

 [image: Cover image]
 Book cover of Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8

 Anthony Giretti

Coding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8
Develop Robust Minimal APIs with .NET 8

 [image:]
 The Apress logo.

Anthony GirettiLa Salle, QC, Canada

				ISBN 978-1-4842-9978-4e-ISBN 978-1-4842-9979-1
https://doi.org/10.1007/978-1-4842-9979-1
© Anthony Giretti 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This Apress imprint is published by the registered company APress Media, LLC, part of Springer Nature.
The registered company address is: 1 New York Plaza, New York, NY 10004, U.S.A.

Prerequisites

 This book is aimed at beginner and intermediate developers who want to take their Application Programming Interface (API) development skills to the next level. In this book, I assume you know the basics of .NET, C#, and, therefore, the fundamentals of Object-Oriented Programming (OOP). I also assume you’ve already used Visual Studio and know how to use it. As for web fundamentals, I’ve started from scratch, so if you don’t know much about the Web, no problem!

Introduction

 Dear reader friend, welcome to this book!

 In my career, I have worked in various companies and on various complex APIs. Although each company had its challenges, I can assure you that they all had one thing in common: their APIs lacked a lot of love and care. They all suffered from the same problems: poor code organization due to an accumulation of minor errors over the years, lack of consistency in the definition of coding conventions, lack of technological refreshment, misinterpretations of the HyperText Transfer Protocol (HTTP) and Representational State Transfer (REST) principles, missing logging or bad logging practice, and not enough care regarding performances.

 I have always enjoyed helping teams overcome these difficulties, and I have decided to write a book to share my experiences and guide you through the best practices of API implementations. This book will focus on some technical architecture of an API, but it will focus more on coding practices to help you avoid the most common mistakes in your development career. I will not cover solution architecture where an API is built around other systems, but keep assured; I will show you how to implement access to external data sources.

 At the end of this book, you will know how to develop APIs with ASP.NET Core 8 properly coded, performant, resilient, secure, testable, and debuggable. You will go from a beginner/intermediate level to a senior level by learning precisely WHAT you need to know without feeling overwhelmed by a ton of information.

 Let’s go!

Any source code or other supplementary material referenced by the author in this book is available to readers on the Github repository. For more detailed information, please visit https://www.apress.com/gp/services/source-code.
Acknowledgments

 Completing this book could not have been possible without the participation and assistance of many people, and I would like to express my special thanks to them. First, thanks to my wife, Nadege, who never stopped supporting me. I love you!

 Next, I would like to thank the rest of my family for their support.

 This book has been written in special conditions since I was hospitalized for a severe disease that could have taken my life. I haven’t given up, and I hope this book will please you; if I have completed it, it’s for a good reason, I hope!

 I also would like to thank my colleagues at Marchex, especially my friend (and colleague) Callon Campbell, who never stopped encouraging me.

 Thanks to my friend Dominique St-Amand, who has never been stingy with comments to help me improve this book.

 Last but not least, Fiodar Sazanavets! Thanks, my friend, for being part of this journey; you were essential in this new challenge I set for myself. Without you, I wouldn’t have succeeded.

Table of Contents

Chapter 1:​ Introducing HTTP and REST1
Unveiling HTTP Behind the Web1
The Characteristics of HTTP3

HTTP Requests and Responses4

HTTP Implementation5

Extend Your Talent on the Web with REST Architecture Style32
REST Constraints33

REST Good Practices34

Summary41

Chapter 2:​ Introducing ASP.​NET Core 843
ASP.​NET Core Fundamentals44

ASP.​NET Core Web API53

ASP.​NET Core Minimal APIs65

Summary69

Chapter 3:​ Introduction to Application Development Best Practices71
Getting the Right Frame of Mind72
A Basic Understanding of the Business72

Problem-Solving Skills72

Understanding Programming Paradigms73

Logical and Structured Thinking73

Clean Architecture Fundamentals74

Clean Code Fundamentals79
General Coding Fundamentals79

Coding Style Fundamentals83

OWASP Principles86

Summary90

Chapter 4:​ Basics of Clean REST APIs91
Routing with ASP.​NET Core 892
ASP.​NET Core Routing92

RouteGroups103

Parameter Binding107
What’s Precisely Parameter Binding?​108

Parameter Binding by Example109

Validating Inputs119

Object Mapping129

Managing CRUD Operations and HTTP Statuses135
Handling HTTP Statuses136

Creating the Services to Handle CRUD Operations138

Creating the Endpoints to Handle CRUD Operations141

Downloading and Uploading Files151
Downloading Files151

Uploading Files155

Streaming Content169

Handling CORS171

API Versioning177
Versioning by Headers178

Versioning by Route187

Documenting APIs190
Managing API Versions in Swagger192

Adding Comments on Endpoints199

Grouping Endpoints by Tag206

Other Customizations207

Summary212

Chapter 5:​ Going Further with Clean REST APIs213
Encapsulating Minimal Endpoint Implementation214

Implementing Custom Parameter Binding219
Example of Custom Parameter Binding from Headers220

Example of Custom Parameter Binding from the From Data222

Using Middlewares225

Using Action Filters238

Using Rate Limiting243
The Fixed Window Model246

The Sliding Window Model253

The Token Bucket Model255

The Concurrency Model257

Global Error Management259

Summary266

Chapter 6:​ Accessing Data Safely and Efficiently267
Introduction to Data Access Best Practices267
SQL-Type Data Access268

HTTP Data Access269

Architecturing Data Access269

Accessing Data with Entity Framework Core 8271
Step 1:​ Creating the CountryEntity Class272

Step 2:​ Creating the EF Core Context273

Step 3:​ Configuring the CountryEntity274

Step 4:​ Generating the Database Model from C#276

Step 5:​ Enabling Resiliency with Entity Framework Core280

Step 6:​ Writing the Repository on Top of the CountryEntity281

Accessing Data with HttpClient and REST APIs294
Using IHttpClientFacto​ry to Make HTTP Requests295

Using Refit to Make HTTP Requests297

Using Polly to Make HTTP Requests Resilient298

Summary301

Chapter 7:​ Optimizing APIs303
Asynchronous Programming303
Basics of Asynchronous Programming304

Using CancellationToke​n306

Long-Running Tasks with Background Services310

Paging321

JSON Streaming324

Caching326
Output Cache326

In-Memory Cache330

Distributed Cache336

Speeding Up HTTP Requests with HTTP/​2 and HTTP/​3342

Summary343

Chapter 8:​ Introduction to Observability345
Basics of Observability346

Performing Logging347

Performing Tracing and Metrics Data Collection363

Implementing HealthCheck367
Liveness HealthCheck368

Readiness HealthCheck370

Summary374

Chapter 9:​ Managing Application Secrets375
Introduction to Application Secret Management375

Example with Azure Key Vault378

Summary383

Chapter 10:​ Secure Your Application with OpenID Connect385
Introduction to OpenID Connect386

Configuring Authentication and Authorization in ASP.​NET Core389

Passing a JWT into Requests and Getting the User’s Identity395

Summary401

Chapter 11:​ Testing APIs403
Introduction to Testing403

Efficient Unit Testing405
Using the Right Tools406

Testing a SUT Step-by-Step408

Summary418

Index419

About the Author

Anthony Giretti
 [image:]
 A photo of Anthony Giretti.

 is a senior developer/architect at Marchex in Toronto, Canada. He appreciates learning and teaching new technologies and has a knack for web technologies (more than 17 years’ experience) and a keen interest in .NET. His expertise in development and IT and his passion for sharing his knowledge allow him to deconstruct any web project in order to help other developers achieve their project goals. He loves to deal with performance constraints, high availability, and optimization challenges. Anthony is the author of Beginning gRPC with ASP.NET Core 6 (Apress), a six-time Microsoft MVP, and a Microsoft Certified Software Developer (MCSD).

About the Technical Reviewer

Fiodar Sazanavets
 [image:]
 A photo of Fiodar Sazanavets.

 is a Microsoft MVP and a senior software engineer with over a decade of professional experience. He primarily specializes in .NET and Microsoft stack and is enthusiastic about creating well-crafted software that fully meets business needs. He enjoys teaching aspiring developers and sharing his knowledge with the community, which he has done both as a volunteer and commercially. Fiodar has created several online courses, written a number of technical books, and authored other types of educational content. He also provides live mentoring services, both to groups and individuals. Throughout his career, he has built software of various types and various levels of complexity in multiple industries. This includes a passenger information management system for a railway, distributed smart clusters of IoT devices, ecommerce systems, financial transaction processing systems, and more. He has also successfully led and mentored teams of software developers.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_1

1. Introducing HTTP and REST

Anthony Giretti1
(1)La Salle, QC, Canada

 Before we dive into ASP.NET Core 8 and API development, let’s first go back to the basics of any web application. Whether a website is run from a browser or a web service (web API), it’s always the same principle: a client and a server will communicate together; a client will send a request to a server, which will then respond to the client. This is all possible with the magic of the HTTP communication protocol. Under this protocol, data can be transported using different formats and constraints. Here is REST! REST is an architectural concept of data representation. Of course, these two should not be confused. In this chapter, we will cover the following content:	
 HTTP

	
 REST architecture style

 Unveiling HTTP Behind the Web

 The HyperText Transfer Protocol (HTTP) is a network protocol for exchanging data between clients and servers. This protocol was invented in 1990 by British computer scientist Tim Berners-Lee to access the World Wide Web (WWW). WWW makes it possible to consult web pages from a browser using HyperText Markup Language (HTML) through Uniform Resource Identifier (URI) web addresses. At the beginning of HTTP’s history, HTML was the language used to create pages, but since then, HTTP has evolved into a web server that can process data formats other than HTML. For example, a web server can serve (but also accept as input) Extensible Markup Language (XML), which is a structured language, or JavaScript Object Notation (JSON). Of course, a web server can serve other types of data formats, categorized as Multipurpose Internet Mail Extensions (MIME) type, and I will come back to this later.

 HTTP follows a technical specification called Request From Comment (RFC), developed by the Internet Engineering Task Force (IETF). There are a ton of RFC specifications identified by numbers. The common point among them is that they define the specifications of the Internet and only the Internet. HTTP is defined by RFC 7231. RFC 7231 can be found at this address: www.rfc-editor.org/rfc/rfc7231.

 Note

 In this book, I will often refer to RFCs. The reason is that I want to teach you the good practices for using HTTP. However, in practice, the actual implementation of those RFCs may differ. Finally, while this chapter aims to teach you the good techniques with HTTP, I will not cover all the HTTP capabilities. I’ll stick to what you need to know about building clean APIs with ASP.NET Core.

 There are also different versions of HTTP. HTTP has evolved. I will not go into details; in the following, you can find the published versions of the protocol:	
 HTTP/0.9 (obsolete)

	
 HTTP/1.0 (obsolete)

	
 HTTP/1.1 (still used)

	
 HTTP/2 (in use but not widely used)

	
 HTTP/3 (new, not much used)

 In this book, I will mainly refer to HTTP/1.1 and sometimes to HTTP/2 and HTTP/3 (when approaching the performance theme).

 The Characteristics of HTTP

 HTTP has three essential characteristics:	1.

 It is stateless: This means that after sending a request to the server and receiving the response, neither the client nor the server retains any information on the exchanged request.

	2.

 It is connectionless: An HTTP connection is open between the client and the server. Once the client has received the response from the server, the connection is closed, and the connection between the two systems is not permanent.

	3.

 It is independent of the media, that is, the server can transmit any media as long as the client and the server “agree” on exchanging the content. (I will return to this when I discuss headers.)

 While HTTP is stateless, transmitting information between requests may be necessary. Most web applications need to recognize the same user during a browsing session (identify this user through browsing between several web pages). To achieve this, an RFC describes HTTP cookies designed to keep user data browser-side. I won’t go into this type of “persistence” in this book, but I will employ more modern techniques. However, if you are interested, consult RFC 6265 here: www.rfc-editor.org/rfc/rfc6265.

 These characteristics may seem abstract, but they will become more apparent as we read this book together. In the next section, I will give you an overview of HTTP requests and responses. This will help you understand HTTP before going into detail.

 HTTP Requests and Responses

 An HTTP connection works as follows: a request will receive a response unless the connection is broken. Every request and every response works the same way, and I’ll go into more detail in the next section.

 An HTTP request works with elements as follows:	
 A client (a browser, an application) initiates an HTTP request by invoking a URI, the address of the requested resource on the server.

	
 The URI requires the use of a verb that will determine the action to be performed.

	
 Metadata will be sent in the HTTP request, called headers. These headers allow controlling the content negotiated with the server, such as sending authentication information and much more.

	
 Parameters are necessary to exchange content with the server and obtain the response sought, and the parameters can be in the request’s body, the route, or the URI.

 An HTTP response works with elements as follows:	
 The server returns a response with a simple status code (HTTP status code) to determine how the HTTP request processing took place.

	
 The server also returns headers in response to the client providing with different metadata.

	
 Finally, the server will return (or not) a payload formatted in the MIME type requested by the client.

 So far, I have briefly described and simplified how HTTP works. Figure 1-1, therefore, summarizes what we have previously discussed.
 [image:]
 A block diagram represents the interaction between the client and server. The client sends the verb + U R I + parameters + headers to the server through a browser and receives the status code + payload + headers.

Figure 1-1
 A basic HTTP request and its response

 In the following section, I will detail the HTTP verbs, the request headers, the format of a URI, the different parameters passed in a request, the HTTP status codes, the response headers, and the payload formats returned to the client. Once we finish those points, I will bonify Figure 1-1 with more details.

 HTTP Implementation

 Let’s dive into more detail to see what HTTP verbs, request headers, response headers, and HTTP status codes are and how the client passes its parameters in HTTP requests combined with the invocation of a URI.

 HTTP Verbs

 RFC 7231 defines the following verbs:	
 GET: This is the most well-known. It allows you to request a resource from the server and receive a response in the desired format (defined by the headers, as we will see later in this chapter). The response is cacheable (retain information in memory), and we will discuss it in Chapter 6.

	
 HEAD: This verb is similar to the GET verb but does not return any payload; a payload is used to request metadata at the requested address. Since developers barely use it most of the time, I won’t use it in this book, but it’s good to know what it is used for. Like GET, the server response is also cacheable.

	
 POST: This verb is interesting because it serves multiple purposes. This verb allows the creation of new resources, and its payload is attached to the request’s body. (I will detail what’s a request body further in this chapter.) Another way to send data is to use the form-data technique, which will be described later in this book. The POST verb also allows modifying data by adding content to the data (appending data to the resource representation according to the RFC). The server response is not cacheable unless freshness information is added to the response headers (max-age or Expires headers). We will discuss it again in the “Request and Response Headers” section.

	
 PUT: This verb is confusing because the RFC states that it replaces a resource on the server. Very often, developers confuse PUT and POST (replace a resource vs. append data to a resource). The server response here is not cacheable. However, if a resource doesn’t exist, PUT should behave as POST by creating the resource.

	
 DELETE: This verb is used to delete a resource. The server response is not cacheable.

	
 CONNECT: The verb establishes a tunnel to the server through a proxy (a server to which the HTTP request will be delegated and access the server for the requested request). This verb is used for secure requests with Transport Layer Security (TLS), in other words, HTTPS. I will also come back to HTTPS later in this chapter. I never had to use this verb, and I won’t talk about it in this book. The server response is not cacheable.

	
 OPTIONS: This verb can be helpful when you want to know what verbs are supported for a given URI. It’s also used in the context of Cross-Origin Resource Sharing (CORS), which has its dedicated section further in this book. In the API world, you don’t necessarily need to use this verb because you will usually know the available URI for a given endpoint through the OpenAPI specification. This will be discussed in the “Extend Your Talent on the Web with REST Architecture Style” section of this chapter. We will also see it together in Chapter 4 when I bring up the API documentation topic. The server response is not cacheable.

	
 TRACE: A TRACE request sends a request to the server with no particular payload. This lets you see if intermediate servers, such as proxies, have altered the original request. In the context of APIs, this verb is not used. The server response is not cacheable.

 RFC 7231 does not describe all the existing verbs, and there are others! RFC 5789 defines the PATCH verb. This RFC can be found here: www.rfc-editor.org/rfc/rfc5789.html.

 The PATCH verb can be confused with PUT and POST verbs because they all allow modifying a resource on a server. PATCH partially updates a resource (like POST) when PUT tends to replace a resource.

 I see many developers confusing each other. Now you are aware of what the RFCs indicate about these verbs, but see that it is commonly accepted to use POST for resource creation or to replace GET verb when there are too many parameters in the URI to put them in the body of a POST. It’s also commonly accepted to use PUT to entirely or partially replace a resource even if PATCH is made for that. Personally, I rarely use PATCH, only when I want to update a single property of a resource (e.g., a date). From the moment I start modifying and altering several properties of a resource (a date, a status, a description, etc.), I instead implement PUT.

 If you recall, I briefly mentioned HTTP status codes in this section. The following section will discuss how status codes link to HTTP verbs. Some verbs are used essentially with certain HTTP statuses. In the next section, I will list the HTTP statuses and what verbs they can be associated with.

 HTTP Status Codes

 HTTP status codes are essential in an HTTP request/response between a server and a client. They allow the client, when the server’s response has been received, to be informed of the result of the processing by the server. HTTP status codes are also governed by RFC 7231. I will not exhaustively detail each HTTP status class and each HTTP code because RFC 7231 does a pretty good job of doing so, and I won’t use all of them in this book. Regarding APIs, status codes are essential for clients to understand what the server is trying to tell us. They provide us with insights on what to do next.

 An HTTP status code has three digits. The first digit defines the status category, and there are five categories of HTTP status codes:	
 1xx: They are purely informational.

	
 2xx: They express that the server received and processed the request successfully.

	
 3xx: They inform the client that the server has proceeded to a redirection, that is, the resource is not at the address indicated, but that the request will be redirected there automatically.

	
 4xx: They mean the request (client-side) is malformed and/or the client (the end user) probably made an input error in their request. 4xx are errors that the client can fix.

	
 5xx: They tell the client that the request on the server has not been completed due to an error.

 RFC 7231 is not the only RFC that describes HTTP status codes. However, it describes the codes most often used. RFC 4918 and RFC 6585 complete the list, with other codes covering other scenarios.

 Table 1-1, taken from the following RFCs	
 RFC 7231: www.rfc-editor.org/rfc/rfc7231

	
 RFC 4918: www.rfc-editor.org/rfc/rfc4918

	
 RFC 6585: www.rfc-editor.org/rfc/rfc6585

 lists the association between HTTP status codes and HTTP verbs commonly used as industry standards. I won’t use all of them in this book; you will not need to know them by heart. On the other hand, knowing their existence is valuable since you will know their existence and how to use them when required. Later in this book, I’ll dig deeper into why I’m using some of them in the code samples I provide.Table 1-1
 List of available HTTP status codes and verbs most often used with them

	
 Code

 	
 Reason phrase

 	
 RFC

 	
 Associated verb

	
 100

 	
 Continue

 	
 7231

 	
 All verbs

	
 101

 	
 Switching Protocols

 	
 7231

 	
 All verbs

	
 200

 	
 OK

 	
 7231

 	
 GET, HEAD

	
 201

 	
 Created

 	
 7231

 	
 POST

	
 202

 	
 Accepted

 	
 7231

 	
 All verbs

	
 203

 	
 Non-Authoritative Information

 	
 7231

 	
 GET

	
 204

 	
 No Content

 	
 7231

 	
 POST, PUT, PATCH

	
 205

 	
 Reset Content

 	
 7231

 	
 POST, PUT, PATCH

	
 206

 	
 Partial Content

 	
 7231

 	
 GET

	
 207

 	
 Multi-Status

 	
 4918

 	
 All verbs

	
 300

 	
 Multiple Choices

 	
 7231

 	
 All verbs

	
 301

 	
 Moved Permanently

 	
 7231

 	
 GET, HEAD, DELETE

	
 302

 	
 Found

 	
 7231

 	
 GET, HEAD, DELETE

	
 303

 	
 See Other

 	
 7231

 	
 GET, HEAD, DELETE

	
 304

 	
 Not Modified

 	
 7231

 	
 GET, HEAD

	
 305

 	
 Use Proxy (deprecated)

 	
 7231

 	
 All verbs

	
 307

 	
 Temporary Redirect

 	
 7231

 	
 All verbs

	
 400

 	
 Bad Request

 	
 7231

 	
 POST, PUT, PATCH

	
 401

 	
 Unauthorized

 	
 7231

 	
 All verbs

	
 402

 	
 Payment Required

 	
 7231

 	
 Not used yet

	
 403

 	
 Forbidden

 	
 7231

 	
 All verbs

	
 404

 	
 Not Found

 	
 7231

 	
 All verbs except POST

	
 405

 	
 Method Not Allowed

 	
 7231

 	
 All verbs

	
 406

 	
 Not Acceptable

 	
 7231

 	
 All verbs

	
 407

 	
 Proxy Authentication Required

 	
 7231

 	
 All verbs

	
 408

 	
 Request Timeout

 	
 7231

 	
 All verbs

	
 409

 	
 Conflict

 	
 7231

 	
 POST, PUT, PATCH

	
 410

 	
 Gone

 	
 7231

 	
 All verbs except POST

	
 411

 	
 Length Required

 	
 7231

 	
 POST, PUT, PATCH

	
 412

 	
 Precondition Failed

 	
 4918

 	
 All verbs

	
 413

 	
 Payload Too Large

 	
 7231

 	
 POST, PUT, PATCH

	
 414

 	
 URI Too Long

 	
 7231

 	
 GET but applies to all verbs

	
 415

 	
 Unsupported Media Type

 	
 7231

 	
 POST, PUT, PATCH

	
 417

 	
 Expectation Failed

 	
 7231

 	
 All verbs

	
 422

 	
 Unprocessable Entity

 	
 4918

 	
 POST, PUT, PATCH

	
 423

 	
 Locked

 	
 4918

 	
 GET, HEAD, POST, PUT, PATCH

	
 424

 	
 Failed Dependency

 	
 4918

 	
 All verbs

	
 426

 	
 Upgrade Required

 	
 4918

 	
 All verbs

	
 500

 	
 Internal Error

 	
 7321

 	
 All verbs

	
 501

 	
 Not Implemented

 	
 7231

 	
 All verbs

	
 502

 	
 Bad Gateway

 	
 7231

 	
 All verbs

	
 503

 	
 Service Unavailable

 	
 7231

 	
 All verbs

	
 504

 	
 Gateway Timeout

 	
 7231

 	
 All verbs

	
 505

 	
 HTTP Version Not Supported

 	
 7231

 	
 All verbs

	
 507

 	
 Insufficient Storage

 	
 4918

 	
 POST, PUT, PATCH

 This may seem like a lot of HTTP status codes, but remember that in 99% of the cases, you will only use a handful of codes described here.

 Later in this book, we will come back together to some of them, and I will explain them to you with examples of their usefulness.

 Now let’s move on to another essential component of an HTTP request and response, the request and response headers.

 Request and Response Headers

 HTTP headers are metadata that allows information to be passed between the client and the server during a request/response flow. These headers transport information but are not limited to authentication data and information on the client’s browser.

 In this section, I will differentiate between request headers and response headers as they differ in nature for their purpose. For both the request and response headers, RFC 7231 defines each (some are more detailed, and some are defined in other RFCs, which RFC 7231 refers to). As in my usual approach you’ve seen earlier, I will not go in depth since RFCs describe them in detail. Remember that this book will not cover all possible use cases; specific headers are generated automatically by a browser during the request, some during the response, and by the server. You will not need to know them by heart. On the other hand, knowing they exist is excellent as you get to know they exist and you can customize them for your needs when necessary.

 Note

 Although RFC 7231 describes (or redirects to other RFCs) the best-known headers, in reality, there is a complete list of headers (even the most unknown, but without many details) for which you can consult RFC 4229 here: https://datatracker.ietf.org/doc/html/rfc4229.

 Request Headers

 Like HTTP status codes, request headers are divided into classes, five exactly:	
 Controls headers

	
 Conditional headers

	
 Content Negotiation headers

	
 Authentication credentials headers

	
 Request context headers

 In the following subsections, I will tell you in what RFCs these headers are described, and I will list the links of these RFCs at the end of this section.

 Controls Headers

 There are seven headers in the Controls class. Some of them have various possible directives (key/value pair):	
 Cache-Control: Used to specify cache duration along the request/response chain. They can handle several directives, and their name perfectly describes their use. For more details, I suggest you consult RFC 7234:	
 no-cache: Doesn’t accept any value, works by itself

	
 no-store: Doesn’t accept any value, works by itself

	
 max-age: Accepts a value in seconds, for example, Cache-Control: max-age=302400

	
 max-stale: Accepts a value in seconds, for example, Cache-Control: max-stale=1800

	
 min-fresh: Accepts a value in seconds, for example, Cache-Control: min-fresh=600

	
 no-transform: Doesn’t accept any value, works by itself

	
 only-if-cached: Doesn’t accept any value, works by itself

	
 Expect: Used to indicate expectations from the server to process the request correctly, for example, Expect: 100-continue. For more details, I suggest you consult RFC 7231.

	
 Host: Used to indicate the hostname (server) and the port (optional) from the targeted URI, for example, Host: www.example.com. For more details, I suggest you consult RFC 7230.

	
 Max-Forwards: Used to specify the limit of intermediate servers (proxies) that forward the request. Works only with TRACE and OPTIONS verbs and accepts integer values. Example: Max-Forwards: 1. I suggest you consult RFC 7231 for more details.

	
 Pragma: Used as backward compatibility with HTTP 1.0 cache. This header is ignored when the Cache-Control header is used. Example: Pragma: no-cache. For more details, I suggest you consult RFC 7234.

	
 Range: Used to return a port of a document with a given range of bytes (most often), for example, Range: bytes 0-2048. For more details, I suggest you consult RFC 7233.

	
 TE: Used to specify the chunk transfer coding, for example, defining the compression algorithm, for example, TE: gzip. For more details, I suggest you consult RFC 7230.

 Conditional Headers

 Five conditional headers allow you to apply a condition on the target resource for completing the request. Here they are:	
 If-Match: Used to check if the requested resource matches a current representation of the resource, for example, If-Match: * (any resource) or If-Match: “123”, which targets a resource with the ETag (Entity Tag) “123”. ETag represents a specific version of a resource. For more details, I suggest you consult RFC 7232.

	
 If-None-Match: Used to check if the requested resource does not match any current representation of the resource. Works precisely the opposite of the If-Match header. Example: If-None-Match: * (any resource) or If-None-Match: “123,”. For more details, I suggest you consult RFC 7232.

	
 If-Modified-Since: Used to check if the target resource representation modification date is more recent than the provided date, for example, If-Modified-Since: Wed, 22 Aug 2022 21:56:00 GMT. For more details, I suggest you consult RFC 7232.

	
 If-Unmodified-Since: Used to check if the target resource representation modification date is less recent than the provided date, for example, If-Unmodified-Since: Wed, 22 Aug 2022 21:56:00 GMT. For more details, I suggest you consult RFC 7232.

	
 If-Range: It’s a combination of If-Match and If-Modified-Since headers, for example, If-Range: “123” or If-Range: Wed, 22 Aug 2022 21:56:00 GMT. For more details, I suggest you consult RFC 7233.

 Content Negotiation Headers

 Content Negotiation headers are essential in HTTP requests. They allow the client and the server to understand each other on what format should be exchanged. They are four in number:	
 Accept: Used to define the MIME type that the client can understand, for example, Accept: application/json or Accept: application/json, application/xhtml+xml. For more details, I suggest you consult RFC 7231.

	
 Accept-Charset: Obsolete. Many browsers and servers ignore this header. For more details, I suggest you consult RFC 7231.

	
 Accept-Encoding: Used to define the compression algorithm, for example, Accept-Encoding: deflate, gzip. For more details, I suggest you consult RFC 7231.

	
 Accept-Language: Used to tell the server what language the client is willing to accept, for example, Accept-Language: * (all) or Accept-Language: en-CA. For more details, I suggest you consult RFC 7231.

 Authentication Credentials Headers

 Two authentication headers are necessary to interact with resources protected by authentication. The first is particularly important because it will be developed in this book. Here they are:	
 Authorization: Used very often to authenticate on the target server. It can handle different types of authentication, such as bearer tokens or basic authentication (both will be addressed in Chapter 9). Example: Authorization: bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9…. For more details, I suggest you consult RFC 7235.

	
 Proxy-Authorization: Same as Authorization, it is used to authenticate proxies. Example: Proxy-Authorization: basic YW50aG9ueWdpcmV0dGk6MTIzNA==. For more details, I suggest you consult RFC 7235.

 Request Context Headers

 Finally, RFC 7231 describes three headers providing additional contextual data for the server. Here they are:	
 From: Used to tell the server who, with an email address, has sent the request, for example, From: John.​Doe@example.​com. For more details, I suggest you consult RFC 7231.

	
 Referrer: Used to tell the server what URI the request comes from, for example, Referrer: https://anthonygiretti.com. For more details, I suggest you consult RFC 7231.

	
 User-Agent: Used to collect information about the user who has originated the HTTP request, like the browser capabilities, for example, User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/104.0.0.0 Safari/537.36. For more details, I suggest you consult RFC 7231.

 These request headers are the most common headers you see. Don’t worry about remembering them. This is why RFCs (and my book) exist. Since RFCs define standards, you will come to know how to use them when and where over time. Let’s now move to response headers.

 Note

 Although RFCs describe the usage of many headers, you are free to use your custom headers. You can create a specific request header for your application and add value to it.

 As promised, here is Table 1-2 that references the links for each RFC I mentioned earlier in this section.Table 1-2
 Recap of mentioned RFCs in the current section

	
 RFC

 	
 Link

	
 7230

 	
 www.rfc-editor.org/rfc/rfc7230

	
 7231

 	
 www.rfc-editor.org/rfc/rfc7231

	
 7232

 	
 www.rfc-editor.org/rfc/rfc7232

	
 7233

 	
 www.rfc-editor.org/rfc/rfc7233

	
 7234

 	
 www.rfc-editor.org/rfc/rfc7234

	
 7235

 	
 www.rfc-editor.org/rfc/rfc7235

 Response Headers

 We just went over a series of headers used in an HTTP request. If it is essential to send metadata to the server, it is not less for the response headers. They are essential for informing the client (a browser or an application) of additional metadata relating to the context of the HTTP response. Some are defined in RFC 7231 and others in RFCs 7232, 7233, 7234, and 7235, already introduced in the previous section.

 There are four response header classes. Here they are:	
 Control Data headers

	
 Validator header fields

	
 Authentication Challenges headers

	
 Response Context headers

 Control Data Headers

 These headers are among the most important. These headers make it possible to enrich the information sent to the client. They are usually paired with an appropriate HTTP status code. Here is the list of these eight headers:	
 Age: Used to tell the client when (in seconds) the response has been generated. Usually close to 0, it can be more than 0 if the response has been cached on a proxy. Example: Age: 0. I suggest you consult RFC 7234 for more details.

	
 Cache-Control: Similar to the Cache-Control request header. The response header value is the same as the request header. For more details, I suggest you consult RFC 7234.

	
 Expires: Used to tell the client the response date and time is considered outdated, for example, Expires: Tue, 23 Aug 2022 21:35:00 GMT. For more details, I suggest you consult RFC 7234.

	
 Date: Used to tell the client when (date and time) the response has been generated on the server, for example, Sun, 21 Aug 2022 11:22:00 GMT. For more details, I suggest you consult RFC 7231.

	
 Location: Used to tell the client the URI where the resource can be found after its creation, especially before a POST request, for example, http://contoso.com/item/52. For more details, I suggest you consult RFC 7231.

	
 Retry-After: Used to tell the client when to retry (date and time or in seconds) a failed HTTP request due to a Service Unavailable (503) response, for example, Retry-After: Wed, 24 Aug 2022 08:15:00 GMT or Retry-After: 60. For more details, I suggest you consult RFC 7231.

	
 Vary: Used to tell the client what request parameter header influences the response from the server. “*” means that anything in the request can affect the response. Example: Vary: * or Vary: Accept-Encoding. For more details, I suggest you consult RFC 7231.

	
 Warning: Used to tell the client any helpful information. Not recommended since it’s deprecated. For more details, I suggest you consult RFC 7234.

 Validator Header Fields

 There are two response headers allowing the addition of metadata to the representation (version) of the requested resource during the HTTP request. Here they are:	
 ETag: Used to tell the client the version (representation) of the requested resource. It can be any string of characters. Example: ETag: “abc123”. For more details, I suggest you consult RFC 7232.

	
 Last-Modified: Used to tell the client what date and time the requested resource has been modified for the last time, for example, Sat, 20 Aug 2022, 13:45:00 GMT. For more details, I suggest you consult RFC 7232.

 Authentication Challenges Headers

 The server (or a proxy) allows the client to be told which authentication the server (proxy) accepts, and there are two:	
 WWW-Authenticate: Used to tell the client what authentication methods the server accepts, for example, WWW-Authenticate: basic. For more details, I suggest you consult RFC 7235.

	
 Proxy-Authenticate: Used to tell the client what authentication methods the proxy accepts, for example, Proxy-Authenticate: basic. For more details, I suggest you consult RFC 7235.

 Response Context Headers

 Like the client, the server can send additional contextual data related to the requested resource. There are three:	
 Accept-Ranges: Used to tell the client what range unit the server supports for partial file download, for example, Accept-Ranges: bytes. For more details, I suggest you consult RFC 7233.

	
 Allow: Used to tell the client what verbs the server supports, for example, Allow: GET, POST, PUT, DELETE. For more details, I suggest you consult RFC 7231.

	
 Server: Used to tell the client the server technology used to handle HTTP requests, for example, Server: Kestrel. For more details, I suggest you consult RFC 7231.

 Note

 Like the request headers, you can use your custom response headers. You can create a specific response header for your application and add any value to it.

 URI, URL, and More

 URI

 At the beginning of the chapter, I introduced you to the notion of a URI. A URI (Uniform Resource Identifier) ​​is, according to RFC 3986
 a compact sequence of characters that identify an abstract or physical resource.

 —www.rfc-editor.org/rfc/rfc3986

 In short, this is the address you type in your browser to access a resource like http://www.google.com.

 This is just a simple summary, and a URI is more elaborate. A URI contains (or can include) the following:	
 Scheme (mandatory) is the specification for accessing the remote resource.

	
 Authority (mandatory) combines optional user information, a server address (host), and a port. It must be prefixed with the characters ://. I won’t detail the user information in this book since it’s not a relevant feature for this book.

	
 Path (optional) is the data identifying a resource within a particular scope. It must be prefixed with the character /.

	
 Query (optional) is the data identifying a resource within a particular scope. Must be prefixed with the character?.

	
 Fragment (optional) is the data that allows identifying a particular subset of the requested resource. Used for HTML pages for identifying anchors. For more explanation, you can visit the following website: https://html.com/anchors-links/. I won’t detail it further in this book because it doesn’t make sense since it discusses APIs and not HTML pages.

 Figure 1-2 illustrates what a URI looks like with its parts.
 [image:]
 A diagram denotes a set of 9 adjacent blocks labeled scheme, colon double slash, authority, path, question mark, query, hashtag, and fragment from left to right.

Figure 1-2
 URI structure

 The structure elements in orange, Scheme, the characters ://, and Authority, are mandatory. The following elements in blue, such as the /, Path, ?, Query, #, and Fragment, are optional.

 As I indicated previously, Authority comprises several elements, mandatory and optional. Figure 1-3 will give you an idea of ​​the structure of Authority.
 [image:]
 A diagram denotes a set of 5 adjacent blocks labeled user info, at, host, colon, and port from left to right.

Figure 1-3
 Authority structure

 Only the host is mandatory.

 To illustrate the structure of a URI, I will show you some examples now:	
 Example 1: The blog’s homepage without any Path, Query, or Fragment. Only the Scheme and the Authority are used there: http://anthonygiretti.com.

	
 Example 2: The search page of a blog with a Query parameter: http://anthonygiretti.com/?s=http.

	
 Example 3: The blog search page with a Query parameter and a Fragment: http://anthonygiretti.com/?s=http#book.

	
 Example 4: A particular page of a blog with a Path: http://anthonygiretti.com/2021/08/12/asp-net-core-6-working-with-minimal-apis/.

	
 Example 5: The same HTML page running locally on a development machine: http://localhost:2222/2021/08/12/asp-net-core-6-working-with-minimal-apis/.

 I’ll stop with the URI examples because we’ll return to it in this chapter’s “Extend Your Talent on the Web with REST Architecture Style” section.

 Once again, if you want to learn what a URI is in depth, I suggest you read RFC 3986.

 URL

 You’ve probably heard of the Uniform Resource Locator (URL) before. Well, I bet you could have confused URI and URL like me. I will demystify this for you.

 The difference between the two is subtle and little known to developers. A URI defines a resource’s identity, while the URL links a resource to a specific access method defined by the Scheme. In the subsection “URI,” I always gave the same example using the http Scheme value, which invokes HTTP. A URL allows invoking other protocols such as	
 File Transfer Protocol: The Scheme value is ftp.

	
 Gopher protocol: The Scheme value is gopher.

	
 Electronic email protocol: The Scheme value is mailto.

	
 Usenet protocol: The Scheme value is news.

	
 NNTP: The Scheme value is nntp.

	
 Telnet protocol: The Scheme value is telnet.

	
 Wide Area Information Server protocol: The Scheme value is wais.

	
 Host-specific file names protocol: The Scheme value is file.

	
 Prospero Directory Service protocol: The Scheme value is prospero.

 To learn more about them, I suggest you read RFC 1738, which can be found here: www.rfc-editor.org/rfc/rfc1738.

 I will discuss URLs again in the “Extend Your Talent on the Web with REST Architecture Style” section as I will for URIs.

 And Others…

 Two other acronyms can be associated/confused with URI and URL, and these are the following:	
 Uniform Resource Names (URN), defined in RFC 1737 here: www.rfc-editor.org/rfc/rfc1737.

	
 Uniform Resource Characteristics (URC) are not defined in any RFC, but you can find some information here: https://datatracker.ietf.org/wg/urc/about/.

 These last two do not represent any interest, at least in this book, but as you certainly have an unquenchable thirst for learning, I offer you the resources to cultivate yourself further.

 Parameters

 Parameters… And, yes, without telling you, we have already discussed them since this chapter began. What are they for? Well, they are used to find a specific resource (not always) on the server. How? First, we can use them differently, and here they are (again). I’m sure this will remind you of something:	
 By header using custom headers: For example, myHeader: myValue. This is not the recommended way, but it is possible if needed.

	
 By the URL path: For example, https://www.rfc-editor.org/rfc/rfc1738, where rfc1738 is the target resource’s ID, an HTML page serving the RFC 1738 data.

	
 By the Query: For example, http://anthonygiretti.com/?s=http. Be careful here. The Query parameters do not necessarily allow access to a specific resource but a set of resources meeting the search criteria.

 These last two ways of proceeding are the most adequate, and we will see why in the “Extend Your Talent on the Web with REST Architecture Style” section. Yes, I’ve been teasing you for a while in this section, but we’ll get there soon!

 Error Handling

 Because HTTP has been well designed, it has been described as an elegant way of handling errors, because, in absolute terms, incorporating errors properly into an HTTP response is simply vital. There’s an RFC that describes this, RFC 7807, which you can find here: https://datatracker.ietf.org/doc/html/rfc7807.

 This RFC defines a JSON contract, named Problem Details, returned in response to an API client when an error occurs. Problem Details contains the elements described in Table 1-3, taken as is, from RFC 7807.Table 1-3
 Recap of mentioned RFCs in the current section

	
 Property name

 	
 Description

	
 type (string)

 	
 A URI reference [RFC3986] that identifies the problem type.

 This specification encourages that, when dereferenced, it provides human-readable documentation for the problem type (e.g., using HTML [W3C.REC-html5-20141028]).

 When this member is not present, its value is assumed to be “about:blank”.

	
 title (string)

 	
 A short, human-readable summary of the problem type.

 It SHOULD NOT change from occurrence to occurrence of the problem, except for purposes of localization (e.g., using proactive content negotiation; see [RFC7231], Section 3.4).

	
 status (number)

 	
 The HTTP status code ([RFC7231], Section 6) generated by the origin server for this occurrence of the problem.

	
 detail (string)

 	
 A human-readable explanation specific to this occurrence of the problem.

	
 Instance (string)

 	
 A URI reference that identifies the specific occurrence of the problem.

 It may or may not yield further information if dereferenced.

 Problem Details is very convenient since it is a well-detailed error contract. I won’t give you any example here since RFC 7807 already provides some. I will use Problem Details in this book while showing you how to handle errors with ASP.NET Core 8.

 HTTPS, TLS, and HSTS

 So far, I haven’t talked to you about security concerning HTTP. Well, here we are! HTTP does have a problem with security since it allows data to be exchanged between the client and the server in the clear on the Internet. As you can imagine, this is a real problem! Transporting unencrypted data can cause the following issues:	
 A hacker can “listen” and steal the data exchanged between the client and the server.

	
 A hacker may corrupt data.

	
 No security authentication ensures that the client communicates with the website requested by the client.

 This is where HTTPS comes in. HTTPS is a secure version of HTTP, hence the letter S for Secure. The Scheme value will be https, for example, https://anthonygiretti.com. Unlike HTTP, which runs by default on port 80, HTTPS runs on port 443 by default. We will see that together later in this book, but with ASP.NET Core, we can edit the port number by configuration.

 HTTPS is based on the Transport Layer Security (TLS) protocol, which makes it possible to overcome the problems mentioned previously with HTTP. That is, HTTPS provides	
 Encryption—the data is no longer visible (in the clear) on the Internet

	
 Protection of data integrity—they are no longer falsifiable

	
 Authentication by ensuring the customer communicates with the website they requested

 Note

 TLS is an improved Secure Socket Layer (SSL) encryption–based protocol version. SSL is often associated with TLS, commonly named SSL/TLS encryption, but in reality, TLS replaces SSL/TLS since it has been updated since 1996.

 So how does SSL/TLS work? A key exchange occurs between the client and the server. The latter will establish an encrypted connection named TLS handshake.

 You don’t need to know how the TLS handshake works, but if you are interested, you can learn more about it here: www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/.

 Only the client and the server possessing the decryption key can encrypt/decrypt the data exchanged. To make it possible, the server needs to obtain an SSL certificate, which the server’s administrator (or a developer) will install and has previously been obtained by them from a Certificate Authority (CA). I won’t go into detail here. This book will deal with the implementation of APIs with ASP.NET Core. The latter will automatically (but with your consent) use an SSL certificate when first run in Visual Studio 2022. However, I will show you how to force your APIs to use HTTPS when a client invokes a URL by configuring the HTTP Strict Transport Security (HSTS) policy mechanism in ASP.NET Core. To learn more in depth about HTTPS, TLS, and HSTS, they are described in the following RFCs:	
 RFC 2818 for HTTPS: https://datatracker.ietf.org/doc/html/rfc2818

	
 RFC 8446 for TLS: https://datatracker.ietf.org/doc/html/rfc8446

	
 RFC 6797 for HSTS: https://datatracker.ietf.org/doc/html/rfc6797

 I advise you to read these RFCs only if you feel the need to understand every aspect of HTTPS, but in everyday life, what you will have to remember is the need to install an SSL certificate on the server, which will allow the exchange of an encryption/decryption key on the server and the client where the data will no longer be readable in plain text or modifiable on the Internet. Figure 1-4, therefore, summarizes the situation.
 [image:]
 A block diagram represents the interaction between the client and server. It denotes an encrypted key from the client to the server and a decrypted key from the server to the client. An S S L certificate is installed on the server.

Figure 1-4
 A basic HTTPS request and its response

 As simple as it may seem, this figure demonstrates (almost) exactly what anyone trying to spy on an HTTPS request sees.

 Let’s Put the Pieces of the Puzzle Back Together

 Here we have a set of concepts described by RFCs. I introduced you to what HTTP is by starting with a basic diagram symbolizing what each concept implies in HTTP. This book deals with APIs that serve data in JSON format (remember the MIME type application/json) and not HTML or other pages, but the principle remains the same. To finally see and understand what an HTTP request does, I will redo a more detailed version of Figure 1-1 with Figure 1-5. The latter describes the invocation of the URL www.myServiceApi.com/scope/someId with the GET verb, accepting only the application/json format and the en-CA language; accepting gzip, deflate, and br (Brotli) encoding; and finally authenticating with the basic authentication. The response returns status 200 OK with the requested Content-Type application/json, the Content-Length response, the server technology (Kestrel), and a JSON payload. I voluntarily let the request and response data clear even if HTTPS appears in Figure 1-5.
 [image:]
 A block diagram represents the interaction between the client and server. It denotes an H T T P request from the client to the server comprising the details of the host, authentication, and other sets of values. The server sends the content with the status code of 200, O K.

Figure 1-5
 A “real-life” HTTPS request and its response

 As simple as it may seem, this figure demonstrates (almost) exactly what anyone trying to spy on an HTTPS request sees.

 Extend Your Talent on the Web with REST Architecture Style

 In 2000, an American computer scientist named Roy Fielding defined the architectural style used for web service development: Representational State Transfer (REST). HTTP is a protocol defined by a committee issuing RFCs; REST is a concept. A concept that does not redefine HTTP does not add any additional functionality. REST is independent of HTTP. Unfortunately, many developers are getting mixed up. The confusion is that HTTP is a client-server communication protocol, while REST identifies constraints on how the server and client talk. I will introduce you to two different topics: REST constraints and good practices. Following REST constraints makes you respect API REST principles, and following only best practices doesn’t ensure you are REST compliant.

 REST Constraints

 A web application should implement its business logic with all sets of object entities (e.g., a product is an entity) and possible operations (e.g., retrieve the product information based on product ID). These possible operations with these entities must be designed with four main operations or methods: Create, Retrieve, Update, and Delete (CRUD). These entities are called resources and are presented or represented in a form such as JSON, XML, or others. A client, therefore, calls the CRUD functions on the server via HTTP (or not, e.g., gRPC or SOAP, which are other communication protocols) to manipulate the representation of an entity on the server. This defines the term Representational of REST.

 What does the State Transfer term mean? The “state transfer” from the client to the server is, for example, when the client first calls the “create product” operation, after calling what would be the next product state or product states that the “client” can call. Its status can be “retrieve created product data” or “update product data.” So this is the State Transfer term of REST.

 REST is not defined by this alone. REST is based on six constraints:	
 Separation of responsibilities between client and server. (The client displays data, and the server computes them.)

	
 No session state (stateless). Neither the client nor the server needs the state of the other to communicate.

	
 Caching resources.

	
 Consistent communication with identifiable resources. In HTTP vocabulary, there must be a URL, a response containing a body, and a header.

	
 Allows the addition of intermediate layers (e.g., proxies).

	
 Allows the client to ask the server for a piece of code that the client will execute.

 In this book, I will mainly develop the first four points here, and we can still consider design, all along this book, of REST APIs.

 REST Good Practices

 Earlier in this chapter, I told you I would return to URIs and URLs. I’ll talk to you here about good practices for defining these with REST.

 Base URL

 First of all, let’s start by establishing the base URL. The base URL is the root URL of all your HTTP endpoints. For example, it is customary to use URLs with an exact domain name for your business and a path and parameters, which can become long and complicated. This is correct for a website, but simple URLs are recommended for REST APIs. Let’s consider your “My company” offering a product sales website and then exposing it on the same REST API URLs. For example, this is to be avoided: https://www.mycompany.com/home/services/rest. Prefer the following, which is more meaningful for an API: https://api.mycompany.com.

 Media Type

 The JSON format with the header Content-Type: application/json is recommended. This is the most practical and commonly adopted. It is possible to use XML, but the JSON format is commonly adopted for practicality (JSON is not as strict as XML on syntax) and also for performance reasons. JSON is more efficient in terms of serialization/deserialization compared with XML. As a reminder, serialization and deserialization is a process that makes it possible to transform a data structure (serialization) into a storable data format and achieve the opposite (deserialization). For example, the Product data structure contains an identifier, a name, and a description. Listing 1-1 shows the serialization of the Product data structure.

 {

 "Id": 1,

 "name": "My product name,"

 "description": "My product description"

 }

 Listing 1-1
 JSON serialization of a Product data structure

 Listing 1-2 shows the same data structure serialized in XML.

 <?xml version="1.0" encoding="utf-8"?>

 <product xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Id>1</Id>

 <Name>My product name</Name>

 <Description>My product description</Description>

 </product>

 Listing 1-2
 Product data structure serialized in XML

 Admit that it’s more pleasant with JSON. It’s less verbose than XML, which is heavier because of its massive content vs. JSON.

 For your information, because this is not a constraint related to HTTP, using the header allows us to protect against attacks like Cross-Site Request Forgery (CSRF). This attack enables the execution of client-side code. For example, JavaScript scripts execute unwanted functions in the client browser. The malicious code is blocked and cannot be executed by forcing a serialization (e.g., in JSON or XML). To learn more, I advise you to consult this post on owasp.org: https://owasp.org/www-community/attacks/csrf.

 Note

 The Open Worldwide Application Security Project (OWASP) is a nonprofit organization that provides resources for developers to ensure they develop secure applications.

 URL Naming

 Here is a subject that I defend vigorously. Why? Because by writing URLs well, we understand what they do by reading them without adding unnecessary words. Imagine that you were trying to retrieve the complete list of products that you have in your database. I have already seen URLs written like this:

 (GET) /getAllProducts

 Do you see what I mean? Well, this URL is a phrase on its own. I could, for example, write this instead:

 (GET) /products

 It’s much more straightforward. I already use the GET verb, and I don’t need to show it in the URL, do I? Using products in the plural is more than enough!

 Now imagine that I only want ten. I’m not going to write this:

 (GET) /getSomeProducts?limit=10

 But I rather write

 (GET) /products?limit=10

 Don’t you agree? Now I want to create a product. I will proceed as follows

 POST /products

 and not like this

 POST /products/create

 or

 POST /createProduct

 Finally, in the logic of the state transfer, the response of the POST operation will return me a status 201 Created within the headers (or in the payload) and the ID of the product created, which will allow me to write the request GET to retrieve the information of the product created

 GET /products/{id}

 and not

 GET /getProduct?id={id}

 Do you see how practical it is? The logic is the same if I want to edit the product; I will use the URL as the POST operation and the same URL as the GET operation to delete it, which gives the following set of CRUD operations:	
 Create: POST /products

	
 Retrieve: GET /products/{id}

	
 Update: PUT or PATCH /products/{id}

	
 Delete: DELETE /products/{id}

 This logic applies in the same way to linked resources. When a data structure is linked to another, for example, a product is linked to a category, this product belongs to a certain category. The best REST practice is for the URL path to be subdivided as follows to access/manipulate products of a certain category

 /categories/{categoryId}/products

 and as follows to access/manipulate a particular product in a particular category:

 categories/{categoryId}/products/{productId}

 The CRUD operation set to manage one or more products in a particular category gives this:	
 Create: POST /categories/{categoryId}/products

	
 Retrieve: GET /categories/{categoryId}/products/{productId}

	
 Update: PUT or PATCH /categories/{categoryId}/products/{productId}

	
 Delete: DELETE /categories/{categoryId}/products/{productId}

 So, of course, handling a product without needing to access the category is possible; however, if you want to check before handling a product if it belongs to a category (it depends on your business logic), well, it’s good practice to adopt, rather than using query parameters.

 We’ll return to this later in this book, but passing an ID in the URL path as we did is called “routing.” In ASP.NET Core, the categoryId and the productId are called route parameters.

 API Versioning

 Sometimes an API evolves rapidly in terms of proposed functionalities or improvement of existing features that breaks the usual functioning (evolution of service contracts, that is, the data structures exchanged between the client and the server). Unfortunately, clients often evolve less quickly on their side, but an API must not break client applications. We must continue to maintain them while developing the API. There is a solution for this, and it is API versioning. How does it work? Well, there are as many URLs for as many versions of the API. A good practice is to insert the version number in the URL as follows—/v{version}/, for example:

 https://api.mycompany.com/v1/categories

 https://api.mycompany.com/v2/categories

 And so on… We will come back to this later in this book as well.

 There is another way to define a versioned API. Instead of specifying the version in the URL, headers can be used to ask for a specific API version. HTTP does not define any particular header for this. You can create your own, for example:

 GET https://api.mycompany.com/categories

 X-API-Version: 1

 Note

 A good practice when creating a custom/nonstandard header is to prefix it with the X- characters.

 I barely use API versioning from headers, but it is a valid choice if you want to use them. I will show you some examples in Chapter 4 of this book.

 A third way, which is probably never used (on my end, I have never seen that before), is to use media type versioning. It implies the usage of Accept/Content-Type headers to define a version of your API. I won’t go further with that, either. But If you want to learn more about it, you can read the Microsoft documentation here: https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design#media-type-versioning.

 API Documentation

 One thing that is really important and almost unanimously accepted is documenting your API. What does it consist of? It is a question of exposing on a dedicated endpoint or an HTML page or in YAML Ain’t Markup Language (YAML) or again in JSON, all the URLs that your API exposes (including the versions) with the incoming parameters, the structure’s output data, the HTTP status codes used by the API, etc. The goal is to let the client know how to consume your API correctly.

 There is a specification called OpenAPI to carry out this documentation task. This specification is implemented through a set of developing tools. It is named Swagger. I’ll return to the Swagger tools for ASP.NET Core later in this book. In the meantime, if you want to know more about OpenAPI, you can consult the OpenAPI initiative website: https://spec.openapis.org/oas/latest.html.

 Note

 YAML is a popular serialization language. I won’t use it further in this book, even if it’s a language that can potentially replace JSON for configuration files, for example. To learn more about this language, you can read its specification here: https://yaml.org/.

 Summary

 This chapter has been long and informative. However, we will return to what we have seen in this first chapter and practice what you have learned here. After all, this chapter is a kind of introduction, a necessary step to properly implement our APIs later since it is based on RFCs, that is, a kind of “truth” that allows understanding of what HTTP is and how it works. Before going further in this book, it seemed necessary to know and understand the headers, verbs, status codes, and parameters that allow invoking URLs. Moreover, I have introduced you to good practices for developing REST APIs. However, these are not based on RFCs but are commonly accepted by the developer community worldwide. In the next chapter, we will focus on ASP.NET Core 8.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_2

2. Introducing ASP.NET Core 8

Anthony Giretti1
(1)La Salle, QC, Canada

 Microsoft released its first full-stack web application development framework with ASP.NET in 2002 with ASP.NET Web Forms. The years that followed were rich in developments such as ASP.NET Model-View-Controller (MVC), ASP.NET Web API, and SignalR. The framework evolved too quickly with new functionalities without changing its core, more precisely, the assembly named System.Web. Very quickly, new challenges appeared, such as performance, the possibility of running ASP.NET on servers other than IIS (which is the Windows-only web server designed by Microsoft), increasing its affinity with the cloud to facilitate its deployment significantly, and greatly improving its configuration by making it more flexible. ASP.NET Core was born!

 ASP.NET Core is a complete overhaul of the trendy ASP.NET framework and allows you to develop many types of applications:	
 Web apps, such as MVC, Razor Pages, or single-page applications with Blazor

	
 APIs (REST APIs, remote procedure calls, and real-time)

	
 Background tasks running as Windows services (or Unix daemons) or within ASP.NET Core applications

 At this time, ASP.NET Core 8 (delivered with .NET 8) is the latest version. This chapter introduces you to ASP.NET Core 8, which we’ll use throughout this book. ASP.NET Core 8 no longer supports ASP.NET Web Forms and Windows Communication Foundation (WCF), which is a SOAP-based web service framework. However, a project named CoreWCF was released in early 2022. If you are interested, you can read this post: https://devblogs.microsoft.com/dotnet/corewcf-v1-released/.

 In this chapter, I’ll teach you ASP.NET Core fundamentals and the following application types that will be used to build REST APIs:	
 ASP.NET Core Web API

	
 ASP.NET Core minimal APIs

 ASP.NET Core Fundamentals

 Before diving into ASP.NET Core, let’s talk about the fundamentals. Once we know the fundamentals of ASP.NET Core, we can use this knowledge to build any web application we’d like, including gRPC.

 For an ASP.NET Core application, the application’s entry point is the Program.cs file as shown in Listing 2-1. In this file, you start creating your application by instantiating a WebApplicationBuilder with the static method WebApplication.CreateBuilder. The WebApplicationBuilder allows customizing your application by adding the desired components (configuration) and activating them (activations).

 var builder = WebApplication.CreateBuilder(args);

 var app = builder.Build();

 app.MapGet("/", () => "Hello World!");

 app.Run();

 Listing 2-1
 Example of Program.cs file

 Note

 This is the default Program.cs file generated from the ASP.NET Core 8 template. It implements the evolved C# feature named “top-level statements.” The same remark applies to using statements, and the default ASP.NET Core 8 template uses the C# “global usings” feature.

 The Program.cs file has two distinct parts:	
 Services configuration includes the type of application, third-party libraries, authentication, authorization, and the registration of services with dependency injection.

	
 Services activation defines the ASP.NET Core middleware pipeline. A middleware is a component, once assembled (in a particular order) into an application, that can handle requests and responses and perform operations before and after the next component, as shown in Figure 2-1.

 [image:]
 A schematic representation of the A S P N E T core middleware pipeline flow. Incoming requests are routed through middleware 1, middleware 2, and middleware 3 before being returned with a response.

Figure 2-1
 The ASP.NET Core middleware pipeline

 Services configuration is implemented at the beginning of the file before building the app with the builder.Build() method, and services activation occurs after the latter but before the app.Run() method as shown in Listing 2-2, which is a sample of a configuration of an ASP.NET Core Razor Pages application.

 var builder = WebApplication.CreateBuilder(args);

 // Services configuration

 builder.Services.AddRazorPages();

 var app = builder.Build();

 // Services activation

 if (!app.Environment.IsDevelopment())

 {

 app.UseExceptionHandler("/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.MapRazorPages();

 app.Run();

 Listing 2-2
 Example of a configured Program.cs file

 I understand this may still seem a blur to you, but the following will explain the architecture of ASP.NET Core to you more. I summarize the ASP.NET Core architecture in Figure 2-2.
 [image:]
 An A S P dot NET core architecture. The entry point block connects to the service configuration and the request pipeline configuration. Orders for execution of requests and responses are requested via the request pipeline.

Figure 2-2
 ASP.NET Core architecture

 First, you must understand dependency injection since it’s central to ASP.NET Core. Dependency injection is a technique that weakly couples objects and service classes with each other and their dependencies. Instead of directly instantiating services in methods through constructors, the class declares what dependencies it needs. In this book, we’ll use services configured with their implemented interface. These interfaces will be injected into the constructors of the classes calling these services. This decoupling allows our code to be abstracted and also facilitates testability. Later in this book, we’ll see how to easily test our code and take advantage of dependency injection. The service lifetime injected by dependencies is essential. Depending on the injected services, some need to be used once or several times for the HyperText Transfer Protocol (HTTP) request context or even used only once for all users making an HTTP request to the server. ASP.NET Core supports three life cycles:	
 Transient: A new service instance is created for each incoming request. This means that on the same incoming HTTP request, the developer can deal with a new instance of the same service for each HTTP request.

	
 Scoped: The service is instantiated once per incoming request. This is the most used lifetime. It guarantees the uniqueness of a service instance per user.

	
 Singleton: The service is instantiated once for the entire application’s lifetime (as long as it is not restarted), and all users share this instance. In ASP.NET Core, singleton lifetime is thread-safe (with object construction); ASP.NET Core manages it for you if you register your service correctly in the dependency injection container. However, if you need to modify a property, such as a Dictionary, you’ll need to use a ConcurrentDictionary instead.

 Listing 2-3 shows how to configure the three different lifetimes. Note that the parameter on the left is the interface and the parameter on the right is the concrete class that implements this interface. A compilation error will occur if the class doesn’t implement the interface to be injected by dependency.

 var builder = WebApplication.CreateBuilder(args);

 services.AddControllers();

 services.AddSingleton<ISingletonService, SingletonService>();

 services.AddScoped<IScopedService, ScopedService>();

 services.AddTransient<ITransientService, TransientService>();

 var app = builder.Build();

 if (!app.Environment.IsDevelopment())

 {

 app.UseExceptionHandler("/Error");

 app.UseHsts();

 }

 app.UseHttpsRedirection();

 app.UseStaticFiles();

 app.UseRouting();

 app.UseAuthorization();

 app.MapRazorPages();

 app.Run();

 Listing 2-3
 Configure each lifetime type

 Listing 2-4 shows how to inject services with an MVC controller after registering to what concrete implementation they are mapped to in the Program.cs file.

 public class DemoController : Controller

 {

 private readonly ISingletonService _singletonService;

 private readonly IScopedService _scopedService;

 private readonly ITransientService _transientService;

 public DemoController(ISingletonService singletonService,

 IScopedService scopedService,

 ITransientService transientService)

 {

 _singletonService = singletonService;

 _scopedService = scopedService;

 _transientService = transientService;

 }

 }

 Listing 2-4
 Example of an MVC controller where services are injected by constructor

 Depending on your needs, you might sometimes want to use a service such as Singleton, Scoped, or Transient, but you must be aware of the scope hierarchy.

 A Transient service can directly access a Singleton service or a Scoped service, which can directly access a Singleton service. The opposite is impossible because any object with a longer life than another cannot access it directly. Figure 2-3 summarizes it.
 [image:]
 A diagram illustrates the A S P dot NET core scope hierarchy. A transient service can access directly to singleton service or a scoped service. Singleton service cannot access transient service directly.

Figure 2-3
 The scope hierarchy

 ASP.NET Core provides a way to add extra configuration within your application that dependency injection can consume anywhere. You can customize and store the additional configuration in an appsettings.json file. You can store settings here that differ by environment. For example, in a development environment, the appsettings.development.json file can contain configuration specific to development mode. If a JSON key/value pair is present in both files, the more specific file (appsettings.development.json) will override the value presented in the main file for a given key. You can create an Options object to populate with your configuration—this is referred to as the Options pattern. Listing 2-5 shows an SMTP configuration in appsettings.json that maps the SmtpConfiguration object shown by Listing 2-6 and then uses the dependency injection system as shown in Listing 2-7. Finally, the IOptions<TOptions> interface is injected in the DemoController as shown in Listing 2-8.

 {

 "SmtpConfiguration": {

 "Domain": "smtp.gmail.com",

 "Port": 465

 }

 }

 Listing 2-5
 SMTP configuration in appsettings.json

 public record class SmtpConfiguration

 {

 public string Domain { get; init; }

 public int Port { get; init; }

 }

 Listing 2-6
 SmtpConfiguration object

 var builder = WebApplication.CreateBuilder(args); services.Configure<SmtpConfiguration>(Configuration.GetSection("SmtpConfiguration"));

 Listing 2-7
 SmtpConfiguration object bound and registered in the dependency injection system

 public class DemoController : Controller

 {

 private readonly SmtpConfiguration _smtpConfiguration;

 public DemoController(IOptions<SmtpConfiguration> smtpConfigurationOptions)

 {

 _smtpConfiguration = smtpConfigurationOptions.Value;

 }

 }

 Listing 2-8
 Injecting SmtpConfiguration options into DemoController

 This is the simplest way to use options in ASP.NET Core. Depending on your needs, you can also leverage IOptionsSnapshot<TOptions> and IOptionsMonitor<TOptions>. To learn more, read Microsoft’s documentation: https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/options?view=aspnetcore-8.0.

 The last important thing to mention is the possibility of setting up development mode in ASP.NET Core by configuration. What is development mode? It allows developers to configure a different behavior of the application (set up, e.g., encrypted connection strings in production but not encrypted in development mode). Another important thing is the ability to display more detailed information about the unhandled error that occurred. Because it’s more detailed, developers should not enable development mode in production. To enable it, you must set the ASPNETCORE_ENVIRONMENT environment variable to Development in the launchSettings.json file or within the project properties panel. Further in this book, you’ll see a concrete example of using environment variables and encrypted connection strings. Listing 2-9 shows a launchSettings.json file configured for development mode with IIS and self-hosted mode.

 {

 "iisSettings": {

 "windowsAuthentication": false,

 "anonymousAuthentication": true,

 "iisExpress": {

 "applicationUrl": "http://localhost:57090",

 "sslPort": 44366

 }

 },

 "profiles": {

 "IIS Express": {

 "commandName": "IISExpress",

 "launchBrowser": true,

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 },

 "MVCDemo": {

 "commandName": "Project",

 "dotnetRunMessages": "true",

 "launchBrowser": true,

 "applicationUrl": "https://localhost:5001;http://localhost:5000",

 "environmentVariables": {

 "ASPNETCORE_ENVIRONMENT": "Development"

 }

 }

 }

 }

 Listing 2-9
 Development mode enabled within the launchSettings.json file

 ASP.NET Core Web API

 ASP.NET Core Web API allows you to …you guessed it ...create web APIs.

 A web API is an Application Programming Interface (API) used in conjunction with HTTP. Currently, web APIs use Representational State Transfer (REST), which is associated with the JavaScript Object Notation (JSON) interchange format and Extensible Markup Language (XML), which is used less often. APIs use HTTP features such as a Uniform Resource Identifier (URI).

 Because the final Internet user is significant in terms of the variety of terminals used, we want to provide data to browsers or recent device applications in a fast, secure way; we need a web API compatible with all of this. ASP.NET Core Web API is a relevant and performant framework for building web services that many users can use.

 ASP.NET Core Web API follows the Model-View-Controller (MVC) pattern. In traditional web apps, the V (View) in MVC is the web page. With the web API, it’s a response in JSON, XML, or any other format. Figure 2-4 gives an overview of this pattern.
 [image:]
 An architecture of the A S P dot NET core web A P I. H T T P requests are sent from the client to the controller, and the response is returned back to the client via model and serialization. Data source reads and writes controller.

Figure 2-4
 ASP.NET Core Web API architecture

 Note

 All the stuff I will create in this book is based on Visual Studio. But you can do the same things with the .NET Command-Line Interface (CLI) where you can find the syntax here: https://learn.microsoft.com/en-us/dotnet/core/tools/.

 Now, let’s see how to create a web API in Visual Studio 2022. As shown in Figure 2-5, select “Web” in the drop-down list to more easily find the project type you’re looking for: ASP.NET Core Web API.
 [image:]
 A screenshot titled add a new project highlights the web drop down menu and A S P dot NET core web A P I.

Figure 2-5
 How to find the project type: ASP.NET Core Web API

 Once you choose “ASP.NET Core Web API,” you’ll need to configure the project name, the location on your computer, and the solution name as shown in Figure 2-6.
 [image:]
 A screenshot titled configure your new project illustrates how to create your new A S P dot NET core web A P I project.

Figure 2-6
 How to create your new ASP.NET Core Web API project

 After that, you get the opportunity to select various options to customize your application. As shown in Figure 2-7, you can choose the runtime to run your ASP.NET Core Web API, and I strongly suggest you select the latest (.NET 8) in the drop-down; ASP.NET Core 8 can only be run by .NET 8. You can also set the authentication type (Windows, Microsoft Identity Platform, or no authentication), HTTPS, Docker, and OpenAPI support and whether you want to use controllers or not (using minimal APIs instead).
 [image:]
 A screenshot titled additional information illustrates how to configure the A S P dot NET core web A P I. The fields are as follows. Framework and authentication type.

Figure 2-7
 How to configure the ASP.NET Core Web API

 If you aren’t familiar with Docker, Docker is an open source containerization platform. Docker enables developers to containerize their applications that combine application source code with all the operating system (OS) libraries and dependencies required to run the code in any environment. To learn more, visit www.docker.com/why-docker. As for OpenAPI, it’s a specification that defines a standard, language-agnostic interface to RESTful APIs, allowing humans (and the machine) to discover and understand the features of a service without reading the source code. For details, you can refer to this website: https://swagger.io/specification/. Swagger is the set of tools built on top of OpenAPI.

 After clicking the “Create” button, Visual Studio will generate your project with a default template, including a WeatherForecast model and controller. Figure 2-8 shows the default project created by Visual Studio.
 [image:]
 A screenshot of the solution explorer user interface. The web A P I demo option has been selected.

Figure 2-8
 Default ASP.NET Core Web API WeatherForecast template app

 Let’s take a quick look at the controller in Figure 2-9.
 [image:]
 A screenshot of the wealth forecast controller dot c s screen. It contains a code snippet.

Figure 2-9
 The WeatherForecastController class

 Let’s take a look at the Program.cs file, the entry point of the application. As you can see, we enabled OpenAPI before. Swagger UI uses this in Figure 2-10.
 [image:]
 A screenshot of the program dot c s screen with the code snippet.

Figure 2-10
 Program.cs file configured with OpenAPI (Swagger)

 Visual Studio will open the browser with the OpenAPI web page and display all endpoints within the app if you run the app. At this point, it will show only the “WeatherForecast” GET endpoint. To try it, you can click the “Execute” button and view the data returned in the “Response” section, as shown in Figure 2-11.
 [image:]
 A screenshot of the swagger U I web page. It has curl, request U R L, and server response fields.

Figure 2-11
 Swagger UI web page

 The Swagger UI web page is open by default. When we enabled OpenAPI, Visual Studio configured it to open in the launchSettings.json with the “launchUrl” parameter, as shown in Figure 2-12.
 [image:]
 A screenshot of the launch settings dot j s o n screen. It includes a code snippet. The launch U r l semicolon swagger code line is highlighted.

Figure 2-12
 “launchUrl” parameter set to “swagger” value

 In addition to Swagger, it is possible to use a command-line tool, HttpRepl (HTTP Read-Eval-Print Loop), which is lightweight and cross-platform and can be used on ASP.NET Core APIs but also other kinds of APIs. This tool makes HTTP requests and views their results wherever the API is hosted. HttpRepl supports the following verbs: DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT.

 To install it, just run the command in a PowerShell window as shown in Listing 2-10.

 dotnet tool install -g Microsoft.dotnet-httprepl

 Listing 2-10
 HttpRepl installation command

 If you want to discover all the commands supported by this tool, you can enter the command shown in Listing 2-11.

 httprepl --help

 Listing 2-11
 HttpRepl help command

 Figure 2-13 shows the commands available in the output window.
 [image:]
 A screenshot of the developer power shell. It includes the commands. The command h t t prep 1 has been highlighted.

Figure 2-13
 Available commands for HttpRepl

 Figure 2-14 shows the exploration, navigation, and execution of the endpoints available in the API you want to discover. Endpoints are known because of the parsing of the swagger.json file, which is done automatically by typing the command (connection to the API) shown in Listing 2-12.

 httprepl https://localhost:5001

 Listing 2-12
 Connection to the local API base URL

 Endpoint exploration, navigation, and execution shown in Figure 2-14 are pretty original since they uses MS-DOS such as ls to list endpoints (listing files in a directory in Windows) or position itself on an endpoint with the cd command (moving to a directory in Windows).
 [image:]
 A screenshot of the developer power shell depicts the exploration, navigation, and execution of A P I endpoints.

Figure 2-14
 Exploration, navigation, and execution of API endpoints

 Finally, you can use Postman if you do not want to use the generated Swagger web page or HttpRepl. Postman is a GUI for generating HTTP requests to test the endpoints of a given API. This tool allows you to configure all the possible request parameters, such as the URL, headers, verbs, query string, and body. To download this tool, you can go to this page: www.postman.com. Figure 2-15 shows what the Postman interface looks like.
 [image:]
 A screenshot of the postman interface. The GET, headers, and query string are highlighted.

Figure 2-15
 Postman GUI tool

 The most popular of these three tools is Postman—maybe you already know it—but I admit that using HttpRepl online is quite lovely, and if you are a fan of command-line tools, this one is for you, especially if you are a Linux pro! If you are not, I hope I made you want to try it.

 ASP.NET Core Minimal APIs

 ASP.NET Core 8 has introduced a new feature: minimal APIs. ASP.NET Core 8 brings more functionalities to them and allows minimal APIs to catch up on web APIs. We will discuss this throughout this book.

 Why do I adore them? For the simple reason that sometimes I have to write minimalistic APIs, one or two endpoints maximum with data to manipulate quite simply. How does it work? There is no need to implement controllers, and only one file is necessary: the Program.cs file.

 As you already know, the latter allows on its own starting an application with minimal configuration. Note that all the ASP.NET Core pipeline remains the same. I mean by this the dependency injection system and the middlewares that follow one another and manage HTTP requests and responses.

 To get started, create an “ASP.NET Core Empty” project as shown in Figure 2-16.
 [image:]
 A screenshot titled create a new project illustrates the A S P dot NET core empty project. The option A S P dot NET core empty has been highlighted.

Figure 2-16
 Create an ASP.NET Core Empty project

 Note

 You can also use the ASP.NET Core Web API template and unselect the “Use controllers” options to do the same.

 Once you named your project, Visual Studio 2022 will create the following minimalistic project with its default endpoint, “Hello World!”, as shown in Figure 2-17.
 [image:]
 A screenshot of the program dot c s file. It depicts the A S P dot NET core projects minimalist design.

Figure 2-17
 Minimalistic ASP.NET Core project

 Figure 2-18 shows the minimal API configured to serve the Swagger documentation to reveal the Hello endpoint declared in the Program.cs file. Dependency injection is used for the IHelloService declared on the top of the file as a Scoped service. C# also introduces a new feature that allows developers to decorate lambda expressions with attributes, such as the FromRoute attribute that maps the route attribute “name” to the string parameter name.
 [image:]
 A screenshot of the program dot c s file illustrates the minimal A P I example.

Figure 2-18
 An example is a minimal API that uses dependency injection attributes on lambdas and serves as an endpoint with its Swagger documentation

 Figure 2-19 shows the Swagger UI generated from the preceding code.
 [image:]
 A screenshot of the swagger U I interface. It contains the minimal A P I demo section.

Figure 2-19
 An example of a minimal API Swagger UI

 I like this way of developing APIs. For my part, I use it almost automatically over ASP.NET Core Web API.

 Summary

 In this chapter, you’ve learned what ASP.NET Core is, its basics, and some of the frameworks it does support. ASP.NET Core is a vibrant framework. All kinds of web technologies are supported and well documented by Microsoft. That’s why it’s my favorite web application development framework, and I hope you enjoy it just as much as I do.

 Along with this book, you’ll see how I’ll build minimal APIs to show you how robust the ASP.NET Core 8 framework is.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_3

3. Introduction to Application Development Best Practices

Anthony Giretti1
(1)La Salle, QC, Canada

 Here we are at the heart of the matter! As you might expect, we will take your time developing an API in this book. Before developing an API with ASP.NET Core 8, in this chapter, we will review the basics of any software development, whether it is an API or any other type of software, such as a mobile application or a desktop application. Ideally, any application should respect the following development fundamentals: programming basics, structuring code in a clean architecture, writing readable, maintainable (and easy to debug!) code, and keeping your application safe with the Open Worldwide Application Security Project (OWASP) principles.

 In this chapter, you will learn a brief introduction to the following points:	
 Getting the right frame of mind

	
 Clean architecture fundamentals

	
 Clean code fundamentals

	
 OWASP principles

 Note

 This book assumes that you already know the fundamentals of programming, object or procedural programming, algorithms, and the basics of the C# language. Therefore, this chapter will remain more theoretical than practical since all the principles I will introduce here are well documented on the Web or in many books. This chapter aims to give you the right mindset to write clean APIs.

 Getting the Right Frame of Mind

 You may not know it, but Information Technology (IT), particularly software development, is challenging. It requires many qualities, and I will describe them in this section.

 A Basic Understanding of the Business

 Here I’m talking about the minimum of the minimum, that is, understanding the basics of algorithms while knowing a programming language, such as C#, which I’ll be using in this book. However, I consider that you have mastered the fundamentals of the language.

 Problem-Solving Skills

 Once you know the basics of algorithmics and a programming language, you must solve problems. You’ll have to transpose an entire logic into a programming language to achieve your goals, and from time to time, you’ll also have to deal with unexpected behavior in your software: bugs. In this book, I’ll cover some techniques for debugging software.

 Understanding Programming Paradigms

 There are different programming paradigms, such as procedural programming and object-oriented programming. I also assume you are familiar with the basic principles of these paradigms. Throughout this book, I’ll be using object-oriented programming, although I may sometimes use simple functions in the way that procedural programming requires.

 Logical and Structured Thinking

 This is the most complicated part! And that’s what I’m going to emphasize in this book. Understanding the IT business basics, solving problems, and understanding programming paradigms can make you a programmer, but thinking logically and structurally will make you an excellent programmer! Of course, a program has to work, but more is needed. High-quality software must satisfy these rules:	1.

 To be easy to understand and maintain: What’s worse than unreadable, unmaintainable code? You’ll make mistakes, and lots of them, if the code isn’t of the highest quality. I’m talking here about variable naming, class naming, code documentation, cyclomatic complexity, code safety, etc. I’ll return to this in a moment. We’re talking about clean code here.

	2.

 To be correctly organized: A computer program must be divided into several layers, each containing several elements (classes) with a particular type of responsibility and reusable independently on other layers. We’re talking about clean architecture here.

 Clean Architecture Fundamentals

 Clean architecture? If that sounds abstract, don’t worry; we’ll clarify it. In simple terms, it’s how to organize your code and define the relationships between each piece of code. Know that there is no absolute truth about implementing a clean architecture. In this chapter, I will introduce my way of seeing things, which I have adopted (and assumed) over the years of experience I have acquired. In the industry, we often talk about the following architectures:	
 Hexagonal architecture

	
 Onion architecture

	
 Domain-driven design (DDD)

	
 “Clean architecture”

 They all describe the organization of your application layers (projects in .NET). I won’t describe them here because it would be too long and could confuse you. In the meantime, I want to avoid repeating what has already been explained many times.

 Also, as you may have noticed, the title of this section is called “Clean Architecture,” and I mentioned this name with quotes in the preceding list. There is a difference between the two because I will talk about MY clean architecture rather than the “clean architecture” documented in other sources of information.

 My clean architecture is not fundamentally different from the others. It is a preference of mine in the context of low- to intermediate-complexity API development. In the case of complex architecture, the architecture will require more attention to detail. Still, again, how I see it here will allow you to understand 99% of the web projects you will have to do in your career as an API developer.

 Ultimately, the only thing that matters is to respect a great principle: independence (or weak coupling). Independence from what? Independence from the technology and from external data sources and the independence between application layers. More concretely, your application layers must be

 	1.

 Independent of the user interface: The user interface (API, desktop application, etc.) must function independently of your core application (business logic, data access, etc.). Throughout this book, I will use the abstraction principle to show you how to not depend on business logic.

	2.

 Independent of third-party libraries and frameworks: Your application must not be strongly coupled to a particular library, or you will be dependent on it and limited in your development, especially your technical maintenance. Later in this book, I will show how to abstract these libraries and frameworks.

	3.

 Independent of external data access: It must be possible to easily change databases (type of database) or switch to another type of data access, such as XML files somewhere on the network and vice versa. I will introduce some data access technologies and show you how to switch between these technologies. It also implies here the notion of abstraction.

	4.

 Independently testable: Testing must be done in isolation from other software layers and technologies. To illustrate this, I will introduce unit testing later in this book, which also relies on the abstraction principle.

 Note

 I mentioned several times the abstraction word (weak coupling). This is a crucial principle of clean code, which implies interfaces and dependency injection that I have introduced to you in Chapter 2, in the “ASP.NET Core Fundamentals” section.

 If you have understood these rules, feel free to learn other architectures as mentioned previously. Again, my vision is not the absolute truth, but it works without being too complex in most cases.

 Let’s move on to my vision, which will convince you, I hope. The way I see it, my application is divided into a minimum of four layers, and here they are:	
 A Domain layer will contain all our domain objects, repository interfaces (data access), and service interfaces, in other words, application contracts and abstractions. This layer does not rely on any layer. This layer is independent.

	
 A Presentation layer in this book will be an ASP.NET Core web layer that exposes APIs over HTTP. This layer is dependent on all layers. Even though the code is independent of any technology and only depends on contracts and abstractions, the application configuration needs to know what abstraction implements what concrete class. It must be done in the configuration, as I showed you in Chapter 2, in the Program.cs file.

	
 A Business logic (or Application) layer will implement business rules and orchestrate step-by-step actions from different components responsible for a particular action (e.g., data access, logging, caching data, etc.). This layer only relies on the Domain layer. It must only know the domain contracts and abstractions. This is critical since your business logic MUST NOT depend on any technology (infrastructure). There is only one exception. This layer can depend on generic layers such as tools that help you code better in a particular situation. You can, for example, introduce a dependency on a Tools layer that implements C# classes that can be reused in any situation and don’t rely on any technology. I will discuss it a little further.

	
 One or several Infrastructure layers. Infrastructure layers implement particular technology. They must rely on the Domain layer, which defines abstractions and contracts. Infrastructure layers implement them. It’s always good to have one Infrastructure layer per technology. For example, if you access data via SQL and HTTP, you can design one layer for SQL data access and another for HTTP. They will be independent of each other. It’s practical if you want to reuse the SQL layer and not the HTTP if you don’t need it.

	
 Optionally, you can design a Tools layer, as I said before. This layer can implement anything if you are not implementing any application logic or relying on a particular technology. You can code your stuff here if you implement generic code that can be applied in any layer. For example, you can implement stuff here that transforms an array of bytes into a stream or vice versa, creates a reusable class that performs regular expressions, etc.

 To give you a better idea, Figure 3-1 summarizes the interactions between the layers listed, and the Infrastructure layers are numbered from 1 to n.
 [image:]
 A block diagram denotes the dependencies between the domain layer, infrastructure layers, business logic layer, A S P dot net core layer, and tools layer.

Figure 3-1
 My vision of clean architecture

 I’ve just explained the ideology with a diagram. I’m not going to give you a specific example at this stage, but throughout this book, I’ll show you where (and how) to implement the different functionalities of your API. Once again, only the decoupling mindset matters; you’ll understand that throughout this book.

 I want to say a few words about design patterns. This book does not aim to teach you about design patterns, but I want to inform you that design patterns influence software architecture. A design pattern is a specific arrangement of modules commonly accepted as best practice for solving a particular problem in software design. It sets out a way of operating a standard solution, which can be used to design different software products. There are 24 design patterns described by the Gang of Four (GoF), a team of four experienced developers. Their 24 patterns are explained on their website. Don’t worry; you don’t need to learn them all. In this book, I’ll introduce you to just a few of them, including one you already met in Chapter 2: the Singleton, which allows you to instantiate only one instance of a class throughout an application.

 Here’s the website mentioned previously: www.gofpatterns.com/.

 Clean Code Fundamentals

 I’ve already introduced you to clean architecture, which is essential and can be implemented in many ways. Still, it’s also impossible for me not to make you aware of the notion of clean code. As you may have guessed, it’s not enough to organize your code well, to divide it into logical and independent layers. Still, you must also ensure that the code you implement is clean. I want to look at this before we start coding beautiful REST APIs!

 General Coding Fundamentals

 So what’s clean code? Here we go:	1.

 The code must be simple: This is the main characteristic of clean code. The simpler the code, the more readable and maintainable it will be as your software evolves. In Information Technology (IT) jargon, this principle is known as Keep It Simple, Stupid (KISS). To achieve your goals, think effectively. No need to anticipate the unforeseeable; that’s also what we call the You Ain’t Gonna Need It (YAGNI) principle, for example, if you try to anticipate a particular behavior when you think it won’t happen. Why it’s important? You will complexify your application for no valid reason!

	2.

 Code must have a single responsibility: In other words, a piece of code, an instruction or a function, must have a single purpose: to solve a single problem. Why is this? Because it allows us to isolate the functionalities of an application, which will take us to point number 5 in the following. The Single Responsibility principle is to be found in the SOLID principles. I’ll come back to this a little later in this section.

	3.

 Code must not be repeated: This is another essential principle in programming. Don’t copy and paste, and always give priority to reusability. This avoids having two identical pieces of code (which solve the same problem) evolve differently, which could lead to bugs. We call this the Don’t Repeat Yourself (DRY) principle, which only applies if identical pieces of code solve the same problem.

	4.

 Code must be well isolated from other parts of the code: Code is simple, and having only one responsibility is essential. However, for this to be entirely true, the code must meet another requirement: the Separation of Concerns (SoC) principle. This is not the same as the Single Responsibility principle, which governs the behavior of a piece of code, that is, a piece of code is written for a specific task. For example, when you order a pizza, you choose it, pay for it, and have it delivered. The Single Responsibility principle means that a pizza selection function programs the “construction” of your pizza. Dispatching your order involves several functions—each of them will be responsible for making the payment and managing the delivery, which will have their independent piece of code: this is what we call the Separation of Concerns (SoC) principle.

	5.

 Finally, the code must be testable: If all the preceding elements are respected, it should be easy to test. Testing an application, in other words, carrying out unit tests, is vital to the long-term maintainability of your application. I won’t go into too much detail here, as we’ll return to this in the book’s last chapter.

 I mentioned earlier the acronym SOLID, but I did not define it. Each letter of this acronym is the first letter of five great principles in object-oriented programming (OOP):	
 Single Responsibility principle: I already introduced this earlier. In this book, I will use this principle as much as possible.

	
 Open-Closed principle: This principle encourages class extension instead of modifying it when a feature needs to evolve. In other words, please create a new class and inherit it from the base class instead of reworking it. Even though it’s a great principle, it’s not very often applicable in an API.

	
 Liskov Substitution principle: Even though creating new classes using class inheritance is highly recommended, it’s easy to overuse it (too many levels of inheritance) and destabilize a software program’s functioning. This is where Liskov Substitution comes in. With this principle, a child class can remap a parent class without destabilizing the system. I can’t hide the fact that this isn’t always easy. Nevertheless, it’s always good to know this principle, even if, in an API, it’s not always applicable.

	
 Interface Segregation principle: This principle is similar to the Separation of Concerns principle but applies to interfaces. If we take the example of ordering a pizza, we could have one interface describing the service contracts to “build” the pizza, another to pay for it, and a third to manage the delivery. In this book, I’ll be using this principle, and we’ll look at some concrete examples.

	
 Dependency Inversion principle: This principle aims to enforce the usage of abstraction as much as possible. The closer you are to the high level of your application (UI), the more you should rely on abstractions instead of low-level classes. This will prevent any maintenance issues if you change your low-level implementation. We have already talked about this earlier in this book; I introduced you to the dependency injection pattern. Throughout this book, I will use this pattern to make the code cleaner as much as possible.

 Since this book does not intend to go deeper into OOP principles, I won’t go further with this topic, but if you want to learn more about it, you can on this post, where you’ll find great code samples: www.c-sharpcorner.com/UploadFile/damubetha/solid-principles-in-C-Sharp/.

 Coding Style Fundamentals

 Another important aspect of clean code is the coding style. Structuring your code is essential, but it must also be easy to read. What I like to do personally is to name my files correctly (I like to give explicit names to my classes, interfaces, variables, etc., well arranged in a directory).

 For example, in Figure 3-2, you can see the Download directory containing a Helpers subfolder containing static classes like AmazonS3PathBuilder.cs and AzureFileStoragePathBuilder.cs and a service named DownloadService.cs. All files are meaningful. File names are explicit and are related to the download feature.
 [image:]
 A screenshot denotes a set of files under the drop-down menu of download, which includes Amazon S 3 path builder, Azure file storage path builder, file extension helper, and download services. All files have an extension of dot c s.

Figure 3-2
 Download directory with its classes related to the download feature

 You may have noticed that these classes have particular file names and already allow you to partially understand the intent of the implementation without looking at it. These two files contain a class for generating file paths on Amazon S3 and Azure File Storage. Amazon and Azure are both providers of software hosting solutions (essentially web-related in the cloud).

 Let’s look at the content of the DownloadService.cs file in Figure 3-3.
 [image:]
 A screenshot represents a snippet of code. It defines the services that are responsible for downloading files.

Figure 3-3
 DownloadService.cs file content

 We can see that the DownloadService service name is self-explanatory, as is its IDownloadService interface, which contains only one GetFileAsync contract whose intent is clear from its naming. Its incoming parameter, as is its return variable, is also explicit: a tuple containing a file download status, a status message, and an object containing the file data to be downloaded.

 Let’s now take a look at the implementation of the GetFileAsync function in Figure 3-4.
 [image:]
 A screenshot represents a snippet of code. It denotes the processing status, file name, directory, mime type, and content.

Figure 3-4
 GetFileAsync method implementation

 You may have noticed that the function parameter GetFileParameters is unique. There is no other parameter. It’s always a good practice to keep a single parameter that can take many properties because your function signature won’t change if your application evolves. It helps keep your code clean.

 You can see that all the variables, such as index, fileStorageProvider, and donwloadFileStream, are explicit.

 The last point I would like to bring here is the naming convention. As you can see, I used different casing conventions for naming my variables, method parameters, methods, namespaces, classes, and fields. I used two cases: the Pascal case and the Camel case. I even used a Camel case preceded by an underscore (_) for class fields. I also use the Pascal case for properties as follows:

 public int MyProperty { get; set; }

 Table 3-1 shows a recap of the examples seen here.Table 3-1
 Recap of the casing convention with examples

	
 Element

 	
 Casing convention

 	
 Example

	
 Namespace

 	
 Pascal case

 	
 DownloadService

	
 Class

 	
 Pascal case

 	
 Demo.Business.Download

	
 Method

 	
 Pascal case

 	
 GetFileAsync

	
 Method parameter

 	
 Pascal case

 	
 GetFileParameters

	
 Property

 	
 Pascal case

 	
 MyProperty

	
 Variable

 	
 Camel case

 	
 index

	
 Method parameter name

 	
 Camel case

 	
 parameters

	
 Field

 	
 Camel case with _

 	
 _dataStoreBusiness

 Throughout this book, I’ll use this way of coding as much as possible in my code examples.

 Other principles of clean code can also be found in other stages of your software programming, such as	
 Error handling

	
 Testing

	
 Comments (to be used sparingly)

 We’ll come back to these later in the book.

 OWASP Principles

 The Open Worldwide Application Security Project (OWASP) is an international organization providing recommendations on software security. OWASP develops and maintains various tools, such as documentation and videos, to make developers and companies more aware of the security of their web applications.

 What interests us here from OWASP is the OWASP Top 10. The OWASP Top 10 describes the most widespread attacks a web application can suffer. Without going into too much detail in this section, I’ll list them here. I’ll show examples in this book on how to protect your API against these attacks if it applies to the topics I will bring throughout this book. Remember that security must be your priority when designing web applications such as REST APIs! Any compromise on security shouldn’t be accepted.

 Here are the elements of the OWASP Top 10:	1.

 Weak authentication and authorization: Even with authentication implemented in your application, your application remains vulnerable. The most common is the brute-force attack, which consists of trying login/password combinations hundreds or thousands of times until the right combination is found. It’s effortless if a password is easy to guess. We’ll discuss a solution, Rate Limiting, which you’ll see in Chapter 5. There is also a solution to protect against this attack, two-factor authentication, but I won’t discuss it in this book.

	2.

 Injection: Particularly with SQL databases (but also NoSQL such as MongoDB or LDAP to identify a person on a network), there is a way of obtaining information illegally by corrupting data (which has not been verified, as a user should never be trusted), thus diverting the purpose of the initial request to the server. The best known is SQL injection. I’ll discuss this in Chapter 6, when I show you how to access data. Another type of attack is Cross-Site Scripting (XSS), which sends data containing executable code. Data can be sent over an endpoint that saves data to be displayed further. These data may contain, for example, JavaScript code that may inject some unexpected content or, even worse, steal authentication cookies and send them to a destination that will steal and use your identity. I will provide a concrete example in Chapter 4 regarding input validation.

	3.

 Broken access control: Authentication is often insufficient to protect access to sensitive data or actions. In an enterprise, not everyone can have the same privileges in an application, which is why some people, and not every application user, are given additional authorization to access sensitive data, such as a customer’s banking information. In Chapter 10, I’ll show you how to implement user authentication and manage authorizations.

	4.

 Insufficient logging and monitoring: Logging and monitoring can help identify attacks, such as brute-force attacks, or detect an increase in activity on a web application when activity should be low. In Chapter 8, I’ll talk about observability, showing you how to log and trace HTTP requests and use them for diagnostics.

	5.

 Insecure data integrity: Serialization/deserialization of data may lead to security breaches, such as allowing an attacker to execute malicious code on the server. Except for the fact we will validate input data on API endpoints in Chapter 4, I won’t go further with this kind of security issue in this book.

	6.

 Cryptographic failures: Non-encryption of specific data can lead to vulnerabilities in an application, making it a prime target for hackers. I won’t go into this here, as we’ll transport data between a client and a server over HTTPS via an API. This doesn’t necessarily mean encrypting data in the more specific context described in this book.

	7.

 Weak application design: Occasionally, there are use cases where an application can be used to abuse a benefit, for example, a promotion that should only apply once but can be used several times. I remember being a student and having a prepaid SIM card with a mobile operator. To top up my account, I used a code that was supposed to be a one-time use code but wasn’t. Several people could use the same code for two minutes. This flaw took months to correct, and the company lost money. There is no specific chapter about it in this book.

	8.

 Weak security configuration: An application can be vulnerable if, for example, it uses accounts whose passwords never expire or, worse, if the passwords are easy to guess or if an unused login/password pair remains active. Manage all active accounts and change their passwords regularly.

	9.

 SSRF: Server-side request forgery (SSRF) vulnerabilities occur whenever a web application retrieves a remote resource without validating the URL provided by the user, enabling an attacker to force the application to send a specially crafted request to an inappropriate destination. I won’t go any further here, as this applies more to an HTML web application than an API.

	10.

 Obsolete component: Many applications often don’t update their frameworks or libraries. For example, Microsoft publishes updates for .NET frameworks to close a security gap. Apart from telling you that you must always keep your application up to date, I have nothing to show you in this book for this topic.

 OWASP provides the OWASP Secure Headers Project (OSHP). This project describes HTTP response headers that can be added to your application to make it safer. You can take a look at this address: https://owasp.org/www-project-secure-headers/. The good news is that there is an implementation for ASP.NET Core, and you can find it on Nuget.org since it’s a Nuget package. Installation is well documented and straightforward to execute. You can find it here: www.nuget.org/packages/OwaspHeaders.Core#readme-body-tab.

 Summary

 This chapter shows the minimum acceptable clean code and architecture you must implement in an API. We can go further by using tools like code formatting or another famous tool named ReSharper (which is not free) that can help you improve your code. I want you to learn here to get the right mindset to keep code clean instead of using tools that do the job for you. You also don’t need to know the 24 design patterns. Most of the time, they are overkill in many situations; they are only there to help resolve a particular implementation of a problem, which is not the intention of this book. As I said before, there is no compromise on the security purpose. It must be your obsession!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_4

4. Basics of Clean REST APIs

Anthony Giretti1
(1)La Salle, QC, Canada

 You’re looking forward to developing APIs! Here we are. Let’s look at the most basic operations with minimal APIs in ASP.NET Core 8. These are the most common features; you’ll use them in every API you develop. First, you’ll need to expose comprehensible URIs, validate the parameters sent by the API consumer, and do object mapping, that is, transform your objects into other objects specific to the application domain. You’ll also need to manage the correct HTTP status codes for each type of operation you want to perform; you’ll learn how to download and upload files, stream elements to your API’s client, as well as version your API and expose your API’s endpoints so that your clients understand how to invoke your endpoints. Handling Cross-Origin Resource Sharing (CORS) is also a challenge; we will see how to deal with that. In this chapter, you’ll learn about each of the following points:	
 Routing with ASP.NET Core 8

	
 Parameter binding

	
 Validating inputs

	
 Object mapping

	
 Managing CRUD operations and HTTP statuses

	
 Downloading and uploading files

	
 Streaming content

	
 Handling CORS

	
 Managing API versions

	
 Documenting APIs

 Routing with ASP.NET Core 8

 Do you remember Chapter 1, where I introduced you to HTTP and REST principles? We will put URL writing into practice using ASP.NET Core 8’s routing feature. The beauty of ASP.NET Core 8 is that the framework offers improvements over previous versions of ASP.NET Core, and I’ll show you how in a few lines. In this section, we’ll look at two different ways of managing routing, the simplest of which is to write a URL applicable to a single endpoint and the second, called RouteGroups, of which lets you manage reusable route portions across a route group.

 But first, let’s define what routing is.

 ASP.NET Core Routing

 Routing is the ability to respond to an HTTP request from any client. The system, in this case, ASP.NET Core, analyzes (through pattern matching) the HTTP request and determines what to do with it, that is, find out which endpoint corresponds to a requested URL. If no endpoint is found, an HTTP 404 (Not Found) error is returned to the client. Figure 4-1 summarizes ASP.NET Core routing.
 [image:]
 A horizontal flowchart. The client sends the incoming request to U R L analysis with pattern matching and finds the endpoint. If the route is found, process the request and send the expected response to the client.

Figure 4-1
 ASP.NET Core routing

 There’s no need to go into how pattern matching works here. We will see how to set up the HTTP verb that will be used to write routes and apply constraints to these routes by enforcing allowed values on route parameters.

 Setting Up the Correct HTTP Verb

 ASP.NET Core 8 makes it easy since each verb has its dedicated method to map a route to a specific verb. They all take as parameters a route name and a delegate. The method name is straightforward, so you can’t get it wrong. Table 4-1 shows all available HTTP verbs with their methods.Table 4-1
 HTTP verbs and their associated methods

	
 HTTP verb

 	
 Method

	
 GET

 	
 MapGet

	
 POST

 	
 MapPost

	
 PATCH

 PUT

 DELETE

 Other verbs

 	
 MapPatch

 MapPut

 MapDelete

 No method

 The following code snippet provides an example of the signature of the POST method:

 app.MapPost("/yourRouteName", () => /* Do action */);

 As you can see, some verbs like OPTIONS, TRACE, and HEAD don’t have their method. But don’t worry; you can use the MapMethods method, which can take several verbs in parameters for the same route. An example is the following snippet:

 app.MapMethods("/routeName", new List<string> { "OPTIONS", "HEAD", "TRACE" }, () => { /* Do action */});

 The delegate can take parameters, but I will show you further in this chapter and the next chapter when I introduce you to custom parameter binding.

 Writing Routes

 Writing routes is pretty straightforward. Writing pretty routes while respecting the principles can sometimes be a pain, but most of the time, it’s effortless. It depends on how you want to respect REST principles. The best practice is to respect REST principles by defining meaningful routes for better readability. This is a crucial point in writing clean REST APIs. Figure 4-2 shows two examples with the GET HTTP verb. The first one, with the parameters highlighted, makes the whole route easier to read. Highlighting was not available before ASP.NET Core 8. Route parameters are automatically bound to the parameter(s) of the lambda function that represents the endpoint’s code to respond correctly to the client’s request. The second example takes no parameters, resulting in a static route. I’m showing you this code through a figure to show highlighted parameters.
 [image:]
 A screenshot of a code to find the basic routing. It has two variables builder and app. The function used is MapGet. The parameter given is country I d.

Figure 4-2
 Basic routing

 As you can see, route names are meaningful. The first identifies a country from its ID among a list of countries defined by the base route /countries. The second endpoint represents the list of countries with the route /countries.

 ASP.NET Core 8 lets you pass many parameter types in a route, obviously because of all the possibilities in terms of the type of data that routing and REST principles allow, such as the following primitive variables:	
 bool

	
 byte

	
 sbyte

	
 short

	
 ushort

	
 int

	
 uint

	
 long

	
 ulong

	
 char

	
 double

	
 decimal

	
 float

 It is also possible to pass more complex parameters (objects) into a route, but these can be easily serialized to a string, for example:	
 DateTime

	
 Guid

 Listing 4-1 shows routes with DateTime and Guid as parameters.

 var builder = WebApplication.CreateBuilder(args);

 var app = builder.Build();

 app.MapGet("/date/{date}", (DateTime date) => date.ToString());

 app.MapGet("/uniqueidentifier/{id}", (Guid id) => id.ToString());

 app.Run();

 Listing 4-1
 Example of routes containing DateTime and Guid

 Note

 Any failed attempt to bind a parameter (when a matching route with the correct HTTP verb is found) to its expected type declared in the lambda method will lead to an HTTP 400 Bad Request. Regarding DateTime, you must be more careful since the binding works only with the DateTime value in its invariant culture: yyyy-MM-dd. I will return to parameter binding in the next section of this chapter.

 For example, Figure 4-3 shows what ASP.NET Core returns when a string is bound in place of an expected integer.
 [image:]
 A screenshot highlights the status with 400 bad request and a failure message indicating the failed parameter binding.

Figure 4-3
 Example of attempting to bind a string instead of an integer, which leads to the HTTP 400 Bad Request response

 On the other hand, if a route is found, but the HTTP verb does not match this route, an HTTP 405 Not Allowed error will be thrown. For example, Listing 4-2 shows an endpoint that handles PUT and PATCH verbs for the same route.

 app.MapMethods("/users/{userId}", new List<string> { "PUT", "PATCH" }, (int userId, HttpRequest request) =>

 {

 var id = request.RouteValues["id"];

 var lastActivityDate = request.Form["lastactivitydate"];

 /* code to update user */

 });

 Listing 4-2
 Example of an endpoint that handles PUT and PATCH verbs

 If you try to invoke this route with the POST verb, the response will be HTTP 405 Not Allowed, as shown in Figure 4-4.
 [image:]
 A screenshot highlights the status indicating 405 responses for the method not allowed.

Figure 4-4
 Example of attempting to invoke a route with an incorrect verb that leads to the HTTP 405 Not Allowed response

 Another behavior remains possible, which I mentioned right at the beginning of the section; if no endpoint is found (no matching route, whatever the verb), an HTTP 404 Not Found error will be returned in the response.

 Figure 4-5 shows a route that does not exist and returns an HTTP 404 Not Found.
 [image:]
 A screenshot highlights the options button with a drop-down icon, the route of the local host, and the status with 404 responses as not found. The route reads h t t p s colon, double slash local host, colon, 7157, forward slash, hello.

Figure 4-5
 Example of attempting to invoke a route that does not exist, which leads to the HTTP 404 Not Found response

 Table 4-2 summarizes possible behaviors after invoking an ASP.NET Core 8 minimal endpoint.Table 4-2
 Routing behaviors with their possible responses

	
 Behavior

 	
 Response

	
 The route matches, and the verb is correct but fails to bind parameters.

 	
 400 Bad Request

	
 The route matches, but the verb is not correct.

 	
 405 Not Allowed

	
 The route does not exist, whatever the verb.

 The route matches, the verb is correct, and parameter binding is working.

 	
 404 Not Found

 2XX Success

 Clean REST APIs require writing proper URLs, and ASP.NET Core 8 ideally helps you respect REST principles and handle all scenarios when a mistake is made, so you can adjust yourself when an error occurs.

 ASP.NET Core 8 also allows you to apply constraints to your routes, on parameters, to be precise, and this is what we will see in the following subsection.

 Using Route Constraints

 ASP.NET Core 8 lets you set constraints on your route parameters. These constraints allow you to filter and restrict access to your API if one or more constraints are unmet. Please note: this is not the same as validating parameters. We’ll look at parameter validation in a further section of this chapter.

 Listing 4-3 shows a constraint on a parameter named “provinceId”, which must be an integer.

 app.MapGet("/provinces/{provinceId:int}", (int provinceId) => $"ProvinceId {provinceId}");

 Listing 4-3
 Example of a constraint applied on the “provinceId” parameter, which must match the integer type

 As you can see, the syntax is quite simple and always follows this pattern:

 {ParameterName:DataType}

 You might be wondering what happens when a constraint is not respected. Well, it’s simple: ASP.NET Core 8 will return an HTTP 404 Not Found! Figure 4-6 shows the error with the previous piece code I showed you.
 [image:]
 A screenshot highlights the route of the local host and the status with 404 responses as not found. The route reads h t t p s colon, double slash local host, colon, 7157, forward slash, provinces, forward slash, Q C.

Figure 4-6
 Example of attempting to pass a string on a route that enforces an integer as a constraint, which leads to an HTTP 404 Not Found

 Why would this happen? Well, it’s completely logical: a constraint defines the integrity of a route, and a constraint is just as important as the name of the route itself. Consequently, if a constraint is not respected, ASP.NET Core 8 will consider that your HTTP request cannot find the route you’re looking for and will return an HTTP 404 Not Found error. You won’t get an HTTP 400 Bad Request error because the binding has failed (casting a string into an integer in the example I’ve just shown you) because the constraint check is carried out before any parameter binding.

 Now you understand why I don’t recommend using constraints to validate your parameters: if you try to do this, you won’t know whether your HTTP 404 Not Found is caused by a constraint error or by writing your route name. Applying constraints isn’t necessarily a bad practice in itself, and it’s simply to prevent you from ending up with errors that are difficult to interpret. Expecting an integer rather than a string can be helpful since your route expects an integer, so anything else would invalidate your route. However, ASP.NET Core 8 lets you apply a whole range of constraints.

 Table 4-3 shows the different types of constraints that can be applied to your routes, where “p” represents the parameter to apply the constraint on, “n” represents any number, and “\\...” represents any regular expression.Table 4-3
 All available route constraints on parameters in ASP.NET Core 8

	
 Constraint

 	
 Constraint pattern

 	
 Description

	
 int

 	
 {p:int}

 	
 Enforces an integer

	
 bool

 	
 {p:bool}

 	
 Enforces a Boolean (true or false)

	
 datetime

 	
 {p:datetime}

 	
 Enforces a DateTime

	
 decimal

 	
 {p:decimal}

 	
 Enforces a decimal

	
 double

 	
 {p:double}

 	
 Enforces a double

	
 float

 	
 {p:float}

 	
 Enforces a float

	
 guid

 	
 {p:guid}

 	
 Enforces a Guid

	
 long

 	
 {p:long}

 	
 Enforces a long

	
 minlength

 	
 {p:minlength(n)}

 	
 Enforces a minimum length

	
 maxlength

 	
 {p:maxlength(n)}

 	
 Enforces a maximum length

	
 length

 	
 {p:length(n)}

 	
 Enforces a precise length

	
 length (min ,max)

 	
 {p:length(n1, n2)}

 	
 Enforces a range of acceptable length

	
 min

 	
 {p:min(n)}

 	
 Enforces a minimum integer value

	
 max

 	
 {p:max(n)}

 	
 Enforces a maximum integer value

	
 range

 	
 {p:range(n1, n2)}

 	
 Enforces a range of acceptable integer values

	
 alpha

 	
 {p:alpha}

 	
 Enforces alphabetical (non-case sensitive) characters

	
 regex

 	
 {p:regex(\\...)}

 	
 Enforces a regular expression

	
 required

 	
 {p:required}

 	
 Enforces a non-nullable parameter

 From the minlength constraint to the end of the table, you can see that you can perform some validation of parameters, and I don’t recommend using them as I said before; it can lead to unexpected behavior, and you might be confused more than it should help you design routes. On my end, I only allow myself to use constraints on the parameter type, validating that I’m expecting an integer, DateTime, etc.

 ASP.NET Core 8 allows you to chain constraints; the following code snippet chains two constraints. The first one enforces the parameter to be an integer, and the second one enforces the maximum value of 12:

 app.MapGet("/provinces/{provinceId:int:max(12)}", (int provinceId) => $"ProvinceId {provinceId}");

 Once again, I don’t recommend it since it’s a parameter validation, and it’s not the routing feature’s responsibility to validate parameters.

 ASP.NET Core 8 also allows you to write custom constraints, but I won’t teach you this since it’s a lousy practice to me. If you still want to learn about it, you can find the Microsoft tutorial here: https://learn.microsoft.com/en-us/aspnet/core/fundamentals/routing?view=aspnetcore-8.0#custom-route-constraints.

 To conclude, I strongly suggest not abusing route constraints since parameter validation MUST return an HTTP 400 Bad Request, according to RFCs.

 RouteGroups

 When you expose a certain number of endpoints, especially those belonging to the same functionality—for example, you have a list of endpoints whose scope is to manage countries—using the route grouping functionality in ASP.NET Core can be helpful. This can be useful because it allows to	
 Isolate your routes in a specific function (and the implementation of your route if you wish).

	
 Take advantage of this grouping to establish access rules to these endpoints, such as defining a common URL trunk and others, such as a specific authorization, but we’ll see about that in the next chapter.

 We’ll keep it basic here to introduce you to the functionality and then develop it further with the features I’ll introduce later. Let’s get back to the definition of a common URL trunk. Imagine three endpoints sharing the same scope, countries, as I said, in which the URL trunk is identical, that is, starting with /countries. Here’s how we could isolate the three endpoints in a separate function—Listing 4-4 shows a GroupCountries extension method on the RouteGroupBuilder object grouping the following endpoints:	1.

 List of countries.

	2.

 Get a country by its ID.

	3.

 Get a country’s languages.

 The code is deliberately kept simple to explain the grouping functionality.

 namespace AspNetCore8MinimalApis.RouteGroups;

 public static class MyGroups

 {

 public static RouteGroupBuilder GroupCountries(this RouteGroupBuilder group)

 {

 var countries = new string[]

 {

 "France",

 "Canada",

 "USA"

 };

 var languages = new Dictionary<string, List<string>>()

 {

 { "France", new List<string> { "french" } },

 { "Canada", new List<string> { "french", "english" } },

 { "USA", new List<string> { "english", "spanish" } }

 };

 group.MapGet("/", () => countries);

 group.MapGet("/{id}", (int id) => countries[id]);

 group.MapGet("/{id}/languages", (int id) =>

 {

 var country = countries[id];

 return languages[country];

 });

 return group;

 }

 }

 Listing 4-4
 Example of three different endpoints that manage countries’ data

 As you can see, all these methods are regrouped in the GroupCountries extension that must be now registered on the ASP.NET Core pipeline, in the Program.cs file, as shown in Listing 4-5.

 using AspNetCore8MinimalApis.RouteGroups;

 var builder = WebApplication.CreateBuilder(args);

 var app = builder.Build();

 app.MapGroup("/countries").GroupCountries();

 app.Run();

 Listing 4-5
 Registering the countries’ route group with the GroupCountries method

 Before registering the group of routes defined previously, we need to define the URL trunk, and we can achieve that with the MapGroup extension method, which takes the URL trunk name as a parameter. Once defined, all routes will inherit from the same trunk. It will give the following URLs:	
 /countries

	
 /countries/{id}

	
 /countries/{id}/languages

 You may have noticed the slash (“/”) by itself on the first endpoint; if your route (the right part after the trunk, in fact) does not contain any characters, you can keep the “/” or omit it. On my end, I prefer to keep the “/” just by convention. I like to have a slash at the beginning of any portion of the route. It’s only my preference.

 It’s convenient, but we can go further again with the route grouping. What I mean there is we can not only assign a common trunk to a URL for the same group, but we can also reuse constraints on several endpoints. Have you seen the two last endpoints? They share the same constraint on the ID: {id}. We can variable the constraint on the ID by creating the idGroup variable obtained from the MapGroup method, which takes the constraint definition method, which gives the following in Listing 4-6.

 var idGroup = group.MapGroup("/{id}");

 idGroup.MapGet("/", (int id) => countries[id]);

 idGroup.MapGet("/languages", (int id) =>

 {

 var country = countries[id];

 return languages[country];

 });

 Listing 4-6
 Variable the constraint on the ID of a country within the GroupCountries method

 You only have to reuse the idGroup variable on the other endpoint, and they will inherit from the constraint on the ID.

 It’s an exciting feature since you can chain constraints or URL portions ad infinitum. But be careful not to overdo it, or you’ll end up with the opposite of the desired effect: readability or maintainability.

 I find route grouping extremely practical, and I use it when I have a lot of endpoints to implement, to avoid rewriting identical code or route names. It simply applies the KISS principle I mentioned earlier in this book.

 Parameter Binding

 In the previous section, I told you a little about parameter binding. I gave you the example of the HTTP 400 Bad Request error when a route parameter cannot be bound to the function’s parameter executing your request. That was the most simplistic example I could think of, but in this section, I will introduce you to the fundamentals of parameter binding so that you can understand how it works.

 What’s Precisely Parameter Binding?

 Parameter binding means that ASP.NET Core takes the parameters of an HTTP request and converts them into typed parameters passed to the function that will handle an HTTP request. In the previous section, I showed an example with an integer, but ASP.NET Core 8 is fully capable of binding primitive parameters (see the previous section for the list) as well as more complex types such as	
 Collections (lists, dictionaries, arrays)

	
 Any complex object, except those that contain a recursion, that is, an object that contains its type as a property (applies on minimal APIs only)

	
 Services that can be injected by dependency (I will show an example in the next section)

 Listing 4-7 shows the Address class that can’t be bound because of the recursivity of the Address type.

 public class Address

 {

 public int StreetNumber { get; set; }

 public string streetName { get; set; }

 public string StreetType { get; set; }

 public string City { get; set; }

 public string Country { get; set; }

 public int PostalCode { get; set; }

 public Address AlternateAddress { get; set; }

 }

 Listing 4-7
 Address class that contains itself as a property where data binding can’t be made on minimal APIs

 Note

 I declared the Address class as a class. It could be instead a record class or a struct since Adress stands for storing data only. It’s up to you to choose what you want to use.

 Parameters must be primitive types or classes; records, objects that behave like value types and not like reference types in C#, are not supported.

 Parameter Binding by Example

 Now that you know what kind of data you can bind from your HTTP requests, I’ll show you from which element of an HTTP request you can bind your parameters. You already know the first one: route parameters. ASP.NET Core 8 (minimal APIs again) supports parameters from	
 Routes

	
 QueryString

	
 Body as JSON-only data

	
 Body as form data (key/value pair)

	
 Headers

	
 Others, including class instances from the dependency injection system and custom binding (I’ll come back to this later in this book)

 ASP.NET Core 8 allows you to bind parameters explicitly, which means you can annotate parameters from different sources with attributes. It is also possible to combine several parameters in a single function. Still, you will have to separate your parameters explicitly from others that don’t come from the same source. I will show you some examples. First, I want to show you Table 4-4, which summarizes the different bindings with the explicit attribute to be used.Table 4-4
 Parameter binding with the proper binding attribute on ASP.NET Core 8 minimal APIs

	
 Data source

 	
 Binding attribute

	
 Routes

 	
 FromRoute

	
 QueryString

 	
 FromQuery

	
 Headers

 Body

 Forms

 	
 FromHeaders

 FromBody

 FromForm

 Note

 The query string and headers only support arrays as parameters, while the body as JSON data and body as form data support arrays, list, and dictionaries.

 I’ll show you a series of examples to illustrate what I mean. Listing 4-8 shows a POST request attempting to create an address whose data come from the request body, using the same class as the previous Listing 4-7, without the Address class recursion as an AlternateAddress property that I’ve removed.

 app.MapPost("/Addresses", ([FromBody] Address address) => {

 return Results.Created();

 });

 Listing 4-8
 Creating an address from a POST request where data come from the request body as JSON data

 Ignore for now the result returned by the endpoint (Results.Created()); I will go back to this in a further section in this chapter since I will introduce you to the static Results class that allows you to return the proper HTTP status. If you try to put a breakpoint to see if the parameter binding worked, you should observe the following in Figure 4-7.
 [image:]
 A screenshot of a code highlights a command and the drop-down list with city, country, postal code, street name, street number, and street type. The command reads from body.

Figure 4-7
 Example of parameter binding on an Address object from the request body as JSON data

 Figure 4-8 shows the request performed by Postman.
 [image:]
 A screenshot highlights the post button with a drop-down icon, the route of the local host, and the body with street number, street name, street type, city, country, and postal code. The route reads h t t p s colon, double slash local host, colon, 7157, forward slash, addresses.

Figure 4-8
 Example of a POST request trying to create an address with Postman

 Now let’s combine a route parameter with parameters whose values come from an HTML form. Listing 4-9 shows a PUT request attempting to update an address, with the address ID in the route and the data to be updated from the body form data (from an HTML form).

 app.MapPut("/Addresses/{addressId}", ([FromRoute] int addressId, [FromForm] Address address) => {

 return Results.NoContent();

 }).DisableAntiforgery();

 Listing 4-9
 Updating an address from a PUT request where parameters come from the request form and the route

 As you can see, the parameters from the Route and Form are explicitly separated, and the parameter binding works like a charm, as shown in Figures 4-9 and 4-10.
 [image:]
 A screenshot of a code highlights the Mapput command with addresses and address I d, and the from-route command with address I d.

Figure 4-9
 addressId parameter correctly bound when explicitly treated as a route parameter

 [image:]
 A screenshot of a code highlights the Mapput command with addresses and address I d and a drop-down list with address, city, country, postal code, street name, street number, and street type.

Figure 4-10
 address parameter correctly bound when explicitly treated as a form parameter

 You may have noticed the presence of the DisableAntiForgery extension method. Any request made from an HTML form (form data) that requires the FromForm attribute on ASP.NET Core must handle the AntiForgery feature. The AntiForgery feature prevents Cross-Site Request Forgery (XSRF/CSRF) attacks in ASP.NET Core, and Microsoft had made the AntiForgery feature mandatory at the very last moment when I was about to release this book. Consequently, I have updated any code that involves the FromForm attribute at the last moment by adding the DisableAntiForgery extension method to disable the AntiForgery feature. Any endpoint that implements form data will crash (in development mode) or generate a warning (in production mode) unless you disable the AntiForgery feature or you implement the AntiForgery by generating a token as shown in the following link: https://devblogs.microsoft.com/dotnet/asp-net-core-updates-in-dotnet-8-preview-6/#complex-form-binding-support-in-minimal-apis. If you try to put them in the same object, with the binding attribute on each property, as shown in Listing 4-10, it won’t work and will lead to unresolved parameters. ASP.NET Core 8 (for minimal APIs) cannot bind multiple sources in the same object and will prioritize data from the body or the form. Initially, I didn’t want to tackle the subject, because I didn’t want to create an endpoint to return a validation token to the client to validate the forms, as these are often generated in JavaScript with libraries such as React, Angular, or VueJs and not by ASP.NET Core, and this would have required an additional call to our API to retrieve a validation token. I don’t want to do this for performance reasons, as I like to save on HTTP calls.

 public class Address

 {

 [FromRoute]

 public int AddressId { get; set; }

 [FromForm]

 public int StreetNumber { get; set; }

 [FromForm]

 public string StreetName { get; set; }

 [FromForm]

 public string StreetType { get; set; }

 [FromForm]

 public string City { get; set; }

 [FromForm]

 public string Country { get; set; }

 [FromForm]

 public int PostalCode { get; set; }

 }

 Listing 4-10
 Parameter binding property by property, mixing data sources

 To illustrate the fact some parameters are not bound, let’s take a look at Figure 4-11, where you can see the AddressId property remaining unbound and its value remaining 0 when I attempted to pass an integer with a value greater than 0.
 [image:]
 A screenshot of a code highlights the address I d from the drop-down list of the results.

Figure 4-11
 AddressId is unbound when different parameter binding is performed in the same object

 You may have noticed I did not put any parameter binding attribute on the Address class name in the lambda method. ASP.NET Core 8 supports the declaration of parameter binding on attributes and not necessarily on the class itself. On my end, I prefer to add a single attribute to the class in the lambda method. The preceding example works fine if I remove the Id property and keep other attributes as is. Finally, Figure 4-12 shows the PUT request performed with Postman.
 [image:]
 A screenshot highlights the put option in the drop-down list, the route of the local host, the body tab, a checkbox labeled form-data, and a table with 2 columns and 6 rows. The column headers are key and value. The checkboxes in the table are enabled.

Figure 4-12
 Example of a PUT request trying to update an address from form data with Postman

 Let’s use the query string and headers parameters with a GET request. Let’s imagine an endpoint that returns a list of addresses based on GPS coordinates, a coordinates parameter passed in the headers, and a parameter passed in the query string. This limitCountSearch parameter determines the maximum number of elements the query returns. Listing 4-11 shows what this might look like.

 app.MapGet("/Addresses", ([FromHeader] string coordinates, [FromQuery] int? limitCountSearch) => {

 return Results.Ok();

 });

 Listing 4-11
 Example of a GET request where parameters come from headers and queryString

 QueryString parameters tend to be optional. Because they are not mandatory to make the route work, I strongly suggest you annotate them nullable when the expected type as a parameter is not nullable. In my example, I added the question mark to the int parameter (limitCountSearch) since query parameters are not mandatory. Figures 4-13 and 4-14 illustrate the preceding example.
 [image:]
 A screenshot of a code highlights the from-header and from-query commands with string coordinates and limit count search, respectively.

Figure 4-13
 coordinates parameter bound from the headers

 [image:]
 A screenshot of a code highlights the from-query command with a limit count search parameter.

Figure 4-14
 limitCountSearch parameter bound from the queryString

 To finish, Listing 4-12 shows how to pass in the query string and headers arrays of primitive data.

 // Represents ?id=1&id=2

 app.MapGet("/Ids", ([FromQuery] int[] id) =>

 {

 return Results.Ok();

 });

 app.MapGet("/Languages", ([FromHeader(Name = "lng")] string[] lng) =>

 {

 return Results.Ok();

 });

 Listing 4-12
 Example of GET requests where an array of parameters come from the headers and the query string

 As you can see, it’s pretty straightforward. Regarding the IDs on the queryString, you only have to pass IDs as follows: ?id=1&id=2&id=3.

 However, you may notice that I added the property Name = "lng" for the second example to let ASP.NET Core 8 know that the language parameters (an array) in the headers are named lng. I did not tell you before, but ASP.NET Core 8 allows you to customize parameter names to get bound. This applies to any parameter binding attributes. If you want to customize a single property on an object, you can use the preceding example with the Address class, where I added the FromFrom attribute on properties and not on the class itself in the lambda function.

 Figures 4-15 and 4-16 show the data binding operating on the GET /Ids and the GET /Languages endpoints.
 [image:]
 A screenshot of a code highlights the from-query command with parameters labeled i d, 0, and 1 in the drop-down list.

Figure 4-15
 id parameter (array) bound from the query string

 [image:]
 A screenshot of a code highlights the from-header command with string parameters l n g, 0, and 1 in the drop-down list.

Figure 4-16
 lng parameter (array) bound from the headers

 Now let’s take a look at what the Postman request looks like for each in Figures 4-17 and 4-18.
 [image:]
 A screenshot highlights the get option in the drop-down list, the route of the local host, the params tab, and a table with 2 columns and 2 rows. The column headers are key and value. The checkboxes labeled i d in the table are enabled.

Figure 4-17
 Passing an array of IDs in the query string with Postman

 [image:]
 A screenshot highlights the get option in the drop-down list, the route of the local host, the headers tab, and a table with 2 columns and 3 rows. The column headers are key and value. The checkboxes in the table are enabled.

Figure 4-18
 Passing an array of strings in the headers with Postman

 Regarding Figure 4-18, you may notice that the third parameter, lang, has not been bound if you check Figure 4-16. I voluntarily changed the language from lng to lang to show you how the customized data binding by name works.

 All these examples represent the most common and frequently used cases. You could pass complete objects in the headers and the query string in less frequent cases. However, passing complete objects as parameters to an HTTP request, for example, is for when you need to perform multi-criteria searches. Now that you’ve understood the principle of parameter binding, I don’t need to show you any more examples. I’ll return to this in Chapter 5 when it comes to showing you customized examples of parameter binding.

 There’s just one more thing I’d like to talk to you about. Using parameter binding attributes explicitly is not mandatory, except for FromForm (to distinguish it from data received from the request body, handled with the FromBody attribute) and FromHeader. However, I strongly recommend always using explicit binding to make your code clear and readable. You never have to think about where your parameters come from!

 Validating Inputs

 We’re making progress! In the previous two sections, we’ve just seen how to invoke routes on ASP.NET Core 8 and how to bind parameters to functions managing the actions to be executed. Well, now we can move on to another critical point in API development: validating inputs. Why validate inputs? Well, after all, never trust your users! Your users can be dizzy or even ill-intentioned. Validating your inputs will allow you to check the following:	1.

 Ensure that the data passed to your API complies with your business rules. For example, suppose your users must register for a service by passing their email address. In that case, you’ll need to check that their email address is valid, that it’s an email address, so you want to ensure that your business rules are respected. Another example is when you receive an HTTP URL and want to ensure that you only receive an HTTPS address and refuse HTTP URLs.

	2.

 Consider that you’re receiving data you will only use for display purposes, most likely on a web page. You’ll have to be wary of what the user sends you. Remember, in Chapter 3, I talked about SQL injections, and we’ll come back to this in Chapter 6, as I said, but you can also have XSS injections. A user could send you a malicious JavaScript script to display a message. Here you need to check whether the information the user passes contains HTML tags.

 Let’s look at how to manage this validation in ASP.NET Core minimal APIs. If you’re familiar with DataAnnotations from ASP.NET Core MVC, Razor Pages, or Web API, this is not supported in the minimal APIs. Listing 4-13 shows a Country class on which two of its three properties, Name and FlagUri properties, contain validation rules, Required and RegularExpression.

 using System.ComponentModel.DataAnnotations;

 namespace AspNetCore8MinimalApis.Models;

 public class Country

 {

 [Required]

 [RegularExpression("^[a-zA-Z0-9]+$")]

 public string Name { get; set; }

 public string Description { get; set; }

 [Required]

 [RegularExpression("^(https:\\/\\/.)[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)$")]

 public string FlagUri { get; set; }

 }

 Listing 4-13
 The Country class that requires validation on Name and FlagUri properties

 As you can see, the Name property is required because of the Required annotation. It also must contain only alphanumeric characters, defined by the RegularExpression annotation. DataAnnotations, on regular expressions, can’t detect the “not match”; it cannot decline the input when an HTML tag is detected. The annotation enables only matches. This is why I applied the alphanumeric match to this regular expression; matching alphanumeric means there are no HTML tags on the value of the Name property. Same reasoning on the FlagUri property, except the latter must match an HTTPS URL, once again using a regular expression.

 As I said, this is not supported by ASP.NET Core 8 on minimal APIs. So we must find an alternative to this, and there is one! We will use a fascinating library called FluentValidation! FluentValidation lets you define built-in or custom validation rules and personalized error messages. To do this, run the following command from Package Manager Console in Visual Studio:

 Install-Package FluentValidation.DependencyInjectionExtensions

 To open the console, click “View” in the horizontal hat menu in Visual Studio, then “Other Windows,” and finally “Package Manager Console,” as shown in Figure 4-19.
 [image:]
 A screenshot highlights the view menu. Other windows option is selected. The sub-options in the drop-down list are command window, data sources, code coverage results, and load test runs.

Figure 4-19
 Open Package Manager Console in Visual Studio 2022

 Then type the command and press the “Enter” key as shown in Figure 4-20.
 [image:]
 A screenshot highlights a command in the package manager console. It reads P M, NuGet, backslash, install-package fluent validation, dot, dependency injection extensions, version 11.6.0.

Figure 4-20
 Executing the FluentValidation.DependencyInjection NuGet package installation in Package Manager Console

 Once installed, we can now write a validator with FluentValidation. Let’s create a validation class named CountryValidator that inherits from AbsctractValidator<T> where T is the Country class. In the constructor, we will use the following methods:	
 RuleFor: Defines the property where to apply the validation rule.

	
 NotEmpty: Defines a rule where the input value getting validated must not be empty.

	
 WithMessage: Applies an error message when the rule is not satisfied. It takes the {PropertyName} variable in the error message, which will be replaced with the property name tested against the validation rule. You can hard-code the property name in the message as well.

	
 Custom: Defines a custom rule, for example, a regular expression that matches an expression. It can trigger an error with the AddFailure method, which takes the property name and the error message as parameters. It is used, for example, when you want to raise an error when a match is found. This is precisely what was not possible with DataAnnotations.

	
 Matches: Defines a matching rule with a regular expression.

 All these validation methods (except the AddFailure method) can be chained since they are all extension methods on the IRuleBuilderOptions interface.

 Listing 4-14 shows the validation on the Country class where Name and FlagUri are required. Name must not match any HTML tag; else, it raises an error. And FlagUri must match an HTTPS URL.

 using AspNetCore8MinimalApis.Models;

 using FluentValidation;

 using FluentValidation.Results;

 using System.Text.RegularExpressions;

 namespace AspNetCore8MinimalApis.Validators;

 public class CountryValidator : AbstractValidator<Country>

 {

 public CountryValidator()

 {

 RuleFor(x => x.Name)

 .NotEmpty()

 .WithMessage("{PropertyName} is required")

 .Custom((name, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(name).Count > 0)

 {

 // Raises an error

 context.AddFailure(

 new ValidationFailure(

 "Name",

 "The parameter has invalid content"

)

);

 }});

 RuleFor(x => x.FlagUri)

 .NotEmpty()

 .WithMessage("{PropertyName} is required")

 .Matches("^(https:\\/\\/.)[-a-zA-Z0-9@:%._\\+~#=]{2,256}\\.[a-z]{2,6}\\b([-a-zA-Z0-9@:%_\\+.~#?&//=]*)$")

 .WithMessage("{PropertyName} must match an HTTPS URL");

 }

 }

 Listing 4-14
 FluentValidation validator applied on the Country class

 To make it up and running (being able to use the validator by dependency injection), we must register, with a single scan in the ASP.NET Core application assembly, any FluentValidation validator defined in this assembly. Listing 4-15 shows the registration by using the AddValidatorsFromAssemblyContaining<Program> method.

 var builder = WebApplication.CreateBuilder(args);

 builder.Services.AddValidatorsFromAssemblyContaining<Program>();

 var app = builder.Build();

 Listing 4-15
 Registering all FluentValidation validators in the same assembly of the Program class

 Using the Program class as a generic parameter will allow the discovery of any FluentValidation validator in the ASP.NET Core application since the Program class belongs to the ASP.NET Core application assembly. In other words, the Program allows discovering the assembly name used to scan any FluentValidation validator in this assembly. We can now write an endpoint that posts a Country object, the POST /countries endpoint, as shown in Listing 4-16.

 app.MapPost("/countries", ([FromBody] Country country, IValidator<Country> validator) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 //Do something

 return Results.Created();

 }

 return Results.ValidationProblem(validationResult.ToDictionary(), statusCode: (int)HttpStatusCode.BadRequest);

 });

 Listing 4-16
 /countries POST endpoint with validation of the Country object sent from the request body

 Registering all validators with the AddValidatorsFromAssemblyContaining method allows to pass in any minimal endpoint, by dependency injection, the IValidator<T> interface where T is the Country class. The latter will automatically instantiate the CountryValidator validator. The validation is easy. You must invoke the Validate method, which takes the Country object passed to the endpoint as a parameter. The result allows you to verify if the validation passed by using the IsValid property and return a successful HTTP status of a list of errors that needs to be cast to a Dictionary to the ValidationProblem method, which handles the JSON response to the client with a detailed validation error payload.

 Note

 The ValidationProblem method returns an HTTP 400 Bad Request, similar to the ProblemDetails response payload, which is more generic. ValidationProblem is not defined by any RFC but extends the ProblemDetails response by adding the list of the errors encountered during the input validation.

 To illustrate the preceding example, in Figure 4-21, let me show you what the output gives when I try to add a malicious JavaScript Alert function within a script tag in the Name property and if I omit the HTTPS in the FlagUri property.
 [image:]
 A screenshot highlights the name and flag u r i properties below the body tab. The name reads script tag, alert of Booo, exclamation mark, slash script. The flag u r i includes upload dot wikimedia dot o r g.

Figure 4-21
 Output with a ValidationProblem payload when validation fails on the Name and FlagUri properties passed to the POST /countries request

 As you can see, errors are pretty well detailed!

 If the validation succeeds, you get instead a successful HTTP response, as shown in Figure 4-22.
 [image:]
 A screenshot highlights the status of 201 responses as created.

Figure 4-22
 Successful validation on the Country JSON object passed to the POST /countries request

 FluentValidation is a powerful library for performing any validation. However, I’ve used simple validation examples. If you’d like to see how powerful this library is, I invite you to learn more here: https://docs.fluentvalidation.net/en/latest/.

 It’s free!

 The most important thing to remember here, and I hope this is the case, is that you should never trust a user. This can save you a lot of trouble! Validating all input will protect you from malicious attacks and is a good practice to implement on your APIs!

 Object Mapping

 Well done! We’ve seen how to validate our data! Now we can put them to use. In Chapter 3, I discussed the Separation of Concerns (SoC) principle and abstraction. Well, I will show you an example of how to apply this logic here in this section. The input parameters of your endpoints are specific to your web layer, your API to be exact, and must only be used in this layer. So how will we transport the information received from your API endpoint to the repository enabling you to make database requests? We’ll map input parameters, offering you my way of mapping your endpoint input to Data Transfer Objects (DTOs) or domain objects. These DTOs, or domain objects, are part of your application’s domain and are defined in a different layer, as you’ll recall from Chapter 3, a layer generally called Domain, which is used by all application layers. We’re going to put into practice what we saw in Chapter 3 by doing the following:	1.

 Create a Domain layer in which we’ll create a DTO.

	2.

 Create an interface to abstract an object API input parameter/DTO mapping class and its implementation.

 This interface describing the mapping to be performed and its implementation will be defined in the API layer. As I said earlier, the input parameters of your APIs are specific to this layer and must not be visible elsewhere than in this layer. DTOs, on the other hand, are accessible in your API layer.

 The API layer, therefore, depends on the Domain layer, not the other way around.

 Figure 4-23 shows the API and Domain layers, each containing elements that are specific to their respective responsibilities.
 [image:]
 A block diagram. The input parameters, mapping interface, and mapping implementation of the A P I layer lead to the D T Os or domain objects of the domain layer via dependency.

Figure 4-23
 API and Domain layers with their respective responsibilities

 Now let’s create a class CountryDto (by first creating the Domain layer) and map it from our Country input parameter class in the API layer.

 Listing 4-17 shows the definition of the CountryDto class.

 namespace Domain.DTOs;

 public class CountryDto

 {

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

 }

 Listing 4-17
 The CountryDto class

 The class is strictly identical to the Country class, which serves as an input parameter. I’m not duplicating any code here, but remember that just because the class signatures are identical doesn’t mean you should create a single class for your input parameters and your domain objects because their responsibilities differ and may evolve differently. It’s crucial to understand this.

 As I think you already know how to create a project in Visual Studio 2022, I won’t show you how it’s done, but you can see how I’ve structured my Domain layer in Figure 4-24.
 [image:]
 A screenshot highlights A s p Net core 8 minimal A P Is with domain, dependencies, and D T Os.

Figure 4-24
 API layer and Domain layer with their respective responsibilities

 As you can see, the Domain layer is structured to contain folders to put things in the right place. In this case, I created a folder called DTOs and put my CountryDto class within. Don’t forget to reference your Domain layer. We are now ready to write our mapper class in the API layer!

 Listing 4-18 shows the ICountryMapper interface.

 using AspNetCore8MinimalApis.Models;

 using Domain.DTOs;

 namespace AspNetCore8MinimalApis.Mapping.Interfaces;

 public interface ICountryMapper

 {

 public CountryDto? Map(Country country);

 }

 Listing 4-18
 The ICountryMapper interface

 It’s pretty straightforward. I defined a method Map that takes as a parameter a Country object and returns a CountryDto, which can be null for any reason. Now let’s implement the mapper. Listing 4-19 shows the CountryMapper class that implements the ICountryMapper interface.

 using AspNetCore8MinimalApis.Mapping.Interfaces;

 using AspNetCore8MinimalApis.Models;

 using Domain.DTOs;

 namespace AspNetCore8MinimalApis.Mapping;

 public class CountryMapper : ICountryMapper

 {

 public CountryDto? Map(Country country)

 {

 return country is not null ? new CountryDto

 {

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri,

 } : null;

 }

 }

 Listing 4-19
 The CountryMapper class

 Once again, it’s straightforward. Remember, here, the goal is not to learn how to map an object to another but to understand the importance of abstraction and SoC 😊. If you want to use a library that helps map your objects, since we abstracted the mapping operation, you can use any implementation you want. Suppose you don’t want to use manual mapping like I did (which is the fastest way in terms of performance compared with any mapping library). In that case, you can keep the interface (no changes are needed) and change the implementation by using instead	
 AutoMapper, which can be found here: https://automapper.org/

	
 Mapster, which can be found here: https://github.com/MapsterMapper/Mapster

 Let’s register the pair ICountryMapper/CountryMapper in the dependency injection system, and we can inject the mapper anywhere in the application. Listing 4-20 shows the registration as Scoped since we don’t need to keep the mapper’s instance (and properties) in memory until the application shuts down. Scoped will do the job perfectly.

 var builder = WebApplication.CreateBuilder(args);

 builder.Services.AddScoped<ICountryMapper, CountryMapper>();

 var app = builder.Build();

 Listing 4-20
 Registration of the ICountryMapper interface and its implementation CountryMapper

 Listing 4-21 shows the POST /countries endpoint updated with the mapper injected by dependency.

 app.MapPost("/countries", ([FromBody] Country country, IValidator<Country> validator, ICountryMapper mapper) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 //Do some work here

 return Results.Created();

 }

 return Results.ValidationProblem(validationResult.ToDictionary());

 });

 Listing 4-21
 The POST /countries endpoint update with the ICountryMapper injected

 If we execute the code, it should work like a charm, as shown in Figure 4-25.
 [image:]
 A screenshot of a code highlights the country D t o with description, flag U r i, and name in the variable command.

Figure 4-25
 The POST /countries endpoint execution with the ICountryMapper injected

 Note

 Another benefit of abstraction is the ease of unit testing a piece of code. I will return to this in the last chapter of this book.

 Managing CRUD Operations and HTTP Statuses

 With what we have discussed so far, we can code any endpoint. This is commonly referred to as Create, Retrieve, Update, Delete (CRUD) operations. As we saw in Chapter 1, there are different types of verbs for manipulating an entity, and we’re going to take a look at them:	
 POST: Creates an entity known as Create (C) from the CRUD acronym

	
 GET: Retrieves an entity or a collection of entities, known as Retrieve (R) from the CRUD acronym

	
 PUT: Replaces an entity (or creates an entity if it does not exists), known as Update (U) in the CRUD acronym

	
 PATCH: Updates part of an entity, known as the Update (U) element in the CRUD acronym

	
 DELETE: Allows you to delete an entity, known as Delete (D) in the CRUD acronym

 Note To keep this section simple with the basics of CRUD operations, I will use the Country class as the input and output parameters in the API and the CountryDto as an input and output in the Domain layer. There is no need to duplicate them for input/output flow.

 Managing CRUD operations also implies managing the HTTP status in the response, and I will show how in the following subsection.

 Handling HTTP Statuses

 Another aspect of managing CRUD operations is to handle HTTP response statuses correctly. If you remember Chapter 1, I introduced them to you, and I want to show you how to handle them with the static Results class. The Results class exposes many methods to allow you to use the most common HTTP statuses.

 I won’t go into detail for each one, but I will explain why I use them in every further example throughout this book. Some of them also have overloads that I won’t go into detail. Table 4-5 shows them.Table 4-5
 Results class methods with their associated HTTP status

	
 Method

 	
 HTTP status code produced

	
 Accepted

 	
 202

	
 AcceptedAtRoute

 	
 202

	
 BadRequest

 	
 400

	
 Bytes

 	
 200, 206, 416

	
 Challenge

 	
 401

	
 Conflict

 	
 409

	
 Content

 	
 200

	
 Created

 	
 201

	
 CreatedAtRoute

 	
 201

	
 File

 	
 200, 206, 416

	
 Json

 	
 200

	
 Forbid

 	
 403

	
 Redirect

 	
 301, 302, 307, 308

	
 RedirectToRoute

 	
 301, 302, 307, 308

	
 SignIn

 	
 200

	
 SignOut

 	
 200

	
 Stream

 	
 200, 206, 416

	
 Text

 	
 200

	
 Unauthorized

 	
 401

	
 UnproccessableEntity

 	
 422

	
 ValidationProblem

 	
 400 (BadRequest + ValidationProblemDetail payload)

	
 StatusCode

 	
 Any HTTP status since it takes as a parameter the integer value of any status

	
 Empty

 	
 200

 As you can see, Microsoft helps you a lot with predefined methods. If you miss any status to handle your request, you can still use the StatusCode method, which takes any HTTP status code as a parameter. If you can’t wait for some explanations from me regarding some of them I will cover in this book, you can learn from the Microsoft documentation here: https://learn.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.http.results?view=aspnetcore-8.0.

 Creating the Services to Handle CRUD Operations

 We’ll create a service that handles CountryDto objects to implement the preceding CRUD operations. We need to implement a repository between the API and Infrastructure layers. Once again mindful of the principles of abstraction and Separation of Concern (SoC), I’m going to create an ICountryService service interface in the Domain layer, along with its CountryService implementation defined in the Business logic layer (BLL), as this is where the business logic is implemented. I won’t detail the implementation of the CountryService class here, as that’s not important here, but rather how the minimal endpoints managing the Country entity will consume this service. Figure 4-26 shows the API layer, Domain layer, and BLL with their respective responsibilities.
 [image:]
 A block diagram. The input parameters, mapping interface, and mapping implementation of the A P I layer lead to the domain objects and service interfaces of the domain layer via dependency. The A P I layer leads to services implementation in B L L via dependency for injection purposes only.

Figure 4-26
 API layer, Domain layer, and BLL with their respective responsibilities

 Listing 4-22 shows the ICountryService interface signature.

 using Domain.DTOs;

 namespace Domain.Services;

 public interface ICountryService

 {

 CountryDto Retrieve(int id);

 List<CountryDto> GetAll();

 int CreateOrUpdate(CountryDto country);

 bool UpdateDescription(int id, string description);

 bool Delete(int id);

 }

 Listing 4-22
 The ICountryService interface

 Don’t forget to register the service as Scoped in the dependency injection system as follows:

 builder.Services.AddScoped<ICountryService, CountryService>();

 To make CRUD operations on the CountryDto, I added an ID to this class, which is nullable since the country may have or not have an ID (null before its creation, filled after its creation) as shown on Listing 4-23.

 namespace Domain.DTOs;

 public class CountryDto

 {

 public int? Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

 }

 Listing 4-23
 The CountryDto class updated with a nullable ID

 I did the same on the Country input parameter in the API. This is required to identify a country with a unique ID instead of using its name. As you can see, we can find all CRUD operations on the service needed to implement all CRUD endpoints in the API layer. Some explanations are needed to clarify how CRUD operations will operate:	
 The Retrieve method takes a country ID as a parameter and must return CountryDto.

	
 The GetAll method takes no parameter and returns a collection of CountryDto.

	
 The CreateOrUpdate method takes a CountryDto as a parameter. If the country’s ID is null, that means the country is not identified and should be created, while if the ID is not null, the country should be updated. It’s not the absolute truth since the ID can be wrong and may identify a nonexisting country, which could be null, but the country already exists. Let’s keep the example simple and assume that a country is correctly identified when an ID is provided and not defined when the ID is null.

	
 The UpdateDescription method takes a parameter of the country ID and the country description to get updated. It acts as a partial update and returns a Boolean that indicates whether the update has been performed.

	
 The Delete method takes the country ID as a parameter and returns a Boolean that indicates whether the deletion has been successfully performed.

 Now it’s time to write our CRUD endpoints.

 Creating the Endpoints to Handle CRUD Operations

 I have updated the validator and mapper classes to handle new validation and mapping rules; I will show you their implementation after showing you the endpoint implementations. I also injected on each the ICountryService interface. Listing 4-24 shows the CRUD endpoints.

 // Create

 app.MapPost("/countries", (

 [FromBody] Country country,

 IValidator<Country> validator,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 return Results.CreatedAtRoute(

 "countryById",

 new {

 Id = countryService.CreateOrUpdate(

 countryDto

)

 }

);

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

 });

 // Retrieve

 app.MapGet("/countries/{id}", (

 int id, ICountryMapper mapper,

 ICountryService countryService) => {

 var country = countryService.Retrieve(id);

 if (country is null)

 return Results.NotFound();

 return Results.Ok(mapper.Map(country));

 }).WithName("countryById");

 // Retrieve

 app.MapGet("/countries", (

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = countryService.GetAll();

 return Results.Ok(mapper.Map(countries));

 });

 // Update

 app.MapPut("/countries", (

 [FromBody] Country country,

 IValidator<Country> validator,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 if (country.Id is null)

 return Results.CreatedAtRoute(

 "countryById",

 new {

 Id = countryService.CreateOrUpdate(

 mapper.Map(country)

)

 });

 return Results.NoContent();

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

 });

 // Update

 app.MapPatch("/countries/{id}", (

 int id,

 [FromBody] CountryPatch countryPatch,

 IValidator<CountryPatch> validator,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var validationResult = validator.Validate(countryPatch);

 if (validationResult.IsValid)

 {

 if (countryService.UpdateDescription(

 id,

 countryPatch.Description

))

 return Results.NoContent();

 return Results.NotFound();

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

 });

 // Delete

 app.MapDelete("/countries/{id}", (

 int id,

 ICountryService countryService) => {

 if (countryService.Delete(id))

 return Results.NoContent();

 return Results.NotFound();

 });

 Listing 4-24
 CRUD endpoint implementations on the CountryDto domain object through the Country input/output parameter

 Let’s make some explanation!

 MapPost("/countries", ( ) => { })

 Since it’s an HTTP POST request, the country passed in the request should be created since its ID is null here. After validating the input and mapping it into a CountryDto object, I’m invoking the CreateOrUpdate service method since it handles creation and update operations. The expected response should be Created (201), produced by the CreatedAtRoute method, or Bad Request (400), produced by the ValidationProblem method. The CreatedAtRoute method takes as a parameter a route name, countryById, which indicates at what route you can retrieve the created resource, and the ID of the created country used to populate the countryById route parameter. The countryById route name must exist in your API, and we will jump into it right after showing the expected output when the creation succeeds in Figure 4-27.
 [image:]
 A screenshot highlights the status of 201 responses as created and h t t p s, colon, double slash, local host, colon, 7157, slash, countries, slash 1, in the value column.

Figure 4-27
 Expected response when creating a country using the POST /countries endpoint

 As you can see, the newly created route is sent to the client over the Location header.

 MapGet("/countries/{id}", ( ) => { })

 This is a GET endpoint, so two cases are possible: the resource is found, where the data serialized in JSON with an OK (200) response is returned, or Not Found (404). The result methods implied are, respectively, Ok and NotFound. They are pretty well named, so you can’t get confused while selecting the correct one to handle the response. You may notice I attached the “countryById” route name to this endpoint to tell ASP.NET Core how to build the location URL of the newly created country. To do this, I applied on the endpoint the WithName method. The latter allows you to give any endpoint the name you want. It’s a unique ID, useful to identify a route as we did with the country creation. Figure 4-28 shows the expected response when the request is successful.
 [image:]
 A screenshot highlights the status with 200 responses as O K and the body with i d, name, description, and flag u r i.

Figure 4-28
 Expected response when retrieving a country using the /countries/[id} GET endpoint

 MapDelete(“/countries/{id}”, ( ) => { })

 The delete endpoint is the simplest of all. It takes the country’s ID you wish to delete as a route parameter. If the country exists, the response will be No Content (204) or Not Found (404) otherwise. I don’t need to explain which methods I used, as their names speak for themselves. Figure 4-29 shows the expected result when the delete operation is successful.
 [image:]
 A screenshot highlights the status of 204 responses as no content.

Figure 4-29
 Expected response when deleting a country using the /countries/[id} DELETE endpoint

 MapPut(“/countries/{id}”, ( ) => { })

 The PUT endpoint is identical to the POST endpoint since it creates a country when it does not exist or updates it when it does. Validation remains the same and may return a Bad Request (400) when validation doesn’t meet the requirements. The only difference resides in the fact if the country has an ID, it’s supposed to be updated and NoContent (204) is returned when the operation succeeds, but when the country does not have an ID set, Created (201) is returned. Figure 4-30 shows a successful update. For a successful creation, you can refer to Figure 4-27.
 [image:]
 A screenshot highlights the body with i d, name, description, and flag u r i and the status of 204 responses as no content.

Figure 4-30
 Expected response when updating a country using the PUT /countries endpoint

 You may have noticed that the route doesn’t contain any ID. The ID is in the request body. No RFC says that the route of a PUT request should contain any ID of the target resource (a country here). It makes sense since PUT is idempotent; its route doesn’t change as long as the payload in the request body doesn’t change. It will always be a country resource to be updated or created, depending on whether the ID is null or filled, which will indicate what to do: create or update. When an update succeeds, RFC allows you to return an OK (200) response. I prefer to return No Content. It’s up to you.

 MapPatch(“/countries/{id}”, ( ) => { })

 The PATCH method has been implemented as uncomplicated as possible since we want to update only the description of a country. The flow is straightforward: A validation is performed on the CountryPatch input parameter, which differs from the Country input parameter because we only want to update the description. Because of that, I created a validator that applies to the CountryPatch input parameter (IValidator<CountryPatch>). If the validation meets the requirements and the update succeeds, No Content (204) response is returned; else, a Not Found (404) is produced since PATCH does not create a resource when it does not exist. So an ID in the route is necessary for it to identify the resource. If the validation fails, a Bad Request (404) is returned with a ProblemDetails payload in the response.

 Note

 This vision of implementing a PATCH request is the most common way to perform a partial update and is allowed by RFCs. However, it’s not the absolute truth since there is a better way to perform PATCH requests according to RFCs 5789 and 6902.

 If you want to learn more about it, you can go on the Microsoft documentation, which explains how to perform PATCH properly (but it’s more complicated and less often used). In the meantime, this Microsoft documentation provides the link to the mentioned RFCs: https://learn.microsoft.com/en-us/aspnet/core/web-api/jsonpatch?view=aspnetcore-8.0.

 As promised, Listings 4-25 and 4-26, respectively, show the updated CountryMapper class and the CountryPatchValidator class I used to make CRUD operations earlier.

 using AspNetCore8MinimalApis.Mapping.Interfaces;

 using AspNetCore8MinimalApis.Models;

 using Domain.DTOs;

 namespace AspNetCore8MinimalApis.Mapping;

 public class CountryMapper : ICountryMapper

 {

 public CountryDto? Map(Country country)

 {

 return country != null ? new CountryDto

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri,

 } : null;

 }

 public Country? Map(CountryDto country)

 {

 return country != null ? new Country

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri,

 } : null;

 }

 public List<Country> Map(List<CountryDto> countries)

 {

 return countries.Select(Map).ToList();

 }

 }

 Listing 4-25
 The CountryMapper class

 using AspNetCore8MinimalApis.Models;

 using FluentValidation;

 using FluentValidation.Results;

 using System.Text.RegularExpressions;

 namespace AspNetCore8MinimalApis.Validators;

 public class CountryPatchValidator : AbstractValidator<CountryPatch>

 {

 public CountryPatchValidator()

 {

 RuleFor(x => x.Description)

 .NotEmpty()

 .WithMessage("{ParameterName} cannot be empty")

 .Custom((name, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(name).Count > 0)

 {

 // Raises an error

 context.AddFailure(new ValidationFailure(

 "Description",

 "The description has invalid content")

);

 }

 });

 }

 }

 Listing 4-26
 The CountryPatchValidator class

 Note

 For ease of reading, I’ve duplicated the regular expression to test whether any string contains HTML tags. If you recall, this regular expression is also used in the CountryValidator class we saw previously.

 To finish, I just wanted to mention that I showed the happy path in the CRUD operations earlier. In real life, error management is a bit more complex, and we will see in the next chapter how to handle error management when something is going wrong in the application.

 Downloading and Uploading Files

 As a developer, you will almost certainly have to manage files. Whether it’s downloading or uploading, you’ll be doing this regularly. Although this is part of CRUD operations in general, I’ve decided to make it a separate section in this chapter, as there’s much to say about it. Let’s start with file downloading.

 Downloading Files

 Downloading a file is relatively simple—you need three things:	1.

 Know the MIME type of your file.

	2.

 Transform the contents of your file into a byte array.

	3.

 Give your file a name.

 And …use the File method of the Results class.

 Before we do that, let’s take a quick look at the MIME type of a file, which I introduced in Chapter 1. There’s a whole panoply of MIME types, and …there are many of them. If you’re interested, consult the complete list defined by the Internet Assigned Numbers Authority (IANA) at this address: www.iana.org/assignments/media-types/media-types.xhtml. For your information, IANA is responsible for coordinating the rules that keep the Internet at a standard of use acceptable to all.

 After redesigning the ICountryService interface by adding a method named GetFile to support file download, we can look at how to write a download endpoint in the API. Listing 4-27 shows the updated ICountryService interface. Once again, the implementation of the CountryService class is not relevant to be shown since data are mocked. But you will see the implementation in the source code provided by Apress on a GitHub repository.

 using Domain.DTOs;

 namespace Domain.Services;

 public interface ICountryService

 {

 CountryDto Retrieve(int id);

 List<CountryDto> GetAll();

 int CreateOrUpdate(CountryDto country);

 bool UpdateDescription(int id, string description);

 bool Delete(int id);

 (

 byte[] fileContent,

 string mimeType,

 string filename

) GetFile();

 }

 Listing 4-27
 The ICountryService interface updated with the GetFile method

 As you can see, I chose to return a tuple, which contains three pieces of information, as I mentioned before:	1.

 The file content as an array of bytes

	2.

 The file MIME Type

	3.

 The file name

 Then I designed the GET “/countries/download” endpoint as shown in Listing 4-28.

 app.MapGet("/countries/download", (

 ICountryService countryService) => {

 (

 byte[] fileContent,

 string mimeType,

 string fileName) = countryService.GetFile();

 if (fileContent is null || mimeType is null)

 return Results.NotFound();

 return Results.File(fileContent, mimeType, fileName);

 });

 Listing 4-28
 The GET countries/download endpoint

 I grab from ICountryService all information needed by the File method, as mentioned previously, and we test it with Postman; it should give what (the debug step) is shown in Figure 4-31.
 [image:]
 A screenshot of a code highlights the byte, string, and get file commands with file content, mime type, file name, and country service at the top. A table with 3 columns and 4 rows is at the bottom. The second column labeled value is highlighted.

Figure 4-31
 Invoking the GET countries/download endpoint

 You can notice the file name is countries.csv. Since it’s a CSV file, the MIME type is text/csv.

 Figure 4-32 shows the result in Postman.
 [image:]
 A screenshot highlights the status of 200 responses as O K and the body with 3 lines. 1. Canada, maple leaf country. 2. U S A, federal republic of 50 states. 3, Mexico, a land of deserts, forests, and high mountains.

Figure 4-32
 The expected response when downloading the countries.csv file from the GET countries/download endpoint

 Postman, when it can interpret file content, will display it, but don’t worry—if you try to download it from a browser, it will get done correctly, as shown in Figure 4-33.
 [image:]
 A screenshot of a window highlights the address of the local host and the downloaded file countries dot c s v.

Figure 4-33
 Downloading the countries.csv file from a browser

 Finally, You can see what headers have been sent to the client, such as Content-Length, Content-Type, or Content-Disposition, as shown in Figure 4-34.
 [image:]
 A screenshot highlights the status of 200 responses as O K. The table at the bottom has 2 columns and 6 rows. The column headers are key and value. The content of the second column is highlighted.

Figure 4-34
 Headers sent from the browser while downloading the countries.csv file

 Uploading Files

 Let’s move on to the reverse process. Upload a file to the server. This operation is a little trickier; we must perform a few validations on the file to ensure its integrity. I’ll show you how to validate an uploaded file. Then, it’s essential to know that file uploads work differently if	1.

 You’re uploading a single file or many files without a payload.

	2.

 You’re sending a single file or many files with metadata (a payload in the request body).

 Uploading a Single File or Many Files Without Any Payload

 Let’s start by establishing the possibility of uploading a file to a minimal API with ASP.NET Core 8. I will name the endpoint “/countries/upload” associated with the POST verb and use the IFormFile interface to accept an uploaded file. The posted file will be bound in IFormFile properties. Listing 4-29 shows the POST /countries/upload endpoint.

 app.MapPost("/countries/upload", (IFormFile file) =>

 {

 return Results.Created();

 });

 Listing 4-29
 The POST countries/upload endpoint

 I chose not to add the [FromForm] attribute since you can’t get confused about where the files come from since it always comes from the form-data request body.

 Figure 4-35 shows the countries.csv file getting uploaded via Postman.
 [image:]
 A screenshot highlights the circular checkbox labeled form-data, the enabled checkbox of the table with 3 columns and 1 row, and the status of 201 responses as created. The column headers in the table are key, value, and description.

Figure 4-35
 Upload the countries.csv file to the POST /countries/upload endpoint

 You may notice that a file must be sent over the form data and given a name identical to the input file parameter in the API; it’s case insensitive. Here I chose the name file. This is mandatory for parameter binding purposes. If we take a look at the headers sent by Postman, we’ll see two crucial headers: Content-Type, which contains the multipart/form-data value that is mandatory to send files via HTTP, and Content-Length, which tells the server the size of the uploaded file. Figure 4-36 shows the headers sent to the server (I voluntarily chose not to show you all headers since there is a bunch, but only the ones involved in the file upload).
 [image:]
 A screenshot highlights two enabled checkboxes labeled content-type and content-length in a table with 3 columns and 3 rows. The column headers are key, value, and description.

Figure 4-36
 Headers sent to the server when uploading the countries.csv file to the POST /countries/upload endpoint

 Figure 4-37 shows the IFormFile content while debugging the endpoint.
 [image:]
 A screenshot of a code highlights the I form file command. The sub-content with name, filename, countries, and count in the drop-down list are also highlighted.

Figure 4-37
 IFormFile content when uploading the countries.csv file to the POST /countries/upload endpoint

 Let’s move on to uploading several files. Yes, it’s supported by ASP.NET Core 8 minimal APIs, and here’s how: instead of using the IFormFile interface as an input parameter, you have to use the IFormFileCollection interface instead, as shown in Listing 4-30. I named the route /countries/uploadmany.

 app.MapPost("/countries/uploadmany", (IFormFileCollection files) =>

 {

 return Results.Created();

 });

 Listing 4-30
 The POST countries/uploadmany endpoint

 To make it work as in the previous example, you will have to name all your form-data keys, in Postman, the same as shown in Figure 4-38.
 [image:]
 A screenshot highlights two enabled checkboxes labeled files in a table with 3 columns and 3 rows. The column headers are key, value, and description.

Figure 4-38
 Upload several files to the POST /countries/uploadmany endpoint

 The headers sent to the server are the same. Nothing changes except their value. For example, the header Content-Length value will be higher than the previous one since we send two files instead of one. Figure 4-39 shows the endpoint while it receives the files.
 [image:]
 A screenshot of a code highlights the I form file collection parameter and the files 0, 1, and raw view in the drop-down list.

Figure 4-39
 IFormFileCollection content when uploading two files to the POST /countries/uploadmany endpoint

 Manipulating uploaded files with IFormFileCollection remains the same as IFormFile. You have to loop on each file (each file in the collection implements the IFormFile interface) and perform any action on it. The logic there is up to you. You can send them to a service or save them on a file disk. How you can upload files with ASP.NET Core 8 minimal APIs only matters here.

 Let’s see how we can handle a single file or several files sent to the server with a payload.

 Note

 I used the POST verb here, but the PUT and PATCH verbs also support file upload.

 Uploading a Single File or Many Files with a Payload

 Believe it or not, I didn’t immediately understand how I was supposed to upload files and metadata simultaneously. And yet it’s simple; I hadn’t thought of it.

 At first, I thought, Well, I’ll send my metadata in JSON in the request body and then my files in form data. But it’s simply impossible! As soon as you choose one of the two data transport methods, the other can’t work. If you send data via the form-data transport, you can no longer send JSON data in a request body. The request body will be ignored. The Content-Type header is set to multipart-form data, not application/json. You must therefore send your payload via form data. Listing 4-31 shows the two previous endpoints updated with an additional input parameter named CountryMetaData to which I’ve associated the [FromForm] attribute, the latter being mandatory, as I announced earlier in this chapter.

 app.MapPost("/countries/uploadwithmetadata", (

 [FromForm] CountryMetaData countryMetaData, IFormFile file) =>

 {

 return Results.Created();

 }).DisableAntiForgery();

 app.MapPost("/countries/uploadmanywithmetadata", (

 [FromForm] CountryMetaData countryMetaData, IFormFileCollection files) =>

 {

 return Results.Created();

 }).DisableAntiForgery();

 Listing 4-31
 The POST /countries/upload and /countries/uploadmany endpoints updated with metadata coming from the request body

 If I take the endpoint that uploads several files (both endpoints have the same behavior), the Postman request will look like that shown in Figure 4-40.
 [image:]
 A screenshot highlights four enabled checkboxes labeled files, author name, and description in a table with 3 columns and 4 rows. The column headers are key, value, and description.

Figure 4-40
 Upload files and metadata simultaneously

 If we take a look server-side in the API endpoint, we should see the metadata property bound as shown in Figure 4-41.
 [image:]
 A screenshot of a code highlights the from-form country metadata parameter and the drop-down list with the author name and description.

Figure 4-41
 IFormFileCollection content when uploading several files with their metadata properly bound

 Validating an Uploaded File

 Again, for security reasons, you’ll need to check that the file you’ve uploaded poses no threat.

 I’ll show you what to do here. The first thing to remember here is to validate the following:	1.

 The file name should contain only alphanumeric characters, possibly with hyphens or underscores. Having special characters like slashes could induce unwanted behavior when you store your files. No file should contain a slash since slashes are used for directories.

	2.

 Regarding file extensions, for a CSV file, we expect the .csv extension.

	3.

 Regarding file MIME types, for a CSV file, expect the text/csv MIME type.

	4.

 The file signature is the hexadecimal characters at the beginning of the file, and they characterize the file. For example, an exe file will always have the following hexadecimal character sequence at its beginning: 4D 5A or 5A 4D. We will test this sequence against the countries.csv. Since a CSV does not have a particular sequence because it’s a plain text file, we must exclude some dangerous files such as .exe (executable). Why are we doing that? Some hackers send files with a correct file extension, but it’s not the expected file since the extension can be renamed. For your information, this validation is commonly named Magic bytes validation. Figure 4-42 shows the first two bytes in their hexadecimal representation of an executable file.

	5.

 For file contents, I won’t show you an example here, as we saw how to validate a string with a regular expression earlier in this chapter.

 [image:]
 A screenshot of a window titled, some e x e file dot e x e. It displays the four endpoints in a table of 6 columns. The columns are address, 0, 1, 2, 3, and 4. The first row entry reads, 0 0 0 0 0 0 0 0, 4 d, 5 a, 90, 00, 03. Entries 4 d and 5 a are highlighted.

Figure 4-42
 Executable file signature

 Let’s create a validator that will only authorize CSV files. If we keep the input parameters as is (refer to Listing 4-31), the validation will be applied to the IFormFile input parameter because the validator signature would be IValidator<IFormFile>. Since the latter may apply to any uploaded file, we’ll face a problem if we want to validate other file types on another endpoint, for example. The best solution is to encapsulate the file to be uploaded and its metadata in a specific class where the validation will be performed exclusively for this one. Consider the CountryFileUpload class as the new input parameter for our endpoint that allows a single file to get uploaded (refer to Listing 4-32).

 public class CountryFileUpload

 {

 public IFormFile File { get; set; }

 public string AuthorName { get; set; }

 public string Description { get; set; }

 }

 Listing 4-32
 The CountryFileUpload class that encapsulates IFormFile and its metadata

 You may notice I put the file and its metadata at the same level to lower the complexity of the class.

 Now we can write a specific validation on the CountryFileUpload class where we expect only a CSV file. We’ll also validate the content of the metadata, AuthorName and Description properties. Listing 4-33 shows the CountryFileUploadValidator class.

 using AspNetCore8MinimalApis.Models;

 using FluentValidation;

 using FluentValidation.Results;

 using System.Text.RegularExpressions;

 namespace AspNetCore8MinimalApis.Validators;

 public class CountryFileUploadValidator : AbstractValidator<CountryFileUpload>

 {

 public CountryFileUploadValidator()

 {

 RuleFor(x => x.File).Must((file, context) =>

 {

 return file.File.ContentType == "text/csv";

 }).WithMessage("ContentType is not valid");

 RuleFor(x => x.File).Must((file, context) =>

 {

 return file.File.FileName.EndsWith(".csv");

 }).WithMessage("The file extension is not valid");

 RuleFor(x => x.File.FileName).Matches(^[A-Za-z0-9_\\-.]*$").WithMessage("The file name is not valid");

 RuleFor(x => x).Must((file, context) =>

 {

 // string representation of hexadecimal signature of an execute file

 var exeSignatures = new List<string> {

 "4D-5A",

 "5A 4D"

 };

 BinaryReader binary = new BinaryReader(file.File.OpenReadStream());

 byte[] bytes = binary.ReadBytes(2); // reading first two bytes

 string fileSequenceHex = BitConverter.ToString(bytes);

 foreach (var exeSignature in exeSignatures)

 if (exeSignature.Equals(

 fileSequenceHex,

 StringComparison.OrdinalIgnoreCase

)

 return false;

 return true;

 }).WithName("FileContent")

 .WithMessage("The file content is not valid");

 RuleFor(x => x.AuthorName)

 .NotEmpty()

 .WithMessage("{PropertyName} is required")

 .Custom((authorName, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(authorName).Count > 0)

 {

 // Raises an error

 context.AddFailure(

 new ValidationFailure(

 "AuthorName",

 "The AuthorName parameter has invalid content"));

 }

 });

 RuleFor(x => x.Description)

 .NotEmpty()

 .WithMessage("{PropertyName} is required")

 .Custom((name, context) =>

 {

 Regex rg = new Regex("<.*?>"); // Matches HTML tags

 if (rg.Matches(name).Count > 0)

 {

 // Raises an error

 context.AddFailure(new

 ValidationFailure(

 "Name",

 "The AuthorName parameter has invalid content"));

 }

 });

 }

 }

 Listing 4-33
 The CountryFileUploadValidator class

 Since most parts of the validation are straightforward, I will explain the Magic bytes validation more. As mentioned previously, an executable file (.exe) signature may start with two different sequences. So I stored in a list their hexadecimal representation as a string. Each hexadecimal sequence has two numbers representing the first two bytes, separated by a hyphen because the string representation of the hexadecimal numbers contains a hyphen between numbers. After opening the file as a stream with the OpenReadStream method, then I transform the stream into an array of bytes with the BinaryReader class and read the first two bytes represented in a string with the BitConverter.ToString method. Finally, I compare this string representation with the forbidden sequences.

 Figure 4-43 shows a failed validation of the CSV file when a .exe file extension has been renamed into a .csv extension.
 [image:]
 A screenshot of a window running local host server for countries. In the window, the key, value, and description are listed in 3 columns. The value for the file key is highlighted. The status below reads, 400 bad request is also highlighted. In the script, the output printing line, the file content is not valid, is highlighted.

Figure 4-43
 Failed validation of an executable file renamed into a CSV file

 Note

 At this time of writing, the IFormFile attribute is incompatible with the FromForm attribute when they are both nested in a custom class in minimal APIs. This should be fixed on the final release:

 https://github.com/dotnet/aspnetcore/issues/49526.

 You’ll need to invoke the validator in a loop to validate each file if you upload several files simultaneously.

 As you can see, file uploading can be tricky, whereas downloading is pretty straightforward. If you want to learn more about file signatures or Magic bytes, you can look at all possible signatures characterizing each type of file here: https://profilbaru.com/article/List_of_file_signatures.

 Streaming Content

 Content streaming is a CRUD operation because streaming content is a separate functionality, even if it’s similar to downloading a file. Streaming is downloading a file temporarily stored on the device (browser, mobile application, etc.), with which it is possible to consume the content before it has been fully downloaded. Downloading, on the other hand, offers temporary storage of any file. Generally speaking, downloading doesn’t allow you to consume content at the same time as downloading. To be able to stream a video, for example, you’ll need to have in your hands two things:	1.

 The video stream (Stream object)

	2.

 The file MIME type (e.g., “video/mp4”)

 Let’s consider the IStreamingService interface, which exposes the GetFileStream method and returns the file stream and its MIME type encapsulated in a tuple, as shown in Listing 4-34.

 namespace Domain.Services;

 public interface IStreamingService

 {

 Task<(Stream stream, string mimeType)> GetFileStream();

 }

 Listing 4-34
 The IStreamingService interface

 Let’s inject it into the GET /streaming endpoint, and let’s assume the implementation returns a .mp4 (video/mp4) video stream as shown in Listing 4-35.

 app.MapGet("/streaming", async (IStreamingService streamingService) =>

 {

 (Stream stream, string mimeType) = await streamingService.GetFileStream();

 return Results.Stream(stream, mimeType, enableRangeProcessing: true);

 });

 Listing 4-35
 The GET /streaming endpoint

 As you can see, we need to use the Results.Stream method that takes, optionally, another parameter, enableRangeProcessing, set to true. The latter allows the server to manage partial content when a client requests a specific range of content, such as a video. It often happens when a client uses a media player to access a specific video part. If the client requests it, the response HTTP status code will be Partial Content (216) instead of OK (200). If you remember in Chapter 1, I discussed the Accept-Ranges, Range, and Content-Range headers. Figure 4-44 shows the video being streamed (it also works with Postman).
 [image:]
 A screenshot of a window displaying a video. The field labeled, GET displays the address and it is highlighted. Status reads, 200 O K, which is highlighted. In the bottom panel, the body tab is selected. The video is streamed in the bottom panel.

Figure 4-44
 The GET /streaming endpoint streaming a .mp4 video

 As you can see, it’s pretty straight and effortless. If you want to build your streaming server, now you know how!

 Handling CORS

 When a website is launched, all data requested from the server must come from the same source, that is, from the same server or at least from the same HTTP domain (or sub-domain) (as several servers can hide behind the same domain name). A security feature, Same-Origin Policy (SOP), prohibits data loading from other domain names. This security applies to scripts like JavaScript that initiate HTTP requests to retrieve data.

 To find out whether your API is authorized to serve a client from another domain, the browser will perform what’s known as a preflight, that is, a preliminary request to the server. This preflight is performed via an HTTP request via the OPTIONS verb. The browser is then informed whether or not the server authorizes the HTTP request.

 Various headers allow the browser to know the origin and purpose of the HTTP request received. These headers all have part of their name in common: they all start with Access-Control-*.

 Here’s the complete list of headers:	
 Access-Control-Allow-Origin: Header returned by the server to tell the client which domains are authorized.

	
 Access-Control-Allow-Credentials: Header returned by the server to indicate to the client whether requests requiring credentials are authorized, like authorization headers. True or false will be returned to the client.

	
 Access-Control-Allow-Headers: Header returned by the server to indicate to the client which headers are authorized.

	
 Access-Control-Allow-Methods: Header returned by the server to indicate to the client which HTTP request methods are authorized.

	
 Access-Control-Expose-Headers: Header returned by the server to indicate to the client which headers will be returned in the HTTP response to a request.

	
 Access-Control-Max-Age: Header returned by the server indicating how long, in seconds, the response to the preliminary request will be cached.

	
 Access-Control-Request-Headers: Header sent by the client during the preliminary request, telling the server which headers will be sent to it.

	
 Access-Control-Request-Method: Header sent by the client during the preliminary request, telling the server which HTTP verbs will be sent to it.

 To learn more about these headers, look at the Mozilla documentation here: https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers.

 ASP.NET Core 8 allows you to set these headers, and we’re going to concentrate on four of them, which are the most important and most frequently used:	1.

 Access-Control-Allow-Origin

	2.

 Access-Control-Allow-Methods

	3.

 Access-Control-Allow-Headers

	4.

 Access-Control-Allow-Credentials

 Let’s start with a basic configuration of CORS in ASP.NET Core 8. Listing 4-36 shows a configuration named AllowAll, a policy that authorizes any origin, HTTP verb, or header. There is no need to set up the Access-Control-Allow-Credentials header when any origin is allowed.

 builder.Services.AddCors(options =>

 {

 options.AddPolicy("AllowAll",

 builder =>

 {

 builder.AllowAnyHeader()

 .AllowAnyMethod()

 .AllowAnyOrigin();

 });

 });

 Listing 4-36
 Basic CORS configuration allowing any origin, verb, or header

 Suppose you try simultaneously allowing credentials with the AllowCredentials method when allowing any origin with the AllowAnyOrigin method; in that case, it will lead to an error, as shown in Figure 4-45.
 [image:]
 A screenshot of a window displaying an error message. It is titled, exception user-unhandled. The message reads, that the C O R S protocol does not allow specifying a wildcard origin and credentials at the same time. Configure the C O R S policy by listing individual origins if credentials need to be supported.

Figure 4-45
 Allowing credentials and any origin leads to an error

 This is only the configuration; this won’t work if it’s not enabled in the ASP.NET Core pipeline. Listing 4-37 shows how to enable the CORS middleware by using the UseCors method that takes as a parameter the AllowAll policy.

 var app = builder.Build();

 app.UseCors("AllowAll");

 Listing 4-37
 Enabling the “AllowAll” CORS policy

 You can probably guess this is not the configuration to use for production. In production, you’ll have to be more restrictive. Consider the following elements:	1.

 You’ll want to authorize any header and credentials.

	2.

 You’ll want to authorize only the following verbs: GET, POST, PUT, and DELETE only, thus prohibiting all other verbs.

	3.

 Above all, you’ll want to filter the domains your customers can access by authorizing only the following domains: https://mydomain.com and https://myotherdomain.com.

 Listing 4-38 shows this restricted configuration. The policy will be named “Restricted”.

 options.AddPolicy("Restricted",

 builder =>

 {

 builder.AllowAnyHeader()

 .WithMethods("GET", "POST", "PUT", "DELETE")

 .WithOrigins("https://mydomain.com", "https://myotherdomain.com")

 .AllowCredentials();

 });

 Listing 4-38
 Restricted CORS configuration

 Let’s try it out. Consider a JavaScript script, pure JavaScript, that executes an HTTP request to the server (it will try to reach my local API at the https://localhost:7157 address) with a not-allowed origin (http://localhost:5150) as shown in Listing 4-39.

 <script>

 function getCountries()

 {

 var xmlHttp = new XMLHttpRequest();

 xmlHttp.onreadystatechange = function() {

 if (xmlHttp.readyState == 4 && xmlHttp.status == 200)

 callback(xmlHttp.responseText);

 }

 xmlHttp.open("GET", "https://localhost:7157/countries", true);

 xmlHttp.send(null);

 }

 getCountries();

 </script>

 Listing 4-39
 JavaScript script attempting an HTTP request with a not-allowed origin

 Since the origin (http://localhost:5150) is not allowed, the browser will return a CORS error, as shown in Figure 4-46.
 [image:]
 A screenshot of a window titled, Demo C O R S. In the bottom panel, the tab labeled, console is selected. It highlights the following 2 messages. 1. Access to X M L h t t p request from origin has been blocked by CORS policy, no access-control-allow-origin header is present on the requested resource. 2. Get, error failed 200.

Figure 4-46
 Failed HTTP request made over JavaScript due to a not-allowed origin

 Managing CORS in your API is necessary for security reasons when a client uses scripts. I’ve shown you how to filter HTTP requests to prevent anyone from making potentially dangerous connections, thus reducing the risks associated with requests from origins other than your API. To learn more about CORS, you can read Mozilla’s lovely documentation: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

 API Versioning

 When you program an API, you can expect it to evolve over time. In many cases, this evolution will have no consequences for the customer, who can use the API without changing anything. In other words, it’s retro-compatible. However, if your API changes its behavior, that is, if the data contract exposed to the customer changes, the customer will be blocked from using the API as before the update. To solve this problem, you’ll need to version your API, that is, each endpoint (or some of them) will be assigned version numbers, and each endpoint version will have its exchange contract with the client and its back-end behaviour. So, for a given endpoint, you’ll have as many endpoints to maintain as there are versions of that endpoint. I’ll show you how to do it properly.

 There are three ways to manage an API version:	1.

 Using headers, for example, with a custom header api-version : 2

	2.

 Using the route, for example, /v2/countries

	3.

 Using the queryString, for example, /countries?api-version=2

 I will not talk about versioning using the query string, because, in my opinion, it’s the least clean solution, as it makes the URL less readable, with parameters depending on the URL. Using the route is still pretty readable, and using headers is even cleaner.

 Versioning by Headers

 First off, to be able to manage API versioning, we’ll need to download the following Nuget package:

 NuGet\Install-Package Asp.Versioning.Http

 By doing that, we are now ready to configure versioning in an ASP.NET Core 8 minimal API. Listing 4-40 shows the configuration by using the AddApiVersioning extension method.

 builder.Services.AddApiVersioning(options =>

 {

 options.DefaultApiVersion = new ApiVersion(1, 0);

 options.ReportApiVersions = true;

 options.AssumeDefaultVersionWhenUnspecified = true;

 options.ApiVersionReader = new HeaderApiVersionReader("api-version");

 });

 var app = builder.Build();

 Listing 4-40
 The API versioning configuration

 The important thing here is to define the configuration before invoking the Build method.

 This configuration does four things:	
 DefaultApiVersion: Specifies the default version of the API to fall back to when no version is specified, version 1.0 in this example

	
 ReportApiVersions: Specifies in the response headers the supported versions by the API, true in this example

	
 AssumeDefaultVersionWhenUnspecified: Allows to fall back to the version defined with the option DefaultApiVersion when a version is not specified, true in this example

	
 ApiVersionReader: Specifies the header’s name in the request when a client wants to select a specific version, api-version in this example

 After that, we need to define all the versions available. Let’s say we will expose two versions of the API: 1.0 and 2.0. Versions 1.0 and 2.0 are a version set of the API. This version set must be declared after the Build method.

 Listing 4-41 shows the configuration of the version set made with the NewApiVersionSet extension method.

 var app = builder.Build();

 var versionSet = app.NewApiVersionSet()

 .HasApiVersion(1.0)

 .HasApiVersion(2.0)

 .Build();

 Listing 4-41
 The 1.0 and 2.0 version set defined

 The HasApiVersion method allows us to declare each version we want to manage in the API, and then we have to build the version set with the Build method. As a result, the versionSet variable will be assigned to endpoints.

 Listing 4-42 shows four endpoints using the version set obtained previously and assigned to each endpoint with the WithApiVersionSet method.

 app.MapGet("/version", () => "Hello version 1").WithApiVersionSet(versionSet).MapToApiVersion(1.0);

 app.MapGet("/version", () => "Hello version 2").WithApiVersionSet(versionSet).MapToApiVersion(2.0);

 app.MapGet("/version2only", () => "Hello version 2 only").WithApiVersionSet(versionSet).MapToApiVersion(2.0);

 app.MapGet("/versionneutral", () => "Hello neutral version").WithApiVersionSet(versionSet).IsApiVersionNeutral();

 Listing 4-42
 Assigning the version set

 As you can see, I declared twice the GET /version endpoint, but each declaration is assigned to a specific version, 1.0 and 2.0, using the MapToApiVersion extension method. The GET /version2only endpoint has only a single version assigned, 2.0. If we don’t specify any version, it will try to fall back to version 1.0 as we configured it earlier, but since it has not been assigned to this endpoint, it will lead to a Bad Request (400) error. If we try to pass version 1.0 in the headers, it will lead to the same error. Finally, the GET /versionneutral will only handle the versions defined in the version set and will remain idempotent (same behavior) regarding the version passed in the headers as long as it is declared in the version set. If any version is passed in the headers and is not declared in the version set, it will lead to a Bad Request (400) error. Omitting the version in the headers will fall back to version 1.0 and return an OK (200), since the latter is declared in the version set.

 Suppose you want to make any endpoint insensitive to any version. In that case, you will have to remove the WithApiVersionSet and any other function related to versioning in the endpoint declaration as follows:

 app.MapGet("/versioneutral", () => "Hello neutral version")

 Figure 4-47 shows the result of the execution of the GET /version endpoint bound to version 1.0 by passing the api-version header value 1.0.
 [image:]
 A screenshot of a window displays the result of the GET execution, version. The following are highlighted. The address given in the GET field, the key labeled, a p i-version and its value 1.0, the status, 200 O K, and the message that reads, hello version 1.

Figure 4-47
 The GET /version endpoint execution result bound to version 1.0

 As you can see, the correct output, “Hello version 1”, has been returned to Postman.

 Figure 4-48 shows the output of the GET /version endpoint bound to version 2.0.
 [image:]
 A screenshot of a window displays the result of the GET execution, version. The following are highlighted. The address given in the GET field, the key labeled, a p i-version and its value 2.0, the status, 200 O K, and the message that reads, hello version 2.

Figure 4-48
 The “/version” endpoint execution result bound to version 2.0

 Again, the correct output, “Hello version 2”, has been returned.

 Let’s now try the GET /version2only, which is only bound to version 2.0. Figure 4-49 shows the output when trying to omit the api-version header.
 [image:]
 A screenshot of a window runs version 2 only endpoint. The address given in the GET field is highlighted. The status at the bottom reads, 400 bad request. The status is also highlighted.

Figure 4-49
 The “/version2only” endpoint not bound to any version execution result

 The output is as expected, as Bad Request (400) has been returned. Figure 4-50 shows the output when the same endpoint is bound to version 1.0.
 [image:]
 A screenshot of a window that runs the version 2 only endpoint. The headers tab is selected. The following details are highlighted. 1. a p i-version, 1.0. 2. Status, 400 bad request.

Figure 4-50
 The “/version2only” endpoint bound to the version 1.0 execution result

 As expected, we get here a Bad Request (400). Figure 4-51 now shows the output when version 2.0 is passed to the headers.
 [image:]
 A screenshot of a window that runs version 2 only endpoint. The headers tab is selected. The following data from the window are highlighted. 1. The address given in the GET field. 2. The header, a p i-version, 2.0. 3. 200 O K. 4. The message in the bottom panel. It reads, hello version 2 only.

Figure 4-51
 The “/version2only” endpoint bound to the version 2.0 execution result

 As expected, we get there an OK (200) response.

 Let’s try now to see the output when passing any version (or nothing) to the GET /versionneutral endpoint. Figures 4-52, 4-53, and 4-54 show, respectively, the output when no version is passed in the headers, when version 2.0 is placed in the headers (declared in the version set), and, finally, when version 3.0 is passed in the headers (not declared in the version set).
 [image:]
 A screenshot of a window that runs version neutral endpoint. The headers tab is selected. The following data from the window are highlighted. 1. The address given in the GET field. 2. Status, 200 O K. 3. The message that is given in the bottom panel. It reads, hello neutral version.

Figure 4-52
 The GET /versionneutral endpoint not bound to any version execution result

 [image:]
 A screenshot of a window that runs version neutral endpoint. The headers tab is selected. The following data from the window are highlighted. 1. The address given in the GET field. 2. The header, a p i-version, 2.0. 3. 200 O K. 4. The message in the bottom panel. It reads, hello neutral version.

Figure 4-53
 The GET /versionneutral endpoint bound to the version 2.0 execution result

 [image:]
 A screenshot of a window that runs version neutral endpoint. The headers tab is selected. The following data from the window are highlighted. 1. The address given in the GET field. 2. The header, a p i-version, 3.0. 3. 400 bad request.

Figure 4-54
 The GET /versionneutral endpoint bound to the version 3.0 execution result

 All the output results meet the requirements as discussed earlier.

 Passing the version in the headers is probably the best way to handle the version and cleaner since you don’t have to modify the URL, but I prefer to manage it in the route. I will show you how in the following subsection.

 When I bring back the API documentation topic, I will show you how to make version header input available on the Swagger page.

 Versioning by Route

 I’ll now show you my favorite way of managing my API versioning. We will rely on RouteGroups obtained by defining routes on the RouteGroupBuilder class. You’ll love it! Let’s consider the groups of API, GroupVersion1 and GroupVersion2 methods, where the GET /version and /version2only endpoints are declared within, as shown in Listing 4-43.

 namespace AspNetCore8MinimalApis.RouteGroups;

 public static class VersionGroup

 {

 public static RouteGroupBuilder GroupVersion1(this RouteGroupBuilder group)

 {

 group.MapGet("/version", () => $"Hello version 1");

 return group;

 }

 public static RouteGroupBuilder GroupVersion2(this RouteGroupBuilder group)

 {

 group.MapGet("/version", () => $"Hello version 2");

 group.MapGet("/version2only", () => $"Hello version 2 only");

 return group;

 }

 }

 Listing 4-43
 The GET /version and /version2only endpoints defined in RouteGroups

 I have made the GET /version endpoint available in the two groups. Each one corresponds to a specific version of their endpoints. In group 2 only, defined by the GroupVersion2 method, I made the GET /version2only endpoint available. As I showed you earlier in this chapter, we must add them to the ASP.NET Core pipeline. Listing 4-44 shows the ASP.NET Core pipeline registration, and I gave them a version name by defining a URL trunk for each, /v1 and /v2.

 app.MapGroup("/v1").GroupVersion1();

 app.MapGroup("/v2").GroupVersion2();

 app.Run();

 Listing 4-44
 The GET /version and /version2only endpoints defined in RouteGroups under the /v1 and /v2 URL trunks

 As you can see, it’s straightforward. There is also another reason I love managing versioning in this way; the reason is that if you put the version in the route and you get wrong with the specified version, it won’t lead to a Bad Request (400) but to a Not Found (404) error, which is more evident to me. After all, it’s normal because we manage API versioning by route. Do you feel me? Figures 4-55 and 4-56 show, respectively, the output when invoking the GET /v1/version2only (which has never been defined) and GET /v2/version2only endpoints.
 [image:]
 A screenshot of a window that runs version 1 version 2 only endpoint. The headers tab is selected. The address given in the GET field is highlighted. The status at the bottom reads, 404 not found. It is highlighted.

Figure 4-55
 The GET /v1/version2only endpoint bound, in the route, to the version 1 execution result

 [image:]
 A screenshot of an execution window runs version 2 only endpoint bound. The following data from the window is highlighted. 1. The address given in the GET field. 2. The stats that reads, 200 O K. 3. The message is given in the body of the script. The message reads, hello version 2 only.

Figure 4-56
 The GET /v2/version2only endpoint bound, in the route, to the version 2 execution result

 The behavior of these endpoints is meeting the expectations. I’m sure now, and you will agree, that facing Not Found (404) errors is more evident!

 One more thing! Route groups are compatible with Swagger; by that, Swagger will display the different registered routes in the route groups, and I will show that to you in the next section.

 Documenting APIs

 In Chapter 2, I introduced you to API documentation using the OpenAPI specification, which I also used to introduce Swagger and its implementation in ASP.NET Core 8.

 Documenting your API is fundamental insofar as it’s the documentation your client will use to be able to consume your API. In this section, I’m going to show you options for customizing your documentation:	1.

 Managing API versions (with header versioning only)

	2.

 Adding comments on endpoints

	3.

 Grouping your endpoints with tags

	4.

 Other customizations

 First off, ensure that the following Nuget packages are installed if they are not yet:	
 Asp.Versioning.Http

	
 Asp.Versioning.Mvc.ApiExplorer

	
 Microsoft.AspNetCore.OpenApi

	
 Swashbuckle.AspNetCore

 I understand it doesn’t sound very clear because there are many packages. Let me explain to you why. As we saw previously, the package Asp.Versioning.Http enables you to version your minimal endpoints. The Asp.Versioning.Mvc.ApiExplorer will allow you to let ASP.NET Core (its API Explorer) know that several versions are available for an endpoint, as we did in the previous section. Swashbuckle.AspNetCore and Microsoft.AspNetCore.OpenApi help make available some Swagger features and some customizations. As I showed you in Chapter 2, these two packages are automatically brought on the ASP.NET Core Web API project if you click the “Enable OpenAPI support” option while creating a new project. Don’t forget to unselect the “Use controllers” to work only with minimal APIs.

 Managing API Versions in Swagger

 As a first step, we will need to create a class that will be registered as Swagger options, and these options will allow us to register in the ASP.NET Core pipeline the generation of the Swagger documentation. Listing 4-45 shows the SwaggerConfigurationsOptions class that inherits from the IConfigureOptions<SwaggerGenOptions>, where the SwaggerGenOptions interface parameter comes from the SwashBuckle assembly.

 using Asp.Versioning.ApiExplorer;

 using Microsoft.Extensions.Options;

 using Microsoft.OpenApi.Models;

 using Swashbuckle.AspNetCore.SwaggerGen;

 namespace AspNetCore8MinimalApis.Swagger;

 public class SwaggerConfigurationsOptions : IConfigureOptions<SwaggerGenOptions>

 {

 private readonly IApiVersionDescriptionProvider _apiVersionDescriptionProvider;

 public SwaggerConfigurationsOptions(

 IApiVersionDescriptionProvider apiVersionDescriptionProvider)

 {

 _apiVersionDescriptionProvider = apiVersionDescriptionProvider;

 }

 public void Configure(SwaggerGenOptions options)

 {

 foreach (var description in _apiVersionDescriptionProvider.ApiVersionDescriptions)

 {

 options.SwaggerDoc(description.GroupName, CreateOpenApiInfo(description));

 }

 }

 private static OpenApiInfo CreateOpenApiInfo(

 ApiVersionDescription description

)

 {

 var info = new OpenApiInfo()

 {

 Title = "ASP.NET Core 8 Minimal APIs",

 Version = description.ApiVersion.ToString()

 };

 return info;

 }

 }

 Listing 4-45
 The SwaggerConfigurationsOptions class

 Now, let’s take the existing GET /version, /version2only, and /versionneutral endpoints again and try to run them through Swagger. To get it done, let’s rewrite the Program.cs file by completing the API versioning with the Swagger feature, as shown in Listing 4-46.

 using Asp.Versioning;

 using Asp.Versioning.Conventions;

 using AspNetCore8MinimalApis.Swagger;

 using Swashbuckle.AspNetCore.SwaggerGen;

 using Microsoft.Extensions.Options;

 var builder = WebApplication.CreateBuilder(args);

 builder.Services.AddEndpointsApiExplorer();

 builder.Services.AddApiVersioning(options =>

 {

 options.DefaultApiVersion = new ApiVersion(1, 0);

 options.ReportApiVersions = true;

 options.AssumeDefaultVersionWhenUnspecified = true;

 options.ApiVersionReader = new HeaderApiVersionReader("api-version");

 })

 .AddApiExplorer(options =>

 {

 options.GroupNameFormat = "'v'VV"; // Formats the version as follow: "'v'major[.minor]"

 });

 builder.Services.AddSwaggerGen();

 builder.Services.AddSingleton<IConfigureOptions<SwaggerGenOptions>, SwaggerConfigurationsOptions>();

 var app = builder.Build();

 // var apiVersionDescriptionProvider = app.Services.GetRequiredService<IApiVersionDescriptionProvider>(); Not working properly in ASP.NET Core 8 preview

 app.UseSwagger().UseSwaggerUI(c =>

 {

 // Workaround, hardcoding versions to be displayed in Swagger

 c.SwaggerEndpoint($"/swagger/v1.0/swagger.json", "Version 1.0");

 c.SwaggerEndpoint($"/swagger/v2.0/swagger.json", "Version 2.0");

 // Not working correctly in ASP.NET Core 8 preview

 //foreach (var description in apiVersionDescriptionProvider.ApiVersionDescriptions.Reverse())

 //{

 // c.SwaggerEndpoint($"/swagger/{description.GroupName}/swagger.json",

 // description.GroupName.ToUpperInvariant());

 //}

 });

 var versionSet = app.NewApiVersionSet()

 .HasApiVersion(1.0)

 .HasApiVersion(2.0)

 .Build();

 app.MapGet("/version", () => "Hello version 1").WithApiVersionSet(versionSet).MapToApiVersion(1.0);

 app.MapGet("/version", () => "Hello version 2").WithApiVersionSet(versionSet).MapToApiVersion(2.0);

 app.MapGet("/version2only", () => "Hello version 2 only").WithApiVersionSet(versionSet).MapToApiVersion(2.0);

 app.MapGet("/versionneutral", () => "Hello neutral version").WithApiVersionSet(versionSet).IsApiVersionNeutral();

 app.Run();

 Listing 4-46
 The Program.cs file configured with customized Swagger documentation for API versioning

 As you can see, the Swagger feature is enabled through the AddSwaggerGen method and the SwaggerConfigurationsOptions class registered in the pipeline. You may have noticed the AddApiExplorer extension method applied to the AddApiVersioning method. The latter enables any versions declared in the API to get discovered by Swagger, and it also takes as an option the GroupNameFormat option, which allows configuring the versions formatted as 1.0 or 2.0 or x.0.

 UseSwagger and UseSwaggerUI are the middlewares that allow running the Swagger interface; UseSwagger activates the generation of the swagger.json URL (that I customized because of versioning), which contains all the OpenAPI data in JSON format to get displayed on a web HTML page activated by the UseSwaggerUI method. By default, the Swagger HTML page is reachable at the address: /swagger/index.html. This URL is customizable, but I don’t think it’s relevant to show you how; since the HTML page allows you to see your API documentation, it’s easier to remember the default page. At this time of writing (I’m using ASP.NET Core 8 preview), the UseSwaggerUI method cannot find all the API versions from the IapiVersionDescriptionProvider service. Still, it could find all versions of the API when the SwaggerConfigurationsOptions class was executed to register the documentation of each version. In other words, All versions of the documentation are registered, but because of a probable bug in the preview of ASP.NET Core 8, displaying all of them in Swagger does not work. I hard-coded all versions to be displayed.

 To illustrate this, Figures 4-57 and 4-58 show the output on the /swagger.html endpoint for versions 1 and 2, respectively.
 [image:]
 A screenshot of a window titled, Swagger. The search box at the top has the text, version 1.0, which is highlighted. The title on the screen reads, A S P dot NET core 8 minimal A P Is. A link below is highlighted. Two dropdowns for entering the GET information are given below and they are highlighted.

Figure 4-57
 Version 1.0 of the API displayed in Swagger

 [image:]
 A screenshot of a window titled, Swagger. The search box at the top has the text, version 2.0, which is highlighted. The title on the screen reads, A S P dot NET core 8 minimal A P Is. A link below is highlighted. Three dropdowns for entering the GET information are given below and they are highlighted.

Figure 4-58
 Version 2.0 of the API displayed in Swagger

 From this, you can select the API version you want to see in the drop-down on the top right of the Swagger HTML page. By default, version 1.0 is displayed since it was what we configured. You can also notice that our GET /version2only endpoint is only available on version 2.0. It’s exactly what we expected!

 Finally, the swagger.json file on the top left is clickable, and if you click it, you’ll see its content, as shown in Figure 4-59.
 [image:]
 A screenshot of an execution window displaying the content of the file swagger dot j son. The address bar of the window is highlighted.

Figure 4-59
 Version 2.0 of the API displayed in JSON with the swagger.json file

 You'll remember that we used to choose the API version with the api-version header, right? Well, magic trick! Swagger automatically displays an input allowing you to pass a value to this header (using the AddApiExplorer extension method), as shown in Figure 4-60.
 [image:]
 A screenshot of a Swagger window. It lists the parameters in two columns labeled, name and description. In this window, the name is given as a p i-version string, header. The corresponding description reads, a p i-version. The name and the description fields are highlighted.

Figure 4-60
 Swagger displaying an input for the api-version header automatically

 Adding Comments on Endpoints

 If by any chance you were tempted to add XML comments to your methods’ names and display them in Swagger to improve their documentation, this is not possible as with web APIs! Adding comments via /// <summary> is unavailable with minimal APIs on the method’s name. Since the endpoint methods are lambda expressions, comments on lambda are not handled, even if you encapsulate them in static methods in a separate class. But it works on custom endpoint input parameter objects (e.g., not on primitives), and I will show you how.

 Note

 Any object passed by dependency injection won’t be handled regarding XML comments. XML comments only work on input parameters.

 To make it work on parameters, let’s create the AddXmlComments extension method on the SwaggerGenOptions class within the SwaggerXmlComments static class, as shown in Listing 4-47.

 using Swashbuckle.AspNetCore.SwaggerGen;

 using System.Reflection;

 namespace AspNetCore8MinimalApis.Swagger;

 public static class SwaggerXmlComments

 {

 public static void AddXmlComments(this SwaggerGenOptions options)

 {

 var xmlFile = $"{Assembly.GetExecutingAssembly().GetName().Name}.xml";

 var xmlPath = Path.Combine(AppContext.BaseDirectory, xmlFile);

 options.IncludeXmlComments(xmlPath);

 }

 }

 Listing 4-47
 The SwaggerXmlComments static class with its AddXmlComments extension method

 This method finds the XML documentation generated (by scanning the current assembly) after configuring your API’s .csproj file as shown in Listing 4-48.

 <PropertyGroup>

 <GenerateDocumentationFile>true</GenerateDocumentationFile>

 <NoWarn>$(NoWarn);1591</NoWarn>

 </PropertyGroup>

 Listing 4-48
 Editing the API .csproj file to enable the XML comments

 We need now to register the XML comments feature in the AddSwaggerGen as an option, as shown in Listing 4-49.

 builder.Services.AddSwaggerGen(options =>

 {

 options.AddXmlComments();

 });

 Listing 4-49
 Registering the XML comments feature in the Swagger configuration

 Now XML comments are enabled. If we get back to the POST /countries endpoint we discussed earlier in this chapter, you can see the Country input parameter class as shown in Listing 4-50.

 app.MapPost("/countries", ([FromBody] Country country, IValidator<Country> validator, ICountryMapper mapper, ICountryService countryService) => {

 /// code

 }).WithApiVersionSet(versionSet)

 .MapToApiVersion(1.0);

 Listing 4-50
 The POST /countries endpoint with the Country input parameter class

 I will add XML comments on its properties, and we can display them in Swagger. Remember, since IValidator<Country>, ICountryMapper, and ICountryService services are injected by dependency, they won’t show up in Swagger and any XML comments will appear. Listing 4-51 shows comments on Country class parameters.

 using System.ComponentModel.DataAnnotations;

 namespace AspNetCore8MinimalApis.Models;

 public class Country

 {

 /// <summary>

 /// The country Id

 /// </summary>

 public int? Id { get; set; }

 /// <summary>

 /// The country name

 /// </summary>

 public string Name { get; set; }

 /// <summary>

 /// The country description

 /// </summary>

 public string Description { get; set; }

 /// <summary>

 /// The country flag URI

 /// </summary>

 public string FlagUri { get; set; }

 }

 Listing 4-51
 The Country class updated with summary comments

 If we run now the API and open the Swager HTML page, we should see the comments as shown in Figure 4-61.
 [image:]
 A screenshot of a Swagger window displaying the X M L comments. It highlights the following information given under schemas. The country i d, the country name, the country description, and the country flag U R I.

Figure 4-61
 The Country class displaying the XML comments

 If you want to add comments to your endpoints, you’ll need to use Swagger annotations, so I suggest you download the Nuget package Swashbuckle.AspNetCore.Annotations. Once installed, add EnableAnnotations as an option to the AddSwaggerGen method, as shown in Listing 4-52.

 builder.Services.AddSwaggerGen(options =>

 {

 options.EnableAnnotations();

 options.AddXmlComments();

 });

 Listing 4-52
 Enabling annotations in Swagger

 We can now add annotations on minimal endpoints. To achieve this, we can use the SwaggerOperation attribute to replace the XML comments, as shown in Listing 4-53.

 app.MapGet("/versionneutral", [SwaggerOperation(Summary = "Neutral version", Description = "This version is neutral")] () => "Hello neutral version")

 .WithApiVersionSet(versionSet)

 .IsApiVersionNeutral();

 Listing 4-53
 Adding the SwaggerOperation attribute for commenting endpoints (summary and description)

 I put “Neutral version” as a summary and “This version is neutral” as a description on the GET /versionneutral endpoint, and it displays perfectly when running Swagger, as shown in Figure 4-62.
 [image:]
 A screenshot of a Swagger window. The search box at the top has the text, version 1.0. The get information reads, version neutral, neutral version. The part that reads, Neutral version is highlighted. The message below reads, this version is neutral, is also highlighted.

Figure 4-62
 The “/versionneutral” enhanced with comments (summary and description)

 If you dislike using Swagger annotation, you can use the Microsoft.AspNetCore.OpenApi assembly, which also enables the possibility to add a summary and a description on an endpoint by using the WithOpenApi extension method as shown in Listing 5-54.

 app.MapGet("/versionneutral",() => "Hello neutral version")

 .WithApiVersionSet(versionSet)

 .IsApiVersionNeutral();

 .WithOpenApi(operation => new(operation)

 {

 Summary = "This is a summary",

 Description = "This is a description"

 });

 Listing 4-54
 Using the WithOpenApi extension method for commenting endpoints

 The output in Swagger will be the same as the SwaggerOperation usage, as shown previously in Figure 4-62.

 Grouping Endpoints by Tag

 Swagger lets you use tags to group your endpoints. What does this mean in concrete terms? When the Swagger HTML page is displayed, you’ll have different sections with a title, and the name you give to the tag will be the section’s name. Personally, I see two uses for tags:	1.

 Grouping endpoints by version, if you’re using versioning by route with RouteGroups

	2.

 Grouping by feature, for example, all endpoints linked to countries, the others linked to another feature

 As an example, let’s take versioned route groups, to which we’ll assign a tag using the WithTag extension method that will define a section for each version of the route groups, as shown in Listing 4-55.

 app.MapGroup("/v1")

 .GroupVersion1()

 .WithTags("V1");

 app.MapGroup("/v2")

 .GroupVersion2()

 .WithTags("V2");

 Listing 4-55
 Adding the WithTag extension method on route groups

 If we execute the Swagger page, it should display the sections defined by the V1 and V2 tags, as shown in Figure 4-63.
 [image:]
 A screenshot of a Swagger window. The text in the search box reads, version 1.0. The window displays two version tags labeled V 1 and V 2 and they are highlighted.

Figure 4-63
 Route groups split by version tag

 I don’t know what you think, but it’s a simple and effective way of managing versioning by route with route grouping.

 Other Customizations

 The Microsoft.AspNetCore.OpenApi assembly (from the Nuget package with the same name) gives more features. I will introduce you to my favorites:	
 The possibility to hide any endpoint from being exposed in Swagger, which often happens when you don’t want to expose to your client the existence of a particular endpoint: The reason could be that the hidden endpoint is used for a remote system that makes regular HTTP requests on your API to verify if the latter responds correctly. It’s the case, for example, on Microsoft Azure. Some services (like Azure API Management) need to reach the API regularly to verify its state. I won’t explore more details here since it’s not the book’s topic.

	
 The possibility to mark any endpoint as deprecated: It happens more often than you think, especially when you manage several versions of a bunch of endpoints. Before removing the endpoints that you don’t want to maintain in the near future, you will, for a certain time, annotate them as deprecated to warn your client that these endpoints will be removed soon.

	
 The possibility to describe endpoint responses: Any endpoint may return a different response depending on the behavior defined in its logic. Let’s say that an endpoint you designed may return an OK (200) when everything is going well, a Timeout (408), or even an Internal Error (500), which may happen when something is going wrong.

 Hiding an Endpoint

 If you want to hide an endpoint or many of them, you can use the ExcludeFromDescription extension method. Listing 4-56 shows the ExcludeFromDescription extension method on a route group, which handles a bunch of endpoints tagged with the V1 version.

 app.MapGroup("/v1")

 .GroupVersion1()

 .WithTags("V1")

 .ExcludeFromDescription();

 app.MapGroup("/v2")

 .GroupVersion2()

 .WithTags("V2");

 Listing 4-56
 Adding the ExcludeFromDescription extension method on a route group

 As expected, the group of endpoints tagged with the “V1” version doesn’t show up in Swagger, as shown in Figure 4-64.
 [image:]
 A screenshot of a Swagger window. The search box at the top has the text, version 2.0. The version tag is displayed and it is titled, V 2. It has two GET fields bound to version and version 2 only. The version tag is highlighted.

Figure 4-64
 Excluding the V1 route group from the Swagger documentation

 Deprecating an Endpoint

 Let’s say we want to annotate an endpoint, or a group of endpoints, as deprecated. We have to use the WithOpenApi extension method with the Deprecated option set to true, as shown in Listing 4-57.

 app.MapGroup("/v1")

 .GroupVersion1()

 .WithTags("V1")

 .WithOpenApi(operation => new(operation)

 {

 Deprecated = true

 });

 Listing 4-57
 Adding the WithOpenApi extension method on a route group with the Deprecated option

 The group of deprecated endpoints will still show up in Swagger, but the text will be grayed out with the addition of “Warning: Deprecated,” as shown in Figure 4-65.
 [image:]
 A screenshot of a Swagger window. It displays the version tag titled, V 1. It has the following four texts below. 1. Warning, deprecated. It is highlighted. 2. Parameters. 3. No parameters. 4. Request body.

Figure 4-65
 Annotate the V1 route group as deprecated

 Describing Endpoint Responses

 Describing the endpoint’s possible responses is a great way to improve the client experience when reading the Swagger documentation. Remember that your client will need to handle the possible errors on their end and rely on the possible errors you will expose to them. To illustrate this, let’s rework the GET /countries/download endpoint by enriching it with four possible responses:	
 OK (200) that returns a stream (any file download is a Stream object) and video/mp4 MIME type

	
 Not Found (404)

	
 Internal Error (500)

	
 Request Timeout (408)

 You may have noticed that only OK (200) and Not Found (404) are handled in the minimal endpoint. It does not mean it will only return these two errors. The code can still return unhandled errors, such as Internal Error (500) or Request Timeout (408). In the next chapter, I will return to unhandled errors and show you how to “catch” them. Listing 4-58 shows the Produces extension method applied on the endpoint for each possible status mentioned.

 app.MapGet("/countries/download", (ICountryService countryService) =>

 {

 (byte[] fileContent, string mimeType, string fileName) = countryService.GetFile();

 if (fileContent is null || mimeType is null)

 return Results.NotFound();

 return Results.File(fileContent, mimeType, fileName);

 })

 .Produces<Stream>(StatusCodes.Status200OK, "video/mp4")

 .Produces(StatusCodes.Status404NotFound)

 .Produces(StatusCodes.Status500InternalServerError)

 .Produces(StatusCodes.Status408RequestTimeout);

 Listing 4-58
 Adding the Produces extension method on the GET /countries/download endpoint

 The output in Swagger is shown in Figure 4-66.
 [image:]
 A screenshot of a Swagger window displaying an output. It highlights the following code and description for the responses. 1. 200, Success. 2. The file name. 3. 404, not found. 4. 408, request timeout. 5. 500, server error.

Figure 4-66
 The output in Swagger when adding endpoint response description

 Summary

 This chapter taught you the basics of clean REST APIs and ASP.NET Core 8 minimal APIs. I know this chapter was huge, but it was the strict minimum knowledge needed to learn to develop clean REST APIs with ASP.NET Core 8 minimal APIs. Since it’s the strict minimum, I strongly suggest you move forward with the next chapter to learn more about ASP.NET Core 8 minimal APIs and REST APIs in general. The next chapter will introduce more advanced features you may need to develop in your career. Even though they won’t apply to every API you will code, you face these challenges often. Let’s go to Chapter 5!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_5

5. Going Further with Clean REST APIs

Anthony Giretti1
(1)La Salle, QC, Canada

 Congratulations, reader! You made it through Chapter 4, which was packed with content! I showed you all the basics you could implement in an API in your career. In this new chapter, we’ll take you a step further with ASP.NET Core 8. Everything we’ve covered in Chapter 4 is still valid. Still, I suggest you enhance your API with features that will enable you to make your API more structured, more elegant, and easier to evolve, offering your customers a better user experience and making them safer. In this chapter, I’m going to teach you the following:	
 Encapsulating minimal endpoint implementation

	
 Implementing custom parameter binding

	
 Using middlewares

	
 Using Action Filters

	
 Using Rate Limiting

	
 Global error management

 Encapsulating Minimal Endpoint Implementation

 One thing I always do first in a minimal API (or any other application) is to structure my code. So far, I’ve shown you lambda functions that were directly executed in a minimal endpoint using the MapGet, MapPost, and other functions.

 We will create static functions in static classes to make our code more structured. How do we do this? The code will be much more readable, and we’ll separate the API-coupled code (MapXXX functions) from the execution of our logical business. Once again, we return to the SoC principle I’ve already explained. We will take advantage of this decoupling to make our software more testable. I’ll return to unit (and integration) testing in the last chapter of this book. To begin with, let’s go back to the POST /countries endpoint, which was used to create a country, with all its dependencies, as shown in Listing 5-1.

 app.MapPost("/countries", (

 [FromBody] Country country,

 IValidator<Country> validator,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 return Results.CreatedAtRoute(

 "countryById",

 new {

 Id = countryService.CreateOrUpdate(countryDto)

 });

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

 });

 Listing 5-1
 Recap of the POST /countries endpoint

 What I like to do instead is to create an “Endpoints” directory and then a static class named CountryEndpoints in the API project, similar to the structure of Controllers in a web API, but at least the code is tidy!

 There’s no need to move the code to another layer because, whether we like it or not, we’re still somewhat coupled to the Web here, as we have a FromBody attribute that depends on the Microsoft.AspNetCore.Mvc assembly. Figure 5-1 shows the structure of the API project as described.
 [image:]
 A screenshot represents a set of dropdown menus under A S P net core 8 minimal a p i s. It highlights the endpoints folder comprising a file named county end points dot c s.

Figure 5-1
 API structure with the creation of a folder dedicated to endpoint functions

 After creating a static method named PostCountry, which is the result of the concatenation of the HTTP verb and the route (it’s a convention I like to use) and takes as parameters the same parameters as the previous lambda, it gives the code as shown in Listing 5-2.

 using AspNetCore8MinimalApis.Mapping.Interfaces;

 using AspNetCore8MinimalApis.Models;

 using Domain.Services;

 using FluentValidation;

 using Microsoft.AspNetCore.Mvc;

 namespace AspNetCore8MinimalApis.Endpoints;

 public static class CountryEndpoints

 {

 public static IResult PostCountry(

 [FromBody] Country country,

 IValidator<Country> validator,

 ICountryMapper mapper,

 ICountryService countryService)

 {

 var validationResult = validator.Validate(country);

 if (validationResult.IsValid)

 {

 var countryDto = mapper.Map(country);

 return Results.CreatedAtRoute(

 "countryById",

 new {

 Id = countryService.CreateOrUpdate(countryDto)

 });

 }

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

 }

 }

 Listing 5-2
 The CountryEndpoints class and its method PostCountry

 Listing 5-3 shows the Program.cs file updated with the static function instead of any lambda on endpoints.

 using AspNetCore8MinimalApis.Endpoints;

 using AspNetCore8MinimalApis.Mapping;

 using AspNetCore8MinimalApis.Mapping.Interfaces;

 using BLL.Services;

 using Domain.Services;

 using FluentValidation;

 using Microsoft.OpenApi.Models;

 var builder = WebApplication.CreateBuilder(args);

 builder.Services.AddValidatorsFromAssemblyContaining<Program>();

 builder.Services.AddScoped<ICountryMapper, CountryMapper>();

 builder.Services.AddScoped<ICountryService, CountryService>();

 builder.Services.AddEndpointsApiExplorer();

 builder.Services.AddSwaggerGen(c =>

 {

 c.SwaggerDoc("v1.0",

 new OpenApiInfo {

 Title = "ASP.NET Core 8 minimal APIs"

 });

 });

 var app = builder.Build();

 app.UseSwagger().UseSwaggerUI(c =>

 {

 c.SwaggerEndpoint("/swagger/v1.0/swagger.json",

 "Version 1.0");

 });

 app.MapPost("/countries", CountryEndpoints.PostCountry);

 app.Run();

 Listing 5-3
 The Program.cs file updated with the static method instead of lambdas

 It is much cleaner, right? What if I tell you, you can make it more cleaner? If you want, you can mix the power of route groups and the usage of static functions; what would it give? Listing 5-4 shows the CountryGroup static class route group that allows you to register all endpoints of the country group using the static functions.

 using AspNetCore8MinimalApis.Endpoints;

 namespace AspNetCore8MinimalApis.RouteGroups;

 public static class CountryGroup

 {

 public static void AddCountryEndpoints(

 this WebApplication app)

 {

 var group = app.MapGroup("/countries");

 group.MapPost("/", CountryEndpoints.PostCountry);

 // Other endpoints in the same group

 }

 }

 Listing 5-4
 The CountryGroup static class

 You may have noticed that I’ve created an AddCountryEndpoints extension method, which extends the WebApplication class. This extension simplifies the registration of endpoints in the Program.cs file, as shown in Listing 5-5.

 ... Code

 app.AddCountryEndpoints();

 app.Run();

 Listing 5-5
 The Program.cs file again more simplified

 Next, you can extend this logic to the rest of your API by creating a class by purpose (a new class for a route group and another for static functions), and your API structure will look great!

 Implementing Custom Parameter Binding

 In Chapter 4, I told you about parameter binding and said I’d return to the topic. The reason I’m coming back to the subject is that, in fact, more often than you think, you’ll have to deal with strange cases, strange because your customers will ask you for things that are out of the ordinary. Yes, your customers will sometimes ask you to implement endpoints for them in a certain way because they’ll send you strangely formatted data. Don’t ask yourself too many questions, though: more often than not, they’re maintaining ancient legacy systems and manipulating data in a way that’s no longer done. To counter this, I suggest you implement custom parameter binding that accepts your customers’ data formats and transforms them into usable data.

 ASP.NET Core 8 offers two types of custom parameter binding:	1.

 Data from headers, query strings, or routes

	2.

 Data from the body (and form data)

 And I will show you both of them.

 Example of Custom Parameter Binding from Headers

 Let’s consider that a customer wants to send you (via an HTTP GET request) a list of country identifiers through headers concatenated by a dash like this: 1-2-3. We’ll handle this by creating a CountryIds class containing a List<int> Ids property that we’ll try to bind from the string of IDs concatenated in the headers. For parameter binding to work, we’ll implement a static TryParse method that ASP.NET Core will automatically recognize and execute. I’ve created a CountryIds class precisely to implement this TryParse method, as it wouldn’t have worked otherwise. Listing 5-6 shows the conversion of the string passed in the headers into an int list.

 namespace AspNetCore8MinimalApis.Models;

 public class CountryIds

 {

 public List<int> Ids { get; set; }

 public static bool TryParse(

 string? value,

 IFormatProvider? provider,

 out CountryIds countryIds)

 {

 countryIds = new CountryIds();

 countryIds.Ids = new List<int>();

 try

 {

 if (value is not null && value.Contains("-"))

 {

 countryIds.Ids = value.Split('-').Select(int.Parse).ToList();

 return true;

 }

 return false;

 }

 catch

 {

 return false;

 }

 }

 }

 Listing 5-6
 The CountryIds class

 Then consider the GET /countries/ids endpoint, which takes as input parameter the CountryIds class as shown in Listing 5-7.

 app.MapGet("/countries/ids", ([FromHeader] CountryIds ids) =>

 {

 Results.NoContent();

 });

 Listing 5-7
 The GET /countries/ids endpoint with the CountryIds class as parameter

 Because the TryParse method has no idea where the data comes from, I had to decorate the CountryIds class with the FromHeader attribute. Let’s execute it. Figure 5-2 shows the Postman request.
 [image:]
 A screenshot highlights a U R L inside a text box and a checkmark for i ds under the headers tab. The path of the u r l under the A S P Net core 8 minimal a p i is indicated at the top.

Figure 5-2
 The GET /countries/ids request in Postman

 If we add a breakpoint and take a look into the post-binding operation, we should see a list of integers correctly bound, as shown in Figure 5-3.
 [image:]
 A screenshot represents a snippet of code and highlights a line inside the parentheses, which reads From header, country i ds I d s. A list of 3 I ds and a dropdown of raw view are highlighted at the bottom.

Figure 5-3
 The GET /countries/ids endpoint execution

 As you can see, it’s straightforward and efficient! I hope you won’t have to do this too often ☺.

 Example of Custom Parameter Binding from the From Data

 Custom parameter binding from body elements (and form data) works slightly differently. Here we’ll apply the same principle as before, but we won’t be using the TryParse method but rather the static BindAsync method, which takes the HTTP context as a parameter. Having the HTTP context here will enable us to fetch form data elements directly from it, allowing us to omit attributes like FromForm and FromBody on input parameters. Let’s imagine that your client wants to upload a file and pass metadata, but as you’d like, that is, in the form data, they’ll pass you the file as expected, but instead of passing you the properties of your input parameter, for example, a Country object (the same as in Chapter 4) in JSON format in a single property named Country with the following value {“Id” : 1, “Description” : “Canada”, “FlagUri” : “”, “Name” : “”}.

 Consider the Country class, which implements the BindAsync method by fetching data from the form data and deserializing it into JSON format using the System.Text.Json API, as shown in Listing 5-8.

 using System.Reflection;

 using System.Text.Json;

 namespace AspNetCore8MinimalApis.Models;

 public class Country

 {

 /// <summary>

 /// The country Id

 /// </summary>

 public int? Id { get; set; }

 /// <summary>

 /// The country name

 /// </summary>

 public string Name { get; set; }

 /// <summary>

 /// The country description

 /// </summary>

 public string Description { get; set; }

 /// <summary>

 /// The country flag URI

 /// </summary>

 public string FlagUri { get; set; }

 public static ValueTask<Country> BindAsync(HttpContext context, ParameterInfo parameter)

 {

 var countryFromValue = context.Request.Form["Country"];

 var result = JsonSerializer.Deserialize<Country>(countryFromValue);

 return ValueTask.FromResult(result);

 }

 }

 Listing 5-8
 The Country class

 If we take a look at the POST /countries/upload we used previously, but with separated input parameters (they are not encapsulated in a single object) in the minimal endpoint, you can see there is no attribute on any input parameters as shown in Listing 5-9.

 app.MapPost("/countries/upload", (

 IFormFile file,

 Country country) =>

 {

 Results.NoContent();

 });

 Listing 5-9
 The POST /countries/upload endpoint

 The Postman request is shown in Figure 5-4.
 [image:]
 A screenshot highlights a U R L inside a text box labeled post. It also highlights the key country and its value under the body tab. The path of the U R L under the A S P Net core 8 minimal A P I is denoted at the top.

Figure 5-4
 The POST /countries/upload request in Postman

 If we debug the POST /countries/upload endpoint, you will notice that the custom binding worked as expected, as shown in Figure 5-5.
 [image:]
 A screenshot represents a snippet of code and highlights the command for the country inside the parentheses. A dropdown at the bottom denotes the country name as Canada, along with the description, flag u r i, and i d.

Figure 5-5
 The POST /countries/upload endpoint execution

 It’s really easy! Keep this technique in mind if you’re forced to manipulate data sent by your customers in unconventional ways!

 Using Middlewares

 In Chapter 2, in section “ASP.NET Core Fundamentals,” I introduced you to middlewares. We will dig deeper here. I will teach you how to implement your middlewares. There are various kinds of middlewares, some of which you’re already familiar with, such as MapGet, UseSwagger, Run (yes, that’s a middleware), and so on.

 And then there are those whose behavior you can define yourself. There are several types of customizable middlewares:	
 Map

	
 MapWhen

	
 Run

	
 Use

	
 UseWhen

	
 UseMiddleware<T>

 They can be divided into three categories:	1.

 Middlewares that create another branch of middlewares by short-circuiting the execution of the main pipeline, such as Map or MapWhen: These can be nested ad infinitum if you wish.

	2.

 Middlewares that launch a continuously running process that’s hosts the application: It’s the responsibility of the Run middleware. Executing the Run middleware is mandatory; otherwise, it will lead to an application crash.

	3.

 Middlewares that run on the current pipeline branch (the main or a new branch) and don't create a new one: A pipeline branch is a flow of consecutive middlewares that will run. They also don’t stop pipeline execution, and they are three: Use, UseWhen, and UseMiddleware<T>. UseMiddleware<T> is similar to Use, the only difference being that Use allows you to run inline code, whereas UseMiddleware<T> allows you to run code in a separate class. The generic type T is the class that implements the middleware logic. All of them must execute the next function to keep the current pipeline running.

 You can also mix different types of middlewares. The only requirement is to use Run to terminate the execution of the pipeline. ASP.NET Core automatically adds it at the end of the Program.cs file, but you can define it elsewhere, for example, to mark the end of another pipeline branch initiated with Map or MapWhen. Any Usexxx middleware will run before any Mapxxx endpoint, whatever their order.

 Tip

 You can nest middlewares into the UseWhen middleware, and it won’t initiate a new pipeline branch, BUT, if you add a Run middleware on it, the main pipeline will be short-circuited, and the main pipeline branch won’t run.

 Caution

 Don’t be confused! Middlewares such as MapGet, MapPost, etc. won’t initiate a new pipeline branch as the Map Middleware. They are different.

 Finally, middlewares whose name ends with “When” have the same function as their counterpart without the “When,” the only difference being that they execute conditionally: if the condition you define is met, the middleware will execute; else, not. The Map middleware is mapped to a specific route (takes a route as the first parameter). If the route matches, the Map middleware will initiate a new pipeline branch.

 Figure 5-6 summarizes middleware behavior.
 [image:]
 A block diagram denotes a set of middleware behaviors. Use and use and run middleware are always executed. Map middleware is executed if the route matches. Use when and map when middlewares are executed if the condition of execution is met.

Figure 5-6
 Middleware behavior

 To illustrate this, I will show you some examples. Let’s consider the GET /test endpoint being executed; the MapWhen middleware will execute if the request path contains the parameter q in the query string. The latter contains another branch of middlewares (Use and Run). Since the MapWhen middleware initiates a new pipeline branch when executed, the position of the GET /test endpoint in the pipeline doesn’t matter. Listing 5-10 shows the code described in this scenario.

 app.MapGet("/test", () =>

 {

 return Results.Ok("Test endpoint has been executed");

 });

 app.MapWhen(ctx => !string.IsNullOrEmpty(ctx.Request.Query["q"].ToString()),

 builder => {

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("New middleware pipeline has been invoked");

 await next();

 });

 builder.Run(async context =>

 {

 app.Logger.LogInformation("New pipeline initiated will end here");

 await Task.CompletedTask;

 });

 });// Stops the execution if the condition is met because the new branch contains Run Middleware

 app.Run();

 Listing 5-10
 The GET /test endpoint positioned before the MapWhen middleware

 Note

 I’m using logging (in the console) for my upcoming tests in this section. I will explain logging in Chapter 8.

 Let’s test it! Let’s invoke the route GET /test without the parameter q in the query string, as shown in Figure 5-7.
 [image:]
 A screenshot denotes the information of a list of Microsoft hosting under the D drive. It highlights a line at the end, which reads Endpoint Get slash test has been invoked.

Figure 5-7
 The GET /test endpoint invoked without the query string parameter q

 The expected behavior was that the main pipeline got executed without initiating a new branch since the MapWhen middleware hadn’t met the condition to get executed.

 If we had in the query string the q parameter, the MapWhen middleware would be executed and initiate another branch of the pipeline. Since the MapGet(/test) middleware is declared in the main pipeline, the pipeline should not be executed, as shown in Figure 5-8.
 [image:]
 A screenshot denotes the information of a list of Microsoft hosting under the D drive. It highlights the information at the bottom that reads a new middleware pipeline branch has been initiated, A S P Net core 8 minimal a p i s, New middleware pipeline will end here.

Figure 5-8
 The GET /test endpoint invoked with the query string parameter q

 When matching the route /test (whatever the verb), the Map middleware will lead to the same behavior as the MapWhen middleware seen earlier. Listing 5-11 shows the code of the Map middleware matching the /test route.

 app.Map(new PathString("/test"),

 builder =>

 {

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("New middleware pipeline branch has been initiated");

 await next();

 });

 builder.Run(async context =>

 {

 app.Logger.LogInformation("New middleware pipeline will end here");

 await Task.CompletedTask;

 });

 });// Stops execution

 Listing 5-11
 The Map middleware

 Now let’s see how Use and UseWhen middlewares behave. Listing 5-12 shows a Use middleware executed before the GET /test endpoint, another one executed after, and a UseWhen middleware at the end before the final Run middleware.

 app.Use(async (context, next) =>

 {

 app.Logger.LogInformation("Middleware 1 executed");

 await next();

 });

 app.MapGet("/test", () =>

 {

 app.Logger.LogInformation("Endpoint GET /test has been invoked");

 return Results.Ok();

 });

 app.Use(async (context, next) =>

 {

 app.Logger.LogInformation("Middleware 2 executed");

 await next();

 });

 app.UseWhen(ctx => !string.IsNullOrEmpty(ctx.Request.Query["p"].ToString()),

 builder => {

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("Nested middleware executed");

 await next();

 });

 builder.Run(async (context) =>

 {

 app.Logger.LogInformation("End of the pipeline end");

 await Task.CompletedTask;

 });

 });

 // Stops the execution if the condition is met because the UseWhen contains Run Middleware

 app.Run(); // Final

 Listing 5-12
 The GET /test endpoint positioned between the Use middlewares and before the UseWhen middleware

 Two scenarios are possible if we execute this code. The first scenario is that the UseWhen is not running if we don’t pass any p parameter in the query string when we call the GET /test endpoint; in this case, the pipeline won’t end at the Run middleware declared in the UseWhen middleware. The second scenario is passing a p parameter in the query string; consequently, the pipeline will end because of the Run middleware execution in the UseWhen middleware. In any case, the Run middleware, whatever its position in the pipeline, will execute. Figure 5-9 shows the GET /test endpoint invoked without the p query string parameter.
 [image:]
 A screenshot denotes a list of information on Microsoft hosting. It highlights the information at the bottom that denotes that the middleware 1 and 2 are executed under A S P Net core 8 minimal a p i s and the test has been invoked.

Figure 5-9
 The GET /test endpoint invoked without the p query string parameter

 As you can see, the two Use middlewares ran in order before the execution of the MapGet middleware. The UseWhen hasn’t been executed as expected.

 If we pass the p parameter in the query string, it should give that shown in Figure 5-10.
 [image:]
 A screenshot denotes a list of information on Microsoft hosting. It highlights a set of information at the bottom that denotes that the middleware 1, 2, and nested middleware are executed under A S P Net core 8 minimal a p i s and the end of the pipeline.

Figure 5-10
 The GET /test endpoint not invoked because the p query string parameter triggered the UseWhen middleware execution, which ran a nested Run middleware

 Since all Usexxx middlewares ran before any MapXXX middleware and the UseWhen ran a nested Run middleware, the GET /test endpoint has not been invoked. If we remove the nested Run middleware, the GET /test should run.

 Listing 5-13 shows the UseWhen middleware without the nested Run middleware.

 app.UseWhen(ctx => !string.IsNullOrEmpty(ctx.Request.Query["p"].ToString()),

 builder => {

 builder.Use(async (context, next) =>

 {

 app.Logger.LogInformation("Nested middleware executed");

 await next();

 });

 });

 Listing 5-13
 The UseWhen middleware without its nested Run middleware

 Figure 5-11 shows the pipeline execution.
 [image:]
 A screenshot denotes a list of information on Microsoft hosting. It highlights a set of information at the bottom that denotes that the middleware 1, 2, and the nested middleware are executed under A S P Net core 8 minimal a p i s. The last line indicates that the test is invoked.

Figure 5-11
 The GET /test endpoint invoked with the p query string parameter with the UseWhen middleware, without the nested Run middleware

 Let’s see together a last example with the UseMiddleware middleware. As I taught you earlier, it behaves like a Use middleware, but its code is encapsulated in a separate class. I like to use this way of coding middlewares since it appears cleaner to me. Let’s code the same functionality as the Use middleware we saw earlier (which performs only logging) and create a LoggingMiddleware class as shown in Listing 5-14.

 namespace AspNetCore8MinimalApis.Middlewares;

 public class LoggingMiddleware

 {

 private readonly RequestDelegate _next;

 private readonly ILogger<LoggingMiddleware> _logger;

 public LoggingMiddleware(RequestDelegate next, ILogger<LoggingMiddleware> logger)

 {

 _next = next;

 _logger = logger;

 }

 public async Task Invoke(HttpContext context)

 {

 _logger.LogInformation("LoggingMiddleware executed");

 await _next(context);

 }

 }

 Listing 5-14
 The LoggingMiddleware class

 Implementing a middleware like this obliges you to implement the Invoke method, where you can put your logic and execute the next function, a delegate that represents the next middleware to get executed in the ASP.NET Core pipeline.

 Let’s replace the Use middleware with the UseMiddleware<LoggingMiddleware> middleware as shown in Listing 5-15.

 app.Use(async (context, next) =>

 {

 app.Logger.LogInformation("Middleware 1 executed");

 await next();

 });// Don't stop the execution

 app.MapGet("/test", () =>

 {

 app.Logger.LogInformation("Endpoint GET /test has been invoked");

 return Results.Ok();

 });

 app.UseMiddleware<LoggingMiddleware>();// Doesn't stop the execution

 app.Run(); // Final

 Listing 5-15
 The LoggingMiddleware registered in the pipeline with the UseMiddleware middleware

 If we run it, and since UseMiddleware has the same behavior as the Use middleware, we should expect the same order of execution as seen before when no p parameter was passed in the query string, as shown in Figure 5-12.
 [image:]
 A screenshot denotes a list of information on Microsoft hosting. It highlights the information at the bottom that denotes the middleware 1 and logging middleware are executed under A S P Net core 8 minimal a p i s. The last line indicates the endpoint and the test is invoked.

Figure 5-12
 The GET /test endpoint invoked after the Use and UseMiddleware<LoginMiddleware> middlewares

 As expected, the Use and UseMiddleware<LoginMiddleware> middlewares are executed before the MapGet middleware.

 Middlewares are a powerful feature of ASP.NET Core 8. They allow you incomparable flexibility in terms of code execution. I tried to keep the examples simple by using the logging feature (I promise we will come back to this later), but middlewares don’t stop with the logging feature. Even if it’s the most common scenario that justifies the usage of middlewares, you can implement any code you want to get executed in your pipeline. Later in this book, I will return to this topic when it comes to talking about data collection (metrics) in the application.

 Using Action Filters

 ASP.NET Core 8 takes endpoint management one step further. For a given endpoint, it is possible to perform any action before and after its execution. This is useful when, for example, you want to measure an endpoint’s execution time while ignoring the rest of the pipeline, assess its performance when in doubt, or validate an endpoint’s input parameters more elegantly than in the previous chapter. I’ll show you an example of each scenario in this section.

 First, implementing an endpoint filter is similar to the Use middleware. They both implement the delegate next.

 Let’s take the example of the GET /longrunning endpoint whose execution time we want to measure. We’ll apply the AddEndpointFilter extension method, which takes a delegate as a parameter, just like middleware Use. We’ll simulate an execution time of 5 sec with the Task.Delay method and measure the execution time with the Stopwatch class, starting the timer before the endpoint execution, represented by the next delegate, getting the execution result, stopping the timer, then logging the execution time in the console, and finally returning the response as shown in Listing 5-16.

 app.MapGet("/longrunning", async () =>

 {

 await Task.Delay(5000);

 return Results.Ok();

 }).AddEndpointFilter(async (filterContext, next) =>

 {

 long startTime = Stopwatch.GetTimestamp();

 var result = await next(filterContext);

 TimeSpan elapsedTime = Stopwatch.GetElapsedTime(startTime);

 app.Logger.LogInformation($"GET /longrunning endpoint took {elapsedTime.TotalSeconds} to execute");

 return result;

 });

 Listing 5-16
 The GET /longrunning endpoint attached with an endpoint filter measuring its execution time

 Figure 5-13 shows what the console output looks like.
 [image:]
 A screenshot highlights the information at the bottom that the long-running endpoint is executed under A S P Net core 8 minimal a p i s. The last line reads that the long-running endpoint took 5.006526 to execute.

Figure 5-13
 The GET /longrunning endpoint output after execution with an endpoint filter measuring its execution time

 It works like a charm, as you can see. I suggest encapsulating endpoint filters into a separate class, like middlewares, for cleaner code. What you have to do is to inherit your class from the IEndpointFilter interface. Listing 5-17 shows the LogPerformanceFilter class, which implements the InvokeAsync method, which does the same job as the inline I showed you previously.

 using System.Diagnostics;

 namespace AspNetCore8MinimalApis.EndpointFilters;

 public class LogPerformanceFilter : IEndpointFilter

 {

 private readonly ILogger<LogPerformanceFilter> _logger;

 public LogPerformanceFilter(ILogger<LogPerformanceFilter> logger)

 {

 _logger = logger;

 }

 public async ValueTask<object?> InvokeAsync(EndpointFilterInvocationContext context, EndpointFilterDelegate next)

 {

 _logger.LogInformation($"GET /longrunning endpoint getting executed");

 long startTime = Stopwatch.GetTimestamp();

 var result = await next(context);

 TimeSpan elapsedTime = Stopwatch.GetElapsedTime(startTime);

 _logger.LogInformation($"GET /longrunning endpoint took {elapsedTime.TotalSeconds} to execute");

 return result;

 }

 }

 Listing 5-17
 The LogPerformanceFilter class

 Then let’s attach to the AddEndpointFilter<T> method overload as shown in Listing 5-18.

 app.MapGet("/longrunning", async () =>

 {

 await Task.Delay(5000);

 return Results.Ok();

 }).AddEndpointFilter<LogPerformanceFilter>();

 Listing 5-18
 The GET /longrunning endpoint attached with the LogPerformanceFilter measuring its execution time

 Much cleaner, isn’t it?

 Let’s go further with a very convenient usage of endpoint filters. Let’s combine the power of FluentValidation, as I introduced in the previous chapter, with endpoint filters. Let’s write a generic endpoint filter, the InputValidatorFilter<T> class, that validates endpoint input parameters as shown in Listing 5-19.

 using FluentValidation;

 namespace AspNetCore8MinimalApis.EndpointFilters;

 public class InputValidatorFilter<T> : IEndpointFilter

 {

 private readonly IValidator<T> _validator;

 public InputValidatorFilter(IValidator<T> validator)

 {

 _validator = validator;

 }

 public async ValueTask<object?> InvokeAsync(

 EndpointFilterInvocationContext context, EndpointFilterDelegate next)

 {

 T? inputData = context.GetArgument<T>(0);

 if (inputData is not null)

 {

 var validationResult = await _validator.ValidateAsync(inputData);

 if (!validationResult.IsValid)

 {

 return Results.ValidationProblem(

 validationResult.ToDictionary()

);

 }

 }

 return await next.Invoke(context);

 }

 }

 Listing 5-19
 The InputValidatorFilter<T> class

 Let’s take the POST /countries endpoint from Chapter 4 and let’s apply it to the InputValidatorFilter<T> endpoint filter, which will take here as a generic parameter the Country class as shown in Listing 5-20.

 app.MapPost("/countries", ([FromBody] Country country) => {

 return Results.CreatedAtRoute("countryById", new { Id = 1 });

 }).AddEndpointFilter<InputValidatorFilter<Country>>();

 Listing 5-20
 The POST /countries endpoint attached with the InputValidatorFilter<Country>

 Obviously, the behavior remains the same as when we passed the IValidator by dependency injection in the endpoint. Once again, it’s simply cleaner than coding the validation inline. I hope you will use this feature as much as you can; I really enjoy it on my end. I’m pretty sure you will find more usage scenarios on your own!

 Using Rate Limiting

 Here’s an interesting feature of ASP.NET Core 8: Rate Limiting. As the name suggests, this feature lets you limit access to your API for obvious reasons:	
 Protect the system: Rate Limiting helps prevent Denial of Service (DOS) attacks by limiting the number of requests a user or application can send.

	
 Guarantee quality of service: By limiting throughput, Rate Limiting ensures fair service quality for all users and applications and helps keep good performance by limiting access to resources.

	
 Provide different accesses to your customers with a pricing tier: For example, free but limited access or a paid subscription with no limits.

 ASP.NET Core 8 offers four categories of limiters:	1.

 Fixed window: Limiting is based on two parameters: the number of authorized requests and a time window during which said number of requests is authorized. Each authorized request decreases the authorized request counter, and each time a time window elapses, the authorized request counter is reset. This model allows a certain number of requests to be queued (until the counter is reset) before the others are rejected.

	2.

 Sliding window: Similar to the Fixed window, but works differently. The idea here is to divide a time window into segments during which a certain number of requests are authorized. At the end of each period during which a segment handles requests, the remaining number of authorized requests is transferred to the next segment within the maximum limit defined at the start. Once the global time window has elapsed, the number of authorized requests is reallocated to the maximum number of requests authorized minus the number of requests authorized by the previous segment. This model allows a certain number of requests to be queued (until the selection segment has been reallocated a certain number of authorized requests) before the others are rejected.

	3.

 Token bucket: This is similar to Fixed window, except the notion of token and bucket is introduced. This means that we define the number of tokens in a bucket, that is, each time a request is authorized, one token will be used, thus reducing the number of tokens in the bucket, except that this model allows you to define a maximum number of tokens available and that a number of tokens will be reintroduced into the bucket during a specific period. The number of tokens reintroduced into the bucket cannot exceed the maximum number of available tokens. This model offers regular, controlled, but limited access to your application. This model doesn’t allow you to queue requests waiting for available tokens, as the rejection of a request in the absence of an available token will be automatic.

	4.

 Concurrency: This is the simplest model and refers to the number of simultaneous requests allowed. This model allows a certain number of requests to be queued (until the number of simultaneously authorized executed requests has been exceeded) before the others are rejected.

 Each of these models allows you to define (or not) a partition key, that is, a criterion on which to limit requests. This can be a user ID, an IP address, or anything you like. The limitation will be global if you don’t define a partition key. When a request is rejected, ASP.NET Core 8 returns the error Service Unavailable (503), which is incorrect. Fortunately, ASP.NET Core 8 allows you to set the status code and to be HTTP compliant; I suggest you use Too Many Requests (429) instead.

 To define a Rate Limiting rule, you have to use the AddRateLimiter extension method, and to enable it, use the UseRateLimiter middleware as shown in Listing 5-21.

 var builder = WebApplication.CreateBuilder(args);

 builder.Services.AddRateLimiter(options =>

 {

 // Code here

 });

 var app = builder.Build();

 // Your ASP.NET Core pipeline

 app.UseRateLimiter();

 // Your ASP.NET Core pipeline

 app.Run();

 Listing 5-21
 The AddRateLimiter extension method and the UseRateLimiter middleware

 The Fixed Window Model

 Listing 5-22 shows an implementation of the Fixed window limiter, which defines a limit of 50 requests during a window of 15 seconds. If the limit is reached, ten requests will be queued, and the others will be rejected. The partition key is the client’s IP address. It returns a Too Many Request (429) and custom error messages.

 builder.Services.AddRateLimiter(options =>

 {

 options.RejectionStatusCode = (int)HttpStatusCode.TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.Create<HttpContext, string>(httpContext =>

 RateLimitPartition.GetFixedWindowLimiter(

 partitionKey: httpContext.Connection.RemoteIpAddress.ToString(),

 factory: _ => new FixedWindowRateLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50,

 Window = TimeSpan.FromSeconds(15)

 }));

 });

 Listing 5-22
 The Fixed window limiter implementation

 The function PartitionedRateLimiter.Create allows you to bring the HttpContext object that allows you to get any contextual information from the client, their IP address in this example, but it could be their userId if they are authenticated. (I will return to authentication in Chapter 10.)

 The rate limit applies globally on any endpoint because I have assigned the limiter to the GlobalLimiter options. If you don’t want the rate limiter getting applied on an endpoint, you have to use the DisableRateLimiting extension method as shown in Listing 5-23.

 app.MapGet("/notlimited", () =>

 {

 return Results.Ok();

 }).DisableRateLimiting();

 Listing 5-23
 Disabling the global Rate Limiting feature with the DisableRateLimiting extension method

 Another interesting thing is that you can create as many limiters as you wish, and they can be identified by a policy, which must be explicitly applied to the endpoint you want. Listing 5-24 shows the ShortLimit policy combined with the global rate limiter we saw previously.

 builder.Services.AddRateLimiter(options =>

 {

 options.RejectionStatusCode = (int)HttpStatusCode.TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.Create<HttpContext, string>(httpContext =>

 RateLimitPartition.GetFixedWindowLimiter(

 partitionKey: httpContext.Connection.RemoteIpAddress.ToString(),

 factory: _ => new FixedWindowRateLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50,

 Window = TimeSpan.FromSeconds(15)

 }));

 options.AddPolicy(policyName: "ShortLimit", context =>

 {

 return RateLimitPartition.GetFixedWindowLimiter(context.Connection.RemoteIpAddress.ToString(),

 _ => new FixedWindowRateLimiterOptions

 {

 PermitLimit = 10,

 Window = TimeSpan.FromSeconds(15)

 });

 });

 });

 Listing 5-24
 The global rate limiter and the ShortLimit policy combined

 If you want to apply it on one or many endpoints, add the RequireRateLimiting extension method taking the policy name as a parameter, as shown in Listing 5-25.

 app.MapGet("/limited", () =>

 {

 return Results.Ok();

 }).RequireRateLimiting("ShortLimit");

 Listing 5-25
 The RequireRateLimiting extension method

 Caution

 If you define a global limiter and a specific limiter defined by a policy, both will execute if you tell your endpoints they must execute the policy you assigned them with the RequireRateLimiting extension method. The global limiter will execute first.

 It’s flexible, as you can see, and it can be more flexible. Let’s implement a pricing tier and create limiter rules depending on the pricing tier. Let’s say we create a service that returns the pricing tier depending on the client’s IP address (let’s assume that the pricing tier is bound to the IP address), as shown in Listing 5-26.

 using Domain.Enum;

 namespace Domain.Services;

 public interface IPricingTierService

 {

 public PricingTier GetPricingTier(string ipAddress);

 }

 Listing 5-26
 The IPricingTierService service

 The IPricingTierService returns a PricingTier enum as shown in Listing 5-27.

 namespace Domain.Enum;

 public enum PricingTier

 {

 Free = 0,

 Paid = 1

 }

 Listing 5-27
 The PricingTier enum

 Register the IPricingTierService service with its PricingTierService implementation (the implementation does not matter here) as follows: builder.Services.AddScoped<IPricingTierService, PricingTierService>();.

 Since the HttpContext is exposed, we can access any registered service through the dependency injection system as follows: httpContext.RequestServices.GetRequiredService<T>, where T is the service we want to access.

 We can rewrite the global rate limiter as shown in Listing 5-28.

 builder.Services.AddRateLimiter(options =>

 {

 options.RejectionStatusCode = (int)HttpStatusCode.TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetRequiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.GetFixedWindowLimiter(

 ip,

 _ => new FixedWindowRateLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50,

 Window = TimeSpan.FromSeconds(15)

 }),

 PricingTier.Free => RateLimitPartition.GetFixedWindowLimiter(

 ip,

 _ => new FixedWindowRateLimiterOptions

 {

 PermitLimit = 1,

 Window = TimeSpan.FromSeconds(15)

 })

 };

 });

 });

 Listing 5-28
 The global rate limiter updated with the pricing tier

 As you can see, depending on the situation, we can apply any rate limiter to any incoming request.

 The Fixed window model is my favorite model; this is the one I use when I define a rate limiter in my applications. I prefer to limit incoming requests during a specific window rather than other models. That’s why I have insisted on this model before showing you others. Figure 5-14 shows the HTTP Too Many Requests (429) error in Postman when a rate limiter rule has declined an incoming request.
 [image:]
 A screenshot denotes a text under the body tab that indicates 429 too many requests. The text at the bottom reads too many requests, please try again later.

Figure 5-14
 The HTTP Too Many Requests error returned by a rate limiter rule

 The Sliding Window Model

 Here we have to define the number of segments (SegmentsPerWindow option) that will share the limited number of requests and the window of time. The rest is only about changing classes’ and functions’ names, as shown in Listing 5-29.

 builder.Services.AddRateLimiter(options =>

 {

 options.RejectionStatusCode = (int)HttpStatusCode.TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetRequiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.GetSlidingWindowLimiter(

 ip,

 _ => new SlidingWindowRateLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50,

 SegmentsPerWindow = 2,

 Window = TimeSpan.FromSeconds(15)

 }),

 PricingTier.Free => RateLimitPartition.GetSlidingWindowLimiter(

 ip,

 _ => new SlidingWindowRateLimiterOptions

 {

 PermitLimit = 2,

 SegmentsPerWindow = 2,

 Window = TimeSpan.FromSeconds(15)

 })

 };

 });

 });

 Listing 5-29
 The global rate limiter set with the Sliding window model

 As you can see the GetSlidingWindowLimiter function and SlidingWindowRateLimiterOptions class took the place their equivalent for the Fixed window model.

 The Token Bucket Model

 The Token bucket model requires the following options:	1.

 TokenLimit: Defines the maximum available tokens

	2.

 TokensPerPeriod: Defines the replenished number of tokens per period

	3.

 ReplenishmentPeriod: Period where tokens will get replenished

 We can write the limiter as shown in Listing 5-30.

 builder.Services.AddRateLimiter(options =>

 {

 options.RejectionStatusCode = (int)HttpStatusCode.TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetRequiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.GetTokenBucketLimiter(

 ip,

 _ => new TokenBucketRateLimiterOptions

 {

 TokenLimit = 50,

 TokensPerPeriod = 25,

 ReplenishmentPeriod = TimeSpan.FromSeconds(15)

 }),

 PricingTier.Free => RateLimitPartition.GetTokenBucketLimiter(

 ip,

 _ => new TokenBucketRateLimiterOptions

 {

 TokenLimit = 10,

 TokensPerPeriod = 5,

 ReplenishmentPeriod = TimeSpan.FromSeconds(15)

 })

 };

 });

 });

 Listing 5-30
 The global rate limiter set with the Token bucket model

 The GetTokenBucketLimiter function and TokenBucketRateLimiterOptions class took the place of their equivalent for the Fixed window model.

 Note

 The Token bucket model is a bit more aggressive than other models since it does not allow any requests to get queued if no token is available.

 The Concurrency Model

 The Concurrency model is the simplest limiter to configure and only needs to define the QueueLimit and PermitLimit options, as shown in Listing 5-31.

 builder.Services.AddRateLimiter(options =>

 {

 options.RejectionStatusCode = (int)HttpStatusCode.TooManyRequests;

 options.OnRejected = async (context, token) =>

 {

 await context.HttpContext.Response.WriteAsync("Too many requests. Please try again later.");

 };

 options.GlobalLimiter = PartitionedRateLimiter.Create<HttpContext, string>(httpContext =>

 {

 var priceTierService = httpContext.RequestServices.GetRequiredService<IPricingTierService>();

 var ip = httpContext.Connection.RemoteIpAddress.ToString();

 var priceTier = priceTierService.GetPricingTier(ip);

 return priceTier switch

 {

 PricingTier.Paid => RateLimitPartition.GetConcurrencyLimiter(

 ip,

 _ => new ConcurrencyLimiterOptions

 {

 QueueLimit = 10,

 PermitLimit = 50

 }),

 PricingTier.Free => RateLimitPartition.GetConcurrencyLimiter(

 ip,

 _ => new ConcurrencyLimiterOptions

 {

 QueueLimit = 0,

 PermitLimit = 10

 })

 };

 });

 });

 Listing 5-31
 The global rate limiter set with the Concurrency model

 The GetConcurrencyLimiter function and ConcurrencyLimiterOptions class took the place of their equivalent for the Fixed window model.

 Rate Limiting is a powerful and customizable feature of ASP.NET Core 8. I strongly suggest you implement it!

 Global Error Management

 Efficient error handling is essential when developing an application, especially when this application calls on external resources (files, databases, etc.). The role of error handling is to notify the occurrence of an error by explicitly indicating the type of error to the client consuming your API. With ASP.NET Core 8, handling errors globally and cleanly without repeating code is easy. We will rely on the ProblemDetails class I introduced in Chapter 1 to do this. This class allows you to return a correctly formed error to the client. If you remember, it’s based on an RFC, so it’s a norm, a standardization. As a result, your client will expect to receive errors that are correctly and possibly strongly formatted with the ProblemDetails RFC standard.

 With ASP.NET Core 8, you must implement a class that inherits the IExceptionHandler interface. This interface signature is shown in Listing 5-32.

 public interface IexceptionHandler

 {

 ValueTask<bool> TryHandleAsync(HttpContext httpContext, Exception exception, CancellationToken cancellationToken);

 }

 Listing 5-32
 The IExceptionHandler interface

 As you can see, it defines a method named TryHandleAsync, which returns ValueTask<bool>. You must return True or False. If you return True, the pipeline execution will end. If you return False, the pipeline will continue its execution. Listing 5-33 shows the DefaultExceptionHandler class that handles any exception raised in the application.

 using Microsoft.AspNetCore.Diagnostics;

 using Microsoft.AspNetCore.Mvc;

 using System.Net;

 namespace AspNetCore8MinimalApis.ExceptionHandlers;

 public class DefaultExceptionHandler : IExceptionHandler

 {

 public async ValueTask<bool> TryHandleAsync(HttpContext httpContext, Exception exception, CancellationToken cancellationToken)

 {

 await httpContext.Response.WriteAsJsonAsync(new ProblemDetails

 {

 Status = (int)HttpStatusCode.InternalServerError,

 Type = exception.GetType().Name,

 Title = "An unexpected error occurred",

 Detail = exception.Message,

 Instance = $"{httpContext.Request.Method} {httpContext.Request.Path}"

 });

 return true;

 }

 }

 Listing 5-33
 The DefaultExceptionHandler class

 Here I enforce the response in JSON format using the WriteAsJsonAsync method. I’m sure at 99.99% that your client expects a JSON response instead of XML or something else. To make it work, when an exception is raised, configure ASP.NET Core 8 to run it as shown in Listing 5-34.

 var builder = WebApplication.CreateBuilder(args);

 builder.Services.AddExceptionHandler<DefaultExceptionHandler>();

 var app = builder.Build();

 // Your ASP.NET Core pipeline

 app.UseExceptionHandler(opt => { });

 // Your ASP.NET Core pipeline

 app.Run();

 Listing 5-34
 Enabling the DefaultExceptionHandler in the ASP.NET Core pipeline

 As usual, we have to configure ASP.NET Core with an extension method, specifically the AddExceptionHandler<T> extension, where T is the handler you want to register in the pipeline. To enable it, we will add the UseExceptionHandler middleware, which takes a mandatory parameter, a delegate that configures the options of the handler. It can remain empty by default. We don’t configure any options to make it work properly. I chose to return an Internal Server Error (500), the default status code to return when an error is raised. If we execute the GET /exception endpoint, the exception raised should be well handled and formatted. Listing 5-35 shows the GET /exception endpoint.

 app.MapGet("/exception", () => {

 throw new Exception();

 });

 Listing 5-35
 The GET /exception endpoint raising an exception

 Figure 5-15 shows the output in Postman.
 [image:]
 A screenshot denotes a U R L inside the textbox labeled get. A snippet of code is highlighted under the headers tab with an error code of 500, Internal server error.

Figure 5-15
 The GET /exception endpoint output in Postman after execution

 Since it’s a default exception handler, it could be great to handle more types of exceptions. How? ASP.NET Core 8 allows chaining exception handlers, which is a matching rule; in reality, it takes a test in the handler to check if the exception type matches, and then you can run your handler for a specific exception.

 Let’s take another example by choosing the Timeout exception handling. Why is it so important? Because it’s a mistake to think that just because your API is well coded, it will give your client the response they want within a reasonable time. Usually, the HTTP Timeout (408) error is returned, but, to me, it’s not right to return a Timeout (408) error to the client since it’s not the client’s fault but rather the server’s. Remember, 4xx errors involve the client, while 5xx errors involve the server. In this case, returning a Service Unavailable (503) error to the client is more appropriate. That’s why I want to show you how to handle Timeout errors. Listing 5-36 shows the TimeOutExceptionHandler class, which runs only if it detects a raised in the application.

 using Microsoft.AspNetCore.Diagnostics;

 using Microsoft.AspNetCore.Mvc;

 using System.Net;

 namespace AspNetCore8MinimalApis.ExceptionHandlers;

 public class TimeOutExceptionHandler : IExceptionHandler

 {

 public async ValueTask<bool> TryHandleAsync(HttpContext httpContext, Exception exception, CancellationToken cancellationToken)

 {

 if (exception is TimeoutException)

 {

 httpContext.Response.StatusCode = (int)HttpStatusCode.ServiceUnavailable; // Manual setup to replace the default Internal Server error

 await httpContext.Response.WriteAsJsonAsync(new ProblemDetails

 {

 Status = (int)HttpStatusCode.ServiceUnavailable,

 Type = exception.GetType().Name,

 Title = "A timeout occurred",

 Detail = exception.Message,

 Instance = $"{httpContext.Request.Method} {httpContext.Request.Path}"

 });

 return true;

 }

 return false;

 }

 }

 Listing 5-36
 The TimeOutExceptionHandler class

 Note

 Internal Server Error is the default HTTP status returned to the client. If you want to put another status, as I did for the TimeOutExceptionHandler, you must set it up manually.

 Since the handlers’ registration order matters and all exception handlers are evaluated (if the previous does not break the pipeline by returning True), we must place the TimeOutExceptionHandler in the first position; the DefaultExceptionHandler should be the last one to be executed since it’s the default. If a Timeout exception is raised, the TimeOutExceptionHandler will handle it and break the pipeline to return the response to the client, and the DefaultExceptionHandler won’t run. Listing 5-37 shows the TimeOutExceptionHandler class registration before the DefaultExceptionHandler class.

 var builder = WebApplication.CreateBuilder(args);

 builder.Services.AddExceptionHandler<TimeOutExceptionHandler>();

 builder.Services.AddExceptionHandler<DefaultExceptionHandler>();

 var app = builder.Build();

 Listing 5-37
 The registration of the TimeOutExceptionHandler class

 If we execute the GET /timeout endpoint, the exception raised should be handled well by the TimeOutExceptionHandler class. Listing 5-38 shows the GET /timeout endpoint.

 app.MapGet("/timeout", () => {

 throw new TimeoutException();

 });

 Listing 5-38
 The GET /timeout endpoint raising a timeout exception

 Figure 5-16 shows the output in Postman.
 [image:]
 A screenshot denotes a U R L inside the textbox labeled get. A snippet of code is highlighted under the headers tab with an error code of 503, service unavailable.

Figure 5-16
 The GET /timeout endpoint output in Postman after execution

 If you follow this principle, you can handle any exception properly and, above everything, handle as many exceptions as you want. Don’t miss out on this feature!

 Summary

 I hope you enjoyed this chapter. I haven’t gone too far into ASP.NET Core 8 here, but I’ve only provided you with the elements you’ll need to take your APIs up a notch since Chapter 4. You can do without the features in this chapter, but if you use them, they’ll make life much easier. We’ve seen quite a bit about minimal APIs here, so it’s time to move on to what’s happening behind them. The next chapter will teach you how to access data, even from different data sources, and, once again, how to structure your APIs around the external data you will have access to.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_6

6. Accessing Data Safely and Efficiently

Anthony Giretti1
(1)La Salle, QC, Canada

 So far, we have run into ASP.NET Core functionalities but haven’t yet discussed what’s behind the scenes. What’s going on behind the scenes? Generally, we access data from multiple sources. We usually access data from a SQL database or via HTTP by calling another remote API. In this chapter, I will teach you how to access data safely and efficiently. In this chapter, you will learn the following:	
 Introduction to data access best practices

	
 Accessing data with Entity Framework (EF) Core 8

	
 Accessing data with HttpClient and REST APIs

 Introduction to Data Access Best Practices

 Before getting to the code, let’s discuss data access best practices. It’s not just about the data but how you access it. There are other types of data access, such as gRPC, OData, or NoSQL, but I won’t go into them as SQL and HTTP are the most popular. Let’s focus on SQL and HTTP.

 In both cases, you may face problems connecting to your data source, but unfortunately, you won’t have any control over this. The reasons may be multiple, such as a network problem or the remote resource not responding because it’s overloaded or unavailable for a few moments. Although you have no control over this, it is possible to manage these problems by adopting a Retry strategy. Transient errors, that is, temporary errors that can be resolved by themselves, can be replayed to avoid rendering your application non-functional. This is what we call resilience. It applies to SQL connections, HTTP requests, and any calls to remote resources. However, there are other specificities to each type of data access. I will use the Polly library.

 SQL-Type Data Access

 The SQL case is the trickiest because you have two things to take into account:	1.

 Consider the parameters you receive to carry out your queries safely. An attack allows you to corrupt character strings by injecting pieces of SQL queries to modify a query’s behavior and obtain sensitive information through an unprotected query. In this chapter, I’ll explain a technique to prevent SQL Injection. Using an Object Relational Mapping (ORM) such as Entity Framework Core will expose the SQL database through C# code using Language Integrated Query (LINQ). We’ve already used LINQ earlier in this book, and there’s an implementation with Entity Framework Core, which translates LINQ statements into SQL queries. This way, you’re protected from SQL injections.

	2.

 Manage your SQL connections. SQL databases—in this chapter, I’ll be using SQL Server—require you to open a connection before performing any query, which is costly and time-consuming and requires closing the connection. So we’re going to save on performance by using database connection pooling, which lets you leave a connection open so it can be reused to perform another query. This is important and makes a real difference at high database traffic levels. I’ll show you how in this chapter too.

 HTTP Data Access

 Regarding HTTP requests in .NET, we’ll be making them via an HTTP client. But a particular client manages a limited resource: an HTTP connection. Like SQL requests, we’ll need to pay close attention to HTTP connections. We’ll use a typed HTTP client, which backs up the IHttpClientFactory, enabling efficient management of HttpMessageHandler, subject to problems such as socket exhaustion when too many instances are open. I’ll take this opportunity to show you a library that simplifies your remote HTTP calls. Still based on IHttpClientFactory, it overlays on typed HTTP clients to enable more straightforward management of the latter, using less code. This is the Refit library. I will explain this in detail in the dedicated subsection further in this chapter.

 Architecturing Data Access

 One more thing before we get to the code.

 At the beginning of the book, I introduced you to the best practices in terms of architecture. I insisted on decoupling. In the code examples I will give you, I’ll create an Infrastructure layer to isolate the technology. As these are two distinct technologies (SQL and HTTP), I will isolate my code in a separate layer each time. In my opinion, each data access technique should be isolated in its layer, because we shouldn’t mix technologies. Each layer depends on the Domain layer; as you already know, the Domain layer will expose data contracts (DTOs or domain objects) and service and repository interfaces. Finally, each technology access layer implements repository interfaces and returns DTOs consumed by a service layer (BLL), itself consumed by the API layer discussed in previous chapters. Figure 6-1 summarizes the application architecture with the data access layers. You’ll find this architecture in the source code supplied with the book.
 [image:]
 A block diagram represents different sets of actions under the A P I layer, domain layer, and the infrastructure layers of S Q L and H T T P. It indicates the dependencies between the layers.

Figure 6-1
 Solution architecture with Infrastructure layers

 As you can see, each layer is decoupled from each other, except for the API that depends on each layer, for dependency injection purposes. The API needs access to both abstractions (interfaces and implementations) to register those services and repositories in the dependency injection system.

 Note

 I won’t catch and handle exceptions in these data access layers. As I showed you in the previous chapter, I will let the code crash—it does—and then let the ExceptionFilter classes I designed for this handle the errors. As I showed you, managing the exception type is up to you.

 Accessing Data with Entity Framework Core 8

 Entity Framework Core (EF Core) is a data access framework developed by Microsoft. An ORM lets you map your database to exactly C# code—entities. Each entity is mapped to a table in the SQL database (SQL Server). We will use a simple example, that is, a SQL table, to show you how to map it to an entity (class) in C# and the possible optimizations linked to this technological choice.

 Note

 I won’t go into detail with Entity Framework Core. I’ll introduce it to you, as it could be the subject of an entire book. I will, however, create the database with Entity Framework and a table named Countries, on which we’ll perform queries.

 Let’s create a new layer named Infrastructure.SQL. I won’t detail it again; you know how to make it and download the following Nuget package from the NuGet Package Manager:

 Microsoft.EntityFrameworkCore.SqlServer

 Your project should look like what Figure 6-2 shows.
 [image:]
 A screenshot titled Solution Explorer represents different icons at the top and highlights the options under the infrastructure dot S Q L, which include dependencies, analyzers, frameworks, packages, and Microsoft entity framework core S Q L server.

Figure 6-2
 The Infrastructure.SQL layer

 Note

 Everything I will create in this section belongs to the Infrastructure layer, so you won’t need to wonder where it should be created.

 Step 1: Creating the CountryEntity Class

 Here’s our first step, creating our CountryEntity class. Although identical to the CountryDto class, this entity doesn’t have the same responsibility. It’s mapped to the database, whereas the CountryDto class is a domain object, not linked to the database. Listing 6-1 shows the CountryEntity class.

 namespace Infrastructure.SQL.Database.Entities;

 public class CountryEntity

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public string Description { get; set; }

 public string FlagUri { get; set; }

 }

 Listing 6-1
 The CountryEntity class

 We have created the entity that maps to the database. Let’s configure the database context execution now.

 Step 2: Creating the EF Core Context

 In the EF Core universe, a database context is a class used to initialize a context (a connection and entity state). We will create a context class called DemoContext, inherited from the DbContext class. To be clear, an execution context means a DbContext instance that allows you to manipulate entities and generate SQL queries using LINQ statements to add, modify, retrieve, or delete instances of these entities in the database. We’ll then declare a DbSet, a class that defines the C# entities linked to the database, a property of the DemoContext class. Here we’ll have a DbSet for the CountryEntity entity. Listing 6-2 shows the DemoContext class.

 using Infrastructure.SQL.Database.Entities;

 using Microsoft.EntityFrameworkCore;

 namespace Infrastructure.SQL.Database;

 public class DemoContext : DbContext

 {

 public DemoContext (DbContextOptions options) : base(options)

 {

 }

 public DbSet<CountryEntity> Countries { get; set; }

 }

 Listing 6-2
 The DemoContext class

 The context class is created; we will need now to configure entities.

 Step 3: Configuring the CountryEntity

 We’ve created a CountryEntity entity and an execution context for it. Now we need to configure our CountryEntity entity. As you know, we have a lot of SQL Server data behind us; to map our entity to a SQL table, we’ll need to tweak it so that Entity Framework Core understands the precise mapping it needs to perform with the database. For example, EF Core knows by default how to map an integer (int32) to an integer in SQL and a string to a varchar, but EF Core doesn’t know how to create a primary key on its own, so we’ll have to tell it which property of the CountryEntity class is the primary key so that it can create it on the database side. EF Core also doesn’t know on its own what constraint you want to add to your properties. For example, we will define a maximum length for a country description of 200 characters and add a uniqueness constraint to the country name, that is, on the SQL side, the country name value can’t be inserted twice. All fields will be mandatory and can’t be null.

 There are two ways of proceeding, either by adding attributes to the properties of the CountryEntity entity or by configuring in the DbContext, using a method called OnModelCreating. In this method, we’ll configure the name of the table mapped to the CountryEntity entity. Although Entity Framework Core, by convention, can automatically give a name to a table mapped to an entity, I prefer to explicitly give it a name and a SQL schema to which the table will belong. Listing 6-3 shows the DemoContext class enriched with the CountryEntity configuration.

 using Infrastructure.SQL.Database.Entities;

 using Microsoft.EntityFrameworkCore;

 namespace Infrastructure.SQL.Database;

 public class DemoContext : DbContext

 {

 public DemoContext (DbContextOptions options) : base(options)

 {

 }

 public DbSet<CountryEntity> Countries { get; set; }

 protected override void OnModelCreating(ModelBuilder modelBuilder)

 {

 var builder = modelBuilder.Entity<CountryEntity>();

 builder.ToTable("Countries", "dbo");

 builder.HasIndex(p => p.Name).IsUnique(true);

 builder.Property(e => e.Id).ValueGeneratedOnAdd();

 builder.Property(e => e.Name).IsRequired();

 builder.Property(p => p.Description).HasMaxLength(200).IsRequired();

 builder.Property(p => p.FlagUri).IsRequired();

 base.OnModelCreating(modelBuilder);

 }

 }

 Listing 6-3
 The DemoContext class enriched with the CountryEntity configuration

 As you can see, it’s pretty simple to define. The primary key, which autoincrements itself, is configured with the ValueGeneratedOnAdd method on the Id property. This will be the primary key of the Countries table in the dbo SQL schema. All fields are required and are defined using the IsRequired method, and the Name property has an index that can be used to create a uniqueness constraint using the IsUnique method. Finally, the Description property has a maximum length of 200 characters defined using the HasMaxLength method. The SQL column names will take the C# properties’ names by default. I did not show it to you because I wanted to focus on the essentials.

 We’re done with the DemoContext configuration; in the next step, I will show you how to generate the model SQL-side.

 Step 4: Generating the Database Model from C#

 To generate the database, we’ll need to do two things: set the database connection string and tell ASP.NET Core to create (or update) the database when the application starts.

 Let’s assume we have a SQL database on our local machine. A SQL Server database (LocalDb) is automatically installed when Visual Studio 2022 is installed. To do this, go to the appsettings.json file and add the connection string named “DemoDb”, as shown in Listing 6-4.

 "ConnectionStrings": {

 "DemoDb": "Data Source=(LocalDB)\\MSSQLLocalDB;Initial Catalog=DemoDb;MultipleActiveResultSets=true;Encrypt=false;timeout=30;"

 }

 Listing 6-4
 The database

 I added a connection timeout, set to 30 seconds. It means that when a connection is unavailable to the database, ASP.NET Core will wait 30 seconds before raising an exception because a connection could not be established. It’s always an excellent practice to set up a timeout since you want to limit the time the user will wait to get a response, and in the meantime, you want to give ASP.NET Core a chance to get an available connection to SQL Server. Let’s write an instruction to ask ASP.NET Core when it starts to generate or update the database and also get the database connection from the appsettings.json file and register in the dependency injection system the DemoContext as shown in Listing 6-5.

 using Infrastructure.SQL.Database;

 using Microsoft.EntityFrameworkCore;

 var builder = WebApplication.CreateBuilder(args);

 var dbConnection = builder.Configuration.GetConnectionString("DemoDb");

 builder.Services.AddDbContextPool<DemoContext>(options => options.UseSqlServer(dbConnection));

 var app = builder.Build();

 using (var scope = app.Services.CreateScope())

 {

 var db = scope.ServiceProvider.GetRequiredService<DemoContext>();

 db.Database.SetConnectionString(dbConnection);

 db.Database.Migrate();

 }

 app.Run();

 Listing 6-5
 The database connection configuration

 As you can see, ASP.NET Core is configured to connect to the database. I got the connection string value properly from the configuration with the GetConnectionString method. Then I register the DemoContext class in the dependency injection system with the AddDbContextPool method. The latter enables connection pooling, which will keep some connections open to the database and let them be reused, and this ensures better performances since opening/closing connections won’t happen each time a connection is needed to query the database. Finally, I use the Migrate method, which will execute database migration. Database migrations are C# files that will generate SQL instructions to create/update the database each time we add or modify anything in the database model, entities themselves, or the entities’ configuration in the DemoContext, as I showed you before. To generate database migration with EF Core, install the following package on the API layer: Microsoft.EntityFrameworkCore.Design.

 You’ll also need to install the following package on your Infrastructure.SQL layer: Microsoft.EntityFrameworkCore.Tools.

 Then open Package Manager Console, select the Infrastructure.SQL layer in the drop-down list, and type the following command: Add-migration Initial.

 This command will create a migration file named Initial.cs, as shown in Figure 6-3.
 [image:]
 A screenshot denotes the Package Manager Console on the left and Solution Explorer on the right. It highlights the text on the left that reads add migration initial. On the right, it highlights the initial and demo context model snapshot files under the Migrations folder.

Figure 6-3
 The initial migration generation

 If we run the application, the database and the Countries table should be created as shown in Figure 6-4.
 [image:]
 A screenshot denotes a list of databases and highlights the elements under the demo database, which include database diagrams, tables, system tables, file tables, external tables, E F migration history, and countries.

Figure 6-4
 The Demo database generated

 Note

 I took the preceding picture from the SQL Server Management Studio software. You can install it from here: https://learn.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver16.

 Entity Framework Core creates a table that contains migration history. In other words, it keeps the last migration history performed in the database to avoid applying the same migration each time the application runs. If you want to update the database or add stuff, you must repeat the preceding same operation by generating a new migration and so on. The migration ID is the name of the generated file for the migration. Figure 6-5 shows the content of the history table.
 [image:]
 A screenshot denotes the script for selecting the top N rows command from S S M S. It highlights the migration i d at the bottom, which reads 20230814003647 underscore initial.

Figure 6-5
 The migration history table

 Step 5: Enabling Resiliency with Entity Framework Core

 Enabling resilience on a SQL connection with Entity Framework Core is very easy. There’s no need for a library like Polly, which we’ll use for HTTP errors, although it can also handle SQL connection errors (and other transient errors). To do this, add the EnableRetryOnFailure option to the SQL Server options, as shown in Listing 6-6.

 builder.Services.AddDbContextPool<DemoContext>(options =>

 options.UseSqlServer(dbConnection,

 sqlServerOptionsAction: sqlOptions =>

 {

 sqlOptions.EnableRetryOnFailure(

 maxRetryCount: 3);

 }));

 Listing 6-6
 Enabling resiliency on SQL Server connections

 As you can see here, I enabled a Retry strategy; this code will retry three times before raising an exception due to a transient error. You can improve this strategy by setting up the delay between retries or adding more transient errors than default ones. If you want to know the default transient errors handled by Entity Framework Core, you can visit the GitHub repository, and it shows all SQL Server transient errors: https://github.com/Azure/elastic-db-tools/blob/master/Src/ElasticScale.Client/ElasticScale.Common/TransientFaultHandling/Implementation/SqlDatabaseTransientErrorDetectionStrategy.cs.

 I showed you the simplest way to handle transient errors here; what you need to understand here is that you should always handle them. I want to sensibilize you on this hot topic, and I showed you the way. If you want to improve the preceding example because your business needs it, you can check the Microsoft documentation here: https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/implement-resilient-entity-framework-core-sql-connections.

 Since it’s hard to simulate transient errors on SQL Server, I can’t show any examples here. Still, you can trust me it works like a charm, and once your database is not responsible or temporarily unavailable, retries will be performed.

 Step 6: Writing the Repository on Top of the CountryEntity

 It’s time now to write the CountryRepository. First off, let’s write the ICountryRepository interface. The latter has to be written into the Domain layer, which contains all application abstractions. Listing 6-7 shows the ICountryRepository.

 using Domain.DTOs;

 namespace Domain.Repositories;

 public interface ICountryRepository

 {

 Task<CountryDto> RetrieveAsync(int id);

 Task<List<CountryDto>> GetAllAsync();

 Task<int> CreateAsync(CountryDto country);

 Task<int> UpdateAsync(CountryDto country);

 Task<int> UpdateDescriptionAsync(int id, string description);

 Task<int> DeleteAsync(int id);

 }

 Listing 6-7
 The ICountryRepository interface

 As you can see, the methods return a Task. I will return to this in Chapter 7 when it comes to talking about asynchronous programming. We will now implement all these methods with Entity Framework Core. Listing 6-8 shows the implementation of the CountryRepository class.

 using Domain.DTOs;

 using Domain.Repositories;

 using Infrastructure.SQL.Database;

 using Infrastructure.SQL.Database.Entities;

 using Microsoft.EntityFrameworkCore;

 namespace Infrastructure.SQL.Repositories;

 public class CountryRepository : ICountryRepository

 {

 private readonly DemoContext _demoContext;

 public CountryRepository(DemoContext demoContext)

 {

 _demoContext = demoContext;

 }

 public async Task<int> CreateAsync(CountryDto country)

 {

 var countryEntity = new CountryEntity

 {

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri

 };

 await _demoContext.AddAsync(countryEntity);

 await _demoContext.SaveChangesAsync();

 return countryEntity.Id;

 }

 public async Task<int> UpdateAsync(CountryDto country)

 {

 var countryEntity = new CountryEntity

 {

 Id = country.Id,

 Name = country.Name,

 Description = country.Description,

 FlagUri = country.FlagUri

 };

 return await _demoContext.Countries

 .Where(x =>

 x.Id == countryEntity.Id)

 .ExecuteUpdateAsync(s =>

 s.SetProperty(p => p.Description, countryEntity.Description)

 .SetProperty(p => p.FlagUri, countryEntity.FlagUri)

 .SetProperty(p => p.Name, countryEntity.Name));

 }

 public async Task<int> DeleteAsync(int id)

 {

 return await _demoContext.Countries

 .Where(x => x.Id == id)

 .ExecuteDeleteAsync();

 }

 public async Task<List<CountryDto>> GetAllAsync()

 {

 return await _demoContext.Countries

 .AsNoTracking()

 .Select(x => new CountryDto

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .ToListAsync();

 }

 public async Task<CountryDto> RetrieveAsync(int id)

 {

 return await _demoContext.Countries

 .AsNoTracking()

 .Where(x => x.Id == id)

 .Select(x => new CountryDto

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .FirstOrDefaultAsync();

 }

 public async Task<int> UpdateDescriptionAsync(int id, string description)

 {

 return await _demoContext.Countries

 .Where(x => x.Id == id)

 .ExecuteUpdateAsync(s => s.SetProperty(p => p.Description, description));

 }

 }

 Listing 6-8
 The CountryRepository class

 Entity Framework Core syntax is pretty straightforward, and it’s LINQ plus some elements that enables optimizing a query or executing the SQL query:	
 AsNoTracking: This method allows you to gain some performance since it tells Entity Framework Core not to track the state of an entity. I won’t go into detail here. To learn more about change tracking in EF Core, read the Microsoft documentation here: https://learn.microsoft.com/en-us/ef/core/change-tracking/. Usually, we don’t need to track an entity if we don’t modify it in the context of the entity requested from the database. If you retrieve an entity from the database and send it straight to the client, you don’t need to track it.

	
 AddAsync/SaveChangesAsync: This pair of methods allow you to add asynchronously the entity in the DbContext to be inserted (asynchronously as well) into the database. After calling the SaveChangesAsync method, the entity is saved in the database, and the latter will populate the country ID that has been defined as the primary key and auto-incremented. To return it to the client, return the country ID.

	
 FirstOrDefaultAsync: Asynchronously triggers the query to the database and returns the first element that matches the query condition in the Where clause. It returns the default value of the entity (null, when it’s an object) when not found.

	
 ExecuteDeleteAsync: Asynchronously triggers the query to the database and deletes all elements that match the query condition in the Where clause.

	
 UpdateDeleteAsync: Asynchronously triggers the query to the database and updates all elements that match the query condition in the Where clause.

 Note I systematically use the asynchronous methods (async/await). All the mentioned methods have their synchronous version, but I never use them. Chapter 7 will explain why.

 Another interesting thing is using the CountryDto class in the Select statement. Why did I use CountryDto in the query? It’s because I’m projecting the Country entity into the CountryDto object. SQL speaking, Entity Framework Core will only request the field I’m mapping into CountryDto instead of selecting all fields from the database and then mapping only those I need. This is called projection, and it’s excellent to optimize performance because I’m bringing only the field I need from the SQL query.

 We can now write the final implementation of the CountryService class, whose implementation I haven’t yet shown you. Here it is, as shown in Listing 6-9.

 using Domain.DTOs;

 using Domain.Repositories;

 using Domain.Services;

 namespace BLL.Services;

 public class CountryService : ICountryService

 {

 private readonly ICountryRepository _countryRepository;

 public CountryService(ICountryRepository countryRepository)

 {

 _countryRepository = countryRepository;

 }

 public async Task<bool> DeleteAsync(int id)

 {

 return await _countryRepository.DeleteAsync(id) > 0;

 }

 public async Task<List<CountryDto>> GetAllAsync()

 {

 return await _countryRepository.GetAllAsync();

 }

 public async Task<CountryDto> RetrieveAsync(int id)

 {

 return await _countryRepository.RetrieveAsync(id);

 }

 public async Task<int> CreateOrUpdateAsync(CountryDto country)

 {

 if (country?.Id is null)

 return await _countryRepository.CreateAsync(country);

 if (await _countryRepository.CreateAsync(country) > 0)

 return country.Id;

 return 0;

 }

 public async Task<bool> UpdateDescriptionAsync(int id, string description)

 {

 return await _countryRepository.UpdateDescriptionAsync(id, description) > 0;

 }

 }

 Listing 6-9
 The CountryService class

 Finally, here are the endpoints reworked in the Program.cs file to accept asynchronous ICountryService methods as shown in Listing 6-10.

 Note

 For code readability purposes, I removed the using statements that were a very long list here.

 ...

 var builder = WebApplication.CreateBuilder(args);

 var dbConnection = builder.Configuration.GetConnectionString("DemoDb");

 builder.Services.AddDbContextPool<DemoContext>(options =>

 options.UseSqlServer(dbConnection,

 sqlServerOptionsAction: sqlOptions =>

 {

 sqlOptions.EnableRetryOnFailure(

 maxRetryCount: 3);

 }));

 builder.Services.AddValidatorsFromAssemblyContaining<Program>();

 builder.Services.AddScoped<ICountryMapper, CountryMapper>();

 builder.Services.AddScoped<ICountryService, CountryService>();

 builder.Services.AddScoped<ICountryRepository, CountryRepository>();

 builder.Services.AddExceptionHandler<TimeOutExceptionHandler>();

 builder.Services.AddExceptionHandler<DefaultExceptionHandler>();

 var app = builder.Build();

 app.MapPost("/countries", async (

 [FromBody] Country country,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countryDto = mapper.Map(country);

 var countryId = await countryService.CreateOrUpdateAsync(

 countryDto

);

 if (countryId <= 0)

 return Results.StatusCode(

 StatusCodes.Status500InternalServerError

);

 return Results.CreatedAtRoute(

 "countryById", new { Id = countryId }

);

 }).AddEndpointFilter<InputValidatorFilter<Country>>();

 app.MapGet("/countries/{id}", async (

 int id,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var country = await countryService.RetrieveAsync(id);

 if (country is null)

 return Results.NotFound();

 return Results.Ok(mapper.Map(country));

 }).WithName("countryById");

 app.MapGet("/countries", async (

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = await countryService.GetAllAsync();

 return Results.Ok(mapper.Map(countries));

 });

 app.MapDelete("/countries/{id}", async (

 int id,

 ICountryService countryService) => {

 if (await countryService.DeleteAsync(id))

 return Results.NoContent();

 return Results.NotFound();

 });

 app.MapPut("/countries", async (

 [FromBody] Country country,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countryDto = mapper.Map(country);

 var countryId = await countryService.CreateOrUpdateAsync(

 countryDto

);

 if (countryId <= 0)

 return Results.StatusCode(

 StatusCodes.Status500InternalServerError

);

 if (country.Id is null)

 return Results.CreatedAtRoute(

 "countryById",

 new { Id = countryId }

);

 return Results.NoContent();

 }).AddEndpointFilter<InputValidatorFilter<Country>>();

 app.MapPatch("/countries/{id}", async (

 int id,

 [FromBody] CountryPatch countryPatch,

 ICountryMapper mapper,

 ICountryService countryService) => {

 if (await countryService.UpdateDescriptionAsync(

 id,

 countryPatch.Description)

)

 return Results.NoContent();

 return Results.NotFound();

 }).AddEndpointFilter<InputValidatorFilter<CountryPatch>>();

 using (var scope = app.Services.CreateScope())

 {

 var db = scope.ServiceProvider.GetRequiredService<DemoContext>();

 db.Database.SetConnectionString(dbConnection);

 db.Database.Migrate();

 }

 app.Run();

 Listing 6-10
 The Program.cs file

 As you can see, we’ve implemented the endpoints right down to the database, all correctly in each layer. Figure 6-6 shows what the global ASP.NET Core project looks like.
 [image:]
 A screenshot of Solution Explorer denotes a list of elements under B L L, domain, Infrastructure dot S Q L, migration, and repositories under A S P Net core 8 minimal A p i s.

Figure 6-6
 The global ASP.NET Core solution

 Congratulations! You’ve come a long way! From endpoint definition to the database!

 In the following subsection, we’ll look at data access via HTTP, with all its constraints and optimizations.

 Accessing Data with HttpClient and REST APIs

 It’s common for an API to access data from other than a SQL database. As REST APIs are popular, it’s not uncommon for data sources to be exposed via REST. This requires access via the HttpClient class. We’re going to instantiate the HttpClient class to make GET requests on an API. Listing 6-11 shows how to download the contents of an image using the HttpClient class.

 using (var client = new HttpClient())

 {

 byte[] fileBytes = await client.GetByteArrayAsync("https://anthonygiretti.blob.core.windows.net/countryflags/ca.png");

 }

 Listing 6-11
 The HttpClient class usage

 In reality, this practice is disastrous in terms of performance for your application. As I said earlier in this chapter, each HttpClient consumes an instance of the HttpMessageHandler class, and a large number of instances of the HttpMessageHandler class can lead to socket exhaustion. To avoid this, we can use the IHttpClientFactory interface, which will manage HttpMessageHandler instances for us, reusing them. There are several ways of implementing IHttpClientFactory, and I will show you my favorite, based on IHttpClientFactory. To do this, I will use the Refit library, based on IHttpClientFactory, which will make life much easier.

 Using IHttpClientFactory to Make HTTP Requests

 Before showing you Refit, here’s a quick reminder of what IHttpClientFactory is. It’s a .NET 8 (since .NET Core 1) interface for optimized HTTP requests. The IHttpClientFactory interface is not automatically known by .NET and its dependency injection system, so you’ll need to download the following package: Microsoft.Extensions.Http.

 Once downloaded, add the following line in the Program.cs file: builder.Services.AddHttpClient();.

 Now, let’s create an IMediaRepository in the Domain layer, followed by its implementation in the Infrastructure.Http layer. Listing 6-12 shows the signature of the IMediaRepository interface, which will expose a method for returning the content of an image in a byte array and its MIME type, all in tuple form.

 namespace Domain.Repositories;

 public interface IMediaRepository

 {

 Task<(byte[] Content, string MimeType)> GetCountryFlagContent(string countryShortName);

 }

 Listing 6-12
 The IMediaRepository interface

 Here’s its implementation in the MediaRepository class with IHttpClientFactory, as shown in Listing 6-13.

 using Domain.Repositories;

 namespace Infrastructure.Http.Repositories;

 public class MediaRepository : IMediaRepository

 {

 private readonly IHttpClientFactory _httpClientFactory;

 public MediaRepository(IHttpClientFactory httpClientFactory)

 {

 _httpClientFactory = httpClientFactory;

 }

 public async Task<(

 byte[] Content,

 string MimeType

)>

 GetCountryFlagContent(string countryShortName)

 {

 byte[] fileBytes;

 using HttpClient client = _httpClientFactory.CreateClient();

 fileBytes = await client.GetByteArrayAsync($"https://anthonygiretti.blob.core.windows.net/countryflags/{countryShortName}.png");

 return (fileBytes, "image/png");

 }

 }

 Listing 6-13
 The MediaRepository class

 The implementation of the MediaRepository class is quite simple. Using IHttpClientFactory is quite simple. There are other forms of IHttpClientFactory usage in .NET 8, and all rely on this interface. For example, there are typed clients, named clients that you can find examples on the Microsoft documentation here: https://learn.microsoft.com/en-us/dotnet/architecture/microservices/implement-resilient-applications/use-httpclientfactory-to-implement-resilient-http-requests.

 I won’t show you examples here because I want to focus on the Refit library, which relies on typed clients relying themselves on the IHttpClientFactory interface.

 Using Refit to Make HTTP Requests

 Refit lets you dynamically generate a typed HTTP client, which is handy when saving code.

 All you need to do is declare an interface that specifies the information linked to the REST API (routes, parameters, body, headers) as attributes. To get started, download the following package: refit.

 Let’s go back to our IMediaRepository interface and decorate the GetCountryFlagContent method with Refit attributes to determine its behavior, as shown in Listing 6-14.

 using Refit;

 namespace Domain.Repositories;

 public interface IMediaRepository

 {

 [Get("/countryflags/{countryShortName}.png")]

 Task<byte[]> GetCountryFlagContent(string countryShortName);

 }

 Listing 6-14
 The IMediaRepository interface designed with Refit

 As you can see, you only need to add the Get attribute to define the request verb and pass it to the URL segment defining the route. There’s no need to define the base URL here—we can configure it once so it applies to all members of the IMediaRepository interface, if any. Finally, the route parameters will be interpreted with the interface parameter values. Practical, isn’t it? The only drawback here is that Refit doesn’t support tuples, for example. Refit only returns the result of the API call; we will have to handle the MIME type in the service layer instead of the repository. The next step is to register the Refit client in the Program.cs file, as shown in Listing 6-15.

 builder.Services.AddRefitClient<IMediaRepository>().ConfigureHttpClient(c => c.BaseAddress = new Uri("https://anthonygiretti.blob.core.windows.net"));

 Listing 6-15
 The Program.cs file with Refit

 To register our interface as a typed client with Refit, we had to use the AddRefitClient method, which required installation of the following package: Refit.HttpClientFactory.

 I’m not going to show you how to use each verb. Their basic operation is almost identical, so I’ll let you learn more about Refit with its beautiful documentation here: https://reactiveui.github.io/refit/.

 The aim here is to show you the best practices you need to know to access data using remote APIs. I won’t write a service to interface between the repository and the API endpoint. You know how to do it yourself and where to implement it.

 Using Polly to Make HTTP Requests Resilient

 The Polly library allows you to implement the Retry and Circuit-Breaker patterns. Polly works very well with HTTP requests, and I will show you an example of its use. Retry and Circuit-Breaker patterns will return an error to your client after several unsuccessful retries. If all retries fail, the Circuit-Breaker pattern will occur and automatically block HTTP calls for a customizable period. This prevents overloading the network when HTTP calls to the requested resource fail, and it will let the time to the remote resource recover.

 What’s interesting with typed clients such as Refit, and unlike the use of IHttpClientFactory, is that the Retry pattern configuration can be done outside the repository implementation that implements the HttpClient. It’s interesting because we’ll avoid polluting our data access layer with a Retry pattern. If we can define it separately, it’s better in terms of Separation of Concerns and reduces the complexity of the repository that implements the HttpClient. This is why I will show you how to implement a Retry pattern with Refit only. To do so, download the following package: Microsoft.Extensions.Http.Polly.

 Next, let’s create a static class. Let’s call it RetryPolicy class and implement the AddDefaultHandlingPolicy method, which is an extension method on the IHttpClientBuilder interface used to build typed HttpClient. Listing 6-16 shows the RetryPolicy class.

 using Polly;

 using Polly.Extensions.Http;

 namespace AspNetCore8MinimalApis.Resiliency.Http;

 public static class RetryPolicy

 {

 public static void AddFaultHandlingPolicy(this IHttpClientBuilder builder)

 {

 var retryPolicy = HttpPolicyExtensions

 .HandleTransientHttpError() // Handles 5XX and 408

 .WaitAndRetryAsync(3, retryDelayInSeconds => TimeSpan.FromSeconds(3));

 var circuitBreakerPolicy =

 HttpPolicyExtensions

 .HandleTransientHttpError() // Handles 5XX and 408

 .CircuitBreakerAsync(4, TimeSpan.FromSeconds(15));

 var policy = retryPolicy.WrapAsync(circuitBreakerPolicy);

 builder.AddPolicyHandler(policy);

 }

 }

 Listing 6-16
 The RetryPolicy class

 What happens here is that I’m handling HTTP transient errors (5xx and 408) and I ask Polly with the WaitAndRetryAsync method to retry three times every three seconds. Then I design a circuit breaker with the CircuitBreakerAsync method, which takes place after three failed retries. I put 4 as a handledEventAllowedBeforeBreaking parameter because I count the initial HTTP call and then three retries so that the circuit breaker would occur after four failed attempts. It will automatically make failing HTTP calls for 15 seconds the time the remote resource recovers. To finish, I use the WrapAsync method to merge the retry and circuit breaker policies and add them to the AddPolicyHandler extension method. To apply it on our HTTP client, designed with Refit, update the HttpClient as shown in Listing 6-17.

 builder.Services.AddRefitClient<IMediaRepository>()

 .ConfigureHttpClient(c => c.BaseAddress = new Uri("https://anthonygiretti.blob.core.windows.net"))

 .AddFaultHandlingPolicy();

 Listing 6-17
 The IMediaRepository Refit HttpClient updated with retry and circuit breaker policies

 We are done! So now your HTTP calls, when they fail, will retry the number of times you decide and break automatically after a determined number of failed attempts to reach the remote resources to prevent them from overloading. I strongly suggest you implement the Retry and Circuit-Breaker patterns. In terms of best practices, they are a must-do.

 Summary

 This chapter was, I hope, very interesting. This chapter covered the fundamentals of Entity Framework Core for accessing SQL data and the fundamentals for accessing data via HTTP, with a preview of best practices for each. Chapter 7 will take you even further, which will deal with API optimization, primarily concerning data access and more.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_7

7. Optimizing APIs

Anthony Giretti1
(1)La Salle, QC, Canada

 You now know how to develop endpoints, architect your applications, and access data efficiently. That’s all very well, but you can go even further. I want to show you how to improve your API to allow it to scale if you have a lot of traffic on your application. The optimizations I will show you are both simple and effective, and once you know them, you can use them as often as you like when developing your APIs. Note that I won’t bring up the compression topic since it’s unnecessary to compress JSON data over an API. The compression efficiency is not worth it. In this chapter, you’ll learn the following points:	
 Asynchronous programming

	
 Long-running tasks with background services

	
 Paging

	
 JSON streaming

	
 Caching

	
 Speeding up HTTP requests with HTTP/2 and HTTP/3

 Asynchronous Programming

 I promised to get back to you on this, and now I’m about to. In some examples, I have used the following keywords: Task<T>, async, and await. I will explain what they mean.

 Basics of Asynchronous Programming

 In .NET, each operation is represented by the Task keyword requiring the System.Threadings.Task namespace. This .NET Task concept is an object that represents an operation that must be performed. A Task not only lets us know when an operation has been completed but also returns a result if necessary. To return a task, use the C# keyword as is: Task. If we want the Task to return a value, an object type must be specified, Task<T>, where T is an object type. A Task involves a user action, such as invoking an endpoint, which requests the database. This action uses a generally blocked thread until the database response is obtained; the longer the database response, the longer the thread is blocked. This is where asynchronous programming comes in. The async and await keywords are used to write asynchronous code. The async keyword is used to inform the compiler that asynchronous processing will take place on the Task in question, and await is used to wait for the Task in question to finish executing. During this time, the current thread is not blocked; it’s even freed for computing another Task in your application and returns to processing the user action once the database has responded. In this way, you can ensure that all threads are not blocked simultaneously, and your application will remain available anytime. async and await are two keywords that always go together. The keyword async must not be used without await and vice versa. Otherwise, processing will be synchronous (the compiler will notify you of this too). As a reminder, here’s some asynchronous code as shown in Listing 7-1.

 public async Task<List<CountryDto>> GetAllAsync()

 {

 return await _demoContext.Countries

 .AsNoTracking()

 .Select(x => new CountryDto

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .ToListAsync();

 }

 Listing 7-1
 The GetAllAsync method

 If you remember, this is a LINQ query for accessing the database with Entity Framework Core. As you’ll often see in your APIs, every time you access external data sources, you can (and should) use the asynchronous version of the proposed methods, such as the ToListAsync() method, which triggers an asynchronous request to the database. A synchronous version exists (ToList), but I wouldn’t recommend using it under any circumstances since it blocks the current thread when it’s awaiting the database response. All operations with Entity Framework Core have asynchronous methods, such as ExecuteUpdateAsync, ExecuteDeleteAsync, SaveChangesAsync, etc. For HTTP requests, the same reasoning with the GetAsync, PostAsync, etc. is available. It’s easy to identify them; they always end with the Async suffix. I recommend you name the asynchronous methods you are coding with the Async suffix. Asynchronous programming is best used when accessing an external resource whose response time you can’t control for whatever reason. Both SQL and HTTP are external data sources. If we had used a file on the server to open in read mode, we could have done it synchronously, although it can also be done asynchronously, which I recommend.

 You can create your Task when needed; you will barely need it, but it may happen when you want to perform an action where no asynchronous operation is available. It generally happens on old libraries or legacy code where asynchronous programming is not handled. To do so, use the Task.Run method that will run asynchronously any synchronous code as follows:

 var result = await Task.Run(() => DoSomething());

 Using CancellationToken

 Asynchronous programming allows you to do something convenient: cancel a task. When a task takes a long time to execute, it often happens that you want to cancel it. Whether it’s a fat client like a desktop application that calls on an API or a browser, we’re tempted to close the browser or the application. But what happens if the HTTP request has already invoked another API via HTTP or a SQL request and processing is still in progress? Well, the requested external resource will continue to run. To avoid this, we can handle the cancellation of an HTTP request, including the requested external resource. Let’s consider the GET /cancellable endpoint, as shown in Listing 7-2.

 app.MapGet("/cancellable", async (ICountryService countryService, CancellationToken cancellationToken) =>

 {

 await countryService

 .LongRunningQueryAsync(cancellationToken);

 return Results.Ok();

 });

 Listing 7-2
 The GET /cancellable endpoint

 What you have to do here is to add as a parameter to the endpoint lambda function the CancellationToken class, which is automatically filled by ASP.NET Core when set up as a parameter when added on HTTP endpoints. Then you will have to transmit it through all layers until the SQL query and pass it as a parameter on the LongRunningQueryAsync method as shown in Listing 7-3.

 using Domain.Repositories;

 using Microsoft.EntityFrameworkCore;

 namespace Infrastructure.SQL.Repositories;

 public class CountryRepository : ICountryRepository

 {

 private readonly DemoContext _demoContext;

 public CountryRepository(DemoContext demoContext)

 {

 _demoContext = demoContext;

 }

 public async Task LongRunningQueryAsync(

 CancellationToken cancellationToken)

 {

 await _demoContext.Database

 .ExecuteSqlRawAsync(

 "WAITFOR DELAY '00:00:10'",

 cancellationToken: cancellationToken);

 }

 }

 Listing 7-3
 The CountryRepository class

 I have simulated a long-running query, ten seconds, with the WAIT FOR DELAY SQL command. I’m using the Database object, which enables you to perform SQL queries with methods like ExecuteSqlRawAsync.

 If we run the GET /cancellable endpoint and cancel the HTTP request before it ends, remember I set up a fake slowness of ten seconds; it should cancel the SQL query as the HTTP query is cancelled. Figure 7-1 shows the cancellation handled by SQL, which returns a SqlException.
 [image:]
 A screenshot represents different information under Microsoft hosting and highlights the text that reads s q l exception and operation canceled by the user.

Figure 7-1
 The SQL exception generated after the cancellation

 The same cancellation process is available in any asynchronous task, on Entity Framework Core queries, like ToListAsync(cancellationToken), FirstOfDefaultAsync(cancellationToken), etc., and even the HTTP requests managed with the IHttpClientFactory or Refit. Listing 7-4 shows the MediaRepository class implemented with the IHttpClientFactory.

 using Domain.Repositories;

 namespace Infrastructure.Http.Repositories;

 public class MediaRepository : IMediaRepository

 {

 private readonly IHttpClientFactory _httpClientFactory;

 public MediaRepository(

 IHttpClientFactory httpClientFactory)

 {

 _httpClientFactory = httpClientFactory;

 }

 public async Task<(

 byte[] Content,

 string MimeType)> GetCountryFlagContent(

 string countryShortName,

 CancellationToken cancellationToken)

 {

 byte[] fileBytes;

 using HttpClient client = _httpClientFactory

 .CreateClient();

 fileBytes = await client

 .GetByteArrayAsync($"https://anthonygiretti.blob.core.windows.net/countryflags/{countryShortName}.png",

 cancellationToken);

 return (fileBytes, "image/png");

 }

 }

 Listing 7-4
 The MediaRepository class

 Listing 7-5 shows how to handle the cancellation with the CancellationToken with Refit on the IMediaRepository interface.

 using Refit;

 namespace Domain.Repositories;

 public interface IMediaRepository

 {

 [Get("/countryflags/{countryShortName}.png")]

 Task<byte[]> GetCountryFlagContent(

 string countryShortName,

 CancellationToken cancellationToken);

 }

 Listing 7-5
 The IMediaRepository interface

 Relatively simple, isn’t it? I only introduced you to the minimum you must know about asynchronous programming, but it’s a vast topic. If you want to learn more about it, I suggest you read Stephen Cleary’s book on concurrency. It’s a great book to learn all the facets of asynchronous programming and more: https://stephencleary.com/book/.

 In the following subsection, we’ll look at more advanced cancellation management, using BackgroundTask classes to handle long-running background tasks, a great feature of ASP.NET Core.

 Long-Running Tasks with Background Services

 ASP.NET Core provides us with all the tools we need to efficiently execute any type of long-running background tasks directly hosted in our web application, thanks in particular to the IHostedService interface available in the Microsoft.Extensions.Hosting namespace by downloading the Nuget package Microsoft.Extensions.Hosting.Abstractions.

 This interface won’t be invoked directly; you’ll need to implement the abstract BackgroundService class derived from it.

 The interface, and hence the BackgroundService class, defines three methods:	1.

 StartAsync

	2.

 StopAsync

	3.

 ExecuteAsync

 It’s up to us to call the ExecuteAsync method. Still, the StartAsync and StopAsync methods will be executed, respectively, at application startup and shutdown, automatically without any intervention on our part. However, if we wish to perform specific actions, we can override them, as they are defined as abstract by the BackgroundService class.

 In this section, we’ll focus on the ExecuteAsync method, in which we’ll execute long operations. Let’s take a look at the CountryFileIntegrationBackgroundService class, which will enable us to manage the ingestion of files downloaded from the server as shown in Listing 7-6.

 using Microsoft.Extensions.Hosting;

 namespace Infrastructure.BackgroundTasks;

 public class CountryFileIntegrationBackgroundService : BackgroundService

 {

 public CountryFileIntegrationBackgroundService()

 {

 }

 protected override async Task ExecuteAsync(

 CancellationToken cancellationToken)

 {

 while (!cancellationToken.IsCancellationRequested)

 {

 // Do some job

 }

 }

 }

 Listing 7-6
 The CountryFileIntegrationBackgroundService class skeleton

 As you may have noticed, this is only the skeleton of the background task. The latter doesn’t do anything, but it does stop if the cancellation of the task is requested. As it’s a background task, it won’t stop if we close the browser but will if the ASP.NET Core application stops. It’s perfectly possible to inject a service that will then perform processing. Still, it’s a good idea to create a specific scope for the background task, as it works as a Singleton with a single service instance, unlike HTTP requests, which require a new instance for each service whose lifetime is of type Scoped. Since most of the time you’ll be using Scoped instances rather than Singletons, we will inject the IServiceProvider interface into the background task, enabling us to fetch any type of service instance or repository. Let’s consider the ICountryService exposing the IngestFile method for manipulating a file from its content (stream), which I’m going to instantiate from the IServiceProvider interface by creating a temporary scope (disposable after use) as shown in Listing 7-7.

 using Domain.Services;

 using Microsoft.Extensions.DependencyInjection;

 using Microsoft.Extensions.Hosting;

 using Microsoft.Extensions.Logging;

 namespace Infrastructure.BackgroundTasks;

 public class CountryFileIntegrationBackgroundService : BackgroundService

 {

 private readonly IServiceProvider _serviceProvider;

 public CountryFileIntegrationBackgroundService(

 IServiceProvider serviceProvider)

 {

 _serviceProvider = serviceProvider;

 }

 protected override async Task ExecuteAsync(

 CancellationToken cancellationToken)

 {

 while (!cancellationToken.IsCancellationRequested)

 {

 using (var scope = _serviceProvider.CreateScope())

 {

 var service = scope.ServiceProvider

 .GetRequiredService<ICountryService>();

 // await service.IngestFile();

 }

 }

 }

 }

 Listing 7-7
 The CountryFileIntegrationBackgroundService class enhanced with IServiceProvider

 You’re probably wondering how our continuously running background task will receive data from an ASP.NET Core application running independently. Well, since the background task and the API share the same process, they’re actually part of the same application, so these two subsets of our web application can communicate with each other! Indirectly, of course, but via messages internal to the application. These two subsets share the same codebase, the same startup file (Program.cs), and the same configuration (appsettings.json). This is made possible by a .NET feature called Channels! Channels are part of the System.Threading.Channels namespace. This namespace exposes functionalities enabling you to publish a message in a Channel, which will be received by another part of the application to read the messages sent in the same Channel (Figure 7-2).
 [image:]
 A block diagram under A S P dot net core application denotes the program dot c s, app settings dot j son, and code base split into a p i and background task. The A P I publishes the message and the background task reads the message from the system, threading, and channels.

Figure 7-2
 The background task running in the ASP.NET Core application

 For your information, I’ve created the background task in a separate layer, Infrastructure.BackgroundTasks, still in the spirit of separating technological responsibility. I’m now going to create a Channel to push the content of a file (stream) as a message. There are different ways of doing this; I will take the simplest one. I’m going to create the interface to push a message into a Channel in the Domain layer, which doesn’t change in any way compared with other chapters, and then implement this Channel, either directly in the API, as the endpoint in charge of uploading will send the file content directly into the Channel. It is also possible to implement the same thing in the BLL, by creating a specific service, which I haven’t chosen to do here. Listing 7-8 shows the ICountryFileIntegrationChannel interface.

 namespace Domain.Channels;

 public interface ICountryFileIntegrationChannel

 {

 IAsyncEnumerable<Stream> ReadAllAsync(

 CancellationToken cancellationToken);

 Task<bool> SubmitAsync(

 Stream twilioRouteProgrammerParameters,

 CancellationToken cancellationToken);

 }

 Listing 7-8
 The ICountryFileIntegrationChannel interface

 The publish method, SubmitAsync, is relatively straightforward, while the ReadAllAsync method reads all messages asynchronously with the IAsyncEnumerable<T> return type where T is a stream. Still, it allows us to consume messages individually as soon as they become available. Each message is a Stream object. Listing 7-9 shows the implementation of the Channel, the CountryFileIntegrationChannel class.

 using Domain.Channels;

 using System.Threading.Channels;

 namespace AspNetCore8MinimalApis.Channels;

 public class CountryFileIntegrationChannel : ICountryFileIntegrationChannel

 {

 private readonly Channel<Stream> _channel;

 public CountryFileIntegrationChannel()

 {

 var options = new UnboundedChannelOptions

 {

 SingleWriter = false,

 SingleReader = true

 };

 _channel = Channel.CreateUnbounded<Stream>(options);

 }

 public async Task<bool> SubmitAsync(

 Stream fileContent,

 CancellationToken cancellationToken)

 {

 while (await _channel.Writer.WaitToWriteAsync(cancellationToken) && !cancellationToken.IsCancellationRequested)

 {

 if (_channel.Writer.TryWrite(fileContent))

 {

 return true;

 }

 }

 return false;

 }

 public IAsyncEnumerable<Stream> ReadAllAsync(CancellationToken cancellationToken) => _channel.Reader.ReadAllAsync(cancellationToken);

 }

 Listing 7-9
 The CountryFileIntegrationChannel class

 The first thing to note here is the class constructor. I created and configured an UnBoundedChannel object. This means I’m creating a Channel that can receive unlimited messages because they’re treated like a queue, processed one by one. Processing messages in a background task, one by one, guarantees that your application won’t crash because too many tasks are executed simultaneously. Then I configured the Channel with the UnboudedChannelOptions class, which will indicate with the SingleWriter = false property that several publishers can publish simultaneously in the Channel, a publisher being an HTTP request.

 On the other hand, with the SingleReader = true property, I indicated that there is only one simultaneous reader, and this single reader is our background task. The SubmitAsync method will attempt to publish the Stream object in the Channel using the TryWrite method and return true if it worked and false if it failed. To date, I’ve never had a case where publication failed. The only possibility is setting your Channel with the BoundChannelOptions option class, which allows you to limit the number of events in a queue. I keep this method for safety. The whole thing is also controlled by the WaitToWriteAsync method, which checks that it’s possible to write a message to the Channel before doing so. This method takes a CancellationToken as a parameter. Finally, I checked that a cancellation (the application stops) has been initiated, with the CancellationToken’s IsCancellationRequested property, in which case it doesn’t publish the message in the Channel. If we go back to the CountryFileIntegrationBackgroundService class, we can now inject and integrate the ICountryFileIntegrationChannel interface as shown in Listing 7-10.

 using Domain.Channels;

 using Domain.Services;

 using Microsoft.Extensions.DependencyInjection;

 using Microsoft.Extensions.Hosting;

 namespace Infrastructure.BackgroundTasks;

 public class CountryFileIntegrationBackgroundService : BackgroundService

 {

 private readonly ICountryFileIntegrationChannel _channel;

 private readonly IServiceProvider _serviceProvider;

 public CountryFileIntegrationBackgroundService(

 ICountryFileIntegrationChannel channel,

 IServiceProvider serviceProvider)

 {

 _channel = channel;

 _serviceProvider = serviceProvider;

 }

 protected override async Task ExecuteAsync(

 CancellationToken cancellationToken)

 {

 await foreach (var fileContent in _channel.ReadAllAsync(cancellationToken))

 {

 try

 {

 using (var scope = _serviceProvider

 .CreateScope())

 {

 var service = scope.ServiceProvider

 .GetRequiredService<ICountryService>();

 await service.IngestFile(fileContent);

 }

 }

 catch { }

 }

 }

 }

 Listing 7-10
 The CountryFileIntegrationBackgroundService class with the CountryFileIntegrationChannel injected

 Thanks to the IAsyncEnumerable collection returned by the ReadAllAsync method, we can iterate through the messages passed to the Channel one by one as soon as a message is available. If we want to make the whole thing work, let’s go to the Program.cs file and configure the Channel and the BackgroundService in the dependency injection system as shown in Listing 7-11.

 builder.Services.AddSingleton<ICountryFileIntegrationChannel, CountryFileIntegrationChannel>();

 builder.Services.AddHostedService<CountryFileIntegrationBackgroundService>();

 Listing 7-11
 The registration of the CountryFileIntegrationBackgroundService class and the ICountryFileIntegrationChannel

 The ICountryFileIntegrationChannel must be registered as Singleton lifetime because on the reader side, to be able to read messages, it must read messages on the same ICountryFileIntegrationChannel instance; else, it won’t work, and messages will get lost. The CountryFileIntegrationBackgroundService must be registered with the AddHostedService extension method. If you remember, we set up the CancellationToken in the CountryFileIntegrationChannel class and the CountryFileIntegrationBackgroundService class. So if any cancellation (the application shuts down) occurs, we will let the time for any background task that is still running complete. To do this, we can set up, in the Program.cs file, the ShutdownTimeout to 60 seconds to let any in-progress processes complete during this period, as shown in Listing 7-12.

 builder.Services.PostConfigure<HostOptions>(option =>

 {

 option.ShutdownTimeout = TimeSpan.FromSeconds(60);

 });

 Listing 7-12
 Set up the ShutdownTimeout to 60 seconds

 Let’s write the POST /countries/upload endpoint that accepts a file and passes it to the ICountryFileIntegrationChannel service as shown in Listing 7-13.

 app.MapPost("/countries/upload", async (IFormFile file, ICountryFileIntegrationChannel channel, CancellationToken cancellationToken) =>

 {

 if (await channel.SubmitAsync(

 file.OpenReadStream(),

 cancellationToken))

 Results.Accepted();

 Results.StatusCode(StatusCodes.Status500InternalServerError);

 }).DisableAntiforgery();

 Listing 7-13
 Set up the ICountryFileIntegrationChannel interface on the POST /countries/upload endpoint

 The good practice is to return the Accepted (202) status that tells the client the server accepted the request for processing (and has not been completed). Otherwise, an Internal Error (500) should be returned.

 Figure 7-3 shows the CountryFileIntegrationBackgroundService task execution when a message is posted in the Channel.
 [image:]
 A screenshot represents a snippet of code and highlights a line that reads await service dot ingest file, file content. The file content reads Microsoft dot A S P Net core dot h t t p dot reference read stream.

Figure 7-3
 The CountryFileIntegrationBackgroundService task execution

 Remarkable, isn’t it? Remember that these background tasks are helpful for long operations so as not to leave your client waiting for a long process before getting a response from the server. You can declare as many background tasks as you like, but you must create a dedicated Channel for each background task so that the message corresponds to the background task for processing.

 Paging

 The primary purpose of an API is to expose data to customers, enabling them to read, modify, or delete information. However, when the volume of data becomes significant, and you need to expose a route returning a collection, it can be practical to paginate this information. If the client uses a limited connection, as in the case of a mobile application, volumetry will be an essential performance factor.

 So I will suggest a quick and easy way to set up paging.

 First, look at the GET /countries endpoint, which returns a collection of countries, and add two parameters in the query string: pageIndex and pageSize. The pageIndex parameter is the index of the data sequence we want to query, and the pageSize is the amount of data we want to query per page. Figure 7-4 shows a collection of ten elements paged with two sequences of five items.
 [image:]
 A diagram denotes a set of 10 adjacent blocks labeled from 1 to 10. The span from 1 to 5 is denoted as page 1, while 6 to 10 is denoted as page 2. The text at the bottom denotes the page size of 5.

Figure 7-4
 A collection of ten elements paged with a size of five items per page

 To implement this, let’s see how the code looks like as shown in Listing 7-14.

 app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(

 new PagingDto {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 });

 return Results.Ok(mapper.Map(countries));

 });

 Listing 7-14
 The GET /countries endpoint with paging query parameters

 Note

 If you have too many query parameters, you can encapsulate them into an object to make the code more readable by using the AsParameters attribute, which gives the following: app.MapGet("/countries", async ([AsParameters] Paging paging, ...).

 It’s easy to retrieve the parameters—they’re automatically bound when they come from the query string. Don’t forget that query string parameters are not mandatory and must be treated as nullable. Then we pass them into an instance of the PagingDto class whose signature is identical to the parameters retrieved from the query string, as shown in Listing 7-15.

 namespace Domain.DTOs;

 public class PagingDto

 {

 public int PageIndex { get; set; } = 1;

 public int PageSize { get; set; } = 10;

 }

 Listing 7-15
 The PagingDto class

 As you can see, I’ve given each of them a default value in case they’re not set up.

 Let’s go back to the LINQ query, the GetAllAsync method we saw in Chapter 6, which offers two paging methods. The first is Skip, which is the index at which the query will start retrieving results, and the second is Take, which is the number of elements the query will retrieve. Listing 7-16 shows the paged query. Of course, paging is done on the SQL side, not on the client side, that is, we don’t retrieve everything on the code side and then take a fraction of it, as this would be much less efficient.

 public async Task<List<CountryDto>> GetAllAsync(PagingDto paging)

 {

 return await _demoContext.Countries

 .AsNoTracking()

 .Select(x => new CountryDto

 {

 Id = x.Id,

 Name = x.Name,

 Description = x.Description,

 FlagUri = x.FlagUri

 })

 .Skip((paging.PageIndex - 1) * paging.PageSize)

 .Take(paging.PageSize)

 .ToListAsync();

 }

 Listing 7-16
 The GetAllAsync method paged

 You see, it’s easy. As far as Refit and IHttpClientFactory are concerned, it’s even more accessible. All you have to do is replace the string following the same pattern as the route parameters.

 When you bring back a collection of information, remember to paginate the results when it’s long, as this will help maintain good performance.

 JSON Streaming

 ASP.NET Core 8 optimizes network bandwidth by transmitting items (streaming) to the client individually rather than a whole collection in one shot. This is very practical. A heavyweight client such as C# won’t be able to exploit items received individually, especially with an HttpClient. The response will be available when all items are received, just as JavaScript can display items received individually. Let’s rewrite our GET /countries endpoint, returning an IAsyncEnumerable<Country> object to the client, as shown in Listing 7-17.

 app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

 ICountryService countryService) => {

 async IAsyncEnumerable<Country> StreamCountriesAsync()

 {

 var countries = await countryService

 .GetAllAsync(

 new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 });

 var mappedCountries = mapper.Map(countries);

 foreach (var country in mappedCountries)

 {

 yield return country;

 }

 }

 return StreamCountriesAsync();

 });

 Listing 7-17
 The GET /countries endpoint returning an IAsyncEnumerable<Country> object

 I made a video to show you how it works when streamed into a JavaScript client; you can find the demo on my blog here: https://anthonygiretti.com/2021/09/22/asp-net-core-6-streaming-json-responses-with-iasyncenumerable-example-with-angular/.

 Caching

 Caching is a technique for storing frequently used information in memory to avoid having to regenerate the same data at a later date.

 Caching is particularly important for data coming from requests made to a data source, as accesses to the database (out of any other data source) are generally very costly regarding response time. I will show you how to implement caching in ASP.NET Core to avoid this. ASP.NET Core offers three types of caching:	1.

 HTTP cache (output cache): Data is cached on any proxy servers or in the web browser.

	2.

 In-memory cache: Data is stored in the server’s RAM.

	3.

 Distributed cache: Data is cached on an external server to which multiple applications can connect.

 Output Cache

 The OutputCache is very effective but very limited. The cache can be stored on the proxy server or in the browser, depending on whether or not a proxy exists. This cache only applies to GET and HEAD requests that return a 200 response, which are only cached if they don’t generate a cookie and don’t require authentication (identified by the presence of the Authorization header). The other disadvantage is that the browser or a proxy keeps data since the request doesn’t reach the server because all the HTTP response is cached. You won’t be able to log any user’s actions on the server because you want, for example, to generate statistics using your API. You should use this cache when you don’t have any requirements, such as collecting statistics, in your application or don’t have any authentication on endpoints you want to cache with (without omitting that only successful GET and HEAD requests are cacheable). Figure 7-5 summarizes the OutputCache workflow.
 [image:]
 A block diagram represents the flow from browser to server through proxy. The arrows between the browser and proxy indicate the cache on the browser and proxy. The arrow between the proxy and server denotes not reaching the server.

Figure 7-5
 The OutputCache concept

 To begin with, you need to configure your cache with the AddOutputCache extension method and define policies. These can be global, using AddBasePolicy, and apply to all requests eligible for the output cache. Alternatively, you can use a named policy to be explicitly called on your endpoints. To activate all this, you need to declare the UseOutputCache middleware.

 Listing 7-18 shows the configuration of the Program.cs file.

 var builder = WebApplication.CreateBuilder(args);

 ...

 builder.Services.AddOutputCache(options =>

 {

 options.AddBasePolicy(builder =>

 builder.Expire(TimeSpan.FromSeconds(30))

 .SetVaryByQuery("*")

);

 options.AddPolicy("5minutes", builder =>

 builder.Expire(TimeSpan.FromSeconds(300))

 .SetVaryByQuery("*")

);

 });

 var app = builder.Build();

 app.UseOutputCache();

 app.Run();

 Listing 7-18
 The output cache configuration in the Program.cs file

 As you can see, this configuration contains a global policy that allows you to define a 30-second cache, which applies to all endpoints that don’t define an explicit policy and applies only to a single URL, considering its query string parameters. There will be as many cached data as there are variations of the same URL with different parameters, for example, the URL /countries?pageIndex=1 and /countries?pageIndex=2 will have different cached data.

 Then I’ve set up a policy called “5minutes” that you’ll need to apply specifically to the endpoints you want, which caches data for five minutes and also varies according to query string parameters. Listing 7-19 shows the endpoint GET / cachedcountries using the “5minutes” policy by the usage of the CacheOutput extension method.

 app.MapGet("/cachedcountries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 });

 return Results.Ok(mapper.Map(countries));

 }).CacheOutput("5minutes");

 Listing 7-19
 The GET /cachedcountries endpoint using the “5minutes” cache policy

 If we execute this endpoint the first time (or if you are the first person who accesses this endpoint among other users), you won’t notice anything, the response will be absolutely normal, and no headers will be set up in the response. Still, if the endpoint is cached because somebody has accessed it before you, you’ll notice the presence of the Age header, which tells the client how long the data has been in the cache. Figure 7-6 shows the GET /cachedcountries endpoint after its execution, and the response shows data that have been cached for 15 seconds.
 [image:]
 A screenshot represents a U R L at the top followed by a table denoting the details of keys and their values at the bottom. It highlights a key label of age, which comprises the value of 15.

Figure 7-6
 The GET /cachedcountries endpoint output cache

 I won’t go into detail here since this isn’t the cache you’ll often use because of its limitations. I wanted to show you its existence, and I think that if you use it, it will be to a lesser extent than I’ve just shown you. However, if you want to know more, you can consult Microsoft’s documentation: https://learn.microsoft.com/en-us/aspnet/core/performance/caching/output?view=aspnetcore-8.0.

 In-Memory Cache

 This cache type is preferable to output cache, as it uses only the data you decide to cache. Here, the entire HTTP response is not cached. Still, the request reaches the server whether there is a proxy between the client and the server or not, allowing you to keep control over what happens during the request, such as, once again, collecting statistics, logging user actions, and so on. This is the most frequently used cache when your application is not distributed, that is, when a single server exposes your API, as the in-memory cache is server-specific. The cache will be duplicated on each server if you have several servers. This happens when you have a server farm where HTTP traffic is load-balanced on this or that server. In this case, we’ll talk about a distributed cache, and I’ll return to this in the following subsection. Figure 7-7 summarizes the in-memory cache workflow.
 [image:]
 Two block diagrams denote the flow between the browser and the server. At the top, the flow from browser to server goes through the proxy. The bottom one denotes the direct flow between the browser and the server. The in-memory concept is denoted at the server.

Figure 7-7
 The in-memory cache concept

 In this section, I’m going to show you two things:	1.

 How to use the in-memory cache.

	2.

 For practical reasons of architecture and coding, the Single Responsibility principle (SRP) exactly, I’m going to use the Decorator pattern.

 Why the Decorator pattern? Because I’ve created the ICountryService interface with its CountryService implementation that calls the database to retrieve data. But it’s not its responsibility to fetch cached information. The Decorator pattern dynamically attaches additional responsibilities to an object. It provides a flexible alternative to inheritance for extending functionality.

 We’ll create a decorator class to decorate the CountryService class and call it CachedCountryService. This CachedCountryService class inherits from the ICountryService interface and is also injected by dependency on the ICountryService interface. As a result, this class will have its implementation while invoking the implementation of the CountryService class. For this to work, the dependency injection system must be configured to indicate which class is decorating the decorated class. Here, the CountryService class is decorated by the CachedCountryService class, which manages the cache.

 We will create the CachedCountryService class in the BLL and need the IMemoryCache interface, which can be found in the Nuget package Microsoft.Extensions.Caching.Abstractions. We only need the IMemoryCache interface here, so we’re downloading the version containing only the in-memory cache abstractions. In the API layer, on the other hand, we’re going to download the version containing the entire in-memory cache implementation, which we’ll need to activate the cache middleware. In the API layer, please install the following Nuget package: Microsoft.Extensions.Caching.Memory. Listing 7-20 shows the implementation of the CachedCountryService decorator class, including the implementation of caching using IMemoryCache.

 using Domain.DTOs;

 using Domain.Services;

 using Microsoft.Extensions.Caching.Memory;

 namespace BLL.Services;

 public class CachedCountryService : ICountryService

 {

 private readonly ICountryService _countryService;

 private readonly IMemoryCache _memoryCache;

 public CachedCountryService(

 ICountryService countryService,

 IMemoryCache memoryCache)

 {

 _countryService = countryService;

 _memoryCache = memoryCache;

 }

 public async Task<List<CountryDto>> GetAllAsync(

 PagingDto paging)

 {

 var cachedValue = await _memoryCache.GetOrCreateAsync(

 $"countries-{paging.PageIndex}-{paging.PageSize}",

 async cacheEntry =>

 {

 cacheEntry.AbsoluteExpirationRelativeToNow = TimeSpan.FromSeconds(30);

 return await _countryService.GetAllAsync(paging);

 });

 return cachedValue;

 }

 public async Task<(byte[], string, string)> GetFileAsync()

 {

 return await _countryService.GetFileAsync();

 }

 public async Task<bool> IngestFileAsync(

 Stream countryFileContent)

 {

 return await _countryService

 .IngestFileAsync(countryFileContent);

 }

 public async Task LongRunningQueryAsync(

 CancellationToken cancellationToken)

 {

 await _countryService

 .LongRunningQueryAsync(cancellationToken);

 }

 }

 Listing 7-20
 The CachedCountryService decorator class

 As you can see, I’ve implemented all the ICountryService interface methods because we must. However, I’m not reimplementing all the methods; I’m reusing all the ICountryService methods as is, that is, the methods of the decorated class (CountryService), because I’m only going to apply caching to the GetAllAsync method. I’m therefore reusing the original implementation (CountryService) with cache using the GetOrCreateAsync method, which will either create the cache key with its value if the latter doesn’t exist in memory or retrieve it based on the key $"countries-{paging.PageIndex}-{paging.PageSize}". This key must be unique and parameterized according to all the parameters passed to the GetAllAsync method. This is the only way to ensure the uniqueness of cached content in a given situation. I’ve set the cache duration to 30 seconds using the AbsoluteExpirationRelativeToNow method.

 The first time the method is invoked, or when the cache is expired, the _countryService.GetAllAsync method is invoked again. Using the SetSlidingExpiration method to control cache duration instead of the AbsoluteExpirationRelativeToNow method is possible, but I don’t recommend it, as its operation is different. Cached elements won’t be refreshed until the cache is invoked for x amount of time, so you see the problem: as long as cached data is requested, its contents won’t be refreshed. I never use it unless I’m sure that the cached data will never be modified, which is rarely the case. Listing 7-21 shows the configuration of the in-memory cache, the Decorator pattern for the ICountryService interface, and the GET /cachedinmemorycountries endpoint.

 var builder = WebApplication.CreateBuilder(args);

 ...

 builder.Services.AddScoped<ICountryService, CountryService>();

 builder.Services.Decorate<ICountryService, CachedCountryService>();

 builder.Services.AddMemoryCache();

 ...

 var app = builder.Build();

 ...

 app.MapGet("/cachedinmemorycountries", async (

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(new PagingDto

 {

 PageIndex = 1,

 PageSize = 10

 });

 return Results.Ok(mapper.Map(countries));

 });

 ...

 app.Run();

 Listing 7-21
 The in-memory cache and Decorator pattern configuration

 As you can see, it’s easy to configure.

 Simply configure the in-memory cache with the AddMemoryCache extension method and configure the CachedCountryService decorator class of the CountryService class with the Decorate extension method, which you can find in the Nuget Scrutor package. This allows you to configure the Decorator pattern in your application quickly. Then, I implemented the GET /cachedinmemorycountries endpoint to access the cache using the GetAllAsync method.

 Note

 At this time of writing, I faced issues with the Scrutor Nuget package, which doesn’t work correctly with the .NET 8 preview 7. It should be fixed in the final version of .NET 8. For your information, you can read the details of the issue here: https://github.com/khellang/Scrutor/issues/208.

 If you want to know more about design patterns, such as the Decorator pattern, you can read Fiodar Sazanavets’ book about design patterns here: https://leanpub.com/the-easiest-way-to-learn-design-patterns. It’s a great book. I learned a lot from it!

 Distributed Cache

 Distributed caching extends the traditional caching concept, where data is placed locally in temporary storage for rapid retrieval. A distributed cache is more extensive, as it is not located on the web server itself but on another machine or in a cloud service such as Microsoft Azure. Distributed caching can be implemented on top of different providers such as	1.

 SQL Server (distributed cache on SQL Server)

	2.

 Redis (non-SQL in-memory database)

	3.

 In-memory distributed cache

	4.

 NCache (open source in-memory cache)

 All meet the same criteria: they are outsourced to another server, as shown in Figure 7-8.
 [image:]
 A block diagram denotes that the data from the browser goes through 3 different servers and merges at the cache server. The texts on the right read in-memory, S Q L server, Redis cache, and N cache.

Figure 7-8
 The distributed cache concept

 I’ll take Redis as an example here. Thanks to its caching algorithms, it is the most powerful caching database. It’s also the most widely used caching database for distributed, high-traffic applications. To begin with, I will invite you to create an instance of Redis. I’m not going to document it here, but you can follow the following tutorial offered by Microsoft, which will enable you to create an instance in Microsoft Azure: https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-configure.

 In terms of implementation, we’re going to use the same principle as before, namely, to use the Decorator pattern to implement the DistributedCachedCountryService class, which will be injected with the IDistributedCache interface, present in the same Nuget package as the in-memory cache: Microsoft.Extensions.Caching.Abstractions. For the API layer, please download the Nuget package Microsoft.Extensions.Caching.StackExchangeRedis that registers an instance of the RedisCache class implementing the IDistributedCache interface. Listing 7-22 shows the implementation of the DistributedCachedCountryService decorator class.

 using Domain.DTOs;

 using Domain.Services;

 using Microsoft.Extensions.Caching.Distributed;

 using System.Text.Json;

 namespace BLL.Services;

 internal class DistributedCachedCountryService : ICountryService

 {

 private readonly ICountryService _countryService;

 private readonly IDistributedCache _distributedCache;

 public DistributedCachedCountryService(

 ICountryService countryService,

 IDistributedCache distributedCache)

 {

 _countryService = countryService;

 _distributedCache = distributedCache;

 }

 public async Task<List<CountryDto>> GetAllAsync(PagingDto paging)

 {

 var key = $"countries-{paging.PageIndex}-{paging.PageSize}";

 var cachedValue = await _distributedCache

 .GetStringAsync(key);

 if (cachedValue == null)

 {

 var data = await _countryService

 .GetAllAsync(paging);

 await _distributedCache

 .SetStringAsync(key,

 JsonSerializer.Serialize(data),

 new DistributedCacheEntryOptions

 {

 AbsoluteExpirationRelativeToNow = TimeSpan.FromSeconds(30)

 });

 return data;

 }

 return JsonSerializer

 .Deserialize<List<CountryDto>>(cachedValue);

 }

 public async Task<(byte[], string, string)> GetFileAsync()

 {

 return await _countryService.GetFileAsync();

 }

 public async Task<bool> IngestFileAsync(

 Stream countryFileContent)

 {

 return await _countryService

 .IngestFileAsync(countryFileContent);

 }

 public async Task LongRunningQueryAsync(

 CancellationToken cancellationToken)

 {

 await _countryService

 .LongRunningQueryAsync(cancellationToken);

 }

 }

 Listing 7-22
 The DistributedCachedCountryService decorator class

 As you can see, we can store any object. Still, in string form, I’m obliged to serialize/deserialize in JSON the list of countries I want to store/retrieve to/from Redis with the Serialize/Deserialize methods from the System.text.Json assembly. As far as Redis is concerned, the SetStringAsync and GetStringAsync methods are, respectively, responsible for storing and retrieving data. The cache duration can be configured with the DistributedCacheEntryOptions option class, always with a relative duration known in advance. At the end of this duration, Redis automatically purges the cache key. The operation here is identical to that of the in-memory cache.

 Listing 7-23 shows the configuration of the distributed cache in the Program.cs file.

 ...

 using Microsoft.Extensions.Caching.StackExchangeRedis;

 var builder = WebApplication.CreateBuilder(args);

 ...

 builder.Services.AddScoped<ICountryService, CountryService>();

 builder.Services.Decorate<ICountryService, DistributedCachedCountryService>();

 ...

 builder.Services.AddStackExchangeRedisCache(options =>

 {

 options.Configuration = builder.Configuration

 .GetConnectionString("RedisConnectionString");

 options.InstanceName = "Demo";

 });

 var app = builder.Build();

 ...

 app.MapGet("/cachedinmemorycountries", async (

 ICountryMapper mapper,

 ICountryService countryService) => {

 var countries = await countryService

 .GetAllAsync(new PagingDto

 {

 PageIndex = 1,

 PageSize = 10

 });

 return Results.Ok(mapper.Map(countries));

 });

 ...

 app.Run();

 Listing 7-23
 The distributed cache and Decorator pattern configuration

 As you can see, the cache is configured using the AddStackExchangeRedisCache method, which takes two options as parameters:	1.

 The Redis connection string, which you’ll have set up in the appsettings.json file

	2.

 The instance name

 The instance name is slightly misleading since the name you gave will be concatenated to any Redis cache key to avoid key clashes if two identical keys are inadvertently registered in Redis. While this isn’t necessarily bad if several applications use the same data, it poses a problem when two applications use the same cache key for entirely different data.

 Now you know the potential of distributed caching with Redis. I invite you to take a closer look at this distributed caching technology because it’s very powerful. To learn more about Redis, visit the Redis website here, https://redis.io/, where you’ll find other examples of implementations with .NET. If you’d like to find out more about distributed caching and its possible implementation with .NET, you can consult the Microsoft documentation here: https://learn.microsoft.com/en-us/aspnet/core/performance/caching/distributed?view=aspnetcore-8.0#recommendations.

 Speeding Up HTTP Requests with HTTP/2 and HTTP/3

 The version of HTTP you need to have in mind is HTTP/1.1. I talked about it in Chapter 1 of this book. HTTP evolved and was completely redefined in 2015 with version 2 (HTTP/2). Without going into too much detail, HTTP/2 is much faster than HTTP/1.1, and ASP.NET Core supports it. However, not all browsers support HTTP/2, so you must be careful here. ASP.NET Core can handle several versions of HTTP at once. To find out more about HTTP/2, consult RFC 9113 here: https://datatracker.ietf.org/doc/html/rfc9113.

 If you’d like to check browser compatibility, visit the caniuse.com site for HTTP/2 here: https://caniuse.com/http2.

 And that’s not all! Microsoft has recently proposed a new version, even though all web applications and browsers have not yet adopted HTTP/2. This HTTP/3 version is even faster than HTTP/2. To learn more about HTTP/3, consult RFC 9114 here: https://datatracker.ietf.org/doc/rfc9114/. Of course, HTTP/3 is even less well supported by browsers, but you can check out the evolution of its support here: https://caniuse.com/http3. The good news is that ASP.NET Core 8 supports HTTP/3!

 How do you get ASP.NET Core 8 to support HTTP/3 and HTTP/2 while still supporting HTTP/1.1 if the client does not support the first two? Listing 7-24 explains how to configure its appsettings.json file.

 "Kestrel": {

 "EndpointDefaults": {

 "Protocols": "Http1AndHttp2AndHttp3"

 }

 }

 Listing 7-24
 The appsettings.json file enabling HTTP/1.1, HTTP/2, and HTTP/3 protocols

 Summary

 I want to congratulate you on following everything I’ve taught you so far. You’ve learned everything you need to know to implement well-coded, well-architected, and optimized APIs, along with a host of tips and tricks that will make all the difference! Now that you understand everything you can do to code your application well and make it perform well, we’ll turn our attention to monitoring our application. In the next chapter, we’ll look at how to perform logging as efficiently as possible, collecting metrics and actions performed on the API (tracing) to see how our application behaves when it’s being used. See you in the next chapter!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_8

8. Introduction to Observability

Anthony Giretti1
(1)La Salle, QC, Canada

 Observability is the collection, visualization, and analysis of data in an application. This is important when designing an application, as it must be possible to detect undesirable behaviors (service unavailability, errors, slow responses) and provide them with actionable information to effectively determine the cause of the problem (detailed event logs, granular information on resource use with metrics, application traces). In this chapter, with simple examples (because it’s a complicated subject, let’s make it simple), I’ll teach you the following points:	
 Basics of observability

	
 Performing logging

	
 Performing tracing and metrics data collection

	
 Implementing HealthChecks

 Basics of Observability

 When we talk about observability, we talk about Metrics, Events, Logs, and Traces (MELT). These are the four pillars of observability in an application:	1)

 Logs: They enable us to collect data on a specific event we’ve defined. We’ll log, for example, an exception that has occurred in the application or other elements that are more or less indicative of what’s going on in the application, for example, information that will enable us to debug a situation in a particular context.

	2)

 Events: These are actions accompanied by a set of metadata, for example, the action of a user uploading a file of a specific size.

	3)

 Traces: They are an overview of the user’s path and interaction with the system. More specifically, when a user action triggers an HTTP request, we will trace access to external resources, such as a database, to detect any slowness at this level.

	4)

 Metrics: These are used to assess the system’s overall health. This could be, for example, CPU or memory usage.

 In this chapter, I won’t deal with events, which are rarely used on APIs, unlike the collection of metrics, logs, and traces.

 Finally, observability relies on tools generally referred to as Application Performance Monitoring (APM), which is the practice of observing what’s going on in an application. APMs are real-time application management tools aiming to anticipate problems rather than solve them quickly by providing access to logs, traces, and metrics. In this chapter, I’ll use Application Insights as an APM and show you how to collect logs, traces, and metrics and read them in Application Insights.

 Note

 Application Insights is a powerful and extensible Microsoft Azure tool for monitoring your applications. I’ll be using this tool in this chapter.

 Creating a Microsoft Azure account and setting up an Application Insights workspace are prerequisites for understanding this chapter’s rest. To do this, you can visit the Microsoft documentation for creating an Application Insights workspace: https://learn.microsoft.com/en-us/azure/azure-monitor/app/create-workspace-resource. Once you are done, please pick up the Application insights connection string. You will need it further.

 Note

 In this book, I won’t teach you how to use Application Insights, but you can read a nice tutorial on the Microsoft Learn website: https://learn.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview?tabs=net.

 Performing Logging

 Logging what’s going on in your application is essential to detect errors and what kind of errors have occurred. It’s also possible to log other contextual information that is not an error but helps debug your application in case of a problem. As you can see, you can log anything you like, except—and I’ve already mentioned this in connection with the OWASP principles—sensitive information. What is sensitive information? Sensitive information is, for example, personal user data such as email addresses, telephone numbers, or, even worse, Social Security numbers, information used for identity theft. The same goes for confidential application information, such as string connections, logins, or passwords.

 ASP.NET Core natively includes a logger via the ILogger interface and contains a default implementation that writes to the console as shown in Figure 8-1, which shows the logs automatically generated when the application is started.
 [image:]
 A screenshot displays information about Microsoft hostings, shortcut keys and their respective path locations.

Figure 8-1
 The default ASP.NET Core logs

 As you can see, ASP.NET Core writes certain types of information by default; you can see it in the left column, the info word. Info corresponds to a log level in a hierarchy of levels that we can filter by level in an APM, Application Insights, which I’ll show you later. There are six log levels with severity levels ranging from 0 to 5. Here’s the list of log levels shown with their enum values:	
 Trace = 0: Represents a purely informative log requiring no action to be taken.

	
 Debug = 1: Represents a more detailed log aimed at diagnosing a problem.

	
 Information = 2: Represents a normal log to confirm normal software operation. Similar to Trace, but I tend to use it over Trace.

	
 Warning = 3: Represents a log warning of behavior that could potentially generate a bug, thus prompting you to better manage part of the code, by, for example, decorating it with a try/catch block.

	
 Error = 4: Represents a detailed log reporting a bug, for example, an exception raised following an action performed.

	
 Critical = 5: Represents a detailed log of a serious problem preventing the application from running, such as a database connection preventing the entire application from running.

 I’m not going to use all the log types in the following examples. I’ll use the ones I use most often daily: Info, Error, and Critical.

 Before moving on to the examples, I will use another implementation than the default one proposed by Microsoft; I will use the Serilog logger, which we’ll configure to interface with ILogger. What I mean by this is that only configuring the logger will give us a bit of work; invoking the logger with the ILogger interface will be identical.

 Serilog is a library designed to facilitate application logging in .NET applications. Several sinks are available to store logs on different media (file, console, Application Insights, and many more).

 The significant difference with other log libraries is that it offers a mechanism for obtaining metadata on events that have occurred. This makes it easier to exploit these logs than plain text logs. Most importantly, this library is compatible with structured logging. I’ll return to this with some examples so you’ll understand.

 To start with, we’re going to download two Nuget packages in the layer API:	
 Serilog.AspNetCore

	
 Serilog.Sinks.ApplicationInsights

 The first is the Serilog implementation for ILogger, while the second package sends logs to Application Insights.

 Now, let’s configure our ASP.NET Core application using the appsettings.json file, not forgetting to include the string connection to your Application Insights workspace. Listing 8-1 shows the Serilog configuration.

 {

 "Serilog": {

 "Using": [

 "Serilog.Sinks.ApplicationInsights"

],

 "MinimumLevel": {

 "Default": "Information",

 "Microsoft.AspNetCore": "Warning"

 },

 "WriteTo": [

 {

 "Name": "ApplicationInsights",

 "Args": {

 "connectionString": "{YourApplicationInsightsConnectionString}",

 "telemetryConverter": "Serilog.Sinks.ApplicationInsights.TelemetryConverters.TraceTelemetryConverter, Serilog.Sinks.ApplicationInsights"

 }

 }

],

 "Enrich": ["FromLogContext"],

 "Properties": {

 "Application": "DemoAPI"

 }

 }

 }

 Listing 8-1
 The Serilog configuration in appsettings.json

 A few explanations are in order here. First, you need to tell Serilog which sink to use, so I indicate that I want to use it with the Using property, Application Insights. Then, I set the minimum level to Information. Setting Information as the minimum level will allow you to send Information up to Critical levels in the logs if you remember the hierarchy. This configuration is helpful if you want to limit the level of severity of the logs you want; the fewer logs you have, the more readable they’ll be, and the more logs you have, the more logs you’ll be drowned in. It’s up to you to find the right balance. Don’t forget that ASP.NET Core logs automatically, so you’re in control. If you want all your logs to log the Information level minimally, but you want ASP.NET Core to log Warning minimally, you can add the name of the Microsoft.AspNetCore assembly to the Using property with the Warning value. You can add as many assemblies as you like to filter your logs. Next, you need to define the configuration of your Application Insights sink with its connectionString and mention the assemblies required to convert your logs to Application Insights format. Enriching your logs with additional metadata is possible using the Enrich property. I won’t go into detail here, but if you’d like to know more about enriching logs with Serilog, you can consult their documentation here: https://github.com/serilog/serilog/wiki/Enrichment. Now let’s apply this configuration with the following line of code in the Programs.cs file:

 builder.Host.UseSerilog((context, configuration) => configuration.ReadFrom.Configuration(context.Configuration));

 The API is correctly set up to send logs into Application Insights.

 There are two ways to use logs in ASP.NET Core. The first one is to use the logger directly from the app.Logger object into minimal endpoints, as shown in Listing 8-2.

 var app = builder.Build();

 ...

 app.MapGet("/logging", () => {

 app.Logger.LogInformation("/logging endpoint has been invoked.");

 return Results.Ok();

 });

 ...

 app.Run();

 Listing 8-2
 Using the app.Logger object to log

 In reality, this is not a good practice for reasons of testability because it’s a variable external to the minimal endpoint’s lambda. We call this hoisting, calling variables external to a delegate, a minimal endpoint’s lambda being a delegate.

 The best practice here is to use dependency injection and invoke ILogger<T> where T is a generic type, usually the class in which ILogger is invoked, to categorize logs according to their origin. Listing 8-3 shows the ILogger interface invocation by dependency.

 var app = builder.Build();

 ...

 app.MapGet("/logging", (ILogger<Program> logger) => {

 logger.LogInformation("/logging endpoint has been invoked.");

 return Results.Ok();

 });

 ...

 app.Run();

 Listing 8-3
 Using the ILogger<T> interface by dependency injection

 Note

 ILogger is a known type automatically injected by dependency by ASP.NET Core. No particular configuration is required to activate it to inject it by dependency, and it can, therefore, be injected into any class, just like the services and repositories we implemented together in the previous chapters.

 It’s cleaner and easier to test, and we’ll return to this subject in the final chapter of this book.

 Now, let’s take a look at good logging practices. I mentioned structured logging earlier. Structured logging is recommended for more readable logging with contextual information. It all depends on how you variable your logging text. If you variable your log as shown in Listing 8-4, then your logging is structured.

 var app = builder.Build();

 ...

 app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper,

 ICountryService countryService,

 ILogger<Program> logger) => {

 var paging = new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 };

 var countries = await countryService.GetAllAsync(paging);

 using (logger.BeginScope(

 "Getting countries with page index {pageIndex} and page size {pageSize}", paging.PageIndex,

 paging.PageSize))

 {

 logger.LogInformation(

 "Received {count} countries from the query", countries.Count);

 return Results.Ok(mapper.Map(countries));

 }

 });

 ...

 app.Run();

 Listing 8-4
 Example of structured logging

 On Application Insights, go to “Transaction Search” and find your log as shown in Figure 8-2.
 [image:]
 Microsoft Azure demo A P I utilizes various services including Application Insights for monitoring and troubleshooting. Recent logs reveal successful H T T P GET requests to local host countries, providing information on query results.

Figure 8-2
 Finding logs on Application Insights

 Then click it to watch details as shown in Figure 8-3.
 [image:]
 A screenshot depicts a Demo A P I highlighting transaction search based on the date and time, specifically on August 24, 2023, at around 4 P M.

Figure 8-3
 Log details with structured logging

 As you can see, the variables (pageSize, pageIndex, and count) in the preceding code sample are well displayed as “Custom Properties.” Let’s say I use string interpolation for my messages, as shown in Listing 8-5.

 var app = builder.Build();

 ...

 app.MapGet("/countries", async (

 int? pageIndex,

 int? pageSize,

 ICountryMapper mapper, ICountryService

 countryService, ILogger<Program> logger) => {

 var paging = new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 };

 var countries = await countryService.GetAllAsync(paging);

 using (logger.BeginScope(

 "Getting countries with page index {pageIndex} and page

 size {pageSize}",

 paging.PageIndex,

 paging.PageSize))

 {

 logger.LogInformation(

 "Received {count} countries from the query",

 countries.Count);

 return Results.Ok(mapper.Map(countries));

 }

 });

 ...

 app.Run();

 Listing 8-5
 Using string interpolation

 You’ll see that the log won’t be the same at all and will be significantly less readable, as shown in Figure 8-4.
 [image:]
 A screenshot displays a work item creation in a Demo A P I. The message indicates the receipt of 2 countries from a query. It features custom properties, including Connection I d, Request I d, and Source Context.

Figure 8-4
 Example of log details without structured logging

 Just a word with the using instruction using (logger.BeginScope()): This instruction merges all logs into a single information block spread over an APM. As you saw earlier, thanks to this method, the variables pageSize, pageIndex, and count were not part of the same log but were part of the same scope. Having them grouped in a single block, and therefore a log block in Application Insights, made the log easier to read.

 Caution I suggest you carefully use the BeginScope method. If any exception occurs in the using statement, any log will be sent to the APM if it is part of the same using block, including the message in the BeginScope method.

 Here’s the last example for logging. I’m going to update the DefaultExceptionHandler class, which handles application errors. In the chapter where I introduced error handling, I only handled the response to be sent to the client, but I didn’t log the error. Here’s the updated DefaultExceptionHandler class with the addition of ILogger, as shown in Listing 8-6.

 using Microsoft.AspNetCore.Diagnostics;

 using Microsoft.AspNetCore.Mvc;

 using System.Net;

 namespace AspNetCore8MinimalApis.ExceptionHandlers;

 public class DefaultExceptionHandler : IExceptionHandler

 {

 private readonly ILogger<DefaultExceptionHandler> _logger;

 public DefaultExceptionHandler(ILogger<DefaultExceptionHandler> logger)

 {

 _logger = logger;

 }

 public async ValueTask<bool> TryHandleAsync(

 HttpContext httpContext,

 Exception exception,

 CancellationToken cancellationToken)

 {

 _logger.LogError(exception,

 "An unexpected error occurred and has been handled by the

 {DefaultExceptionHandler} handler", nameof(DefaultExceptionHandler));

 await httpContext.Response.WriteAsJsonAsync(new ProblemDetails

 {

 Status = (int)HttpStatusCode.InternalServerError,

 Type = exception.GetType().Name,

 Title = "An unexpected error occurred",

 Detail = exception.Message,

 Instance = $"{httpContext.Request.Method}

 {httpContext.Request.Path}"

 });

 return true;

 }

 }

 Listing 8-6
 The DefaultExceptionHandler class enhanced with ILogger

 If our application catches an exception, all we have to do is find it in the list of logs, as shown in Figure 8-5.
 [image:]
 A screenshot illustrates Microsoft Azure with a focus on the Demo A P I and transaction search. It logs an event on 8, 24, 2023, 4 30 P M, detailing an H T T P G E T request with a 500 status code, suggesting an issue with the application.

Figure 8-5
 Finding exceptions on Application Insights

 If you click it, you’ll be given a whole host of information, including the exact exception we’ve passed as a parameter to the LogError method.
 [image:]
 A screenshot reveals a work item creation with an EXCEPTION in Microsoft Azure. It indicates a crash with the message Boh it has crashed the error type is System dot Exception, and it provides information about the source code and call stack.

Figure 8-6
 Example of error log details

 After clicking on an exception you will see the error detail as shown in Figure 8-6.

 Now, you know almost everything you need to do as a developer. You are now able to configure an APM and set up logs to send to Serilog. I hope this tutorial has informed you of the importance of logs in an application and that you will rigorously practice relevant logging!

 Performing Tracing and Metrics Data Collection

 Tracing operations on dependencies such as SQL databases and collecting metrics to monitor an application can prove decisive in the event of performance problems when your application goes into production. So as not to be overtaken by events should this happen to you, I’m going to show you how you can easily collect some helpful information on the health of your application. I won’t go too far into this topic for the simple reason that it won’t be up to you, the developer, to take care of this, by which I mean you’ll certainly be asked to implement the data collection, but it might not be up to you to interpret it. So, to make you more aware of the subject, I’ve prepared a few simple examples to get you started. To get started, download the Microsoft.ApplicationInsights.AspNetCore Nuget package in the API layer, go to the Program.cs file, and add the following line:

 builder.Services.AddApplicationInsightsTelemetry();

 You will also have to add another configuration section in the appsettings.json to make the Application Insights telemetry work:

 "ApplicationInsights": {

 "ConnectionString": "{YourConnectionString}"

 }

 The first thing you’ll notice is the enrichment of logs with new telemetry elements.

 Firstly, Application Insights now logs dependencies (in this case, SQL queries), HTTP requests, and other events, as shown in Figure 8-7.
 [image:]
 A screenshot presents Microsoft Azure, focusing on the Demo A P I and Transaction search. It highlights date, time and other transaction histories.

Figure 8-7
 Example of telemetry data

 As you can see, we know what HTTP request has been executed, what time it took to process the request, and what dependency has been called with what duration. Very useful, isn’t it? I’ve got even more to show you: if you click a dependency, you’ll have access to more details, such as which HTTP request triggered this call, as shown in Figure 8-8.
 [image:]
 A screenshot illustrates Microsoft Azure Demo A P I transaction details, emphasizing the end-to-end transaction information. It's filtered for a specific timestamp range.

Figure 8-8
 Example of telemetry data on dependencies and HTTP requests

 I’ve got something even better! Exceptions are now enriched with other metadata, such as the endpoint that triggered the exception, the execution time, etc., as shown in Figure 8-9.
 [image:]
 A screenshot illustrates Microsoft Azure Demo A P I transaction details, emphasizing the end-to-end transaction information. It's filtered for a specific timestamp range. It highlights the type and details of the transactions.

Figure 8-9
 Exceptions enriched with metadata

 Let’s get down to business. Let’s take a closer look at the metrics. Go to the Overview tab for an overview of metrics such as the count of failed requests, server response time, etc., as shown in Figure 8-10.
 [image:]
 A screenshot showcases Microsoft Azure Demo A P I dashboard with resource details, instrumentation key, monitoring options, and performance metrics, including server response time, failures, and alerts.

Figure 8-10
 Metrics overview

 At last, the highlight of the show! If you click the Live metrics tab, you’ll find everything you need regarding metrics, such as CPU and memory usage. It’s very comprehensive, as shown in Figure 8-11.
 [image:]
 A screenshot features Microsoft Azure Demo A P I dashboard with live metrics for incoming and outgoing requests, request rates, access control, diagnostics, and monitoring metrics, including performance and alerts.

Figure 8-11
 Detailed metrics

 Of course, it’s possible to customize your traces, metrics, etc. I won’t talk about it here, as it’s something you probably won’t do. If you do, it won’t be you but the architect you’ll depend on, as the developer rarely implements custom traces and metrics other than those proposed by default. However, if you’re interested in the subject, you can consult the Microsoft documentation here, https://learn.microsoft.com/en-us/dotnet/core/diagnostics/metrics-collection, but also this one, which is more concerned with the performance of your application: https://learn.microsoft.com/en-us/azure/azure-monitor/app/performance-counters?tabs=net-core-new.

 Implementing HealthCheck

 To finish with observability, I’m going to tell you about HealthCheck. But what is HealthCheck? The idea is to offer HTTP endpoints to ensure two main things:	1.

 The presence/proper deployment of the application

	2.

 A report giving the status of the service and its dependencies (operational, non-operational, degraded)

 There are two types of HealthChecks:	1.

 Readiness HealthCheck, indicating whether your application is ready for use

	2.

 Liveness HealthCheck, indicating whether your application works or not

 Without going into all the customization details, I’ll show you an example of each type of HealthCheck.

 Liveness HealthCheck

 Since we’re using SQL Server as our data access, I suggest you download the following Nuget package: AspNetCore.HealthChecks.SqlServer.

 Then go to the Program.cs file and configure the HealthCheck for SQL Server with the AddHealtchCheck and AddSqlServer methods, the latter taking the database’s connectionString as a parameter, and then expose the GET /health endpoint using the MapHealthChecks extension method, as shown in Listing 8-7.

 var builder = WebApplication.CreateBuilder(args);

 ...

 var dbConnection = builder.Configuration.GetConnectionString("DemoDb");

 builder.Services.AddHealthChecks()

 .AddSqlServer(connectionString: dbConnection)

 ...

 var app = builder.Build();

 app.MapHealthChecks("/health");

 ...

 app.Run();

 Listing 8-7
 The configuration of the GET /health endpoint for the HealthCheck

 This endpoint will return Healthy or Unhealthy if the database connection works or not. Figure 8-12 shows the GET /health endpoint returning Healthy.
 [image:]
 A screenshot indicates the successful GET request to link displaying an O K status with a response time of 938 milliseconds and a payload of 326 bytes.

Figure 8-12
 The GET /health endpoint returning Healthy

 It is possible to test several databases at the same time, but for ASP.NET Core to be able to differentiate between them, each one must be given a name, as shown in Listing 8-8.

 var builder = WebApplication.CreateBuilder(args);

 ...

 var dbConnection1 = builder.Configuration.GetConnectionString("DemoDb1");

 var dbConnection2 = builder.Configuration.GetConnectionString("DemoDb2");

 builder.Services.AddHealthChecks()

 .AddSqlServer(name: "SQL1", connectionString: dbConnection1)

 .AddSqlServer(name: "SQL2", connectionString: dbConnection2);

 ...

 var app = builder.Build();

 app.MapHealthChecks("/health");

 ...

 app.Run();

 Listing 8-8
 The configuration of the GET /health endpoint for the HealthCheck with two databases

 This example shows a liveness HealthCheck, demonstrating that the application works because of its dependency on SQL Server.

 Readiness HealthCheck

 Showing that our application is ready for use requires more manual work. In general, a readiness HealthCheck requires customization. Imagine that, after startup/restart, our application has had to perform some long actions to make it work as well as possible (think of initializing a cached dataset). Still, in this example, I will simulate a long action lasting ten seconds.

 To do this, define a static variable, IsReady, on the static Ready class in our application that symbolizes the ready (or not ready) state, as shown in Listing 8-9.

 namespace AspNetCore8MinimalApis;

 public static class Ready

 {

 public static bool IsReady { get; set; } = false;

 }

 Listing 8-9
 The Ready static class

 We now create the ReadyHealthCheck class, which implements the IHealthCheck interface, as shown in Listing 8-10.

 using Microsoft.Extensions.Diagnostics.HealthChecks;

 namespace AspNetCore8MinimalApis.Healthchecks;

 public class ReadyHealthCheck : IHealthCheck

 {

 public Task<HealthCheckResult> CheckHealthAsync(

 HealthCheckContext context,

 CancellationToken cancellationToken = default)

 {

 var result = Ready.IsReady

 ? HealthCheckResult.Healthy()

 : HealthCheckResult.Unhealthy(

 "Application not ready");

 return Task.FromResult(result);

 }

 }

 Listing 8-10
 The ReadyHealthCheck class

 As you can see, the CheckHealthAsync method reads the static IsReady variable of the Ready static class and returns Healthy if IsReady is true or Unhealthy if IsReady is false. Let’s simulate a lengthy operation, which, at the end of its execution, will set the verifiable IsReady to true after ten seconds, as shown in the following piece of code (placed in the Program.cs file):

 Task.Run(() => { Thread.Sleep(10000); Ready.IsReady = true; });

 Let’s now declare our ReadyHealthCheck in another endpoint to ensure we don’t mix liveness and readiness states in the application. To do this, we need to group the HealthCheck with a tag, Ready for the readiness check and Live for the liveness check, with two separate endpoints attached to their respective tag as shown in Listing 8-11.

 var builder = WebApplication.CreateBuilder(args);

 ...

 builder.Services.AddHealthChecks()

 .AddSqlServer(

 name: "SQL1",

 connectionString: dbConnection1,

 tags: new[] { "live" })

 .AddSqlServer(

 name: "SQL2",

 connectionString:

 dbConnection2,

 tags: new[] { "live" })

 .AddCheck<ReadyHealthCheck>(

 "Readiness check",

 tags: new[] { "ready" });

 ...

 var app = builder.Build();

 ..

 app.UseExceptionHandler(opt => { });

 app.MapHealthChecks("/ready", new HealthCheckOptions

 {

 Predicate = healthCheck => healthCheck.Tags.Contains("ready")

 });

 app.MapHealthChecks("/live", new HealthCheckOptions

 {

 Predicate = healthCheck => healthCheck.Tags.Contains("live")

 });

 ...

 app.Run();

 Listing 8-11
 The readiness and liveness checks configured in separate endpoints

 If I invoke the GET /ready endpoint before ten seconds, it will return Unhealthy, whatever the GET /live endpoint returns. And after ten seconds, it will return Healthy, whatever the GET /live endpoint returns.

 Note

 Since we enabled the telemetry data collection for Application Insights in the previous section, any HealthCheck endpoint invoked by a user or a system that regularly checks the state of our application will be logged as a request event as any other requests made on the application.

 I haven’t been too far on this ASP.NET Core feature; you only need to know how to monitor if your application is functional and ready to use. To learn more about HealthCheck configuration and customization, you can check the Microsoft documentation here: https://learn.microsoft.com/en-us/aspnet/core/host-and-deploy/health-checks?view=aspnetcore-8.0.

 Summary

 And that’s it for this chapter. I’ve tried to keep it simple and concise, as this subject could be the subject of a whole book. The aim here was to make you aware of the notion of observability by giving you the basics to enable you to do the minimum you’ll need to implement in your application. Many other APMs are used in many companies, such as Jaeger and Grafana; you should also consider them for monitoring your apps. Still, I’ve also provided you with the necessary resources to learn more if you’re interested. You can be sure that what you’ve learned in this chapter will be very helpful! I’ll see you in the next chapter to discuss configuring sensitive data (secret applications), which will also be very useful!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_9

9. Managing Application Secrets

Anthony Giretti1
(1)La Salle, QC, Canada

 Throughout this book, I've used sensitive data, a.k.a. secrets, for example, connection strings that may have been used to connect to a database, an APM, etc. The easiest way to make these secrets available is to save them in application configuration files named by environment (appsettings.json, appsettings.dev.json, appsettings.prod.json, a dedicated configuration file for each environment) and then push all these files into the GIT repository. GIT is a source code manager on a remote server to store your code. However, two questions arise: How/where to store these secrets, and how to update them easily?

 In this chapter, I'm going to teach you the following points:	
 Introduction to application secret management

	
 Example with Azure Key Vault

 Introduction to Application Secret Management

 Anyone with access to the source code manager can view the various environments' passwords. A developer or tester may not need to know the secrets of accessing production databases, for example, and this is potentially a threat to data security, as a team member may be ill-intentioned.

 Applications are often entry points for hackers. Finding sensitive information enabling access to other resources, such as a database, is a real danger. The most telling example is Uber in 2016. Although the source code was stored in private GIT repositories (not accessible to the public), a hacker managed to bypass security and gain access to the applications that contained Uber's database secrets, exposing 57 million driver accounts!

 To prevent this from happening in your company, I will show you an example of protecting sensitive data with Azure Key Vault, which requires you to create an Azure Key Vault resource in Microsoft Azure as you did for Application Insights. As the aim is to inform you of the importance of protecting secrets, I won't explain how Azure Key Vault works in detail. Here is the Microsoft documentation for configuring a vault with Azure Key Vault: https://learn.microsoft.com/en-us/azure/key-vault/general/quick-create-portal.

 Don't forget to pick up your Vault URI on Azure Key Vault's main page; you will need it further!

 You'll also need your Azure Tenant ID, which can be found on the Azure Portal as shown in Figures 9-1 and 9-2. For security purposes, I have partially hidden my Tenant ID.
 [image:]
 A screenshot with a variety of icons for Azure services is as follows. Create a resource, tenant properties, app registrations, all resources, azure active directory, app services, cost management, subscriptions, and resource groups. Tenant properties is selected.

Figure 9-1
 The Tenant properties menu item

 [image:]
 A screenshot of microsoft azure properties with tenant properties comprising name, country, location, notification language, tenant I D, technical contact, global privacy contact, and so on. Tenant I D is selected.

Figure 9-2
 The Tenant ID

 Example with Azure Key Vault

 I'll show you how to protect your database connections, for example, the ones I used earlier in this book. Of course, you can repeat the same logic to store any secret or other string connections like the one in Application Insights. To do this, go back to the main page of your Azure Key Vault instance (again, I assume you've read the Microsoft documentation beforehand) and then create your keys and associated values for your connection strings, as I did for the DemoDb1 and DemoDb2 connection strings as shown in Figure 9-3.
 [image:]
 A screenshot of the secrets page in the Azure Key Vault web portal. The page exhibits a list of secrets, along with their name, type, status, and tags. Some of the secrets that are present in the image include Demo D b 1 and Demo D b 2.

Figure 9-3
 Creating secrets in Azure Key Vault

 On the ASP.NET Core side, however, we will have a bit more work to do. You'll need to download two Nuget packages, and I'll explain why:	
 Azure.Extensions.AspNetCore.Configuration.Secrets: This package allows you to retrieve secrets from ASP.NET Core on Azure Key Vault.

	
 Azure.Identity: This package will enable us to connect to Azure Key Vault without an Azure Key Vault–specific login/password from Visual Studio using our Visual Studio account. In other words, we'll be using Microsoft's Single Sign-On (SSO). I'll come back to this in the next chapter of this book.

 If you've created an Azure Key Vault workspace, you have a Microsoft Azure account and, therefore, a Microsoft account. So click the top right-hand corner of Visual Studio to authenticate yourself with your Microsoft account, which must be the same as your Microsoft Azure account. Figure 9-4 shows my identity after authentication in Visual Studio.
 [image:]
 A screenshot of a Microsoft account window, exhibiting the account's email address and username, with access to account settings.

Figure 9-4
 Connection to a Microsoft account from Visual Studio

 Once authenticated, as shown previously, we can retrieve the key/value pairs of secrets stored in the Key Vault. Before configuring everything in the Program.cs file, Azure Key Vault requires the Tenant ID of the Microsoft Azure account associated with Azure Key Vault. We'll need to create an environment variable that the SDK of the package we downloaded earlier (Azure.Extensions.AspNetCore.Configuration.Secrets) will read and send to Azure Key Vault when it connects to it. To do this, go to the properties of your API project, click "Debug," and set up the AZURE_TENANT_ID variable as shown in Figure 9-5.
 [image:]
 A screenshot exhibits the Visual Studio settings window, with the Asp Netcore Minimal Apis project selected. The settings window is organized into several categories, including Application, Build, General, Debug, and Resources.

Figure 9-5
 Set up the AZURE_TENANT_ID environment variable

 Go to the appsettings.json file to remove the ConnectionStrings property you wish to protect, and then add the Vault URI you need to have on hand, as shown in Listing 9-1.

 "KeyVault": {

 "Uri": "{YourKeyvaultUri}"

 }

 Listing 9-1
 The Azure Key Vault configuration

 As you can see, I've named KeyVault my section containing the Uri property. You can configure your section as you like; I named it as such. This is not sensitive data, so it can remain in the appsettings.json file. On the other hand, if you're paranoid like me, you can right-click your API project and click "Manage User Secrets," which will generate a secrets.json file that will be stored only on your machine. When the API project runs, this configuration will be transparently merged with the configuration in the appsettings.json file. Figures 9-6 and 9-7 show the Visual Studio process I've just described.
 [image:]
 A screenshot of the Solution Explorer window in Visual Studio, with the Manage User Secrets option selected in the bottom right corner.

Figure 9-6
 Find the “Manage User Secrets” menu item

 [image:]
 A computer screen displaying a J S O N code snippet for a Key Vault secret. The code snippet includes the Uri field, but the actual Uri value is hidden.

Figure 9-7
 The secrets.json file

 Let's go to the Program.cs file and add this piece of code to retrieve our secrets:

 var builder = WebApplication.CreateBuilder(args);

 ...

 var keyVaultUri = builder.Configuration.GetValue<string>("KeyVault:Uri");

 builder.Configuration.AddAzureKeyVault(new Uri(keyVaultUri), new DefaultAzureCredential());

 var dbConnection1 = builder.Configuration.GetValue<string>("DemoDb1");

 var dbConnection2 = builder.Configuration.GetValue<string>("DemoDb2");

 ...

 var app = builder.Build();

 ...

 app.Run();

 It's straightforward to implement. The DefaultAzureCredential class used as a parameter for the AddAzureKeyVault method specifies that authentication to the Azure Key Vault service will be performed using the Microsoft account authenticated in Visual Studio. Of course, when your application is deployed in production, this will be slightly different. A login/password will be required, or your team's cloud architect or DevOps engineer will create a service account that will simulate the same behavior as Visual Studio when your application runs in the cloud. The sample code (lines 11 to 31) provided by Microsoft shows how this should be done: https://github.com/dotnet/AspNetCore.Docs/blob/main/aspnetcore/security/key-vault-configuration/samples/6.x/KeyVaultConfigurationSample/Program.cs.

 I won't go any further into the configuration of our production application, as this is not the subject of this book.

 To retrieve our secrets, access them using the builder.Configuration.GetValue<T>(“YourKey”) method, where T is the type of secret to be retrieved, in this case, a string, and YourKey is the exact name of your secret, in this case DemoDb1 and DemoDb2. If we execute our application, it should retrieve the desired secrets, as shown in Figure 9-8.
 [image:]
 A screenshot of a command line window with C hashtag code to add Azure Key Vault and Database Connection to a configuration builder.

Figure 9-8
 Retrieving secrets

 As you can see, it works well!

 Summary

 This chapter was short, but I hope it was full of learning! Remember that a security flaw threatening the integrity of your data can be hidden anywhere, and hackers will have a field day! Remember that this kind of data leak, caused by poor secret management practices, is at the root of many attacks, which is why this type of attack is listed in the OWASP Top 10. Suppose you don't want to use Microsoft Azure and are more into AWS. In that case, you can use the AWS Key Management Service, if you want: https://aws.amazon.com/fr/kms/. In the next chapter, we'll look at a final aspect of application security: authentication and authorization!

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_10

10. Secure Your Application with OpenID Connect

Anthony Giretti1
(1)La Salle, QC, Canada

 Security is essential in an application, by which I mean that almost all applications need a mechanism to identify the user attempting to perform actions on them. This is called authentication, which should not be confused with authorization, a mechanism allowing privileges to be given to an authenticated user, that is, allowing them to perform specific actions that other users will not achieve. In this chapter, you will learn	
 Introduction to OpenID Connect (OIDC)

	
 Configuring authentication and authorization in ASP.NET Core

	
 Passing a JSON Web Token (JWT) into requests and getting the user’s identity

 Introduction to OpenID Connect

 OpenID Connect (OIDC) is an identification standard that is positioned above OAuth 2.0, which is itself an authorization protocol. OpenID Connect works on the principle of delegating user authentication: with OpenID Connect, this responsibility is entrusted to a third-party service. The latter uses the protocol to ensure the user is authenticated, so the application protected by OpenID Connect does not know how the authentication is performed. So that’s it with the login forms in your code.

 To be completely independent of the application, this authentication system can be transverse and reused to develop a single authentication within an information system. This is the very definition of the Single Sign-On (SSO) principle. We end up with an interaction between three actors:	1.

 The client that is a web app, for example

	2.

 The identity provider

	3.

 The protected resource

 Figure 10-1 shows the relationship between the three actors.
 [image:]
 A block diagram denotes the cycle of interactions between the identity provider, protected resource, and web app. The interactions include authentication, service usage, and verification of the issuer's identity.

Figure 10-1
 The relationship between the three actors in OpenID Connect

 The client will authenticate with the service provider. The latter will issue a JSON Web Token (JWT) that will be used to access the protected resource. This resource will validate the token received by retrieving the metadata from the identity provider to certify that the latter is the issuer of the JWT. Metadata is retrieved only once, and then the application can validate the JWT autonomously. A JWT is a JSON accompanied by a signature and the reference to the key, which allows the signature to be verified. The whole is encoded in Base64, and dots separate the three parts. They are assembled as follows: the header, the content, and the signature. I will show you an example in the next section. RFC 7519 describes the JWT standard, which can be found at this address: https://datatracker.ietf.org/doc/html/rfc7519.

 This introduction is brief. The goal is not to teach you OpenID Connect in great detail but rather to understand the basic principle, the minimum, to allow you to use OpenID Connect to authenticate in ASP.NET Core. If you want to learn more about OpenID Connect, you can consult the official documentation for this protocol here: https://openid.net/connect/.

 To configure ASP.NET Core with OpenID Connect, we must have an identity provider to achieve our ends. You may not know it, but a lot of applications use OpenID Connect, and I think you already know of the most often-used identity providers:	
 Facebook

	
 Google

	
 Apple

	
 And less frequently, Microsoft

 Figure 10-2 shows the canva.com website offering to authenticate with different providers.
 [image:]
 A screenshot of the Canva webpage denotes the interface for logging into the account. There are options to log in using Google, Facebook, and Apple, along with manually inputting the email or mobile number and password.

Figure 10-2
 Canva.com uses Google, Facebook, and Apple as OpenID Connect providers

 In the code samples in this chapter, I’ll be using the Microsoft authentication platform based on Azure Active Directory. However, I will not go into details about its configuration. I will show you how to configure ASP.NET Core; the authentication part will be up to you. Azure Active Directory and OpenID Connect are big pieces. To avoid losing the line on the main subject, I invite you to learn more about the Microsoft Identity Platform here: https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-v2-protocols. If you want to get things done quickly, you can follow my tutorial on setting up OpenID Connect on Microsoft Azure here: https://anthonygiretti.com/2018/02/28/using-openidconnect-with-azure-ad- angular5-and-webapi-core-introduction/.

 Note

 Along with this chapter, I will assume you could obtain the emitted access_token, which is used as a bearer token.

 Configuring Authentication and Authorization in ASP.NET Core

 The configuration of an ASP.NET Core API is generic, regardless of the identity provider used to emit a token. For example, the following configuration applies to minimal APIs or other ASP.NET Core applications. To get started, install the required Nuget package: Microsoft.AspNetCore.Authentication.JwtBearer.

 Once done, go to the Program.cs file and configure and activate authentication and authorization.

 Configuration needs several lines of code:	
 The AddAuthentication extension method defines the authentication based on a JWT using the JwtBearerDefaults.AuthenticationScheme value. AddAuthentication defines the type of authentication, and it’s generic. JwtBearerDefaults.AuthenticationScheme is specific to JWT authentication.

	
 The AddJwtBearer extension method allows the setup of the Authority, that is, the authentication server address, and Audience, that is, the target application for which the JWT is emitted. Both of these values are given by the identity provider you have chosen. Then we will configure the parameters used to validate the JWT: ValidateLifetime and ValidateIssuer both set to True and Clockskew, which is used to manage the time gap between the JWT issuer and the application and will be set up to 5 min. In other words, the latter allows a 5-minute gap between the JWT expiry timestamp and the application, where the token lifetime is validated.

	
 The AddAuthorization extension method allows configuring authorization in ASP.NET Core by using the Authorize attribute.

 Activation is only about adding two middlewares in the pipeline:	
 The UseAuthentication extension method, which registers the Authentication middleware in the pipeline

	
 The UseAuthorization extension method, which activates the Authorization middleware in the pipeline

 Listing 10-1 shows the Program.cs properly configured. Authority and Audience are partially hidden. They are specific to my Azure Active Directory tenant on Microsoft Azure. Following their documentation, you can find the Authority and Audience configuration parameters in any OpenID Connect provider. Once again, if you want to try OpenID Connect with Microsoft Azure, you can follow the tutorial on my blog post I mentioned earlier in this chapter.

 var builder = WebApplication.CreateBuilder(args);

 ...

 builder.Services.AddAuthentication(options =>

 {

 options.DefaultAuthenticateScheme = JwtBearerDefaults.AuthenticationScheme;

 options.DefaultChallengeScheme = JwtBearerDefaults.AuthenticationScheme;

 }).AddJwtBearer(options =>

 {

 options.Authority = "https://login.microsoftonline.com/136544d9-xxxx-xxxx-xxxx-10accb370679/v2.0";

 options.Audience = "257b6c36-xxxx-xxxx-xxxx-6f2cd81cec43";

 options.TokenValidationParameters.ValidateLifetime = true;

 options.TokenValidationParameters.ValidateIssuer = true;

 options.TokenValidationParameters.ClockSkew = TimeSpan.FromMinutes(5);

 });

 builder.Services.AddAuthorization();

 ...

 var app = builder.Build();

 ...

 app.UseCors(); // Before Authentication and Auhtorization middlewares

 app.UseMiddleware<YourMiddleware>(); // Before Authentication and Authorization middlewares

 app.UseAuthentication();

 app.UseAuthorization();

 ...

 app.Run();

 Listing 10-1
 Configure and activate OpenID Connect authentication and authorization on ASP.NET Core

 Caution

 The UseCors middleware and other custom middlewares must be placed before the UseAuthentication and UseAuthorization middlewares, or else they won’t work correctly since UseCors must not depend on authentication, so authentication must apply after CORS handling.

 To apply authentication on your minimal endpoints, you’ll need to add the RequireAuthorization extension method on any minimal endpoint you want to protect by authentication, like the GET /authenticated endpoint as shown in Listing 10-2.

 app.MapGet("/authenticated", () =>

 {

 return Results.Ok("Authenticated !");

 }).RequireAuthorization();

 Listing 10-2
 The GET /authenticated endpoint

 This example is the simplest but allows you to do the necessary to get authenticated, but it doesn’t show authorization. Very often, applications require higher privileges for some users. Those users may have more responsibilities and may need to perform sensitive actions. The company will assign a particular (or several) role(s) that can be passed in a JWT when the latter is issued and handled by any ASP.NET Core application. Listing 10-3 shows how to configure a custom policy on the AddAuthorization method that ensures the authenticated user has the SurveyCreator role, and this role will be assigned to the GET /authorized endpoint that requires the SurveyCreator custom policy to get executed.

 ...

 builder.Services

 .AddAuthorization(options =>

 options.AddPolicy("SurveyCreator",

 policy => policy.RequireRole("SurveyCreator")

));

 ...

 var app = builder.Build();

 ...

 app.UseAuthentication();

 app.UseAuthorization();

 ...

 app.MapGet("/authorized", () =>

 {

 return Results.Ok("Authorized !");

 }).RequireAuthorization("SurveyCreator");

 ..

 app.Run();

 Listing 10-3
 The GET /authorized endpoint assigned with the SurveyCreator policy

 Suppose a user tries to invoke any endpoint configured with authentication or authorization without a valid JWT. ASP.NET Core will return the HTTP UnAuthenticated (401) error in that case. If the user is authenticated but doesn’t meet the authorization requirements, such as missing the proper role, ASP.NET Core will return the HTTP Forbidden (403) error.

 I have shown you how to secure your application with a JWT. You must follow your company’s business rules to apply the proper criteria to protect your application. Before finishing this section, I would like to show you what a JWT looks like with the SurveyCreator role assigned to user Anthony Giretti. First, please generate a token with your provider, and then go to the https://jwt.io website to observe the content of your JWT. Figure 10-3 shows the JWT of my decoded provider.
 [image:]
 A screenshot denotes an encoded token and its decoded form. The decoded details include a set of codes under the header and payload data. It highlights the email, family name, given name, roles, and the values of a u d, i s s, i a t, n b f, and e x p.

Figure 10-3
 A JWT decoded on the https://​jwt.​io website

 As you can see, we find the information relating to the provider and the expiration date of the JWT in the first framed block and information on the user for whom the JWT was issued in the second framed block, then followed by the role(s) that the user may have. So you will have understood that decoding your JWT will be used to debug your application if you have trouble with the expiration date of your JWT, if you are using the wrong Audience, or if you are not using roles correctly (or if you have poorly set up your JWTs with your identity provider).

 In the next section, I’ll show you how to use the token and pass it into the headers from Postman and Swagger.

 Passing a JWT into Requests and Getting the User’s Identity

 Passing a JWT to any web application always works the same way. It’s a matter of passing a header named Authorization in the headers with the value "bearer {YourJWT}".

 Note

 In general, steps to accomplish JWT authentication with OIDC are to set up an OIDC provider, have a UI application that fetches a JWT, and then send it to the back end, such as an ASP.NET Core API. The examples in this section show you how to debug back-end applications (ASP.NET Core), assuming you already have generated a JWT. You can also set up Identity Server, an open source OpenID Connect provider. You can learn how to set it if you don’t want to use Microsoft Azure or any other providers here: https://scientificprogrammer.net/2022/10/02/securing-your-signalr-applications-with-openid-connect-and-oauth/.

 If you remember, at the start of the book, I told you about Swagger, which lets you generate documentation for your API and expose it to your customers. Since Swagger is well designed, you can configure it to take a JWT and then pass it to the HTTP request. To do this, you need to configure the AddSwaggerGen method, as shown in Listing 10-4.

 builder.Services.AddSwaggerGen(c =>

 {

 c.AddSecurityDefinition("Bearer", new OpenApiSecurityScheme()

 {

 Name = "Authorization",

 Scheme = "Bearer",

 BearerFormat = "JWT",

 In = ParameterLocation.Header,

 Description = "JWT Authorization header required"

 });

 c.AddSecurityRequirement(new OpenApiSecurityRequirement {

 {

 new OpenApiSecurityScheme {

 Reference = new OpenApiReference {

 Type = ReferenceType.SecurityScheme,

 Id = "Bearer"

 }

 },

 new string[] {}

 }

 });

 });

 Listing 10-4
 The AddSwaggerGen method configured for accepting a JWT

 If we now execute the Swagger page, you should see an “Authorize” button at the top right of the page, as shown in Figure 10-4.
 [image:]
 A screenshot of a web browser denotes the U R L of Swagger in the address bar. The title reads A S P Net core 8 minimal a p i s. It highlights the Authorize button at the right.

Figure 10-4
 The Authorize button

 If you click, you’ll be asked to paste your JWT, taking care not to forget the bearer keyword in front of it, as shown in Figure 10-5.
 [image:]
 A screenshot represents the interface of available authorizations. It highlights the bearer a p i key value at the bottom. There are two buttons at the bottom labeled Authorize and Close.

Figure 10-5
 Filling the headers with the JWT bearer Authorization

 If you run the /GET authorized endpoint, assuming the JWT is valid and contains the SurveyCreator role, Swagger should return a successful response as shown in Figure 10-6.
 [image:]
 A screenshot of a web browser denotes a U R L in the address bar. The text at the top indicates authorized. At the bottom, it highlights the curl under responses and the server response code of 200 denoting authorized.

Figure 10-6
 The GET /authorized endpoint output in Swagger after passing a valid JWT

 Now, let’s try Postman. Be careful; Postman itself adds the bearer keyword, so you can only paste your JWT in the Auth section, as shown in Figure 10-7.
 [image:]
 A screenshot highlights the A u t h parameter at the top, bearer token, token value, response code of 200, and a text under the body tab that reads Authorized.

Figure 10-7
 The GET /authorized endpoint output in Postman after passing a valid JWT

 Into your minimal endpoint, inject the ClaimsPrincipal class, which is automatically registered in the dependency injection by ASP.NET Core, and you’ll get the user’s identity in the form of Claims, as shown in Figure 10-8.
 [image:]
 A screenshot represents a list of texts under the user claims object. It highlights the name, preferred username, and the U R L of the super admin.

Figure 10-8
 Accessing the user’s identity through the UserClaims object

 When a user is logged in, their identity is defined by Claims, which somehow defines their profile as a logged-in user; in other words, they are identity data issued by the identity provider. As you can see from the preceding figure, there is a whole range of claim types, such as the user’s name or roles. The claims contain all the information about the user, which is customizable on the identity provider side, and I won’t go into detail here. However, we will design a service that will expose user profile data more intelligibly. Let’s consider the UserProfile class, which implements the IUserProfile interface and contains two properties, Name and Roles (for a simple, easy-to-understand example), as shown in Listing 10-5.

 using System.Security.Claims;

 namespace AspNetCore8MinimalApis.Identity;

 public class UserProfile : IUserProfile

 {

 private readonly IHttpContextAccessor _context;

 public UserProfile(IHttpContextAccessor context)

 {

 _context = context;

 }

 public string Name => _context.HttpContext.User?.Claims.FirstOrDefault(x => x.Type == "name")?.Value;

 public IEnumerable<string> Roles => _context.HttpContext.User?.Claims.Where(x => x.Type == ClaimTypes.Role).Select(x => x.Value);

 }

 Listing 10-5
 The UserProfile class

 As you can see, I access Claims using LINQ. It is important to remember that the ClaimsPrincipal class is not available directly via dependency injection, as in a minimal endpoint when it’s a custom service. Don’t forget to register the IUserProfile service with its UserProfile implementation and the HttpContextAccessor service with its AddHttpContextAccessor extension method. Let’s run the same endpoint as earlier but with the IUserProfile interface injected, as shown in Figure 10-9.
 [image:]
 A screenshot represents a snippet of code and highlights a list of details under the user profile, which include the name and roles of the survey creator and super admin.

Figure 10-9
 Accessing the user’s identity through the IUserProfile interface

 Summary

 Voila! You know how to manage JWT authentication in your application. Remember that, as I write these lines, JWT authentication is the most widely used way to authenticate to an API, thanks to its reliability and the widespread adoption of OpenID Connect. Now you know how to do everything in a moderately complex API. There’s just one thing left: test your API. And I’ll give you the final chapter of this book.

© The Author(s), under exclusive license to APress Media, LLC, part of Springer Nature 2023
A. GirettiCoding Clean, Reliable, and Safe REST APIs with ASP.NET Core 8https://doi.org/10.1007/978-1-4842-9979-1_11

11. Testing APIs

Anthony Giretti1
(1)La Salle, QC, Canada

 Testing an application reveals errors related to its quality. Whether the test is functional, performance-related or aimed at verifying the user experience. It’s an essential part of software development. The test team (the whole team involved in developing the application, not just the developers) draws up a report on these aspects, enabling the developer to make any necessary corrections. In this chapter you will learn:	
 Introduction to testing

	
 Efficient unit testing

 Introduction to Testing

 It’s always best to test applications early (in the application development cycle) to find bugs and eliminate them before they can affect the end user. There are many different types of testing, and I will introduce them to you quickly:	1.

 Unit testing: It’s a type of software testing in which individual units or components are tested. The main aim of unit testing is to validate each unit of behavior in software and determine whether it works as expected.

	2.

 Integration testing: Integration testing aims to validate that all independently developed parts work well together. For example, verify if the code works correctly once connected to a database.

	3.

 End-to-end testing: End-to-end testing is a technique used to verify the correct operation of an application. It involves testing the entire system, from its interface to operating mode.

	4.

 Functional testing: Functional testing focuses on the process’s results rather than the process’s mechanics.

	5.

 Acceptance testing: Acceptance testing is often confused with functional testing. This type of testing aims to verify that the application meets the end user’s expectations.

	6.

 Performance testing: Performance testing is a non-functional software test used to evaluate an application’s performance in terms of stability and speed under heavy workloads.

	7.

 Smoke testing: Smoke testing, often confused with end-to-end and functional tests, tests critical application functions such as authentication.

 Unit tests and integration tests are the exclusive responsibility of the developer. In contrast, end-to-end tests can be designed by the developer, for a DevOps engineer who will automate tests, or by the quality assurance team using end-to-end testing tools. All other tests are performed by the quality assurance team or the client themself. I won’t be discussing end-to-end testing here, as I generally prefer to leave this responsibility to DevOps and/or QA engineers for a single reason: the complexity of testing. It’s a complex thing for a developer to set up because you have to set up all the dependencies on external resources on the one hand. Still, above all, you have to automate the whole thing, which is, speaking only of code, very demanding in terms of energy and time. I won’t go into integration tests either because if end-to-end tests are carried out by whomever, they are not, in my opinion, very relevant. In this chapter, we’ll focus on unit tests essential to any developer’s life.

 Note

 In this chapter, I am talking about unit testing, which is not Test-Driven Development (TDD), and it’s different: unit testing is the practice of performing automated tests on code, usually after it has been written. TDD is a set of practices whereby you write your unit tests before writing your code and continually perform tests while you keep coding.

 Efficient Unit Testing

 Unit tests enable developers to verify the operation of a unit. A unit of code, known as a System Under Test (SUT), generally a function, contains a particular logic that must be tested without regard to external dependencies. Unit tests are, therefore, performed in isolation from the rest of the application. This is one of the characteristics of good unit tests, among others:	
 Readable: They must be easy to understand by reading the code.

	
 Specific: We only test one behavior at a time, so we don’t include conditions in the unit test to cover all use cases.

	
 Fast: Tests must run quickly. This is generally the case when they are performed in total isolation from the rest of the application.

	
 Complete (or almost): It’s often said that you should test 100% of your code. In reality, it’s more involved than that. Not everything is easily testable. Aim for at least 60% code coverage. Take, for example, the Program.cs file, and check that the dependencies you’ve registered (repository, classes, middleware) are correctly registered. Well, it’s a long way to test for little benefit, but an end-to-end test can verify it, and you’ll quickly realize if your application crashes.

	
 Immediate: Do your tests right from the start of the project. Otherwise, you’ll never do them! (I say this from experience.)

 Using the Right Tools

 To code unit tests efficiently, we’ll need several tools and libraries. We’ll create a library project in Visual Studio; reference the projects we want to test, for example, our API layer; and add the following Nuget packages:	
 Microsoft.NET.Test.Sdk: This package is required to run unit tests in a .NET solution.

	
 xunit: This package allows you to use xUnit as the test framework. It proposes a great feature to run your tests.

	
 xunit.runner.visualstudio: This package allows Visual Studio to discover the tests in your solution. Visual Studio won’t find any tests made with xUnit without this package.

	
 NSubstitute: This package is a mocking library. I will return to this while showing you the unit test example.

	
 AutoFixture: This package allows you to generate fake data to populate quickly object properties.

	
 ExpectedObjects: This package allows you to compare objects by value and not by their reference. You’ll see it’s convenient.

 Your test project should look as shown in Figure 11-1.
 [image:]
 A screenshot of the solution explorer user interface. The packages and project folders have been highlighted.

Figure 11-1
 The unit test project structure

 Testing a SUT Step-by-Step

 Let’s choose the minimal endpoint GET /countries I’ve isolated in a static GetCountries function (within the CountryEndpoints class) as the example SUT, as I showed you in Chapter 5. If you recall, I did this to facilitate the testability of the minimal endpoint. Let’s test it. Here’s its implementation, as shown in Listing 11-1.

 using AspNetCore8MinimalApis.Mapping.Interfaces;

 using Domain.DTOs;

 using Domain.Services;

 namespace AspNetCore8MinimalApis.Endpoints;

 public static class CountryEndpoints

 {

 public static async Task<IResult> GetCountries(int? pageIndex, int? pageSize, ICountryMapper mapper, ICountryService countryService)

 {

 var paging = new PagingDto

 {

 PageIndex = pageIndex.HasValue ? pageIndex.Value : 1,

 PageSize = pageSize.HasValue ? pageSize.Value : 10

 };

 var countries = await countryService.GetAllAsync(paging);

 return Results.Ok(mapper.Map(countries));

 }

 }

 Listing 11-1
 The CountryEndpoints class

 Identify What to Test

 The first thing to do here is to identify what you want to test. The GetCountries function will be easy to test, as it has only four possible behaviors: the parameters pageIndex and pageIndex can each be null or not, and one of them can be null and the other not. That’s four behaviors, so four tests to run. (This is good practice in unit testing: there are as many tests as possible as there are behaviors.) As each test will be similar, I’ll show you how to test the GetCountries function when all query string parameters are null.

 Let’s have a look at what we’re going to test:	1.

 The function returns an IResult of type Ok, precisely with a list of CountryDto objects returned by the Map service method.

	2.

 We’ll also test whether the query string parameters pageIndex and pageSize are assigned 1 and 10, respectively, when null.

	3.

 We will test that the GetAllAsync service method takes the PagingDto object as a parameter with the correct values. This is necessary to check that the parameters are used correctly; even if the GetCountries function returns a list of countries, it may not be the correct result, as the wrong parameters have been passed.

	4.

 We’ll use the same reasoning with the Map function, checking that it takes the list of Country objects returned by the GetAllAsync service method as parameters.

 As you can see, we’re not just testing the output but the entire behavior of the function. This may sound cumbersome, but it’s very effective because we check that the parameters are correctly used. Unfortunately, many bugs occur because the parameters are being misused.

 Create the Test Class

 We will now create the test class with a convention that makes it easy to understand which SUT is being tested. I’m only going to test one SUT at a time in the same class, so I’m going to name my class GetCountriesTests to indicate that I’m only testing the GetCountries function without forgetting to place this test class in a folder whose name represents the tested class to which the GetCountries function belongs: CountriesTests. For clarity, I suffix folders and test class names with Tests. The skeleton of the GetCountriesTests test class should look as shown in Listing 11-2.

 using AspNetCore8MinimalApis.Endpoints;

 using AspNetCore8MinimalApis.Mapping.Interfaces;

 using AspNetCore8MinimalApis.Models;

 using AutoFixture;

 using Domain.DTOs;

 using Domain.Services;

 using ExpectedObjects;

 using Microsoft.AspNetCore.Http.HttpResults;

 using NSubstitute;

 using Xunit;

 namespace UnitTests.Countries;

 public class GetCountriesTests

 {

 public GetCountriesTests()

 {

 }

 [Fact]

 public async Task When_GetCountriesReceivesNullPagingParametersAndGetAllAsyncMethodReturnsCountries_ShouldFillUpDefaultPagingParametersAndReturnCountries()

 {

 // Arrange

 // Act

 // Assert

 }

 }

 Listing 11-2
 The GetCountriesTests class

 You’ll notice the xUnit Fact attribute, which allows the Microsoft Test SDK to detect that the function decorated with this attribute is a unit test and appears in the Visual Studio Test Explorer, as shown in Figure 11-2.
 [image:]
 A screenshot of the test explorer panel. The unit tests folder has been highlighted.

Figure 11-2
 The Visual Studio Test Explorer panel displaying discovered tests

 As for the test project, it should be arranged as shown in Figure 11-3.
 [image:]
 A screenshot of the solution explorer user interface. The unit tests directory has been highlighted.

Figure 11-3
 The UnitTests project structure

 You can also see that I’ve named the test method with the following pattern, When{condition}_Should{expectedBehavior}, which allows you to understand what the function does when you read it. Don’t be afraid of the length of the When_GetCountriesReceivesNullPagingParametersAndGetAllAsyncMethodReturnsCountries_ShouldFillUpDefaultPagingParametersAndReturnCountries method. By reading it, you’ll quickly understand what the test will do. Finally, I’ve commented out three sections of this function:	1.

 Arrange

	2.

 Act

	3.

 Assert

 These are the famous AAAs of unit testing. Arrange defines the variables needed to run your test. Act defines the SUT to be executed with the parameters defined in the Arrange section. Finally, Assert defines the checks that need to be made to validate your unit test. Remember: a unit test must be easy to read.

 Write the Test

 Listing 11-3 shows the final test implementation, as shown. I will also detail each step right after Listing 11-3.

 using AspNetCore8MinimalApis.Endpoints;

 using AspNetCore8MinimalApis.Mapping.Interfaces;

 using AspNetCore8MinimalApis.Models;

 using AutoFixture;

 using Domain.DTOs;

 using Domain.Services;

 using ExpectedObjects;

 using Microsoft.AspNetCore.Http.HttpResults;

 using NSubstitute;

 using Xunit;

 namespace UnitTests.Countries;

 public class GetCountriesTests

 {

 private readonly ICountryMapper _countryMapper;

 private readonly ICountryService _countryService;

 private readonly Fixture _fixture;

 public GetCountriesTests()

 {

 _countryMapper = Substitute.For<ICountryMapper>();

 _countryService = Substitute.For<ICountryService>();

 _fixture = new Fixture();

 }

 [Fact]

 public async Task WhenGetCountriesReceivesNullPagingParametersAndGetAllAsyncMethodReturnsCountries_ShouldFillUpDefaultPagingParametersAndReturnCountries()

 {

 // Arrange

 int? pageIndex = null;

 int? pageSize = null;

 var expectedPaging = new PagingDto

 {

 PageIndex = 1,

 PageSize = 10

 }.ToExpectedObject();

 var countries = _fixture.CreateMany<CountryDto>(2).ToList();

 var expectedCountries = countries.ToExpectedObject();

 var mappedCountries = _fixture.CreateMany<Country>(2).ToList();

 var expectedMappedCountries = mappedCountries.ToExpectedObject();

 _countryService.GetAllAsync(Arg.Any<PagingDto>()).Returns(x => countries);

 _countryMapper.Map(Arg.Any<List<CountryDto>>()).Returns(x => mappedCountries);

 // Act

 var result = (await CountryEndpoints.GetCountries(pageIndex, pageSize, _countryMapper, _countryService)) as Ok<List<Country>>;

 // Assert

 expectedMappedCountries.ShouldEqual(result.Value);

 await _countryService.Received(1).GetAllAsync(Arg.Is<PagingDto>(x => expectedPaging.Matches(x)));

 _countryMapper.Received(1).Map(Arg.Is<List<CountryDto>>(x => expectedCountries.Matches(x)));

 }

 }

 Listing 11-3
 The GetCountriesTests class final implementation

 Write the Constructor

 First, I instantiated a fake instance of each interface (ICountryMapper and ICountryService) in the constructor using NSubstitute, a mocking library. We must mock these interfaces to give them a fake instance to which we’ll define a precise behavior to see how our SUT reacts. This is the key to unit testing: mocking services, which must be abstracted to perform unit tests. We give a false implementation to an interface rather than using its concrete instance; for example, a unit test won’t connect to a database. I’ve also instantiated the Fixture class from the AutoFixture library, which allows you to create filled objects automatically, a handy way to save writing time (and readability).

 Note

 xUnit is the unit test runner here, and it’s an intelligent one. For each unit test executed, xUnit will instantiate the constructor each time, so there’s no risk of service and autofix instances being altered from one test to the next, as each test will have its instances.

 Write the Arrange Section

 I define my parameters here. pageIndex and pageSize are set to null. I will test the SUT’s behavior with these parameter values. Then I instantiate a PageDto class, initializing it with a pageIndex of 1 and a pageSize of 10. These values should be assigned when pageIndex and pageSize are null. I’m going to attach it to the ToExpectedObjects (which comes from the ExpectedObjects library) extension method that will allow us to test by value the PageDto object instance, as I want to verify further that the GetAllAsync service method will take the correct PageDto values as parameters.

 Using AutoFixture, I will create a list instance of Country and CountryDto objects, each with a length of two elements. Here, their value doesn’t matter; these instances will be defined as the return value of the GetAllAsync and Map service methods, which I’ll remind you are mocked, so I’m going to define a behavior that will tell them that whatever parameters they take (using Arg.Any<T>), they’ll return the object list defined by AutoFixture. Here, it’s not a question of testing the content of each object list or checking that the content is mapped by the service Map method but of checking that the Map service method takes the object list of type Country from the GetAllAsync service method as its parameter. As for the list of CountryDto objects returned by the service Map method, we’re going to check that the SUT returns this same list, and we need to test this by value and not by reference, which is, as you know, how objects are compared.

 Write the Act Section

 In this section, I executed the SUT and retrieved its result, passing all the necessary parameters, including mocked IMapper and ICountryService service instances. In the Assert section, we’ll test several elements.

 Write the Assert Section

 It’s the final moment! Let’s implement our checks.

 First, we want to check that the SUT output (result) corresponds to what the Map service method returns since we’re returning it as is. Before you do that, don’t forget that the output result is an IResult type, the Ok<ListCountryDto> type, to be exact, which is why I’m doing an implicit cast. If the latter fails, it won’t generate an exception, thanks to the as keyword.

 I then use ExpectedObject and its ShouldEqual method applied to the expectedMappedCountries instance and compare it with the Value property of the result output.

 There’s no need to test the type, as the type test is implicitly performed here: if the cast didn’t work, the output (result) would be null.

 Then, for each service method (GetAllAsync and Map), I check that the mocked service instance to which they belong is invoked once, using the Received extension method (from NSubstitute). Then I check that they receive the list of objects they’re supposed to receive as parameters, using the Arg. Is<T> static function. Each one takes, as parameters, a delegate invoking the Matches extension method on the respective expectedpaging and expectedCountries objects defined with ExpectedObjects. The Matches extension returns a Boolean indicating whether the values of the expected instances match. So thanks to ExpectedObjects!

 If we execute our test on Visual Studio, it should appear as passed, as shown in Figure 11-4.
 [image:]
 A screenshot of the test explorer panel. The unit tests directory has been highlighted.

Figure 11-4
 The Test Explorer output when unit tests passed

 Summary

 That’s it! You’ve now mastered the unit test technique. You need to understand here not how to use the tools I use to do my tests but the philosophy you must adopt to test your code correctly. What I’ve shown you here will make your code bulletproof; we’ve tested everything possible to test, and we’ve gone beyond testing the output of a SUT. I’m confident you can extrapolate this logic to any unit test you want to perform! This book is complete, and I’d like to thank you for following me to the end!

Index

A

 Acceptance testing

 Application development

 business

 clean architecture

 fundamentals

 logical/structured program

 problem-solving skills

 programming paradigms

 Application insights

 Application Performance Monitoring (APM)

 Application programming interface (API)

 ASP.NET Core 8

 documentation

 customizations

 deprecated option

 describing responses

 endpoints

 grouping endpoints

 Nuget packages

 OpenAPI specification

 Swagger documentation

 WithTag extension method

 XML comments

 encapsulation

 optimizations

 SeeOptimizations, APIs

 input validation

 testing

 versioning

 Build method

 configuration

 endpoint execution

 endpoints

 GET

 headers

 NewApiVersionSet method

 route method

 WithApiVersionSet method

 web interface

 Application secret management

 production databases

 resources

 sensitive data

 Tenant properties menu

 Application security

 ASP.NET Core 8

 action filters

 application types

 appsettings.json

 architecture

 authentication/authorization

 caching

 CORS handling

 CRUD

 SeeCreate, Retrieve, Update, Delete (CRUD)

 data access

 dependency injection

 development mode

 documentating APIs

 encapsulation

 API structure

 CountryEndpoints class

 CountryGroup static class

 minimal endpoint

 POST

 Program.cs file

 WebApplication class

 error handling

 SeeError management

 framwork

 fundamentals

 input validation

 API development

 FluentValidation classs

 methods

 Name/FlagUri properties

 NuGet package installation

 package manager console

 POST endpoint

 program class

 ValidationProblem method

 launchSettings.json file

 life cycles

 lifetime configuration

 middleware pipeline

 middlewares

 behavior

 categories

 GET/test endpoint

 LoggingMiddleware class

 types

 minimal APIs

 dependency injection attributes

 empty project

 features

 minimalistic project

 Swagger UI

 MVC controller

 object mapping

 API/domain layers

 CountryDto class

 CountryMapper class

 domain object

 ICountryMapper interface

 implementation

 POST

 respective responsibilities

 parameter binding

 Program.cs file

 rate limiting

 AddRateLimiter/UseRateLimiter methods

 categories

 concurrency

 DisableRateLimiting method

 features

 fixed window

 IPricingTierService service

 PricingTier enum

 RequireRateLimiting method

 ShortLimit policy

 sliding window

 token bucket

 routing

 constraints

 DateTime and Guid parameters

 GroupCountries method

 HTTP verbs

 MapMethods method

 primitive variables

 PUT and PATCH verbs

 RouteGroups

 writing routes

 scope hierarchy

 service configuration/activation

 singleton/scoped/transient services

 SmtpConfiguration object

 SmtpConfiguration options

 Web API

 architecture

 authentication type

 configuration

 endpoints

 HttpRepl installation

 launchUrl parameter

 Postman GUI tool

 Program.cs file

 project creation

 Swagger UI web page

 WeatherForecastController class

 WeatherForecast template app

 Asynchronous programming

 async and await keywords

 cancellation token

 CountryRepository class

 GetAllAsync method

 IMediaRepository interface

 MediaRepository class

 SQL exception

 Task<T> keyword

 ToListAsync() method

 Authentication/authorization

 activation

 configuration

 encoded/decoded providers

 GET endpoints

 Nuget package

 Program.cs file

 SurveyCreator policy

 Azure Key Vault

 appsettings.json file

 AZURE_TENANT_ID variable

 Manage User Secrets

 Microsoft account

 Nuget packages

 Program.cs file

 retrieving secrets

 secret creation

 secrets.json file

B

 Bind parameters

 SeeParameter binding

 Business logic layer (BLL)

C

 Caching technique

 distributed caching

 concept

 configuration

 DistributedCachedCountryService class

 implementation

 parameters

 providers

 in-memory

 CachedCountryService class

 CountryService class

 decorator pattern

 pattern configuration

 workflow process

 OutputCache

 authorization header

 GET endpoint

 Program.cs file

 workflow process

 types

 Certificate Authority (CA)

 Clean architecture

 application layers

 architectures

 business logic/application layer

 coding style fundamentals

 casing convention

 download directory

 DownloadService.cs file

 GetFileAsync function

 principles

 domain/presentation layer

 external data access

 fundamentals

 infrastructure layers

 interfaces and dependency injection

 layers

 OOP principles

 principle

 single responsibility

 third-party libraries and frameworks

 tools layer

 user interface

 Command-Line Interface (CLI)

 Create, Retrieve, Update, Delete (CRUD)

 content streaming

 CountryDto class

 CountryMapper class

 CountryPatchValidator class

 DELETE endpoint

 downloading files

 countries.csv file

 GetFile method

 ICountryService interface

 MIME type

 endpoint implementations

 GET endpoint

 HTTP statuses

 ICountryService interface

 PATCH method

 POST request

 PUT request

 service creation

 uploading file

 countries.csv file

 CountryFileUpload class

 CountryFileUploadValidator class

 executable file signature

 IFormFileCollection

 IFormFile content

 metadata

 POST

 several files

 single/many files

 validation process

 validations

 URL naming

 verbs manipulation

 Cross-Origin Resource Sharing (CORS)

 AllowAll policy

 AllowCredentials method

 configuration

 elements

 headers

 HTTP requests

 JavaScript script

 Mozilla documentation

 restricted configuration

 Cross-Site Request Forgery (CSRF)

 Cross-Site Scripting (XSS)

D

 Data access

 architecture

 data types

 EF core

 SeeEntity Framework Core (EF Core)

 HttpClient class/REST APIs

 HTTP requests

 infrastructure layers

 SQL queries

 transient errors

 Data Transfer Objects (DTOs)

 object mapping

E

 Efficient unit testing

 SeeUnit testing

 End-to-end testing

 Entity Framework Core (EF Core)

 C# database connection

 appsettings.json file

 configuration

 demo generation

 initial migration generation

 migration history table

 CountryEntity class

 CountryRepository class

 CountryService class

 data access

 DemoContext class

 elements

 enabling resilience

 documentation

 SQL connection errors

 transient errors

 global ASP.NET Core solution

 ICountryRepository interface

 Infrastructure.SQL layer

 NuGet package manager

 OnModelCreating

 Program.cs file

 projection

 Error management

 DefaultExceptionHandler class

 external resources

 GET /exception endpoint

 IExceptionHandler interface

 timeout endpoint output

 TimeOutExceptionHandler class

 Extensible Markup Language (XML)

F, G

 Functional testing

H

 HTTP Strict Transport Security (HSTS)

 HyperText Markup Language (HTML)

 Hypertext transfer protocol (HTTP)

 characteristics

 clients/servers

 CORS handling

 CRUD operations

 data access

 HttpClient class

 IHttpClientFactory interface

 IMediaRepository interface

 MediaRepository class

 Polly library

 Program.cs file

 RetryPolicy class

 transient errors

 form-data technique

 handling errors

 headers/parameters

 HTTP/2 and HTTP/3 versions

 HTTPS/TLS/HSTS

 implementation

 request/response headers

 status codes

 verbs

 input validation

 JSON format

 parameter binding

 parameters

 request headers

 authentication

 classes

 conditional headers

 content negotiation headers

 contextual data

 controls class

 proxy-authorization

 requests/responses

 response header

 authentication

 classes

 contextual data

 control data

 proxy authenticate

 validator header fields

 REST

 SeeRepresentational State Transfer (REST)

 routing request

 URI response

 URL protocols

 verb

 versions

 HyperText Transfer Protocol (HTTP)

I

 Information Technology (IT)

 Integration testing

 Internet Assigned Numbers Authority (IANA)

 Internet Engineering Task Force (IETF)

J

 JavaScript Object Notation (JSON)

 ASP.NET Core 8

 HTTP protocol

 JWT

 SeeJSON Web Token (JWT)

 media type

 transmitting items (streaming)

 JSON Web Token (JWT)

 AddSwaggerGen method

 authorize button

 GET endpoints

 headers

 IHttpAccessor interface

 OpenID Connect

 passing request

 Swagger page

 UserProfile class

 user’s identity

K

 Keep It Simple, Stupid (KISS)

L

 Language Integrated Query (LINQ)

M, N

 Metrics, Events, Logs, and Traces (MELT)

 Model-View-Controller (MVC)

 Multipurpose Internet Mail Extensions (MIME)

O

 Object-oriented programming (OOP)

 Object Relational Mapping (ORM)

 Observability

 application

 application insights

 behaviors

 HealthCheck implementation

 HTTP endpoints

 liveness

 readiness

 ReadyHealthCheck class

 types

 logging performances

 app.Logger object

 DefaultExceptionHandler class

 dependency injection

 error log details

 finding exceptions

 ILogger interface

 levels

 log details

 Nuget packages

 Programs.cs file

 sensitive information

 Serilog configuration

 string interpolation

 structured logging

 transaction search

 logs/events

 traces/metrics

 tracing/metrics operations

 appsettings.json

 data collection

 exceptions

 metrics overview

 Program.cs file

 telemetry data

 OpenID Connect (OIDC)

 authentication/authorization

 canva.com website

 identification

 identity providers

 interaction

 JWT standard

 relationship

 Open Worldwide Application Security Project (OWASP)

 application design

 cryptographic failures

 elements

 injection

 insecure data integrity

 logging and monitoring

 obsolete component

 principles

 protect access

 security configuration

 SSRF vulnerabilities

 weak authentication/authorization

 Optimizations, APIs

 asynchronous programming

 caching

 HTTP requests

 JSON streaming

 long-running background tasks

 BackgroundService class

 background task

 CountryFileIntegrationBackgroundService class

 CountryFileIntegrationChannel class

 ExecuteAsync method

 ICountryFileIntegrationChannel class

 ICountryFileIntegrationChannel interface

 IServiceProvider interface

 POST

 ShutdownTimeout

 SubmitAsync method

 paging query parameters

 OWASP Secure Headers Project (OSHP)

P, Q

 Parameter binding

 address class

 addressId parameter

 addressId property

 address object

 AntiForgery feature

 binding attributes

 complex types

 coordinates parameter

 CountryIds class

 data elements

 data manipulation

 data sources

 DisableAntiForgery method

 form parameter

 fundamentals

 GET requests

 headers

 ids parameter

 limitCountSearch parameter

 Postman request

 POST request

 PUT request

 QueryString parameters

 route parameters

 types

 Performance testing

R

 Representational State Transfer (REST)

 architectural style

 ASP.NET Core 8

 base URLs

 constraints

 data access

 documentation

 media type/content-type

 product data structure

 state transfer

 URL naming

 versioning

 Request From Comment (RFC)

 HTTPS protocol

S

 Secure Socket Layer (SSL)

 Separation of Concerns (SoC)

 Server-side request forgery (SSRF)

 Single Sign-On (SSO)

 Smoke testing

 SMTP configuration

 Streaming content

 Structured Query Language (SQL)

 data access

 EF Core

 System Under Test (SUT)

T

 Test-Driven Development (TDD)

 Testing

 types

 unit

 SeeUnit testing

 Transport Layer Security (TLS)

 HTTPS protocol

U, V

 Uniform Resource Characteristics (URC)

 Uniform Resource Identifier (URI)

 authority structure

 definition

 host information

 structure

 Uniform Resource Locator (URL)

 naming

 REST

 route parameters

 routing method

 Uniform Resource Names (URN)

 Unit testing

 characteristics

 project structure

 SUT step-by-step

 act section

 assert section

 constructor

 CountryEndpoints class

 creation

 GetCountries function

 GetCountriesTests class

 identification

 pageIndex and pageSize

 UnitTests project structure

 Visual Studio test explorer

 writing test option

 tools/libraries

W, X, Y, Z

 Windows Communication Foundation (WCF)

 World Wide Web (WWW)

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig44_HTML.jpg
GET https:/flocalhost:7157/; ® -+ eco No Environment v

iii> https://localhost:7157/streaming) save Vel =

GET v | https://localhost:7157/streaming

Params Authorization Headers (6) Body Pre-request Script Tests Settings

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

This request does not have a had)
Body Cookies Headers (5) Test Results @& 2000k B74s 23.28MB [3) Save as Example occo

EARTH

SEEN FROM 1SS EXPEDITIONS 28 & 29 | 201)

» 0:07/1:37 < & H

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig27_HTML.jpg
POST https:/flocalhost:7157 @+ oo No Environment v

[P AcoletCoreE e AR | hittpsifflocalhost:7157/countries Save v 4 -
POST v httpsi/flocalhost:7157/countries ’ -
Params Authorization Headers (11) Bodye Pre-request Script Tests Settings Cookies
@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON Beautify

11

2 “name"”: - "Canada”,

3 “description”: "Maple leaf countxy",

4 “flaguri®: "https://anthonygiretti.blob.core.windows.net/countryflags/ca.png"

5 % [

3

Body Cookies Headers (5) Test Resuits

Time: 3.98s Size:174B [T Save as Example eco

Key Value

Content-Length ® o

Date @© Fri, 21 Jul 2023 02:44:54 GMT
Server ® Kestrel

Alt-Sve @© h3="7157"; ma=86400

Location ® | https:/flocalhost:7157/countries/1 l

OEBPS/images/534830_1_En_BookFrontmatter_Figc_HTML.png

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig30_HTML.jpg
PUT https:/flocalhost:7157/ ® + oo No Environment v

i) NmalAPLs | https:/flocalhost:7157/countries > e
—_ =E
Params Authorization Headers (11) Bodye Pre-request Script Tests Settings Cookies
@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON - Beautify
1] 3
2
3 “Canada !*,
4 “"description”: "Maple leaf country!",
5 “flaguri®: "https://anthonygiretti.blob.core.windows.net/countxryflags/ca.png" |
6|3
Body Cookies Headers (3) TestResults & Stam% 204 No Con |Time: 70ms Size:112B [3) Save as Example oo
Pretty Raw Preview Visualize Text v = o Q

1

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig10_HTML.jpg
D:\Personal\Book\apis\ Sourc X R - D X

Now listening on: https://localhost:7157
info: Microsoft.Hosting.Lifetime[14]
Now listening on: http://localhost:5223
info: Microsoft.Hosting.Lifetime[0]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[©]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
Content root path: D:\Personal\Book\apis_Source code\Chapter 2\AspNetCore8MinimalApi
s\AspNetCore8MinimalApis
info: AspNetCore8MinimalApis[e]
Middleware 1 executed
info: AspNetCore8MinimalApis[@]
Middleware 2 executed
info: AspNetCore8MinimalApis[e]
Middleware 1 executed
info: AspNetCore8MinimalApis[e]
Middleware 2 executed
info: AspNetCore8MinimalApis[e]
Nested middleware executed
info: AspNetCore8MinimalApis[@]
End of the pipeline end

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig14_HTML.jpg
app.MapGet("/Addresses”, ([FromHeader] string coordinates, |[FromQuery] int? limitCountSearch) => { »

i return Results.Ok(); @ limitCountSearch 5 3
D;

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig59_HTML.jpg
[localhost7157/swagger/v2.0/sw: X

A o e 8 & -

a

"openapi”: "3.0.1",

“info™:
"title”: “ASP.NET Core 8 Minimal APIS",
"version": "2.0"

b
"paths™: {
"/version”: {
"get™: {
tags™: [
“AspNetCore8MinimalApis™

o
i

‘name”: “api-version”,
“in": “header",
“required”: true,
“style": “simple”,
“schema”: {

, -type": “string”

3

sponses”: {
"200": {
“description™: “Success”,
“content":
"text/plain”: {
“schema”: {
"type": “"string"

+ A BO=bBP e LD

i

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig9_HTML.jpg
il H# X

SIWebAPIDemo) 1% -l %
il pising Microsoft.AspNetCore.Mvc;
2
3 Elnamespace WebAPIDemo.Controllers
4 {
5 [ApiController]
13 [Route("[controller]")]
3 references
o T public class WeatherForecastController : ControllerBase
8 {
9 ! private static readonly string[] Summaries = new[]
10 i
11 H "Freezing", "Bracing", "Chilly", "Cool", "Mild", "Warm", "Balmy", "Hot", "Sweltering", "Scorching"
12 N
13 i
14 | private donly IL F Controller> _logger;
15
: | Oreferences
16 =ff public WeatherForecastController(ILogger<WeatherForecastController> logger)
17 0
18 {1 | logger = logger;
19 : i
% [
21 i1 [HttpGet]
: ! Oreferences
22 public IEnumerable<WeatherForecast> Get()
23 {
24 return Enumerable.Range(l, 5).Select(index => new WeatherForecast
25 P
26 !\ Date = DateTime.Now.AddDays(index),
27 ! ! TemperatureC = Random.Shared.Next(-20, 55),
28 ! : ! Summary = Summaries[Random.Shared.Next(Summaries.Length)]
29 A)
30 L1 ToArrayQ);
31 bk
32 }
33 }

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig10_HTML.jpg
Program.cs # X

&]WebAPIDemo

1Q |using _ OpenApi.HModels;
2

3 var builder = WebApplication.CreateBuilder(args);
4

5 // Add services to the container.

6

v builder.Services.AddControllers();

8 Ebuilder.Services.AddSwaggerGen(c =>

] {

10 ! c.SwaggerDoc("v1l", new() { Title = "WebAPIDemo", Version = "v1" });
11 D;

12

13 var app = builder.Build();

14

15 // Configure the HTTP request pipeline.

16 Bif (app.Environment.IsDevelopment())

17 {

18 | app.UseSwagger();

19 ‘| app. I(c => c.Si Ei int("/ /v1/ .json", "WebAPIDemo v1"));
20

21

22 app.UseHttpsRedirection();

23

24 app.UseAuthorization();

25

26 app.MapControllers();

27

28 app.Run();

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig31_HTML.jpg
Progmm.cs & X ~

&7 AspNetCore8MinimalApis - - =
128 Blapp.MapGet("/countries/download", (ICountryService countryService) => {
129 :
130 i | (byte[] fileContent, string mimeType, string fileName) = countryService.GetFile(); |
131 H
132 if (fileContent is null || mimeType is null)
133 return Results.NotFound();
134 !
® 135 i return Results.File(fileContent, mimeType, fileName) ; EESSTNERIERERG]
136 B;
125% - & @ Noissuesfound | ¥~ < b Im138 Ch:1 SPC (R
Locals & X
Search p- Search Depth: 3~ 'Q.
Neme Value Type
> |
» © fileContent QView ~ bytel]
© mimeType QView ~ string
© fileName QUView ~ string

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig61_HTML.jpg
Swagger

SMARTBEAR

ASE.NET Core 8 Minimal APls @&

AspNetCore8MinimalApis
N

POST /countries

Schemas

Country v {
id integer($int32)

The country Id

name string
nutlable: true

The country name|

description string
nullable: true

The country description

flagUri string

puligh
The country flag URL

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig45_HTML.jpg
“builder.Services. AddCors(- =>

options.AddPolicy("AllowAll",
builder =>

builder.AllowAnyHeader()
.AllowAnyMethod()
.AllowAnyOrigin()

.AllowCredentials();

Exception User-Unhandled | 2" |

System.InvalidOperationException: 'The CORS protocol does not
allow specifying a wildcard (any) origin and credentials at the same
time. Configure the CORS policy by listing individual origins if
credentials needs to be supported.'

OEBPS/css/sidebar.gif

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig26_HTML.jpg
BLL

Services

Dependency for Dependency Injection purpose only: .)
implementation

Dependency

Input parameters
DTOs / Domain objects

Mapping interface ependency:

N . Services interfaces
Mapping implementation

API layer Domain layer

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig11_HTML.jpg
[D:\Personal\Book\apis\ Sourc X ar | [m] X

info: Microsoft.Hosting.Lifetime[14]
Now listening on: https://localhost:7157
info: Microsoft.Hosting.Lifetime[14]
Now listening on: http://localhost:5223
info: Microsoft.Hosting.Lifetime[©]
i Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
Content root path: D:\Personal\Book\apis_Source code\Chapter 2\AspNetCore8MinimalApi
s\AspNetCore8MinimalApis
~info: AspNetCore8MinimalApis[@]
Middleware 1 executed
info: AspNetCore8MinimalApis[e]
Middleware 2 executed
_info: AspNetCore8MinimalApis[e]
| Middleware 1 executed
info: AspNetCore8MinimalApis[e]
Middleware 2 executed
info: AspNetCore8MinimalApis[e]
Nested middleware executed
info: AspNetCore8MinimalApis[6]
Endpoint GET /test has been invoked

OEBPS/navigation.xhtml

 Contents

 		Cover

 		Front Matter

 		1. Introducing HTTP and REST

 		2. Introducing ASP.NET Core 8

 		3. Introduction to Application Development Best Practices

 		4. Basics of Clean REST APIs

 		5. Going Further with Clean REST APIs

 		6. Accessing Data Safely and Efficiently

 		7. Optimizing APIs

 		8. Introduction to Observability

 		9. Managing Application Secrets

 		10. Secure Your Application with OpenID Connect

 		11. Testing APIs

 		Back Matter

 Landmarks

 		Cover

 		Table of Contents

 		Body Matter

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig12_HTML.jpg
PUT https:/flocalhost:7157/ ® + oo

iiii? https://localhost:7157/addresses/1

No Environment

[save

v

| PUT ™ https://localhost:7157/addresses/1 |

Params Authorization Headers (8) @ Pre-request Script Tests Settings

@ none © x-www-form-urlencoded @ raw @ binary @ GraphQL

LC
StreetNumber
StreetName
StreetType
City

Country

(O <IN B < I < <]

PostalCode

Value

1600

Pennsylvania

Avenue

Washington

United States of America

20500

Body Cookies Headers (3) Test Results

Pretty Raw Preview Visualize

1

Text v

Description

& Status: 204 No Content Time: 3m6.66s Size: 112B

<

&

a <>
Cookies

+++ Bulk Edit
© Q

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig15_HTML.jpg
«@id QView ¥ {int[2]} 0

Tem 1]
om 2

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig11_HTML.jpg
WebAPIDemo

WeatherForecast i
/vieatherForecast
P

Cancel

No parameters

Clear

Responses

Cunt

200 Response body

OEBPS/images/978-1-4842-9979-1_CoverFigure.jpg
Develop Robust Minimal APls
with .NET 8

e

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig9_HTML.jpg
app.MapGet("/authorized”, (IUserProfile userProfile) =>
{ ‘e

return Results.Ok("Authorized !");

}).RequireAuthorization("SurveyCreator

app.Run();

Roles -1 QView ~ {5

QView ~ AnthonyGiRETﬂ"

Current null
€ Non-Public members

View will

&) Results View
200 Qiew - “SurveyCreator®
@[] QView v "SuperAdmin”

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig28_HTML.jpg
GET https://localhost:7157/ ® + e No Environment v

QimalAPis | https:/fiocalhost:7157/countries v Ve =
GET v https://localhost:7157/countries/1 ‘ -
LELEE Authorization Headers (9) Body Pre-request Script Tests Settings Cookies

@ none @ form-data @ x-www-form-uriencoded @ raw @ binary @ GraphQL

Body Cookies Headers (5) TestResuits (€ | Status: 200 OK | Time: 42ms Size: 315B [X) Save as Example oco

Pretty Raw Preview Visualize JSON v o Q
1 |
2 Sids=ia
3 “name’ "Canada",

4 “"description”: "Maple Leaf country”,
5 “flagUri®: "https://anthonygiretti.blob.core.windows.net/countryflags/ca.png” I
6 |8

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig60_HTML.jpg
Swagger

SMART

ASP.NET Core 8 Minimal APIs ® &

AspNetCore8MinimalApis ~

Name Description
api-version
string api-version

(header)

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig8_HTML.jpg
Solution Bxplorer. ::::iissiiisssnissssiiidasn s s v X

Ndlo-008|[uW L=

Search Solution Explorer (Ctrl+$) P~
[Solution 'WebAPIDemo' (1 of 1 project)

VYV VvwVYw

@ Connected Services
&8 Dependencies

&1 Properties

B3 Controllers

[() appsettings.json
C# Program.cs

C# WeatherForecast.cs

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig2_HTML.jpg
ASP.NET Core application

Publish message in
API| Sytem.Threading.Channels
Program.cs
appsettings.json
Code base Background Read message from
Task Sytem.Threading.Channels

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig39_HTML.jpg
Japp . MapPost("/countries/upl

return Results.Created();

_}) .DisableAntiforgery();

d

y", [IFormFileCollection files) |=>

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig8_HTML.jpg
info:

info:

info:

info:

info:

D:\Personal\Book\apis\ Sourc X IF = (m] X

Microsoft.Hosting.Lifetime[14]

Now listening on: https://localhost:7157

Microsoft.Hosting.Lifetime[14]

Now listening on: http://localhost:5223

Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.

Microsoft.Hosting.Lifetime[0]

Hosting environment: Development

Microsoft.Hosting.Lifetime[0]

Content root path: D:\Personal\Book\apis_Source code\Chapter 2\AspNetCore8MinimalApi

s\AspNetCore8MinimalApis

info,

infof:

= _AspNetCorefMinimalApis[al

New middleware pipeline branch has been initiated
AspNetCore8MinimalApis[0]

New middleware pipeline will end here

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig58_HTML.jpg
Swagger

ASP.NET Core 8 Minimal APls @<

AspNetCore8MinimalApis
/version

/version2only
/versionneutral

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig63_HTML.jpg
Swagger

SMARTBEAR

ASP.NET Core 8 Minimal APIs ® &=

%

ﬁ /vl/version
m /v2/version v
K=E

GET /v2/version2only

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig8_HTML.jpg
POST https:/flocalhost:7157 ® + oo

iii® https://localhost:7157/addresses

o

No Environment v

(& save - e <>

POST v https://i 7157/

-

Params Auth Headers (8) Pre-req.

raw v JSON v

Tests Settings

“StreetNumber™ : 1600 ,
"StreetName" "Pennsylvania”,
“StreetType" "Avenue”,
"City" - : "Washington",

“PostalCode” : 20500

"Country” : "United State of America",

»—\3 W N oo s WN R
<

€ 201Created 1m16.80s 128B [&) Save as Ex

Raw Preview Visualize Text v =

Cookies

Beautify

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig10_HTML.jpg
= Microsoft Azure

Home >

® DemoAPI 2 x

Application Insights

Search « etting started earch s % Monitor resource group. eedback avorites name fete
5 * & G s i &9 Fe Favorites > Rer Del
 Essentials
Resource group (move) : DemosWin Instrumentation Key :
B Activity log group o
* e Location : WestUS Connection String ¢ InstiumentationKey==5-~_ -
o Subscription (move) : Microsoft Azure Sponsorship Workspace + DefaultWorkspace-65i:
ags
Subscription ID + 6002270b-16f-409c-b03c-2¢3059a4b578
X Diagnose and solve problems
Tags (edif) : Add tags

Investigate
Show data for last:

Application ma
B, 3 @D ' o Grow dy e Tdws Soam)

@ Smart detection

Kb | e e "

® Transaction search

® Avilabilty S
08 2
s Failures 06 e 15
® Performance B S00ms. 10 =
- :
B Troubleshooting guides 5 = . o
(preview) 255PM 3PM 305 PM310PM UTC-0400 255PM 3PM 305 PM310PM UTC04:00 255PM 3PM 305PM3:10PM. UTC.04:00
———on s ————
S 2 8628 39

- Alerts

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig2_HTML.jpg
= Microsoft Azure _

Home >

Properties
Azure Active Directory

Save X Discard | 27 Got feedback?

Tenant properties

Name *
| Répertoire par défaut YV

Country or region
Canada

Location
United States datacenters

Notification language

I frangais v J
Tenant ID
[136544d9- B]

Technical contact

| anthony.giretti@gmail.com v |

Global privacy contact

I v

Privacy statement URL

l v]

Access management for Azure resources

Anthony GIRETTI (anthony.giretti@gmail.com) can manage access to all Azure subscriptions and
groups in this tenant. Learn more

- -)

Manage security defaults

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig2_HTML.jpg
Microsoft Azure

Home > DemoAPI

0 Search resources, services, and docs (G+/)

DemoAPI | Transaction search 2

Application Insights

¥ Overview

B Activity log

2 Access control (IAM)

@ Tags

X Diagnose and solve problems.
Investigate

== Application map

@ Smart detection

A Live metrics

@ Transaction search

® Availability
ia Failures
® Performance

M Troubleshooting guides
(preview)

Monitoring
W Alerts

& Metrics

B Diagnostic settings
#® Logs

B Workbooks

Usage

Search «

@) Refresh) Reset o Viewinlogs [Copylink 27 Feedback (/' Help

Local Time: Last 24 hours (Automatic) | | Event types = All selected | |

187 total resuits between 8/23/2023, 4:10:02 PM and 8/24/2023, 4:10:02 PM Meesure
)
o
“
»
o
os00PM 00 haze o30AM 0600 M 0200
Ey

©) =X o o EETY =T
65 64 58 0 0 0

0

Results Grouped results (4)

1 8/24/2023, 4:06:54 PM - TRAC

Request finished HTTP/1.1 GET https://localhost:7157/countries - 200 null application/json; charset=utf-8 19.5823ms
Severity level: Information

1 8/24/2023, 4:06:54 PM - TRACE

Executed endpoint 'HTTP: GET /countries®
Severity level: Information

1 8/24/2023, 4:06:54 PM - TRACE

Writing value of type 'List’1’ as Json
Severity level: Information

1 8/24/2023, 4:06:54 PM - TRACE

Setting HTTP status code 200.

Severity level: Information

8/24/2023, 4:06:54 PM - TRACE

Received 2 countries from the query

OEBPS/images/534830_1_En_6_Chapter/534830_1_En_6_Fig2_HTML.jpg
Solution Explorer

6.8 o-s0@ W £=2

Search Solution Explorer (Ctrl+$)

| 3 Solution ‘AspNetCore8MinimalApis' (4 of 4 projects)

b &7 AspNetCore8MinimalApis
b [BLL
b [Domain

4 Infrastructure.SQL
4 &8 Dependencies
b @ Analyzers
b & Frameworks
4 '@ Packages
b '@ Microsoft.EntityFrameworkCore.SqlServer

OEBPS/images/534830_1_En_1_Chapter/534830_1_En_1_Fig1_HTML.jpg
Client

Browser or another
application

1

[Verb + URI + Parameters + Headers

Server

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig8_HTML.jpg
Server
In-memory
Browser - Server »| Cache server SQL Server

Redis Cache
NCache

_

Server

\

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig3_HTML.jpg
»

B create work item v

TRACE
Information
Trace Properties Show all
Event time 8/24/2023, 4:06:54.4343726 PM (Local time)
Device type PC
Message Received 2 countries from the query
Severity level Information
Custom Properties
pageSize 10
Connectionid OHMT4RMALKF2D
pagelndex 1
MessageTemplate Received {count} countries from the query
Requestid OHMT4RMALKF2D:00000006
SourceContext AspNetCore8MinimalApis
Application DemoAPI
Scope l;::lﬁngoountrieswiﬂwageindexlandpagesize
RequestPath /countries

OEBPS/images/534830_1_En_3_Chapter/534830_1_En_3_Fig1_HTML.jpg
Domain layer

Infrastructure 1

Infrastructure n

Business logic

layer layer layer
A A A
ASP.NET Core
layer

A depends on B

LayerA ——» LayerB

Tools layer

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig33_HTML.jpg

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig13_HTML.jpg
& D:\Personal\Book\apis\ Sourc X + v

info:

info:

info:

: AspNetCore8MinimalApis[e]

Now listening on: https://localhost:7157

Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.

Microsoft.Hosting.Lifetime[0]

Hosting environment: Development

Microsoft.Hosting.Lifetime[0]

Content root path: D:\Personal\Book\apis_Source code\Chapter 2\AspNetCore8MinimalApi

NetCore8MinimalApis
: AspNetCore8MinimalApis[e]

GET /longrunning endpoint getting executed

GET /longrunning endpoint took 5.0806526 to execute

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig56_HTML.jpg
GET https://localhost:7157/ ® -+ eeo No Environment v

iiii® https://localhost:7157/v2/version2only [save - Z =
ST - : - 2 : lIIIIIIIIII
Params Authorization Headers (7) Body Pre-request Script Tests Settings Cookies
ney D vaiue vescripuon *** DUIR CUIL FIESEL ¥
Postman-Token @ <calculated when request is sent>
Host @ <calculated when request is sent>
User-Agent @ PostmanRuntime/7.32.3
Accept @ *r
Accept-Encoding @ gzip, deflate, br
Connection @© keep-alive
Body Cookies Headers (5) Test Results 19ms 1938 [5) as EX
Pretty Raw Preview Visualize Tet v o O Q

1 |Hello version 2 only

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig6_HTML.jpg
Configure your new project

ASP.NET Core Web APl ¢ Linux mac0S Windows Cloud Service Web

Project name

WebAPIDemo|

Location

Ci\Users\antho\source\repos. -
Solution name @

WebAPIDemo

] e somition anc e =

OEBPS/images/534830_1_En_6_Chapter/534830_1_En_6_Fig3_HTML.jpg
0Q File Edit View Git Project
-0 g-sBAE

Package Manager Console & X
Package source: Nuget
PM> add-migration initial
Build started...

Build succeeded.
o thi

Build Debug Architecture Test Analyze Tools Extensions Window Help Search P Asp...Apis AG
Debug ~ AnyCPU s Phtps-D D~ B R

= o

18 Live Share

Solution Explorer

a8 o--06 V=S
Search Solution Explorer (Ctrl+S)

B Solution ‘AspNetCore&MinimalApis' (4 of 4 projects)
b &7 AspNetCore8MinimalApis

~ & Default project: Infrastructure.SQL -

tigration.

b [Database
4 B Migrations
b C# 2023081403647 Initial.cs
b C# DemoContextModelSnapshot.cs

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig11_HTML.jpg
app.MapPut("/Addresses/{addressId}", (Address address) => {
; " @t o eses)
}) .DisableAntiforgery(); %.

fiew ~
& Country QUView ~ "United State of America” |
¥ PostalCode 20500

A StreetName QView ~ "Pennsylvania”

& StreetNumber

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig19_HTML.jpg
Swagger Ul el -+

C @ O htps//localhost

Swagger

MinimalApiDemo v
Parameters
Name Description

name = e
name

string

(path)

Responses

Code Description Links

200 No links
Success

Media type

text/plain

Controls Accept header.

Example Value | Schema

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig7_HTML.jpg
B D:\Personal\Book\apis\ Sourc X 4+ v - (u] ¢

info: Microsoft.Hosting.Lifetime[14]

Now listening on: https://localhost:7157
info: Microsoft.Hosting.Lifetime[14]

Now listening on: http://localhost:5223
info: Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]

Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]

Content root path: D:\Personal\Book\apis_Source code\Chapter 2\AspNetCore8MinimalApi
s\AspNetCore8MinimalApis

infog i
Endpoint GET /test has been invoked

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig2_HTML.jpg
O @ Colaborate & cresteamazing s X+

= c a o www.canva.com .

‘ Home Design Templates Features Learn Plans

Log in to your account

Log in with Google
Log in with Facebook

Log in with Apple "

[A oy

0 Email/Mobile

PrivacyPolicy @ English (United Kingdom) v

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig4_HTML.jpg
Help Search
=

% Solution Explo
AR
Search Solutio

53 Solution

4 &1 Asph
b @ C
> #5D

£

Bl

P AspN.lApis A

= Microsoft account

Account settings

Sign out
anthony.giretti
anthony.giretti@gmail.com
~ Syncis active

Clear filter

= O X
|& Live Share &)

vqx

P~

-

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig7_HTML.jpg
ﬁ In-memory
Browser 1 Proxy > Server

In-memory
Browser Server

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig34_HTML.jpg
GET https://localhost:7157/ ® -+ eo0

No Environment

fiE AsoleiCorealinimaliPls | httpsiffiocalhost:7157/countries () save - 7 =
o e .
Params Authorization Headers (9) Body Pre-request Script Tests Settings Cookies

@ none © form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

Body Cookies Headers (6) Test Resuits € |status: 200 OK | Time: 6 m54.72's Size: 5558

[2) Save as Example

Key Value

Content-Length ® |37

Content-Type ® | text/csv

Date @© | Sat, 22 Jul 2023 20:33:46 GMT

Server @ | Kestrel

Alt-Sve @® | h3="7157"; ma=86400

Content-Disposition (0] fi .csv; filename*=UTF-8"countries.csv

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig8_HTML.jpg
Japp.MapGet("/authorized”, (ClaimsPrincipal user) =>
4 @user IsAuthenticated = true, Claims = 22 -
return Results 4+ Claims QUView ~ Count =22

6452-499-9922.

1) .RequireAuthori {groups:
(gmllp: 2c372d98-13b6-40cd-b5b2-1 1'9"!2¢(5162)
eppiRan(); “mmlmm OOV i 6c67-4¢5b-b112.
{nonce: fssamzmdm-m»sxm»m)
iectidentifier: f9175bc8-bTec-4d9f-9b53-
preferred_usemame anthony.giretti@gmilcom}
xCsyz axkvp 7ENVAGK.}
oft, /i SurvevCreator}
I icrosoft
misoap. nameidentitir: 43/
icrosoft. ity/clai id: 136544d9-038e-4646-afff-10accb370679}
{ut: jvSDyO9XAUGUIRDDKSMAA}

OEBPS/images/534830_1_En_BookFrontmatter_Figb_HTML.jpg

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig50_HTML.jpg
GET https://localhost:7157/ ® -+ oo

iiii® https://localhost:7157/version2only

No Environment

[Save

GET v 7157/

Params Authorization Headers (7)

Body Pre-request Script Tests Settings

Postman-Token @® <calculated when request is sent>
Host @ <calculated when request is sent>
User-Agent @ PostmanRuntime/7.32.3

Accept @ **

Accept-Encoding @ gzip, deflate, br

Connection @ keep-alive
| api-version 10

Body Cookies Headers (5) TestResults

Pretty Raw Preview Visualize

1

& |400 Bad Request [2ms 166 B

Text v =

v

Cookies

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig13_HTML.jpg
-} Developer PowerShell - [J) 5] &

C:\Users\AGiretti\source\repos\WebAPII httprepl

Welcome to HttpRepl 5.0!

The .NET tools collect usage data in order to help us improve your experience. The data is collected by Microsoft and shared with the community.
You can opt-out of telemetry by setting the DOTNET_HTTPREPL_TELEMETRY_OPTOUT environment variable to '1' or 'true’ using your favorite shell.

Read more about HttpRepl telemetry: https://aka.ms/httprepl-telemetry
Read more about .NET CLI Tools telemetry: https://aka.ms/dotnet-cli-telemetry

Usage:
httprepl [<BASE_ADDRESS>] [options]

Arguments:
<BASE_ADDRESS> - The initial base address for the REPL.

Options:
-h|--help - Show help information.

Once the REPL starts, these commands are valid:

Setup Commands:
Use these commands to configure the tool for your API server

connect Configures the directory structure and base address of the api server
set header Sets or clears a header for all requests. e.g. “set header content-type application/json”

HTTP Commands :
Use these commands to execute requests against your application

GET get - Issues a GET request

POST post - Issues a POST request

PUT put - Issues a PUT request

DELETE delete - Issues a DELETE request
PATCH patch - Issues a PATCH request
HEAD head - Issues a HEAD request
OPTIONS options - Issues a OPTIONS request

Navigation Commands:
The REPL allows you to navigate your URL space and focus on specific APIs that you are working on

1s Show all endpoints for the current path
cd Append the given directory to the currently selected path, or move up a path when using “cd ..

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig6_HTML.jpg
GET https:/flocalhost:7157/ ® -+

o000

No Environment v
o v 7 |8
GET v I https://localhost:7157/provinces/QC
Params Authorization Headers (6) Body Pre-request Script

Tests Settings

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

Body Cookies Headers (4) Test Results

@ | Status: 404 Not Found | Time: 21ms Size: 1308 [3) Save as
Pretty Raw Preview Visualize

Text v

4l

1

B Q

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig3_HTML.jpg
GET https:/flocalhost:7157/ ® -+ eee

m

GET 2 715

Params Authorization Headers (6) Body Pre-request Script Tests Settings

Body Cookies Headers (5) Test Results Staty 00 Bad Request | Time: 28 ms Size: 649B [ry] Save as Example sso

Pretty LE Preview Visualize Text v = © Q

i £t.A Http. ion: Failed to bind parameter "int countryId” from "hello®.

at lambda_method1(Closure, Object, HttpContext)
at Mi £t.AspNett i ics.Devel i iddl .Invoke(HttpContext context)

Accept: */x
Connection: keep-alive
Host: localhost:7157
10 User-Agent: PostmanRuntime/7.32.3
11 Accept-Encoding: gzip, deflate, br
12 Postman-Token: 7995ffb4-699a-4cBOb-acd2-2580acaaf7aa

1
2
3
4
5 HEADERS
6
7/
8
9

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig65_HTML.jpg
Swagger

ASP.NET Core 8 Minimal APIs @&

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig11_HTML.jpg
= Microsoft Azure P Search resources, services, and docs (G+/)
Home > DemoAPI

DemoAPI | Live metrics » %

Application Insights

« NPuse Dioe dlemmoe P Viewiniogs 7D fesdhoct

¥ Overview Last 60 seconds (Live) 1servers online
Activity lo Incoming Requi
L] ty log Incoming Requests A
uest Rate Request Duration uest Failure Rate *
“9. Access control (IAM) o 2 Y. e:m Re‘q_% v
@ Tags o e . 1%
X Diagnose and solve problems o Thae ——n s
Investigate os oms os
60s. 405 20s o 60s 405 20s 0 60s 405 20s o
== Application map
Outgoing Requests A
& Smart detection iy
Dependency Call Rate Dependency Call Failure Rate v

* e *

® Transaction search

osms 5 osis
® Availability e
V& Failures o= o= o
e 05 2 o o s e 0 s s 205 o
& Performance
Overall Health A
I Troubleshooting gides Committed Memory *y cpuTotal (%) Exception Rate v
(preview)
G 10000% s
Monitoring
W Alerts
@f Metrics

B Diagnostic settings

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig4_HTML.jpg
M R N [V B W N N

Page size: 5

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig1_HTML.jpg
Azure services

Create a

Tenant
properties

OEBPS/images/534830_1_En_6_Chapter/534830_1_En_6_Fig6_HTML.jpg
Solution Explorer

A o-s08 [wW #=
Search Solution Explorer (Ctrl+$)
[Solution ‘AspNetCore8MinimalApis' (4 of 4 projects)
4 &1 AspNetCore8MinimalApis
@ Connected Services
&8 Dependencies
S8 Properties
B3 EndpointFilters
B3 ExceptionHandlers
B3 Mapping
B3 Models
B3 Validators
[0) appsettingsjson
C# Program.cs
4 [BLL
b &8 Dependencies
4 [E Services
b c# CountryService.cs
4 [c%] Domain
b @& Dependencies
4 [DTOs
b c# CountryDto.cs
4 [Repositories
b c# ICountryRepository.cs
4 [Services
P C# ICountryService.cs
4 [&¥] Infrastructure.SQL
b &8 Dependencies
4 [E3 Database
4 [E3 Entities
b c# CountryEntity.cs
b C# DemoContext.cs
4 [Migrations
b c# 20230814003647 Initial.cs
b c# DemoContextModelSnapshot.cs
4 [E@ Repositories
b C# CountryRepository.cs

VW T WO T W W

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig43_HTML.jpg
000

POST https:/flocalhost:7157 ® -+

No Environment

i3 https://localhost:7157/countries Save v Ve =
o EIR
Params Authorization Headers (11) Body * Pre-request Script Tests Settings Cookies
@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL
Key Value Description «s+ Bulk Edit
file fake-countries.csv %
AuthorName Anthony Giretti
Description Demo of file upload

e: 4.29s Size: 353 B

& Status:}400 Bad Request I

Body Cookies Headers (5) Test Results

Pretty Raw Preview Visualize JSON v
1§
2 “type": "https://tools.ietf.org/html/rfc9110#section-15.5.1",
3 "title": "One or more validation errors occurred.”,
4
5
6
7 “The file content is not valid"
8]
9 5

[Save as Example eeo

©

Q

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig1_HTML.jpg
& pxPersonal\Bookiapis\ sourc X+ v - o x

info: Microsoft.Hosting.Lifetime[14]
Now listening on: https://localhost:7157
info: Microsoft.Hosting.Lifetime[0]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[8]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
Content root path: D:\Personal\Book\apis_Source code\Chapter 7\AspNetCore8MinimalApis\AspNetCore8MinimalApis
1l Microsoft.AspNetCore.Diagnostics.DeveloperExceptionPageMiddleware[1]
An unhandled exception h le executing the request.
Microsoft.Data.SqlClien 0x80131964): A severe error occurred on the current command. The results,
if —chould-bo—di
Operation cancelled by user

t.SqlConnection.OnError(SqlException exception, Boolean breakConnection, Action‘l wra
pCloseInAction)

at Microsoft.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception, Boolean breakConnection, Acti
on'1l wrapCloseInAction)

at Microsoft.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject stateObj, Boolean callerHas
ConnectionLock, Boolean asyncClose)

at Microsoft.Data.SqlClient.TdsParser.TryRun(RunBehavior runBehavior, SqlCommand cmdHandler, SqlDataReader data
Stream, BulkCopySimpleResultSet bulkCopyHandler, TdsParserStateObject stateObj, Boolean& dataReady)

at Microsoft.Data.SqlClient.SqlCommand.InternalEndExecuteNonQuery(IAsyncResult asyncResult, Boolean isInternal,
string endMethod)

at Microsoft.Data.SqlClient.SqlCommand.EndExecuteNonQueryInternal(IAsyncResult asyncResult)

at Microsoft.Data.SqlClient.SqlCommand. yAsync (I 1t asy 1t)

at System.Threading.Tasks.TaskFactory'l.Fr oreLogic(I 1t iar, Func'2 endFunction, Action‘l endAc
tion, Task'l promise, Boolean requiresSynchronization)
— End of stack trace from previous location
at Microsoft.EntityFrameworkCore.Storage.RelationalCommand.ExecuteNonQueryAsync(RelationalCommandParameterObjec
t parameterObject, CancellationToken cancellationToken)

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig62_HTML.jpg
Swagger

SMARTBEAR

ASP.NET Core 8 Minimal APIs ® &

AspNetCore8MinimalApis ~

m /versionneutral| Neutral version| A
This version is neutral

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig9_HTML.jpg
app HapPut("/Addresses/{addressld}" [FromRoute] int addressId, [FromFoim] Address address) =>
oConte @ addressld 1]
}) DisableAntiforgery();

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig1_HTML.jpg
3 Solution 'AspNetCore8MinimalApis
4 57 AspNetCore8MinimalApis
b @ Connected Services

b && Dependencies
b @ Properties
4 [Endpoints
b C# CountryEndpoints.cs
B8 Mapping
B3 Models
BB Validators
[() appsettings.json

Cc# Program.cs

v Vv vVvwvw

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig46_HTML.jpg
@ [B DemoCORS- WebApplication6 X = (m]

< C M @ localhost a3 ® B &

Demo CORS

Element: e Sources Network Performance Memory 2 217

[top ¥ Filte Default levels ¥ & 17

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig9_HTML.jpg
Microsoft Azure P Search resources, services, and docs (G+/)

Home > DemoAPI | Transaction search >

B End-to-end transaction details
DemoAPI
Search results 2

earch results & Leammore [Copylink 27 Feedback 2 Leave preview

E transaction
Operation ID: 773d3a066a341f556666e16a15b0d8e0

A= = A- @- o =Taeesad o oo il 1
| 8724, 4:27:19 PM - TRACE JuENT 2 ouRanon

Request finished HTTP/1.1 GET h }/ P — |

ttps://localhost:7157/countries I locathost7157 _ GET /countries

- 500 null application/json; ch

\MSSQLLocall
arsct-utf-3 1636.968ins 8 0oamm DR | etk MDencob

>
Severity level:Information

A\ EXCEPTION System £xception
| 8/24,4:27:19 PM - EXCEPTION
Boh! it has crashed!
RESEALS R

A\ EXCEPTION System Exception

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig24_HTML.jpg
3 Solution 'AspNetCore8MinimalApis' (2 of 2 projects)

b &7 AspNetCore8MinimalApis

4 Domain
b &8 Dependencies
4 [3 DTOs
b C# CountryDto.cs

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig40_HTML.jpg
POST https:/flocalhost:7157 ® -+ oo0 No Environment v

[P AsoNetCoreBinimal AR | https:/flocalhost:7157/countries Save v 7 &
FosT - 717 -
Params Authorization Headers (11) Body ¢ Pre-request Script Tests Settings Cookies

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

Key Value Description =+ Bulk Edit
files countries.csv X
files countries.csv X
AuthorName Anthony Giretti
Description Demo of file upload
Body Cookies Headers (4) TestResults Q Status: 201 Created Time: 2m 58.92s Size: 128 B [E] Save as Example eoe
Pretty Raw Preview Visualize Taxt v | =5 @ Q

1

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig21_HTML.jpg
POST https:/flocalhost:7157 ® + oo No Environment v

m2IAPIs | https:/fiocalhost:7157/countries B save - e -

POST ¥ https://localhost:7157/countries

Params Authorization Headers (11) Body ¢ Pre-request Script Tests Settings

©® none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON

1
2 “name"f - "<script>alert('Booo! ')</script>",
3 "flag "http://upload.wikimedia.oxrg/wikipedia/commons/d/d9/Flag_of_Canada_%28Pantone%29.svg"
4 T
Body Cookies Headers (5) Test Results @ Status: 400 Bad Request Time: 95ms Size: 413B [Save as Example oo
Pretty Raw Preview Visualize JSON v O Q
1 I
2 “type": “"https://tools.ietf.org/html/xrfc9110#section-15.5.1",
g “title": "One or more validation errors occurred.”,
4 “status®: 400,
3 “errors": {
6 "Name": [
7 “The Name parameter has invalid content"
8 1.
9 “Flaguri®: [
10 "Flag Uri must match an HTTPS URL"
11 1
12 3

v
@

=)
—

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig4_HTML.jpg
Client

HTTP Request

Controller

(Serialization

HTTP Response

JSON, XML, Others

Read / write

ASP.NET Core WebAPI

=

Data
source

OEBPS/images/534830_1_En_6_Chapter/534830_1_En_6_Fig5_HTML.jpg
*xxxxx Script for SelectTopNRows command from SSMS ¥
[FISELECT TOP (1@00) [MigrationId]
, [ProductVersion]
FROM [DemoDb].[dbo].[__EFMigrationsHistory]

Migrationld ProductVersion
1 20230814003647 _initial | 8.0.4

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig19_HTML.jpg
” File Edit Git Project Build Debug Architecture Test Analyze Tools Extensio
[Solution Explorer Ctrl+W, S - AnyCPU dpntps~D -0~ B
=] Git Changes Ctrl+0, Ctrl+G
ST Git Repository Ctrl+0, Ctrl+R
£ Team Explorer Ctrl+*, Ctrl+M
B Server Explorer Ctrl+W, L
5= SQL Server Object Explorer Ctrl+*, Ctrl+S
@ Test Explorer
53 Bookmark Window Ctrl+W, B
“® Call Hierarchy Ctrl+W, K
&% Class View Ctrl+W, C
5] Code Definition Window Ctrl+W, D
%1 Object Browser Ctrl+W, J
(% Error List Ctrl+W, E
5> Output Ctrl+W, O
B TaskList Ctrl+W, T
= Toolbox Ctrl+W, X
0 Notifications
5] Terminal Ctrl+u
' Other Windows b IEI Command Window Ctrl+W, A
Toolbars » Data Sources Shift+Alt+D
c3 Full Screen Shift+Alt+Enter == Code Coverage Results
o Load Test Runs
© Navigate Backward Ctrl+- 6] Layer Explorer
I &) Data Tools Operations
Next Task [l Microsoft Azure Activity Log
Previous Task @ Containers Ctrl+K, Ctrl+0
& Properties Window Ctrl+W, P @ Application Insights Search
Property Pages Shift+F4 |2 Live Share
@ Endpoints Explorer
& Web Publish Activity
> Task Runner Explorer
@ Package Manager Console |
E Stack Trace Explorer Ctrl+E, Ctrl+S

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig36_HTML.jpg
POST https:/flocalhost:7157 ® oo

No Environment

@@ AspNetCore8Minin https://localhost:7157/countries B save ~
POST v 15
Params Authorization Headers (11) Body o Pre-request Script Tests Settings
Headers ¢ Hide auto-generated headers
Key Value Description +++ Bulk Edit
Postman-Token @ <calculated when request is sent>
Content-Type @ P data; Y
Content-Length @ <calculated when request is sent>

Presets v

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig15_HTML.png
SNeWN import Runner r My Workspace ¥ & Invite C)

No Environment v =<

m save | v

Params ders (8) Cookies Code
Query Params.
Kev VALUE DESCRIPTION *s+ BulkEdit

Save Response v
Prety Preview v Q
1 ff 5
2 <
3 "date": "2020-11-29720:59:36.5918473-05:00",
4 "temperatureC”: 25,
s "temperaturef": 76,
6 E eltering”
7 13
8 <
9 “date 6.5922065-05:00",
10 “temperatureC": 34,
n “temperaturef":

> Bootcamp Build

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig52_HTML.jpg
GET https:/flocalhost:7157/ ® -+ ooe

No Environment v

i3 7157/ [save V4
« - [-
LETETE Authorization Headers (7) Body Pre-request Script Tests Settings Cookies
ney e vaiue wvescripuon *** DUIRCUIL FIESEL ¥
Postman-Token @ <calculated when request is sent>
Host @ <calculated when request is sent>
User-Agent @ PostmanRuntime/7.32.3
Accept ©f =
Accept-Encoding @ gzip, defiate, br
Connection © keep-alive

Body Cookies Headers (5) Test Results

Pretty Raw Preview Visualize

1 |Hello neutral version

@312ms 194B [3) Sav E ooe

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig22_HTML.jpg
No Environment ~

B save - 4 -

| POST v https://localhost:7157/countries

Params Authorization Headers (11) Body * Pre-request Script Tests Settings

® none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL JSON Beautify
1 |
2 “name": "Canada”,
3 “flaguri®: “https://upload.wikimedia.org/wikipedia/commons/d/d9/Flag_of_Canada_%28Pantone%29.svg"
4 T

Body Cookies Headers (4) Test Results & ime: 15ms Size: 128B [Save as Example coo

Pretty Raw Preview Visualize Text v = @ Q

1

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig15_HTML.jpg
GET https://localhost:7157/co + eoo No Environment v

WP AcoNetCoreBMinimalAPls | Chanter 2 https:/flocalhost:7157/countries [save ~ e
GET ~ https://localhost:7157/exception ‘ -
Params Auth Headers (9) Body Pre-req. Tests Settings Cookies

Headers ¢ Hide auto-generated headers

Key Value Descri... ++ BulkEdit Presets v
- - . - ~ . SO .. .
Body Cookies Headers (8) TestResults 87ms 423B IB Save as Example oo
Pretty Raw Preview Visualize JSON v o Q

E “type": “Exception”, I
"title "An unexpected error occurred”,
“status": 500,
“"detail®™: "Exception of type 'System.Exception' was thrown.",
“instance®: "GET /exception®

NGO s WN P

OEBPS/images/534830_1_En_1_Chapter/534830_1_En_1_Fig4_HTML.jpg
Client

Browser or another
application

[GSnyuygqD12yuhO0OnEq0Sd5gWL7eS96aloJrC3wT/Ch8zhzIXs

SSL
certificate

Server

OEBPS/images/534830_1_En_11_Chapter/534830_1_En_11_Fig2_HTML.jpg
Test Explorer

> o x
-0 [Ei1]00]00[01] #- EBE G- S

p -
Test run finished: 1 Tests (1 Passed, O Failed, 0 Skipped) run in 536 ms A 0Wamnings © 0 Errors
Test Duration Traits E
4 O UnitTests (1)
4 @ UnitTests.Countries (1)
4 O GetCountriesTests ()]

0] When_GetCountriesReceivesNullPagingParametersAndGetAllAs...

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig4_HTML.jpg
No Environment

POST https:/flocalhost:7157 ® -+ ooo
() save 74

L]

POST v
Params Authorization Headers (8) Bodye Pre-request Script Tests Settings Cookies
@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL
Key Value Description +s= Bulk Edit
lastactivitydate 2023-01-01

Key

Body Cookies Headers (5) Test Results
Pretty Raw Preview Visualize Tet v S

&

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig6_HTML.jpg
= Tools Extensions Window Help Search pel AspN...IApis
D> O - ﬁ ﬁ s cl~b/‘ m =
~ # Solution Explorer
<+ i3 .
" p o-s00 [uW £=5
“ Search Solution Explorer (Ctrl+$)
2Index : int? eSiz e| ;Iuhon NetCore8MinimalApis' (4 of 4 projects)
pag ‘i AspNetCore8MinimalApis i
J Build nected Services
Rebuild =ndencies
a rerties
e ;ptionHandlers
View JefaultExceptionHandler.cs
Analyze and Code Cleanup imeOutExceptionHandler.cs
Pack thchecks
] Publish... teadyHealthCheck.cs
Application Insights ping
_ lels
Overview settings.json
] Collapse All Descendants Ctrl+Left Arrow Iram.cs
Scope to This pe=
1 New Solution Explorer View)
=ndencies
L Show on Code Map |
ices
File Nesting “ountryService.cs
> Edit Project File |
=ndencies
Build Dependencies L
Add Jsitories
irec
Y Manage NuGet Packages... Git Changes
) Manage Client-Side Libraries...
I Manage User Secrets I
nimalApis General

Remove Unused References...

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig6_HTML.jpg
. Create work item Vv

EXCEPTION
System.Exception

|Exception Properties Show all

Event

time 8/24/2023, 4:27:19.5667304 PM (Local time)

Message Boh!!!! it has crashed!

Exception type System.Exception

Failed

method Program+ <>c__DisplayClass0_0+
<<<Main>$>b__3>d.MoveNext

Custom Properties

Connectionld OHMT4S1VLE4K6

MessageTemplate An unexpected error occurred and has been

handled by the {DefaultExceptionHandler} handler

Requestid OHMT4S1VLE4K6:00000001

SourceContext AspNetCore8MinimalApis.ExceptionHandlers.Defau

ItExceptionHandler

Application DemoAPI

RequestPath /countries

Defaul
er

ItExceptionHandl DefaultExceptionHandler

Call Stack DJust my code [D Copy ./ Expand

at
at
at
at
at
at
at
at
at
at
at
at
at

System.Exception:

Program+<>c__DisplayClass@_0+<<<Main>$>b__3>d.MoveNext (AspNetC
System.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw (S
System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess (|
System.Runtime.CompilerServices.TaskAwaiter.HandleNonSuccessAndi
System.Runtime.CompilerServices.TaskAwaiter™ 1.GetResult (System.
Microsoft.AspNetCore.Http.RequestDelegateFactory+<ExecuteTaskRes|
System.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw (Sy|
System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess (|
System.Runtime.CompilerServices.Task ter.Handl C d
Microsoft.AspNetCore.Routing.EndpointMiddleware+<<Invoke>g Awai
System.Runtime.ExceptionServices.ExceptionDispatchInfo.Throw (S
System.Runtime.CompilerServices.TaskAwaiter.ThrowForNonSuccess (|
System.Runtime.CompilerServices.TaskAwaiter.Handl c

= 49 . as2 221 Y

OEBPS/images/534830_1_En_3_Chapter/534830_1_En_3_Fig4_HTML.jpg
public async Task<(ProcessingStatus, string, DownloadModel)> GetFileA:
{

:(GetFil)
var index = parameters.FileName.Index0Of('.');
if (index <= 0)
return (Inval. “The file path info in the request URL is invalid", null);
1
(ProcessingStatus status, string message, DataStorelLoadModel) = await _ dj {¢
paraneters.FileName,
parameters . CheckForAuthEnabled) ;
if (status ProcessingStatus.Success)
return (status, message, null);
// Fetch Azure
- e : A2 ider(Fil AzureFi >}
var donwloadFileStream = await fileStorageProvider.DownloadAsync(new FileStorageParameters {
FileName = dataStore.GetAzureFileStorageFileName()
return (ProcessingStatus.Success, string.Empty, new DownloadModel
FileName = Fil i j i .FileName, MimeType),
MimeType = dataStore.MimeType,

Content donwloadFileStream
B;

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig4_HTML.jpg
© O Swagger Ul
&< O @ httpsy//localhost:7157

Swagger CE T ER ST AspNetCore8MinimalApis v1 v

SMARTBEAR

AspNetCore8MinimalApis @ <

https:/Mocalhost:7157/swagger/v1/swagger.json
AspNetCore8MinimalApis ~

m /authenticated v ﬁ
m /authorized v B

OEBPS/images/534830_1_En_1_Chapter/534830_1_En_1_Fig3_HTML.jpg

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig4_HTML.jpg
No Environment

POST https:/flocalhost:7157 ® -+ o0
@@ AspNetCore8MinimalAF 0t 2 hitps:f/i 7157/ Jup () save ~ 7 =
R -

Pre-request Script Tests Settings Cookies

Headers (9) Body ¢

Authorization
@ x-www-form-uriencoded @ raw @ binary @ GraphQL

Params
s+ Bulk Edit

@ none @ form-data
Key Value Description
file countries.csv X
Country {"Id" : 1, "Description" : "Canada", "FlagUri" :
"https://anthonygiretti.blob.core.windows.net/co
untryflags/ca.png”, "Name" : "Canada"} De:

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig6_HTML.jpg
GET https:/flocalhost:7157/ ® -+ oo No Environment v

iii® https://k 7157/ tries/ &) Save - Vel =

e e
Cookies

Params Auth Headers (6) Body Pre-req. Tests Settings

Headers # Hide auto-generated headers

Key Value Descri... *+ Bulk Edit Presets v
Postman-Token @ <calculated when request is sent>
Host @ <calculated when request is sent>
User-Agent @® PostmanRuntime/7.32.3
Body Cookies Headers (6) Test Results € 2000k 2ms 471B [5) Save asEx e oo
Key Value
Content-Type ® Ji utf-8
Date © Tue, 22 Aug 2023 20:50:59 GMT
Server ® Kestrel
Age ® 15 |
Alt-Sve ® h3="7157"; ma=86400
Transfer-Encoding ® chunked

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig53_HTML.jpg
GET https://localhost:7157/ ® -+ oo° No Environment v

iii> https://localhost:7157/versionneutral B save - Va =
Params Authorization Headers (7) Body Pre-request Script Tests Settings Cookies
ney —_— vaue vescripuon *** DUIK CUIL FIESELS ¥
Postman-Token @® <calculated when request is sent>
Host @ <calculated when request is sent>
User-Agent @© PostmanRuntime/7.32.3
Accept @ **
Accept-Encoding © gzip, deflate, br
Connection @® keep-alive
I api-version 20 l
Body Cookies Headers (5) TestResults 000
Pretty Raw Preview Visualize Text v B Q

1 lello neutral version

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig49_HTML.jpg
GET https://localhost:7157/ ® -+ oo

No Environment

iii> https://localhost:7157/version2only @ save -
GET ¥ I 7157/
Params Authorization Headers (7) Body Pre-request Script Tests Settings
Key Value Description *+ Bulk Edit

Postman-Token @ <calculated when request is sent>

Host @ <calculated when request is sent>

User-Agent @ PostmanRuntime/7.32.3

Accept @ *r

Accept-Encoding @© gzip, defiate, br

Connection @ keep-alive

Body Cookies Headers (4) Test Results

Pretty Raw Preview Visualize
1

Text v =

F=)

Cookies

Presets v

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig16_HTML.png
Create a new project

Recent project templates

Alist of your recently accessed templates will be
displayed here.

Search for templates (Alt+S) LK Clearall

All languages > All platforms i Web ~

F‘j ASP.NET Core Web App

A project template for creating an ASP.NET Core application with example ASP.NET
Razor Pages content.

c* Linux macos Windows Cloud Service Web
Blazor WebAssembly App
A project template for creating a Blazor app that runs on WebAssembly and is
optionally hosted by an ASP.NET Core app. This template can be used for web apps
with rich dynamic user interfaces (Uls).

c* Linux macos Windows Cloud Web

=VE ASP.NETWeb Application (.NET Framework)

©—' project templates for creating ASP.NET applications. You can create ASP.NET Web
Forms, MVC, or Web AP| applications and add many other features in ASP.NET.

Visual Basic Windows Cloud Web

ASP.NET Core Web App (Mcdel -View-Controller)
B o

e n ASP.NET Core application with examole ASP.NET

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig18_HTML.jpg
GET https:/flocalhost:7157/| ® + oo No Environment v

i https://localhost:7157/languages @ save ~ d -

v https://localhost:7157/languages | ‘ -
Cookies

Params Authorization |Headers © I Body Pre-request Script Tests Settings

& ng fr

ing e
lang sp

Body Cookies Headers (4) TestResults @ Status: 200 OK Time: 39.96s Size: 123B eask o000

Pretty Raw Preview Visualize Text v = O Q

1

&

<>

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig37_HTML.jpg
app.MapPost("/countries/upload”, |(IFormFile file] =>
{ 2 file {Microsoft.AspNetCore.Http.FormFile} -3 |

return Results.Created();

1) .DisableAntiforgery();

Ce p Q View ~ "fo -data; name=\"file\ cs\™
 ContentType QUView ~ “text/csv”
X FileName QView ~ “"countries.csv"
» /& Headers 3 QView ~ Count=2
F Length 37
Name QView ~ “file"

B oigsmiz members
» © Non-Public members

OEBPS/images/534830_1_En_3_Chapter/534830_1_En_3_Fig3_HTML.jpg
namespace Demo.Business.Download;

1 reference | Anthony Giretti, 2 days ago | 1 author, 5 changes
Jpublic class DownloadService : IDownloadService

L

private readonly IDataStor iness _f H
private readonly IFileStorageDispatcherService _fil

vice;

0 references | 0 changes | 0 authors, 0 changes | 0 exceptions, - live
public DownloadService(ID: iness ness,

IFileStorageDispatcherService fileStorageDispatcherService)

- i = 'nn:(;
fileS: Di herService = fileS Di h vice;

/// <inheritdoc />
3 references | Anthony Giretti, 17 days ago | 1 author, 2 changes | 0 exceptions, - live
public async Task<(ProcessingStatus, string, DownloadModel)> GetFileAsync(GetFileParameters pu‘aleters)lzl

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig5_HTML.jpg
Available authorizations

Bearer (apiKey)

JWT Authorization header required
Name: Authorization

In: header

Value:

bearer eyJ0eXAiOIJKV1QILC |

[Authorize]’ Close

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig14_HTML.jpg
GET https://localhost:7157/cc + o0 No Environment v

WP AspNetC
11114

SMInmaliPle [Chapter 1 httpsi/flocalhost:7157/countries) save v va s

e — | -
Cookies

Params Auth Headers (39) Body Pre-req. Tests Settings

none Vv

6ms 189B [3) Save as Example oo

Body Cookies Headers (4) TestResults

Pretty Raw Preview Visualize Text v = [E] Q

1 | Too many requests. Please try again later.

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig3_HTML.jpg
Transient service

can access directly to

cannot access to

Scoped service

Singleton service

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig7_HTML.jpg
secretsjson | X

Schema: |<No Schema Selected>
1 2i
B! "KeyVault": {
"Uri": "{YourKeyvaultUri}"

}

= wWwnN

'
'
'

OEBPS/images/534830_1_En_11_Chapter/534830_1_En_11_Fig3_HTML.jpg
Solution Explorer v 1 X

A o-s 0@ [£=R

Search Solution Explorer (Ctrl+$) P~
3 Solution 'AspNetCore8MinimalApis' (5 of 5 projects)
a AspNetCore8MinimalApis
BLL
[c#] Domain
Infrastructure.SQL
£ UnitTests
b && Dependencies
4 [Countries
b C# GetCountriesTests.cs

AV VVY e

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig23_HTML.jpg
Input parameters
Mapping interface ependency. DTOs / Domain objects

Mapping implementation

API layer Domain layer

OEBPS/images/534830_1_En_1_Chapter/534830_1_En_1_Fig5_HTML.jpg
URL: http: viceApi p

GET/HTTP/1.1

Host: www.myServiceApi.com
Accept: application/json
Accept-Language: en-CA,en;q=0.5
Accept-Encoding: gzip, deflate, br

basic Y ITIZNA==

Client

SSL Server

certificate

Browser or another
application

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig20_HTML.jpg
” File Edit View Git Project Build Debug Architecture Test Analyze Tools Extensions Window Help Search P AspNetCore8Minimals

®- % - 5 Debug ~ AnyCPU ~ P htps - > (ORAN -~
Package Manager Console & X - #
Package source: Nuget ~ & Default project: AspNetCore8MinimalApis - E

Each package is licensed to you by its owner. NuGet is not responsible for, nor does it grant any licenses to, third-party -

packages. Some packages may include dependencies which are governed by additional licenses. Follow the package source (feed) URL to
determine any dependencies.

Package Manager Console Host Version 6.6.0.61

Type 'get-help NuGet® to see all available NuGet commands.

PM> NuGet\Install-Package F
estoring packages
\AspNetCore8MinimalApis.csproj. ..

s\AspNetCore8MinimalApis

Installing NuGet package FluentValidation jecti ions 11.6.0. —_
Assets file has not changed. Skipping assets file writing. Path: D:\Personal\Book\apis\ Source code\Chapter 1

\AspNetC; ini i5\AspNetC inimalApis\obj\project.assets.json

Restored D: \Per-sonal\Book\apis_Source code\Chapter 1\AspNetC ini Apis\AspNetCe ini \AspNetC i A csproj

(in 2 ms).

Executing nuget actions took 109 ms
Time Elapsed: 00:00:00.1502926
PM> |

OEBPS/images/534830_1_En_1_Chapter/534830_1_En_1_Fig2_HTML.jpg
Scheme Authority Path . Query Fragment

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig14_HTML.jpg
- Developer PowerShell ~ []] fo3

C:\Users\AGiretti\source\repos\uebAPIDeno)l httprepl https://localhost: 5001'
(Disconnected)> connect https://localhost

https://localhost:5001/> 1s
[1

WeatherForecast [GET]

https://localhost:5001/> cd weatherForecast
/weatherForecast [GET]

https://localhost:5001/weatherForecast> get
HTTP/1.1 200 OK

Content-Type: application/json; charset=utf-8|
Date: Sun, 29 Nov 2020 ©2:23:42 GMT
Server: Kestrel

Transfer-Encoding: chunked

[

“date": 11/29/2020 9:23:43 PM,
“temperatureC": 3,
“temperatureF": 37,
“summary"”: “Sweltering"

“date": 11/30/2020 9:23:43 PM,
“temperatureC”: -17,
“temperaturef": 2,

“summary”: "Chilly"

“date": 12/1/2020 9:23:43 PM,
"temperatureC": 5,
“temperatureF": 40,
“summary”: "Hot"

"date": 12/2/2020 9:23:43 PM,
“temperatureC”: -14,
“temperatureF": 7,
“summary”: “Cool"

¥

{
“date": 12/3/2020 9:23:43 PM,

“temperatureC”: -8,
“temperatureF": 18,
“summary"”: “Cool"

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig17_HTML.jpg
O File Edit View Git Project Build Debug Test Analyze Tools Extensions Window Help Search P Mini.iDemo (&) - o

® - -5 EE 9 - Debug - AnyCPU ~ MinimalAPIDemo. = P SignaRDemo - > - U+ B L hms & LiveShare &Y
Program.cs & X - & Soluti v ax
fiwm-'g'm — _“A-Il,) g -3 aB|o-c8® #[=]
10 | v bt = Vgt cation CrentaButiderCarg; e et ez
3 var app = builder.Build(); 5 Soltion MinimalAFiDemo! (1/c£1 project)
4 4 &) MinimalAPIDemo
s app.MapGet("/", () => "Hello World!"); b G Connected Services
6 b 86 Dependencies
7 app.RunQ); b K3 Properties
8 b [3) appsettingsjson
C# Program.cs.
109% ~& © Noissues found | ¥~) » lm1 Chd40 SPC CRIF
Error List ~ax
‘Entire Solution - A 0Wamings @ 0Messages - Search Error List P~
7 Code Description Project File Line Suppression State

[Ready @ Select Repository « 0

sjoo Snsoueig

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig17_HTML.jpg
No Environment

GET https:/flocalhost:7157/ ® + oo
B save v 7 &l <>

i
| e - il ‘ -
Param: Authorization Headers (6) Body Pre-request Script Tests Settings Cookies
Query Params
Key Value Description +s= Bulk Edit

id 1

id 2
Body Cookies Headers (4) TestResults (. Status: 200 0K Time: 40.40s Size:123B [S nple eoe

G Q

Pretty Raw Preview Visualize Text v

1

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig16_HTML.jpg
GET https://localhost:7157 X + oo No Environment v

| https:/flocalhost:7157/countries [Save - Z BE

LT v |npsimocanost7is7imeout | -
Cookies

Params Auth Headers (39) Body Pre-req. Tests Settings

Headers ¢ Hide auto-generated headers

Key Value Descri.. °*+ Bulk Edit Presets v
Body Cookies Headers (8) TestResults & |503 Service Unavailable |82ms 396B [3) Save as Example oo
Pretty Raw Preview Visualize JSON v G Q

“"type": "TimeoutException",

“"title": "A timeout occurred”,

"status": 503,

“"detail”: "The operation has timed out.",
"instance": "GET /timeout"

N hWN R

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig5_HTML.jpg
AspNetCoreBMinimalApis + X _appsettings.json Program.cs

Search properties
b Application
taBe General Enable ESLint
» Package v i d fixes for JavaScript and the editor.
b Code Analysis
b Linting Lintable Lint JavaScript (js) files
languages /] Whether JavaScriptfiles should be inted or not.
e
b Resources /] Whether Javascript React files shol
& & s
b Snapshot Debugger B&FBE
b TypeScript Lint TypeScript (ts) files B hitps & Command line arguments
/] Whether Command y to multiple
& 1S Express fnes.
Lint TypeScript React () files ‘ I ‘
/] Whether TypeScript React files sho
Lint Vue (vue) files Working directory
7] Whethes Vue files should be inied Path to the working directory where the process will b started.
Browse.
Lint HTML Chtmb files
/] Whether HTML files should be nt Environment variables
2 2 o
Name Value
Debug ASPNETCORE_ENVIRONMENT Development X
IAILIREJENANTJD 136544 b(
General The management of launch profiles hi
the link below, via the Debug menu in
Standard tool bar.
Enable Hot Reload

Open debuglsunch p
en debug launch profiles U 7] Apply code changes to the running application.

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig8_HTML.jpg
[Vax keyVaultUri = builder.Configuration.GetValue<string>("KeyVault:Uri");
builder.Configuration.AddAzureKeyVault(new Uri(keyVaultUri), new DefaultAzureCredential());

) I & dbConnectionl ~ Q View ~ "Data S

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig3_HTML.jpg
Encoded wsrearoxensese

Decoded corrie o mosecser

eyJBeXA101JKV1QiLCJhbGci01JSUZITNIIsIng
1dCI6Imwzc1EtNTBjQBg0BeEJWWkXIVEd3bINSNZ
Y4MCIsImtpZCI6Imwzc1EtNTBjQOgBeEJWWKxXIV
Ed3bINSNzY4MCJ9.eyJhdWQi0iIyNTdiNmMzNi0
XMTYALTRhYWMtYmUSMy®82Z jJjZDgxY2VjNDMiLC
Jpc3Mi0iJodHRweczovL3NBcy53aW5kb3dzLm51d
C8xMzYTNDRkOSBwWMzh1LTQ2NDYtYWZmZ10xMGF j
Y2IzNzA2NzkvIiwiaWFOIjoxNjMyNzQ3MTI3LCJ
uYmYi0jE2MzI3NDcxMjcsImV4cCI6MTYZzMjcO0D
AyNywiYW1vIjoiQVZRQXEVOFRBQUFBZ1Z0ZGMOK
Op6V2IrK1NFajJuVVFGSUduZEhWeW1pbWUMKQO
SDAWOEhiREZXN2JVMEhnQ1dTMFhKZFdp0GgoOOWZ
JUB9BNBX2SEVHY21WdUXUY 1piNmdQOFY3TDkOMG
Jkc1FRcoVqdkpLc1k9IiwiYW1yIjpbInB3ZCJdL
CJ1bWFpbCI6ImFudGhvbnkuZ21yZXR8aUBnbWFp
bC5jb20iLCImYW1pbH1fbmFtZSI6IkdJUKVUVEK
iLCJnaXZ1b19uYW11IjoiQW50aG9ueSIsImdyb3
VwecyI6WyI2Yzc4Y2Q2MCOXNMViLTQ20TYtYWUyO
SO4NGZ1NzEZzMzA1ZDQiLCI4MTE1ZTNiZSThYzdh
LTQ40DYtYTFINiO1YjZhYWY4MTBhOGYiLCJmYZE
5YTg2MiB2NDUyLTR10TktOT1hMi84MjBhZmEZOW
NiZWUiLCIyYzM3MmQ50COxM2I2LTQwY2QtYjViM
11mOTFmMZTJ1YzUxNjIiXSwiaWRwIjoibG12ZS5j
b20iLCJpcGFKZHI101I3NC4xNS4yMjEuMzgil CJ
uYW11Ij0iQW50aG9ueSBHSVJFVFRJIiwibmouY2
Ui0iIwZWYSNGITNC11iY2MyLTQOZmYtYmJiZS05Z
JA2MTZhYmMWNWUiLCJvaWQi0iJmOTE3NWJjOC11
N2VjLTRKOWYtOWI1MyOyMGY20DM2NmYyYzgilCJ
yaCI6IjAuQVZnQTJVUmxFNDREUmMthd194Q3N5em
NHZVRac2V5VmIFYXhLdnBOdkx0Z2M3RUSZQUdrL
iIsInJvbGVzIjpbIINTcnZ1eUNyZWFOb3TiXSwi
c3ViIjoiNDM3VmVqWnBzMVNxUnFaRXVHeWYtSEh
XxQkZUMmdOdTRDS3p30V11MGJHcyIsInRpZCI6I]
EzNjUBNGQSLTAZOGUtNDYONiThZmZmLTEWYWN]Y
jM3MDY30SIsInVuaXF1ZV9uYW11IjoibG12ZS5)
b20jYW50aG9ueS5naXJ1dHRpQGA tYW1sLmNvbST
sInVBaSI6InJBWFpFRNZmW1Vxa2ZuMnpJR1k5QU
EilLCJ2ZXIi0iIxLjAifQ.Wg685GQEOPFdTk70cP
AiXkAFPOTEt awwni7-

HEADER: ALGORITHM & TOKEN TYPE

{
“typ": "JNT",
"alg": "RS256",
"X5t": "135Q-50CcCH4XBVZLHTGNNSR7680"
"kid": "13sQ-58cCHAXBVZLHTGNNSR7680"

PAYLOAD: DATA

“aud": "257b6c36-" -6f2cd81cec4s”,
"iss"! "https://sts.windows.net/136544d9-
-10accb370679/",
"iat": 1632747127,
“nbf": 1632747127,
-exp: 1632748027
“ai0":
* AVQAQ/ BTAAAAFVtdcA+JzWb++SE 12nUQF IGndHVymimoT204H7p8HD
DFq7! JAWi8h49fISOt7L ULTcZbbgP8V7L948bdr
QQsEjvJKsY=",
"amrt: [
“pwd®
1

"email”: "anthony.girettiégmail.com",
"family_name": "GIRETTI",
"given_name”: "Anthony",

groups T 1

"6c78cd68-16eb-4696-ae29-84fe713385d4",
“8115e3be-ac7a-4886-ale6-Sh6aafs18asf",
“fe1 3 fa39cbee",

"2¢372d98-13b6-48cd-b5b2-f91fe2ec5162"

]

"idp": "live.com",

“ipaddr”: "74.15.221.38",
“name”: “Anthony GIRETTI",
"nonce": "@ef' bec2-44ff-bbbe-9fa6

"oid": "f9175bc8-b7ec-4d9f-9b53-20f68366F2c8",
e
“8.AVQA2UR1E44DRkav_xCsyzcGeTZseyVoEaxKvpNvLNGC7ENYAGK .

“roles": [
"SurveyCreator”

1

“sub": "437VejZps1SqRQZEuGyf-HHqQBFT2gNu4CKzw9YeBbGs",

“tid": "136544d9- 182ccb378679",

"unique_name”: "live.com#anthony.girettigmail.com",

"uti": "rAXZEFvfZUqkfn2zIFY9AA",

e B

"ver":

}

VERIFY SIGNATURE

OEBPS/css/envelope.png

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig2_HTML.jpg
Services configuration
Enable required services (Controllers, gRPC, Razor Pages...)

Enable optionnal services by the app (third-party libraries...)

Register services through dependency injection

Entry point

Create and configures the web host Request pipeline configuration

Activate components and runs the web host

Can apply exception pages if wanted

Can apply HTTPS redirection if wanted
Can apply static files handling if wanted
Can apply authentication if wanted
Can apply authorization if wanted

Apply endpoints and execute the appropriate code instructions

519%
s |8
°
<l s
S8
5
o (]
FARE
5|8
R
z| | &
o
% s
gLIg
o @

Program.cs

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig2_HTML.jpg
O EWNR

var builder = WebApplication.CreateBuilder(args);
var app = builder.Build();

app.MapGet("/countries/{countryId}”, (int countryId) => $"CountryId {countryId}");

app.MapGet("/countries”, () => new List<string> { "France", "Canada", "Italy" });

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig8_HTML.jpg
= Microsoft Azure A Search resources, services, and docs (G+/)

Home > DemoAPI | Transaction search >

E End-to-end transaction details =

DemoAPI
Search results « = Searchresults &4 Leammore [Copylink 2 Feedback ” Leave preview
;'"‘7'“ on = End-to-end transa

timestamp > 8/23/2023,

ction
Operation ID: a12786ff2f978d7ac711fb8d60a15af4

(timestamp < 8/24/2023, 33...

| 8724, 3:21:53 PM - DEPENDENCY
(Local)\MSSQLLocalDB | Demodb
Name: >
sal: QLLocalDB | Dem

Traces & events Orraces 0 vents

Filter to a specifi and call

All [Component | Call}

oDb
Duration: 498.1 s Call status: True

| 8/24,3:21:53 PM - REQUEST

Lot e Type Delais
GET /countries
URL > 321:53439PM B Dependency ~MName: SQL: (LocalDB)\MSSQLLocalDB | Demobb, Type: SQL, Call status: true, Duration: 498.1 ps
Response code: 200 " =

:21: : 2 : true, : 7.3 ms, URL: : :7157/
Response tme:73 ms 3:221:53439PM [Request MName: GET /countries, Successful request: true, Response time: 7.3 ms, URL: https://localhost:7157/c

1 8/24 3:21-52 PM - DEPENDENCY

OEBPS/images/534830_1_En_3_Chapter/534830_1_En_3_Fig2_HTML.jpg
4 &[0 Download
4 5[0 Helpers
b & C# AmazonS3PathBuilder.cs
b & C# AzureFileStoragePathBuilder.cs
b & C# FileExtensionHelper.cs
b &8 c# DownloadService.cs

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig6_HTML.jpg
© D Swagger Ul

& O localhost:

Parameters

No parameters

Clear

Responses

Request URL

nttps://localhost:7157/authorized

Server response

Code Details

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig55_HTML.jpg
GET https:/flocalhost:7157/ ® -+ oo

iiii® https://localhost:7157/v1/version2only

No Environment

) save Va

GET v /1 71571/

Params Authorization Headers (7)
ney

Postman-Token
Host
User-Agent
Accept

Accept-Encoding

[I < I < < IS

Connection

Body Cookies Headers (4) Test Results

Pretty Raw Preview Visualize

1

Body Pre-request Script Tests Settings

&

vaiue vescripuon ** DUIRCUIL FIESELS ¥

<calculated when request is sent>
<calculated when request is sent>
PostmanRuntime/7.32.3

Jpd

gzip, deflate, br

©| e |6 6| 6|6

keep-alive

Text v = (|

Cookies

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig5_HTML.jpg
Add a new project S o~

Clear all

Recent project templates Alllanguages ~ Alplatforms =

Alist of your recently accessed templates will be

s

e et Eq] ASP.| Nl'.T Core Web API O
Controller for a RESTul HTTP service. This iempllie can also be used fcrASP NET Core
MVC Views and Controllers.

C# Linux mac0S Windows Cloud Sevice Web

ASP.NET Core gRPC Service
A project template for creating a gRPC ASP.NET Core service.

gRPC

G+ linx mac0S Windows Cloud Semice Web
ASP.NET Core with Angular
A project template for creating an ASP.NET Core application with Angular

C# Llinux mac0S Windows Cloud Sevice Web

A project template for creating an ASP.NET Core application with React s

C# Llinux macOS Windows Cloud Sevice Web

ASP.NET Core with React s and Redux
A project template for creating an ASP.NET Core application with React s and Redux

@ ASP.NET Core with Reactjs

C# Llinux mac0S Windows Cloud Sewvice Web

NUnit Test Project
A project that contains NUnit tests that can run on .NET Core on Windows, Linux and
MacOS.

=l
[

C# linux mac0S Windows Desktop Test Web

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig5_HTML.jpg
Browser

Cache on browser

GET / HEAD OK (200)

Cache on proxy

Not reaching the server

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig5_HTML.jpg
= Microsoft Azure £ Search resources, services, and docs (G+/)
Home > DemoAPI

DemoAPI | Transaction search » +#

Application Insights

[£ search | « {) Refresh) Reset o Viewinlogs [Copylink 2 Feedback (7 Help
¥ Overview Local Time: Last 24 hours (Automatic) Event types = All selected v
B Activity log

(2

“o. Access control (IAM)

Severity leve Inionmauon
@ Tags | 8/24/2023, 4:30:58 PM - TRACE

Request finished HTTP/1.1 GET https://localhost:7157/countries - 500 null application/json; ch
X Diagnose and solve problems Severity level: Information

8/24/2023, 4:30:56 PM - EXCEPTION
Investigate Boh!!!! it has crashed!

Problem Id: System.Exception at Program+<>c_ DisplayClass0_0+<<<Main>$>b_3>d.MoveNext

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig66_HTML.jpg
| /countries/download

‘ Parameters Try it out

No parameters

| Responses

Code Description Links
200 No links

Success

“uriteTineout

i
404
Not Found
408 No links
Request Timeout
500 No links
Server Error

No links

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig5_HTML.jpg
OPT https:/flocalhost:7157/ ® 4+ oo No Environment v

i https://localhost:7157/hello 2 save - Va =

OPTIONS v https://localhost:7157/hello ‘ -
Cookies

Params Authorization Headers (8) Body * Pre-request Script Tests Settings

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL
Key Value Description +s+ Bulk Edit

lastactivitydate 2023-01-01

Key Des

Body Cookies Headers (4) TestResults & ims:Gst Size: 1308 [5) Save as Example eoo

Pretty Raw Preview Visualize Text v = o Q

1

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig5_HTML.jpg
app.MapPost("/countries/upload”, (IFormFile file,
{

Country 1]

Results.NoContent();

}) .DisableAntiforgery();

id 1
£ Name QUiew ~ “Canada®

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig18_HTML.jpg
s Py 4 X

&JMinimalApiDemo = =

0N UEWN

Elusing Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Mvc;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Hosting;
using Microsoft.OpenApi.Models;
using MinimalApiDemo.Services;

// Configure services
var builder = WebApplication.CreateBuilder(args);

builder.Services.AddScoped<IHelloService, HelloService>();
builder.Services.AddEndpointsApiExplorer();
Ebuilder.Services.AddSwaggerGen(c =>

i c.SwaggerDoc("vl", new OpenApilnfo { Title = "Api", Version = "vi" });
b;

// Configure and enable middlewares
var app = builder.Build();

E1if (app.Environment.IsDevelopment())
{

| app.UseDeveloperExceptionPage();
}

app.UseSwagger();
app.UseSwaggerUI(c => c.SwaggerEndpoint("/swagger/vl/swagger.json", "Api v1i"));

app.MapGet("/{name}", ([FromRoute] string name, IHelloService service) => service.Hello(name));

// Run the app
app.Run();

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig1_HTML.jpg
Incoming Request

Response

—)

 ——

Middleware 1

Middleware 2

Middleware 3

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig41_HTML.jpg
lapp.MapPost (" /countries/upl i data”, ([l] CountryMetaData countryetaData IFux‘IF:L'LeCollectlon fxlzs) =>
{

i Jreturn Results.Created() ; JERRIVELIEREERE]

}).DisableAntiforgery():

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig7_HTML.jpg
Additional information

ASP.NET Core Web APl ¢ Linuxx mac0S Windows Cloud Service Web

Framework ©®
.NET8.0
Authentication type ®
None
| Configure for HTTPS ®
Enable Docker @
(0]

| Use controllers (uncheck to use minimal APls) ®

| Enable OpenAPI support @
Do not use top-level statements @

‘WebAPI

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig47_HTML.jpg
GET https:/flocalhost:7157/ ® -+ e

No Environment

iiii® https://localhost:7157/version Save
GET v https://localhost:7157/version
Params Authorization Headers (7) Body Pre-requestScript Tests Settings
Key Value Description ++ Bulk Edit

Postman-Token @ <calculated when request is sent>

Host @ <calculated when request is sent>

User-Agent ©® PostmanRuntime/7.32.3

Accept ® *r

Accept-Encoding @ gzip, deflate, br

Connection @ keep-alive
E api-version 1.0 l

3s5ms 2228 [3)

Body Cookies Headers (6) Test Results

Visualize

Preview

Pretty Raw

Text v =

Cookies

Presets v

OEBPS/images/534830_1_En_2_Chapter/534830_1_En_2_Fig12_HTML.jpg
W & Startup.cs WeatherForecastController.cs

Sehema "!"‘ . S
ag B . . R -

"$schema”: “http://json e.org/1 json",
"iisSettings": {

"windowsAuthentication™: false,

"anonymousAuthentication”: true,

"iisExpress”: {

i "applicationUrl": “http://localhost:51384",

“sslPort": 44321

3

VRNV WN M
-

"

“profiles”: {
i “IIS Express™: {

"commandName™: "IISExpress”,

| "ASPNETCORE_ euvmomem" "Development™
i3

35
"WebAPIDemo": {

| "commandName": "Project”,

"dotnetRunMessages™: "true”,

"launchBrowser™: true,

"launchUrl": “swagger”,

“applicationUrl™: "https://localhost:5001;http://localhost:5000",
“environmentVariables™: {

| “ASPNETCORE_ENVIRONMENT": “Development™”

26 &
o

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig1_HTML.jpg
Authentication Service usage

JWT

Identity Protected
provider resource

Verification of the
issuer identity

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig2_HTML.jpg
No Environment

GET https://localhost:7157/co + oo

e AspN e8MinimalAP l=pier 2 | https:/flocalhost:7157/countries/ids B save v

GET s https://localhost:7157/countries/ids

Params Authorization Headers (7) Body Pre-request Script Tests Settings

Accept @
Accept-Encoding @ gzip, deflate, br
Connection @ keep-alive

I ids]

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig16_HTML.jpg
app.MapGet("/languages”, romHeader(Name = "lng")] stringl] lng) =>
4« @ing QView ~ {string[2]} 2

20 Quew -
1); @[] QView ~ "en"

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig7_HTML.jpg
app.MapPost("/Addresses"”, [(([FromBodyl| Address address) => {
lreturn Results.Created() ; EESEEIFHEREELES] 2 address

53

OEBPS/images/534830_1_En_BookFrontmatter_Figa_HTML.png
APIess®

OEBPS/images/534830_1_En_10_Chapter/534830_1_En_10_Fig7_HTML.jpg
-+ oo No Environment v

GET https://localhost:7157/; ®

iii® https://localhost:7157/authorized &) Save - Vel

et nepsiiocamostTileunozed s o
Params@ Headers (7) Body Pre-req. Tests Settings Cookies

Type
Token eyJOeXAIOIJKVIQILCIhbGCIOSUZIINI ..
IBouevToken v |

The authorization header will be
automatically generated when
you send the request. Learn
more about authorization »

Body Cookies Headers (5) Test Results € 2000k §94ms 193B [B) Save as

Pretty Raw Preview Visualize JSON v o Q

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig1_HTML.jpg
Client

Incoming Request

URL analysis with
pattern matching

Finding matching
endpoint

Processing request via
the right endpoint

-Ye:

Route found

OEBPS/images/534830_1_En_9_Chapter/534830_1_En_9_Fig3_HTML.jpg
7d08-4726-9bd(

Microsoft Azure

Home > DemoKeyVaultWebAPI

DemoKeyVaultWebAPI | Secrets %

Key vault

«

@ Overview

B Activity log

" Access control (IAM)

@ Tags

X Diagnose and solve problems

7= Access policies

-}~ Generate/mport |() Refresh 7 Restore Backup </> View sample code

A\ Quickly protect your certificates from acci ion by turning 3 in "Properties’ page. Click here to lean more. —
Name Type Status
Odbe-453-8384 fication/x-pkcs12 Enabled
DemoDb1 V Enabled
DemoDb2 + Enabled

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig25_HTML.jpg
app.MapPost("/countries”, ([FromBody] Country country, IValidator<Country> validator, ICountryMapper mapper) => {
var validationResult = validator.Validate(country);

if (validationResult.IsValid)

ar countryDto = mapper.Map(country);
4 @ countryDto {Domain.DT0s.CountryDto} -1 |

// do the thilfEDE eIV Mclos Sieiy]
g S Qe s ia.org/wikipedi of Canada
return Result = QView + “Canada®

}
return Results.ValidationProblem(validationResult.ToDictionary());
1);

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig38_HTML.jpg
POST https:/flocalhost:7157 ® 4 eo°

@ AsoNetCorealinimalAPls | https:/flocalhost:7157/countries

No Environment

2 Save

v

POST ¥,

Params Authorization Headers (11) Body * Pre-request Script Tests Settings

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

Key Value Description

files countries.csv X

files countries.csv X

7 =

Cookies

Bulk Edit

OEBPS/images/534830_1_En_7_Chapter/534830_1_En_7_Fig3_HTML.jpg
0 references
protected override async Task ExecuteAsync(CancellationToken cancellationToken)

{

await foreach (var fileContent in _channel.ReadAllAsync(cancellationToken))
{

try
{

! using (var scope = _serviceProvider.CreateScope())

{

uiredService<ICountryService>!
< 2ms elapsed
A

var service = scope.ServiceProvider.GetReg
await service.IngestFile(fileContent);

spNetCore.Htp.Ref o

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig64_HTML.jpg
Swagger

SMARTBEAR

ASP.NET Core 8 Minimal APls ©® %

'swagger/v2.0/swagger.jsor

V2 ~
m /v2/version v
m /v2/version2only A4

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig48_HTML.jpg
GET https:/flocalhost:7157/ ® -+ oo

i https://localhost:7157/version

No Environment v

|
L

[save ~ 4

GET v https://localhost:7157/version
Params Authorization Headers (7) Pre-request Script ~ Tests Settings Cookies
Key Value Description ++ Bulk Edit Presets v
Postman-Token @® <calculated when request is sent>
Host @ <calculated when request is sent>
User-Agent @® PostmanRuntime/7.32.3
Accept @ *r
Accept-Encoding @ gzip, deflate, br
Connection @ keep-alive
E api-version 20 I
Body Cookies Headers (6) Test Results @Aums 2228 000
Pretty Raw Preview Visualize Tet v o Q

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig12_HTML.jpg
GET https://localhost:7157/ ® -+ eo0

i https://localhost:7157/Health

No Environment

[save ~ Z &

GET v https://localhost:7157/Health

Params Auth Headers (6) Body Pre-req. Tests Settings

Query Params
Key Value

Key Value

Body Cookies Headers (9) Test Results

Pretty Raw Preview Visualize Text v =

1 Healthy

Description

Descriptio
@ 2000k 938ms 3268

Cookies
+++ Bulk Edit
[®) Save as Example oo
o Q

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig42_HTML.jpg
] some exe file.exe E3 |

Address o 1 2 3 4
00000000 |4d 5a|%0 00 03
00000010 b8 00 00 00 00
00000020 00 00 00 00 00

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig7_HTML.jpg
= Microsoft Azure

Home > DemoAPI

P Search resources, services, and docs (G+/)

. DemoAPI | Transaction search 2 *

Application Insights

O Search «

¥ Overview

B Activity log

. Access control (IAM)

@ Tags

X Diagnose and solve problems
Investigate

== Application map

% Smart detection

- Live metrics

® Transaction search

® Availability

5

Failures
& Performance

Troubleshooting guides
(preview)

Monitoring

W Alerts

) Refresh 9 Reset

Local Time: Last 24 hours (Automatic)

#® View in Logs

Event types = All

[[) copylink &7 Feedback (/' Help

selected *y

)

79 total results between

3:34:20 PM and 8/24/2023, 3:34:20 PM

8
60
0
20

o

0600PM

_‘ 0300PM Thu2e 0300AM 06:00 AM
(©) & e s o Y E=ym
(ES E -l P o il ol il

Results Grouped results (1)

T 3:221:53 PM - Y

(LocalDB)\MSSQLLocalDB | Demobb

Name: SQL: (LocalDB)\MSSQLLocalDB | DemoDb

| 8/24/2023, 3:21:53 PM - REQUEST

GET /countries

URL: https://localhost:7157/countries

Response code: 200

Duration: 498.1 s

Call status: True

Response time: 7.3 ms

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig29_HTML.jpg
DEL https://localhost:7157/c ® -+ ooo No Environment

@ Asph

DELETE v https://localhost:7157/countries/1

Params Authorization Headers (9) Body Pre-requestScript Tests Settings

@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL

ot |
Body Cookies Headers (3) Test Results @‘A Status:

Time: 12ms Size: 1128

Pretty Raw Preview Visualize Text v =

1

[2) Save as Example

©

{nimalArls | https:/flocalhost:7157/countries & save Vel

000

Q

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig51_HTML.jpg
GET https://localhost:7157/ @

4+ o

No Environment

i https://localhost:7157/version2only () save -~
‘ GET v https://localhost:7157/version2only
Params Authorization Headers (7) Pre-request Script Tests Settings
ney - vaue wescrnpuon *** DUIK CUIL

Postman-Token @ <calculated when request is sent>

Host @ <calculated when request is sent>

User-Agent @ PostmanRuntime/7.32.3

Accept () Fi75

Accept-Encoding @ gzip, deflate, br

Connection @ keep-alive

api-version 20 I

Body Cookies Headers (6) Test Results

i

Raw Preview Visualize

1 | Hello version 2 only

Text v =

Cookies

riesews v

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig1_HTML.jpg
D:\Personal\Book\apis\ Sourc X S (|52

infoj

info?

info

infoj

E1crosoft.Host1ng.L1fet1me[1u]

Microsoft.Hosting.Lifetime[0]

Application started. Press Ctrl+C to shut down.
Microsoft.Hosting.Lifetime[0]

Hosting environment: Development

Microsoft.Hosting.Lifetime[0]

Content root path: D:\Personal\Book\apis_Source code\Chapter 8\

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig3_HTML.jpg
Japp . MapGet("/countries/ids", k[FromHeader] CountryIds ids)l =
{ M

i Results.NoContent();

A lds 0 QView v Count=3 |

(210 1

1) m 2

' o 3
» © Raw View

OEBPS/images/534830_1_En_11_Chapter/534830_1_En_11_Fig1_HTML.jpg
Solution Explorer

A e-s 0@ [£={R

Search Solution Explorer (Ctrl+$)

F3 Solution ‘AspNetCore8MinimalApis' (5 of 5 projects)

57 AspNetCore8MinimalApis
BLL
[c#] Domain
Infrastructure.SQL
£ UnitTests
4 &8 Dependencies
b @ Analyzers
P =& Frameworks
4 _p Packages
‘® AutoFixture (4.18.0)
‘@ ExpectedObjects (3.5.4)
'® Microsoft.NET.Test.Sdk (17.7.1)
‘@ NSubstitute (5.0.0)
‘@ xunit (2.5.0)
'® xunit.runner.visualstudio (2.5.0)
4 -H_Pn'_:ie_cts
b 3 AspNetCore8MinimalApis

A ¥ 'V W W

v VvvwvVvvwvVvw

OEBPS/images/534830_1_En_8_Chapter/534830_1_En_8_Fig4_HTML.jpg
»

. Create work item Vv

RequestPath

TRACE
Information
Trace Properties Show all
Event time 8/24/2023, 4:14:39.3425699 PM (Local time)
Device type PC
Message Received 2 countries from the query
Severity level Information
Custom Properties
Connectionid OHMT4RQQK2RGO
MessageTemplate Received 2 countries from the query
Requestid OHMT4RQQK2RG0:00000002
SourceContext AspNetCore8MinimalApis
Application DemoAPI
Scope ["Getting countries with page index 1 and page size

107

/countries

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig57_HTML.jpg
Swagger

SMARTBEAR

ASP.NET Core 8 Minimal APIs ® <

AspNetCore8MinimalApis ~

m /versionneutral v

OEBPS/images/534830_1_En_6_Chapter/534830_1_En_6_Fig4_HTML.jpg
= @ (LocalDB)\MSSQLLocalDB (SQL Server 13.0.4001 - ALIENWARE-R11-A\antho)
= 1 Databases
@ ¥ System Databases
[# I Database Snapshots)
=]
1 Database Diagrams
= ¥ Tables
1 System Tables
1 FileTables
@ I External Tables
EH dbo._EFMigrationsHistory
BB dbo.Countries
T Views
1 External Resources
¥ Synonyms
1 Programmability
1 Service Broker
1 Storage
¥ Security

= i Carccodne

BEHBBBH

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig6_HTML.jpg
Use & UseMiddleware
Middlewares

UseWhen Middleware

Execution of the
principal pipeline

Map Middleware

Execution of the current
pipeline where the
Middleware is currently
executed

Execution of new
pipeline branch

Run Middleware

End of the
pipeline
execution

Execution of the
principal pipeline unless
anested Run
Middleware is executed

MapWhen Middleware

Execution of the current
pipeline where the
Middleware is currently
executed

Execution of new
pipeline branch

OEBPS/images/534830_1_En_11_Chapter/534830_1_En_11_Fig4_HTML.jpg
Test Explorer v X

Dr-C'o |51©1|00] A-HEDOS-

Search (Ctrl+) P~
Test run finished: 1 Tests (1 Passed, O Failed, 0 Skip 4 0 Warnings €3 0 Errors
Test Duration Trait
4 @ UnitTests (1) 93 ms
4 @ UnitTests.Countries (1) 93 ms
4 @ GetCountriesTests (1) 93ms

@ WhenGetCountriesReceivesNullPagingParamete... 93 ms

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig54_HTML.jpg
GET https://localhost:7157/ ®

+ oo

iiii* https://localhost:7157/versionneutral

GET v 7157/
Params Authorization Headers (7) Body Pre-request Script Tests
ney —_— vaiue
Postman-Token @ <calculated when request is sent>
Host @ <calculated when request is sent>
User-Agent @ PostmanRuntime/7.32.3
Accept ® "
Accept-Encoding @ gzip, deflate, br
Connection @ keep-alive
api-version 30

Body Cookies Headers (4) Test Results

Pretty
1

Raw Preview Visualize

@ | 400 Bad Request [8ms 1328 [7)

Settings

wvescripuon

No Environment v

B save - z IB

DuIK CuIt

Cookies

riesews v

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig9_HTML.jpg
D:\Personal\Book\apis_Sourc X EE = o X

Now listening on: https://localhost:7157
info: Microsoft.Hosting.Lifetime[14]
Now listening on: http://localhost:5223
info: Microsoft.Hosting.Lifetime[@]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[®]
Content root path: D:\Personal\Book\apis_Source code\Chapter 2\AspNetCore8MinimalApi
s\AspNetCore8MinimalApis
info: AspNetCore8MinimalApis[e]
Middleware 1 executed
info: AspNetCore8MinimalApis[e]

info: AspNetCore8MinimalApis[@]
Middleware 1 executed

info: AspNetCore8MinimalApis[e]
Middleware 2 executed

info: AspNetCore8MinimalApis[e]

Endpoint GET /test has been invoked

OEBPS/images/534830_1_En_6_Chapter/534830_1_En_6_Fig1_HTML.jpg
BLL

Services

Dependency for Dependency Injection purpose onl a 2
B 4 B L pup implementation

Dependency

Input parameters DTOs / Domain objects

API layer Mapping interface ependency- gepyices interfaces Domain layer
Mapping implementation Repository interfaces
Repository Infrastructure
Dependency for Dependency Injection purpose onl implementation layer (SQL)
Repository Infrastructure
layer (HTTP)

Dependency for Dependency Injection purpose onlj implementation

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig35_HTML.jpg
POST https:/flocalhost:7157 ® + oo No Environment v
fiic) MinmalAPis | httpsifflocalhost:7157/countries Save - 4
o e .
Params Authorization Headers (11) Body ¢ Pre-request Script Tests Settings Cookies
@ noi © x-www-form-urlencoded @ raw @ binary @ GraphQL

Value Description +++ Bulk Edit

2 fie

countries.csv X

Body Cookies

Pretty
1

Raw

Headers (4)

Preview

Test Results

Visualize

(&, | Status: 201 Created [Time: 16.23s Size: 128B [3) Save as Example oo

Text = O Q

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig32_HTML.jpg
GET https://localhost:7157/ ® -+ ese

No Environment v
fiib AcolNetCorealinmaitls | https:/flocalhost:7157/countries [save val -
o B8

Params Authorization Headers (9) Body Pre-request Script Tests Settings Cookies
@ none @ form-data @ x-www-form-urlencoded @ raw @ binary @ GraphQL
Body Cookies Headers (6) TestResults & Sla(Time: Sms Size: 5558 [Z) Save as Example coo
Pretty Raw Preview Visualize Tt v | =S o Q

1 |1,Canada,Maple leaf country, https://anthonygiretti.blob.core.windows.net/countryflags/ca.pn;

2 |2,USA,Federal republic of 50 states,https://anthonygiretti.blob.core.windows.net/countryflags/us.png

3 |3,Mexico,"Land of deserts, forests and high mountains®, https://anthonygiretti.blob.core.windows.net/countryflags/
mx.png

a || =

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig10_HTML.jpg
P {MapPut("/Ad: /{addressId}*, ([Fr e] int addressId, |[FromForm] Address address) => {
- Re + @ address (AspNetCore8MinimalApis.Models Address)

}).DisableAntiforgery(); ; ?«mxy &;‘: e e
& PostalCode 20500
& StreetName QView v "Pennsylvania”
/¥ StreetNumber 1600

StrectType QUiew ~ “Avenue”

OEBPS/images/534830_1_En_5_Chapter/534830_1_En_5_Fig12_HTML.jpg
D:\Personal\Book\apis\ Sourc X RN = (m] X

Now listening on: https://localhost:7157
info: Microsoft.Hosting.Lifetime[14]
Now listening on: http://localhost:5223
info: Microsoft.Hosting.Lifetime[0]
Application started. Press Ctrl+C to shut down.
info: Microsoft.Hosting.Lifetime[0]
Hosting environment: Development
info: Microsoft.Hosting.Lifetime[0]
Content root path: D:\Personal\Book\apis_Source code\Chapter 2\AspNetCore8MinimalApi
s\AspNetCore8MinimalApis
info: AspNetCore8MinimalApis[@]
Middleware 1 executed
info: AspNetCore8MinimalApis.Middlewares.LoggingMiddleware[6]
LoggingMiddleware executed
info: AspNetCore8MinimalApis[6]
Middleware 1 executed
info: AspNetCore8MinimalApis.Middlewares.LoggingMiddleware[8]
LoggingMiddleware executed
info: AspNetCore8MinimalApis[@]
Endpoint GET /test has been invoked

OEBPS/images/534830_1_En_4_Chapter/534830_1_En_4_Fig13_HTML.jpg
app.MapGet("/Addresses”,

)

return Results.Ok();

([FromHeader] string coordinates, [FromQuery] int? limitCountSearch) =>
@ coordinates Q View ~ "38.89809335481432, -77.03643600396796"

