
Coding Clean, Reliable,
and Safe REST APIs
with ASP.NET Core 8

Develop Robust Minimal APIs
with .NET 8
—
Anthony Giretti

Coding Clean,
Reliable, and Safe
REST APIs with
ASP.NET Core 8

Develop Robust Minimal
APIs with .NET 8

Anthony Giretti

Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8:

Develop Robust Minimal APIs with .NET 8

ISBN-13 (pbk): 978-1-4842-9978-4 ISBN-13 (electronic): 978-1-4842-9979-1
https://doi.org/10.1007/978-1-4842-9979-1

Copyright © 2023 by Anthony Giretti

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Smriti Srivastava
Development Editor: Laura Berendson
Editorial Assistant: Gryffin Winkler

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, 1 FDR Dr, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on the Github repository. For more detailed information, please visit
https://www.apress.com/gp/services/source-code.

Paper in this product is recyclable

Anthony Giretti
La Salle, QC, Canada

https://doi.org/10.1007/978-1-4842-9979-1

iii

Table of Contents

About the Author ���ix

About the Technical Reviewer ���xi

Acknowledgments ���xiii

Prerequisites ��xv

Introduction ��xvii

Chapter 1: Introducing HTTP and REST ���1

Unveiling HTTP Behind the Web ��1

The Characteristics of HTTP ��3

HTTP Requests and Responses ���4

HTTP Implementation ��5

Extend Your Talent on the Web with REST Architecture Style �����������������������������32

REST Constraints ���33

REST Good Practices ���34

Summary���41

Chapter 2: Introducing ASP�NET Core 8 ���43

ASP�NET Core Fundamentals ���44

ASP�NET Core Web API ���53

ASP�NET Core Minimal APIs ���65

Summary���69

iv

Chapter 3: Introduction to Application Development
Best Practices���71

Getting the Right Frame of Mind ���72

A Basic Understanding of the Business ���72

Problem-Solving Skills ��72

Understanding Programming Paradigms ��73

Logical and Structured Thinking ��73

Clean Architecture Fundamentals ���74

Clean Code Fundamentals ��79

General Coding Fundamentals ��79

Coding Style Fundamentals ���83

OWASP Principles��86

Summary���90

Chapter 4: Basics of Clean REST APIs ��91

Routing with ASP�NET Core 8 ��92

ASP�NET Core Routing ��92

RouteGroups ��103

Parameter Binding ��107

What’s Precisely Parameter Binding? ���108

Parameter Binding by Example ���109

Validating Inputs ���119

Object Mapping ���129

Managing CRUD Operations and HTTP Statuses ���135

Handling HTTP Statuses ��136

Creating the Services to Handle CRUD Operations ��������������������������������������138

Creating the Endpoints to Handle CRUD Operations ������������������������������������141

Downloading and Uploading Files ���151

Downloading Files ���151

Table of ConTenTs

v

Uploading Files ��155

Streaming Content ��169

Handling CORS ��171

API Versioning ���177

Versioning by Headers ���178

Versioning by Route ���187

Documenting APIs ���190

Managing API Versions in Swagger ���192

Adding Comments on Endpoints ���199

Grouping Endpoints by Tag ��206

Other Customizations ��207

Summary���212

Chapter 5: Going Further with Clean REST APIs �������������������������������213

Encapsulating Minimal Endpoint Implementation ���214

Implementing Custom Parameter Binding ��219

Example of Custom Parameter Binding from Headers ��������������������������������220

Example of Custom Parameter Binding from the From Data �����������������������222

Using Middlewares ���225

Using Action Filters ���238

Using Rate Limiting ���243

The Fixed Window Model ���246

The Sliding Window Model ��253

The Token Bucket Model ���255

The Concurrency Model ���257

Global Error Management ���259

Summary���266

Table of ConTenTs

vi

Chapter 6: Accessing Data Safely and Efficiently �����������������������������267

Introduction to Data Access Best Practices ��267

SQL-Type Data Access ���268

HTTP Data Access ��269

Architecturing Data Access ���269

Accessing Data with Entity Framework Core 8 ���271

Step 1: Creating the CountryEntity Class ���272

Step 2: Creating the EF Core Context���273

Step 3: Configuring the CountryEntity ���274

Step 4: Generating the Database Model from C# ��276

Step 5: Enabling Resiliency with Entity Framework Core ����������������������������280

Step 6: Writing the Repository on Top of the CountryEntity �������������������������281

Accessing Data with HttpClient and REST APIs ���294

Using IHttpClientFactory to Make HTTP Requests ���������������������������������������295

Using Refit to Make HTTP Requests ��297

Using Polly to Make HTTP Requests Resilient ���298

Summary���301

Chapter 7: Optimizing APIs ���303

Asynchronous Programming ���303

Basics of Asynchronous Programming ��304

Using CancellationToken ���306

Long-Running Tasks with Background Services ���310

Paging ���321

JSON Streaming ��324

Caching ���326

Output Cache ���326

In-Memory Cache ��330

Distributed Cache ��336

Table of ConTenTs

vii

Speeding Up HTTP Requests with HTTP/2 and HTTP/3 �������������������������������������342

Summary���343

Chapter 8: Introduction to Observability ��345

Basics of Observability ��346

Performing Logging ��347

Performing Tracing and Metrics Data Collection ���363

Implementing HealthCheck ���367

Liveness HealthCheck ���368

Readiness HealthCheck ���370

Summary���374

Chapter 9: Managing Application Secrets ��375

Introduction to Application Secret Management ���375

Example with Azure Key Vault ���378

Summary���383

Chapter 10: Secure Your Application with OpenID Connect ��������������385

Introduction to OpenID Connect ��386

Configuring Authentication and Authorization in ASP�NET Core ������������������������389

Passing a JWT into Requests and Getting the User’s Identity ���������������������������395

Summary���401

Chapter 11: Testing APIs ��403

Introduction to Testing ��403

Efficient Unit Testing ���405

Using the Right Tools ���406

Testing a SUT Step-by-Step ���408

Summary���418

 Index ���419

Table of ConTenTs

ix

About the Author

Anthony Giretti is a senior developer/architect

at Marchex in Toronto, Canada. He appreciates

learning and teaching new technologies and

has a knack for web technologies (more than

17 years’ experience) and a keen interest in

.NET. His expertise in development and IT and

his passion for sharing his knowledge allow

him to deconstruct any web project in order

to help other developers achieve their project

goals. He loves to deal with performance constraints, high availability,

and optimization challenges. Anthony is the author of Beginning gRPC

with ASP.NET Core 6 (Apress), a six-time Microsoft MVP, and a Microsoft

Certified Software Developer (MCSD).

xi

About the Technical Reviewer

Fiodar Sazanavets is a Microsoft MVP and a

senior software engineer with over a decade

of professional experience. He primarily

specializes in .NET and Microsoft stack and

is enthusiastic about creating well-crafted

software that fully meets business needs.

He enjoys teaching aspiring developers and

sharing his knowledge with the community,

which he has done both as a volunteer and

commercially. Fiodar has created several

online courses, written a number of technical books, and authored other

types of educational content. He also provides live mentoring services,

both to groups and individuals. Throughout his career, he has built

software of various types and various levels of complexity in multiple

industries. This includes a passenger information management system

for a railway, distributed smart clusters of IoT devices, ecommerce

systems, financial transaction processing systems, and more. He has also

successfully led and mentored teams of software developers.

xiii

Acknowledgments

Completing this book could not have been possible without the

participation and assistance of many people, and I would like to express

my special thanks to them. First, thanks to my wife, Nadege, who never

stopped supporting me. I love you!

Next, I would like to thank the rest of my family for their support.

This book has been written in special conditions since I was

hospitalized for a severe disease that could have taken my life. I haven’t

given up, and I hope this book will please you; if I have completed it, it’s for

a good reason, I hope!

I also would like to thank my colleagues at Marchex, especially

my friend (and colleague) Callon Campbell, who never stopped

encouraging me.

Thanks to my friend Dominique St-Amand, who has never been stingy

with comments to help me improve this book.

Last but not least, Fiodar Sazanavets! Thanks, my friend, for being part

of this journey; you were essential in this new challenge I set for myself.

Without you, I wouldn’t have succeeded.

xv

Prerequisites

This book is aimed at beginner and intermediate developers who want to

take their Application Programming Interface (API) development skills to

the next level. In this book, I assume you know the basics of .NET, C#, and,

therefore, the fundamentals of Object-Oriented Programming (OOP). I

also assume you’ve already used Visual Studio and know how to use it. As

for web fundamentals, I’ve started from scratch, so if you don’t know much

about the Web, no problem!

xvii

Introduction

Dear reader friend, welcome to this book!

In my career, I have worked in various companies and on various

complex APIs. Although each company had its challenges, I can assure you

that they all had one thing in common: their APIs lacked a lot of love and

care. They all suffered from the same problems: poor code organization

due to an accumulation of minor errors over the years, lack of consistency

in the definition of coding conventions, lack of technological refreshment,

misinterpretations of the HyperText Transfer Protocol (HTTP) and

Representational State Transfer (REST) principles, missing logging or bad

logging practice, and not enough care regarding performances.

I have always enjoyed helping teams overcome these difficulties,

and I have decided to write a book to share my experiences and guide

you through the best practices of API implementations. This book will

focus on some technical architecture of an API, but it will focus more on

coding practices to help you avoid the most common mistakes in your

development career. I will not cover solution architecture where an API

is built around other systems, but keep assured; I will show you how to

implement access to external data sources.

At the end of this book, you will know how to develop APIs with ASP.

NET Core 8 properly coded, performant, resilient, secure, testable, and

debuggable. You will go from a beginner/intermediate level to a senior

level by learning precisely WHAT you need to know without feeling

overwhelmed by a ton of information.

Let’s go!

1

CHAPTER 1

Introducing HTTP
and REST
Before we dive into ASP.NET Core 8 and API development, let’s first go

back to the basics of any web application. Whether a website is run from a

browser or a web service (web API), it’s always the same principle: a client

and a server will communicate together; a client will send a request to a

server, which will then respond to the client. This is all possible with the

magic of the HTTP communication protocol. Under this protocol, data

can be transported using different formats and constraints. Here is REST!

REST is an architectural concept of data representation. Of course, these

two should not be confused. In this chapter, we will cover the following

content:

• HTTP

• REST architecture style

 Unveiling HTTP Behind the Web
The HyperText Transfer Protocol (HTTP) is a network protocol for

exchanging data between clients and servers. This protocol was invented

in 1990 by British computer scientist Tim Berners-Lee to access the World

Wide Web (WWW). WWW makes it possible to consult web pages from

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_1

https://doi.org/10.1007/978-1-4842-9979-1_1

2

a browser using HyperText Markup Language (HTML) through Uniform

Resource Identifier (URI) web addresses. At the beginning of HTTP’s

history, HTML was the language used to create pages, but since then,

HTTP has evolved into a web server that can process data formats other

than HTML. For example, a web server can serve (but also accept as input)

Extensible Markup Language (XML), which is a structured language, or

JavaScript Object Notation (JSON). Of course, a web server can serve other

types of data formats, categorized as Multipurpose Internet Mail Extensions

(MIME) type, and I will come back to this later.

HTTP follows a technical specification called Request From Comment

(RFC), developed by the Internet Engineering Task Force (IETF). There

are a ton of RFC specifications identified by numbers. The common point

among them is that they define the specifications of the Internet and only

the Internet. HTTP is defined by RFC 7231. RFC 7231 can be found at this

address: www.rfc-editor.org/rfc/rfc7231.

Note In this book, I will often refer to RFCs. The reason is that I
want to teach you the good practices for using HTTP. However, in
practice, the actual implementation of those RFCs may differ. Finally,
while this chapter aims to teach you the good techniques with HTTP,
I will not cover all the HTTP capabilities. I’ll stick to what you need to
know about building clean APIs with ASP.NET Core.

There are also different versions of HTTP. HTTP has evolved. I will not

go into details; in the following, you can find the published versions of the

protocol:

• HTTP/0.9 (obsolete)

• HTTP/1.0 (obsolete)

• HTTP/1.1 (still used)

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc7231

3

• HTTP/2 (in use but not widely used)

• HTTP/3 (new, not much used)

In this book, I will mainly refer to HTTP/1.1 and sometimes to HTTP/2

and HTTP/3 (when approaching the performance theme).

 The Characteristics of HTTP
HTTP has three essential characteristics:

 1. It is stateless: This means that after sending a

request to the server and receiving the response,

neither the client nor the server retains any

information on the exchanged request.

 2. It is connectionless: An HTTP connection is open

between the client and the server. Once the client

has received the response from the server, the

connection is closed, and the connection between

the two systems is not permanent.

 3. It is independent of the media, that is, the server

can transmit any media as long as the client and

the server “agree” on exchanging the content. (I will

return to this when I discuss headers.)

While HTTP is stateless, transmitting information between requests

may be necessary. Most web applications need to recognize the same

user during a browsing session (identify this user through browsing

between several web pages). To achieve this, an RFC describes HTTP

cookies designed to keep user data browser-side. I won’t go into this type

of “persistence” in this book, but I will employ more modern techniques.

However, if you are interested, consult RFC 6265 here: www.rfc-editor.

org/rfc/rfc6265.

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc6265
http://www.rfc-editor.org/rfc/rfc6265

4

These characteristics may seem abstract, but they will become more

apparent as we read this book together. In the next section, I will give

you an overview of HTTP requests and responses. This will help you

understand HTTP before going into detail.

 HTTP Requests and Responses
An HTTP connection works as follows: a request will receive a response

unless the connection is broken. Every request and every response works

the same way, and I’ll go into more detail in the next section.

An HTTP request works with elements as follows:

• A client (a browser, an application) initiates an HTTP

request by invoking a URI, the address of the requested

resource on the server.

• The URI requires the use of a verb that will determine

the action to be performed.

• Metadata will be sent in the HTTP request, called

headers. These headers allow controlling the

content negotiated with the server, such as sending

authentication information and much more.

• Parameters are necessary to exchange content with

the server and obtain the response sought, and the

parameters can be in the request’s body, the route, or

the URI.

An HTTP response works with elements as follows:

• The server returns a response with a simple status

code (HTTP status code) to determine how the HTTP

request processing took place.

CHAPTER 1 INTRoduCINg HTTP ANd REST

5

• The server also returns headers in response to the

client providing with different metadata.

• Finally, the server will return (or not) a payload

formatted in the MIME type requested by the client.

So far, I have briefly described and simplified how HTTP works.

Figure 1-1, therefore, summarizes what we have previously discussed.

In the following section, I will detail the HTTP verbs, the request
headers, the format of a URI, the different parameters passed in a

request, the HTTP status codes, the response headers, and the payload

formats returned to the client. Once we finish those points, I will bonify

Figure 1-1 with more details.

 HTTP Implementation
Let’s dive into more detail to see what HTTP verbs, request headers,

response headers, and HTTP status codes are and how the client passes its

parameters in HTTP requests combined with the invocation of a URI.

Figure 1-1. A basic HTTP request and its response

CHAPTER 1 INTRoduCINg HTTP ANd REST

6

 HTTP Verbs

RFC 7231 defines the following verbs:

• GET: This is the most well-known. It allows you to

request a resource from the server and receive a

response in the desired format (defined by the headers,

as we will see later in this chapter). The response is

cacheable (retain information in memory), and we will

discuss it in Chapter 6.

• HEAD: This verb is similar to the GET verb but does

not return any payload; a payload is used to request

metadata at the requested address. Since developers

barely use it most of the time, I won’t use it in this book,

but it’s good to know what it is used for. Like GET, the

server response is also cacheable.

• POST: This verb is interesting because it serves

multiple purposes. This verb allows the creation of new

resources, and its payload is attached to the request’s

body. (I will detail what’s a request body further in

this chapter.) Another way to send data is to use the

form-data technique, which will be described later in

this book. The POST verb also allows modifying data

by adding content to the data (appending data to the

resource representation according to the RFC). The
server response is not cacheable unless freshness
information is added to the response headers (max-

age or Expires headers). We will discuss it again in the

“Request and Response Headers” section.

CHAPTER 1 INTRoduCINg HTTP ANd REST

7

• PUT: This verb is confusing because the RFC states

that it replaces a resource on the server. Very often,

developers confuse PUT and POST (replace a resource

vs. append data to a resource). The server response

here is not cacheable. However, if a resource doesn’t

exist, PUT should behave as POST by creating the

resource.

• DELETE: This verb is used to delete a resource. The

server response is not cacheable.

• CONNECT: The verb establishes a tunnel to the

server through a proxy (a server to which the HTTP

request will be delegated and access the server for

the requested request). This verb is used for secure

requests with Transport Layer Security (TLS), in other

words, HTTPS. I will also come back to HTTPS later in

this chapter. I never had to use this verb, and I won’t

talk about it in this book. The server response is not
cacheable.

• OPTIONS: This verb can be helpful when you want to

know what verbs are supported for a given URI. It’s also

used in the context of Cross-Origin Resource Sharing

(CORS), which has its dedicated section further in

this book. In the API world, you don’t necessarily

need to use this verb because you will usually know

the available URI for a given endpoint through the

OpenAPI specification. This will be discussed in the

“Extend Your Talent on the Web with REST Architecture

Style” section of this chapter. We will also see it together

in Chapter 4 when I bring up the API documentation

topic. The server response is not cacheable.

CHAPTER 1 INTRoduCINg HTTP ANd REST

8

• TRACE: A TRACE request sends a request to the

server with no particular payload. This lets you see if

intermediate servers, such as proxies, have altered the

original request. In the context of APIs, this verb is not

used. The server response is not cacheable.

RFC 7231 does not describe all the existing verbs, and there are others!

RFC 5789 defines the PATCH verb. This RFC can be found here: www.rfc-

editor.org/rfc/rfc5789.html.

The PATCH verb can be confused with PUT and POST verbs because

they all allow modifying a resource on a server. PATCH partially updates a

resource (like POST) when PUT tends to replace a resource.

I see many developers confusing each other. Now you are aware of

what the RFCs indicate about these verbs, but see that it is commonly

accepted to use POST for resource creation or to replace GET verb when

there are too many parameters in the URI to put them in the body of a

POST. It’s also commonly accepted to use PUT to entirely or partially

replace a resource even if PATCH is made for that. Personally, I rarely

use PATCH, only when I want to update a single property of a resource

(e.g., a date). From the moment I start modifying and altering several

properties of a resource (a date, a status, a description, etc.), I instead

implement PUT.

If you recall, I briefly mentioned HTTP status codes in this section. The

following section will discuss how status codes link to HTTP verbs. Some

verbs are used essentially with certain HTTP statuses. In the next section,

I will list the HTTP statuses and what verbs they can be associated with.

 HTTP Status Codes

HTTP status codes are essential in an HTTP request/response between a

server and a client. They allow the client, when the server’s response has

been received, to be informed of the result of the processing by the server.

HTTP status codes are also governed by RFC 7231. I will not exhaustively

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc5789.html
http://www.rfc-editor.org/rfc/rfc5789.html

9

detail each HTTP status class and each HTTP code because RFC 7231

does a pretty good job of doing so, and I won’t use all of them in this book.

Regarding APIs, status codes are essential for clients to understand what

the server is trying to tell us. They provide us with insights on what to

do next.

An HTTP status code has three digits. The first digit defines the status

category, and there are five categories of HTTP status codes:

• 1xx: They are purely informational.

• 2xx: They express that the server received and

processed the request successfully.

• 3xx: They inform the client that the server has

proceeded to a redirection, that is, the resource is not

at the address indicated, but that the request will be

redirected there automatically.

• 4xx: They mean the request (client-side) is malformed

and/or the client (the end user) probably made an

input error in their request. 4xx are errors that the client

can fix.

• 5xx: They tell the client that the request on the server

has not been completed due to an error.

RFC 7231 is not the only RFC that describes HTTP status codes.

However, it describes the codes most often used. RFC 4918 and RFC 6585

complete the list, with other codes covering other scenarios.

Table 1-1, taken from the following RFCs

• RFC 7231: www.rfc-editor.org/rfc/rfc7231

• RFC 4918: www.rfc-editor.org/rfc/rfc4918

• RFC 6585: www.rfc-editor.org/rfc/rfc6585

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc7231
http://www.rfc-editor.org/rfc/rfc4918
http://www.rfc-editor.org/rfc/rfc6585

10

lists the association between HTTP status codes and HTTP verbs

commonly used as industry standards. I won’t use all of them in this book;

you will not need to know them by heart. On the other hand, knowing their

existence is valuable since you will know their existence and how to use

them when required. Later in this book, I’ll dig deeper into why I’m using

some of them in the code samples I provide.

Table 1-1. List of available HTTP status codes and verbs most often

used with them

Code Reason phrase RFC Associated verb

100 Continue 7231 All verbs

101 Switching Protocols 7231 All verbs

200 oK 7231 gET, HEAd

201 Created 7231 PoST

202 Accepted 7231 All verbs

203 Non-Authoritative Information 7231 gET

204 No Content 7231 PoST, PuT, PATCH

205 Reset Content 7231 PoST, PuT, PATCH

206 Partial Content 7231 gET

207 Multi-Status 4918 All verbs

300 Multiple Choices 7231 All verbs

301 Moved Permanently 7231 gET, HEAd, dELETE

302 Found 7231 gET, HEAd, dELETE

303 See other 7231 gET, HEAd, dELETE

304 Not Modified 7231 gET, HEAd

(continued)

CHAPTER 1 INTRoduCINg HTTP ANd REST

11

Table 1-1. (continued)

Code Reason phrase RFC Associated verb

305 use Proxy (deprecated) 7231 All verbs

307 Temporary Redirect 7231 All verbs

400 Bad Request 7231 PoST, PuT, PATCH

401 unauthorized 7231 All verbs

402 Payment Required 7231 Not used yet

403 Forbidden 7231 All verbs

404 Not Found 7231 All verbs except PoST

405 Method Not Allowed 7231 All verbs

406 Not Acceptable 7231 All verbs

407 Proxy Authentication Required 7231 All verbs

408 Request Timeout 7231 All verbs

409 Conflict 7231 PoST, PuT, PATCH

410 gone 7231 All verbs except PoST

411 Length Required 7231 PoST, PuT, PATCH

412 Precondition Failed 4918 All verbs

413 Payload Too Large 7231 PoST, PuT, PATCH

414 uRI Too Long 7231 gET but applies to all verbs

415 unsupported Media Type 7231 PoST, PuT, PATCH

417 Expectation Failed 7231 All verbs

422 unprocessable Entity 4918 PoST, PuT, PATCH

423 Locked 4918 gET, HEAd, PoST, PuT, PATCH

424 Failed dependency 4918 All verbs

(continued)

CHAPTER 1 INTRoduCINg HTTP ANd REST

12

Table 1-1. (continued)

Code Reason phrase RFC Associated verb

426 upgrade Required 4918 All verbs

500 Internal Error 7321 All verbs

501 Not Implemented 7231 All verbs

502 Bad gateway 7231 All verbs

503 Service unavailable 7231 All verbs

504 gateway Timeout 7231 All verbs

505 HTTP Version Not Supported 7231 All verbs

507 Insufficient Storage 4918 PoST, PuT, PATCH

This may seem like a lot of HTTP status codes, but remember that in

99% of the cases, you will only use a handful of codes described here.

Later in this book, we will come back together to some of them, and I

will explain them to you with examples of their usefulness.

Now let’s move on to another essential component of an HTTP request

and response, the request and response headers.

 Request and Response Headers

HTTP headers are metadata that allows information to be passed between

the client and the server during a request/response flow. These headers

transport information but are not limited to authentication data and

information on the client’s browser.

In this section, I will differentiate between request headers and

response headers as they differ in nature for their purpose. For both the

request and response headers, RFC 7231 defines each (some are more

detailed, and some are defined in other RFCs, which RFC 7231 refers to).

As in my usual approach you’ve seen earlier, I will not go in depth since

CHAPTER 1 INTRoduCINg HTTP ANd REST

13

RFCs describe them in detail. Remember that this book will not cover

all possible use cases; specific headers are generated automatically by a

browser during the request, some during the response, and by the server.

You will not need to know them by heart. On the other hand, knowing they

exist is excellent as you get to know they exist and you can customize them

for your needs when necessary.

Note Although RFC 7231 describes (or redirects to other RFCs) the
best-known headers, in reality, there is a complete list of headers
(even the most unknown, but without many details) for which you can
consult RFC 4229 here: https://datatracker.ietf.org/doc/
html/rfc4229.

Request Headers

Like HTTP status codes, request headers are divided into classes, five

exactly:

• Controls headers

• Conditional headers

• Content Negotiation headers

• Authentication credentials headers

• Request context headers

In the following subsections, I will tell you in what RFCs these headers

are described, and I will list the links of these RFCs at the end of this
section.

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://datatracker.ietf.org/doc/html/rfc4229
https://datatracker.ietf.org/doc/html/rfc4229

14

Controls Headers

There are seven headers in the Controls class. Some of them have various

possible directives (key/value pair):

• Cache-Control: Used to specify cache duration along

the request/response chain. They can handle several

directives, and their name perfectly describes their use.

For more details, I suggest you consult RFC 7234:

• no-cache: Doesn’t accept any value, works by itself

• no-store: Doesn’t accept any value, works by itself

• max-age: Accepts a value in seconds, for example,

Cache-Control: max-age=302400

• max-stale: Accepts a value in seconds, for example,

Cache-Control: max-stale=1800

• min-fresh: Accepts a value in seconds, for example,

Cache-Control: min-fresh=600

• no-transform: Doesn’t accept any value, works

by itself

• only-if-cached: Doesn’t accept any value, works

by itself

• Expect: Used to indicate expectations from the server

to process the request correctly, for example, Expect:

100-continue. For more details, I suggest you consult

RFC 7231.

• Host: Used to indicate the hostname (server) and the

port (optional) from the targeted URI, for example,

Host: www.example.com. For more details, I suggest you

consult RFC 7230.

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.example.com

15

• Max-Forwards: Used to specify the limit of

intermediate servers (proxies) that forward the request.

Works only with TRACE and OPTIONS verbs and

accepts integer values. Example: Max-Forwards: 1. I

suggest you consult RFC 7231 for more details.

• Pragma: Used as backward compatibility with HTTP

1.0 cache. This header is ignored when the Cache-
Control header is used. Example: Pragma: no-cache.

For more details, I suggest you consult RFC 7234.

• Range: Used to return a port of a document with a

given range of bytes (most often), for example, Range:

bytes 0-2048. For more details, I suggest you consult

RFC 7233.

• TE: Used to specify the chunk transfer coding, for

example, defining the compression algorithm, for

example, TE: gzip. For more details, I suggest you

consult RFC 7230.

Conditional Headers

Five conditional headers allow you to apply a condition on the target

resource for completing the request. Here they are:

• If-Match: Used to check if the requested resource

matches a current representation of the resource, for

example, If-Match: * (any resource) or If-Match: “123”,

which targets a resource with the ETag (Entity Tag)

“123”. ETag represents a specific version of a resource.

For more details, I suggest you consult RFC 7232.

CHAPTER 1 INTRoduCINg HTTP ANd REST

16

• If-None-Match: Used to check if the requested

resource does not match any current representation

of the resource. Works precisely the opposite of the

If-Match header. Example: If-None-Match: * (any

resource) or If-None-Match: “123,”. For more details, I

suggest you consult RFC 7232.

• If-Modified-Since: Used to check if the target resource

representation modification date is more recent than

the provided date, for example, If-Modified-Since: Wed,

22 Aug 2022 21:56:00 GMT. For more details, I suggest

you consult RFC 7232.

• If-Unmodified-Since: Used to check if the target

resource representation modification date is less recent

than the provided date, for example, If-Unmodified-

Since: Wed, 22 Aug 2022 21:56:00 GMT. For more

details, I suggest you consult RFC 7232.

• If-Range: It’s a combination of If-Match and If-

Modified- Since headers, for example, If-Range: “123”

or If-Range: Wed, 22 Aug 2022 21:56:00 GMT. For more

details, I suggest you consult RFC 7233.

Content Negotiation Headers

Content Negotiation headers are essential in HTTP requests. They allow

the client and the server to understand each other on what format should

be exchanged. They are four in number:

• Accept: Used to define the MIME type that the client

can understand, for example, Accept: application/json

or Accept: application/json, application/xhtml+xml.

For more details, I suggest you consult RFC 7231.

CHAPTER 1 INTRoduCINg HTTP ANd REST

17

• Accept-Charset: Obsolete. Many browsers and servers

ignore this header. For more details, I suggest you

consult RFC 7231.

• Accept-Encoding: Used to define the compression

algorithm, for example, Accept-Encoding: deflate, gzip.

For more details, I suggest you consult RFC 7231.

• Accept-Language: Used to tell the server what

language the client is willing to accept, for example,

Accept-Language: * (all) or Accept-Language: en-

CA. For more details, I suggest you consult RFC 7231.

Authentication Credentials Headers

Two authentication headers are necessary to interact with resources

protected by authentication. The first is particularly important because it

will be developed in this book. Here they are:

• Authorization: Used very often to authenticate

on the target server. It can handle different

types of authentication, such as bearer tokens

or basic authentication (both will be addressed

in Chapter 9). Example: Authorization: bearer

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9…. For more

details, I suggest you consult RFC 7235.

• Proxy-Authorization: Same as Authorization, it is used

to authenticate proxies. Example: Proxy-Authorization:

basic YW50aG9ueWdpcmV0dGk6MTIzNA==. For more

details, I suggest you consult RFC 7235.

CHAPTER 1 INTRoduCINg HTTP ANd REST

18

Request Context Headers

Finally, RFC 7231 describes three headers providing additional contextual

data for the server. Here they are:

• From: Used to tell the server who, with an email

address, has sent the request, for example, From:

John.Doe@example.com. For more details, I suggest

you consult RFC 7231.

• Referrer: Used to tell the server what URI the

request comes from, for example, Referrer: https://

anthonygiretti.com. For more details, I suggest you

consult RFC 7231.

• User-Agent: Used to collect information about the user

who has originated the HTTP request, like the browser

capabilities, for example, User-Agent: Mozilla/5.0

(Windows NT 10.0; Win64; x64) AppleWebKit/537.36

(KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36.

For more details, I suggest you consult RFC 7231.

These request headers are the most common headers you see. Don’t

worry about remembering them. This is why RFCs (and my book) exist.

Since RFCs define standards, you will come to know how to use them

when and where over time. Let’s now move to response headers.

Note Although RFCs describe the usage of many headers, you are
free to use your custom headers. You can create a specific request
header for your application and add value to it.

As promised, here is Table 1-2 that references the links for each RFC I

mentioned earlier in this section.

CHAPTER 1 INTRoduCINg HTTP ANd REST

mailto:John.Doe@example.com
https://anthonygiretti.com
https://anthonygiretti.com

19

Table 1-2. Recap of mentioned RFCs in the current section

RFC Link

7230 www.rfc-editor.org/rfc/rfc7230

7231 www.rfc-editor.org/rfc/rfc7231

7232 www.rfc-editor.org/rfc/rfc7232

7233 www.rfc-editor.org/rfc/rfc7233

7234 www.rfc-editor.org/rfc/rfc7234

7235 www.rfc-editor.org/rfc/rfc7235

Response Headers

We just went over a series of headers used in an HTTP request. If it is

essential to send metadata to the server, it is not less for the response

headers. They are essential for informing the client (a browser or an

application) of additional metadata relating to the context of the HTTP

response. Some are defined in RFC 7231 and others in RFCs 7232, 7233,

7234, and 7235, already introduced in the previous section.

There are four response header classes. Here they are:

• Control Data headers

• Validator header fields

• Authentication Challenges headers

• Response Context headers

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc7230
http://www.rfc-editor.org/rfc/rfc7231
http://www.rfc-editor.org/rfc/rfc7232
http://www.rfc-editor.org/rfc/rfc7233
http://www.rfc-editor.org/rfc/rfc7234
http://www.rfc-editor.org/rfc/rfc7235

20

Control Data Headers

These headers are among the most important. These headers make it

possible to enrich the information sent to the client. They are usually

paired with an appropriate HTTP status code. Here is the list of these eight

headers:

• Age: Used to tell the client when (in seconds) the

response has been generated. Usually close to 0, it can

be more than 0 if the response has been cached on a

proxy. Example: Age: 0. I suggest you consult RFC 7234

for more details.

• Cache-Control: Similar to the Cache-Control request

header. The response header value is the same as the

request header. For more details, I suggest you consult

RFC 7234.

• Expires: Used to tell the client the response date and

time is considered outdated, for example, Expires: Tue,

23 Aug 2022 21:35:00 GMT. For more details, I suggest

you consult RFC 7234.

• Date: Used to tell the client when (date and time)

the response has been generated on the server, for

example, Sun, 21 Aug 2022 11:22:00 GMT. For more

details, I suggest you consult RFC 7231.

• Location: Used to tell the client the URI where the

resource can be found after its creation, especially

before a POST request, for example, http://contoso.

com/item/52. For more details, I suggest you consult

RFC 7231.

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://contoso.com/item/52
http://contoso.com/item/52

21

• Retry-After: Used to tell the client when to retry (date

and time or in seconds) a failed HTTP request due to a

Service Unavailable (503) response, for example, Retry-

After: Wed, 24 Aug 2022 08:15:00 GMT or Retry-After:

60. For more details, I suggest you consult RFC 7231.

• Vary: Used to tell the client what request parameter

header influences the response from the server. “*”

means that anything in the request can affect the

response. Example: Vary: * or Vary: Accept-Encoding.

For more details, I suggest you consult RFC 7231.

• Warning: Used to tell the client any helpful

information. Not recommended since it’s deprecated.

For more details, I suggest you consult RFC 7234.

Validator Header Fields

There are two response headers allowing the addition of metadata to

the representation (version) of the requested resource during the HTTP

request. Here they are:

• ETag: Used to tell the client the version

(representation) of the requested resource. It can be

any string of characters. Example: ETag: “abc123”. For

more details, I suggest you consult RFC 7232.

• Last-Modified: Used to tell the client what date and

time the requested resource has been modified for

the last time, for example, Sat, 20 Aug 2022, 13:45:00

GMT. For more details, I suggest you consult RFC 7232.

CHAPTER 1 INTRoduCINg HTTP ANd REST

22

Authentication Challenges Headers

The server (or a proxy) allows the client to be told which authentication the

server (proxy) accepts, and there are two:

• WWW-Authenticate: Used to tell the client what

authentication methods the server accepts, for

example, WWW-Authenticate: basic. For more details, I

suggest you consult RFC 7235.

• Proxy-Authenticate: Used to tell the client what

authentication methods the proxy accepts, for example,

Proxy-Authenticate: basic. For more details, I suggest

you consult RFC 7235.

Response Context Headers

Like the client, the server can send additional contextual data related to

the requested resource. There are three:

• Accept-Ranges: Used to tell the client what range

unit the server supports for partial file download, for

example, Accept-Ranges: bytes. For more details, I

suggest you consult RFC 7233.

• Allow: Used to tell the client what verbs the server

supports, for example, Allow: GET, POST, PUT,

DELETE. For more details, I suggest you consult

RFC 7231.

• Server: Used to tell the client the server technology

used to handle HTTP requests, for example, Server:

Kestrel. For more details, I suggest you consult

RFC 7231.

CHAPTER 1 INTRoduCINg HTTP ANd REST

23

Note Like the request headers, you can use your custom response
headers. You can create a specific response header for your
application and add any value to it.

 URI, URL, and More

URI

At the beginning of the chapter, I introduced you to the notion of a URI. A

URI (Uniform Resource Identifier) is, according to RFC 3986

a compact sequence of characters that identify an abstract or
physical resource.

—www.rfc-editor.org/rfc/rfc3986

In short, this is the address you type in your browser to access a

resource like http://www.google.com.

This is just a simple summary, and a URI is more elaborate. A URI

contains (or can include) the following:

• Scheme (mandatory) is the specification for accessing

the remote resource.

• Authority (mandatory) combines optional user

information, a server address (host), and a port. It must

be prefixed with the characters ://. I won’t detail the

user information in this book since it’s not a relevant

feature for this book.

• Path (optional) is the data identifying a resource

within a particular scope. It must be prefixed with the

character /.

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc3986
http://www.google.com

24

• Query (optional) is the data identifying a resource

within a particular scope. Must be prefixed with the

character?.

• Fragment (optional) is the data that allows identifying

a particular subset of the requested resource. Used

for HTML pages for identifying anchors. For more

explanation, you can visit the following website:

https://html.com/anchors-links/. I won’t detail it

further in this book because it doesn’t make sense since

it discusses APIs and not HTML pages.

Figure 1-2 illustrates what a URI looks like with its parts.

Figure 1-2. URI structure

The structure elements in orange, Scheme, the characters ://, and

Authority, are mandatory. The following elements in blue, such as the /,

Path, ?, Query, #, and Fragment, are optional.

As I indicated previously, Authority comprises several elements,

mandatory and optional. Figure 1-3 will give you an idea of the structure of

Authority.

Figure 1-3. Authority structure

Only the host is mandatory.

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://html.com/anchors-links/#The_Anchor_Element

25

To illustrate the structure of a URI, I will show you some

examples now:

• Example 1: The blog’s homepage without any

Path, Query, or Fragment. Only the Scheme

and the Authority are used there: http://

anthonygiretti.com.

• Example 2: The search page of a blog with a Query

parameter: http://anthonygiretti.com/?s=http.

• Example 3: The blog search page with a Query

parameter and a Fragment: http://anthonygiretti.

com/?s=http#book.

• Example 4: A particular page of a blog with a Path:

http://anthonygiretti.com/2021/08/12/asp-net-

core-6-working-with-minimal-apis/.

• Example 5: The same HTML page running

locally on a development machine: http://

localhost:2222/2021/08/12/asp-net-core-6-

working-with-minimal-apis/.

I’ll stop with the URI examples because we’ll return to it in this

chapter’s “Extend Your Talent on the Web with REST Architecture Style”

section.

Once again, if you want to learn what a URI is in depth, I suggest you

read RFC 3986.

URL

You’ve probably heard of the Uniform Resource Locator (URL) before. Well,

I bet you could have confused URI and URL like me. I will demystify this

for you.

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://anthonygiretti.com
http://anthonygiretti.com
http://anthonygiretti.com/?s=http
http://anthonygiretti.com/?s=http#book
http://anthonygiretti.com/?s=http#book
http://anthonygiretti.com/2021/08/12/asp-net-core-6-working-with-minimal-apis/
http://anthonygiretti.com/2021/08/12/asp-net-core-6-working-with-minimal-apis/

26

The difference between the two is subtle and little known to

developers. A URI defines a resource’s identity, while the URL links a

resource to a specific access method defined by the Scheme. In the

subsection “URI,” I always gave the same example using the http Scheme

value, which invokes HTTP. A URL allows invoking other protocols such as

• File Transfer Protocol: The Scheme value is ftp.

• Gopher protocol: The Scheme value is gopher.

• Electronic email protocol: The Scheme value

is mailto.

• Usenet protocol: The Scheme value is news.

• NNTP: The Scheme value is nntp.

• Telnet protocol: The Scheme value is telnet.

• Wide Area Information Server protocol: The Scheme

value is wais.

• Host-specific file names protocol: The Scheme value

is file.

• Prospero Directory Service protocol: The Scheme

value is prospero.

To learn more about them, I suggest you read RFC 1738, which can be

found here: www.rfc-editor.org/rfc/rfc1738.

I will discuss URLs again in the “Extend Your Talent on the Web with

REST Architecture Style” section as I will for URIs.

And Others…

Two other acronyms can be associated/confused with URI and URL, and

these are the following:

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc1738

27

• Uniform Resource Names (URN), defined in RFC 1737

here: www.rfc-editor.org/rfc/rfc1737.

• Uniform Resource Characteristics (URC) are not defined

in any RFC, but you can find some information here:

https://datatracker.ietf.org/wg/urc/about/.

These last two do not represent any interest, at least in this book, but

as you certainly have an unquenchable thirst for learning, I offer you the

resources to cultivate yourself further.

 Parameters

Parameters… And, yes, without telling you, we have already discussed

them since this chapter began. What are they for? Well, they are used to

find a specific resource (not always) on the server. How? First, we can use

them differently, and here they are (again). I’m sure this will remind you of

something:

• By header using custom headers: For example,

myHeader: myValue. This is not the recommended

way, but it is possible if needed.

• By the URL path: For example, https://www.rfc-

editor.org/rfc/rfc1738, where rfc1738 is the

target resource’s ID, an HTML page serving the RFC
1738 data.

• By the Query: For example, http://anthonygiretti.

com/?s=http. Be careful here. The Query parameters

do not necessarily allow access to a specific resource

but a set of resources meeting the search criteria.

These last two ways of proceeding are the most adequate, and we will

see why in the “Extend Your Talent on the Web with REST Architecture

Style” section. Yes, I’ve been teasing you for a while in this section, but

we’ll get there soon!

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.rfc-editor.org/rfc/rfc1737
https://datatracker.ietf.org/wg/urc/about/
http://www.rfc-editor.org/rfc/rfc1738
http://www.rfc-editor.org/rfc/rfc1738
http://anthonygiretti.com/?s=http
http://anthonygiretti.com/?s=http

28

 Error Handling

Because HTTP has been well designed, it has been described as an

elegant way of handling errors, because, in absolute terms, incorporating

errors properly into an HTTP response is simply vital. There’s an RFC that

describes this, RFC 7807, which you can find here: https://datatracker.

ietf.org/doc/html/rfc7807.

This RFC defines a JSON contract, named Problem Details, returned in

response to an API client when an error occurs. Problem Details contains

the elements described in Table 1-3, taken as is, from RFC 7807.

Table 1-3. Recap of mentioned RFCs in the current section

Property
name

Description

type

(string)

A uRI reference [RFC3986] that identifies the problem type.

This specification encourages that, when dereferenced, it provides

human-readable documentation for the problem type (e.g., using HTML

[W3C.REC-html5-20141028]).

When this member is not present, its value is assumed to be

“about:blank”.

title (string) A short, human-readable summary of the problem type.

It SHouLd NoT change from occurrence to occurrence of the problem,

except for purposes of localization (e.g., using proactive content

negotiation; see [RFC7231], Section 3.4).

status

(number)

The HTTP status code ([RFC7231], Section 6) generated by the origin

server for this occurrence of the problem.

detail

(string)

A human-readable explanation specific to this occurrence of the

problem.

Instance

(string)

A uRI reference that identifies the specific occurrence of the problem.

It may or may not yield further information if dereferenced.

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://datatracker.ietf.org/doc/html/rfc7807
https://datatracker.ietf.org/doc/html/rfc7807

29

Problem Details is very convenient since it is a well-detailed error

contract. I won’t give you any example here since RFC 7807 already

provides some. I will use Problem Details in this book while showing you

how to handle errors with ASP.NET Core 8.

 HTTPS, TLS, and HSTS

So far, I haven’t talked to you about security concerning HTTP. Well, here

we are! HTTP does have a problem with security since it allows data to be

exchanged between the client and the server in the clear on the Internet.

As you can imagine, this is a real problem! Transporting unencrypted data

can cause the following issues:

• A hacker can “listen” and steal the data exchanged

between the client and the server.

• A hacker may corrupt data.

• No security authentication ensures that the client

communicates with the website requested by the client.

This is where HTTPS comes in. HTTPS is a secure version of HTTP,

hence the letter S for Secure. The Scheme value will be https, for example,

https://anthonygiretti.com. Unlike HTTP, which runs by default on

port 80, HTTPS runs on port 443 by default. We will see that together

later in this book, but with ASP.NET Core, we can edit the port number by

configuration.

HTTPS is based on the Transport Layer Security (TLS) protocol, which

makes it possible to overcome the problems mentioned previously with

HTTP. That is, HTTPS provides

• Encryption—the data is no longer visible (in the clear)

on the Internet

• Protection of data integrity—they are no longer

falsifiable

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://anthonygiretti.com

30

• Authentication by ensuring the customer

communicates with the website they requested

Note TLS is an improved Secure Socket Layer (SSL) encryption–
based protocol version. SSL is often associated with TLS, commonly
named SSL/TLS encryption, but in reality, TLS replaces SSL/TLS since
it has been updated since 1996.

So how does SSL/TLS work? A key exchange occurs between the client

and the server. The latter will establish an encrypted connection named

TLS handshake.

You don’t need to know how the TLS handshake works, but if you

are interested, you can learn more about it here: www.cloudflare.com/

learning/ssl/what-happens-in-a-tls-handshake/.

Only the client and the server possessing the decryption key can

encrypt/decrypt the data exchanged. To make it possible, the server

needs to obtain an SSL certificate, which the server’s administrator (or

a developer) will install and has previously been obtained by them from

a Certificate Authority (CA). I won’t go into detail here. This book will

deal with the implementation of APIs with ASP.NET Core. The latter will

automatically (but with your consent) use an SSL certificate when first run

in Visual Studio 2022. However, I will show you how to force your APIs to

use HTTPS when a client invokes a URL by configuring the HTTP Strict

Transport Security (HSTS) policy mechanism in ASP.NET Core. To learn

more in depth about HTTPS, TLS, and HSTS, they are described in the

following RFCs:

• RFC 2818 for HTTPS: https://datatracker.ietf.

org/doc/html/rfc2818

• RFC 8446 for TLS: https://datatracker.ietf.org/

doc/html/rfc8446

CHAPTER 1 INTRoduCINg HTTP ANd REST

http://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
http://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446

31

• RFC 6797 for HSTS: https://datatracker.ietf.org/

doc/html/rfc6797

I advise you to read these RFCs only if you feel the need to understand

every aspect of HTTPS, but in everyday life, what you will have to

remember is the need to install an SSL certificate on the server, which will

allow the exchange of an encryption/decryption key on the server and the

client where the data will no longer be readable in plain text or modifiable

on the Internet. Figure 1-4, therefore, summarizes the situation.

As simple as it may seem, this figure demonstrates (almost) exactly

what anyone trying to spy on an HTTPS request sees.

 Let’s Put the Pieces of the Puzzle Back Together

Here we have a set of concepts described by RFCs. I introduced you to

what HTTP is by starting with a basic diagram symbolizing what each

concept implies in HTTP. This book deals with APIs that serve data in

JSON format (remember the MIME type application/json) and not HTML

or other pages, but the principle remains the same. To finally see and

understand what an HTTP request does, I will redo a more detailed version

of Figure 1-1 with Figure 1-5. The latter describes the invocation of the

URL www.myServiceApi.com/scope/someId with the GET verb, accepting

Figure 1-4. A basic HTTPS request and its response

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://datatracker.ietf.org/doc/html/rfc6797
https://datatracker.ietf.org/doc/html/rfc6797
http://www.myserviceapi.com/scope/someId

32

only the application/json format and the en-CA language; accepting gzip,

deflate, and br (Brotli) encoding; and finally authenticating with the basic

authentication. The response returns status 200 OK with the requested

Content-Type application/json, the Content-Length response, the server

technology (Kestrel), and a JSON payload. I voluntarily let the request and

response data clear even if HTTPS appears in Figure 1-5.

As simple as it may seem, this figure demonstrates (almost) exactly

what anyone trying to spy on an HTTPS request sees.

 Extend Your Talent on the Web with REST
Architecture Style
In 2000, an American computer scientist named Roy Fielding defined the

architectural style used for web service development: Representational

State Transfer (REST). HTTP is a protocol defined by a committee

issuing RFCs; REST is a concept. A concept that does not redefine

Figure 1-5. A “real-life” HTTPS request and its response

CHAPTER 1 INTRoduCINg HTTP ANd REST

33

HTTP does not add any additional functionality. REST is independent

of HTTP. Unfortunately, many developers are getting mixed up. The

confusion is that HTTP is a client-server communication protocol,

while REST identifies constraints on how the server and client talk. I will

introduce you to two different topics: REST constraints and good practices.

Following REST constraints makes you respect API REST principles, and

following only best practices doesn’t ensure you are REST compliant.

 REST Constraints
A web application should implement its business logic with all sets of

object entities (e.g., a product is an entity) and possible operations (e.g.,

retrieve the product information based on product ID). These possible

operations with these entities must be designed with four main operations

or methods: Create, Retrieve, Update, and Delete (CRUD). These entities

are called resources and are presented or represented in a form such

as JSON, XML, or others. A client, therefore, calls the CRUD functions

on the server via HTTP (or not, e.g., gRPC or SOAP, which are other

communication protocols) to manipulate the representation of an entity

on the server. This defines the term Representational of REST.

What does the State Transfer term mean? The “state transfer” from

the client to the server is, for example, when the client first calls the “create

product” operation, after calling what would be the next product state or

product states that the “client” can call. Its status can be “retrieve created

product data” or “update product data.” So this is the State Transfer term

of REST.

REST is not defined by this alone. REST is based on six constraints:

• Separation of responsibilities between client and

server. (The client displays data, and the server

computes them.)

• No session state (stateless). Neither the client nor the

server needs the state of the other to communicate.

CHAPTER 1 INTRoduCINg HTTP ANd REST

34

• Caching resources.

• Consistent communication with identifiable resources.

In HTTP vocabulary, there must be a URL, a response

containing a body, and a header.

• Allows the addition of intermediate layers (e.g.,

proxies).

• Allows the client to ask the server for a piece of code

that the client will execute.

In this book, I will mainly develop the first four points here, and we can

still consider design, all along this book, of REST APIs.

 REST Good Practices
Earlier in this chapter, I told you I would return to URIs and URLs. I’ll talk

to you here about good practices for defining these with REST.

 Base URL

First of all, let’s start by establishing the base URL. The base URL is the root

URL of all your HTTP endpoints. For example, it is customary to use URLs

with an exact domain name for your business and a path and parameters,

which can become long and complicated. This is correct for a website, but

simple URLs are recommended for REST APIs. Let’s consider your “My

company” offering a product sales website and then exposing it on the

same REST API URLs. For example, this is to be avoided: https://www.

mycompany.com/home/services/rest. Prefer the following, which is more

meaningful for an API: https://api.mycompany.com.

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://www.mycompany.com/home/services/rest
https://www.mycompany.com/home/services/rest
https://api.mycompany.com

35

 Media Type

The JSON format with the header Content-Type: application/json is

recommended. This is the most practical and commonly adopted. It

is possible to use XML, but the JSON format is commonly adopted

for practicality (JSON is not as strict as XML on syntax) and also for

performance reasons. JSON is more efficient in terms of serialization/

deserialization compared with XML. As a reminder, serialization and

deserialization is a process that makes it possible to transform a data

structure (serialization) into a storable data format and achieve the

opposite (deserialization). For example, the Product data structure

contains an identifier, a name, and a description. Listing 1-1 shows the

serialization of the Product data structure.

Listing 1-1. JSON serialization of a Product data structure

{

 "Id": 1,

 "name": "My product name,"

 "description": "My product description"

}

Listing 1-2 shows the same data structure serialized in XML.

Listing 1-2. Product data structure serialized in XML

<?xml version="1.0" encoding="utf-8"?>

<product xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Id>1</Id>

 <Name>My product name</Name>

 <Description>My product description</Description>

</product>

CHAPTER 1 INTRoduCINg HTTP ANd REST

36

Admit that it’s more pleasant with JSON. It’s less verbose than XML,

which is heavier because of its massive content vs. JSON.

For your information, because this is not a constraint related to

HTTP, using the header allows us to protect against attacks like Cross-Site

Request Forgery (CSRF). This attack enables the execution of client-side

code. For example, JavaScript scripts execute unwanted functions in the

client browser. The malicious code is blocked and cannot be executed by

forcing a serialization (e.g., in JSON or XML). To learn more, I advise you

to consult this post on owasp.org: https://owasp.org/www-community/

attacks/csrf.

Note The Open Worldwide Application Security Project (OWASP)
is a nonprofit organization that provides resources for developers to
ensure they develop secure applications.

 URL Naming

Here is a subject that I defend vigorously. Why? Because by writing

URLs well, we understand what they do by reading them without adding

unnecessary words. Imagine that you were trying to retrieve the complete

list of products that you have in your database. I have already seen URLs

written like this:

(GET) /getAllProducts

Do you see what I mean? Well, this URL is a phrase on its own. I could,

for example, write this instead:

(GET) /products

It’s much more straightforward. I already use the GET verb, and I don’t

need to show it in the URL, do I? Using products in the plural is more

than enough!

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf

37

Now imagine that I only want ten. I’m not going to write this:

(GET) /getSomeProducts?limit=10

But I rather write

(GET) /products?limit=10

Don’t you agree? Now I want to create a product. I will proceed

as follows

POST /products

and not like this

POST /products/create

or

POST /createProduct

Finally, in the logic of the state transfer, the response of the POST

operation will return me a status 201 Created within the headers (or in the

payload) and the ID of the product created, which will allow me to write

the request GET to retrieve the information of the product created

GET /products/{id}

and not

GET /getProduct?id={id}

Do you see how practical it is? The logic is the same if I want to edit

the product; I will use the URL as the POST operation and the same URL

as the GET operation to delete it, which gives the following set of CRUD

operations:

• Create: POST /products

• Retrieve: GET /products/{id}

CHAPTER 1 INTRoduCINg HTTP ANd REST

38

• Update: PUT or PATCH /products/{id}

• Delete: DELETE /products/{id}

This logic applies in the same way to linked resources. When a

data structure is linked to another, for example, a product is linked to

a category, this product belongs to a certain category. The best REST

practice is for the URL path to be subdivided as follows to access/

manipulate products of a certain category

/categories/{categoryId}/products

and as follows to access/manipulate a particular product in a

particular category:

categories/{categoryId}/products/{productId}

The CRUD operation set to manage one or more products in a

particular category gives this:

• Create: POST /categories/{categoryId}/products

• Retrieve: GET /categories/{categoryId}/products/

{productId}

• Update: PUT or PATCH /categories/{categoryId}/

products/{productId}

• Delete: DELETE /categories/{categoryId}/products/

{productId}

So, of course, handling a product without needing to access the

category is possible; however, if you want to check before handling a

product if it belongs to a category (it depends on your business logic), well,

it’s good practice to adopt, rather than using query parameters.

We’ll return to this later in this book, but passing an ID in the URL

path as we did is called “routing.” In ASP.NET Core, the categoryId and the

productId are called route parameters.

CHAPTER 1 INTRoduCINg HTTP ANd REST

39

 API Versioning

Sometimes an API evolves rapidly in terms of proposed functionalities

or improvement of existing features that breaks the usual functioning

(evolution of service contracts, that is, the data structures exchanged

between the client and the server). Unfortunately, clients often evolve

less quickly on their side, but an API must not break client applications.

We must continue to maintain them while developing the API. There is a

solution for this, and it is API versioning. How does it work? Well, there are

as many URLs for as many versions of the API. A good practice is to insert

the version number in the URL as follows—/v{version}/, for example:

https://api.mycompany.com/v1/categories

https://api.mycompany.com/v2/categories

And so on… We will come back to this later in this book as well.

There is another way to define a versioned API. Instead of specifying

the version in the URL, headers can be used to ask for a specific API

version. HTTP does not define any particular header for this. You can

create your own, for example:

GET https://api.mycompany.com/categories

X-API-Version: 1

Note A good practice when creating a custom/nonstandard header
is to prefix it with the X- characters.

I barely use API versioning from headers, but it is a valid choice if

you want to use them. I will show you some examples in Chapter 4 of

this book.

CHAPTER 1 INTRoduCINg HTTP ANd REST

40

A third way, which is probably never used (on my end, I have never

seen that before), is to use media type versioning. It implies the usage of

Accept/Content-Type headers to define a version of your API. I won’t go

further with that, either. But If you want to learn more about it, you can

read the Microsoft documentation here: https://docs.microsoft.com/

en-us/azure/architecture/best-practices/api-design#media-type-

versioning.

 API Documentation

One thing that is really important and almost unanimously accepted is

documenting your API. What does it consist of? It is a question of exposing

on a dedicated endpoint or an HTML page or in YAML Ain’t Markup

Language (YAML) or again in JSON, all the URLs that your API exposes

(including the versions) with the incoming parameters, the structure’s

output data, the HTTP status codes used by the API, etc. The goal is to let

the client know how to consume your API correctly.

There is a specification called OpenAPI to carry out this

documentation task. This specification is implemented through a set of

developing tools. It is named Swagger. I’ll return to the Swagger tools for

ASP.NET Core later in this book. In the meantime, if you want to know

more about OpenAPI, you can consult the OpenAPI initiative website:

https://spec.openapis.org/oas/latest.html.

Note YAML is a popular serialization language. I won’t use it further
in this book, even if it’s a language that can potentially replace
JSoN for configuration files, for example. To learn more about this
language, you can read its specification here: https://yaml.org/.

CHAPTER 1 INTRoduCINg HTTP ANd REST

https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#media-type-versioning
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#media-type-versioning
https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#media-type-versioning
https://spec.openapis.org/oas/latest.html
https://yaml.org/

41

 Summary
This chapter has been long and informative. However, we will return

to what we have seen in this first chapter and practice what you have

learned here. After all, this chapter is a kind of introduction, a necessary

step to properly implement our APIs later since it is based on RFCs, that

is, a kind of “truth” that allows understanding of what HTTP is and how

it works. Before going further in this book, it seemed necessary to know

and understand the headers, verbs, status codes, and parameters that

allow invoking URLs. Moreover, I have introduced you to good practices

for developing REST APIs. However, these are not based on RFCs but are

commonly accepted by the developer community worldwide. In the next

chapter, we will focus on ASP.NET Core 8.

CHAPTER 1 INTRoduCINg HTTP ANd REST

43

CHAPTER 2

Introducing ASP.NET
Core 8
Microsoft released its first full-stack web application development

framework with ASP.NET in 2002 with ASP.NET Web Forms. The years that

followed were rich in developments such as ASP.NET Model-View-

Controller (MVC), ASP.NET Web API, and SignalR. The framework evolved

too quickly with new functionalities without changing its core, more

precisely, the assembly named System.Web. Very quickly, new challenges

appeared, such as performance, the possibility of running ASP.NET on

servers other than IIS (which is the Windows-only web server designed by

Microsoft), increasing its affinity with the cloud to facilitate its deployment

significantly, and greatly improving its configuration by making it more

flexible. ASP.NET Core was born!

ASP.NET Core is a complete overhaul of the trendy ASP.NET framework

and allows you to develop many types of applications:

• Web apps, such as MVC, Razor Pages, or single-page

applications with Blazor

• APIs (REST APIs, remote procedure calls, and

real-time)

• Background tasks running as Windows services (or

Unix daemons) or within ASP.NET Core applications

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_2

https://doi.org/10.1007/978-1-4842-9979-1_2

44

At this time, ASP.NET Core 8 (delivered with .NET 8) is the latest

version. This chapter introduces you to ASP.NET Core 8, which we’ll use

throughout this book. ASP.NET Core 8 no longer supports ASP.NET Web

Forms and Windows Communication Foundation (WCF), which is a

SOAP-based web service framework. However, a project named CoreWCF

was released in early 2022. If you are interested, you can read this post:

https://devblogs.microsoft.com/dotnet/corewcf-v1-released/.

In this chapter, I’ll teach you ASP.NET Core fundamentals and the

following application types that will be used to build REST APIs:

• ASP.NET Core Web API

• ASP.NET Core minimal APIs

 ASP.NET Core Fundamentals
Before diving into ASP.NET Core, let’s talk about the fundamentals. Once

we know the fundamentals of ASP.NET Core, we can use this knowledge to

build any web application we’d like, including gRPC.

For an ASP.NET Core application, the application’s entry point is

the Program.cs file as shown in Listing 2-1. In this file, you start creating

your application by instantiating a WebApplicationBuilder with the static

method WebApplication.CreateBuilder. The WebApplicationBuilder

allows customizing your application by adding the desired components

(configuration) and activating them (activations).

Listing 2-1. Example of Program.cs file

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/", () => "Hello World!");

app.Run();

Chapter 2 IntroduCIng aSp.net Core 8

https://devblogs.microsoft.com/dotnet/corewcf-v1-released/

45

Note this is the default Program.cs file generated from the aSp.net
Core 8 template. It implements the evolved C# feature named “top-
level statements.” the same remark applies to using statements,
and the default aSp.net Core 8 template uses the C# “global usings”
feature.

The Program.cs file has two distinct parts:

• Services configuration includes the type of

application, third-party libraries, authentication,

authorization, and the registration of services with

dependency injection.

• Services activation defines the ASP.NET Core

middleware pipeline. A middleware is a component,

once assembled (in a particular order) into an

application, that can handle requests and responses

and perform operations before and after the next

component, as shown in Figure 2-1.

Figure 2-1. The ASP.NET Core middleware pipeline

Services configuration is implemented at the beginning of the file

before building the app with the builder.Build() method, and services

activation occurs after the latter but before the app.Run() method as

shown in Listing 2-2, which is a sample of a configuration of an ASP.NET

Core Razor Pages application.

Chapter 2 IntroduCIng aSp.net Core 8

46

Listing 2-2. Example of a configured Program.cs file

var builder = WebApplication.CreateBuilder(args);

// Services configuration

builder.Services.AddRazorPages();

var app = builder.Build();

// Services activation

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 app.UseHsts();

}

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

I understand this may still seem a blur to you, but the following will

explain the architecture of ASP.NET Core to you more. I summarize the

ASP.NET Core architecture in Figure 2-2.

Chapter 2 IntroduCIng aSp.net Core 8

47

Figure 2-2. ASP.NET Core architecture

First, you must understand dependency injection since it’s central to

ASP.NET Core. Dependency injection is a technique that weakly couples

objects and service classes with each other and their dependencies.

Instead of directly instantiating services in methods through constructors,

the class declares what dependencies it needs. In this book, we’ll use

services configured with their implemented interface. These interfaces will

be injected into the constructors of the classes calling these services. This

decoupling allows our code to be abstracted and also facilitates testability.

Later in this book, we’ll see how to easily test our code and take advantage

of dependency injection. The service lifetime injected by dependencies is

essential. Depending on the injected services, some need to be used once

or several times for the HyperText Transfer Protocol (HTTP) request context

or even used only once for all users making an HTTP request to the server.

ASP.NET Core supports three life cycles:

• Transient: A new service instance is created for

each incoming request. This means that on the same

incoming HTTP request, the developer can deal with a

new instance of the same service for each HTTP request.

Chapter 2 IntroduCIng aSp.net Core 8

48

• Scoped: The service is instantiated once per incoming

request. This is the most used lifetime. It guarantees the

uniqueness of a service instance per user.

• Singleton: The service is instantiated once for the

entire application’s lifetime (as long as it is not

restarted), and all users share this instance. In ASP.

NET Core, singleton lifetime is thread-safe (with object

construction); ASP.NET Core manages it for you if

you register your service correctly in the dependency

injection container. However, if you need to modify

a property, such as a Dictionary, you’ll need to use a

ConcurrentDictionary instead.

Listing 2-3 shows how to configure the three different lifetimes. Note

that the parameter on the left is the interface and the parameter on the

right is the concrete class that implements this interface. A compilation

error will occur if the class doesn’t implement the interface to be injected

by dependency.

Listing 2-3. Configure each lifetime type

var builder = WebApplication.CreateBuilder(args);

services.AddControllers();

services.AddSingleton<ISingletonService, SingletonService>();

services.AddScoped<IScopedService, ScopedService>();

services.AddTransient<ITransientService, TransientService>();

var app = builder.Build();

if (!app.Environment.IsDevelopment())

{

 app.UseExceptionHandler("/Error");

 app.UseHsts();

}

Chapter 2 IntroduCIng aSp.net Core 8

49

app.UseHttpsRedirection();

app.UseStaticFiles();

app.UseRouting();

app.UseAuthorization();

app.MapRazorPages();

app.Run();

Listing 2-4 shows how to inject services with an MVC controller after

registering to what concrete implementation they are mapped to in the

Program.cs file.

Listing 2-4. Example of an MVC controller where services are

injected by constructor

public class DemoController : Controller

{

 private readonly ISingletonService _singletonService;

 private readonly IScopedService _scopedService;

 private readonly ITransientService _transientService;

 public DemoController(ISingletonService singletonService,

 IScopedService scopedService,

 ITransientService transientService)

 {

 _singletonService = singletonService;

 _scopedService = scopedService;

 _transientService = transientService;

 }

}

Chapter 2 IntroduCIng aSp.net Core 8

50

Depending on your needs, you might sometimes want to use a service

such as Singleton, Scoped, or Transient, but you must be aware of the scope

hierarchy.

A Transient service can directly access a Singleton service or a Scoped

service, which can directly access a Singleton service. The opposite is

impossible because any object with a longer life than another cannot

access it directly. Figure 2-3 summarizes it.

Figure 2-3. The scope hierarchy

ASP.NET Core provides a way to add extra configuration within your

application that dependency injection can consume anywhere. You can

customize and store the additional configuration in an appsettings.json

file. You can store settings here that differ by environment. For example,

in a development environment, the appsettings.development.json file can

contain configuration specific to development mode. If a JSON key/value

pair is present in both files, the more specific file (appsettings.development.

json) will override the value presented in the main file for a given key.

You can create an Options object to populate with your configuration—

this is referred to as the Options pattern. Listing 2-5 shows an SMTP

configuration in appsettings.json that maps the SmtpConfiguration object

shown by Listing 2-6 and then uses the dependency injection system as

shown in Listing 2-7. Finally, the IOptions<TOptions> interface is injected

in the DemoController as shown in Listing 2-8.

Chapter 2 IntroduCIng aSp.net Core 8

51

Listing 2-5. SMTP configuration in appsettings.json

{

 "SmtpConfiguration": {

 "Domain": "smtp.gmail.com",

 "Port": 465

 }

}

Listing 2-6. SmtpConfiguration object

public record class SmtpConfiguration

{

 public string Domain { get; init; }

 public int Port { get; init; }

}

Listing 2-7. SmtpConfiguration object bound and registered in the

dependency injection system

var builder = WebApplication.CreateBuilder(args); services.

Configure<SmtpConfiguration>(Configuration.GetSection("SmtpConf

iguration"));

....

Listing 2-8. Injecting SmtpConfiguration options into

DemoController

public class DemoController : Controller

{

 private readonly SmtpConfiguration _smtpConfiguration;

 public DemoController(IOptions<SmtpConfiguration>

smtpConfigurationOptions)

Chapter 2 IntroduCIng aSp.net Core 8

52

 {

 _smtpConfiguration = smtpConfigurationOptions.Value;

 }

}

This is the simplest way to use options in ASP.NET Core. Depending

on your needs, you can also leverage IOptionsSnapshot<TOptions>

and IOptionsMonitor<TOptions>. To learn more, read Microsoft’s

documentation: https://docs.microsoft.com/en-us/aspnet/core/

fundamentals/configuration/options?view=aspnetcore-8.0.

The last important thing to mention is the possibility of setting

up development mode in ASP.NET Core by configuration. What is

development mode? It allows developers to configure a different behavior

of the application (set up, e.g., encrypted connection strings in production

but not encrypted in development mode). Another important thing is

the ability to display more detailed information about the unhandled

error that occurred. Because it’s more detailed, developers should not
enable development mode in production. To enable it, you must set the

ASPNETCORE_ENVIRONMENT environment variable to Development in

the launchSettings.json file or within the project properties panel. Further

in this book, you’ll see a concrete example of using environment variables

and encrypted connection strings. Listing 2-9 shows a launchSettings.json

file configured for development mode with IIS and self-hosted mode.

Listing 2-9. Development mode enabled within the

launchSettings.json file

{

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

Chapter 2 IntroduCIng aSp.net Core 8

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-8.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-8.0

53

 "applicationUrl": "http://localhost:57090",

 "sslPort": 44366

 }

 },

 "profiles": {

 "IIS Express": {

 "commandName": "IISExpress",

 "launchBrowser": true,

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "MVCDemo": {

 "commandName": "Project",

 "dotnetRunMessages": "true",

 "launchBrowser": true,

 "applicationUrl": "https://localhost:5001;http://

localhost:5000",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

}

 ASP.NET Core Web API
ASP.NET Core Web API allows you to …you guessed it ...create web APIs.

A web API is an Application Programming Interface (API) used in

conjunction with HTTP. Currently, web APIs use Representational State

Transfer (REST), which is associated with the JavaScript Object Notation

Chapter 2 IntroduCIng aSp.net Core 8

54

(JSON) interchange format and Extensible Markup Language (XML),

which is used less often. APIs use HTTP features such as a Uniform

Resource Identifier (URI).

Because the final Internet user is significant in terms of the variety

of terminals used, we want to provide data to browsers or recent device

applications in a fast, secure way; we need a web API compatible with all

of this. ASP.NET Core Web API is a relevant and performant framework for

building web services that many users can use.

ASP.NET Core Web API follows the Model-View-Controller (MVC)

pattern. In traditional web apps, the V (View) in MVC is the web page. With

the web API, it’s a response in JSON, XML, or any other format. Figure 2-4

gives an overview of this pattern.

Figure 2-4. ASP.NET Core Web API architecture

Note all the stuff I will create in this book is based on Visual
Studio. But you can do the same things with the .net Command-Line
Interface (CLI) where you can find the syntax here: https://learn.
microsoft.com/en-us/dotnet/core/tools/.

Chapter 2 IntroduCIng aSp.net Core 8

https://learn.microsoft.com/en-us/dotnet/core/tools/
https://learn.microsoft.com/en-us/dotnet/core/tools/

55

Now, let’s see how to create a web API in Visual Studio 2022. As shown

in Figure 2-5, select “Web” in the drop-down list to more easily find the

project type you’re looking for: ASP.NET Core Web API.

Figure 2-5. How to find the project type: ASP.NET Core Web API

Once you choose “ASP.NET Core Web API,” you’ll need to configure the

project name, the location on your computer, and the solution name as

shown in Figure 2-6.

Chapter 2 IntroduCIng aSp.net Core 8

56

Figure 2-6. How to create your new ASP.NET Core Web API project

After that, you get the opportunity to select various options to

customize your application. As shown in Figure 2-7, you can choose the

runtime to run your ASP.NET Core Web API, and I strongly suggest you

select the latest (.NET 8) in the drop-down; ASP.NET Core 8 can only

be run by .NET 8. You can also set the authentication type (Windows,

Microsoft Identity Platform, or no authentication), HTTPS, Docker, and

OpenAPI support and whether you want to use controllers or not (using

minimal APIs instead).

Chapter 2 IntroduCIng aSp.net Core 8

57

Figure 2-7. How to configure the ASP.NET Core Web API

If you aren’t familiar with Docker, Docker is an open source

containerization platform. Docker enables developers to containerize their

applications that combine application source code with all the operating

system (OS) libraries and dependencies required to run the code in any

environment. To learn more, visit www.docker.com/why-docker. As for

OpenAPI, it’s a specification that defines a standard, language-agnostic

interface to RESTful APIs, allowing humans (and the machine) to discover

and understand the features of a service without reading the source

code. For details, you can refer to this website: https://swagger.io/

specification/. Swagger is the set of tools built on top of OpenAPI.

After clicking the “Create” button, Visual Studio will generate your

project with a default template, including a WeatherForecast model and

controller. Figure 2-8 shows the default project created by Visual Studio.

Chapter 2 IntroduCIng aSp.net Core 8

http://www.docker.com/why-docker
https://swagger.io/specification/
https://swagger.io/specification/

58

Figure 2-8. Default ASP.NET Core Web API WeatherForecast
template app

Let’s take a quick look at the controller in Figure 2-9.

Figure 2-9. The WeatherForecastController class

Chapter 2 IntroduCIng aSp.net Core 8

59

Let’s take a look at the Program.cs file, the entry point of the

application. As you can see, we enabled OpenAPI before. Swagger UI uses

this in Figure 2-10.

Figure 2-10. Program.cs file configured with OpenAPI (Swagger)

Visual Studio will open the browser with the OpenAPI web page and

display all endpoints within the app if you run the app. At this point, it will

show only the “WeatherForecast” GET endpoint. To try it, you can click the

“Execute” button and view the data returned in the “Response” section, as

shown in Figure 2-11.

Chapter 2 IntroduCIng aSp.net Core 8

60

Figure 2-11. Swagger UI web page

The Swagger UI web page is open by default. When we enabled

OpenAPI, Visual Studio configured it to open in the launchSettings.json

with the “launchUrl” parameter, as shown in Figure 2-12.

Chapter 2 IntroduCIng aSp.net Core 8

61

Figure 2-12. “launchUrl” parameter set to “swagger” value

In addition to Swagger, it is possible to use a command-line tool,

HttpRepl (HTTP Read-Eval-Print Loop), which is lightweight and cross-

platform and can be used on ASP.NET Core APIs but also other kinds of

APIs. This tool makes HTTP requests and views their results wherever

the API is hosted. HttpRepl supports the following verbs: DELETE, GET,

HEAD, OPTIONS, PATCH, POST, PUT.

To install it, just run the command in a PowerShell window as shown

in Listing 2-10.

Listing 2-10. HttpRepl installation command

dotnet tool install -g Microsoft.dotnet-httprepl

If you want to discover all the commands supported by this tool, you

can enter the command shown in Listing 2-11.

Listing 2-11. HttpRepl help command

 httprepl --help

Chapter 2 IntroduCIng aSp.net Core 8

62

Figure 2-13 shows the commands available in the output window.

Figure 2-13. Available commands for HttpRepl

Figure 2-14 shows the exploration, navigation, and execution of the

endpoints available in the API you want to discover. Endpoints are known

because of the parsing of the swagger.json file, which is done automatically

by typing the command (connection to the API) shown in Listing 2-12.

Listing 2-12. Connection to the local API base URL

httprepl https://localhost:5001

Endpoint exploration, navigation, and execution shown in Figure 2-14

are pretty original since they uses MS-DOS such as ls to list endpoints

(listing files in a directory in Windows) or position itself on an endpoint

with the cd command (moving to a directory in Windows).

Chapter 2 IntroduCIng aSp.net Core 8

63

Figure 2-14. Exploration, navigation, and execution of API
endpoints

Chapter 2 IntroduCIng aSp.net Core 8

64

Finally, you can use Postman if you do not want to use the generated

Swagger web page or HttpRepl. Postman is a GUI for generating HTTP

requests to test the endpoints of a given API. This tool allows you to

configure all the possible request parameters, such as the URL, headers,

verbs, query string, and body. To download this tool, you can go to this

page: www.postman.com. Figure 2-15 shows what the Postman interface

looks like.

Figure 2-15. Postman GUI tool

The most popular of these three tools is Postman—maybe you already

know it—but I admit that using HttpRepl online is quite lovely, and if you

are a fan of command-line tools, this one is for you, especially if you are a

Linux pro! If you are not, I hope I made you want to try it.

Chapter 2 IntroduCIng aSp.net Core 8

http://www.postman.com

65

 ASP.NET Core Minimal APIs
ASP.NET Core 8 has introduced a new feature: minimal APIs. ASP.NET

Core 8 brings more functionalities to them and allows minimal APIs to

catch up on web APIs. We will discuss this throughout this book.

Why do I adore them? For the simple reason that sometimes I have

to write minimalistic APIs, one or two endpoints maximum with data

to manipulate quite simply. How does it work? There is no need to

implement controllers, and only one file is necessary: the Program.cs file.

As you already know, the latter allows on its own starting an

application with minimal configuration. Note that all the ASP.NET Core

pipeline remains the same. I mean by this the dependency injection

system and the middlewares that follow one another and manage HTTP

requests and responses.

To get started, create an “ASP.NET Core Empty” project as shown in

Figure 2-16.

Figure 2-16. Create an ASP.NET Core Empty project

Chapter 2 IntroduCIng aSp.net Core 8

66

Note You can also use the aSp.net Core Web apI template and
unselect the “use controllers” options to do the same.

Once you named your project, Visual Studio 2022 will create the

following minimalistic project with its default endpoint, “Hello World!”, as

shown in Figure 2-17.

Figure 2-17. Minimalistic ASP.NET Core project

Figure 2-18 shows the minimal API configured to serve the Swagger

documentation to reveal the Hello endpoint declared in the Program.cs

file. Dependency injection is used for the IHelloService declared on the

top of the file as a Scoped service. C# also introduces a new feature that

allows developers to decorate lambda expressions with attributes, such as

the FromRoute attribute that maps the route attribute “name” to the string

parameter name.

Chapter 2 IntroduCIng aSp.net Core 8

67

Figure 2-18. An example is a minimal API that uses dependency
injection attributes on lambdas and serves as an endpoint with its
Swagger documentation

Chapter 2 IntroduCIng aSp.net Core 8

68

Figure 2-19 shows the Swagger UI generated from the preceding code.

Figure 2-19. An example of a minimal API Swagger UI

I like this way of developing APIs. For my part, I use it almost

automatically over ASP.NET Core Web API.

Chapter 2 IntroduCIng aSp.net Core 8

69

 Summary
In this chapter, you’ve learned what ASP.NET Core is, its basics, and some

of the frameworks it does support. ASP.NET Core is a vibrant framework.

All kinds of web technologies are supported and well documented by

Microsoft. That’s why it’s my favorite web application development

framework, and I hope you enjoy it just as much as I do.

Along with this book, you’ll see how I’ll build minimal APIs to show

you how robust the ASP.NET Core 8 framework is.

Chapter 2 IntroduCIng aSp.net Core 8

71

CHAPTER 3

Introduction
to Application
Development Best
Practices
Here we are at the heart of the matter! As you might expect, we will take

your time developing an API in this book. Before developing an API with

ASP.NET Core 8, in this chapter, we will review the basics of any software

development, whether it is an API or any other type of software, such as

a mobile application or a desktop application. Ideally, any application

should respect the following development fundamentals: programming

basics, structuring code in a clean architecture, writing readable,

maintainable (and easy to debug!) code, and keeping your application safe

with the Open Worldwide Application Security Project (OWASP) principles.

In this chapter, you will learn a brief introduction to the following points:

• Getting the right frame of mind

• Clean architecture fundamentals

• Clean code fundamentals

• OWASP principles

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_3

https://doi.org/10.1007/978-1-4842-9979-1_3

72

Note This book assumes that you already know the fundamentals
of programming, object or procedural programming, algorithms, and
the basics of the C# language. Therefore, this chapter will remain
more theoretical than practical since all the principles I will introduce
here are well documented on the Web or in many books. This chapter
aims to give you the right mindset to write clean APIs.

 Getting the Right Frame of Mind
You may not know it, but Information Technology (IT), particularly

software development, is challenging. It requires many qualities, and I will

describe them in this section.

 A Basic Understanding of the Business
Here I’m talking about the minimum of the minimum, that is,

understanding the basics of algorithms while knowing a programming

language, such as C#, which I’ll be using in this book. However, I consider

that you have mastered the fundamentals of the language.

 Problem-Solving Skills
Once you know the basics of algorithmics and a programming language,

you must solve problems. You’ll have to transpose an entire logic into a

programming language to achieve your goals, and from time to time, you’ll

also have to deal with unexpected behavior in your software: bugs. In this

book, I’ll cover some techniques for debugging software.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

73

 Understanding Programming Paradigms
There are different programming paradigms, such as procedural

programming and object-oriented programming. I also assume you

are familiar with the basic principles of these paradigms. Throughout

this book, I’ll be using object-oriented programming, although I may

sometimes use simple functions in the way that procedural programming

requires.

 Logical and Structured Thinking
This is the most complicated part! And that’s what I’m going to emphasize

in this book. Understanding the IT business basics, solving problems, and

understanding programming paradigms can make you a programmer, but

thinking logically and structurally will make you an excellent programmer!

Of course, a program has to work, but more is needed. High-quality

software must satisfy these rules:

 1. To be easy to understand and maintain: What’s

worse than unreadable, unmaintainable code?

You’ll make mistakes, and lots of them, if the

code isn’t of the highest quality. I’m talking

here about variable naming, class naming, code

documentation, cyclomatic complexity, code safety,

etc. I’ll return to this in a moment. We’re talking

about clean code here.

 2. To be correctly organized: A computer program

must be divided into several layers, each containing

several elements (classes) with a particular type of

responsibility and reusable independently on other

layers. We’re talking about clean architecture here.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

74

 Clean Architecture Fundamentals
Clean architecture? If that sounds abstract, don’t worry; we’ll clarify it. In

simple terms, it’s how to organize your code and define the relationships

between each piece of code. Know that there is no absolute truth about

implementing a clean architecture. In this chapter, I will introduce my

way of seeing things, which I have adopted (and assumed) over the years

of experience I have acquired. In the industry, we often talk about the

following architectures:

• Hexagonal architecture

• Onion architecture

• Domain-driven design (DDD)

• “Clean architecture”

They all describe the organization of your application layers (projects

in .NET). I won’t describe them here because it would be too long and

could confuse you. In the meantime, I want to avoid repeating what has

already been explained many times.

Also, as you may have noticed, the title of this section is called “Clean

Architecture,” and I mentioned this name with quotes in the preceding list.

There is a difference between the two because I will talk about MY clean

architecture rather than the “clean architecture” documented in other

sources of information.

My clean architecture is not fundamentally different from the others.

It is a preference of mine in the context of low- to intermediate-complexity

API development. In the case of complex architecture, the architecture will

require more attention to detail. Still, again, how I see it here will allow you

to understand 99% of the web projects you will have to do in your career as

an API developer.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

75

Ultimately, the only thing that matters is to respect a great

principle: independence (or weak coupling). Independence from what?

Independence from the technology and from external data sources and

the independence between application layers. More concretely, your

application layers must be

 1. Independent of the user interface: The user

interface (API, desktop application, etc.) must

function independently of your core application

(business logic, data access, etc.). Throughout this

book, I will use the abstraction principle to show

you how to not depend on business logic.

 2. Independent of third-party libraries and
frameworks: Your application must not be strongly

coupled to a particular library, or you will be

dependent on it and limited in your development,

especially your technical maintenance. Later in this

book, I will show how to abstract these libraries and

frameworks.

 3. Independent of external data access: It must

be possible to easily change databases (type of

database) or switch to another type of data access,

such as XML files somewhere on the network

and vice versa. I will introduce some data access

technologies and show you how to switch between

these technologies. It also implies here the notion of

abstraction.

 4. Independently testable: Testing must be done

in isolation from other software layers and

technologies. To illustrate this, I will introduce unit

testing later in this book, which also relies on the

abstraction principle.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

76

Note I mentioned several times the abstraction word (weak
coupling). This is a crucial principle of clean code, which implies
interfaces and dependency injection that I have introduced to you in
Chapter 2, in the “AsP.neT Core Fundamentals” section.

If you have understood these rules, feel free to learn other architectures

as mentioned previously. Again, my vision is not the absolute truth, but it

works without being too complex in most cases.

Let’s move on to my vision, which will convince you, I hope. The way

I see it, my application is divided into a minimum of four layers, and here

they are:

• A Domain layer will contain all our domain objects,

repository interfaces (data access), and service

interfaces, in other words, application contracts and

abstractions. This layer does not rely on any layer. This

layer is independent.

• A Presentation layer in this book will be an ASP.NET

Core web layer that exposes APIs over HTTP. This

layer is dependent on all layers. Even though the

code is independent of any technology and only

depends on contracts and abstractions, the application

configuration needs to know what abstraction

implements what concrete class. It must be done in

the configuration, as I showed you in Chapter 2, in the

Program.cs file.

• A Business logic (or Application) layer will implement

business rules and orchestrate step-by-step actions

from different components responsible for a particular

action (e.g., data access, logging, caching data, etc.).

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

77

This layer only relies on the Domain layer. It must

only know the domain contracts and abstractions.

This is critical since your business logic MUST NOT

depend on any technology (infrastructure). There is

only one exception. This layer can depend on generic

layers such as tools that help you code better in a

particular situation. You can, for example, introduce

a dependency on a Tools layer that implements C#

classes that can be reused in any situation and don’t

rely on any technology. I will discuss it a little further.

• One or several Infrastructure layers. Infrastructure

layers implement particular technology. They must

rely on the Domain layer, which defines abstractions

and contracts. Infrastructure layers implement them.

It’s always good to have one Infrastructure layer per

technology. For example, if you access data via SQL and

HTTP, you can design one layer for SQL data access and

another for HTTP. They will be independent of each

other. It’s practical if you want to reuse the SQL layer

and not the HTTP if you don’t need it.

• Optionally, you can design a Tools layer, as I said

before. This layer can implement anything if you are

not implementing any application logic or relying on

a particular technology. You can code your stuff here

if you implement generic code that can be applied in

any layer. For example, you can implement stuff here

that transforms an array of bytes into a stream or vice

versa, creates a reusable class that performs regular

expressions, etc.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

78

To give you a better idea, Figure 3-1 summarizes the interactions

between the layers listed, and the Infrastructure layers are numbered

from 1 to n.

Figure 3-1. My vision of clean architecture

I’ve just explained the ideology with a diagram. I’m not going to give

you a specific example at this stage, but throughout this book, I’ll show

you where (and how) to implement the different functionalities of your

API. Once again, only the decoupling mindset matters; you’ll understand

that throughout this book.

I want to say a few words about design patterns. This book does not

aim to teach you about design patterns, but I want to inform you that

design patterns influence software architecture. A design pattern is a

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

79

specific arrangement of modules commonly accepted as best practice

for solving a particular problem in software design. It sets out a way of

operating a standard solution, which can be used to design different

software products. There are 24 design patterns described by the Gang of

Four (GoF), a team of four experienced developers. Their 24 patterns are

explained on their website. Don’t worry; you don’t need to learn them all.

In this book, I’ll introduce you to just a few of them, including one you

already met in Chapter 2: the Singleton, which allows you to instantiate

only one instance of a class throughout an application.

Here’s the website mentioned previously: www.gofpatterns.com/.

 Clean Code Fundamentals
I’ve already introduced you to clean architecture, which is essential

and can be implemented in many ways. Still, it’s also impossible for me

not to make you aware of the notion of clean code. As you may have

guessed, it’s not enough to organize your code well, to divide it into logical

and independent layers. Still, you must also ensure that the code you

implement is clean. I want to look at this before we start coding beautiful

REST APIs!

 General Coding Fundamentals
So what’s clean code? Here we go:

 1. The code must be simple: This is the main

characteristic of clean code. The simpler the code,

the more readable and maintainable it will be as

your software evolves. In Information Technology

(IT) jargon, this principle is known as Keep It

Simple, Stupid (KISS). To achieve your goals, think

effectively. No need to anticipate the unforeseeable;

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

http://www.gofpatterns.com/

80

that’s also what we call the You Ain’t Gonna Need

It (YAGNI) principle, for example, if you try to

anticipate a particular behavior when you think

it won’t happen. Why it’s important? You will

complexify your application for no valid reason!

 2. Code must have a single responsibility: In other

words, a piece of code, an instruction or a function,

must have a single purpose: to solve a single

problem. Why is this? Because it allows us to isolate

the functionalities of an application, which will take

us to point number 5 in the following. The Single

Responsibility principle is to be found in the SOLID

principles. I’ll come back to this a little later in this

section.

 3. Code must not be repeated: This is another

essential principle in programming. Don’t copy and

paste, and always give priority to reusability. This

avoids having two identical pieces of code (which

solve the same problem) evolve differently, which

could lead to bugs. We call this the Don’t Repeat

Yourself (DRY) principle, which only applies if

identical pieces of code solve the same problem.

 4. Code must be well isolated from other parts of

the code: Code is simple, and having only one

responsibility is essential. However, for this to

be entirely true, the code must meet another

requirement: the Separation of Concerns (SoC)

principle. This is not the same as the Single

Responsibility principle, which governs the

behavior of a piece of code, that is, a piece of code

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

81

is written for a specific task. For example, when you

order a pizza, you choose it, pay for it, and have

it delivered. The Single Responsibility principle

means that a pizza selection function programs the

“construction” of your pizza. Dispatching your order

involves several functions—each of them will be

responsible for making the payment and managing

the delivery, which will have their independent

piece of code: this is what we call the Separation of

Concerns (SoC) principle.

 5. Finally, the code must be testable: If all the

preceding elements are respected, it should be

easy to test. Testing an application, in other words,

carrying out unit tests, is vital to the long-term

maintainability of your application. I won’t go into

too much detail here, as we’ll return to this in the

book’s last chapter.

I mentioned earlier the acronym SOLID, but I did not define it. Each

letter of this acronym is the first letter of five great principles in object-

oriented programming (OOP):

• Single Responsibility principle: I already introduced

this earlier. In this book, I will use this principle as

much as possible.

• Open-Closed principle: This principle encourages class

extension instead of modifying it when a feature needs

to evolve. In other words, please create a new class

and inherit it from the base class instead of reworking

it. Even though it’s a great principle, it’s not very often

applicable in an API.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

82

• Liskov Substitution principle: Even though creating

new classes using class inheritance is highly

recommended, it’s easy to overuse it (too many levels

of inheritance) and destabilize a software program’s

functioning. This is where Liskov Substitution comes

in. With this principle, a child class can remap a parent

class without destabilizing the system. I can’t hide the

fact that this isn’t always easy. Nevertheless, it’s always

good to know this principle, even if, in an API, it’s not

always applicable.

• Interface Segregation principle: This principle is

similar to the Separation of Concerns principle but

applies to interfaces. If we take the example of ordering

a pizza, we could have one interface describing the

service contracts to “build” the pizza, another to pay for

it, and a third to manage the delivery. In this book, I’ll

be using this principle, and we’ll look at some concrete

examples.

• Dependency Inversion principle: This principle aims

to enforce the usage of abstraction as much as possible.

The closer you are to the high level of your application

(UI), the more you should rely on abstractions instead

of low-level classes. This will prevent any maintenance

issues if you change your low-level implementation.

We have already talked about this earlier in this book;

I introduced you to the dependency injection pattern.

Throughout this book, I will use this pattern to make

the code cleaner as much as possible.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

83

Since this book does not intend to go deeper into OOP principles,

I won’t go further with this topic, but if you want to learn more about

it, you can on this post, where you’ll find great code samples:

www.c-sharpcorner.com/UploadFile/damubetha/solid-principles-

in-C-Sharp/.

 Coding Style Fundamentals
Another important aspect of clean code is the coding style. Structuring

your code is essential, but it must also be easy to read. What I like to do

personally is to name my files correctly (I like to give explicit names to my

classes, interfaces, variables, etc., well arranged in a directory).

For example, in Figure 3-2, you can see the Download directory

containing a Helpers subfolder containing static classes like

AmazonS3PathBuilder.cs and AzureFileStoragePathBuilder.cs and a service

named DownloadService.cs. All files are meaningful. File names are

explicit and are related to the download feature.

Figure 3-2. Download directory with its classes related to the
download feature

You may have noticed that these classes have particular file names and

already allow you to partially understand the intent of the implementation

without looking at it. These two files contain a class for generating file paths

on Amazon S3 and Azure File Storage. Amazon and Azure are both providers

of software hosting solutions (essentially web-related in the cloud).

Let’s look at the content of the DownloadService.cs file in Figure 3-3.

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

http://www.c-sharpcorner.com/UploadFile/damubetha/solid-principles-in-C-Sharp/
http://www.c-sharpcorner.com/UploadFile/damubetha/solid-principles-in-C-Sharp/

84

Figure 3-3. DownloadService.cs file content

We can see that the DownloadService service name is self-explanatory,

as is its IDownloadService interface, which contains only one GetFileAsync

contract whose intent is clear from its naming. Its incoming parameter,

as is its return variable, is also explicit: a tuple containing a file download

status, a status message, and an object containing the file data to be

downloaded.

Let’s now take a look at the implementation of the GetFileAsync

function in Figure 3-4.

Figure 3-4. GetFileAsync method implementation

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

85

You may have noticed that the function parameter GetFileParameters

is unique. There is no other parameter. It’s always a good practice to keep

a single parameter that can take many properties because your function

signature won’t change if your application evolves. It helps keep your

code clean.

You can see that all the variables, such as index, fileStorageProvider,

and donwloadFileStream, are explicit.

The last point I would like to bring here is the naming convention. As

you can see, I used different casing conventions for naming my variables,

method parameters, methods, namespaces, classes, and fields. I used

two cases: the Pascal case and the Camel case. I even used a Camel case

preceded by an underscore (_) for class fields. I also use the Pascal case for

properties as follows:

public int MyProperty { get; set; }

Table 3-1 shows a recap of the examples seen here.

Table 3-1. Recap of the casing convention with examples

Element Casing convention Example

namespace Pascal case downloadservice

Class Pascal case demo.Business.download

method Pascal case GetFileAsync

method parameter Pascal case GetFileParameters

Property Pascal case myProperty

variable Camel case index

method parameter name Camel case parameters

Field Camel case with _ _datastoreBusiness

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

86

Throughout this book, I’ll use this way of coding as much as possible in

my code examples.

Other principles of clean code can also be found in other stages of your

software programming, such as

• Error handling

• Testing

• Comments (to be used sparingly)

We’ll come back to these later in the book.

 OWASP Principles
The Open Worldwide Application Security Project (OWASP) is an

international organization providing recommendations on software

security. OWASP develops and maintains various tools, such as

documentation and videos, to make developers and companies more

aware of the security of their web applications.

What interests us here from OWASP is the OWASP Top 10. The OWASP

Top 10 describes the most widespread attacks a web application can

suffer. Without going into too much detail in this section, I’ll list them

here. I’ll show examples in this book on how to protect your API against

these attacks if it applies to the topics I will bring throughout this book.

Remember that security must be your priority when designing web

applications such as REST APIs! Any compromise on security shouldn’t be

accepted.

Here are the elements of the OWASP Top 10:

 1. Weak authentication and authorization: Even with

authentication implemented in your application,

your application remains vulnerable. The most

common is the brute-force attack, which consists

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

87

of trying login/password combinations hundreds

or thousands of times until the right combination is

found. It’s effortless if a password is easy to guess.

We’ll discuss a solution, Rate Limiting, which you’ll

see in Chapter 5. There is also a solution to protect

against this attack, two- factor authentication, but I

won’t discuss it in this book.

 2. Injection: Particularly with SQL databases (but

also NoSQL such as MongoDB or LDAP to identify

a person on a network), there is a way of obtaining

information illegally by corrupting data (which has

not been verified, as a user should never be trusted),

thus diverting the purpose of the initial request

to the server. The best known is SQL injection. I’ll

discuss this in Chapter 6, when I show you how

to access data. Another type of attack is Cross-

Site Scripting (XSS), which sends data containing

executable code. Data can be sent over an endpoint

that saves data to be displayed further. These data

may contain, for example, JavaScript code that may

inject some unexpected content or, even worse,

steal authentication cookies and send them to a

destination that will steal and use your identity.

I will provide a concrete example in Chapter 4

regarding input validation.

 3. Broken access control: Authentication is often

insufficient to protect access to sensitive data or

actions. In an enterprise, not everyone can have

the same privileges in an application, which is why

some people, and not every application user, are

given additional authorization to access sensitive

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

88

data, such as a customer’s banking information. In

Chapter 10, I’ll show you how to implement user

authentication and manage authorizations.

 4. Insufficient logging and monitoring: Logging and

monitoring can help identify attacks, such as brute-

force attacks, or detect an increase in activity on

a web application when activity should be low. In

Chapter 8, I’ll talk about observability, showing you

how to log and trace HTTP requests and use them

for diagnostics.

 5. Insecure data integrity: Serialization/

deserialization of data may lead to security breaches,

such as allowing an attacker to execute malicious

code on the server. Except for the fact we will

validate input data on API endpoints in Chapter 4,

I won’t go further with this kind of security issue in

this book.

 6. Cryptographic failures: Non-encryption of specific

data can lead to vulnerabilities in an application,

making it a prime target for hackers. I won’t go into

this here, as we’ll transport data between a client

and a server over HTTPS via an API. This doesn’t

necessarily mean encrypting data in the more

specific context described in this book.

 7. Weak application design: Occasionally, there are

use cases where an application can be used to abuse

a benefit, for example, a promotion that should

only apply once but can be used several times. I

remember being a student and having a prepaid

SIM card with a mobile operator. To top up my

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

89

account, I used a code that was supposed to be a

one- time use code but wasn’t. Several people could

use the same code for two minutes. This flaw took

months to correct, and the company lost money.

There is no specific chapter about it in this book.

 8. Weak security configuration: An application can

be vulnerable if, for example, it uses accounts whose

passwords never expire or, worse, if the passwords

are easy to guess or if an unused login/password

pair remains active. Manage all active accounts and

change their passwords regularly.

 9. SSRF: Server-side request forgery (SSRF)

vulnerabilities occur whenever a web application

retrieves a remote resource without validating the

URL provided by the user, enabling an attacker to

force the application to send a specially crafted

request to an inappropriate destination. I won’t go

any further here, as this applies more to an HTML

web application than an API.

 10. Obsolete component: Many applications often

don’t update their frameworks or libraries. For

example, Microsoft publishes updates for .NET

frameworks to close a security gap. Apart from

telling you that you must always keep your

application up to date, I have nothing to show you in

this book for this topic.

OWASP provides the OWASP Secure Headers Project (OSHP). This

project describes HTTP response headers that can be added to your

application to make it safer. You can take a look at this address: https://

owasp.org/www-project-secure-headers/. The good news is that there is

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

https://owasp.org/www-project-secure-headers/
https://owasp.org/www-project-secure-headers/

90

an implementation for ASP.NET Core, and you can find it on Nuget.org

since it’s a Nuget package. Installation is well documented and

straightforward to execute. You can find it here: www.nuget.org/packages/

OwaspHeaders.Core#readme-body-tab.

 Summary
This chapter shows the minimum acceptable clean code and architecture

you must implement in an API. We can go further by using tools like code

formatting or another famous tool named ReSharper (which is not free)

that can help you improve your code. I want you to learn here to get the

right mindset to keep code clean instead of using tools that do the job for

you. You also don’t need to know the 24 design patterns. Most of the time,

they are overkill in many situations; they are only there to help resolve a

particular implementation of a problem, which is not the intention of this

book. As I said before, there is no compromise on the security purpose. It

must be your obsession!

ChAPTer 3 InTroduCTIon To APPlICATIon develoPmenT BesT PrACTICes

http://nuget.org
http://www.nuget.org/packages/OwaspHeaders.Core#readme-body-tab
http://www.nuget.org/packages/OwaspHeaders.Core#readme-body-tab

91

CHAPTER 4

Basics of Clean REST
APIs
You’re looking forward to developing APIs! Here we are. Let’s look at the

most basic operations with minimal APIs in ASP.NET Core 8. These are

the most common features; you’ll use them in every API you develop.

First, you’ll need to expose comprehensible URIs, validate the parameters

sent by the API consumer, and do object mapping, that is, transform your

objects into other objects specific to the application domain. You’ll also

need to manage the correct HTTP status codes for each type of operation

you want to perform; you’ll learn how to download and upload files,

stream elements to your API’s client, as well as version your API and

expose your API’s endpoints so that your clients understand how to invoke

your endpoints. Handling Cross-Origin Resource Sharing (CORS) is also

a challenge; we will see how to deal with that. In this chapter, you’ll learn

about each of the following points:

• Routing with ASP.NET Core 8

• Parameter binding

• Validating inputs

• Object mapping

• Managing CRUD operations and HTTP statuses

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_4

https://doi.org/10.1007/978-1-4842-9979-1_4

92

• Downloading and uploading files

• Streaming content

• Handling CORS

• Managing API versions

• Documenting APIs

 Routing with ASP.NET Core 8
Do you remember Chapter 1, where I introduced you to HTTP and REST

principles? We will put URL writing into practice using ASP.NET Core 8’s

routing feature. The beauty of ASP.NET Core 8 is that the framework offers

improvements over previous versions of ASP.NET Core, and I’ll show

you how in a few lines. In this section, we’ll look at two different ways of

managing routing, the simplest of which is to write a URL applicable to

a single endpoint and the second, called RouteGroups, of which lets you

manage reusable route portions across a route group.

But first, let’s define what routing is.

 ASP.NET Core Routing
Routing is the ability to respond to an HTTP request from any client. The

system, in this case, ASP.NET Core, analyzes (through pattern matching)

the HTTP request and determines what to do with it, that is, find out

which endpoint corresponds to a requested URL. If no endpoint is found,

an HTTP 404 (Not Found) error is returned to the client. Figure 4-1

summarizes ASP.NET Core routing.

Chapter 4 BasiCs of Clean rest apis

93

Figure 4-1. ASP.NET Core routing

There’s no need to go into how pattern matching works here. We will

see how to set up the HTTP verb that will be used to write routes and

apply constraints to these routes by enforcing allowed values on route

parameters.

 Setting Up the Correct HTTP Verb

ASP.NET Core 8 makes it easy since each verb has its dedicated method to

map a route to a specific verb. They all take as parameters a route name

and a delegate. The method name is straightforward, so you can’t get it

wrong. Table 4-1 shows all available HTTP verbs with their methods.

Table 4-1. HTTP verbs and their associated methods

HTTP verb Method

Get MapGet

post Mappost

patCh

pUt

Delete

other verbs

Mappatch

Mapput

MapDelete

no method

Chapter 4 BasiCs of Clean rest apis

94

The following code snippet provides an example of the signature of the

POST method:

app.MapPost("/yourRouteName", () => /* Do action */);

As you can see, some verbs like OPTIONS, TRACE, and HEAD don’t

have their method. But don’t worry; you can use the MapMethods method,

which can take several verbs in parameters for the same route. An example

is the following snippet:

app.MapMethods("/routeName", new List<string> { "OPTIONS",

"HEAD", "TRACE" }, () => { /* Do action */});

The delegate can take parameters, but I will show you further in this

chapter and the next chapter when I introduce you to custom parameter

binding.

 Writing Routes

Writing routes is pretty straightforward. Writing pretty routes while

respecting the principles can sometimes be a pain, but most of the time,

it’s effortless. It depends on how you want to respect REST principles. The

best practice is to respect REST principles by defining meaningful routes

for better readability. This is a crucial point in writing clean REST APIs.

Figure 4-2 shows two examples with the GET HTTP verb. The first one,

with the parameters highlighted, makes the whole route easier to read.

Highlighting was not available before ASP.NET Core 8. Route parameters

are automatically bound to the parameter(s) of the lambda function that

represents the endpoint’s code to respond correctly to the client’s request.

The second example takes no parameters, resulting in a static route. I’m

showing you this code through a figure to show highlighted parameters.

Chapter 4 BasiCs of Clean rest apis

95

Figure 4-2. Basic routing

As you can see, route names are meaningful. The first identifies a

country from its ID among a list of countries defined by the base route

/countries. The second endpoint represents the list of countries with the

route /countries.

ASP.NET Core 8 lets you pass many parameter types in a route,

obviously because of all the possibilities in terms of the type of data

that routing and REST principles allow, such as the following primitive

variables:

• bool

• byte

• sbyte

• short

• ushort

• int

• uint

• long

• ulong

• char

• double

• decimal

• float

Chapter 4 BasiCs of Clean rest apis

96

It is also possible to pass more complex parameters (objects) into a

route, but these can be easily serialized to a string, for example:

• DateTime

• Guid

Listing 4-1 shows routes with DateTime and Guid as parameters.

Listing 4-1. Example of routes containing DateTime and Guid

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGet("/date/{date}", (DateTime date) => date.ToString());

app.MapGet("/uniqueidentifier/{id}", (Guid id) =>

id.ToString());

app.Run();

Note any failed attempt to bind a parameter (when a matching
route with the correct http verb is found) to its expected type
declared in the lambda method will lead to an http 400 Bad
request. regarding Datetime, you must be more careful since the
binding works only with the Datetime value in its invariant culture:
yyyy-MM-dd. i will return to parameter binding in the next section of
this chapter.

For example, Figure 4-3 shows what ASP.NET Core returns when a

string is bound in place of an expected integer.

Chapter 4 BasiCs of Clean rest apis

97

Figure 4-3. Example of attempting to bind a string instead of an
integer, which leads to the HTTP 400 Bad Request response

On the other hand, if a route is found, but the HTTP verb does not

match this route, an HTTP 405 Not Allowed error will be thrown. For

example, Listing 4-2 shows an endpoint that handles PUT and PATCH

verbs for the same route.

Listing 4-2. Example of an endpoint that handles PUT and

PATCH verbs

app.MapMethods("/users/{userId}", new List<string> { "PUT",

"PATCH" }, (int userId, HttpRequest request) =>

{

 var id = request.RouteValues["id"];

 var lastActivityDate = request.Form["lastactivitydate"];

 /* code to update user */

});

If you try to invoke this route with the POST verb, the response will be

HTTP 405 Not Allowed, as shown in Figure 4-4.

Chapter 4 BasiCs of Clean rest apis

98

Figure 4-4. Example of attempting to invoke a route with an
incorrect verb that leads to the HTTP 405 Not Allowed response

Another behavior remains possible, which I mentioned right at the

beginning of the section; if no endpoint is found (no matching route, whatever

the verb), an HTTP 404 Not Found error will be returned in the response.

Figure 4-5 shows a route that does not exist and returns an HTTP 404

Not Found.

Figure 4-5. Example of attempting to invoke a route that does not
exist, which leads to the HTTP 404 Not Found response

Chapter 4 BasiCs of Clean rest apis

99

Table 4-2 summarizes possible behaviors after invoking an ASP.NET

Core 8 minimal endpoint.

Table 4-2. Routing behaviors with their possible responses

Behavior Response

the route matches, and the verb is correct but fails to

bind parameters.

400 Bad request

the route matches, but the verb is not correct. 405 not allowed

the route does not exist, whatever the verb.

the route matches, the verb is correct, and parameter

binding is working.

404 not found

2XX success

Clean REST APIs require writing proper URLs, and ASP.NET Core 8

ideally helps you respect REST principles and handle all scenarios when a

mistake is made, so you can adjust yourself when an error occurs.

ASP.NET Core 8 also allows you to apply constraints to your routes,

on parameters, to be precise, and this is what we will see in the following

subsection.

 Using Route Constraints

ASP.NET Core 8 lets you set constraints on your route parameters. These

constraints allow you to filter and restrict access to your API if one or

more constraints are unmet. Please note: this is not the same as validating

parameters. We’ll look at parameter validation in a further section of this

chapter.

Listing 4-3 shows a constraint on a parameter named “provinceId”,

which must be an integer.

Chapter 4 BasiCs of Clean rest apis

100

Listing 4-3. Example of a constraint applied on the “provinceId”

parameter, which must match the integer type

app.MapGet("/provinces/{provinceId:int}", (int provinceId) =>

$"ProvinceId {provinceId}");

As you can see, the syntax is quite simple and always follows this

pattern:

{ParameterName:DataType}

You might be wondering what happens when a constraint is not

respected. Well, it’s simple: ASP.NET Core 8 will return an HTTP 404

Not Found! Figure 4-6 shows the error with the previous piece code I

showed you.

Figure 4-6. Example of attempting to pass a string on a route that
enforces an integer as a constraint, which leads to an HTTP 404
Not Found

Chapter 4 BasiCs of Clean rest apis

101

Why would this happen? Well, it’s completely logical: a constraint

defines the integrity of a route, and a constraint is just as important as the

name of the route itself. Consequently, if a constraint is not respected, ASP.

NET Core 8 will consider that your HTTP request cannot find the route

you’re looking for and will return an HTTP 404 Not Found error. You won’t

get an HTTP 400 Bad Request error because the binding has failed (casting

a string into an integer in the example I’ve just shown you) because the

constraint check is carried out before any parameter binding.

Now you understand why I don’t recommend using constraints to

validate your parameters: if you try to do this, you won’t know whether

your HTTP 404 Not Found is caused by a constraint error or by writing your

route name. Applying constraints isn’t necessarily a bad practice in itself,

and it’s simply to prevent you from ending up with errors that are difficult

to interpret. Expecting an integer rather than a string can be helpful since

your route expects an integer, so anything else would invalidate your route.

However, ASP.NET Core 8 lets you apply a whole range of constraints.

Table 4-3 shows the different types of constraints that can be applied to

your routes, where “p” represents the parameter to apply the constraint on,

“n” represents any number, and “\\...” represents any regular expression.

Chapter 4 BasiCs of Clean rest apis

102

Table 4-3. All available route constraints on parameters in ASP.

NET Core 8

Constraint Constraint pattern Description

int {p:int} enforces an integer

bool {p:bool} enforces a Boolean (true or false)

datetime {p:datetime} enforces a Datetime

decimal {p:decimal} enforces a decimal

double {p:double} enforces a double

float {p:float} enforces a float

guid {p:guid} enforces a Guid

long {p:long} enforces a long

minlength {p:minlength(n)} enforces a minimum length

maxlength {p:maxlength(n)} enforces a maximum length

length {p:length(n)} enforces a precise length

length (min ,max) {p:length(n1, n2)} enforces a range of acceptable length

min {p:min(n)} enforces a minimum integer value

max {p:max(n)} enforces a maximum integer value

range {p:range(n1, n2)} enforces a range of acceptable integer

values

alpha {p:alpha} enforces alphabetical (non-case

sensitive) characters

regex {p:regex(\\...)} enforces a regular expression

required {p:required} enforces a non-nullable parameter

Chapter 4 BasiCs of Clean rest apis

103

From the minlength constraint to the end of the table, you can see that

you can perform some validation of parameters, and I don’t recommend

using them as I said before; it can lead to unexpected behavior, and you

might be confused more than it should help you design routes. On my end,

I only allow myself to use constraints on the parameter type, validating that

I’m expecting an integer, DateTime, etc.

ASP.NET Core 8 allows you to chain constraints; the following code

snippet chains two constraints. The first one enforces the parameter to be

an integer, and the second one enforces the maximum value of 12:

app.MapGet("/provinces/{provinceId:int:max(12)}", (int

provinceId) => $"ProvinceId {provinceId}");

Once again, I don’t recommend it since it’s a parameter validation, and

it’s not the routing feature’s responsibility to validate parameters.

ASP.NET Core 8 also allows you to write custom constraints, but I

won’t teach you this since it’s a lousy practice to me. If you still want to

learn about it, you can find the Microsoft tutorial here: https://learn.

microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspne

tcore-8.0#custom-route-constraints.

To conclude, I strongly suggest not abusing route constraints since

parameter validation MUST return an HTTP 400 Bad Request, according

to RFCs.

 RouteGroups
When you expose a certain number of endpoints, especially those

belonging to the same functionality—for example, you have a list of

endpoints whose scope is to manage countries—using the route grouping

functionality in ASP.NET Core can be helpful. This can be useful because it

allows to

Chapter 4 BasiCs of Clean rest apis

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-8.0#custom-route-constraints
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-8.0#custom-route-constraints
https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-8.0#custom-route-constraints

104

• Isolate your routes in a specific function (and the

implementation of your route if you wish).

• Take advantage of this grouping to establish access

rules to these endpoints, such as defining a common

URL trunk and others, such as a specific authorization,

but we’ll see about that in the next chapter.

We’ll keep it basic here to introduce you to the functionality and then

develop it further with the features I’ll introduce later. Let’s get back to

the definition of a common URL trunk. Imagine three endpoints sharing

the same scope, countries, as I said, in which the URL trunk is identical,

that is, starting with /countries. Here’s how we could isolate the three

endpoints in a separate function—Listing 4-4 shows a GroupCountries

extension method on the RouteGroupBuilder object grouping the following

endpoints:

 1. List of countries.

 2. Get a country by its ID.

 3. Get a country’s languages.

The code is deliberately kept simple to explain the grouping

functionality.

Listing 4-4. Example of three different endpoints that manage

countries’ data

namespace AspNetCore8MinimalApis.RouteGroups;

public static class MyGroups

{

 public static RouteGroupBuilder GroupCountries(this

RouteGroupBuilder group)

 {

 var countries = new string[]

Chapter 4 BasiCs of Clean rest apis

105

 {

 "France",

 "Canada",

 "USA"

 };

 var languages = new Dictionary<string, List<string>>()

 {

 { "France", new List<string> { "french" } },

 { "Canada", new List<string> { "french",

"english" } },

 { "USA", new List<string> { "english",

"spanish" } }

 };

 group.MapGet("/", () => countries);

 group.MapGet("/{id}", (int id) => countries[id]);

 group.MapGet("/{id}/languages", (int id) =>

 {

 var country = countries[id];

 return languages[country];

 });

 return group;

 }

}

As you can see, all these methods are regrouped in the GroupCountries

extension that must be now registered on the ASP.NET Core pipeline, in

the Program.cs file, as shown in Listing 4-5.

Chapter 4 BasiCs of Clean rest apis

106

Listing 4-5. Registering the countries’ route group with the

GroupCountries method

using AspNetCore8MinimalApis.RouteGroups;

var builder = WebApplication.CreateBuilder(args);

var app = builder.Build();

app.MapGroup("/countries").GroupCountries();

app.Run();

Before registering the group of routes defined previously, we need

to define the URL trunk, and we can achieve that with the MapGroup

extension method, which takes the URL trunk name as a parameter.

Once defined, all routes will inherit from the same trunk. It will give the

following URLs:

• /countries

• /countries/{id}

• /countries/{id}/languages

You may have noticed the slash (“/”) by itself on the first endpoint;

if your route (the right part after the trunk, in fact) does not contain any

characters, you can keep the “/” or omit it. On my end, I prefer to keep the

“/” just by convention. I like to have a slash at the beginning of any portion

of the route. It’s only my preference.

It’s convenient, but we can go further again with the route grouping.

What I mean there is we can not only assign a common trunk to a URL for

the same group, but we can also reuse constraints on several endpoints.

Have you seen the two last endpoints? They share the same constraint

on the ID: {id}. We can variable the constraint on the ID by creating the

idGroup variable obtained from the MapGroup method, which takes the

constraint definition method, which gives the following in Listing 4-6.

Chapter 4 BasiCs of Clean rest apis

107

Listing 4-6. Variable the constraint on the ID of a country within the

GroupCountries method

var idGroup = group.MapGroup("/{id}");

idGroup.MapGet("/", (int id) => countries[id]);

idGroup.MapGet("/languages", (int id) =>

{

 var country = countries[id];

 return languages[country];

});

You only have to reuse the idGroup variable on the other endpoint, and

they will inherit from the constraint on the ID.

It’s an exciting feature since you can chain constraints or URL portions

ad infinitum. But be careful not to overdo it, or you’ll end up with the

opposite of the desired effect: readability or maintainability.

I find route grouping extremely practical, and I use it when I have

a lot of endpoints to implement, to avoid rewriting identical code or

route names. It simply applies the KISS principle I mentioned earlier in

this book.

 Parameter Binding
In the previous section, I told you a little about parameter binding. I

gave you the example of the HTTP 400 Bad Request error when a route

parameter cannot be bound to the function’s parameter executing your

request. That was the most simplistic example I could think of, but in this

section, I will introduce you to the fundamentals of parameter binding so

that you can understand how it works.

Chapter 4 BasiCs of Clean rest apis

108

 What’s Precisely Parameter Binding?
Parameter binding means that ASP.NET Core takes the parameters of

an HTTP request and converts them into typed parameters passed to

the function that will handle an HTTP request. In the previous section, I

showed an example with an integer, but ASP.NET Core 8 is fully capable of

binding primitive parameters (see the previous section for the list) as well

as more complex types such as

• Collections (lists, dictionaries, arrays)

• Any complex object, except those that contain a

recursion, that is, an object that contains its type as a

property (applies on minimal APIs only)

• Services that can be injected by dependency (I will

show an example in the next section)

Listing 4-7 shows the Address class that can’t be bound because of the

recursivity of the Address type.

Listing 4-7. Address class that contains itself as a property where

data binding can’t be made on minimal APIs

public class Address

{

 public int StreetNumber { get; set; }

 public string streetName { get; set; }

 public string StreetType { get; set; }

 public string City { get; set; }

 public string Country { get; set; }

 public int PostalCode { get; set; }

 public Address AlternateAddress { get; set; }

}

Chapter 4 BasiCs of Clean rest apis

109

Note i declared the address class as a class. it could be instead a
record class or a struct since adress stands for storing data only. it’s
up to you to choose what you want to use.

parameters must be primitive types or classes; records, objects that
behave like value types and not like reference types in C#, are not
supported.

 Parameter Binding by Example
Now that you know what kind of data you can bind from your HTTP

requests, I’ll show you from which element of an HTTP request you can

bind your parameters. You already know the first one: route parameters.

ASP.NET Core 8 (minimal APIs again) supports parameters from

• Routes

• QueryString

• Body as JSON-only data

• Body as form data (key/value pair)

• Headers

• Others, including class instances from the dependency

injection system and custom binding (I’ll come back to

this later in this book)

ASP.NET Core 8 allows you to bind parameters explicitly, which means

you can annotate parameters from different sources with attributes. It is

also possible to combine several parameters in a single function. Still, you

will have to separate your parameters explicitly from others that don’t

Chapter 4 BasiCs of Clean rest apis

110

come from the same source. I will show you some examples. First, I want

to show you Table 4-4, which summarizes the different bindings with the

explicit attribute to be used.

Table 4-4. Parameter binding with the proper binding

attribute on ASP.NET Core 8 minimal APIs

Data source Binding attribute

routes fromroute

Querystring fromQuery

headers

Body

forms

fromheaders

fromBody

fromform

Note the query string and headers only support arrays as
parameters, while the body as Json data and body as form data
support arrays, list, and dictionaries.

I’ll show you a series of examples to illustrate what I mean. Listing 4-8

shows a POST request attempting to create an address whose data come

from the request body, using the same class as the previous Listing 4-7,

without the Address class recursion as an AlternateAddress property that

I’ve removed.

Listing 4-8. Creating an address from a POST request where data

come from the request body as JSON data

app.MapPost("/Addresses", ([FromBody] Address address) => {

 return Results.Created();

});

Chapter 4 BasiCs of Clean rest apis

111

Ignore for now the result returned by the endpoint (Results.Created());

I will go back to this in a further section in this chapter since I will

introduce you to the static Results class that allows you to return the proper

HTTP status. If you try to put a breakpoint to see if the parameter binding

worked, you should observe the following in Figure 4-7.

Figure 4-7. Example of parameter binding on an Address object from
the request body as JSON data

Figure 4-8 shows the request performed by Postman.

Figure 4-8. Example of a POST request trying to create an address
with Postman

Chapter 4 BasiCs of Clean rest apis

112

Now let’s combine a route parameter with parameters whose values

come from an HTML form. Listing 4-9 shows a PUT request attempting

to update an address, with the address ID in the route and the data to be

updated from the body form data (from an HTML form).

Listing 4-9. Updating an address from a PUT request where

parameters come from the request form and the route

app.MapPut("/Addresses/{addressId}", ([FromRoute] int

addressId, [FromForm] Address address) => {

 return Results.NoContent();

}).DisableAntiforgery();

As you can see, the parameters from the Route and Form are explicitly

separated, and the parameter binding works like a charm, as shown in

Figures 4-9 and 4-10.

Figure 4-9. addressId parameter correctly bound when explicitly
treated as a route parameter

Figure 4-10. address parameter correctly bound when explicitly
treated as a form parameter

You may have noticed the presence of the DisableAntiForgery

extension method. Any request made from an HTML form (form data)

that requires the FromForm attribute on ASP.NET Core must handle the

AntiForgery feature. The AntiForgery feature prevents Cross-Site Request

Chapter 4 BasiCs of Clean rest apis

113

Forgery (XSRF/CSRF) attacks in ASP.NET Core, and Microsoft had made

the AntiForgery feature mandatory at the very last moment when I was

about to release this book. Consequently, I have updated any code

that involves the FromForm attribute at the last moment by adding the

DisableAntiForgery extension method to disable the AntiForgery feature.

Any endpoint that implements form data will crash (in development

mode) or generate a warning (in production mode) unless you disable

the AntiForgery feature or you implement the AntiForgery by generating

a token as shown in the following link: https://devblogs.microsoft.

com/dotnet/asp-net-core-updates-in-dotnet-8-preview-6/#complex-

form-binding-support-in-minimal-apis. If you try to put them in the

same object, with the binding attribute on each property, as shown in

Listing 4-10, it won’t work and will lead to unresolved parameters. ASP.

NET Core 8 (for minimal APIs) cannot bind multiple sources in the same

object and will prioritize data from the body or the form. Initially, I didn’t

want to tackle the subject, because I didn’t want to create an endpoint to

return a validation token to the client to validate the forms, as these are

often generated in JavaScript with libraries such as React, Angular, or VueJs

and not by ASP.NET Core, and this would have required an additional

call to our API to retrieve a validation token. I don’t want to do this for

performance reasons, as I like to save on HTTP calls.

Listing 4-10. Parameter binding property by property, mixing

data sources

public class Address

{

 [FromRoute]

 public int AddressId { get; set; }

 [FromForm]

 public int StreetNumber { get; set; }

Chapter 4 BasiCs of Clean rest apis

https://devblogs.microsoft.com/dotnet/asp-net-core-updates-in-dotnet-8-preview-6/#complex-form-binding-support-in-minimal-apis
https://devblogs.microsoft.com/dotnet/asp-net-core-updates-in-dotnet-8-preview-6/#complex-form-binding-support-in-minimal-apis
https://devblogs.microsoft.com/dotnet/asp-net-core-updates-in-dotnet-8-preview-6/#complex-form-binding-support-in-minimal-apis

114

 [FromForm]

 public string StreetName { get; set; }

 [FromForm]

 public string StreetType { get; set; }

 [FromForm]

 public string City { get; set; }

 [FromForm]

 public string Country { get; set; }

 [FromForm]

 public int PostalCode { get; set; }

}

To illustrate the fact some parameters are not bound, let’s take a look at

Figure 4-11, where you can see the AddressId property remaining unbound

and its value remaining 0 when I attempted to pass an integer with a value

greater than 0.

Figure 4-11. AddressId is unbound when different parameter
binding is performed in the same object

You may have noticed I did not put any parameter binding attribute on

the Address class name in the lambda method. ASP.NET Core 8 supports

the declaration of parameter binding on attributes and not necessarily

on the class itself. On my end, I prefer to add a single attribute to the class

in the lambda method. The preceding example works fine if I remove the

Chapter 4 BasiCs of Clean rest apis

115

Id property and keep other attributes as is. Finally, Figure 4-12 shows the

PUT request performed with Postman.

Figure 4-12. Example of a PUT request trying to update an address
from form data with Postman

Let’s use the query string and headers parameters with a GET request.

Let’s imagine an endpoint that returns a list of addresses based on GPS

coordinates, a coordinates parameter passed in the headers, and a parameter

passed in the query string. This limitCountSearch parameter determines the

maximum number of elements the query returns. Listing 4-11 shows

what this might look like.

Listing 4-11. Example of a GET request where parameters come

from headers and queryString

app.MapGet("/Addresses", ([FromHeader] string coordinates,

[FromQuery] int? limitCountSearch) => {

Chapter 4 BasiCs of Clean rest apis

116

 return Results.Ok();

});

QueryString parameters tend to be optional. Because they are not

mandatory to make the route work, I strongly suggest you annotate

them nullable when the expected type as a parameter is not nullable.

In my example, I added the question mark to the int parameter

(limitCountSearch) since query parameters are not mandatory.

Figures 4-13 and 4-14 illustrate the preceding example.

Figure 4-13. coordinates parameter bound from the headers

Figure 4-14. limitCountSearch parameter bound from the
queryString

To finish, Listing 4-12 shows how to pass in the query string and

headers arrays of primitive data.

Listing 4-12. Example of GET requests where an array of

parameters come from the headers and the query string

// Represents ?id=1&id=2

app.MapGet("/Ids", ([FromQuery] int[] id) =>

{

 return Results.Ok();

});

Chapter 4 BasiCs of Clean rest apis

117

app.MapGet("/Languages", ([FromHeader(Name = "lng")]

string[] lng) =>

{

 return Results.Ok();

});

As you can see, it’s pretty straightforward. Regarding the IDs on the

queryString, you only have to pass IDs as follows: ?id=1&id=2&id=3.

However, you may notice that I added the property Name = "lng"

for the second example to let ASP.NET Core 8 know that the language

parameters (an array) in the headers are named lng. I did not tell you

before, but ASP.NET Core 8 allows you to customize parameter names to

get bound. This applies to any parameter binding attributes. If you want

to customize a single property on an object, you can use the preceding

example with the Address class, where I added the FromFrom attribute on

properties and not on the class itself in the lambda function.

Figures 4-15 and 4-16 show the data binding operating on the GET /Ids

and the GET /Languages endpoints.

Figure 4-15. id parameter (array) bound from the query string

Figure 4-16. lng parameter (array) bound from the headers

Chapter 4 BasiCs of Clean rest apis

118

Now let’s take a look at what the Postman request looks like for each in

Figures 4-17 and 4-18.

Figure 4-17. Passing an array of IDs in the query string
with Postman

Figure 4-18. Passing an array of strings in the headers with Postman

Regarding Figure 4-18, you may notice that the third parameter, lang,

has not been bound if you check Figure 4-16. I voluntarily changed the

language from lng to lang to show you how the customized data binding by

name works.

All these examples represent the most common and frequently used

cases. You could pass complete objects in the headers and the query string

Chapter 4 BasiCs of Clean rest apis

119

in less frequent cases. However, passing complete objects as parameters

to an HTTP request, for example, is for when you need to perform multi-

criteria searches. Now that you’ve understood the principle of parameter

binding, I don’t need to show you any more examples. I’ll return to this

in Chapter 5 when it comes to showing you customized examples of

parameter binding.

There’s just one more thing I’d like to talk to you about. Using

parameter binding attributes explicitly is not mandatory, except for

FromForm (to distinguish it from data received from the request body,

handled with the FromBody attribute) and FromHeader. However, I

strongly recommend always using explicit binding to make your code

clear and readable. You never have to think about where your parameters

come from!

 Validating Inputs
We’re making progress! In the previous two sections, we’ve just seen

how to invoke routes on ASP.NET Core 8 and how to bind parameters to

functions managing the actions to be executed. Well, now we can move

on to another critical point in API development: validating inputs. Why

validate inputs? Well, after all, never trust your users! Your users can be

dizzy or even ill-intentioned. Validating your inputs will allow you to check

the following:

 1. Ensure that the data passed to your API complies

with your business rules. For example, suppose

your users must register for a service by passing

their email address. In that case, you’ll need to

check that their email address is valid, that it’s an

email address, so you want to ensure that your

business rules are respected. Another example is

when you receive an HTTP URL and want to ensure

Chapter 4 BasiCs of Clean rest apis

120

that you only receive an HTTPS address and refuse

HTTP URLs.

 2. Consider that you’re receiving data you will only

use for display purposes, most likely on a web

page. You’ll have to be wary of what the user sends

you. Remember, in Chapter 3, I talked about SQL

injections, and we’ll come back to this in Chapter 6,

as I said, but you can also have XSS injections. A

user could send you a malicious JavaScript script

to display a message. Here you need to check

whether the information the user passes contains

HTML tags.

Let’s look at how to manage this validation in ASP.NET Core minimal

APIs. If you’re familiar with DataAnnotations from ASP.NET Core MVC,

Razor Pages, or Web API, this is not supported in the minimal APIs.

Listing 4-13 shows a Country class on which two of its three properties,

Name and FlagUri properties, contain validation rules, Required and

RegularExpression.

Listing 4-13. The Country class that requires validation on Name

and FlagUri properties

using System.ComponentModel.DataAnnotations;

namespace AspNetCore8MinimalApis.Models;

public class Country

{

 [Required]

 [RegularExpression("^[a-zA-Z0-9]+$")]

Chapter 4 BasiCs of Clean rest apis

121

 public string Name { get; set; }

 public string Description { get; set; }

 [Required]

 [RegularExpression("^(https:\\/\\/.)[-a-zA-Z0-9@:%._\\+~#=]

{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)$")]

 public string FlagUri { get; set; }

}

As you can see, the Name property is required because of the Required

annotation. It also must contain only alphanumeric characters, defined

by the RegularExpression annotation. DataAnnotations, on regular

expressions, can’t detect the “not match”; it cannot decline the input

when an HTML tag is detected. The annotation enables only matches.

This is why I applied the alphanumeric match to this regular expression;

matching alphanumeric means there are no HTML tags on the value of the

Name property. Same reasoning on the FlagUri property, except the latter

must match an HTTPS URL, once again using a regular expression.

As I said, this is not supported by ASP.NET Core 8 on minimal APIs.

So we must find an alternative to this, and there is one! We will use a

fascinating library called FluentValidation! FluentValidation lets you define

built-in or custom validation rules and personalized error messages. To

do this, run the following command from Package Manager Console in

Visual Studio:

Install-Package FluentValidation.DependencyInjectionExtensions

To open the console, click “View” in the horizontal hat menu in Visual

Studio, then “Other Windows,” and finally “Package Manager Console,” as

shown in Figure 4-19.

Chapter 4 BasiCs of Clean rest apis

122

Figure 4-19. Open Package Manager Console in Visual Studio 2022

Chapter 4 BasiCs of Clean rest apis

123

Then type the command and press the “Enter” key as shown in

Figure 4-20.

Figure 4-20. Executing the FluentValidation.DependencyInjection
NuGet package installation in Package Manager Console

Once installed, we can now write a validator with FluentValidation.

Let’s create a validation class named CountryValidator that inherits from

AbsctractValidator<T> where T is the Country class. In the constructor, we

will use the following methods:

• RuleFor: Defines the property where to apply the

validation rule.

• NotEmpty: Defines a rule where the input value getting

validated must not be empty.

• WithMessage: Applies an error message when the rule

is not satisfied. It takes the {PropertyName} variable

in the error message, which will be replaced with the

property name tested against the validation rule. You

can hard-code the property name in the message

as well.

Chapter 4 BasiCs of Clean rest apis

124

• Custom: Defines a custom rule, for example, a regular

expression that matches an expression. It can trigger

an error with the AddFailure method, which takes the

property name and the error message as parameters.

It is used, for example, when you want to raise an error

when a match is found. This is precisely what was not

possible with DataAnnotations.

• Matches: Defines a matching rule with a regular

expression.

All these validation methods (except the AddFailure method) can be

chained since they are all extension methods on the IRuleBuilderOptions

interface.

Listing 4-14 shows the validation on the Country class where Name

and FlagUri are required. Name must not match any HTML tag; else, it

raises an error. And FlagUri must match an HTTPS URL.

Listing 4-14. FluentValidation validator applied on the

Country class

using AspNetCore8MinimalApis.Models;

using FluentValidation;

using FluentValidation.Results;

using System.Text.RegularExpressions;

namespace AspNetCore8MinimalApis.Validators;

public class CountryValidator : AbstractValidator<Country>

{

 public CountryValidator()

 {

 RuleFor(x => x.Name)

 .NotEmpty()

Chapter 4 BasiCs of Clean rest apis

125

 .WithMessage("{PropertyName} is required")

 .Custom((name, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(name).Count > 0)

 {

 // Raises an error

 context.AddFailure(

 new ValidationFailure(

 "Name",

 "The parameter has invalid content"

)

);

 }});

 RuleFor(x => x.FlagUri)

 .NotEmpty()

 .WithMessage("{PropertyName} is required")

 .Matches("^(https:\\/\\/.)[-a-zA-Z0-9@:%._\\+~#=]

{2,256}\\.[a-z]{2,6}\\b([-a-zA- Z0-9@:%_\\+.~#?&//=]*)$")

 .WithMessage("{PropertyName} must match an HTTPS URL");

 }

}

To make it up and running (being able to use the validator by

dependency injection), we must register, with a single scan in the ASP.NET

Core application assembly, any FluentValidation validator defined in this

assembly. Listing 4-15 shows the registration by using the AddValidatorsFr

omAssemblyContaining<Program> method.

Chapter 4 BasiCs of Clean rest apis

126

Listing 4-15. Registering all FluentValidation validators in the same

assembly of the Program class

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddValidatorsFromAssemblyContaining<P

rogram>();

var app = builder.Build();

Using the Program class as a generic parameter will allow the discovery

of any FluentValidation validator in the ASP.NET Core application since

the Program class belongs to the ASP.NET Core application assembly. In

other words, the Program allows discovering the assembly name used to

scan any FluentValidation validator in this assembly. We can now write

an endpoint that posts a Country object, the POST /countries endpoint, as

shown in Listing 4-16.

Listing 4-16. /countries POST endpoint with validation of the

Country object sent from the request body

app.MapPost("/countries", ([FromBody] Country country,

IValidator<Country> validator) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 //Do something

 return Results.Created();

 }

 return Results.ValidationProblem(validationResult.

ToDictionary(), statusCode: (int)HttpStatusCode.

BadRequest);

});

Chapter 4 BasiCs of Clean rest apis

127

Registering all validators with the AddValidatorsFromAssemblyContaining

method allows to pass in any minimal endpoint, by dependency injection,

the IValidator<T> interface where T is the Country class. The latter will

automatically instantiate the CountryValidator validator. The validation is

easy. You must invoke the Validate method, which takes the Country object

passed to the endpoint as a parameter. The result allows you to verify if

the validation passed by using the IsValid property and return a successful

HTTP status of a list of errors that needs to be cast to a Dictionary to the

ValidationProblem method, which handles the JSON response to the client

with a detailed validation error payload.

Note the ValidationProblem method returns an http 400 Bad
request, similar to the ProblemDetails response payload, which
is more generic. ValidationProblem is not defined by any rfC but
extends the ProblemDetails response by adding the list of the errors
encountered during the input validation.

To illustrate the preceding example, in Figure 4-21, let me show

you what the output gives when I try to add a malicious JavaScript Alert

function within a script tag in the Name property and if I omit the HTTPS

in the FlagUri property.

Chapter 4 BasiCs of Clean rest apis

128

Figure 4-21. Output with a ValidationProblem payload when
validation fails on the Name and FlagUri properties passed to the
POST /countries request

As you can see, errors are pretty well detailed!

If the validation succeeds, you get instead a successful HTTP response,

as shown in Figure 4-22.

Chapter 4 BasiCs of Clean rest apis

129

Figure 4-22. Successful validation on the Country JSON object
passed to the POST /countries request

FluentValidation is a powerful library for performing any validation.

However, I’ve used simple validation examples. If you’d like to see how

powerful this library is, I invite you to learn more here: https://docs.

fluentvalidation.net/en/latest/.

It’s free!

The most important thing to remember here, and I hope this is the

case, is that you should never trust a user. This can save you a lot of trouble!

Validating all input will protect you from malicious attacks and is a good

practice to implement on your APIs!

 Object Mapping
Well done! We’ve seen how to validate our data! Now we can put them to

use. In Chapter 3, I discussed the Separation of Concerns (SoC) principle

and abstraction. Well, I will show you an example of how to apply this logic

here in this section. The input parameters of your endpoints are specific

to your web layer, your API to be exact, and must only be used in this layer.

Chapter 4 BasiCs of Clean rest apis

https://docs.fluentvalidation.net/en/latest/
https://docs.fluentvalidation.net/en/latest/

130

So how will we transport the information received from your API endpoint

to the repository enabling you to make database requests? We’ll map

input parameters, offering you my way of mapping your endpoint input to

Data Transfer Objects (DTOs) or domain objects. These DTOs, or domain

objects, are part of your application’s domain and are defined in a different

layer, as you’ll recall from Chapter 3, a layer generally called Domain,

which is used by all application layers. We’re going to put into practice

what we saw in Chapter 3 by doing the following:

 1. Create a Domain layer in which we’ll create a DTO.

 2. Create an interface to abstract an object API

input parameter/DTO mapping class and its

implementation.

This interface describing the mapping to be performed and its

implementation will be defined in the API layer. As I said earlier, the input

parameters of your APIs are specific to this layer and must not be visible

elsewhere than in this layer. DTOs, on the other hand, are accessible in

your API layer.

The API layer, therefore, depends on the Domain layer, not the other

way around.

Figure 4-23 shows the API and Domain layers, each containing

elements that are specific to their respective responsibilities.

Figure 4-23. API and Domain layers with their respective
responsibilities

Chapter 4 BasiCs of Clean rest apis

131

Now let’s create a class CountryDto (by first creating the Domain layer)

and map it from our Country input parameter class in the API layer.

Listing 4-17 shows the definition of the CountryDto class.

Listing 4-17. The CountryDto class

namespace Domain.DTOs;

public class CountryDto

{

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

}

The class is strictly identical to the Country class, which serves as an

input parameter. I’m not duplicating any code here, but remember that

just because the class signatures are identical doesn’t mean you should

create a single class for your input parameters and your domain objects

because their responsibilities differ and may evolve differently. It’s crucial

to understand this.

As I think you already know how to create a project in Visual Studio

2022, I won’t show you how it’s done, but you can see how I’ve structured

my Domain layer in Figure 4-24.

Figure 4-24. API layer and Domain layer with their respective
responsibilities

Chapter 4 BasiCs of Clean rest apis

132

As you can see, the Domain layer is structured to contain folders to put

things in the right place. In this case, I created a folder called DTOs and put

my CountryDto class within. Don’t forget to reference your Domain layer.

We are now ready to write our mapper class in the API layer!

Listing 4-18 shows the ICountryMapper interface.

Listing 4-18. The ICountryMapper interface

using AspNetCore8MinimalApis.Models;

using Domain.DTOs;

namespace AspNetCore8MinimalApis.Mapping.Interfaces;

public interface ICountryMapper

{

 public CountryDto? Map(Country country);

}

It’s pretty straightforward. I defined a method Map that takes as a

parameter a Country object and returns a CountryDto, which can be null

for any reason. Now let’s implement the mapper. Listing 4-19 shows the

CountryMapper class that implements the ICountryMapper interface.

Listing 4-19. The CountryMapper class

using AspNetCore8MinimalApis.Mapping.Interfaces;

using AspNetCore8MinimalApis.Models;

using Domain.DTOs;

namespace AspNetCore8MinimalApis.Mapping;

public class CountryMapper : ICountryMapper

{

 public CountryDto? Map(Country country)

 {

Chapter 4 BasiCs of Clean rest apis

133

 return country is not null ? new CountryDto

 {

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri,

 } : null;

 }

}

Once again, it’s straightforward. Remember, here, the goal is not to

learn how to map an object to another but to understand the importance

of abstraction and SoC 😊. If you want to use a library that helps map

your objects, since we abstracted the mapping operation, you can use

any implementation you want. Suppose you don’t want to use manual

mapping like I did (which is the fastest way in terms of performance

compared with any mapping library). In that case, you can keep the

interface (no changes are needed) and change the implementation by

using instead

• AutoMapper, which can be found here: https://

automapper.org/

• Mapster, which can be found here: https://github.

com/MapsterMapper/Mapster

Let’s register the pair ICountryMapper/CountryMapper in the

dependency injection system, and we can inject the mapper anywhere

in the application. Listing 4-20 shows the registration as Scoped since we

don’t need to keep the mapper’s instance (and properties) in memory until

the application shuts down. Scoped will do the job perfectly.

Chapter 4 BasiCs of Clean rest apis

https://automapper.org/
https://automapper.org/
https://github.com/MapsterMapper/Mapster
https://github.com/MapsterMapper/Mapster

134

Listing 4-20. Registration of the ICountryMapper interface and its

implementation CountryMapper

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<ICountryMapper, CountryMapper>();

var app = builder.Build();

Listing 4-21 shows the POST /countries endpoint updated with the

mapper injected by dependency.

Listing 4-21. The POST /countries endpoint update with the

ICountryMapper injected

app.MapPost("/countries", ([FromBody] Country country,

IValidator<Country> validator, ICountryMapper mapper) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 //Do some work here

 return Results.Created();

 }

 return Results.ValidationProblem(validationResult.

ToDictionary());

});

If we execute the code, it should work like a charm, as shown in

Figure 4-25.

Chapter 4 BasiCs of Clean rest apis

135

Figure 4-25. The POST /countries endpoint execution with the
ICountryMapper injected

Note another benefit of abstraction is the ease of unit testing a
piece of code. i will return to this in the last chapter of this book.

 Managing CRUD Operations
and HTTP Statuses
With what we have discussed so far, we can code any endpoint. This

is commonly referred to as Create, Retrieve, Update, Delete (CRUD)

operations. As we saw in Chapter 1, there are different types of verbs for

manipulating an entity, and we’re going to take a look at them:

• POST: Creates an entity known as Create (C) from the

CRUD acronym

• GET: Retrieves an entity or a collection of entities,

known as Retrieve (R) from the CRUD acronym

• PUT: Replaces an entity (or creates an entity if it does

not exists), known as Update (U) in the CRUD acronym

• PATCH: Updates part of an entity, known as the Update

(U) element in the CRUD acronym

• DELETE: Allows you to delete an entity, known as

Delete (D) in the CRUD acronym

Chapter 4 BasiCs of Clean rest apis

136

Note to keep this section simple with the basics of CrUD
operations, i will use the Country class as the input and output
parameters in the api and the CountryDto as an input and output
in the Domain layer. there is no need to duplicate them for input/
output flow.

Managing CRUD operations also implies managing the HTTP status in

the response, and I will show how in the following subsection.

 Handling HTTP Statuses
Another aspect of managing CRUD operations is to handle HTTP response

statuses correctly. If you remember Chapter 1, I introduced them to you,

and I want to show you how to handle them with the static Results class.

The Results class exposes many methods to allow you to use the most

common HTTP statuses.

I won’t go into detail for each one, but I will explain why I use them

in every further example throughout this book. Some of them also have

overloads that I won’t go into detail. Table 4-5 shows them.

(continued)

Table 4-5. Results class methods with their associated HTTP status

Method HTTP status code produced

accepted 202

acceptedatroute 202

Badrequest 400

Bytes 200, 206, 416

Challenge 401

Conflict 409

Chapter 4 BasiCs of Clean rest apis

137

Method HTTP status code produced

Content 200

Created 201

Createdatroute 201

file 200, 206, 416

Json 200

forbid 403

redirect 301, 302, 307, 308

redirecttoroute 301, 302, 307, 308

signin 200

signout 200

stream 200, 206, 416

text 200

Unauthorized 401

Unproccessableentity 422

Validationproblem 400 (Badrequest + ValidationproblemDetail payload)

statusCode any http status since it takes as a parameter the integer

value of any status

empty 200

As you can see, Microsoft helps you a lot with predefined methods. If

you miss any status to handle your request, you can still use the StatusCode

method, which takes any HTTP status code as a parameter. If you can’t

wait for some explanations from me regarding some of them I will cover in

this book, you can learn from the Microsoft documentation here: https://

learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.

results?view=aspnetcore-8.0.

Table 4-5. (continued)

Chapter 4 BasiCs of Clean rest apis

https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.results?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.results?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.results?view=aspnetcore-8.0

138

 Creating the Services to Handle CRUD Operations
We’ll create a service that handles CountryDto objects to implement the

preceding CRUD operations. We need to implement a repository between

the API and Infrastructure layers. Once again mindful of the principles

of abstraction and Separation of Concern (SoC), I’m going to create an

ICountryService service interface in the Domain layer, along with its

CountryService implementation defined in the Business logic layer (BLL),

as this is where the business logic is implemented. I won’t detail the

implementation of the CountryService class here, as that’s not important

here, but rather how the minimal endpoints managing the Country entity

will consume this service. Figure 4-26 shows the API layer, Domain layer,

and BLL with their respective responsibilities.

Figure 4-26. API layer, Domain layer, and BLL with their respective
responsibilities

Chapter 4 BasiCs of Clean rest apis

139

Listing 4-22 shows the ICountryService interface signature.

Listing 4-22. The ICountryService interface

using Domain.DTOs;

namespace Domain.Services;

public interface ICountryService

{

 CountryDto Retrieve(int id);

 List<CountryDto> GetAll();

 int CreateOrUpdate(CountryDto country);

 bool UpdateDescription(int id, string description);

 bool Delete(int id);

}

Don’t forget to register the service as Scoped in the dependency

injection system as follows:

builder.Services.AddScoped<ICountryService, CountryService>();

To make CRUD operations on the CountryDto, I added an ID to this

class, which is nullable since the country may have or not have an ID (null

before its creation, filled after its creation) as shown on Listing 4-23.

Listing 4-23. The CountryDto class updated with a nullable ID

namespace Domain.DTOs;

public class CountryDto

{

 public int? Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

}

Chapter 4 BasiCs of Clean rest apis

140

I did the same on the Country input parameter in the API. This is

required to identify a country with a unique ID instead of using its name.

As you can see, we can find all CRUD operations on the service needed to

implement all CRUD endpoints in the API layer. Some explanations are

needed to clarify how CRUD operations will operate:

• The Retrieve method takes a country ID as a parameter

and must return CountryDto.

• The GetAll method takes no parameter and returns a

collection of CountryDto.

• The CreateOrUpdate method takes a CountryDto as a

parameter. If the country’s ID is null, that means the

country is not identified and should be created, while

if the ID is not null, the country should be updated.

It’s not the absolute truth since the ID can be wrong

and may identify a nonexisting country, which could

be null, but the country already exists. Let’s keep the

example simple and assume that a country is correctly

identified when an ID is provided and not defined

when the ID is null.

• The UpdateDescription method takes a parameter

of the country ID and the country description to get

updated. It acts as a partial update and returns a

Boolean that indicates whether the update has been

performed.

• The Delete method takes the country ID as a parameter

and returns a Boolean that indicates whether the

deletion has been successfully performed.

Now it’s time to write our CRUD endpoints.

Chapter 4 BasiCs of Clean rest apis

141

 Creating the Endpoints to Handle
CRUD Operations
I have updated the validator and mapper classes to handle new

validation and mapping rules; I will show you their implementation after

showing you the endpoint implementations. I also injected on each the

ICountryService interface. Listing 4-24 shows the CRUD endpoints.

Listing 4-24. CRUD endpoint implementations on the CountryDto

domain object through the Country input/output parameter

// Create

app.MapPost("/countries", (

 [FromBody] Country country,

 IValidator<Country> validator,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 return Results.CreatedAtRoute(

 "countryById",

 new {

 Id = countryService.CreateOrUpdate(

 countryDto

)

 }

);

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

Chapter 4 BasiCs of Clean rest apis

142

);

});

// Retrieve

app.MapGet("/countries/{id}", (

 int id, ICountryMapper mapper,

 ICountryService countryService) => {

 var country = countryService.Retrieve(id);

 if (country is null)

 return Results.NotFound();

 return Results.Ok(mapper.Map(country));

}).WithName("countryById");

// Retrieve

app.MapGet("/countries", (

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = countryService.GetAll();

 return Results.Ok(mapper.Map(countries));

});

// Update

app.MapPut("/countries", (

 [FromBody] Country country,

 IValidator<Country> validator,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 if (country.Id is null)

Chapter 4 BasiCs of Clean rest apis

143

 return Results.CreatedAtRoute(

 "countryById",

 new {

 Id = countryService.

CreateOrUpdate(

 mapper.

Map(country)

)

 });

 return Results.NoContent();

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

});

// Update

app.MapPatch("/countries/{id}", (

 int id,

 [FromBody] CountryPatch countryPatch,

 IValidator<CountryPatch> validator,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var validationResult = validator.Validate(countryPatch);

 if (validationResult.IsValid)

 {

 if (countryService.UpdateDescription(

 id,

 countryPatch.Description

))

 return Results.NoContent();

Chapter 4 BasiCs of Clean rest apis

144

 return Results.NotFound();

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

});

// Delete

app.MapDelete("/countries/{id}", (

 int id,

 ICountryService countryService) => {

 if (countryService.Delete(id))

 return Results.NoContent();

 return Results.NotFound();

});

Let’s make some explanation!

 MapPost("/countries", () => { })

Since it’s an HTTP POST request, the country passed in the request should

be created since its ID is null here. After validating the input and mapping

it into a CountryDto object, I’m invoking the CreateOrUpdate service

method since it handles creation and update operations. The expected

response should be Created (201), produced by the CreatedAtRoute

method, or Bad Request (400), produced by the ValidationProblem

method. The CreatedAtRoute method takes as a parameter a route

name, countryById, which indicates at what route you can retrieve the

created resource, and the ID of the created country used to populate the

countryById route parameter. The countryById route name must exist in

your API, and we will jump into it right after showing the expected output

when the creation succeeds in Figure 4-27.

Chapter 4 BasiCs of Clean rest apis

145

Figure 4-27. Expected response when creating a country using the
POST /countries endpoint

As you can see, the newly created route is sent to the client over the

Location header.

 MapGet("/countries/{id}", () => { })

This is a GET endpoint, so two cases are possible: the resource is found,

where the data serialized in JSON with an OK (200) response is returned,

or Not Found (404). The result methods implied are, respectively, Ok and

NotFound. They are pretty well named, so you can’t get confused while

selecting the correct one to handle the response. You may notice I attached

the “countryById” route name to this endpoint to tell ASP.NET Core how to

build the location URL of the newly created country. To do this, I applied

on the endpoint the WithName method. The latter allows you to give any

endpoint the name you want. It’s a unique ID, useful to identify a route as

we did with the country creation. Figure 4-28 shows the expected response

when the request is successful.

Chapter 4 BasiCs of Clean rest apis

146

Figure 4-28. Expected response when retrieving a country using the /
countries/[id} GET endpoint

 MapDelete(“/countries/{id}”, () => { })

The delete endpoint is the simplest of all. It takes the country’s ID you wish

to delete as a route parameter. If the country exists, the response will be No

Content (204) or Not Found (404) otherwise. I don’t need to explain which

methods I used, as their names speak for themselves. Figure 4-29 shows

the expected result when the delete operation is successful.

Figure 4-29. Expected response when deleting a country using the /
countries/[id} DELETE endpoint

Chapter 4 BasiCs of Clean rest apis

147

 MapPut(“/countries/{id}”, () => { })

The PUT endpoint is identical to the POST endpoint since it creates a

country when it does not exist or updates it when it does. Validation

remains the same and may return a Bad Request (400) when validation

doesn’t meet the requirements. The only difference resides in the fact if

the country has an ID, it’s supposed to be updated and NoContent (204)

is returned when the operation succeeds, but when the country does not

have an ID set, Created (201) is returned. Figure 4-30 shows a successful

update. For a successful creation, you can refer to Figure 4-27.

Figure 4-30. Expected response when updating a country using the
PUT /countries endpoint

You may have noticed that the route doesn’t contain any ID. The ID is in

the request body. No RFC says that the route of a PUT request should contain

any ID of the target resource (a country here). It makes sense since PUT is

idempotent; its route doesn’t change as long as the payload in the request

body doesn’t change. It will always be a country resource to be updated or

created, depending on whether the ID is null or filled, which will indicate

what to do: create or update. When an update succeeds, RFC allows you to

return an OK (200) response. I prefer to return No Content. It’s up to you.

Chapter 4 BasiCs of Clean rest apis

148

 MapPatch(“/countries/{id}”, () => { })

The PATCH method has been implemented as uncomplicated as

possible since we want to update only the description of a country. The

flow is straightforward: A validation is performed on the CountryPatch

input parameter, which differs from the Country input parameter

because we only want to update the description. Because of that, I

created a validator that applies to the CountryPatch input parameter

(IValidator<CountryPatch>). If the validation meets the requirements

and the update succeeds, No Content (204) response is returned; else,

a Not Found (404) is produced since PATCH does not create a resource

when it does not exist. So an ID in the route is necessary for it to identify

the resource. If the validation fails, a Bad Request (404) is returned with a

ProblemDetails payload in the response.

Note this vision of implementing a patCh request is the most
common way to perform a partial update and is allowed by rfCs.
however, it’s not the absolute truth since there is a better way to
perform patCh requests according to RFCs 5789 and 6902.

If you want to learn more about it, you can go on the Microsoft

documentation, which explains how to perform PATCH properly (but it’s

more complicated and less often used). In the meantime, this Microsoft

documentation provides the link to the mentioned RFCs: https://learn.

microsoft.com/en-us/aspnet/core/web-api/jsonpatch?view=aspne

tcore-8.0.

As promised, Listings 4-25 and 4-26, respectively, show the updated

CountryMapper class and the CountryPatchValidator class I used to make

CRUD operations earlier.

Chapter 4 BasiCs of Clean rest apis

https://learn.microsoft.com/en-us/aspnet/core/web-api/jsonpatch?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/web-api/jsonpatch?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/web-api/jsonpatch?view=aspnetcore-8.0

149

Listing 4-25. The CountryMapper class

using AspNetCore8MinimalApis.Mapping.Interfaces;

using AspNetCore8MinimalApis.Models;

using Domain.DTOs;

namespace AspNetCore8MinimalApis.Mapping;

public class CountryMapper : ICountryMapper

{

 public CountryDto? Map(Country country)

 {

 return country != null ? new CountryDto

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri,

 } : null;

 }

 public Country? Map(CountryDto country)

 {

 return country != null ? new Country

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri,

 } : null;

 }

Chapter 4 BasiCs of Clean rest apis

150

 public List<Country> Map(List<CountryDto> countries)

 {

 return countries.Select(Map).ToList();

 }

}

Listing 4-26. The CountryPatchValidator class

using AspNetCore8MinimalApis.Models;

using FluentValidation;

using FluentValidation.Results;

using System.Text.RegularExpressions;

namespace AspNetCore8MinimalApis.Validators;

public class CountryPatchValidator : AbstractValidator<Cou

ntryPatch>

{

 public CountryPatchValidator()

 {

 RuleFor(x => x.Description)

 .NotEmpty()

 .WithMessage("{ParameterName} cannot be empty")

 .Custom((name, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(name).Count > 0)

 {

 // Raises an error

 context.AddFailure(new ValidationFailure(

 "Description",

 "The description has invalid content")

);

Chapter 4 BasiCs of Clean rest apis

151

 }

 });

 }

}

Note for ease of reading, i’ve duplicated the regular expression
to test whether any string contains htMl tags. if you recall, this
regular expression is also used in the CountryValidator class we saw
previously.

To finish, I just wanted to mention that I showed the happy path

in the CRUD operations earlier. In real life, error management is a bit

more complex, and we will see in the next chapter how to handle error

management when something is going wrong in the application.

 Downloading and Uploading Files
As a developer, you will almost certainly have to manage files. Whether it’s

downloading or uploading, you’ll be doing this regularly. Although this

is part of CRUD operations in general, I’ve decided to make it a separate

section in this chapter, as there’s much to say about it. Let’s start with file

downloading.

 Downloading Files
Downloading a file is relatively simple—you need three things:

 1. Know the MIME type of your file.

 2. Transform the contents of your file into a byte array.

 3. Give your file a name.

Chapter 4 BasiCs of Clean rest apis

152

And …use the File method of the Results class.

Before we do that, let’s take a quick look at the MIME type of a file,

which I introduced in Chapter 1. There’s a whole panoply of MIME types,

and …there are many of them. If you’re interested, consult the complete

list defined by the Internet Assigned Numbers Authority (IANA) at this

address: www.iana.org/assignments/media-types/media-types.xhtml.

For your information, IANA is responsible for coordinating the rules that

keep the Internet at a standard of use acceptable to all.

After redesigning the ICountryService interface by adding a method

named GetFile to support file download, we can look at how to write

a download endpoint in the API. Listing 4-27 shows the updated

ICountryService interface. Once again, the implementation of the

CountryService class is not relevant to be shown since data are mocked.

But you will see the implementation in the source code provided by Apress

on a GitHub repository.

Listing 4-27. The ICountryService interface updated with the

GetFile method

using Domain.DTOs;

namespace Domain.Services;

public interface ICountryService

{

 CountryDto Retrieve(int id);

 List<CountryDto> GetAll();

 int CreateOrUpdate(CountryDto country);

 bool UpdateDescription(int id, string description);

 bool Delete(int id);

 (

 byte[] fileContent,

 string mimeType,

Chapter 4 BasiCs of Clean rest apis

http://www.iana.org/assignments/media-types/media-types.xhtml

153

 string filename

) GetFile();

}

As you can see, I chose to return a tuple, which contains three pieces of

information, as I mentioned before:

 1. The file content as an array of bytes

 2. The file MIME Type

 3. The file name

Then I designed the GET “/countries/download” endpoint as shown in

Listing 4-28.

Listing 4-28. The GET countries/download endpoint

app.MapGet("/countries/download", (

 ICountryService countryService) => {

 (

 byte[] fileContent,

 string mimeType,

 string fileName) = countryService.GetFile();

 if (fileContent is null || mimeType is null)

 return Results.NotFound();

 return Results.File(fileContent, mimeType, fileName);

});

I grab from ICountryService all information needed by the File method,

as mentioned previously, and we test it with Postman; it should give what

(the debug step) is shown in Figure 4-31.

Chapter 4 BasiCs of Clean rest apis

154

Figure 4-31. Invoking the GET countries/download endpoint

You can notice the file name is countries.csv. Since it’s a CSV file, the

MIME type is text/csv.

Figure 4-32 shows the result in Postman.

Figure 4-32. The expected response when downloading the countries.
csv file from the GET countries/download endpoint

Postman, when it can interpret file content, will display it, but don’t

worry—if you try to download it from a browser, it will get done correctly,

as shown in Figure 4-33.

Chapter 4 BasiCs of Clean rest apis

155

Figure 4-33. Downloading the countries.csv file from a browser

Finally, You can see what headers have been sent to the client, such

as Content-Length, Content-Type, or Content-Disposition, as shown in

Figure 4-34.

Figure 4-34. Headers sent from the browser while downloading the
countries.csv file

 Uploading Files
Let’s move on to the reverse process. Upload a file to the server. This

operation is a little trickier; we must perform a few validations on the file

to ensure its integrity. I’ll show you how to validate an uploaded file. Then,

it’s essential to know that file uploads work differently if

Chapter 4 BasiCs of Clean rest apis

156

 1. You’re uploading a single file or many files without a

payload.

 2. You’re sending a single file or many files with

metadata (a payload in the request body).

 Uploading a Single File or Many Files Without
Any Payload

Let’s start by establishing the possibility of uploading a file to a minimal

API with ASP.NET Core 8. I will name the endpoint “/countries/upload”

associated with the POST verb and use the IFormFile interface to accept

an uploaded file. The posted file will be bound in IFormFile properties.

Listing 4-29 shows the POST /countries/upload endpoint.

Listing 4-29. The POST countries/upload endpoint

app.MapPost("/countries/upload", (IFormFile file) =>

{

 return Results.Created();

});

I chose not to add the [FromForm] attribute since you can’t get

confused about where the files come from since it always comes from the

form-data request body.

Figure 4-35 shows the countries.csv file getting uploaded via Postman.

Chapter 4 BasiCs of Clean rest apis

157

Figure 4-35. Upload the countries.csv file to the POST /countries/
upload endpoint

You may notice that a file must be sent over the form data and given a

name identical to the input file parameter in the API; it’s case insensitive.

Here I chose the name file. This is mandatory for parameter binding

purposes. If we take a look at the headers sent by Postman, we’ll see two

crucial headers: Content-Type, which contains the multipart/form-data

value that is mandatory to send files via HTTP, and Content-Length, which

tells the server the size of the uploaded file. Figure 4-36 shows the headers

sent to the server (I voluntarily chose not to show you all headers since

there is a bunch, but only the ones involved in the file upload).

Chapter 4 BasiCs of Clean rest apis

158

Figure 4-36. Headers sent to the server when uploading the
countries.csv file to the POST /countries/upload endpoint

Figure 4-37 shows the IFormFile content while debugging the

endpoint.

Figure 4-37. IFormFile content when uploading the countries.csv file
to the POST /countries/upload endpoint

Let’s move on to uploading several files. Yes, it’s supported by ASP.

NET Core 8 minimal APIs, and here’s how: instead of using the IFormFile

interface as an input parameter, you have to use the IFormFileCollection

interface instead, as shown in Listing 4-30. I named the route /countries/

uploadmany.

Chapter 4 BasiCs of Clean rest apis

159

Listing 4-30. The POST countries/uploadmany endpoint

app.MapPost("/countries/uploadmany", (IFormFileCollection

files) =>

{

 return Results.Created();

});

To make it work as in the previous example, you will have to name all

your form-data keys, in Postman, the same as shown in Figure 4-38.

Figure 4-38. Upload several files to the POST /countries/
uploadmany endpoint

The headers sent to the server are the same. Nothing changes except

their value. For example, the header Content-Length value will be higher

than the previous one since we send two files instead of one. Figure 4-39

shows the endpoint while it receives the files.

Figure 4-39. IFormFileCollection content when uploading two files to
the POST /countries/uploadmany endpoint

Chapter 4 BasiCs of Clean rest apis

160

Manipulating uploaded files with IFormFileCollection remains the

same as IFormFile. You have to loop on each file (each file in the collection

implements the IFormFile interface) and perform any action on it. The

logic there is up to you. You can send them to a service or save them on a

file disk. How you can upload files with ASP.NET Core 8 minimal APIs only

matters here.

Let’s see how we can handle a single file or several files sent to the

server with a payload.

Note i used the post verb here, but the pUt and patCh verbs also
support file upload.

 Uploading a Single File or Many Files with a Payload

Believe it or not, I didn’t immediately understand how I was supposed to

upload files and metadata simultaneously. And yet it’s simple; I hadn’t

thought of it.

At first, I thought, Well, I’ll send my metadata in JSON in the request

body and then my files in form data. But it’s simply impossible! As soon as

you choose one of the two data transport methods, the other can’t work.

If you send data via the form-data transport, you can no longer send JSON

data in a request body. The request body will be ignored. The Content-

Type header is set to multipart-form data, not application/json. You must

therefore send your payload via form data. Listing 4-31 shows the two

previous endpoints updated with an additional input parameter named

CountryMetaData to which I’ve associated the [FromForm] attribute, the

latter being mandatory, as I announced earlier in this chapter.

Chapter 4 BasiCs of Clean rest apis

161

Listing 4-31. The POST /countries/upload and /countries/

uploadmany endpoints updated with metadata coming from the

request body

app.MapPost("/countries/uploadwithmetadata", (

[FromForm] CountryMetaData countryMetaData, IFormFile file) =>

{

 return Results.Created();

}).DisableAntiForgery();

app.MapPost("/countries/uploadmanywithmetadata", (

[FromForm] CountryMetaData

countryMetaData, IFormFileCollection files) =>

{

 return Results.Created();

}).DisableAntiForgery();

If I take the endpoint that uploads several files (both endpoints have

the same behavior), the Postman request will look like that shown in

Figure 4-40.

Chapter 4 BasiCs of Clean rest apis

162

Figure 4-40. Upload files and metadata simultaneously

If we take a look server-side in the API endpoint, we should see the

metadata property bound as shown in Figure 4-41.

Figure 4-41. IFormFileCollection content when uploading several
files with their metadata properly bound

 Validating an Uploaded File

Again, for security reasons, you’ll need to check that the file you’ve

uploaded poses no threat.

I’ll show you what to do here. The first thing to remember here is to

validate the following:

 1. The file name should contain only alphanumeric

characters, possibly with hyphens or underscores.

Having special characters like slashes could induce

unwanted behavior when you store your files. No

file should contain a slash since slashes are used for

directories.

Chapter 4 BasiCs of Clean rest apis

163

 2. Regarding file extensions, for a CSV file, we expect

the .csv extension.

 3. Regarding file MIME types, for a CSV file, expect the

text/csv MIME type.

 4. The file signature is the hexadecimal characters

at the beginning of the file, and they characterize

the file. For example, an exe file will always have

the following hexadecimal character sequence

at its beginning: 4D 5A or 5A 4D. We will test this

sequence against the countries.csv. Since a CSV does

not have a particular sequence because it’s a plain

text file, we must exclude some dangerous files such

as .exe (executable). Why are we doing that? Some

hackers send files with a correct file extension, but

it’s not the expected file since the extension can
be renamed. For your information, this validation

is commonly named Magic bytes validation.

Figure 4-42 shows the first two bytes in their

hexadecimal representation of an executable file.

 5. For file contents, I won’t show you an example here,

as we saw how to validate a string with a regular

expression earlier in this chapter.

Chapter 4 BasiCs of Clean rest apis

164

Figure 4-42. Executable file signature

Let’s create a validator that will only authorize CSV files. If we keep the

input parameters as is (refer to Listing 4-31), the validation will be applied

to the IFormFile input parameter because the validator signature would

be IValidator<IFormFile>. Since the latter may apply to any uploaded

file, we’ll face a problem if we want to validate other file types on another

endpoint, for example. The best solution is to encapsulate the file to be

uploaded and its metadata in a specific class where the validation will be

performed exclusively for this one. Consider the CountryFileUpload class

as the new input parameter for our endpoint that allows a single file to get

uploaded (refer to Listing 4-32).

Listing 4-32. The CountryFileUpload class that encapsulates

IFormFile and its metadata

public class CountryFileUpload

{

 public IFormFile File { get; set; }

 public string AuthorName { get; set; }

 public string Description { get; set; }

}

You may notice I put the file and its metadata at the same level to lower

the complexity of the class.

Chapter 4 BasiCs of Clean rest apis

165

Now we can write a specific validation on the CountryFileUpload class

where we expect only a CSV file. We’ll also validate the content of the

metadata, AuthorName and Description properties. Listing 4-33 shows the

CountryFileUploadValidator class.

Listing 4-33. The CountryFileUploadValidator class

using AspNetCore8MinimalApis.Models;

using FluentValidation;

using FluentValidation.Results;

using System.Text.RegularExpressions;

namespace AspNetCore8MinimalApis.Validators;

public class CountryFileUploadValidator : AbstractValidator<Cou

ntryFileUpload>

{

 public CountryFileUploadValidator()

 {

 RuleFor(x => x.File).Must((file, context) =>

 {

 return file.File.ContentType == "text/csv";

 }).WithMessage("ContentType is not valid");

 RuleFor(x => x.File).Must((file, context) =>

 {

 return file.File.FileName.EndsWith(".csv");

 }).WithMessage("The file extension is not valid");

 RuleFor(x => x.File.FileName).Matches(^[A-

Za-z0-9_\\-.]*$").WithMessage("The file name is not

valid");

Chapter 4 BasiCs of Clean rest apis

166

RuleFor(x => x).Must((file, context) =>

{

 // string representation of hexadecimal signature of an

execute file

 var exeSignatures = new List<string> {

 "4D-5A",

 "5A 4D"

 };

 BinaryReader binary = new BinaryReader(file.File.

OpenReadStream());

 byte[] bytes = binary.ReadBytes(2); // reading

first two bytes

 string fileSequenceHex = BitConverter.

ToString(bytes);

 foreach (var exeSignature in exeSignatures)

 if (exeSignature.Equals(

 fileSequenceHex,

 StringComparison.OrdinalIgnoreCase

)

 return false;

 return true;

 }).WithName("FileContent")

 .WithMessage("The file content is not valid");

 RuleFor(x => x.AuthorName)

 .NotEmpty()

 .WithMessage("{PropertyName} is required")

 .Custom((authorName, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(authorName).Count > 0)

 {

Chapter 4 BasiCs of Clean rest apis

167

 // Raises an error

 context.AddFailure(

 new ValidationFailure(

 "AuthorName",

 "The AuthorName parameter has invalid

content"));

 }

 });

 RuleFor(x => x.Description)

 .NotEmpty()

 .WithMessage("{PropertyName} is required")

 .Custom((name, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(name).Count > 0)

 {

 // Raises an error

 context.AddFailure(new

 ValidationFailure(

 "Name",

 "The AuthorName parameter has invalid

content"));

 }

 });

 }

}

Since most parts of the validation are straightforward, I will explain the

Magic bytes validation more. As mentioned previously, an executable file

(.exe) signature may start with two different sequences. So I stored in a list

their hexadecimal representation as a string. Each hexadecimal sequence

Chapter 4 BasiCs of Clean rest apis

168

has two numbers representing the first two bytes, separated by a hyphen

because the string representation of the hexadecimal numbers contains

a hyphen between numbers. After opening the file as a stream with the

OpenReadStream method, then I transform the stream into an array of

bytes with the BinaryReader class and read the first two bytes represented

in a string with the BitConverter.ToString method. Finally, I compare this

string representation with the forbidden sequences.

Figure 4-43 shows a failed validation of the CSV file when a .exe file

extension has been renamed into a .csv extension.

Figure 4-43. Failed validation of an executable file renamed into a
CSV file

Chapter 4 BasiCs of Clean rest apis

169

Note at this time of writing, the IFormFile attribute is incompatible
with the FromForm attribute when they are both nested in a custom
class in minimal apis. this should be fixed on the final release:

https://github.com/dotnet/aspnetcore/issues/49526.

You’ll need to invoke the validator in a loop to validate each file if you
upload several files simultaneously.

As you can see, file uploading can be tricky, whereas downloading is

pretty straightforward. If you want to learn more about file signatures or

Magic bytes, you can look at all possible signatures characterizing each

type of file here: https://profilbaru.com/article/List_of_file_

signatures.

 Streaming Content
Content streaming is a CRUD operation because streaming content is a

separate functionality, even if it’s similar to downloading a file. Streaming

is downloading a file temporarily stored on the device (browser, mobile

application, etc.), with which it is possible to consume the content before

it has been fully downloaded. Downloading, on the other hand, offers

temporary storage of any file. Generally speaking, downloading doesn’t

allow you to consume content at the same time as downloading. To be

able to stream a video, for example, you’ll need to have in your hands

two things:

 1. The video stream (Stream object)

 2. The file MIME type (e.g., “video/mp4”)

Chapter 4 BasiCs of Clean rest apis

https://github.com/dotnet/aspnetcore/issues/49526
https://profilbaru.com/article/List_of_file_signatures
https://profilbaru.com/article/List_of_file_signatures

170

Let’s consider the IStreamingService interface, which exposes the

GetFileStream method and returns the file stream and its MIME type

encapsulated in a tuple, as shown in Listing 4-34.

Listing 4-34. The IStreamingService interface

namespace Domain.Services;

public interface IStreamingService

{

 Task<(Stream stream, string mimeType)> GetFileStream();

}

Let’s inject it into the GET /streaming endpoint, and let’s assume the

implementation returns a .mp4 (video/mp4) video stream as shown in

Listing 4-35.

Listing 4-35. The GET /streaming endpoint

app.MapGet("/streaming", async (IStreamingService

streamingService) =>

{

 (Stream stream, string mimeType) = await streamingService.

GetFileStream();

 return Results.Stream(stream, mimeType,

enableRangeProcessing: true);

});

As you can see, we need to use the Results.Stream method that takes,

optionally, another parameter, enableRangeProcessing, set to true. The latter

allows the server to manage partial content when a client requests a specific

range of content, such as a video. It often happens when a client uses a

media player to access a specific video part. If the client requests it, the

response HTTP status code will be Partial Content (216) instead of OK (200).

Chapter 4 BasiCs of Clean rest apis

171

If you remember in Chapter 1, I discussed the Accept-Ranges, Range, and

Content-Range headers. Figure 4-44 shows the video being streamed (it also

works with Postman).

Figure 4-44. The GET /streaming endpoint streaming a .mp4 video

As you can see, it’s pretty straight and effortless. If you want to build

your streaming server, now you know how!

 Handling CORS
When a website is launched, all data requested from the server must come

from the same source, that is, from the same server or at least from the

same HTTP domain (or sub-domain) (as several servers can hide behind

Chapter 4 BasiCs of Clean rest apis

172

the same domain name). A security feature, Same-Origin Policy (SOP),

prohibits data loading from other domain names. This security applies to

scripts like JavaScript that initiate HTTP requests to retrieve data.

To find out whether your API is authorized to serve a client from

another domain, the browser will perform what’s known as a preflight,

that is, a preliminary request to the server. This preflight is performed via

an HTTP request via the OPTIONS verb. The browser is then informed

whether or not the server authorizes the HTTP request.

Various headers allow the browser to know the origin and purpose of

the HTTP request received. These headers all have part of their name in

common: they all start with Access-Control-*.

Here’s the complete list of headers:

• Access-Control-Allow-Origin: Header returned by the

server to tell the client which domains are authorized.

• Access-Control-Allow-Credentials: Header returned

by the server to indicate to the client whether requests

requiring credentials are authorized, like authorization

headers. True or false will be returned to the client.

• Access-Control-Allow-Headers: Header returned by

the server to indicate to the client which headers are

authorized.

• Access-Control-Allow-Methods: Header returned by

the server to indicate to the client which HTTP request

methods are authorized.

• Access-Control-Expose-Headers: Header returned by

the server to indicate to the client which headers will be

returned in the HTTP response to a request.

Chapter 4 BasiCs of Clean rest apis

173

• Access-Control-Max-Age: Header returned by the

server indicating how long, in seconds, the response to

the preliminary request will be cached.

• Access-Control-Request-Headers: Header sent by the

client during the preliminary request, telling the server

which headers will be sent to it.

• Access-Control-Request-Method: Header sent by the

client during the preliminary request, telling the server

which HTTP verbs will be sent to it.

To learn more about these headers, look at the Mozilla documentation

here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers.

ASP.NET Core 8 allows you to set these headers, and we’re going to

concentrate on four of them, which are the most important and most

frequently used:

 1. Access-Control-Allow-Origin

 2. Access-Control-Allow-Methods

 3. Access-Control-Allow-Headers

 4. Access-Control-Allow-Credentials

Let’s start with a basic configuration of CORS in ASP.NET Core 8.

Listing 4-36 shows a configuration named AllowAll, a policy that

authorizes any origin, HTTP verb, or header. There is no need to set up the

Access-Control-Allow-Credentials header when any origin is allowed.

Listing 4-36. Basic CORS configuration allowing any origin, verb,

or header

builder.Services.AddCors(options =>

{

 options.AddPolicy("AllowAll",

 builder =>

Chapter 4 BasiCs of Clean rest apis

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers

174

 {

 builder.AllowAnyHeader()

 .AllowAnyMethod()

 .AllowAnyOrigin();

 });

});

Suppose you try simultaneously allowing credentials with the

AllowCredentials method when allowing any origin with the AllowAnyOrigin

method; in that case, it will lead to an error, as shown in Figure 4-45.

Figure 4-45. Allowing credentials and any origin leads to an error

This is only the configuration; this won’t work if it’s not enabled in

the ASP.NET Core pipeline. Listing 4-37 shows how to enable the CORS

middleware by using the UseCors method that takes as a parameter the

AllowAll policy.

Listing 4-37. Enabling the “AllowAll” CORS policy

var app = builder.Build();

app.UseCors("AllowAll");

Chapter 4 BasiCs of Clean rest apis

175

You can probably guess this is not the configuration to use for

production. In production, you’ll have to be more restrictive. Consider the

following elements:

 1. You’ll want to authorize any header and credentials.

 2. You’ll want to authorize only the following verbs:

GET, POST, PUT, and DELETE only, thus prohibiting

all other verbs.

 3. Above all, you’ll want to filter the domains your

customers can access by authorizing only the

following domains: https://mydomain.com and

https://myotherdomain.com.

Listing 4-38 shows this restricted configuration. The policy will be

named “Restricted”.

Listing 4-38. Restricted CORS configuration

options.AddPolicy("Restricted",

 builder =>

 {

 builder.AllowAnyHeader()

 .WithMethods("GET", "POST", "PUT", "DELETE")

 .WithOrigins("https://mydomain.com",

"https://myotherdomain.com")

 .AllowCredentials();

 });

Let’s try it out. Consider a JavaScript script, pure JavaScript, that

executes an HTTP request to the server (it will try to reach my local API

at the https://localhost:7157 address) with a not-allowed origin (http://

localhost:5150) as shown in Listing 4-39.

Chapter 4 BasiCs of Clean rest apis

https://mydomain.com
https://myotherdomain.com

176

Listing 4-39. JavaScript script attempting an HTTP request with a

not-allowed origin

<script>

 function getCountries()

 {

 var xmlHttp = new XMLHttpRequest();

 xmlHttp.onreadystatechange = function() {

 if (xmlHttp.readyState == 4 && xmlHttp.

status == 200)

 callback(xmlHttp.responseText);

 }

 xmlHttp.open("GET", "https://localhost:7157/

countries", true);

 xmlHttp.send(null);

 }

 getCountries();

</script>

Since the origin (http://localhost:5150) is not allowed, the browser will

return a CORS error, as shown in Figure 4-46.

Chapter 4 BasiCs of Clean rest apis

177

Figure 4-46. Failed HTTP request made over JavaScript due to a not-
allowed origin

Managing CORS in your API is necessary for security reasons when a

client uses scripts. I’ve shown you how to filter HTTP requests to prevent

anyone from making potentially dangerous connections, thus reducing the

risks associated with requests from origins other than your API. To learn

more about CORS, you can read Mozilla’s lovely documentation: https://

developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

 API Versioning
When you program an API, you can expect it to evolve over time. In many

cases, this evolution will have no consequences for the customer, who

can use the API without changing anything. In other words, it’s retro-

compatible. However, if your API changes its behavior, that is, if the data

contract exposed to the customer changes, the customer will be blocked

from using the API as before the update. To solve this problem, you’ll

need to version your API, that is, each endpoint (or some of them) will

be assigned version numbers, and each endpoint version will have its

exchange contract with the client and its back-end behaviour. So, for a

Chapter 4 BasiCs of Clean rest apis

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

178

given endpoint, you’ll have as many endpoints to maintain as there are

versions of that endpoint. I’ll show you how to do it properly.

There are three ways to manage an API version:

 1. Using headers, for example, with a custom header

api-version : 2

 2. Using the route, for example, /v2/countries

 3. Using the queryString, for example,

/countries?api-version=2

I will not talk about versioning using the query string, because, in my

opinion, it’s the least clean solution, as it makes the URL less readable,

with parameters depending on the URL. Using the route is still pretty

readable, and using headers is even cleaner.

 Versioning by Headers
First off, to be able to manage API versioning, we’ll need to download the

following Nuget package:

NuGet\Install-Package Asp.Versioning.Http

By doing that, we are now ready to configure versioning in an ASP.

NET Core 8 minimal API. Listing 4-40 shows the configuration by using the

AddApiVersioning extension method.

Listing 4-40. The API versioning configuration

builder.Services.AddApiVersioning(options =>

{

 options.DefaultApiVersion = new ApiVersion(1, 0);

 options.ReportApiVersions = true;

 options.AssumeDefaultVersionWhenUnspecified = true;

Chapter 4 BasiCs of Clean rest apis

179

 options.ApiVersionReader = new HeaderApiVersionReader("api-

version");

});

var app = builder.Build();

The important thing here is to define the configuration before invoking

the Build method.

This configuration does four things:

• DefaultApiVersion: Specifies the default version of the

API to fall back to when no version is specified, version

1.0 in this example

• ReportApiVersions: Specifies in the response headers

the supported versions by the API, true in this example

• AssumeDefaultVersionWhenUnspecified: Allows

to fall back to the version defined with the option

DefaultApiVersion when a version is not specified, true

in this example

• ApiVersionReader: Specifies the header’s name in the

request when a client wants to select a specific version,

api-version in this example

After that, we need to define all the versions available. Let’s say we

will expose two versions of the API: 1.0 and 2.0. Versions 1.0 and 2.0

are a version set of the API. This version set must be declared after the

Build method.

Listing 4-41 shows the configuration of the version set made with the

NewApiVersionSet extension method.

Chapter 4 BasiCs of Clean rest apis

180

Listing 4-41. The 1.0 and 2.0 version set defined

var app = builder.Build();

var versionSet = app.NewApiVersionSet()

 .HasApiVersion(1.0)

 .HasApiVersion(2.0)

 .Build();

The HasApiVersion method allows us to declare each version we

want to manage in the API, and then we have to build the version set with

the Build method. As a result, the versionSet variable will be assigned to

endpoints.

Listing 4-42 shows four endpoints using the version set

obtained previously and assigned to each endpoint with the

WithApiVersionSet method.

Listing 4-42. Assigning the version set

app.MapGet("/version", () => "Hello version 1").WithApiVersion

Set(versionSet).MapToApiVersion(1.0);

app.MapGet("/version", () => "Hello version 2").WithApiVersion

Set(versionSet).MapToApiVersion(2.0);

app.MapGet("/version2only", () => "Hello version 2 only").With

ApiVersionSet(versionSet).MapToApiVersion(2.0);

app.MapGet("/versionneutral", () => "Hello neutral version").

WithApiVersionSet(versionSet).IsApiVersionNeutral();

As you can see, I declared twice the GET /version endpoint, but

each declaration is assigned to a specific version, 1.0 and 2.0, using the

MapToApiVersion extension method. The GET /version2only endpoint has

only a single version assigned, 2.0. If we don’t specify any version, it will

try to fall back to version 1.0 as we configured it earlier, but since it has not

been assigned to this endpoint, it will lead to a Bad Request (400) error.

Chapter 4 BasiCs of Clean rest apis

181

If we try to pass version 1.0 in the headers, it will lead to the same error.

Finally, the GET /versionneutral will only handle the versions defined in

the version set and will remain idempotent (same behavior) regarding the

version passed in the headers as long as it is declared in the version set.

If any version is passed in the headers and is not declared in the version

set, it will lead to a Bad Request (400) error. Omitting the version in the

headers will fall back to version 1.0 and return an OK (200), since the latter

is declared in the version set.

Suppose you want to make any endpoint insensitive to any version.

In that case, you will have to remove the WithApiVersionSet and any other

function related to versioning in the endpoint declaration as follows:

app.MapGet("/versioneutral", () => "Hello neutral version")

Figure 4-47 shows the result of the execution of the GET /version

endpoint bound to version 1.0 by passing the api-version header value 1.0.

Figure 4-47. The GET /version endpoint execution result bound to
version 1.0

Chapter 4 BasiCs of Clean rest apis

182

As you can see, the correct output, “Hello version 1”, has been returned

to Postman.

Figure 4-48 shows the output of the GET /version endpoint bound to

version 2.0.

Figure 4-48. The “/version” endpoint execution result bound to
version 2.0

Again, the correct output, “Hello version 2”, has been returned.

Let’s now try the GET /version2only, which is only bound to

version 2.0. Figure 4-49 shows the output when trying to omit the api-

version header.

Chapter 4 BasiCs of Clean rest apis

183

Figure 4-49. The “/version2only” endpoint not bound to any version
execution result

The output is as expected, as Bad Request (400) has been returned.

Figure 4-50 shows the output when the same endpoint is bound to

version 1.0.

Chapter 4 BasiCs of Clean rest apis

184

Figure 4-50. The “/version2only” endpoint bound to the version 1.0
execution result

As expected, we get here a Bad Request (400). Figure 4-51 now shows

the output when version 2.0 is passed to the headers.

Chapter 4 BasiCs of Clean rest apis

185

Figure 4-51. The “/version2only” endpoint bound to the version 2.0
execution result

As expected, we get there an OK (200) response.

Let’s try now to see the output when passing any version (or nothing)

to the GET /versionneutral endpoint. Figures 4-52, 4-53, and 4-54 show,

respectively, the output when no version is passed in the headers, when

version 2.0 is placed in the headers (declared in the version set), and,

finally, when version 3.0 is passed in the headers (not declared in the

version set).

Chapter 4 BasiCs of Clean rest apis

186

Figure 4-52. The GET /versionneutral endpoint not bound to any
version execution result

Figure 4-53. The GET /versionneutral endpoint bound to the
version 2.0 execution result

Chapter 4 BasiCs of Clean rest apis

187

Figure 4-54. The GET /versionneutral endpoint bound to the
version 3.0 execution result

All the output results meet the requirements as discussed earlier.

Passing the version in the headers is probably the best way to handle

the version and cleaner since you don’t have to modify the URL, but I

prefer to manage it in the route. I will show you how in the following

subsection.

When I bring back the API documentation topic, I will show you how

to make version header input available on the Swagger page.

 Versioning by Route
I’ll now show you my favorite way of managing my API versioning.

We will rely on RouteGroups obtained by defining routes on the

RouteGroupBuilder class. You’ll love it! Let’s consider the groups of API,

GroupVersion1 and GroupVersion2 methods, where the GET /version and /

version2only endpoints are declared within, as shown in Listing 4-43.

Chapter 4 BasiCs of Clean rest apis

188

Listing 4-43. The GET /version and /version2only endpoints

defined in RouteGroups

namespace AspNetCore8MinimalApis.RouteGroups;

public static class VersionGroup

{

 public static RouteGroupBuilder GroupVersion1(this

RouteGroupBuilder group)

 {

 group.MapGet("/version", () => $"Hello version 1");

 return group;

 }

 public static RouteGroupBuilder GroupVersion2(this

RouteGroupBuilder group)

 {

 group.MapGet("/version", () => $"Hello version 2");

 group.MapGet("/version2only", () => $"Hello

version 2 only");

 return group;

 }

}

I have made the GET /version endpoint available in the two groups.

Each one corresponds to a specific version of their endpoints. In group 2

only, defined by the GroupVersion2 method, I made the GET /version2only

endpoint available. As I showed you earlier in this chapter, we must add

them to the ASP.NET Core pipeline. Listing 4-44 shows the ASP.NET Core

pipeline registration, and I gave them a version name by defining a URL

trunk for each, /v1 and /v2.

Chapter 4 BasiCs of Clean rest apis

189

Listing 4-44. The GET /version and /version2only endpoints

defined in RouteGroups under the /v1 and /v2 URL trunks

app.MapGroup("/v1").GroupVersion1();

app.MapGroup("/v2").GroupVersion2();

app.Run();

As you can see, it’s straightforward. There is also another reason I love

managing versioning in this way; the reason is that if you put the version

in the route and you get wrong with the specified version, it won’t lead to

a Bad Request (400) but to a Not Found (404) error, which is more evident

to me. After all, it’s normal because we manage API versioning by route.

Do you feel me? Figures 4-55 and 4-56 show, respectively, the output when

invoking the GET /v1/version2only (which has never been defined) and

GET /v2/version2only endpoints.

Figure 4-55. The GET /v1/version2only endpoint bound, in the route,
to the version 1 execution result

Chapter 4 BasiCs of Clean rest apis

190

Figure 4-56. The GET /v2/version2only endpoint bound, in the route,
to the version 2 execution result

The behavior of these endpoints is meeting the expectations. I’m

sure now, and you will agree, that facing Not Found (404) errors is more

evident!

One more thing! Route groups are compatible with Swagger; by that,

Swagger will display the different registered routes in the route groups, and

I will show that to you in the next section.

 Documenting APIs
In Chapter 2, I introduced you to API documentation using the

OpenAPI specification, which I also used to introduce Swagger and its

implementation in ASP.NET Core 8.

Chapter 4 BasiCs of Clean rest apis

191

Documenting your API is fundamental insofar as it’s the

documentation your client will use to be able to consume your API. In

this section, I’m going to show you options for customizing your

documentation:

 1. Managing API versions (with header

versioning only)

 2. Adding comments on endpoints

 3. Grouping your endpoints with tags

 4. Other customizations

First off, ensure that the following Nuget packages are installed if they

are not yet:

• Asp.Versioning.Http

• Asp.Versioning.Mvc.ApiExplorer

• Microsoft.AspNetCore.OpenApi

• Swashbuckle.AspNetCore

I understand it doesn’t sound very clear because there are many

packages. Let me explain to you why. As we saw previously, the package

Asp.Versioning.Http enables you to version your minimal endpoints. The

Asp.Versioning.Mvc.ApiExplorer will allow you to let ASP.NET Core (its

API Explorer) know that several versions are available for an endpoint, as

we did in the previous section. Swashbuckle.AspNetCore and Microsoft.

AspNetCore.OpenApi help make available some Swagger features and

some customizations. As I showed you in Chapter 2, these two packages

are automatically brought on the ASP.NET Core Web API project if

you click the “Enable OpenAPI support” option while creating a new

project. Don’t forget to unselect the “Use controllers” to work only with

minimal APIs.

Chapter 4 BasiCs of Clean rest apis

192

 Managing API Versions in Swagger
As a first step, we will need to create a class that will be registered as

Swagger options, and these options will allow us to register in the ASP.NET

Core pipeline the generation of the Swagger documentation. Listing 4-45

shows the SwaggerConfigurationsOptions class that inherits from the IC

onfigureOptions<SwaggerGenOptions>, where the SwaggerGenOptions

interface parameter comes from the SwashBuckle assembly.

Listing 4-45. The SwaggerConfigurationsOptions class

using Asp.Versioning.ApiExplorer;

using Microsoft.Extensions.Options;

using Microsoft.OpenApi.Models;

using Swashbuckle.AspNetCore.SwaggerGen;

namespace AspNetCore8MinimalApis.Swagger;

public class SwaggerConfigurationsOptions : IConfigureOptions<S

waggerGenOptions>

{

 private readonly IApiVersionDescriptionProvider _

apiVersionDescriptionProvider;

 public SwaggerConfigurationsOptions(

 IApiVersionDescriptionProvider

apiVersionDescriptionProvider)

 {

 _apiVersionDescriptionProvider =

apiVersionDescriptionProvider;

 }

 public void Configure(SwaggerGenOptions options)

 {

Chapter 4 BasiCs of Clean rest apis

193

 foreach (var description in _apiVersionDescription

Provider.ApiVersionDescriptions)

 {

 options.SwaggerDoc(description.GroupName, Create

OpenApiInfo(description));

 }

 }

 private static OpenApiInfo CreateOpenApiInfo(

 ApiVersionDescription description

)

 {

 var info = new OpenApiInfo()

 {

 Title = "ASP.NET Core 8 Minimal APIs",

 Version = description.ApiVersion.ToString()

 };

 return info;

 }

}

Now, let’s take the existing GET /version, /version2only, and

/versionneutral endpoints again and try to run them through Swagger.

To get it done, let’s rewrite the Program.cs file by completing the API

versioning with the Swagger feature, as shown in Listing 4-46.

Listing 4-46. The Program.cs file configured with customized

Swagger documentation for API versioning

using Asp.Versioning;

using Asp.Versioning.Conventions;

using AspNetCore8MinimalApis.Swagger;

using Swashbuckle.AspNetCore.SwaggerGen;

Chapter 4 BasiCs of Clean rest apis

194

using Microsoft.Extensions.Options;

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddApiVersioning(options =>

{

 options.DefaultApiVersion = new ApiVersion(1, 0);

 options.ReportApiVersions = true;

 options.AssumeDefaultVersionWhenUnspecified = true;

 options.ApiVersionReader = new HeaderApiVersionReader("api-

version");

})

.AddApiExplorer(options =>

{

 options.GroupNameFormat = "'v'VV"; // Formats the version

as follow: "'v'major[.minor]"

});

builder.Services.AddSwaggerGen();

builder.Services.AddSingleton<IConfigureOptions<SwaggerGenOptio

ns>, SwaggerConfigurationsOptions>();

var app = builder.Build();

// var apiVersionDescriptionProvider = app.Services.GetRequired

Service<IApiVersionDescriptionProvider>(); Not working properly

in ASP.NET Core 8 preview

app.UseSwagger().UseSwaggerUI(c =>

{

 // Workaround, hardcoding versions to be displayed

in Swagger

 c.SwaggerEndpoint($"/swagger/v1.0/swagger.json",

"Version 1.0");

Chapter 4 BasiCs of Clean rest apis

195

 c.SwaggerEndpoint($"/swagger/v2.0/swagger.json",

"Version 2.0");

 // Not working correctly in ASP.NET Core 8 preview

 //foreach (var description in

apiVersionDescriptionProvider.ApiVersionDescriptions.

Reverse())

 //{

 // c.SwaggerEndpoint($"/swagger/{description.GroupName}/

swagger.json",

 // description.GroupName.ToUpperInvariant());

 //}

});

var versionSet = app.NewApiVersionSet()

 .HasApiVersion(1.0)

 .HasApiVersion(2.0)

 .Build();

app.MapGet("/version", () => "Hello version 1").

WithApiVersionSet(versionSet).MapToApiVersion(1.0);

app.MapGet("/version", () => "Hello version 2").

WithApiVersionSet(versionSet).MapToApiVersion(2.0);

app.MapGet("/version2only", () => "Hello version 2 only").

WithApiVersionSet(versionSet).MapToApiVersion(2.0);

app.MapGet("/versionneutral", () => "Hello neutral version").

WithApiVersionSet(versionSet).IsApiVersionNeutral();

app.Run();

Chapter 4 BasiCs of Clean rest apis

196

As you can see, the Swagger feature is enabled through the

AddSwaggerGen method and the SwaggerConfigurationsOptions class

registered in the pipeline. You may have noticed the AddApiExplorer

extension method applied to the AddApiVersioning method. The latter

enables any versions declared in the API to get discovered by Swagger,

and it also takes as an option the GroupNameFormat option, which allows

configuring the versions formatted as 1.0 or 2.0 or x.0.

UseSwagger and UseSwaggerUI are the middlewares that allow

running the Swagger interface; UseSwagger activates the generation of

the swagger.json URL (that I customized because of versioning), which

contains all the OpenAPI data in JSON format to get displayed on a web

HTML page activated by the UseSwaggerUI method. By default, the

Swagger HTML page is reachable at the address: /swagger/index.html.

This URL is customizable, but I don’t think it’s relevant to show you how;

since the HTML page allows you to see your API documentation, it’s

easier to remember the default page. At this time of writing (I’m using ASP.

NET Core 8 preview), the UseSwaggerUI method cannot find all the API

versions from the IapiVersionDescriptionProvider service. Still, it could
find all versions of the API when the SwaggerConfigurationsOptions class

was executed to register the documentation of each version. In other

words, All versions of the documentation are registered, but because of a

probable bug in the preview of ASP.NET Core 8, displaying all of them in

Swagger does not work. I hard-coded all versions to be displayed.

To illustrate this, Figures 4-57 and 4-58 show the output on the

/swagger.html endpoint for versions 1 and 2, respectively.

Chapter 4 BasiCs of Clean rest apis

197

Figure 4-57. Version 1.0 of the API displayed in Swagger

Figure 4-58. Version 2.0 of the API displayed in Swagger

From this, you can select the API version you want to see in the drop-

down on the top right of the Swagger HTML page. By default, version 1.0

is displayed since it was what we configured. You can also notice that our

GET /version2only endpoint is only available on version 2.0. It’s exactly

what we expected!

Finally, the swagger.json file on the top left is clickable, and if you click

it, you’ll see its content, as shown in Figure 4-59.

Chapter 4 BasiCs of Clean rest apis

198

Figure 4-59. Version 2.0 of the API displayed in JSON with the
swagger.json file

You'll remember that we used to choose the API version with the api-

version header, right? Well, magic trick! Swagger automatically displays an

input allowing you to pass a value to this header (using the AddApiExplorer

extension method), as shown in Figure 4-60.

Chapter 4 BasiCs of Clean rest apis

199

Figure 4-60. Swagger displaying an input for the api-version header
automatically

 Adding Comments on Endpoints
If by any chance you were tempted to add XML comments to your

methods’ names and display them in Swagger to improve their

documentation, this is not possible as with web APIs! Adding comments

via /// <summary> is unavailable with minimal APIs on the method’s

name. Since the endpoint methods are lambda expressions, comments on

lambda are not handled, even if you encapsulate them in static methods in

a separate class. But it works on custom endpoint input parameter objects

(e.g., not on primitives), and I will show you how.

Note any object passed by dependency injection won’t be handled
regarding XMl comments. XMl comments only work on input
parameters.

Chapter 4 BasiCs of Clean rest apis

200

To make it work on parameters, let’s create the AddXmlComments

extension method on the SwaggerGenOptions class within the

SwaggerXmlComments static class, as shown in Listing 4-47.

Listing 4-47. The SwaggerXmlComments static class with its

AddXmlComments extension method

using Swashbuckle.AspNetCore.SwaggerGen;

using System.Reflection;

namespace AspNetCore8MinimalApis.Swagger;

public static class SwaggerXmlComments

{

 public static void AddXmlComments(this SwaggerGenOptions

options)

 {

 var xmlFile = $"{Assembly.GetExecutingAssembly().

GetName().Name}.xml";

 var xmlPath = Path.Combine(AppContext.BaseDirectory,

xmlFile);

 options.IncludeXmlComments(xmlPath);

 }

}

This method finds the XML documentation generated (by scanning

the current assembly) after configuring your API’s .csproj file as shown in

Listing 4-48.

Chapter 4 BasiCs of Clean rest apis

201

Listing 4-48. Editing the API .csproj file to enable the XML

comments

<PropertyGroup>

 <GenerateDocumentationFile>true</

GenerateDocumentationFile>

 <NoWarn>$(NoWarn);1591</NoWarn>

</PropertyGroup>

We need now to register the XML comments feature in the

AddSwaggerGen as an option, as shown in Listing 4-49.

Listing 4-49. Registering the XML comments feature in the Swagger

configuration

builder.Services.AddSwaggerGen(options =>

{

 options.AddXmlComments();

});

Now XML comments are enabled. If we get back to the POST

/countries endpoint we discussed earlier in this chapter, you can see the

Country input parameter class as shown in Listing 4-50.

Listing 4-50. The POST /countries endpoint with the Country input

parameter class

app.MapPost("/countries", ([FromBody] Country country,

IValidator<Country> validator, ICountryMapper mapper,

ICountryService countryService) => {

 /// code

}).WithApiVersionSet(versionSet)

 .MapToApiVersion(1.0);

Chapter 4 BasiCs of Clean rest apis

202

I will add XML comments on its properties, and we can display them

in Swagger. Remember, since IValidator<Country>, ICountryMapper, and

ICountryService services are injected by dependency, they won’t show

up in Swagger and any XML comments will appear. Listing 4-51 shows

comments on Country class parameters.

Listing 4-51. The Country class updated with summary comments

using System.ComponentModel.DataAnnotations;

namespace AspNetCore8MinimalApis.Models;

public class Country

{

 /// <summary>

 /// The country Id

 /// </summary>

 public int? Id { get; set; }

 /// <summary>

 /// The country name

 /// </summary>

 public string Name { get; set; }

 /// <summary>

 /// The country description

 /// </summary>

 public string Description { get; set; }

 /// <summary>

 /// The country flag URI

 /// </summary>

 public string FlagUri { get; set; }

}

Chapter 4 BasiCs of Clean rest apis

203

If we run now the API and open the Swager HTML page, we should see

the comments as shown in Figure 4-61.

Figure 4-61. The Country class displaying the XML comments

If you want to add comments to your endpoints, you’ll need

to use Swagger annotations, so I suggest you download the Nuget

package Swashbuckle.AspNetCore.Annotations. Once installed, add

EnableAnnotations as an option to the AddSwaggerGen method, as shown

in Listing 4-52.

Chapter 4 BasiCs of Clean rest apis

204

Listing 4-52. Enabling annotations in Swagger

builder.Services.AddSwaggerGen(options =>

{

 options.EnableAnnotations();

 options.AddXmlComments();

});

We can now add annotations on minimal endpoints. To achieve this,

we can use the SwaggerOperation attribute to replace the XML comments,

as shown in Listing 4-53.

Listing 4-53. Adding the SwaggerOperation attribute for

commenting endpoints (summary and description)

app.MapGet("/versionneutral", [SwaggerOperation(Summary =

"Neutral version", Description = "This version is neutral")] ()

=> "Hello neutral version")

.WithApiVersionSet(versionSet)

.IsApiVersionNeutral();

I put “Neutral version” as a summary and “This version is neutral” as a

description on the GET /versionneutral endpoint, and it displays perfectly

when running Swagger, as shown in Figure 4-62.

Chapter 4 BasiCs of Clean rest apis

205

Figure 4-62. The “/versionneutral” enhanced with comments
(summary and description)

If you dislike using Swagger annotation, you can use the Microsoft.

AspNetCore.OpenApi assembly, which also enables the possibility to add

a summary and a description on an endpoint by using the WithOpenApi

extension method as shown in Listing 5-54.

Listing 4-54. Using the WithOpenApi extension method for

commenting endpoints

app.MapGet("/versionneutral",() => "Hello neutral version")

.WithApiVersionSet(versionSet)

.IsApiVersionNeutral();

.WithOpenApi(operation => new(operation)

{

 Summary = "This is a summary",

 Description = "This is a description"

});

The output in Swagger will be the same as the SwaggerOperation

usage, as shown previously in Figure 4-62.

Chapter 4 BasiCs of Clean rest apis

206

 Grouping Endpoints by Tag
Swagger lets you use tags to group your endpoints. What does this mean

in concrete terms? When the Swagger HTML page is displayed, you’ll have

different sections with a title, and the name you give to the tag will be the

section’s name. Personally, I see two uses for tags:

 1. Grouping endpoints by version, if you’re using

versioning by route with RouteGroups

 2. Grouping by feature, for example, all endpoints

linked to countries, the others linked to

another feature

As an example, let’s take versioned route groups, to which we’ll assign

a tag using the WithTag extension method that will define a section for

each version of the route groups, as shown in Listing 4-55.

Listing 4-55. Adding the WithTag extension method on

route groups

app.MapGroup("/v1")

 .GroupVersion1()

 .WithTags("V1");

app.MapGroup("/v2")

 .GroupVersion2()

 .WithTags("V2");

If we execute the Swagger page, it should display the sections defined

by the V1 and V2 tags, as shown in Figure 4-63.

Chapter 4 BasiCs of Clean rest apis

207

Figure 4-63. Route groups split by version tag

I don’t know what you think, but it’s a simple and effective way of

managing versioning by route with route grouping.

 Other Customizations
The Microsoft.AspNetCore.OpenApi assembly (from the Nuget package

with the same name) gives more features. I will introduce you to my

favorites:

• The possibility to hide any endpoint from being
exposed in Swagger, which often happens when you
don’t want to expose to your client the existence
of a particular endpoint: The reason could be that

the hidden endpoint is used for a remote system that

makes regular HTTP requests on your API to verify if

the latter responds correctly. It’s the case, for example,

on Microsoft Azure. Some services (like Azure API

Chapter 4 BasiCs of Clean rest apis

208

Management) need to reach the API regularly to verify

its state. I won’t explore more details here since it’s not

the book’s topic.

• The possibility to mark any endpoint as deprecated:

It happens more often than you think, especially when

you manage several versions of a bunch of endpoints.

Before removing the endpoints that you don’t want to

maintain in the near future, you will, for a certain time,

annotate them as deprecated to warn your client that

these endpoints will be removed soon.

• The possibility to describe endpoint responses: Any

endpoint may return a different response depending

on the behavior defined in its logic. Let’s say that an

endpoint you designed may return an OK (200) when

everything is going well, a Timeout (408), or even

an Internal Error (500), which may happen when

something is going wrong.

 Hiding an Endpoint

If you want to hide an endpoint or many of them, you can use the

ExcludeFromDescription extension method. Listing 4-56 shows the

ExcludeFromDescription extension method on a route group, which

handles a bunch of endpoints tagged with the V1 version.

Listing 4-56. Adding the ExcludeFromDescription extension

method on a route group

app.MapGroup("/v1")

 .GroupVersion1()

 .WithTags("V1")

 .ExcludeFromDescription();

Chapter 4 BasiCs of Clean rest apis

209

app.MapGroup("/v2")

 .GroupVersion2()

 .WithTags("V2");

As expected, the group of endpoints tagged with the “V1” version

doesn’t show up in Swagger, as shown in Figure 4-64.

Figure 4-64. Excluding the V1 route group from the Swagger
documentation

 Deprecating an Endpoint

Let’s say we want to annotate an endpoint, or a group of endpoints, as

deprecated. We have to use the WithOpenApi extension method with the

Deprecated option set to true, as shown in Listing 4-57.

Listing 4-57. Adding the WithOpenApi extension method on a route

group with the Deprecated option

app.MapGroup("/v1")

 .GroupVersion1()

 .WithTags("V1")

Chapter 4 BasiCs of Clean rest apis

210

 .WithOpenApi(operation => new(operation)

 {

 Deprecated = true

 });

The group of deprecated endpoints will still show up in Swagger, but

the text will be grayed out with the addition of “Warning: Deprecated,” as

shown in Figure 4-65.

Figure 4-65. Annotate the V1 route group as deprecated

 Describing Endpoint Responses

Describing the endpoint’s possible responses is a great way to improve the

client experience when reading the Swagger documentation. Remember

that your client will need to handle the possible errors on their end and

rely on the possible errors you will expose to them. To illustrate this, let’s

rework the GET /countries/download endpoint by enriching it with four

possible responses:

Chapter 4 BasiCs of Clean rest apis

211

• OK (200) that returns a stream (any file download is a

Stream object) and video/mp4 MIME type

• Not Found (404)

• Internal Error (500)

• Request Timeout (408)

You may have noticed that only OK (200) and Not Found (404) are

handled in the minimal endpoint. It does not mean it will only return these

two errors. The code can still return unhandled errors, such as Internal

Error (500) or Request Timeout (408). In the next chapter, I will return to

unhandled errors and show you how to “catch” them. Listing 4-58 shows

the Produces extension method applied on the endpoint for each possible

status mentioned.

Listing 4-58. Adding the Produces extension method on the GET

/countries/download endpoint

app.MapGet("/countries/download", (ICountryService

countryService) =>

{

 (byte[] fileContent, string mimeType, string fileName) =

countryService.GetFile();

 if (fileContent is null || mimeType is null)

 return Results.NotFound();

 return Results.File(fileContent, mimeType, fileName);

})

.Produces<Stream>(StatusCodes.Status200OK, "video/mp4")

.Produces(StatusCodes.Status404NotFound)

.Produces(StatusCodes.Status500InternalServerError)

.Produces(StatusCodes.Status408RequestTimeout);

Chapter 4 BasiCs of Clean rest apis

212

The output in Swagger is shown in Figure 4-66.

Figure 4-66. The output in Swagger when adding endpoint response
description

 Summary
This chapter taught you the basics of clean REST APIs and ASP.NET

Core 8 minimal APIs. I know this chapter was huge, but it was the strict

minimum knowledge needed to learn to develop clean REST APIs with

ASP.NET Core 8 minimal APIs. Since it’s the strict minimum, I strongly

suggest you move forward with the next chapter to learn more about ASP.

NET Core 8 minimal APIs and REST APIs in general. The next chapter will

introduce more advanced features you may need to develop in your career.

Even though they won’t apply to every API you will code, you face these

challenges often. Let’s go to Chapter 5!

Chapter 4 BasiCs of Clean rest apis

213

CHAPTER 5

Going Further with
Clean REST APIs
Congratulations, reader! You made it through Chapter 4, which was packed

with content! I showed you all the basics you could implement in an API

in your career. In this new chapter, we’ll take you a step further with ASP.

NET Core 8. Everything we’ve covered in Chapter 4 is still valid. Still, I

suggest you enhance your API with features that will enable you to make

your API more structured, more elegant, and easier to evolve, offering your

customers a better user experience and making them safer. In this chapter,

I’m going to teach you the following:

• Encapsulating minimal endpoint implementation

• Implementing custom parameter binding

• Using middlewares

• Using Action Filters

• Using Rate Limiting

• Global error management

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_5

https://doi.org/10.1007/978-1-4842-9979-1_5

214

 Encapsulating Minimal
Endpoint Implementation
One thing I always do first in a minimal API (or any other application) is

to structure my code. So far, I’ve shown you lambda functions that were

directly executed in a minimal endpoint using the MapGet, MapPost, and

other functions.

We will create static functions in static classes to make our code more

structured. How do we do this? The code will be much more readable,

and we’ll separate the API-coupled code (MapXXX functions) from

the execution of our logical business. Once again, we return to the SoC

principle I’ve already explained. We will take advantage of this decoupling

to make our software more testable. I’ll return to unit (and integration)

testing in the last chapter of this book. To begin with, let’s go back to the

POST /countries endpoint, which was used to create a country, with all its

dependencies, as shown in Listing 5-1.

Listing 5-1. Recap of the POST /countries endpoint

app.MapPost("/countries", (

[FromBody] Country country,

IValidator<Country> validator,

ICountryMapper mapper,

ICountryService countryService) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 return Results.CreatedAtRoute(

 "countryById",

 new {

Chapter 5 GoinG Further with Clean reSt apiS

215

 Id = countryService.CreateOrUpdate(countryDto)

 });

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

});

What I like to do instead is to create an “Endpoints” directory and then

a static class named CountryEndpoints in the API project, similar to the

structure of Controllers in a web API, but at least the code is tidy!

There’s no need to move the code to another layer because, whether

we like it or not, we’re still somewhat coupled to the Web here, as we have

a FromBody attribute that depends on the Microsoft.AspNetCore.Mvc

assembly. Figure 5-1 shows the structure of the API project as described.

Figure 5-1. API structure with the creation of a folder dedicated to
endpoint functions

After creating a static method named PostCountry, which is the result

of the concatenation of the HTTP verb and the route (it’s a convention I

like to use) and takes as parameters the same parameters as the previous

lambda, it gives the code as shown in Listing 5-2.

Chapter 5 GoinG Further with Clean reSt apiS

216

Listing 5-2. The CountryEndpoints class and its method

PostCountry

using AspNetCore8MinimalApis.Mapping.Interfaces;

using AspNetCore8MinimalApis.Models;

using Domain.Services;

using FluentValidation;

using Microsoft.AspNetCore.Mvc;

namespace AspNetCore8MinimalApis.Endpoints;

public static class CountryEndpoints

{

 public static IResult PostCountry(

 [FromBody] Country country,

 IValidator<Country> validator,

 ICountryMapper mapper,

 ICountryService countryService)

 {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 return Results.CreatedAtRoute(

 "countryById",

 new {

 Id = countryService.CreateOrUpdate

(countryDto)

 });

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

Chapter 5 GoinG Further with Clean reSt apiS

217

);

 }

}

Listing 5-3 shows the Program.cs file updated with the static function

instead of any lambda on endpoints.

Listing 5-3. The Program.cs file updated with the static method

instead of lambdas

using AspNetCore8MinimalApis.Endpoints;

using AspNetCore8MinimalApis.Mapping;

using AspNetCore8MinimalApis.Mapping.Interfaces;

using BLL.Services;

using Domain.Services;

using FluentValidation;

using Microsoft.OpenApi.Models;

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddValidatorsFromAssemblyContaining<P

rogram>();

builder.Services.AddScoped<ICountryMapper, CountryMapper>();

builder.Services.AddScoped<ICountryService, CountryService>();

builder.Services.AddEndpointsApiExplorer();

builder.Services.AddSwaggerGen(c =>

{

 c.SwaggerDoc("v1.0",

 new OpenApiInfo {

 Title = "ASP.NET Core 8 minimal APIs"

 });

});

var app = builder.Build();

Chapter 5 GoinG Further with Clean reSt apiS

218

app.UseSwagger().UseSwaggerUI(c =>

{

 c.SwaggerEndpoint("/swagger/v1.0/swagger.json",

 "Version 1.0");

});

app.MapPost("/countries", CountryEndpoints.PostCountry);

app.Run();

It is much cleaner, right? What if I tell you, you can make it more

cleaner? If you want, you can mix the power of route groups and the usage

of static functions; what would it give? Listing 5-4 shows the CountryGroup

static class route group that allows you to register all endpoints of the

country group using the static functions.

Listing 5-4. The CountryGroup static class

using AspNetCore8MinimalApis.Endpoints;

namespace AspNetCore8MinimalApis.RouteGroups;

public static class CountryGroup

{

 public static void AddCountryEndpoints(

 this WebApplication app)

 {

 var group = app.MapGroup("/countries");

 group.MapPost("/", CountryEndpoints.PostCountry);

 // Other endpoints in the same group

 }

}

Chapter 5 GoinG Further with Clean reSt apiS

219

You may have noticed that I’ve created an AddCountryEndpoints

extension method, which extends the WebApplication class. This extension

simplifies the registration of endpoints in the Program.cs file, as shown in

Listing 5-5.

Listing 5-5. The Program.cs file again more simplified

... Code

app.AddCountryEndpoints();

app.Run();

Next, you can extend this logic to the rest of your API by creating a class

by purpose (a new class for a route group and another for static functions),

and your API structure will look great!

 Implementing Custom Parameter Binding
In Chapter 4, I told you about parameter binding and said I’d return

to the topic. The reason I’m coming back to the subject is that, in fact,

more often than you think, you’ll have to deal with strange cases, strange

because your customers will ask you for things that are out of the ordinary.

Yes, your customers will sometimes ask you to implement endpoints

for them in a certain way because they’ll send you strangely formatted

data. Don’t ask yourself too many questions, though: more often than

not, they’re maintaining ancient legacy systems and manipulating data

in a way that’s no longer done. To counter this, I suggest you implement

custom parameter binding that accepts your customers’ data formats and

transforms them into usable data.

Chapter 5 GoinG Further with Clean reSt apiS

220

ASP.NET Core 8 offers two types of custom parameter binding:

 1. Data from headers, query strings, or routes

 2. Data from the body (and form data)

And I will show you both of them.

 Example of Custom Parameter Binding
from Headers
Let’s consider that a customer wants to send you (via an HTTP GET

request) a list of country identifiers through headers concatenated by

a dash like this: 1-2-3. We’ll handle this by creating a CountryIds class

containing a List<int> Ids property that we’ll try to bind from the string

of IDs concatenated in the headers. For parameter binding to work, we’ll

implement a static TryParse method that ASP.NET Core will automatically

recognize and execute. I’ve created a CountryIds class precisely to

implement this TryParse method, as it wouldn’t have worked otherwise.

Listing 5-6 shows the conversion of the string passed in the headers into an

int list.

Listing 5-6. The CountryIds class

namespace AspNetCore8MinimalApis.Models;

public class CountryIds

{

 public List<int> Ids { get; set; }

 public static bool TryParse(

 string? value,

 IFormatProvider? provider,

 out CountryIds countryIds)

 {

Chapter 5 GoinG Further with Clean reSt apiS

221

 countryIds = new CountryIds();

 countryIds.Ids = new List<int>();

 try

 {

 if (value is not null && value.Contains("-"))

 {

 countryIds.Ids = value.Split('-').Select(int.

Parse).ToList();

 return true;

 }

 return false;

 }

 catch

 {

 return false;

 }

 }

}

Then consider the GET /countries/ids endpoint, which takes as input

parameter the CountryIds class as shown in Listing 5-7.

Listing 5-7. The GET /countries/ids endpoint with the CountryIds

class as parameter

app.MapGet("/countries/ids", ([FromHeader] CountryIds ids) =>

{

 Results.NoContent();

});

Because the TryParse method has no idea where the data comes from,

I had to decorate the CountryIds class with the FromHeader attribute. Let’s

execute it. Figure 5-2 shows the Postman request.

Chapter 5 GoinG Further with Clean reSt apiS

222

Figure 5-2. The GET /countries/ids request in Postman

If we add a breakpoint and take a look into the post-binding operation,

we should see a list of integers correctly bound, as shown in Figure 5-3.

Figure 5-3. The GET /countries/ids endpoint execution

As you can see, it’s straightforward and efficient! I hope you won’t have

to do this too often ☺.

 Example of Custom Parameter Binding
from the From Data
Custom parameter binding from body elements (and form data) works

slightly differently. Here we’ll apply the same principle as before, but

we won’t be using the TryParse method but rather the static BindAsync

method, which takes the HTTP context as a parameter. Having the HTTP

context here will enable us to fetch form data elements directly from it,

Chapter 5 GoinG Further with Clean reSt apiS

223

allowing us to omit attributes like FromForm and FromBody on input

parameters. Let’s imagine that your client wants to upload a file and pass

metadata, but as you’d like, that is, in the form data, they’ll pass you the

file as expected, but instead of passing you the properties of your input

parameter, for example, a Country object (the same as in Chapter 4) in

JSON format in a single property named Country with the following value

{“Id” : 1, “Description” : “Canada”, “FlagUri” : “”, “Name” : “”}.

Consider the Country class, which implements the BindAsync method

by fetching data from the form data and deserializing it into JSON format

using the System.Text.Json API, as shown in Listing 5-8.

Listing 5-8. The Country class

using System.Reflection;

using System.Text.Json;

namespace AspNetCore8MinimalApis.Models;

public class Country

{

 /// <summary>

 /// The country Id

 /// </summary>

 public int? Id { get; set; }

 /// <summary>

 /// The country name

 /// </summary>

 public string Name { get; set; }

 /// <summary>

 /// The country description

 /// </summary>

 public string Description { get; set; }

Chapter 5 GoinG Further with Clean reSt apiS

224

 /// <summary>

 /// The country flag URI

 /// </summary>

 public string FlagUri { get; set; }

 public static ValueTask<Country> BindAsync(HttpContext

context, ParameterInfo parameter)

 {

 var countryFromValue = context.Request.Form["Country"];

 var result = JsonSerializer.Deserialize<Country>

(countryFromValue);

 return ValueTask.FromResult(result);

 }

}

If we take a look at the POST /countries/upload we used previously,

but with separated input parameters (they are not encapsulated in a single

object) in the minimal endpoint, you can see there is no attribute on any

input parameters as shown in Listing 5-9.

Listing 5-9. The POST /countries/upload endpoint

app.MapPost("/countries/upload", (

IFormFile file,

Country country) =>

{

 Results.NoContent();

});

The Postman request is shown in Figure 5-4.

Chapter 5 GoinG Further with Clean reSt apiS

225

Figure 5-4. The POST /countries/upload request in Postman

If we debug the POST /countries/upload endpoint, you will notice that

the custom binding worked as expected, as shown in Figure 5-5.

Figure 5-5. The POST /countries/upload endpoint execution

It’s really easy! Keep this technique in mind if you’re forced to

manipulate data sent by your customers in unconventional ways!

 Using Middlewares
In Chapter 2, in section “ASP.NET Core Fundamentals,” I introduced you to

middlewares. We will dig deeper here. I will teach you how to implement

your middlewares. There are various kinds of middlewares, some of which

you’re already familiar with, such as MapGet, UseSwagger, Run (yes, that’s

a middleware), and so on.

Chapter 5 GoinG Further with Clean reSt apiS

226

And then there are those whose behavior you can define yourself.

There are several types of customizable middlewares:

• Map

• MapWhen

• Run

• Use

• UseWhen

• UseMiddleware<T>

They can be divided into three categories:

 1. Middlewares that create another branch of
middlewares by short- circuiting the execution
of the main pipeline, such as Map or MapWhen:

These can be nested ad infinitum if you wish.

 2. Middlewares that launch a continuously running
process that’s hosts the application: It’s the

responsibility of the Run middleware. Executing

the Run middleware is mandatory; otherwise, it will

lead to an application crash.

 3. Middlewares that run on the current pipeline
branch (the main or a new branch) and don't
create a new one: A pipeline branch is a flow

of consecutive middlewares that will run. They

also don’t stop pipeline execution, and they are

three: Use, UseWhen, and UseMiddleware<T>.

UseMiddleware<T> is similar to Use, the only

difference being that Use allows you to run inline

code, whereas UseMiddleware<T> allows you to

run code in a separate class. The generic type T is

Chapter 5 GoinG Further with Clean reSt apiS

227

the class that implements the middleware logic. All

of them must execute the next function to keep the

current pipeline running.

You can also mix different types of middlewares. The only requirement

is to use Run to terminate the execution of the pipeline. ASP.NET Core

automatically adds it at the end of the Program.cs file, but you can define

it elsewhere, for example, to mark the end of another pipeline branch

initiated with Map or MapWhen. Any Usexxx middleware will run before
any Mapxxx endpoint, whatever their order.

Tip You can nest middlewares into the UseWhen middleware,
and it won’t initiate a new pipeline branch, But, if you add a Run
middleware on it, the main pipeline will be short-circuited, and the
main pipeline branch won’t run.

Caution Don’t be confused! Middlewares such as MapGet,
MapPost, etc. won’t initiate a new pipeline branch as the Map
Middleware. They are different.

Finally, middlewares whose name ends with “When” have the same

function as their counterpart without the “When,” the only difference

being that they execute conditionally: if the condition you define is met,

the middleware will execute; else, not. The Map middleware is mapped to

a specific route (takes a route as the first parameter). If the route matches,

the Map middleware will initiate a new pipeline branch.

Figure 5-6 summarizes middleware behavior.

Chapter 5 GoinG Further with Clean reSt apiS

228

Figure 5-6. Middleware behavior

To illustrate this, I will show you some examples. Let’s consider the

GET /test endpoint being executed; the MapWhen middleware will

execute if the request path contains the parameter q in the query string.

The latter contains another branch of middlewares (Use and Run). Since

the MapWhen middleware initiates a new pipeline branch when executed,

the position of the GET /test endpoint in the pipeline doesn’t matter.

Listing 5-10 shows the code described in this scenario.

Listing 5-10. The GET /test endpoint positioned before the

MapWhen middleware

app.MapGet("/test", () =>

{

 return Results.Ok("Test endpoint has been executed");

});

Chapter 5 GoinG Further with Clean reSt apiS

229

app.MapWhen(ctx => !string.IsNullOrEmpty(ctx.Request.

Query["q"].ToString()),

builder => {

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("New middleware pipeline has

been invoked");

 await next();

 });

 builder.Run(async context =>

 {

 app.Logger.LogInformation("New pipeline initiated will

end here");

 await Task.CompletedTask;

 });

});// Stops the execution if the condition is met because the

new branch contains Run Middleware

app.Run();

Note i’m using logging (in the console) for my upcoming tests in
this section. i will explain logging in Chapter 8.

Let’s test it! Let’s invoke the route GET /test without the parameter q in

the query string, as shown in Figure 5-7.

Chapter 5 GoinG Further with Clean reSt apiS

230

Figure 5-7. The GET /test endpoint invoked without the query string
parameter q

The expected behavior was that the main pipeline got executed

without initiating a new branch since the MapWhen middleware hadn’t

met the condition to get executed.

If we had in the query string the q parameter, the MapWhen

middleware would be executed and initiate another branch of the pipeline.

Since the MapGet(/test) middleware is declared in the main pipeline, the

pipeline should not be executed, as shown in Figure 5-8.

Figure 5-8. The GET /test endpoint invoked with the query string
parameter q

Chapter 5 GoinG Further with Clean reSt apiS

231

When matching the route /test (whatever the verb), the Map

middleware will lead to the same behavior as the MapWhen middleware

seen earlier. Listing 5-11 shows the code of the Map middleware matching

the /test route.

Listing 5-11. The Map middleware

app.Map(new PathString("/test"),

builder =>

{

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("New middleware pipeline

branch has been initiated");

 await next();

 });

 builder.Run(async context =>

 {

 app.Logger.LogInformation("New middleware pipeline will

end here");

 await Task.CompletedTask;

 });

});// Stops execution

Now let’s see how Use and UseWhen middlewares behave. Listing 5-12

shows a Use middleware executed before the GET /test endpoint, another

one executed after, and a UseWhen middleware at the end before the final

Run middleware.

Chapter 5 GoinG Further with Clean reSt apiS

232

Listing 5-12. The GET /test endpoint positioned between the Use

middlewares and before the UseWhen middleware

app.Use(async (context, next) =>

{

 app.Logger.LogInformation("Middleware 1 executed");

 await next();

});

app.MapGet("/test", () =>

{

 app.Logger.LogInformation("Endpoint GET /test has been

invoked");

 return Results.Ok();

});

app.Use(async (context, next) =>

{

 app.Logger.LogInformation("Middleware 2 executed");

 await next();

});

app.UseWhen(ctx => !string.IsNullOrEmpty(ctx.Request.

Query["p"].ToString()),

builder => {

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("Nested middleware

executed");

 await next();

 });

 builder.Run(async (context) =>

 {

Chapter 5 GoinG Further with Clean reSt apiS

233

 app.Logger.LogInformation("End of the pipeline end");

 await Task.CompletedTask;

 });

});

// Stops the execution if the condition is met because the

UseWhen contains Run Middleware

app.Run(); // Final

Two scenarios are possible if we execute this code. The first scenario

is that the UseWhen is not running if we don’t pass any p parameter in

the query string when we call the GET /test endpoint; in this case, the

pipeline won’t end at the Run middleware declared in the UseWhen

middleware. The second scenario is passing a p parameter in the query

string; consequently, the pipeline will end because of the Run middleware

execution in the UseWhen middleware. In any case, the Run middleware,

whatever its position in the pipeline, will execute. Figure 5-9 shows the

GET /test endpoint invoked without the p query string parameter.

Figure 5-9. The GET /test endpoint invoked without the p query
string parameter

Chapter 5 GoinG Further with Clean reSt apiS

234

As you can see, the two Use middlewares ran in order before the

execution of the MapGet middleware. The UseWhen hasn’t been executed

as expected.

If we pass the p parameter in the query string, it should give that shown

in Figure 5-10.

Figure 5-10. The GET /test endpoint not invoked because the p
query string parameter triggered the UseWhen middleware execution,
which ran a nested Run middleware

Since all Usexxx middlewares ran before any MapXXX middleware and

the UseWhen ran a nested Run middleware, the GET /test endpoint has

not been invoked. If we remove the nested Run middleware, the GET /test

should run.

Listing 5-13 shows the UseWhen middleware without the nested Run

middleware.

Chapter 5 GoinG Further with Clean reSt apiS

235

Listing 5-13. The UseWhen middleware without its nested Run

middleware

app.UseWhen(ctx => !string.IsNullOrEmpty(ctx.Request.

Query["p"].ToString()),

builder => {

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("Nested middleware

executed");

 await next();

 });

});

Figure 5-11 shows the pipeline execution.

Figure 5-11. The GET /test endpoint invoked with the p query string
parameter with the UseWhen middleware, without the nested Run
middleware

Chapter 5 GoinG Further with Clean reSt apiS

236

Let’s see together a last example with the UseMiddleware middleware.

As I taught you earlier, it behaves like a Use middleware, but its code

is encapsulated in a separate class. I like to use this way of coding

middlewares since it appears cleaner to me. Let’s code the same

functionality as the Use middleware we saw earlier (which performs only

logging) and create a LoggingMiddleware class as shown in Listing 5-14.

Listing 5-14. The LoggingMiddleware class

namespace AspNetCore8MinimalApis.Middlewares;

public class LoggingMiddleware

{

 private readonly RequestDelegate _next;

 private readonly ILogger<LoggingMiddleware> _logger;

 public LoggingMiddleware(RequestDelegate next,

ILogger<LoggingMiddleware> logger)

 {

 _next = next;

 _logger = logger;

 }

 public async Task Invoke(HttpContext context)

 {

 _logger.LogInformation("LoggingMiddleware executed");

 await _next(context);

 }

}

Implementing a middleware like this obliges you to implement

the Invoke method, where you can put your logic and execute the next

function, a delegate that represents the next middleware to get executed in

the ASP.NET Core pipeline.

Chapter 5 GoinG Further with Clean reSt apiS

237

Let’s replace the Use middleware with the UseMiddleware<LoggingMid

dleware> middleware as shown in Listing 5-15.

Listing 5-15. The LoggingMiddleware registered in the pipeline

with the UseMiddleware middleware

app.Use(async (context, next) =>

{

 app.Logger.LogInformation("Middleware 1 executed");

 await next();

});// Don't stop the execution

app.MapGet("/test", () =>

{

 app.Logger.LogInformation("Endpoint GET /test has been

invoked");

 return Results.Ok();

});

app.UseMiddleware<LoggingMiddleware>();// Doesn't stop the

execution

app.Run(); // Final

If we run it, and since UseMiddleware has the same behavior as the

Use middleware, we should expect the same order of execution as seen

before when no p parameter was passed in the query string, as shown in

Figure 5-12.

Chapter 5 GoinG Further with Clean reSt apiS

238

Figure 5-12. The GET /test endpoint invoked after the Use and
UseMiddleware<LoginMiddleware> middlewares

As expected, the Use and UseMiddleware<LoginMiddleware>

middlewares are executed before the MapGet middleware.

Middlewares are a powerful feature of ASP.NET Core 8. They allow

you incomparable flexibility in terms of code execution. I tried to keep the

examples simple by using the logging feature (I promise we will come back

to this later), but middlewares don’t stop with the logging feature. Even if

it’s the most common scenario that justifies the usage of middlewares, you

can implement any code you want to get executed in your pipeline. Later

in this book, I will return to this topic when it comes to talking about data

collection (metrics) in the application.

 Using Action Filters
ASP.NET Core 8 takes endpoint management one step further. For a

given endpoint, it is possible to perform any action before and after its

execution. This is useful when, for example, you want to measure an

Chapter 5 GoinG Further with Clean reSt apiS

239

endpoint’s execution time while ignoring the rest of the pipeline, assess its

performance when in doubt, or validate an endpoint’s input parameters

more elegantly than in the previous chapter. I’ll show you an example of

each scenario in this section.

First, implementing an endpoint filter is similar to the Use middleware.

They both implement the delegate next.

Let’s take the example of the GET /longrunning endpoint whose

execution time we want to measure. We’ll apply the AddEndpointFilter

extension method, which takes a delegate as a parameter, just like

middleware Use. We’ll simulate an execution time of 5 sec with the Task.

Delay method and measure the execution time with the Stopwatch class,

starting the timer before the endpoint execution, represented by the next

delegate, getting the execution result, stopping the timer, then logging the

execution time in the console, and finally returning the response as shown

in Listing 5-16.

Listing 5-16. The GET /longrunning endpoint attached with an

endpoint filter measuring its execution time

app.MapGet("/longrunning", async () =>

{

 await Task.Delay(5000);

 return Results.Ok();

}).AddEndpointFilter(async (filterContext, next) =>

{

 long startTime = Stopwatch.GetTimestamp();

 var result = await next(filterContext);

 TimeSpan elapsedTime = Stopwatch.GetElapsedTime(startTime);

 app.Logger.LogInformation($"GET /longrunning endpoint took

{elapsedTime.TotalSeconds} to execute");

 return result;

});

Chapter 5 GoinG Further with Clean reSt apiS

240

Figure 5-13 shows what the console output looks like.

Figure 5-13. The GET /longrunning endpoint output after execution
with an endpoint filter measuring its execution time

It works like a charm, as you can see. I suggest encapsulating endpoint

filters into a separate class, like middlewares, for cleaner code. What

you have to do is to inherit your class from the IEndpointFilter interface.

Listing 5-17 shows the LogPerformanceFilter class, which implements the

InvokeAsync method, which does the same job as the inline I showed you

previously.

Listing 5-17. The LogPerformanceFilter class

using System.Diagnostics;

namespace AspNetCore8MinimalApis.EndpointFilters;

public class LogPerformanceFilter : IEndpointFilter

{

 private readonly ILogger<LogPerformanceFilter> _logger;

 public LogPerformanceFilter(ILogger<LogPerformance

Filter> logger)

 {

 _logger = logger;

 }

Chapter 5 GoinG Further with Clean reSt apiS

241

 public async ValueTask<object?> InvokeAsync(EndpointFilterI

nvocationContext context, EndpointFilterDelegate next)

 {

 _logger.LogInformation($"GET /longrunning endpoint

getting executed");

 long startTime = Stopwatch.GetTimestamp();

 var result = await next(context);

 TimeSpan elapsedTime = Stopwatch.

GetElapsedTime(startTime);

 _logger.LogInformation($"GET /longrunning endpoint took

{elapsedTime.TotalSeconds} to execute");

 return result;

 }

}

Then let’s attach to the AddEndpointFilter<T> method overload as

shown in Listing 5-18.

Listing 5-18. The GET /longrunning endpoint attached with the

LogPerformanceFilter measuring its execution time

app.MapGet("/longrunning", async () =>

{

 await Task.Delay(5000);

 return Results.Ok();

}).AddEndpointFilter<LogPerformanceFilter>();

Much cleaner, isn’t it?

Let’s go further with a very convenient usage of endpoint filters. Let’s

combine the power of FluentValidation, as I introduced in the previous

chapter, with endpoint filters. Let’s write a generic endpoint filter, the

InputValidatorFilter<T> class, that validates endpoint input parameters as

shown in Listing 5-19.

Chapter 5 GoinG Further with Clean reSt apiS

242

Listing 5-19. The InputValidatorFilter<T> class

using FluentValidation;

namespace AspNetCore8MinimalApis.EndpointFilters;

public class InputValidatorFilter<T> : IEndpointFilter

{

 private readonly IValidator<T> _validator;

 public InputValidatorFilter(IValidator<T> validator)

 {

 _validator = validator;

 }

 public async ValueTask<object?> InvokeAsync(

 EndpointFilterInvocationContext

context, EndpointFilterDelegate next)

 {

 T? inputData = context.GetArgument<T>(0);

 if (inputData is not null)

 {

 var validationResult = await _validator.

ValidateAsync(inputData);

 if (!validationResult.IsValid)

 {

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

 }

 }

 return await next.Invoke(context);

 }

}

Chapter 5 GoinG Further with Clean reSt apiS

243

Let’s take the POST /countries endpoint from Chapter 4 and let’s apply

it to the InputValidatorFilter<T> endpoint filter, which will take here as a

generic parameter the Country class as shown in Listing 5-20.

Listing 5-20. The POST /countries endpoint attached with the Inpu

tValidatorFilter<Country>

app.MapPost("/countries", ([FromBody] Country country) => {

 return Results.CreatedAtRoute("countryById", new {

Id = 1 });

}).AddEndpointFilter<InputValidatorFilter<Country>>();

Obviously, the behavior remains the same as when we passed the

IValidator by dependency injection in the endpoint. Once again, it’s

simply cleaner than coding the validation inline. I hope you will use this

feature as much as you can; I really enjoy it on my end. I’m pretty sure you

will find more usage scenarios on your own!

 Using Rate Limiting
Here’s an interesting feature of ASP.NET Core 8: Rate Limiting. As the name

suggests, this feature lets you limit access to your API for obvious reasons:

Protect the system: Rate Limiting helps prevent

Denial of Service (DOS) attacks by limiting the

number of requests a user or application can send.

Guarantee quality of service: By limiting

throughput, Rate Limiting ensures fair service

quality for all users and applications and helps keep

good performance by limiting access to resources.

Chapter 5 GoinG Further with Clean reSt apiS

244

Provide different accesses to your customers with
a pricing tier: For example, free but limited access

or a paid subscription with no limits.

ASP.NET Core 8 offers four categories of limiters:

 1. Fixed window: Limiting is based on two

parameters: the number of authorized requests

and a time window during which said number of

requests is authorized. Each authorized request

decreases the authorized request counter, and each

time a time window elapses, the authorized request

counter is reset. This model allows a certain number

of requests to be queued (until the counter is reset)

before the others are rejected.

 2. Sliding window: Similar to the Fixed window,

but works differently. The idea here is to divide a

time window into segments during which a certain

number of requests are authorized. At the end

of each period during which a segment handles

requests, the remaining number of authorized

requests is transferred to the next segment within

the maximum limit defined at the start. Once the

global time window has elapsed, the number of

authorized requests is reallocated to the maximum

number of requests authorized minus the number

of requests authorized by the previous segment.

This model allows a certain number of requests

to be queued (until the selection segment has

been reallocated a certain number of authorized

requests) before the others are rejected.

Chapter 5 GoinG Further with Clean reSt apiS

245

 3. Token bucket: This is similar to Fixed window,

except the notion of token and bucket is introduced.

This means that we define the number of tokens in

a bucket, that is, each time a request is authorized,

one token will be used, thus reducing the number

of tokens in the bucket, except that this model

allows you to define a maximum number of

tokens available and that a number of tokens will

be reintroduced into the bucket during a specific

period. The number of tokens reintroduced into

the bucket cannot exceed the maximum number

of available tokens. This model offers regular,

controlled, but limited access to your application.

This model doesn’t allow you to queue requests

waiting for available tokens, as the rejection of a

request in the absence of an available token will be

automatic.

 4. Concurrency: This is the simplest model and refers

to the number of simultaneous requests allowed.

This model allows a certain number of requests

to be queued (until the number of simultaneously

authorized executed requests has been exceeded)

before the others are rejected.

Each of these models allows you to define (or not) a partition key,

that is, a criterion on which to limit requests. This can be a user ID, an IP

address, or anything you like. The limitation will be global if you don’t

define a partition key. When a request is rejected, ASP.NET Core 8 returns

the error Service Unavailable (503), which is incorrect. Fortunately, ASP.

NET Core 8 allows you to set the status code and to be HTTP compliant; I

suggest you use Too Many Requests (429) instead.

Chapter 5 GoinG Further with Clean reSt apiS

246

To define a Rate Limiting rule, you have to use the AddRateLimiter

extension method, and to enable it, use the UseRateLimiter middleware as

shown in Listing 5-21.

Listing 5-21. The AddRateLimiter extension method and the

UseRateLimiter middleware

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddRateLimiter(options =>

{

 // Code here

});

var app = builder.Build();

// Your ASP.NET Core pipeline

app.UseRateLimiter();

// Your ASP.NET Core pipeline

app.Run();

 The Fixed Window Model
Listing 5-22 shows an implementation of the Fixed window limiter, which

defines a limit of 50 requests during a window of 15 seconds. If the limit is

reached, ten requests will be queued, and the others will be rejected. The

partition key is the client’s IP address. It returns a Too Many Request (429)

and custom error messages.

Chapter 5 GoinG Further with Clean reSt apiS

247

Listing 5-22. The Fixed window limiter implementation

builder.Services.AddRateLimiter(options =>

{

 options.RejectionStatusCode = (int)HttpStatusCode.

TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many

requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.

Create<HttpContext, string>(httpContext =>

 RateLimitPartition.GetFixedWindowLimiter(

 partitionKey: httpContext.Connection.

RemoteIpAddress.ToString(),

 factory: _ => new FixedWindowRateLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50,

 Window = TimeSpan.FromSeconds(15)

 }));

});

The function PartitionedRateLimiter.Create allows you to bring the

HttpContext object that allows you to get any contextual information from

the client, their IP address in this example, but it could be their userId if

they are authenticated. (I will return to authentication in Chapter 10.)

The rate limit applies globally on any endpoint because I have assigned

the limiter to the GlobalLimiter options. If you don’t want the rate limiter

getting applied on an endpoint, you have to use the DisableRateLimiting

extension method as shown in Listing 5-23.

Chapter 5 GoinG Further with Clean reSt apiS

248

Listing 5-23. Disabling the global Rate Limiting feature with the

DisableRateLimiting extension method

app.MapGet("/notlimited", () =>

{

 return Results.Ok();

}).DisableRateLimiting();

Another interesting thing is that you can create as many limiters as

you wish, and they can be identified by a policy, which must be explicitly

applied to the endpoint you want. Listing 5-24 shows the ShortLimit policy

combined with the global rate limiter we saw previously.

Listing 5-24. The global rate limiter and the ShortLimit policy

combined

builder.Services.AddRateLimiter(options =>

{

 options.RejectionStatusCode = (int)HttpStatusCode.

TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many

requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.

Create<HttpContext, string>(httpContext =>

 RateLimitPartition.GetFixedWindowLimiter(

 partitionKey: httpContext.Connection.RemoteIpAddress.

ToString(),

 factory: _ => new FixedWindowRateLimiterOptions

 {

 QueueLimit = 10,

Chapter 5 GoinG Further with Clean reSt apiS

249

 PermitLimit = 50,

 Window = TimeSpan.FromSeconds(15)

 }));

 options.AddPolicy(policyName: "ShortLimit", context =>

 {

 return RateLimitPartition.

GetFixedWindowLimiter(context.Connection.

RemoteIpAddress.ToString(),

 _ => new FixedWindowRateLimiterOptions

 {

 PermitLimit = 10,

 Window = TimeSpan.FromSeconds(15)

 });

 });

});

If you want to apply it on one or many endpoints, add the

RequireRateLimiting extension method taking the policy name as a

parameter, as shown in Listing 5-25.

Listing 5-25. The RequireRateLimiting extension method

app.MapGet("/limited", () =>

{

 return Results.Ok();

}).RequireRateLimiting("ShortLimit");

Caution if you define a global limiter and a specific limiter defined
by a policy, both will execute if you tell your endpoints they must
execute the policy you assigned them with the RequireRateLimiting
extension method. the global limiter will execute first.

Chapter 5 GoinG Further with Clean reSt apiS

250

It’s flexible, as you can see, and it can be more flexible. Let’s implement

a pricing tier and create limiter rules depending on the pricing tier. Let’s

say we create a service that returns the pricing tier depending on the

client’s IP address (let’s assume that the pricing tier is bound to the IP

address), as shown in Listing 5-26.

Listing 5-26. The IPricingTierService service

using Domain.Enum;

namespace Domain.Services;

public interface IPricingTierService

{

 public PricingTier GetPricingTier(string ipAddress);

}

The IPricingTierService returns a PricingTier enum as shown in

Listing 5-27.

Listing 5-27. The PricingTier enum

namespace Domain.Enum;

public enum PricingTier

{

 Free = 0,

 Paid = 1

}

Register the IPricingTierService service with its PricingTierService

implementation (the implementation does not matter here) as

follows: builder.Services.AddScoped<IPricingTierService,

PricingTierService>();.

Chapter 5 GoinG Further with Clean reSt apiS

251

Since the HttpContext is exposed, we can access any registered service

through the dependency injection system as follows: httpContext.

RequestServices.GetRequiredService<T>, where T is the service we

want to access.

We can rewrite the global rate limiter as shown in Listing 5-28.

Listing 5-28. The global rate limiter updated with the pricing tier

builder.Services.AddRateLimiter(options =>

{

 options.RejectionStatusCode = (int)HttpStatusCode.

TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many

requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.

Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetR

equiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.

ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.

GetFixedWindowLimiter(

 ip,

 _ => new FixedWindowRateLimiterOptions

 {

Chapter 5 GoinG Further with Clean reSt apiS

252

 QueueLimit = 10,

 PermitLimit = 50,

 Window = TimeSpan.FromSeconds(15)

 }),

 PricingTier.Free => RateLimitPartition.

GetFixedWindowLimiter(

 ip,

 _ => new FixedWindowRateLimiterOptions

 {

 PermitLimit = 1,

 Window = TimeSpan.FromSeconds(15)

 })

 };

 });

});

As you can see, depending on the situation, we can apply any rate

limiter to any incoming request.

The Fixed window model is my favorite model; this is the one I use

when I define a rate limiter in my applications. I prefer to limit incoming

requests during a specific window rather than other models. That’s why I

have insisted on this model before showing you others. Figure 5-14 shows

the HTTP Too Many Requests (429) error in Postman when a rate limiter

rule has declined an incoming request.

Chapter 5 GoinG Further with Clean reSt apiS

253

Figure 5-14. The HTTP Too Many Requests error returned by a rate
limiter rule

 The Sliding Window Model
Here we have to define the number of segments (SegmentsPerWindow

option) that will share the limited number of requests and the window of

time. The rest is only about changing classes’ and functions’ names, as

shown in Listing 5-29.

Listing 5-29. The global rate limiter set with the Sliding

window model

builder.Services.AddRateLimiter(options =>

{

 options.RejectionStatusCode = (int)HttpStatusCode.

TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many

requests. Please try again later.");

 };

Chapter 5 GoinG Further with Clean reSt apiS

254

 options.GlobalLimiter = PartitionedRateLimiter.

Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetR

equiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.

ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.GetSliding

WindowLimiter(

 ip,

 _ => new SlidingWindowRateLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50,

 SegmentsPerWindow = 2,

 Window = TimeSpan.FromSeconds(15)

 }),

 PricingTier.Free => RateLimitPartition.GetSliding

WindowLimiter(

 ip,

 _ => new SlidingWindowRateLimiterOptions

 {

 PermitLimit = 2,

 SegmentsPerWindow = 2,

 Window = TimeSpan.FromSeconds(15)

 })

Chapter 5 GoinG Further with Clean reSt apiS

255

 };

 });

});

As you can see the GetSlidingWindowLimiter function and

SlidingWindowRateLimiterOptions class took the place their equivalent for

the Fixed window model.

 The Token Bucket Model
The Token bucket model requires the following options:

 1. TokenLimit: Defines the maximum available tokens

 2. TokensPerPeriod: Defines the replenished number

of tokens per period

 3. ReplenishmentPeriod: Period where tokens will get

replenished

We can write the limiter as shown in Listing 5-30.

Listing 5-30. The global rate limiter set with the Token

bucket model

builder.Services.AddRateLimiter(options =>

{

 options.RejectionStatusCode = (int)HttpStatusCode.

TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many

requests. Please try again later.");

 };

Chapter 5 GoinG Further with Clean reSt apiS

256

 options.GlobalLimiter = PartitionedRateLimiter.

Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetR

equiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.

ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.GetToken

BucketLimiter(

 ip,

 _ => new TokenBucketRateLimiterOptions

 {

 TokenLimit = 50,

 TokensPerPeriod = 25,

 ReplenishmentPeriod = TimeSpan.

FromSeconds(15)

 }),

 PricingTier.Free => RateLimitPartition.GetToken

BucketLimiter(

 ip,

 _ => new TokenBucketRateLimiterOptions

 {

 TokenLimit = 10,

 TokensPerPeriod = 5,

 ReplenishmentPeriod = TimeSpan.

FromSeconds(15)

Chapter 5 GoinG Further with Clean reSt apiS

257

 })

 };

 });

});

The GetTokenBucketLimiter function and

TokenBucketRateLimiterOptions class took the place of their equivalent for

the Fixed window model.

Note the token bucket model is a bit more aggressive than other
models since it does not allow any requests to get queued if no token
is available.

 The Concurrency Model
The Concurrency model is the simplest limiter to configure and only

needs to define the QueueLimit and PermitLimit options, as shown in

Listing 5-31.

Listing 5-31. The global rate limiter set with the Concurrency model

builder.Services.AddRateLimiter(options =>

{

 options.RejectionStatusCode = (int)HttpStatusCode.

TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many

requests. Please try again later.");

 };

Chapter 5 GoinG Further with Clean reSt apiS

258

 options.GlobalLimiter = PartitionedRateLimiter.

Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetR

equiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.

ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.GetConcurren

cyLimiter(

 ip,

 _ => new ConcurrencyLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50

 }),

 PricingTier.Free => RateLimitPartition.GetConcurren

cyLimiter(

 ip,

 _ => new ConcurrencyLimiterOptions

 {

 QueueLimit = 0,

 PermitLimit = 10

 })

 };

 });

});

Chapter 5 GoinG Further with Clean reSt apiS

259

The GetConcurrencyLimiter function and ConcurrencyLimiterOptions

class took the place of their equivalent for the Fixed window model.

Rate Limiting is a powerful and customizable feature of ASP.NET

Core 8. I strongly suggest you implement it!

 Global Error Management
Efficient error handling is essential when developing an application,

especially when this application calls on external resources (files,

databases, etc.). The role of error handling is to notify the occurrence of

an error by explicitly indicating the type of error to the client consuming

your API. With ASP.NET Core 8, handling errors globally and cleanly

without repeating code is easy. We will rely on the ProblemDetails class

I introduced in Chapter 1 to do this. This class allows you to return a

correctly formed error to the client. If you remember, it’s based on an

RFC, so it’s a norm, a standardization. As a result, your client will expect to

receive errors that are correctly and possibly strongly formatted with the

ProblemDetails RFC standard.

With ASP.NET Core 8, you must implement a class that inherits

the IExceptionHandler interface. This interface signature is shown in

Listing 5-32.

Listing 5-32. The IExceptionHandler interface

public interface IexceptionHandler

{

 ValueTask<bool> TryHandleAsync(HttpContext httpContext,

Exception exception, CancellationToken cancellationToken);

}

Chapter 5 GoinG Further with Clean reSt apiS

260

As you can see, it defines a method named TryHandleAsync, which

returns ValueTask<bool>. You must return True or False. If you return

True, the pipeline execution will end. If you return False, the pipeline will

continue its execution. Listing 5-33 shows the DefaultExceptionHandler

class that handles any exception raised in the application.

Listing 5-33. The DefaultExceptionHandler class

using Microsoft.AspNetCore.Diagnostics;

using Microsoft.AspNetCore.Mvc;

using System.Net;

namespace AspNetCore8MinimalApis.ExceptionHandlers;

public class DefaultExceptionHandler : IExceptionHandler

{

 public async ValueTask<bool> TryHandleAsync(HttpContext

httpContext, Exception exception, CancellationToken

cancellationToken)

 {

 await httpContext.Response.WriteAsJsonAsync(new

ProblemDetails

 {

 Status = (int)HttpStatusCode.InternalServerError,

 Type = exception.GetType().Name,

 Title = "An unexpected error occurred",

 Detail = exception.Message,

 Instance = $"{httpContext.Request.Method}

{httpContext.Request.Path}"

 });

 return true;

 }

}

Chapter 5 GoinG Further with Clean reSt apiS

261

Here I enforce the response in JSON format using the WriteAsJsonAsync

method. I’m sure at 99.99% that your client expects a JSON response

instead of XML or something else. To make it work, when an exception is

raised, configure ASP.NET Core 8 to run it as shown in Listing 5-34.

Listing 5-34. Enabling the DefaultExceptionHandler in the ASP.NET

Core pipeline

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddExceptionHandler<DefaultExceptionH

andler>();

var app = builder.Build();

// Your ASP.NET Core pipeline

app.UseExceptionHandler(opt => { });

// Your ASP.NET Core pipeline

app.Run();

As usual, we have to configure ASP.NET Core with an extension

method, specifically the AddExceptionHandler<T> extension, where T

is the handler you want to register in the pipeline. To enable it, we will

add the UseExceptionHandler middleware, which takes a mandatory

parameter, a delegate that configures the options of the handler. It can

remain empty by default. We don’t configure any options to make it work

properly. I chose to return an Internal Server Error (500), the default status

code to return when an error is raised. If we execute the GET /exception

endpoint, the exception raised should be well handled and formatted.

Listing 5-35 shows the GET /exception endpoint.

Chapter 5 GoinG Further with Clean reSt apiS

262

Listing 5-35. The GET /exception endpoint raising an exception

app.MapGet("/exception", () => {

 throw new Exception();

});

Figure 5-15 shows the output in Postman.

Figure 5-15. The GET /exception endpoint output in Postman after
execution

Since it’s a default exception handler, it could be great to handle more

types of exceptions. How? ASP.NET Core 8 allows chaining exception

handlers, which is a matching rule; in reality, it takes a test in the handler

to check if the exception type matches, and then you can run your handler

for a specific exception.

Let’s take another example by choosing the Timeout exception

handling. Why is it so important? Because it’s a mistake to think that just

because your API is well coded, it will give your client the response they

want within a reasonable time. Usually, the HTTP Timeout (408) error is

Chapter 5 GoinG Further with Clean reSt apiS

263

returned, but, to me, it’s not right to return a Timeout (408) error to the

client since it’s not the client’s fault but rather the server’s. Remember,

4xx errors involve the client, while 5xx errors involve the server. In this

case, returning a Service Unavailable (503) error to the client is more
appropriate. That’s why I want to show you how to handle Timeout errors.

Listing 5-36 shows the TimeOutExceptionHandler class, which runs only if

it detects a raised in the application.

Listing 5-36. The TimeOutExceptionHandler class

using Microsoft.AspNetCore.Diagnostics;

using Microsoft.AspNetCore.Mvc;

using System.Net;

namespace AspNetCore8MinimalApis.ExceptionHandlers;

public class TimeOutExceptionHandler : IExceptionHandler

{

 public async ValueTask<bool> TryHandleAsync(HttpContext

httpContext, Exception exception, CancellationToken

cancellationToken)

 {

 if (exception is TimeoutException)

 {

 httpContext.Response.StatusCode = (int)

HttpStatusCode.ServiceUnavailable; // Manual setup

to replace the default Internal Server error

 await httpContext.Response.WriteAsJsonAsync(new

ProblemDetails

 {

 Status = (int)HttpStatusCode.

ServiceUnavailable,

Chapter 5 GoinG Further with Clean reSt apiS

264

 Type = exception.GetType().Name,

 Title = "A timeout occurred",

 Detail = exception.Message,

 Instance = $"{httpContext.Request.Method}

{httpContext.Request.Path}"

 });

 return true;

 }

 return false;

 }

}

Note internal Server error is the default http status returned
to the client. if you want to put another status, as i did for the
TimeOutExceptionHandler, you must set it up manually.

Since the handlers’ registration order matters and all exception

handlers are evaluated (if the previous does not break the pipeline by

returning True), we must place the TimeOutExceptionHandler in the

first position; the DefaultExceptionHandler should be the last one to

be executed since it’s the default. If a Timeout exception is raised, the

TimeOutExceptionHandler will handle it and break the pipeline to return

the response to the client, and the DefaultExceptionHandler won’t run.

Listing 5-37 shows the TimeOutExceptionHandler class registration before

the DefaultExceptionHandler class.

Listing 5-37. The registration of the TimeOutExceptionHandler class

var builder = WebApplication.CreateBuilder(args);

builder.Services.AddExceptionHandler<TimeOutException

Handler>();

Chapter 5 GoinG Further with Clean reSt apiS

265

builder.Services.AddExceptionHandler<DefaultExceptionH

andler>();

var app = builder.Build();

If we execute the GET /timeout endpoint, the exception raised should

be handled well by the TimeOutExceptionHandler class. Listing 5-38 shows

the GET /timeout endpoint.

Listing 5-38. The GET /timeout endpoint raising a timeout

exception

app.MapGet("/timeout", () => {

 throw new TimeoutException();

});

Figure 5-16 shows the output in Postman.

Figure 5-16. The GET /timeout endpoint output in Postman after
execution

Chapter 5 GoinG Further with Clean reSt apiS

266

If you follow this principle, you can handle any exception properly and,

above everything, handle as many exceptions as you want. Don’t miss out

on this feature!

 Summary
I hope you enjoyed this chapter. I haven’t gone too far into ASP.NET Core

8 here, but I’ve only provided you with the elements you’ll need to take

your APIs up a notch since Chapter 4. You can do without the features

in this chapter, but if you use them, they’ll make life much easier. We’ve

seen quite a bit about minimal APIs here, so it’s time to move on to what’s

happening behind them. The next chapter will teach you how to access

data, even from different data sources, and, once again, how to structure

your APIs around the external data you will have access to.

Chapter 5 GoinG Further with Clean reSt apiS

267

CHAPTER 6

Accessing Data Safely
and Efficiently
So far, we have run into ASP.NET Core functionalities but haven’t yet

discussed what’s behind the scenes. What’s going on behind the scenes?

Generally, we access data from multiple sources. We usually access data

from a SQL database or via HTTP by calling another remote API. In this

chapter, I will teach you how to access data safely and efficiently. In this

chapter, you will learn the following:

• Introduction to data access best practices

• Accessing data with Entity Framework (EF) Core 8

• Accessing data with HttpClient and REST APIs

 Introduction to Data Access Best Practices
Before getting to the code, let’s discuss data access best practices. It’s not

just about the data but how you access it. There are other types of data

access, such as gRPC, OData, or NoSQL, but I won’t go into them as SQL

and HTTP are the most popular. Let’s focus on SQL and HTTP.

In both cases, you may face problems connecting to your data source,

but unfortunately, you won’t have any control over this. The reasons

may be multiple, such as a network problem or the remote resource not

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_6

https://doi.org/10.1007/978-1-4842-9979-1_6

268

responding because it’s overloaded or unavailable for a few moments.

Although you have no control over this, it is possible to manage these

problems by adopting a Retry strategy. Transient errors, that is, temporary

errors that can be resolved by themselves, can be replayed to avoid

rendering your application non-functional. This is what we call resilience.

It applies to SQL connections, HTTP requests, and any calls to remote

resources. However, there are other specificities to each type of data

access. I will use the Polly library.

 SQL-Type Data Access
The SQL case is the trickiest because you have two things to take into

account:

 1. Consider the parameters you receive to carry out

your queries safely. An attack allows you to corrupt

character strings by injecting pieces of SQL queries

to modify a query’s behavior and obtain sensitive

information through an unprotected query. In this

chapter, I’ll explain a technique to prevent SQL

Injection. Using an Object Relational Mapping

(ORM) such as Entity Framework Core will expose

the SQL database through C# code using Language

Integrated Query (LINQ). We’ve already used LINQ

earlier in this book, and there’s an implementation

with Entity Framework Core, which translates

LINQ statements into SQL queries. This way, you’re

protected from SQL injections.

 2. Manage your SQL connections. SQL databases—in

this chapter, I’ll be using SQL Server—require you

to open a connection before performing any query,

which is costly and time-consuming and requires

Chapter 6 aCCessing Data safely anD effiCiently

269

closing the connection. So we’re going to save on

performance by using database connection pooling,

which lets you leave a connection open so it can be

reused to perform another query. This is important

and makes a real difference at high database traffic

levels. I’ll show you how in this chapter too.

 HTTP Data Access
Regarding HTTP requests in .NET, we’ll be making them via an

HTTP client. But a particular client manages a limited resource:

an HTTP connection. Like SQL requests, we’ll need to pay close

attention to HTTP connections. We’ll use a typed HTTP client, which

backs up the IHttpClientFactory, enabling efficient management of

HttpMessageHandler, subject to problems such as socket exhaustion

when too many instances are open. I’ll take this opportunity to show

you a library that simplifies your remote HTTP calls. Still based on

IHttpClientFactory, it overlays on typed HTTP clients to enable more

straightforward management of the latter, using less code. This is the Refit

library. I will explain this in detail in the dedicated subsection further in

this chapter.

 Architecturing Data Access
One more thing before we get to the code.

At the beginning of the book, I introduced you to the best practices

in terms of architecture. I insisted on decoupling. In the code examples I

will give you, I’ll create an Infrastructure layer to isolate the technology. As

these are two distinct technologies (SQL and HTTP), I will isolate my code

in a separate layer each time. In my opinion, each data access technique

should be isolated in its layer, because we shouldn’t mix technologies.

Each layer depends on the Domain layer; as you already know, the

Chapter 6 aCCessing Data safely anD effiCiently

270

Domain layer will expose data contracts (DTOs or domain objects) and

service and repository interfaces. Finally, each technology access layer

implements repository interfaces and returns DTOs consumed by a

service layer (BLL), itself consumed by the API layer discussed in previous

chapters. Figure 6-1 summarizes the application architecture with the data

access layers. You’ll find this architecture in the source code supplied with

the book.

Figure 6-1. Solution architecture with Infrastructure layers

Chapter 6 aCCessing Data safely anD effiCiently

271

As you can see, each layer is decoupled from each other, except for the

API that depends on each layer, for dependency injection purposes. The

API needs access to both abstractions (interfaces and implementations)

to register those services and repositories in the dependency

injection system.

Note i won’t catch and handle exceptions in these data access
layers. as i showed you in the previous chapter, i will let the code
crash—it does—and then let the ExceptionFilter classes i designed
for this handle the errors. as i showed you, managing the exception
type is up to you.

 Accessing Data with Entity
Framework Core 8
Entity Framework Core (EF Core) is a data access framework developed

by Microsoft. An ORM lets you map your database to exactly C# code—

entities. Each entity is mapped to a table in the SQL database (SQL Server).

We will use a simple example, that is, a SQL table, to show you how to map

it to an entity (class) in C# and the possible optimizations linked to this

technological choice.

Note i won’t go into detail with entity framework Core. i’ll introduce
it to you, as it could be the subject of an entire book. i will, however,
create the database with entity framework and a table named
Countries, on which we’ll perform queries.

Chapter 6 aCCessing Data safely anD effiCiently

272

Let’s create a new layer named Infrastructure.SQL. I won’t detail

it again; you know how to make it and download the following Nuget

package from the NuGet Package Manager:

Microsoft.EntityFrameworkCore.SqlServer

Your project should look like what Figure 6-2 shows.

Figure 6-2. The Infrastructure.SQL layer

Note everything i will create in this section belongs to the
infrastructure layer, so you won’t need to wonder where it should be
created.

 Step 1: Creating the CountryEntity Class
Here’s our first step, creating our CountryEntity class. Although identical to

the CountryDto class, this entity doesn’t have the same responsibility. It’s

mapped to the database, whereas the CountryDto class is a domain object,

not linked to the database. Listing 6-1 shows the CountryEntity class.

Chapter 6 aCCessing Data safely anD effiCiently

273

Listing 6-1. The CountryEntity class

namespace Infrastructure.SQL.Database.Entities;

public class CountryEntity

{

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

}

We have created the entity that maps to the database. Let’s configure

the database context execution now.

 Step 2: Creating the EF Core Context
In the EF Core universe, a database context is a class used to initialize

a context (a connection and entity state). We will create a context class

called DemoContext, inherited from the DbContext class. To be clear,

an execution context means a DbContext instance that allows you to

manipulate entities and generate SQL queries using LINQ statements to

add, modify, retrieve, or delete instances of these entities in the database.

We’ll then declare a DbSet, a class that defines the C# entities linked to the

database, a property of the DemoContext class. Here we’ll have a DbSet for

the CountryEntity entity. Listing 6-2 shows the DemoContext class.

Listing 6-2. The DemoContext class

using Infrastructure.SQL.Database.Entities;

using Microsoft.EntityFrameworkCore;

namespace Infrastructure.SQL.Database;

public class DemoContext : DbContext

Chapter 6 aCCessing Data safely anD effiCiently

274

{

 public DemoContext (DbContextOptions options) :

base(options)

 {

 }

 public DbSet<CountryEntity> Countries { get; set; }

}

The context class is created; we will need now to configure entities.

 Step 3: Configuring the CountryEntity
We’ve created a CountryEntity entity and an execution context for it. Now

we need to configure our CountryEntity entity. As you know, we have a

lot of SQL Server data behind us; to map our entity to a SQL table, we’ll

need to tweak it so that Entity Framework Core understands the precise

mapping it needs to perform with the database. For example, EF Core

knows by default how to map an integer (int32) to an integer in SQL and

a string to a varchar, but EF Core doesn’t know how to create a primary

key on its own, so we’ll have to tell it which property of the CountryEntity

class is the primary key so that it can create it on the database side. EF

Core also doesn’t know on its own what constraint you want to add to your

properties. For example, we will define a maximum length for a country

description of 200 characters and add a uniqueness constraint to the

country name, that is, on the SQL side, the country name value can’t be

inserted twice. All fields will be mandatory and can’t be null.

There are two ways of proceeding, either by adding attributes to the

properties of the CountryEntity entity or by configuring in the DbContext,

using a method called OnModelCreating. In this method, we’ll configure

the name of the table mapped to the CountryEntity entity. Although Entity

Framework Core, by convention, can automatically give a name to a table

Chapter 6 aCCessing Data safely anD effiCiently

275

mapped to an entity, I prefer to explicitly give it a name and a SQL schema

to which the table will belong. Listing 6-3 shows the DemoContext class

enriched with the CountryEntity configuration.

Listing 6-3. The DemoContext class enriched with the

CountryEntity configuration

using Infrastructure.SQL.Database.Entities;

using Microsoft.EntityFrameworkCore;

namespace Infrastructure.SQL.Database;

public class DemoContext : DbContext

{

 public DemoContext (DbContextOptions options) : base(options)

 {

 }

 public DbSet<CountryEntity> Countries { get; set; }

 protected override void OnModelCreating(ModelBuilder

modelBuilder)

 {

 var builder = modelBuilder.Entity<CountryEntity>();

 builder.ToTable("Countries", "dbo");

 builder.HasIndex(p => p.Name).IsUnique(true);

 builder.Property(e => e.Id).ValueGeneratedOnAdd();

 builder.Property(e => e.Name).IsRequired();

 builder.Property(p => p.Description).HasMaxLength(200).

IsRequired();

 builder.Property(p => p.FlagUri).IsRequired();

 base.OnModelCreating(modelBuilder);

 }

}

Chapter 6 aCCessing Data safely anD effiCiently

276

As you can see, it’s pretty simple to define. The primary key, which

autoincrements itself, is configured with the ValueGeneratedOnAdd

method on the Id property. This will be the primary key of the Countries

table in the dbo SQL schema. All fields are required and are defined using

the IsRequired method, and the Name property has an index that can be

used to create a uniqueness constraint using the IsUnique method. Finally,

the Description property has a maximum length of 200 characters defined

using the HasMaxLength method. The SQL column names will take the C#

properties’ names by default. I did not show it to you because I wanted to

focus on the essentials.

We’re done with the DemoContext configuration; in the next step, I will

show you how to generate the model SQL-side.

 Step 4: Generating the Database Model from C#
To generate the database, we’ll need to do two things: set the database

connection string and tell ASP.NET Core to create (or update) the database

when the application starts.

Let’s assume we have a SQL database on our local machine. A SQL

Server database (LocalDb) is automatically installed when Visual Studio

2022 is installed. To do this, go to the appsettings.json file and add the

connection string named “DemoDb”, as shown in Listing 6-4.

Listing 6-4. The database

"ConnectionStrings": {

 "DemoDb": "Data Source=(LocalDB)\\MSSQLLocalDB;Initial

Catalog=DemoDb;MultipleActiveResultSets=true;Encrypt=false;

timeout=30;"

 }

Chapter 6 aCCessing Data safely anD effiCiently

277

I added a connection timeout, set to 30 seconds. It means that when

a connection is unavailable to the database, ASP.NET Core will wait 30

seconds before raising an exception because a connection could not be

established. It’s always an excellent practice to set up a timeout since

you want to limit the time the user will wait to get a response, and in the

meantime, you want to give ASP.NET Core a chance to get an available

connection to SQL Server. Let’s write an instruction to ask ASP.NET Core

when it starts to generate or update the database and also get the database

connection from the appsettings.json file and register in the dependency

injection system the DemoContext as shown in Listing 6-5.

Listing 6-5. The database connection configuration

using Infrastructure.SQL.Database;

using Microsoft.EntityFrameworkCore;

var builder = WebApplication.CreateBuilder(args);

var dbConnection = builder.Configuration.

GetConnectionString("DemoDb");

builder.Services.AddDbContextPool<DemoContext>(options =>

options.UseSqlServer(dbConnection));

var app = builder.Build();

using (var scope = app.Services.CreateScope())

{

 var db = scope.ServiceProvider.GetRequiredService<Demo

Context>();

 db.Database.SetConnectionString(dbConnection);

 db.Database.Migrate();

}

app.Run();

Chapter 6 aCCessing Data safely anD effiCiently

278

As you can see, ASP.NET Core is configured to connect to the database.

I got the connection string value properly from the configuration with

the GetConnectionString method. Then I register the DemoContext

class in the dependency injection system with the AddDbContextPool

method. The latter enables connection pooling, which will keep some

connections open to the database and let them be reused, and this

ensures better performances since opening/closing connections won’t

happen each time a connection is needed to query the database. Finally,

I use the Migrate method, which will execute database migration.

Database migrations are C# files that will generate SQL instructions to

create/update the database each time we add or modify anything in the

database model, entities themselves, or the entities’ configuration in the

DemoContext, as I showed you before. To generate database migration

with EF Core, install the following package on the API layer: Microsoft.

EntityFrameworkCore.Design.

You’ll also need to install the following package on your Infrastructure.

SQL layer: Microsoft.EntityFrameworkCore.Tools.

Then open Package Manager Console, select the Infrastructure.SQL

layer in the drop-down list, and type the following command: Add-

migration Initial.

This command will create a migration file named Initial.cs, as shown

in Figure 6-3.

Figure 6-3. The initial migration generation

Chapter 6 aCCessing Data safely anD effiCiently

279

If we run the application, the database and the Countries table should

be created as shown in Figure 6-4.

Figure 6-4. The Demo database generated

Note i took the preceding picture from the sQl server Management
studio software. you can install it from here: https://learn.
microsoft.com/en-us/sql/ssms/download-sql-server-
management-studio-ssms?view=sql-server-ver16.

Entity Framework Core creates a table that contains migration history.

In other words, it keeps the last migration history performed in the

database to avoid applying the same migration each time the application

runs. If you want to update the database or add stuff, you must repeat the

preceding same operation by generating a new migration and so on. The

migration ID is the name of the generated file for the migration. Figure 6-5

shows the content of the history table.

Chapter 6 aCCessing Data safely anD effiCiently

https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16

280

Figure 6-5. The migration history table

 Step 5: Enabling Resiliency with Entity
Framework Core
Enabling resilience on a SQL connection with Entity Framework Core is

very easy. There’s no need for a library like Polly, which we’ll use for HTTP

errors, although it can also handle SQL connection errors (and other

transient errors). To do this, add the EnableRetryOnFailure option to the

SQL Server options, as shown in Listing 6-6.

Listing 6-6. Enabling resiliency on SQL Server connections

builder.Services.AddDbContextPool<DemoContext>(options =>

 options.UseSqlServer(dbConnection,

 sqlServerOptionsAction: sqlOptions =>

 {

 sqlOptions.EnableRetryOnFailure(

 maxRetryCount: 3);

 }));

Chapter 6 aCCessing Data safely anD effiCiently

281

As you can see here, I enabled a Retry strategy; this code will retry

three times before raising an exception due to a transient error. You

can improve this strategy by setting up the delay between retries or

adding more transient errors than default ones. If you want to know the

default transient errors handled by Entity Framework Core, you can

visit the GitHub repository, and it shows all SQL Server transient errors:

https://github.com/Azure/elastic-db-tools/blob/master/Src/

ElasticScale.Client/ElasticScale.Common/TransientFaultHandling/

Implementation/SqlDatabaseTransientErrorDetectionStrategy.cs.

I showed you the simplest way to handle transient errors here; what

you need to understand here is that you should always handle them. I want

to sensibilize you on this hot topic, and I showed you the way. If you want

to improve the preceding example because your business needs it, you can

check the Microsoft documentation here: https://learn.microsoft.com/

en-us/dotnet/architecture/microservices/implement-resilient-

applications/implement-resilient-entity-framework-core-sql-

connections.

Since it’s hard to simulate transient errors on SQL Server, I can’t show

any examples here. Still, you can trust me it works like a charm, and once

your database is not responsible or temporarily unavailable, retries will be

performed.

 Step 6: Writing the Repository on Top
of the CountryEntity
It’s time now to write the CountryRepository. First off, let’s write the

ICountryRepository interface. The latter has to be written into the Domain

layer, which contains all application abstractions. Listing 6-7 shows the

ICountryRepository.

Chapter 6 aCCessing Data safely anD effiCiently

https://github.com/Azure/elastic-db-tools/blob/master/Src/ElasticScale.Client/ElasticScale.Common/TransientFaultHandling/Implementation/SqlDatabaseTransientErrorDetectionStrategy.cs
https://github.com/Azure/elastic-db-tools/blob/master/Src/ElasticScale.Client/ElasticScale.Common/TransientFaultHandling/Implementation/SqlDatabaseTransientErrorDetectionStrategy.cs
https://github.com/Azure/elastic-db-tools/blob/master/Src/ElasticScale.Client/ElasticScale.Common/TransientFaultHandling/Implementation/SqlDatabaseTransientErrorDetectionStrategy.cs
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-resilient-entity-framework-core-sql-connections
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-resilient-entity-framework-core-sql-connections
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-resilient-entity-framework-core-sql-connections
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-resilient-entity-framework-core-sql-connections

282

Listing 6-7. The ICountryRepository interface

using Domain.DTOs;

namespace Domain.Repositories;

public interface ICountryRepository

{

 Task<CountryDto> RetrieveAsync(int id);

 Task<List<CountryDto>> GetAllAsync();

 Task<int> CreateAsync(CountryDto country);

 Task<int> UpdateAsync(CountryDto country);

 Task<int> UpdateDescriptionAsync(int id, string

description);

 Task<int> DeleteAsync(int id);

}

As you can see, the methods return a Task. I will return to this in

Chapter 7 when it comes to talking about asynchronous programming.

We will now implement all these methods with Entity Framework Core.

Listing 6-8 shows the implementation of the CountryRepository class.

Listing 6-8. The CountryRepository class

using Domain.DTOs;

using Domain.Repositories;

using Infrastructure.SQL.Database;

using Infrastructure.SQL.Database.Entities;

using Microsoft.EntityFrameworkCore;

namespace Infrastructure.SQL.Repositories;

public class CountryRepository : ICountryRepository

{

 private readonly DemoContext _demoContext;

Chapter 6 aCCessing Data safely anD effiCiently

283

 public CountryRepository(DemoContext demoContext)

 {

 _demoContext = demoContext;

 }

 public async Task<int> CreateAsync(CountryDto country)

 {

 var countryEntity = new CountryEntity

 {

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri

 };

 await _demoContext.AddAsync(countryEntity);

 await _demoContext.SaveChangesAsync();

 return countryEntity.Id;

 }

 public async Task<int> UpdateAsync(CountryDto country)

 {

 var countryEntity = new CountryEntity

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri

 };

 return await _demoContext.Countries

 .Where(x =>

 x.Id == countryEntity.Id)

 .ExecuteUpdateAsync(s =>

Chapter 6 aCCessing Data safely anD effiCiently

284

 s.SetProperty

(p => p.Description,

countryEntity.

Description)

 .SetProperty

(p => p.FlagUri,

countryEntity.FlagUri)

 .SetProperty

(p => p.Name,

countryEntity.Name));

 }

 public async Task<int> DeleteAsync(int id)

 {

 return await _demoContext.Countries

 .Where(x => x.Id == id)

 .ExecuteDeleteAsync();

 }

 public async Task<List<CountryDto>> GetAllAsync()

 {

 return await _demoContext.Countries

 .AsNoTracking()

 .Select(x => new CountryDto

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .ToListAsync();

 }

 public async Task<CountryDto> RetrieveAsync(int id)

 {

Chapter 6 aCCessing Data safely anD effiCiently

285

 return await _demoContext.Countries

 .AsNoTracking()

 .Where(x => x.Id == id)

 .Select(x => new CountryDto

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .FirstOrDefaultAsync();

 }

 public async Task<int> UpdateDescriptionAsync(int id,

string description)

 {

 return await _demoContext.Countries

 .Where(x => x.Id == id)

 .ExecuteUpdateAsync

(s => s.SetProperty(p =>

p.Description, description));

 }

}

Entity Framework Core syntax is pretty straightforward, and it’s LINQ

plus some elements that enables optimizing a query or executing the

SQL query:

• AsNoTracking: This method allows you to gain some

performance since it tells Entity Framework Core not

to track the state of an entity. I won’t go into detail here.

To learn more about change tracking in EF Core, read

the Microsoft documentation here: https://learn.

microsoft.com/en-us/ef/core/change-tracking/.

Chapter 6 aCCessing Data safely anD effiCiently

https://learn.microsoft.com/en-us/ef/core/change-tracking/
https://learn.microsoft.com/en-us/ef/core/change-tracking/

286

Usually, we don’t need to track an entity if we don’t

modify it in the context of the entity requested from the

database. If you retrieve an entity from the database

and send it straight to the client, you don’t need to

track it.

• AddAsync/SaveChangesAsync: This pair of methods

allow you to add asynchronously the entity in the

DbContext to be inserted (asynchronously as well)

into the database. After calling the SaveChangesAsync

method, the entity is saved in the database, and the

latter will populate the country ID that has been

defined as the primary key and auto-incremented. To

return it to the client, return the country ID.

• FirstOrDefaultAsync: Asynchronously triggers the

query to the database and returns the first element that

matches the query condition in the Where clause. It

returns the default value of the entity (null, when it’s an

object) when not found.

• ExecuteDeleteAsync: Asynchronously triggers the

query to the database and deletes all elements that

match the query condition in the Where clause.

• UpdateDeleteAsync: Asynchronously triggers the

query to the database and updates all elements that

match the query condition in the Where clause.

Note i systematically use the asynchronous methods (async/await).
all the mentioned methods have their synchronous version, but i
never use them. Chapter 7 will explain why.

Chapter 6 aCCessing Data safely anD effiCiently

287

Another interesting thing is using the CountryDto class in the Select

statement. Why did I use CountryDto in the query? It’s because I’m projecting

the Country entity into the CountryDto object. SQL speaking, Entity

Framework Core will only request the field I’m mapping into CountryDto

instead of selecting all fields from the database and then mapping only those

I need. This is called projection, and it’s excellent to optimize performance

because I’m bringing only the field I need from the SQL query.

We can now write the final implementation of the CountryService class,

whose implementation I haven’t yet shown you. Here it is, as shown in

Listing 6-9.

Listing 6-9. The CountryService class

using Domain.DTOs;

using Domain.Repositories;

using Domain.Services;

namespace BLL.Services;

public class CountryService : ICountryService

{

 private readonly ICountryRepository _countryRepository;

 public CountryService(ICountryRepository countryRepository)

 {

 _countryRepository = countryRepository;

 }

 public async Task<bool> DeleteAsync(int id)

 {

 return await _countryRepository.DeleteAsync(id) > 0;

 }

Chapter 6 aCCessing Data safely anD effiCiently

288

 public async Task<List<CountryDto>> GetAllAsync()

 {

 return await _countryRepository.GetAllAsync();

 }

 public async Task<CountryDto> RetrieveAsync(int id)

 {

 return await _countryRepository.RetrieveAsync(id);

 }

 public async Task<int> CreateOrUpdateAsync(CountryDto

country)

 {

 if (country?.Id is null)

 return await _countryRepository.

CreateAsync(country);

 if (await _countryRepository.CreateAsync(country) > 0)

 return country.Id;

 return 0;

 }

 public async Task<bool> UpdateDescriptionAsync(int id,

string description)

 {

 return await _countryRepository.

UpdateDescriptionAsync(id, description) > 0;

 }

}

Finally, here are the endpoints reworked in the Program.cs file to

accept asynchronous ICountryService methods as shown in Listing 6-10.

Chapter 6 aCCessing Data safely anD effiCiently

289

Note for code readability purposes, i removed the using statements
that were a very long list here.

Listing 6-10. The Program.cs file

...

var builder = WebApplication.CreateBuilder(args);

var dbConnection = builder.Configuration.

GetConnectionString("DemoDb");

builder.Services.AddDbContextPool<DemoContext>(options =>

 options.UseSqlServer(dbConnection,

 sqlServerOptionsAction: sqlOptions =>

 {

 sqlOptions.EnableRetryOnFailure(

 maxRetryCount: 3);

 }));

builder.Services.AddValidatorsFromAssemblyContaining

<Program>();

builder.Services.AddScoped<ICountryMapper, CountryMapper>();

builder.Services.AddScoped<ICountryService, CountryService>();

builder.Services.AddScoped<ICountryRepository,

CountryRepository>();

builder.Services.AddExceptionHandler<TimeOutExceptionH

andler>();

builder.Services.AddExceptionHandler<DefaultExceptionH

andler>();

var app = builder.Build();

Chapter 6 aCCessing Data safely anD effiCiently

290

app.MapPost("/countries", async (

[FromBody] Country country,

ICountryMapper mapper,

ICountryService countryService) => {

 var countryDto = mapper.Map(country);

 var countryId = await countryService.CreateOrUpdateAsync(

 countryDto

);

 if (countryId <= 0)

 return Results.StatusCode(

 StatusCodes.Status500InternalServerError

);

 return Results.CreatedAtRoute(

 "countryById", new { Id = countryId }

);

}).AddEndpointFilter<InputValidatorFilter<Country>>();

app.MapGet("/countries/{id}", async (

int id,

ICountryMapper mapper,

ICountryService countryService) => {

 var country = await countryService.RetrieveAsync(id);

 if (country is null)

 return Results.NotFound();

 return Results.Ok(mapper.Map(country));

}).WithName("countryById");

app.MapGet("/countries", async (

ICountryMapper mapper,

ICountryService countryService) => {

Chapter 6 aCCessing Data safely anD effiCiently

291

 var countries = await countryService.GetAllAsync();

 return Results.Ok(mapper.Map(countries));

});

app.MapDelete("/countries/{id}", async (

int id,

ICountryService countryService) => {

 if (await countryService.DeleteAsync(id))

 return Results.NoContent();

 return Results.NotFound();

});

app.MapPut("/countries", async (

[FromBody] Country country,

ICountryMapper mapper,

ICountryService countryService) => {

 var countryDto = mapper.Map(country);

 var countryId = await countryService.CreateOrUpdateAsync(

 countryDto

);

 if (countryId <= 0)

 return Results.StatusCode(

 StatusCodes.Status500InternalServerError

);

 if (country.Id is null)

 return Results.CreatedAtRoute(

 "countryById",

 new { Id = countryId }

);

 return Results.NoContent();

}).AddEndpointFilter<InputValidatorFilter<Country>>();

Chapter 6 aCCessing Data safely anD effiCiently

292

app.MapPatch("/countries/{id}", async (

int id,

[FromBody] CountryPatch countryPatch,

ICountryMapper mapper,

ICountryService countryService) => {

 if (await countryService.UpdateDescriptionAsync(

 id,

 countryPatch.Description)

)

 return Results.NoContent();

 return Results.NotFound();

}).AddEndpointFilter<InputValidatorFilter<CountryPatch>>();

using (var scope = app.Services.CreateScope())

{

 var db = scope.ServiceProvider.GetRequiredService<Demo

Context>();

 db.Database.SetConnectionString(dbConnection);

 db.Database.Migrate();

}

app.Run();

As you can see, we’ve implemented the endpoints right down to the

database, all correctly in each layer. Figure 6-6 shows what the global

ASP.NET Core project looks like.

Chapter 6 aCCessing Data safely anD effiCiently

293

Figure 6-6. The global ASP.NET Core solution

Congratulations! You’ve come a long way! From endpoint definition to

the database!

In the following subsection, we’ll look at data access via HTTP, with all

its constraints and optimizations.

Chapter 6 aCCessing Data safely anD effiCiently

294

 Accessing Data with HttpClient
and REST APIs
It’s common for an API to access data from other than a SQL database.

As REST APIs are popular, it’s not uncommon for data sources to be

exposed via REST. This requires access via the HttpClient class. We’re

going to instantiate the HttpClient class to make GET requests on an

API. Listing 6-11 shows how to download the contents of an image using

the HttpClient class.

Listing 6-11. The HttpClient class usage

using (var client = new HttpClient())

{

 byte[] fileBytes = await client.GetByteArrayAsync("https://

anthonygiretti.blob.core.windows.net/countryflags/ca.png");

}

In reality, this practice is disastrous in terms of performance for your

application. As I said earlier in this chapter, each HttpClient consumes an

instance of the HttpMessageHandler class, and a large number of instances

of the HttpMessageHandler class can lead to socket exhaustion. To avoid

this, we can use the IHttpClientFactory interface, which will manage

HttpMessageHandler instances for us, reusing them. There are several ways

of implementing IHttpClientFactory, and I will show you my favorite, based

on IHttpClientFactory. To do this, I will use the Refit library, based on

IHttpClientFactory, which will make life much easier.

Chapter 6 aCCessing Data safely anD effiCiently

295

 Using IHttpClientFactory to Make HTTP Requests
Before showing you Refit, here’s a quick reminder of what IHttpClientFactory

is. It’s a .NET 8 (since .NET Core 1) interface for optimized HTTP requests.

The IHttpClientFactory interface is not automatically known by .NET and

its dependency injection system, so you’ll need to download the following

package: Microsoft.Extensions.Http.

Once downloaded, add the following line in the Program.cs file:

builder.Services.AddHttpClient();.

Now, let’s create an IMediaRepository in the Domain layer, followed by

its implementation in the Infrastructure.Http layer. Listing 6-12 shows the

signature of the IMediaRepository interface, which will expose a method

for returning the content of an image in a byte array and its MIME type, all

in tuple form.

Listing 6-12. The IMediaRepository interface

namespace Domain.Repositories;

public interface IMediaRepository

{

 Task<(byte[] Content, string MimeType)>

GetCountryFlagContent(string countryShortName);

}

Here’s its implementation in the MediaRepository class with

IHttpClientFactory, as shown in Listing 6-13.

Listing 6-13. The MediaRepository class

using Domain.Repositories;

namespace Infrastructure.Http.Repositories;

public class MediaRepository : IMediaRepository

Chapter 6 aCCessing Data safely anD effiCiently

296

{

 private readonly IHttpClientFactory _httpClientFactory;

 public MediaRepository(IHttpClientFactory

httpClientFactory)

 {

 _httpClientFactory = httpClientFactory;

 }

 public async Task<(

 byte[] Content,

 string MimeType

)>

 GetCountryFlagContent(string countryShortName)

 {

 byte[] fileBytes;

 using HttpClient client = _httpClientFactory.

CreateClient();

 fileBytes = await client.GetByteArrayAsync($"https://

anthonygiretti.blob.core.windows.net/countryflags/

{countryShortName}.png");

 return (fileBytes, "image/png");

 }

}

The implementation of the MediaRepository class is quite simple. Using

IHttpClientFactory is quite simple. There are other forms of IHttpClientFactory

usage in .NET 8, and all rely on this interface. For example, there are

typed clients, named clients that you can find examples on the Microsoft

documentation here: https://learn.microsoft.com/en-us/dotnet/

architecture/microservices/implement-resilient-applications/use-

httpclientfactory-to-implement-resilient-http-requests.

Chapter 6 aCCessing Data safely anD effiCiently

https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests

297

I won’t show you examples here because I want to focus on the

Refit library, which relies on typed clients relying themselves on the

IHttpClientFactory interface.

 Using Refit to Make HTTP Requests
Refit lets you dynamically generate a typed HTTP client, which is handy

when saving code.

All you need to do is declare an interface that specifies the information

linked to the REST API (routes, parameters, body, headers) as attributes.

To get started, download the following package: refit.

Let’s go back to our IMediaRepository interface and decorate the

GetCountryFlagContent method with Refit attributes to determine its

behavior, as shown in Listing 6-14.

Listing 6-14. The IMediaRepository interface designed with Refit

using Refit;

namespace Domain.Repositories;

public interface IMediaRepository

{

 [Get("/countryflags/{countryShortName}.png")]

 Task<byte[]> GetCountryFlagContent(string

countryShortName);

}

As you can see, you only need to add the Get attribute to define the

request verb and pass it to the URL segment defining the route. There’s no

need to define the base URL here—we can configure it once so it applies

to all members of the IMediaRepository interface, if any. Finally, the

route parameters will be interpreted with the interface parameter values.

Practical, isn’t it? The only drawback here is that Refit doesn’t support

Chapter 6 aCCessing Data safely anD effiCiently

298

tuples, for example. Refit only returns the result of the API call; we will have

to handle the MIME type in the service layer instead of the repository. The

next step is to register the Refit client in the Program.cs file, as shown in

Listing 6-15.

Listing 6-15. The Program.cs file with Refit

builder.Services.AddRefitClient<IMediaRepository>().

ConfigureHttpClient(c => c.BaseAddress = new Uri("https://

anthonygiretti.blob.core.windows.net"));

To register our interface as a typed client with Refit, we had to use

the AddRefitClient method, which required installation of the following

package: Refit.HttpClientFactory.

I’m not going to show you how to use each verb. Their basic operation

is almost identical, so I’ll let you learn more about Refit with its beautiful

documentation here: https://reactiveui.github.io/refit/.

The aim here is to show you the best practices you need to know to

access data using remote APIs. I won’t write a service to interface between

the repository and the API endpoint. You know how to do it yourself and

where to implement it.

 Using Polly to Make HTTP Requests Resilient
The Polly library allows you to implement the Retry and Circuit-Breaker

patterns. Polly works very well with HTTP requests, and I will show you

an example of its use. Retry and Circuit-Breaker patterns will return an

error to your client after several unsuccessful retries. If all retries fail, the

Circuit-Breaker pattern will occur and automatically block HTTP calls for

a customizable period. This prevents overloading the network when HTTP

calls to the requested resource fail, and it will let the time to the remote

resource recover.

Chapter 6 aCCessing Data safely anD effiCiently

https://reactiveui.github.io/refit/

299

What’s interesting with typed clients such as Refit, and unlike the use

of IHttpClientFactory, is that the Retry pattern configuration can be done

outside the repository implementation that implements the HttpClient.

It’s interesting because we’ll avoid polluting our data access layer with

a Retry pattern. If we can define it separately, it’s better in terms of

Separation of Concerns and reduces the complexity of the repository that

implements the HttpClient. This is why I will show you how to implement

a Retry pattern with Refit only. To do so, download the following package:

Microsoft.Extensions.Http.Polly.

Next, let’s create a static class. Let’s call it RetryPolicy class and

implement the AddDefaultHandlingPolicy method, which is an extension

method on the IHttpClientBuilder interface used to build typed HttpClient.

Listing 6-16 shows the RetryPolicy class.

Listing 6-16. The RetryPolicy class

using Polly;

using Polly.Extensions.Http;

namespace AspNetCore8MinimalApis.Resiliency.Http;

public static class RetryPolicy

{

 public static void AddFaultHandlingPolicy(this

IHttpClientBuilder builder)

 {

 var retryPolicy = HttpPolicyExtensions

 .HandleTransientHttpError() // Handles

5XX and 408

 .WaitAndRetryAsync(3, retryDelayInSeconds =>

TimeSpan.FromSeconds(3));

 var circuitBreakerPolicy =

 HttpPolicyExtensions

Chapter 6 aCCessing Data safely anD effiCiently

300

 .HandleTransientHttpError() // Handles 5XX and 408

 .CircuitBreakerAsync(4, TimeSpan.FromSeconds(15));

 var policy = retryPolicy.WrapAsync(circuitBreaker

Policy);

 builder.AddPolicyHandler(policy);

 }

}

What happens here is that I’m handling HTTP transient errors (5xx

and 408) and I ask Polly with the WaitAndRetryAsync method to retry

three times every three seconds. Then I design a circuit breaker with the

CircuitBreakerAsync method, which takes place after three failed retries. I

put 4 as a handledEventAllowedBeforeBreaking parameter because I count

the initial HTTP call and then three retries so that the circuit breaker would

occur after four failed attempts. It will automatically make failing HTTP

calls for 15 seconds the time the remote resource recovers. To finish, I use

the WrapAsync method to merge the retry and circuit breaker policies

and add them to the AddPolicyHandler extension method. To apply it on

our HTTP client, designed with Refit, update the HttpClient as shown in

Listing 6-17.

Listing 6-17. The IMediaRepository Refit HttpClient updated with

retry and circuit breaker policies

builder.Services.AddRefitClient<IMediaRepository>()

 .ConfigureHttpClient(c => c.BaseAddress =

new Uri("https://anthonygiretti.blob.core.

windows.net"))

 .AddFaultHandlingPolicy();

Chapter 6 aCCessing Data safely anD effiCiently

301

We are done! So now your HTTP calls, when they fail, will retry the

number of times you decide and break automatically after a determined

number of failed attempts to reach the remote resources to prevent them

from overloading. I strongly suggest you implement the Retry and Circuit-
Breaker patterns. In terms of best practices, they are a must-do.

 Summary
This chapter was, I hope, very interesting. This chapter covered the

fundamentals of Entity Framework Core for accessing SQL data and the

fundamentals for accessing data via HTTP, with a preview of best practices

for each. Chapter 7 will take you even further, which will deal with API

optimization, primarily concerning data access and more.

Chapter 6 aCCessing Data safely anD effiCiently

303

CHAPTER 7

Optimizing APIs
You now know how to develop endpoints, architect your applications, and

access data efficiently. That’s all very well, but you can go even further. I

want to show you how to improve your API to allow it to scale if you have

a lot of traffic on your application. The optimizations I will show you are

both simple and effective, and once you know them, you can use them as

often as you like when developing your APIs. Note that I won’t bring up the

compression topic since it’s unnecessary to compress JSON data over an

API. The compression efficiency is not worth it. In this chapter, you’ll learn

the following points:

• Asynchronous programming

• Long-running tasks with background services

• Paging

• JSON streaming

• Caching

• Speeding up HTTP requests with HTTP/2 and HTTP/3

 Asynchronous Programming
I promised to get back to you on this, and now I’m about to. In some

examples, I have used the following keywords: Task<T>, async, and await. I

will explain what they mean.

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_7

https://doi.org/10.1007/978-1-4842-9979-1_7

304

 Basics of Asynchronous Programming
In .NET, each operation is represented by the Task keyword requiring the

System.Threadings.Task namespace. This .NET Task concept is an object

that represents an operation that must be performed. A Task not only

lets us know when an operation has been completed but also returns

a result if necessary. To return a task, use the C# keyword as is: Task. If

we want the Task to return a value, an object type must be specified,

Task<T>, where T is an object type. A Task involves a user action, such

as invoking an endpoint, which requests the database. This action uses
a generally blocked thread until the database response is obtained;

the longer the database response, the longer the thread is blocked. This

is where asynchronous programming comes in. The async and await

keywords are used to write asynchronous code. The async keyword is used

to inform the compiler that asynchronous processing will take place on

the Task in question, and await is used to wait for the Task in question to

finish executing. During this time, the current thread is not blocked; it’s

even freed for computing another Task in your application and returns

to processing the user action once the database has responded. In this

way, you can ensure that all threads are not blocked simultaneously, and

your application will remain available anytime. async and await are two

keywords that always go together. The keyword async must not be used

without await and vice versa. Otherwise, processing will be synchronous

(the compiler will notify you of this too). As a reminder, here’s some

asynchronous code as shown in Listing 7-1.

Listing 7-1. The GetAllAsync method

public async Task<List<CountryDto>> GetAllAsync()

{

 return await _demoContext.Countries

 .AsNoTracking()

 .Select(x => new CountryDto

Chapter 7 Optimizing apis

305

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .ToListAsync();

}

If you remember, this is a LINQ query for accessing the database with

Entity Framework Core. As you’ll often see in your APIs, every time you

access external data sources, you can (and should) use the asynchronous

version of the proposed methods, such as the ToListAsync() method,

which triggers an asynchronous request to the database. A synchronous

version exists (ToList), but I wouldn’t recommend using it under any

circumstances since it blocks the current thread when it’s awaiting the

database response. All operations with Entity Framework Core have

asynchronous methods, such as ExecuteUpdateAsync, ExecuteDeleteAsync,

SaveChangesAsync, etc. For HTTP requests, the same reasoning with the

GetAsync, PostAsync, etc. is available. It’s easy to identify them; they always

end with the Async suffix. I recommend you name the asynchronous

methods you are coding with the Async suffix. Asynchronous

programming is best used when accessing an external resource whose

response time you can’t control for whatever reason. Both SQL and HTTP

are external data sources. If we had used a file on the server to open in read

mode, we could have done it synchronously, although it can also be done

asynchronously, which I recommend.

You can create your Task when needed; you will barely need it, but it

may happen when you want to perform an action where no asynchronous

operation is available. It generally happens on old libraries or legacy

Chapter 7 Optimizing apis

306

code where asynchronous programming is not handled. To do so, use the

Task.Run method that will run asynchronously any synchronous code as

follows:

var result = await Task.Run(() => DoSomething());

 Using CancellationToken
Asynchronous programming allows you to do something convenient: cancel

a task. When a task takes a long time to execute, it often happens that you

want to cancel it. Whether it’s a fat client like a desktop application that calls

on an API or a browser, we’re tempted to close the browser or the application.

But what happens if the HTTP request has already invoked another API via

HTTP or a SQL request and processing is still in progress? Well, the requested

external resource will continue to run. To avoid this, we can handle the

cancellation of an HTTP request, including the requested external resource.

Let’s consider the GET /cancellable endpoint, as shown in Listing 7-2.

Listing 7-2. The GET /cancellable endpoint

app.MapGet("/cancellable", async (ICountryService

countryService, CancellationToken cancellationToken) =>

{

 await countryService

 .LongRunningQueryAsync(cancellationToken);

 return Results.Ok();

});

What you have to do here is to add as a parameter to the endpoint

lambda function the CancellationToken class, which is automatically

filled by ASP.NET Core when set up as a parameter when added on HTTP

endpoints. Then you will have to transmit it through all layers until the SQL

query and pass it as a parameter on the LongRunningQueryAsync method

as shown in Listing 7-3.

Chapter 7 Optimizing apis

307

Listing 7-3. The CountryRepository class

using Domain.Repositories;

using Microsoft.EntityFrameworkCore;

namespace Infrastructure.SQL.Repositories;

public class CountryRepository : ICountryRepository

{

 private readonly DemoContext _demoContext;

 public CountryRepository(DemoContext demoContext)

 {

 _demoContext = demoContext;

 }

 public async Task LongRunningQueryAsync(

 CancellationToken cancellationToken)

 {

 await _demoContext.Database

 .ExecuteSqlRawAsync(

 "WAITFOR DELAY '00:00:10'",

 cancellationToken:

cancellationToken);

 }

}

I have simulated a long-running query, ten seconds, with the WAIT

FOR DELAY SQL command. I’m using the Database object, which enables

you to perform SQL queries with methods like ExecuteSqlRawAsync.

Chapter 7 Optimizing apis

308

If we run the GET /cancellable endpoint and cancel the HTTP request

before it ends, remember I set up a fake slowness of ten seconds; it should

cancel the SQL query as the HTTP query is cancelled. Figure 7-1 shows the

cancellation handled by SQL, which returns a SqlException.

Figure 7-1. The SQL exception generated after the cancellation

The same cancellation process is available in any asynchronous

task, on Entity Framework Core queries, like ToListAsync(cancella

tionToken), FirstOfDefaultAsync(cancellationToken), etc., and

even the HTTP requests managed with the IHttpClientFactory or Refit.

Listing 7-4 shows the MediaRepository class implemented with the

IHttpClientFactory.

Listing 7-4. The MediaRepository class

using Domain.Repositories;

namespace Infrastructure.Http.Repositories;

public class MediaRepository : IMediaRepository

Chapter 7 Optimizing apis

309

{

 private readonly IHttpClientFactory _httpClientFactory;

 public MediaRepository(

 IHttpClientFactory httpClientFactory)

 {

 _httpClientFactory = httpClientFactory;

 }

 public async Task<(

 byte[] Content,

 string MimeType)> GetCountryFlagContent(

 string countryShortName,

 CancellationToken cancellationToken)

 {

 byte[] fileBytes;

 using HttpClient client = _httpClientFactory

 .CreateClient();

 fileBytes = await client

.GetByteArrayAsync($"https://anthonygiretti.blob.core.windows.

net/countryflags/{countryShortName}.png",

 cancellationToken);

 return (fileBytes, "image/png");

 }

}

Listing 7-5 shows how to handle the cancellation with the

CancellationToken with Refit on the IMediaRepository interface.

Chapter 7 Optimizing apis

310

Listing 7-5. The IMediaRepository interface

using Refit;

namespace Domain.Repositories;

public interface IMediaRepository

{

 [Get("/countryflags/{countryShortName}.png")]

 Task<byte[]> GetCountryFlagContent(

 string countryShortName,

 CancellationToken cancellationToken);

}

Relatively simple, isn’t it? I only introduced you to the minimum you

must know about asynchronous programming, but it’s a vast topic. If you

want to learn more about it, I suggest you read Stephen Cleary’s book

on concurrency. It’s a great book to learn all the facets of asynchronous

programming and more: https://stephencleary.com/book/.

In the following subsection, we’ll look at more advanced cancellation

management, using BackgroundTask classes to handle long-running

background tasks, a great feature of ASP.NET Core.

 Long-Running Tasks
with Background Services
ASP.NET Core provides us with all the tools we need to efficiently execute

any type of long-running background tasks directly hosted in our web

application, thanks in particular to the IHostedService interface available

in the Microsoft.Extensions.Hosting namespace by downloading the Nuget

package Microsoft.Extensions.Hosting.Abstractions.

This interface won’t be invoked directly; you’ll need to implement the

abstract BackgroundService class derived from it.

Chapter 7 Optimizing apis

https://stephencleary.com/book/

311

The interface, and hence the BackgroundService class, defines three

methods:

 1. StartAsync

 2. StopAsync

 3. ExecuteAsync

It’s up to us to call the ExecuteAsync method. Still, the StartAsync and

StopAsync methods will be executed, respectively, at application startup

and shutdown, automatically without any intervention on our part.

However, if we wish to perform specific actions, we can override them, as

they are defined as abstract by the BackgroundService class.

In this section, we’ll focus on the ExecuteAsync method,

in which we’ll execute long operations. Let’s take a look at the

CountryFileIntegrationBackgroundService class, which will enable us to

manage the ingestion of files downloaded from the server as shown in

Listing 7-6.

Listing 7-6. The CountryFileIntegrationBackgroundService class

skeleton

using Microsoft.Extensions.Hosting;

namespace Infrastructure.BackgroundTasks;

public class CountryFileIntegrationBackgroundService :

BackgroundService

{

 public CountryFileIntegrationBackgroundService()

 {

 }

Chapter 7 Optimizing apis

312

 protected override async Task ExecuteAsync(

 CancellationToken cancellationToken)

 {

 while (!cancellationToken.IsCancellationRequested)

 {

 // Do some job

 }

 }

}

As you may have noticed, this is only the skeleton of the background

task. The latter doesn’t do anything, but it does stop if the cancellation

of the task is requested. As it’s a background task, it won’t stop if we

close the browser but will if the ASP.NET Core application stops. It’s

perfectly possible to inject a service that will then perform processing.

Still, it’s a good idea to create a specific scope for the background task,

as it works as a Singleton with a single service instance, unlike HTTP

requests, which require a new instance for each service whose lifetime is

of type Scoped. Since most of the time you’ll be using Scoped instances

rather than Singletons, we will inject the IServiceProvider interface into

the background task, enabling us to fetch any type of service instance

or repository. Let’s consider the ICountryService exposing the IngestFile

method for manipulating a file from its content (stream), which I’m going

to instantiate from the IServiceProvider interface by creating a temporary

scope (disposable after use) as shown in Listing 7-7.

Listing 7-7. The CountryFileIntegrationBackgroundService class

enhanced with IServiceProvider

using Domain.Services;

using Microsoft.Extensions.DependencyInjection;

using Microsoft.Extensions.Hosting;

using Microsoft.Extensions.Logging;

Chapter 7 Optimizing apis

313

namespace Infrastructure.BackgroundTasks;

public class CountryFileIntegrationBackgroundService :

BackgroundService

{

 private readonly IServiceProvider _serviceProvider;

 public CountryFileIntegrationBackgroundService(

 IServiceProvider serviceProvider)

 {

 _serviceProvider = serviceProvider;

 }

 protected override async Task ExecuteAsync(

 CancellationToken cancellationToken)

 {

 while (!cancellationToken.IsCancellationRequested)

 {

 using (var scope = _serviceProvider.CreateScope())

 {

 var service = scope.ServiceProvider

 .GetRequiredService<ICountryService>();

 // await service.IngestFile();

 }

 }

 }

}

You’re probably wondering how our continuously running background

task will receive data from an ASP.NET Core application running

independently. Well, since the background task and the API share the

same process, they’re actually part of the same application, so these

two subsets of our web application can communicate with each other!

Chapter 7 Optimizing apis

314

Indirectly, of course, but via messages internal to the application. These

two subsets share the same codebase, the same startup file (Program.cs),

and the same configuration (appsettings.json). This is made possible by a

.NET feature called Channels! Channels are part of the System.Threading.

Channels namespace. This namespace exposes functionalities enabling

you to publish a message in a Channel, which will be received by another

part of the application to read the messages sent in the same Channel

(Figure 7-2).

Figure 7-2. The background task running in the ASP.NET Core
application

For your information, I’ve created the background task in a separate

layer, Infrastructure.BackgroundTasks, still in the spirit of separating

technological responsibility. I’m now going to create a Channel to push the

content of a file (stream) as a message. There are different ways of doing

this; I will take the simplest one. I’m going to create the interface to push

a message into a Channel in the Domain layer, which doesn’t change in

any way compared with other chapters, and then implement this Channel,

either directly in the API, as the endpoint in charge of uploading will send

the file content directly into the Channel. It is also possible to implement the

same thing in the BLL, by creating a specific service, which I haven’t chosen

to do here. Listing 7-8 shows the ICountryFileIntegrationChannel interface.

Chapter 7 Optimizing apis

315

Listing 7-8. The ICountryFileIntegrationChannel interface

namespace Domain.Channels;

public interface ICountryFileIntegrationChannel

{

 IAsyncEnumerable<Stream> ReadAllAsync(

 CancellationToken cancellationToken);

 Task<bool> SubmitAsync(

 Stream twilioRouteProgrammerParameters,

 CancellationToken cancellationToken);

}

The publish method, SubmitAsync, is relatively straightforward, while

the ReadAllAsync method reads all messages asynchronously with the

IAsyncEnumerable<T> return type where T is a stream. Still, it allows us to

consume messages individually as soon as they become available. Each

message is a Stream object. Listing 7-9 shows the implementation of the

Channel, the CountryFileIntegrationChannel class.

Listing 7-9. The CountryFileIntegrationChannel class

using Domain.Channels;

using System.Threading.Channels;

namespace AspNetCore8MinimalApis.Channels;

public class CountryFileIntegrationChannel :

ICountryFileIntegrationChannel

{

 private readonly Channel<Stream> _channel;

Chapter 7 Optimizing apis

316

 public CountryFileIntegrationChannel()

 {

 var options = new UnboundedChannelOptions

 {

 SingleWriter = false,

 SingleReader = true

 };

 _channel = Channel.CreateUnbounded<Stream>(options);

 }

 public async Task<bool> SubmitAsync(

 Stream fileContent,

 CancellationToken cancellationToken)

 {

 while (await _channel.Writer.WaitToWriteAsync

(cancellationToken) && !cancellationToken.

IsCancellationRequested)

 {

 if (_channel.Writer.TryWrite(fileContent))

 {

 return true;

 }

 }

 return false;

 }

 public IAsyncEnumerable<Stream>

ReadAllAsync(CancellationToken cancellationToken) =>

_channel.Reader.ReadAllAsync(cancellationToken);

}

Chapter 7 Optimizing apis

317

The first thing to note here is the class constructor. I created and

configured an UnBoundedChannel object. This means I’m creating a

Channel that can receive unlimited messages because they’re treated like

a queue, processed one by one. Processing messages in a background

task, one by one, guarantees that your application won’t crash because too

many tasks are executed simultaneously. Then I configured the Channel

with the UnboudedChannelOptions class, which will indicate with the

SingleWriter = false property that several publishers can publish

simultaneously in the Channel, a publisher being an HTTP request.

On the other hand, with the SingleReader = true property, I

indicated that there is only one simultaneous reader, and this single

reader is our background task. The SubmitAsync method will attempt

to publish the Stream object in the Channel using the TryWrite method

and return true if it worked and false if it failed. To date, I’ve never had

a case where publication failed. The only possibility is setting your

Channel with the BoundChannelOptions option class, which allows you

to limit the number of events in a queue. I keep this method for safety.

The whole thing is also controlled by the WaitToWriteAsync method,

which checks that it’s possible to write a message to the Channel before

doing so. This method takes a CancellationToken as a parameter. Finally,

I checked that a cancellation (the application stops) has been initiated,

with the CancellationToken’s IsCancellationRequested property, in which

case it doesn’t publish the message in the Channel. If we go back to the

CountryFileIntegrationBackgroundService class, we can now inject and

integrate the ICountryFileIntegrationChannel interface as shown in

Listing 7-10.

Listing 7-10. The CountryFileIntegrationBackgroundService class

with the CountryFileIntegrationChannel injected

using Domain.Channels;

using Domain.Services;

using Microsoft.Extensions.DependencyInjection;

Chapter 7 Optimizing apis

318

using Microsoft.Extensions.Hosting;

namespace Infrastructure.BackgroundTasks;

public class CountryFileIntegrationBackgroundService :

BackgroundService

{

 private readonly ICountryFileIntegrationChannel _channel;

 private readonly IServiceProvider _serviceProvider;

 public CountryFileIntegrationBackgroundService(

 ICountryFileIntegrationChannel channel,

 IServiceProvider serviceProvider)

 {

 _channel = channel;

 _serviceProvider = serviceProvider;

 }

 protected override async Task ExecuteAsync(

 CancellationToken cancellationToken)

 {

 await foreach (var fileContent in _channel.ReadAllAsync

(cancellationToken))

 {

 try

 {

 using (var scope = _serviceProvider

 .CreateScope())

 {

 var service = scope.ServiceProvider

 .GetRequiredService<ICountryService>();

 await service.IngestFile(fileContent);

 }

 }

Chapter 7 Optimizing apis

319

 catch { }

 }

 }

}

Thanks to the IAsyncEnumerable collection returned by the

ReadAllAsync method, we can iterate through the messages passed to the

Channel one by one as soon as a message is available. If we want to make

the whole thing work, let’s go to the Program.cs file and configure the

Channel and the BackgroundService in the dependency injection system as

shown in Listing 7-11.

Listing 7-11. The registration of the

CountryFileIntegrationBackgroundService class and the

ICountryFileIntegrationChannel

builder.Services.AddSingleton<ICountryFileIntegrationChannel,

CountryFileIntegrationChannel>();

builder.Services.AddHostedService<CountryFileIntegrationBackgro

undService>();

The ICountryFileIntegrationChannel must be registered as Singleton

lifetime because on the reader side, to be able to read messages, it

must read messages on the same ICountryFileIntegrationChannel

instance; else, it won’t work, and messages will get lost. The

CountryFileIntegrationBackgroundService must be registered with the

AddHostedService extension method. If you remember, we set up the

CancellationToken in the CountryFileIntegrationChannel class and the

CountryFileIntegrationBackgroundService class. So if any cancellation (the

application shuts down) occurs, we will let the time for any background

task that is still running complete. To do this, we can set up, in the

Program.cs file, the ShutdownTimeout to 60 seconds to let any in-progress

processes complete during this period, as shown in Listing 7-12.

Chapter 7 Optimizing apis

320

Listing 7-12. Set up the ShutdownTimeout to 60 seconds

builder.Services.PostConfigure<HostOptions>(option =>

{

 option.ShutdownTimeout = TimeSpan.FromSeconds(60);

});

Let’s write the POST /countries/upload endpoint that accepts a file

and passes it to the ICountryFileIntegrationChannel service as shown in

Listing 7-13.

Listing 7-13. Set up the ICountryFileIntegrationChannel interface

on the POST /countries/upload endpoint

app.MapPost("/countries/upload", async (IFormFile file,

ICountryFileIntegrationChannel channel, CancellationToken

cancellationToken) =>

{

 if (await channel.SubmitAsync(

 file.OpenReadStream(),

 cancellationToken))

 Results.Accepted();

 Results.StatusCode(StatusCodes.

Status500InternalServerError);

 }).DisableAntiforgery();

The good practice is to return the Accepted (202) status that tells the

client the server accepted the request for processing (and has not been

completed). Otherwise, an Internal Error (500) should be returned.

Figure 7-3 shows the CountryFileIntegrationBackgroundService task

execution when a message is posted in the Channel.

Chapter 7 Optimizing apis

321

Figure 7-3. The CountryFileIntegrationBackgroundService task
execution

Remarkable, isn’t it? Remember that these background tasks are

helpful for long operations so as not to leave your client waiting for a long

process before getting a response from the server. You can declare as many

background tasks as you like, but you must create a dedicated Channel for

each background task so that the message corresponds to the background

task for processing.

 Paging
The primary purpose of an API is to expose data to customers, enabling

them to read, modify, or delete information. However, when the volume

of data becomes significant, and you need to expose a route returning a

collection, it can be practical to paginate this information. If the client uses

a limited connection, as in the case of a mobile application, volumetry will

be an essential performance factor.

So I will suggest a quick and easy way to set up paging.

First, look at the GET /countries endpoint, which returns a collection

of countries, and add two parameters in the query string: pageIndex and

pageSize. The pageIndex parameter is the index of the data sequence we

Chapter 7 Optimizing apis

322

want to query, and the pageSize is the amount of data we want to query

per page. Figure 7-4 shows a collection of ten elements paged with two

sequences of five items.

Figure 7-4. A collection of ten elements paged with a size of five items
per page

To implement this, let’s see how the code looks like as shown in

Listing 7-14.

Listing 7-14. The GET /countries endpoint with paging query

parameters

app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(

 new PagingDto {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 });

 return Results.Ok(mapper.Map(countries));

});

Chapter 7 Optimizing apis

323

Note if you have too many query parameters, you can encapsulate
them into an object to make the code more readable by using the
AsParameters attribute, which gives the following: app.MapGet
("/countries", async ([AsParameters] Paging paging, ...).

It’s easy to retrieve the parameters—they’re automatically bound when

they come from the query string. Don’t forget that query string parameters

are not mandatory and must be treated as nullable. Then we pass them

into an instance of the PagingDto class whose signature is identical to the

parameters retrieved from the query string, as shown in Listing 7-15.

Listing 7-15. The PagingDto class

namespace Domain.DTOs;

public class PagingDto

{

 public int PageIndex { get; set; } = 1;

 public int PageSize { get; set; } = 10;

}

As you can see, I’ve given each of them a default value in case they’re

not set up.

Let’s go back to the LINQ query, the GetAllAsync method we saw in

Chapter 6, which offers two paging methods. The first is Skip, which is

the index at which the query will start retrieving results, and the second is

Take, which is the number of elements the query will retrieve. Listing 7-16

shows the paged query. Of course, paging is done on the SQL side, not on

the client side, that is, we don’t retrieve everything on the code side and

then take a fraction of it, as this would be much less efficient.

Chapter 7 Optimizing apis

324

Listing 7-16. The GetAllAsync method paged

 public async Task<List<CountryDto>>

GetAllAsync(PagingDto paging)

 {

 return await _demoContext.Countries

 .AsNoTracking()

 .Select(x => new CountryDto

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .Skip((paging.PageIndex - 1) * paging.

PageSize)

 .Take(paging.PageSize)

 .ToListAsync();

 }

You see, it’s easy. As far as Refit and IHttpClientFactory are concerned,

it’s even more accessible. All you have to do is replace the string following

the same pattern as the route parameters.

When you bring back a collection of information, remember to

paginate the results when it’s long, as this will help maintain good

performance.

 JSON Streaming
ASP.NET Core 8 optimizes network bandwidth by transmitting items

(streaming) to the client individually rather than a whole collection in one

shot. This is very practical. A heavyweight client such as C# won’t be able

Chapter 7 Optimizing apis

325

to exploit items received individually, especially with an HttpClient. The

response will be available when all items are received, just as JavaScript

can display items received individually. Let’s rewrite our GET /countries

endpoint, returning an IAsyncEnumerable<Country> object to the client, as

shown in Listing 7-17.

Listing 7-17. The GET /countries endpoint returning an

IAsyncEnumerable<Country> object

app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

 ICountryService countryService) => {

 async IAsyncEnumerable<Country> StreamCountriesAsync()

 {

 var countries = await countryService

 .GetAllAsync(

 new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 });

 var mappedCountries = mapper.Map(countries);

 foreach (var country in mappedCountries)

 {

 yield return country;

 }

 }

 return StreamCountriesAsync();

});

Chapter 7 Optimizing apis

326

I made a video to show you how it works when streamed into a

JavaScript client; you can find the demo on my blog here: https://

anthonygiretti.com/2021/09/22/asp-net-core-6-streaming-json-

responses-with-iasyncenumerable-example-with-angular/.

 Caching
Caching is a technique for storing frequently used information in memory

to avoid having to regenerate the same data at a later date.

Caching is particularly important for data coming from requests made

to a data source, as accesses to the database (out of any other data source)

are generally very costly regarding response time. I will show you how to

implement caching in ASP.NET Core to avoid this. ASP.NET Core offers

three types of caching:

 1. HTTP cache (output cache): Data is cached on any

proxy servers or in the web browser.

 2. In-memory cache: Data is stored in the

server’s RAM.

 3. Distributed cache: Data is cached on an external

server to which multiple applications can connect.

 Output Cache
The OutputCache is very effective but very limited. The cache can be

stored on the proxy server or in the browser, depending on whether or

not a proxy exists. This cache only applies to GET and HEAD requests
that return a 200 response, which are only cached if they don’t generate

a cookie and don’t require authentication (identified by the presence of

the Authorization header). The other disadvantage is that the browser or a

proxy keeps data since the request doesn’t reach the server because all the

Chapter 7 Optimizing apis

https://anthonygiretti.com/2021/09/22/asp-net-core-6-streaming-json-responses-with-iasyncenumerable-example-with-angular/
https://anthonygiretti.com/2021/09/22/asp-net-core-6-streaming-json-responses-with-iasyncenumerable-example-with-angular/
https://anthonygiretti.com/2021/09/22/asp-net-core-6-streaming-json-responses-with-iasyncenumerable-example-with-angular/

327

HTTP response is cached. You won’t be able to log any user’s actions on

the server because you want, for example, to generate statistics using your

API. You should use this cache when you don’t have any requirements,

such as collecting statistics, in your application or don’t have any

authentication on endpoints you want to cache with (without omitting

that only successful GET and HEAD requests are cacheable). Figure 7-5

summarizes the OutputCache workflow.

Figure 7-5. The OutputCache concept

To begin with, you need to configure your cache with the

AddOutputCache extension method and define policies. These can be

global, using AddBasePolicy, and apply to all requests eligible for the

output cache. Alternatively, you can use a named policy to be explicitly

called on your endpoints. To activate all this, you need to declare the

UseOutputCache middleware.

Listing 7-18 shows the configuration of the Program.cs file.

Listing 7-18. The output cache configuration in the Program.cs file

var builder = WebApplication.CreateBuilder(args);

...

builder.Services.AddOutputCache(options =>

{

 options.AddBasePolicy(builder =>

 builder.Expire(TimeSpan.FromSeconds(30))

 .SetVaryByQuery("*")

Chapter 7 Optimizing apis

328

);

 options.AddPolicy("5minutes", builder =>

 builder.Expire(TimeSpan.FromSeconds(300))

 .SetVaryByQuery("*")

);

});

var app = builder.Build();

app.UseOutputCache();

....

app.Run();

As you can see, this configuration contains a global policy that allows

you to define a 30-second cache, which applies to all endpoints that don’t

define an explicit policy and applies only to a single URL, considering

its query string parameters. There will be as many cached data as there

are variations of the same URL with different parameters, for example,

the URL /countries?pageIndex=1 and /countries?pageIndex=2 will have

different cached data.

Then I’ve set up a policy called “5minutes” that you’ll need to apply

specifically to the endpoints you want, which caches data for five minutes

and also varies according to query string parameters. Listing 7-19 shows

the endpoint GET / cachedcountries using the “5minutes” policy by the

usage of the CacheOutput extension method.

Listing 7-19. The GET /cachedcountries endpoint using the

“5minutes” cache policy

app.MapGet("/cachedcountries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

Chapter 7 Optimizing apis

329

 ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 });

 return Results.Ok(mapper.Map(countries));

}).CacheOutput("5minutes");

If we execute this endpoint the first time (or if you are the first

person who accesses this endpoint among other users), you won’t notice

anything, the response will be absolutely normal, and no headers will be

set up in the response. Still, if the endpoint is cached because somebody

has accessed it before you, you’ll notice the presence of the Age header,

which tells the client how long the data has been in the cache. Figure 7-6

shows the GET /cachedcountries endpoint after its execution, and the

response shows data that have been cached for 15 seconds.

Chapter 7 Optimizing apis

330

Figure 7-6. The GET /cachedcountries endpoint output cache

I won’t go into detail here since this isn’t the cache you’ll often

use because of its limitations. I wanted to show you its existence, and I

think that if you use it, it will be to a lesser extent than I’ve just shown

you. However, if you want to know more, you can consult Microsoft’s

documentation: https://learn.microsoft.com/en-us/aspnet/core/

performance/caching/output?view=aspnetcore-8.0.

 In-Memory Cache
This cache type is preferable to output cache, as it uses only the data you

decide to cache. Here, the entire HTTP response is not cached. Still, the

request reaches the server whether there is a proxy between the client and

the server or not, allowing you to keep control over what happens during

Chapter 7 Optimizing apis

https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output?view=aspnetcore-8.0

331

the request, such as, once again, collecting statistics, logging user actions,

and so on. This is the most frequently used cache when your application

is not distributed, that is, when a single server exposes your API, as the

in-memory cache is server-specific. The cache will be duplicated on

each server if you have several servers. This happens when you have a

server farm where HTTP traffic is load-balanced on this or that server.

In this case, we’ll talk about a distributed cache, and I’ll return to this in

the following subsection. Figure 7-7 summarizes the in-memory cache

workflow.

Figure 7-7. The in-memory cache concept

In this section, I’m going to show you two things:

 1. How to use the in-memory cache.

 2. For practical reasons of architecture and coding, the

Single Responsibility principle (SRP) exactly, I’m

going to use the Decorator pattern.

Why the Decorator pattern? Because I’ve created the ICountryService

interface with its CountryService implementation that calls the database

to retrieve data. But it’s not its responsibility to fetch cached information.

The Decorator pattern dynamically attaches additional responsibilities

to an object. It provides a flexible alternative to inheritance for extending

functionality.

Chapter 7 Optimizing apis

332

We’ll create a decorator class to decorate the CountryService class and

call it CachedCountryService. This CachedCountryService class inherits

from the ICountryService interface and is also injected by dependency

on the ICountryService interface. As a result, this class will have its

implementation while invoking the implementation of the CountryService

class. For this to work, the dependency injection system must be

configured to indicate which class is decorating the decorated class. Here,

the CountryService class is decorated by the CachedCountryService class,

which manages the cache.

We will create the CachedCountryService class in the BLL and

need the IMemoryCache interface, which can be found in the Nuget

package Microsoft.Extensions.Caching.Abstractions. We only need

the IMemoryCache interface here, so we’re downloading the version

containing only the in-memory cache abstractions. In the API layer,

on the other hand, we’re going to download the version containing the

entire in-memory cache implementation, which we’ll need to activate

the cache middleware. In the API layer, please install the following Nuget

package: Microsoft.Extensions.Caching.Memory. Listing 7-20 shows the

implementation of the CachedCountryService decorator class, including

the implementation of caching using IMemoryCache.

Listing 7-20. The CachedCountryService decorator class

using Domain.DTOs;

using Domain.Services;

using Microsoft.Extensions.Caching.Memory;

namespace BLL.Services;

public class CachedCountryService : ICountryService

{

 private readonly ICountryService _countryService;

 private readonly IMemoryCache _memoryCache;

Chapter 7 Optimizing apis

333

 public CachedCountryService(

 ICountryService countryService,

 IMemoryCache memoryCache)

 {

 _countryService = countryService;

 _memoryCache = memoryCache;

 }

 public async Task<List<CountryDto>> GetAllAsync(

 PagingDto paging)

 {

 var cachedValue = await _memoryCache.GetOrCreateAsync(

 $"countries-{paging.PageIndex}-{paging.PageSize}",

 async cacheEntry =>

 {

 cacheEntry.AbsoluteExpirationRelativeToNow =

TimeSpan.FromSeconds(30);

 return await _countryService.GetAllAsync(paging);

 });

 return cachedValue;

 }

 public async Task<(byte[], string, string)> GetFileAsync()

 {

 return await _countryService.GetFileAsync();

 }

 public async Task<bool> IngestFileAsync(

 Stream countryFileContent)

 {

 return await _countryService

 .IngestFileAsync(countryFileContent);

 }

Chapter 7 Optimizing apis

334

 public async Task LongRunningQueryAsync(

 CancellationToken cancellationToken)

 {

 await _countryService

 .LongRunningQueryAsync(cancellationToken);

 }

}

As you can see, I’ve implemented all the ICountryService interface

methods because we must. However, I’m not reimplementing all the

methods; I’m reusing all the ICountryService methods as is, that is, the

methods of the decorated class (CountryService), because I’m only

going to apply caching to the GetAllAsync method. I’m therefore reusing

the original implementation (CountryService) with cache using the

GetOrCreateAsync method, which will either create the cache key with its

value if the latter doesn’t exist in memory or retrieve it based on the key

$"countries-{paging.PageIndex}-{paging.PageSize}". This key must

be unique and parameterized according to all the parameters passed to

the GetAllAsync method. This is the only way to ensure the uniqueness

of cached content in a given situation. I’ve set the cache duration to 30

seconds using the AbsoluteExpirationRelativeToNow method.

The first time the method is invoked, or when the cache is expired,

the _countryService.GetAllAsync method is invoked again. Using the

SetSlidingExpiration method to control cache duration instead of

the AbsoluteExpirationRelativeToNow method is possible, but I don’t

recommend it, as its operation is different. Cached elements won’t be

refreshed until the cache is invoked for x amount of time, so you see

the problem: as long as cached data is requested, its contents won’t be

refreshed. I never use it unless I’m sure that the cached data will never be

modified, which is rarely the case. Listing 7-21 shows the configuration

of the in-memory cache, the Decorator pattern for the ICountryService

interface, and the GET /cachedinmemorycountries endpoint.

Chapter 7 Optimizing apis

335

Listing 7-21. The in-memory cache and Decorator pattern

configuration

var builder = WebApplication.CreateBuilder(args);

...

builder.Services.AddScoped<ICountryService, CountryService>();

builder.Services.Decorate<ICountryService,

CachedCountryService>();

builder.Services.AddMemoryCache();

...

var app = builder.Build();

...

app.MapGet("/cachedinmemorycountries", async (

ICountryMapper mapper,

ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(new PagingDto

 {

 PageIndex = 1,

 PageSize = 10

 });

 return Results.Ok(mapper.Map(countries));

});

...

app.Run();

Chapter 7 Optimizing apis

336

As you can see, it’s easy to configure.

Simply configure the in-memory cache with the AddMemoryCache

extension method and configure the CachedCountryService decorator

class of the CountryService class with the Decorate extension method,

which you can find in the Nuget Scrutor package. This allows you to

configure the Decorator pattern in your application quickly. Then, I

implemented the GET /cachedinmemorycountries endpoint to access the

cache using the GetAllAsync method.

Note at this time of writing, i faced issues with the Scrutor nuget
package, which doesn’t work correctly with the .net 8 preview 7. it
should be fixed in the final version of .net 8. For your information,
you can read the details of the issue here: https://github.com/
khellang/Scrutor/issues/208.

If you want to know more about design patterns, such as the Decorator

pattern, you can read Fiodar Sazanavets’ book about design patterns here:

https://leanpub.com/the-easiest-way-to-learn-design-patterns. It’s

a great book. I learned a lot from it!

 Distributed Cache
Distributed caching extends the traditional caching concept, where data

is placed locally in temporary storage for rapid retrieval. A distributed

cache is more extensive, as it is not located on the web server itself but on

another machine or in a cloud service such as Microsoft Azure. Distributed

caching can be implemented on top of different providers such as

 1. SQL Server (distributed cache on SQL Server)

 2. Redis (non-SQL in-memory database)

Chapter 7 Optimizing apis

https://github.com/khellang/Scrutor/issues/208
https://github.com/khellang/Scrutor/issues/208
https://leanpub.com/the-easiest-way-to-learn-design-patterns

337

 3. In-memory distributed cache

 4. NCache (open source in-memory cache)

All meet the same criteria: they are outsourced to another server, as

shown in Figure 7-8.

Figure 7-8. The distributed cache concept

I’ll take Redis as an example here. Thanks to its caching algorithms,

it is the most powerful caching database. It’s also the most widely used

caching database for distributed, high-traffic applications. To begin with, I

will invite you to create an instance of Redis. I’m not going to document it

here, but you can follow the following tutorial offered by Microsoft, which

will enable you to create an instance in Microsoft Azure: https://learn.

microsoft.com/en-us/azure/azure-cache-for-redis/cache-configure.

In terms of implementation, we’re going to use the same principle

as before, namely, to use the Decorator pattern to implement the

DistributedCachedCountryService class, which will be injected with the

IDistributedCache interface, present in the same Nuget package as the

in-memory cache: Microsoft.Extensions.Caching.Abstractions. For the API

layer, please download the Nuget package Microsoft.Extensions.Caching.

StackExchangeRedis that registers an instance of the RedisCache class

implementing the IDistributedCache interface. Listing 7-22 shows the

implementation of the DistributedCachedCountryService decorator class.

Chapter 7 Optimizing apis

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-configure
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-configure

338

Listing 7-22. The DistributedCachedCountryService decorator class

using Domain.DTOs;

using Domain.Services;

using Microsoft.Extensions.Caching.Distributed;

using System.Text.Json;

namespace BLL.Services;

internal class DistributedCachedCountryService :

ICountryService

{

 private readonly ICountryService _countryService;

 private readonly IDistributedCache _distributedCache;

 public DistributedCachedCountryService(

 ICountryService countryService,

 IDistributedCache distributedCache)

 {

 _countryService = countryService;

 _distributedCache = distributedCache;

 }

 public async Task<List<CountryDto>>

GetAllAsync(PagingDto paging)

 {

 var key = $"countries-{paging.PageIndex}-{paging.

PageSize}";

 var cachedValue = await _distributedCache

 .GetStringAsync(key);

 if (cachedValue == null)

 {

 var data = await _countryService

Chapter 7 Optimizing apis

339

 .GetAllAsync(paging);

 await _distributedCache

 .SetStringAsync(key,

 JsonSerializer.Serialize(data),

 new DistributedCacheEntryOptions

 {

 AbsoluteExpirationRelativeToNow = TimeSpan.

FromSeconds(30)

 });

 return data;

 }

 return JsonSerializer

 .Deserialize<List<CountryDto>>(cachedValue);

 }

 public async Task<(byte[], string, string)> GetFileAsync()

 {

 return await _countryService.GetFileAsync();

 }

 public async Task<bool> IngestFileAsync(

 Stream countryFileContent)

 {

 return await _countryService

 .IngestFileAsync(countryFileContent);

 }

 public async Task LongRunningQueryAsync(

 CancellationToken cancellationToken)

 {

 await _countryService

 .LongRunningQueryAsync(cancellationToken);

 }

}

Chapter 7 Optimizing apis

340

As you can see, we can store any object. Still, in string form, I’m

obliged to serialize/deserialize in JSON the list of countries I want to store/

retrieve to/from Redis with the Serialize/Deserialize methods from the

System.text.Json assembly. As far as Redis is concerned, the SetStringAsync

and GetStringAsync methods are, respectively, responsible for storing

and retrieving data. The cache duration can be configured with the

DistributedCacheEntryOptions option class, always with a relative duration

known in advance. At the end of this duration, Redis automatically purges

the cache key. The operation here is identical to that of the in-

memory cache.

Listing 7-23 shows the configuration of the distributed cache in the

Program.cs file.

Listing 7-23. The distributed cache and Decorator pattern

configuration

...

using Microsoft.Extensions.Caching.StackExchangeRedis;

var builder = WebApplication.CreateBuilder(args);

...

builder.Services.AddScoped<ICountryService, CountryService>();

builder.Services.Decorate<ICountryService,

DistributedCachedCountryService>();

...

builder.Services.AddStackExchangeRedisCache(options =>

{

 options.Configuration = builder.Configuration

 .GetConnectionString("RedisConnectionString");

 options.InstanceName = "Demo";

});

Chapter 7 Optimizing apis

341

var app = builder.Build();

...

app.MapGet("/cachedinmemorycountries", async (

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(new PagingDto

 {

 PageIndex = 1,

 PageSize = 10

 });

 return Results.Ok(mapper.Map(countries));

});

...

app.Run();

As you can see, the cache is configured using the

AddStackExchangeRedisCache method, which takes two options as

parameters:

 1. The Redis connection string, which you’ll have set

up in the appsettings.json file

 2. The instance name

The instance name is slightly misleading since the name you gave

will be concatenated to any Redis cache key to avoid key clashes if two

identical keys are inadvertently registered in Redis. While this isn’t

necessarily bad if several applications use the same data, it poses a

problem when two applications use the same cache key for entirely

different data.

Chapter 7 Optimizing apis

342

Now you know the potential of distributed caching with Redis. I invite

you to take a closer look at this distributed caching technology because

it’s very powerful. To learn more about Redis, visit the Redis website here,

https://redis.io/, where you’ll find other examples of implementations

with .NET. If you’d like to find out more about distributed caching and

its possible implementation with .NET, you can consult the Microsoft

documentation here: https://learn.microsoft.com/en-us/aspnet/

core/performance/caching/distributed?view=aspnetcore-8.0#recomm

endations.

 Speeding Up HTTP Requests with HTTP/2
and HTTP/3
The version of HTTP you need to have in mind is HTTP/1.1. I talked about

it in Chapter 1 of this book. HTTP evolved and was completely redefined in

2015 with version 2 (HTTP/2). Without going into too much detail, HTTP/2

is much faster than HTTP/1.1, and ASP.NET Core supports it. However,

not all browsers support HTTP/2, so you must be careful here. ASP.NET

Core can handle several versions of HTTP at once. To find out more about

HTTP/2, consult RFC 9113 here: https://datatracker.ietf.org/doc/

html/rfc9113.

If you’d like to check browser compatibility, visit the caniuse.com site

for HTTP/2 here: https://caniuse.com/http2.

And that’s not all! Microsoft has recently proposed a new version, even

though all web applications and browsers have not yet adopted HTTP/2.

This HTTP/3 version is even faster than HTTP/2. To learn more about

HTTP/3, consult RFC 9114 here: https://datatracker.ietf.org/doc/

rfc9114/. Of course, HTTP/3 is even less well supported by browsers, but

you can check out the evolution of its support here: https://caniuse.

com/http3. The good news is that ASP.NET Core 8 supports HTTP/3!

Chapter 7 Optimizing apis

https://redis.io/
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed?view=aspnetcore-8.0#recommendations
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed?view=aspnetcore-8.0#recommendations
https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed?view=aspnetcore-8.0#recommendations
https://datatracker.ietf.org/doc/html/rfc9113
https://datatracker.ietf.org/doc/html/rfc9113
https://caniuse.com/http2
https://datatracker.ietf.org/doc/rfc9114/
https://datatracker.ietf.org/doc/rfc9114/
https://caniuse.com/http3
https://caniuse.com/http3

343

How do you get ASP.NET Core 8 to support HTTP/3 and HTTP/2

while still supporting HTTP/1.1 if the client does not support the first two?

Listing 7-24 explains how to configure its appsettings.json file.

Listing 7-24. The appsettings.json file enabling HTTP/1.1, HTTP/2,

and HTTP/3 protocols

"Kestrel": {

 "EndpointDefaults": {

 "Protocols": "Http1AndHttp2AndHttp3"

 }

}

 Summary
I want to congratulate you on following everything I’ve taught you so far.

You’ve learned everything you need to know to implement well-coded,

well-architected, and optimized APIs, along with a host of tips and tricks

that will make all the difference! Now that you understand everything you

can do to code your application well and make it perform well, we’ll turn

our attention to monitoring our application. In the next chapter, we’ll look

at how to perform logging as efficiently as possible, collecting metrics and

actions performed on the API (tracing) to see how our application behaves

when it’s being used. See you in the next chapter!

Chapter 7 Optimizing apis

345

CHAPTER 8

Introduction
to Observability
Observability is the collection, visualization, and analysis of data in

an application. This is important when designing an application, as it

must be possible to detect undesirable behaviors (service unavailability,

errors, slow responses) and provide them with actionable information

to effectively determine the cause of the problem (detailed event logs,

granular information on resource use with metrics, application traces). In

this chapter, with simple examples (because it’s a complicated subject, let’s

make it simple), I’ll teach you the following points:

• Basics of observability

• Performing logging

• Performing tracing and metrics data collection

• Implementing HealthChecks

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_8

https://doi.org/10.1007/978-1-4842-9979-1_8

346

 Basics of Observability
When we talk about observability, we talk about Metrics, Events, Logs, and

Traces (MELT). These are the four pillars of observability in an application:

 1) Logs: They enable us to collect data on a specific

event we’ve defined. We’ll log, for example, an

exception that has occurred in the application or

other elements that are more or less indicative of

what’s going on in the application, for example,

information that will enable us to debug a situation

in a particular context.

 2) Events: These are actions accompanied by a set

of metadata, for example, the action of a user

uploading a file of a specific size.

 3) Traces: They are an overview of the user’s path and

interaction with the system. More specifically, when

a user action triggers an HTTP request, we will trace

access to external resources, such as a database, to

detect any slowness at this level.

 4) Metrics: These are used to assess the system’s

overall health. This could be, for example, CPU or

memory usage.

In this chapter, I won’t deal with events, which are rarely used on APIs,

unlike the collection of metrics, logs, and traces.

Finally, observability relies on tools generally referred to as Application

Performance Monitoring (APM), which is the practice of observing what’s

going on in an application. APMs are real-time application management

tools aiming to anticipate problems rather than solve them quickly by

Chapter 8 IntroduCtIon to observabIlIty

347

providing access to logs, traces, and metrics. In this chapter, I’ll use

Application Insights as an APM and show you how to collect logs, traces,

and metrics and read them in Application Insights.

Note application Insights is a powerful and extensible Microsoft
azure tool for monitoring your applications. I’ll be using this tool in
this chapter.

Creating a Microsoft Azure account and setting up an Application

Insights workspace are prerequisites for understanding this chapter’s rest. To

do this, you can visit the Microsoft documentation for creating an Application

Insights workspace: https://learn.microsoft.com/en-us/azure/azure-

monitor/app/create-workspace-resource. Once you are done, please pick

up the Application insights connection string. You will need it further.

Note In this book, I won’t teach you how to use application Insights,
but you can read a nice tutorial on the Microsoft learn website:
https://learn.microsoft.com/en-us/azure/azure-
monitor/app/app-insights-overview?tabs=net.

 Performing Logging
Logging what’s going on in your application is essential to detect

errors and what kind of errors have occurred. It’s also possible to log

other contextual information that is not an error but helps debug your

application in case of a problem. As you can see, you can log anything

you like, except—and I’ve already mentioned this in connection with the

OWASP principles—sensitive information. What is sensitive information?

Sensitive information is, for example, personal user data such as email

Chapter 8 IntroduCtIon to observabIlIty

https://learn.microsoft.com/en-us/azure/azure-monitor/app/create-workspace-resource
https://learn.microsoft.com/en-us/azure/azure-monitor/app/create-workspace-resource
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview?tabs=net
https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview?tabs=net

348

addresses, telephone numbers, or, even worse, Social Security numbers,

information used for identity theft. The same goes for confidential

application information, such as string connections, logins, or passwords.

ASP.NET Core natively includes a logger via the ILogger interface and

contains a default implementation that writes to the console as shown

in Figure 8-1, which shows the logs automatically generated when the

application is started.

Figure 8-1. The default ASP.NET Core logs

As you can see, ASP.NET Core writes certain types of information by

default; you can see it in the left column, the info word. Info corresponds

to a log level in a hierarchy of levels that we can filter by level in an APM,

Application Insights, which I’ll show you later. There are six log levels with

severity levels ranging from 0 to 5. Here’s the list of log levels shown with

their enum values:

• Trace = 0: Represents a purely informative log

requiring no action to be taken.

• Debug = 1: Represents a more detailed log aimed at

diagnosing a problem.

• Information = 2: Represents a normal log to confirm

normal software operation. Similar to Trace, but I tend

to use it over Trace.

Chapter 8 IntroduCtIon to observabIlIty

349

• Warning = 3: Represents a log warning of behavior

that could potentially generate a bug, thus prompting

you to better manage part of the code, by, for example,

decorating it with a try/catch block.

• Error = 4: Represents a detailed log reporting a bug,

for example, an exception raised following an action

performed.

• Critical = 5: Represents a detailed log of a serious

problem preventing the application from running,

such as a database connection preventing the entire

application from running.

I’m not going to use all the log types in the following examples. I’ll use

the ones I use most often daily: Info, Error, and Critical.

Before moving on to the examples, I will use another implementation

than the default one proposed by Microsoft; I will use the Serilog logger,

which we’ll configure to interface with ILogger. What I mean by this is that

only configuring the logger will give us a bit of work; invoking the logger

with the ILogger interface will be identical.

Serilog is a library designed to facilitate application logging in .NET

applications. Several sinks are available to store logs on different media

(file, console, Application Insights, and many more).

The significant difference with other log libraries is that it offers a

mechanism for obtaining metadata on events that have occurred. This

makes it easier to exploit these logs than plain text logs. Most importantly,

this library is compatible with structured logging. I’ll return to this with

some examples so you’ll understand.

To start with, we’re going to download two Nuget packages in the

layer API:

• Serilog.AspNetCore

• Serilog.Sinks.ApplicationInsights

Chapter 8 IntroduCtIon to observabIlIty

350

The first is the Serilog implementation for ILogger, while the second

package sends logs to Application Insights.

Now, let’s configure our ASP.NET Core application using the

appsettings.json file, not forgetting to include the string connection to your

Application Insights workspace. Listing 8-1 shows the Serilog configuration.

Listing 8-1. The Serilog configuration in appsettings.json

{

 "Serilog": {

 "Using": [

 "Serilog.Sinks.ApplicationInsights"

],

 "MinimumLevel": {

 "Default": "Information",

 "Microsoft.AspNetCore": "Warning"

 },

 "WriteTo": [

 {

 "Name": "ApplicationInsights",

 "Args": {

 "connectionString":

"{YourApplicationInsightsConnectionString}",

 "telemetryConverter": "Serilog.Sinks.

ApplicationInsights.TelemetryConverters.

TraceTelemetryConverter, Serilog.Sinks.

ApplicationInsights"

 }

 }

],

 "Enrich": ["FromLogContext"],

 "Properties": {

Chapter 8 IntroduCtIon to observabIlIty

351

 "Application": "DemoAPI"

 }

 }

}

A few explanations are in order here. First, you need to tell Serilog

which sink to use, so I indicate that I want to use it with the Using property,

Application Insights. Then, I set the minimum level to Information. Setting

Information as the minimum level will allow you to send Information up to

Critical levels in the logs if you remember the hierarchy. This configuration

is helpful if you want to limit the level of severity of the logs you want; the

fewer logs you have, the more readable they’ll be, and the more logs you

have, the more logs you’ll be drowned in. It’s up to you to find the right

balance. Don’t forget that ASP.NET Core logs automatically, so you’re in

control. If you want all your logs to log the Information level minimally,

but you want ASP.NET Core to log Warning minimally, you can add the

name of the Microsoft.AspNetCore assembly to the Using property with

the Warning value. You can add as many assemblies as you like to filter

your logs. Next, you need to define the configuration of your Application

Insights sink with its connectionString and mention the assemblies

required to convert your logs to Application Insights format. Enriching your

logs with additional metadata is possible using the Enrich property. I won’t

go into detail here, but if you’d like to know more about enriching logs with

Serilog, you can consult their documentation here: https://github.com/

serilog/serilog/wiki/Enrichment. Now let’s apply this configuration

with the following line of code in the Programs.cs file:

builder.Host.UseSerilog((context, configuration) =>

configuration.ReadFrom.Configuration(context.Configuration));

The API is correctly set up to send logs into Application Insights.

Chapter 8 IntroduCtIon to observabIlIty

https://github.com/serilog/serilog/wiki/Enrichment
https://github.com/serilog/serilog/wiki/Enrichment

352

There are two ways to use logs in ASP.NET Core. The first one is to use

the logger directly from the app.Logger object into minimal endpoints, as

shown in Listing 8-2.

Listing 8-2. Using the app.Logger object to log

var app = builder.Build();

...

app.MapGet("/logging", () => {

 app.Logger.LogInformation("/logging endpoint has been

invoked.");

 return Results.Ok();

});

...

app.Run();

In reality, this is not a good practice for reasons of testability because

it’s a variable external to the minimal endpoint’s lambda. We call this

hoisting, calling variables external to a delegate, a minimal endpoint’s

lambda being a delegate.

The best practice here is to use dependency injection and invoke

ILogger<T> where T is a generic type, usually the class in which ILogger is

invoked, to categorize logs according to their origin. Listing 8-3 shows the

ILogger interface invocation by dependency.

Chapter 8 IntroduCtIon to observabIlIty

353

Listing 8-3. Using the ILogger<T> interface by dependency

injection

var app = builder.Build();

...

app.MapGet("/logging", (ILogger<Program> logger) => {

 logger.LogInformation("/logging endpoint has been

invoked.");

 return Results.Ok();

});

...

app.Run();

Note ILogger is a known type automatically injected by dependency
by asp.net Core. no particular configuration is required to activate it
to inject it by dependency, and it can, therefore, be injected into any
class, just like the services and repositories we implemented together
in the previous chapters.

It’s cleaner and easier to test, and we’ll return to this subject in the final

chapter of this book.

Now, let’s take a look at good logging practices. I mentioned structured

logging earlier. Structured logging is recommended for more readable

logging with contextual information. It all depends on how you variable

your logging text. If you variable your log as shown in Listing 8-4, then your

logging is structured.

Chapter 8 IntroduCtIon to observabIlIty

354

Listing 8-4. Example of structured logging

var app = builder.Build();

...

app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

 ICountryService countryService,

 ILogger<Program> logger) => {

 var paging = new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 };

 var countries = await countryService.GetAllAsync(paging);

 using (logger.BeginScope(

 "Getting countries with page index {pageIndex}

and page size {pageSize}", paging.

PageIndex,

 paging.PageSize))

 {

 logger.LogInformation(

 "Received {count} countries from the

query", countries.Count);

Chapter 8 IntroduCtIon to observabIlIty

355

 return Results.Ok(mapper.Map(countries));

 }

});

...

app.Run();

On Application Insights, go to “Transaction Search” and find your log

as shown in Figure 8-2.

Figure 8-2. Finding logs on Application Insights

Chapter 8 IntroduCtIon to observabIlIty

356

Then click it to watch details as shown in Figure 8-3.

Figure 8-3. Log details with structured logging

As you can see, the variables (pageSize, pageIndex, and count) in the

preceding code sample are well displayed as “Custom Properties.” Let’s say

I use string interpolation for my messages, as shown in Listing 8-5.

Chapter 8 IntroduCtIon to observabIlIty

357

Listing 8-5. Using string interpolation

var app = builder.Build();

...

app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper, ICountryService

 countryService, ILogger<Program> logger) => {

 var paging = new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 };

 var countries = await countryService.GetAllAsync(paging);

 using (logger.BeginScope(

 "Getting countries with page index {pageIndex} and page

 size {pageSize}",

 paging.PageIndex,

 paging.PageSize))

 {

 logger.LogInformation(

 "Received {count} countries from the query",

 countries.Count);

 return Results.Ok(mapper.Map(countries));

 }

});

...

app.Run();

Chapter 8 IntroduCtIon to observabIlIty

358

You’ll see that the log won’t be the same at all and will be significantly

less readable, as shown in Figure 8-4.

Figure 8-4. Example of log details without structured logging

Just a word with the using instruction using (logger.BeginScope()):

This instruction merges all logs into a single information block spread over

an APM. As you saw earlier, thanks to this method, the variables pageSize,

pageIndex, and count were not part of the same log but were part of the

same scope. Having them grouped in a single block, and therefore a log

block in Application Insights, made the log easier to read.

Chapter 8 IntroduCtIon to observabIlIty

359

Caution I suggest you carefully use the BeginScope method. If any
exception occurs in the using statement, any log will be sent to the
apM if it is part of the same using block, including the message in the
BeginScope method.

Here’s the last example for logging. I’m going to update the

DefaultExceptionHandler class, which handles application errors. In the

chapter where I introduced error handling, I only handled the response

to be sent to the client, but I didn’t log the error. Here’s the updated

DefaultExceptionHandler class with the addition of ILogger, as shown in

Listing 8-6.

Listing 8-6. The DefaultExceptionHandler class enhanced

with ILogger

using Microsoft.AspNetCore.Diagnostics;

using Microsoft.AspNetCore.Mvc;

using System.Net;

namespace AspNetCore8MinimalApis.ExceptionHandlers;

public class DefaultExceptionHandler : IExceptionHandler

{

 private readonly ILogger<DefaultExceptionHandler> _logger;

 public DefaultExceptionHandler(ILogger<DefaultExceptionHand

ler> logger)

 {

 _logger = logger;

 }

 public async ValueTask<bool> TryHandleAsync(

 HttpContext httpContext,

Chapter 8 IntroduCtIon to observabIlIty

360

 Exception exception,

 CancellationToken cancellationToken)

 {

 _logger.LogError(exception,

 "An unexpected error occurred and has

been handled by the

 {DefaultExceptionHandler} handler", nameo

f(DefaultExceptionHandler));

 await httpContext.Response.WriteAsJsonAsync(new

ProblemDetails

 {

 Status = (int)HttpStatusCode.InternalServerError,

 Type = exception.GetType().Name,

 Title = "An unexpected error occurred",

 Detail = exception.Message,

 Instance = $"{httpContext.Request.Method}

 {httpContext.Request.Path}"

 });

 return true;

 }

}

Chapter 8 IntroduCtIon to observabIlIty

361

If our application catches an exception, all we have to do is find it in

the list of logs, as shown in Figure 8-5.

Figure 8-5. Finding exceptions on Application Insights

If you click it, you’ll be given a whole host of information, including the

exact exception we’ve passed as a parameter to the LogError method.

Chapter 8 IntroduCtIon to observabIlIty

362

Figure 8-6. Example of error log details

Chapter 8 IntroduCtIon to observabIlIty

363

After clicking on an exception you will see the error detail as shown in

Figure 8-6.

Now, you know almost everything you need to do as a developer. You

are now able to configure an APM and set up logs to send to Serilog. I hope

this tutorial has informed you of the importance of logs in an application

and that you will rigorously practice relevant logging!

 Performing Tracing and Metrics
Data Collection
Tracing operations on dependencies such as SQL databases and collecting

metrics to monitor an application can prove decisive in the event of

performance problems when your application goes into production. So as

not to be overtaken by events should this happen to you, I’m going to show

you how you can easily collect some helpful information on the health of

your application. I won’t go too far into this topic for the simple reason that

it won’t be up to you, the developer, to take care of this, by which I mean

you’ll certainly be asked to implement the data collection, but it might

not be up to you to interpret it. So, to make you more aware of the subject,

I’ve prepared a few simple examples to get you started. To get started,

download the Microsoft.ApplicationInsights.AspNetCore Nuget package in

the API layer, go to the Program.cs file, and add the following line:

builder.Services.AddApplicationInsightsTelemetry();

You will also have to add another configuration section in the

appsettings.json to make the Application Insights telemetry work:

 "ApplicationInsights": {

 "ConnectionString": "{YourConnectionString}"

 }

Chapter 8 IntroduCtIon to observabIlIty

364

The first thing you’ll notice is the enrichment of logs with new

telemetry elements.

Firstly, Application Insights now logs dependencies (in this case, SQL

queries), HTTP requests, and other events, as shown in Figure 8-7.

Figure 8-7. Example of telemetry data

As you can see, we know what HTTP request has been executed, what

time it took to process the request, and what dependency has been called

with what duration. Very useful, isn’t it? I’ve got even more to show you: if

you click a dependency, you’ll have access to more details, such as which

HTTP request triggered this call, as shown in Figure 8-8.

Chapter 8 IntroduCtIon to observabIlIty

365

Figure 8-8. Example of telemetry data on dependencies and HTTP
requests

I’ve got something even better! Exceptions are now enriched with other

metadata, such as the endpoint that triggered the exception, the execution

time, etc., as shown in Figure 8-9.

Figure 8-9. Exceptions enriched with metadata

Let’s get down to business. Let’s take a closer look at the metrics. Go

to the Overview tab for an overview of metrics such as the count of failed

requests, server response time, etc., as shown in Figure 8-10.

Chapter 8 IntroduCtIon to observabIlIty

366

Figure 8-10. Metrics overview

At last, the highlight of the show! If you click the Live metrics tab, you’ll

find everything you need regarding metrics, such as CPU and memory

usage. It’s very comprehensive, as shown in Figure 8-11.

Figure 8-11. Detailed metrics

Chapter 8 IntroduCtIon to observabIlIty

367

Of course, it’s possible to customize your traces, metrics, etc. I won’t

talk about it here, as it’s something you probably won’t do. If you do, it

won’t be you but the architect you’ll depend on, as the developer rarely

implements custom traces and metrics other than those proposed by

default. However, if you’re interested in the subject, you can consult the

Microsoft documentation here, https://learn.microsoft.com/en-us/

dotnet/core/diagnostics/metrics-collection, but also this one, which

is more concerned with the performance of your application: https://

learn.microsoft.com/en-us/azure/azure-monitor/app/performance-

counters?tabs=net-core-new.

 Implementing HealthCheck
To finish with observability, I’m going to tell you about HealthCheck. But

what is HealthCheck? The idea is to offer HTTP endpoints to ensure two

main things:

 1. The presence/proper deployment of the application

 2. A report giving the status of the service and its

dependencies (operational, non-operational,

degraded)

There are two types of HealthChecks:

 1. Readiness HealthCheck, indicating whether your

application is ready for use

 2. Liveness HealthCheck, indicating whether your

application works or not

Without going into all the customization details, I’ll show you an

example of each type of HealthCheck.

Chapter 8 IntroduCtIon to observabIlIty

https://learn.microsoft.com/en-us/dotnet/core/diagnostics/metrics-collection
https://learn.microsoft.com/en-us/dotnet/core/diagnostics/metrics-collection
https://learn.microsoft.com/en-us/azure/azure-monitor/app/performance-counters?tabs=net-core-new
https://learn.microsoft.com/en-us/azure/azure-monitor/app/performance-counters?tabs=net-core-new
https://learn.microsoft.com/en-us/azure/azure-monitor/app/performance-counters?tabs=net-core-new

368

 Liveness HealthCheck
Since we’re using SQL Server as our data access, I suggest you download

the following Nuget package: AspNetCore.HealthChecks.SqlServer.

Then go to the Program.cs file and configure the HealthCheck for SQL

Server with the AddHealtchCheck and AddSqlServer methods, the latter

taking the database’s connectionString as a parameter, and then expose

the GET /health endpoint using the MapHealthChecks extension method,

as shown in Listing 8-7.

Listing 8-7. The configuration of the GET /health endpoint for the

HealthCheck

var builder = WebApplication.CreateBuilder(args);

...

var dbConnection = builder.Configuration.

GetConnectionString("DemoDb");

builder.Services.AddHealthChecks()

 .AddSqlServer(connectionString:

dbConnection)

...

var app = builder.Build();

app.MapHealthChecks("/health");

...

app.Run();

This endpoint will return Healthy or Unhealthy if the database

connection works or not. Figure 8-12 shows the GET /health endpoint

returning Healthy.

Chapter 8 IntroduCtIon to observabIlIty

369

Figure 8-12. The GET /health endpoint returning Healthy

It is possible to test several databases at the same time, but for ASP.NET

Core to be able to differentiate between them, each one must be given a

name, as shown in Listing 8-8.

Listing 8-8. The configuration of the GET /health endpoint for the

HealthCheck with two databases

var builder = WebApplication.CreateBuilder(args);

...

var dbConnection1 = builder.Configuration.GetConnectionString("

DemoDb1");

var dbConnection2 = builder.Configuration.GetConnectionString("

DemoDb2");

builder.Services.AddHealthChecks()

 .AddSqlServer(name: "SQL1", connectionString:

dbConnection1)

Chapter 8 IntroduCtIon to observabIlIty

370

 .AddSqlServer(name: "SQL2", connectionString:

dbConnection2);

...

var app = builder.Build();

app.MapHealthChecks("/health");

...

app.Run();

This example shows a liveness HealthCheck, demonstrating that the

application works because of its dependency on SQL Server.

 Readiness HealthCheck
Showing that our application is ready for use requires more manual work.

In general, a readiness HealthCheck requires customization. Imagine that,

after startup/restart, our application has had to perform some long actions

to make it work as well as possible (think of initializing a cached dataset).

Still, in this example, I will simulate a long action lasting ten seconds.

To do this, define a static variable, IsReady, on the static Ready class in

our application that symbolizes the ready (or not ready) state, as shown in

Listing 8-9.

Listing 8-9. The Ready static class

namespace AspNetCore8MinimalApis;

public static class Ready

{

 public static bool IsReady { get; set; } = false;

}

Chapter 8 IntroduCtIon to observabIlIty

371

We now create the ReadyHealthCheck class, which implements the

IHealthCheck interface, as shown in Listing 8-10.

Listing 8-10. The ReadyHealthCheck class

using Microsoft.Extensions.Diagnostics.HealthChecks;

namespace AspNetCore8MinimalApis.Healthchecks;

public class ReadyHealthCheck : IHealthCheck

{

 public Task<HealthCheckResult> CheckHealthAsync(

 HealthCheckContext context,

 CancellationToken cancellationToken = default)

 {

 var result = Ready.IsReady

 ? HealthCheckResult.Healthy()

 : HealthCheckResult.Unhealthy(

 "Application not ready");

 return Task.FromResult(result);

 }

}

As you can see, the CheckHealthAsync method reads the static IsReady

variable of the Ready static class and returns Healthy if IsReady is true or

Unhealthy if IsReady is false. Let’s simulate a lengthy operation, which, at the

end of its execution, will set the verifiable IsReady to true after ten seconds,

as shown in the following piece of code (placed in the Program.cs file):

Task.Run(() => { Thread.Sleep(10000); Ready.IsReady = true; });

Let’s now declare our ReadyHealthCheck in another endpoint to

ensure we don’t mix liveness and readiness states in the application. To do

this, we need to group the HealthCheck with a tag, Ready for the readiness

check and Live for the liveness check, with two separate endpoints

attached to their respective tag as shown in Listing 8-11.

Chapter 8 IntroduCtIon to observabIlIty

372

Listing 8-11. The readiness and liveness checks configured in

separate endpoints

var builder = WebApplication.CreateBuilder(args);

...

builder.Services.AddHealthChecks()

 .AddSqlServer(

 name: "SQL1",

 connectionString: dbConnection1,

 tags: new[] { "live" })

 .AddSqlServer(

 name: "SQL2",

 connectionString:

 dbConnection2,

 tags: new[] { "live" })

 .AddCheck<ReadyHealthCheck>(

 "Readiness check",

 tags: new[] { "ready" });

...

var app = builder.Build();

..

app.UseExceptionHandler(opt => { });

app.MapHealthChecks("/ready", new HealthCheckOptions

{

 Predicate = healthCheck => healthCheck.Tags.

Contains("ready")

});

Chapter 8 IntroduCtIon to observabIlIty

373

app.MapHealthChecks("/live", new HealthCheckOptions

{

 Predicate = healthCheck => healthCheck.Tags.

Contains("live")

});

...

app.Run();

If I invoke the GET /ready endpoint before ten seconds, it will return

Unhealthy, whatever the GET /live endpoint returns. And after ten

seconds, it will return Healthy, whatever the GET /live endpoint returns.

Note since we enabled the telemetry data collection for application
Insights in the previous section, any healthCheck endpoint invoked by
a user or a system that regularly checks the state of our application
will be logged as a request event as any other requests made on the
application.

I haven’t been too far on this ASP.NET Core feature; you only need to

know how to monitor if your application is functional and ready to use. To

learn more about HealthCheck configuration and customization, you can

check the Microsoft documentation here: https://learn.microsoft.com/

en-us/aspnet/core/host-and-deploy/health-checks?view=aspnet

core-8.0.

Chapter 8 IntroduCtIon to observabIlIty

https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-8.0

374

 Summary
And that’s it for this chapter. I’ve tried to keep it simple and concise, as this

subject could be the subject of a whole book. The aim here was to make

you aware of the notion of observability by giving you the basics to enable

you to do the minimum you’ll need to implement in your application.

Many other APMs are used in many companies, such as Jaeger and

Grafana; you should also consider them for monitoring your apps. Still,

I’ve also provided you with the necessary resources to learn more if you’re

interested. You can be sure that what you’ve learned in this chapter will be

very helpful! I’ll see you in the next chapter to discuss configuring sensitive

data (secret applications), which will also be very useful!

Chapter 8 IntroduCtIon to observabIlIty

375

CHAPTER 9

Managing Application
Secrets
Throughout this book, I've used sensitive data, a.k.a. secrets, for example,

connection strings that may have been used to connect to a database, an

APM, etc. The easiest way to make these secrets available is to save them

in application configuration files named by environment (appsettings.json,

appsettings.dev.json, appsettings.prod.json, a dedicated configuration file

for each environment) and then push all these files into the GIT repository.

GIT is a source code manager on a remote server to store your code.

However, two questions arise: How/where to store these secrets, and how

to update them easily?

In this chapter, I'm going to teach you the following points:

• Introduction to application secret management

• Example with Azure Key Vault

 Introduction to Application
Secret Management
Anyone with access to the source code manager can view the various

environments' passwords. A developer or tester may not need to know the

secrets of accessing production databases, for example, and this is potentially

a threat to data security, as a team member may be ill-intentioned.

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_9

https://doi.org/10.1007/978-1-4842-9979-1_9

376

Applications are often entry points for hackers. Finding sensitive

information enabling access to other resources, such as a database, is a

real danger. The most telling example is Uber in 2016. Although the source

code was stored in private GIT repositories (not accessible to the public), a

hacker managed to bypass security and gain access to the applications that

contained Uber's database secrets, exposing 57 million driver accounts!

To prevent this from happening in your company, I will show you an

example of protecting sensitive data with Azure Key Vault, which requires

you to create an Azure Key Vault resource in Microsoft Azure as you did

for Application Insights. As the aim is to inform you of the importance of

protecting secrets, I won't explain how Azure Key Vault works in detail.

Here is the Microsoft documentation for configuring a vault with Azure

Key Vault: https://learn.microsoft.com/en-us/azure/key-vault/

general/quick-create-portal.

Don't forget to pick up your Vault URI on Azure Key Vault's main page;

you will need it further!

You'll also need your Azure Tenant ID, which can be found on the

Azure Portal as shown in Figures 9-1 and 9-2. For security purposes, I have

partially hidden my Tenant ID.

Figure 9-1. The Tenant properties menu item

Chapter 9 Managing appliCation SeCretS

https://learn.microsoft.com/en-us/azure/key-vault/general/quick-create-portal
https://learn.microsoft.com/en-us/azure/key-vault/general/quick-create-portal

377

Figure 9-2. The Tenant ID

Chapter 9 Managing appliCation SeCretS

378

 Example with Azure Key Vault
I'll show you how to protect your database connections, for example, the

ones I used earlier in this book. Of course, you can repeat the same logic

to store any secret or other string connections like the one in Application

Insights. To do this, go back to the main page of your Azure Key Vault

instance (again, I assume you've read the Microsoft documentation

beforehand) and then create your keys and associated values for your

connection strings, as I did for the DemoDb1 and DemoDb2 connection

strings as shown in Figure 9-3.

Figure 9-3. Creating secrets in Azure Key Vault

On the ASP.NET Core side, however, we will have a bit more work to do.

You'll need to download two Nuget packages, and I'll explain why:

• Azure.Extensions.AspNetCore.Configuration.Secrets:

This package allows you to retrieve secrets from ASP.

NET Core on Azure Key Vault.

• Azure.Identity: This package will enable us to connect

to Azure Key Vault without an Azure Key Vault–

specific login/password from Visual Studio using our

Visual Studio account. In other words, we'll be using

Microsoft's Single Sign-On (SSO). I'll come back to this

in the next chapter of this book.

Chapter 9 Managing appliCation SeCretS

379

If you've created an Azure Key Vault workspace, you have a Microsoft

Azure account and, therefore, a Microsoft account. So click the top right-

hand corner of Visual Studio to authenticate yourself with your Microsoft

account, which must be the same as your Microsoft Azure account.

Figure 9-4 shows my identity after authentication in Visual Studio.

Figure 9-4. Connection to a Microsoft account from Visual Studio

Once authenticated, as shown previously, we can retrieve the

key/value pairs of secrets stored in the Key Vault. Before configuring

everything in the Program.cs file, Azure Key Vault requires the Tenant

ID of the Microsoft Azure account associated with Azure Key Vault. We'll

need to create an environment variable that the SDK of the package we

downloaded earlier (Azure.Extensions.AspNetCore.Configuration.Secrets)

will read and send to Azure Key Vault when it connects to it. To do this, go

to the properties of your API project, click "Debug," and set up the AZURE_

TENANT_ID variable as shown in Figure 9-5.

Chapter 9 Managing appliCation SeCretS

380

Figure 9-5. Set up the AZURE_TENANT_ID environment variable

Go to the appsettings.json file to remove the ConnectionStrings

property you wish to protect, and then add the Vault URI you need to have

on hand, as shown in Listing 9-1.

Listing 9-1. The Azure Key Vault configuration

"KeyVault": {

 "Uri": "{YourKeyvaultUri}"

 }

As you can see, I've named KeyVault my section containing the Uri

property. You can configure your section as you like; I named it as such.

This is not sensitive data, so it can remain in the appsettings.json file. On

the other hand, if you're paranoid like me, you can right-click your API

project and click "Manage User Secrets," which will generate a secrets.json

file that will be stored only on your machine. When the API project runs,

Chapter 9 Managing appliCation SeCretS

381

this configuration will be transparently merged with the configuration

in the appsettings.json file. Figures 9-6 and 9-7 show the Visual Studio

process I've just described.

Figure 9-6. Find the “Manage User Secrets” menu item

Chapter 9 Managing appliCation SeCretS

382

Figure 9-7. The secrets.json file

Let's go to the Program.cs file and add this piece of code to retrieve our

secrets:

var builder = WebApplication.CreateBuilder(args);

...

var keyVaultUri = builder.Configuration.GetValue<string>("Key

Vault:Uri");

builder.Configuration.AddAzureKeyVault(new Uri(keyVaultUri),

new DefaultAzureCredential());

var dbConnection1 = builder.Configuration.

GetValue<string>("DemoDb1");

var dbConnection2 = builder.Configuration.

GetValue<string>("DemoDb2");

...

var app = builder.Build();

...

app.Run();

It's straightforward to implement. The DefaultAzureCredential class

used as a parameter for the AddAzureKeyVault method specifies that

authentication to the Azure Key Vault service will be performed using

Chapter 9 Managing appliCation SeCretS

383

the Microsoft account authenticated in Visual Studio. Of course, when

your application is deployed in production, this will be slightly different.

A login/password will be required, or your team's cloud architect or

DevOps engineer will create a service account that will simulate the

same behavior as Visual Studio when your application runs in the cloud.

The sample code (lines 11 to 31) provided by Microsoft shows how this

should be done: https://github.com/dotnet/AspNetCore.Docs/blob/

main/aspnetcore/security/key-vault-configuration/samples/6.x/

KeyVaultConfigurationSample/Program.cs.

I won't go any further into the configuration of our production

application, as this is not the subject of this book.

To retrieve our secrets, access them using the builder.Configuration.

GetValue<T>(“YourKey”) method, where T is the type of secret to be

retrieved, in this case, a string, and YourKey is the exact name of your

secret, in this case DemoDb1 and DemoDb2. If we execute our application,

it should retrieve the desired secrets, as shown in Figure 9-8.

Figure 9-8. Retrieving secrets

As you can see, it works well!

 Summary
This chapter was short, but I hope it was full of learning! Remember

that a security flaw threatening the integrity of your data can be hidden

anywhere, and hackers will have a field day! Remember that this kind of

data leak, caused by poor secret management practices, is at the root of

Chapter 9 Managing appliCation SeCretS

https://github.com/dotnet/AspNetCore.Docs/blob/main/aspnetcore/security/key-vault-configuration/samples/6.x/KeyVaultConfigurationSample/Program.cs
https://github.com/dotnet/AspNetCore.Docs/blob/main/aspnetcore/security/key-vault-configuration/samples/6.x/KeyVaultConfigurationSample/Program.cs
https://github.com/dotnet/AspNetCore.Docs/blob/main/aspnetcore/security/key-vault-configuration/samples/6.x/KeyVaultConfigurationSample/Program.cs

384

many attacks, which is why this type of attack is listed in the OWASP Top

10. Suppose you don't want to use Microsoft Azure and are more into

AWS. In that case, you can use the AWS Key Management Service, if you

want: https://aws.amazon.com/fr/kms/. In the next chapter, we'll look at

a final aspect of application security: authentication and authorization!

Chapter 9 Managing appliCation SeCretS

https://aws.amazon.com/fr/kms/

385

CHAPTER 10

Secure Your
Application with
OpenID Connect
Security is essential in an application, by which I mean that almost all

applications need a mechanism to identify the user attempting to perform

actions on them. This is called authentication, which should not be

confused with authorization, a mechanism allowing privileges to be given

to an authenticated user, that is, allowing them to perform specific actions

that other users will not achieve. In this chapter, you will learn

• Introduction to OpenID Connect (OIDC)

• Configuring authentication and authorization in ASP.

NET Core

• Passing a JSON Web Token (JWT) into requests and

getting the user’s identity

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_10

https://doi.org/10.1007/978-1-4842-9979-1_10

386

 Introduction to OpenID Connect
OpenID Connect (OIDC) is an identification standard that is positioned

above OAuth 2.0, which is itself an authorization protocol. OpenID Connect

works on the principle of delegating user authentication: with OpenID

Connect, this responsibility is entrusted to a third-party service. The latter

uses the protocol to ensure the user is authenticated, so the application

protected by OpenID Connect does not know how the authentication is

performed. So that’s it with the login forms in your code.

To be completely independent of the application, this authentication

system can be transverse and reused to develop a single authentication

within an information system. This is the very definition of the Single Sign-

On (SSO) principle. We end up with an interaction between three actors:

 1. The client that is a web app, for example

 2. The identity provider

 3. The protected resource

Figure 10-1 shows the relationship between the three actors.

Figure 10-1. The relationship between the three actors in
OpenID Connect

Chapter 10 SeCure Your appliCation with openiD ConneCt

387

The client will authenticate with the service provider. The latter will

issue a JSON Web Token (JWT) that will be used to access the protected

resource. This resource will validate the token received by retrieving the

metadata from the identity provider to certify that the latter is the issuer

of the JWT. Metadata is retrieved only once, and then the application

can validate the JWT autonomously. A JWT is a JSON accompanied by

a signature and the reference to the key, which allows the signature to

be verified. The whole is encoded in Base64, and dots separate the three

parts. They are assembled as follows: the header, the content, and the

signature. I will show you an example in the next section. RFC 7519

describes the JWT standard, which can be found at this address: https://

datatracker.ietf.org/doc/html/rfc7519.

This introduction is brief. The goal is not to teach you OpenID Connect

in great detail but rather to understand the basic principle, the minimum,

to allow you to use OpenID Connect to authenticate in ASP.NET Core.

If you want to learn more about OpenID Connect, you can consult the

official documentation for this protocol here: https://openid.net/

connect/.

To configure ASP.NET Core with OpenID Connect, we must have an

identity provider to achieve our ends. You may not know it, but a lot of

applications use OpenID Connect, and I think you already know of the

most often-used identity providers:

• Facebook

• Google

• Apple

• And less frequently, Microsoft

Figure 10-2 shows the canva.com website offering to authenticate with

different providers.

Chapter 10 SeCure Your appliCation with openiD ConneCt

https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7519
https://openid.net/connect/
https://openid.net/connect/

388

Figure 10-2. Canva.com uses Google, Facebook, and Apple as
OpenID Connect providers

In the code samples in this chapter, I’ll be using the Microsoft

authentication platform based on Azure Active Directory. However, I

will not go into details about its configuration. I will show you how to

configure ASP.NET Core; the authentication part will be up to you. Azure

Active Directory and OpenID Connect are big pieces. To avoid losing the

line on the main subject, I invite you to learn more about the Microsoft

Identity Platform here: https://docs.microsoft.com/en-us/azure/

active-directory/develop/active-directory-v2-protocols. If you

want to get things done quickly, you can follow my tutorial on setting up

OpenID Connect on Microsoft Azure here: https://anthonygiretti.

com/2018/02/28/using-openidconnect-with-azure-ad- angular5-and-

webapi-core-introduction/.

Chapter 10 SeCure Your appliCation with openiD ConneCt

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-protocols
https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-protocols
https://anthonygiretti.com/2018/02/28/using-openidconnect-with-azure-ad- angular5-and-webapi-core-introduction/
https://anthonygiretti.com/2018/02/28/using-openidconnect-with-azure-ad- angular5-and-webapi-core-introduction/
https://anthonygiretti.com/2018/02/28/using-openidconnect-with-azure-ad- angular5-and-webapi-core-introduction/

389

Note along with this chapter, i will assume you could obtain the
emitted access_token, which is used as a bearer token.

 Configuring Authentication
and Authorization in ASP.NET Core
The configuration of an ASP.NET Core API is generic, regardless of

the identity provider used to emit a token. For example, the following

configuration applies to minimal APIs or other ASP.NET Core applications.

To get started, install the required Nuget package: Microsoft.AspNetCore.

Authentication.JwtBearer.

Once done, go to the Program.cs file and configure and activate

authentication and authorization.

Configuration needs several lines of code:

• The AddAuthentication extension method

defines the authentication based on a JWT using

the JwtBearerDefaults.AuthenticationScheme

value. AddAuthentication defines the type of

authentication, and it’s generic. JwtBearerDefaults.

AuthenticationScheme is specific to JWT

authentication.

• The AddJwtBearer extension method allows the setup

of the Authority, that is, the authentication server

address, and Audience, that is, the target application

for which the JWT is emitted. Both of these values are

given by the identity provider you have chosen. Then

we will configure the parameters used to validate the

JWT: ValidateLifetime and ValidateIssuer both set to

Chapter 10 SeCure Your appliCation with openiD ConneCt

390

True and Clockskew, which is used to manage the time

gap between the JWT issuer and the application and

will be set up to 5 min. In other words, the latter allows

a 5-minute gap between the JWT expiry timestamp and

the application, where the token lifetime is validated.

• The AddAuthorization extension method allows

configuring authorization in ASP.NET Core by using the

Authorize attribute.

Activation is only about adding two middlewares in the pipeline:

• The UseAuthentication extension method, which

registers the Authentication middleware in the pipeline

• The UseAuthorization extension method, which

activates the Authorization middleware in the pipeline

Listing 10-1 shows the Program.cs properly configured. Authority

and Audience are partially hidden. They are specific to my Azure Active

Directory tenant on Microsoft Azure. Following their documentation,

you can find the Authority and Audience configuration parameters in

any OpenID Connect provider. Once again, if you want to try OpenID

Connect with Microsoft Azure, you can follow the tutorial on my blog post I

mentioned earlier in this chapter.

Listing 10-1. Configure and activate OpenID Connect

authentication and authorization on ASP.NET Core

var builder = WebApplication.CreateBuilder(args);

...

builder.Services.AddAuthentication(options =>

{

Chapter 10 SeCure Your appliCation with openiD ConneCt

391

 options.DefaultAuthenticateScheme = JwtBearerDefaults.

AuthenticationScheme;

 options.DefaultChallengeScheme = JwtBearerDefaults.

AuthenticationScheme;

}).AddJwtBearer(options =>

{

 options.Authority = "https://login.microsoftonline.

com/136544d9-xxxx-xxxx-xxxx-10accb370679/v2.0";

 options.Audience = "257b6c36-xxxx-xxxx-xxxx-6f2cd81cec43";

 options.TokenValidationParameters.ValidateLifetime = true;

 options.TokenValidationParameters.ValidateIssuer = true;

 options.TokenValidationParameters.ClockSkew = TimeSpan.

FromMinutes(5);

});

builder.Services.AddAuthorization();

...

var app = builder.Build();

...

app.UseCors(); // Before Authentication and Auhtorization

middlewares

app.UseMiddleware<YourMiddleware>(); // Before Authentication

and Authorization middlewares

app.UseAuthentication();

app.UseAuthorization();

...

app.Run();

Chapter 10 SeCure Your appliCation with openiD ConneCt

392

Caution the UseCors middleware and other custom middlewares
must be placed before the UseAuthentication and UseAuthorization
middlewares, or else they won’t work correctly since useCors must
not depend on authentication, so authentication must apply after
CorS handling.

To apply authentication on your minimal endpoints, you’ll need to add

the RequireAuthorization extension method on any minimal endpoint you

want to protect by authentication, like the GET /authenticated endpoint as

shown in Listing 10-2.

Listing 10-2. The GET /authenticated endpoint

app.MapGet("/authenticated", () =>

{

 return Results.Ok("Authenticated !");

}).RequireAuthorization();

This example is the simplest but allows you to do the necessary

to get authenticated, but it doesn’t show authorization. Very often,

applications require higher privileges for some users. Those users may

have more responsibilities and may need to perform sensitive actions.

The company will assign a particular (or several) role(s) that can be

passed in a JWT when the latter is issued and handled by any ASP.NET

Core application. Listing 10-3 shows how to configure a custom policy on

the AddAuthorization method that ensures the authenticated user has the

SurveyCreator role, and this role will be assigned to the GET /authorized

endpoint that requires the SurveyCreator custom policy to get executed.

Chapter 10 SeCure Your appliCation with openiD ConneCt

393

Listing 10-3. The GET /authorized endpoint assigned with the

SurveyCreator policy

...

builder.Services

 .AddAuthorization(options =>

 options.AddPolicy("SurveyCreator",

 policy => policy.RequireRole("SurveyCreator")

));

...

var app = builder.Build();

...

app.UseAuthentication();

app.UseAuthorization();

...

app.MapGet("/authorized", () =>

{

 return Results.Ok("Authorized !");

}).RequireAuthorization("SurveyCreator");

..

app.Run();

Suppose a user tries to invoke any endpoint configured with

authentication or authorization without a valid JWT. ASP.NET Core will

return the HTTP UnAuthenticated (401) error in that case. If the user is

authenticated but doesn’t meet the authorization requirements, such as

missing the proper role, ASP.NET Core will return the HTTP Forbidden

(403) error.

Chapter 10 SeCure Your appliCation with openiD ConneCt

394

I have shown you how to secure your application with a JWT. You must

follow your company’s business rules to apply the proper criteria to protect

your application. Before finishing this section, I would like to show you

what a JWT looks like with the SurveyCreator role assigned to user Anthony

Giretti. First, please generate a token with your provider, and then go to the

https://jwt.io website to observe the content of your JWT. Figure 10-3

shows the JWT of my decoded provider.

Figure 10-3. A JWT decoded on the https://jwt.io website

Chapter 10 SeCure Your appliCation with openiD ConneCt

https://jwt.io
https://jwt.io

395

As you can see, we find the information relating to the provider and

the expiration date of the JWT in the first framed block and information on

the user for whom the JWT was issued in the second framed block, then

followed by the role(s) that the user may have. So you will have understood

that decoding your JWT will be used to debug your application if you have

trouble with the expiration date of your JWT, if you are using the wrong

Audience, or if you are not using roles correctly (or if you have poorly set up

your JWTs with your identity provider).

In the next section, I’ll show you how to use the token and pass it into

the headers from Postman and Swagger.

 Passing a JWT into Requests and Getting
the User’s Identity
Passing a JWT to any web application always works the same way. It’s a

matter of passing a header named Authorization in the headers with the

value "bearer {YourJWT}".

Note in general, steps to accomplish Jwt authentication with
oiDC are to set up an oiDC provider, have a ui application that
fetches a Jwt, and then send it to the back end, such as an aSp.
net Core api. the examples in this section show you how to debug
back-end applications (aSp.net Core), assuming you already have
generated a Jwt. You can also set up identity Server, an open source
OpenID Connect provider. You can learn how to set it if you don’t
want to use Microsoft azure or any other providers here: https://
scientificprogrammer.net/2022/10/02/securing-your-
signalr-applications-with-openid-connect-and-oauth/.

Chapter 10 SeCure Your appliCation with openiD ConneCt

https://scientificprogrammer.net/2022/10/02/securing-your-signalr-applications-with-openid-connect-and-oauth/
https://scientificprogrammer.net/2022/10/02/securing-your-signalr-applications-with-openid-connect-and-oauth/
https://scientificprogrammer.net/2022/10/02/securing-your-signalr-applications-with-openid-connect-and-oauth/

396

If you remember, at the start of the book, I told you about Swagger,

which lets you generate documentation for your API and expose it to

your customers. Since Swagger is well designed, you can configure it to

take a JWT and then pass it to the HTTP request. To do this, you need to

configure the AddSwaggerGen method, as shown in Listing 10-4.

Listing 10-4. The AddSwaggerGen method configured for

accepting a JWT

builder.Services.AddSwaggerGen(c =>

{

 c.AddSecurityDefinition("Bearer", new

OpenApiSecurityScheme()

 {

 Name = "Authorization",

 Scheme = "Bearer",

 BearerFormat = "JWT",

 In = ParameterLocation.Header,

 Description = "JWT Authorization header required"

 });

 c.AddSecurityRequirement(new OpenApiSecurityRequirement {

 {

 new OpenApiSecurityScheme {

 Reference = new OpenApiReference {

 Type = ReferenceType.SecurityScheme,

 Id = "Bearer"

 }

 },

 new string[] {}

 }

 });

});

Chapter 10 SeCure Your appliCation with openiD ConneCt

397

If we now execute the Swagger page, you should see an “Authorize”

button at the top right of the page, as shown in Figure 10-4.

Figure 10-4. The Authorize button

If you click, you’ll be asked to paste your JWT, taking care not to forget

the bearer keyword in front of it, as shown in Figure 10-5.

Figure 10-5. Filling the headers with the JWT bearer Authorization

Chapter 10 SeCure Your appliCation with openiD ConneCt

398

If you run the /GET authorized endpoint, assuming the JWT is valid

and contains the SurveyCreator role, Swagger should return a successful

response as shown in Figure 10-6.

Figure 10-6. The GET /authorized endpoint output in Swagger after
passing a valid JWT

Now, let’s try Postman. Be careful; Postman itself adds the bearer
keyword, so you can only paste your JWT in the Auth section, as shown in

Figure 10-7.

Chapter 10 SeCure Your appliCation with openiD ConneCt

399

Figure 10-7. The GET /authorized endpoint output in Postman after
passing a valid JWT

Into your minimal endpoint, inject the ClaimsPrincipal class, which

is automatically registered in the dependency injection by ASP.NET

Core, and you’ll get the user’s identity in the form of Claims, as shown in

Figure 10-8.

Figure 10-8. Accessing the user’s identity through the
UserClaims object

Chapter 10 SeCure Your appliCation with openiD ConneCt

400

When a user is logged in, their identity is defined by Claims, which

somehow defines their profile as a logged-in user; in other words, they

are identity data issued by the identity provider. As you can see from

the preceding figure, there is a whole range of claim types, such as the

user’s name or roles. The claims contain all the information about the

user, which is customizable on the identity provider side, and I won’t

go into detail here. However, we will design a service that will expose

user profile data more intelligibly. Let’s consider the UserProfile class,

which implements the IUserProfile interface and contains two properties,

Name and Roles (for a simple, easy-to-understand example), as shown in

Listing 10-5.

Listing 10-5. The UserProfile class

using System.Security.Claims;

namespace AspNetCore8MinimalApis.Identity;

public class UserProfile : IUserProfile

{

 private readonly IHttpContextAccessor _context;

 public UserProfile(IHttpContextAccessor context)

 {

 _context = context;

 }

 public string Name => _context.HttpContext.User?.Claims.

FirstOrDefault(x => x.Type == "name")?.Value;

 public IEnumerable<string> Roles => _context.HttpContext.

User?.Claims.Where(x => x.Type == ClaimTypes.Role).Select(x

=> x.Value);

}

Chapter 10 SeCure Your appliCation with openiD ConneCt

401

As you can see, I access Claims using LINQ. It is important to

remember that the ClaimsPrincipal class is not available directly via

dependency injection, as in a minimal endpoint when it’s a custom

service. Don’t forget to register the IUserProfile service with its

UserProfile implementation and the HttpContextAccessor service with its

AddHttpContextAccessor extension method. Let’s run the same endpoint as

earlier but with the IUserProfile interface injected, as shown in Figure 10-9.

Figure 10-9. Accessing the user’s identity through the IUserProfile
interface

 Summary
Voila! You know how to manage JWT authentication in your application.

Remember that, as I write these lines, JWT authentication is the most

widely used way to authenticate to an API, thanks to its reliability and

the widespread adoption of OpenID Connect. Now you know how to do

everything in a moderately complex API. There’s just one thing left: test

your API. And I’ll give you the final chapter of this book.

Chapter 10 SeCure Your appliCation with openiD ConneCt

403

CHAPTER 11

Testing APIs
Testing an application reveals errors related to its quality. Whether the

test is functional, performance-related or aimed at verifying the user

experience. It’s an essential part of software development. The test team

(the whole team involved in developing the application, not just the

developers) draws up a report on these aspects, enabling the developer to

make any necessary corrections. In this chapter you will learn:

• Introduction to testing

• Efficient unit testing

 Introduction to Testing
It’s always best to test applications early (in the application development

cycle) to find bugs and eliminate them before they can affect the end user.

There are many different types of testing, and I will introduce them to you

quickly:

 1. Unit testing: It’s a type of software testing in which

individual units or components are tested. The

main aim of unit testing is to validate each unit

of behavior in software and determine whether it

works as expected.

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1_11

https://doi.org/10.1007/978-1-4842-9979-1_11

404

 2. Integration testing: Integration testing aims to

validate that all independently developed parts

work well together. For example, verify if the code

works correctly once connected to a database.

 3. End-to-end testing: End-to-end testing is a

technique used to verify the correct operation of

an application. It involves testing the entire system,

from its interface to operating mode.

 4. Functional testing: Functional testing focuses

on the process’s results rather than the process’s

mechanics.

 5. Acceptance testing: Acceptance testing is often

confused with functional testing. This type of testing

aims to verify that the application meets the end

user’s expectations.

 6. Performance testing: Performance testing is a

non-functional software test used to evaluate an

application’s performance in terms of stability and

speed under heavy workloads.

 7. Smoke testing: Smoke testing, often confused

with end-to-end and functional tests, tests critical

application functions such as authentication.

Unit tests and integration tests are the exclusive responsibility of the

developer. In contrast, end-to-end tests can be designed by the developer,

for a DevOps engineer who will automate tests, or by the quality assurance

team using end-to-end testing tools. All other tests are performed by the

quality assurance team or the client themself. I won’t be discussing end-to-

end testing here, as I generally prefer to leave this responsibility to DevOps

and/or QA engineers for a single reason: the complexity of testing.

Chapter 11 testing apis

405

It’s a complex thing for a developer to set up because you have to set up

all the dependencies on external resources on the one hand. Still, above

all, you have to automate the whole thing, which is, speaking only of code,

very demanding in terms of energy and time. I won’t go into integration

tests either because if end-to-end tests are carried out by whomever, they

are not, in my opinion, very relevant. In this chapter, we’ll focus on unit

tests essential to any developer’s life.

Note in this chapter, i am talking about unit testing, which is not
Test-Driven Development (TDD), and it’s different: unit testing is the
practice of performing automated tests on code, usually after it has
been written. TDD is a set of practices whereby you write your unit
tests before writing your code and continually perform tests while
you keep coding.

 Efficient Unit Testing
Unit tests enable developers to verify the operation of a unit. A unit

of code, known as a System Under Test (SUT), generally a function,

contains a particular logic that must be tested without regard to external

dependencies. Unit tests are, therefore, performed in isolation from the

rest of the application. This is one of the characteristics of good unit tests,

among others:

• Readable: They must be easy to understand by reading

the code.

• Specific: We only test one behavior at a time, so we

don’t include conditions in the unit test to cover all

use cases.

Chapter 11 testing apis

406

• Fast: Tests must run quickly. This is generally the case

when they are performed in total isolation from the rest

of the application.

• Complete (or almost): It’s often said that you should

test 100% of your code. In reality, it’s more involved

than that. Not everything is easily testable. Aim for

at least 60% code coverage. Take, for example, the

Program.cs file, and check that the dependencies

you’ve registered (repository, classes, middleware) are

correctly registered. Well, it’s a long way to test for little

benefit, but an end-to-end test can verify it, and you’ll

quickly realize if your application crashes.

• Immediate: Do your tests right from the start of the

project. Otherwise, you’ll never do them! (I say this

from experience.)

 Using the Right Tools
To code unit tests efficiently, we’ll need several tools and libraries. We’ll

create a library project in Visual Studio; reference the projects we want to

test, for example, our API layer; and add the following Nuget packages:

• Microsoft.NET.Test.Sdk: This package is required to

run unit tests in a .NET solution.

• xunit: This package allows you to use xUnit as the test

framework. It proposes a great feature to run your tests.

• xunit.runner.visualstudio: This package allows Visual

Studio to discover the tests in your solution. Visual

Studio won’t find any tests made with xUnit without

this package.

Chapter 11 testing apis

407

• NSubstitute: This package is a mocking library. I will

return to this while showing you the unit test example.

• AutoFixture: This package allows you to generate fake

data to populate quickly object properties.

• ExpectedObjects: This package allows you to compare

objects by value and not by their reference. You’ll see

it’s convenient.

Your test project should look as shown in Figure 11-1.

Figure 11-1. The unit test project structure

Chapter 11 testing apis

408

 Testing a SUT Step-by-Step
Let’s choose the minimal endpoint GET /countries I’ve isolated in a static

GetCountries function (within the CountryEndpoints class) as the example

SUT, as I showed you in Chapter 5. If you recall, I did this to facilitate the

testability of the minimal endpoint. Let’s test it. Here’s its implementation,

as shown in Listing 11-1.

Listing 11-1. The CountryEndpoints class

using AspNetCore8MinimalApis.Mapping.Interfaces;

using Domain.DTOs;

using Domain.Services;

namespace AspNetCore8MinimalApis.Endpoints;

public static class CountryEndpoints

{

 public static async Task<IResult> GetCountries(int?

pageIndex, int? pageSize, ICountryMapper mapper,

ICountryService countryService)

 {

 var paging = new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.

Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 };

 var countries = await countryService.GetAllAsync(paging);

 return Results.Ok(mapper.Map(countries));

 }

}

Chapter 11 testing apis

409

 Identify What to Test

The first thing to do here is to identify what you want to test. The

GetCountries function will be easy to test, as it has only four possible

behaviors: the parameters pageIndex and pageIndex can each be null or

not, and one of them can be null and the other not. That’s four behaviors,

so four tests to run. (This is good practice in unit testing: there are as

many tests as possible as there are behaviors.) As each test will be similar,

I’ll show you how to test the GetCountries function when all query string

parameters are null.

Let’s have a look at what we’re going to test:

 1. The function returns an IResult of type Ok, precisely

with a list of CountryDto objects returned by the

Map service method.

 2. We’ll also test whether the query string parameters

pageIndex and pageSize are assigned 1 and 10,

respectively, when null.

 3. We will test that the GetAllAsync service method

takes the PagingDto object as a parameter with

the correct values. This is necessary to check that

the parameters are used correctly; even if the

GetCountries function returns a list of countries,

it may not be the correct result, as the wrong

parameters have been passed.

 4. We’ll use the same reasoning with the Map function,

checking that it takes the list of Country objects

returned by the GetAllAsync service method as

parameters.

Chapter 11 testing apis

410

As you can see, we’re not just testing the output but the entire behavior

of the function. This may sound cumbersome, but it’s very effective

because we check that the parameters are correctly used. Unfortunately,

many bugs occur because the parameters are being misused.

 Create the Test Class

We will now create the test class with a convention that makes it easy to

understand which SUT is being tested. I’m only going to test one SUT at a

time in the same class, so I’m going to name my class GetCountriesTests to

indicate that I’m only testing the GetCountries function without forgetting

to place this test class in a folder whose name represents the tested

class to which the GetCountries function belongs: CountriesTests. For

clarity, I suffix folders and test class names with Tests. The skeleton of the

GetCountriesTests test class should look as shown in Listing 11-2.

Listing 11-2. The GetCountriesTests class

using AspNetCore8MinimalApis.Endpoints;

using AspNetCore8MinimalApis.Mapping.Interfaces;

using AspNetCore8MinimalApis.Models;

using AutoFixture;

using Domain.DTOs;

using Domain.Services;

using ExpectedObjects;

using Microsoft.AspNetCore.Http.HttpResults;

using NSubstitute;

using Xunit;

namespace UnitTests.Countries;

public class GetCountriesTests

{

 public GetCountriesTests()

Chapter 11 testing apis

411

 {

 }

 [Fact]

 public async Task When_GetCountriesReceivesNullPaging

ParametersAndGetAllAsyncMethodReturnsCountries_ShouldFillUp

DefaultPagingParametersAndReturnCountries()

 {

 // Arrange

 // Act

 // Assert

 }

}

You’ll notice the xUnit Fact attribute, which allows the Microsoft Test

SDK to detect that the function decorated with this attribute is a unit test

and appears in the Visual Studio Test Explorer, as shown in Figure 11-2.

Figure 11-2. The Visual Studio Test Explorer panel displaying
discovered tests

As for the test project, it should be arranged as shown in Figure 11-3.

Chapter 11 testing apis

412

Figure 11-3. The UnitTests project structure

You can also see that I’ve named the test method with the following

pattern, When{condition}_Should{expectedBehavior}, which allows you to

understand what the function does when you read it. Don’t be afraid of the

length of the When_GetCountriesReceivesNullPagingParametersAnd

GetAllAsyncMethodReturnsCountries_ShouldFillUpDefaultPaging

ParametersAndReturnCountries method. By reading it, you’ll quickly

understand what the test will do. Finally, I’ve commented out three

sections of this function:

 1. Arrange

 2. Act

 3. Assert

These are the famous AAAs of unit testing. Arrange defines the

variables needed to run your test. Act defines the SUT to be executed with

the parameters defined in the Arrange section. Finally, Assert defines the

checks that need to be made to validate your unit test. Remember: a unit

test must be easy to read.

Chapter 11 testing apis

413

 Write the Test

Listing 11-3 shows the final test implementation, as shown. I will also

detail each step right after Listing 11-3.

Listing 11-3. The GetCountriesTests class final implementation

using AspNetCore8MinimalApis.Endpoints;

using AspNetCore8MinimalApis.Mapping.Interfaces;

using AspNetCore8MinimalApis.Models;

using AutoFixture;

using Domain.DTOs;

using Domain.Services;

using ExpectedObjects;

using Microsoft.AspNetCore.Http.HttpResults;

using NSubstitute;

using Xunit;

namespace UnitTests.Countries;

public class GetCountriesTests

{

 private readonly ICountryMapper _countryMapper;

 private readonly ICountryService _countryService;

 private readonly Fixture _fixture;

 public GetCountriesTests()

 {

 _countryMapper = Substitute.For<ICountryMapper>();

 _countryService = Substitute.For<ICountryService>();

 _fixture = new Fixture();

 }

 [Fact]

Chapter 11 testing apis

414

 public async Task WhenGetCountriesReceivesNullPaging

ParametersAndGetAllAsyncMethodReturnsCountries_ShouldFillUp

DefaultPagingParametersAndReturnCountries()

 {

 // Arrange

 int? pageIndex = null;

 int? pageSize = null;

 var expectedPaging = new PagingDto

 {

 PageIndex = 1,

 PageSize = 10

 }.ToExpectedObject();

 var countries = _fixture.CreateMany<CountryDto>(2).

ToList();

 var expectedCountries = countries.ToExpectedObject();

 var mappedCountries = _fixture.CreateMany<Country>(2).

ToList();

 var expectedMappedCountries = mappedCountries.

ToExpectedObject();

 _countryService.GetAllAsync(Arg.Any<PagingDto>()).

Returns(x => countries);

 _countryMapper.Map(Arg.Any<List<CountryDto>>()).

Returns(x => mappedCountries);

 // Act

 var result = (await CountryEndpoints.

GetCountries(pageIndex, pageSize, _countryMapper, _

countryService)) as Ok<List<Country>>;

 // Assert

 expectedMappedCountries.ShouldEqual(result.Value);

Chapter 11 testing apis

415

 await _countryService.Received(1).GetAllAsync(Arg.

Is<PagingDto>(x => expectedPaging.Matches(x)));

 _countryMapper.Received(1).Map(Arg.

Is<List<CountryDto>>(x => expectedCountries.

Matches(x)));

 }

}

Write the Constructor

First, I instantiated a fake instance of each interface (ICountryMapper and

ICountryService) in the constructor using NSubstitute, a mocking library.

We must mock these interfaces to give them a fake instance to which we’ll

define a precise behavior to see how our SUT reacts. This is the key to

unit testing: mocking services, which must be abstracted to perform unit

tests. We give a false implementation to an interface rather than using its

concrete instance; for example, a unit test won’t connect to a database.

I’ve also instantiated the Fixture class from the AutoFixture library, which

allows you to create filled objects automatically, a handy way to save

writing time (and readability).

Note xUnit is the unit test runner here, and it’s an intelligent one.
For each unit test executed, xUnit will instantiate the constructor each
time, so there’s no risk of service and autofix instances being altered
from one test to the next, as each test will have its instances.

Write the Arrange Section

I define my parameters here. pageIndex and pageSize are set to null. I will

test the SUT’s behavior with these parameter values. Then I instantiate a

PageDto class, initializing it with a pageIndex of 1 and a pageSize of 10.

Chapter 11 testing apis

416

These values should be assigned when pageIndex and pageSize are

null. I’m going to attach it to the ToExpectedObjects (which comes from

the ExpectedObjects library) extension method that will allow us to test

by value the PageDto object instance, as I want to verify further that

the GetAllAsync service method will take the correct PageDto values as

parameters.

Using AutoFixture, I will create a list instance of Country and

CountryDto objects, each with a length of two elements. Here, their

value doesn’t matter; these instances will be defined as the return value

of the GetAllAsync and Map service methods, which I’ll remind you are

mocked, so I’m going to define a behavior that will tell them that whatever

parameters they take (using Arg.Any<T>), they’ll return the object list

defined by AutoFixture. Here, it’s not a question of testing the content of

each object list or checking that the content is mapped by the service Map

method but of checking that the Map service method takes the object list

of type Country from the GetAllAsync service method as its parameter. As

for the list of CountryDto objects returned by the service Map method,

we’re going to check that the SUT returns this same list, and we need to

test this by value and not by reference, which is, as you know, how objects

are compared.

Write the Act Section

In this section, I executed the SUT and retrieved its result, passing all the

necessary parameters, including mocked IMapper and ICountryService

service instances. In the Assert section, we’ll test several elements.

Write the Assert Section

It’s the final moment! Let’s implement our checks.

First, we want to check that the SUT output (result) corresponds to

what the Map service method returns since we’re returning it as is. Before

you do that, don’t forget that the output result is an IResult type, the

Chapter 11 testing apis

417

Ok<ListCountryDto> type, to be exact, which is why I’m doing an implicit

cast. If the latter fails, it won’t generate an exception, thanks to the as

keyword.

I then use ExpectedObject and its ShouldEqual method applied to

the expectedMappedCountries instance and compare it with the Value

property of the result output.

There’s no need to test the type, as the type test is implicitly performed

here: if the cast didn’t work, the output (result) would be null.

Then, for each service method (GetAllAsync and Map), I check that

the mocked service instance to which they belong is invoked once, using

the Received extension method (from NSubstitute). Then I check that they

receive the list of objects they’re supposed to receive as parameters, using

the Arg. Is<T> static function. Each one takes, as parameters, a delegate

invoking the Matches extension method on the respective expectedpaging

and expectedCountries objects defined with ExpectedObjects. The Matches

extension returns a Boolean indicating whether the values of the expected

instances match. So thanks to ExpectedObjects!

If we execute our test on Visual Studio, it should appear as passed, as

shown in Figure 11-4.

Figure 11-4. The Test Explorer output when unit tests passed

Chapter 11 testing apis

418

 Summary
That’s it! You’ve now mastered the unit test technique. You need to

understand here not how to use the tools I use to do my tests but the

philosophy you must adopt to test your code correctly. What I’ve shown

you here will make your code bulletproof; we’ve tested everything possible

to test, and we’ve gone beyond testing the output of a SUT. I’m confident

you can extrapolate this logic to any unit test you want to perform! This

book is complete, and I’d like to thank you for following me to the end!

Chapter 11 testing apis

419

Index

A
Acceptance testing, 404
Application development

business, 72
clean architecture, 74–86
fundamentals, 71
logical/structured program, 73
problem-solving skills, 72
programming paradigms, 73

Application insights, 347–351, 355,
358, 361, 363, 364, 373,
376, 378

Application Performance
Monitoring (APM),
346–348, 358, 359, 363, 375

Application programming
interface (API)

ASP.NET Core 8, 44, 65–68
documentation, 40

customizations, 207, 208
deprecated option, 209, 210
describing

responses, 210–212
endpoints, 208, 209
grouping endpoints, 206, 207
Nuget packages, 191
OpenAPI specification, 190

Swagger
documentation, 192–199

WithTag extension
method, 206

XML comments, 199–205
encapsulation, 213
optimizations (see

Optimizations, APIs)
input validation, 119
testing, 403–417
versioning, 39

Build method, 179
configuration, 178
endpoint execution, 182–187
endpoints, 178
GET, 181
headers, 178–187
NewApiVersionSet

method, 180
route method, 187–190
WithApiVersionSet

method, 180
web interface, 53–64

Application secret
management, 375

production databases, 375
resources, 376

© Anthony Giretti 2023
A. Giretti, Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8,
https://doi.org/10.1007/978-1-4842-9979-1

https://doi.org/10.1007/978-1-4842-9979-1

420

sensitive data, 376
Tenant properties menu,

376, 377
Application security, 385–401
ASP.NET Core 8, 91, 213

action filters, 239–244
application types, 44
appsettings.json, 51
architecture, 47
authentication/

authorization, 389–395
caching, 326–342
CORS handling, 173–179
CRUD (see Create, Retrieve,

Update, Delete (CRUD))
data access, 267
dependency injection, 47
development mode, 52
documentating APIs, 190–212
encapsulation

API structure, 215
CountryEndpoints class, 216
CountryGroup static

class, 218
minimal endpoint, 214
POST, 214
Program.cs file, 217
WebApplication class, 219

error handling (see Error
management)

framwork, 43
fundamentals, 44

input validation
API development, 119
FluentValidation classs,

124, 125
methods, 123
Name/FlagUri properties, 120
NuGet package

installation, 123
package manager console,

121, 122
POST endpoint, 126
program class, 126
ValidationProblem

method, 127–129
launchSettings.json file, 52, 53
life cycles, 47
lifetime configuration, 48, 49
middleware pipeline, 45
middlewares, 225

behavior, 227
categories, 226
GET/test endpoint, 228, 229,

231, 233, 234, 236
LoggingMiddleware

class, 236–238
types, 226

minimal APIs
dependency injection

attributes, 67
empty project, 65
features, 65
minimalistic project, 66
Swagger UI, 68

MVC controller, 49

Application secret
management (cont.)

INDEX

421

object mapping
API/domain layers, 130, 131
CountryDto class, 131
CountryMapper class, 132
domain object, 129
ICountryMapper

interface, 132
implementation, 133
POST, 134, 135
respective responsibilities, 130

parameter binding, 107
Program.cs file, 44, 46
rate limiting

AddRateLimiter/
UseRateLimiter
methods, 246

categories, 244
concurrency, 245, 257–259
DisableRateLimiting

method, 248
features, 243–246
fixed window, 244, 246–253
IPricingTierService

service, 250
PricingTier enum, 250
RequireRateLimiting

method, 249
ShortLimit policy, 248
sliding window, 244, 253–255
token bucket, 245, 255–257

routing
constraints, 99–103
DateTime and Guid

parameters, 96

GroupCountries method,
106, 107

HTTP verbs, 93, 94
MapMethods method, 94
primitive variables, 95
PUT and PATCH verbs, 97
RouteGroups, 92,

93, 103–107
writing routes, 94–99

scope hierarchy, 50
service configuration/

activation, 45
singleton/scoped/transient

services, 50
SmtpConfiguration object, 51
SmtpConfiguration options, 51
Web API

architecture, 54
authentication type, 56, 57
configuration, 55, 56
endpoints, 62, 63
HttpRepl installation, 61, 62
launchUrl parameter, 60, 61
Postman GUI tool, 64
Program.cs file, 59
project creation, 55
Swagger UI web page, 59, 60
WeatherForecastController

class, 58
WeatherForecast template

app, 57, 58
Asynchronous programming, 303

async and await keywords, 304
cancellation token, 306–310

INDEX

422

CountryRepository class, 307
GetAllAsync method, 304
IMediaRepository interface, 310
MediaRepository class, 308
SQL exception, 308
Task<T> keyword, 304
ToListAsync() method, 305

Authentication/authorization
activation, 390
configuration, 389
encoded/decoded providers, 394
GET endpoints, 392
Nuget package, 389
Program.cs file, 390
SurveyCreator policy, 393

Azure Key Vault
appsettings.json file, 380
AZURE_TENANT_ID variable,

379, 380
Manage User Secrets, 380, 381
Microsoft account, 379
Nuget packages, 378
Program.cs file, 382
retrieving secrets, 383
secret creation, 378
secrets.json file, 382

B
Bind parameters, see

Parameter binding
Business logic layer (BLL), 138,

270, 314, 332

C
Caching technique

distributed caching
concept, 337
configuration, 340
DistributedCached

CountryService class,
338, 339

implementation, 337
parameters, 341
providers, 336

in-memory
CachedCountryService

class, 332–334
CountryService class, 332
decorator pattern, 331
pattern configuration, 335
workflow process, 331

OutputCache
authorization header, 326
GET endpoint, 328, 330
Program.cs file, 327
workflow process, 327

types, 326
Certificate Authority (CA), 30
Clean architecture

application layers, 75
architectures, 74
business logic/application

layer, 76
coding style

fundamentals, 83–86
casing convention, 85

Asynchronous programming (cont.)

INDEX

423

download directory, 83
DownloadService.cs file, 84
GetFileAsync function, 84, 85
principles, 86

domain/presentation layer, 76
external data access, 75
fundamentals, 74, 79
infrastructure layers, 77, 78
interfaces and dependency

injection, 75
layers, 76
OOP principles, 81–83
principle, 75
single responsibility, 80
third-party libraries and

frameworks, 75
tools layer, 77
user interface, 75

Command-Line Interface (CLI), 54
Create, Retrieve, Update, Delete

(CRUD), 33
content streaming, 169–171
CountryDto class, 139
CountryMapper class, 149
CountryPatchValidator class, 150
DELETE endpoint, 146
downloading files

countries.csv file, 154, 155
GetFile method, 152, 153
ICountryService

interface, 152
MIME type, 151

endpoint
implementations, 141–144

GET endpoint, 145
HTTP statuses, 136, 137
ICountryService interface, 139
PATCH method, 148–151
POST request, 144, 145
PUT request, 147
service creation, 138–140
uploading file

countries.csv file, 157
CountryFileUpload

class, 164
CountryFileUploadValidator

class, 165
executable file signature, 164
IFormFileCollection,

159, 162
IFormFile content, 158
metadata, 160–162
POST, 157, 159
several files, 159
single/many files, 156–160
validation process, 162–169
validations, 155

URL naming, 37
verbs manipulation, 135

Cross-Origin Resource Sharing
(CORS), 7, 91

AllowAll policy, 174
AllowCredentials method, 174
configuration, 173
elements, 175
headers, 172
HTTP requests, 172, 177
JavaScript script, 176

INDEX

424

Mozilla documentation, 173
restricted configuration, 175

Cross-Site Request Forgery
(CSRF), 36, 112

Cross-Site Scripting (XSS), 87, 120

D
Data access

architecture, 269–271
data types, 267
EF core (see Entity Framework

Core (EF Core))
HttpClient class/REST

APIs, 294–301
HTTP requests, 269
infrastructure layers, 270
SQL queries, 268, 269
transient errors, 268

Data Transfer Objects (DTOs)
object mapping, 130

E
Efficient unit testing, see

Unit testing
End-to-end testing, 404
Entity Framework Core (EF Core)

C# database connection
appsettings.json file, 276
configuration, 277
demo generation, 279

initial migration
generation, 278

migration history table, 280
CountryEntity class, 273, 274
CountryRepository class, 282,

283, 285
CountryService class, 287, 288
data access, 271
DemoContext class, 273, 275
elements, 285
enabling resilience

documentation, 281
SQL connection errors, 280
transient errors, 281

global ASP.NET Core solution,
292, 293

ICountryRepository
interface, 281

Infrastructure.SQL layer, 272
NuGet package manager, 272
OnModelCreating, 274
Program.cs file, 289–292
projection, 287

Error management
DefaultExceptionHandler class,

260, 261
external resources, 259
GET /exception endpoint,

261, 262
IExceptionHandler

interface, 259
timeout endpoint output, 265
TimeOutExceptionHandler

class, 263–265

Cross-Origin Resource Sharing
(CORS) (cont.)

INDEX

425

Extensible Markup Language
(XML), 2, 33, 35, 36, 54, 75,
199–204, 261

F, G
Functional testing, 404

H
HTTP Strict Transport Security

(HSTS), 29–31
HyperText Markup Language

(HTML), 2, 24, 25, 27, 40,
89, 112, 120, 124, 196, 197,
203, 206, 342

Hypertext transfer protocol
(HTTP), 1

characteristics, 3, 4
clients/servers, 1
CORS handling, 172–178
CRUD operations, 136, 137
data access, 269

HttpClient class, 294–301
IHttpClientFactory

interface, 295–297
IMediaRepository interface,

295, 297, 298
MediaRepository class, 295
Polly library, 298–301
Program.cs file, 298
RetryPolicy class, 299
transient errors, 300

form-data technique, 6

handling errors, 28, 29
headers/parameters, 4
HTTP/2 and HTTP/3 versions,

342, 343
HTTPS/TLS/HSTS, 29–31
implementation, 5

request/response
headers, 12

status codes, 8–12
verbs, 6–8

input validation, 119
JSON format, 31
parameter binding, 109
parameters, 27
request headers

authentication, 17
classes, 13
conditional headers, 15, 16
content negotiation

headers, 16, 17
contextual data, 18, 19
controls class, 14, 15
proxy-authorization, 17

requests/responses, 4, 5
response header

authentication, 22
classes, 19
contextual data, 22
control data, 20, 21
proxy authenticate, 22
validator header fields, 21

REST (see Representational
State Transfer (REST))

routing request, 92, 93

INDEX

426

URI response, 23–25
URL protocols, 26
verb, 93, 94
versions, 2

HyperText Transfer Protocol
(HTTP), 1–41, 47, 64, 65,
76, 77, 88

I
Information Technology (IT), 72, 79
Integration testing, 214, 404
Internet Assigned Numbers

Authority (IANA), 152
Internet Engineering Task Force

(IETF), 2

J
JavaScript Object Notation

(JSON), 2
ASP.NET Core 8, 53
HTTP protocol, 31
JWT (see JSON Web

Token (JWT))
media type, 35, 36
transmitting items

(streaming), 324–326
JSON Web Token (JWT)

AddSwaggerGen method, 396
authorize button, 397
GET endpoints, 398, 399

headers, 397
IHttpAccessor interface, 401
OpenID Connect, 387
passing request, 395
Swagger page, 397
UserProfile class, 400
user’s identity, 399

K
Keep It Simple, Stupid (KISS), 79, 107

L
Language Integrated Query

(LINQ), 268, 273, 285

M, N
Metrics, Events, Logs, and Traces

(MELT), 346
Model-View-Controller (MVC), 43,

49, 54, 120
Multipurpose Internet Mail

Extensions (MIME), 2, 5, 16,
31, 151–154, 163, 169, 170,
211, 295, 298

O
Object-oriented programming

(OOP), 81, 83
Object Relational Mapping (ORM),

268, 271

Hypertext transfer protocol
(HTTP) (cont.)

INDEX

427

Observability
application, 346
application insights, 347
behaviors, 345
HealthCheck

implementation
HTTP endpoints, 367
liveness, 370–372
readiness, 370–373
ReadyHealthCheck

class, 371
types, 367

logging performances
app.Logger object, 352
DefaultExceptionHandler

class, 359, 360
dependency injection, 353
error log details, 362
finding exceptions, 361
ILogger interface, 348
levels, 348
log details, 356, 358
Nuget packages, 349
Programs.cs file, 351
sensitive information, 347
Serilog configuration, 350
string interpolation, 357
structured logging, 354, 355
transaction search, 355

logs/events, 346
traces/metrics, 346
tracing/metrics operations

appsettings.json, 363
data collection, 363

exceptions, 365
metrics overview, 366
Program.cs file, 363
telemetry data, 364, 365

OpenID Connect (OIDC), 385
authentication/

authorization, 389–395
canva.com website, 387
identification, 386
identity providers, 387
interaction, 386
JWT standard, 387
relationship, 386

Open Worldwide Application
Security Project
(OWASP), 71

application design, 88
cryptographic failures, 88
elements, 86
injection, 87
insecure data integrity, 88
logging and monitoring, 88
obsolete component, 89
principles, 86
protect access, 87
security configuration, 89
SSRF vulnerabilities, 89
weak authentication/

authorization, 86
Optimizations, APIs

asynchronous
programming, 303

caching, 326–342
HTTP requests, 342, 343

INDEX

428

JSON streaming, 324–326
long-running background tasks

BackgroundService
class, 310

background task, 314
CountryFileIntegration

BackgroundService class,
311, 320, 321

CountryFileIntegration
Channel class,
315, 317–319

ExecuteAsync method, 311
ICountryFileIntegration

Channel class, 319
ICountryFileIntegration

Channel interface, 315
IServiceProvider interface,

312, 313
POST, 320
ShutdownTimeout, 320
SubmitAsync method, 317

paging query
parameters, 321–324

OWASP Secure Headers Project
(OSHP), 89

P, Q
Parameter binding

address class, 108
addressId parameter, 112
addressId property, 114
address object, 111

AntiForgery feature, 112
binding attributes, 110
complex types, 108, 109
coordinates parameter, 116
CountryIds class, 220, 221
data elements, 222–225
data manipulation, 219
data sources, 113
DisableAntiForgery

method, 113
form parameter, 112
fundamentals, 107
GET requests, 115, 116
headers, 220–222
ids parameter, 117
limitCountSearch

parameter, 116
Postman request,

118, 221, 222
POST request, 110, 111
PUT request, 112, 115
QueryString parameters, 116
route parameters, 109
types, 220

Performance testing, 404

R
Representational State Transfer

(REST), 1, 32
architectural style, 32
ASP.NET Core 8, 44, 53
base URLs, 34
constraints, 33, 34

Optimizations, APIs (cont.)

INDEX

429

data access, 294–301
documentation, 40
media type/content-type, 35, 36
product data structure, 35
state transfer, 33
URL naming, 36–38
versioning, 39, 40

Request From Comment (RFC), 2
HTTPS protocol, 30

S
Secure Socket Layer (SSL), 30, 31
Separation of Concerns (SoC), 80,

81, 129, 138, 214
Server-side request forgery

(SSRF), 89
Single Sign-On (SSO), 378, 386
Smoke testing, 404
SMTP configuration, 50
Streaming content, 169–171
Structured Query Language (SQL)

data access, 268, 269
EF Core, 271

System Under Test (SUT), 405, 408,
410, 412, 415, 416, 418

T
Test-Driven Development

(TDD), 405
Testing

types, 403
unit (see Unit testing)

Transport Layer
Security (TLS), 7

HTTPS protocol, 29–31

U, V
Uniform Resource Characteristics

(URC), 27
Uniform Resource Identifier

(URI), 2, 54
authority structure, 24
definition, 23–25
host information, 25
structure, 24

Uniform Resource Locator
(URL), 25, 26

naming, 36–38
REST, 34
route parameters, 38
routing method, 106

Uniform Resource Names
(URN), 27

Unit testing, 403, 404
characteristics, 405, 406
project structure, 407
SUT step-by-step

act section, 416
assert section, 416–418
constructor, 415
CountryEndpoints

class, 408
creation, 410–412
GetCountries

function, 409

INDEX

430

GetCountriesTests class, 410
identification, 409
pageIndex and pageSize, 415
UnitTests project

structure, 412
Visual Studio test

explorer, 411

writing test option, 413–415
tools/libraries, 406, 407

W, X, Y, Z
Windows Communication

Foundation (WCF), 44
World Wide Web (WWW), 1

Unit testing (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Prerequisites
	Introduction
	Chapter 1: Introducing HTTP and REST
	Unveiling HTTP Behind the Web
	The Characteristics of HTTP
	HTTP Requests and Responses
	HTTP Implementation
	HTTP Verbs
	HTTP Status Codes
	Request and Response Headers
	Request Headers
	Controls Headers
	Conditional Headers
	Content Negotiation Headers
	Authentication Credentials Headers
	Request Context Headers

	Response Headers
	Control Data Headers
	Validator Header Fields
	Authentication Challenges Headers
	Response Context Headers

	URI, URL, and More
	URI
	URL
	And Others…

	Parameters
	Error Handling
	HTTPS, TLS, and HSTS
	Let’s Put the Pieces of the Puzzle Back Together

	Extend Your Talent on the Web with REST Architecture Style
	REST Constraints
	REST Good Practices
	Base URL
	Media Type
	URL Naming
	API Versioning
	API Documentation

	Summary

	Chapter 2: Introducing ASP.NET Core 8
	ASP.NET Core Fundamentals
	ASP.NET Core Web API
	ASP.NET Core Minimal APIs
	Summary

	Chapter 3: Introduction to Application Development Best Practices
	Getting the Right Frame of Mind
	A Basic Understanding of the Business
	Problem-Solving Skills
	Understanding Programming Paradigms
	Logical and Structured Thinking

	Clean Architecture Fundamentals
	Clean Code Fundamentals
	General Coding Fundamentals
	Coding Style Fundamentals

	OWASP Principles
	Summary

	Chapter 4: Basics of Clean REST APIs
	Routing with ASP.NET Core 8
	ASP.NET Core Routing
	Setting Up the Correct HTTP Verb
	Writing Routes
	Using Route Constraints

	RouteGroups

	Parameter Binding
	What’s Precisely Parameter Binding?
	Parameter Binding by Example

	Validating Inputs
	Object Mapping
	Managing CRUD Operations and HTTP Statuses
	Handling HTTP Statuses
	Creating the Services to Handle CRUD Operations
	Creating the Endpoints to Handle CRUD Operations
	MapPost("/countries", () => { })
	MapGet("/countries/{id}", () => { })
	MapDelete(“/countries/{id}”, () => { })
	MapPut(“/countries/{id}”, () => { })
	MapPatch(“/countries/{id}”, () => { })

	Downloading and Uploading Files
	Downloading Files
	Uploading Files
	Uploading a Single File or Many Files Without Any Payload
	Uploading a Single File or Many Files with a Payload
	Validating an Uploaded File

	Streaming Content
	Handling CORS
	API Versioning
	Versioning by Headers
	Versioning by Route

	Documenting APIs
	Managing API Versions in Swagger
	Adding Comments on Endpoints
	Grouping Endpoints by Tag
	Other Customizations
	Hiding an Endpoint
	Deprecating an Endpoint
	Describing Endpoint Responses

	Summary

	Chapter 5: Going Further with Clean REST APIs
	Encapsulating Minimal Endpoint Implementation
	Implementing Custom Parameter Binding
	Example of Custom Parameter Binding from Headers
	Example of Custom Parameter Binding from the From Data

	Using Middlewares
	Using Action Filters
	Using Rate Limiting
	The Fixed Window Model
	The Sliding Window Model
	The Token Bucket Model
	The Concurrency Model

	Global Error Management
	Summary

	Chapter 6: Accessing Data Safely and Efficiently
	Introduction to Data Access Best Practices
	SQL-Type Data Access
	HTTP Data Access
	Architecturing Data Access

	Accessing Data with Entity Framework Core 8
	Step 1: Creating the CountryEntity Class
	Step 2: Creating the EF Core Context
	Step 3: Configuring the CountryEntity
	Step 4: Generating the Database Model from C#
	Step 5: Enabling Resiliency with Entity Framework Core
	Step 6: Writing the Repository on Top of the CountryEntity

	Accessing Data with HttpClient and REST APIs
	Using IHttpClientFactory to Make HTTP Requests
	Using Refit to Make HTTP Requests
	Using Polly to Make HTTP Requests Resilient

	Summary

	Chapter 7: Optimizing APIs
	Asynchronous Programming
	Basics of Asynchronous Programming
	Using CancellationToken

	Long-Running Tasks with Background Services
	Paging
	JSON Streaming
	Caching
	Output Cache
	In-Memory Cache
	Distributed Cache

	Speeding Up HTTP Requests with HTTP/2 and HTTP/3
	Summary

	Chapter 8: Introduction to Observability
	Basics of Observability
	Performing Logging
	Performing Tracing and Metrics Data Collection
	Implementing HealthCheck
	Liveness HealthCheck
	Readiness HealthCheck

	Summary

	Chapter 9: Managing Application Secrets
	Introduction to Application Secret Management
	Example with Azure Key Vault
	Summary

	Chapter 10: Secure Your Application with OpenID Connect
	Introduction to OpenID Connect
	Configuring Authentication and Authorization in ASP.NET Core
	Passing a JWT into Requests and Getting the User’s Identity
	Summary

	Chapter 11: Testing APIs
	Introduction to Testing
	Efficient Unit Testing
	Using the Right Tools
	Testing a SUT Step-by-Step
	Identify What to Test
	Create the Test Class
	Write the Test
	Write the Constructor
	Write the Arrange Section
	Write the Act Section
	Write the Assert Section

	Summary

	Index

