/Images/dlcf_13in21.png


OEBPS/Images/dlcf_13in20.png


OEBPS/Images/dlcf_01in04.png


OEBPS/Images/dlcf_01in02.png


OEBPS/Images/dlcf_01in03.png


OEBPS/Images/dlcf_13in19.png


OEBPS/Images/dlcf_13in18.png


OEBPS/Images/dlcf_13in17.png


OEBPS/Images/dlcf_13in16.png


OEBPS/Images/dlcf_13in15.png


OEBPS/Images/dlcf_13in14.png


OEBPS/Images/dlcf_13in13.png


OEBPS/Images/dlcf_13in12.png


OEBPS/Images/dlcf_16in01.png


OEBPS/Images/dlcf_16in02.png


OEBPS/Images/dlcf_13in24.png


OEBPS/Images/dlcf_13in23.png


OEBPS/Images/dlcf_aa15.png


OEBPS/Images/dlcf_aa14.png


OEBPS/Images/dlcf_aa13.png


OEBPS/Images/dlcf_aa12.png


OEBPS/Images/dlcf_aa11.png


OEBPS/Images/dlcf_aa10.png


OEBPS/Images/dlcf_aa09.png


OEBPS/Images/dlcf_aa08.png


OEBPS/Images/dlcf_0701.png


OEBPS/Images/dlcf_0702.png


OEBPS/Images/dlcf_1002.png


OEBPS/Images/dlcf_1001.png


OEBPS/Images/dlcf_01in01.png


OEBPS/Images/dlcf_1004.png


OEBPS/Images/dlcf_1003.png


OEBPS/Images/dlcf_02in11.png


OEBPS/Images/dlcf_0118.png


OEBPS/Images/dlcf_1208.png


OEBPS/Images/dlcf_1207.png


OEBPS/Images/dlcf_0119.png


OEBPS/Images/dlcf_1209.png


OEBPS/Images/dlcf_0121.png


OEBPS/Images/dlcf_1211.png


OEBPS/Images/dlcf_1210.png


OEBPS/Images/dlcf_0122.png


OEBPS/Images/dlcf_02in09.png


OEBPS/Images/dlcf_02in05.png


OEBPS/Images/dlcf_02in06.png


OEBPS/Images/dlcf_02in07.png


OEBPS/Images/dlcf_02in08.png


OEBPS/Images/dlcf_02in01.png


OEBPS/Images/dlcf_02in02.png


OEBPS/Images/dlcf_02in03.png


OEBPS/Images/dlcf_0120.png


OEBPS/Images/dlcf_02in04.png


OEBPS/Images/dlcf_aa07.png


OEBPS/Images/dlcf_aa06.png


OEBPS/Images/dlcf_aa05.png


OEBPS/Images/dlcf_aa04.png


OEBPS/Images/dlcf_aa03.png


OEBPS/Images/dlcf_aa02.png


OEBPS/Images/dlcf_aa01.png


OEBPS/Images/dlcf_0801.png


OEBPS/Images/dlcf_0802.png


OEBPS/Images/dlcf_0803.png


OEBPS/Images/dlcf_0804.png


OEBPS/Images/dlcf_02in13.png


OEBPS/Images/dlcf_1307.png


OEBPS/Images/dlcf_1306.png


OEBPS/Images/dlcf_1309.png


OEBPS/Images/dlcf_1308.png


OEBPS/Images/dlcf_1310.png


OEBPS/Images/dlcf_0101.png


OEBPS/Images/dlcf_1312.png


OEBPS/Images/dlcf_0102.png


OEBPS/Images/dlcf_1311.png


OEBPS/Images/dlcf_0103.png


OEBPS/Images/dlcf_1314.png


OEBPS/Images/dlcf_1313.png


OEBPS/Images/dlcf_0104.png


OEBPS/Images/dlcf_1316.png


OEBPS/Images/dlcf_0105.png


OEBPS/Images/dlcf_1315.png


OEBPS/Images/dlcf_0106.png


OEBPS/Images/dlcf_0907.png


OEBPS/Images/dlcf_13in11.png


OEBPS/Images/dlcf_13in10.png


OEBPS/Images/dlcf_0908.png


OEBPS/Images/dlcf_ab02.png


OEBPS/Images/dlcf_ab01.png


OEBPS/Images/dlcf_0107.png


OEBPS/Images/dlcf_0108.png


OEBPS/Images/dlcf_0901.png


OEBPS/Images/dlcf_0109.png


OEBPS/Images/dlcf_0902.png


OEBPS/Images/dlcf_0903.png


OEBPS/Images/dlcf_0904.png


OEBPS/Images/dlcf_0905.png


OEBPS/Images/dlcf_0906.png


OEBPS/Images/dlcf_0110.png


OEBPS/Images/dlcf_0111.png


OEBPS/Images/dlcf_0112.png


OEBPS/Images/dlcf_1202.png


OEBPS/Images/dlcf_1201.png


OEBPS/Images/dlcf_0113.png


OEBPS/Images/dlcf_0114.png


OEBPS/Images/dlcf_1204.png


OEBPS/Images/dlcf_1203.png


OEBPS/Images/dlcf_0115.png


OEBPS/Images/dlcf_0116.png


OEBPS/Images/dlcf_1206.png


OEBPS/Images/dlcf_0117.png


OEBPS/Images/dlcf_1205.png


OEBPS/Images/dlcf_13in09.png


OEBPS/Images/dlcf_13in08.png


OEBPS/Images/dlcf_13in07.png


OEBPS/Images/dlcf_13in06.png


OEBPS/Images/dlcf_13in05.png


OEBPS/Images/dlcf_13in04.png


OEBPS/Images/dlcf_13in03.png


OEBPS/Images/dlcf_13in02.png


OEBPS/Images/dlcf_13in01.png


OEBPS/Images/dlcf_18in01.png


OEBPS/Images/dlcf_18in03.png


OEBPS/Images/dlcf_18in02.png


OEBPS/Images/dlcf_0201.png


OEBPS/Images/dlcf_0202.png


OEBPS/Images/dlcf_0203.png


OEBPS/Images/dlcf_0204.png


OEBPS/Images/dlcf_0205.png


OEBPS/Images/dlcf_1301.png


OEBPS/Images/dlcf_1303.png


OEBPS/Images/dlcf_1302.png


OEBPS/Images/dlcf_1305.png


OEBPS/Images/dlcf_1304.png


OEBPS/Images/dlcf_14in01.png


OEBPS/Images/dlcf_14in02.png


OEBPS/Images/dlcf_06in01.png


OEBPS/Images/dlcf_06in02.png


OEBPS/Images/dlcf_06in03.png


OEBPS/Images/dlcf_06in04.png


OEBPS/Images/dlcf_0301.png


OEBPS/Images/dlcf_0302.png


OEBPS/Images/dlcf_0303.png


OEBPS/Images/dlcf_0304.png


OEBPS/Images/dlcf_06in05.png


OEBPS/Images/dlcf_06in06.png


OEBPS/Images/dlcf_06in07.png


OEBPS/Images/dlcf_0305.png


OEBPS/Images/dlcf_0306.png


OEBPS/Images/dlcf_0307.png


OEBPS/Images/dlcf_0308.png


OEBPS/Images/cover.png


OEBPS/Images/dlcf_0309.png


OEBPS/Images/dlcf_0310.png


OEBPS/Images/dlcf_0311.png


OEBPS/Images/dlcf_1402.png


OEBPS/Images/dlcf_0312.png


OEBPS/Images/dlcf_0313.png


OEBPS/Images/dlcf_1401.png


OEBPS/Images/dlcf_0314.png


OEBPS/Images/dlcf_1404.png


OEBPS/Images/dlcf_1403.png


OEBPS/Images/dlcf_0315.png


OEBPS/Images/dlcf_1604.png


OEBPS/Images/dlcf_1603.png


OEBPS/Images/dlcf_1605.png


OEBPS/Images/dlcf_19in02.png


OEBPS/Images/dlcf_0401.png


OEBPS/Images/dlcf_19in01.png


OEBPS/Images/dlcf_0402.png


OEBPS/Images/dlcf_0403.png


OEBPS/Images/dlcf_04in10.png


OEBPS/Images/dlcf_04in11.png


OEBPS/Images/dlcf_04in12.png


OEBPS/Images/dlcf_19in04.png


OEBPS/Images/dlcf_19in03.png


OEBPS/Images/dlcf_04in13.png


OEBPS/Images/dlcf_04in14.png


OEBPS/Images/dlcf_04in15.png


OEBPS/Images/dlcf_04in16.png


OEBPS/Images/dlcf_04in17.png


OEBPS/Images/dlcf_0404.png


OEBPS/Images/dlcf_0405.png


OEBPS/Images/dlcf_0406.png


OEBPS/Images/dlcf_04in07.png


OEBPS/Images/dlcf_04in08.png


OEBPS/Images/dlcf_04in09.png


OEBPS/Images/dlcf_1501.png


OEBPS/Images/dlcf_1503.png


OEBPS/Images/dlcf_1502.png


OEBPS/Images/dlcf_04in01.png


OEBPS/Images/dlcf_04in02.png


OEBPS/Images/dlcf_04in03.png


OEBPS/Images/dlcf_04in04.png


OEBPS/Images/dlcf_04in05.png


OEBPS/Images/dlcf_04in06.png


OEBPS/Images/dlcf_05in04.png


OEBPS/Images/dlcf_05in05.png


OEBPS/Images/dlcf_05in02.png


OEBPS/Images/dlcf_05in03.png


OEBPS/Images/dlcf_05in01.png


OEBPS/Images/dlcf_05in06.png


OEBPS/Images/dlcf_05in07.png


OEBPS/Images/dlcf_09in15.png


OEBPS/Images/dlcf_0501.png


OEBPS/Images/dlcf_09in13.png


OEBPS/Images/dlcf_09in14.png


OEBPS/Images/dlcf_0502.png


OEBPS/Images/dlcf_09in11.png


OEBPS/Images/dlcf_09in12.png


OEBPS/Images/dlcf_09in10.png


OEBPS/Images/dlcf_11in02.png


OEBPS/Images/dlcf_11in01.png


OEBPS/Images/dlcf_2001.png


OEBPS/Images/dlcf_11in05.png


OEBPS/Images/dlcf_11in04.png


OEBPS/Images/dlcf_11in03.png


OEBPS/Images/dlcf_0503.png


OEBPS/Images/dlcf_0504.png


OEBPS/Images/dlcf_09in08.png


OEBPS/Images/dlcf_09in09.png


OEBPS/Images/dlcf_09in06.png


OEBPS/Images/dlcf_09in07.png


OEBPS/Images/dlcf_09in04.png


OEBPS/Images/dlcf_09in05.png


OEBPS/Images/dlcf_09in02.png


OEBPS/Images/dlcf_1602.png


OEBPS/Images/dlcf_1601.png


OEBPS/Images/dlcf_09in03.png


OEBPS/Images/dlcf_09in01.png


