
PAUL DEITEL
HARVEY DEITEL

NINTHNINTH
EDITION

HOW TO PROGRAMHOW TO HOW TO PROGRAMHOW TO HOW TO PROGRAMHOW TO HOW TO PROGRAM

with
Case Studies Introducing

Applications
Programming and

Systems
Programming

Deitel® Ser ies Page
Intro to Series
Intro to Python® for Computer Science

and Data Science: Learning to Program
with AI, Big Data and the Cloud

How To Program Series
C How to Program, 9/E
Java™ How to Program, Early Objects

Version, 11/E
Java™ How to Program, Late Objects

Version, 11/E
C++ How to Program, 10/E
Android™ How to Program, 3/E
Internet & World Wide Web How to

Program, 5/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E

LiveLessons Video Training
https://deitel.com/LiveLessons/

Python® Fundamentals
Java™ Fundamentals
C++20 Fundamentals
C11/C18 Fundamentals
C# 6 Fundamentals
Android™ 6 Fundamentals, 3/E
C# 2012 Fundamentals
JavaScript Fundamentals
Swift™ Fundamentals

REVEL™ Interactive Multimedia
REVEL™ for Deitel Java™
REVEL™ for Deitel Python®

E-Books
https://VitalSource.com
https://RedShelf.com
https://Chegg.com

Intro to Python® for Computer Science
and Data Science: Learning to Program
with AI, Big Data and the Cloud

Java™ How to Program, 10/E and 11/E
C++ How to Program, 9/E and 10/E
C How to Program, 8/E and 9/E
Android™ How to Program, 2/E and 3/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® How to Program, 6/E

Deitel® Developer Series
Python® for Programmers
Java™ for Programmers, 4/E
C++20 for Programmers
Android™ 6 for Programmers: An App-

Driven Approach, 3/E
C for Programmers with an Introduction

to C11
C# 6 for Programmers
JavaScript for Programmers
Swift™ for Programmers

To receive updates on Deitel publications, please join the Deitel communities on
• Facebook®—https://facebook.com/DeitelFan

• Twitter®—@deitel

• LinkedIn®—https://linkedin.com/company/deitel-&-associates

• YouTube™—https://youtube.com/DeitelTV

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Deitel programming-languages corporate training offered online
and on-site worldwide, write to deitel@deitel.com or visit:
 https://deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
https://deitel.com
https://pearson.com/deitel

https://deitel.com/LiveLessons/
https://VitalSource.com
https://RedShelf.com
https://Chegg.com
https://facebook.com/DeitelFan
https://linkedin.com/company/deitel-&-associates
https://deitel.com/training/
https://deitel.com
https://pearson.com/deitel
mailto:deitel@deitel.com
mailto:deitel@deitel.com
https://youtube.com/DeitelTV

Content Development: Tracy Johnson
Content Management: Dawn Murrin, Tracy Johnson
Content Production: Carole Snyder
Product Management: Holly Stark
Product Marketing: Wayne Stevens
Rights and Permissions: Anjali Singh

Please contact https://support.pearson.com/getsupport/s/ with any queries on
this content.

Copyright © 2022 by Pearson Education, Inc. or its affiliates, 221 River Street,
Hoboken, NJ 07030. All Rights Reserved. Manufactured in the United States of
America. This publication is protected by copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights and
Permissions department, please visit https://www.pearsoned.com/permissions/.

PEARSON, ALWAYS LEARNING, and REVEL are exclusive trademarks owned by
Pearson Education, Inc. or its affiliates in the U.S. and/or other countries. Unless oth-
erwise indicated herein, any third-party trademarks, logos, or icons that may appear
in this work are the property of their respective owners, and any references to third-
party trademarks, logos, icons, or other trade dress are for demonstrative or descrip-
tive purposes only. Such references are not intended to imply any sponsorship,
endorsement, authorization, or promotion of Pearson’s products by the owners of
such marks, or any relationship between the owner and Pearson Education, Inc., or
its affiliates, authors, licensees, or distributors. Library of Congress Cataloging-in-
Publication Data

Library of Congress Cataloging-in-Publication Data
On file

ScoutAutomatedPrintCode

ISBN-10: 0-13-540467-3
ISBN-13: 978-0-13-739839-3

https://support.pearson.com/getsupport/s/
https://www.pearsoned.com/permissions/
https://www.pearsoned.com/permissions/

In memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

Trademarks
DEITEL and the double-thumbs-up bug are registered trademarks of Deitel and Asso-
ciates, Inc.

Apple, Xcode, Swift, Objective-C, iOS and macOS are trademarks or registered
trademarks of Apple, Inc.

Java is a registered trademark of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds.

Microsoft and/or its respective suppliers make no representations about the suit-
ability of the information contained in the documents and related graphics published
as part of the services for any purpose. All such documents and related graphics are
provided “as is” without warranty of any kind. Microsoft and/or its respective sup-
pliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied
or statutory, fitness for a particular purpose, title and non-infringement. In no event
shall Microsoft and/or its respective suppliers be liable for any special, indirect or con-
sequential damages or any damages whatsoever resulting from loss of use, data or
profits, whether in an action of contract, negligence or other tortious action, arising
out of or in connection with the use or performance of information available from
the services.

The documents and related graphics contained herein could include technical inac-
curacies or typographical errors. Changes are periodically added to the information
herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial
screen shots may be viewed in full within the software version specified.

Other names may be trademarks of their respective owners.

Appendices D–G are PDF documents posted online at the book’s Companion
Website (located at https://www.pearson.com/deitel).

Preface xix

Before You Begin li

1 Introduction to Computers and C 1
1.1 Introduction 2
1.2 Hardware and Software 4

1.2.1 Moore’s Law 4
1.2.2 Computer Organization 5

1.3 Data Hierarchy 8
1.4 Machine Languages, Assembly Languages and High-Level Languages 11
1.5 Operating Systems 13
1.6 The C Programming Language 16
1.7 The C Standard Library and Open-Source Libraries 18
1.8 Other Popular Programming Languages 19
1.9 Typical C Program-Development Environment 21

1.9.1 Phase 1: Creating a Program 21
1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program 21
1.9.3 Phase 4: Linking 22
1.9.4 Phase 5: Loading 23
1.9.5 Phase 6: Execution 23
1.9.6 Problems That May Occur at Execution Time 23
1.9.7 Standard Input, Standard Output and Standard Error Streams 24

1.10 Test-Driving a C Application in Windows, Linux and macOS 24
1.10.1 Compiling and Running a C Application with Visual Studio

2019 Community Edition on Windows 10 25
1.10.2 Compiling and Running a C Application with Xcode on

macOS 29

Contents

https://www.pearson.com/deitel

viii Contents

1.10.3 Compiling and Running a C Application with GNU gcc
on Linux 32

1.10.4 Compiling and Running a C Application in a GCC Docker
Container Running Natively over Windows 10, macOS
or Linux 34

1.11 Internet, World Wide Web, the Cloud and IoT 35
1.11.1 The Internet: A Network of Networks 36
1.11.2 The World Wide Web: Making the Internet User-Friendly 37
1.11.3 The Cloud 37
1.11.4 The Internet of Things 38

1.12 Software Technologies 39
1.13 How Big Is Big Data? 39

1.13.1 Big-Data Analytics 45
1.13.2 Data Science and Big Data Are Making a Difference: Use Cases 46

1.14 Case Study—A Big-Data Mobile Application 47
1.15 AI—at the Intersection of Computer Science and Data Science 48

2 Intro to C Programming 55
2.1 Introduction 56
2.2 A Simple C Program: Printing a Line of Text 56
2.3 Another Simple C Program: Adding Two Integers 60
2.4 Memory Concepts 64
2.5 Arithmetic in C 65
2.6 Decision Making: Equality and Relational Operators 69
2.7 Secure C Programming 73

3 Structured Program Development 85
3.1 Introduction 86
3.2 Algorithms 86
3.3 Pseudocode 87
3.4 Control Structures 88
3.5 The if Selection Statement 90
3.6 The if…else Selection Statement 92
3.7 The while Iteration Statement 96
3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration 97
3.9 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 2: Sentinel-Controlled Iteration 99
3.10 Formulating Algorithms with Top-Down, Stepwise Refinement

Case Study 3: Nested Control Statements 106
3.11 Assignment Operators 110
3.12 Increment and Decrement Operators 111
3.13 Secure C Programming 114

Contents ix

4 Program Control 133
4.1 Introduction 134
4.2 Iteration Essentials 134
4.3 Counter-Controlled Iteration 135
4.4 for Iteration Statement 136
4.5 Examples Using the for Statement 140
4.6 switch Multiple-Selection Statement 144
4.7 do…while Iteration Statement 150
4.8 break and continue Statements 151
4.9 Logical Operators 153
4.10 Confusing Equality (==) and Assignment (=) Operators 157
4.11 Structured-Programming Summary 158
4.12 Secure C Programming 163

5 Functions 179
5.1 Introduction 180
5.2 Modularizing Programs in C 180
5.3 Math Library Functions 182
5.4 Functions 183
5.5 Function Definitions 184

5.5.1 square Function 184
5.5.2 maximum Function 187

5.6 Function Prototypes: A Deeper Look 188
5.7 Function-Call Stack and Stack Frames 191
5.8 Headers 195
5.9 Passing Arguments by Value and by Reference 197
5.10 Random-Number Generation 197
5.11 Random-Number Simulation Case Study: Building a Casino Game 202
5.12 Storage Classes 207
5.13 Scope Rules 209
5.14 Recursion 212
5.15 Example Using Recursion: Fibonacci Series 216
5.16 Recursion vs. Iteration 219
5.17 Secure C Programming—Secure Random-Number Generation 222

Random-Number Simulation Case Study: The Tortoise and the Hare 241

6 Arrays 243
6.1 Introduction 244
6.2 Arrays 244
6.3 Defining Arrays 246
6.4 Array Examples 246

x Contents

6.4.1 Defining an Array and Using a Loop to Set the Array’s
Element Values 247

6.4.2 Initializing an Array in a Definition with an Initializer List 248
6.4.3 Specifying an Array’s Size with a Symbolic Constant and

Initializing Array Elements with Calculations 249
6.4.4 Summing the Elements of an Array 250
6.4.5 Using Arrays to Summarize Survey Results 250
6.4.6 Graphing Array Element Values with Bar Charts 252
6.4.7 Rolling a Die 60,000,000 Times and Summarizing

the Results in an Array 253
6.5 Using Character Arrays to Store and Manipulate Strings 255

6.5.1 Initializing a Character Array with a String 255
6.5.2 Initializing a Character Array with an Initializer List

of Characters 255
6.5.3 Accessing the Characters in a String 255
6.5.4 Inputting into a Character Array 255
6.5.5 Outputting a Character Array That Represents a String 256
6.5.6 Demonstrating Character Arrays 256

6.6 Static Local Arrays and Automatic Local Arrays 258
6.7 Passing Arrays to Functions 260
6.8 Sorting Arrays 264
6.9 Intro to Data Science Case Study: Survey Data Analysis 267
6.10 Searching Arrays 272

6.10.1 Searching an Array with Linear Search 272
6.10.2 Searching an Array with Binary Search 274

6.11 Multidimensional Arrays 278
6.11.1 Illustrating a Two-Dimensional Array 278
6.11.2 Initializing a Double-Subscripted Array 279
6.11.3 Setting the Elements in One Row 281
6.11.4 Totaling the Elements in a Two-Dimensional Array 281
6.11.5 Two-Dimensional Array Manipulations 281

6.12 Variable-Length Arrays 285
6.13 Secure C Programming 289

7 Pointers 309
7.1 Introduction 310
7.2 Pointer Variable Definitions and Initialization 311
7.3 Pointer Operators 312
7.4 Passing Arguments to Functions by Reference 315
7.5 Using the const Qualifier with Pointers 319

7.5.1 Converting a String to Uppercase Using a Non-Constant
Pointer to Non-Constant Data 320

Contents xi

7.5.2 Printing a String One Character at a Time Using a
Non-Constant Pointer to Constant Data 320

7.5.3 Attempting to Modify a Constant Pointer to
Non-Constant Data 322

7.5.4 Attempting to Modify a Constant Pointer to Constant Data 323
7.6 Bubble Sort Using Pass-By-Reference 324
7.7 sizeof Operator 328
7.8 Pointer Expressions and Pointer Arithmetic 330

7.8.1 Pointer Arithmetic Operators 331
7.8.2 Aiming a Pointer at an Array 331
7.8.3 Adding an Integer to a Pointer 331
7.8.4 Subtracting an Integer from a Pointer 332
7.8.5 Incrementing and Decrementing a Pointer 332
7.8.6 Subtracting One Pointer from Another 332
7.8.7 Assigning Pointers to One Another 332
7.8.8 Pointer to void 332
7.8.9 Comparing Pointers 333

7.9 Relationship between Pointers and Arrays 333
7.9.1 Pointer/Offset Notation 333
7.9.2 Pointer/Subscript Notation 334
7.9.3 Cannot Modify an Array Name with Pointer Arithmetic 334
7.9.4 Demonstrating Pointer Subscripting and Offsets 334
7.9.5 String Copying with Arrays and Pointers 336

7.10 Arrays of Pointers 338
7.11 Random-Number Simulation Case Study: Card Shuffling and Dealing 339
7.12 Function Pointers 344

7.12.1 Sorting in Ascending or Descending Order 344
7.12.2 Using Function Pointers to Create a Menu-Driven System 347

7.13 Secure C Programming 349

Special Section: Building Your Own Computer as a Virtual Machine 362
Special Section—Embedded Systems Programming Case Study:
Robotics with the Webots Simulator 369

8 Characters and Strings 387
8.1 Introduction 388
8.2 Fundamentals of Strings and Characters 388
8.3 Character-Handling Library 390

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit 391
8.3.2 Functions islower, isupper, tolower and toupper 393
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph 394

8.4 String-Conversion Functions 396
8.4.1 Function strtod 396

xii Contents

8.4.2 Function strtol 397
8.4.3 Function strtoul 398

8.5 Standard Input/Output Library Functions 399
8.5.1 Functions fgets and putchar 399
8.5.2 Function getchar 401
8.5.3 Function sprintf 401
8.5.4 Function sscanf 402

8.6 String-Manipulation Functions of the String-Handling Library 403
8.6.1 Functions strcpy and strncpy 404
8.6.2 Functions strcat and strncat 405

8.7 Comparison Functions of the String-Handling Library 406
8.8 Search Functions of the String-Handling Library 408

8.8.1 Function strchr 409
8.8.2 Function strcspn 410
8.8.3 Function strpbrk 410
8.8.4 Function strrchr 411
8.8.5 Function strspn 411
8.8.6 Function strstr 412
8.8.7 Function strtok 413

8.9 Memory Functions of the String-Handling Library 414
8.9.1 Function memcpy 415
8.9.2 Function memmove 416
8.9.3 Function memcmp 416
8.9.4 Function memchr 417
8.9.5 Function memset 417

8.10 Other Functions of the String-Handling Library 419
8.10.1 Function strerror 419
8.10.2 Function strlen 419

8.11 Secure C Programming 420
Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua
Boklnxhmywex 434
Secure C Programming Case Study: Public-Key Cryptography 440

9 Formatted Input/Output 449
9.1 Introduction 450
9.2 Streams 450
9.3 Formatting Output with printf 451
9.4 Printing Integers 452
9.5 Printing Floating-Point Numbers 453

9.5.1 Conversion Specifiers e, E and f 454
9.5.2 Conversion Specifiers g and G 454
9.5.3 Demonstrating Floating-Point Conversion Specifiers 455

9.6 Printing Strings and Characters 456

Contents xiii

9.7 Other Conversion Specifiers 457
9.8 Printing with Field Widths and Precision 458

9.8.1 Field Widths for Integers 458
9.8.2 Precisions for Integers, Floating-Point Numbers and Strings 459
9.8.3 Combining Field Widths and Precisions 460

9.9 printf Format Flags 461
9.9.1 Right- and Left-Alignment 461
9.9.2 Printing Positive and Negative Numbers with and without

the + Flag 462
9.9.3 Using the Space Flag 462
9.9.4 Using the # Flag 463
9.9.5 Using the 0 Flag 463

9.10 Printing Literals and Escape Sequences 464
9.11 Formatted Input with scanf 465

9.11.1 scanf Syntax 466
9.11.2 scanf Conversion Specifiers 466
9.11.3 Reading Integers 467
9.11.4 Reading Floating-Point Numbers 468
9.11.5 Reading Characters and Strings 468
9.11.6 Using Scan Sets 469
9.11.7 Using Field Widths 470
9.11.8 Skipping Characters in an Input Stream 471

9.12 Secure C Programming 472

10 Structures, Unions, Bit Manipulation and
Enumerations 481

10.1 Introduction 482
10.2 Structure Definitions 483

10.2.1 Self-Referential Structures 483
10.2.2 Defining Variables of Structure Types 484
10.2.3 Structure Tag Names 484
10.2.4 Operations That Can Be Performed on Structures 484

10.3 Initializing Structures 486
10.4 Accessing Structure Members with . and -> 486
10.5 Using Structures with Functions 488
10.6 typedef 488
10.7 Random-Number Simulation Case Study: High-Performance Card

Shuffling and Dealing 489
10.8 Unions 492

10.8.1 union Declarations 493
10.8.2 Allowed unions Operations 493
10.8.3 Initializing unions in Declarations 493
10.8.4 Demonstrating unions 494

xiv Contents

10.9 Bitwise Operators 495
10.9.1 Displaying an Unsigned Integer’s Bits 496
10.9.2 Making Function displayBits More Generic and Portable 497
10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and

Complement Operators 498
10.9.4 Using the Bitwise Left- and Right-Shift Operators 501
10.9.5 Bitwise Assignment Operators 503

10.10 Bit Fields 504
10.10.1 Defining Bit Fields 504
10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color 505
10.10.3 Unnamed Bit Fields 507

10.11 Enumeration Constants 507
10.12 Anonymous Structures and Unions 509
10.13 Secure C Programming 510

Special Section: Raylib Game-Programming Case Studies 520
Game-Programming Case Study Exercise: SpotOn Game 526
Game-Programming Case Study: Cannon Game 527
Visualization with raylib—Law of Large Numbers Animation 529
Case Study: The Tortoise and the Hare with raylib—
a Multimedia “Extravaganza” 531
Random-Number Simulation Case Study: High-Performance
Card Shuffling and Dealing with Card Images and raylib 533

11 File Processing 539
11.1 Introduction 540
11.2 Files and Streams 540
11.3 Creating a Sequential-Access File 542

11.3.1 Pointer to a FILE 543
11.3.2 Using fopen to Open a File 543
11.3.3 Using feof to Check for the End-of-File Indicator 543
11.3.4 Using fprintf to Write to a File 544
11.3.5 Using fclose to Close a File 544
11.3.6 File-Open Modes 545

11.4 Reading Data from a Sequential-Access File 547
11.4.1 Resetting the File Position Pointer 548
11.4.2 Credit Inquiry Program 548

11.5 Random-Access Files 552
11.6 Creating a Random-Access File 553
11.7 Writing Data Randomly to a Random-Access File 555

11.7.1 Positioning the File Position Pointer with fseek 557
11.7.2 Error Checking 558

11.8 Reading Data from a Random-Access File 558

Contents xv

11.9 Case Study: Transaction-Processing System 560
11.10 Secure C Programming 566

AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works? 576
AI/Data-Science Case Study—Machine Learning with GNU
Scientific Library 582
AI/Data-Science Case Study: Time Series and Simple
Linear Regression 588
Web Services and the Cloud Case Study—libcurl and
OpenWeatherMap 589

12 Data Structures 595
12.1 Introduction 596
12.2 Self-Referential Structures 597
12.3 Dynamic Memory Management 598
12.4 Linked Lists 599

12.4.1 Function insert 603
12.4.2 Function delete 605
12.4.3 Functions isEmpty and printList 607

12.5 Stacks 608
12.5.1 Function push 612
12.5.2 Function pop 613
12.5.3 Applications of Stacks 613

12.6 Queues 614
12.6.1 Function enqueue 619
12.6.2 Function dequeue 620

12.7 Trees 621
12.7.1 Function insertNode 624
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 625
12.7.3 Duplicate Elimination 626
12.7.4 Binary Tree Search 626
12.7.5 Other Binary Tree Operations 626

12.8 Secure C Programming 627
Special Section: Systems Software Case Study—Building Your
Own Compiler 636

13 Computer-Science Thinking: Sorting Algorithms
and Big O 657

13.1 Introduction 658
13.2 Efficiency of Algorithms: Big O 659

13.2.1 O(1) Algorithms 659
13.2.2 O(n) Algorithms 659
13.2.3 O(n2) Algorithms 659

xvi Contents

13.3 Selection Sort 660
13.3.1 Selection Sort Implementation 661
13.3.2 Efficiency of Selection Sort 664

13.4 Insertion Sort 665
13.4.1 Insertion Sort Implementation 665
13.4.2 Efficiency of Insertion Sort 668

13.5 Case Study: Visualizing the High-Performance Merge Sort 668
13.5.1 Merge Sort Implementation 669
13.5.2 Efficiency of Merge Sort 673
13.5.3 Summarizing Various Algorithms’ Big O Notations 674

14 Preprocessor 681
14.1 Introduction 682
14.2 #include Preprocessor Directive 683
14.3 #define Preprocessor Directive: Symbolic Constants 683
14.4 #define Preprocessor Directive: Macros 684

14.4.1 Macro with One Argument 685
14.4.2 Macro with Two Arguments 686
14.4.3 Macro Continuation Character 686
14.4.4 #undef Preprocessor Directive 686
14.4.5 Standard-Library Macros 686
14.4.6 Do Not Place Expressions with Side Effects in Macros 687

14.5 Conditional Compilation 687
14.5.1 #if…#endif Preprocessor Directive 687
14.5.2 Commenting Out Blocks of Code with #if…#endif 688
14.5.3 Conditionally Compiling Debug Code 688

14.6 #error and #pragma Preprocessor Directives 689
14.7 # and ## Operators 690
14.8 Line Numbers 690
14.9 Predefined Symbolic Constants 691
14.10 Assertions 691
14.11 Secure C Programming 692

15 Other Topics 699
15.1 Introduction 700
15.2 Variable-Length Argument Lists 700
15.3 Using Command-Line Arguments 702
15.4 Compiling Multiple-Source-File Programs 704

15.4.1 extern Declarations for Global Variables in Other Files 704
15.4.2 Function Prototypes 705
15.4.3 Restricting Scope with static 705

15.5 Program Termination with exit and atexit 706
15.6 Suffixes for Integer and Floating-Point Literals 708

Contents xvii

15.7 Signal Handling 708
15.8 Dynamic Memory Allocation Functions calloc and realloc 711
15.9 goto: Unconditional Branching 713

A Operator Precedence Chart 719

B ASCII Character Set 721

C Multithreading/Multicore and Other
C18/C11/C99 Topics 723

C.1 Introduction 724
C.2 Headers Added in C99 725
C.3 Designated Initializers and Compound Literals 725
C.4 Type bool 727
C.5 Complex Numbers 728
C.6 Macros with Variable-Length Argument Lists 730
C.7 Other C99 Features 730

C.7.1 Compiler Minimum Resource Limits 730
C.7.2 The restrict Keyword 730
C.7.3 Reliable Integer Division 731
C.7.4 Flexible Array Members 731
C.7.5 Type-Generic Math 732
C.7.6 Inline Functions 732
C.7.7 __func__ Predefined Identifier 732
C.7.8 va_copy Macro 733

C.8 C11/C18 Features 733
C.8.1 C11/C18 Headers 733
C.8.2 quick_exit Function 733
C.8.3 Unicode® Support 733
C.8.4 _Noreturn Function Specifier 734
C.8.5 Type-Generic Expressions 734
C.8.6 Annex L: Analyzability and Undefined Behavior 734
C.8.7 Memory Alignment Control 735
C.8.8 Static Assertions 735
C.8.9 Floating-Point Types 735

C.9 Case Study: Performance with Multithreading and Multicore Systems 736
C.9.1 Example: Sequential Execution of Two

Compute-Intensive Tasks 739
C.9.2 Example: Multithreaded Execution of Two

Compute-Intensive Tasks 741
C.9.3 Other Multithreading Features 745

xviii Contents

D Intro to Object-Oriented Programming Concepts 747
D.1 Introduction 747
D.2 Object-Oriented Programming Languages 747
D.3 Automobile as an Object 748
D.4 Methods and Classes 748
D.5 Instantiation 748
D.6 Reuse 748
D.7 Messages and Method Calls 749
D.8 Attributes and Instance Variables 749
D.9 Inheritance 749
D.10 Object-Oriented Analysis and Design (OOAD) 750

Index 751

Online Appendices
D Number Systems

E Using the Visual Studio Debugger

F Using the GNU gdb Debugger

G Using the Xcode Debugger

An Innovative C Programming Textbook for the 2020s
Good programmers write code that humans can understand.1

—Martin Fowler

I think that it's extraordinarily important that we in computer science keep fun in
computing.2

—Alan Perlis

Welcome to C How to Program, Ninth Edition. We present a friendly, contemporary,
code-intensive, case-study-oriented introduction to C—which is among the world’s
most popular programming languages.3 Whether you’re a student, an instructor or a
professional programmer, this book has much to offer you. In this Preface, we present
the “soul of the book.”

At the heart of the book is the Deitel signature live-code approach—we generally
present concepts in the context of 147 complete, working, real-world C programs,
rather than in code snippets. We follow each code example with one or more live pro-
gram input/output dialogs. All the code is provided free for download at
 https://deitel.com/c-how-to-program-9-e
 https://pearson.com/deitel

You should execute each program in parallel with reading the text, making your
learning experience “come alive.”

For many decades:

• computer hardware has rapidly been getting faster, cheaper and smaller,

• Internet bandwidth (that is, its information-carrying capacity) has rapidly
been getting larger and cheaper, and

• quality computer software has become ever more abundant and often free or
nearly free through the open-source movement.

1. Martin Fowler (with contributions by Kent Beck). Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999. p. 15.

2. Alan Perlis, Quoted in the book dedication of The Structure and Interpretation of Computer Pro-
grams, 2/e by Hal Abelson, Gerald Jay Sussman and Julie Sussman. McGraw-Hill. 1996.

3. Tiobe Index for November 2020. Accessed November 9, 2020. https://www.tiobe.com/
tiobe-index/.

Preface

https://deitel.com/c-how-to-program-9-e
https://pearson.com/deitel
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

xx Preface

We’ll say lots more about these important trends. The Internet of Things (IoT) is
already connecting tens of billions of computerized devices of every imaginable type.
These generate enormous volumes of data (one form of “big data”) at rapidly increas-
ing speeds and quantities. And most computing will eventually be performed online
in “the Cloud”—that is, by using computing services accessible over the Internet.

For the novice, the book’s early chapters establish a solid foundation in program-
ming fundamentals. The mid-range to high-end chapters and the 20+ case studies ease
novices into the world of professional software-development challenges and practices.

Given the extraordinary performance demands that today’s applications place on
computer hardware, software and the Internet, professionals often choose C to build
the most performance-intensive portions of these applications. Throughout the book,
we emphasize performance issues to help you prepare for industry.

The book’s modular architecture (see the chart on the inside front cover) makes
it appropriate for several audiences:

• Introductory and intermediate college programming courses in Computer
Science, Computer Engineering, Information Systems, Information Technolo-
gy, Software Engineering and related disciplines.

• Science, technology, engineering and math (STEM) college courses with a
programming component.

• Professional industry training courses.

• Experienced professionals learning C to prepare for upcoming software-
development projects.

We’ve enjoyed writing nine editions of this book over the last 29 years. We hope you’ll
find C How to Program, 9/e informative, challenging and entertaining as you prepare to
develop leading-edge, high-performance applications and systems in your career.

New and Updated Features in This Ninth Edition
Here, we briefly overview some of this edition’s new and updated features. There are
many more. The sections that follow provide more details:

• We added a one-page color Table of Contents chart on the inside front cover,
making it easy for you to see the entire book from “40,000 feet.” This chart
emphasizes the book’s modular architecture and lists most of the case studies.

• Some of the case studies are book sections that walk through the complete
source code—these are supported by end-of-chapter exercises that might ask
you to modify the code presented in the text or take on related challenges.
Some are exercises with detailed specifications from which you should be able
to develop the code solution on your own. Some are exercises that ask you to
visit websites that contain nice tutorials. And some are exercises that ask you
to visit developer websites where there may be code to study, but no tutori-
als—and the code may not be well commented. Instructors will decide which
of the case studies are appropriate for their particular audiences.

 New and Updated Features in This Ninth Edition xxi

• We adhere to the C11/C18 standards.
• We tested all the code for correctness on the Windows, macOS and Linux

operating systems using the latest versions of the Visual C++, Xcode and
GNU gcc compilers, respectively, noting differences among the platforms.
See the Before You Begin section that follows this Preface for software instal-
lation instructions.

• We used the clang-tidy static code analysis tool to check all the code in the
book’s code examples for improvement suggestions, from simple items like
ensuring variables are initialized to warnings about potential security flaws.
We also ran this tool on the code solutions that we make available to instructors
for hundreds of the book’s exercises. The complete list of code checks can be
found at https://clang.llvm.org/extra/clang-tidy/checks/list.html.

• GNU gcc tends to be the most compliant C compiler. To enable macOS and
Windows users to use gcc if they wish, Chapter 1 includes a test-drive
demonstrating how to compile programs and run them using gcc in the
cross-platform GNU Compiler Collection Docker container.

• We’ve added 350+ integrated Self-Check exercises, each followed immedi-
ately by its answer. These are ideal for self study and for use in “flipped class-
rooms” (see the “Flipped Classrooms” section later in this Preface).

• To ensure that book content is topical, we did extensive Internet research on
C specifically and the world of computing in general, which influenced our
choice of case studies. We show C as it’s intended to be used with a rich col-
lection of applications programming and systems programming case studies,
focusing on computer-science, artificial intelligence, data science and other
fields. See the “Case Studies” section later in this Preface for more details.

• In the text, code examples, exercises and case studies, we familiarize students
with current topics of interest to developers, including open-source software,
virtualization, simulation, web services, multithreading, multicore hardware
architecture, systems programming, game programming, animation, visual-
ization, 2D and 3D graphics, artificial intelligence, natural language process-
ing, machine learning, robotics, data science, secure programming,
cryptography, Docker, GitHub, StackOverflow, forums and more.

• We adhere to the latest ACM/IEEE computing curricula recommendations,
which call for covering security, data science, ethics, privacy and performance
concepts and using real-world data throughout the curriculum. See the
“Computing and Data Science Curricula” section for more details.

• Most chapters in this book’s recent editions end with Secure C programming
sections that focus on the SEI CERT C Coding Standard from the CERT
group of Carnegie Mellon University’s Software Engineering Institute (SEI).
For this edition, we tuned the SEI CERT-based sections. We also added secu-
rity icons in the page margin whenever we discuss a security-related issue in the
text. All of this is consistent with the ACM/IEEE computing curricula docu-

SEC

https://clang.llvm.org/extra/clang-tidy/checks/list.html

xxii Preface

ments’ enhanced emphasis on security. See the “Computing and Data Science
Curricula” section later in this Preface for a list of the key curricula documents.

• Consistent with our richer treatment of security, we’ve added case studies on
secret-key and public-key cryptography. The latter includes a detailed walk-
through of the enormously popular RSA algorithm’s steps, providing hints to
help you build a working, simple, small-scale implementation.

• We’ve enhanced existing case studies and added new ones focusing on AI and
data science, including simulations with random-number generation, survey
data analysis, natural language processing (NLP) and artificial intelligence
(machine-learning with simple linear regression). Data science is emphasized
in the latest ACM/IEEE computing curricula documents.

• We’ve added exercises in which students use the Internet to research ethics
and privacy issues in computing.

• We tuned our mutltithreading and multicore performance case study. We
also show a performance icon in the margin whenever we discuss a perfor-
mance-related issue in the text.

• We integrated the previous edition’s hundreds of software-development tips
directly into the text for a smoother reading experience. We call out common
errors and good software engineering practices with new margin icons.

• We upgraded our appendix on additional sorting algorithms and analysis of
algorithms with Big O to full-chapter status (Chapter 13).

• C programmers often subsequently learn one or more C-based object-oriented
languages. We added an appendix that presents a friendly intro to object-
oriented programming concepts and terminology. C is a procedural program-
ming language, so this appendix will help students appreciate differences in
thinking between C developers and the folks who program in languages like
C++, Java, C#, Objective-C, Swift and other object-oriented languages. We do
lots of things like this in the book to prepare students for industry.

• Several case studies now have you use free open-source libraries and tools.

• We added a case study that performs visualization with gnuplot.

• We removed the previous edition’s introduction to C++ programming to
make room for the hundreds of integrated self-check exercises and our new
applications programming and systems programming case studies.

• This new edition is published in a larger font size and page size for enhanced
readability.

A Tour of the Book
The Table of Contents graphic on the inside front cover shows the book’s modular
architecture. Instructors can conveniently adapt the content to a variety of courses and
audiences. Here we present a brief chapter-by-chapter walkthrough and indicate where

PERF

ERR
SE

 A Tour of the Book xxiii

the book’s case studies are located. Some are in-chapter examples and some are end-of-
chapter exercises. Some are fully coded. For others, you’ll develop the solution.

Chapters 1–5 are traditional introductory C programming topics. Chapters 6–11
are intermediate topics forming the high end of Computer Science 1 and related
courses. Chapters 12–15 are advanced topics for late CS1 or early CS2 courses. Here’s
a list of the topical, challenging and often entertaining hands-on case studies.

Systems Programming Case Studies
• Systems Software—Building Your Own Computer (as a virtual machine)

• Systems Software—Building Your Own Compiler

• Embedded Systems Programming—Robotics, 3D graphics and animation
with the Webots Simulator

• Performance with Multithreading and Multicore Systems

Application Programming Case Studies
• Algorithm Development—Counter-Controlled Iteration

• Algorithm Development—Sentinel-Controlled Iteration

• Algorithm Development—Nested Control Statements

• Random-Number Simulation—Building a Casino Game

• Random-Number Simulation—Card Shuffling and Dealing

• Random-Number Simulation—The Tortoise and the Hare Race

• Intro to Data Science—Survey Data Analysis

• Direct-Access File Processing—Building a Transaction-Processing System

• Visualizing Searching and Sorting Algorithms—Binary Search and Merge Sort.

• Artificial Intelligence/Data Science—Natural Language Processing (“Who
Really Wrote the Works of William Shakespeare?”)

• Artificial Intelligence/Data Science—Machine Learning with the GNU Sci-
entific Library (“Statistics Can Be Deceiving” and “Have Average January
Temperatures in New York City Been Rising Over the Last Century?”)

• Game Programming—Cannon Game with the raylib Library

• Game Programming—SpotOn Game with the raylib Library

• Multimedia: Audio and Animation—The Tortoise and the Hare Race with
the raylib Library

• Security and Cryptography—Implementing a Vigenère Secret-Key Cipher
and RSA Public-Key Cryptography

• Animated Visualization with raylib—The Law of Large Numbers

• Web Services and the Cloud—Getting a Weather Report Using libcurl and
the OpenWeatherMap Web Services, and An Introduction to Building
Mashups with Web Services.

xxiv Preface

Whether you’re a student getting a sense of the textbook you’ll be using, an
instructor planning your course syllabus or a professional software developer deciding
which chapters to read as you prepare for a project, the following chapter overviews
will help you make the best decisions.

Part 1: Programming Fundamentals Quickstart

Chapter 1, Introduction to Computers and C, engages novice students with intriguing
facts and figures to excite them about studying computers and computer programming.
The chapter includes current technology trends, hardware and software concepts and
the data hierarchy from bits to databases. It lays the groundwork for the C program-
ming discussions in Chapters 2–15, the appendices and the integrated case studies.

We discuss the programming-language types and various technologies you’re likely
to use as you develop software. We introduce the C standard library—existing, reus-
able, top-quality, high-performance functions to help you avoid “reinventing the
wheel.” You’ll enhance your productivity by using libraries to perform significant tasks
while writing only modest numbers of instructions. We also introduce the Internet,
the World Wide Web, the “Cloud” and the Internet of Things (IoT), laying the
groundwork for modern applications development.

This chapter’s test-drives demonstrate how to compile and execute C code with

• Microsoft’s Visual C++ in Visual Studio on Windows,

• Apple’s Xcode on macOS, and

• GNU’s gcc on Linux.

We’ve run the book’s 147 code examples using each environment.4 Choose whichever
program-development environment you prefer—the book works well with others, too.

We also demonstrate GNU gcc in the GNU Compiler Collection Docker con-
tainer. This enables you to run the latest GNU gcc compiler on Windows, macOS
or Linux—this is important because the GNU compilers generally implement all (or
most) features in the latest language standards. See the Before You Begin section that
follows this Preface for compiler installation instructions. See the Docker section later
in this Preface for more information on this important developer tool. For Windows
users, we point to Microsoft’s step-by-step instructions that allow you to install Linux
in Windows via the Windows Subsystem for Linux (WSL). This is another way to
be able to use the GNU gcc compiler on Windows.

You’ll learn just how big “big data” is and how quickly it’s getting even bigger.
The chapter closes with an introduction to artificial intelligence (AI)—a key overlap
between the computer-science and data-science fields. AI and data science are likely
to play significant roles in your computing career.

Chapter 2, Intro to C Programming, presents C fundamentals and illustrates key
language features, including input, output, fundamental data types, computer mem-
ory concepts, arithmetic operators and their precedence, and decision making.

4. We point out the few cases in which a compiler does not support a particular feature.

 A Tour of the Book xxv

Chapter 3, Structured Program Development, is one of the most important chapters
for programming novices. It focuses on problem-solving and algorithm development
with C’s control statements. You’ll develop algorithms through top-down, stepwise
refinement, using the if and if…else selection statements, the while iteration state-
ment for counter-controlled and sentinel-controlled iteration, and the increment, dec-
rement and assignment operators. The chapter presents three algorithm-development
case studies.

Chapter 4, Program Control, presents C’s other control statements—for, do…while,
switch, break and continue—and the logical operators. A key feature of this chapter is
its structured-programming summary.

Chapter 5, Functions, introduces program construction using existing and custom
functions as building blocks. We demonstrate simulation techniques with random-
number generation. We also discuss passing information between functions and how
the function-call stack and stack frames support the function call/return mechanism.
We begin our treatment of recursion. This chapter also presents our first simulation case
study—Building a Casino Game, which is enhanced by end-of-chapter exercises.

Part 2: Arrays, Pointers and Strings

Chapter 6, Arrays, presents C’s built-in array data structure for representing lists and
tables of values. You’ll define and initialize arrays, and refer to their individual elements.
We discuss passing arrays to functions, sorting and searching arrays, manipulating mul-
tidimensional arrays and creating variable-length arrays whose size is determined at exe-
cution time. Chapter 13, Computer-Science Thinking: Sorting Algorithms and Big
O, discusses more sophisticated and higher-performance sorting algorithms and
presents a friendly introduction to analysis of algorithms with computer science’s Big
O notation. Chapter 6 presents our first data-science case study—Intro to Data Sci-
ence: Survey Data Analysis. In the exercises, we also present two Game Programming
with Graphics, Sound and Collision Detection case studies and an Embedded Sys-
tems Programming case study (Robotics with the Webots Simulator).

Chapter 7, Pointers, presents what is arguably C’s most powerful feature. Pointers
enable programs to

• accomplish pass-by-reference,

• pass functions to other functions, and

• create and manipulate dynamic data structures, which you’ll study in detail in
Chapter 12.

The chapter explains pointer concepts, such as declaring pointers, initializing point-
ers, getting the memory address of a variable, dereferencing pointers, pointer arith-
metic and the close relationship between arrays and pointers. This chapter presents
our first systems software case-study exercise—Building Your Own Computer with
Simulation. This case study introduces an essential modern computer-architecture
topic—virtual machines.

xxvi Preface

Chapter 8, Characters and Strings, introduces the C standard library’s string, character
and memory-block processing functions. You’ll use these powerful capabilities in
Chapter 11, File Processing, as you work through a natural language processing
(NLP) case study. You’ll see that strings are intimately related to pointers and arrays.

Part 3: Formatted Input/Output, Structures and File Processing

Chapter 9, Formatted Input/Output, discusses the powerful formatting features of
functions scanf and printf. When properly used, these functions securely input data
from the standard input stream and output data to the standard output stream,
respectively.

Chapter 10, Structures, Unions, Bit Manipulation and Enumerations, introduces
structures (structs) for aggregating related data items into custom types, unions for
sharing memory among multiple variables, typedefs for creating aliases for previously
defined data types, bitwise operators for manipulating the individual bits of integral
operands and enumerations for defining sets of named integer constants. Many C pro-
grammers go on to study C++ and object-oriented programming. In C++, C’s structs
evolve into classes, which are the “blueprints” C++ programmers use to create objects.
C structs contain only data. C++ classes can contain data and functions.

Chapter 11, File Processing, introduces files for long-term data retention, even when
the computer is powered off. Such data is said to be “persistent.” The chapter explains
how plain-text files and binary files are created, updated and processed. We consider
both sequential-access and random-access file processing. In one of our case-study
exercises, you’ll read data from a comma-separated value (CSV) file. CSV is one of the
most popular file formats in the data-science community. This chapter presents our
next case study—Building a Random-Access Transaction-Processing System. We
use random-access files to simulate the kind of high-speed direct-access capabilities
that industrial-strength database-management systems have. This chapter also presents
our first artificial-intelligence/data-science case study, which uses Natural Language
Processing (NLP) techniques to begin investigating the controversial question, “Who
really wrote the works of William Shakespeare?” A second artificial-intelligence/data-
science case study—Machine Learning with the GNU Scientific Library—investi-
gates Anscombe’s Quartet using simple linear regression.5 This is a collection of four
dramatically different datasets that have identical or nearly identical basic descriptive
statistics. It offers a valuable insight for students and developers learning some data-
science basics in this computer-science textbook. The case study then asks you to run
a simple linear regression on 126 years of New York City average January temperature
data to determine if there is a cooling or warming trend.

5. “Anscombe’s Quartet.” Accessed November 13, 2020. https://en.wikipedia.org/wiki/
Anscombe%27s_quartet.

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

 A Tour of the Book xxvii

Part 4: Algorithms and Data Structures

Chapter 12, Data Structures, uses structs to aggregate related data items into cus-
tom types, typedefs to create aliases for previously defined types, and dynamically
linked data structures that can grow and shrink at execution time—linked lists,
stacks, queues and binary trees. You can use the techniques you learn to implement
other data structures. This chapter also presents our next systems-software case study
exercise—Building Your Own Compiler. We’ll define a simple yet powerful high-
level language. You’ll write some high-level-language programs that your compiler
will compile into the machine language of the computer you built in Chapter 7. The
compiler will place its machine-language output into a file. Your computer will load
the machine language from the file into its memory, execute it and produce appro-
priate outputs.

Chapter 13, Computer-Science Thinking: Sorting Algorithms and Big O, intro-
duces some classic computer-science topics. We consider several algorithms and com-
pare their processor demands and memory consumption. We present a friendly
introduction to computer science’s Big O notation, which indicates how hard an
algorithm may have to work to solve a problem, based on the number of items it must
process. The chapter includes the case study Visualizing the High-Performance
Merge Sort.

Our recursion (Chapter 5), arrays (Chapter 6), searching (Chapter 6), data structures
(Chapter 12), sorting (Chapter 13) and Big O (Chapter 13) coverage provides nice
content for a C data structures course.

Part 5: Preprocessor and Other Topics

Chapter 14, Preprocessor, discusses additional features of the C preprocessor, such
as using #include to help manage files in large programs, using #define to create
macros with and without arguments, using conditional compilation to specify por-
tions of a program that should not always be compiled (e.g., extra code used only
during program development), displaying error messages during conditional compi-
lation, and using assertions to test whether expressions’ values are correct.

Chapter 15, Other Topics, covers additional C topics, including multithreading sup-
port (available in GNU gcc, but not Xcode or Visual C++), variable-length argument
lists, command-line arguments, compiling multiple-source-file programs, extern dec-
larations for global variables in other files, function prototypes, restricting scope with
static, makefiles, program termination with exit and atexit, suffixes for integer and
floating-point literals, signal handling, dynamic memory-allocation functions calloc
and realloc and unconditional branching with goto. This chapter presents our final
case study—Performance with Multithreading and Multicore Systems. This case
study demonstrates how to create multithreaded programs that will run faster (and
often much faster) on today’s multicore computer architectures. This is a nice capstone

xxviii Preface

case study for a book about C, for which writing high-performance programs is para-
mount.

Appendices

Appendix A, Operator Precedence Chart, lists C’s operators in highest-to-lowest
precedence order.

Appendix B, ASCII Character Set, shows characters and their corresponding
numeric codes.

Appendix C, Multithreading/Multicore and Other C18/C11/C99 Topics, covers
designated initializers, compound literals, type bool, complex numbers, additions to
the preprocessor, the restrict keyword, reliable integer division, flexible array mem-
bers, relaxed constraints on aggregate initialization, type generic math, inline func-
tions, return without expression, __func__ predefined identifier, va_copy macro,
C11 headers, _Generic keyword (type generic expressions), quick_exit function,
Unicode® support, _noreturn function specifier, type-generic expressions, Annex L:
Analyzability and Undefined Behavior, memory-alignment control, static assertions,
floating-point types and the timespec_get function.

Appendix D, Intro to Object-Oriented Programming Concepts, presents a friendly
overview of object-oriented programming terminology and concepts. After learning
C, you’ll likely also learn one or more C-based object-oriented languages—such as
C++, Java, C#, Objective-C or Swift—and use them side-by-side with C.

Online Appendices

Appendix E, Number Systems, introduces the binary, octal, decimal and hexadeci-
mal number systems.

Appendices F–H, Using the Visual Studio Debugger, Using the GNU gdb Debug-
ger and Using the Xcode Debugger, demonstrate how to use our three preferred
compilers’ basic debugging capabilities to locate and correct execution-time problems
in your programs.

C How to Program, 9/e Key Features
C Programming Fundamentals
In our rich coverage of C fundamentals:

• We emphasize problem-solving and algorithm development.

• To help students prepare to work in industry, we use the terminology from
the latest C standard documents in preference to general programming terms.

• We avoid heavy math, leaving it to upper-level courses. Optional mathemat-
ical exercises are included for science and engineering courses.

 C How to Program, 9/e Key Features xxix

C11 and C18 Standards
C11 refined and expanded C’s capabilities. We’ve added more features from the C11
standard. Since C11, there has been only one new version, C18.6 It “addressed defects
in C11 without introducing new language features.”7

Innovation: “Intro-to” Pedagogy with 350+ Integrated Self-Check Exercises
This book uses our new “Intro to” pedagogy with integrated Self Checks and answers.
We introduced this pedagogy in our recent textbook, Intro to Python for Computer Sci-
ence and Data Science: Learning to Program with AI, Big Data and the Cloud.

• Chapter sections are intentionally small. We use a “read-a-little, do-a-little,
test-a-little” approach. You read about a new concept, study and execute the
corresponding code examples, then test your understanding of the new con-
cept via the integrated Self-Check exercises immediately followed by their
answers. This will help you keep a brisk learning pace.

• Fill-in-the-blank, true/false and discussion Self Checks enable you to test
your understanding of the concepts and terminology you’ve just studied.

• Code-based Self Checks give you a chance to use the terminology and rein-
force the programming techniques you’ve just studied.

• The Self-Checks are particularly valuable for flipped classroom courses—
we’ll soon say more about that popular educational phenomenon.

KIS (Keep It Simple), KIS (Keep it Small), KIT (Keep it Topical)
• Keep it simple—We strive for simplicity and clarity.

• Keep it small—Many of the book’s examples are small. We use more substan-
tial code examples, exercises and projects when appropriate, particularly in the
case studies that are a core feature of this textbook.

• Keep it topical—“Who dares to teach must never cease to learn.”8 (J. C.
Dana)—In our research, we browsed, read or watched thousands of current
articles, research papers, white papers, books, videos, webinars, blog posts,
forum posts, documentation pieces and more.

6. ISO/IEC 9899:2018, Information technology — Programming languages — C, https://
www.iso.org/standard/74528.html.

7. https://en.wikipedia.org/wiki/C18_(C_standard_revision). Also http://www.iso-
9899.info/wiki/The_Standard.

8. John Cotton Dana. From https://www.bartleby.com/73/1799.html: “In 1912 Dana, a
Newark, New Jersey, librarian, was asked to supply a Latin quotation suitable for inscription on
a new building at Newark State College (now Kean University), Union, New Jersey. Unable to
find an appropriate quotation, Dana composed what became the college motto.—The New York
Times Book Review, March 5, 1967, p. 55.”

https://www.iso.org/standard/74528.html
https://en.wikipedia.org/wiki/C18_(C_standard_revision)
http://www.iso-9899.info/wiki/The_Standard
https://www.bartleby.com/73/1799.html
https://www.iso.org/standard/74528.html
http://www.iso-9899.info/wiki/The_Standard

xxx Preface

Hundreds of Contemporary Examples, Exercises and Projects (EEPs)
You’ll use a hands-on applied approach to learn from a broad selection of real-world
examples, exercises and projects (EEPs) drawn from computer science, data science
and other fields:

• You’ll attack exciting and entertaining challenges in our larger case studies,
such as building a casino game, building a survey-data-analysis program,
building a transaction-processing system, building your own computer (using
simulation to build a virtual machine), using AI/data-science technologies
such as natural language processing and machine learning, building your
own compiler, programming computer games, programming robotics simu-
lations with Webots, and writing multithreaded code to take advantage of
today’s multicore computer architectures to get the best performance from
your computer.

• Research and project exercises encourage you to go deeper into what you’ve
learned and explore other technologies. We encourage you to use computers
and the Internet to solve significant problems. Projects are often more exten-
sive in scope than the exercises—some might require days or weeks of imple-
mentation effort. Many of these are appropriate for class projects, term
projects, directed-study projects, capstone-course projects and thesis
research. We do not provide solutions to the projects.

• Instructors can tailor their courses to their audience’s unique requirements
and vary labs and exam questions each semester.

Working with Open-Source Software
In those days [batch processing] programmers never even documented their programs, because
it was assumed that nobody else would ever use them. Now, however, time-sharing had made
exchanging software trivial: you just stored one copy in the public repository and thereby
effectively gave it to the world. Immediately people began to document their programs and
to think of them as being usable by others. They started to build on each other’s work.9

—Robert Fano, Founding Director of MIT’s Project MAC in the 1960s, which evolved
into today’s Computer Science and Artificial Intelligence Laboratory (CSAIL)10

Open source is software with source code that anyone can inspect, modify, and
enhance.”11 We encourage you to try lots of demos and view free, open-source code
examples (available on sites such as GitHub) for inspiration. We say more about
GitHub in the section “Thinking Like a Developer—GitHub, StackOverflow and
More.”

9. Robert Fano, quoted in Dream Machine: J.C.R. Licklider and the Revolution That Made Com-
puting Personal by Mitchell Waldrop. Penguin Putnam, 2002. p. 232.

10. “MIT Computer Science and Artificial Intelligence Laboratory.” Accessed November 9, 2020.
https://en.wikipedia.org/wiki/MIT_Computer_Science_and_Artificial_Intelli-
gence_Laboratory.

11. “What is open source?” Accessed November 14, 2020. https://opensource.com/resourc-
es/what-open-source.

https://en.wikipedia.org/wiki/MIT_Computer_Science_and_Artificial_Intelligence_Laboratory
https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source

 C How to Program, 9/e Key Features xxxi

Visualizations
We include high-level visualizations produced with the gnuplot open-source visual-
ization package to reinforce your understanding of the concepts:

• We use visualizations as a pedagogic tool. For instance, one example makes the
law of large numbers “come alive” in a dice-rolling simulation (see Chapter
10—Raylib Game Programming Case Studies later in this Preface). As this
program performs increasing numbers of die rolls, you’ll see each of the six fac-
es’ (1, 2, 3, 4, 5, 6) percentage of the total rolls gradually approach 16.667%
(1/6th), and the lengths of the bars representing the percentages equalize.

• You should experiment with the code to implement your own visualizations.

Data Experiences
In the book’s examples, exercises and projects—especially in the file-processing chap-
ter—you’ll work with real-world data such as Shakespeare’s play Romeo and Juliet.
You’ll download and analyze text from Project Gutenberg—a great source of free
downloadable texts for analysis. The site contains nearly 63,000 e-books in various
formats, including plain-text files—these are out of copyright in the United States.
You’ll also work with real-world temperature data. In particular, you’ll analyze 126
years of New York City average January temperature data and determine whether
there is a cooling or warming trend. You’ll get this data from National Oceanic and
Atmospheric Administration (NOAA) website noaa.gov.

Thinking Like a Developer—GitHub, StackOverflow and More
The best way to prepare [to be a programmer] is to write programs, and to study great pro-
grams that other people have written. In my case, I went to the garbage cans at the Com-
puter Science Center and fished out listings of their operating systems.12

—William Gates

• To help prepare for your career, you’ll work with such popular developer web-
sites as GitHub and StackOverflow, and you’ll do Internet research.

• StackOverflow is one of the most popular developer-oriented, question-and-
answer sites.

• There is a massive C open-source community. For example, on GitHub,
there are over 32,00013 C code repositories! You can check out other people’s
C code on GitHub and even build upon it if you like. This is a great way to
learn and is a natural extension of our live-code teaching philosophy.14

• GitHub is an excellent venue for finding free, open-source code to incorpo-
rate into your projects—and for you to contribute your code to the open-

12. William Gates, quoted in Programmers at Work: Interviews With 19 Programmers Who Shaped
the Computer Industry by Susan Lammers. Microsoft Press, 1986, p. 83.

13. “C.” Accessed January 4, 2021. https://github.com/topics/c.
14. Students will need to become familiar with the variety of open-source licenses for software on

GitHub.

https://github.com/topics/c

xxxii Preface

source community if you like. Fifty million developers use GitHub.15 The
site currently hosts over 100 million repositories for code written in an enor-
mous number of languages16—developers contributed to 44+ million reposi-
tories in 2019 alone.17 GitHub is a crucial element of the professional
software developer’s arsenal with version control tools that help teams of
developers manage public open-source projects and private projects.

• In 2018, Microsoft purchased GitHub for $7.5 billion. If you become a soft-
ware developer, you’ll almost certainly use GitHub regularly. According to Mic-
rosoft’s CEO, Satya Nadella, they bought GitHub to “empower every developer
to build, innovate and solve the world’s most pressing challenges.”18

• We encourage you to study and execute lots of developers’ open-source C
code on GitHub.

Privacy
The ACM/IEEE’s curricula recommendations for Computer Science, Information
Technology and Cybersecurity mention privacy over 200 times. Every programming
student and professional needs to be acutely aware of privacy issues and concerns.
Students research privacy in four exercises in Chapters 1, 3 and 10.

In Chapter 1’s exercises, you’ll start thinking about these issues by researching ever-
stricter privacy laws such as HIPAA (Health Insurance Portability and Accountability
Act) and the California Consumer Privacy Act (CCPA) in the United States and
GDPR (General Data Protection Regulation) for the European Union.

Ethics
The ACM’s curricula recommendations for Computer Science, Information Technol-
ogy and Cybersecurity mention ethics more than 100 times. In several Chapter 1 exer-
cises, you’ll focus on ethics issues via Internet research. You’ll investigate privacy and
ethical issues surrounding intelligent assistants, such as IBM Watson, Amazon Alexa,
Apple Siri, Google Assistant and Microsoft Cortana. For example, a judge ordered
Amazon to turn over Alexa recordings for use in a criminal case.19

Performance
Programmers prefer C (and C++) for performance-intensive operating systems, real-
time systems, embedded systems, game systems and communications systems, so we
focus on performance issues. We use timing operations in our multithreading exam-

15. “GitHub.” Accessed November 14, 2020. https://github.com/.
16. “GitHub is how people build software.” Accessed November 14, 2020. https://github.com/

about.
17. “The State of the Octoverse.” Accessed November 14, 2020. https://octoverse.github.com.
18. “Microsoft to acquire GitHub for $7.5 billion.” Accessed November 14, 2020. https://

news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/.
19. “Judge orders Amazon to turn over Echo recordings in double murder case.” Accessed November

14, 2020. https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-
case/.

https://github.com/
https://github.com/about
https://octoverse.github.com
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/
https://github.com/about
https://techcrunch.com/2018/11/14/amazon-echo-recordings-judge-murder-case/
https://news.microsoft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/

 C How to Program, 9/e Key Features xxxiii

ples to measure the performance improvement we get on today’s popular multicore
systems, as we employ an increasing number of cores.

Static Code Analysis Tools
Static code analysis tools let you quickly check your code for common errors and secu-
rity problems and provide insights for improving your code. We checked all our C code
using the clang-tidy tool (https://clang.llvm.org/extra/clang-tidy/). We also
used the compiler flag -Wall in the GNU gcc and Clang compilers to enable all com-
piler warnings. With a few exceptions for warnings beyond this book’s scope, we ensure
that our programs compile without warning messages.

How We’re Handling C11’s Annex K and printf_s/scanf_s
The C11 standard’s Annex K introduced more secure versions of printf (for output)
and scanf (for input) called printf_s and scanf_s. We discuss these functions and
the corresponding security issues in Sections 6.13 and 7.13:

• Annex K is optional, so not every C vendor implements it. In particular,
GNU C++ and Clang C++ do not implement Annex K, so using scanf_s and
printf_s might compromise your code’s portability among compilers.

• Microsoft implemented its own Visual C++ versions of printf_s and scanf_s
before the C11 standard. Its compiler immediately began warning on every
scanf call that scanf was deprecated—i.e., it should no longer be used—and
that you should consider using scanf_s instead. Microsoft now treats what used
to be a warning about scanf as an error. By default, a program with scanf will
not compile on Visual C++. Chapter 1’s Visual C++ test-drive shows how to
handle this issue and compile our programs.

• Many organizations have coding standards that require code to compile
without warning messages. There are two ways to eliminate Visual C++’s
scanf warnings—use scanf_s instead of scanf or disable these warnings.

• There is some discussion of removing Annex K from the C standard. For this
reason, we use printf/scanf throughout this book and show Visual C++ users
how to disable Microsoft’s printf/scanf errors. Windows users who prefer
not to do that can use the gcc compiler in the GNU GCC Docker container,
which we discuss in this Preface’s “Docker” section. See the Before You
Begin section that follows this Preface, and see Section 1.10 for details.

New Appendix: Intro to Object-Oriented Programming Appendix
C’s programming model is called procedural programming. We teach it as struc-
tured procedural programming. After learning C, you’ll likely also learn one or more
C-based object-oriented languages—such as Java, C++, C#, Objective-C or Swift—
and use them side-by-side with C. Many of these languages support several pro-
gramming paradigms among procedural programming, object-oriented program-
ming, generic programming and functional-style programming. In Appendix D,
we present a friendly overview of object-oriented programming fundamentals.

https://clang.llvm.org/extra/clang-tidy/

xxxiv Preface

A Case Studies Tour
We include many case studies as more substantial chapter examples, exercises and
projects (EEPs). These are at an appropriate level for introductory programming
courses. We anticipate that instructors will select subsets of the case studies appropri-
ate for their particular courses.

Chapter 5—Random-Number Simulation: Building a Casino Game
In this case study, you’ll use random-number generation and simulation techniques
to implement the popular casino dice game called craps.

Chapter 5—Random-Number Simulation Case Study: The Tortoise and
the Hare Race
In this case study exercise, you’ll use random-number generation and simulation
techniques to implement the famous race between the tortoise and the hare.

Chapter 6—Visualizing Binary Search
In this case study, you’ll learn the high-speed binary-search algorithm and see a visu-
alization that shows the algorithm’s halving effect that achieves high performance.

Chapter 6—Intro to Data Science: Survey Data Analysis
In this case study, you’ll learn various basic descriptive statistics (mean, median and
mode) that are commonly used to “get to know your data.” You’ll then build a nice
array-manipulation application that calculates these statistics for a batch of survey data.

Chapter 7—Random-Number Simulation—Card Shuffling and Dealing
In this case study, you’ll use arrays of strings, random-number generation and simu-
lation techniques to implement a text-based card-shuffling-and-dealing program.

Chapter 7—Embedded Systems Programming: Robotics with the Webots
Simulator
Webots (https://cyberbotics.com/) is a wonderful open-source, 3D, robotics sim-
ulator that runs on Windows, macOS and Linux. It comes bundled with simulations
for dozens of robots that walk, fly, roll, drive and more:

https://cyberbotics.com/doc/guide/robots

You’ll use the free tier of the Webot robotics simulator to explore their dozens of
simulated robots. You’ll execute various full-color 3D robotics simulations written
in C and study the provided code. Webots is a self-contained development environ-
ment that provides a C code editor and compiler. You’ll use these tools to program
your own simulations using Webot’s robots.

Webots provides lots of fully coded C programs. A great way for you to learn C
is to study existing programs, modify them to work a bit differently and observe the
results. Many prominent robotics companies use Webots simulators to prototype
new products.

https://cyberbotics.com/
https://cyberbotics.com/doc/guide/robots

 A Case Studies Tour xxxv

Chapter 7—Systems Software Case Study: Building Your Own Computer
(Virtual Machine) with Simulation
In the context of several exercises, you’ll “peel open” a hypothetical computer and look
at its internal structure. We introduce simple machine-language programming and
write several small machine-language programs for this computer, which we call the
Simpletron. As its name implies, it’s a simple machine, but as you’ll see, a powerful
one as well. The Simpletron runs programs written in the only language it directly
understands—that is, Simpletron Machine Language, or SML for short. To make
this an especially valuable experience, you’ll then build a computer (through the
technique of software-based simulation) on which you can actually run your
machine-language programs! The Simpletron experience will give you a basic intro-
duction to the notion of virtual machines—one of the most important systems-
architecture concepts in modern computing.

Chapter 8—Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua
Boklnxhmywex
This case study exercise’s title looks like gibberish. This is not a mistake! In this exer-
cise, we introduce cryptography, which is critically important in today’s connected
world. Every day, cryptography is used behind the scenes to ensure that your Inter-
net-based communications are private and secure. This case study exercise continues
our security emphasis by having readers study the Vigenère secret-key cipher algo-
rithm and implement it using array-processing techniques.20 They’ll then use it to
encrypt and decrypt messages and to decrypt this section’s title.

Chapter 8—RSA Public-Key Cryptography
Secret key encryption and decryption have a weakness—an encrypted message can be
decrypted by anyone who discovers or steals the secret key. We explore public-key
cryptography with the RSA algorithm. This technique performs encryption with a
public key known to every sender who might want to send a secret message to a par-
ticular receiver. The public key can be used to encrypt messages but not decrypt
them. Messages can be decrypted only with a paired private key known only to the
receiver, so it’s much more secure than the secret key in secret-key cryptography. RSA
is among the world’s most widely used public-key cryptography technologies. You’ll
build a working, small-scale, classroom version of the RSA cryptosystem.

Chapter 10—Raylib Game Programming Case Studies
In this series of five case study exercises and 10 additional exercises, you’ll use the
open-source, cross-platform raylib21 game programming library, which supports Win-
dows, macOS, Linux and other platforms. The raylib development team provides
many C demos to help you learn key library features and techniques. You’ll study two
completely coded games and a dynamic animated visualization that we created:

20. “Vigenère Cipher.” Accessed November 22, 2020. https://en.wikipedia.org/wiki/
Vigenère_cipher.

21. “raylib.” Accessed November 14, 2020. https://www.raylib.com.

https://en.wikipedia.org/wiki/Vigen�re_cipher
https://www.raylib.com
https://en.wikipedia.org/wiki/Vigen�re_cipher

xxxvi Preface

• The Spot-On game tests your reflexes by requiring you to click moving spots
before they disappear. With each new game level the spots move faster, mak-
ing them harder to click.

• The Cannon game challenges you to repeatedly aim and fire a cannon to
destroy nine moving targets before a time limit expires. A moving blocker
makes the game more difficult.

• The Law of Large Numbers dynamic animated visualization repeatedly rolls
a six-sided die and creates an animated bar chart. Visualizations give you a
powerful way to understand data that goes beyond simply looking at raw data.
This case study exercise allows students to see the “law of large numbers” at
work. When repeatedly rolling a die, we expect each die face to appear approx-
imately 1/6th (16.667%) of the time. For small numbers of rolls (e.g., 60 or
600), you’ll see that the frequencies typically are not evenly distributed. As
you simulate larger numbers of die rolls (e.g., 60,000), you’ll see the die fre-
quencies become more balanced. When you simulate significant numbers of
die rolls (e.g., 60,000,000), the bars will appear to be the same size.

The games and simulation use various raylib capabilities, including shapes, colors,
sounds, animation, collision detection and user-input events (such as mouse clicks).

After studying our code, you’ll use the raylib graphics, animation and sound fea-
tures you learn to enhance your implementation of Chapter 5’s Tortoise and the
Hare Race. You’ll incorporate a traditional horse race’s sounds, and multiple tortoise
and hare images to create a fun, animated multimedia “extravaganza.” Then, you’ll
use a raylib to enhance this chapter’s high-performance card-shuffling-and-dealing
simulation to display card images. Finally, you can select from 10 additional raylib
game-programming and simulation exercises. Get creative—have some fun design-
ing and building your own games, too!

Chapter 11—Case Study: Building a Random-Access Transaction-
Processing System
In this case study, you’ll use random-access file processing to implement a simple
transaction-processing system that simulates the kind of high-speed direct-access
capabilities that industrial-strength database-management systems have. This case
study gives you both application-programming and some “under-the-hood” systems-
programming experience.

Chapter 11—Artificial Intelligence Case Study: Natural Language Pro-
cessing (NLP)
Natural Language Processing (NLP) helps computers understand, analyze and pro-
cess text. One of its most common uses is sentiment analysis—determining whether
text has positive, neutral or negative sentiment. Another interesting use of NLP is
assessing text readability, which is affected by the vocabulary used, word lengths, sen-
tence structure, sentence lengths, topic and more. While writing this book, we used

 A Case Studies Tour xxxvii

the paid (NPL) tool Grammarly22 to help tune the writing and ensure the text’s read-
ability for a wide audience. Instructors who use the “flipped classroom” format prefer
textbooks that students can understand on their own.

Some people believe that the works of William Shakespeare actually might have
been written by Christopher Marlowe or Sir Francis Bacon among others.23,24 In the
NLP case study exercise, you’ll use array-, string- and file-processing techniques to per-
form simple similarity detection on Shakespeare’s Romeo and Juliet and Marlowe’s
Edward the Second to determine how alike they are. You may be surprised by the results.

Chapter 11—Artificial Intelligence Case Study: Machine Learning with
the GNU Scientific Library
Statistics can be deceiving. Dramatically different datasets can have identical or nearly
identical descriptive statistics. You’ll consider a famous example of this phenome-
non—Anscombe’s Quartet25—which consists of four datasets of x–y coordinate
pairs that differ significantly, yet have nearly identical descriptive statistics. You’ll
then study a completely coded example that uses the machine-learning technique
called simple linear regression to calculate the equation of a straight line (y = mx + b)
that, given a collection of points (x–y coordinate pairs) representing an independent
variable (x) and a dependent variable (y), describes the relationship between these vari-
ables with a straight line, known as the regression line. As you’ll see, the regression
lines for Anscombe’s Quartet are visually identical for all four quite different datasets.
The program you’ll study then passes commands to the open-source gnuplot pack-
age to create several attractive visualizations. gnuplot uses its own plotting language
different from C, so in our code, we provide extensive comments that explain its com-
mands. Finally, the case study asks you to run a simple linear regression on 126 years
of New York City average January temperature data to determine if there is a cool-
ing or warming trend. As part of this case study, you’ll also read comma-separated
values (CSV) text files containing the datasets.

Chapter 11—Web Services and the Cloud: Getting a Weather Report Using
libcurl and the OpenWeatherMap Web Services; Introducing Mashups
More and more computing today is done “in the cloud,” using software and data dis-
tributed across the Internet worldwide. The apps we use daily are heavily dependent
on various cloud-based services. A service that provides access to itself over the Inter-
net is known as a web service. In this case study exercise, you’ll work through a com-
pletely coded application that uses the open-source C library libcurl to invoke an

22. Grammarly has free and paid versions (https://www.grammarly.com). They provide free plug-
ins you can use in several popular web browsers.

23. “Did Shakespeare Really Write His Own Plays?” Accessed November 13, 2020. https://
www.history.com/news/did-shakespeare-really-write-his-own-plays.

24. “Shakespeare authorship question.” Accessed November 13, 2020. https://en.wikipedia.org/
wiki/Shakespeare_authorship_question.

25. “Anscombe’s quartet.” Accessed November 13, 2020. https://en.wikipedia.org/wiki/
Anscombe%27s_quartet.

https://www.grammarly.com
https://www.history.com/news/did-shakespeare-really-write-his-own-plays
https://en.wikipedia.org/wiki/Shakespeare_authorship_question
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://www.history.com/news/did-shakespeare-really-write-his-own-plays
https://en.wikipedia.org/wiki/Shakespeare_authorship_question
https://en.wikipedia.org/wiki/Anscombe%27s_quartet

xxxviii Preface

OpenWeatherMap (free tier) web service that returns the current weather for a spec-
ified city. The web service returns results in JSON (JavaScript Object Notation) for-
mat, which we process using the open-source cJSON library.

This exercise opens a world of possibilities. You can explore nearly 24,000 web
services listed in the ProgrammableWeb26 web services directory. Many are free or
provide free tiers that you can use to create fun and interesting mashups that combine
complementary web services.

Chapter 12—Systems Software Case Study: Building Your Own Compiler
In the context of several exercises, you’ll build a simple compiler that translates pro-
grams written in a simple high-level programming language to our Simpletron
Machine Language (SML). You’ll write programs in this small new high-level lan-
guage, compile them on the compiler you build and run them on your Simpletron
simulator. And with Chapter 11, File Processing, your compiler can write the gen-
erated machine-language code into a file from which your Simpletron computer can
then read your SML program, load it into the Simpletron’s memory and execute it!
This is a nice end-to-end exercise sequence for novice computing students.

Chapter 13—Visualizing the High-Performance Merge Sort
A centerpiece of our sorting treatment is our implementation of the high-performance
merge sort algorithm. In that case study, you’ll use outputs to visualize the algorithm’s
partition and merge steps, which will help a user understand how the merge sort works.

Appendix C—Systems Architecture Case Study: Performance with Multi-
threading and Multicore Systems
Multithreading—which allows you to break a program into separate “threads” that
can be executed in parallel—has been around for many decades, but interest in it is
higher today due to the availability of multicore processors in computers and devices,
including smartphones and tablets. These processors economically implement multiple
processors on one integrated circuit chip. They put multiple cores to work executing
different parts of your program in parallel, thereby enabling the individual tasks and the
program as a whole to complete faster. Four and eight cores are common in many of
today’s devices, and the number of cores will continue to grow. We wrote and tested
the code for this book using an eight-core MacBook Pro. Multithreaded applications
enable you to execute separate threads simultaneously on multiple cores, so that you can
take the fullest advantage of multicore architecture.

For a convincing demonstration of the power of multithreading on a multicore
system, we present a case study with two programs. One performs two compute-
intensive calculations in sequence. The other executes the same compute-intensive
calculations in parallel threads. We time each calculation and determine the total
execution time in each program. The program outputs show the dramatic time
improvement when the multithreaded version executes on a multicore system.

26. “ProgrammableWeb.” Accessed November 22, 2020. https://programmableweb.com/.

https://programmableweb.com/

 Secure C Programming xxxix

Secure C Programming
The people responsible for the ACM/IEEE curricula guidelines emphasize the impor-
tance of security—it’s mentioned 395 times in the Computer Science Curricula
document and 235 times in the Information Technology Curricula document. In
2017, the ACM/IEEE published its Cybersecurity Curricula, which focuses on secu-
rity courses and security throughout the other computing curricula. That document
mentions security 865 times.

Chapters 2–12 and 14 each end with a Secure C Programming section. These are
designed to raise awareness among novice programming students of security issues that
could cause breaches. These sections present some key issues and techniques and pro-
vide links and references so you can continue learning. Our goal is to encourage you to
start thinking about security issues, even if this is your first programming course.

Experience has shown that it’s challenging to build industrial-strength systems
that stand up to attacks. Today, via the Internet, such attacks can be instantaneous
and global in scope. Software vulnerabilities often come from simple programming
issues. Building security into software from the start of the development cycle can sig-
nificantly reduce vulnerabilities.

The CERT Division of Carnegie Mellon’s Software Engineering Institute
https://www.sei.cmu.edu/about/divisions/cert/index.cfm

was created to analyze and respond promptly to attacks. They publish and promote
secure coding standards to help C programmers and others implement industrial-
strength systems that avoid the programming practices that leave systems vulnerable
to attacks. Their standards evolve as new security issues arise.

We explain how to upgrade your code (as appropriate for an introductory book)
to conform to the latest secure C coding recommendations. If you’re building C sys-
tems in industry, consider reading the SEI CERT C Coding Standard rules at

https://wiki.sei.cmu.edu/confluence/display/c

Also, consider reading Secure Coding in C and C++, 2/e by Robert Seacord
(Addison-Wesley Professional, 2013). Mr. Seacord, a technical reviewer for an earlier
edition of this book, provided specific recommendations on each of our Secure C
Programming sections. At the time, he was the Secure Coding Manager at CERT and
an adjunct professor at Carnegie Mellon’s School of Computer Science. He is now a
Technical Director at NCC Group (an IT Security company).

Our Secure C Programming sections discuss many important topics, including:

• Testing for Arithmetic Overflows

• The More Secure Functions in the C Standard’s Annex K

• The Importance of Checking the Status Information Returned by Standard-
Library Functions

• Range Checking

• Secure Random-Number Generation

https://www.sei.cmu.edu/about/divisions/cert/index.cfm
https://wiki.sei.cmu.edu/confluence/display/c

xl Preface

• Array Bounds Checking

• Preventing Buffer Overflows

• Input Validation

• Avoiding Undefined Behaviors

• Choosing Functions That Return Status Information vs. Using Similar Func-
tions That Do Not

• Ensuring That Pointers Are Always Null or Contain Valid Addresses

• Using C Functions vs. Using Preprocessor Macros, and More.

Computing and Data Science Curricula
This book is designed for courses that adhere to one or more of the following ACM/
IEEE CS-and-related curriculum documents:

• CC2020: Paradigms for Future Computing Curricula (cc2020.net),27

• Computer Science Curricula 2013,28

• Information Technology Curricula 2017,29

• Cybersecurity Curricula 2017.30

Computing Curricula
• According to “CC2020: A Vision on Computing Curricula,”31 the curricu-

lum “needs to be reviewed and updated to include the new and emerging areas
of computing such as cybersecurity and data science.”32 (See “Data Science
Overlaps with Computer Science” below and this Preface’s earlier “Secure C
Programming” section).

• Data science includes key topics (besides statistics and general-purpose pro-
gramming) such as machine learning, deep learning, natural language process-
ing, speech synthesis and recognition, and others that are classic artificial
intelligence (AI) topics—and hence CS topics as well. We cover machine
learning and natural language processing in the case studies.

27. “Computing Curricula 2020.” Accessed November 22, 2020. https://cc2020.nsparc.ms-
state.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf.

28. ACM/IEEE (Assoc. Comput. Mach./Inst. Electr. Electron. Eng.). 2013. Computer Science Curric-
ula 2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer Science (New
York: ACM), http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-
report.pdf.

29. Information Technology Curricula 2017, http://www.acm.org/binaries/content/assets/
education/it2017.pdf.

30. Cybersecurity Curricula 2017, https://cybered.hosting.acm.org/wp-content/uploads/
2018/02/newcover_csec2017.pdf.

31. A. Clear, A. Parrish, G. van der Veer and M. Zhang, “CC2020: A Vision on Computing Curric-
ula,” https://dl.acm.org/citation.cfm?id=3017690.

32. http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf.

https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf
http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf
http://www.acm.org/binaries/content/assets/education/it2017.pdf
https://cybered.hosting.acm.org/wp-content/uploads/2018/02/newcover_csec2017.pdf
https://dl.acm.org/citation.cfm?id=3017690
http://delivery.acm.org/10.1145/3020000/3017690/p647-clear.pdf
https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf
http://ai.stanford.edu/users/sahami/CS2013/final-draft/CS2013-final-report.pdf
http://www.acm.org/binaries/content/assets/education/it2017.pdf
https://cybered.hosting.acm.org/wp-content/uploads/2018/02/newcover_csec2017.pdf

 Data Science Overlaps with Computer Science xli

Data Science Overlaps with Computer Science33

The undergraduate data science curriculum proposal34 includes algorithm develop-
ment, programming, computational thinking, data structures, database, mathematics,
statistical thinking, machine learning, data science and more—a significant overlap
with computer science, especially given that the data science courses include some key
AI topics. Even though ours is a C programming textbook, we work data science topics
into various examples, exercises, projects and case studies.

Key Points from the Data Science Curriculum Proposal
This section calls out some key points from the data science undergraduate curricu-
lum proposal and its detailed course descriptions appendix.35 Each of the following
items is covered in C How to Program, 9/e:

• Learn programming fundamentals commonly presented in computer sci-
ence courses, including working with data structures.

• Be able to solve problems by creating algorithms.

• Work with procedural programming.

• Explore concepts via simulations.

• Use development environments (we tested all our code on Microsft Visual
C++, Apple Xcode, the GNU command-line gcc compiler on Linux and in
the GNU Compiler Collection Docker container).

• Work with real-world data in practical case studies and projects—such as
William Shakespeare’s Romeo and Juliet and Christopher Marlowe’s Edward
the Second from Project Gutenberg (https://www.gutenberg.org/), and 126
years of New York City average January temperatures.

• Create data visualizations.

• Communicate reproducible results. (Docker plays an important role in
that—see the next page.)

• Work with existing software and cloud-based tools.

• Work with high-performance tools, such as C’s multithreading libraries.

• Focus on data’s ethics, security, privacy and reproducibility issues.

33. This section is intended primarily for data science instructors. Given that the emerging 2020
Computing Curricula for computer science and related disciplines is likely to include some key
data science topics, this section includes important information for computer science instruc-
tors as well.

34. “Curriculum Guidelines for Undergraduate Programs in Data Science,” http://www.annual-
reviews.org/doi/full/10.1146/annurev-statistics-060116-053930.

35. “Appendix—Detailed Courses for a Proposed Data Science Major,” http://www.annualre-
views.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/
st04_de_veaux_supmat.pdf.

https://www.gutenberg.org/)
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf
http://www.annualreviews.org/doi/full/10.1146/annurev-statistics-060116-053930
http://www.annualreviews.org/doi/suppl/10.1146/annurev-statistics-060116-053930/suppl_file/st04_de_veaux_supmat.pdf

xlii Preface

Get the Code Examples and Install the Software
For your convenience, we provide the book’s examples in C source-code (.c) files for
use with integrated development environments (IDEs) and command-line compilers.
See the Before You Begin section that follows the Preface for software installation
details. See the Chapter 1 test-drives for information on running the book’s code
examples. If you encounter a problem, you can reach us at deitel@deitel.com or via
the contact form at https://deitel.com/contact-us.

Docker
We introduce Docker—a tool for packaging software into containers that bundle
everything required to execute that software conveniently, reproducibly and portably
across platforms. Some software packages you’ll use require complicated setup and
configuration. For many of these, you can download free preexisting Docker contain-
ers that help you avoid complex installation issues. You can simply execute software
locally on your desktop or notebook computers, making Docker a great way to help
you get started with new technologies quickly, conveniently and economically. For
your convenience, we show how to install and execute a Docker container that’s pre-
configured with the GNU Compiler Collection (GCC), which includes the gcc
compiler. This can run in Docker on Windows, macOS and Linux. It’s particularly
useful for people using Visual C++, which can compile C code but is not 100% com-
pliant with the latest C standard.

Docker also helps with reproducibility. Custom Docker containers can be con-
figured with every piece of software and every library you use. This would enable oth-
ers to recreate the environment you used, then reproduce your work, and will help
you reproduce your own results. Reproducibility is especially important in the sci-
ences and medicine—for example, when researchers want to prove and extend the
work in published articles.

Flipped Classrooms
Many instructors use “flipped classrooms.”36,37 Students learn the content on their
own before coming to class, and class time is used for tasks such as hands-on coding,
working in groups and discussions. Our book and supplements also are appropriate
for flipped classrooms:

• We use Grammarly to control the book’s reading level to help ensure it’s
appropriate for students learning on their own.

• In parallel with reading the text, students should execute the 147 live-code C
examples and do the 350+ integrated Self Check exercises, which are imme-

36. https://en.wikipedia.org/wiki/Flipped_classroom.
37. https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-

videos.

https://deitel.com/contact-us
https://en.wikipedia.org/wiki/Flipped_classroom
https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-videos
https://www.edsurge.com/news/2018-05-24-a-case-for-flipping-learning-without-videos
mailto:deitel@deitel.com

 Teaching Approach xliii

diately followed by their answers. These encourage active participation by
the student. They learn the content in small pieces using a “read-a-little, do-
a-little, test-a-little” approach—appropriate for a flipped classroom’s active,
self-paced, hands-on learning. Students are encouraged to modify the code
and see the effects of their changes.

• We provide 445 exercises and projects, which students can work on at home
and/or in class. Many of the exercises are at an elementary or intermediate
level that students should be able to do independently. And many are appro-
priate for group projects on which students can collaborate in class.

• Section-by-section detailed chapter summaries with bolded key terms help
students quickly review the material.

• In the book’s extensive index, the defining occurrences of key terms are high-
lighted with a bold page number, making it easy for students to find the intro-
ductions to the topics they’re studying. This facilitates the outside-the-
classroom learning experience of the flipped classroom.

A key aspect of flipped classrooms is getting your questions answered when you’re
working on your own. See the “Getting Your Questions Answered” section later in
this Preface for details. And you can always reach us at deitel@deitel.com.

Teaching Approach
C How to Program, 9/e contains a rich collection of examples, exercises, projects and
case studies drawn from many fields. Students solve interesting, real-world problems
working with real-world data. The book concentrates on the principles of good soft-
ware engineering and stresses program clarity.

Using Fonts for Emphasis
We place the key terms and the index’s page reference for each defining occurrence
in bold text for easier reference. C code uses a fixed-width font (e.g., x = 5). We place
on-screen components in the bold Helvetica font (e.g., the File menu).

Syntax Coloring
For readability, we syntax color all the code. In our full-color books and e-books, our
syntax-coloring conventions are as follows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

Objectives and Outline
Each chapter begins with objectives that tell you what to expect and give you an oppor-
tunity, after reading the chapter, to determine whether it has met the intended goals.
The chapter outline enables students to approach the material in a top-down fashion.

mailto:deitel@deitel.com

xliv Preface

Examples
The book’s 147 live-code examples contain thousands of lines of proven code.

Tables and Illustrations
Abundant tables and line drawings are included.

Programming Wisdom
We integrate into the text discussions programming wisdom and mistakes we’ve
accumulated from our combined nine decades of programming and teaching experi-
ence, and from the scores of academics and industry professionals who have reviewed
the nine editions of this book over the past 29 years, including:

• Good programming practices and preferred C idioms that help you produce
clearer, more understandable and more maintainable programs.

• Common programming errors to reduce the likelihood that you’ll make them.

• Error-prevention tips with suggestions for exposing bugs and removing them
from your programs. Many of these tips describe techniques for preventing
bugs from getting into your programs in the first place.

• Performance tips highlighting opportunities to make your programs run
faster or minimize the amount of memory they occupy.

• Software engineering observations highlighting architectural and design
issues for proper software construction, especially for larger systems.

• Security best practices that will help you strengthen your programs against
attacks.

Section-By-Section Chapter Summaries
To help students quickly review the material, each chapter ends with a detailed bullet-
list summary with bolded key terms and, for most, bold page references to their defin-
ing occurrences.

Free Software Used in the Book
The Before You Begin section following this Preface discusses installing the software
you’ll need to work with our examples. We tested C How to Program, 9/e’s examples
using the following popular free compilers:

• GNU gcc on Linux—which is already installed on most Linux systems and
can be installed on macOS and Windows systems.

• Microsoft’s Visual Studio Community Edition on Windows.

• Apple’s Clang compiler in Xcode on macOS.

GNU gcc in Docker
We also demonstrate GNU gcc in a Docker container—ideal for instructors who
want all their students to use GNU gcc, regardless of their operating system. This

ERR

PERF

SE

SEC

 C Documentation xlv

gives Visual C++ users a true C compiler option, since Visual C++ is not 100% com-
pliant with the latest C standard.

Windows Subsystem for Linux
The Windows Subsystem for Linux (WSL) enables Windows users to install Linux
and run it inside Windows. We provide a link to Microsoft’s step-by-step instructions
for setting up WSL and installing a Linux distribution. This provides yet another
option for Windows users to access the GNU gcc compiler.

C Documentation
You’ll find the following documentation helpful as you work through the book:

• The GNU C Standard Library Reference Manual:
 https://www.gnu.org/software/libc/manual/pdf/libc.pdf

• C Language Reference at cppreference.com
 https://en.cppreference.com/w/c

• C Standard Library Headers at cppreference.com
 https://en.cppreference.com/w/c/header

• Microsoft’s C Language Reference:
 https://docs.microsoft.com/en-us/cpp/c-language/c-language-

reference

Getting Your Questions Answered
Online forums enable you to interact with other C programmers worldwide and get
your questions answered. Popular C and general programming online forums include:

• https://stackoverflow.com

• https://www.reddit.com/r/C_Programming/

• https://groups.google.com/forum/#!forum/comp.lang.C

• https://cboard.cprogramming.com/c-programming/

• https://www.dreamincode.net/forums/forum/15-c-and-c/

For a list of other sites, see
https://www.geeksforgeeks.org/stuck-in-programming-get-the-

solution-from-these-10-best-websites/

Also, vendors often provide forums for their tools and libraries. Many libraries are
managed and maintained at github.com. Some library maintainers provide support
through the Issues tab on a given library’s GitHub page.

Student and Instructor Supplements
The following supplements are available to students and instructors.

https://www.gnu.org/software/libc/manual/pdf/libc.pdf
https://en.cppreference.com/w/c
https://en.cppreference.com/w/c/header
https://docs.microsoft.com/en-us/cpp/c-language/c-language-reference
https://stackoverflow.com
https://www.reddit.com/r/C_Programming/
https://cboard.cprogramming.com/c-programming/
https://www.dreamincode.net/forums/forum/15-c-and-c/
https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-from-these-10-best-websites/
https://groups.google.com/forum/#!forum/comp.lang.C

xlvi Preface

Web-Based Materials on deitel.com
To get the most out of your C How to Program, 9/e learning experience, you should
execute each code example in parallel with reading the corresponding discussion.
On the book’s web page at

https://deitel.com/c-how-to-program-9-e

we provide the following resources:

• Links to the downloadable C source code (.c files) for the book’s code exam-
ples and exercises that include code in the exercise description. You can also
get this from the book’s Pearson companion website at
 https://pearson.com/deitel

• Links to our Getting Started videos showing how to use the compilers and
code examples. We also introduce these tools in Chapter 1.

• Blog posts—https://deitel.com/blog.

• Book updates—https://deitel.com/c-how-to-program-9-e.

• “Using the Debugger” appendices for the Visual Studio, GNU gdb and
Xcode debuggers.

For more information about downloading the examples and setting up your C devel-
opment environment, see the Before You Begin section that follows this Preface.

Instructor Supplements
Pearson Education’s IRC (Instructor Resource Center)

http://www.pearsonhighered.com/irc

provides qualified instructors access to the following supplements for this book:

• PowerPoint Slides.

• Instructor Solutions Manual with solutions to most of the exercises. Solutions
are not provided for “project” and “research” exercises. Before assigning a par-
ticular exercise for homework, instructors should check the IRC to ensure
that the solution is available.

• Test Item File with four-part multiple-choice, short-answer questions and
answers. You may also request from your Pearson representative (https://
pearson.com/replocator) versions of the Test Item File for use with popular
automated assessment tools.

Please do not write to us requesting access to the Pearson Instructor’s Resource
Center (IRC). Access to the instructor supplements and exercise solutions on the IRC
is strictly limited by our publisher to college instructors who adopt the book for their
classes. Instructors may obtain access through their Pearson representatives. If you’re
not a registered faculty member, contact your Pearson representative or visit

https://pearson.com/replocator

Instructors can request examination copies of Deitel books from their Pearson rep-
resentatives.

https://deitel.com/c-how-to-program-9-e
https://pearson.com/deitel
https://deitel.com/blog
https://deitel.com/c-how-to-program-9-e
http://www.pearsonhighered.com/irc
https://pearson.com/replocator
https://pearson.com/replocator
https://pearson.com/replocator

 Communicating with the Authors xlvii

Communicating with the Authors
For questions, instructor syllabus assistance or to report an error, we’re easy to reach at

deitel@deitel.com

or via the contact form at
https://deitel.com/contact-us

Interact with us via social media on

• Facebook®—https://facebook.com/DeitelFan

• Twitter®—@deitel or https://twitter.com/deitel

• LinkedIn®—https://linkedin.com/company/deitel-&-associates

• YouTube®—https://youtube.com/DeitelTV

Deitel Pearson Products on O’Reilly Online Learning
O’Reilly Online Learning subscribers have access to many Deitel Pearson textbooks,
professional books, LiveLessons videos and Full Throttle one-day webinars. Sign up
for a 10-day free trial at

https://deitel.com/LearnWithDeitel

Textbooks and Professional Books
Each Deitel e-book on O’Reilly Online Learning is presented in full color and exten-
sively indexed.

Asynchronous LiveLessons Video Products
Learn hands-on with Paul Deitel as he presents compelling, leading-edge computing
technologies in Python, Python Data Science/AI and Java. C++20 and C are coming
in 2021.

Live Full Throttle Webinars
Paul Deitel offers Full Throttle webinars at O’Reilly Online Learning. These are
one-full-day, fast-paced, code-intensive introductions to Python, Python Data Sci-
ence/AI and Java, with C++20 and C coming in 2021. Paul’s Full Throttle webinars
are for experienced developers and software project managers preparing for projects
using other languages. After taking a Full Throttle course, participants often take the
corresponding LiveLessons video course which has many more hours of classroom-
paced learning.

Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this
project. We’re fortunate to have worked with the dedicated team of publishing pro-
fessionals at Pearson. We appreciate the guidance, wisdom and energy of Tracy John-
son (Pearson Education, Global Content Manager, Computer Science)—on all our

https://deitel.com/contact-us
https://facebook.com/DeitelFan
https://twitter.com/deitel
https://youtube.com/DeitelTV
https://deitel.com/LearnWithDeitel
mailto:deitel@deitel.com
https://linkedin.com/company/deitel-&-associates

xlviii Preface

academic publications, both print and digital. She challenges us at every step of the
process to “get it right” and make the best books. Carole Snyder managed the book’s
production and interacted with Pearson’s permissions team, promptly clearing our
graphics and citations to keep the book on schedule. Erin Sullivan recruited and man-
aged the book’s review team. We selected the cover art, and Chuti Prasertsith
designed the cover, adding his special touch of graphics magic.

We wish to acknowledge the efforts of our academic and professional reviewers.
Adhering to a tight schedule, the reviewers scrutinized the manuscript, providing
countless suggestions for improving the presentation’s accuracy, completeness and
timeliness. They helped us make a better book.

A special thanks to Prof. Alison Clear, an Associate Professor in the School of
Computing at Eastern Institute of Technology (EIT) in New Zealand and co-chair
of the Computing Curricula 2020 (CC2020) Task Force, which recently released
new computing curricula recommendations:

Reviewers

C How to Program, 9/e Reviewers
Dr. Danny Kalev (Ben-Gurion University of the

Negev, A Certified System Analyst, C Expert and
Former Member of the C++ Standards Committee)

José Antonio González Seco (Parliament of Andalusia)

C How to Program, 8/e Reviewers
Dr. Brandon Invergo (GNU/European Bioinfor-

matics Institute)
Jim Hogg (Program Manager, C/C++ Compiler

Team, Microsoft Corporation)
José Antonio González Seco (Parliament of Andalusia)
Alan Bunning (Purdue University)
Paul Clingan (Ohio State University)
Michael Geiger (University of Massachusetts, Lowell)
Dr. Danny Kalev (Ben-Gurion University of the

Negev, A Certified System Analyst, C Expert and
Former Member of the C++ Standards Committee)

Jeonghwa Lee (Shippensburg University)
Susan Mengel (Texas Tech University)
Judith O'Rourke (SUNY at Albany)
Chen-Chi Shin (Radford University)

Other Recent Editions Reviewers (and their affilia-
tions at the time)

William Albrecht (University of South Florida)
Ian Barland (Radford University)

Ed James Beckham (Altera)
John Benito (Blue Pilot Consulting, Inc. and Con-

vener of ISO WG14—the Working Group
responsible for the C Programming Language
Standard)

Dr. John F. Doyle (Indiana University Southeast)
Alireza Fazelpour (Palm Beach Community College)
Mahesh Hariharan (Microsoft)
Hemanth H.M. (Software Engineer at SonicWALL)
Kevin Mark Jones (Hewlett Packard)
Lawrence Jones, (UGS Corp.)
Don Kostuch (Independent Consultant)
Vytautus Leonavicius (Microsoft)
Xiaolong Li (Indiana State University)
William Mike Miller (Edison Design Group, Inc.)
Tom Rethard (The University of Texas at Arlington)
Robert Seacord (Secure Coding Manager at SEI/

CERT, author of The CERT C Secure Coding
Standard and technical expert for the interna-
tional standardization working group for the pro-
gramming language C)

Benjamin Seyfarth (University of Southern Missis-
sippi)

Gary Sibbitts (St. Louis Community College at
Meramec)

William Smith (Tulsa Community College)
Douglas Walls (Senior Staff Engineer, C compiler,

Sun Microsystems—now Oracle).

 About the Authors xlix

Computing Curricula 2020: Paradigms for Future Computing Curricula
https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/

Computing-Curricula-Report.pdf

Prof. Clear graciously answered our questions.
And finally, a special note of thanks to the enormous numbers of technically ori-

ented people worldwide who contribute to the open-source movement and write
about their work online, to their organizations that encourage the proliferation of
such open software and information, and to Google, whose search engine answers our
constant stream of questions, each in a fraction of a second, at any time day or
night—and at no charge.

Well, there you have it! As you read the book, we’d appreciate your comments,
criticisms, corrections and suggestions for improvement. Please send all correspon-
dence, including questions, to

deitel@deitel.com

We’ll respond promptly. Welcome to the exciting world of C programming for the
2020s. We hope you have an informative, entertaining and challenging learning
experience with C How to Program, 9/e and enjoy this look at leading-edge software
development with C. We wish you great success!

Paul Deitel
Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an
MIT graduate with 41 years of experience in computing. Paul is one of the world’s
most experienced programming-languages trainers, having taught professional
courses to software developers since 1992. He has delivered hundreds of program-
ming courses to academic, industry, government and military clients internationally,
including UCLA, Cisco, IBM, Siemens, Sun Microsystems (now Oracle), Dell,
Fidelity, NASA at the Kennedy Space Center, the National Severe Storm Laboratory,
White Sands Missile Range, Rogue Wave Software, Boeing, Nortel Networks, Puma,
iRobot and many more. He and his co-author, Dr. Harvey M. Deitel, are among the
world’s best-selling programming-language textbook, professional book, video and
interactive multimedia e-learning authors, and virtual- and live-training presenters.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associ-
ates, Inc., has 59 years of experience in computing. Dr. Deitel earned B.S. and M.S.
degrees in Electrical Engineering from MIT and a Ph.D. in Mathematics from Bos-
ton University—he studied computing in each of these programs before they spun
off Computer Science programs. He has extensive college teaching experience,
including earning tenure and serving as the Chairman of the Computer Science
Department at Boston College before founding Deitel & Associates, Inc., in 1991
with his son, Paul. The Deitels’ publications have earned international recognition,

https://cc2020.nsparc.msstate.edu/wp-content/uploads/2020/11/Computing-Curricula-Report.pdf
mailto:deitel@deitel.com

l Preface

with more than 100 translations published in Japanese, German, Russian, Spanish,
French, Polish, Italian, Simplified Chinese, Traditional Chinese, Korean, Portu-
guese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming
courses to academic, corporate, government and military clients.

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an interna-
tionally recognized authoring and corporate-training organization, specializing in
computer programming languages, object technology, mobile app development and
Internet and web software technology. The company’s training clients include some
of the world’s largest companies, government agencies, branches of the military, and
academic institutions. The company offers instructor-led training courses delivered
virtually and live at client sites worldwide, and for Pearson Education on O’Reilly
Online Learning.

Through its 45-year publishing partnership with Pearson/Prentice Hall, Deitel &
Associates, Inc., publishes leading-edge programming textbooks and professional books
in print and e-book formats, LiveLessons video courses, O’Reilly Online Learning live
webinars and Revel™ interactive multimedia college courses.

To contact Deitel & Associates, Inc. and the authors, or to request a proposal for
virtual or on-site, instructor-led training worldwide, write to

deitel@deitel.com

To learn more about Deitel on-site corporate training, visit
https://deitel.com/training

Individuals wishing to purchase Deitel books can do so at
https://amazon.com

Bulk orders by corporations, the government, the military and academic institutions
should be placed directly with Pearson. For corporate and government sales, send an
email to

corpsales@pearsoned.com

For textbook orders visit
https://pearson.com

Deitel e-books are available in various formats from
https://www.amazon.com/ https://www.vitalsource.com/

https://www.bn.com/ https://www.redshelf.com/

https://www.informit.com/ https://www.chegg.com/

To register for a free 10-day trial to O’Reilly Online Learning, visit
https://deitel.com/LearnWithDeitel

which will forward you to our O’Reilly Online Learning landing page. On that page,
click the Begin a free trial link.

https://deitel.com/training
https://amazon.com
https://pearson.com
https://www.amazon.com/
https://www.vitalsource.com/
https://www.bn.com/
https://www.redshelf.com/
https://www.informit.com/
https://www.chegg.com/
https://deitel.com/LearnWithDeitel
mailto:deitel@deitel.com
mailto:corpsales@pearsoned.com

Before using this book, please read this section to understand our conventions and
ensure that your computer can compile and run our example programs.

Font and Naming Conventions
We use fonts to distinguish application elements and C++ code elements from regular
text. For on-screen application elements, we use a sans-serif bold font, as in the File
menu. For C code elements, we use a sans-serif font, as in sqrt(9).

Obtaining the Code Examples
We maintain the code examples for C How to Program, 9/e in a GitHub repository.
The book’s web page
 https://deitel.com/c-how-to-program-9-e

includes a link to the repository and a link to a ZIP file containing the code. If you
download the ZIP file, be sure to extract its contents once the download completes.
In our instructions, we assume the examples reside in your user account’s Documents
folder in a subfolder named examples.

If you’re not familiar with Git and GitHub but are interested in learning about
these essential developer tools, check out their guides at
 https://guides.github.com/activities/hello-world/

Compilers We Use in C How to Program, 9/e
We tested C How to Program, 9/e’s examples using the following free compilers:

• For Microsoft Windows, we used Microsoft Visual Studio Community edi-
tion1, which includes the Visual C++ compiler and other Microsoft develop-
ment tools. Visual C++ can compile C code.

• For macOS, we used Apple Xcode, which includes the Clang C compiler.
Command-line Clang also can be installed on Linux and Windows Systems.

• For Linux, we used the GNU gcc compiler—part of the GNU Compiler Col-
lection (GCC). GNU gcc is already installed on most Linux systems and can
be installed on macOS and Windows systems.

1. At the time of this writing, the current version was Visual Studio 2019 Community edition.

Before You
Begin

https://deitel.com/c-how-to-program-9-e
https://guides.github.com/activities/hello-world/

lii Before You Begin

This Before You Begin section describes installing the compilers. Section 1.10’s test-
drives demonstrate how to compile and run C programs using these compilers.

Before You Begin Videos
To help you get started with each of our preferred compilers, we provide Before You
Begin videos at:

https://deitel.com/c-how-to-program-9-e

We also provide a Before You Begin video demonstrating how to install the GNU
GCC Docker container. This enables you to use the gcc compiler on any Docker-
enabled computer.2 See the section, “Docker and the GNU Compiler Collection
(GCC) Docker Container” later in this Before You Begin section.

Installing Visual Studio Community Edition on Windows
If you use Windows, first ensure that your system meets the requirements for Micro-
soft Visual Studio Community edition at:

https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-
requirements

Next, go to:
https://visualstudio.microsoft.com/downloads/

then perform the following installation steps:

1. Click Free download under Community.

2. Depending on your web browser, you may see a pop-up at the bottom of your
screen in which you can click Run to start the installation process. If not, dou-
ble-click the installer file in your Downloads folder.

3. In the User Account Control dialog, click Yes to allow the installer to make
changes to your system.

4. In the Visual Studio Installer dialog, click Continue to allow the installer to
download the components it needs for you to configure your installation.

5. For this book’s examples, select the option Desktop Development with C++,
which includes the Visual C++ compiler and the C and C++ standard libraries.

6. Click Install. Depending on your Internet connection speed, the installation
process can take a significant amount of time.

Installing Xcode on macOS
On macOS, perform the following steps to install Xcode:

1. Click the Apple menu and select App Store…, or click the App Store icon in
the dock at the bottom of your Mac screen.

2. “Docker Frequently Asked Questions (FAQ).” Accessed January 3, 2021. https://docs.dock-
er.com/engine/faq/.

https://deitel.com/c-how-to-program-9-e
https://docs.microsoft.com/en-us/visualstudio/releases/2019/system-requirements
https://visualstudio.microsoft.com/downloads/
https://docs.docker.com/engine/faq/
https://docs.docker.com/engine/faq/

 Installing GNU gcc on Linux liii

2. In the App Store’s Search field, type Xcode.

3. Click the Get button to install Xcode.

Installing GNU gcc on Linux
Most Linux users already have a recent version of GNU gcc installed. To check, open
a shell or Terminal window on your Linux system, then enter the command

gcc --version

If it does not recognize the command, you must install GNU gcc. We use the
Ubuntu Linux distribution. On that distribution, you must be logged in as an admin-
istrator or have the administrator password to execute the following commands:

1. sudo apt update

2. sudo apt install build-essential gdb

Linux distributions often use different software installation and upgrade tech-
niques. If you are not using Ubuntu Linux, search online for “Install GCC on MyLi-
nuxDistribution” and replace MyLinuxDistribution with your Linux version. You can
download the GNU Compiler Collection for various platforms at:

https://gcc.gnu.org/install/binaries.html

Installing GNU GCC in Ubuntu Linux Running on the Win-
dows Subsystem for Linux
Another way to install GNU gcc on Windows is via the Windows Subsystem for
Linux (WSL), which enables you to run Linux on Windows. Ubuntu Linux provides
an easy-to-use installer in the Windows Store, but first you must install WSL:

1. In the search box on your taskbar, type “Turn Windows features on or off,”
then click Open in the search results.

2. In the Windows Features dialog, locate Windows Subsystem for Linux and en-
sure that it is checked. If it is, WSL is already installed. Otherwise, check it
and click OK. Windows will install WSL and ask you to reboot your system.

3. Once the system reboots and you log in, open the Microsoft Store app and
search for Ubuntu, select the app named Ubuntu and click Install. This installs
the latest version of Ubuntu Linux.

4. Once installed, click the Launch button to display the Ubuntu Linux com-
mand-line window, which will continue the installation process. You’ll be
asked to create a username and password for your Ubuntu installation—these
do not need to match your Windows username and password.

5. When the Ubuntu installation completes, execute the following two com-
mands to install the GCC and the GNU debugger—you may be asked enter
your Ubuntu password for the account you created in Step 6:
 sudo apt-get update
 sudo apt-get install build-essential gdb

https://gcc.gnu.org/install/binaries.html

liv Before You Begin

6. Confirm that gcc is installed by executing the following command:
 gcc --version

To access our code files, use the cd command change the folder within Ubuntu to:

cd /mnt/c/Users/YourUserName/Documents/examples

Use your own user name and update the path to where you placed our examples on
your system.

GNU Compiler Collection (GCC) Docker Container
Docker is a tool for packaging software into containers (also called images) that bundle
everything required to execute software across platforms. Docker is particularly useful
for software packages with complicated setups and configurations. You typically can
download preexisting Docker containers (often at https://hub.docker.com) for free
and execute them locally on your desktop or notebook computer. This makes Docker
a great way to get started with new technologies quickly and conveniently.

Docker makes it easy to use the GNU Compiler Collection on most versions of
Windows 10, and on macOS and Linux. The GNU Docker containers are located at

https://hub.docker.com/_/gcc

Installing Docker
To use the GCC Docker container, first install Docker. Windows (64-bit)3 and
macOS users should download and run the Docker Desktop installer from:

https://www.docker.com/get-started

then follow the on-screen instructions. Linux users should install Docker Engine from:
https://docs.docker.com/engine/install/

Also, sign up for a Docker Hub account on this webpage so you can install pre-config-
ured containers from https://hub.docker.com.

Downloading the Docker Container
Once Docker is installed and running, open a Command Prompt (Windows), Ter-
minal (macOS/Linux) or shell (Linux), then execute the command:

docker pull gcc:latest

Docker downloads the GNU Compiler Collection (GCC) container’s current ver-
sion.4 In one of Section 1.10’s test-drives, we’ll demonstrate how to execute the con-
tainer and use it to compile and run C programs.

3. If you have Windows Home (64-bit), follow the instructions at https://docs.docker.com/
docker-for-windows/install-windows-home/.

4. At the time of this writing, the current version of the GNU Compiler Collection is 10.2.

https://hub.docker.com
https://hub.docker.com/_/gcc
https://www.docker.com/get-started
https://docs.docker.com/engine/install/
https://hub.docker.com
https://docs.docker.com/docker-for-windows/install-windows-home/
https://docs.docker.com/docker-for-windows/install-windows-home/

1Introduction to Computers
and C

O b j e c t i v e s
In this chapter, you’ll:
■ Learn about exciting recent

developments in computing.
■ Learn computer hardware,

software and Internet basics.
■ Understand the data hierarchy

from bits to databases.
■ Understand the different types

of programming languages.
■ Understand the strengths of C

and other leading
programming languages.

■ Be introduced to the C
standard library of reusable
functions that help you avoid
“reinventing the wheel.”

■ Test-drive a C program that
you compile with one or more
of the popular C compilers we
used to develop the book’s
hundreds of C code examples,
exercises and projects (EEPs).

■ Be introduced to big data and
data science.

■ Be introduced to artificial
intelligence—a key
intersection of computer
science and data science.

2 Chapter 1 Introduction to Computers and C

O
ut

lin
e

1.1 Introduction
Welcome to C—one of the world’s most senior computer programming languages
and, according to the Tiobe Index, the world’s most popular.1 You’re probably famil-
iar with many of the powerful tasks computers perform. In this textbook, you’ll get
intensive, hands-on experience writing C instructions that command computers to
perform those and other tasks. Software (that is, the C instructions you write, which
are also called code) controls hardware (that is, computers and related devices).

1.1 Introduction
1.2 Hardware and Software

1.2.1 Moore’s Law
1.2.2 Computer Organization

1.3 Data Hierarchy
1.4 Machine Languages, Assembly

Languages and High-Level
Languages

1.5 Operating Systems
1.6 The C Programming Language
1.7 The C Standard Library and Open-

Source Libraries
1.8 Other Popular Programming

Languages
1.9 Typical C Program-Development

Environment
1.9.1 Phase 1: Creating a Program
1.9.2 Phases 2 and 3: Preprocessing and

Compiling a C Program
1.9.3 Phase 4: Linking
1.9.4 Phase 5: Loading
1.9.5 Phase 6: Execution
1.9.6 Problems That May Occur at

Execution Time
1.9.7 Standard Input, Standard Output

and Standard Error Streams
1.10 Test-Driving a C Application in

Windows, Linux and macOS

1.10.1 Compiling and Running a C
Application with Visual Studio 2019
Community Edition on Windows 10

1.10.2 Compiling and Running a C
Application with Xcode on macOS

1.10.3 Compiling and Running a C
Application with GNU gcc on Linux

1.10.4 Compiling and Running a C
Application in a GCC Docker
Container Running Natively over
Windows 10, macOS or Linux

1.11 Internet, World Wide Web, the
Cloud and IoT

1.11.1 The Internet: A Network of
Networks

1.11.2 The World Wide Web: Making the
Internet User-Friendly

1.11.3 The Cloud
1.11.4 The Internet of Things

1.12 Software Technologies
1.13 How Big Is Big Data?

1.13.1 Big-Data Analytics
1.13.2 Data Science and Big Data Are

Making a Difference: Use Cases
1.14 Case Study—A Big-Data Mobile

Application
1.15 AI—at the Intersection of

Computer Science and Data
Science

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. “TIOBE Index.” Accessed November 4, 2020. https://www.tiobe.com/tiobe-index/.

https://www.tiobe.com/tiobe-index/

1.1 Introduction 3

C is widely used in industry for a wide range of tasks.2 Today’s popular desktop
operating systems—Windows3, macOS4 and Linux5—are partially written in C.
Many popular applications are partially written in C, including popular web browsers
(e.g., Google Chrome6 and Mozilla Firefox7), database management systems (e.g.,
Microsoft SQL Server8, Oracle9 and MySQL10) and more.

In this chapter, we introduce terminology and concepts that lay the groundwork
for the C programming you’ll learn, beginning in Chapter 2. We’ll introduce hard-
ware and software concepts. We’ll also overview the data hierarchy—from individual
bits (ones and zeros) to databases, which store the massive amounts of data that orga-
nizations need to implement contemporary applications such as Google Search, Net-
flix, Twitter, Waze, Uber, Airbnb and a myriad of others.

We’ll discuss the types of programming languages. We’ll introduce the C stan-
dard library and various C-based “open-source” libraries that help you avoid “rein-
venting the wheel.” You’ll use these libraries to perform powerful tasks with modest
numbers of instructions. We’ll introduce additional software technologies that you’re
likely to use as you develop software in your career.

Many development environments are available in which you can compile, build
and run C applications. You’ll work through one or more of the four test-drives
showing how to compile and execute C code using:

• Microsoft Visual Studio 2019 Community edition for Windows.

• Clang in Xcode on macOS.

• GNU gcc in a shell on Linux.

• GNU gcc in a shell running inside the GNU Compiler Collection (GCC)
Docker container.

You can read only the test-drive(s) required for your course or projects in industry.
In the past, most computer applications ran on “standalone” computers (that is,

not networked together). Today’s applications can communicate among the world’s
computers via the Internet. We’ll introduce the Internet, the World Wide Web, the
Cloud and the Internet of Things (IoT), each of which could play a significant part
in the applications you’ll build in the 2020s (and probably long afterward).

2. “After All These Years, the World is Still Powered by C Programming.” Accessed Nov. 4, 2020.
https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-
c-programming.

3. “What Programming Language is Windows written in?” Accessed Nov. 4, 2020. https://
social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-
programming-language-is-windows-written-in.

4. “macOS.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/MacOS.
5. “Linux kernel.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Linux_kernel.
6. “Google Chrome.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Google_Chrome.
7. “Firefox.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Firefox.
8. “Microsoft SQL Server.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Micro-

soft_SQL_Server.
9. “Oracle Database.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/Oracle_Database.
10. “MySQL.” Accessed Nov. 4, 2020. https://en.wikipedia.org/wiki/MySQL.

https://www.toptal.com/c/after-all-these-years-the-world-is-still-powered-by-c-programming
https://en.wikipedia.org/wiki/Linux_kernel
https://en.wikipedia.org/wiki/Google_Chrome
https://en.wikipedia.org/wiki/Firefox
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/Oracle_Database
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-programming-language-is-windows-written-in
https://social.microsoft.com/Forums/en-US/65a1fe05-9c1d-48bf-bd40-148e6b3da9f1/what-programming-language-is-windows-written-in
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/MySQL

4 Chapter 1 Introduction to Computers and C

1.2 Hardware and Software
Computers can perform calculations and make logical decisions phenomenally faster
than human beings can. Today’s personal computers and smartphones can perform
billions of calculations in one second—more than a human can perform in a lifetime.
Supercomputers already perform thousands of trillions (quadrillions) of instructions
per second! As of December 2020, Fujitsu’s Fugaku11 is the world’s fastest supercom-
puter—it can perform 442 quadrillion calculations per second (442 petaflops)!12 To
put that in perspective, this supercomputer can perform in one second almost 58 million
calculations for every person on the planet!13 And supercomputing upper limits are
growing quickly.

Computers process data under the control of sequences of instructions called
computer programs (or simply programs). These programs guide the computer
through ordered actions specified by people called computer programmers.

A computer consists of various physical devices referred to as hardware—such as
the keyboard, screen, mouse, solid-state disks, hard disks, memory, DVD drives and
processing units. Computing costs are dropping dramatically due to rapid develop-
ments in hardware and software technologies. Computers that might have filled large
rooms and cost millions of dollars decades ago are now inscribed on silicon computer
chips smaller than a fingernail, costing perhaps a few dollars each. Ironically, silicon
is one of the most abundant materials on Earth—it’s an ingredient in common sand.
Silicon-chip technology has made computing so economical that computers and
computerized devices have become commodities.

1.2.1 Moore’s Law
Every year, you probably expect to pay at least a little more for most products and
services. The opposite has been the case in the computer and communications fields,
especially with regard to the hardware supporting these technologies. Over the years,
hardware costs have fallen rapidly.

For decades, every couple of years, computer processing power approximately
doubled inexpensively. This remarkable trend often is called Moore’s Law, named for
Gordon Moore, co-founder of Intel and the person who identified this trend in the
1960s. Intel is a leading manufacturer of the processors in today’s computers and
embedded systems, such as smart home appliances, home security systems, robots,
intelligent traffic intersections and more.

11. “Top 500.” Accessed December 24, 2020. https://en.wikipedia.org/wiki/TOP500#TOP_500.
12. “Flops.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/FLOPS.
13. For perspective on how far computing performance has come, consider this: In his early com-

puting days in the 1960s, Harvey Deitel used the Digital Equipment Corporation PDP-1
(https://en.wikipedia.org/wiki/PDP-1), which was capable of performing only 93,458 op-
erations per second, and the IBM 1401 (http://www.ibm-1401.info/1401GuidePos-
terV9.html), which performed only 86,957 operations per second.

https://en.wikipedia.org/wiki/TOP500#TOP_500
https://en.wikipedia.org/wiki/PDP-1)
http://www.ibm-1401.info/1401GuidePos-terV9.html
https://en.wikipedia.org/wiki/FLOPS
http://www.ibm-1401.info/1401GuidePos-terV9.html

1.2 Hardware and Software 5

Key executives at computer-processor companies NVIDIA and Arm have indi-
cated that Moore’s Law no longer applies.14,15 Computer processing power continues
to increase but relies on new processor designs, such as multicore processors
(Section 1.2.2).

Moore’s Law and related observations apply especially to

• the amount of memory that computers have for programs,

• the amount of secondary storage (such as hard disks and solid-state drive stor-
age) they have to hold programs and data, and

• their processor speeds—that is, the speeds at which computers execute pro-
grams to do their work.

Similar growth has occurred in the communications field. Costs have plummeted
as enormous demand for communications bandwidth (that is, information-carrying
capacity) has attracted intense competition. We know of no other fields in which
technology improves so quickly, and costs fall so rapidly. Such phenomenal improve-
ment is truly fostering the Information Revolution.

1.2.2 Computer Organization
Regardless of physical differences, computers can be envisioned as divided into vari-
ous logical units or sections.

Input Unit
This “receiving” section obtains information (data and computer programs) from
input devices and places it at the other units’ disposal for processing. Computers
receive most user input through keyboards, touch screens, mice and touchpads.
Other forms of input include:

• receiving voice commands,

• scanning images and barcodes,

• reading data from secondary storage devices (such as solid-state drives, hard
drives, Blu-ray Disc™ drives and USB flash drives—also called “thumb
drives” or “memory sticks”),

• receiving video from a webcam,

• receiving information from the Internet (such as when you stream videos
from YouTube® or download e-books from Amazon),

• receiving position data from a GPS device,

• receiving motion and orientation information from an accelerometer (a
device that responds to up/down, left/right and forward/backward accelera-

14. “Moore’s Law turns 55: Is it still relevant?” Accessed November 2, 2020. https://www.techre-
public.com/article/moores-law-turns-55-is-it-still-relevant.

15. “Moore’s Law is dead: Three predictions about the computers of tomorrow.” Accessed Novem-
ber 2, 2020. https://www.techrepublic.com/article/moores-law-is-dead-three-pre-
dictions-about-the-computers-of-tomorrow/.

https://www.techrepublic.com/article/moores-law-turns-55-is-it-still-relevant
https://www.techrepublic.com/article/moores-law-is-dead-three-predictions-about-the-computers-of-tomorrow/
https://www.techrepublic.com/article/moores-law-turns-55-is-it-still-relevant
https://www.techrepublic.com/article/moores-law-is-dead-three-predictions-about-the-computers-of-tomorrow/

6 Chapter 1 Introduction to Computers and C

tion) in a smartphone or wireless game controllers, such as those for Micro-
soft® Xbox®, Nintendo Switch™ and Sony® PlayStation®, and

• receiving voice input from intelligent assistants like Apple Siri®, Amazon
Alexa® and Google Home®.

Output Unit
This “shipping” section takes information the computer has processed and places it
on various output devices to make it available outside the computer. Most informa-
tion that’s output from computers today is

• displayed on screens,

• printed on paper (“going green” discourages this),

• played as audio or video on smartphones, tablets, PCs and giant screens in
sports stadiums,

• transmitted over the Internet, or

• used to control other devices, such as self-driving cars (and autonomous vehi-
cles in general), robots and “intelligent” appliances.

Information is also commonly output to secondary storage devices, such as solid-
state drives (SSDs), hard drives, USB flash drives and DVD drives. Popular recent
forms of output are smartphone and game-controller vibration, virtual reality devices
like Oculus Rift®, Oculus Quest®, Sony® PlayStation® VR and Samsung Gear VR®,
and mixed reality devices like Magic Leap® One and Microsoft HoloLens™.

Memory Unit
This rapid-access, relatively low-capacity “warehouse” section retains information
entered through the input unit, making it immediately available for processing when
needed. The memory unit also retains processed information until it can be placed on
output devices by the output unit. Information in the memory unit is volatile—it’s typ-
ically lost when the computer’s power is turned off. The memory unit is often called
either memory, primary memory or RAM (Random Access Memory). Main memories
on desktop and notebook computers contain as much as 128 GB of RAM, though 8 to
16 GB is most common. GB stands for gigabytes; a gigabyte is approximately one bil-
lion bytes. A byte is eight bits. A bit (short for “binary digit”) is either a 0 or a 1.

Arithmetic and Logic Unit (ALU)
This “manufacturing” section performs calculations (e.g., addition, subtraction, mul-
tiplication and division) and makes decisions (e.g., comparing two items from the
memory unit to determine whether they’re equal). In today’s systems, the ALU is part
of the next logical unit, the CPU.

Central Processing Unit (CPU)
This “administrative” section coordinates and supervises the operation of the other
sections. The CPU tells

1.2 Hardware and Software 7

• the input unit when to read information into the memory unit,

• the ALU when to use information from the memory unit in calculations, and

• the output unit when to send information from the memory unit to specific
output devices.

Most computers today have multicore processors that economically implement mul-
tiple processors on a single integrated circuit chip. Such processors can perform many
operations simultaneously. A dual-core processor has two CPUs, a quad-core proces-
sor has four and an octa-core processor has eight. Intel has some processors with up
to 72 cores.

Secondary Storage Unit
This is the long-term, high-capacity “warehousing” section. Programs and data not
actively being used by the other units are placed on secondary storage devices until
they’re again needed, possibly hours, days, months or even years later. Information on
secondary storage devices is persistent—it’s preserved even when the computer’s
power is turned off. Secondary storage information takes much longer to access than
information in primary memory, but its cost per byte is much less. Examples of sec-
ondary storage devices include solid-state drives (SSDs), USB flash drives, hard drives
and read/write Blu-ray drives. Many current drives hold terabytes (TB) of data. A tera-
byte is approximately one trillion bytes. Typical desktop and notebook-computer hard
drives hold up to 4 TB, and some recent desktop-computer hard drives hold up to 20
TB.16 The largest commercial SSD holds up to 100 TB (and costs $40,000).17

Self Check
1 (Fill-In) For many decades, every year or two, computers’ capacities have approx-
imately doubled inexpensively. This remarkable trend often is called .
Answer: Moore’s Law.

2 (True/False) Information in the memory unit is persistent—it’s preserved even
when the computer’s power is turned off
Answer: False. Information in the memory unit is volatile—it’s typically lost when
the computer’s power is turned off.

3 (Fill-In) Most computers today have processors that implement multi-
ple processors on a single integrated-circuit chip. Such processors can perform many
operations simultaneously.
Answer: multicore.

16. “History of hard disk drives.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/
History_of_hard_disk_drives.

17. “At 100TB, the world’s biggest SSD gets an (eye-watering) price tag.” Accessed November 1,
2020. https://www.techradar.com/news/at-100tb-the-worlds-biggest-ssd-gets-an-
eye-watering-price-tag.

https://en.wikipedia.org/wiki/History_of_hard_disk_drives
https://www.techradar.com/news/at-100tb-the-worlds-biggest-ssd-gets-an-eye-watering-price-tag
https://en.wikipedia.org/wiki/History_of_hard_disk_drives
https://www.techradar.com/news/at-100tb-the-worlds-biggest-ssd-gets-an-eye-watering-price-tag

8 Chapter 1 Introduction to Computers and C

1.3 Data Hierarchy
Data items processed by computers form a data hierarchy that becomes larger and
more complex in structure as we progress from the simplest data items (called “bits”)
to richer ones, such as characters and fields. The following diagram illustrates a por-
tion of the data hierarchy:

Bits
A bit is short for “binary digit”—a digit that can assume one of two values—and is a
computer’s smallest data item. It can have the value 0 or 1. Remarkably, computers’
impressive functions involve only the simplest manipulations of 0s and 1s—examin-
ing a bit’s value, setting a bit’s value and reversing a bit’s value (from 1 to 0 or from
0 to 1). Bits form the basis of the binary number system, which we discuss in our
“Number Systems” appendix.

Characters
Work with data in the low-level form of bits is tedious. Instead, people prefer to work
with decimal digits (0–9), letters (A–Z and a–z) and special symbols such as

$ @ % & * () – + " : ; , ? /

Digits, letters and special symbols are known as characters. The computer’s character
set contains the characters used to write programs and represent data items. Comput-
ers process only 1s and 0s, so a computer’s character set represents each character as a
pattern of 1s and 0s. C uses the ASCII (American Standard Code for Information
Interchange) character set by default. C also supports Unicode® characters composed
of one, two, three or four bytes (8, 16, 24 or 32 bits, respectively).18

Tom Blue

Sally Black

Judy Green File

J u d y Field

Character J

Record

Iris Orange

Randy Red

01001010

1 Bit

Judy Green

18. “Programming with Unicode.” Accessed November 1, 2020. https://unicodebook.readthe-
docs.io/programming_languages.html.

https://unicodebook.readthedocs.io/programming_languages.html
https://unicodebook.readthedocs.io/programming_languages.html

1.3 Data Hierarchy 9

Unicode contains characters for many of the world’s languages. ASCII is a (tiny)
subset of Unicode representing letters (a–z and A–Z), digits and some common spe-
cial characters. You can view the ASCII subset of Unicode at

https://www.unicode.org/charts/PDF/U0000.pdf

For the lengthy Unicode charts for all languages, symbols, emojis and more, visit
http://www.unicode.org/charts/

Fields
Just as characters are composed of bits, fields are composed of characters or bytes. A
field is a group of characters or bytes that conveys meaning. For example, a field con-
sisting of uppercase and lowercase letters could represent a person’s name, and a field
consisting of decimal digits could represent a person’s age in years.

Records
Several related fields can be used to compose a record. In a payroll system, for exam-
ple, the record for an employee might consist of the following fields (possible types
for these fields are shown in parentheses):

• Employee identification number (a whole number).

• Name (a group of characters).

• Address (a group of characters).

• Hourly pay rate (a number with a decimal point).

• Year-to-date earnings (a number with a decimal point).

• Amount of taxes withheld (a number with a decimal point).

Thus, a record is a group of related fields. All the fields listed above belong to the same
employee. A company might have many employees and a payroll record for each.

Files
A file is a group of related records. More generally, a file contains arbitrary data in
arbitrary formats. Some operating systems view a file simply as a sequence of bytes—
any organization of the bytes in a file, such as organizing the data into records, is a
view created by the application programmer. You’ll see how to do that in Chapter 11,
File Processing. It’s not unusual for an organization to have many files, some contain-
ing billions, or even trillions, of characters of information. As we’ll see below, with
big data, far larger file sizes are becoming increasingly common.

Databases
A database is a collection of data organized for easy access and manipulation. The
most popular model is the relational database, in which data is stored in simple
tables. A table includes records and fields. For example, a table of students might
include first name, last name, major, year, student ID number and grade-point-aver-
age fields. The data for each student is a record, and the individual pieces of informa-

https://www.unicode.org/charts/PDF/U0000.pdf
http://www.unicode.org/charts/

10 Chapter 1 Introduction to Computers and C

tion in each record are the fields. You can search, sort and otherwise manipulate the
data based on its relationship to multiple tables or databases. For example, a univer-
sity might use data from the student database combined with data from databases of
courses, on-campus housing, meal plans, etc.

Big Data
The table below shows some common byte measures:

The amount of data being produced worldwide is enormous, and its growth is accel-
erating. Big data applications deal with massive amounts of data. This field is grow-
ing quickly, creating lots of opportunities for software developers. Millions of
information technology (IT) jobs globally already support big-data applications.

Twitter®—A Favorite Big-Data Source
One big-data source favored by developers is Twitter. There are approximately
800,000,000 tweets per day.19 Though tweets appear to be limited to 280 characters,
Twitter actually provides almost 10,000 bytes of data per tweet to programmers who
want to analyze tweets. So 800,000,000 times 10,000 is about 8,000,000,000,000
bytes or 8 terabytes (TB) of data per day. That’s big data.

Prediction is a challenging and often costly process, but the potential rewards for
accurate predictions are great. Data mining is the process of searching through exten-
sive collections of data, often big data, to find insights that can be valuable to indi-
viduals and organizations. The sentiment that you data-mine from tweets could help
predict the election results, the revenues a new movie is likely to generate and the suc-
cess of a company’s marketing campaign. It could also help companies spot weak-
nesses in competitors’ product offerings.

Self Check
1 (Fill-In) A(n) is short for “binary digit”—a digit that can assume one of
two values and is a computer’s smallest data item.
Answer: bit.

Unit Bytes Which is approximately

 1 kilobyte (KB) 1024 bytes 103 bytes (1024 bytes exactly)
 1 megabyte (MB) 1024 kilobytes 106 (1,000,000) bytes
 1 gigabyte (GB) 1024 megabytes 109 (1,000,000,000) bytes
 1 terabyte (TB) 1024 gigabytes 1012 (1,000,000,000,000) bytes
 1 petabyte (PB) 1024 terabytes 1015 (1,000,000,000,000,000) bytes
 1 exabyte (EB) 1024 petabytes 1018 (1,000,000,000,000,000,000) bytes
 1 zettabyte (ZB) 1024 exabytes 1021 (1,000,000,000,000,000,000,000) bytes

19. “Twitter Usage Statistics.” Accessed November 1, 2020. https://www.internetlives-
tats.com/twitter-statistics/.

https://www.internetlivestats.com/twitter-statistics/
https://www.internetlivestats.com/twitter-statistics/

1.4 Machine Languages, Assembly Languages and High-Level Languages 11

2 (True/False) In some operating systems, a file is viewed simply as a sequence of
bytes—any organization of the bytes in a file, such as organizing the data into records,
is a view created by the application programmer.
Answer: True.

3 (Fill-In) A database is a collection of data organized for easy access and manipu-
lation. The most popular model is the database, in which data is stored in
simple tables.
Answer: relational.

1.4 Machine Languages, Assembly Languages and
High-Level Languages
Programmers write instructions in various programming languages, some directly
understandable by computers and others requiring intermediate translation steps. Hun-
dreds of such languages are in use today. These may be divided into three general types:

• Machine languages.

• Assembly languages.

• High-level languages.

Machine Languages
Any computer can directly understand only its own machine language, defined by its
hardware design. Machine languages generally consist of strings of numbers (ulti-
mately reduced to 1s and 0s) that instruct computers to perform their most elemen-
tary operations one at a time. Machine languages are machine-dependent—a
particular machine language can be used on only one type of computer. Such lan-
guages are cumbersome for humans. For example, here’s a section of an early
machine-language payroll program that adds overtime pay to base pay and stores the
result in gross pay:

+1300042774
+1400593419
+1200274027

In our Building Your Own Computer case study (Exercises 7.28–7.30), you’ll “peel
open” a computer and look at its internal structure. We’ll introduce machine-
language programming, and you’ll write several machine-language programs. To
make this an especially valuable experience, you’ll then build a software simulation of
a computer on which you can execute your machine-language programs.

Assembly Languages and Assemblers
Programming in machine language was simply too slow and tedious for most pro-
grammers. Instead of using the strings of numbers that computers could directly
understand, programmers began using English-like abbreviations to represent ele-
mentary operations. These abbreviations formed the basis of assembly languages.

12 Chapter 1 Introduction to Computers and C

Translator programs called assemblers were developed to convert assembly-language
programs to machine language at computer speeds. The following section of an
assembly-language payroll program also adds overtime pay to base pay and stores the
result in gross pay:

load basepay
add overpay
store grosspay

Although such code is clearer to humans, it’s incomprehensible to computers until
it’s translated to machine language.

High-Level Languages and Compilers
With the advent of assembly languages, the use of computers increased rapidly. How-
ever, programmers still had to use numerous instructions to accomplish even simple
tasks. To speed the programming process, high-level languages were developed in
which single statements could accomplish substantial tasks. A typical high-level-lan-
guage program contains many statements, known as the program’s source code.

Translator programs called compilers convert high-level-language source code
into machine language. High-level languages allow you to write instructions that look
almost like everyday English and contain common mathematical notations. A payroll
program written in a high-level language might contain a single statement such as

grossPay = basePay + overTimePay

From the programmer’s standpoint, high-level languages are preferable to machine
and assembly languages. C is among the world’s most widely used high-level pro-
gramming languages.

In our Building Your Own Compiler case study (Exercises 12.24–12.27), you’ll
build a compiler that takes programs written in a high-level programming language and
converts them to the Simpletron Machine Language that you learn in Exercise 7.28.
Exercises 12.24–12.27 “tie” together the entire programming process. You’ll write pro-
grams in a simple high-level language, compile the programs on the compiler you build,
then run the programs on the Simpletron simulator you build in Exercise 7.29.

Interpreters
Compiling a large high-level language program into machine language can take con-
siderable computer time. Interpreters execute high-level language programs directly.
Interpreters avoid compilation delays, but your code runs slower than compiled pro-
grams. Some programming languages, such as Java20 and Python21, use a clever mix-
ture of compilation and interpretation to run programs.

20. “Java virtual machine.” Accessed November 2, 2020. https://en.wikipedia.org/wiki/Ja-
va_virtual_machine#Bytecode_interpreter_and_just-in-time_compiler.

21. “An introduction to Python bytecode.” Accessed November 1, 2020. https://opensource.com/
article/18/4/introduction-python-bytecode.

https://en.wikipedia.org/wiki/Java_virtual_machine#Bytecode_interpreter_and_just-in-time_compiler
https://opensource.com/article/18/4/introduction-python-bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine#Bytecode_interpreter_and_just-in-time_compiler
https://opensource.com/article/18/4/introduction-python-bytecode

1.5 Operating Systems 13

Self Check
1 (Fill-In) Translator programs called convert assembly-language pro-
grams to machine language at computer speeds.
Answer: assemblers.

2 (Fill-In) programs, developed to execute high-level-language programs
directly, avoid compilation delays, although they run slower than compiled programs
Answer: Interpreter.

3 (True/False) High-level languages allow you to write instructions that look almost
like everyday English and contain commonly used mathematical notations.
Answer: True.

1.5 Operating Systems
Operating systems are software that make using computers more convenient for users,
software developers and system administrators. They provide services that allow appli-
cations to execute safely, efficiently and concurrently with one another. The software
that contains the core operating-system components is called the kernel. Linux, Win-
dows and macOS are popular desktop computer operating systems—you can use any
of these with this book. Each is partially written in C. The most popular mobile oper-
ating systems used in smartphones and tablets are Google’s Android and Apple’s iOS.

Windows—A Proprietary Operating System
In the mid-1980s, Microsoft developed the Windows operating system, consisting
of a graphical user interface built on top of DOS (Disk Operating System)—an enor-
mously popular personal-computer operating system that users interacted with by
typing commands. Windows 10 is Microsoft’s latest operating system—it includes
the Cortana personal assistant for voice interactions. Windows is a proprietary oper-
ating system—it’s controlled by Microsoft exclusively. It is by far the world’s most
widely used desktop operating system.

Linux—An Open-Source Operating System
The Linux operating system is among the greatest successes of the open-source move-
ment. Proprietary software for sale or lease dominated software’s early years. With open
source, individuals and companies contribute to developing, maintaining and evolving
the software. Anyone can then use that software for their own purposes—normally at
no charge, but subject to a variety of (typically generous) licensing requirements. Open-
source code is often scrutinized by a much larger audience than proprietary software, so
errors can get removed faster, making the software more robust. Open source increases
productivity and has contributed to an explosion of innovation. You’ll use various pop-
ular open-source libraries and tools throughout this book.

There are many organizations in the open-source community. Some key ones are:

• GitHub (provides tools for managing open-source projects—it has millions
of them under development).

14 Chapter 1 Introduction to Computers and C

• The Apache Software Foundation (originally the creators of the Apache web
server) now oversees 350+ open-source projects, including several big-data
infrastructure technologies.

• The Eclipse Foundation (the Eclipse Integrated Development Environment
helps programmers conveniently develop software).

• The Mozilla Foundation (creators of the Firefox web browser).

• OpenML (which focuses on open-source tools and data for machine learning.

• OpenAI (which does research on artificial intelligence and publishes open-
source tools used in AI reinforcement-learning research).

• OpenCV (which focuses on open-source computer-vision tools that can be
used across various operating systems and programming languages.

• Python Software Foundation (responsible for the Python programming lan-
guage).

Rapid improvements to computing and communications, decreasing costs and
open-source software have made it much easier and more economical to create soft-
ware-based businesses now than just a decade ago. A great example is Facebook,
which was launched from a college dorm room and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed,
full-featured operating system. It’s developed by a loosely organized team of volun-
teers and is popular in servers, personal computers and embedded systems (such as
the computer systems at the heart of smartphones, smart TVs and automobile sys-
tems). Unlike Microsoft’s Windows and Apple’s macOS source code, the Linux
source code is available to the public for examination and modification and is free to
download and install. As a result, Linux users benefit from a huge community of
developers actively debugging and improving the kernel, and from the ability to cus-
tomize the operating system to meet specific needs.

Apple’s macOS and Apple’s iOS for iPhone® and iPad® Devices
Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader
in personal computing. In 1979, Jobs and several Apple employees visited Xerox
PARC (Palo Alto Research Center) to learn about Xerox’s desktop computer that fea-
tured a graphical user interface (GUI). That GUI served as the inspiration for the
Apple Macintosh, launched in 1984.

The Objective-C programming language, created by Stepstone in the early 1980s,
added object-oriented programming (OOP) capabilities to the C programming lan-
guage. Steve Jobs left Apple in 1985 and founded NeXT Inc. In 1988, NeXT licensed
Objective-C from Stepstone. NeXT developed an Objective-C compiler and librar-
ies, which were used as the platform for the NeXTSTEP operating system’s user
interface and Interface Builder (for constructing graphical user interfaces).

Jobs returned to Apple in 1996 when they bought NeXT. Apple’s macOS oper-
ating system is a descendant of NeXTSTEP. Apple has several other proprietary
operating systems derived from macOS:

1.5 Operating Systems 15

• iOS is used in iPhones.

• iPadOS is used in iPads.

• watchOS is used in Apple Watches.

• tvOS is used in Apple TV devices.

In 2014, Apple introduced its Swift programming language, which it open-sourced
in 2015. The Apple app-development community has largely shifted from Objective-
C to Swift. Swift-based apps can import Objective-C and C software components.22

Google’s Android
Android—the most widely used mobile and smartphone operating system—is based
on the Linux kernel, the Java programming language and, now, the open-source
Kotlin programming language. Android is open source and free. Though you can’t
develop Android apps purely in C, you can incorporate C code into Android apps.23

According to idc.com, 84.8% of smartphones shipped in 2020 use Android, com-
pared to 15.2% for Apple.24 The Android operating system is used in numerous
smartphones, e-reader devices, tablets, TVs, in-store touch-screen kiosks, cars, robots,
multimedia players and more.

Billions of Computerized Devices
Billions of personal computers and an even larger number of mobile devices are now in
use. The explosive growth of smartphones, tablets and other devices creates significant
opportunities for mobile-app developers. The following table lists many computerized
devices, each of which can be part of the Internet of Things (see Section 1.11).

22. “Imported C and Objective-C APIs.” Accessed November 3, 2020. https://developer.ap-
ple.com/documentation/swift/imported_c_and_objective-c_apis.

23. “Add C and C++ code to your project.” Accessed November 3, 2020. https://developer.an-
droid.com/studio/projects/add-native-code.

24. “Smartphone Market Share.” Accessed December 24, 2020. https://www.idc.com/promo/
smartphone-market-share/os.

Some computerized devices

Automobiles
Cable boxes
CT scanners
Game consoles
Home security systems
Mobile phones
Optical sensors
Point-of-sale terminals
Smart meters
Tablets
Transportation passes

Blu-ray Disc™ players
Desktop computers
GPS navigation systems
Lottery systems
MRIs
Parking meters
Printers
Servers
Televisions
TV set-top boxes
ATMs

Building controls
Credit cards
e-Readers
Home appliances
Medical devices
Personal computers
Robots
Smartcards
Smartphones
Thermostats
Vehicle diagnostic systems

https://developer.apple.com/documentation/swift/imported_c_and_objective-c_apis
https://developer.android.com/studio/projects/add-native-code
https://www.idc.com/promo/smartphone-market-share/os
https://developer.apple.com/documentation/swift/imported_c_and_objective-c_apis
https://developer.android.com/studio/projects/add-native-code
https://www.idc.com/promo/smartphone-market-share/os

16 Chapter 1 Introduction to Computers and C

Self Check
1 (Fill-In) Windows is a(n) operating system—it’s controlled by Micro-
soft exclusively.
Answer: proprietary.

2 (True/False) Proprietary code is often scrutinized by a much larger audience than
open-source software, so errors often get removed faster.
Answer: False. Open-source code is often scrutinized by a much larger audience than
proprietary software, so errors often get removed faster.

3 (True/False) iOS dominates the global smartphone market over Android.
Answer: False. Android currently controls 84.8% of the smartphone market, but iOS
apps earn almost twice as much revenue as Android apps.25

1.6 The C Programming Language
C evolved from two earlier languages, BCPL26 and B27. BCPL was developed in 1967
by Martin Richards as a language for writing operating systems and compilers. Ken
Thompson modeled many features in his B language after their counterparts in
BCPL, and in 1970 he used B to create early versions of the UNIX operating system
at Bell Laboratories.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and
was originally implemented in 1972.28 C initially became widely known as the devel-
opment language of the UNIX operating system. Many of today’s leading operating
systems are written in C and/or C++. C is mostly hardware-independent—with care-
ful design, it’s possible to write C programs that are portable to most computers.

Built for Performance
C is widely used to develop systems that demand performance, such as operating sys-
tems, embedded systems, real-time systems and communications systems:

25. “Global App Revenue Reached $50 Billion in the First Half of 2020, Up 23% Year-Over-Year.”
Accessed November 1, 2020. https://sensortower.com/blog/app-revenue-and-down-
loads-1h-2020.

26. "BCLP." Accessed November 1, 2020. https://en.wikipedia.org/wiki/BCPL.
27. "B (programming language)." Accessed November 1, 2020. https://en.wikipedia.org/

wiki/B_(programming_language).
28. "C (programming language)." Accessed November 1, 2020. https://en.wikipedia.org/

wiki/C_(programming_language).

Application Description

Operating systems C’s portability and performance make it desirable for implementing operat-
ing systems, such as Linux and portions of Microsoft’s Windows and Goo-
gle’s Android. Apple’s macOS is built in Objective-C, which was derived
from C. We discussed some key popular desktop/notebook operating sys-
tems and mobile operating systems in Section 1.5.

https://sensortower.com/blog/app-revenue-and-downloads-1h-2020
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://sensortower.com/blog/app-revenue-and-downloads-1h-2020
https://en.wikipedia.org/wiki/B_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/BCPL

1.6 The C Programming Language 17

By the late 1970s, C had evolved into what’s now referred to as “traditional C.”
The publication in 1978 of Kernighan and Ritchie’s book, The C Programming Lan-
guage, drew wide attention to the language. This became one of the most successful
computer-science books of all time.

Standardization
C’s rapid expansion to various hardware platforms (that is, types of computer hard-
ware) led to many similar but often incompatible C versions. This was a serious prob-
lem for programmers who needed to develop code for several platforms. It became clear
that a standard C version was needed. In 1983, the American National Standards Com-
mittee on Computers and Information Processing (X3) created the X3J11 technical
committee to “provide an unambiguous and machine-independent definition of the
language.” In 1989, the standard was approved in the United States through the Amer-
ican National Standards Institute (ANSI), then worldwide through the International
Standards Organization (ISO). This version was simply called Standard C.

The C11 and C18 Standards
We discuss the latest C standard (referred to as C11), which was approved in 2011 and
updated with bug fixes in 2018 (referred to as C18). C11 refined and expanded C’s
capabilities. We’ve integrated into the text and Appendix C (in easy-to-include-or-omit
sections) many of the new features implemented in leading C compilers. The current C
standard document is referred to as ISO/IEC 9899:2018. Copies may be ordered from

https://www.iso.org/standard/74528.html

Embedded
systems

The vast majority of the microprocessors produced each year are embedded
in devices other than general-purpose computers. These embedded systems
include navigation systems, smart home appliances, home security systems,
smartphones, tablets, robots, intelligent traffic intersections and more. C is
one of the most popular programming languages for developing embedded
systems, which typically need to run as fast as possible and conserve mem-
ory. For example, a car’s antilock brakes must respond immediately to slow
or stop the car without skidding; video-game controllers should respond
instantaneously to prevent lag between the controller and the game action.

Real-time systems Real-time systems are often used for “mission-critical” applications that
require nearly instantaneous and predictable response times. Real-time sys-
tems need to work continuously. For example, an air-traffic-control system
must continuously monitor planes’ positions and velocities and report that
information to air-traffic controllers without delay so they can alert the
planes to change course if there’s a possibility of a collision.

Communications
systems

Communications systems need to route massive amounts of data to their
destinations quickly to ensure that things such as audio and video are deliv-
ered smoothly and without delay.

Application Description

https://www.iso.org/standard/74528.html

18 Chapter 1 Introduction to Computers and C

According to the C standard committee, the next C standard is likely to be released
in 2022.29

Because C is a hardware-independent, widely available language, C applications
often can run with little or no modification on a wide range of computer systems.

Self Check
1 (Fill-In) C evolved from two previous languages, and .
Answer: BCPL, B.

2 (True/False) It’s possible to write C programs that are portable to most computers.
Answer: True.

1.7 The C Standard Library and Open-Source Libraries
C programs consist of pieces called functions. You can program all the functions you
need to form a C program. However, most C programmers take advantage of the rich
collection of existing functions in the C standard library. Thus, there are really two
parts to learning C programming:

• learning the C language itself, and

• learning how to use the functions in the C standard library.

Throughout the book, we discuss many of these functions. P. J. Plauger’s book The
Standard C Library is must reading for programmers who need a deep understanding
of the library functions, how to implement them and how to use them to write por-
table code. We use and explain many C library functions throughout this text.

C How to Program, 9/e encourages a building-block approach to creating pro-
grams. When programming in C, you’ll typically use the following building blocks:

• C standard library functions,

• open-source C library functions,

• functions you create yourself, and

• functions other people (whom you trust) have created and made available to
you.

The advantage of creating your own functions is that you’ll know exactly how they
work. The disadvantage is the time-consuming effort that goes into designing, devel-
oping, debugging and performance-tuning new functions. Throughout the book, we
focus on using the existing C standard library to leverage your program-development
efforts and avoid “reinventing the wheel.” This is called software reuse.

Using C standard library functions instead of writing your own versions can
improve program performance, because these functions are carefully written to per-
form efficiently. Using C standard library functions instead of writing your own com-
parable versions also can improve program portability.

29. “Programming Language C — C2x Charter.” Accessed November 4, 2020. http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n2086.htm.

PERF

http://www.openstd.org/jtc1/sc22/wg14/www/docs/n2086.htm
http://www.openstd.org/jtc1/sc22/wg14/www/docs/n2086.htm

1.8 Other Popular Programming Languages 19

Open-Source Libraries
There are enormous numbers of third-party and open-source C libraries that can help
you perform significant tasks with modest amounts of code. GitHub lists over 32,000
repositories in their C category:

https://github.com/topics/c

In addition, pages such as Awesome C
https://github.com/kozross/awesome-c

provide curated lists of popular C libraries for a wide range of application areas.

Self Check
1 (Fill-In) Most C programmers take advantage of the rich collection of existing
functions called the .
Answer: C standard library.

2 (Fill-In) Avoid “reinventing the wheel” Instead, use existing pieces. This is called
.

Answer: software reuse.

1.8 Other Popular Programming Languages
The following is a brief intro to several other popular programming languages:

• BASIC was developed in the 1960s at Dartmouth College to familiarize novices
with programming techniques. Many of its latest versions are object-oriented.

• C++, which is based on C, was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories. C++ provides features that enhance the C language
and adds object-oriented programming capabilities. We introduce object-ori-
ented programming concepts in Appendix D.

• Python is an object-oriented language that was released publicly in 1991. It was
developed by Guido van Rossum of the National Research Institute for Math-
ematics and Computer Science in Amsterdam. Python has rapidly become one
of the world’s most popular programming languages, especially for educational
and scientific computing, and in 2017 it surpassed the programming language
R as the most popular data-science programming language.30,31,32 Some rea-

30. “5 things to watch in Python in 2017.” Accessed November 1, 2020. https://www.oreil-
ly.com/ideas/5-things-to-watch-in-python-in-2017.

31. “Python overtakes R, becomes the leader in Data Science, Machine Learning platforms.” Accessed
November 1, 2020. https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-
analytics-data-science.html.

32. “Data Science Job Report 2017: R Passes SAS, But Python Leaves Them Both Behind.” Accessed
November 1, 2020. https://www.r-bloggers.com/data-science-job-report-2017-r-
passes-sas-but-python-leaves-them-both-behind/.

https://github.com/topics/c
https://github.com/kozross/awesome-c
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://www.kdnuggets.com/2017/08/python-overtakes-r-leader-analytics-data-science.html
https://www.r-bloggers.com/data-science-job-report-2017-r-passes-sas-but-python-leaves-them-both-behind/

20 Chapter 1 Introduction to Computers and C

sons why Python is popular:33,34,35 It’s open-source, free and widely available.
It’s supported by a massive open-source community. It’s relatively easy to learn.
Its code is easier to read than many other popular programming languages. It
enhances developer productivity with extensive standard libraries and thou-
sands of third-party open-source libraries. It’s popular in web development and
in artificial intelligence, which is enjoying explosive growth, in part because of
its special relationship with data science. It’s widely used in the financial com-
munity.36

• Java—Sun Microsystems in 1991 funded an internal corporate research proj-
ect led by James Gosling, which resulted in the C++-based object-oriented
programming language called Java. A key Java goal is “write once, run any-
where,” enabling developers to write programs that run on a wide variety of
computer systems. Java is used in enterprise applications, in web servers (the
computers that provide the content to our web browsers), in applications for
consumer devices (e.g., smartphones, tablets, television set-top boxes, appli-
ances, automobiles and more) and for many other purposes. Java was origi-
nally the preferred Android app-development language, though several other
languages are now supported.

• C# (based on C++ and Java) is one of Microsoft’s three primary object-ori-
ented programming languages—the other two are Visual C++ and Visual
Basic. C# was developed to integrate the web into computer applications and
is now widely used to develop many kinds of applications. As part of Micro-
soft’s many open-source initiatives, they now offer open-source versions of C#
and Visual Basic.

• JavaScript is a widely used scripting language that’s primarily used to add pro-
grammability to web pages (e.g., animations, user interactivity and more). All
major web browsers support it. Many Python visualization libraries output
JavaScript to create interactive visualizations you can view in your web browser.
Tools such as NodeJS also enable JavaScript to run outside of web browsers.

• Swift, which was introduced in 2014, is Apple’s programming language for
developing iOS and macOS apps. Swift is a contemporary language that
includes popular features from Objective-C, Java, C#, Ruby, Python and
other languages. Swift is open-source, so it can be used on non-Apple plat-
forms as well.

33. “Why Learn Python? Here Are 8 Data-Driven Reasons.” Accessed November 1, 2020. https://
dbader.org/blog/why-learn-python.

34. “Why Learn Python.” Accessed November 1, 2020. https://simpleprogrammer.com/7-rea-
sons-why-you-should-learn-python.

35. “5 things to watch in Python in 2017.” Accessed November 1, 2020. https://www.oreil-
ly.com/ideas/5-things-to-watch-in-python-in-2017.

36. Kolanovic, M. and R. Krishnamachari, Big Data and AI Strategies: Machine Learning and Alter-
native Data Approach to Investing (J.P. Morgan, 2017).

https://simpleprogrammer.com/7-reasons-why-you-should-learn-python
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017
https://dbader.org/blog/why-learn-python
https://dbader.org/blog/why-learn-python
https://simpleprogrammer.com/7-reasons-why-you-should-learn-python
https://www.oreilly.com/ideas/5-things-to-watch-in-python-in-2017

1.9 Typical C Program-Development Environment 21

• R is a popular open-source programming language for statistical applications
and visualization. Python and R are the two most widely used data-science
languages.

Self Check
1 (Fill-In) Today, most code for general-purpose operating systems and other per-
formance-critical systems is written in .
Answer: C or C++.

2 (Fill-In) A key goal of is “write once, run anywhere,” enabling develop-
ers to write programs that will run on a great variety of computer systems and com-
puter-controlled devices.
Answer: Java.

3 (True/False) R is the most popular data-science programming language.
Answer: False. In 2017, Python surpassed R as the most popular data-science pro-
gramming language.

1.9 Typical C Program-Development Environment
C systems generally consist of several parts: a program-development environment, the
language and the C standard library. The following discussion explains the typical C
development environment.

C programs typically go through six phases to be executed—edit, preprocess,
compile, link, load and execute. Although C How to Program, 9/e, is a generic C text-
book (written independently of any particular operating system), we concentrate in
this section on a typical Linux-based C system. In Section 1.10, you’ll test-drive cre-
ating and running C programs on Windows, macOS and/or Linux.

1.9.1 Phase 1: Creating a Program
Phase 1 (in the following diagram) consists of editing a file in an editor program:

Two editors widely used on Linux systems are vi and emacs. C and C++ integrated
development environments (IDEs) such as Microsoft Visual Studio and Apple Xcode
have integrated editors. You type a C program in the editor, make corrections if nec-
essary, then store the program on a secondary storage device such as a hard disk. C
program filenames should end with the .c extension.

1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program
In Phase 2 (shown in the following diagram), you give the command to compile the
program:

Disk
Editor

Phase 1:
Programmer creates program
in the editor and stores it on
disk

22 Chapter 1 Introduction to Computers and C

The compiler translates the C program into machine-language code (also referred to
as object code). In a C system, the compilation command invokes a preprocessor
program before the compiler’s translation phase begins. The C preprocessor obeys
special commands called preprocessor directives, which perform text manipulations
on a program’s source-code files. These manipulations consist of inserting the con-
tents of other files and various text replacements. The early chapters discuss the most
common preprocessor directives. Chapter 14 discusses other preprocessor features.

In Phase 3 (shown in the following diagram), the compiler translates the C pro-
gram into machine-language code:

A syntax error occurs when the compiler cannot recognize a statement because it vio-
lates the language rules. The compiler issues an error message to help you locate and
fix the incorrect statement. The C standard does not specify the wording for error
messages issued by the compiler, so the messages you see on your system may differ
from those on other systems. Syntax errors are also called compile errors or compile-
time errors.

1.9.3 Phase 4: Linking
The next phase (shown in the following diagram) is called linking:

C programs typically use functions defined elsewhere, such as in the standard librar-
ies, open-source libraries or private libraries of a particular project. The object code
produced by the C compiler typically contains “holes” due to these missing parts. A
linker links a program’s object code with the code for the missing functions to pro-
duce an executable image (with no missing pieces). On a typical Linux system, the
command to compile and link a program is gcc (the GNU C compiler). To compile
and link a program named welcome.c using the latest C standard (C18), type

gcc -std=c18 welcome.c

at the Linux prompt and press the Enter key (or Return key). Linux commands are
case sensitive. If the program compiles and links correctly, the compiler produces a
file named a.out (by default), which is welcome.c’s executable image.

Disk
Preprocessor

Phase 2:
Preprocessor program
processes the code

Disk
Compiler

Phase 3:
Compiler creates
object code and stores
it on disk

Disk
Linker

Phase 4:
Linker links the object
code with the libraries,
creates an executable file and
stores it on disk

1.9 Typical C Program-Development Environment 23

1.9.4 Phase 5: Loading
The next phase (shown in the following diagram) is called loading:

Before a program can execute, the operating system must load it into memory. The
loader takes the executable image from disk and transfers it to memory. Additional
components from shared libraries that support the program also are loaded.

1.9.5 Phase 6: Execution
Finally, in the last phase (shown in the following diagram), the computer, under the
control of its CPU, executes the program one instruction at a time:

To load and execute the program on a Linux system, type ./a.out at the Linux
prompt and press Enter.

1.9.6 Problems That May Occur at Execution Time
Programs do not always work on the first try. Each of the preceding phases can fail
because of various errors that we’ll discuss. For example, an executing program might
attempt to divide by zero (an illegal operation on computers just as in arithmetic).
This would cause the computer to display an error message. You would then return
to the edit phase, make the necessary corrections and proceed through the remaining
phases again to determine that the corrections work properly.

Disk

Loader

Phase 5:
Loader puts program
in memory

.
.
.

Primary
Memory

.
.
.

CPU
Phase 6:
CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

.
.

Primary
Memory

.
.
.

24 Chapter 1 Introduction to Computers and C

Errors such as division-by-zero that occur as programs run are called runtime
errors or execution-time errors. Divide-by-zero is generally a fatal error that causes the
program to terminate immediately without successfully performing its job. Nonfatal
errors allow programs to run to completion, often producing incorrect results.

1.9.7 Standard Input, Standard Output and Standard Error Streams
Most C programs input and/or output data. Certain C functions take their input
from stdin (the standard input stream), which is normally the keyboard. Data is
often output to stdout (the standard output stream), which is normally the com-
puter screen. When we say that a program prints a result, we normally mean that the
result is displayed on a screen. Data also may be output to devices such as disks and
printers. There’s also a standard error stream referred to as stderr, which is normally
connected to the screen and used to display error messages. It’s common to route reg-
ular output data, i.e., stdout, to a device other than the screen while keeping stderr
assigned to the screen so that the user can be immediately informed of errors.

Self Check
1 (Fill-In) C programs typically go through six phases to be executed: ,

, , , and .
Answer: edit, preprocess, compile, link, load, execute.

2 (Fill-In) A(n) occurs when the compiler cannot recognize a statement
because it violates the rules of the language.
Answer: syntax error.

3 (Fill-In) Errors that occur as a program runs are called or execution-
time errors
Answer: runtime errors.

1.10 Test-Driving a C Application in Windows, Linux
and macOS
In this section, you’ll compile, run and interact with your first C application—a
guess-the-number game, which picks a random number from 1 to 1000 and prompts
you to guess it. If you guess correctly, the game ends. If you guess incorrectly, the
application indicates whether your guess is higher or lower than the correct number.
There’s no limit to your number of guesses, but you should be able to guess a number
from 1 to 1000 correctly in 10 or fewer tries. There’s some nice computer science
behind this game—in a later chapter, you’ll explore the binary search technique

You’ll create this application in Chapter 5’s exercises. Usually, this application
randomly selects the correct answers. We disabled random selection for the test-
drives. The application uses the same correct answer every time you run it. That way,
you can use the same guesses we use and see the same results. This answer may vary
by compiler.

ERR

1.10 Test-Driving a C Application in Windows, Linux and macOS 25

Summary of the Test-Drives
We’ll demonstrate creating a C application using:

• Microsoft Visual Studio 2019 Community edition for Windows
(Section 1.10.1).

• Clang in Xcode on macOS (Section 1.10.2).

• GNU gcc in a shell on Linux (Section 1.10.3).

• GNU gcc in a shell running inside the GNU Compiler Collection (GCC)
Docker container (Section 1.10.4).

You need to read only the section that corresponds to your setup.
Many development environments are available in which you can compile, build

and run C applications. If your course uses a different tool from those we demonstrate
here, consult your instructor for information on that tool.

1.10.1 Compiling and Running a C Application with Visual Studio
2019 Community Edition on Windows 10
In this section, you’ll run a C program on Windows using Microsoft Visual Studio
2019 Community edition. Several versions of Visual Studio are available. In some
versions, the options, menus and instructions we present might differ slightly. From
this point forward, we’ll simply say “Visual Studio” or “the IDE.”

Step 1: Checking Your Setup
If you have not already done so, read the Before You Begin section of this book for
instructions on installing the IDE and downloading the book’s code examples.

Step 2: Launching Visual Studio
Launch Visual Studio from the Start menu. Dismiss the initial Visual Studio window
by pressing the Esc key. Do not click the X in the upper-right corner, as that will ter-
minate Visual Studio. You can access this window at any time by selecting File > Start
Window. We use > to indicate selecting a menu item from a menu, so File > Open
means “select the Open menu item from the File menu.”

Step 3: Creating a Project
A project is a group of related files, such as the C source-code files that compose an
application. Visual Studio organizes applications into projects and solutions, which
contain one or more projects. Programmers use multiple-project solutions to create
large-scale applications. Our examples require only single-project solutions. For our
code examples, you’ll begin with an Empty Project and add files to it. To create a project:

1. Select File > New > Project… to display the Create a new project dialog.

2. Select the Empty Project template with the tags C++, Windows and Console.
Visual Studio does not have a C compiler, but its Visual C++ compiler can
compile most C programs. The template we use here is for programs that ex-
ecute at the command line in a Command Prompt window. Depending on

26 Chapter 1 Introduction to Computers and C

your Visual Studio version and the installed options, there may be many other
project templates. You can filter your choices using the Search for templates
textbox and the drop-down lists below it. Click Next to display the Configure
your new project dialog.

3. Provide a Project name and Location. For the Project name, we specified
c_test. For the Location, we selected this book’s examples folder, which we
assume is in your user account’s Documents folder. Click Create to open your
new project in Visual Studio.

At this point, Visual Studio creates your project, places its folder in

C:\Users\YourUserAccount\Documents\examples

(or the folder you specified) and opens Visual Studio’s main window.
When you edit C code, Visual Studio displays each file as a separate tab within

the window. The Solution Explorer—docked to Visual Studio’s left or right side—is
for viewing and managing your application’s files. In this book’s examples, you’ll typ-
ically place each program’s code files in the Source Files folder. If the Solution Explorer
is not displayed, you can display it by selecting View > Solution Explorer.

Step 4: Adding the GuessNumber.c File into the Project
Next, let’s add the file GuessNumber.c to the project. In the Solution Explorer:

1. Right-click the Source Files folder and select Add > Existing Item….

2. In the dialog that appears, navigate to the ch01 subfolder of the book’s exam-
ples folder, select GuessNumber.c and click Add.37

Step 5: Configuring Your Project’s Compiler Version and Disabling a Mic-
rosoft Error Message
The Before You Begin section mentioned that Visual C++ can compile most C pro-
grams. The Visual C++ compiler supports several C++ standard versions. We’ll use
Microsoft’s C++17 compiler, which we must configure in our project’s settings:

1. Right-click the project’s node— —in the Solution Explorer and select
Properties to display the project’s C_test Property Pages dialog.

2. In the Configuration drop-down list, change Active(Debug) to All Configurations.
In the Platform drop-down list, change Active(Win32) to All Platforms.

3. In the left column, expand the C/C++ node, then select Language.

4. In the right column, click in the field to the right of C++ Language Standard,
click the down arrow, then select ISO C++17 Standard (/std:c++17).38

37. For the multiple-source-code-file programs that you’ll see in later chapters, select all the files for
a given program. When you begin creating programs yourself, you can right-click the Source Files

folder and select Add > New Item… to display a dialog for adding a new file. You’ll need to change
the filename extension from .cpp to .c for your C program files.

38. At the time of this writing, Microsoft was still completing its support for the C++20 standard.
Once available, you should choose ISO C++20 Standard (/std:c++20).

1.10 Test-Driving a C Application in Windows, Linux and macOS 27

5. In the left column, in the C/C++ node, select Preprocessor.

6. In the right column, at the end of the value for Preprocessor Definitions, insert
 ;_CRT_SECURE_NO_WARNINGS

7. In the left column, in the C/C++ node, select General.

8. In the right column, click in the field to the right of SDL checks, click the
down arrow, then select No (/sdl-).

9. Click OK to save the changes.

Items 6 and 8 above eliminate Microsoft Visual C++ warning and error messages for
several C library functions we use throughout this book. We’ll say more about this
issue in Section 3.13.

Step 6: Compiling and Running the Project
Next, let’s compile and run the project so you can test-drive the application. Select
Debug > Start without debugging or type Ctrl + F5. If the program compiles correctly,
Visual Studio opens a Command Prompt window and executes the program. We
changed the Command Prompt’s color scheme39 and font size for readability:

Step 7: Entering Your First Guess
At the ? prompt, type 500 and press Enter. The application displays, "Too high. Try
again." to indicate that the value you entered is greater than the number the applica-
tion chose as the correct guess:

Step 8: Entering Another Guess
At the next prompt, type 250 and press Enter. The application displays, "Too high.
Try again." to indicate that the value you entered is greater than the correct guess:

39. If you’d like to modify the Command Prompt colors on your system, right click the title bar and
select Properties. In the "Command Prompt" Properties dialog, click the Colors tab, and select your pre-
ferred text and background colors.

28 Chapter 1 Introduction to Computers and C

Step 9: Entering Additional Guesses
Continue to play the game by entering values until you guess the correct number.
When you guess correctly, the application displays, "Excellent! You guessed the
number!":

Step 10: Playing the Game Again or Exiting the Application
After you guess the correct number, the application asks if you’d like to play another
game. At the "Please type (1=yes, 2=no)?" prompt, enter 1 to play again, which
chooses a new number to guess. Enter 2 if you wish to terminate the application. Each
time you execute this application (Step 6), it will choose the same numbers for you to
guess. To play a randomized version of the game, use the version of GuessNumber.c
in the ch01 folder’s randomized_version subfolder.

1.10 Test-Driving a C Application in Windows, Linux and macOS 29

Reusing This Project for Subsequent Examples
You can follow the steps in this section to create a separate project for every applica-
tion in the book. However, for our examples, you may find it more convenient to
reuse this project by removing the GuessNumber.c program from the project, then
adding another C program. To remove a file from your project (but not your system),
select it in the Solution Explorer, then press Del (or Delete). Repeat Step 4 to add a dif-
ferent program to the project.

Using Ubuntu Linux in the Windows Subsystem for Linux
Some Windows users may want to use the GNU gcc compiler on Windows, espe-
cially for the few programs in this book that Visual C++ cannot compile. You can do
this using the GNU Compiler Collection Docker container (Section 1.10.4), or you
can use gcc in Ubuntu Linux running in the Windows Subsystem for Linux. To
install the Windows Subsystem for Linux, follow the instructions at

https://docs.microsoft.com/en-us/windows/wsl/install-win10

Once you install and launch Ubuntu on your Windows System, you can use the fol-
lowing command to change to the folder containing the test-drive code example on
your Windows system:

cd /mnt/c/Users/YourUseName/Documents/examples/ch01

Then you can continue with Step 2 in Section 1.10.3.

1.10.2 Compiling and Running a C Application with Xcode on macOS
In this section, you’ll run a C program on a macOS using the Clang compiler in
Apple’s Xcode IDE.

Step 1: Checking Your Setup
If you have not already done so, read the Before You Begin section of this book for
instructions on installing the IDE and downloading the book’s code examples.

Step 2: Launching Xcode
Open a Finder window, select Applications and double-click the Xcode icon (). If
this is your first time running Xcode, the Welcome to Xcode window appears. Close
this window by clicking the X in the upper-left corner—you can access it at any time
by selecting Window > Welcome to Xcode. We use the > character to indicate selecting
a menu item from a menu. For example, the notation File > Open… means “select the
Open… menu item from the File menu.”

Step 3: Creating a Project
A project is a group of related files, such as the C source-code files that compose an
application. The Xcode projects we created for this book’s examples are Command
Line Tool projects that you’ll execute in the IDE. To create a project:

1. Select File > New > Project….

https://docs.microsoft.com/en-us/windows/wsl/install-win10

30 Chapter 1 Introduction to Computers and C

2. At the top of the Choose a template for your new project dialog, click macOS.

3. Under Application, click Command Line Tool and click Next.

4. For Product Name, enter a name for your project—we specified C_test_Xcode.

5. In the Language drop-down list, select C, then click Next.

6. Specify where you want to save your project. We selected the examples folder
containing this book’s code examples.

7. Click Create.

Xcode creates your project and displays the workspace window, initially showing
three areas—the Navigator area (left), Editor area (middle) and Utilities area (right).

The left-side Navigator area has icons at its top for the navigators that can be dis-
played there. For this book, you’ll primarily work with

• Project ()—Shows all the files and folders in your project.

• Issue ()—Shows you warnings and errors generated by the compiler.

Clicking a navigator button displays the corresponding navigator panel.
The middle Editor area is for managing project settings and editing source code.

This area is always displayed in your workspace window. Selecting a file in the Project
navigator displays the file’s contents in the Editor area. You will not use the right-side
Utilities area in this book. You’ll run and interact with the guess-the-number program
in the Debug area, which will appear below the Editor area.

The workspace window’s toolbar contains options for executing a program, dis-
playing the progress of tasks executing in Xcode and hiding or showing the left (Nav-
igator), right (Utilities) and bottom (Debug) areas.

Step 4: Deleting the main.c File from the Project
By default, Xcode creates a main.c source-code file containing a simple program that
displays, "Hello, World!". You won’t use main.c in this test-drive. In the Project nav-
igator, right-click the main.c file and select Delete. In the dialog that appears, select
Move to Trash. The file will be removed from your system if you empty your trash.

Step 5: Adding the GuessNumber.c File into the Project
In a Finder window, open the ch01 folder in the book’s examples folder, then drag
GuessNumber.c onto the Project navigator’s C_Test_Xcode folder. In the dialog that
appears, ensure that Copy items if needed is checked, then click Finish.40

Step 6: Compiling and Running the Project
To compile and run the project so you can test-drive the application, simply click the
run () button on Xcode’s toolbar. If the program compiles correctly, Xcode opens
the Debug area and executes the program in the right half of the Debug area:

40. For the multiple-source-code-file programs that you’ll see later in the book, drag all the files for
a given program to the project’s folder. When you begin creating your own programs, you can
right-click the project’s folder and select New File… to display a dialog for adding a new file.

1.10 Test-Driving a C Application in Windows, Linux and macOS 31

The application displays, "Please type your first guess.", then displays a question
mark (?) as a prompt on the next line.

Step 7: Entering Your First Guess
Click in the Debug area, then type 500 and press Return:

The application displays, "Too low. Try again.", meaning that the value you entered
is less than the number the application chose as the correct guess.

Step 8: Entering Another Guess
At the next prompt, enter 750:

The application displays, "Too low. Try again.", meaning the value you entered once
again is less than the correct guess.

Step 9: Entering Additional Guesses
Continue to play the game until you guess the correct number. When you guess cor-
rectly, the application displays, "Excellent! You guessed the number!":

32 Chapter 1 Introduction to Computers and C

Playing the Game Again or Exiting the Application
After you guess the correct number, the application asks if you’d like to play another
game. At the "Please type (1=yes, 2=no)?" prompt, enter 1 to play again, which
chooses a new number to guess. Enter 2 if you wish to terminate the application. Each
time you execute this application (Step 6), it will choose the same numbers for you to
guess. To play a randomized version of the game, use the version of GuessNumber.c
in the ch01 folder’s randomized_version subfolder.

Reusing This Project for Subsequent Examples
You can follow the steps in this section to create a separate project for every applica-
tion in the book. For our examples, you may find it more convenient to reuse this
project by removing the project’s current program, then adding a new one. To
remove a file from your project (but not your system), right-click the file in the Project
navigator and select Delete. In the dialog that appears, select Remove Reference. You
can then repeat Step 6 to add a different program to the project.

1.10.3 Compiling and Running a C Application with GNU gcc on
Linux
For this test-drive, we assume that you read the Before You Begin section and that
you placed the downloaded examples in your user account’s Documents folder.

Step 1: Changing to the ch01 Folder
From a Linux shell, use the cd command to change to the ch01 subfolder of the book’s
examples folder:

In this section’s figures, we use bold to highlight the text you should type. The
prompt in our Ubuntu Linux shell uses a tilde (~) to represent your home directory.
Each prompt ends with a dollar sign ($). The prompt may differ on other Linux dis-
tributions.

Step 2: Compiling the Application
Before running the application, you must first compile it:

The gcc command compiles the application:

• The -std=c18 option indicates that we’re using C18—the latest version of the
C programming language standard.

• The -o option names the executable file (GuessNumber) you’ll use to run the
program.

~$ cd ~/Documents/examples/ch01
~/Documents/examples/ch01$

~/Documents/examples/ch01$ gcc -std=c18 GuessNumber.c -o GuessNumber
~/Documents/examples/ch01$

1.10 Test-Driving a C Application in Windows, Linux and macOS 33

Step 3: Running the Application
Type ./GuessNumber at the prompt and press Enter to run the program:

The ./ tells Linux to run a file from the current directory. It’s needed here to indicate
that GuessNumber is an executable file.

Step 4: Entering Your First Guess
The application displays, "Please type your first guess.", then displays a question
mark (?) as a prompt on the next line. At the prompt, enter 500—note that the out-
puts may vary based on the compiler you’re using:

The application displays, "Too high. Try again.", meaning the value you entered is
greater than the number the application chose as the correct guess.

Step 5: Entering Another Guess
At the next prompt, enter 250:

This time the application displays, "Too low. Try again.", meaning the value you
entered is less than the correct guess.

Step 6: Entering Additional Guesses
Continue to play the game by entering values until you guess the correct number.
When you guess correctly, the application displays, "Excellent! You guessed the
number!":

~/Documents/examples/ch01$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
?

~/Documents/examples/ch01$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
?

~/Documents/examples/ch01$./GuessNumber
I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.
? 500
Too high. Try again.
? 250
Too low. Try again.
?

34 Chapter 1 Introduction to Computers and C

Step 7: Playing the Game Again or Exiting the Application
After you guess the correct number, the application asks if you’d like to play another
game. At the "Please type (1=yes, 2=no)?" prompt, enter 1 to play again, which
chooses a new number to guess. Enter 2 if you wish to terminate the application. Each
time you execute this application (Step 3), it will choose the same numbers for you to
guess. To play a randomized version of the game, use the version of GuessNumber.c
in the ch01 folder’s randomized_version subfolder.

1.10.4 Compiling and Running a C Application in a GCC Docker
Container Running Natively over Windows 10, macOS or Linux
One of the most convenient cross-platform ways to run GNU’s gcc compiler is via the
GNU Compiler Collection (GCC) Docker container. This section assumes you’ve
installed Docker Desktop (Windows or macOS) or Docker Engine (Linux)—as dis-
cussed in the Before You Begin section—and that Docker is running on your computer.

Executing the GNU Compiler Collection (GCC) Docker Container
Open a Command Prompt (Windows), Terminal (macOS/Linux) or shell (Linux),
then perform the following steps to launch the GCC Docker container:

1. Use the cd command to navigate to the examples folder containing this book’s
examples. Executing the Docker container from here will enable the container
to access our code examples.

2. Windows users: Launch the GCC Docker container with the command41

 docker run --rm -it -v "%CD%":/usr/src gcc:latest

Too low. Try again.
? 375
Too low. Try again.
? 437
Too high. Try again.
? 406
Too high. Try again.
? 391
Too high. Try again.
? 383
Too low. Try again.
? 387
Too high. Try again.
? 385
Too high. Try again.
? 384

Excellent! You guessed the number!
Would you like to play again?
Please type (1=yes, 2=no)?

41. A notification will appear asking you to allow Docker to access the files in the current folder.
You must allow this; otherwise, you will not be able to access our source-code files in Docker.

1.11 Internet, World Wide Web, the Cloud and IoT 35

3. macOS/Linux users: Launch the GCC Docker container with the command
 docker run --rm -it -v "$(pwd)":/usr/src gcc:latest

In the preceding commands:

• --rm cleans up the GCC container’s resources when you eventually shut it
down.

• -it runs the container in interactive mode, so you can enter commands to
change folders, compile programs using the GNU gcc compiler and run pro-
grams.

• -v "%CD%":/usr/src (Windows) or -v "$(pwd)":/usr/src (macOS/Linux)
allows the Docker container to access your current folder’s files and subfolders
via the Docker container’s /usr/src folder. You can navigate with the cd
command to subfolders of /usr/src to compile and run our programs.

• gcc:latest is the container name that you installed in the Before You
Begin.42

Once the container is running, you’ll see a prompt similar to
root@67773f59d9ea:/#

though "@67773f59d9ea" will differ on your computer. The container uses a Linux
operating system in which folder separators are forward slashes (/). The prompt dis-
plays the current folder location between the : and #.

Changing to the ch01 Folder in the Docker Container
Use the cd command to change to the /usr/src/ch01 folder:

You can now compile, run and interact with the GuessNumber application in the
Docker container, using the commands in Section 1.10.3, Steps 2–7.

Terminating the Docker Container
You can terminate the Docker container by typing Ctrl + d at the container’s prompt.

1.11 Internet, World Wide Web, the Cloud and IoT
In the late 1960s, ARPA—the Advanced Research Projects Agency of the United
States Department of Defense—rolled out plans for networking the main computer
systems of approximately a dozen ARPA-funded universities and research institu-

42. gcc:latest is the name of the gcc Docker container’s latest version at the time you downloaded
it onto your machine. Once downloaded, the container does not auto-update. You can keep
your GCC container up-to-date with the latest available release by executing docker pull
gcc:latest. If there’s a new version, Docker will download it.

root@01b4d47cadc6:/# cd /usr/src/ch01
root@01b4d47cadc6:/usr/src/ch01#

36 Chapter 1 Introduction to Computers and C

tions. The computers were to be connected with communications lines operating at
speeds on the order of 50,000 bits per second, a stunning rate at a time when most
people (of the few who even had networking access) were connecting over telephone
lines to computers at a rate of 110 bits per second. Academic research was about to
take a giant leap forward. ARPA proceeded to implement what quickly became
known as the ARPANET, the precursor to today’s Internet. Today’s fastest Internet
speeds are on the order of billions of bits per second, with trillion-bits-per-second
(terabit) speeds already being tested! 43 In 2020, Australian researchers successfully
tested a 44.2 terrabits per second Internet connection.44

Things worked out differently from the original plan. Although the ARPANET
enabled researchers to network their computers, its main benefit proved to be the
capability for quick and easy communication via what came to be known as electronic
mail (e-mail). This is true even on today’s Internet, with e-mail, instant messaging,
file transfer and social media, such as Snapchat, Instagram, Facebook and Twitter,
enabling billions of people worldwide to communicate quickly and easily.

The protocol (set of rules) for communicating over the ARPANET became
known as the Transmission Control Protocol (TCP). TCP ensured that messages,
consisting of sequentially numbered pieces called packets, were properly delivered
from sender to receiver, arrived intact and were assembled in the correct order.

1.11.1 The Internet: A Network of Networks
In parallel with the early evolution of the Internet, organizations worldwide were
implementing their own networks for intra-organization (that is, within an organiza-
tion) and inter-organization (that is, between organizations) communication. A huge
variety of networking hardware and software appeared. One challenge was to enable
these different networks to communicate with each other. ARPA accomplished this
by developing the Internet Protocol (IP), which created a true “network of net-
works,” the Internet’s current architecture. The combined set of protocols is now
called TCP/IP. Each Internet-connected device has an IP address—a unique numer-
ical identifier used by devices communicating via TCP/IP to locate one another on
the Internet.

Businesses rapidly realized that, by using the Internet, they could improve their
operations and offer new and better services to their clients. Companies started
spending large amounts of money to develop and enhance their Internet presence.
This generated fierce competition among communications carriers and hardware and
software suppliers to meet the increased infrastructure demand. As a result, Internet
bandwidth—the information-carrying capacity of communications lines—has
increased tremendously, while hardware costs have plummeted.

43. “BT Testing 1.4 Terabit Internet Connections.” Accessed November 1, 2020. https://
testinternetspeed.org/blog/bt-testing-1-4-terabit-internet-connections/.

44. “Monash, Swinburne, and RMIT universities use optical chip to achieve 44Tbps data speed.”
Accessed January 9, 2021. https://www.zdnet.com/article/monash-swinburne-and-rmit-
universities-achieve-44tbps-data-speed-using-single-optical-chip/.

https://www.zdnet.com/article/monash-swinburne-and-rmituniversities-achieve-44tbps-data-speed-using-single-optical-chip/
https://testinternetspeed.org/blog/bt-testing-1-4-terabit-internet-connections/
https://testinternetspeed.org/blog/bt-testing-1-4-terabit-internet-connections/
https://www.zdnet.com/article/monash-swinburne-and-rmituniversities-achieve-44tbps-data-speed-using-single-optical-chip/

1.11 Internet, World Wide Web, the Cloud and IoT 37

1.11.2 The World Wide Web: Making the Internet User-Friendly
The World Wide Web (simply called “the web”) is a collection of hardware and soft-
ware associated with the Internet that allows computer users to locate and view doc-
uments (with various combinations of text, graphics, animations, audios and videos)
on almost any subject. In 1989, Tim Berners-Lee of CERN (the European Organi-
zation for Nuclear Research) began developing HyperText Markup Language
(HTML)—the technology for sharing information via “hyperlinked” text docu-
ments. He also wrote communication protocols such as HyperText Transfer Proto-
col (HTTP) to form the backbone of his new hypertext information system, which
he referred to as the World Wide Web.

In 1994, Berners-Lee founded the World Wide Web Consortium (W3C,
https://www.w3.org), devoted to developing web technologies. One of the W3C’s
primary goals is to make the web universally accessible to everyone regardless of dis-
abilities, language or culture.

1.11.3 The Cloud
More and more computing today is done “in the cloud”—that is, using software and
data distributed across the Internet worldwide, rather than locally on your desktop,
notebook computer or mobile device. Cloud computing allows you to increase or
decrease computing resources to meet your needs at any given time, which is more
cost-effective than purchasing hardware to provide enough storage and processing
power to meet occasional peak demands. Cloud computing also saves money by shift-
ing to the service provider the burden of managing these apps (such as installing and
upgrading the software, security, backups and disaster recovery).

The apps you use daily are heavily dependent on various cloud-based services.
These services use massive clusters of computing resources (computers, processors,
memory, disk drives, etc.) and databases that communicate over the Internet with
each other and the apps you use. A service that provides access to itself over the Inter-
net is known as a web service.

Software as a Service
Cloud vendors focus on service-oriented architecture (SOA) technology. They pro-
vide “as-a-Service” capabilities that applications connect to and use in the cloud.
Common services provided by cloud vendors include:45

“As-a-Service” acronyms (note that several are the same)

Big data as a Service (BDaaS)
Hadoop as a Service (HaaS)
Infrastructure as a Service (IaaS)

Platform as a Service (PaaS)
Software as a Service (SaaS)
Storage as a Service (SaaS)

45. For more “as-a-Service” acronyms, see https://en.wikipedia.org/wiki/Cloud_computing
and https://en.wikipedia.org/wiki/As_a_service.

https://www.w3.org)
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/As_a_service

38 Chapter 1 Introduction to Computers and C

Mashups
The applications-development methodology of mashups enables you to rapidly
develop powerful software applications by combining (often free) complementary
web services and other forms of information feeds. One of the first mashups,
www.housingmaps.com, combined the real-estate listings from www.craigslist.org
with Google Maps to show the locations of homes for sale or rent in a given area.
Check out www.housingmaps.com for some interesting facts, history, articles and how
it influenced real-estate industry listings.

ProgrammableWeb (https://programmableweb.com/) provides a directory of
nearly 24,000 web services and almost 8,000 mashups. They also provide how-to
guides and sample code for working with web services and creating your own mashups.
According to their website, some of the most widely used web services are Google Maps
and others provided by Facebook, Twitter and YouTube.

1.11.4 The Internet of Things
The Internet is no longer just a network of computers—it’s an Internet of Things
(IoT). A thing is any object with an IP address and the ability to send, and in some
cases receive, data automatically over the Internet. Such things include:

• a car with a transponder for paying tolls,

• monitors for parking-space availability in a garage,

• a heart monitor implanted in a human,

• water-quality monitors,

• a smart meter that reports energy usage,

• radiation detectors,

• item trackers in a warehouse,

• mobile apps that can track your movement and location,

• smart thermostats that adjust room temperatures based on weather forecasts
and activity in the home, and

• intelligent home appliances.

According to statista.com, there are already over 23 billion IoT devices in use today,
and there could be over 75 billion IoT devices in 2025.46

Self Check
1 (Fill-In) The was the precursor to today’s Internet.
Answer: ARPANET.

46. “Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025.” Ac-
cessed November 1, 2020. https://www.statista.com/statistics/471264/iot-number-
of-connected-devices-worldwide/.

www.housingmaps.com
www.craigslist.org
www.housingmaps.com
https://programmableweb.com/)
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

1.12 Software Technologies 39

2 (Fill-In) The (simply called “the web”) is a collection of hardware and
software associated with the Internet that allows computer users to locate and view doc-
uments (with various combinations of text, graphics, animations, audios and videos).
Answer: World Wide Web.

3 (Fill-In) In the Internet of Things (IoT), a thing is any object with a(n)
and the ability to send, and in some cases receive, data over the Internet.

Answer: IP address.

1.12 Software Technologies
As you learn about and work in software development, you’ll frequently encounter
the following buzzwords:

• Refactoring: Reworking programs to make them clearer and easier to main-
tain while preserving their correctness and functionality. Many IDEs contain
built-in refactoring tools to do major portions of the reworking automatically.

• Design patterns: Proven architectures for constructing flexible and maintain-
able object-oriented software. The field of design patterns tries to enumerate
those recurring patterns, encouraging software designers to reuse them to
develop better-quality software using less time, money and effort.

• Software Development Kits (SDKs)—The tools and documentation that
developers use to program applications.

Self Check
1 (Fill-In) is the process of reworking programs to make them clearer and
easier to maintain while preserving their correctness and functionality.
Answer: refactoring.

1.13 How Big Is Big Data?
For computer scientists and data scientists, data is now as crucial as writing programs.
According to IBM, approximately 2.5 quintillion bytes (2.5 exabytes) of data are cre-
ated daily,47 and 90% of the world’s data was created in the last two years.48 The
Internet, which will play an important part in your career, is responsible for much of
this trend. According to IDC, the global data supply will reach 175 zettabytes (equal
to 175 trillion gigabytes or 175 billion terabytes) annually by 2025.49 Consider the
following examples of various popular data measures.

47. “Welcome to the world of A.I..” Accessed November 1, 2020. https://www.ibm.com/blogs/
watson/2016/06/welcome-to-the-world-of-a-i/.

48. “Accelerate Research and Discovery.” Accessed November 1, 2020. https://www.ibm.com/
watson/advantages/accelerate.

49. “IDC: Expect 175 zettabytes of data worldwide by 2025.” Accessed November 1, 2020.
https://www.networkworld.com/article/3325397/storage/idc-expect-175-zetta-
bytes-of-data-worldwide-by-2025.html.

https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/
https://www.ibm.com/watson/advantages/accelerate
https://www.networkworld.com/article/3325397/storage/idc-expect-175-zetta-bytes-of-data-worldwide-by-2025.html
https://www.ibm.com/blogs/watson/2016/06/welcome-to-the-world-of-a-i/
https://www.ibm.com/watson/advantages/accelerate

40 Chapter 1 Introduction to Computers and C

Megabytes (MB)
One megabyte is about one million (actually 220) bytes. Many of the files we use daily
require one or more MBs of storage. Some examples include:

• MP3 audio files—High-quality MP3s range from 1 to 2.4 MB per minute.50

• Photos—JPEG format photos taken on a digital camera can require about 8
to 10 MB per photo.

• Video—Smartphone cameras can record video at various resolutions. Each
minute of video can require many megabytes of storage. For example, on one
of our iPhones, the Camera settings app reports that 1080p video at 30
frames-per-second (FPS) requires 130 MB/minute and 4K video at 30 FPS
requires 350 MB/minute.

Gigabytes (GB)
One gigabyte is about 1000 megabytes (actually 230 bytes). A dual-layer DVD can
store up to 8.5 GB51, which translates to:

• as much as 141 hours of MP3 audio,

• approximately 1000 photos from a 16-megapixel camera,

• approximately 7.7 minutes of 1080p video at 30 FPS, or

• approximately 2.85 minutes of 4K video at 30 FPS.

The current highest-capacity Ultra HD Blu-ray discs can store up to 100 GB of
video.52 Streaming a 4K movie can use between 7 and 10 GB per hour (highly com-
pressed).

Terabytes (TB)
One terabyte is about 1000 gigabytes (actually 240 bytes). Recent disk drives for desk-
top computers come in sizes up to 20 TB,53 which is equivalent to:

• approximately 28 years of MP3 audio,

• approximately 1.68 million photos from a 16-megapixel camera,

• approximately 226 hours of 1080p video at 30 FPS, or

• approximately 84 hours of 4K video at 30 FPS.

Nimbus Data now has the largest solid-state drive (SSD) at 100 TB, which can store
five times the 20-TB examples of audio, photos and video listed above.54

50. “Audio File Size Calculations.” Accessed November 1, 2020. https://www.audiomoun-
tain.com/tech/audio-file-size.html.

51. “DVD.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/DVD.
52. “Ultra HD Blu-ray.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/Ul-

tra_HD_Blu-ray.
53. “History of hard disk drives.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/

History_of_hard_disk_drives.
54. “Nimbus Data 100TB SSD – World’s Largest SSD.” Accessed November 1, 2020. https://

www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/.

https://www.audiomountain.com/tech/audio-file-size.html
https://en.wikipedia.org/wiki/Ultra_HD_Blu-ray
https://en.wikipedia.org/wiki/History_of_hard_disk_drives
https://www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/
https://www.audiomountain.com/tech/audio-file-size.html
https://en.wikipedia.org/wiki/DVD
https://en.wikipedia.org/wiki/Ultra_HD_Blu-ray
https://en.wikipedia.org/wiki/History_of_hard_disk_drives
https://www.cinema5d.com/nimbus-data-100tb-ssd-worlds-largest-ssd/

1.13 How Big Is Big Data? 41

Petabytes, Exabytes and Zettabytes
There are over four billion people online, creating about 2.5 quintillion bytes of data
each day55—that’s 2500 petabytes (each petabyte is about 1000 terabytes) or 2.5 exa-
bytes (each exabyte is about 1000 petabytes). A March 2016 AnalyticsWeek article
stated that by 2021 there would be over 50 billion devices connected to the Internet
(most of them through the Internet of Things; Section 1.11.4) and, by 2020, there
would be 1.7 megabytes of new data produced per second for every person on the
planet.56 At today’s numbers (approximately 7.7 billion people57), that’s about

• 13 petabytes of new data per second,

• 780 petabytes per minute,

• 46,800 petabytes (46.8 exabytes) per hour, or

• 1,123 exabytes per day—that’s 1.123 zettabytes (ZB) per day (each zettabyte
is about 1000 exabytes).

That’s the equivalent of over 5.5 million hours (over 600 years) of 4K video every day
or approximately 116 billion photos every day!

Additional Big-Data Stats
For a real-time sense of big data, check out https://www.internetlivestats.com,
with various statistics, including the numbers so far today of

• Google searches.

• Tweets.

• Videos viewed on YouTube.

• Photos uploaded on Instagram.

You can click each statistic to drill down for more information.
Some other interesting big-data facts:

• Every hour, YouTube users upload 30,000 hours of video, and almost 1 bil-
lion hours of video are watched on YouTube every day.58

• Every second, there are 103,777 GBs (or 103.777 TBs) of Internet traffic, 9204
tweets sent, 87,015 Google searches and 86,617 YouTube videos viewed.59

55. “How Much Data Is Created Every Day in 2020?” Accessed November 1, 2020. https://
techjury.net/blog/how-much-data-is-created-every-day/#gref.

56. “Big Data Facts.” Accessed November 1, 2020. https://analyticsweek.com/content/big-
data-facts/.

57. “World Population.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/
World_population.

58. “57 Fascinating and Incredible YouTube Statistics.” Accessed November 1, 2020. https://
www.brandwatch.com/blog/youtube-stats/.

59. “Tweets Sent in 1 Second.” Accessed November 1, 2020. http://www.internetlives-
tats.com/one-second.

https://www.internetlivestats.com
https://analyticsweek.com/content/big-data-facts/
https://en.wikipedia.org/wiki/World_population
http://www.brandwatch.com/blog/youtube-stats/
http://www.internetlivestats.com/one-second
https://techjury.net/blog/how-much-data-is-created-every-day/#gref
https://techjury.net/blog/how-much-data-is-created-every-day/#gref
https://analyticsweek.com/content/big-data-facts/
https://en.wikipedia.org/wiki/World_population
http://www.brandwatch.com/blog/youtube-stats/
http://www.internetlivestats.com/one-second

42 Chapter 1 Introduction to Computers and C

• On Facebook each day, there are 3.2 billion “likes” and comments,60 and 5
billion emojis sent via Facebook Messenger.61

Domo, Inc.’s infographic called “Data Never Sleeps 8.0” shows interesting statis-
tics regarding how much data is generated every minute, including:62

• 347,222 Instagram posts.

• 500 hours of video uploaded to YouTube.

• 147,000 photos uploaded to Facebook.

• 41,666,667 WhatsApp messages shared.

• 404,444 hours of Netflix video viewed.

• 479,452 users interact with Reddit content.

• 208,333 users participate in Zoom meetings.

• 1,388,889 people make video calls.

Computing Power Over the Years
Data is getting more massive, and so is the computing power for processing it.
Today’s processor performance is often measured in terms of FLOPS (floating-point
operations per second). In the early to mid-1990s, the fastest supercomputer speeds
were measured in gigaflops (109 FLOPS). By the late 1990s, Intel produced the first
teraflop (1012 FLOPS) supercomputers. In the early-to-mid 2000s, speeds reached
hundreds of teraflops, then in 2008, IBM released the first petaflop (1015 FLOPS)
supercomputer. Currently, the fastest supercomputer—Fujitsu’s Fugaku63—is capa-
ble of 442 petaflops.64

Distributed computing can link thousands of personal computers via the Internet
to produce even more FLOPS. In late 2016, the Folding@home network—a distrib-
uted network in which people volunteer their personal computers’ resources for use
in disease research and drug design65—was capable of over 100 petaflops. Companies
like IBM are now working toward supercomputers capable of exaflops (1018

FLOPS).66

60. “Facebook: 3.2 Billion Likes & Comments Every Day.” Accessed November 1, 2020. https:/
/marketingland.com/facebook-3-2-billion-likes-comments-every-day-19978.

61. “Facebook celebrates World Emoji Day by releasing some pretty impressive facts.” Accessed No-
vember 1, 2020. https://mashable.com/2017/07/17/facebook-world-emoji-day/.

62. “Data Never Sleeps 8.0.” Accessed November 1, 2020. https://www.domo.com/learn/data-
never-sleeps-8.

63. “Top 500.” Accessed December 24, 2020. https://en.wikipedia.org/wiki/TOP500#TOP_500.
64. “FLOPS.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/FLOPS.
65. “Folding@home.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/Fold-

ing@home.
66. “A new supercomputing-powered weather model may ready us for Exascale.” Accessed Novem-

ber 1, 2020. https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-
model-exascale/.

https://mashable.com/2017/07/17/facebook-world-emoji-day/
https://www.domo.com/learn/data-never-sleeps-8
https://en.wikipedia.org/wiki/TOP500#TOP_500
https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-model-exascale/
https://marketingland.com/facebook-3-2-billion-likes-comments-every-day-19978
https://marketingland.com/facebook-3-2-billion-likes-comments-every-day-19978
https://www.domo.com/learn/data-never-sleeps-8
https://en.wikipedia.org/wiki/FLOPS
https://en.wikipedia.org/wiki/Folding@home
https://en.wikipedia.org/wiki/Folding@home
https://www.ibm.com/blogs/research/2017/06/supercomputing-weather-model-exascale/

1.13 How Big Is Big Data? 43

The quantum computers now under development theoretically could operate at
18,000,000,000,000,000,000 times the speed of today’s “conventional comput-
ers”!67 This number is so extraordinary that in one second, a quantum computer the-
oretically could do staggeringly more calculations than the total that have been done
by all computers since the world’s first computer appeared. This almost unimaginable
computing power could wreak havoc with blockchain-based cryptocurrencies like
Bitcoin. Engineers are already rethinking blockchain68 to prepare for such massive
increases in computing power.69

The history of supercomputing power is that it eventually works its way down
from research labs—where extraordinary amounts of money have been spent to
achieve those performance numbers—into “reasonably priced” commercial com-
puter systems and even desktop computers, laptops, tablets and smartphones.

Computing power’s cost continues to decline, especially with cloud computing.
People used to ask the question, “How much computing power do I need on my sys-
tem to deal with my peak processing needs?” Today, that thinking has shifted to “Can
I quickly carve out on the cloud what I need temporarily for my most demanding
computing chores?” You pay for only what you use to accomplish a given task.

Processing the World’s Data Requires Lots of Electricity
Data from the world’s Internet-connected devices is exploding, and processing that
data requires tremendous amounts of energy. According to a recent article, energy use
for processing data in 2015 was growing at 20% per year and consuming approxi-
mately three to five percent of the world’s power. The article says that total data-pro-
cessing power consumption could reach 20% by 2025.70

Another enormous electricity consumer is the blockchain-based cryptocurrency
Bitcoin. Processing just one Bitcoin transaction uses approximately the same amount
of energy as powering the average American home for a week. The energy use comes
from the process Bitcoin “miners” use to prove that transaction data is valid.71

According to some estimates, a year of Bitcoin transactions consumes more
energy than many countries.72 Together, Bitcoin and Ethereum (another popular

67. “Only God can count that fast — the world of quantum computing.” Accessed November 1,
2020. https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-
of-quantum-computing-406a0a91fcf4.

68. “Blockchain.” Accessed December 24, 2020. https://en.wikipedia.org/wiki/Blockchain.
69. “Is Quantum Computing an Existential Threat to Blockchain Technology?” Accessed Novem-

ber 1, 2020. https://singularityhub.com/2017/11/05/is-quantum-computing-an-exis-
tential-threat-to-blockchain-technology/.

70. “‘Tsunami of data’ could consume one fifth of global electricity by 2025.” Accessed November
1, 2020. https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-
could-consume-fifth-global-electricity-by-2025.

71. “One Bitcoin Transaction Consumes As Much Energy As Your House Uses in a Week.” Ac-
cessed November 1, 2020. https://motherboard.vice.com/en_us/article/ywbbpm/bit-
coin-mining-electricity-consumption-ethereum-energy-climate-change.

72. “Bitcoin Energy Consumption Index.” Accessed November 1, 2020. https://digicono-
mist.net/bitcoin-energy-consumption.

https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quantum-computing-406a0a91fcf4
https://en.wikipedia.org/wiki/Blockchain
https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-to-blockchain-technology/
https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025
https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-consumption-ethereum-energy-climate-change
https://digiconomist.net/bitcoin-energy-consumption
https://medium.com/@n.biedrzycki/only-god-can-count-that-fast-the-world-of-quantum-computing-406a0a91fcf4
https://singularityhub.com/2017/11/05/is-quantum-computing-an-existential-threat-to-blockchain-technology/
https://www.theguardian.com/environment/2017/dec/11/tsunami-of-data-could-consume-fifth-global-electricity-by-2025
https://motherboard.vice.com/en_us/article/ywbbpm/bitcoin-mining-electricity-consumption-ethereum-energy-climate-change
https://digiconomist.net/bitcoin-energy-consumption

44 Chapter 1 Introduction to Computers and C

blockchain-based platform and cryptocurrency) consume more energy per year than
Finland, Belgium or Pakistan.73

Morgan Stanley predicted in 2018 that “the electricity consumption required to
create cryptocurrencies this year could actually outpace the firm’s projected global
electric vehicle demand—in 2025.”74 This situation is unsustainable, especially given
the huge interest in blockchain-based applications, even beyond the cryptocurrency
explosion. The blockchain community is working on fixes.75,76

Big-Data Opportunities
The big-data explosion is likely to continue exponentially for years to come. With 50
billion computing devices on the horizon, we can only imagine how many more there
will be over the next few decades. It’s crucial for businesses, governments, the mili-
tary, and even individuals to get a handle on all this data.

It’s interesting that some of the best writings about big data, data science, artificial
intelligence and more are coming out of prominent business organizations, such as
J.P. Morgan, McKinsey, Bloomberg and the like. Big data’s appeal to big business is
undeniable, given the rapidly accelerating accomplishments. Many companies are
making significant investments and getting valuable results through technologies like
big data, machine learning and natural-language processing. This is forcing compet-
itors to invest as well, rapidly increasing the need for computing professionals with
computer-science and data-science experience. This growth is likely to continue for
many years.

Self Check
1 (Fill-In) Today’s processor performance is often measured in terms of .
Answer: FLOPS (floating-point operations per second).

2 (Fill-In) The technology that could wreak havoc with blockchain-based crypto-
currencies, like Bitcoin, and other blockchain-based technologies is .
Answer: quantum computers.

3 (True/False) With cloud computing you pay a fixed price for cloud services
regardless of how much you use those services.
Answer: False. A key cloud-computing benefit is that you pay for only what you use
to accomplish a given task.

73. “Ethereum Energy Consumption Index.” Accessed November 1, 2020. https://digicono-
mist.net/ethereum-energy-consumption.

74. “Power Play: What Impact Will Cryptocurrencies Have on Global Utilities?” Accessed Novem-
ber 1, 2020. https://www.morganstanley.com/ideas/cryptocurrencies-global-utili-
ties.

75. “Blockchains Use Massive Amounts of Energy—But There’s a Plan to Fix That.” Accessed No-
vember 1, 2020. https://www.technologyreview.com/s/609480/bitcoin-uses-massive-
amounts-of-energybut-theres-a-plan-to-fix-it/.

76. “How to fix Bitcoin's energy-consumption problem.” Accessed November 1, 2020. http://
mashable.com/2017/12/01/bitcoin-energy/.

https://digiconomist.net/ethereum-energy-consumption
https://www.morganstanley.com/ideas/cryptocurrencies-global-utilities
https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energybut-theres-a-plan-to-fix-it/
https://digiconomist.net/ethereum-energy-consumption
https://www.morganstanley.com/ideas/cryptocurrencies-global-utilities
https://www.technologyreview.com/s/609480/bitcoin-uses-massive-amounts-of-energybut-theres-a-plan-to-fix-it/
http://mashable.com/2017/12/01/bitcoin-energy/
http://mashable.com/2017/12/01/bitcoin-energy/

1.13 How Big Is Big Data? 45

1.13.1 Big-Data Analytics
Data analytics is a mature and well-developed discipline. The term “data analysis” was
coined in 1962,77 though people have been analyzing data using statistics for thousands
of years, going back to the ancient Egyptians.78 Big-data analytics is a more recent phe-
nomenon—the term “big data” was coined around 1987.79

Consider four of the V’s of big data80,81:

1. Volume—the data the world is producing is growing exponentially.

2. Velocity—the speed at which data is being produced, the speed at which it
moves through organizations and the speed at which data changes are growing
quickly.82,83,84

3. Variety—data used to be alphanumeric (that is, consisting of alphabetic char-
acters, digits, punctuation and some special characters)—today, it also in-
cludes images, audios, videos and data from an exploding number of Internet
of Things sensors in our homes, businesses, vehicles, cities and more.

4. Veracity—the validity of the data—is it complete and accurate? Can we trust
that data when making crucial decisions? Is it real?

Most data is now being created digitally in a variety of types, in extraordinary vol-
umes and moving at astonishing velocities. Moore’s Law and related observations have
enabled us to store data economically and process and move it faster—and all at rates
growing exponentially over time. Digital data storage has become so vast in capacity,
and so cheap and small, that we can now conveniently and economically retain all the
digital data we’re creating.85 That’s big data.

77. “A Very Short History Of Data Science.” Accessed November 1, 2020. https://
www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/.

78. “A Brief History of Data Analysis.” Accessed November 1, 2020. https://www.flydata.com/
blog/a-brief-history-of-data-analysis/.

79. Diebold, Francis. (2012). On the Origin(s) and Development of the Term “Big Data”. SSRN
Electronic Journal. 10.2139/ssrn.2152421. https://www.researchgate.net/publication/
255967292_On_the_Origins_and_Development_of_the_Term_'Big_Data'.

80. “The Four V's of Big Data.” Accessed November 1, 2020. https://www.ibmbigdatahub.com/
infographic/four-vs-big-data.

81. There are lots of articles and papers that add many other “V-words” to this list.
82. “Volume, velocity, and variety: Understanding the three V's of big data.” Accessed November

1, 2020. https://www.zdnet.com/article/volume-velocity-and-variety-understand-
ing-the-three-vs-of-big-data/.

83. “3Vs (volume, variety and velocity).” Accessed November 1, 2020. https://whatis.techtar-
get.com/definition/3Vs.

84. “Big Data: Forget Volume and Variety, Focus On Velocity.” Accessed November 1, 2020.
https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-
and-variety-focus-on-velocity.

85. “How Much Information Is There In the World?” Accessed November 1, 2020. http://
www.lesk.com/mlesk/ksg97/ksg.html. [The following article pointed us to this Michael Lesk
article: https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-
of-data-science/.]

https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.flydata.com/blog/a-brief-history-of-data-analysis/
https://www.researchgate.net/publication/255967292_On_the_Origins_and_Development_of_the_Term_'Big_Data'
https://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
https://whatis.techtarget.com/definition/3Vs
https://www.forbes.com/sites/brentdykes/2017/06/28/big-data-forget-volume-and-variety-focus-on-velocity
http://www.lesk.com/mlesk/ksg97/ksg.html
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
https://www.flydata.com/blog/a-brief-history-of-data-analysis/
https://www.researchgate.net/publication/255967292_On_the_Origins_and_Development_of_the_Term_'Big_Data'
https://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
https://whatis.techtarget.com/definition/3Vs
http://www.lesk.com/mlesk/ksg97/ksg.html
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/

46 Chapter 1 Introduction to Computers and C

The following Richard W. Hamming quote—although from 1962—sets the
tone for the rest of this book:

“The purpose of computing is insight, not numbers.”86

Data science is producing new, deeper, subtler and more valuable insights at a
remarkable pace. It’s truly making a difference. Big-data analytics is an integral part
of the answer.

To get a sense of big data’s scope in industry, government and academia, check
out the high-resolution graphic87—you can click to zoom for easier readability:

http://mattturck.com/wp-content/uploads/2018/07/
Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png

1.13.2 Data Science and Big Data Are Making a Difference: Use
Cases
The data-science field is growing rapidly because it’s producing significant results that
are making a difference. We enumerate data-science and big-data use cases in the fol-
lowing table. We expect that the use cases and our examples, exercises and projects
will inspire interesting term projects, directed-study projects, capstone-course proj-
ects and thesis research. Big-data analytics has resulted in improved profits, better
customer relations, and even sports teams winning more games and championships
while spending less on players.88,89,90

86. Hamming, R. W., Numerical Methods for Scientists and Engineers (New York: McGraw Hill,
1962). [The following article pointed us to Hamming’s book and his quote that we cited:
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-
data-science/.]

87. Turck, M., and J. Hao, “Great Power, Great Responsibility: The 2018 Big Data & AI Land-
scape,” http://mattturck.com/bigdata2018/.

Data-science use cases

anomaly detection
assisting people with disabilities
automated closed captioning
brain mapping
cancer diagnosis/treatment
classifying handwriting
computer vision

credit scoring
crime prevention
CRISPR gene editing
crop-yield improvement
customer churn and retention
customer service agents
cybersecurity

data mining
data visualization
diagnostic medicine
dynamic driving routes
dynamic pricing
electronic health records
emotion detection

88. Sawchik, T., Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak (New
York: Flat Iron Books, 2015).

89. Ayres, I., Super Crunchers (Bantam Books, 2007), pp. 7–10.
90. Lewis, M., Moneyball: The Art of Winning an Unfair Game (W. W. Norton & Company, 2004).

http://mattturck.com/wp-content/uploads/2018/07/Matt_Turck_FirstMark_Big_Data_Landscape_2018_Final.png
https://www.forbes.com/sites/gilpress/2013/05/28/a-very-short-history-of-data-science/
http://mattturck.com/bigdata2018/

1.14 Case Study—A Big-Data Mobile Application 47

1.14 Case Study—A Big-Data Mobile Application
In your career, you’ll work with many programming languages and software technol-
ogies. With its 130 million monthly active users,91 Google’s Waze GPS navigation
app is one of the most widely used big-data apps. Early GPS navigation devices and
apps relied on static maps and GPS coordinates to determine the best route to your
destination. They could not adjust dynamically to changing traffic situations.

Waze processes massive amounts of crowdsourced data—that is, the data that’s
continuously supplied by their users and their users’ devices worldwide. They analyze
this data as it arrives to determine the best route to get you safely to your destination
in the least amount of time. To accomplish this, Waze relies on your smartphone’s
Internet connection. The app automatically sends location updates to their servers
(assuming you allow it to). They use that data to dynamically re-route you based on
current traffic conditions and to tune their maps. Users report other information,
such as roadblocks, construction, obstacles, vehicles in breakdown lanes, police loca-
tions, gas prices and more. Waze then alerts other drivers in those locations.

Waze uses many technologies to provide its services. We’re not privy to how Waze is
implemented, but we infer below a list of technologies they probably use. For example,

• Most apps created today use at least some open-source software. You’ll take
advantage of open-source libraries and tools in the case studies.

facial recognition
fraud detection
game playing
health outcome improvement
human genome sequencing
identity-theft prevention
immunotherapy
intelligent assistants
Internet of Things (IoT) and

medical device monitoring
inventory control
language translation
location-based services
malware detection
marketing analytics
natural-language translation
new pharmaceuticals
personal assistants

personalized medicine
phishing elimination
pollution reduction
precision medicine
predicting disease outbreaks
predicting health outcomes
predicting weather-sensitive

product sales
preventative medicine
preventing disease outbreaks
real-estate valuation
recommendation systems
ride-sharing
risk minimization
robo financial advisors
saving energy
self-driving cars
sentiment analysis

sharing economy
similarity detection
smart cities
smart homes
smart meters
smart thermostats
smart traffic control
social graph analysis
spam detection
stock market forecasting
summarizing text
telemedicine
terrorist attack prevention
theft prevention
trend spotting
visual product search
voice recognition
weather forecasting

91. “Waze Communities.” Accessed November 1, 2020. https://www.waze.com/communities.

Data-science use cases

https://www.waze.com/communities

48 Chapter 1 Introduction to Computers and C

• Waze communicates information over the Internet between their servers and
their users’ mobile devices. Today, such data typically is transmitted in JSON
(JavaScript Object Notation) format. Often the JSON data will be hidden
from you by the libraries you use.

• Waze uses speech synthesis to speak driving directions and alerts to you, and
uses speech recognition to understand your spoken commands. Many cloud
vendors provide speech-synthesis and speech-recognition capabilities.

• Once Waze converts a spoken natural-language command to text, it determines
the action to perform, which requires natural language processing (NLP).

• Waze displays dynamically updated visualizations, such as alerts and interac-
tive maps.

• Waze uses your phone as a streaming Internet of Things (IoT) device. Each
phone is a GPS sensor that continuously streams data over the Internet to Waze.

• Waze receives IoT streams from millions of phones at once. It must process,
store and analyze that data immediately to update your device’s maps, display
and speak relevant alerts and possibly update your driving directions. This
requires massively parallel processing capabilities implemented with clusters
of computers in the cloud. You can use various big-data infrastructure tech-
nologies to receive streaming data, store that big data in appropriate databases
and process the data with software and hardware that provide massively par-
allel processing capabilities.

• Waze uses artificial-intelligence capabilities to perform the data-analysis tasks
that enable it to predict the best routes based on the information it receives.
You can use machine learning and deep learning, respectively, to analyze mas-
sive amounts of data and make predictions based on that data.

• Waze probably stores its routing information in a graph database. Such data-
bases can efficiently calculate shortest routes. You can use graph databases,
such as Neo4J.

• Many cars are equipped with devices that help them“see” cars and obstacles
around them. These are used to help implement automated braking systems
and are a key part of self-driving car technology. Rather than relying on users
to report obstacles and stopped cars on the side of the road, navigation apps
could take advantage of cameras and other sensors by using deep-learning
computer-vision techniques to analyze images “on the fly” and automatically
report those items. You can use deep learning for computer vision.

1.15 AI—at the Intersection of Computer Science and
Data Science
When a baby first opens its eyes, does it “see” its parent’s faces? Does it understand
any notion of what a face is—or even what a simple shape is? Babies must “learn” the

1.15 AI—at the Intersection of Computer Science and Data Science 49

world around them. That’s what artificial intelligence (AI) is doing today. It’s looking
at massive amounts of data and learning from it. AI is being used to play games,
implement a wide range of computer-vision applications, enable self-driving cars,
enable robots to learn to perform new tasks, diagnose medical conditions, translate
speech to other languages in near real-time, create chatbots that can respond to arbi-
trary questions using massive databases of knowledge, and much more. Who’d have
guessed just a few years ago that artificially intelligent self-driving cars would be
allowed on our roads—or even become common? Yet, this is now a highly competi-
tive area. The ultimate goal of all this learning is artificial general intelligence—an
AI that can perform intelligence tasks as well as humans can.

Artificial-Intelligence Milestones
Several artificial-intelligence milestones, in particular, captured people’s attention
and imagination, made the general public start thinking that AI is real and made busi-
nesses think about commercializing AI:

• In a 1997 match between IBM’s DeepBlue computer system and chess
Grandmaster Gary Kasparov, DeepBlue became the first computer to beat a
reigning world chess champion under tournament conditions.92 IBM loaded
DeepBlue with hundreds of thousands of grandmaster chess games. DeepBlue
was capable of using brute force to evaluate up to 200 million moves per sec-
ond!93 This is big data at work. IBM received the Carnegie Mellon University
Fredkin Prize, which in 1980 offered $100,000 to the creators of the first
computer to beat a world chess champion.94

• In 2011, IBM’s Watson beat the two best human Jeopardy! players in a $1
million match. Watson simultaneously used hundreds of language-analysis
techniques to locate correct answers in 200 million pages of content (includ-
ing all of Wikipedia) requiring four terabytes of storage.95,96 Watson was
trained with machine-learning and reinforcement-learning techniques.97

Powerful libraries enable you to perform machine-learning and reinforce-
ment-learning in various programming languages.

92. “Deep Blue versus Garry Kasparov.” Accessed November 1, 2020. https://en.wikipe-
dia.org/wiki/Deep_Blue_versus_Garry_Kasparov.

93. “Deep Blue (chess computer).” Accessed November 1, 2020. https://en.wikipedia.org/
wiki/Deep_Blue_(chess_computer).

94. “IBM Deep Blue Team Gets $100,000 Prize.” Accessed November 1, 2020. https://arti-
cles.latimes.com/1997/jul/30/news/mn-17696.

95. “IBM Watson: The inside story of how the Jeopardy-winning supercomputer was born, and
what it wants to do next.” Accessed November 1, 2020. https://www.techrepublic.com/ar-
ticle/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-
was-born-and-what-it-wants-to-do-next/.

96. “Watson (computer).” Accessed November 1, 2020. https://en.wikipedia.org/wiki/Wat-
son_(computer).

97. “Building Watson: An Overview of the DeepQA Project.” Accessed November 1, 2020.
https://www.aaai.org/Magazine/Watson/watson.php, AI Magazine, Fall 2010.

https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://articles.latimes.com/1997/jul/30/news/mn-17696
https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://www.aaai.org/Magazine/Watson/watson.php
https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://articles.latimes.com/1997/jul/30/news/mn-17696
https://www.techrepublic.com/article/ibm-watson-the-inside-story-of-how-the-jeopardy-winning-supercomputer-was-born-and-what-it-wants-to-do-next/
https://en.wikipedia.org/wiki/Watson_(computer)
https://en.wikipedia.org/wiki/Watson_(computer)

50 Chapter 1 Introduction to Computers and C

• Go—a board game created in China thousands of years ago98—is widely con-
sidered one of the most complex games ever invented with 10170 possible
board configurations.99 To give you a sense of how large a number that is, it’s
believed that there are (only) between 1078 and 1082 atoms in the known uni-
verse!100,101 In 2015, AlphaGo—created by Google’s DeepMind group—
used deep learning with two neural networks to beat the European Go champion
Fan Hui. Go is considered to be a far more complex game than chess. Power-
ful libraries enable you to use neural networks for deep learning.

• More recently, Google generalized its AlphaGo AI to create AlphaZero—a
game-playing AI that teaches itself to play other games. In December 2017,
AlphaZero learned the rules of and taught itself to play chess in less than four
hours using reinforcement learning. It then beat the world champion chess
program, Stockfish 8, in a 100-game match—winning or drawing every
game. After training itself in Go for just eight hours, AlphaZero was able to
play Go vs. its AlphaGo predecessor, winning 60 of 100 games.102

AI: A Field with Problems But No Solutions
For many decades, AI has been a field with problems and no solutions. That’s because
once a particular problem is solved, people say, “Well, that’s not intelligence; it’s just
a computer program that tells the computer exactly what to do.” However, with
machine learning, deep learning and reinforcement learning, we’re not pre-program-
ming solutions to specific problems. Instead, we’re letting our computers solve prob-
lems by learning from data—and, typically, lots of it. Many of the most interesting
and challenging problems are being pursued with deep learning. Google alone has
thousands of deep-learning projects underway.103,104

Self Check
1 (Fill-In) The ultimate goal of AI is to produce a(n) .
Answer: artificial general intelligence.

98. “A Brief History of Go.” Accessed November 1, 2020. http://www.usgo.org/brief-history-go.
99. “Google artificial intelligence beats champion at world’s most complicated board game.” Ac-

cessed November 1, 2020. https://www.pbs.org/newshour/science/google-artificial-
intelligence-beats-champion-at-worlds-most-complicated-board-game.

100.“How Many Atoms Are There in the Universe?” Accessed November 1, 2020. https://
www.universetoday.com/36302/atoms-in-the-universe/.

101.“Observable universe.” Accessed November 1, 2020. https://en.wikipedia.org/wiki/Ob-
servable_universe#Matter_content.

102.“AlphaZero AI beats champion chess program after teaching itself in four hours.” Accessed No-
vember 1, 2020. https://www.theguardian.com/technology/2017/dec/07/alphazero-
google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours.

103.“Google has more than 1,000 artificial intelligence projects in the works.” Accessed November
1, 2020. http://theweek.com/speedreads/654463/google-more-than-1000-artificial-
intelligence-projects-works.

104.“Google says 'exponential' growth of AI is changing nature of compute.” Accessed November
1, 2020. https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-
changing-nature-of-compute/.

http://www.usgo.org/brief-history-go
https://www.pbs.org/newshour/science/google-artificial-intelligence-beats-champion-at-worlds-most-complicated-board-game
https://www.universetoday.com/36302/atoms-in-the-universe/
https://en.wikipedia.org/wiki/Observable_universe#Matter_content
https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours
http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelligence-projects-works
https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/
https://www.pbs.org/newshour/science/google-artificial-intelligence-beats-champion-at-worlds-most-complicated-board-game
https://www.universetoday.com/36302/atoms-in-the-universe/
https://en.wikipedia.org/wiki/Observable_universe#Matter_content
https://www.theguardian.com/technology/2017/dec/07/alphazero-google-deepmind-ai-beats-champion-program-teaching-itself-to-play-four-hours
http://theweek.com/speedreads/654463/google-more-than-1000-artificial-intelligence-projects-works
https://www.zdnet.com/article/google-says-exponential-growth-of-ai-is-changing-nature-of-compute/

 Self-Review Exercises 51

2 (Fill-In) IBM’s Watson beat the two best human Jeopardy! players. Watson was
trained using a combination of learning and learning techniques.
Answer: machine, reinforcement.

3 (Fill-In) Google’s taught itself to play chess in less than four hours using
reinforcement learning, then beat the world champion chess program, Stockfish 8, in
a 100-game match—winning or drawing every game.
Answer: AlphaZero.

Self-Review Exercises
1.1 Fill in the blanks in each of the following statements:

a) Computers process data under the control of instructions called .
b) A computer’s key logical units are: unit, unit,

unit, unit, unit and unit.
c) The three types of programming languages discussed in the chapter are

, and .
d) Programs that translate high-level-language programs into machine lan-

guage are called .
e) is an operating system for mobile devices based on the Linux kernel.
f) A(n) allows a device to respond to motion.
g) C is widely known as the language of the operating system.

1.2 Fill in the blanks in each of the following sentences about the C environment.
a) C programs are normally typed into a computer using a(n) .
b) In a C system, a(n) automatically executes before the translation

phase begins.
c) The combines the output of the compiler with various library

functions to produce an executable image.
d) The transfers the executable image from disk to memory.

Answers to Self-Review Exercises
1.1 a) programs. b) input, output, memory, central processing, arithmetic and log-
ic, secondary storage. c) machine languages, assembly languages, high-level languag-
es. d) compilers. e) Android. f) acceleromoter. g) UNIX.

1.2 a) editor. b) preprocessor. c) linker. d) loader.

Exercises
1.3 Categorize each of the following items as either hardware or software:

a) CPU.
b) C compiler.
c) ALU.
d) C preprocessor.
e) input unit.
f) an editor program.

52 Chapter 1 Introduction to Computers and C

1.4 (Computer Organization) Fill in the blanks in each of the following statements:
a) The logical unit that receives information from outside the computer for use

by the computer is the .
b) is a logical unit that sends information which a computer has al-

ready processed to various devices for use outside the computer.
c) and are a computer’s logical units that retain information.
d) is a computer’s logical unit for performing calculations.
e) is a computer’s logical unit for making logical decisions.
f) is a computer’s logical unit for coordinating the other logical units’

activities.

1.5 Discuss the purpose of each of the following:
a) stdin
b) stdout
c) stderr

1.6 (Gender Neutrality) Write the steps of a manual procedure to process a text para-
graph and replace gender-specific words with gender-neutral ones. Assuming you’ve
been given a list of gender-specific words and their gender-neutral replacements (e.g.,
replace “wife” or “husband” with “spouse,” replace “man” or “woman” with “person,”
replace “daughter” or “son” with “child,” and so on), explain the procedure you’d use
to read through a paragraph of text and manually perform these replacements. How
might your procedure generate a strange term like “woperchild” and how might you
modify your procedure to avoid this possibility? In Chapter 3, you’ll learn that a more
formal computing term for “procedure” is “algorithm,” and that an algorithm specifies
the steps to be performed and the order in which to perform them.

1.7 (Self-Driving Cars) Just a few years back, the notion of driverless cars on our
streets would have seemed impossible (in fact, our spell-checking software doesn’t
recognize the word “driverless”). Many of the technologies you’ll study in this book
are making self-driving cars possible. They’re already common in some areas.

a) If you hailed a taxi and a driverless taxi stopped for you, would you get into
the back seat? Would you feel comfortable telling it where you want to go and
trusting that it would get you there? What safety measures would you want in
place? What would you do if the car headed off in the wrong direction?

b) What if two self-driving cars approached a one-lane bridge from opposite di-
rections? What protocol should they go through to determine which car
should proceed?

c) What if you’re behind a car stopped at a red light, the light turns green, and
the car doesn’t move? You honk, and nothing happens. You get out of your
car and notice that there’s no driver. What would you do?

d) If a police officer pulls over a speeding self-driving car in which you’re the
only passenger, who—or what entity—should pay the ticket?

 Exercises 53

e) One serious concern with self-driving vehicles is that they could potentially
be hacked. Someone could set the speed high (or low), which could be dan-
gerous. What if they redirect you to a destination other than what you want?

1.8 (Research: Reproducibility) A crucial concept in data-science studies is repro-
ducibility, which helps others (and you) reproduce your results. Research reproduc-
ibility and list the concepts used to create reproducible results in data-science studies.

1.9 (Research: Artificial General Intelligence) One of the most ambitious goals in
the field of AI is to achieve artificial general intelligence—the point at which machine
intelligence would equal human intelligence. Research this intriguing topic. When is
this forecast to happen? What are some key ethical issues this raises? Human intelli-
gence seems to be stable over long periods. Powerful computers with artificial general
intelligence could conceivably (and quickly) evolve intelligence far beyond that of hu-
mans. Research and discuss the issues this raises.

1.10 (Research: Intelligent Assistants) Many companies now offer computerized in-
telligent assistants, such as IBM Watson, Amazon Alexa, Apple Siri, Google Assistant
and Microsoft Cortana. Research these and others and list uses that can improve peo-
ple’s lives. Research privacy and ethics issues for intelligent assistants. Locate amusing
intelligent-assistant anecdotes.

1.11 (Research: AI in Health Care) Research the rapidly growing field of AI big-data
applications in health care. For example, suppose a diagnostic medical application
had access to every x-ray that’s ever been taken and the associated diagnoses—that’s
surely big data. “Deep Learning” computer-vision applications can work with this
“labeled” data to learn to diagnose medical problems. Research deep learning in di-
agnostic medicine and describe some of its most significant accomplishments. What
are some ethical issues of having machines instead of human doctors performing
medical diagnoses? Would you trust a machine-generated diagnosis? Would you ask
for a second opinion?

1.12 (Research: Privacy and Data Integrity Legislation) In the Preface, we mentioned
HIPAA (Health Insurance Portability and Accountability Act) and the California Con-
sumer Privacy Act (CCPA) in the United States and GDPR (General Data Protection
Regulation) for the European Union. Laws like these are becoming more common and
stricter. Investigate each of these laws and their effects on your privacy.

1.13 (Research: Personally Identifiable Information) Protecting users personally
identifiable information (PII) is an important aspect of privacy. Research and com-
ment on this issue.

1.14 (Research: Big Data, AI and the Cloud—How Companies Use These Technolo-
gies) For a major organization of your choice, research how they may be using each of
the following technologies: AI, big data, the cloud, mobile, natural-language process-
ing, speech recognition, speech synthesis, database, machine learning, deep learning, re-
inforcement learning, Hadoop, Spark, Internet of Things (IoT) and web services.

54 Chapter 1 Introduction to Computers and C

1.15 (Research: Raspberry Pi and the Internet of Things) It’s now possible to have a
computer at the heart of just about any device and to connect those devices to the In-
ternet. This has led to the Internet of Things (IoT), which interconnects billions of de-
vices. The Raspberry Pi is an economical computer often at the heart of IoT devices.
Research the Raspberry Pi and some of the many IoT applications in which it’s used.

1.16 (Research: The Ethics of Deep Fakes) Artificial-intelligence technologies make it
possible to create deep fakes—realistic fake videos of people that capture their appear-
ance, voice, body motions and facial expressions. You can have them say and do what-
ever you specify. Research the ethics of deep fakes. What would happen if you turned
on your TV and saw a deep-fake video of a prominent government official or newscaster
reporting that a nuclear attack was about to happen? Research Orson Welles and his
“War of the Worlds” radio broadcast of 1938, which created mass panic.

1.17 (Research: Blockchain—A World of Opportunity) Cryptocurrencies like Bitcoin
and Ethereum are based on a technology called blockchain that has seen explosive
growth over the last few years. Research blockchain’s origin, applications and how it
came to be used as the basis for cryptocurrencies. Research other major applications of
blockchain. Over the next many years, there will be extraordinary opportunities for
software developers who thoroughly understand blockchain applications development.

1.18 (Research: Secure C and the CERT Division of Carnegie Mellon University’s
Software Engineering Institute) Experience has shown that it’s challenging to build
industrial-strength systems that stand up to attacks. Such attacks can be instanta-
neous and global in scope. Many of the world’s largest companies, government agen-
cies, and military organizations have had their systems compromised. Such
vulnerabilities often come from simple programming issues. Building security into
software from the start of its development can significantly reduce vulnerabilities.
Carnegie Mellon University’s Software Engineering Institute (SEI) created CERT
(https://www.sei.cmu.edu/about/divisions/cert/index.cfm) to analyze and re-
spond promptly to attacks. CERT publishes and promotes secure coding standards
to help C programmers and others implement industrial-strength systems that avoid
the programming practices that leave systems vulnerable to attacks. The CERT stan-
dards evolve as new security issues arise. The SEI CERT C Coding Standard is con-
cerned with “hardening” computer systems and applications to resist attacks.
Research CERT and discuss their accomplishments and current challenges. To help
you focus on secure C coding practices, Chapters 2–12 and 14 contain Secure C Cod-
ing sections that present some key issues and techniques and provide links and refer-
ences so that you can continue learning.

1.19 (Research: IBM Watson) IBM is partnering with tens of thousands of compa-
nies—including our publisher, Pearson Education—across a wide range of industries.
Research some of IBM Watson’s key accomplishments and the kinds of challenges
IBM and its partners are addressing.

https://www.sei.cmu.edu/about/divisions/cert/index.cfm)

2Intro to C Programming

O b j e c t i v e s
In this chapter, you’ll:
■ Write simple C programs.
■ Use simple input and output

statements.
■ Use the fundamental data

types.
■ Learn computer memory

concepts.
■ Use arithmetic operators.
■ Learn the precedence of

arithmetic operators.
■ Write simple decision-making

statements.
■ Begin focusing on secure C

programming practices.

56 Chapter 2 Intro to C Programming

O
ut

lin
e

2.1 Introduction
The C language facilitates a structured and disciplined approach to computer-program
design. This chapter introduces C programming and presents several examples illustrat-
ing many fundamental C features. We analyze each example one statement at a time.
In Chapters 3 and 4, we introduce structured programming—a methodology that will
help you produce clear, easy-to-maintain programs. We then use the structured
approach throughout the remainder of the text. This chapter concludes with the first of
our “Secure C Programming” sections.

2.2 A Simple C Program: Printing a Line of Text
We begin with a simple C program that prints a line of text. The program and its
screen output are shown in Fig. 2.1.

Comments
Lines 1 and 2

// fig02_01.c
// A first program in C.

begin with //, indicating that these two lines are comments. You insert comments to
document programs and improve program readability. Comments do not cause the
computer to perform actions when you execute programs—they’re simply ignored.
It’s our convention in each program to use the line 1 comment to specify the file-

2.1 Introduction
2.2 A Simple C Program: Printing a

Line of Text
2.3 Another Simple C Program:

Adding Two Integers

2.4 Memory Concepts
2.5 Arithmetic in C
2.6 Decision Making: Equality and

Relational Operators
2.7 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1 // fig02_01.c
2 // A first program in C.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 printf("Welcome to C!\n");
8 } // end function main

Welcome to C!

Fig. 2.1 | A first program in C.

2.2 A Simple C Program: Printing a Line of Text 57

name, and the line 2 comment to describe the program’s purpose. Comments also
help other people read and understand your program.

You can also use /*…*/ multi-line comments in which everything from /* on
the first line to */ at the end of the last line is a comment. We prefer the shorter //
comments because they eliminate common programming errors that occur with /
…/ comments, such as accidentally omitting the closing */.

#include Preprocessor Directive
Line 3

#include <stdio.h>

is a C preprocessor directive. The preprocessor handles lines beginning with # before
compilation. Line 3 tells the preprocessor to include the contents of the standard
input/output header (<stdio.h>). This is a file containing information the compiler
uses to ensure that you correctly use standard input/output library functions such as
printf (line 7). Chapter 5 explains the contents of headers in more detail.

Blank Lines and White Space
We simply left line 4 blank. You use blank lines, space characters and tab characters
to make programs easier to read. Together, these are known as white space and are
generally ignored by the compiler.

The main Function
Line 6

int main(void) {

is a part of every C program. The parentheses after main indicate that main is a pro-
gram building block called a function. C programs consist of functions, one of which
must be main. Every program begins executing at the function main. As a good prac-
tice, precede every function by a comment (as in line 5) stating the function’s pur-
pose.

Functions can return information. The keyword int to the left of main indicates
that main “returns” an integer (whole number) value. We’ll explain what it means for
a function to “return a value” in Chapter 4 when we use a math function to perform
a calculation and in Chapter 5 when we create custom functions. For now, simply
include the keyword int to the left of main in each of your programs.

Functions also can receive information when they’re called upon to execute. The
void in parentheses here means that main does not receive any information. In
Chapter 15, we’ll show an example of main receiving information.

A left brace, {, begins each function’s body (end of line 6). A corresponding right
brace, }, ends each function’s body (line 8). When a program reaches main’s closing
right brace, the program terminates. The braces and the portion of the program
between them form a block—an important program unit that we’ll discuss more in
subsequent chapters.

ERR

58 Chapter 2 Intro to C Programming

An Output Statement
Line 7

printf("Welcome to C!\n");

instructs the computer to perform an action, namely to display on the screen the
string of characters enclosed in the quotation marks. A string is sometimes called a
character string, a message or a literal.

The entire line 7—including the “call” to the printf function to perform its task,
the printf’s argument within the parentheses and the semicolon (;)—is called a
statement. Every statement must end with a semicolon statement terminator. The
“f” in printf stands for “formatted.” When line 7 executes, it displays the message
Welcome to C! on the screen. The characters usually print as they appear between the
double quotes, but notice that the characters \n were not displayed.

Escape Sequences
In a string, the backslash (\) is an escape character. It indicates that printf should do
something out of the ordinary. In a string, the compiler combines a backslash with
the next character to form an escape sequence. The escape sequence \n means new-
line. When printf encounters a newline in a string, it positions the output cursor to
the beginning of the next line. Some common escape sequences are listed below:

The Linker and Executables
Standard library functions like printf and scanf are not part of the C programming
language. For example, the compiler cannot find a spelling error in printf or scanf.
When compiling a printf statement, the compiler merely provides space in the
object program for a “call” to the library function. But the compiler does not know
where the library functions are—the linker does. When the linker runs, it locates the
library functions and inserts the proper calls to these functions in the object program.
Now the object program is complete and ready to execute. The linked program is
called an executable. If the function name is misspelled, the linker will spot the
error—it will not be able to match the name in the program with the name of any
known function in the libraries.

Escape sequence Description

\n Moves the cursor to the beginning of the next line.
\t Moves the cursor to the next horizontal tab stop.
\a Produces a sound or visible alert without changing the

current cursor position.
\\ Because the backslash has special meaning in a string,

\\ is required to insert a backslash character in a string.
\" Because strings are enclosed in double quotes, \" is

required to insert a double-quote character in a string.

ERR

2.2 A Simple C Program: Printing a Line of Text 59

Indentation Conventions
Indent the entire body of each function one level of indentation (we recommend
three spaces) within the braces that define the function’s body. This indentation
emphasizes a program’s functional structure and helps make them easier to read.

Set a convention for the indent size you prefer and uniformly apply that conven-
tion. The tab key may be used to create indents, but tab stops can vary. Professional
style guides often recommend using spaces rather than tabs. Some code editors actu-
ally insert spaces when you press the Tab key.

Using Multiple printfs
The printf function can display Welcome to C! several different ways. For example,
Fig. 2.2 uses two statements to produce the same output as Fig. 2.1. This works
because each printf resumes printing where the previous one finished. Line 7 dis-
plays Welcome followed by a space (but no newline). Line 8’s printf begins printing
on the same line immediately following the space.

Displaying Multiple Lines with a Single printf
One printf can display several lines, as in Fig. 2.3. Each \n moves the output cursor
to the beginning of the next line.

1 // fig02_02.c
2 // Printing on one line with two printf statements.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 printf("Welcome ");
8 printf("to C!\n");
9 } // end function main

Welcome to C!

Fig. 2.2 | Printing one line with two printf statements.

1 // fig02_03.c
2 // Printing multiple lines with a single printf.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 printf("Welcome\nto\nC!\n");
8 } // end function main

Welcome
to
C!

Fig. 2.3 | Printing multiple lines with a single printf.

60 Chapter 2 Intro to C Programming

Self Check
1 (Multiple Choice) Consider the code:

int main(void)

Which of the following statements is false?
a) The parentheses after main indicate that it is a function.
b) The keyword int to the left of main indicates that main returns an integer val-

ue, and the void in parentheses means that main does not receive any infor-
mation.

c) A left parenthesis, (, begins every function’s body. A corresponding right pa-
renthesis,), ends each function’s body.

d) When execution reaches the end of main, the program terminates.
Answer: c) is false. Actually, a left brace, {, begins every function’s body, and a corre-
sponding right brace, }, ends each function’s body.

2 (Multiple Choice) Which of the following statements is false?
a) Each printf resumes printing where the previous one stopped printing.
b) In the following code, the first printf displays Welcome followed by a space,

and the second printf begins printing on the next line of output:
 printf("Welcome ");
 printf("to C!\n");

c) The following printf prints several lines of text:
 printf("Welcome\nto\nC!\n");

d) Each time a \n escape sequence is encountered, output continues at the be-
ginning of the next line.

Answer: b) is false. Actually, the second printf begins printing immediately follow-
ing the space output by the first printf.

2.3 Another Simple C Program: Adding Two Integers
Our next program uses the scanf standard library function to obtain two integers
typed by a user at the keyboard, then computes their sum and displays the result using
printf. The program and sample output are shown in Fig. 2.4. In the input/output
dialog box of Fig. 2.4, we emphasize the numbers entered by the user in bold.

1 // fig02_04.c
2 // Addition program.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 int integer1 = 0; // will hold first number user enters
8 int integer2 = 0; // will hold second number user enters

Fig. 2.4 | Addition program. (Part 1 of 2.)

2.3 Another Simple C Program: Adding Two Integers 61

The comment in line 2 states the program’s purpose. Again, the program begins
execution with main (lines 6–20)—the braces at lines 6 and 20 mark the beginning
and end of main’s body, respectively.

Variables and Variable Definitions
Lines 7 and 8

int integer1 = 0; // will hold first number user enters
int integer2 = 0; // will hold second number user enters

are definitions. The names integer1 and integer2 are variables—locations in mem-
ory where the program can store values for later use. These definitions specify that
integer1 and integer2 have type int. This means they’ll hold whole-number integer
values, such as 7, –11, 0 and 31914. Lines 7 and 8 initialize each variable to 0 by fol-
lowing the variable’s name with an = and a value. Although it’s not necessary to
explicitly initialize every variable, doing so will help avoid many common problems.

Define Variables Before They Are Used
All variables must be defined with a name and a type before they can be used in a pro-
gram. You can place each variable definition anywhere in main before that variable’s
first use in the code. In general, you should define variables close to their first use.

Identifiers and Case Sensitivity
A variable name can be any valid identifier. Each identifier may consist of letters, dig-
its and underscores (_), but may not begin with a digit. C is case sensitive, so a1 and
A1 are different identifiers. A variable name should start with a lowercase letter. Later
in the text, we’ll assign special significance to identifiers that begin with a capital letter
and identifiers that use all capital letters.

Choosing meaningful variable names helps make a program self-documenting, so
fewer comments are needed. Avoid starting identifiers with an underscore (_) to pre-

9
10 printf("Enter first integer: "); // prompt
11 scanf("%d", &integer1); // read an integer
12
13 printf("Enter second integer: "); // prompt
14 scanf("%d", &integer2); // read an integer
15
16 int sum = 0; // variable in which sum will be stored
17 sum = integer1 + integer2; // assign total to sum
18
19 printf("Sum is %d\n", sum); // print sum
20 } // end function main

Enter first integer: 45
Enter second integer: 72
Sum is 117

Fig. 2.4 | Addition program. (Part 2 of 2.)

62 Chapter 2 Intro to C Programming

vent conflicts with compiler-generated identifiers and standard library identifiers.
Multiple-word variable names can make programs more readable. For such names:

• separate the words with underscores, as in total_commissions, or

• run the words together and begin each subsequent word with a capital letter,
as in totalCommissions.

The latter style is called camel casing because the pattern of uppercase and lowercase
letters resembles a camel’s silhouette. We prefer camel casing.

Prompting Messages
Line 10

printf("Enter first integer: "); // prompt

displays "Enter first integer: ". This message is called a prompt because it tells the
user to take a specific action.

The scanf Function and Formatted Inputs
Line 11

scanf("%d", &integer1); // read an integer

uses scanf to obtain a value from the user. The function reads from the standard
input, which is usually the keyboard.

The “f” in scanf stands for “formatted.” This scanf has two arguments—"%d"

and &integer1. The "%d" is the format control string. It indicates the type of data the
user should enter. The %d conversion specification specifies that the data should be
an integer—the d stands for “decimal integer”. A % character begins each conversion
specification.

scanf’s second argument begins with an ampersand (&) followed by the variable
name. The & is the address operator and, when combined with the variable name,
tells scanf the location (or address) in memory of the variable integer1. scanf then
stores the value the user enters at that memory location.

Using the ampersand (&) is often confusing to novice programmers and people
who have programmed in other languages that do not require this notation. For now,
just remember to precede each variable in every call to scanf with an ampersand.
Some exceptions to this rule are discussed in Chapters 6 and 7. The use of & will
become clear after we study pointers in Chapter 7.

Forgetting the ampersand (&) before a variable in a scanf statement typically
results in an execution-time error. On many systems, this causes a “segmentation
fault” or “access violation.” Such an error occurs when a user’s program attempts to
access a part of the computer’s memory to which it does not have access privileges.
The precise cause of this error will be explained in Chapter 7.

When line 11 executes, the computer waits for the user to enter a value for inte-
ger1. The user types an integer, then presses the Enter key (or Return key) to send the
number to the computer. The computer then places the number (or value) in inte-
ger1. Any subsequent references to integer1 in the program use this same value.

ERR

2.3 Another Simple C Program: Adding Two Integers 63

Functions printf and scanf facilitate interaction between the user and the computer.
This interaction resembles a dialogue and is often called interactive computing.

Prompting for and Inputting the Second Integer
Line 13

printf("Enter second integer: "); // prompt

prompts the user to enter the second integer, then line 14
scanf("%d", &integer2); // read an integer

obtains a value for variable integer2 from the user.

Defining the sum Variable
Line 16

int sum = 0; // variable in which sum will be stored

defines the int variable sum and initializes it to 0 before we use sum in line 17.

Assignment Statement
The assignment statement in line 17

sum = integer1 + integer2; // assign total to sum

calculates the total of variables integer1 and integer2, then assigns the result to vari-
able sum using the assignment operator (=). The statement is read as, “sum gets the
value of the expression integer1 + integer2.” Most calculations are performed in
assignments.

Binary Operators
The = operator and the + operator are binary operators—each has two operands. The
+ operator’s operands are integer1 and integer2. The = operator’s operands are sum
and the value of the expression integer1 + integer2. Place spaces on either side of a
binary operator to make the operator stand out and make the program more readable.

Printing with a Format Control String
The format control string "Sum is %d\n" in line 19

printf("Sum is %d\n", sum); // print sum

contains some literal characters to display ("Sum is ") and the conversion specification
%d, which is a placeholder for an integer. The sum is the value to insert in place of %d.
The conversion specification for an integer (%d) is the same in both printf and
scanf—this is true for most, but not all, C data types.

Combining a Variable Definition and Assignment Statement
You can initialize a variable in its definition. For example, lines 16 and 17 can add
the variables integer1 and integer2, then initialize the variable sum with the result:

int sum = integer1 + integer2; // assign total to sum

64 Chapter 2 Intro to C Programming

Calculations in printf Statements
Actually, we do not need the variable sum, because we can perform the calculation in
the printf statement. So, lines 16–19 can be replaced with

printf("Sum is %d\n", integer1 + integer2);

Self Check
1 (Multiple Choice) Which statement correctly prompts the user for input?

a) printf("Enter the day of the week: ")
b) printf(Enter the day of the week:);
c) printf(’Enter the day of the week: ’);
d) printf("Enter the day of the week: ");

Answer: d.

2 (Multiple Choice) The following statement is read as, “sum gets the value of the
expression integer1 + integer2.” In the statement, = is the operator.

sum = integer1 + integer2;

a) equality.
b) comparison.
c) assignment.
d) None of the above.

Answer: c.

2.4 Memory Concepts
Every variable has a name, a type, a value and a location in the computer’s memory.
In Fig. 2.4’s addition program, when line 11

scanf("%d", &integer1); // read an integer

executes, the program places the user’s input into integer1’s memory location. Sup-
pose the user enters 45 as integer1’s value. Conceptually, memory appears as follows:

When a value is placed in a memory location, it replaces the location’s previous value,
which is lost. So, this process is said to be destructive.

Returning to our addition program again, when line 14
scanf("%d", &integer2); // read an integer

executes, suppose the user enters 72. Conceptually, memory appears as follows:

These locations are not necessarily adjacent in memory.

45integer1

45

72

integer1

integer2

2.5 Arithmetic in C 65

Once we have values for integer1 and integer2, line 18
sum = integer1 + integer2; // assign total to sum

adds these values and places the total into variable sum, replacing its previous value.
Conceptually, memory now appears as follows:

The integer1 and integer2 values are unchanged by the calculation, which uses but
does not destroy the values. Thus, reading a value from a memory location is nonde-
structive.

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) Variable names correspond to locations in the computer’s memory.
b) Every variable has a name, a type and a value.
c) When a value is placed in a memory location, it replaces the previous value

in that location. The previous value is lost, so this process is said to be destruc-
tive. When a value is read from a memory location, the process is said to be
nondestructive.

d) All of the above statements are true.
Answer: d.

2.5 Arithmetic in C
Most C programs perform calculations using the following binary arithmetic operators:

Note the use of various special symbols not used in algebra. The asterisk (*) indicates
multiplication, and the percent sign (%) denotes the remainder operator (introduced
below). In algebra, to multiply a times b, we place these single-letter variable names

C operation
Arithmetic
operator

Algebraic
expression C expression

Addition + f + 7 f + 7
Subtraction – p – c p - c
Multiplication * bm b * m
Division / x / y or x / y
Remainder % r mod s r % s

45

72

117

integer1

integer2

sum

x
y--

66 Chapter 2 Intro to C Programming

side-by-side, as in ab. In C, ab would be interpreted as a single, two-letter name (or
identifier). Most programming languages denote multiplication by using the * oper-
ator, as in a * b.

Integer Division and the Remainder Operator
Integer division (that is, dividing one integer by another) yields an integer result, so
7 / 4 evaluates to 1, and 17 / 5 evaluates to 3. The integer-only remainder operator,
%, yields the remainder after integer division, so 7 % 4 yields 3 and 17 % 5 yields 2. We’ll
discuss several interesting applications of the remainder operator.

An attempt to divide by zero usually is undefined on computer systems. Gener-
ally, it results in a fatal error that causes the program to terminate immediately with-
out having successfully performed its job. Nonfatal errors allow programs to run to
completion, often producing incorrect results.

Arithmetic Expressions in Straight-Line Form
Arithmetic expressions must be written in straight-line form to facilitate entering
programs into a computer. Expressions like “a divided by b” must be written as a/b
with all operators and operands in a straight line. The algebraic notation

is generally not acceptable to compilers, although some special-purpose software
packages support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C expressions in the same manner as in algebraic expressions.
For example, to multiply a times the quantity b + c, we write a * (b + c).

Rules of Operator Precedence
C applies the operators in arithmetic expressions in a precise sequence determined by
the following rules of operator precedence, which are generally the same as those in
algebra:

1. Expressions grouped in parentheses evaluate first. Parentheses are said to be at
the “highest level of precedence.” In nested parentheses, such as
 ((a + b) + c)

the operators in the innermost pair of parentheses are applied first.

2. *, / and % are applied next. If an expression contains several *, / and % opera-
tors, evaluation proceeds left-to-right. These three operators are said to be on
the same level of precedence.

3. + and - are evaluated next. If an expression contains + and - operators, evalu-
ation proceeds left-to-right. These two operators have the same level of prece-
dence, which is lower than that of *, / and %.

4. The assignment operator (=) is evaluated last.

ERR

a
b
--

2.5 Arithmetic in C 67

The operator precedence rules specify the order C uses to evaluate expressions.1

When we say evaluation proceeds left-to-right, we’re referring to the operator’s group-
ing, which is sometimes called associativity. Some operators group right-to-left.

Sample Algebraic and C Expressions
Let’s consider the evaluation of several expressions. Each example lists an algebraic
expression and its C equivalent. The following expression calculates the average
(arithmetic mean) of five terms:

Algebra:

C: m = (a + b + c + d + e) / 5;

In the C statement, parentheses are required to group the additions because division
has higher precedence than addition. The entire quantity (a + b + c + d + e) should
be divided by 5. If we erroneously omit the parentheses, we obtain a + b + c + d + e /
5, which evaluates incorrectly as

The following expression is the equation of a straight line:

Algebra: y = mx + b
C: y = m * x + b;

No parentheses are required. Multiplication evaluates first because it has higher pre-
cedence than addition.

The following expression contains remainder (%), multiplication, division, addi-
tion, subtraction and assignment operations:

The circled numbers indicate the order in which C evaluates the operators. The mul-
tiplication, remainder and division evaluate first left-to-right (that is, they group left-
to-right) because they have higher precedence than addition and subtraction. Next,
the addition and subtraction evaluate left-to-right. Finally, the result is assigned to z.

Parentheses “on the Same Level”
Not all expressions with several pairs of parentheses contain nested parentheses. In
the following expression, the parentheses are said to be “on the same level”:

a * (b + c) + c * (d + e)

In this case, the parenthesized expressions evaluate left-to-right.

1. We use simple examples to explain expression evaluation order. Subtle issues occur in more com-
plex expressions that you’ll encounter later in the book. We’ll discuss these issues as they arise.

m
a b c d e+ + + +

5
-------------------------------------=

a b c d
e
5
---+ + + +

z

6 1 2 4 3 5

= p * r % q + w / x - y;

z = pr mod q + w/x – yAlgebra:
C:

68 Chapter 2 Intro to C Programming

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the operator precedence rules, let’s take a look
at how C evaluates a second-degree polynomial.

The circled numbers under the statement indicate the order in which C performs the
operations. C does not have an exponentiation operator, so we represent x2 as x * x.
The standard library’s pow (“power”) function performs exponentiation, as you’ll see
in Chapter 4.

In the preceding second-degree polynomial, suppose a = 2, b = 3, c = 7 and x = 5.
The following diagram illustrates the order in which the operators are applied:

Using Parentheses for Clarity
As in algebra, it’s acceptable to use redundant parentheses to make an expression
clearer. So, the preceding statement could be parenthesized as follows:

 y = (a * x * x) + (b * x) + c;

Self Check
1 (Multiple Choice) Which, if any, of the following expressions properly does the
C calculation “add 3 to the quantity 4 times 5?”

a) 3 + 4 * 5
b) 3 + (4 * 5)
c) (3 + (4 * 5))
d) All of the above.

6 1 2 4 3 5

y = a * x * x + b * x + c;

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 in y)

Step 1. y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10

Step 2. y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50

Step 3. y = 50 + 3 * 5 + 7;

 3 * 5 is 15

Step 4. y = 50 + 15 + 7;

 50 + 15 is 65

Step 5. y = 65 + 7;

 65 + 7 is 72

Step 6. y = 72

2.6 Decision Making: Equality and Relational Operators 69

Answer: d.

2 (Multiple Choice) Consider the statement:
y = a * x * x + b * x + c;

Which of the following variations of the preceding statement contain(s) redundant
parentheses?

a) y = (a * x * x + b * x + c);
b) y = a * (x * x) + (b * x) + c;
c) y = (a * x * x) + (b * x) + c;
d) All of the above.

Answer: d.

2.6 Decision Making: Equality and Relational
Operators
Executable statements either perform actions like calculations, input and output, or,
as you’re about to see, make decisions. For example, a program might determine
whether a person’s grade on an exam is greater than or equal to 60, so it can decide
whether to print the message “Congratulations! You passed.”

A condition is an expression that can be true (that is, the condition is met) or false
(that is, the condition isn’t met). This section introduces the if statement, which
allows a program to make a decision based on a condition’s value. If the condition is
true, the statement in the if statement’s body executes; otherwise, it does not.

Equality and Relational Operators
Conditions are formed using the following equality and relational operators:

The relational operators <, <=, > and >= have the same precedence and group left-to-
right. The equality operators == and != have the same precedence, which is lower than

Algebraic equality or
relational operator

C equality or
relational
operator

Sample C
condition Meaning of C condition

Relational operators
> > x > y x is greater than y
< < x < y x is less than y
≥ >= x >= y x is greater than or equal to y
≤ <= x <= y x is less than or equal to y

Equality operators
= == x == y x is equal to y
≠ != x != y x is not equal to y

70 Chapter 2 Intro to C Programming

that of the relational operators, and also group left-to-right. In C, a condition may
actually be any expression that generates a zero (false) or nonzero (true) value.

Confusing the Equality Operator == with the Assignment Operator
Confusing == with the assignment operator (=) is a common programming error. To
avoid this confusion, read the equality operator as “double equals” and the assign-
ment operator as “gets” or “is assigned the value of.” As you’ll see, confusing these
operators can cause difficult-to-find logic errors rather than compilation errors.

Demonstrating the if Statement
Figure 2.5 uses six if statements to compare two numbers entered by the user. For
each if statement with a true condition, the corresponding printf executes. The pro-
gram and three sample execution outputs are shown in the figure.

1 // fig02_05.c
2 // Using if statements, relational
3 // operators, and equality operators.
4 #include <stdio.h>
5
6 // function main begins program execution
7 int main(void) {
8 printf("Enter two integers, and I will tell you\n");
9 printf("the relationships they satisfy: ");

10
11 int number1 = 0; // first number to be read from user
12 int number2 = 0; // second number to be read from user
13
14 scanf("%d %d", &number1, &number2); // read two integers
15
16 if (number1 == number2) {
17 printf("%d is equal to %d\n", number1, number2);
18 } // end if
19
20 if (number1 != number2) {
21 printf("%d is not equal to %d\n", number1, number2);
22 } // end if
23
24 if (number1 < number2) {
25 printf("%d is less than %d\n", number1, number2);
26 } // end if
27
28 if (number1 > number2) {
29 printf("%d is greater than %d\n", number1, number2);
30 } // end if
31
32 if (number1 <= number2) {
33 printf("%d is less than or equal to %d\n", number1, number2);
34 } // end if
35
36 if (number1 >= number2) {

Fig. 2.5 | Using if statements, relational operators, and equality operators. (Part 1 of 2.)

ERR

2.6 Decision Making: Equality and Relational Operators 71

The program uses scanf (line 14) to read two integers into the int variables num-
ber1 and number2. The first %d converts a value to be stored in the variable number1.
The second converts a value to be stored in the variable number2.

Comparing Numbers
The if statement in lines 16–18

if (number1 == number2) {
 printf("%d is equal to %d\n", number1, number2);
} // end if

compares number1’s and number2’s values for equality. If the values are equal, line 17
displays a line of text indicating that the numbers are equal. For each true condition
in the if statements starting in lines 20, 24, 28, 32 and 36, the corresponding body
statement displays a line of text. Indenting each if statement’s body and placing
blank lines above and below each if statement enhances program readability.

A left brace, {, begins the body of each if statement (e.g., line 16). A correspond-
ing right brace, }, ends each if statement’s body (e.g., line 18). Any number of state-
ments can be placed in an if statement’s body.2

Placing a semicolon immediately to the right of the right parenthesis after an if
statement’s condition is a common error. In this case, the semicolon is treated as an
empty statement that does not perform a task—the statement that was intended to
be part of the if statement’s body no longer is and always executes.

37 printf("%d is greater than or equal to %d\n", number1, number2);
38 } // end if
39 } // end function main

Enter two integers, and I will tell you
the relationships they satisfy: 3 7
3 is not equal to 7
3 is less than 7
3 is less than or equal to 7

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12
22 is greater than 12
22 is greater than or equal to 12

Enter two integers, and I will tell you
 the relationships they satisfy: 7 7
7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Fig. 2.5 | Using if statements, relational operators, and equality operators. (Part 2 of 2.)

2. Using braces to delimit an if statement’s body is optional for a one-statement body, but it’s con-
sidered good practice to always use these braces. In Chapter 3, we’ll explain the issues.

ERR

72 Chapter 2 Intro to C Programming

Operators Introduced So Far
The table below lists from highest-to-lowest precedence the operators introduced so far:

The assignment operator (=) groups right-to-left. Refer to the operator precedence
chart when writing expressions containing many operators. Confirm that the opera-
tors in the expression are applied in the proper order. If you’re uncertain about the
order of evaluation in a complex expression, use parentheses to group expressions or
break the statement into several simpler statements.

Keywords
Some words that we’ve used in this chapter’s examples, such as int, if and void, are
keywords or reserved words of the language and have special meaning to the com-
piler. The following table contains the C keywords. Do not use them as identifiers.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) A condition is an expression that can be true or false.
b) A condition may be any expression that generates a zero (true) or nonzero

(false) value.

Operators Grouping

() left-to-right
* / % left-to-right
+ - left-to-right
< <= > >= left-to-right
== != left-to-right
= right-to-left

Keywords

auto do goto signed unsigned
break double if sizeof void
case else int static volatile
char enum long struct while
const extern register switch
continue float return typedef
default for short union

Keywords added in the C99 standard
_Bool _Complex _Imaginary inline restrict

Keywords added in the C11 standard
_Alignas _Alignof _Atomic _Generic _Noreturn _Static_assert _Thread_local

2.7 Secure C Programming 73

c) The if statement makes a decision based on a condition’s value. If the con-
dition is true, the statement in the if statement’s body executes; otherwise,
it does not.

d) You form conditions using the equality operators and relational operators.
Answer: b) is false. Actually, in C, a condition may be any expression that generates
a zero (false) or nonzero (true) value.

2 (Multiple Choice) Which of the following statements is false?
a) The following if statement executes its body if number1 equals number2:
 if (number1 == number2) {
 printf("%d is equal to %d\n", number1, number2);
 } // end if

b) If you’re uncertain about a complex expression’s evaluation order, use paren-
theses to group expressions or break the statement into simpler statements.

c) Any number of statements can be placed in the body of an if statement. Us-
ing braces to delimit the body of an if statement is required.

d) Some of C’s operators, such as the assignment operator (=), group right-to-
left rather than left-to-right.

Answer: c) is false. Actually, using braces to delimit the body of an if statement is
optional when the body contains only one statement. Nevertheless, always using
these braces helps avoid errors.

2.7 Secure C Programming
We mentioned SEI CERT C Coding Standard in the Preface and indicated that we’d
follow certain guidelines to help you avoid programming practices that open systems
to attacks.

Avoid Single-Argument printfs
One such guideline is to avoid using printf with a single string argument.3 printf’s
first argument is a format string, which printf inspects for conversion specifications.
It then replaces each conversion specification with a subsequent argument’s value. It
tries to do this regardless of whether there is a subsequent argument to use.

In a later chapter, you’ll learn how to input strings from users. Though the first
printf argument typically is a string literal, it could be a variable containing a string
that was input from a user. In such cases, an attacker can craft a user-input format
string with more conversion specifications than there are additional printf argu-
ments. This exploit has been used by attackers to read memory that they should not
be able to access.4

3. For more information, see CERT rule FIO30-C (https://wiki.sei.cmu.edu/confluence/
display/c/FIO30-C.+Exclude+user+input+from+format+strings). Chapter 6’s Secure C
Programming section explains the notion of user input as referred to by this CERT guideline.

4. “Format String Attack,” Format String Software Attack | OWASP Foundation. Accessed July
22, 2020, https://owasp.org/www-community/attacks/Format_string_attack.

SEC

SEC

https://wiki.sei.cmu.edu/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings
https://owasp.org/www-community/attacks/Format_string_attack
https://wiki.sei.cmu.edu/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings

74 Chapter 2 Intro to C Programming

There are a couple of preventative measures you can take to prevent such an
attack. If you need to display a string that terminates with a newline, rather than
printf, use the puts function, which displays its string argument followed by a new-
line. For example, in Fig. 2.1, line 7

printf("Welcome to C!\n");

should be written as
puts("Welcome to C!");

Function puts simply displays its string argument’s contents, so a conversion specifi-
cation would be displayed as its individual characters.

To display a string without a terminating newline character, use printf with two
arguments—a "%s" format control string and the string to display. The %s conversion
specification is a placeholder for a string. For example, in Fig. 2.2, line 7

printf("Welcome ");

should be written as
printf("%s", "Welcome ");

As with puts, if printf’s second argument contains a conversion specification, it will
be displayed as its individual characters.

As written, this chapter’s printfs actually are secure, but these changes are
responsible coding practices that will eliminate certain security vulnerabilities as we
get deeper into C. We’ll explain the rationales later in the book. From this point for-
ward, we use these practices in our examples, and you should use them in your code.

scanf, printf, scanf_s and printf_s
We’ll be saying more about scanf and printf in subsequent Secure C Programming
sections, beginning with Section 3.13. We’ll also discuss scanf_s and printf_s,
which were introduced in C11 as an attempt to eliminate various scanf and printf
security vulnerabilities. In a later Secure C Programming section, we’ll discuss well-
known scanf security vulnerabilities and how to avoid them.

Self Check
1 (Code) Rewrite the following statement as an equivalent secure puts statement:

printf("Enter your age:\n");

Answer: puts("Enter your age:");

2 (Code) Rewrite the following statement as an equivalent secure printf statement:
printf("Enter your age:");

Answer: printf("%s", "Enter your age:");

Summary
This chapter introduced many important C features, including displaying data on the
screen, inputting data from the user, performing calculations and making decisions. In

SEC

 Summary 75

the next chapter, we build upon these techniques as we introduce structured program-
ming. You’ll become more familiar with indentation techniques. We’ll study how to
specify the order in which statements are executed—this is called flow of control.

Section 2.1 Introduction
• C facilitates a structured and disciplined approach to computer-program design.

Section 2.2 A Simple C Program: Printing a Line of Text
• Comments (p. 56) begin with //. They document programs (p. 56) and improve program

readability. Multi-line comments begin with /* and end with */ (p. 57).
• Comments are ignored by the compiler.
• The preprocessor processes lines beginning with # before the program is compiled. The
#include directive tells the preprocessor (p. 57) to include the contents of another file.

• The <stdio.h> header (p. 57) contains information used by the compiler to ensure that you
correctly use standard input/output library functions, such as printf.

• The function main is a part of every program. The parentheses after main indicate that main
is a program building block called a function (p. 57). Programs contain one or more func-
tions, one of which must be main, which is where the program begins executing.

• Functions can return information. The keyword int to the left of main indicates that main
“returns” an integer (whole number) value.

• Functions can receive information when they’re called upon to execute. The void in paren-
theses after main indicates that main does not receive any information.

• A left brace, {, begins every function’s body (p. 57). A corresponding right brace, }, ends
each function (p. 57). A pair of braces and the code between them is called a block.

• The printf function (p. 58) instructs the computer to display information on the screen.
• A string is sometimes called a character string, a message or a literal (p. 58).
• Every statement (p. 58) must end with the semicolon statement terminator (p. 58).
• In \n (p. 58), the backslash (\) is an escape character (p. 58). When encountering a backs-

lash in a string, the compiler combines it with the next character to form an escape sequence
(p. 58). The escape sequence \n means newline.

• When a newline appears in a string output by printf, the output cursor positions to the
beginning of the next line.

• The double backslash (\\) escape sequence places a single backslash in a string.
• The escape sequence \" represents a literal double-quote character.

Section 2.3 Another Simple C Program: Adding Two Integers
• A variable (p. 61) is a location in memory where a value can be stored for use by a program.
• Variables of type int (p. 61) hold whole-number integer values.
• All variables must be defined with a name and a type before they can be used in a program.
• A variable name in C is any valid identifier (p. 61). An identifier is a series of characters con-

sisting of letters, digits and underscores (_) that does not begin with a digit.
• C is case sensitive (p. 61).
• Function scanf (p. 62) gets input from the standard input—usually the keyboard.
• The scanf format control string (p. 62) indicates the type(s) of data to input.

76 Chapter 2 Intro to C Programming

• The %d conversion specification (p. 62) indicates an integer (the letter d stands for “decimal
integer”). The % begins each conversion specification.

• The arguments that follow scanf’s format control string begin with an ampersand (&) fol-
lowed by a variable name. In this context, the ampersand—called the address operator
(p. 62)—tells scanf the variable’s memory location. The computer then stores the value at
that location.

• Most calculations are performed in assignment statements (p. 63).
• The = operator and the + operator are binary operators—each has two operands (p. 63).
• In a printf that specifies a format control string as its first argument, the conversion spec-

ifications indicate placeholders for data to output.

Section 2.4 Memory Concepts
• Every variable has a name, a type, a value and a memory location.
• When a value is placed in a memory location, it replaces the location’s previous value, which

is lost. So this process is said to be destructive (p. 64).
• Reading a value from a memory location is nondestructive (p. 65).

Section 2.5 Arithmetic in C
• Most programming languages denote multiplication with the * operator, as in a * b.
• Arithmetic expressions must be written in straight-line form (p. 66) to facilitate entering

programs into the computer.
• Parentheses group terms in C expressions in much the same manner as in algebraic expres-

sions.
• C evaluates arithmetic expressions in a precise sequence determined by the following rules

of operator precedence (p. 66), which are generally the same as those followed in algebra.
• Expressions containing several +, / and % operations evaluate left-to-right. These three op-

erators are on the same level of precedence.
• Expressions containing several + and - operations evaluate left-to-right. These two operators

have the same level of precedence, which is lower than that of *, / and %.
• Operator grouping (p. 67) specifies whether operators evaluate left-to-right or right-to-left.

Section 2.6 Decision Making: Equality and Relational Operators
• Executable C statements either perform actions or make decisions.
• C’s if statement (p. 69) allows a program to make a decision based on whether a condition

(p. 69) is true (p. 69) or false (p. 69). If the condition is true, the if statement’s body exe-
cutes; otherwise, it does not.

• You form conditions in if statements using the equality and relational operators (p. 69).
• The relational operators all have the same level of precedence and group left-to-right. The

equality operators have lower precedence than the relational operators and also group left-
to-right.

• To avoid confusing assignment (=) and equality (==), the assignment operator should be
read “gets,” and the equality operator should be read “double equals.”

• The compiler usually ignores white-space characters such as tabs, newlines and spaces.
• Keywords (p. 72; or reserved words) have special meaning to the C compiler, so you cannot

use them as identifiers such as variable names.

 Self-Review Exercises 77

Section 2.7 Secure C Programming
• One practice to help avoid leaving systems open to attacks is to avoid using printf with a

single string argument.
• To display a string followed by a newline character, use the puts function (p. 74), which

displays its string argument followed by a newline character.
• To display a string without a trailing newline character, use printf with the "%s" conversion

specification (p. 74) as the first argument and the string to display as the second argument.

Self-Review Exercises
2.1 Fill-In the blanks in each of the following.

a) Every C program begins execution at the function .
b) Every function’s body begins with and ends with .
c) Every statement ends with a(n) .
d) The standard library function displays information on the screen.
e) The escape sequence \n represents the character, which causes the

cursor to position to the beginning of the next line on the screen.
f) The standard library function obtains data from the keyboard.
g) The conversion specification in a printf or scanf format control

string indicates that an integer will be output or input, respectively.
h) Whenever a new value is placed in a memory location, that value overrides

the previous value in that location. This process is said to be .
i) When a value is read from a memory location, the value in that location is

preserved; this process is said to be .
j) The statement is used to make decisions.

2.2 State whether each of the following is true or false. If false, explain why.
a) Function printf always begins printing at the beginning of a new line.
b) Comments cause the computer to display the text after // on the screen

when the program is executed.
c) The escape sequence \n in a printf format control string positions the out-

put cursor to the beginning of the next line.
d) All variables must be defined before they’re used.
e) All variables must be given a type when they’re defined.
f) C considers the variables number and NuMbEr to be identical.
g) Definitions can appear anywhere in the body of a function.
h) All arguments following the format control string in a printf function must

be preceded by an ampersand (&).
i) The remainder operator (%) can be used only with integer operands.
j) The arithmetic operators *, /, %, + and - all have the same precedence.
k) A program that prints three lines of output must contain three printfs.

2.3 Write a single C statement to accomplish each of the following:
a) Define the variable number to be of type int and initialize it to 0.
b) Prompt the user to enter an integer. End your prompting message with a co-

lon (:) followed by a space and leave the cursor positioned after the space.

78 Chapter 2 Intro to C Programming

c) Read an integer from the keyboard and store the value in integer variable a.
d) If number is not equal to 7, display "number is not equal to 7."
e) Display "This is a C program." on one line.
f) Display "This is a C program." on two lines so the first line ends with C.
g) Display "This is a C program." with each word on a separate line.
h) Display "This is a C program." with the words separated by tabs.

2.4 Write a statement (or comment) to accomplish each of the following:
a) State that a program will calculate the product of three integers.
b) Prompt the user to enter three integers.
c) Define the variable x to be of type int and initialize it to 0.
d) Define the variable y to be of type int and initialize it to 0.
e) Define the variable z to be of type int and initialize it to 0.
f) Read three integers from the keyboard and store them in variables x, y and z.
g) Define the variable result, compute the product of the integers in the vari-

ables x, y and z, and use that product to initialize the variable result.
h) Display "The product is" followed by the value of the int variable result.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that
calculates the product of three integers.

2.6 Identify and correct the errors in each of the following statements:
a) printf("The value is %d\n", &number);
b) scanf("%d%d", &number1, number2);
c) if (c < 7);{

 puts("C is less than 7");

}
d) if (c => 7) {

 puts("C is greater than or equal to 7");

}

Answers to Self-Review Exercises
2.1 a) main. b) left brace ({), right brace (}). c) semicolon. d) printf. e) newline.
f) scanf. g) %d. h) destructive. i) nondestructive. j) if.

2.2 See the answers below:
a) False. Function printf always begins printing where the cursor is posi-

tioned, and this may be anywhere on a line of the screen.
b) False. Comments do not cause any action to be performed when the pro-

gram is executed. They’re used to document programs and improve their
readability.

c) True.
d) True.
e) True.
f) False. C is case sensitive, so these variables are different.
g) True.

 Answers to Self-Review Exercises 79

h) False. Arguments in a printf function ordinarily should not be preceded by
an ampersand. Arguments following the format control string in a scanf
function ordinarily should be preceded by an ampersand. We’ll discuss ex-
ceptions to these rules in Chapter 6 and Chapter 7.

i) True.
j) False. The operators *, / and % are on the same level of precedence, and the

operators + and - are on a lower level of precedence.
k) False. A printf statement with multiple \n escape sequences can print sev-

eral lines.

2.3 See the answers below:
a) int number = 0;
b) printf("%s", "Enter an integer: ");
c) scanf("%d", &a);
d) if (number != 7) {

 puts("The variable number is not equal to 7.");
}

e) puts("This is a C program.");
f) puts("This is a C\nprogram.");
g) puts("This\nis\na\nC\nprogram.");
h) puts("This\tis\ta\tC\tprogram.");

2.4 See the answers below:
a) // Calculate the product of three integers
b) printf("%s", "Enter three integers: ");
c) int x;
d) int y;
e) int z;
f) scanf("%d%d%d", &x, &y, &z);
g) int result = x * y * z;
h) printf("The product is %d\n", result);

2.5 See below.

1 // Calculate the product of three integers
2 #include <stdio.h>
3
4 int main(void) {
5 printf("Enter three integers: "); // prompt
6
7 int x = 0;
8 int y = 0;
9 int z = 0;

10 scanf("%d%d%d", &x, &y, &z); // read three integers
11
12 int result = x * y * z; // multiply values
13 printf("The product is %d\n", result); // display result
14 } // end function main

80 Chapter 2 Intro to C Programming

2.6 See the answers below:
a) Error: &number.

Correction: Eliminate the &. We discuss exceptions to this later.
b) Error: number2 does not have an ampersand.

Correction: number2 should be &number2. Later in the text, we discuss excep-
tions to this.

c) Error: Semicolon after the right parenthesis of the condition in the if state-
ment. The puts will execute whether or not the if statement’s condition is
true. The semicolon after the right parenthesis is an empty statement that
does nothing
Correction: Remove the semicolon after the right parenthesis.

d) Error: => is not an operator in C.
Correction: The relational operator => should be changed to >= (greater than
or equal to).

Exercises
2.7 Identify and correct the errors in each of the following statements. (Note: There
may be more than one error per statement.)

a) scanf("d", value);
b) printf("The product of %d and %d is %d"\n, x, y);
c) firstNumber + secondNumber = sumOfNumbers
d) if (number => largest) {

 largest == number;

}
e) */ Program to determine the largest of three integers /*
f) Scanf("%d", anInteger);
g) printf("Remainder of %d divided by %d is\n", x, y, x % y);
h) if (x = y); {

 printf(%d is equal to %d\n", x, y);

}
i) print("The sum is %d\n," x + y);
j) Printf("The value you entered is: %d\n, &value);

2.8 Fill-In the blanks in each of the following:
a) are used to document a program and improve its readability.
b) The function used to display information on the screen is .
c) A C statement that makes a decision is .
d) Calculations are normally performed by statements.
e) The function inputs values from the keyboard.

2.9 Write a single C statement or line that accomplishes each of the following:
a) Display the message “Enter two numbers.”
b) Assign the product of variables b and c to variable a.

 Exercises 81

c) State that a program performs a sample payroll calculation (i.e., use text that
helps to document a program).

d) Input three integer values and place them in int variables a, b and c.

2.10 State which of the following are true and which are false. If false, explain why.
a) C operators evaluate left-to-right.
b) Each of the following is a valid variable name: _under_bar_, m928134, t5,

j7, her_sales, his_account_total, a, b, c, z, z2.
c) The statement printf("a = 5;"); is an example of an assignment statement.
d) An arithmetic expression containing no parentheses evaluates left-to-right.
e) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.11 Fill-In the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multipli-

cation? .
b) When parentheses are nested, which set of parentheses is evaluated first in

an arithmetic expression? .
c) A location in the computer’s memory that may contain different values at

various times throughout the execution of a program is called a .

2.12 What, if anything, displays when each of the following statements is per-
formed? If nothing displays, then answer “Nothing.” Assume x = 2 and y = 3.

a) printf("%d", x);
b) printf("%d", x + x);
c) printf("%s", "x=");
d) printf("x=%d", x);
e) printf("%d = %d", x + y, y + x);
f) z = x + y;
g) scanf("%d%d", &x, &y);
h) // printf("x + y = %d", x + y);
i) printf("%s", "\n");

2.13 Which of the following C statements contain variables whose values are re-
placed?

a) scanf("%d%d%d%d%d", &b, &c, &d, &e, &f);
b) p = i + j + k + 7;
c) printf("%s", "Values are replaced");
d) printf("%s", "a = 5");

2.14 Given the equation y = ax3 + 7, which of the following, if any, are correct C
statements for this equation?

a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);
c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

82 Chapter 2 Intro to C Programming

2.15 State the order of evaluation of the operators in each of the following C state-
ments and show the value of x after each statement is performed.

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

2.16 (Arithmetic) Write a program that reads two integers from the user then dis-
plays their sum, product, difference, quotient and remainder.

2.17 (Displaying Values with printf) Write a program that displays the numbers 1
to 4 on the same line. Write the program using the following methods.

a) Using one printf statement with no conversion specifications.
b) Using one printf statement with four conversion specifications.
c) Using four printf statements.

2.18 (Comparing Integers) Write a program that reads two integers from the user
then displays the larger number followed by the words “is larger.” If the numbers
are equal, display the message “These numbers are equal.” Use only the single-selec-
tion form of the if statement you learned in this chapter.

2.19 (Arithmetic, Largest Value and Smallest Value) Write a program that inputs
three different integers from the keyboard, then displays the sum, the average, the
product, the smallest and the largest of these numbers. Use only the single-selection
form of the if statement you learned in this chapter. The screen dialogue should ap-
pear as follows:

2.20 (Circle Area, Diameter and Circumference) For a circle of radius 2, display the
diameter, circumference and area. Use the value 3.14159 for π. Use the following for-
mulas (r is the radius): diameter = 2r, circumference = 2πr and area = πr2. Perform each
of these calculations inside the printf statement(s) and use the conversion specifica-
tion %f. This chapter discussed only integer constants and variables. Chapter 3 will
discuss floating-point numbers—that is, values that can have decimal points.

2.21 What does the following code display?
printf("%s", "*\n**\n***\n****\n*****\n");

2.22 (Odd or Even) Write a program that reads an integer and determines and dis-
plays whether it’s odd or even. Use the remainder operator. An even number is a mul-
tiple of two. Any multiple of two leaves a remainder of zero when divided by 2.

2.23 (Multiples) Write a program that reads two integers and determines and dis-
plays whether the first is a multiple of the second. Use the remainder operator.

Enter three different integers: 13 27 14
Sum is 54
Average is 18
Product is 4914
Smallest is 13
Largest is 27

 Exercises 83

2.24 Distinguish between the terms fatal error and nonfatal error. Why might you
prefer to experience a fatal error rather than a nonfatal error?

2.25 (Integer Value of a Character) Here’s a peek ahead. In this chapter, you learned
about integers and the type int. C can also represent uppercase letters, lowercase let-
ters and a considerable variety of special symbols. C uses small integers internally to
represent each different character. The set of characters a computer uses together with
the corresponding integer representations for those characters is called that comput-
er’s character set. You can display the integer equivalent of uppercase A, for example,
by executing the statement

printf("%d", 'A');

Write a C program that displays the integer equivalents of some uppercase letters,
lowercase letters, digits and special symbols. At a minimum, determine the integer
equivalents of the following: A B C a b c 0 1 2 $ * + / and the space character.

2.26 (Separating Digits in an Integer) Write a program that inputs one five-digit
number, separates the number into its individual digits and displays the digits sepa-
rated from one another by three spaces each. [Hint: Use combinations of integer di-
vision and the remainder operation.] For example, if the user types in 42139, the
program should display

2.27 (Table of Squares and Cubes) Using only the techniques you learned in this
chapter, write a program that calculates the squares and cubes of the numbers from 0
to 10 and uses tabs to display the following table of values:

2.28 (Target Heart-Rate Calculator) While exercising, you can use a heart-rate
monitor to see that your heart rate stays within a safe range suggested by your doctors
and trainers. According to the American Heart Association (AHA) (http://bit.ly/
AHATargetHeartRates), the formula for calculating your maximum heart rate in beats
per minute is 220 minus your age in years. Your target heart rate is 50–85% of your
maximum heart rate. Write a program that prompts for and inputs the user’s age and
calculates and displays the user’s maximum heart rate and the range of the user’s tar-
get heart rate. [These formulas are estimates provided by the AHA; maximum and

4 2 1 3 9

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

http://bit.ly/AHATargetHeartRates
http://bit.ly/AHATargetHeartRates

84 Chapter 2 Intro to C Programming

target heart rates may vary based on the health, fitness and gender of the individual.
Always consult a physician or qualified healthcare professional before beginning or
modifying an exercise program.]

2.29 (Sort in Ascending Order) Write a program that inputs three different numbers
from the user. Display the numbers in increasing order. Recall that an if statement’s
body can contain more than one statement. Prove that your script works by running
it on all six possible orderings of the numbers. Does your script work with duplicate
numbers? [This is challenging. In later chapters you’ll do this more conveniently and
with many more numbers.]

3Structured Program
Development

O b j e c t i v e s
In this chapter, you’ll:
■ Use basic problem-solving

techniques.
■ Develop algorithms through

the process of top-down,
stepwise refinement.

■ Select actions to execute based
on a condition using the if
and if…else selection
statements.

■ Execute statements in a
program repeatedly using the
while iteration statement.

■ Use counter-controlled
iteration and sentinel-
controlled iteration.

■ Use structured programming
techniques.

■ Use increment, decrement and
assignment operators.

■ Continue our presentation of
Secure C programming.

86 Chapter 3 Structured Program Development

O
ut

lin
e

3.1 Introduction
Before writing a program to solve a problem, you must have a thorough understand-
ing of the problem and a carefully planned solution approach. Chapters 3 and 4 dis-
cuss developing structured computer programs. In Section 4.11, we summarize the
structured programming techniques developed here and in Chapter 4.

3.2 Algorithms
The solution to any computing problem involves executing a series of actions in a spe-
cific order. An algorithm is a procedure for solving a problem in terms of

1. the actions to execute, and

2. the order in which these actions should execute.

The following example shows that correctly specifying the order in which the actions
should execute is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for get-
ting out of bed and going to work:

1. Get out of bed,

2. take off pajamas,

3. take a shower,

4. get dressed,

5. eat breakfast, and

6. carpool to work.

This routine gets the executive to work well prepared to make critical decisions. Sup-
pose that the same steps are performed in a slightly different order:

3.1 Introduction
3.2 Algorithms
3.3 Pseudocode
3.4 Control Structures
3.5 The if Selection Statement
3.6 The if…else Selection

Statement
3.7 The while Iteration Statement

 3.8 Formulating Algorithms Case
Study 1: Counter-Controlled
Iteration

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement Case
Study 2: Sentinel-Controlled Iteration

3.10 Formulating Algorithms with Top-
Down, Stepwise Refinement Case
Study 3: Nested Control Statements

3.11 Assignment Operators
3.12 Increment and Decrement Operators
3.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

3.3 Pseudocode 87

1. Get out of bed,

2. take off pajamas,

3. get dressed,

4. take a shower,

5. eat breakfast,

6. carpool to work.

In this case, our junior executive shows up for work soaking wet. Specifying the order
in which statements should execute in a computer program is called program control.
In this and the next chapter, we investigate C’s program control capabilities.

Self Check
1 (Fill-in-the-Blank) A procedure for solving a problem in terms of the actions to
be executed, and the order in which these actions are to be executed, is called an

.
Answer: algorithm.

3.3 Pseudocode
Pseudocode is an informal artificial language similar to everyday English that helps
you develop algorithms before converting them to structured C programs. Pseudo-
code is convenient and user friendly. It helps you “think out” a program before writ-
ing it in a programming language. Computers do not execute pseudocode.

Pseudocode consists purely of characters, so you may type it in any text editor.
Often, converting carefully prepared pseudocode to C is as simple as replacing a
pseudocode statement with its C equivalent.

Pseudocode describes the actions and decisions that will execute once you convert
the pseudocode to C and run the program. Definitions are not executable state-
ments—they’re simply messages to the compiler. For example, the definition

int i = 0;

tells the compiler variable i’s type, instructs the compiler to reserve space in memory
for the variable and initializes it to 0. But this definition does not perform an action
when the program executes, such as input, output, a calculation or a comparison. So,
some programmers do not include definitions in their pseudocode. Others choose to
list each variable and briefly mention its purpose.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) Pseudocode is useful for developing algorithms that will be converted to
structured C programs.

b) Pseudocode is a computer programming language that’s more concise than C.

88 Chapter 3 Structured Program Development

c) Pseudocode consists purely of characters, so you may conveniently type it in
any text-editor program.

d) Pseudocode describes the actions and decisions that will execute once you
convert it to C and run the program.

Answer: b) is false. Actually, pseudocode is not an actual computer programming lan-
guage. It helps you “think out” a program before writing it in a programming language.

3.4 Control Structures
Normally, statements in a program execute one after the other in the order in which
you write them. This is called sequential execution. As you’ll soon see, various C
statements enable you to specify that the next statement to execute may be other than
the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of a great deal of difficulty experienced by software-development groups.
The finger of blame was pointed at the goto statement that allows you to specify a
transfer of control to one of many possible destinations in a program. The notion of so-
called structured programming became almost synonymous with “goto elimination.”

The research of Böhm and Jacopini1 demonstrated that programs could be written
without any goto statements. The challenge of the era was for programmers to shift
their styles to “goto-less programming.” It was not until well into the 1970s that the
programming profession started taking structured programming seriously. The results
were impressive, as software-development groups reported reduced development
times, more frequent on-time delivery of systems and more frequent within-budget
completion of software projects. Programs produced with structured techniques were
clearer, easier to debug and modify, and more likely to be bug-free in the first place.

Böhm and Jacopini’s work demonstrated that all programs could be written in
terms of three control structures, namely the sequence structure, the selection struc-
ture and the iteration structure. The sequence structure is simple—unless directed
otherwise, the computer executes C statements one after the other in the order in
which they’re written.

Flowcharts
A flowchart is a graphical representation of an algorithm or of a portion of an algo-
rithm. You draw flowcharts using certain special-purpose symbols such as rectangles,
diamonds, rounded rectangles, and small circles, connected by arrows called flowlines.

Flowcharts help you develop and represent algorithms, although pseudocode is
preferred by most programmers. Flowcharts clearly show how control structures
operate. Consider the following flowchart for a sequence structure in a portion of an
algorithm that calculates the class average on a quiz:

1. C. Böhm and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371. This
classic computer-science paper is available at various online sites.

3.4 Control Structures 89

The rectangle (or action) symbol indicates any action, such as a calculation, input or
output. The flowlines indicate the order in which to perform the actions. This program
segment first adds grade to total, then adds 1 to counter. As we’ll soon see, anywhere
in a program a single action may be placed, you may place several actions in sequence.

When drawing a flowchart for a complete algorithm, the first symbol is a rounded
rectangle symbol containing “Begin”, and the last is a rounded rectangle containing
“End”. When drawing only a portion of an algorithm, we omit the rounded rectangle
symbols in favor of using small circles called connector symbols.

Selection Statements in C
C provides three types of selection structures in the form of statements:

• The if single-selection statement (Section 3.5) selects (performs) an action
(or group of actions) only if a condition is true.

• The if…else double-selection statement (Section 3.6) performs one action
(or group of actions) if a condition is true and a different action (or group of
actions) if the condition is false.

• The switch multiple-selection statement (discussed in the next chapter) per-
forms one of many different actions, depending on the value of an expression.

Iteration Statements in C
C provides three types of iteration structures in the form of statements, namely while
(Section 3.7), do…while, and for. These statements perform tasks repeatedly. We
discuss do…while and for in the next chapter.

Summary of Control Statements
That’s all there is. C has only seven control statements: sequence, three types of selec-
tion and three types of iteration. You form each program by combining as many of each
type of control statement as is appropriate for the algorithm the program implements.

We’ll see that each control statement’s flowchart representation has two small circle
symbols, one at the entry point to the control statement and one at the exit point. These
single-entry/single-exit control statements make it easy to build clear programs.

We can attach the control-statement flowchart segments to one another by con-
necting the exit point of one to the entry point of the next. This is similar to a child
stacking building blocks, so we call this control-statement stacking. You’ll see later
in this chapter that the only other way to connect control statements is via nesting.

add 1 to counter

add grade to total total = total + grade;

counter = counter + 1;

90 Chapter 3 Structured Program Development

Thus, any C program we’ll ever need to build can be constructed from only seven
control statements combined in only two ways. This is the essence of simplicity.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) Normally, statements in a program execute one after the other in the order
in which they’re written. This is called transfer of control.

b) Programs can be be written without any goto statements.
c) All programs can be written in terms of only three control structures—the

sequence structure, the selection structure and the iteration structure.
d) The sequence structure is simple—unless directed otherwise, the computer

executes C statements one after the other in the order in which they’re written.
Answer: a) is false. It’s actually called sequential execution.

2 (Multiple Choice) Which of the following statements is false?
a) C has only seven control statements: sequence, three types of selection and

three types of iteration.
b) Single-entry/single-exit control statements make it easy to build clear pro-

grams.
c) Connecting the exit point of one control statement to the entry point of the

next is called control-statement stacking.
d) The only other way to connect control statements is via roosting. Thus, any

C program we’ll ever need to build can be constructed from only seven dif-
ferent types of control statements combined in only two ways.

Answer: d) is false. The only other way to connect control statements is via nesting.

3.5 The if Selection Statement
Selection statements choose among alternative courses of action. For example, suppose
the passing grade on an exam is 60. The following pseudocode statement determines
whether the condition “student’s grade is greater than or equal to 60” is true or false:

If student’s grade is greater than or equal to 60
Print “Passed”

If true, then “Passed” is printed, and the next pseudocode statement in order is “per-
formed.” Remember that pseudocode isn’t a real programming language. If false, the
printing is ignored, and the next pseudocode statement in order is performed.

The preceding pseudocode is written in C as
if (grade >= 60) {
 puts("Passed");
} // end if

Of course, you’ll also need to declare the int variable grade, but the C if statement
code corresponds closely to the pseudocode. This is one of the properties of pseudo-
code that makes it such a useful program-development tool.

3.5 The if Selection Statement 91

Indentation in the if Statement
The indentation in the if statement’s second line is optional but highly recom-
mended. It emphasizes the inherent structure of structured programs. The compiler
ignores white-space characters such as blanks, tabs and newlines used for indentation
and vertical spacing.

if Statement Flowchart
The following flowchart segment illustrates the single-selection if statement:

It contains perhaps the most important flowchart symbol—the diamond (or deci-
sion) symbol, which indicates a decision is to be made. The decision symbol’s expres-
sion typically is a condition that can be true or false. The two flowlines emerging from
it indicate the paths to take when the expression is true or false. Decisions can be based
on any expression’s value—zero is false, and nonzero is true.

The if statement is a single-entry/single-exit statement. We’ll soon learn that the
flowchart segment for the remaining control structures also can contain rectangle sym-
bols to indicate the actions to be performed and diamond symbols to indicate decisions
to be made. This is the action/decision model of programming we’ve been emphasizing.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) The pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

can be written in C as
if (grade >= 60) {
 puts("Passed");
} // end if

b) The two flowlines emerging from the decision flowchart symbol indicate the
directions to take when the expression in the symbol is true or false.

c) Decisions can be based on any expression—if the expression evaluates to
nonzero, it’s treated as false, and if it evaluates to zero, it’s treated as true.

d) The if statement is a single-entry/single-exit statement.
Answer: c) is false. Actually, decisions can be based on any expression—if the expression
evaluates to zero, it’s treated as false, and if it evaluates to nonzero, it’s treated as true.

grade >= 60
true

false

print “Passed”

92 Chapter 3 Structured Program Development

3.6 The if…else Selection Statement
The if…else selection statement specifies different actions to perform when the
condition is true or false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

else
Print “Failed”

prints “Passed” if the student’s grade is greater than or equal to 60; otherwise, it prints
“Failed.” In either case, after printing, the next pseudocode statement in sequence
“executes.” The else’s body also is indented. If there are several levels of indentation
in a program, each should be indented the same additional amount of space. The pre-
ceding pseudocode may be written in C as

if (grade >= 60) {
 puts("Passed");
} // end if
else {
 puts("Failed");
} // end else

if…else Statement Flowchart
The following flowchart illustrates the if…else statement’s flow of control:

Conditional Expressions
The conditional operator (?:) is closely related to the if…else statement. This oper-
ator is C’s only ternary operator—that is, it takes three operands. A conditional oper-
ator and its three operands form a conditional expression. The first operand is a
condition. The second is the conditional expression’s value if the condition is true.
The third is the conditional expression’s value if the condition is false. For example,
the conditional-expression argument to the following puts statement evaluates to the
string "Passed" if the condition grade >= 60 is true; otherwise, it evaluates to the
string "Failed":

puts((grade >= 60) ? "Passed" : "Failed");

Conditional operators can be used in places where if…else statements cannot,
including expressions and arguments to functions (such as printf). Use expressions
of the same type for the second and third operands of the conditional operator (?:)
to avoid subtle errors.

truefalse
print “Failed” grade >= 60 print “Passed”

ERR

3.6 The if…else Selection Statement 93

Nested if...else Statements
Nested if…else statements test for multiple cases by placing if…else statements
inside if…else statements. For example, the following pseudocode statement prints:
A for grades greater than or equal to 90, B for grades greater than or equal to 80 (but
less than 90), C for grades greater than or equal to 70 (but less than 80), D for grades
greater than or equal to 60 (but less than 70), and F for all other grades.

This pseudocode may be written in C as

If the variable grade is greater than or equal to 90, all four conditions are true, but
only the puts statement after the first test executes. Then, the else part of the “outer”
if…else statement is skipped, bypassing the rest of the nested if…else statement.

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

if (grade >= 90) {
 puts("A");
} // end if
else {
 if (grade >= 80) {
 puts("B");
 } // end if
 else {
 if (grade >= 70) {
 puts("C");
 } // end if
 else {
 if (grade >= 60) {
 puts("D");
 } // end if
 else {
 puts("F");
 } // end else
 } // end else
 } // end else
} // end else

94 Chapter 3 Structured Program Development

Most programmers write the preceding if statement as
if (grade >= 90) {
 puts("A");
} // end if
else if (grade >= 80) {
 puts("B");
} // end else if
else if (grade >= 70) {
 puts("C");
} // end else if
else if (grade >= 60) {
 puts("D");
} // end else if
else {
 puts("F");
} // end else

Both forms are equivalent. The latter form avoids the deep indentation to the right,
which decreases program readability and sometimes causes lines to wrap.

Blocks and Compound Statements
To include several statements in an if’s body, you must enclose the statements in
braces ({ and }). A set of statements contained within a pair of braces is called a com-
pound statement or a block. A compound statement can be placed anywhere in a
program that a single statement can be placed.

The following if…else statement’s else part includes a compound statement
containing two statements to execute if the condition is false:

if (grade >= 60) {
 puts("Passed.");
} // end if
else {
 puts("Failed.");
 puts("You must take this course again.");
} // end else

If grade is less than 60, both puts statements in the else execute and the code prints:
Failed.
You must take this course again.

The braces surrounding the two statements in the else clause are important. Without
them, the statement

puts("You must take this course again.");

would be outside the else’s body (and outside the if…else statement) and would
execute regardless of whether the grade was less than 60, so even a passing student
would have to take the course again. To avoid problems like this, always include your
control statements’ bodies in braces ({ and }), even if those bodies contain only a sin-
gle statement. This solves the “dangling-else” problem, which we discuss in this chap-
ter’s exercises.

3.6 The if…else Selection Statement 95

Kinds of Errors
A syntax error (such as misspelling “else”) is caught by the compiler. A logic error
has its effect at execution time. A fatal logic error causes a program to fail and termi-
nate prematurely. A nonfatal logic error allows a program to continue executing but
to produce incorrect results.

Empty Statement
Anywhere a single or compound statement can be placed, it’s possible to place an
empty statement, represented by a semicolon (;). Placing a semicolon after an if’s
condition, as in

if (grade >= 60);

leads to a logic error in single-selection if statements and a syntax error in double-
selection and nested if…else statements.

Type both braces of compound statements before typing the individual state-
ments within the braces. This helps avoid omission of one or both of the braces, pre-
venting syntax errors (such as an if statement whose if part has multiple statements,
which requires a pair of braces) and logic errors. Many integrated development envi-
ronments and code editors insert the closing brace for you as soon as you type the
opening one.

Self Check
1 (True/False) The following code includes a compound statement in an if…else

statement’s else part:
if (grade >= 60) {
 puts("Passed.");
} // end if
else
 puts("Failed.");
 puts("You must take this course again.");

Answer: False. The curly braces around the two puts statements in the else part of this
if...else statement are missing. The correct code with the compound statement is

if (grade >= 60) {
 puts("Passed.");
} // end if
else {
 puts("Failed.");
 puts("You must take this course again.");
} // end else

2 (True/False) The conditional expression argument to the following puts state-
ment

puts((grade >= 60) : "Passed" ? "Failed");

evaluates to the string "Passed" if the condition grade >= 60 is true; otherwise, it eval-
uates to the string "Failed".

ERR

ERR

96 Chapter 3 Structured Program Development

Answer: False. This statement won’t compile because the conditional operator’s ?
and : are reversed. The correct statement to produce the desired result is

puts((grade >= 60) ? "Passed" : "Failed");

3.7 The while Iteration Statement
An iteration statement (also called a repetition statement or loop) repeats an action
while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the iteration that occurs during a shopping trip. The condition “there are
more items on my shopping list” may be true or false. If it’s true, the shopper performs
the action “Purchase next item and cross it off my list” repeatedly while the condition
remains true. Eventually, the condition will become false (when the last item on the
shopping list has been purchased and crossed off the list). At this point, the iteration
terminates, and the first pseudocode statement after the iteration statement “executes.”

Calculating the First Power of 3 Greater Than 100
As a while statement example, consider a program segment that finds the first power
of 3 larger than 100. The integer variable product is initialized to 3. When the fol-
lowing code segment finishes executing, product will contain the desired answer:

int product = 3;

while (product <= 100) {
 product = 3 * product;
}

The loop repeatedly multiplies product by 3, so it takes on the values 9, 27 and 81
successively. When product becomes 243, the condition product <= 100 becomes
false, terminating the iteration—product’s final value is 243. Execution continues
with the next statement after the while. An action in the while statement’s body must
eventually cause the condition to become false; otherwise, the loop will never termi-
nate—a logic error called an infinite loop. The statement(s) contained in a while iter-
ation statement constitute its body, which may be a single statement or a compound
statement.

while Statement Flowchart
The following flowchart segment illustrates the preceding while iteration statement:

ERR

product <= 100
true

false

product = 3 * product

3.8 Counter-Controlled Iteration 97

The flowchart clearly shows the iteration—the flowline emerging from the rectangle
points back to the flowline entering the decision. The loop tests the condition in the
diamond during each iteration until the condition eventually becomes false. At this
point, the while statement exits and control continues with the next statement in
sequence.

Self Check
1 (Program Segment) The while statement program segment in this section finds
the first power of 3 larger than 100. Rewrite this program segment so that it will find
the first power of 2 greater than or equal to 1024, leaving it in product.
Answer: See below.

int product = 2;

while (product < 1024) {
 product = 2 * product;
}

2 (Fill-in-the-Blank) An action in a while statement’s body must eventually cause
the condition to become false; otherwise, the loop will never terminate. This is a logic
error called a(n) .
Answer: infinite loop.

3.8 Formulating Algorithms Case Study 1: Counter-
Controlled Iteration
To illustrate how algorithms are developed, we solve two variations of a class-averag-
ing problem in this section and the next. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100)
for this quiz are available to you. Determine the class average on the quiz.

The class average is the sum of the grades divided by the number of students. The
algorithm to solve this problem must input the grades, then calculate and display the
class average.

Pseudocode for the Class-Average Problem
Let’s use pseudocode to list the actions to execute and specify the order in which they
should execute. We use counter-controlled iteration to input the grades one at a
time. This technique uses a variable called a counter to specify the number of times
a set of statements should execute. In this example, we know that ten students took a
quiz, so we need to input 10 grades. Iteration terminates when the counter exceeds
10. In this case study, we simply present the final pseudocode algorithm (Fig. 3.1)
and the corresponding C program (Fig. 3.2). In the next case study, we show how to
develop pseudocode algorithms. Counter-controlled iteration is often called definite
iteration because the number of iterations is known before the loop begins executing.

98 Chapter 3 Structured Program Development

1 Set total to zero
2 Set grade counter to one
3
4 While grade counter is less than or equal to ten
5 Input the next grade
6 Add the grade into the total
7 Add one to the grade counter
8
9 Set the class average to the total divided by ten

10 Print the class average

Fig. 3.1 | Pseudocode algorithm that uses counter-controlled iteration to solve the class-average
problem.

1 // fig03_02.c
2 // Class average program with counter-controlled iteration.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 // initialization phase
8 int total = 0; // initialize total of grades to 0
9 int counter = 1; // number of the grade to be entered next

10
11 // processing phase
12 while (counter <= 10) { // loop 10 times
13 printf("%s", "Enter grade: "); // prompt for input
14 int grade = 0; // grade value
15 scanf("%d", &grade); // read grade from user
16 total = total + grade; // add grade to total
17 counter = counter + 1; // increment counter
18 } // end while
19
20 // termination phase
21 int average = total / 10; // integer division
22 printf("Class average is %d\n", average); // display result
23 } // end function main

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Fig. 3.2 | Class-average problem with counter-controlled iteration.

3.9 Sentinel-Controlled Iteration 99

A total is a variable (line 8) used to accumulate the sum of a series of values. A
counter is a variable (line 9) used to count—in this case, to count the number of
grades entered. Variables for totals should be initialized to zero; otherwise, the sum
would include the previous value stored in the total’s memory location. You should
initialize all counters and totals. Counters typically are initialized to zero or one,
depending on their use—we’ll present examples of each. An uninitialized variable
contains a “garbage” value—the value last stored in the memory location reserved for
that variable. If a counter or total isn’t initialized, the results of your program will
probably be incorrect. These are examples of logic errors.

The average was 81 in the preceding sample execution, but the sum of the grades
we input was 817. Of course, 817 divided by 10 should yield 81.7—a number with
a decimal point. The next section shows how to deal with such floating-point numbers.

Self Check
1 (Fill-in-the-Blank) Counter-controlled iteration is often called iteration
because the number of iterations is known before the loop begins executing.
Answer: definite.

2 (True/False) Variables used to store totals should be initialized to one before
being used in a program; otherwise, the sum would include the previous value stored
in the total’s memory location.
Answer: False. Actually, Variables used to store totals should be initialized to zero be-
fore being used in a program; otherwise, the sum would include the previous value
stored in the total’s memory location.

3.9 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 2: Sentinel-Controlled Iteration
Let’s generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that will process an arbitrary number of
grades each time the program is run.

In the first class-average example, we knew there were 10 grades in advance. In this
example, no indication is given of how many grades the user might input. The program
must process an arbitrary number of grades. How can the program determine when to
stop inputting grades? How will it know when to calculate and print the class average?

Sentinel Values
One way is to use a sentinel value to indicate “end of data entry.” A sentinel value
also is called a signal value, a dummy value, or a flag value. The user types grades
until all legitimate grades have been entered. The user then types the sentinel value
to indicate “the last grade has been entered.” Sentinel-controlled iteration is often
called indefinite iteration because the number of iterations isn’t known before the
loop begins executing.

ERR

100 Chapter 3 Structured Program Development

You should choose a sentinel value that cannot be confused with an acceptable
input value. Grades on a quiz are non-negative integers, so –1 is an acceptable sentinel
value for this problem. Thus, a run of the class-average program might process a
stream of inputs such as 95, 96, 75, 74, 89 and –1. The program would then compute
and print the class average for the grades 95, 96, 75, 74, and 89. The sentinel value
–1 should not enter into the averaging calculation.

Top-Down, Stepwise Refinement
We approach the class-average program with a technique called top-down, stepwise
refinement, which is essential to developing well-structured programs. We begin
with a pseudocode representation of the top:

Determine the class average for the quiz

The top is a single statement that conveys the program’s overall function. As such, the
top is, in effect, a complete representation of a program. Unfortunately, the top rarely
conveys a sufficient amount of detail for writing the C program. So we now begin the
refinement process. We divide the top into smaller tasks listed in the order in which
they need to be performed. This results in the following first refinement:

Initialize variables
Input, sum, and count the quiz grades
Calculate and print the class average

Here, only the sequence structure has been used—the steps listed should execute in
order, one after the other. Each refinement, as well as the top itself, is a complete spec-
ification of the algorithm. Only the level of detail varies.

Second Refinement
To proceed to the next level of refinement, i.e., the second refinement, we commit
to specific variables. We need:

• a running total of the grades,

• a count of how many grades have been processed,

• a variable to receive the value of each grade as it is input and

• a variable to hold the calculated average.

The pseudocode statement

Initialize variables

can be refined as follows:

Initialize total to zero
Initialize counter to zero

Only the total and counter need to be initialized. The variables for the calculated
average and the grade the user inputs need not be initialized because their values will
be calculated and input from the user, respectively. The pseudocode statement

Input, sum, and count the quiz grades

3.9 Sentinel-Controlled Iteration 101

requires an iteration structure that successively inputs each grade. Because we do not
know how many grades are to be processed, we’ll use sentinel-controlled iteration.
The user will enter legitimate grades one at a time. After entering the last legitimate
grade, the user will type the sentinel value. The program will test for this value after
each grade is input and will terminate the loop when the sentinel is entered. The
refinement of the preceding pseudocode statement is then

Input the first grade (possibly the sentinel)
While the user has not as yet entered the sentinel

Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

In pseudocode, we do not use braces around the set of statements that form a
loop’s body. We simply indent the body statements under the while. Again, pseudo-
code is an informal program-development aid.

The pseudocode statement

Calculate and print the class average

may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

We’re being careful here to test for the possibility of division by zero—a fatal error
that, if undetected, would cause the program to fail (often called “crashing”). You
should explicitly test for this case and handle it appropriately in your program, such
as by printing an error message, rather than allowing the fatal error to occur.

Complete Second Refinement
The complete second refinement is shown in Fig. 3.3. We include some blank lines
in the pseudocode for readability.

1 Initialize total to zero
2 Initialize counter to zero
3
4 Input the first grade (possibly the sentinel)
5 While the user has not as yet entered the sentinel
6 Add this grade into the running total
7 Add one to the grade counter
8 Input the next grade (possibly the sentinel)

Fig. 3.3 | Pseudocode algorithm that uses sentinel-controlled iteration to solve the class-
average problem. (Part 1 of 2.)

ERR

102 Chapter 3 Structured Program Development

Phases in a Basic Program
Many programs can be divided logically into three phases:

• an initialization phase that initializes the program variables,

• a processing phase that inputs data values and adjusts program variables
accordingly, and

• a termination phase that calculates and prints the final results.

Number of Pseudocode Refinements
The pseudocode algorithm in Fig. 3.3 solves the more general class-average problem.
This algorithm was developed after only two levels of refinement. Sometimes more
levels are necessary. You terminate the top-down, stepwise refinement process when
the pseudocode algorithm provides sufficient detail for you to convert the pseudo-
code to C.

The most challenging part of solving a problem on a computer is developing the
algorithm for the solution. Once a correct algorithm has been specified, producing a
working C program usually is straightforward. Many programmers write programs
without ever using program-development tools such as pseudocode. They feel their
ultimate goal is to solve the problem and that writing pseudocode merely delays pro-
ducing final outputs. This may work for small programs you develop for your own
use. But for the substantial programs and software systems you’ll likely work on in
industry, a formal development process is essential.

Class-Average Program for an Arbitrary Number of Grades
Figure 3.4 shows the C program and two sample executions. Although only integer
grades are entered, the averaging calculation is likely to produce a number with a dec-
imal point. The type int cannot represent such a number. So this program introduces
the data type double to handle numbers with decimal points—that is, floating-point
numbers. We introduce a cast operator to force the averaging calculation to use float-
ing-point numbers. These features are explained after the program listing. Note that
lines 13 and 23 both include the sentinel value in the prompts requesting data entry.
This is a good practice in a sentinel-controlled loop.

9
10 If the counter is not equal to zero
11 Set the average to the total divided by the counter
12 Print the average
13 else
14 Print “No grades were entered”

Fig. 3.3 | Pseudocode algorithm that uses sentinel-controlled iteration to solve the class-
average problem. (Part 2 of 2.)

3.9 Sentinel-Controlled Iteration 103

1 // fig03_04.c
2 // Class-average program with sentinel-controlled iteration.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 // initialization phase
8 int total = 0; // initialize total
9 int counter = 0; // initialize loop counter

10
11 // processing phase
12 // get first grade from user
13 printf("%s", "Enter grade, -1 to end: "); // prompt for input
14 int grade = 0; // grade value
15 scanf("%d", &grade); // read grade from user
16
17 // loop while sentinel value not yet read from user
18 while (grade != -1) {
19 total = total + grade; // add grade to total
20 counter = counter + 1; // increment counter
21
22 // get next grade from user
23 printf("%s", "Enter grade, -1 to end: "); // prompt for input
24 scanf("%d", &grade); // read next grade
25 } // end while
26
27 // termination phase
28 // if user entered at least one grade
29 if (counter != 0) {
30
31 // calculate average of all grades entered
32 double average = (double) total / counter; // avoid truncation
33
34 // display average with two digits of precision
35 printf("Class average is %.2f\n", average);
36 } // end if
37 else { // if no grades were entered, output message
38 puts("No grades were entered");
39 } // end else
40 } // end function main

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

Enter grade, -1 to end: -1
No grades were entered

Fig. 3.4 | Class-average program with sentinel-controlled iteration.

104 Chapter 3 Structured Program Development

Always Use Braces in a while Statement
Without this while loop’s braces (lines 18 and 25), only the statement on line 19
would be in the loop’s body. The code would be incorrectly interpreted as

while (grade != -1)
 total = total + grade; // add grade to total
counter = counter + 1; // increment counter

// get next grade from user
printf("%s", "Enter grade, -1 to end: "); // prompt for input
scanf("%d", &grade); // read next grade

This would cause an infinite loop if the user did not input -1 as the first grade.

Converting Between Types Explicitly and Implicitly
Averages often are values such as 7.2 or –93.5 that contain fractional parts. These float-
ing-point numbers can be represented by the data type double. Line 32 defines the
variable average as type double to capture the fractional result of our calculation. Nor-
mally, the result of the calculation total / counter (line 32) is an integer because total
and counter are both int variables. Dividing two ints results in integer division—any
fractional part of the calculation is truncated (that is, lost). You can produce a floating-
point calculation with integer values by first creating temporary floating-point num-
bers. C provides the unary cast operator to accomplish this task. Line 32

double average = (double) total / counter;

uses the cast operator (double) to create a temporary floating-point copy of its operand,
total. The value stored in total is still an integer. Using a cast operator in this manner
is called explicit conversion. The calculation now consists of a floating-point value—
the temporary double version of total—divided by the int value stored in counter.

C requires the operand data types in arithmetic expressions only to be identical.
In mixed-type expressions, the compiler performs an operation called implicit con-
version on selected operands to ensure that they’re of the same type. For example, in
an expression containing the data types int and double, copies of int operands are
made and implicitly converted to type double. After we explicitly convert total to a
double, the compiler implicitly makes a double copy of counter, then performs float-
ing-point division and assigns the floating-point result to average. Chapter 5 dis-
cusses C’s rules for converting operands of different types.

Cast operators are formed by placing parentheses around a type name. A cast is a
unary operator that takes only one operand. C also supports unary versions of the
plus (+) and minus (-) operators, so you can write expressions such as -7 or +5. Cast
operators group right-to-left and have the same precedence as other unary operators
such as unary + and unary -. This precedence is one level higher than that of the mul-
tiplicative operators *, / and %.

Formatting Floating-Point Numbers
Figure 3.4 uses the printf conversion specification %.2f (line 35) to format average’s
value. The f specifies that a floating-point value will be printed. The .2 is the preci-

ERR

3.9 Sentinel-Controlled Iteration 105

sion—the value will have two (2) digits to the right of the decimal point. If the %f
conversion specification is used without specifying the precision, the default preci-
sion is 6 digits to the right of the decimal point, as if the conversion specification %.6f
had been used. When floating-point values are printed with precision, the printed
value is rounded to the indicated number of decimal positions. The value in memory
is unaltered. The following statements display the values 3.45 and 3.4, respectively:

printf("%.2f\n", 3.446); // displays 3.45
printf("%.1f\n", 3.446); // displays 3.4

Notes on Floating-Point Numbers
Although floating-point numbers are not always “100% precise,” they have numer-
ous applications. For example, when we speak of a “normal” body temperature of
98.6 degrees Fahrenheit, we do not need to be precise to a large number of digits.
When we view the temperature on a thermometer and read it as 98.6, it may actually
be 98.5999473210643. The point here is that calling this number simply 98.6 is fine
for most applications. We’ll say more about this issue later.

Floating-point numbers often develop through division. When we divide 10 by
3, the result is 3.3333333… with the sequence of 3s repeating infinitely. The com-
puter allocates only a fixed amount of space to hold such a value, so the stored float-
ing-point value can be only an approximation. Using floating-point numbers in a
manner that assumes they’re represented precisely can lead to incorrect results. Float-
ing-point numbers are represented only approximately by most computers. For this
reason, you also should not compare floating-point values for equality.

Self Check
1 (Fill-in-the-Blank) Sentinel-controlled iteration is often called iteration
because the number of iterations isn’t known before the loop begins executing.
Answer: indefinite.

2 (Multiple Choice) Which of the following statements is false?
a) Many programs can be divided logically into three phases: an initialization

phase that initializes the program variables, a processing phase that inputs
data values and adjusts program variables accordingly, and a termination
phase that calculates and prints the final results.

b) You terminate top-down, stepwise refinement when the pseudocode algo-
rithm is specified in sufficient detail for you to be able to convert the
pseudocode to C.

c) Experience has shown that the most difficult part of solving a problem on a
computer is producing a working C program from the algorithm.

d) Many programmers write programs without ever using program-develop-
ment tools such as pseudocode. They feel that their ultimate goal is to solve
the problem on a computer and that writing pseudocode merely delays the
production of final outputs.

ERR

106 Chapter 3 Structured Program Development

Answer: c) is false. Actually, experience has shown that the most difficult part of solv-
ing a problem on a computer is developing the algorithm for the solution. Once a
correct algorithm has been specified, the process of producing a working C program
is normally straightforward.

3 (Program Segment) When floating-point values are printed with precision, the
printed value is rounded. Write statements that display the value 98.5999473210643
with one, four and ten digits of precision, respectively, and specify what’s displayed
in each case.
Answer: See below.

printf("%.1f\n", 98.5999473210643); // displays 98.6
printf("%.4f\n", 98.5999473210643); // displays 98.5999
printf("%.10f\n", 98.5999473210643); // displays 98.5999473211

3.10 Formulating Algorithms with Top-Down,
Stepwise Refinement Case Study 3: Nested Control
Statements
Let’s work another complete problem. We’ll formulate the algorithm using pseudo-
code and top-down, stepwise refinement, and write a corresponding C program.
We’ve seen that control statements may be stacked on top of one another (in
sequence) just as a child stacks building blocks. In this case study, we’ll see the only
other structured way control statements may be connected in C, namely by nesting
one control statement within another. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for
real estate brokers. Last year, 10 of the students who completed this course took
the licensing examination. Naturally, the college wants to know how well its
students did on the exam. You’ve been asked to write a program to summarize
the results. You’ve been given a list of these 10 students. Next to each name is a
1 if the student passed the exam or a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message
“Enter result” each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students
who passed and the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to
instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process 10 test results. We’ll use a counter-controlled loop.

2. Each test result is a number—either a 1 or a 2. Each time the program reads
a test result, it must determine whether the result is a 1 or a 2. We’ll test for a

3.10 Nested Control Statements 107

1 in our algorithm. If the number is not a 1, we’ll assume that it’s a 2.
Exercise 3.27 asks you to ensure that every test result is a 1 or a 2.

3. Two counters are used—one to count the number of students who passed the
exam and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide whether more
than 8 students passed the exam and, if so, print "Bonus to Instructor!".

Pseudocode Representation of the Top
Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide whether instructor should receive a bonus

Once again, it’s important to emphasize that the top is a complete representation of
the program, but multiple refinements are likely to be needed before the pseudocode
can be naturally evolved into a C program.

First Refinement
Our first refinement is:

Initialize variables
Input the ten quiz grades and count passes and failures
Print an exam-results summary and decide whether to bonus the instructor

Here, too, even though we have a complete representation of the entire program, fur-
ther refinement is necessary.

Second Refinement
We now commit to specific variables. We need counters to record the passes and fail-
ures, a counter to control the looping process, and a variable to store the user input.
The pseudocode statement

Initialize variables

can be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Only the counter and totals are initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here we know in
advance that there are precisely ten exam results, so counter-controlled looping is
appropriate. Inside the loop (that is, nested within the loop), a double-selection state-
ment will determine whether each exam result is a pass or a failure and will increment
the appropriate counter. The refinement of the preceding pseudocode statement is
then

108 Chapter 3 Structured Program Development

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

The pseudocode statement

Print an exam-results summary and decide whether to bonus the instructor

may be refined as follows:

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Bonus to instructor!”

Complete Second Refinement
Figure 3.5 contains the complete second refinement. We use blank lines for readability.

Implementing the Algorithm
This pseudocode is now sufficiently refined for conversion to C. Figure 3.6 shows the
C program and two sample executions.

1 Initialize passes to zero
2 Initialize failures to zero
3 Initialize student to one
4
5 While student counter is less than or equal to ten
6 Input the next exam result
7
8 If the student passed
9 Add one to passes

10 else
11 Add one to failures
12
13 Add one to student counter
14
15 Print the number of passes
16 Print the number of failures
17 If more than eight students passed
18 Print “Bonus to instructor!”

Fig. 3.5 | Pseudocode for examination-results problem.

3.10 Nested Control Statements 109

1 // fig03_06.c
2 // Analysis of examination results.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 // initialize variables in definitions
8 int passes = 0;
9 int failures = 0;

10 int student = 1;
11
12 // process 10 students using counter-controlled loop
13 while (student <= 10) {
14 // prompt user for input and obtain value from user
15 printf("%s", "Enter result (1=pass,2=fail): ");
16 int result = 0; // one exam result
17 scanf("%d", &result);
18
19 // if result 1, increment passes
20 if (result == 1) {
21 passes = passes + 1;
22 } // end if
23 else { // otherwise, increment failures
24 failures = failures + 1;
25 } // end else
26
27 student = student + 1; // increment student counter
28 } // end while
29
30 // termination phase; display number of passes and failures
31 printf("Passed %d\n", passes);
32 printf("Failed %d\n", failures);
33
34 // if more than eight students passed, print "Bonus to instructor!"
35 if (passes > 8) {
36 puts("Bonus to instructor!");
37 } // end if
38 } // end function main

Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 2
Enter Result (1=pass, 2=fail): 2
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 2
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 2
Passed 6
Failed 4

Fig. 3.6 | Analysis of examination results. (Part 1 of 2.)

110 Chapter 3 Structured Program Development

Self Check
1 (Fill-in-the-Blank) Control statements may be stacked on top of one another (in
sequence) just as a child stacks building blocks. The only other structured way control
statements may be connected in C is —that is, placing a control statement
inside another control statement.
Answer: nesting.

3.11 Assignment Operators
C provides several assignment operators for abbreviating assignment expressions. For
example, the statement

c = c + 3;

can be abbreviated with the addition assignment operator += as
c += 3;

The += operator adds the value of the expression on the operator’s right to the value
of the variable on the operator’s left then stores the result in the variable on the left.
So, the assignment c += 3 adds 3 to c’s current value. The following table shows the
arithmetic assignment operators, sample expressions using these operators, and expla-
nations:

Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 2
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Enter Result (1=pass, 2=fail): 1
Passed 9
Failed 1
Bonus to instructor!

Fig. 3.6 | Analysis of examination results. (Part 2 of 2.)

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;
+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d
*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

3.12 Increment and Decrement Operators 111

Self Check
1 (Fill-in-the-Blank) The statement

b = b * 5;

can be abbreviated with the multiplication assignment operator *= as .
Answer: b *= 5;

2 (Fill-in-the-Blank) What does the assignment c -= 3; do?
Answer: Subtracts 3 from c’s current value.

3.12 Increment and Decrement Operators
The unary increment operator (++) and the unary decrement operator (--) add one
to and subtract one from an integer variable, respectively. The following table sum-
marizes the two versions of each operator:

To increment the variable c by 1, you can use the operator ++ rather than the expres-
sions c = c + 1 or c += 1. If you place ++ or -- before a variable (i.e., prefixed), they’re
referred to as the preincrement or predecrement operators. If you place ++ or -- after
a variable (i.e., postfixed), they’re referred to as the postincrement or postdecrement
operators. By convention, unary operators should be placed next to their operands
with no intervening spaces.

Figure 3.7 demonstrates the difference between the preincrementing and the
postincrementing versions of the ++ operator. Postincrementing the variable c causes
it to be incremented after it’s used in the printf statement. Preincrementing the vari-
able c causes it to be incremented before it’s used in the printf statement. The pro-
gram displays the value of c before and after using ++. The decrement operator (--)
works similarly.

Operator Sample expression Explanation

++ ++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

1 // fig03_07.c
2 // Preincrementing and postincrementing.
3 #include <stdio.h>
4

Fig. 3.7 | Preincrementing and postincrementing. (Part 1 of 2.)

112 Chapter 3 Structured Program Development

The three assignment statements in Fig. 3.6
passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as
passes += 1;
failures += 1;
student += 1;

with preincrement operators as
++passes;
++failures;
++student;

or with postincrement operators as
passes++;
failures++;
student++;

When incrementing or decrementing a variable in a statement by itself, the pre-
increment and postincrement forms have the same effect. It’s only when a variable
appears in the context of a larger expression that preincrementing and postincrement-
ing have different effects (and similarly for predecrementing and postdecrementing).

Only a simple variable name may be used as a ++ or -- operator’s operand.
Attempting to use the increment or decrement operator on an expression other than
a simple variable name is a syntax error—e.g., ++(x + 1).

5 // function main begins program execution
6 int main(void) {
7 // demonstrate postincrement
8 int c = 5; // assign 5 to c
9 printf("%d\n", c); // print 5

10 printf("%d\n", c++); // print 5 then postincrement
11 printf("%d\n\n", c); // print 6
12
13 // demonstrate preincrement
14 c = 5; // assign 5 to c
15 printf("%d\n", c); // print 5
16 printf("%d\n", ++c); // preincrement then print 6
17 printf("%d\n", c); // print 6
18 } // end function main

5
5
6

5
6
6

Fig. 3.7 | Preincrementing and postincrementing. (Part 2 of 2.)

ERR

3.12 Increment and Decrement Operators 113

C generally does not specify the order in which an operator’s operands will eval-
uate. We’ll see exceptions to this for a few operators in the next chapter. To avoid
subtle errors, the ++ and -- operators should be used only in statements that modify
exactly one variable.

The following table lists in decreasing precedence order the operators shown so far.

The third column names the various groups of operators. Notice that the conditional
operator (?:), the unary operators increment (++), decrement (--), plus (+), minus (-)
and casts, and the assignment operators =, +=, -=, *=, /= and %= group right-to-left. The
other operators group left-to-right.

Self Check
1 (Multiple Choice) Given the following code:

 --i;
which of the following statements describes what this code does?

a) Increment i by 1, then use the new value of i in the expression in which i
resides.

b) Use i’s current value in the expression in which i resides, then increment i
by 1.

c) Decrement i by 1, then use the new value of i in the expression in which i
resides.

d) Use i’s current value in the expression in which i resides, then decrement i
by 1.

Answer: c.

2 (What Does This Code Do?) What does this program display as x’s final value?

Operators Grouping Type

++ (postfix) -- (postfix) right to left postfix
+ - (type) ++ (prefix) -- (prefix) right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
?: right to left conditional
= += -= *= /= %= right to left assignment

1 #include <stdio.h>
2
3 int main(void) {
4 int x = 7;
5 printf("%d\n", x);
6 printf("%d\n", x++);
7 printf("%d\n\n", x);

114 Chapter 3 Structured Program Development

Answer: 9.

3 (Multiple Choice) Which of the following expressions contains a syntax error?
a) ++x + 1
b) x++ + x
c) ++(x) + 1
d) ++(x + 1)

Answer: d. Only a simple variable name may be used as the operand of a ++ or -- op-
erator. Attempting to use the increment or decrement operator on an expression oth-
er than a simple variable name is a syntax error—e.g., ++(x + 1).

3.13 Secure C Programming

Arithmetic Overflow
Figure 2.4 presented an addition program that calculated the sum of two int values
with the statement

sum = integer1 + integer2; // assign total to sum

Even this simple statement has a potential problem. Adding the integers could result
in a value too large to store in the int variable sum. This is known as arithmetic over-
flow and can cause undefined behavior, possibly leaving a system open to attack.

The constants INT_MAX and INT_MIN represent the platform-specific maximum
and minimum values that can be stored in an int variable. These constants are
defined in the header <limits.h>. There are similar constants for the other integral
types that we’ll introduce in the next chapter. You can see your platform’s values for
these constants by opening the header <limits.h> in a text editor.2

It’s good practice to ensure that before you perform arithmetic calculations like
the one above, they will not overflow. For an example, see the CERT website.

https://wiki.sei.cmu.edu/confluence/display/c/

Search for guideline INT32-C. The code uses the && (logical AND) and || (logical
OR) operators, which we discuss in Chapter 4. In industrial-strength code, you
should perform checks like these for all calculations. Later chapters show other pro-
gramming techniques for handling such errors.

scanf_s and printf_s
The C11 standard’s Annex K introduced more secure versions of printf and scanf
called printf_s and scanf_s. We discuss these functions and the corresponding secu-

8 x = 8;
9 printf("%d\n", x);

10 printf("%d\n", ++x);
11 printf("%d\n", x);
12 }

SEC

2. Use your system’s search feature to locate the file limits.h.

ERR

https://wiki.sei.cmu.edu/confluence/display/c/

 Summary 115

rity issues in Sections 6.13 and 7.13. Annex K is designated as optional, so not every
C vendor implements it. In particular, the GNU C++ and Clang C++ compilers do
not implement Annex K, so using scanf_s and printf_s might compromise your
code’s portability among compilers.

Microsoft implemented its own Visual C++ versions of printf_s and scanf_s
before the C11 standard, and its compiler immediately began issuing warnings for
every scanf call. The warnings said that scanf was deprecated—it should no longer
be used—and that you should consider using scanf_s instead. Microsoft now treats
what used to be a warning about scanf as an error. A program with scanf will not
compile on Visual C++ and you will not be able to execute the program.

Many organizations have coding standards that require code to compile without
warning messages. There are two ways to eliminate Visual C++’s scanf warnings—
use scanf_s instead of scanf or disable these warnings. For the input statements
we’ve used so far, Visual C++ users can simply replace scanf with scanf_s. You can
disable the warning messages in Visual C++ as follows:

1. Type Alt F7 to display the Property Pages dialog for your project.

2. In the left column, expand Configuration Properties > C/C++ and select Prepro-
cessor.

3. In the right column, at the end of the value for Preprocessor Definitions, insert
 ;_CRT_SECURE_NO_WARNINGS

4. Click OK to save the changes.

You’ll no longer receive warnings on scanf (or any other functions that Microsoft has
deprecated for similar reasons). For industrial-strength coding, disabling the warn-
ings is discouraged. We’ll say more about scanf_s and printf_s in a later Secure C
Coding Guidelines section.

Self Check
1 (Fill-in-the-Blank) Adding two integers such that the result is a value that’s too
large to store in an int variable is known as arithmetic and can cause unde-
fined behavior, possibly leaving a system open to attack.
Answer: overflow.

2 (Fill-in-the-Blank) The platform-specific maximum and minimum values that
can be stored in an int variable are represented by the constants INT_MAX and
INT_MIN, respectively, which are defined in the header .
Answer: <limits.h>.

Summary

Section 3.1 Introduction
• Before writing a program to solve a particular problem, you must have a thorough under-

standing of the problem and a carefully planned approach to solving it.

116 Chapter 3 Structured Program Development

Section 3.2 Algorithms
• The solution to any computing problem involves executing a series of actions in a specific

order (p. 86).
• An algorithm (p. 86) is a procedure (p. 86) for solving a problem in terms of the actions

(p. 86) to execute and the order in which these actions should execute.

Section 3.3 Pseudocode
• Pseudocode (p. 87) is an artificial and informal language that helps you develop algorithms.
• Pseudocode is similar to everyday English; it’s not an actual computer programming language.
• Pseudocode programs help you “think out” a program.
• Pseudocode consists purely of characters. You may type pseudocode using any text editor.
• Carefully prepared pseudocode can be converted easily to corresponding C programs.
• Pseudocode consists only of actions and decisions.

Section 3.4 Control Structures
• Normally, statements in a program execute one after the other in the order in which they’re

written. This is called sequential execution (p. 88).
• Various C statements enable you to specify that the next statement to execute may be other

than the next one in sequence. This is called transfer of control (p. 88).
• Structured programming has become almost synonymous with “goto elimination” (p. 88).
• Structured programs are clearer, easier to debug and modify and more likely to be bug-free.
• All programs can be written using sequence, selection and iteration control structures (p. 88).
• Unless directed otherwise, the computer automatically executes C statements in sequence.
• A flowchart (p. 88) is a graphical representation of an algorithm drawn using rectangles,

diamonds, rounded rectangles and small circles connected by arrows called flowlines
(p. 88).

• The rectangle (action) symbol (p. 89) indicates any type of action, including a calculation
or an input/output operation.

• Flowlines indicate the order in which the actions are performed.
• When drawing a flowchart that represents a complete algorithm, we use as the first symbol

a rounded rectangle containing “Begin” and as the last a rounded rectangle containing
“End.” When drawing only a portion of an algorithm, we omit the rounded-rectangle sym-
bols in favor of using small circles called connector symbols.

• The if single-selection statement selects or ignores a single action (or group of actions).
• The if…else double-selection statement (p. 89) selects between two different actions (or

groups of actions).
• The switch multiple-selection statement (p. 89) selects among many different actions

based on the value of an expression.
• C provides three types of iteration statements (also called repetition statements), namely
while, do…while and for.

• Control-statement flowchart segments can be attached to one another with control-state-
ment stacking (p. 89)—connecting the exit point of one to the entry point of the next.

• Control statements also may be nested.
• C uses single-entry/single-exit control statements (p. 89).

 Summary 117

Section 3.5 The if Selection Statement
• Selection structures are used to choose among alternative courses of action.
• The diamond (decision) symbol (p. 91) indicates that a decision is to be made.
• The decision symbol’s expression typically is a condition that can be true or false. The de-

cision symbol has two flowlines emerging from it indicating the directions to take when the
expression is true or false.

• A decision can be based on any expression’s value—zero is false and nonzero is true.

Section 3.6 The if…else Selection Statement
• The conditional operator (?:, p. 92) is closely related to the if…else statement.
• The conditional operator is C’s only ternary operator—it takes three operands. The first is

a condition. The second is the value for the conditional expression (p. 92) if the condition
is true. The third is the value for the conditional expression if the condition is false.

• Nested if…else statements (p. 93) test for multiple cases by placing if…else statements
inside if…else statements.

• A set of statements within a pair of braces is called a compound statement or a block (p. 94).
• A syntax error is caught by the compiler. A logic error has its effect at execution time. A fatal

logic error causes a program to fail and terminate prematurely. A nonfatal logic error allows
a program to continue executing but to produce incorrect results.

Section 3.7 The while Iteration Statement
• The while iteration statement (p. 96) specifies that an action repeats while a condition is

true. Eventually, the condition will become false. At this point, the iteration terminates, and
the first statement after the iteration statement executes.

Section 3.8 Formulating Algorithms Case Study 1: Counter-Controlled It-
eration
• Counter-controlled iteration (p. 97) uses a variable called a counter (p. 97) to specify the

number of times a set of statements should execute.
• Counter-controlled iteration is often called definite iteration (p. 97) because the number of

iterations is known before the loop begins executing.
• A total (p. 99) is a variable used to accumulate the sum of a series of values. Variables used

to store totals should be initialized to zero.
• A counter is a variable used to count. Counter variables typically are initialized to zero or

one, depending on their use.
• An uninitialized variable contains a “garbage” value (p. 99)—the value last stored in the

memory location reserved for that variable.

Section 3.9 Formulating Algorithms with Top-Down, Stepwise Refine-
ment Case Study 2: Sentinel-Controlled Iteration
• A sentinel value (p. 99; also called a signal value, a dummy value, or a flag value) is used

in a sentinel-controlled loop to indicate the “end of data entry.”
• Sentinel-controlled iteration is often called indefinite iteration (p. 99) because the number

of iterations is not known before the loop begins executing.
• The sentinel value must be chosen so that it cannot be confused with an acceptable input

value.

118 Chapter 3 Structured Program Development

• In top-down, stepwise refinement (p. 100), the top is a statement that conveys the pro-
gram’s overall function. It’s a complete representation of a program. In the refinement pro-
cess, we divide the top into smaller tasks and list these in execution order.

• The type double (p. 102) represents floating-point numbers with decimal points.
• When two integers are divided, any fractional part of the result is truncated (p. 104).
• To produce a floating-point calculation with integer values, you can cast the integers to

floating-point numbers. C provides the unary cast operator (double) to accomplish this
task.

• Cast operators (p. 104) perform explicit conversions.
• C requires the operands in arithmetic expressions to have the same data type. To ensure this,

the compiler performs implicit conversion (p. 104) on selected operands.
• A cast operator is formed by placing parentheses around a type name. The cast operator is

a unary operator—it takes only one operand.
• Cast operators group right-to-left and have the same precedence as other unary operators

such as unary + and unary -. This precedence is one level higher than that of *, / and %.
• The printf conversion Specification %.2f specifies that a floating-point value will be dis-

played with two digits to the right of the decimal point. If the %f conversion specification
is used (without specifying the precision), the default precision (p. 105) is 6.

• When floating-point values are printed with precision, the printed value is rounded
(p. 105) to the indicated number of decimal positions for display purposes.

Section 3.11 Assignment Operators
• C provides several assignment operators for abbreviating assignment expressions (p. 110).
• The += operator adds the value of the expression on its right to the value of the variable on

its left and stores the result in the variable on its left.
• Assignment operators are provided for each of the binary operators +, -, *, / and %.

Section 3.12 Increment and Decrement Operators
• C provides the unary increment operator, ++ (p. 111), and the unary decrement operator,
-- (p. 111), for use with integral types.

• If ++ or -- operators are placed before a variable, they’re referred to as the preincrement or
predecrement operators, respectively. If ++ or -- operators are placed after a variable,
they’re referred to as the postincrement or postdecrement operators, respectively.

• Preincrementing (predecrementing) a variable causes it to be incremented (decremented) by
1, then the new value of the variable is used in the expression in which it appears.

• Postincrementing (postdecrementing) a variable uses the current value of the variable in the
expression in which it appears, then the variable value is incremented (decremented) by 1.

• When incrementing or decrementing a variable in a statement by itself, pre- and postincre-
ment have the same effect. When a variable appears in the context of a larger expression, pre-
and postincrementing have different effects (and similarly for pre- and postdecrementing).

Section 3.13 Secure C Programming
• Adding integers can result in a value that’s too large to store in an int variable. This is

known as arithmetic overflow and can cause unpredictable runtime behavior, possibly leav-
ing a system open to attack.

 Self-Review Exercises 119

• The maximum and minimum values that can be stored in an int variable are represented
by the constants INT_MAX and INT_MIN, respectively, from the header <limits.h>.

• It’s considered good practice to ensure that arithmetic calculations will not overflow before
you perform them. In industrial-strength code, you should perform checks for all calcula-
tions that can result in overflow or underflow (p. 114).

• The C11 standard’s Annex K introduces more secure versions of printf and scanf called
printf_s and scanf_s. Annex K is designated as optional, so not every C compiler vendor
will implement it.

• Microsoft implemented its own versions of printf_s and scanf_s before the C11 standard
and began issuing warnings for every scanf call. The warnings say that scanf is deprecat-
ed—it should no longer be used—and that you should consider using scanf_s instead.

• Many organizations have coding standards that require code to compile without warning
messages. There are two ways to eliminate Visual C++’s scanf warnings. You can either start
using scanf_s immediately or disable this warning message.

Self-Review Exercises
3.1 Fill-In the blanks in each of the following questions.

a) A procedure for solving a problem in terms of the actions to execute and the
order in which the actions should execute is called a(n) .

b) Specifying the execution order of statements by the computer is called
.

c) All programs can be written in terms of three types of control statements:
, and .

d) The selection statement is used to execute one action when a con-
dition is true and another action when that condition is false.

e) Several statements grouped together in braces ({ and }) are called a(n)
.

f) The iteration statement specifies that a statement or group of state-
ments is to be executed repeatedly while some condition remains true.

g) Iterating a specific number of times is called iteration.
h) When it’s not known in advance how many times a set of statements will be

repeated, a(n) value can be used to terminate the iteration.

3.2 Write four different C statements that each add 1 to integer variable x.

3.3 Write a single C statement to accomplish each of the following:
a) Multiply the variable product by 2 using the *= operator.
b) Multiply the variable product by 2 using the = and * operators.
c) Test whether the value of the variable count is greater than 10. If it is, print

"Count is greater than 10".
d) Calculate the remainder after quotient is divided by divisor and assign the

result to quotient. Write this statement two different ways.
e) Print the value 123.4567 with two digits of precision. What value is printed?
f) Print the floating-point value 3.14159 with three digits to the right of the

decimal point. What value is printed?

120 Chapter 3 Structured Program Development

3.4 Write a C statement to accomplish each of the following tasks.
a) Define variable x to be of type int and set it to 1.
b) Define variable sum to be of type int and set it to 0.
c) Add variable x to variable sum and assign the result to variable sum.
d) Print "The sum is: " followed by the value of variable sum.

3.5 Combine the statements from Exercise 3.4 into a program that calculates the
sum of the integers from 1 to 10. Use the while statement to loop through the calcu-
lation and increment statements. The loop should terminate when x becomes 11.

3.6 Write single C statements to perform each of the following tasks:
a) Input integer variable x with scanf. Use the conversion specification %d.
b) Input integer variable y with scanf. Use the conversion specification %d.
c) Set integer variable i to 1.
d) Set integer variable power to 1.
e) Multiply integer variable power by x and assign the result to power.
f) Increment variable i by 1.
g) Test i to see if it’s less than or equal to y in the condition of a while statement.
h) Output integer variable power with printf.

3.7 Write a C program that uses the statements in the preceding exercise to calculate
x raised to the y power. The program should have a while iteration control statement.

3.8 Identify and correct the errors in each of the following:
a) while (c <= 5) {

 product *= c;

 ++c;
b) scanf("%.4f", &value);
c) if (gender == 1) {

 puts("Woman");

}

else; {

 puts("Man");
}

3.9 What’s wrong with the following while iteration statement (assume z has value
100), which is supposed to calculate the sum of the integers from 100 down to 1?

while (z >= 0) {
 sum += z;
}

Answers to Self-Review Exercises
3.1 a) Algorithm. b) Program control. c) Sequence, selection, iteration. d)
if…else. e) Compound statement or block. f) while. g) Counter-controlled or defi-
nite. h) Sentinel.

 Answers to Self-Review Exercises 121

3.2 See the answer below:
x = x + 1;
x += 1;
++x;
x++;

3.3 See the answers below:
a) product *= 2;
b) product = product * 2;
c) if (count > 10) {

 puts("Count is greater than 10.");
}

d) quotient %= divisor;
quotient = quotient % divisor;

e) printf("%.2f", 123.4567);

123.46 is displayed.
f) printf("%.3f\n", 3.14159);

3.142 is displayed.

3.4 See the answers below:
a) int x = 1;
b) int sum = 0;
c) sum += x; or sum = sum + x;
d) printf("The sum is: %d\n", sum);

3.5 See below.

3.6 See the answers below:
a) scanf("%d", &x);
b) scanf("%d", &y);
c) i = 1;
d) power = 1;
e) power *= x;
f) ++i;

1 // Calculate the sum of the integers from 1 to 10
2 #include <stdio.h>
3
4 int main(void) {
5 int x = 1; // set x
6 int sum = 0; // set sum
7
8 while (x <= 10) { // loop while x is less than or equal to 10
9 sum += x; // add x to sum

10 ++x; // increment x
11 } // end while
12
13 printf("The sum is: %d\n", sum); // display sum
14 } // end main function

122 Chapter 3 Structured Program Development

g) while (i <= y)
h) printf("%d", power);

3.7 See below.

3.8 See the answers below:
a) Error: Missing the closing right brace of the while body.

Correction: Add closing right brace after the statement ++c;.
b) Error: Precision used in a scanf conversion specification.

Correction: Remove .4 from the conversion specification.
c) Error: Semicolon after the else part of the if…else statement results in a

logic error. The second puts will always execute.
Correction: Remove the semicolon after else.

3.9 The value of the variable z is never changed in the while statement. Therefore,
an infinite loop is created. To prevent the infinite loop, z must be decremented so
that it eventually becomes 0.

Exercises
3.10 Identify and correct the errors in each of the following. [Note: There may be
more than one error in each piece of code.]

a) if (age >= 65); {

 puts("Age is greater than or equal to 65");

}

else {

 puts("Age is less than 65");

}

1 // raise x to the y power
2 #include <stdio.h>
3
4 int main(void) {
5 printf("%s", "Enter first integer: ");
6 int x = 0;
7 scanf("%d", &x); // read value for x from user
8 printf("%s", "Enter second integer: ");
9 int y = 0;

10 scanf("%d", &y); // read value for y from user
11
12 int i = 1;
13 int power = 1; // set power
14
15 while (i <= y) { // loop while i is less than or equal to y
16 power *= x; // multiply power by x
17 ++i; // increment i
18 } // end while
19
20 printf("%d\n", power); // display power
21 } // end main function

 Exercises 123

b) int x = 1;

int total;

while (x <= 10) {

 total += x;

 ++x;

}
c) While (x <= 100)

 total += x;

 ++x;
d) while (y > 0) {

 printf("%d\n", y);

 ++y;

}

3.11 Fill-In the blanks in each of the following:
a) The solution to any problem involves performing a series of actions in a spe-

cific .
b) A synonym for procedure is .
c) A variable that accumulates the sum of several numbers is a(n) .
d) A special value used to indicate “end of data entry” is called a(n) ,

a(n) , a(n) or a(n) value.
e) A(n) is a graphical representation of an algorithm.
f) In a flowchart, the order in which the steps should be performed is indicated

by symbols.
g) Rectangle symbols correspond to calculations that are normally performed

by statements and input/output operations that are normally per-
formed by calls to the and Standard Library functions.

h) The item written inside a decision symbol is called a(n) .

3.12 What does the following program print?

1 #include <stdio.h>
2
3 int main(void) {
4 int x = 1;
5 int total = 0;
6
7 while (x <= 10) {
8 int y = x * x;
9 printf("%d\n", y);

10 total += y;
11 ++x;
12 } // end while
13
14 printf("Total is %d\n", total);
15 } // end main

124 Chapter 3 Structured Program Development

3.13 Write a single pseudocode statement that indicates each of the following:
a) Display the message "Enter two numbers".
b) Assign the sum of variables x, y, and z to variable p.
c) Test the following condition in an if…else selection statement: The cur-

rent value of variable m is greater than twice the current value of variable v.
d) Obtain values for variables s, r, and t from the keyboard.

3.14 Formulate a pseudocode algorithm for each of the following:
a) Obtain two numbers from the keyboard, compute their sum and display the

result.
b) Obtain two numbers from the keyboard, and determine and display which

(if either) of the two numbers is the larger.
c) Obtain a series of positive numbers from the keyboard, and determine and

display their sum. Assume that the user types the sentinel value -1 to indi-
cate “end of data entry.”

3.15 State which of the following are true and which are false. If a statement is false,
explain why.

a) Experience has shown that the most challenging part of solving a problem
on a computer is producing a working C program.

b) A sentinel value must be a value that cannot be confused with a legitimate
data value.

c) Flowlines indicate the actions to be performed.
d) Conditions written inside decision symbols always contain arithmetic oper-

ators (i.e., +, -, *, /, and %).
e) In top-down, stepwise refinement, each refinement is a complete represen-

tation of the algorithm.

For Exercises 3.16–3.20, perform each of these steps:
1. Read the problem statement.

2. Formulate the algorithm using pseudocode and top-down, stepwise refinement.

3. Write a C program.

4. Test, debug and execute the C program.

3.16 (Gas Mileage) Drivers are concerned with the mileage obtained by their auto-
mobiles. One driver has kept track of several tankfuls of gasoline by recording miles
driven and gallons used for each tankful. Develop a program that uses scanf to input
the miles driven and gallons used for each tankful. The program should calculate and
display the miles per gallon obtained for each tankful. After processing all input in-
formation, the program should calculate and print the combined miles per gallon ob-
tained for all tankfuls. Here is a sample input/output dialog:

Enter the gallons used (-1 to end): 12.8
Enter the miles driven: 287
The miles/gallon for this tank was 22.421875

 Exercises 125

3.17 (Credit-Limit Calculator) Develop a C program that will determine whether a
department-store customer has exceeded the credit limit on a charge account. For
each customer, the following facts are available:

a) Account number
b) Balance at the beginning of the month
c) Total of all items charged by this customer this month
d) Total of all credits applied to this customer's account this month
e) Allowed credit limit

The program should use scanf to input each fact, calculate the new balance (=
beginning balance + charges – credits), and determine whether the new balance exceeds
the customer's credit limit. For those customers whose credit limit is exceeded, the
program should display the customer's account number, credit limit, new balance
and the message “Credit limit exceeded.” Here is a sample input/output dialog:

3.18 (Sales-Commission Calculator) One large chemical company pays its salespeo-
ple on a commission basis. The salespeople receive $200 per week plus 9% of their
gross sales for that week. For example, a salesperson who sells $5000 worth of chem-
icals in a week receives $200 plus 9% of $5000, or a total of $650. Develop a program
that will use scanf to input each salesperson’s gross sales for last week and calculate

Enter the gallons used (-1 to end): 10.3
Enter the miles driven: 200
The miles/gallon for this tank was 19.417475

Enter the gallons used (-1 to end): 5
Enter the miles driven: 120
The miles/gallon for this tank was 24.000000

Enter the gallons used (-1 to end): -1

The overall average miles/gallon was 21.601423

Enter account number (-1 to end): 100
Enter beginning balance: 5394.78
Enter total charges: 1000.00
Enter total credits: 500.00
Enter credit limit: 5500.00
Account: 100
Credit limit: 5500.00
Balance: 5894.78
Credit Limit Exceeded.

Enter account number (-1 to end): 200
Enter beginning balance: 1000.00
Enter total charges: 123.45
Enter total credits: 321.00
Enter credit limit: 1500.00

Enter account number (-1 to end): 300
Enter beginning balance: 500.00
Enter total charges: 274.73
Enter total credits: 100.00
Enter credit limit: 800.00

Enter account number (-1 to end): -1

126 Chapter 3 Structured Program Development

and display that salesperson’s earnings. Process one salesperson's figures at a time.
Here is a sample input/output dialog:

3.19 (Interest Calculator) The simple interest on a loan is calculated by the formula
interest = principal * rate * days / 365;

The preceding formula assumes that rate is the annual interest rate, so it divides by
365 (days per year). Develop a program that uses scanf to input principal, rate
and days for several loans, and will calculate and display the simple interest for each
loan, using the preceding formula. Here is a sample input/output dialog:

3.20 (Salary Calculator) Develop a program that will determine the gross pay for
each of several employees. The company pays “straight time” for the first 40 hours
worked by each employee and pays “time-and-a-half” for all hours worked in excess
of 40 hours. You’re given a list of the company’s employees, the number of hours each
worked last week and each employee’s hourly rate. Your program should use scanf
to input this information for each employee and determine and display the employ-
ee’s gross pay. Here is a sample input/output dialog:

Enter sales in dollars (-1 to end): 5000.00
Salary is: $650.00

Enter sales in dollars (-1 to end): 1234.56
Salary is: $311.11

Enter sales in dollars (-1 to end): -1

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .1
Enter term of the loan in days: 365
The interest charge is $100.00

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .08375
Enter term of the loan in days: 224
The interest charge is $51.40

Enter loan principal (-1 to end): -1

Enter # of hours worked (-1 to end): 39
Enter hourly rate of the worker ($00.00): 10.00
Salary is $390.00

Enter # of hours worked (-1 to end): 40
Enter hourly rate of the worker ($00.00): 10.00
Salary is $400.00

Enter # of hours worked (-1 to end): 41
Enter hourly rate of the worker ($00.00): 10.00
Salary is $415.00

Enter # of hours worked (-1 to end): -1

 Exercises 127

3.21 (Predecrementing vs. Postdecrementing) Write a program that demonstrates
the difference between predecrementing and postdecrementing using the decrement
operator --.

3.22 (Printing Numbers from a Loop) Write a program that utilizes looping to print
the numbers from 1 to 10 side by side on the same line with three spaces between
numbers.

3.23 (Find the Largest Number) Finding the largest number (i.e., the maximum of
a group of numbers) is used frequently in computer applications. For example, a pro-
gram that determines the winner of a sales contest would input the number of units
sold by each salesperson. The salesperson who sells the most units wins the contest.
Write a pseudocode program and then a program that uses scanf to input a series of
10 non-negative numbers and determines and prints the largest of the numbers. Your
program should use three variables:

a) counter—A counter to count to 10 (i.e., to keep track of how many num-
bers have been input and to determine when all 10 numbers have been pro-
cessed).

b) number—The current number input to the program.
c) largest—The largest number found so far.

3.24 (Tabular Output) Write a program that uses looping to print the following ta-
ble of values. Use the tab escape sequence, \t, in the printf statement to separate the
columns with tabs.

3.25 (Tabular Output) Write a program that utilizes looping to produce the follow-
ing table of values:

3.26 (Find the Two Largest Numbers) Using an approach similar to Exercise 3.23,
find the two largest values of the 10 numbers. You may input each number only once.

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000
6 60 600 6000
7 70 700 7000
8 80 800 8000
9 90 900 9000
10 100 1000 10000

A A+2 A+4 A+6

3 5 7 9
6 8 10 12
9 11 13 15
12 14 16 18
15 17 19 21

128 Chapter 3 Structured Program Development

3.27 (Validating User Input) Modify the program in Figure 3.6 to validate its in-
puts. For each input, if the value is other than 1 or 2, keep looping until the user en-
ters a correct value.

3.28 What does the following program print?

3.29 What does the following program print?

3.30 (Dangling-Else Problem) Determine the output for each of the following when
x is 9 and y is 11, and when x is 11 and y is 9. The compiler ignores the indentation
in a C program. Also, the compiler always associates an else with the previous if un-
less told to do otherwise by the placement of braces {}. On first glance, you may not
be sure which if an else matches, so this is referred to as the “dangling-else” prob-
lem. We eliminated the indentation from the following code to make the problem
more challenging. [Hint: Apply indentation conventions you have learned.]

a) if (x < 10)

if (y > 10)

puts("*****");

else

puts("#####");

puts("$$$$$");

1 #include <stdio.h>
2
3 int main(void) {
4 int count = 1; // initialize count

5
6 while (count <= 10) { // loop 10 times
7 // output line of text
8 puts((count % 2) ? "****" : "++++++++");
9 ++count; // increment count

10 } // end while
11 } // end function main

1 #include <stdio.h>
2
3 int main(void) {
4 int row = 10; // initialize row
5
6 while (row >= 1) { // loop until row < 1
7 int column = 1; // set column to 1 as iteration begins
8
9 while (column <= 10) { // loop 10 times

10 printf("%s", (row % 2) ? "<": ">"); // output
11 ++column; // increment column
12 } // end inner while
13
14 --row; // decrement row
15 puts(""); // begin new output line
16 } // end outer while
17 } // end function main

 Exercises 129

b) if (x < 10) {

if (y > 10)

puts("*****");

}

else {

puts("#####");

puts("$$$$$");

}

3.31 (Another Dangling-Else Problem) Modify the following code to produce the
output shown. Use proper indentation techniques. You may not make any changes
other than inserting braces. The compiler ignores the indentation in a program. We
eliminated the indentation from the following code to make the problem more chal-
lenging. [Note: It’s possible that no modification is necessary.]

if (y == 8)
if (x == 5)
puts("@@@@@");
else
puts("#####");
puts("$$$$$");
puts("&&&&&");

a) Assuming x = 5 and y = 8, the following output is produced.

b) Assuming x = 5 and y = 8, the following output is produced.

c) Assuming x = 5 and y = 8, the following output is produced.

d) Assuming x = 5 and y = 7, the following output is produced.

3.32 (Square of Asterisks) Write a program that reads in the side of a square and then
prints that square out of asterisks. Your program should work for squares of all side
sizes between 1 and 20. For example, if your program reads a size of 4, it should print

@@@@@
$$$$$
&&&&&

@@@@@

@@@@@
&&&&&

#####
$$$$$
&&&&&

130 Chapter 3 Structured Program Development

3.33 (Hollow Square of Asterisks) Modify the program you wrote in the preceding
exercise so that it prints a hollow square. For example, if your program reads a size of
5, it should print

3.34 (Palindrome Tester) A palindrome is a number or a text phrase that reads the
same backward as forward. For example, each of the following five-digit integers is a
palindrome: 12321, 55555, 45554 and 11611. Write a program that reads in a five-
digit integer and determines whether or not it’s a palindrome. [Hint: Use the division
and remainder operators to separate the number into its individual digits.]

3.35 (Printing the Decimal Equivalent of a Binary Number) Input a binary integer (5
digits or fewer) containing only 0s and 1s and print its decimal equivalent. [Hint: Use
the remainder and division operators to pick off the “binary” number’s digits one at a
time from right-to-left. Just as in the decimal number system, in which the rightmost
digit has a positional value of 1, and the next digit left has a positional value of 10, then
100, then 1000, and so on, in the binary number system the rightmost digit has a po-
sitional value of 1, the next digit left has a positional value of 2, then 4, then 8, and so
on. Thus the decimal number 234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. The
decimal equivalent of binary 1101 is 1 * 1 + 0 * 2 + 1 * 4 + 1 * 8 or 1 + 0 + 4 + 8 or 13.]

3.36 (How Fast Is Your Computer?) How can you determine how fast your own com-
puter operates? Write a program with a while loop that counts from 1 to 1,000,000,000,
incrementing by 1 during each iteration of the loop. Every time the count reaches a mul-
tiple of 100,000,000, print that number on the screen. Use your watch to time how long
each 100 million iterations of the loop takes. [Hint: Use the remainder operator to rec-
ognize each time the counter reaches a multiple of 100,000,000.]

3.37 (Detecting Multiples of 10) Write a program that prints 100 asterisks, one at a
time. After every tenth asterisk, print a newline character. [Hint: Count from 1 to
100. Use the % operator to recognize each time the counter reaches a multiple of 10.]

3.38 (Counting 7s) Write a program that reads an integer (5 digits or fewer) and de-
termines and prints how many digits in the integer are 7s.

3.39 (Checkerboard Pattern of Asterisks) Write a program that displays the follow-
ing checkerboard pattern:

* *
* *
* *

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

 Exercises 131

Your program must use only three output statements, one of each of the following
forms:

printf("%s", "* ");
printf("%s", " ");
puts(""); // outputs a newline

3.40 (Multiples of 2 with an Infinite Loop) Write a program that keeps printing the
multiples of the integer 2, namely 2, 4, 8, 16, 32, 64, and so on. Your loop should
not terminate (i.e., you should create an infinite loop). What happens when you run
this program?

3.41 (Diameter, Circumference and Area of a Circle) Write a program that reads the
radius of a circle (as a double value) and computes and prints the diameter, the cir-
cumference and the area. Use the value 3.14159 for π.

3.42 What’s wrong with the following statement? Rewrite it to accomplish what the
programmer was probably trying to do.

printf("%d", ++(x + y));

3.43 (Sides of a Triangle) Write a program that reads three nonzero integer values
and determines and prints whether they could represent the sides of a triangle.

3.44 (Sides of a Right Triangle) Write a program that reads three nonzero integers
and determines and prints whether they could be the sides of a right triangle.

3.45 (Factorial) The factorial of a non-negative integer n is written n! (pronounced
“n factorial”) and is defined as follows:

n! = n · (n - 1) · (n - 2) · … · 1 (for values of n greater than or equal to 1)
and

n! = 1 (for n = 0).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.

a) Write a program that reads a non-negative integer and computes and prints
its factorial.

b) Write a program that estimates the value of the mathematical constant e by
using the formula:

c) Write a program that computes the value of ex by using the formula

3.46 (World Population Growth) World population has grown considerably over
the centuries. Continued growth could eventually challenge the limits of breathable
air, drinkable water, arable land and other limited resources. There’s evidence that
growth has been slowing in recent years, and that world population could peak some
time this century, then start to decline.

e 1
1
1!

1
2!

1
3!
----- …+ + + +=

ex 1
x
1!

x2

2!

x3

3!
----- …+ + + +=

132 Chapter 3 Structured Program Development

For this exercise, research world population growth issues. This is a controversial
topic, so be sure to investigate various viewpoints. Get estimates for the current
world population and its growth rate. Write a program that calculates world popula-
tion growth each year for the next 100 years, using the simplifying assumption that the
current growth rate will stay constant. Print the results in a table. The first column
should display the year from 1 to 100. The second column should display the antic-
ipated world population at the end of that year. The third column should display the
numerical increase in the world population that would occur that year. Using your
results, determine the years in which the population would become double and
eventually quadruple what it is today.

3.47 (Enforcing Privacy with Cryptography) The explosive growth of Internet com-
munications and data storage on Internet-connected computers has greatly increased
privacy concerns. The field of cryptography is concerned with coding data to make it
difficult (and hopefully—with the most advanced schemes—impossible) for unau-
thorized users to read. In this exercise, you’ll investigate a simple scheme for encrypt-
ing and decrypting data. A company that wants to send data over the Internet has
asked you to write a program that will encrypt it so that it may be transmitted more
securely. All the data is transmitted as four-digit integers. Your application should
read a four-digit integer entered by the user and encrypt it as follows: Replace each
digit with the result of adding 7 to the digit and getting the remainder after dividing
the new value by 10. Then swap the first digit with the third, and swap the second
digit with the fourth. Then print the encrypted integer. Write a separate application
that inputs an encrypted four-digit integer and decrypts it (by reversing the encryption
scheme) to form the original number. [Optional reading project: In industrial-strength
applications, you’ll want to use much stronger encryption techniques than presented
in this exercise. Research “public-key cryptography” in general and the PGP (Pretty
Good Privacy) specific public-key scheme. You may also want to investigate the RSA
scheme, which is widely used in industrial-strength applications.]

4Program Control

O b j e c t i v e s
In this chapter, you’ll:
■ Learn the essentials of counter-

controlled iteration.
■ Use the for and do…while

iteration statements to execute
statements repeatedly.

■ Understand multiple selection
using the switch selection
statement.

■ Use the break and
continue statements to alter
the flow of control.

■ Use logical operators to form
complex conditions in control
statements.

■ Avoid the consequences of
confusing the equality and
assignment operators.

134 Chapter 4 Program Control

O
ut

lin
e

4.1 Introduction
You should now be comfortable with reading and writing simple C programs. Next,
we consider iteration in more detail and introduce C’s for and do…while iteration
statements. We also introduce:

• the switch multiple-selection statement,

• the break statement for exiting immediately from certain control statements,
and

• the continue statement for skipping the remainder of an iteration statement’s
body then proceeding with the next iteration of the loop.

We also discuss logical operators used for combining conditions and summarizes the
principles of structured programming as presented here and in Chapter 3.

4.2 Iteration Essentials
Most programs involve iteration (or looping). A loop is a group of instructions the
computer repeatedly executes while some loop-continuation condition remains true.
We’ve discussed two means of iteration:

1. Counter-controlled iteration.

2. Sentinel-controlled iteration.

You saw in Chapter 3 that counter-controlled iteration uses a control variable to
count the number of iterations for a group of instructions to perform. When the con-
trol variable’s value indicates that the correct number of iterations has been com-
pleted, the loop terminates, and execution continues with the statement after the
iteration statement.

You saw in Chapter 3 that we use sentinel values to control iteration if the precise
number of iterations isn’t known in advance, and the loop includes statements that
obtain data each time the loop is performed. A sentinel value indicates “end of data.”
The sentinel is entered after all regular data items have been supplied to the program.
Sentinels must be distinct from regular data items.

4.1 Introduction
4.2 Iteration Essentials
4.3 Counter-Controlled Iteration
4.4 for Iteration Statement
4.5 Examples Using the for Statement
4.6 switch Multiple-Selection

Statement

4.7 do…while Iteration Statement
4.8 break and continue Statements
4.9 Logical Operators

4.10 Confusing Equality (==) and
Assignment (=) Operators

4.11 Structured-Programming Summary
4.12 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

4.3 Counter-Controlled Iteration 135

Self Check
1 (Fill-In) A loop is a group of instructions the computer repeatedly executes while
a condition remains true.
Answer: loop-continuation.

2 (Multiple Choice) Which of the following statements is false?
a) Sentinel values are used to control iteration when the precise number of iter-

ations isn’t known in advance, and the loop includes statements that obtain
data each time the loop is performed.

b) The sentinel value indicates “end of data.”
c) The sentinel is entered after all regular data items have been supplied.
d) The sentinel must match a regular data item.

Answer: d) is false. Actually, the sentinel must be distinct from regular data items.

4.3 Counter-Controlled Iteration
Counter-controlled iteration requires:

• the name of a control variable,

• the initial value of the control variable,

• the increment (or decrement) by which the control variable is modified in
each iteration, and

• the loop-continuation condition that tests for the final value of the control
variable to determine whether looping should continue.

Consider Fig. 4.1, which displays the numbers from 1 through 5. The definition
int counter = 1; // initialization

names the control variable (counter), defines it as an integer, reserves memory space
for it, and sets its initial value to 1.

1 // fig04_01.c
2 // Counter-controlled iteration.
3 #include <stdio.h>
4
5 int main(void) {
6 int counter = 1; // initialization
7
8 while (counter <= 5) { // iteration condition
9 printf("%d ", counter);

10 ++counter; // increment
11 }
12
13 puts("");
14 }

1 2 3 4 5

Fig. 4.1 | Counter-controlled iteration.

136 Chapter 4 Program Control

The statement
++counter; // increment

increments counter by 1 at the end of each loop iteration. The while’s condition
counter <= 5

tests whether the value of the control variable is less than or equal to 5 (the last value
for which the condition is true). This while terminates when the control variable
exceeds 5 (i.e., counter becomes 6).

Use Integer Counters
Floating-point values may be approximate, so controlling counting loops with float-
ing-point variables may result in imprecise counter values and inaccurate termination
tests. For this reason, you should always control counting loops with integer values.

Self Check
1 (Multiple Choice) Which of the following a), b) or c) is required by counter-con-
trolled iteration?

a) The name and initial value of a control variable (or loop counter).
b) The increment (or decrement) by which the control variable is modified each

time through the loop.
c) The loop-continuation condition that tests for the final value of the control

variable to determine whether looping should continue.
d) All of the above are required by counter-controlled iteration.

Answer: d.

2 (Multiple Choice) Based on this section’s program, which of the following state-
ments a), b) or c) is false?

a) Control variable counter increments by 1 during each iteration of the loop.
b) The loop terminates when counter is 5.
c) The while’s body executes even when the control variable is 5.
d) All of the above statements are true.

Answer: b) is false. Actually, the loop terminates when the control variable becomes 6.

4.4 for Iteration Statement
The for iteration statement (lines 8–10 of Fig. 4.2) handles all the details of counter-
controlled iteration. For readability, try to fit the for statement’s header (line 8) on
one line. The for statement executes as follows:

• When it begins executing, the for statement defines the control variable
counter and initializes it to 1.

• Next, it tests its loop-continuation condition counter <= 5. The initial value
of counter is 1, so the condition is true, and the for statement executes its
printf statement (line 9) to display counter’s value, namely 1.

4.4 for Iteration Statement 137

• Next, the for statement increments the control variable counter using the
expression ++counter, then re-tests the loop-continuation condition. The
control variable is now equal to 2, so the condition is still true, and the for
statement executes its printf statement again.

• This process continues until the control variable counter becomes 6. At this
point, the loop-continuation condition is false and iteration terminates.

The program continues executing with the first statement after the for (line 12).

for Statement Header Components
The following diagram takes a closer look at Fig. 4.2’s for statement, which specifies
each of the items needed for counter-controlled iteration. If there’s more than one
statement in the for’s body, braces are required. As with the other control statements,
always place a for statement’s body in braces, even if it has only one statement.

Control Variables Defined in a for Header Exist Only Until the Loop Ter-
minates
When you define the control variable in the for header before the first semicolon (;),
as in line 8 of Fig. 4.2:

for (int counter = 1; counter <= 5; ++counter) {

1 // fig04_02.c
2 // Counter-controlled iteration with the for statement.
3 #include <stdio.h>
4
5 int main(void) {
6 // initialization, iteration condition, and increment
7 // are all included in the for statement header.
8 for (int counter = 1; counter <= 5; ++counter) {
9 printf("%d ", counter);

10 }
11
12 puts(""); // outputs a newline
13 }

1 2 3 4 5

Fig. 4.2 | Counter-controlled iteration with the for statement.

Initial value of
control variable Loop-continuation

condition

Increment of
control variable

for
keyword

Control-
variable
name

Required
semicolon
separator

Required
semicolon
separator

Final value
for which the
condition is true

for (int counter = 1; counter <= 5; ++counter)

138 Chapter 4 Program Control

the control variable exists only until the loop terminates. So, attempting to access the
control variable after the for statement’s closing right brace (}) is a compilation error.

Off-By-One Errors
If we had written the loop-continuation condition counter <= 5 as counter < 5, then
the loop would be executed only four times. This is a common logic error called an
off-by-one error. Using a control variable’s final value in a while or for statement
condition and using the <= relational operator can help avoid off-by-one errors. To
print the values 1 to 5, for example, the loop-continuation condition should be
counter <= 5 rather than counter < 6.

General Format of a for Statement
The general format of the for statement is

for (initialization; loopContinuationCondition; increment) {
 statement
}

where

• initialization names the loop’s control variable and provides its initial value,

• loopContinuationCondition determines whether the loop should continue exe-
cuting, and

• increment modifies the control variable’s value after executing the statement so
that the loop-continuation condition eventually becomes false.

The two semicolons in the for header are required. If the loop-continuation condi-
tion is initially false, the program does not execute the for statement’s body. Instead,
execution proceeds with the statement following the for.

Infinite loops occur when the loop-continuation condition never becomes false.
To prevent infinite loops, ensure that you do not place a semicolon immediately after
a while statement’s header. In a counter-controlled loop, ensure that you increment
(or decrement) the control variable so the loop-continuation condition eventually
becomes false. In a sentinel-controlled loop, ensure that the sentinel value is eventu-
ally input.

Expressions in the for Statement’s Header Are Optional
All three expressions in a for header are optional. If you omit the loopContinuation-
Condition, the condition is always true, thus creating an infinite loop. You might
omit the initialization expression if the program initializes the control variable before
the loop. You might omit the increment expression if the program calculates the incre-
ment in the loop’s body or if no increment is needed.

Increment Expression Acts Like a Standalone Statement
The for statement’s increment acts like a standalone C statement at the end of the for’s
body. So, the following are all equivalent in a for statement’s increment expression:

ERR

ERR

ERR

4.4 for Iteration Statement 139

counter = counter + 1
counter += 1
++counter
counter++

The increment in a for statement’s increment expression may be negative, in which
case it’s a decrement, and the loop counts downward.

Using a for Statement’s Control Variable in the Statement’s Body
Programs frequently display the control-variable value or use it in calculations in the
loop body, but this use is not required. The control variable is commonly used to con-
trol iteration without being mentioned in the for statement’s body. Although the
control variable’s value can be changed in a for loop’s body, avoid doing so, because
this practice can lead to subtle errors. It’s best not to change it.

for Statement Flowchart
Below is the flowchart for the for statement in Fig. 4.2:

This flowchart makes it clear that the initialization occurs once, and the increment
occurs after the body statement each time it’s performed.

Self Check
1 (True/False) When you define the control variable in the for header before the
first semicolon (;), the control variable exists only until the loop terminates.
Answer: True.

2 (Multiple Choice) Which of the following statements a), b) or c) is true?
a) The for statement header specifies each of the items needed for counter-con-

trolled iteration with a control variable.
b) If there’s more than one statement in a for’s body, braces are required.
c) You should always place a control statement’s body in braces, even if it has

only one statement.
d) All of the above statements are true.

Answer: d.

ERR

Determine if final
value of control
variable has been
reached

Increment
the control
variable

counter <= 5
true

false

printf("%d", counter); ++counter

int counter = 1

Body of loop
(this may be many
statements)

Establish initial
value of control
variable

140 Chapter 4 Program Control

4.5 Examples Using the for Statement
The following examples show ways to vary the control variable in a for statement.

1. Vary the control variable from 1 to 100 in increments of 1.
for (int i = 1; i <= 100; ++i)

2. Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of 1).
for (int i = 100; i >= 1; --i)

3. Vary the control variable from 7 to 77 in increments of 7.
for (int i = 7; i <= 77; i += 7)

4. Vary the control variable from 20 to 2 in increments of -2.
for (int i = 20; i >= 2; i -= 2)

5. Vary the control variable over the values 2, 5, 8, 11, 14 and 17.
for (int j = 2; j <= 17; j += 3)

6. Vary the control variable over the following sequence of values: 44, 33, 22, 11, 0.
for (int j = 44; j >= 0; j -= 11)

Application: Summing the Even Integers from 2 to 100
Figure 4.3 uses the for statement to sum the even integers from 2 to 100. Each loop
iteration (lines 8–10) adds the control variable number’s current value to the sum.

Application: Compound-Interest Calculations
The next example computes compound interest using the for statement. Consider
the following problem statement:

A person invests $1000.00 in a savings account yielding 5% interest. Assum-
ing all interest is left on deposit in the account, calculate and print the amount
of money in the account at the end of each year for 10 years. Use the following
formula for determining these amounts:

1 // fig04_03.c
2 // Summation with for.
3 #include <stdio.h>
4
5 int main(void) {
6 int sum = 0; // initialize sum
7
8 for (int number = 2; number <= 100; number += 2) {
9 sum += number; // add number to sum

10 }
11
12 printf("Sum is %d\n", sum);
13 }

Sum is 2550

Fig. 4.3 | Summation with for.

4.5 Examples Using the for Statement 141

a = p(1 + r)n

where

p is the original amount invested (i.e., the principal, $1000.00 here),
r is the annual interest rate (for example, .05 for 5%),
n is the number of years, which is 10 here, and
a is the amount on deposit at the end of the nth year.

The solution (Fig. 4.4) uses a counter-controlled loop to perform the same calcula-
tion for each of the 10 years the money remains on deposit. The for statement executes
its body 10 times, varying a control variable from 1 to 10 in increments of 1. C does not
include an exponentiation operator, so we use the Standard Library function pow (line
17) for this. The call pow(x, y) calculates x raised to the yth power. The function takes
two arguments of data type double. When it completes its calculation, pow returns (that
is, gives back) a double value, which we then multiply by principal (line 17).

1 // fig04_04.c
2 // Calculating compound interest.
3 #include <stdio.h>
4 #include <math.h>
5
6 int main(void) {
7 double principal = 1000.0; // starting principal
8 double rate = 0.05; // annual interest rate
9

10 // output table column heads
11 printf("%4s%21s\n", "Year", "Amount on deposit");
12
13 // calculate amount on deposit for each of ten years
14 for (int year = 1; year <= 10; ++year) {
15
16 // calculate new amount for specified year
17 double amount = principal * pow(1.0 + rate, year);
18
19 // output one table row
20 printf("%4d%21.2f\n", year, amount);
21 }
22 }

Year Amount on deposit
 1 1050.00
 2 1102.50
 3 1157.63
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
 10 1628.89

Fig. 4.4 | Calculating compound interest.

142 Chapter 4 Program Control

You must include <math.h> (line 4) to use pow and C’s other math functions.1 If
you did not include the header, this program would malfunction, as the linker would
be unable to find the pow function. Function pow requires two double arguments, but
variable year is an integer. The math.h file includes information that tells the compiler
to convert the year value to a temporary double representation before calling pow. This
information is contained in pow’s function prototype. We explain function prototypes
in Chapter 5, where we also summarize many other math library functions.

Formatting Numeric Output
This program used the conversion specification %21.2f to print variable amount’s
value. The 21 in the conversion specification denotes the field width in which the
value will be printed. A field width of 21 specifies that the value printed will use 21
character positions. As you learned in Chapter 3, the .2 specifies the precision (i.e., the
number of decimal positions). If the number of characters displayed is less than the
field width, then the value will be right-aligned with leading spaces. This is particularly
useful for aligning the decimal points of floating-point values vertically. To left-align
a value in a field, place a - (minus sign) between the % and the field width. We’ll discuss
the powerful formatting capabilities of printf and scanf in detail in Chapter 9.

Floating-Point Number Precision and Memory Requirements
Variables of type float typically require four bytes of memory with approximately
seven significant digits. Variables of type double typically require eight bytes of memory
with approximately 15 significant digits—about double the precision of floats. Most
programmers use type double. C treats floating-point values such as 3.14159 as type
double by default. Such values in the source code are known as floating-point literals.

C also has type long double. Such variables typically are stored in 12 or 16 bytes
of memory. The C standard states the minimum sizes of each floating-point type and
indicates that type double provides at least as much precision as float and that type
long double provides at least as much precision as double. For a list of C’s fundamen-
tal numeric types and their typical ranges, see

https://en.cppreference.com/w/c/language/arithmetic_types

Floating-Point Numbers Are Approximations
In conventional arithmetic, floating-point numbers often arise as a result of division—
when we divide 10 by 3, the result is the infinitely repeating sequence 3.3333333….
with the sequence of 3s repeating infinitely. The computer allocates only a fixed
amount of space to hold such a value, so the stored floating-point value can be only an
approximation. So, C’s floating-point types suffer from what is referred to as represen-
tational error. Assuming that floating-point numbers are represented exactly (e.g.,
using them in comparisons for equality) can lead to incorrect results.

Floating-point numbers have numerous applications, especially for measured val-
ues. For example, when we speak of a “normal” body temperature of 98.6 degrees

1. For the gcc compiler, you must include the -lm option (e.g., gcc -lm fig04_04.c) when com-
piling Fig. 4.4. This links the math library to the program.

https://en.cppreference.com/w/c/language/arithmetic_types

4.5 Examples Using the for Statement 143

Fahrenheit, we do not need to be precise to a large number of digits. When we read
the temperature on a thermometer as 98.6, it actually might be 98.5999473210643.
Calling this number 98.6 is fine for most applications involving body temperatures.

A Warning about Displaying Rounded Values
We declared variables amount, principal and rate to be of type double in this exam-
ple. We’re dealing with fractional parts of dollars and thus need a type that allows dec-
imal points in its values. Unfortunately, floating-point numbers can cause trouble.
Here’s a simple explanation of what can go wrong when using floating-point numbers
to represent dollar amounts displayed with two digits to the right of the decimal point.
Two calculated dollar amounts stored in the machine could be 14.234 (rounded to
14.23 for display purposes) and 18.673 (rounded to 18.67 for display purposes).
When these amounts are added, they produce the internal sum 32.907, which would
typically be rounded to 32.91 for display purposes. Thus, your output could appear as

 14.23
+ 18.67
 32.91

but a person adding the individual numbers as displayed would expect the sum to be
32.90. You’ve been warned!

Common Dollar Amounts Can Have Floating-Point Representational Errors
Even simple dollar amounts, such as those you might see on a grocery or restaurant
bill, can have representational errors when they’re stored as doubles. To see this, we
created a simple program with the declaration

double d = 123.02;

then displayed d’s value with many digits of precision to the right of the decimal
point. The output showed 123.02 as 123.0199999…, which is another example of a
representational error. Though some dollar amounts can be represented precisely as
double, many cannot. This is a common problem in many programming languages.

Self Check
1 (Fill-In) To a value in a field, place a - (minus sign) between the % and
the field width.
Answer: left-align.

2 (Multiple Choice) Which of the following for statement headers is incorrect?
a) Vary the control variable from 1 to 100 in increments of 1.

for (int i = 1; i <= 100; ++i)

b) Vary the control variable from 7 to 77 in increments of 7.
for (int i = 7; i <= 77; i += 7)

c) Vary the control variable over the following sequence: 2, 5, 8, 11, 15, 17.
for (int j = 2; j <= 17; j += 3)

144 Chapter 4 Program Control

d) Vary the control variable from 20 to 2 in increments of -2.
for (int i = 20; i >= 2; i -= 2)

Answer: c) is incorrect. The for statement actually generates the sequence 2, 5, 8, 11,
14, 17. It does not generate the value 15 in the original series.

4.6 switch Multiple-Selection Statement
In Chapter 3, we discussed the if single-selection and the if…else double-selection
statements. Occasionally, an algorithm will contain a series of decisions that test a
variable or expression separately for each of the integer values it may assume, then
perform different actions. This is called multiple selection. C provides the switch
multiple-selection statement to handle such decision making.

The switch statement consists of a series of case labels, an optional default case
and statements to execute for each case. Figure 4.5 uses switch to count the number
of each different letter grade students earned on an exam.

1 // fig04_05.c
2 // Counting letter grades with switch.
3 #include <stdio.h>
4
5 int main(void) {
6 int aCount = 0;
7 int bCount = 0;
8 int cCount = 0;
9 int dCount = 0;

10 int fCount = 0;
11
12 puts("Enter the letter grades.");
13 puts("Enter the EOF character to end input.");
14 int grade = 0; // one grade
15
16 // loop until user types end-of-file key sequence
17 while ((grade = getchar()) != EOF) {
18
19 // determine which grade was input
20 switch (grade) { // switch nested in while
21 case 'A': // grade was uppercase A
22 case 'a': // or lowercase a
23 ++aCount;
24 break; // necessary to exit switch
25 case 'B': // grade was uppercase B
26 case 'b': // or lowercase b
27 ++bCount;
28 break;
29 case 'C': // grade was uppercase C
30 case 'c': // or lowercase c
31 ++cCount;
32 break;

Fig. 4.5 | Counting letter grades with switch. (Part 1 of 2.)

4.6 switch Multiple-Selection Statement 145

33 case 'D': // grade was uppercase D
34 case 'd': // or lowercase d
35 ++dCount;
36 break;
37 case 'F': // grade was uppercase F
38 case 'f': // or lowercase f
39 ++fCount;
40 break;
41 case '\n': // ignore newlines,
42 case '\t': // tabs,
43 case ' ': // and spaces in input
44 break;
45 default: // catch all other characters
46 printf("%s", "Incorrect letter grade entered.");
47 puts(" Enter a new grade.");
48 break; // optional; will exit switch anyway
49 } // end switch
50 } // end while
51
52 // output summary of results
53 puts("\nTotals for each letter grade are:");
54 printf("A: %d\n", aCount);
55 printf("B: %d\n", bCount);
56 printf("C: %d\n", cCount);
57 printf("D: %d\n", dCount);
58 printf("F: %d\n", fCount);
59 }

Enter the letter grades.
Enter the EOF character to end input.
a
b
c
C
A
d
f
C
E
Incorrect letter grade entered. Enter a new grade.
D
A
b
^Z

Totals for each letter grade are:
A: 3
B: 2
C: 3
D: 2
F: 1

Fig. 4.5 | Counting letter grades with switch. (Part 2 of 2.)

Not all systems display a representation of the EOF character

146 Chapter 4 Program Control

Reading Character Input
In the program, the user enters students’ letter grades. In the while header (line 17),

while ((grade = getchar()) != EOF)

the parenthesized assignment (grade = getchar()) executes first. The getchar func-
tion (from <stdio.h>) reads one character from the keyboard and stores that charac-
ter in the integer variable grade. Characters are normally stored in char variables.
However, C can store characters in variables of any integer type because characters are
usually represented as one-byte integers in the computer. Function getchar returns
as an int the character that the user entered. We can treat a character as either an inte-
ger or a character, depending on its use. For example, the statement

printf("The character (%c) has the value %d.\n", 'a', 'a');

uses the conversion specifications %c and %d to print the character 'a' and its integer
value. The result is

The character (a) has the value 97.

Characters can be read with scanf by using the conversion specification %c. The inte-
ger 97 is the numerical representation of the character 'a' in the computer. Many
computers today use the Unicode® character set. Appendix B contains the ASCII
(American Standard Code for Information Interchange) character set and its
numeric values. ASCII is a subset of Unicode.

Assignments Have Values
Assignments as a whole actually have a value. The value of the assignment expression
grade = getchar() is the character that’s returned by getchar and assigned to the vari-
able grade. The fact that assignments have values can be useful for setting several vari-
ables to the same value. For example,

a = b = c = 0;

first evaluates the assignment c = 0 (because the = operator groups from right to
left). The variable b is then assigned the value of the assignment c = 0 (which is 0).
Then, the variable a is assigned the value of the assignment b = (c = 0) (which is
also 0).

The value of the assignment grade = getchar() is compared with the value of EOF
(a symbol whose acronym stands for “end of file”). We use EOF (which normally has
the value -1) as the sentinel value. The user types a system-dependent keystroke com-
bination to mean “end of file”—i.e., “I have no more data to enter.” EOF is a symbolic
integer constant defined in the <stdio.h> header (we’ll see in Chapter 6 how sym-
bolic constants are defined). If the value assigned to grade is equal to EOF, the pro-
gram terminates.

We represent characters in this program as ints because EOF has an integer value
(again, normally -1). Testing for the symbolic constant EOF, rather than -1, makes
programs more portable. The C standard states that EOF is a negative integral value
(but not necessarily –1). Thus, EOF could have different values on different systems.

4.6 switch Multiple-Selection Statement 147

Entering the EOF Indicator
The keystroke combinations for entering EOF (end of file) are system dependent. On
Linux/UNIX/macOS systems, the EOF indicator is entered by typing on a line by itself

Ctrl + d

This notation means to simultaneously press both the Ctrl key and the d key. On
other systems, such as Microsoft Windows, the EOF indicator can be entered by typing

Ctrl + z

You also need to press Enter on Windows.
The user enters grades at the keyboard. When the Enter key is pressed, the char-

acters are read by function getchar one at a time. If the character entered is not equal
to EOF, the switch statement (lines 20–49) executes.

switch Statement Details
Keyword switch is followed by the variable name grade in parentheses. This is called
the controlling expression. The switch compares this expression’s value with each of
the case labels. Each case can have one or more actions, but braces are not required
around multiple actions in a given case.

Assume the user has entered the letter C as a grade. When the switch compares C
to each case, if a match occurs (case 'C':), the statements for that case execute. For
the letter C, the switch increments cCount by 1 (line 31), then the break statement
(line 32) exits the switch immediately, causing program control to continue with the
first statement after the switch statement.

We use a break statement here because the cases in a switch statement would
otherwise run together. Without break statements, each time a match occurs, all the
remaining cases’ statements will execute. (This feature—called fallthrough—is rarely
useful, although it’s perfect for compactly programming Exercise 4.38—the iterative
song “The Twelve Days of Christmas”!) Forgetting a break statement when one is
needed in a switch statement is a logic error.

default Case
If no match occurs, the default case executes. In this program, it displays an error mes-
sage. You should always include a default case; otherwise, values not explicitly tested
in a switch will be ignored. The default case helps prevent this by focusing you on the
need to process exceptional conditions. Sometimes no default processing is needed.

Although the case clauses and the default case clause in a switch statement can
occur in any order, it’s common to place the default clause last. When the default
clause is last, the break statement isn’t required. But many programmers include this
break for clarity and symmetry with other cases.

switch Statement Flowchart
The following switch multiple-selection-statement flowchart makes it clear that each
case’s break statement immediately exits the switch statement.

ERR

148 Chapter 4 Program Control

Ignoring Newline, Tab and Blank Characters in Input
In the switch statement of Fig. 4.5, the lines

case '\n': // ignore newlines,
case '\t': // tabs,
case ' ': // and spaces in input
 break;

cause the program to skip newline, tab and blank characters. Reading characters one
at a time can cause problems. To have the program read the characters, you must send
them to the computer by pressing Enter. This places the newline character in the
input after the character we wish to process.

Often, this newline (and other whitespace characters) must be specifically ignored
to make the program work correctly. The preceding cases in our switch statement
prevent the error message in the default case from being printed each time a newline,
tab or space is encountered in the input. Each input in this example causes two iter-
ations of the loop—the first for a letter grade and the second for '\n'. Listing several
case labels with no intervening statements means that the same actions occur for each
of the cases.

.
.
.

case a
true

false

case a action(s) break

case b
true

false

case b action(s) break

case z
true

false

case z action(s) break

default action(s)

4.6 switch Multiple-Selection Statement 149

Constant Integral Expressions
When using the switch statement, remember that each case can test only a constant
integral expression. The expression can be any combination of character constants
and integer constants that evaluates to a constant integer value. A character constant
can be represented as the specific character in single quotes, such as 'A'. Characters
must be enclosed within single quotes to be recognized as character constants—char-
acters in double quotes are recognized as strings. Integer constants are simply integer
values. In our example, we used character constants.

Notes on Integral Types
Portable languages like C must have flexible data-type sizes. Applications may need
integers of various sizes. C provides several data types to represent integers. In addition
to int and char, C provides types short int (which can be abbreviated as short) and
long int (which can be abbreviated as long). There also are unsigned variations of all
the integral types that represent non-negative integer values. In Section 5.14, we’ll see
that C also provides type long long int (which can be abbreviated as long long).

The C standard specifies the minimum range of values for each integer type. The
actual range may be greater, depending on the implementation. For short ints, the
minimum range is –32767 to +32767. For most integer calculations, long ints are
sufficient. The minimum range of values for long ints is –2147483647 to
+2147483647. An int’s range is greater than or equal to that of a short int and less
than or equal to that of a long int. On many of today’s platforms, ints and long ints
represent the same range of values. The data type signed char can represent integers
in the range –127 to +127 or any of the ASCII character set. See Section 5.2.4.2 of
the C standard document for the complete list of signed and unsigned integer-type
minimum ranges.

Self Check
1 (Fill-In) Occasionally, an algorithm will contain a series of decisions in which a
variable or expression is tested separately for each of the constant integral values it
may assume, and different actions are taken. This is called .
Answer: multiple selection.

2 (Multiple Choice) Which of the following statements a), b) or c) is false?
a) The value of an assignment is the value assigned to the variable on the left of

the =.
b) The value of the assignment expression grade = getchar() is the character

that’s returned by getchar and assigned to the variable grade.
c) The following statement sets variables a, b and c to 0:
 0 = a = b = c;

d) All of the above statements are true.
Answer: c) is false. The correct statement is:

a = b = c = 0;

150 Chapter 4 Program Control

4.7 do…while Iteration Statement
The do…while iteration statement is similar to the while statement. The while state-
ment tests its loop-continuation condition before executing the loop body. The
do…while statement tests its loop-continuation condition after executing the loop
body, so the loop body always executes at least once. When a do…while terminates,
execution continues with the statement after the while clause. Figure 4.6 uses a
do…while statement to display the numbers from 1 through 5. We chose to prein-
crement the control variable counter in the loop-continuation test (line 10).

do…while Statement Flowchart
The following do…while statement flowchart makes it clear that the loop-continuation
condition does not execute until after the loop’s action is performed the first time:

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) The while statement tests its loop-continuation condition before executing
its body, so the loop body will always execute at least once.

b) The do…while statement tests its loop-continuation condition after execut-
ing its loop body.

1 // fig04_06.c
2 // Using the do...while iteration statement.
3 #include <stdio.h>
4
5 int main(void) {
6 int counter = 1; // initialize counter
7
8 do {
9 printf("%d ", counter);

10 } while (++counter <= 5);
11 }

1 2 3 4 5

Fig. 4.6 | Using the do…while iteration statement.

condition
true

false

action(s)

4.8 break and continue Statements 151

c) When a do…while terminates, execution continues with the statement after
the while clause.

d) All of the above statements are true.
Answer: a) is false. Actually, if the while statement’s loop-continuation test fails upon
entering the loop, the loop’s body will not execute.

2 (True/False) Assuming counter is initialized to 1, the following loop displays the
numbers 1 through 10:

do {
 printf("%d ", counter);
} while (++counter < 10);

Answer: False. This loop displays the numbers 1 through 9. To display the numbers
1 through 10, change the < in the loop-continuation condition to <=.

4.8 break and continue Statements
The break and continue statements are used to alter the flow of control. Section 4.6
showed that a break encountered in a switch statement terminates the switch’s exe-
cution. This section discusses how to use break in an iteration statement.

break Statement
The break statement, when executed in a while, for, do…while or switch statement,
causes an immediate exit from that statement. Program execution continues with the
next statement after that while, for, do…while or switch. Common uses of break
are to escape early from a loop or skip the remainder of a switch (as in Fig. 4.5).
Figure 4.7 demonstrates the break statement (line 12) in a for iteration statement.

1 // fig04_07.c
2 // Using the break statement in a for statement.
3 #include <stdio.h>
4
5 int main(void) {
6 int x = 1; // declared here so it can be used after loop
7
8 // loop 10 times
9 for (; x <= 10; ++x) {

10 // if x is 5, terminate loop
11 if (x == 5) {
12 break; // break loop only if x is 5
13 }
14
15 printf("%d ", x);
16 }
17
18 printf("\nBroke out of loop at x == %d\n", x);
19 }

Fig. 4.7 | Using the break statement in a for statement. (Part 1 of 2.)

152 Chapter 4 Program Control

When the if statement detects that x has become 5, break executes. This termi-
nates the for statement, and the program continues with the printf after the for.
The loop fully executes only four times. Recall that when you declare the control vari-
able in a for loop’s initialization expression, the variable no longer exists after the
loop terminates. We declared and initialized x before the loop in this example, so that
we could use its final value after the loop terminates. So, the initialization section of
the for’s header (before the first semicolon) is empty.

continue Statement
The continue statement, when executed in a while, for or do…while statement,
skips the remaining statements in that control statement’s body and performs the
next iteration of the loop. In while and do…while statements, the loop-continuation
test is evaluated immediately after the continue statement executes. In the for state-
ment, the increment expression executes, then the loop-continuation test is evalu-
ated. Figure 4.8 uses continue (line 10) in the for statement to skip the printf
statement when x is 5 and begin the next iteration of the loop.

break and continue Notes
Some programmers feel break and continue violate the norms of structured program-
ming, so they do not use them. The effects of these statements can be achieved by

1 2 3 4
Broke out of loop at x == 5

1 // fig04_08.c
2 // Using the continue statement in a for statement.
3 #include <stdio.h>
4
5 int main(void) {
6 // loop 10 times
7 for (int x = 1; x <= 10; ++x) {
8 // if x is 5, continue with next iteration of loop
9 if (x == 5) {

10 continue; // skip remaining code in loop body
11 }
12
13 printf("%d ", x);
14 }
15
16 puts("\nUsed continue to skip printing the value 5");
17 }

1 2 3 4 6 7 8 9 10
Used continue to skip printing the value 5

Fig. 4.8 | Using the continue statement in a for statement.

Fig. 4.7 | Using the break statement in a for statement. (Part 2 of 2.)

4.9 Logical Operators 153

structured programming techniques we’ll soon discuss, but the break and continue
statements perform faster.

There’s a tension between achieving quality software engineering and achieving
the best-performing software—one is achieved at the expense of the other. For all but
the most performance-intensive situations, apply the following guidelines: First,
make your code simple and correct; then make it fast and small, but only if necessary.

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) The break statement terminates a switch statement’s execution.
b) The break statement, when executed in a while, for or do…while statement,

causes an immediate exit from that statement.
c) Common uses of break are to escape early from a loop or to skip the remain-

der of an if...else.
d) All of the above statements are true.

Answer: c) is false. Actually, break skips the remainder of a switch, not an if...else.

2 (Multiple Choice) Which of the following statements a), b) or c) is false?
a) The continue statement, when executed in a while, for or do…while state-

ment, skips the remaining statements in that control statement’s body and
performs the next iteration of the loop.

b) In while and do…while statements, the loop-continuation test is evaluated
immediately after the continue statement executes.

c) In the for statement, after the continue statement executes, the loop-contin-
uation test is evaluated, then the increment expression executes.

d) All of the above statements are true.
Answer: c) is false. Actually, in the for statement, after the continue statement exe-
cutes, the increment expression executes, then the loop-continuation test is evaluated.

4.9 Logical Operators
So far we’ve used simple conditions, such as counter <= 10, total > 1000, and
grade != -1. We’ve expressed these conditions in terms of the relational operators (>,
<, >= and <=) and equality operators (== and !=). Each decision tested precisely one
condition. To test multiple conditions in the process of making a decision, we had to
perform these tests in separate statements or in nested if or if…else statements. C
provides logical operators that may be used to form more complex conditions by
combining simple conditions. The logical operators are && (logical AND), || (log-
ical OR) and ! (logical NOT, which is also called logical negation). We’ll consider
examples of each of these operators.

Logical AND (&&) Operator
Suppose we wish to ensure that two conditions are both true before we choose a cer-
tain path of execution. In this case, we can use the logical operator && as follows:

PERF

SE

154 Chapter 4 Program Control

if (gender == 1 && age >= 65) {
++seniorFemales;

}

This if statement contains two simple conditions. The condition gender == 1 might,
for example, determine whether a person is a female. The condition age >= 65 deter-
mines whether a person is a senior citizen. The two simple conditions are evaluated
first because == and >= each have higher precedence than &&. The if statement then
considers the combined condition gender == 1 && age >= 65, which is true if and only
if both of the simple conditions are true. Finally, if this combined condition is true,
then the preceding if statement increments seniorFemales by 1. If either or both
simple conditions are false, the program skips the if’s body and proceeds to the next
statement in sequence.

The following table summarizes the && operator:

The table shows all four possible combinations of zero (false) and nonzero (true) val-
ues for expression1 and expression2. Such tables are often called truth tables. C evalu-
ates all expressions that include relational operators, equality operators, and/or logical
operators to 0 or 1. Although C sets a true value to 1, it accepts any nonzero value as
true.

Logical OR (||) Operator
Now let’s consider the || (logical OR) operator. Suppose we wish to ensure at some
point in a program that either or both of two conditions are true before we choose a
certain path of execution. In this case, we use the || operator, as in the following pro-
gram segment:

if (semesterAverage >= 90 || finalExam >= 90) {
puts("Student grade is A");

}:

This statement contains two simple conditions. The condition semesterAverage >= 90
determines whether the student deserves an “A” because of a solid performance
throughout the semester. The condition finalExam >= 90 determines whether the stu-
dent deserves an “A” because of an outstanding performance on the final exam. The
if statement then considers the combined condition and awards the student an “A” if
either or both of the simple conditions are true. The message “Student grade is A”
prints unless both simple conditions are false (zero). The following is a truth table for
the logical OR operator (||):

expression1 expression2 expression1 && expression2

0 0 0
0 nonzero 0
nonzero 0 0
nonzero nonzero 1

4.9 Logical Operators 155

Short-Circuit Evaluation
The && operator has higher precedence than ||. Both operators associate from left-to-
right. An expression containing && or || operators evaluates only until it’s known
whether the condition is true or false. Thus, the condition

gender == 1 && age >= 65

stops evaluating if gender is not equal to 1—the entire expression is guaranteed to be
false. The condition continues evaluating if gender is equal to 1—the entire expres-
sion could be true if age is greater than or equal to 65. This performance feature for
evaluating logical AND and logical OR expressions is called short-circuit evaluation.

In && expressions, make the condition that’s most likely to be false the leftmost
condition. In expressions using operator ||, make the condition that’s most likely to
be true the leftmost condition. This can reduce a program’s execution time.

Logical Negation (!) Operator
C provides the unary ! (logical negation) operator to enable you to “reverse” the
meaning of a condition. The logical negation operator has a single condition as an
operand. You use it when you’re interested in choosing a path of execution if the
operand condition is false, such as in the following program segment:

if (!(grade == sentinelValue)) {
printf("The next grade is %f\n", grade);

}

The parentheses around the condition grade == sentinelValue are needed because
the logical negation operator has higher precedence than the equality operator. The
following is a truth table for the logical negation operator:

In most cases, you can avoid using logical negation by expressing the condition
differently. For example, the preceding statement may also be written as:

if (grade != sentinelValue) {
printf("The next grade is %f\n", grade);

}

expression1 expression2 expression1 || expression2

0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

PERF

PERF

expression !expression

0 1
nonzero 0

156 Chapter 4 Program Control

Summary of Operator Precedence and Grouping
The following table shows the precedence and grouping of the operators introduced
to this point. The operators are shown from top to bottom in decreasing order of pre-
cedence.

The _Bool Data Type
The C standard includes a boolean type—represented by the keyword _Bool—which
can hold only the values 0 or 1. Recall that the value 0 in a condition is false, while
any nonzero value is true. Assigning any nonzero value to a _Bool sets it to 1. The
standard also includes the <stdbool.h> header, which defines bool as a shorthand for
the type _Bool, and true and false as named representations of 1 and 0, respectively.
During preprocessing, the identifiers bool, true and false are replaced with _Bool,
1 and 0, respectively.

Self Check
1 (Multiple Choice) When the following if statement executes, which pair of vari-
able values would cause seniorFemales to be incremented?

if (gender == 1 && age >= 65) {
++seniorFemales;

}

a) gender is 2 and age is 60.
b) gender is 2 and age is 73.
c) gender is 1 and age is 19.
d) gender is 1 and age is 65.

Answer: d.

2 (Multiple Choice) When the following if statement executes, which pair of vari-
able values would not cause "Student grade is A" to print?

Operators Grouping Type

++ (postfix) -- (postfix) right to left postfix
+ - ! ++ (prefix) -- (prefix) (type) right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

4.10 Confusing Equality (==) and Assignment (=) Operators 157

if (semesterAverage >= 90 || finalExam >= 90) {
puts("Student grade is A");

}

a) semesterAverage is 75 and finalExam is 80.
b) semesterAverage is 85 and finalExam is 91.
c) semesterAverage is 93 and finalExam is 67.
d) semesterAverage is 94 and finalExam is 90.

Answer: a.

4.10 Confusing Equality (==) and Assignment (=)
Operators
There’s one type of error that C programmers, no matter how experienced, tend to
make so frequently that it’s worth a separate section. That error is accidentally swap-
ping the operators == (equality) and = (assignment). What makes these swaps so dam-
aging is the fact that they do not ordinarily cause compilation errors. Rather,
statements with these errors ordinarily compile correctly, allowing programs to run
to completion while likely generating incorrect results through runtime logic errors.

Two aspects of C cause these problems. One is that any expression that produces
a value can be used in the decision portion of any control statement. If the value is 0,
it’s treated as false, and if the value is nonzero, it’s treated as true. The second is that
an assignment has a value—whatever value is assigned to the variable on the left of
the = operator.

For example, suppose we intend to write
if (payCode == 4) {
 printf("%s", "You get a bonus!");
}

but we accidentally write
if (payCode = 4) {
 printf("%s", "You get a bonus!");

}

The first if statement properly awards a bonus to the person whose paycode is equal
to 4. The second if statement—the one with the error—evaluates the assignment
expression in the if condition. The value in the condition after the assignment is 4.
Because any nonzero value is true, the condition in this if statement is always true.
Not only is payCode inadvertently set to 4, but the person always receives a bonus
regardless of what the actual payCode is! Accidentally using operator == for assign-
ment and accidentally using operator = for equality are both logic errors.

lvalues and rvalues
You’ll probably be inclined to write conditions such as x == 7 with the variable name
on the left and the constant on the right. By reversing these terms so that the constant
is on the left and the variable name is on the right, as in 7 == x, if you accidentally

ERR

ERR

158 Chapter 4 Program Control

replace the == operator with =, you’ll be protected by the compiler. The compiler will
treat this as a syntax error because only a variable name can be placed on the left-hand
side of an assignment expression. This will prevent the potential devastation of a run-
time logic error.

Variable names are said to be lvalues (for “left values”) because they can be used
on the left side of an assignment operator. Constants are said to be rvalues (for “right
values”) because they can be used only on the right side of an assignment operator.
An lvalue can also be used as an rvalue, but not vice versa.

Confusing == and = in Standalone Statements
The other side of the coin can be equally unpleasant. Suppose you want to assign a
value to a variable with a simple statement such as

x = 1;

but instead write
x == 1;

Here, too, this is not a syntax error. The compiler evaluates the conditional expres-
sion. If x is equal to 1, the condition is true, and the expression returns the value 1. If
x is not equal to 1, the condition is false, and the expression returns the value 0.
Regardless of what value is returned, there’s no assignment operator, so the value is
simply lost. The value of x remains unaltered, probably causing an execution-time
logic error. Unfortunately, we do not have a handy trick available to help you with
this problem! Many compilers, however, will issue a warning on such a statement.

Self Check
1 (True/False) Accidentally swapping the operators == (equality) and = (assign-
ment) is damaging because these errors ordinarily compile correctly, allowing pro-
grams to run to completion while likely generating incorrect results.
Answer: True.

2 (True/False) An rvalue can also be used as an lvalue, but not vice versa.
Answer: False. Actually, an lvalue can also be used as an rvalue, but not vice versa.

4.11 Structured-Programming Summary
Just as architects design buildings by employing the collective wisdom of their profes-
sion, programmers should design programs by employing the collective wisdom of their
profession. Our field is younger than architecture, and our collective wisdom is consid-
erably sparser. We’ve learned a great deal in a mere nine decades. Perhaps most import-
ant, we’ve learned that structured programs are easier (than unstructured programs) to
understand, test, debug, modify, and even prove correct in a mathematical sense.

Chapters 3 and 4 discussed C’s control statements. Now, we summarize these
capabilities and introduce a simple set of rules for forming structured programs. The
following diagram summarizes the control statements’ flowcharts:

ERR

ERR

ERR

4.11 Structured-Programming Summary 159

In the diagram, small circles indicate each statement’s single entry point and single
exit point. Connecting individual flowchart symbols arbitrarily can lead to unstruc-
tured programs. Therefore, the programming profession has chosen to combine flow-
chart symbols to form a limited set of control statements and to build only properly
structured programs by combining control statements in two straightforward ways. For
simplicity, only single-entry/single-exit control statements are used, and you may com-
bine them only by stacking control statements in sequence or by nesting them.

.
.
.

.
.
.

break

break

break

while statement

if statement
(single selection)

if...else statement
(double selection)

switch statement
(multiple selection)

do...while statement for statement

Iteration

Sequence Selection

T TF

F

T

F

T

F

T

F

T

F
T

F

T

F
body increment

160 Chapter 4 Program Control

Rules for Forming Structured Programs
The following table summarizes the rules for forming structured programs. We assume
that the rectangle flowchart symbol indicates any action, including input/output:

Rules for Forming Structured Programs—Stacking Rule
Applying the rules for forming structured programs always results in a structured
flowchart with a neat, building-block appearance. Repeatedly applying Rule 2 to the
simplest flowchart results in a structured flowchart containing many rectangles in
sequence, as in the following diagram. Rule 2 generates a stack of control statements,
so we call Rule 2 the stacking rule.

Rules for forming structured programs

1. Begin with the “simplest flowchart” shown in the next diagram.
2. “Stacking” rule—Any rectangle (action) can be replaced by two rectangles

(actions) in sequence.
3. “Nesting” rule—Any rectangle (action) can be replaced by any control

statement (sequence, if, if…else, switch, while, do…while or for).
4. Rules 2 and 3 may be applied as often as you like and in any order.

.
.
.

Rule 2 Rule 2 Rule 2

4.11 Structured-Programming Summary 161

Rules for Forming Structured Programs—Nesting Rule
Rule 3 is called the nesting rule. Repeatedly applying Rule 3 to the simplest flowchart
results in a flowchart with neatly nested control statements. For example, in the fol-
lowing diagram, the rectangle in the simplest flowchart is replaced with a double-
selection (if…else) statement. Then Rule 3 is applied again to both of the rectangles
in the double-selection statement, replacing each of these rectangles with double-
selection statements. The dashed box around each of the double-selection statements
represents the rectangle we replaced in the original flowchart.

Rule 4 generates larger, more involved, and more deeply nested structures. The
flowcharts that emerge from applying the rules for forming structured programs con-
stitute the set of all possible structured flowcharts and hence the set of all possible
structured programs.

It’s because of the elimination of the goto statement that these building blocks
never overlap one another. The beauty of the structured approach is that we use only
a small number of simple single-entry/single-exit pieces, and we assemble them in
only two simple ways. The following diagram shows the kinds of stacked building
blocks that emerge from applying Rule 2 and the kinds of nested building blocks that
emerge from applying Rule 3. The figure also shows the kind of overlapped building

Rule 3

Rule 3

Rule 3

162 Chapter 4 Program Control

blocks that cannot appear in structured flowcharts (because of the elimination of the
goto statement).

If the rules for forming structured programs are followed, an unstructured flow-
chart, such as the one in the following diagram, cannot be created:

If you’re uncertain whether a particular flowchart is structured, apply the rules for
forming structured programs in reverse to try to reduce the flowchart to the simplest
flowchart. If you succeed, the original flowchart is structured; otherwise, it’s not.

Three Forms of Control
Structured programming promotes simplicity. Böhm and Jacopini showed that only
three forms of control are needed:

• Sequence.

• Selection.

• Iteration.

Sequence is straightforward. Selection is implemented in one of three ways:

• if statement (single selection).

• if…else statement (double selection).

• switch statement (multiple selection).

Stacked building blocks Nested building blocks

Overlapping building blocks
(Illegal in structured programs)

4.12 Secure C Programming 163

It’s straightforward to prove that the simple if statement is sufficient to provide any
form of selection. Everything that can be done with the if…else statement and the
switch statement can be implemented with one or more if statements.

Iteration is implemented in one of three ways:

• while statement.

• do…while statement.

• for statement.

It’s also straightforward to prove that the while statement is sufficient to provide any
form of iteration. Everything that can be done with the do…while statement and the
for statement can be done with the while statement.

Combining these results illustrates that any form of control ever needed in a C
program can be expressed in terms of only three forms of control:

• sequence.

• if statement (selection).

• while statement (iteration).

And these control statements can be combined in only two ways—stacking and nest-
ing. Indeed, structured programming promotes simplicity.

In Chapters 3 and 4, we’ve discussed how to compose programs from control
statements containing only actions and decisions. In Chapter 5, we introduce another
program-structuring unit called the function. We’ll learn to compose large programs
by combining functions, which, in turn, can be composed of control statements.
We’ll also discuss how using functions promotes software reusability.

4.12 Secure C Programming
Checking Function scanf’s Return Value
Figure 4.4 used the math library function pow, which calculates the value of its first
argument raised to the power of its second argument and returns the result as a double
value. The calculation’s result was then used in the statement that called pow.

Many functions return values indicating whether they executed successfully. For
example, function scanf returns an int indicating whether the input operation was
successful. If an input failure occurs before scanf can input a value, scanf returns the
value EOF (defined in <stdio.h>); otherwise, it returns the number of items that were
read into variables. If this value does not match the number you intended to input,
then scanf was unable to complete the input operation.

Consider the following statement that expects to read one int value into grade:
scanf("%d", &grade); // read grade from user

If the user enters an integer, scanf returns 1, indicating that one value was indeed
read. If the user enters a string, such as "hello", scanf returns 0, indicating that it
was unable to convert the input to an integer. In this case, the variable grade does not
receive a value.

SEC

164 Chapter 4 Program Control

Function scanf can input multiple values, as in
scanf("%d%d", &number1, &number2); // read two integers

If the input into both variables is successful, scanf will return 2. If the user enters a
string for the first value, scanf will return 0, and neither number1 nor number2 will
receive a value. If the user enters an integer followed by a string, scanf will return 1,
and only number1 will receive a value.

To make your input processing more robust, check scanf’s return value to ensure
that the number of inputs read matches the number of inputs expected. Otherwise,
your program will use the values of the variables as if scanf had completed success-
fully. This could lead to logic errors, program crashes or even attacks.

Range Checking
Even if a scanf operates successfully, the values read might still be invalid. For exam-
ple, grades are typically integers in the range 0–100. In a program that inputs grades,
you should validate each grade to ensure that it’s in the range 0–100 by using range
checking. You can then ask the user to reenter any value that’s out of range. If a pro-
gram requires inputs from a specific set of values (such as non-sequential product
codes), you can ensure that each input matches a value in the set.2

Self Check
1 (Fill-In) If an input failure occurs, scanf returns the value ; otherwise, it
returns the number of items that were read.
Answer: EOF.

2 (Multiple Choice) Given the following code:
scanf("%d%d", &grade1, &grade2); // read two integers

which of the following statements a), b) or c) is false?
a) If the input is successful, scanf will return 0, indicating that integer values for

both variables were input.
b) If the user enters a string for the first value, scanf will return 0, and neither

grade1 nor grade2 will receive a value.
c) If the user enters an integer followed by a string, scanf will return 1, and only

grade1 will receive a value.
d) All of the above statements are true.

Answer: a) is false. Actually, if both values are input correctly, scanf will return 2.

Summary
Section 4.2 Iteration Essentials
• Most programs involve iteration (or looping). A loop is a group of instructions the comput-

er repeatedly executes while some loop-continuation condition (p. 134) remains true.

2. For more information, see Chapter 5, “Integer Security,” of Robert Seacord’s book Secure Cod-
ing in C and C++, 2/e.

ERR

 Summary 165

• Counter-controlled iteration uses a control variable (p. 134) to count the number of itera-
tions. When the correct number of iterations completes, the loop terminates, and the pro-
gram resumes execution with the statement after the iteration statement.

• In sentinel-controlled iteration, a sentinel value is entered after all regular data items to in-
dicate “end of data.” Sentinels must be distinct from regular data items.

Section 4.3 Counter-Controlled Iteration
• Counter-controlled iteration requires the control variable’s name (p. 135), its initial value

(p. 135), the increment (or decrement) by which it’s modified each time through the loop,
and the condition that tests for the control variable’s final value (p. 135).

• The control variable increments (or decrements) each time the group of instructions is per-
formed (p. 135).

Section 4.4 for Iteration Statement
• The for iteration statement handles all the details of counter-controlled iteration.
• When a for statement begins executing, its control variable is initialized. Then, the loop-

continuation condition is checked. If the condition is true, the loop’s body executes. The
control variable is then incremented, and the loop-continuation condition is tested. This
continues until the loop-continuation condition fails.

• The general format of the for statement is

for (initialization; condition; increment) {
 statements
}

where the initialization expression initializes (and possibly defines) the control variable, the
condition expression is the loop-continuation condition, and the increment expression incre-
ments the control variable.

• The three expressions in the for header are optional. If the condition is omitted, C assumes
the condition is true, creating an infinite loop. One might omit the initialization expression
if the control variable is initialized before the loop. One might omit the increment expression
if it’s calculated by statements in the for statement’s body or if no increment is needed.

• The two semicolons in the for header are required.
• The “increment” may be negative to create a loop that counts downward.
• If the loop-continuation condition is initially false, the body portion of the loop isn’t per-

formed. Instead, execution proceeds with the statement following the for statement.

Section 4.5 Examples Using the for Statement
• Function pow (p. 142) performs exponentiation. The call pow(x, y) calculates the value of
x raised to the yth power. The function receives two double arguments and returns a double.

• Include the header <math.h> (p. 142) whenever you need a math function such as pow.
• The conversion specification %21.2f denotes that a floating-point value will be displayed

right-aligned in a field of 21 characters with two digits to the right of the decimal point.
• To left-align a value in a field, place a - (minus sign) between the % and the field width.

Section 4.6 switch Multiple-Selection Statement
• Occasionally, an algorithm will contain a series of decisions in which a variable or expression

is tested separately for each of the constant integral values it may assume, and different actions
are taken. This is called multiple selection. C provides the switch statement to handle this.

166 Chapter 4 Program Control

• Characters are normally stored in variables of type char (p. 146). Characters can be stored
in any integer data type because they’re usually represented as one-byte integers in the com-
puter. Thus, we can treat a character as either an integer or a character, depending on its use.

• The switch statement consists of a series of case labels (p. 147), an optional default case
and statements to execute for each case.

• The getchar function (header <stdio.h>) reads and returns as an int one character from
the keyboard.

• Many computers today use the Unicode character set. ASCII is a subset of Unicode.
• Characters can be read with scanf by using the conversion specification %c.
• Assignment expressions as a whole actually have a value. This value is assigned to the vari-

able on the left side of the =.
• EOF is often used as a sentinel value. EOF is a symbolic integer constant defined in <stdio.h>.
• On macOS/Linux systems, the EOF indicator is entered by typing Ctrl + d. On Windows, the
EOF indicator can be entered by typing Ctrl + z.

• Keyword switch is followed by the controlling expression (p. 147) in parentheses. The val-
ue of this expression is compared with each of the case labels. If a match occurs, the state-
ments for that case execute. If no match occurs, the default case executes.

• The break statement causes program control to continue with the statement after the switch.
The break statement prevents the cases in a switch statement from running together.

• Each case can have one or more actions. Braces are not required around multiple actions in
a case of a switch.

• Listing several case labels together executes the same set of actions for any of these cases.
• Each case in a switch statement can test only a constant integral expression (p. 149)—i.e.,

any combination of character constants and integer constants that evaluates to a constant
integer value. A character constant can be represented as the specific character in single
quotes, such as 'A'. Characters must be enclosed within single quotes to be recognized as
character constants. Integer constants are simply integer values.

• In addition to integer types int and char, C provides types short int (which can be abbrevi-
ated as short) and long int (which can be abbreviated as long), as well as unsigned versions
of all the integral types. The C standard specifies the minimum value range for each type. The
actual range may be greater, depending on the implementation. For short ints, the minimum
range is –32767 to +32767. The minimum range of values for long ints is –2147483647 to
+2147483647. The range of values for an int is greater than or equal to that of a short int
and less than or equal to that of a long int. On many of today’s platforms, ints and long ints
represent the same range of values. The data type signed char can be used to represent integers
in the range –127 to +127 or any of the characters in the ASCII character set.

Section 4.7 do…while Iteration Statement
• The do…while statement tests the loop-continuation condition after the loop body is per-

formed. Therefore, the loop body executes at least once. When a do…while terminates, ex-
ecution continues with the statement after the while clause.

Section 4.8 break and continue Statements
• The break statement, when executed in a while, for, do…while or switch statement, im-

mediately exits that statement. Program execution continues with the next statement.
• The continue statement, when executed in a while, for or do…while statement, skips the

remaining statements in the body and performs the next loop iteration. The while and

 Self-Review Exercises 167

do…while evaluate the loop-continuation test immediately. A for statement executes its in-
crement expression, then tests the loop-continuation condition.

Section 4.9 Logical Operators
• Logical operators && (logical AND), || (logical OR) and ! (logical NOT, or logical nega-

tion) may be used to form complex conditions by combining simple conditions.
• The && (logical AND; p. 153) operator evaluates to true if and only if both of its operands

are true.
• C evaluates all expressions that include relational operators, equality operators, and/or logical

operators to 0 or 1. Although C sets a true value to 1, it accepts any nonzero value as true.
• The || (logical OR; p. 153) operator evaluates to true if either or both its operands are true.
• The && operator has higher precedence than ||. Both operators group from left-to-right.
• Operators && or || use short-circuit evaluation, terminating as soon as the condition is

known to be false or true.
• C provides the ! (logical negation; p. 153) operator to enable you to “reverse” the meaning

of a condition. Unlike the binary operators && and ||, which combine two conditions, the
unary logical negation operator has only a single condition as an operand.

• The logical negation operator is placed before a condition when we’re interested in choosing
a path of execution if the original condition (without the logical negation operator) is false.

Section 4.10 Confusing Equality (==) and Assignment (=) Operators
• Programmers often accidentally swap the operators == and =. Statements with these errors

ordinarily compile correctly, allowing programs to run to completion while likely generat-
ing incorrect results through runtime logic errors.

• In a condition like 7 == x, if you accidentally replace == with =, the compiler will report a
syntax error. Only a variable name can be placed on the left-hand side of an assignment.

• Variable names are said to be lvalues (for “left values”; p. 158) because they can be used on
the left side of an assignment operator.

• Constants are said to be rvalues (for “right values”; p. 158) because they can be used only on
the right side of an assignment operator. lvalues can also be used as rvalues, but not vice versa.

Self-Review Exercises
4.1 Fill-In the blanks in each of the following statements.

a) In counter-controlled iteration, a(n) is used to count the number of
times a group of instructions should be repeated.

b) The statement, when executed in an iteration statement, causes the
next iteration of the loop to be performed immediately.

c) The statement, when executed in an iteration statement or a switch,
causes an immediate exit from the statement.

d) The is used to test a particular variable or expression for each of the
constant integral values it may assume.

4.2 State whether the following are true or false. If the answer is false, explain why.
a) The default case is required in the switch selection statement.
b) The break statement is required in a switch statement’s default case.
c) The expression (x > y && a < b) is true if either x > y is true or a < b is true.

168 Chapter 4 Program Control

d) An expression containing the || operator is true if either or both of its oper-
ands are true.

4.3 Write a statement or a set of statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99 using a for statement. Use the in-

teger variables sum and count.
b) Print the value 333.546372 in a field width of 15 characters with precisions

of 1, 2, 3, 4 and 5. Left-align the output. What are the five values that print?
c) Calculate the value of 2.5 raised to the power of 3 using the pow function.

Print the result with a precision of 2 in a field width of 10 positions. What
is the value that prints?

d) Print the integers from 1 to 20 using a while loop and the counter variable
x. Print only five integers per line. [Hint: Use the calculation x % 5. When
this is 0, print a newline character, otherwise print a tab character.]

e) Repeat Exercise 4.3(d) using a for statement.

4.4 Find the error in each of the following code segments and explain how to cor-
rect it:

a) x = 1;

while (x <= 10);

 ++x;

}
b) for (double y = .1; y != 1.0; y += .1) {

 printf("%f\n", y);

}
c) switch (n) {

 case 1:

 puts("The number is 1");

 case 2:

 puts("The number is 2");

 break;

 default:

 puts("The number is not 1 or 2");

 break;

}
d) The following code should print the values 1 to 10.

n = 1;

while (n < 10) {
 printf("%d ", n++);

}

Answers to Self-Review Exercises
4.1 a) control variable or counter. b) continue. c) break. d) switch selection state-
ment.

 Answers to Self-Review Exercises 169

4.2 See the answers below:
a) False. The default case is optional. If no default action is needed, then

there’s no need for a default case.
b) False. The break statement is used to exit the switch statement. The break

statement is not required in any case.
c) False. Both of the relational expressions must be true for the entire expres-

sion to be true when using the && operator.
d) True.

4.3 See the answers below:
a) int sum = 0;

for (int count = 1; count <= 99; count += 2) {

 sum += count;

}
b) printf("%-15.1f\n", 333.546372); // prints 333.5

printf("%-15.2f\n", 333.546372); // prints 333.55

printf("%-15.3f\n", 333.546372); // prints 333.546

printf("%-15.4f\n", 333.546372); // prints 333.5464

printf("%-15.5f\n", 333.546372); // prints 333.54637
c) printf("%10.2f\n", pow(2.5, 3)); // prints 15.63
d) int x = 1;

while (x <= 20) {

 printf("%d", x);

 if (x % 5 == 0) {

 puts("");

 }

 else {

 printf("%s", "\t");

 }

 ++x;

}

or

int x = 1;

while (x <= 20) {

 if (x % 5 == 0) {

 printf("%d\n", x++);

 }

 else {

 printf("%d\t", x++);

 }

}

170 Chapter 4 Program Control

or

int x = 0;

while (++x <= 20) {

 if (x % 5 == 0) {

 printf("%d\n", x);

 }

 else {

 printf("%d\t", x);

 }

}

e) for (int x = 1; x <= 20; ++x) {

 printf("%d", x);

 if (x % 5 == 0) {

 puts("");

 }

 else {

 printf("%s", "\t");

 }

}

or

for (int x = 1; x <= 20; ++x) {

 if (x % 5 == 0) {

 printf("%d\n", x);

 }

 else {

 printf("%d\t", x);

 }

}

4.4 a) Error: The semicolon after the while header causes an infinite loop.
Correction: Replace the semicolon with a { or remove both the ; and the }.

b) Error: Using a floating-point number to control a for iteration statement.
Correction: Use an integer, and perform the proper calculation to get the
values you desire.

for (int y = 1; y != 10; ++y) {
 printf("%f\n", (float) y / 10);
}

c) Error: Missing break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first
case. This is not necessarily an error if you want the statement of case 2: to
execute every time the case 1: statement executes.

 Exercises 171

d) Error: Improper relational operator used in the while iteration-continuation
condition.
Correction: Use <= rather than <.

Exercises
4.5 Find the error in each of the following. (Note: There may be more than one er-
ror.)

a) For (x = 100, x >= 1, ++x) {

 printf("%d\n", x);

}
b) The following code should print whether a given integer is odd or even:

switch (value % 2) {
 case 0:
 puts("Even integer");
 case 1:
 puts("Odd integer");

}

c) The following code should input an integer and a character and print them.
Assume the user types as input 100 A.

scanf("%d", &intVal);
charVal = getchar();
printf("Integer: %d\nCharacter: %c\n", intVal, charVal);

d) for (x = .000001; x == .0001; x += .000001) {
 printf("%.7f\n", x);

}
e) The following code should output the odd integers from 999 to 1:

for (x = 999; x >= 1; x += 2) {
 printf("%d\n", x);
}

f) The following code should output the even integers from 2 to 100:
counter = 2;

Do {
 if (counter % 2 == 0) {
 printf("%d\n", counter);
 }

 counter += 2;
} While (counter < 100);

g) The following code should sum the integers from 100 to 150 (assume total
is initialized to 0):

for (x = 100; x <= 150; ++x); {
 total += x;
}

172 Chapter 4 Program Control

4.6 State which values of the control variable x are printed by each of the following
for statements:

a) for (int x = 2; x <= 13; x += 2) {

 printf("%d\n", x);

}
b) for (int x = 5; x <= 22; x += 7) {

 printf("%d\n", x);

}
c) for (int x = 3; x <= 15; x += 3) {

 printf("%d\n", x);

}
d) for (int x = 1; x <= 5; x += 7) {

 printf("%d\n", x);

}
e) for (int x = 12; x >= 2; x -= 3) {

 printf("%d\n", x);

}

4.7 Write for statements that print the following sequences of values:
a) 1, 2, 3, 4, 5, 6, 7
b) 3, 8, 13, 18, 23
c) 20, 14, 8, 2, –4, –10
d) 19, 27, 35, 43, 51

4.8 What does the following program do?

4.9 (Sum a Sequence of Integers) Write a program that sums a sequence of integers.
Assume that the first integer read with scanf specifies the number of values remaining

1 #include <stdio.h>
2
3 int main(void) {
4 int x = 0;
5 int y = 0;
6
7 // prompt user for input
8 printf("%s", "Enter two integers in the range 1-20: ");
9 scanf("%d%d", &x, &y); // read values for x and y

10
11 for (int i = 1; i <= y; ++i) { // count from 1 to y
12
13 for (int j = 1; j <= x; ++j) { // count from 1 to x
14 printf("%s", "@");
15 }
16
17 puts(""); // begin new line
18 }
19 }

 Exercises 173

to be entered. Your program should read only one value each time scanf executes. A
typical input sequence might be

5 100 200 300 400 500

where the 5 indicates that the next five values are to be summed.

4.10 (Average a Sequence of Integers) Write a program that calculates and prints the
average of several integers. Assume the last value read with scanf is the sentinel 9999.
A typical input sequence might be

10 8 11 7 9 9999

indicating that the average of all the values preceding 9999 is to be calculated.

4.11 (Find the Smallest) Write a program that finds the smallest of several integers.
Assume that the first value read specifies the number of values remaining.

4.12 (Calculating the Sum of Even Integers) Write a program that calculates and
prints the sum of the even integers from 2 to 30.

4.13 (Calculating the Product of Odd Integers) Write a program that calculates and
prints the product of the odd integers from 1 to 15.

4.14 (Factorials) The factorial function is used frequently in probability problems.
The factorial of a positive integer n (written n! and pronounced “n factorial”) is equal
to the product of the positive integers from 1 to n. Write a program that evaluates the
factorials of the integers from 1 to 5. Print the results in tabular format. What diffi-
culty might prevent you from calculating the factorial of 20?

4.15 (Modified Compound-Interest Program) Modify the compound-interest pro-
gram of Section 4.5 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9%, and
10%. Use a for loop to vary the interest rate.

4.16 (Triangle-Printing Program) Write a program that prints the following pat-
terns separately, one below the other. Use for loops to generate the patterns. All as-
terisks (*) should be printed by a single printf statement of the form printf("%s",
"*"); (this causes the asterisks to print side-by-side). [Hint: The last two patterns re-
quire that each line begin with an appropriate number of blanks.]

4.17 (Calculating Credit Limits) Collecting money becomes increasingly difficult
during periods of recession, so companies may tighten their credit limits to prevent

(A) (B) (C) (D)
* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

174 Chapter 4 Program Control

their accounts receivable (money owed to them) from becoming too large. In re-
sponse to a prolonged recession, one company has cut its customers’ credit limits in
half. Thus, if a particular customer had a credit limit of $2000, it’s now $1000. If a
customer had a credit limit of $5000, it’s now $2500. Write a program that analyzes
the credit status of three customers of this company. For each customer you’re given:

a) The customer’s account number.
b) The customer’s credit limit before the recession.
c) The customer’s current balance (i.e., the amount the customer owes).

Your program should calculate and print the new credit limit for each customer
and determine (and print) which customers have balances that exceed their new
credit limits.

4.18 (Bar-Chart Printing Program) One interesting application of computers is
drawing graphs and bar charts. Write a program that reads five numbers (each be-
tween 1 and 30). For each number read, your program should print a line containing
that number of adjacent asterisks. For example, if your program reads the number
seven, it should print *******.

4.19 (Calculating Sales) An online retailer sells five different products whose retail
prices are shown in the following table:

Write a program that reads a series of pairs of numbers as follows:
a) Product number.
b) Quantity sold for one day.

Your program should use a switch statement to help determine the retail price for
each product. Your program should calculate and display the total retail value of all
products sold last week.

4.20 (Truth Tables) Complete the following truth tables by filling in each blank
with 0 or 1.

Product number Retail price

1 $ 2.98
2 $ 4.50
3 $ 9.98
4 $ 4.49
5 $ 6.87

Condition1 Condition2 Condition1 && Condition2

0 0 0
0 nonzero 0
nonzero 0
nonzero nonzero

 Exercises 175

4.21 Rewrite the program of Fig. 4.2 to define and initialize the variable counter be-
fore the for statement, then output the value of counter after the loop terminates.

4.22 (Average Grade) Modify the program of Fig. 4.5 so that it calculates the aver-
age grade for the class.

4.23 (Calculating the Compound Interest with Integers) Modify the program of
Fig. 4.4 so that it uses only integers to calculate the compound interest. [Hint: Treat
all monetary amounts as integral numbers of pennies. Then “break” the result into its
dollar portion and cents portion by using the division and remainder operations, re-
spectively. Insert a period.]

4.24 Assume i = 1, j = 2, k = 3 and m = 2. What does each statement print?
a) printf("%d", i == 1);
b) printf("%d", j == 3);
c) printf("%d", i >= 1 && j < 4);
d) printf("%d", m <= 99 && k < m);
e) printf("%d", j >= i || k == m);
f) printf("%d", k + m < j || 3 - j >= k);
g) printf("%d", !m);
h) printf("%d", !(j - m));
i) printf("%d", !(k > m));
j) printf("%d", !(j > k));

4.25 (Table of Decimal, Binary, Octal and Hexadecimal Equivalents) Write a pro-
gram that prints a table of the binary, octal and hexadecimal equivalents of the deci-
mal numbers 1—256. If you’re not familiar with these number systems, read online
Appendix E before you attempt this exercise. [Note: You can display an integer as an
octal or hexadecimal value with the conversion specifications %o and %X, respectively.]

4.26 (Calculating the Value of π) Calculate the value of π from the infinite series

Condition1 Condition2 Condition1 || Condition2

0 0 0
0 nonzero 1
nonzero 0
nonzero nonzero

Condition1 !Condition1

0 1
nonzero

π 4
4
3
---–

4
5

4
7
---–

4
9

4
11
------– …+ + +=

176 Chapter 4 Program Control

Print a table that shows the value of π approximated by one term of this series, by
two terms, by three terms, and so on. How many terms of this series do you have to
use before you first get 3.14? 3.141? 3.1415? 3.14159?

4.27 (Pythagorean Triples) A right triangle can have sides that are all integers. The
set of three integer values for a right triangle’s sides is a Pythagorean triple. These three
sides must satisfy the relationship that the sum of the sides’ squares is equal to the hy-
potenuse’s square. Find all Pythagorean triples for side1, side2, and the hypotenuse, all
no larger than 500. Use a triple-nested for loop that tries all possibilities. This is an
example of “brute-force” computing. It’s not aesthetically pleasing to many people.
But there are many reasons why this technique is important. First, with computing
power increasing at such a phenomenal pace, solutions that would have taken years or
even centuries of computer time to produce with the technology of just a few years ago
can now be produced in hours, minutes, seconds or even less. Second, there are large
numbers of interesting problems for which there’s no known algorithmic approach
other than sheer brute force. We investigate many problem-solving methodologies in
this book. We’ll consider brute-force approaches to various interesting problems.

4.28 (Calculating Weekly Pay) A company pays its employees as managers (who re-
ceive a fixed weekly salary), hourly workers (who receive a fixed hourly wage for up to
the first 40 hours they work and “time-and-a-half” for overtime hours worked), com-
mission workers (who receive $250 plus 5.7% of their gross weekly sales), or piece-
workers (who receive a fixed amount of money for each of the items they produce—
each pieceworker in this company works on only one type of item). Write a program
to compute each employee’s weekly pay. You do not know the number of employees
in advance. Each type of employee has a pay code: Managers have paycode 1, hourly
workers have code 2, commission workers have code 3 and pieceworkers have code 4.
Use a switch to compute each employee’s pay based on the paycode. Within the
switch, prompt the user to enter the appropriate facts your program needs to calculate
each employee’s pay based on that employee’s paycode. [Note: You can input values of
type double using the conversion specification %lf with scanf.]

4.29 (De Morgan’s Laws) We discussed the logical operators &&, ||, and !. De Mor-
gan’s Laws help express logical expressions more conveniently. These laws state that the
expression !(condition1 && condition2) is logically equivalent to the expression (!condi-
tion1 || !condition2). Also, the expression !(condition1 || condition2) is logically
equivalent to the expression (!condition1 && !condition2). Use De Morgan’s Laws to
write equivalent expressions for each of the following, and then write a program to show
that both the original expression and the new expression in each case are equivalent.

a) !(x < 5) && !(y >= 7)
b) !(a == b) || !(g != 5)
c) !((x <= 8) && (y > 4))
d) !((i > 4) || (j <= 6))

4.30 (Replacing switch with if…else) Rewrite Fig. 4.5 by replacing the switch with
a nested if…else statement. Be careful to deal with the default case properly. Next,

 Exercises 177

rewrite this new version by replacing the nested if…else statement with a series of if
statements. Here, too, be careful to deal with the default case properly. This exercise
demonstrates that switch is a convenience and that any switch statement can be written
with only single-selection statements.

4.31 (Diamond-Printing Program) Write a program that prints the following dia-
mond shape. Your printf statements may print either one asterisk (*) or one blank.
Use nested for statements and minimize the number of printf statements.

4.32 (Modified Diamond-Printing Program) Modify the program you wrote in Ex-
ercise 4.31 to read an odd number in the range 1 to 19 to specify the number of rows
in the diamond. Your program should then display a diamond of the appropriate size.

4.33 (Roman-Numeral Equivalent of Decimal Values) Write a program that prints a
table of the Roman-numeral equivalents for the decimal numbers in the range 1 to 100.

4.34 Describe how you’d replace a do…while loop with an equivalent while. What
problem occurs when you try to replace a while loop with an equivalent do…while

loop? Suppose you’ve been told that you must remove a while loop and replace it with
a do…while. What additional control statement would you need to use? How would
you use it to ensure that the resulting program behaves exactly like the original?

4.35 A criticism of the break and continue statements is that each is unstructured. Ac-
tually, break and continue statements can always be replaced by structured statements,
though doing so can be awkward. Describe how you’d remove any break statement
from a loop and replace that statement with some structured equivalent. [Hint: The
break statement terminates a loop from the loop body. The other way to leave is by fail-
ing the loop-continuation test. Consider using in the loop-continuation test a second
test that indicates “early exit because of a ‘break’ condition.”] Use the technique you de-
veloped here to remove the break statement from the program of Fig. 4.7.

4.36 What does the following program segment do?

 *

 *

1 for (int i = 1; i <= 5; ++i) {
2 for (int j = 1; j <= 3; ++j) {
3 for (int k = 1; k <= 4; ++k) {
4 printf("%s", "*");
5 }
6 puts("");
7 }
8 puts("");
9 }

178 Chapter 4 Program Control

4.37 Describe in general how you would remove any continue statement from a
loop in a program and replace that statement with some structured equivalent. Use
the technique you developed here to remove the continue statement from the pro-
gram of Fig. 4.8.

4.38 (“The Twelve Days of Christmas” Song) Write a program that uses iteration
and switch statements to print the song “The Twelve Days of Christmas.” One
switch statement should be used to print the day (i.e., “first,” “second,” etc.). A sep-
arate switch statement should be used to print the remainder of each verse.

4.39 (Limitations of Floating-Point Numbers for Monetary Amounts) Section 4.5
cautioned about using floating-point values for monetary calculations. Try this exper-
iment: Create a float variable with the value 1000000.00. Next, add to that variable
the literal float value 0.12f. Display the result using printf and the conversion spec-
ification "%.2f". What do you get?

4.40 (World Population Growth) World population has grown considerably over
the centuries. Continued growth could eventually challenge the limits of breathable
air, drinkable water, arable cropland and other limited resources. There’s evidence
that growth has been slowing in recent years and that world population could peak
sometime this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to inves-
tigate various viewpoints. Get estimates for the current world population and its
growth rate (the percentage by which it’s likely to increase this year). Write a pro-
gram that calculates world population growth each year for the next 75 years, using
the simplifying assumption that the current growth rate will stay constant. Print the
results in a table. The first column should display the year from year 1 to year 75.
The second column should display the anticipated world population at the end of
that year. The third column should display the numerical increase in the world pop-
ulation that would occur that year. Using your results, determine the year in which
the population would be double what it is today if this year’s growth rate were to
persist.

5Functions

O b j e c t i v e s
In this chapter, you’ll:
■ Construct programs modularly

from small pieces called
functions.

■ Use common math functions
from the C standard library.

■ Create new functions.
■ Understand how function

prototypes help the compiler
ensure that you use functions
correctly.

■ Use the mechanisms that pass
information between
functions.

■ See some commonly used C
standard library headers.

■ Learn how the function call
and return mechanism is
supported by the function-call
stack and stack frames.

■ Build a casino game using
simulation techniques and
random-number generation.

■ Understand how an identifier’s
storage class affects its storage
duration, scope and linkage.

■ Write and use recursive
functions, i.e., functions that
call themselves.

■ Continue our presentation of
Secure C programming with a
look at secure random-number
generation.

180 Chapter 5 Functions

O
ut

lin
e

5.1 Introduction
Most computer programs that solve real-world problems are much larger than those
presented in the first few chapters. Experience has shown that the best way to develop
and maintain a program is to construct it from smaller pieces, each of which is more
manageable than the original program. This technique is called divide and conquer.
We’ll describe some key C features for designing, implementing, operating and main-
taining large programs.

5.2 Modularizing Programs in C
In C, you use functions to modularize programs by combining the new functions you
write with prepackaged C standard library functions. The C standard library pro-
vides a rich collection of functions for performing common mathematical calcula-
tions, string manipulations, character manipulations, input/output and many other
useful operations. Prepackaged functions make your job easier because they provide
many of the capabilities you need.

The C standard includes the C language and its standard library—standard C
compilers implement both.1 The functions printf, scanf and pow that we’ve used in
previous chapters are from the standard library.

Avoid Reinventing the Wheel
Familiarize yourself with the rich collection of C standard library functions to help
reduce program-development time. When possible, use standard functions instead of
writing new ones. The C standard library functions are written by experts, well tested

5.1 Introduction
5.2 Modularizing Programs in C
5.3 Math Library Functions
5.4 Functions
5.5 Function Definitions

5.5.1 square Function
5.5.2 maximum Function

5.6 Function Prototypes: A Deeper Look
5.7 Function-Call Stack and Stack

Frames
5.8 Headers
5.9 Passing Arguments by Value and

by Reference

5.10 Random-Number Generation
5.11 Random-Number Simulation Case

Study: Building a Casino Game
5.12 Storage Classes
5.13 Scope Rules
5.14 Recursion
5.15 Example Using Recursion:

Fibonacci Series
5.16 Recursion vs. Iteration
5.17 Secure C Programming—Secure

Random-Number Generation

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

1. Some C standard library portions are designated as optional and are not available in all standard
C compilers.

SE

5.2 Modularizing Programs in C 181

and efficient. Also, using the functions in the C standard library helps make programs
more portable.

Defining Functions
You can define functions to perform specific tasks that may be used at many points
in a program. The statements defining the function are written once and are hidden
from other functions. As we’ll see, such hiding is crucial to good software engineering.

Calling and Returning from Functions
Functions are invoked by a function call, which specifies the function name and pro-
vides information (as arguments) that the function needs to perform its designated
task.2 A common analogy for this is the hierarchical form of management. A boss (the
calling function or caller) asks a worker (the called function) to perform a task and
report back when it’s done. For example, a function that displays data on the screen
calls the worker function printf to perform that task. Function printf displays the
data and reports back—or returns—to the caller when it completes its task. The boss
function does not know how the worker function performs its designated task. The
worker may call other worker functions, and the boss will be unaware of this. The
following diagram shows a boss function hierarchically communicating with several
worker functions:

Note that worker1 acts as a boss function to worker4 and worker5. Relationships
among functions may differ from the hierarchical structure shown in this figure.

Self Check
1 (Fill-In) Programs are typically written by combining new functions you write
with prepackaged functions available in the .
Answer: C standard library.

2 (Fill-In) Functions are invoked by a function , which specifies the func-
tion name and provides information (as arguments) that the function needs to per-
form its designated task.
Answer: call.

2. In Chapter 7, Pointers, we’ll discuss function pointers. You’ll see that you also can call a function
through a function pointer, and that you can actually pass functions to other functions.

PERF

boss

worker2 worker3worker1

worker5worker4

182 Chapter 5 Functions

5.3 Math Library Functions
C’s math library functions (header math.h) allow you to perform common mathe-
matical calculations. We use many of these functions in this section. To calculate and
print the square root of 900.0 you might write

printf("%.2f", sqrt(900.0));

When this statement executes, it calls the math library function sqrt to calculate the
square root of 900.0, then prints the result as 30.00. The sqrt function takes an argu-
ment of type double and returns a result of type double. In fact, all functions in the
math library that return floating-point values return the data type double. Note that
double values, like float values, can be output using the %f conversion specification.
You may store a function call’s result in a variable for later use as in

double result = sqrt(900.0);

Function arguments may be constants, variables, or expressions. If c = 13.0,
d = 3.0 and f = 4.0, then the statement

printf("%.2f", sqrt(c + d * f));

calculates the square root of 13.0 + 3.0 * 4.0 = 25.0 and prints it as 5.00.
The following table summarizes several C math library functions. In the table, the

variables x and y are of type double. The C11 standard added complex-number capa-
bilities via the complex.h header.

Function Description Example

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

cbrt(x) cube root of x (C99 and C11 only) cbrt(27.0) is 3.0
cbrt(-8.0) is -2.0

exp(x) exponential function ex exp(1.0) is 2.718282
exp(2.0) is 7.389056

log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

log10(x) logarithm of x (base 10) log10(1.0) is 0.0
log10(10.0) is 1.0
log10(100.0) is 2.0

fabs(x) absolute value of x as a floating-point number fabs(13.5) is 13.5
fabs(0.0) is 0.0
fabs(-13.5) is 13.5

ceil(x) rounds x to the smallest integer not less than x ceil(9.2) is 10.0
ceil(-9.8) is -9.0

floor(x) rounds x to the largest integer not greater than x floor(9.2) is 9.0
floor(-9.8) is -10.0

pow(x, y) x raised to power y (xy) pow(2, 7) is 128.0
pow(9, .5) is 3.0

5.4 Functions 183

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) You call a function by writing its name followed by its argument, or a com-
ma-separated list of arguments, in parentheses.

b) The following statement calculates and stores the square root of 900.0:
 double result = sqrt(900.0);

c) To use the math library functions, you must include the math.h header.
d) All of the above statements are true.

Answer: d.

2 (True/False) Function arguments may be constants, variables or expressions. If
c = 16.0, d = 4.0 and f = 5.0, then the following statement calculates and prints the
square root of 100.00:

printf("%.2f", sqrt(c + d * f));

Answer: False. Actually, it calculates the square root of 36.0 and prints it as 6.00.

5.4 Functions
Functions allow you to modularize a program. In programs containing many func-
tions, main is often implemented as a group of calls to functions that perform the bulk
of the program’s work.

Functionalizing Programs
There are several motivations for “functionalizing” a program. The divide-and-con-
quer approach makes program development more manageable. Another motivation
is building new programs by using existing functions. Such software reusability is a
key concept in object-oriented programming languages derived from C, such as C++,
Java, C# (pronounced “C sharp”), Objective-C and Swift.

With good function naming and definition, you can create programs from stan-
dardized functions that accomplish specific tasks, rather than custom code. This is
known as abstraction. We use abstraction each time we use standard library functions
like printf, scanf and pow. A third motivation is to avoid repeating code in a pro-
gram. Packaging code as a function allows it to be executed from other program loca-
tions by calling that function.

Each function should be limited to performing a single, well-defined task, and the
function name should express that task. This facilitates abstraction and promotes

fmod(x, y) remainder of x/y as a floating-point number fmod(13.657, 2.333) is 1.992
sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0
cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0
tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

Function Description Example

SE

SE

184 Chapter 5 Functions

software reuse. If you cannot choose a concise name to describe what the function
does, it may be performing too many diverse tasks. It’s usually best to break such a
function into smaller functions—a process called decomposition.

Self Check
1 (Fill-In) There are several motivations for “functionalizing” a program. The
divide-and-conquer approach makes program development more manageable.
Another motivation is —using existing functions as building blocks to create
new programs.
Answer: software reusability.

2 (True/False) Each function should perform a rich collection of related tasks, and
the function name should describe those tasks.
Answer: False. Actually, each function should be limited to performing a single, well-
defined task, and the function name should describe that task. This facilitates abstrac-
tion and promotes software reuse.

5.5 Function Definitions
Each program we’ve presented has consisted of a function called main that called stan-
dard library functions to accomplish its tasks. Now we consider how to write custom
functions.

5.5.1 square Function
Consider a program that uses a function square to calculate and print the squares of
the integers from 1 to 10 (Fig. 5.1).

1 // fig05_01.c
2 // Creating and using a function.
3 #include <stdio.h>
4
5 int square(int number); // function prototype
6
7 int main(void) {
8 // loop 10 times and calculate and output square of x each time
9 for (int x = 1; x <= 10; ++x) {

10 printf("%d ", square(x)); // function call
11 }
12
13 puts("");
14 }
15
16 // square function definition returns the square of its parameter
17 int square(int number) { // number is a copy of the function's argument
18 return number * number; // returns square of number as an int
19 }

Fig. 5.1 | Creating and using a function. (Part 1 of 2.)

SE

5.5 Function Definitions 185

Calling Function square
Function square is invoked or called in main within the printf statement (line 10):

printf("%d ", square(x)); // function call

Function square receives a copy of the argument x’s value in the parameter number
(line 17). Then square calculates number * number and passes the result back to line
10 in main where square was invoked. Line 10 passes square’s result to function
printf, which displays the result on the screen. This process repeats 10 times—once
for each iteration of the for statement.

square Function Definition
Function square’s definition (lines 17–19) shows that it expects an int parameter
number. The keyword int preceding the function name (line 17) indicates that square
returns an integer result. The return statement in square passes the result of number
* number back to the calling function.

Choosing meaningful function names and meaningful parameter names makes
programs more readable and helps avoid excessive comments. Programs should be
written as collections of small functions. This makes programs easier to write, debug,
maintain, modify and reuse.

A function requiring a large number of parameters may be performing too many
tasks. Consider dividing the function into smaller functions that perform the separate
tasks. The function’s return type, name and parameter list should fit on one line if
possible.

Local Variables
All variables defined in function definitions are local variables—they can be accessed
only in the function in which they’re defined. Most functions have parameters that
enable communicating between functions via arguments in function calls. A func-
tion’s parameters are also local variables of that function.

square Function Prototype
Line 5

int square(int number); // function prototype

is a function prototype. The int in parentheses informs the compiler that square
expects to receive an integer value from the caller. The int to the left of the function
name square informs the compiler that square returns an integer result to the caller.
Forgetting the semicolon at the end of a function prototype is a syntax error.

The compiler compares square’s call (line 10) to its prototype to ensure that:

• the number of arguments is correct,

1 4 9 16 25 36 49 64 81 100

Fig. 5.1 | Creating and using a function. (Part 2 of 2.)

SE

SE

ERR

186 Chapter 5 Functions

• the arguments are of the correct types,

• the argument types are in the correct order, and

• the return type is consistent with the context in which the function is called.

The function prototype, first line of the function definition and function calls should
all agree in the number, type and order of arguments and parameters. The function
prototype and function header must have the same return type, which affects where
the function can be called. For example, a function with the return type void cannot
be used in an assignment statement to store a value or in a call to printf to display a
value. Function prototypes are discussed in detail in Section 5.6.

Format of a Function Definition
The format of a function definition is

return-value-type function-name(parameter-list) {
 statements
}

The function-name is any valid identifier. The return-value-type is the type of the
result returned to the caller. The return-value-type void indicates that a function does
not return a value. Together, the return-value-type, function-name and parameter-list
are sometimes referred to as the function header.

The parameter-list is a comma-separated list that specifies the parameters received
by the function when it’s called. If a function does not receive any parameters, param-
eter-list should contain the keyword void. Each parameter must include its type; oth-
erwise, a compilation error occurs.

Placing a semicolon after the parameter-list’s right parenthesis in a function defi-
nition is an error, as is redefining a parameter as a local variable in a function.
Although it’s not incorrect to do so, do not use the same names for a function’s argu-
ments and the corresponding parameters in the function definition—this helps avoid
ambiguity.

Function Body
The statements within braces form the function body, which also is a block. Local
variables can be declared in any block, and blocks can be nested. Functions cannot be
nested—defining a function inside another function is a syntax error.

Returning Control from a Function
There are three ways to return control from a called function to the point at which a
function was invoked. If the function does not return a result, control is returned sim-
ply when the function-ending right brace is reached, or by executing the statement

return;

If the function does return a result, the statement

return expression;

returns the expression’s value to the caller.

ERR

ERR

ERR

5.5 Function Definitions 187

main’s Return Type
The main function’s int return value indicates whether the program executed cor-
rectly. In earlier versions of C, we’d explicitly place

return 0; // 0 indicates successful program termination

at the end of main. The C standard indicates that main implicitly returns 0 if you omit
the preceding statement—as we do throughout this book. You can explicitly return
nonzero values from main to indicate that a problem occurred during your program’s
execution. For information on how to report a program failure, see the documenta-
tion for your particular operating system.

5.5.2 maximum Function
Let’s consider a custom maximum function that returns the largest of three integers
(Fig. 5.2). Next, they’re passed to maximum (line 17), which determines the largest
integer. This value is returned to main by the return statement in maximum (line 32).
The printf statement in line 17 then prints the value returned by maximum.

1 // fig05_02.c
2 // Finding the maximum of three integers.
3 #include <stdio.h>
4
5 int maximum(int x, int y, int z); // function prototype
6
7 int main(void) {
8 int number1 = 0; // first integer entered by the user
9 int number2 = 0; // second integer entered by the user

10 int number3 = 0; // third integer entered by the user
11
12 printf("%s", "Enter three integers: ");
13 scanf("%d%d%d", &number1, &number2, &number3);
14
15 // number1, number2 and number3 are arguments
16 // to the maximum function call
17 printf("Maximum is: %d\n", maximum(number1, number2, number3));
18 }
19
20 // Function maximum definition
21 int maximum(int x, int y, int z) {
22 int max = x; // assume x is largest
23
24 if (y > max) { // if y is larger than max,
25 max = y; // assign y to max
26 }
27
28 if (z > max) { // if z is larger than max,
29 max = z; // assign z to max
30 }
31
32 return max; // max is largest value
33 }

Fig. 5.2 | Finding the maximum of three integers. (Part 1 of 2.)

188 Chapter 5 Functions

The function initially assumes that its first argument (stored in the parameter x)
is the largest and assigns it to max (line 22). Next, the if statement at lines 24–26
determines whether y is greater than max and, if so, assigns y to max. Then, the if
statement at lines 28–30 determines whether z is greater than max and, if so, assigns
z to max. Finally, line 32 returns max to the caller.

Self Check
1 (Multiple Choice) The following line of code is a .

int square(int y);

a) Function definition.
b) Function statement.
c) Function prototype.
d) None of the above.

Answer: c.

2 (Multiple Choice) Consider the maximum function in Fig. 5.2. Which of the fol-
lowing statements is false?

a) The code determines the largest of three integer values.
b) The statement return max; sends the result back to the calling function.
c) The code in line 21—int maximum(int x, int y, int z)—is commonly called

a function header.
d) If int max = x; (line 22) were accidentally replaced by int max = y; the func-

tion would still return the same result.
Answer: d) is false. The function would then incorrectly return the larger of the values
contained in only parameters y and z.

5.6 Function Prototypes: A Deeper Look
An important C feature is the function prototype, which was borrowed from C++.
The compiler uses function prototypes to validate function calls. Pre-standard C did
not perform this kind of checking, so it was possible to call functions improperly

Enter three integers: 22 85 17
Maximum is: 85

Enter three integers: 47 32 14
Maximum is: 47

Enter three integers: 35 8 79
Maximum is: 79

Fig. 5.2 | Finding the maximum of three integers. (Part 2 of 2.)

5.6 Function Prototypes: A Deeper Look 189

without the compiler detecting the errors. Such calls could result in fatal execution-
time errors or nonfatal errors that caused subtle, difficult-to-detect problems. Func-
tion prototypes correct this deficiency.

You should include function prototypes for all functions to take advantage of C’s
type-checking capabilities. Use #include preprocessor directives to obtain function
prototypes from standard library headers, third-party library headers and headers for
functions developed by you or your team members.

The function prototype for maximum in Fig. 5.2 (line 5) is
int maximum(int x, int y, int z); // function prototype

It states that maximum takes three arguments of type int and returns an int result.
Notice that the function prototype (omitting the semicolon) is the same as the max-
imum definition’s first line. We include parameter names in function prototypes for
documentation purposes. The compiler ignores these names, so the following proto-
type also is valid:

int maximum(int, int, int);

Compilation Errors
A function call that does not match the function prototype is a compilation error. It
also is an error if the function prototype and the function definition disagree. For
example, in Fig. 5.2, if the function prototype had been written

void maximum(int x, int y, int z);

the compiler would generate an error, because the function prototype’s void return
type would differ from the int return type in the function header.

Argument Coercion and “Usual Arithmetic Conversion Rules”
Another important feature of function prototypes is argument coercion, i.e., implic-
itly converting arguments to the appropriate type. For example, calling the math
library function sqrt with an integer argument still works even though the function
prototype in <math.h> specifies a double parameter. The following statement cor-
rectly evaluates sqrt(4) and prints 2.000:

printf("%.3f\n", sqrt(4));

The function prototype causes the compiler to convert a copy of the int value 4 to
the double value 4.0 before passing it to sqrt. In general, argument values that do
not correspond precisely to the function prototype’s parameter types are converted to
the proper type before the function is called. Such conversions can lead to incorrect
results if C’s usual arithmetic conversion rules are not followed. These rules specify
how values can be converted to other types without losing data.

In our sqrt example, an int is automatically converted to a double without
changing its value—double can represent a much wider range of values than int.
However, a double converted to an int truncates the double’s fractional part, thus
changing the original value. Converting large integer types to small integer types (e.g.,
long to short) can also change values.

SE

SE

ERR

ERR

190 Chapter 5 Functions

Mixed-Type Expressions
The usual arithmetic conversion rules are handled by the compiler. They apply to
mixed-type expressions—that is, expressions containing values of multiple data
types. In such expressions, the compiler makes temporary copies of values that need
to be converted, then converts the copies to the “highest” type in the expression—this
is known as promotion. For mixed-type expressions containing at least one floating-
point value:

• If one value is a long double, the other values are converted to long double.

• If one value is a double, the other values are converted to double.

• If one value is a float, the other values are converted to float.

If the mixed-type expression contains only integer types, then the usual arithmetic
conversions specify a set of integer promotion rules.

Section 6.3.1 of the C standard document specifies the complete details of arith-
metic operands and the usual arithmetic conversion rules. The following table lists
the floating-point and integer data types with each type’s printf and scanf conver-
sion specifications. In most cases, the integer types lower in the following table are
converted to higher types:

A value can be converted to a lower type only by explicitly assigning the value to
a variable of lower type or by using a cast operator. Arguments are converted to the
parameter types specified in a function prototype as if the arguments were being
assigned to variables of those types. So, if we pass a double to our square function in
Fig. 5.1, the double is converted to int (a lower type), and square usually returns an
incorrect value. For example, square(4.5) returns 16, not 20.25.

Converting from a higher data type in the promotion hierarchy to a lower type
can change the data value. Many compilers issue warnings in such cases.

Data type
printf conversion
specification

scanf conversion
specification

Floating-point types
long double %Lf %Lf

double %f %lf

float %f %f

Integer types
unsigned long long int %llu %llu

long long int %lld %lld

unsigned long int %lu %lu

long int %ld %ld

unsigned int %u %u

int %d %d

unsigned short %hu %hu

short %hd %hd

char %c %c

ERR

5.7 Function-Call Stack and Stack Frames 191

Function Prototype Notes
If there’s no function prototype for a function, the compiler forms one from the first
occurrence of the function—either the function definition or a call to the function.
This typically leads to warnings or errors, depending on the compiler.

Always include function prototypes for the functions you define or use in your
program to help prevent compilation errors and warnings.

A function prototype placed outside any function definition applies to all calls to
the function appearing after the function prototype. A function prototype placed in
a function body applies only to calls in that function made after that prototype.

Self Check
1 (Fill-In) In a mixed-type expression, the compiler makes a temporary copy of
each value that needs to be converted, then converts the copies to the “highest” type
in the expression—this is known as .
Answer: promotion.

2 (Multiple Choice) Consider the following function prototype for a maximum func-
tion:

int maximum(int x, int y, int z); // function prototype

Which of the following statements is false?
a) It states that maximum takes three arguments of type int and returns a result

of type int.
b) Parameter names are required in function prototypes.
c) A function’s prototype is often the same as the function’s header, except that

the header does not end in a semicolon.
d) Forgetting the semicolon at the end of a function prototype is a syntax error.

Answer: b) is false. Parameter names in function prototypes are for documentation
purposes. The compiler ignores these names, so int maximum(int, int, int); is
equivalent to the preceding prototype.

5.7 Function-Call Stack and Stack Frames
To understand how C performs function calls, we first need to consider a data struc-
ture (i.e., collection of related data items) known as a stack. Think of a stack as anal-
ogous to a pile of dishes. You usually place a dish at the top—referred to as pushing
the dish onto the stack. Similarly, you typically remove a dish from the top—referred
to as popping the dish off the stack. Stacks are known as last-in, first-out (LIFO) data
structures—the last item pushed (inserted) on the stack is the first item popped
(removed) from the stack.

Function-Call Stack
An important mechanism for computing students to understand is the function-call
stack (sometimes referred to as the program execution stack). This data structure—

ERR

SE

SE

192 Chapter 5 Functions

working “behind the scenes”—supports the function call/return mechanism. As
you’ll see in this section, the function-call stack also supports creating, maintaining
and destroying each called function’s local variables.

Stack Frames
As each function is called, it may call other functions, which may call other func-
tions—all before any function returns. Each function eventually must return control
to its caller. So, we must keep track of the return addresses that each function needs
to return control to the function that called it. The function-call stack is the perfect
data structure for handling this information. Each time a function calls another func-
tion, an entry is pushed onto the stack. This entry, called a stack frame, contains the
return address that the called function needs in order to return to the calling function.
It also contains some additional information we’ll soon discuss. When a called func-
tion returns, the stack frame for the function call is popped, and control transfers to
the return address specified in the popped stack frame.

Each called function always finds at the top of the call stack the information it
needs to return to its caller. If a called function calls another function, a stack frame
for the new function call is pushed onto the call stack. Thus, the return address
required by the newly called function to return to its caller is now located at the top
of the stack.

The stack frames have another important responsibility. Most functions have
local variables, which must exist while a function is executing. They need to remain
active if the function makes calls to other functions. But when a called function
returns to its caller, the called function’s local variables need to “go away.” The called
function’s stack frame is a perfect place to reserve the memory for local variables. That
stack frame exists only as long as the called function is active. When that function
returns—and no longer needs its local variables—its stack frame is popped from the
stack. Those local variables are no longer known to the program.

Stack Overflow
Of course, the amount of memory in a computer is finite, so only limited memory
can be used to store stack frames on the function-call stack. If more function calls
occur than can have their stack frames stored on the function-call stack, a fatal error
known as stack overflow3 occurs.

Function-Call Stack in Action
Now let’s consider how the call stack supports the operation of a square function
called by main (lines 8–12 of Fig. 5.3).

3. This is how the website stackoverflow.com got its name—a popular website for getting an-
swers to your programming questions.

5.7 Function-Call Stack and Stack Frames 193

Step 1: Operating System Invokes main to Execute Application
First, the operating system calls main—this pushes a stack frame onto the stack (as
shown in the following diagram). The stack frame tells main how to return to the
operating system (that is, transfer to return address R1) and contains the space for
main’s local variable a, which is initialized to 10.

Step 2: main Invokes Function square to Perform Calculation
Function main—before returning to the operating system—now calls function
square in line 11 of Fig. 5.3. This causes a stack frame for square (lines 15–17) to be
pushed onto the function-call stack, as shown in the following diagram:

1 // fig05_03.c
2 // Demonstrating the function-call stack
3 // and stack frames using a function square.
4 #include <stdio.h>
5
6 int square(int x); // prototype for function square
7
8 int main() {
9 int a = 10; // value to square (local variable in main)

10
11 printf("%d squared: %d\n", a, square(a)); // display a squared
12 }
13
14 // returns the square of an integer
15 int square(int x) { // x is a local variable
16 return x * x; // calculate square and return result
17 }

10 squared: 100

Fig. 5.3 | Demonstrating the function-call stack and stack frames using a function square.

o

Function-call stack after Step 1

Stack frame
for function main

Top of stack
Return location: R1

Automatic variables:

a 10

Lines that represent the operating
system executing instructions

Key

Operating system {
 int a = 10;
 printf("%d squared: %d\n",
 a, square(a));
}Return location R1

int main()

194 Chapter 5 Functions

This stack frame contains the return address that square needs to return to main (i.e.,
R2) and the memory for square’s local variable (i.e., x).

Step 3: square Returns Its Result to main
After square calculates the square of its argument, it needs to return to main—and no
longer needs the memory for its local variable x. So the stack is popped—giving square
the return location in main (i.e., R2) and losing square’s local variable. The following
diagram shows the function-call stack after square’s stack frame has been popped:

Function main now displays the result of calling square (line 11 in Fig. 5.3). Reaching
main’s closing right brace pops its stack frame from the stack. This gives main the
address it needs to return to the operating system (i.e., R1 in the preceding diagram).
At this point, the memory for main’s local variable (i.e., a) is unavailable.

Return location R2

Stack frame for
function square

Stack frame
for function main

Return location: R1

Automatic variables:

a 10

Return location: R2

Automatic variables:

x 10

Top of stack

{
 int a = 10;
 printf("%d squared: %d\n",
 a, square(a));
}

int main()

{
 return x * x;
}

int square(int x)

Function-call stack after Step 2

Function-call stack after Step 3

Return location R2

Stack frame
for function main

Return location: R1

Automatic variables:

a 10

Top of stack

{
 int a = 10;
 printf("%d squared: %d\n",
 a, square(a));
}

int main()

{
 return x * x;
}

int square(int x)

5.8 Headers 195

Flaw in Our Discussion
There is a flaw in the preceding discussion and diagrams. We showed main calling out
to square and square returning to main, but, of course, printf is a function too. As
you study the code in Fig. 5.3, you might be inclined to say that main calls printf,
then printf calls square. However, printf’s argument values must be known in full
before printf can be called. So execution proceeds as follows:

1. The operating system calls main, so main’s stack frame is pushed onto the
stack.

2. main calls square, so square’s stack frame is pushed onto the stack.

3. square calculates and returns to main a value for use in printf’s argument list,
so square’s stack frame is popped from the stack.

4. main calls printf, so printf’s stack frame is pushed onto the stack.

5. printf displays its arguments, then returns to main, so printf’s stack frame is
popped from the stack.

6. main terminates, so main’s stack frame is popped from the stack.

Data Structures
You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. Data structures have many important applica-
tions in computer science. We discuss stacks, queues, lists and trees in Chapter 12.

Self Check
1 (Fill-In) Each time a function calls another function, an entry is pushed onto the
stack. This entry, called a , contains the return address that the called func-
tion needs in order to return to the calling function.
Answer: stack frame.

2 (True/False) A called function’s stack frame is a perfect place to reserve the mem-
ory for local variables. That stack frame exists only as long as the called function is
active. When the function returns—and no longer needs its local variables—its stack
frame is popped from the stack. At that point, those local variables are no longer
known to the program.
Answer: True.

5.8 Headers
Each standard library has a corresponding header containing the function prototypes
for all the functions in that library and definitions of various data types and constants
needed by those functions. The following table alphabetically lists several standard
library headers that may be included in programs. The C standard includes additional
headers. The term “macros”—used several times in this table—is discussed in detail
in Chapter 14.

196 Chapter 5 Functions

You can create custom headers. A programmer-defined header can be included by
using the #include preprocessor directive. For example, if the prototype for our
square function was located in the header square.h, we’d include that header in our
program by using the following directive at the top of the program:

#include "square.h"

Section 14.2 presents additional information on including headers, such as why pro-
grammer-defined headers are enclosed in quotes ("") rather than angle brackets (<>).

Self Check
1 (Fill-In) The header contains function prototypes for string-processing
functions.
Answer: <string.h>.

Header Explanation

Headers we use or discuss in this book:
<assert.h> Contains information for adding diagnostics that aid program debugging.
<ctype.h> Contains function prototypes for functions that test characters for certain prop-

erties, and function prototypes for functions that can be used to convert lower-
case letters to uppercase letters and vice versa.

<float.h> Contains the floating-point size limits of the system.
<limits.h> Contains the integral size limits of the system.
<math.h> Contains function prototypes for math library functions.
<signal.h> Contains function prototypes and macros to handle various conditions that

may arise during program execution.
<stdarg.h> Defines macros for dealing with a list of arguments to a function whose number

and types are unknown.
<stdio.h> Contains function prototypes for the standard input/output library functions

and information used by them.
<stdlib.h> Contains function prototypes for conversions of numbers to text and text to

numbers, memory allocation, random numbers and other utility functions.
<string.h> Contains function prototypes for string-processing functions.
<time.h> Contains function prototypes and types for manipulating the time and date.

Other headers:
<errno.h> Defines macros that are useful for reporting error conditions.
<locale.h> Contains function prototypes and other information that enables a program to

be modified for the current locale on which it’s running. The locale notion
enables the computer system to handle different conventions for expressing data
such as dates, times, currency amounts and large numbers throughout the world.

<setjmp.h> Contains function prototypes for functions that allow bypassing of the usual
function call and return sequence.

<stddef.h> Contains common type definitions used by C.

5.9 Passing Arguments by Value and by Reference 197

2 (Fill-In) The header contains information for adding diagnostics that
aid program debugging.
Answer: <assert.h>.

5.9 Passing Arguments by Value and by Reference
In many programming languages, there are two ways to pass arguments—pass-by-
value and pass-by-reference. When an argument is passed by value, a copy of the
argument’s value is made and passed to the function. Changes to the copy do not
affect an original variable’s value in the caller. When an argument is passed by refer-
ence, the caller allows the called function to modify the original variable’s value.

Pass-by-value should be used whenever the called function does not need to mod-
ify the value of the caller’s original variable. This prevents accidental side effects (vari-
able modifications) that can hinder the development of correct and reliable software
systems. Pass-by-reference should be used only with trusted called functions that need
to modify the original variable.

In C, all arguments are passed by value. In Chapter 7, Pointers, we’ll show how
to achieve pass-by-reference. In Chapter 6, we’ll see that array arguments are auto-
matically passed by reference for performance reasons. We’ll see in Chapter 7 that
this is not a contradiction. For now, we concentrate on pass-by-value.

Self Check
1 (True/False) When an argument is passed by value, a copy of the argument’s value
is made and passed to the function. Changes to the copy also are applied to the orig-
inal variable’s value in the caller.
Answer: False. With pass-by-value, changes to the copy do not affect an original vari-
able’s value in the caller.

2 (True/False) Pass-by-reference should be used only with trusted called functions
that need to modify the original variable.
Answer: True.

5.10 Random-Number Generation
We now take a brief and, hopefully, entertaining diversion into simulation and game
playing. In this and the next section, we’ll develop a nicely structured game-playing
program that includes multiple custom functions. The program uses functions and
several of the control statements we’ve studied. The element of chance can be intro-
duced into computer applications by using the C standard library function rand4

from the <stdlib.h> header.

4. C standard library function rand is known to be “predictable,” which can create security breach
opportunities. Each of our preferred platforms offers a non-standard secure random-number
generator. We’ll mention these in Section 5.17, Secure C Programming—Secure Random-
Number Generation.

198 Chapter 5 Functions

Obtaining a Random Integer Value
Consider the following statement:

int value = rand();

The rand function generates an integer between 0 and RAND_MAX (a symbolic constant
defined in the <stdlib.h> header). The C standard states that RAND_MAX’s value must
be at least 32,767, which is the maximum value for a two-byte (i.e., 16-bit) integer.
The programs in this section were tested on Microsoft Visual C++ with a maximum
RAND_MAX value of 32,767, and on GNU gcc and Xcode Clang with a maximum
RAND_MAX value of 2,147,483,647. If rand truly produces integers at random, every
number between 0 and RAND_MAX has an equal chance (or probability) of being chosen
each time rand is called.

The range of values produced directly by rand is often different from what’s
needed in a specific application. For example, a program that simulates coin tossing
might require only 0 for “heads” and 1 for “tails.” A dice-rolling program that simu-
lates a six-sided die would require random integers from 1 to 6.

Rolling a Six-Sided Die
To demonstrate rand, let’s develop a program (Fig. 5.4) to simulate 10 rolls of a six-
sided die and print each roll’s value.

The rand function’s prototype is in <stdlib.h>. In line 9, we use the remainder
operator (%) in conjunction with rand as follows

rand() % 6

to produce integers in the range 0 to 5. This is called scaling. The number 6 is called
the scaling factor. We then shift the range of numbers produced by adding 1 to our
previous result. The output confirms that the results are in the range 1 to 6—the
order in which these random values are chosen might vary by compiler.

1 // fig05_04.c
2 // Shifted, scaled random integers produced by 1 + rand() % 6.
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void) {
7
8 for (int i = 1; i <= 10; ++i) {
9 printf("%d ", 1 + (rand() % 6)); // display random die value

10 }
11
12 puts("");
13 }

6 6 5 5 6 5 1 1 5 3

Fig. 5.4 | Shifted, scaled random integers produced by 1 + rand() % 6.

5.10 Random-Number Generation 199

Rolling a Six-Sided Die 60,000,000 Times
To show that these numbers occur approximately with equal likelihood, let’s simulate
60,000,000 rolls of a die with the program of Fig. 5.5. Each integer from 1 to 6
should appear approximately 10,000,000 times.

1 // fig05_05.c
2 // Rolling a six-sided die 60,000,000 times.
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void) {
7 int frequency1 = 0; // rolled 1 counter
8 int frequency2 = 0; // rolled 2 counter
9 int frequency3 = 0; // rolled 3 counter

10 int frequency4 = 0; // rolled 4 counter
11 int frequency5 = 0; // rolled 5 counter
12 int frequency6 = 0; // rolled 6 counter
13
14 // loop 60000000 times and summarize results
15 for (int roll = 1; roll <= 60000000; ++roll) {
16 int face = 1 + rand() % 6; // random number from 1 to 6
17
18 // determine face value and increment appropriate counter
19 switch (face) {
20 case 1: // rolled 1
21 ++frequency1;
22 break;
23 case 2: // rolled 2
24 ++frequency2;
25 break;
26 case 3: // rolled 3
27 ++frequency3;
28 break;
29 case 4: // rolled 4
30 ++frequency4;
31 break;
32 case 5: // rolled 5
33 ++frequency5;
34 break;
35 case 6: // rolled 6
36 ++frequency6;
37 break; // optional
38 }
39 }
40
41 // display results in tabular format
42 printf("%s%13s\n", "Face", "Frequency");
43 printf(" 1%13d\n", frequency1);
44 printf(" 2%13d\n", frequency2);
45 printf(" 3%13d\n", frequency3);
46 printf(" 4%13d\n", frequency4);

Fig. 5.5 | Rolling a six-sided die 60,000,000 times. (Part 1 of 2.)

200 Chapter 5 Functions

As the program output shows, by scaling and shifting, we’ve used the rand func-
tion to realistically simulate the rolling of a six-sided die. Note the use of the %s con-
version specification to print the character strings "Face" and "Frequency" as column
headers (line 42). After we study arrays in Chapter 6, we’ll show how to replace this
20-line switch statement elegantly with a single-line statement.

Randomizing the Random-Number Generator
Executing the program of Fig. 5.4 again produces

6 6 5 5 6 5 1 1 5 3

This is the exact sequence of values we showed in Fig. 5.4. How can these be random
numbers? Ironically, this repeatability is an important characteristic of function rand.
When debugging a program, this repeatability is essential for proving that corrections
to a program work properly.

Function rand actually generates pseudorandom numbers. Calling rand repeatedly
produces a sequence of numbers that appears to be random. However, the sequence
repeats itself each time the program is executed. Once a program has been thoroughly
debugged, it can be conditioned to produce a different sequence of random numbers
for each execution. This is called randomizing and is accomplished with the standard
library function srand. Function srand takes an int argument and seeds function rand
to produce a different sequence of random numbers for each program execution.

We demonstrate function srand in Fig. 5.6. The function prototype for srand is
found in <stdlib.h>.

47 printf(" 5%13d\n", frequency5);
48 printf(" 6%13d\n", frequency6);
49 }

Face Frequency
 1 9999294
 2 10002929
 3 9995360
 4 10000409
 5 10005206
 6 9996802

Fig. 5.5 | Rolling a six-sided die 60,000,000 times. (Part 2 of 2.)

1 // fig05_06.c
2 // Randomizing the die-rolling program.
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void) {
7 printf("%s", "Enter seed: ");

Fig. 5.6 | Randomizing the die-rolling program. (Part 1 of 2.)

5.10 Random-Number Generation 201

Let’s run the program several times and observe the results. Notice that a different
sequence of random numbers is obtained each time the program is run, provided that
a different seed is supplied. The first and last outputs use the same seed value, so they
show the same results.

To randomize without entering a seed each time, use a statement like
srand(time(NULL));

This causes the computer to read its clock to obtain the value for the seed automati-
cally. Function time returns the number of seconds that have passed since midnight
on January 1, 1970. This value is converted to an integer and used as the seed to the
random-number generator. The function prototype for time is in <time.h>. We’ll say
more about NULL in Chapter 7.

Generalized Scaling and Shifting of Random Numbers
The values produced directly by rand are always in the range:

0 ≤ rand() ≤ RAND_MAX
As you know, the following statement simulates rolling a six-sided die:

int face = 1 + rand() % 6;

This statement always assigns an integer value (at random) to the variable face in the
range 1 ≤ face ≤ 6. The width of this range (i.e., the number of consecutive integers
in the range) is 6, and the starting number in the range is 1. Referring to the preceding
statement, we see that the width of the range is determined by the number used to

8 int seed = 0; // number used to seed the random-number generator
9 scanf("%d", &seed);

10
11 srand(seed); // seed the random-number generator
12
13 for (int i = 1; i <= 10; ++i) {
14 printf("%d ", 1 + (rand() % 6)); // display random die value
15 }
16
17 puts("");
18 }

Enter seed: 67
6 1 4 6 2 1 6 1 6 4

Enter seed: 867
2 4 6 1 6 1 1 3 6 2

Enter seed: 67
6 1 4 6 2 1 6 1 6 4

Fig. 5.6 | Randomizing the die-rolling program. (Part 2 of 2.)

202 Chapter 5 Functions

scale rand with the remainder operator (i.e., 6), and the starting number of the range
is equal to the number (i.e., 1) that’s added to rand % 6. We can generalize this result
as follows:

int n = a + rand() % b;

where

• a is the shifting value (which is equal to the first number in the desired range
of consecutive integers), and

• b is the scaling factor (which is equal to the width of the desired range of con-
secutive integers).

In the exercises, you’ll choose integers at random from sets of values other than ranges
of consecutive integers.

Self Check
1 (Fill-In) is an important characteristic of function rand. When we’re
debugging a program, this characteristic is essential for proving that corrections to a
program work properly.
Answer: Repeatability.

2 (True/False) If rand truly produces integers at random, every number between 0
and RAND_MAX has an equal chance (or probability) of being chosen each time rand is
called.
Answer: True.

3 (Fill-In) Once a program has been thoroughly debugged, it can be conditioned
to produce a different sequence of random numbers for each execution. This is called
randomizing and is accomplished with the standard library function .
Answer: srand.

5.11 Random-Number Simulation Case Study:
Building a Casino Game
In this section, we simulate the popular dice game known as “craps.” The rules of the
game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5,
and 6 spots. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, the player
wins. If the sum is 2, 3, or 12 on the first throw (called “craps”), the player
loses (i.e., the “house” wins). If the sum is 4, 5, 6, 8, 9, or 10 on the first
throw, that sum becomes the player’s “point.” To win, you must continue roll-
ing the dice until you “make your point.” The player loses by rolling a 7 before
making the point.

Figure 5.7 simulates the game of craps and shows several sample executions.

204 Chapter 5 Functions

1 // fig05_07.c
2 // Simulating the game of craps.
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h> // contains prototype for function time
6
7 enum Status {CONTINUE, WON, LOST}; // constants represent game status
8
9 int rollDice(void); // rollDice function prototype

10
11 int main(void) {
12 srand(time(NULL)); // randomize based on current time
13
14 int myPoint = 0; // player must make this point to win
15 enum Status gameStatus = CONTINUE; // may be CONTINUE, WON, or LOST
16 int sum = rollDice(); // first roll of the dice
17
18 // determine game status based on sum of dice
19 switch(sum) {
20 // win on first roll
21 case 7: // 7 is a winner
22 case 11: // 11 is a winner
23 gameStatus = WON;
24 break;
25 // lose on first roll
26 case 2: // 2 is a loser
27 case 3: // 3 is a loser
28 case 12: // 12 is a loser
29 gameStatus = LOST;
30 break;
31 // remember point
32 default:
33 gameStatus = CONTINUE; // player should keep rolling
34 myPoint = sum; // remember the point
35 printf("Point is %d\n", myPoint);
36 break; // optional
37 }
38
39 // while game not complete
40 while (CONTINUE == gameStatus) { // player should keep rolling
41 sum = rollDice(); // roll dice again
42
43 // determine game status
44 if (sum == myPoint) { // win by making point
45 gameStatus = WON;
46 }
47 else if (7 == sum) { // lose by rolling 7
48 gameStatus = LOST;
49 }
50 }
51

Fig. 5.7 | Simulating the game of craps. (Part 1 of 2.)

5.11 Random-Number Simulation Case Study: Building a Casino Game 205

In the game, the player must roll two dice on each roll. We define the rollDice
function to roll the dice and compute and print their sum. The function is defined
once, but it’s called twice (lines 16 and 41). The function takes no arguments, so
we’ve indicated void in the parameter list (line 62) and the function prototype (line
9). Function rollDice does return the sum of the two dice, so a return type of int is
indicated in its function header and in its function prototype.

52 // display won or lost message
53 if (WON == gameStatus) { // did player win?
54 puts("Player wins");
55 }
56 else { // player lost
57 puts("Player loses");
58 }
59 }
60
61 // roll dice, calculate sum and display results
62 int rollDice(void) {
63 int die1 = 1 + (rand() % 6); // pick random die1 value
64 int die2 = 1 + (rand() % 6); // pick random die2 value
65
66 // display results of this roll
67 printf("Player rolled %d + %d = %d\n", die1, die2, die1 + die2);
68 return die1 + die2; // return sum of dice
69 }

Player wins on the first roll:

Player rolled 5 + 6 = 11
Player wins

Player wins on a subsequent roll:

Player rolled 4 + 1 = 5
Point is 5
Player rolled 6 + 2 = 8
Player rolled 2 + 1 = 3
Player rolled 3 + 2 = 5
Player wins

Player loses on the first roll:

Player rolled 1 + 1 = 2
Player loses

Player loses on a subsequent roll:

Player rolled 6 + 4 = 10
Point is 10
Player rolled 3 + 4 = 7
Player loses

Fig. 5.7 | Simulating the game of craps. (Part 2 of 2.)

206 Chapter 5 Functions

Enumerations
The game is reasonably involved. The player may win or lose on the first roll or any
subsequent roll. Variable gameStatus, defined to be of a new type—enum Status—
stores the current status. Line 7 creates a new type called an enumeration. An enu-
meration, introduced by the keyword enum, is a set of integer constants represented
by identifiers. Enumeration constants help make programs more readable and easier
to maintain. Values in an enum start with 0 and are incremented by 1. In line 7, the
constant CONTINUE has the value 0, WON has the value 1 and LOST has the value 2. It’s
also possible to assign an integer value to each identifier in an enum (see Chapter 10).
The identifiers in an enumeration must be unique, but the values may be duplicated.
Use only uppercase letters in enum constant names to make them stand out in a pro-
gram and to indicate they are not variables.

When the game is won, gameStatus is set to WON. When the game is lost, gameStatus
is set to LOST. Otherwise, gameStatus is set to CONTINUE, and the game continues.

Game Ends on First Roll
If the game is over after the first roll, gameStatus is not CONTINUE, so the program pro-
ceeds to the if…else statement at lines 53–58, which prints "Player wins" if game-
Status is WON and "Player loses" otherwise.

Game Ends on a Subsequent Roll
After the first roll, if the game is not over, then sum is saved in myPoint. Execution
proceeds with the while statement because gameStatus is CONTINUE. Each time
through the while, rollDice is called to produce a new sum:

• If sum matches myPoint, gameStatus is set to WON, the while loop terminates,
the if…else statement prints "Player wins" and execution terminates.

• If sum is 7 (line 47), gameStatus is set to LOST, the while loop terminates, the
if…else statement prints "Player loses" and execution terminates.

Control Architecture
Note the program’s control architecture. We’ve used two functions—main and roll-
Dice—and the switch, while and nested if…else statements.

Related Exercises
This Building a Casino Game case study is supported by the following exercises:

• Exercise 5.47 (Craps Game Modification).

• Exercise 6.20 (Craps Game Statistics).

Self Check
1 (Fill-In) An enumeration, introduced by the keyword , is a set of integer
constants represented by identifiers.
Answer: enum.

5.12 Storage Classes 207

2 (Fill-In) In the following statement
enum Status {CONTINUE, WON, LOST};

the values of CONTINUE, WON and LOST are , and ,.
Answer: 0, 1 and 2.

5.12 Storage Classes
In Chapters 2–4, we used identifiers for variable names. The attributes of variables
include name, type, size and value. In this chapter, we also use identifiers as names for
user-defined functions. Actually, each identifier in a program has other attributes,
including storage class, storage duration, scope and linkage.

C provides the storage-class specifiers auto, register,5 extern and static.6 A
storage class determines an identifier’s storage duration, scope and linkage. Storage
duration is the period during which an identifier exists in memory. Some exist briefly,
some are repeatedly created and destroyed, and others exist for the entire program exe-
cution. Scope determines where a program can reference an identifier. Some can be ref-
erenced throughout a program, others from only portions of a program. For a multiple-
source-file program, an identifier’s linkage determines whether the identifier is known
only in the current source file or in any source file with proper declarations. This section
discusses storage classes and storage duration, and Section 5.13 discusses scope.
Chapter 15 discusses identifier linkage and programming with multiple source files.

Local Variables and Automatic Storage Duration
The storage-class specifiers are split between automatic storage duration and static
storage duration. The auto keyword declares that a variable has automatic storage
duration. Such variables are created when program control enters the block in which
they’re defined. They exist while the block is active, and they’re destroyed when pro-
gram control exits the block.

Only variables can have automatic storage duration. A function’s local variables—
those declared in the parameter list or function body—have automatic storage dura-
tion by default, so the auto keyword is rarely used. Automatic storage duration is a
means of conserving memory because local variables exist only when they’re needed.
We’ll refer to variables with automatic storage duration simply as local variables.

Static Storage Class
Keywords extern and static declare identifiers for variables and functions with static
storage duration. Identifiers of static storage duration exist from the time at which the
program begins execution until it terminates. For static variables, storage is allo-
cated and initialized only once, before the program begins execution. For functions, the
name of the function exists when the program begins execution. However, even
though these names exist from the start of program execution, they are not always

5. Keyword register is archaic and should not be used.
6. C11 added the storage-class specifier _Thread_local, which is beyond this book’s scope.

PERF

208 Chapter 5 Functions

accessible. Storage duration and scope (where a name can be used) are separate issues,
as we’ll see in Section 5.13.

There are several types of identifiers with static storage duration: external identifiers
(such as global variables and function names) and local variables declared with the stor-
age-class specifier static. Global variables and function names have storage class
extern by default. Global variables are created by placing variable declarations outside
any function definition. They retain their values throughout program execution.
Global variables and functions can be referenced by any function that follows their dec-
larations or definitions in the file. This is one reason for using function prototypes—
when we include stdio.h in a program that calls printf, the function prototype is
placed at the start of our file to make the name printf known to the rest of the file.

Defining a variable as global rather than local allows unintended side effects to
occur when a function that does not need access to the variable accidentally or mali-
ciously modifies it. In general, you should avoid global variables except in situations
with unique performance requirements (as discussed in Chapter 15). Variables used
only in a particular function should be defined as local variables in that function.

Local static variables are still known only in the function in which they’re
defined and retain their value when the function returns. The next time the function
is called, the static local variable contains the value it had when the function last
exited. The following statement declares local variable count to be static and initial-
izes it to 1:

static int count = 1;

All numeric variables of static storage duration are initialized to zero by default if you
do not explicitly initialize them.

Keywords extern and static have special meaning when explicitly applied to
external identifiers. Chapter 15 discusses the explicit use of extern and static with
external identifiers and multiple-source-file programs.

Self Check
1 (Fill-In) Each identifier in a program has attributes, including storage class, stor-
age duration, and .
Answer: scope, linkage.

2 (Multiple Choice) Which of the following statements a), b) or c) is false?
a) An identifier’s storage duration is the period during which the identifier exists

in memory.
b) An identifier’s scope is where the identifier can be referenced in a program.
c) Keyword auto declares variables of automatic storage duration. Such vari-

ables are created when program control enters the block in which they’re de-
fined. They exist while the block is active, and they’re destroyed when
program control exits the block.

d) All of the above statements are true.
Answer: d.

ERR

PERF

5.13 Scope Rules 209

5.13 Scope Rules
The scope of an identifier is the portion of the program in which the identifier can
be referenced. For example, a local variable in a block can be referenced only follow-
ing its definition in that block or in blocks nested within that block. The four iden-
tifier scopes are function scope, file scope, block scope and function-prototype scope.

Function Scope
Labels are identifiers followed by a colon such as start:. Labels are the only identifiers
with function scope. Labels can be used anywhere in the function in which they
appear, but they cannot be referenced outside the function body. Labels are used in
switch statements (as case labels) and in goto statements (see Chapter 15). Labels are
hidden in the function in which they’re defined. This information hiding is a means
of implementing the principle of least privilege—a fundamental principle of good
software engineering. In the context of an application, the principle states that code
should be granted only the amount of privilege and access that it needs to accomplish
its designated task, but no more.

File Scope
An identifier declared outside any function has file scope. Such an identifier is
“known” (i.e., accessible) in all functions from the point at which the identifier is
declared until the end of the file. Global variables, function definitions and function
prototypes placed outside a function all have file scope.

Block Scope
Identifiers defined inside a block have block scope. Block scope ends at the terminat-
ing right brace (}) of the block. Local variables defined at the beginning of a function
have block scope, as do function parameters, which are considered local variables by
the function. Any block may contain variable definitions. When blocks are nested
and an outer block’s identifier has the same name as an inner block’s identifier, the
outer block’s identifier is hidden until the inner block terminates. While executing in
the inner block, the inner block sees its local identifier's value, not the value of the
enclosing block’s identically named identifier. For this reason, you generally should
avoid variable names that hide names in outer scopes. Local variables declared static
still have block scope, even though they exist from before program startup. Thus,
storage duration does not affect the scope of an identifier.

Function-Prototype Scope
The only identifiers with function-prototype scope are those used in the parameter
list of a function prototype. As mentioned previously, function prototypes do not
require names in the parameter list—only types are required. If a name is used in the
parameter list of a function prototype, the compiler ignores it. Identifiers used in a
function prototype can be reused elsewhere in the program without ambiguity.

210 Chapter 5 Functions

Scoping Example
Figure 5.8 demonstrates scoping issues with global variables, local variables and
static local variables. A global variable x is defined and initialized to 1 (line 9). This
global variable is hidden in any block (or function) in which a variable named x is
defined. In main, a local variable x is defined and initialized to 5 (line 12). This vari-
able is then printed to show that the global x is hidden in main. Next, a new block is
defined in main with another local variable x initialized to 7 (line 17). This variable is
printed to show that it hides x in the outer block of main. The variable x with value
7 is automatically destroyed when the block is exited, and the local variable x in the
outer block of main is printed again to show that it’s no longer hidden.

1 // fig05_08.c
2 // Scoping.
3 #include <stdio.h>
4
5 void useLocal(void); // function prototype
6 void useStaticLocal(void); // function prototype
7 void useGlobal(void); // function prototype
8
9 int x = 1; // global variable

10
11 int main(void) {
12 int x = 5; // local variable to main
13
14 printf("local x in outer scope of main is %d\n", x);
15
16 { // start new scope
17 int x = 7; // local variable to new scope
18
19 printf("local x in inner scope of main is %d\n", x);
20 } // end new scope
21
22 printf("local x in outer scope of main is %d\n", x);
23
24 useLocal(); // useLocal has automatic local x
25 useStaticLocal(); // useStaticLocal has static local x
26 useGlobal(); // useGlobal uses global x
27 useLocal(); // useLocal reinitializes automatic local x
28 useStaticLocal(); // static local x retains its prior value
29 useGlobal(); // global x also retains its value
30
31 printf("\nlocal x in main is %d\n", x);
32 }
33
34 // useLocal reinitializes local variable x during each call
35 void useLocal(void) {
36 int x = 25; // initialized each time useLocal is called
37
38 printf("\nlocal x in useLocal is %d after entering useLocal\n", x);
39 ++x;

Fig. 5.8 | Scoping. (Part 1 of 2.)

5.13 Scope Rules 211

The program defines three functions that each take no arguments and return
nothing. Function useLocal defines a local variable x and initializes it to 25 (line 36).
When function useLocal is called, the variable is printed, incremented, and printed
again before exiting the function. Each time this function is called, the local variable
x is reinitialized to 25.

Function useStaticLocal defines a static variable x and initializes it to 50 in line
47 (recall that the storage for static variables is allocated and initialized only once
before the program begins execution). Local variables declared as static retain their

40 printf("local x in useLocal is %d before exiting useLocal\n", x);
41 }
42
43 // useStaticLocal initializes static local variable x only the first time
44 // the function is called; value of x is saved between calls to this
45 // function
46 void useStaticLocal(void) {
47 static int x = 50; // initialized once
48
49 printf("\nlocal static x is %d on entering useStaticLocal\n", x);
50 ++x;
51 printf("local static x is %d on exiting useStaticLocal\n", x);
52 }
53
54 // function useGlobal modifies global variable x during each call
55 void useGlobal(void) {
56 printf("\nglobal x is %d on entering useGlobal\n", x);
57 x *= 10;
58 printf("global x is %d on exiting useGlobal\n", x);
59 }

local x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 50 on entering useStaticLocal
local static x is 51 on exiting useStaticLocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

local x in useLocal is 25 after entering useLocal
local x in useLocal is 26 before exiting useLocal

local static x is 51 on entering useStaticLocal
local static x is 52 on exiting useStaticLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 5.8 | Scoping. (Part 2 of 2.)

212 Chapter 5 Functions

values even when they’re out of scope. When useStaticLocal is called, x is printed,
incremented, and printed again before exiting the function. In the next call to this
function, the static local variable x will contain the previously incremented value 51.

Function useGlobal does not define any variables, so when it refers to variable x,
the global x (line 9) is used. When useGlobal is called, the global variable is printed,
multiplied by 10, and printed again before exiting the function. The next time function
useGlobal is called, the global variable still has its modified value, 10. Finally, the pro-
gram prints the local variable x in main again (line 31) to show that none of the function
calls modified x’s value because the functions all referred to variables in other scopes.

Self Check
1 (Fill-In) The of an identifier is the portion of the program in which the
identifier can be referenced. For example, a local variable in a block can be referenced
only following its definition in that block or in blocks nested within that block.
Answer: scope.

2 (True/False) Any block may contain variable definitions. When blocks are nested
and an outer block’s identifier has the same name as an inner block’s identifier, the
inner block’s identifier is hidden until the outer block terminates.
Answer: False. Actually, when blocks are nested and an outer block’s identifier has the
same name as an inner block’s identifier, the outer block’s identifier is hidden until
the inner block terminates.

5.14 Recursion
For some types of problems, it’s actually useful to have functions call themselves. A
recursive function is one that calls itself either directly or indirectly through another
function. Recursion is a complex topic discussed at length in upper-level computer
science courses. In this section and the next, we present simple recursion examples.
We present an extensive treatment of recursion, which is spread throughout
Chapters 5–8, 12 and 13. The table in Section 5.16 summarizes the book’s recursion
examples and exercises.

Base Cases and Recursive Calls
We consider recursion conceptually first, then examine several programs containing
recursive functions. Recursive problem-solving approaches have several elements in
common. A recursive function is called to solve a problem. The function actually
knows how to solve only the simplest case(s), or so-called base case(s). If the function
is called with a base case, it simply returns a result. When called with a more complex
problem, the function typically divides the problem into two conceptual pieces:

• one that the function knows how to do, and

• one that it does not know how to do.

To make recursion feasible, the latter piece must resemble the original problem, but
be a slightly simpler or smaller version. Because this new problem looks like the orig-

5.14 Recursion 213

inal problem, the function launches (calls) a fresh copy of itself to work on the smaller
problem—this is referred to as a recursive call or the recursion step. The recursion
step also includes a return statement, because its result will be combined with the
portion of the problem the function knew how to solve to form a result that will be
passed back to the original caller.

The recursion step executes while the original call to the function is paused, wait-
ing for the result from the recursion step. The recursion step can result in many more
such recursive calls, as the function keeps dividing each problem with which it’s called
into two conceptual pieces. For the recursion to terminate, each time the function
calls itself with a slightly simpler version of the original problem, this sequence of
smaller problems must eventually converge on the base case. When the function recog-
nizes the base case, it returns a result to the previous copy of the function, and a
sequence of returns ensues all the way up the line until the original call of the function
eventually returns the final result to its caller. As an example of these concepts at
work, let’s write a recursive program to perform a popular mathematical calculation.

Recursively Calculating Factorials
The factorial of a nonnegative integer n, written n! (pronounced “n factorial”), is the
product

n · (n – 1) · (n – 2) · … · 1

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5 * 4 * 3 *
2 * 1, which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated
iteratively (nonrecursively) using a for statement as follows:

unsigned long long int factorial = 1;

for (int counter = number; counter > 1; --counter)
factorial *= counter;

A recursive definition of the factorial function is arrived at by observing the fol-
lowing relationship:

n! = n · (n – 1)!

For example, 5! is clearly equal to 5 * 4! as shown by the following:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

Evaluating 5! Recursively
The evaluation of 5! would proceed as shown in the following diagram. Part (a) of the
following diagram shows how the succession of recursive calls proceeds until 1! is
evaluated to be 1 (i.e., the base case), terminating the recursion. Part (b) shows the
values returned from each recursive call to its caller until the final value is calculated
and returned.

214 Chapter 5 Functions

Implementing Recursive Factorial Calculations
Figure 5.9 uses recursion to calculate and print the factorials of the integers 0–21 (the
choice of the type unsigned long long int will be explained momentarily).

v

1 // fig05_09.c
2 // Recursive factorial function.
3 #include <stdio.h>
4
5 unsigned long long int factorial(int number);
6
7 int main(void) {
8 // calculate factorial(i) and display result
9 for (int i = 0; i <= 21; ++i) {

10 printf("%d! = %llu\n", i, factorial(i));
11 }
12 }
13
14 // recursive definition of function factorial
15 unsigned long long int factorial(int number) {
16 if (number <= 1) { // base case
17 return 1;
18 }
19 else { // recursive step
20 return (number * factorial(number - 1));
21 }
22 }

Fig. 5.9 | Recursive factorial function. (Part 1 of 2.)

a) Sequence of recursive calls

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

b) Values returned from each recursive call

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

3! = 3 * 2 = 6 is returned

2! = 2 * 1 = 2 is returned

1 is returned

5 * 4!

4 * 3!

3 * 2!

2 * 1!

5!

1

5.14 Recursion 215

Function factorial
The recursive factorial function first tests whether a terminating condition is true,
i.e., whether number is less than or equal to 1. If number is indeed less than or equal to
1, factorial returns 1, no further recursion is necessary, and the program terminates.
If number is greater than 1, the statement

return number * factorial(number - 1);

expresses the problem as the product of number and a recursive call to factorial eval-
uating the factorial of number - 1. The call factorial(number - 1) is a slightly simpler
problem than the original calculation factorial(number).

Omitting the base case or writing the recursion step incorrectly so that it does not
converge on the base case will cause infinite recursion, eventually exhausting mem-
ory. This is analogous to the problem of an infinite loop in an iterative (nonrecursive)
solution, though infinite loops do not typically exhaust memory.

Factorials Become Large Quickly
Function factorial (lines 15–22) receives an int and returns an unsigned long long
int. The C standard specifies that a variable of type unsigned long long int can hold
a value at least as large as 18,446,744,073,709,551,615. As can be seen in Fig. 5.9, fac-
torial values become large quickly. We’ve chosen the data type unsigned long long int
so the program can calculate larger factorial values. The conversion specification %llu
is used to print unsigned long long int values. Unfortunately, the factorial function
produces large values so quickly that even unsigned long long int does not help us
print many factorial values, because that type’s maximum value is quickly exceeded.

0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 14197454024290336768

Fig. 5.9 | Recursive factorial function. (Part 2 of 2.)

ERR

216 Chapter 5 Functions

Integer Types Have Limitations
Even when we use unsigned long long int, we still can’t calculate factorials beyond
21! This points to a weakness in procedural programming languages like C—the lan-
guage is not easily extended to handle the unique requirements of various applica-
tions. Object-oriented languages like C++ are extensible. Through a language feature
called classes, programmers can create new data types, even ones that could hold arbi-
trarily large integers.

Self Check
1 (Fill-In) Omitting the base case or writing the recursion step incorrectly so that
it does not converge on the base case will cause , eventually exhausting mem-
ory.
Answer: infinite recursion.

2 (Fill-In) The following code should iteratively calculate the factorial of an integer,
number, but the code contains a bug:

unsigned long long int factorial = 1;

for (int counter = number; counter >= 1; --counter)
factorial * counter;

You can correct the bug by changing to .
Answer: *, *=.

5.15 Example Using Recursion: Fibonacci Series
The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and has the property that each subsequent Fibonacci number is
the sum of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio
of successive Fibonacci numbers converges to a constant value of 1.618…. This num-
ber, too, repeatedly occurs in nature and has been called the golden ratio or the golden
mean. Humans tend to find the golden mean aesthetically pleasing. Architects often
design windows, rooms and buildings whose length and width are in the ratio of the
golden mean. Postcards are often designed with a golden mean length/width ratio.

The Fibonacci series may be defined recursively as follows:

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

Figure 5.10 calculates the nth Fibonacci number recursively using function fibo-
nacci. Fibonacci numbers tend to become large quickly. So, we’ve chosen the data
type unsigned long long int for the return type in function fibonacci.

5.15 Example Using Recursion: Fibonacci Series 217

The fibonacci calls from main are not recursive (lines 10 and 13–15), but all sub-
sequent calls to fibonacci are recursive (line 24). Each time fibonacci is invoked, it
immediately tests for the base case—n is equal to 0 or 1. If this is true, n is returned.
Interestingly, if n is greater than 1, the recursion step generates two recursive calls,
each a slightly simpler problem than the original call to fibonacci. The following dia-
gram shows how function fibonacci would evaluate fibonacci(3):

1 // fig05_10.c
2 // Recursive fibonacci function.
3 #include <stdio.h>
4
5 unsigned long long int fibonacci(int n); // function prototype
6
7 int main(void) {
8 // calculate and display fibonacci(number) for 0-10
9 for (int number = 0; number <= 10; number++) {

10 printf("Fibonacci(%d) = %llu\n", number, fibonacci(number));
11 }
12
13 printf("Fibonacci(20) = %llu\n", fibonacci(20));
14 printf("Fibonacci(30) = %llu\n", fibonacci(30));
15 printf("Fibonacci(40) = %llu\n", fibonacci(40));
16 }
17
18 // Recursive definition of function fibonacci
19 unsigned long long int fibonacci(int n) {
20 if (0 == n || 1 == n) { // base case
21 return n;
22 }
23 else { // recursive step
24 return fibonacci(n - 1) + fibonacci(n - 2);
25 }
26 }

Fibonacci(0) = 0
Fibonacci(1) = 1
Fibonacci(2) = 1
Fibonacci(3) = 2
Fibonacci(4) = 3
Fibonacci(5) = 5
Fibonacci(6) = 8
Fibonacci(7) = 13
Fibonacci(8) = 21
Fibonacci(9) = 34
Fibonacci(10) = 55
Fibonacci(20) = 6765
Fibonacci(30) = 832040
Fibonacci(40) = 102334155

Fig. 5.10 | Recursive fibonacci function.

218 Chapter 5 Functions

Order of Evaluation of Operands
This figure raises some interesting issues about the order in which C compilers will
evaluate operators’ operands. This is a different issue from the order in which opera-
tors are applied to their operands—that is, the order dictated by the rules of operator
precedence and grouping. The preceding diagram shows that while evaluating fibo-
nacci(3), two recursive calls will be made, namely fibonacci(2) and fibonacci(1).
But in what order will these calls be made? You might simply assume the operands
will be evaluated left-to-right. For optimization reasons, C does not specify the order
in which the operands of most operators (including +) are to be evaluated. Therefore,
you should make no assumption about the order in which these calls will execute. The
calls could execute fibonacci(2) first and then fibonacci(1), or the calls could exe-
cute in the reverse order, fibonacci(1) then fibonacci(2). In this and most other
programs, the final result would be the same. But in some programs, the evaluation
of an operand may have side effects that could affect the final result of the expression.

Operators for which Operand Evaluation Order Is Specified
C specifies the operand evaluation order of only four operators—&&, ||, the comma
(,) operator and ?:. The first three are binary operators whose operands are guaran-
teed to be evaluated left-to-right. [Note: The commas used to separate the arguments
in a function call are not comma operators.] The last operator is C’s only ternary oper-
ator. Its leftmost operand is always evaluated first. If the leftmost operand evaluates
to nonzero (true), the middle operand is evaluated next, and the last operand is
ignored. If the leftmost operand evaluates to zero (false), the third operand is evalu-
ated next, and the middle operand is ignored.

Exponential Complexity
A word of caution is in order about recursive programs like the one we use here to
generate Fibonacci numbers. Each level of recursion in the fibonacci function has a
doubling effect on the number of calls. The number of recursive calls that execute to
calculate the nth Fibonacci number is "on the order of 2n." This rapidly gets out of
hand. Calculating only the 20th Fibonacci number would require on the order of 220

or about a million calls, calculating the 30th Fibonacci number would require on the

+

fibonacci(3)

fibonacci(2) fibonacci(1)return +

fibonacci(1) fibonacci(0) 1

01

return return

return return

5.16 Recursion vs. Iteration 219

order of 230 or about a billion calls, and so on. Computer scientists refer to this as
exponential complexity. Problems of this nature can humble even the world’s most
powerful computers! Complexity issues in general, and exponential complexity in
particular, are discussed in detail in the upper-level computer-science course generally
called “Algorithms.”

The example we showed in this section used an intuitively appealing solution to
calculate Fibonacci numbers, but there are better approaches. Exercise 5.48 asks you
to investigate recursion in more depth and propose alternate approaches to imple-
menting the recursive Fibonacci algorithm.

Self Check
1 (True/False) For optimization reasons, C specifies the order in which the oper-
ands of most operators (including +) are to be evaluated.
Answer: False. For optimization reasons, C does not specify the order in which the op-
erands of most operators (including +) are to be evaluated. C specifies the order of eval-
uation of the operands of only four operators—&&, ||, the comma (,) operator and ?:.

2 (Multiple Choice) Consider the code in Fig. 5.10, which implements a recursive
fibonacci function. Which of the following statements a), b) or c) is false?

a) All fibonacci calls in Fig. 5.10 are recursive calls.
b) Each time fibonacci is invoked, it immediately tests for the base case—n is

equal to 0 or 1. If this is true, n is returned.
c) If n is greater than 1, the recursion step generates two recursive calls, each a

slightly simpler problem than the original call to fibonacci.
d) All of the above statements are true.

Answer: a) is false. Actually, the calls to fibonacci from main are not recursive calls,
but all subsequent calls to fibonacci are recursive (line 24).

5.16 Recursion vs. Iteration
In the previous sections, we studied two functions that can easily be implemented
either recursively or iteratively. This section compares the two approaches and dis-
cusses why you might choose one approach over the other.

Common Features of Iteration and Recursion
• Both iteration and recursion are based on a control statement: Iteration uses an

iteration statement; recursion uses a selection statement.

• Both iteration and recursion involve repetition: Iteration uses an iteration state-
ment; recursion achieves repetition through repeated function calls.

• Iteration and recursion each have a termination test: Iteration terminates when
the loop-continuation condition fails; recursion when a base case is recognized.

• Counter-controlled iteration and recursion both gradually approach termina-
tion: Iteration keeps modifying a counter until the counter assumes a value

220 Chapter 5 Functions

that makes the loop-continuation condition fail; recursion keeps producing
simpler versions of the original problem until the base case is reached.

• Both iteration and recursion can occur infinitely: An infinite loop occurs with
iteration if the loop-continuation test never becomes false; infinite recursion
occurs if the recursion step does not reduce the problem each time in a manner
that converges on the base case. Infinite iteration and recursion typically occur
as a result of errors in a program’s logic.

Negatives of Recursion
Recursion has many negatives. It repeatedly invokes the mechanism, and consequently
the overhead, of function calls. This can be expensive in both processor time and
memory space. Each recursive call causes another copy of the function (actually only
the function’s variables) to be created; this can consume considerable memory. Iteration
normally occurs within a function, so the overhead of repeated function calls and
extra memory assignment is omitted. So why choose recursion?

Recursion Is Not Required
Any problem that can be solved recursively can also be solved iteratively (nonrecur-
sively). A recursive approach is chosen in preference to an iterative approach when the
recursive approach more naturally mirrors the problem and results in a program that’s
easier to understand and debug. Another reason to choose a recursive solution is that
an iterative solution may not be apparent.

Recursion Examples and Exercises Throughout This Book
Most programming textbooks introduce recursion much later than we’ve done here.
We feel that recursion is such a sufficiently rich and complex topic that it’s better to
introduce it earlier and spread the examples over the remainder of the text. The fol-
lowing table summarizes by chapter the recursion examples and exercises in the text.

Recursion examples and exercises

Chapter 5
Factorial function
Fibonacci function
Greatest common divisor
Multiply two integers
Raising an integer to an inte-

ger power
Towers of Hanoi
Recursive main
Visualizing recursion

Chapter 6
Sum the elements of an array
Print an array

Print an array backward
Print a string backward
Check whether a string is a

palindrome
Minimum value in an array
Linear search
Binary search
Eight Queens

Chapter 7
Maze traversal

Chapter 8
Printing a string input at the

keyboard backward

Chapter 12
Search a linked list
Print a linked list backward
Binary tree insert
Preorder traversal of a binary

tree
Inorder traversal of a binary tree
Postorder traversal of a binary

tree
Printing trees

Chapter 13
Selection sort
Quicksort

5.16 Recursion vs. Iteration 221

Closing Observations
Let’s close this discussion with some observations that we make repeatedly through-
out the book. Good software engineering is important, and high performance is
important. So, we’ve included extensive software-engineering and performance tips
throughout the book. Unfortunately, these goals are often at odds with one another.
Good software engineering is key to making more manageable the task of developing
the larger and more complex software systems we need. High performance is key to
realizing the systems of the future that will place ever greater computing demands on
hardware. Where do functions fit in here?

Software Engineering
Dividing a large program into functions promotes good software engineering. But it
has a price. A heavily functionalized program—compared to a monolithic (i.e., one-
piece) program without functions—makes potentially large numbers of function
calls. These consume execution time on a computer’s processor(s). Although mono-
lithic programs may perform better, they’re more difficult to program, test, debug,
maintain and evolve.

Performance
Today’s hardware architectures are tuned to make function calls efficient. C compil-
ers help optimize your code, and today’s hardware processors and multicore architec-
ture are incredibly fast. For the vast majority of applications and software systems
you’ll build, concentrating on good software engineering will be more important
than high-performance programming. Nevertheless, in many applications and sys-
tems, such as game programming, real-time systems, operating systems and embed-
ded systems, performance is crucial, so we include performance tips throughout the
book.

Self Check
1 (True/False) Dividing a large program into functions promotes good software
engineering. But a heavily functionalized program—compared to a monolithic (i.e.,
one-piece) program without functions—makes a potentially large number of func-
tion calls. These consume execution time on a computer’s processor(s). Although
monolithic programs may perform better, they’re more difficult to program, test,
debug, maintain and evolve.
Answer: True.

2 (Multiple Choice) Which of the following statements is false?
a) Recursion repeatedly invokes the mechanism, and consequently the over-

head, of function calls. This can be expensive in both processor time and
memory space.

b) Each recursive call causes another copy of the function’s statements and vari-
ables to be created; this can consume considerable memory.

SE

PERF

222 Chapter 5 Functions

c) Iteration normally occurs within a function, so the overhead of repeated
function calls and extra memory assignment is omitted.

d) A recursive approach is chosen in preference to an iterative approach when
the recursive approach more naturally mirrors the problem and results in a
program that’s easier to understand and debug.

Answer: b) is false. Actually, each recursive call causes another copy of only the func-
tion’s variables to be created.

5.17 Secure C Programming—Secure Random-
Number Generation
In Section 5.10, we introduced the rand function for generating pseudorandom
numbers. This function is sufficient for textbook examples but is not meant for use
in industrial-strength applications. According to the C standard document’s descrip-
tion of function rand, “There are no guarantees as to the quality of the random
sequence produced and some implementations are known to produce sequences with
distressingly non-random low-order bits.” The CERT guideline MSC30-C indicates
that implementation-specific random-number generation functions must be used to
ensure that the random numbers produced are not predictable—this is extremely
important, for example, in cryptography and other security applications.

The guideline presents several platform-specific random-number generators that
are considered to be secure. For more information, see guideline MSC30-C at
https://wiki.sei.cmu.edu/. If you’re building industrial-strength applications that
require random numbers, you should investigate for your platform the recommended
function(s) to use. For example:

• Microsoft Windows provides the BCryptGenRandom function, which is part of
Microsoft’s “Cryptography API: Next Generation:”
 https://docs.microsoft.com/en-us/windows/win32/seccng/cng-portal

• POSIX-based systems (such as Linux) provide a random function, which you
can learn more about by executing the following command in a Terminal or
shell:
 man random

• MacOS’s stdlib.h header provides the arc4random function, which you can
learn more about by executing the following command in a macOS Terminal:
 man arc4random

Self Check
1 (True/False) The CERT guideline MSC30-C indicates that implementation-spe-
cific random-number generation functions must be used to ensure that the random
numbers produced are predictable—this is extremely important, for example, in
cryptography and other security applications.

SEC

https://wiki.sei.cmu.edu/
https://docs.microsoft.com/en-us/windows/win32/seccng/cng-portal

 Summary 223

Answer: False. Actually, the CERT guideline MSC30-C indicates that implementa-
tion-specific random-number generation functions must be used to ensure that the
random numbers produced are not predictable.

Summary
Section 5.1 Introduction
• The best way to develop and maintain a large program is to divide (p. 180) it into several

smaller pieces, each more manageable than the original program.

Section 5.2 Modularizing Programs in C
• A function (p. 180) is invoked by a function call (p. 181), which specifies the function

name and provides information (as arguments) that the function needs to perform its task.

Section 5.3 Math Library Functions
• A function is invoked by writing its name followed by a left parenthesis, the argument (or

a comma-separated list of arguments) and a right parenthesis.
• Each argument may be a constant, a variable or an expression.

Section 5.4 Functions
• There are several motivations for “functionalizing” a program. The divide-and-conquer ap-

proach makes program development more manageable. Another is building new programs
by using existing functions. Such software reusability is a key concept in object-oriented
programming languages derived from C, such as C++, Java, C# (pronounced “C sharp”),
Objective-C and Swift.

• With good function naming and definition, you can create programs from standardized
functions that accomplish specific tasks, rather than custom code. This is known as abstrac-
tion. We use abstraction each time we use standard library functions like printf, scanf and
pow. A third motivation is to avoid repeating code in a program. Packaging code as a func-
tion allows it to be executed from other program locations by calling that function.

Section 5.5 Function Definitions
• The arguments passed to a function should match in number, type and order with the pa-

rameters (p. 185) in the function definition.
• When a program encounters a function call, control transfers from the point of invocation to

the called function, the statements of that function execute, then control returns to the caller.
• A called function can return control to the caller in one of three ways. If the function does

not return a value, control is returned when the function-ending right brace is reached, or
by executing the statement

return;

If the function does return a value, the statement

return expression;

returns the value of expression.
• A local variable (p. 185) is known only in a function definition. Other functions are not

allowed to know the names of a function’s local variables, nor is any function allowed to
know the implementation details of any other function.

224 Chapter 5 Functions

• A function prototype (p. 185) declares the function’s name, its return type and the number,
types and order of the parameters the function expects to receive.

• The general format for a function definition is

return-value-type function-name(parameter-list) {
 statements
}

If a function does not return a value, the return-value-type is declared as void. The function-
name is any valid identifier. The parameter-list (p. 186) is a comma-separated list containing
the definitions of the variables that will be passed to the function. If a function does not
receive any values, parameter-list is declared as void.

Section 5.6 Function Prototypes: A Deeper Look
• Function prototypes enable the compiler to verify that functions are called correctly.
• The compiler ignores variable names mentioned in the function prototype.
• The C standard’s usual arithmetic-conversion rules (p. 189) determine how arguments in

a mixed-type expression (p. 190) are converted to the same type.

Section 5.7 Function-Call Stack and Stack Frames
• Stacks (p. 191) are known as last-in, first-out (LIFO; p. 191) data structures—the last item

pushed (inserted) onto the stack is the first item popped (removed) from the stack.
• A called function must know how to return to its caller, so the return address of the calling

function is pushed onto the program execution stack (p. 191) when the function is called. If
a series of function calls occurs, the successive return addresses are pushed onto the stack in
last-in, first-out order so that the last function to execute will be the first to return to its caller.

• The program execution stack contains the memory for the local variables used in each func-
tion invocation during a program’s execution. This data is known as the stack frame (p. 191)
of the function call. When a function call is made, the stack frame for that function call is
pushed onto the program execution stack. When the function returns to its caller, the stack
frame is popped off the stack and those local variables are no longer known to the program.

• If there are more function calls than can have their stack frames stored on the program ex-
ecution stack, an error known as a stack overflow occurs.

Section 5.8 Headers
• Each standard library has a corresponding header (p. 195) containing the function proto-

types for that library’s functions.
• You can create and include your own headers.

Section 5.9 Passing Arguments by Value and by Reference
• When an argument is passed by value (p. 197), a copy is made and passed to the called func-

tion. Changes to the copy do not affect the original variable’s value in the caller.
• When an argument is passed by reference (p. 197), the caller allows the called function to

modify the original variable’s value.
• All calls in C are pass-by-value by default.

Section 5.10 Random-Number Generation
• Function rand generates an integer between 0 and RAND_MAX which is defined by the C stan-

dard to be at least 32767.

 Summary 225

• Values produced by rand can be scaled and shifted to produce values in a specific range
(p. 198).

• To randomize a program, use the C standard library function srand.
• The srand function seeds (p. 200) the random-number generator. An srand call is ordinari-

ly inserted in a program only after it has been thoroughly debugged. This ensures repeat-
ability, which is essential to proving that corrections to a random-number generation
program work properly.

• The function prototypes for rand and srand are contained in <stdlib.h>.
• To randomize without the need for entering a seed each time, we use srand(time(NULL)).
• The general equation for scaling and shifting a random number is

int n = a + rand() % b;

where a is the shifting value (i.e., the first number in the desired range of consecutive inte-
gers) and b is the scaling factor (i.e., the width of the desired range of consecutive integers).

Section 5.11 Example: A Game of Chance; Introducing enum
• An enumeration (p. 206), introduced by the keyword enum, is a set of integer constants.

Values in an enum start with 0 and are incremented by 1. You also can assign an integer to
each identifier in an enum. The identifiers in an enumeration must be unique, but the values
may be duplicated.

Section 5.12 Storage Classes
• Each identifier in a program has the attributes storage class, storage duration, scope and

linkage (p. 207).
• C provides four storage classes indicated by the storage class specifiers: auto, register, ex-
tern and static (p. 207).

• An identifier’s storage duration is when that identifier exists in memory.
• An identifier’s linkage (p. 207) determines for a multiple-source-file program whether an

identifier is known only in the current source file or in any source file with proper declarations.
• A function’s local variables have automatic storage duration (p. 207)—they’re created

when program control enters the block in which they’re defined, exist while the block is ac-
tive and are destroyed when program control exits the block.

• Keywords extern and static declare identifiers for variables and functions of static storage
duration. Static storage duration (p. 207) variables are allocated and initialized once, before
the program begins execution.

• There are two types of identifiers with static storage duration: external identifiers (such as
global variables and function names) and local variables declared with the storage-class
specifier static.

• Global variables are created by placing variable definitions outside any function definition.
Global variables retain their values throughout the program execution.

• Local static variables retain their value between calls to the function in which they’re de-
fined.

• All numeric variables of static storage duration are initialized to zero by default.

Section 5.13 Scope Rules
• An identifier’s scope (p. 209) is where the identifier can be referenced in a program.

226 Chapter 5 Functions

• The purpose of information hiding is to give functions access only to the information they
need to complete their tasks. This is a means of implementing the principle of least privilege.

• An identifier can have function scope, file scope, block scope or function-prototype scope
(p. 209).

• Labels are the only identifiers with function scope. Labels can be used anywhere in the func-
tion in which they appear but cannot be referenced outside the function body.

• An identifier declared outside any function has file scope. Such an identifier is “known” in
all functions from the point at which it’s declared until the end of the file.

• Identifiers defined inside a block have block scope. Block scope ends at the terminating
right brace (}) of the block.

• Local variables have block scope, as do function parameters, which are local variables.
• Any block may contain variable definitions. When blocks are nested, and an identifier in an

outer block has the same name as an identifier in an inner block, the identifier in the outer
block is “hidden” until the inner block terminates.

• The only identifiers with function-prototype scope are those used in the parameter list of a
function prototype.

Section 5.14 Recursion
• A recursive function (p. 212) is a function that calls itself either directly or indirectly.
• If a recursive function is called with a base case (p. 212), the function simply returns a re-

sult. If it’s called with a more complex problem, it divides the problem into two conceptual
pieces: a piece that the function knows how to do and a slightly smaller version of the orig-
inal problem. Because this new problem looks like the original, the function launches a re-
cursive call to work on the smaller problem.

• For recursion to terminate, each time the recursive function calls itself with a slightly sim-
pler version of the original problem, the sequence of smaller and smaller problems must
converge on the base case. When the function recognizes the base case, the result is returned
to the previous function call, and a sequence of returns ensues all the way up the line until
the original call of the function eventually returns the final result.

• Standard C does not specify the order in which the operands of most operators (including
+) are to be evaluated. Of C’s many operators, the standard specifies the order of evaluation
of the operands of only the operators &&, ||, the comma (,) operator and ?:. The first three
of these are binary operators whose two operands are evaluated left-to-right. The last oper-
ator is C’s only ternary operator. Its leftmost operand is evaluated first; if it evaluates to non-
zero, the middle operand is evaluated next and the last operand is ignored; if the leftmost
operand evaluates to zero, the third operand is evaluated next and the middle operand is
ignored.

Section 5.16 Recursion vs. Iteration
• Both iteration and recursion are based on a control structure: Iteration uses an iteration

statement; recursion uses a selection statement.
• Both iteration and recursion involve repetition: Iteration uses an iteration statement; recur-

sion achieves repetition through repeated function calls.
• Iteration and recursion each involve a termination test: Iteration terminates when the loop-

continuation condition fails; recursion terminates when a base case is recognized.

 Self-Review Exercises 227

• Iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the
loop-continuation test never becomes false; infinite recursion occurs if the recursion step
does not reduce the problem in a manner that converges on the base case.

• Recursion repeatedly invokes the mechanism, and consequently the overhead, of function
calls. This can be expensive in both processor time and memory space.

Self-Review Exercises
5.1 Answer each of the following:

a) are used to modularize programs.
b) A function is invoked with a(n) .
c) A variable known only within the function in which it’s defined is called

a(n) .
d) The statement is used to pass an expression’s value back to a calling

function.
e) Keyword is used in a function header to indicate that a function

does not return a value or to indicate that a function contains no parameters.
f) The of an identifier is the portion of the program in which the

identifier can be used.
g) The three ways to return control from a called function to a caller are

, and .
h) A(n) allows the compiler to check the number, types, and order of

the arguments passed to a function.
i) The function is used to produce random numbers.
j) The function is used to set the random number seed to randomize

a program.
k) The storage-class specifiers are , , and .
l) Variables declared in a block or in the parameter list of a function have stor-

age class , unless specified otherwise.
m)A non-static variable defined outside any block or function is a(n)

variable.
n) For a local variable in a function to retain its value between calls to the func-

tion, it must be declared with the storage-class specifier.
o) The four identifier scopes are , , and .
p) A function that calls itself either directly or indirectly is a(n) func-

tion.
q) A recursive function typically has two components: one that provides a

means for the recursion to terminate by testing for a(n) case, and
one that expresses the problem as a recursive call for a slightly simpler prob-
lem than the original call.

5.2 Consider the following program:

1 #include <stdio.h>
2 int cube(int y);
3

228 Chapter 5 Functions

State the scope (function scope, file scope, block scope or function-prototype scope)
of each of the following elements:

a) The variable x in main.
b) The variable y in cube.
c) The function cube.
d) The function main.
e) The function prototype for cube.
f) The identifier y in the function prototype for cube.

5.3 Write a program that tests whether the examples of the math library function
calls shown in the table of Section 5.3 actually produce the indicated results.

5.4 Give the function header for each of the following functions:
a) Function hypotenuse that takes two double arguments, side1 and side2,

and returns a double result.
b) Function smallest that takes three integers, x, y, z, and returns an integer.
c) Function instructions that does not receive any arguments and does not

return a value.
d) Function intToFloat that takes an integer argument, number, and returns a

float.

5.5 Give the function prototype for each of the following:
a) The function described in Exercise 5.4(a).
b) The function described in Exercise 5.4(b).
c) The function described in Exercise 5.4(c).
d) The function described in Exercise 5.4(d).

5.6 Write a declaration for floating-point variable lastValue that’s to retain its val-
ue between calls to the function in which it’s defined.

5.7 Find the error in each of the following program segments and explain how the
error can be corrected (see also Exercise 5.46):

a) int g(void) {

 printf("%s", "Inside function g\n");

 int h(void) {

 printf("%s", "Inside function h\n");
 }

}

4 int main(void) {
5 for (int x = 1; x <= 10; ++x) {
6 printf("%d\n", cube(x));
7 }
8 }
9

10 int cube(int y) {
11 return y * y * y;
12 }

 Answers to Self-Review Exercises 229

b) int sum(int x, int y) {

 int result = x + y;

}
c) void f(float a); {

 float a;

 printf("%f", a);

}
d) int sum(int n) {

 if (0 == n) {

 return 0;

 }

 else {

 n + sum(n - 1);

 }

}
e) void product(void) {

 printf("%s", "Enter three integers: ")
 int a;

 int b;

 int c;

 scanf("%d%d%d", &a, &b, &c);

 int result = a * b * c;

 printf("Result is %d", result);

 return result;

}

Answers to Self-Review Exercises
5.1 a) functions. b) function call. c) local variable. d) return. e) void. f) scope.
g) return; or return expression; or encountering the closing right brace of a func-
tion. h) function prototype. i) rand. j) srand. k) auto, register, extern, static.
l) auto. m) external, global. n) static. o) function scope, file scope, block scope,
function-prototype scope. p) recursive. q) base.

5.2 a) Block scope. b) Block scope. c) File scope. d) File scope. e) File scope.
f) Function-prototype scope.

5.3 See below. [Note: On most Linux systems, you must use the -lm option when
compiling this program.]

1 // ex05_03.c
2 // Testing the math library functions
3 #include <stdio.h>
4 #include <math.h>
5

230 Chapter 5 Functions

6 int main(void) {
7 // calculates and outputs the square root
8 printf("sqrt(%.1f) = %.1f\n", 900.0, sqrt(900.0));
9 printf("sqrt(%.1f) = %.1f\n", 9.0, sqrt(9.0));

10
11 // calculates and outputs the cube root
12 printf("cbrt(%.1f) = %.1f\n", 27.0, cbrt(27.0));
13 printf("cbrt(%.1f) = %.1f\n", -8.0, cbrt(-8.0));
14
15 // calculates and outputs the exponential function e to the x
16 printf("exp(%.1f) = %f\n", 1.0, exp(1.0));
17 printf("exp(%.1f) = %f\n", 2.0, exp(2.0));
18
19 // calculates and outputs the logarithm (base e)
20 printf("log(%f) = %.1f\n", 2.718282, log(2.718282));
21 printf("log(%f) = %.1f\n", 7.389056, log(7.389056));
22
23 // calculates and outputs the logarithm (base 10)
24 printf("log10(%.1f) = %.1f\n", 1.0, log10(1.0));
25 printf("log10(%.1f) = %.1f\n", 10.0, log10(10.0));
26 printf("log10(%.1f) = %.1f\n", 100.0, log10(100.0));
27
28 // calculates and outputs the absolute value
29 printf("fabs(%.1f) = %.1f\n", 13.5, fabs(13.5));
30 printf("fabs(%.1f) = %.1f\n", 0.0, fabs(0.0));
31 printf("fabs(%.1f) = %.1f\n", -13.5, fabs(-13.5));
32
33 // calculates and outputs ceil(x)
34 printf("ceil(%.1f) = %.1f\n", 9.2, ceil(9.2));
35 printf("ceil(%.1f) = %.1f\n", -9.8, ceil(-9.8));
36
37 // calculates and outputs floor(x)
38 printf("floor(%.1f) = %.1f\n", 9.2, floor(9.2));
39 printf("floor(%.1f) = %.1f\n", -9.8, floor(-9.8));
40
41 // calculates and outputs pow(x, y)
42 printf("pow(%.1f, %.1f) = %.1f\n", 2.0, 7.0, pow(2.0, 7.0));
43 printf("pow(%.1f, %.1f) = %.1f\n", 9.0, 0.5, pow(9.0, 0.5));
44
45 // calculates and outputs fmod(x, y)
46 printf("fmod(%.3f, %.3f) = %.3f\n", 13.657, 2.333,
47 fmod(13.657, 2.333));
48
49 // calculates and outputs sin(x)
50 printf("sin(%.1f) = %.1f\n", 0.0, sin(0.0));
51
52 // calculates and outputs cos(x)
53 printf("cos(%.1f) = %.1f\n", 0.0, cos(0.0));
54
55 // calculates and outputs tan(x)
56 printf("tan(%.1f) = %.1f\n", 0.0, tan(0.0));
57 }

 Answers to Self-Review Exercises 231

5.4 See the answers below:
a) double hypotenuse(double side1, double side2)
b) int smallest(int x, int y, int z)
c) void instructions(void)
d) float intToFloat(int number)

5.5 See the answers below:
a) double hypotenuse(double side1, double side2);
b) int smallest(int x, int y, int z);
c) void instructions(void);
d) float intToFloat(int number);

5.6 static float lastValue;

5.7 See the answers below:
a) Error: Function h is defined in function g.

Correction: Move the definition of h out of the definition of g.
b) Error: The function body is supposed to return an integer, but does not.

Correction: Replace the statement in the function body with:
return x + y;

c) Error: Semicolon after the right parenthesis that encloses the parameter list,
and redefining the parameter a in the function definition.
Correction: Delete the semicolon after the right parenthesis of the parame-
ter list, and delete the declaration float a; in the function body.

sqrt(900.0) = 30.0
sqrt(9.0) = 3.0
cbrt(27.0) = 3.0
cbrt(-8.0) = -2.0
exp(1.0) = 2.718282
exp(2.0) = 7.389056
log(2.718282) = 1.0
log(7.389056) = 2.0
log10(1.0) = 0.0
log10(10.0) = 1.0
log10(100.0) = 2.0
fabs(13.5) = 13.5
fabs(0.0) = 0.0
fabs(-13.5) = 13.5
ceil(9.2) = 10.0
ceil(-9.8) = -9.0
floor(9.2) = 9.0
floor(-9.8) = -10.0
pow(2.0, 7.0) = 128.0
pow(9.0, 0.5) = 3.0
fmod(13.657, 2.333) = 1.992
sin(0.0) = 0.0
cos(0.0) = 1.0
tan(0.0) = 0.0

232 Chapter 5 Functions

d) Error: n + sum(n - 1) is not returned; sum returns an improper result.
Correction: Rewrite the statement in the else clause as

return n + sum(n - 1);

e) Error: The function returns a value when it’s not supposed to.
Correction: Eliminate the return statement.

Exercises
5.8 Show the value of x after each of the following statements is performed:

a) x = fabs(7.5);
b) x = floor(7.5);
c) x = fabs(0.0);
d) x = ceil(0.0);
e) x = fabs(-6.4);
f) x = ceil(-6.4);
g) x = ceil(-fabs(-8 + floor(-5.5)));

5.9 (Parking Charges) A parking garage charges a $2.00 minimum fee to park for up
to three hours and an additional $0.50 per hour for each hour or part thereof over three
hours. The maximum charge for any given 24-hour period is $10.00. Assume that no
car parks for longer than 24 hours at a time. Write a program that calculates and prints
the parking charges for each of three customers who parked their cars in this garage yes-
terday. You should enter the hours parked for each customer. Your program should
print the results in a tabular format, and should calculate and print the total of yester-
day's receipts. The program should use the function calculateCharges to determine
the charge for each customer. Your outputs should appear in the following format:

5.10 (Rounding Numbers) An application of function floor is rounding a value to
the nearest integer. The statement

y = floor(x + .5);

rounds x to the nearest integer and assigns the result to y. Write a program that reads
several numbers and rounds each of these numbers to the nearest integer. For each
number processed, print both the original number and the rounded number.

5.11 (Rounding Numbers) Function floor may be used to round a number to a spe-
cific decimal place. The statement

y = floor(x * 10 + .5) / 10;

Car Hours Charge
1 1.5 2.00
2 4.0 2.50
3 24.0 10.00
TOTAL 29.5 14.50

 Exercises 233

rounds x to the tenths position (the first position to the right of the decimal point).
The statement

y = floor(x * 100 + .5) / 100;

rounds x to the hundredths position (the second position to the right of the decimal
point). Write a program that defines functions to round a number x in various ways:

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundreths(number)
d) roundToThousandths(number)

For each value the program inputs, display the original value, the number rounded to
the nearest integer, the number rounded to the nearest tenth, the number rounded to
the nearest hundredth, and the number rounded to the nearest thousandth.

5.12 Answer each of the following questions:
a) What does it mean to choose numbers “at random”?
b) Why is the rand function useful for simulating games of chance?
c) Why would you randomize a program by using srand? Under what circum-

stances is it desirable not to randomize?
d) Why is it often necessary to scale and/or shift the values produced by rand?

5.13 Write statements that assign random integers to the variable n in the following
ranges:

a) 1 ≤ n ≤ 2
b) 1 ≤ n ≤ 100
c) 0 ≤ n ≤ 9
d) 1000 ≤ n ≤ 1112
e) –1 ≤ n ≤ 1
f) –3 ≤ n ≤ 11

5.14 For each of the following sets of integers, write a single statement that will print
a number at random from the set:

a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

5.15 (Hypotenuse Calculations) Define a function called hypotenuse that calculates
a right triangle’s hypotenuse, based on the values of the other two sides. The function
should take two double arguments and return the hypotenuse as a double. Test your
program with the side values specified in the following table:

Side 1 Side 2

3.0 4.0
5.0 12.0
8.0 15.0

234 Chapter 5 Functions

5.16 (Exponentiation) Write a function integerPower(base, exponent) that re-
turns the value of

baseexponent

For example, integerPower(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is a positive,
nonzero integer, and base is an integer. Function integerPower should use a for
statement to control the calculation. Do not use any math library functions.

5.17 (Multiples) Write a function isMultiple that determines for a pair of integers
whether the second integer is a multiple of the first. The function should take two in-
teger arguments and return 1 (true) if the second is a multiple of the first, and 0 (false)
otherwise. Use this function in a program that inputs a series of pairs of integers.

5.18 (Even or Odd) Write a program that inputs a series of integers and passes them
one at a time to function isEven, which uses the remainder operator to determine
whether an integer is even. The function should take an integer argument and return
1 if the integer is even and 0 otherwise.

5.19 (Square of Asterisks) Write a function that displays a solid square of asterisks
whose side is specified in integer parameter side. For example, if side is 4, the func-
tion displays:

5.20 (Displaying a Square of Any Character) Modify the function in Exercise 5.19 to
form the square out of whatever character is contained in char parameter fillCharac-
ter. Thus if side is 5 and fillCharacter is “#”, then this function should print:

5.21 (Project: Drawing Shapes with Characters) Use techniques similar to those de-
veloped in Exercises 5.19 and 5.20 to produce a program that graphs a wide range of
shapes.

5.22 (Separating Digits) Write program segments to accomplish each of the following:
a) Calculate the int part of the quotient when int a is divided by int b.
b) Calculate the int remainder when int a is divided by int b.
c) Use the program pieces developed in a) and b) to write a function that in-

puts an integer between 1 and 32767 and prints it as a series of digits, with
two spaces between each digit. For example, 4562 should be printed as:

#####
#####
#####
#####
#####

4 5 6 2

 Exercises 235

5.23 (Time in Seconds) Write a function that takes the time as three integer argu-
ments (for hours, minutes and seconds) and returns the number of seconds since the
last time the clock “struck 12.” Use this function to calculate the amount of time in
seconds between two times, both of which are within one 12-hour cycle of the clock.

5.24 (Temperature Conversions) Implement the following integer functions:
a) toCelsius returns the Celsius equivalent of a Fahrenheit temperature.
b) toFahrenheit returns the Fahrenheit equivalent of a Celsius temperature.

Use these functions to write a program that prints charts showing the Fahrenheit
equivalents of all Celsius temperatures from 0 to 100 degrees, and the Celsius equiva-
lents of all Fahrenheit temperatures from 32 to 212 degrees. Print the outputs in a tab-
ular format that minimizes the number of lines of output while remaining readable.

5.25 (Find the Minimum) Write a function that returns the smallest of three float-
ing-point numbers.

5.26 (Perfect Numbers) An integer number is said to be a perfect number if its factors,
including 1 (but not the number itself), sum to the number. For example, 6 is a per-
fect number because 6 = 1 + 2 + 3. Write a function isPerfect that determines
whether parameter number is a perfect number. Use this function in a program that
determines and prints all the perfect numbers between 1 and 1000. Print the factors
of each perfect number to confirm that the number is indeed perfect. Challenge the
power of your computer by testing numbers much larger than 1000.

5.27 (Prime Numbers) An integer is said to be prime if it’s divisible by only 1 and itself.
For example, 2, 3, 5 and 7 are prime, but 4, 6, 8 and 9 are not. Write a function that
determines whether a number is prime. Use this function in a program that determines
and prints all the prime numbers between 1 and 10,000. How many of these 10,000
numbers do you really have to test before being sure that you have found all the primes?
Initially you might think that n/2 is the upper limit for which you must test to see
whether a number is prime, but you need go only as high as the square root of n. Re-
write the program, and run it both ways. Estimate the performance improvement.

5.28 (Reversing Digits) Write a function that takes an integer value and returns the
number with its digits reversed. For example, given the number 7631, the function
should return 1367.

5.29 (Greatest Common Divisor) The greatest common divisor (GCD) of two integers
is the largest integer that evenly divides each of the two numbers. Write a function
gcd that returns the greatest common divisor of two integers.

5.30 (Quality Points for Student’s Grades) Write a function toQualityPoints that
inputs a student’s average and returns 4 if it’s 90–100, 3 if it’s 80–89, 2 if it’s 70–79,
1 if it’s 60–69, and 0 if the average is lower than 60.

5.31 (Coin Tossing) Write a program that simulates coin tossing. For each toss, dis-
play Heads or Tails. Let the program toss the coin 100 times, and count the number
of heads and tails. Display the results. The program should call a function flip that
takes no arguments and returns 0 for tails and 1 for heads. If the program realistically

236 Chapter 5 Functions

simulates the coin tossing, then each side of the coin should appear approximately
half the time for a total of approximately 50 heads and 50 tails.

5.32 (Guess the Number) Write a C program that plays the game of “guess the num-
ber” as follows: Your program chooses the number to be guessed by selecting an in-
teger at random in the range 1 to 1000. The program then types:

The player types a first guess. The program responds with one of the following:

If the guess is incorrect, your program should loop until the player guesses the num-
ber. Your program should keep telling the player Too high or Too low to help the
player “zero in” on the correct answer.

5.33 (Guess the Number Modification) Modify your Exercise 5.32 solution to count
the number of guesses the player makes. If the number is 10 or fewer, print "Either
you know the secret or you got lucky!" If the player guesses the number in 10 tries,
then print "Aha! You know the secret!" If the player makes more than 10 guesses, then
print "You should be able to do better!" Why should it take no more than 10 guess-
es? Well, with each “good guess” the player should be able to eliminate half of the
numbers. Now show why any number 1 to 1000 can be guessed in 10 or fewer tries.

5.34 (Recursive Exponentiation) Write a recursive function power(base, exponent)

that when invoked returns

baseexponent

For example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater
than or equal to 1. Hint: The recursion step would use the relationship

baseexponent = base * baseexponent–1

and the terminating condition occurs when exponent is equal to 1 because

base1 = base

5.35 (Fibonacci) The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with the terms 0 and 1 and has the property that each succeeding term is the
sum of the two preceding terms. First, write a nonrecursive function fibonacci(n)
that calculates the nth Fibonacci number. Use int for the function’s parameter and
unsigned long long int for its return type. Then, determine the largest Fibonacci
number that can be printed on your system.

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

1. Excellent! You guessed the number!
 Would you like to play again (y or n)?
2. Too low. Try again.
3. Too high. Try again.

 Exercises 237

5.36 (Towers of Hanoi) Every budding computer scientist must grapple with certain
classic problems, and the Towers of Hanoi (shown in the following diagram) is one
of the most famous of these:

Legend has it that in a temple in the Far East, priests are attempting to move a stack
of disks from one peg to another. The initial stack had 64 disks threaded onto one
peg and arranged from bottom to top by decreasing size. The priests are attempting
to move the stack from this peg to a second peg under the constraints that exactly
one disk is moved at a time and at no time may a larger disk be placed above a
smaller disk. A third peg is available for temporarily holding the disks. Supposedly
the world will end when the priests complete their task, so there’s little incentive for
us to facilitate their efforts.

Let’s assume that the priests are attempting to move the disks from peg 1 to peg
3. We wish to develop an algorithm that will print the precise sequence of disk-to-
disk peg transfers.

If we were to approach this problem with conventional methods, we’d rapidly find
ourselves hopelessly knotted up in managing the disks. Instead, if we attack the prob-
lem with recursion in mind, it immediately becomes tractable. Moving n disks can be
viewed in terms of moving only n – 1 disks (and hence the recursion) as follows:

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding

area.
The process ends when the last task involves moving n = 1 disk, i.e., the base case.
This is accomplished by trivially moving the disk without the need for a temporary
holding area.

Write a program to solve the Towers of Hanoi problem. Use a recursive function
with four parameters:

a) The number of disks to be moved.
b) The peg on which these disks are initially threaded.
c) The peg to which this stack of disks is to be moved.
d) The peg to be used as a temporary holding area.

Your program should print the precise instructions it will take to move the disks
from the starting peg to the destination peg. For example, to move a stack of three
disks from peg 1 to peg 3, your program should print the following series of moves:

238 Chapter 5 Functions

1 → 3 (This means move one disk from peg 1 to peg 3.)
1 → 2
3 → 2
1 → 3
2 → 1
2 → 3
1 → 3

5.37 (Towers of Hanoi: Iterative Solution) Any program that can be implemented
recursively can be implemented iteratively, although sometimes with considerably
more difficulty and considerably less clarity. Try writing an iterative version of the
Towers of Hanoi. If you succeed, compare your iterative version with the recursive
version you developed in Exercise 5.36. Investigate issues of performance, clarity and
your ability to demonstrate the correctness of the programs.

5.38 (Visualizing Recursion) It’s interesting to watch recursion “in action.” Modify
the factorial function of Fig. 5.9 to print its local variable and recursive call parame-
ter. For each recursive call, display the outputs on a separate line and add a level of
indentation. Do your utmost to make the outputs clear, interesting and meaningful.
Your goal here is to design and implement an output format that helps a person un-
derstand recursion better. You may want to add such display capabilities to the many
other recursion examples and exercises throughout the text.

5.39 (Recursive Greatest Common Divisor) The greatest common divisor of integers
x and y is the largest integer that evenly divides both x and y. Write a recursive func-
tion gcd that returns the greatest common divisor of x and y. The greatest common
divisor of x and y is defined recursively as follows: If y is equal to 0, then gcd(x, y) is
x; otherwise gcd(x, y) is gcd(y, x % y), where % is the remainder operator.

5.40 (Recursive main) Can main be called recursively? Write a program containing a
function main. Include static local variable count initialized to 1. Postincrement and
print the value of count each time main is called. Run your program. What happens?

5.41 (Distance Between Points) Write a function distance that calculates the dis-
tance between two points (x1, y1) and (x2, y2). All numbers and return values should
be of type double.

5.42 What does the following program do? What happens if you exchange lines 7
and 8?

1 #include <stdio.h>
2
3 int main(void) {
4 int c = '\0'; // variable to hold character input by user
5
6 if ((c = getchar()) != EOF) {
7 main();
8 printf("%c", c);
9 }

10 }

 Exercises 239

5.43 What does the following program do?

5.44 After you determine what the program of Exercise 5.43 does, modify it to func-
tion properly after removing the restriction that the second argument must be posi-
tive.

5.45 (Testing Math Library Functions) Write a program that tests the math library
functions shown in Section 5.3’s table. Exercise each of these functions by having
your program print out tables of return values for a diversity of argument values.

5.46 Find the error in each of the following program segments and explain how to
correct it:

a) double cube(float); // function prototype

cube(float number) { // function definition

 return number * number * number;

}
b) int randomNumber = srand();
c) double y = 123.45678;

int x;

x = y;

printf("%f\n", (double) x);
d) double square(double number) {

 double number;

 return number * number;

}

1 #include <stdio.h>
2
3 int mystery(int a, int b); // function prototype
4
5 int main(void) {
6 printf("%s", "Enter two positive integers: ");
7 int x = 0; // first integer
8 int y = 0; // second integer
9 scanf("%d%d", &x, &y);

10
11 printf("The result is %d\n", mystery(x, y));
12 }
13
14 // Parameter b must be a positive integer
15 // to prevent infinite recursion
16 int mystery(int a, int b) {
17 // base case
18 if (1 == b) {
19 return a;
20 }
21 else { // recursive step
22 return a + mystery(a, b - 1);
23 }
24 }

240 Chapter 5 Functions

e) int sum(int n) {

 if (0 == n) {

 return 0;

 }

 else {

 return n + sum(n);

 }

}

5.47 (Craps Game Modification) Modify the craps program of Fig. 5.7 to allow wa-
gering. Package as a function the portion of the program that runs one game of craps.
Initialize variable bankBalance to 1000 dollars. Prompt the player to enter a wager.
Use a while loop to check that wager is less than or equal to bankBalance, and if not,
prompt the user to reenter wager until a valid wager is entered. After a correct wager
is entered, run one game of craps. If the player wins, increase bankBalance by wager
and print the new bankBalance. If the player loses, decrease bankBalance by wager,
print the new bankBalance, check whether bankBalance has become zero, and if so
print the message, "Sorry. You busted!" As the game progresses, print various mes-
sages to create some “chatter” such as, "Oh, you're going for broke, huh?" or "Aw
cmon, take a chance!" or "You're up big. Now's the time to cash in your chips!"

5.48 (Research Project: Improving the Recursive Fibonacci Implementation) In
Section 5.15, the recursive algorithm we used to calculate Fibonacci numbers was intu-
itively appealing. However, recall that the algorithm resulted in the exponential explo-
sion of recursive function calls. Research the recursive Fibonacci implementation
online. Study the various approaches, including the iterative version in Exercise 5.35
and versions that use only so-called “tail recursion.” Discuss the relative merits of each.

Computer-Assisted Instruction
Computers create exciting possibilities for improving the educational experience of
all students worldwide, as suggested by the next five exercises. [Note: Check out ini-
tiatives such as the One Laptop Per Child Project (www.laptop.org).]

5.49 (Computer-Assisted Instruction) The use of computers in education is referred
to as computer-assisted instruction (CAI). Write a program that will help an elementa-
ry-school student learn multiplication. Use the rand function to produce two positive
one-digit integers. The program should then prompt the user with a question, such as

How much is 6 times 7?

The student then inputs the answer. Next, the program checks the student’s answer.
If it’s correct, display the message "Very good!" and ask another multiplication ques-
tion. If the answer is wrong, display the message "No. Please try again." and let the
student try the same question repeatedly until the student finally gets it right. A sep-
arate function should be used to generate each new question. This function should
be called once when the application begins execution and each time the user answers
the question correctly.

http://www.laptop.org

 Random-Number Simulation Case Study: The Tortoise and the Hare 241

5.50 (Computer-Assisted Instruction: Reducing Student Fatigue) One problem in
CAI environments is student fatigue. This can be reduced by varying the computer’s
responses to hold the student’s attention. Modify the program of Exercise 5.49 so
that various comments are displayed for each answer as follows:

Possible responses to a correct answer:
Very good!
Excellent!
Nice work!
Keep up the good work!

Possible responses to an incorrect answer:
No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be
used to select one of the four appropriate responses to each correct or incorrect
answer. Use a switch statement to issue the responses.

5.51 (Computer-Assisted Instruction: Monitoring Student Performance) More so-
phisticated computer-assisted instruction systems monitor the student’s performance
over a period of time. The decision to begin a new topic is often based on the stu-
dent’s success with previous topics. Modify the program of Exercise 5.50 to count the
number of correct and incorrect responses typed by the student. After the student
types 10 answers, your program should calculate the percentage that are correct. If
the percentage is lower than 75%, display "Please ask your teacher for extra
help.", then reset the program so another student can try it. If the percentage is 75%
or higher, display "Congratulations, you are ready to go to the next level!",
then reset the program so another student can try it.

5.52 (Computer-Assisted Instruction: Difficulty Levels) Exercises 5.49–5.51 devel-
oped a computer-assisted instruction program to help teach an elementary-school
student multiplication. Modify the program to allow the user to enter a difficulty lev-
el. At a difficulty level of 1, the program should use only single-digit numbers in the
problems; at a difficulty level of 2, numbers as large as two digits, and so on.

5.53 (Computer-Assisted Instruction: Varying the Types of Problems) Modify the pro-
gram of Exercise 5.52 to allow the user to pick a type of arithmetic problem to study.
An option of 1 means addition problems only, 2 means subtraction problems only, 3
means multiplication problems only and 4 means a random mixture of all these types.

Random-Number Simulation Case Study: The Tortoise and the
Hare
5.54 (The Tortoise and the Hare Race) In this problem, you’ll recreate one of the truly
great moments in history—the classic race of the tortoise and the hare. You’ll use ran-
dom-number generation to develop a simulation of this memorable event.

242 Chapter 5 Functions

Our contenders begin the race at “square 1” of 70 squares. Each square rep-
resents a possible position along the racecourse. The finish line is at square 70. The
first contender to reach or pass square 70 is rewarded with a pail of fresh carrots and
lettuce. The course weaves its way up a slippery mountainside, so occasionally, the
contenders lose ground.

There’s a clock that ticks once per second. With each tick, adjust the animals’
positions according to the following rules:

Use variables to keep track of the animals’ positions (i.e., position numbers are
1–70). Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left
before square 1, move the animal back to square 1. If an animal moves past square
70, move the animal back to square 80.

Generate the percentages in the preceding table by producing a random integer,
x, in the range 1 ≤ x ≤ 10. For the tortoise, perform a “fast plod” when 1 ≤ x ≤ 5,
a “slip” when 6 ≤ x ≤ 7, or a “slow plod” when 8 ≤ x ≤ 10. Use a similar tech-
nique to move the hare.

Begin the race by printing
ON YOUR MARK, GET SET
BANG !!!!
AND THEY'RE OFF !!!!

Then, for each tick (i.e., each iteration of a loop), print a 70-position line showing
the letter T in the tortoise’s position and the letter H in the hare’s position. Occasion-
ally, the contenders will land on the same square. In this case, the tortoise bites the
hare, and your program should print "OUCH!!!" beginning at that position. All print
positions other than the T, the H, or the OUCH!!! (in case of a tie) should be blank.

After printing each line, test whether either animal has reached or passed square
70. If so, then print the winner and terminate the simulation. If the tortoise wins,
print "TORTOISE WINS!!! YAY!!!" If the hare wins, print "Hare wins. Yuch." If both
animals win on the same tick of the clock, you may want to favor the turtle (the
“underdog”), or you may want to print "It's a tie". If neither animal wins, per-
form the loop again to simulate the next tick of the clock. When you’re ready to run
your program, assemble a group of fans to watch the race. You’ll be amazed at how
involved your audience gets!

Animal Move type Percentage of the time Actual move

Tortoise Fast plod
Slip
Slow plod

50%
20%
30%

3 squares forward
6 squares backward
1 square forward

Hare Sleep
Big hop
Big slip
Small hop
Small slip

20%
20%
10%
30%
20%

No move at all
9 squares forward
12 squares backward
1 square forward
2 squares backward

6Arrays

O b j e c t i v e s
In this chapter, you’ll:
■ Use the array data structure to

represent lists and tables of
values.

■ Define arrays, initialize arrays
and refer to individual
elements of arrays.

■ Define symbolic constants.
■ Pass arrays to functions.
■ Use arrays to store, sort and

search lists and tables of
values.

■ Be introduced to data science
using basic descriptive
statistics, such as mean,
median and mode.

■ Define and manipulate
multidimensional arrays.

■ Create variable-length arrays
whose size is determined at
execution time.

■ Understand security issues
related to input with scanf,
output with printf and
arrays.

244 Chapter 6 Arrays

O
ut

lin
e

6.1 Introduction
This chapter introduces data structures. Arrays are data structures consisting of related
data items of the same type. Chapter 10 discusses C’s notion of struct—a data struc-
ture consisting of related data items of possibly different types. Arrays and structs are
“static” entities in that they remain the same size throughout their lifetimes.

6.2 Arrays
An array is a group of elements of the same type stored contiguously in memory. The
following diagram shows an integer array called c, containing five elements:

6.1 Introduction
6.2 Arrays
6.3 Defining Arrays
6.4 Array Examples

6.4.1 Defining an Array and Using a Loop
to Set the Array’s Element Values

6.4.2 Initializing an Array in a Definition
with an Initializer List

6.4.3 Specifying an Array’s Size with a
Symbolic Constant and Initializing
Array Elements with Calculations

6.4.4 Summing the Elements of an Array
6.4.5 Using Arrays to Summarize Survey

Results
6.4.6 Graphing Array Element Values with

Bar Charts
6.4.7 Rolling a Die 60,000,000 Times and

Summarizing the Results in an Array
6.5 Using Character Arrays to Store

and Manipulate Strings
6.5.1 Initializing a Character Array with a

String
6.5.2 Initializing a Character Array with an

Initializer List of Characters
6.5.3 Accessing the Characters in a String
6.5.4 Inputting into a Character Array

6.5.5 Outputting a Character Array That
Represents a String

6.5.6 Demonstrating Character Arrays
6.6 Static Local Arrays and Automatic

Local Arrays
6.7 Passing Arrays to Functions
6.8 Sorting Arrays
6.9 Intro to Data Science Case Study:

Survey Data Analysis
6.10 Searching Arrays

6.10.1 Searching an Array with Linear
Search

6.10.2 Searching an Array with Binary
Search

6.11 Multidimensional Arrays
6.11.1 Illustrating a Two-Dimensional

Array
6.11.2 Initializing a Double-Subscripted

Array
6.11.3 Setting the Elements in One Row
6.11.4 Totaling the Elements in a Two-

Dimensional Array
6.11.5 Two-Dimensional Array

Manipulations
6.12 Variable-Length Arrays
6.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Recursion Exercises

Position number, 2, of this
element within the array

Values of the
array’s elements

Names of the
array’s elements

-45 6 0 154372

c[0] c[1] c[2] c[4]c[3]

6.2 Arrays 245

To refer to a particular location or element in the array, we specify the array’s name,
followed by the element’s position number in square brackets ([]). The first element
is located at position number 0 (zero). The position number is called the element’s
subscript (or index). A subscript must be a non-negative integer or integer expression.

Let’s examine the array in the previous diagram more closely. The array’s name is
c. The value of c[0] is -45, c[2] is 0 and c[4] is 1543. A subscripted array name is an
lvalue that can be used on the left side of an assignment. So, the statement:

c[2] = 1000;

replaces c[2]’s current value (0) with the value 1000. To print the sum of the values
in array c’s first three elements, we’d write:

printf("%d", c[0] + c[1] + c[2]);

To divide the value of element 3 of array c by 2 and assign the result to the variable
x, write:

x = c[3] / 2;

The brackets that enclose an array’s subscript are an operator with the highest
level of precedence. The following table shows the precedence and grouping of the
operators introduced to this point in the text:

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) Any array element may be referred to by giving the array’s name followed by
the element’s position number in square brackets ([]).

b) Every array’s first element has position number 1.
c) An array name, like other identifiers, can contain only letters, digits and un-

derscores and cannot begin with a digit.

Operators Grouping Type

[] () ++ (postfix) -- (postfix) left to right highest
+ - ! ++ (prefix) -- (prefix) (type) right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > >= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

246 Chapter 6 Arrays

d) The position number in square brackets is called the element’s subscript (or
index), which must be an integer or an integer expression.

Answer: b) is false. Actually, every array’s first element has position number 0.

2 (Code) Write a statement that displays the int product of the values contained in
the first four elements of int array grades.
Answer: printf("%d", grades[0] * grades[1] * grades[2] * grades[3]);

6.3 Defining Arrays
When you define an array, you specify its element type and number of elements so
the compiler may reserve the appropriate amount of memory. The following defini-
tion reserves five elements for integer array c, which has subscripts in the range 0–4.

int c[5];

The definitions
int b[100];
int x[27];

reserve 100 elements for integer array b and 27 elements for integer array x. These
arrays have subscripts in the ranges 0–99 and 0–26, respectively.

A char array can store a character string. Character strings and their similarity to
arrays are discussed in Chapter 8. The relationship between pointers and arrays is dis-
cussed in Chapter 7.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) When creating an array, you specify an array’s element type and number of
elements so the compiler may reserve the appropriate amount of memory.

b) The following definition reserves space for the double array temperatures,
which has index numbers in the range 0–6:

 double temperatures[7];

c) The following definitions reserve 50 elements for float array b and 19 ele-
ments for float array x:

 float b[50];
 float x[19];

d) An array of type string can store a character string.
Answer: d) is false. Actually, an array of type char can store a character string. C does
not have a string type.

6.4 Array Examples
This section presents several examples demonstrating how to define and initialize
arrays and how to perform many common array manipulations.

6.4 Array Examples 247

6.4.1 Defining an Array and Using a Loop to Set the Array’s Element
Values
Like any other local variable, uninitialized array elements contain “garbage” values.
Figure 6.1 uses for statements to set five-element integer array n’s elements to zeros
(lines 10–12) and print the array in tabular format (lines 17–19). The first printf
statement (line 14) displays the column heads for the two columns printed in the sub-
sequent for statement.

The counter-control variable i’s type is size_t in each for statement (lines 10
and 17). The C standard says size_t represents an unsigned integral type and is rec-
ommended for any variable representing an array’s size or subscripts. Type size_t is
defined in header <stddef.h>, which is often included by other headers (such as
<stdio.h>).1 The conversion specification %zu is used to display size_t values.

1 // fig06_01.c
2 // Initializing the elements of an array to zeros.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 int n[5]; // n is an array of five integers
8
9 // set elements of array n to 0

10 for (size_t i = 0; i < 5; ++i) {
11 n[i] = 0; // set element at location i to 0
12 }
13
14 printf("%s%8s\n", "Element", "Value");
15
16 // output contents of array n in tabular format
17 for (size_t i = 0; i < 5; ++i) {
18 printf("%7zu%8d\n", i, n[i]);
19 }
20 }

Element Value
 0 0
 1 0
 2 0
 3 0
 4 0

Fig. 6.1 | Initializing the elements of an array to zeros.

1. If you attempt to compile Fig. 6.1 and receive errors, include <stddef.h> in your program.

248 Chapter 6 Arrays

6.4.2 Initializing an Array in a Definition with an Initializer List
You can initialize an array’s elements when defining the array by providing a comma-
separated list of array initializers in braces, {}. Figure 6.2 initializes an integer array
with five values (line 7) and prints it in a tabular format.

If there are fewer initializers than array elements, the remaining elements are ini-
tialized to 0. For example, Fig. 6.1 could have initialized array n’s elements to zero as
follows:

int n[5] = {0}; // initializes entire array to zeros

This explicitly initializes n[0] to 0 and implicitly initializes the remaining elements to
0. It’s a compilation error if you provide more initializers in an array initializer list
than elements in the array. For example, the following array definition produces a
compilation error because there are four initializers for only three elements:

int n[3] = {32, 27, 64, 18};

The following definition creates a five-element array initialized with the values 1–5:
int n[] = {1, 2, 3, 4, 5};

When you omit the array size, the compiler calculates the array’s number of elements
from the number initializers.

1 // fig06_02.c
2 // Initializing the elements of an array with an initializer list.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 int n[5] = {32, 27, 64, 18, 95}; // initialize n with initializer list
8
9 printf("%s%8s\n", "Element", "Value");

10
11 // output contents of array in tabular format
12 for (size_t i = 0; i < 5; ++i) {
13 printf("%7zu%8d\n", i, n[i]);
14 }
15 }

Element Value
 0 32
 1 27
 2 64
 3 18
 4 95

Fig. 6.2 | Initializing the elements of an array with an initializer list.

ERR

6.4 Array Examples 249

6.4.3 Specifying an Array’s Size with a Symbolic Constant and
Initializing Array Elements with Calculations
Figure 6.3 initializes five-element array s with the values 2, 4, 6, 8 and 10, then prints
the array in tabular format. To generate the values, we multiply the loop counter by
2 and add 2.

Line 4 uses the #define preprocessor directive
#define SIZE 5

to create the symbolic constant SIZE with the value 5. A symbolic constant is an iden-
tifier that the C preprocessor replaces with replacement text before the program is
compiled. In this program, the preprocessor replaces all SIZE occurrences with 5.

Using symbolic constants to specify array sizes makes programs easier to read and
modify. In Fig. 6.3, for example, we could have the first for loop (line 11) fill a 1000-
element array simply by changing SIZE’s value in the #define directive from 5 to 1000.
Without the symbolic constant, we’d have to change the program in lines 9, 11 and 18.
As programs get larger, this technique becomes more useful for writing clear, easy-to-
read, maintainable programs. A symbolic constant (like SIZE) is easier to understand
than the numeric value 5, which could have different meanings throughout the code.

1 // fig06_03.c
2 // Initializing the elements of array s to the even integers from 2 to 10.
3 #include <stdio.h>
4 #define SIZE 5 // maximum size of array
5
6 // function main begins program execution
7 int main(void) {
8 // symbolic constant SIZE can be used to specify array size
9 int s[SIZE] = {0}; // array s has SIZE elements

10
11 for (size_t j = 0; j < SIZE; ++j) { // set the values
12 s[j] = 2 + 2 * j;
13 }
14
15 printf("%s%8s\n", "Element", "Value");
16
17 // output contents of array s in tabular format
18 for (size_t j = 0; j < SIZE; ++j) {
19 printf("%7zu%8d\n", j, s[j]);
20 }
21 }

Element Value
 0 2
 1 4
 2 6
 3 8
 4 10

Fig. 6.3 | Initializing the elements of array s to the even integers from 2 to 10.

250 Chapter 6 Arrays

Do not terminate the #define preprocessor directives with semicolons. If you do
that in line 4, the preprocessor replaces all occurrences of SIZE with the text "5;".
This may lead to syntax errors at compile time or logic errors at execution time.
Remember that the preprocessor is not the C compiler.

Assigning a value to a symbolic constant in an executable statement is a compila-
tion error—symbolic constants are not variables. By convention, use only uppercase
letters for symbolic constant names, so they stand out in a program. This also reminds
you that symbolic constants are not variables.

6.4.4 Summing the Elements of an Array
Figure 6.4 sums the values contained in the five-element integer array a. The for
statement’s body (line 14) does the totaling.

6.4.5 Using Arrays to Summarize Survey Results
Our next example uses arrays to summarize the results of data collected in a survey.
Consider the problem statement:

Twenty students were asked to rate the quality of the food in the student cafete-
ria on a scale of 1 to 5 (1 means awful, and 5 means excellent). Place the 20
responses in an integer array and summarize the results of the poll.

Figure 6.5 is a typical array application. We wish to summarize the number of
responses of each type. The 20-element array responses (lines 10–11) contains the
students’ responses. We use a 6-element array frequency (line 14) to count each
response’s number of occurrences. We ignore frequency[0] because it’s logical to

1 // fig06_04.c
2 // Computing the sum of the elements of an array.
3 #include <stdio.h>
4 #define SIZE 5
5
6 // function main begins program execution
7 int main(void) {
8 // use an initializer list to initialize the array
9 int a[SIZE] = {1, 2, 3, 4, 5};

10 int total = 0; // sum of array
11
12 // sum contents of array a
13 for (size_t i = 0; i < SIZE; ++i) {
14 total += a[i];
15 }
16
17 printf("The total of a's values is %d\n", total);
18 }

The total of a's values is 15

Fig. 6.4 | Computing the sum of the elements of an array.

ERR

ERR

6.4 Array Examples 251

have response 1 increment frequency[1] rather than frequency[0]. This allows us to
use each response directly as the subscript in the frequency array. You should strive
for program clarity. Sometimes it may be worthwhile to trade off the most efficient
use of memory or processor time in favor of writing clearer programs. Sometimes per-
formance considerations far outweigh clarity considerations.

How the frequency Counters Are Incremented
The for loop (lines 19–21) takes each response from responses and increments one
of the five frequency array counters—frequency[1] to frequency[5]. The key state-
ment in the loop is line 20:

++frequency[responses[answer]];

1 // fig06_05.c
2 // Analyzing a student poll.
3 #include <stdio.h>
4 #define RESPONSES_SIZE 20 // define array sizes
5 #define FREQUENCY_SIZE 6
6
7 // function main begins program execution
8 int main(void) {
9 // place the survey responses in the responses array

10 int responses[RESPONSES_SIZE] =
11 {1, 2, 5, 4, 3, 5, 2, 1, 3, 1, 4, 3, 3, 3, 2, 3, 3, 2, 2, 5};
12
13 // initialize frequency counters to 0
14 int frequency[FREQUENCY_SIZE] = {0};
15
16 // for each answer, select the value of an element of the array
17 // responses and use that value as a subscript into the array
18 // frequency to determine the element to increment
19 for (size_t answer = 0; answer < RESPONSES_SIZE; ++answer) {
20 ++frequency[responses[answer]];
21 }
22
23 // display results
24 printf("%s%12s\n", "Rating", "Frequency");
25
26 // output the frequencies in a tabular format
27 for (size_t rating = 1; rating < FREQUENCY_SIZE; ++rating) {
28 printf("%6zu%12d\n", rating, frequency[rating]);
29 }
30 }

Rating Frequency
 1 3
 2 5
 3 7
 4 2
 5 3

Fig. 6.5 | Analyzing a student poll.

PERF

252 Chapter 6 Arrays

which increments the appropriate frequency counter, based on the value of the expres-
sion responses[answer]. When the counter variable answer is 0, responses[answer] is
1, so ++frequency[responses[answer]]; is interpreted as

++frequency[1];

which increments frequency[1]. When answer is 1, the value of responses[answer]
is 2, so ++frequency[responses[answer]]; is interpreted as

++frequency[2];

which increments frequency[2]. When answer is 2, the value of responses[answer]
is 5, so ++frequency[responses[answer]]; is interpreted as

++frequency[5];

which increments frequency[5], and so on.

Invalid Survey Responses
Regardless of the number of survey responses processed, only a 6-element frequency
array is required (ignoring element zero) to summarize the results. But what if the data
contained an invalid value such as 13? In this case, the program would attempt to add
1 to frequency[13], which is outside the array’s bounds. C has no array bounds check-
ing to prevent a program from referring to an element that does not exist. So, an exe-
cuting program can “walk off” either end of an array without warning—a security
problem we discuss in Section 6.13. Programs should validate that all input values are
correct to prevent erroneous information from affecting a program’s calculations.

Validate Array Subscripts
Referring to an element outside the array bounds is a logic error. When looping
through an array, the array subscript should never go below 0 and should always be
less than the total number of array elements—the array’s size minus one. You should
ensure that all array references remain within the bounds of the array.

6.4.6 Graphing Array Element Values with Bar Charts
Our next example (Fig. 6.6) reads numbers from an array and graphs the information
in a bar chart. We display each number followed by a bar consisting of that many
asterisks. The nested for statement (lines 17–19) displays the bars by iterating n[i]
times and displaying one asterisk per iteration. Line 21 ends each bar.

1 // fig06_06.c
2 // Displaying a bar chart.
3 #include <stdio.h>
4 #define SIZE 5
5
6 // function main begins program execution
7 int main(void) {

Fig. 6.6 | Displaying a bar chart. (Part 1 of 2.)

SEC

ERR

6.4 Array Examples 253

6.4.7 Rolling a Die 60,000,000 Times and Summarizing the Results
in an Array
In Chapter 5, we stated that we’d show a more elegant way to write Fig. 5.5’s dice-
rolling program. Recall that the program rolled a single six-sided die 60,000,000
times and displayed the face counts. Figure 6.7 is an array version of Fig. 5.5. Line 17
replaces Fig. 5.5’s entire 20-line switch statement. Once again, we use a frequency
array in which we ignore element 0, so we can use the face values as subscripts into
the array.

8 // use initializer list to initialize array n
9 int n[SIZE] = {19, 3, 15, 7, 11};

10
11 printf("%s%13s%17s\n", "Element", "Value", "Bar Chart");
12
13 // for each element of array n, output a bar of the bar chart
14 for (size_t i = 0; i < SIZE; ++i) {
15 printf("%7zu%13d%8s", i, n[i], "");
16
17 for (int j = 1; j <= n[i]; ++j) { // print one bar
18 printf("%c", '*');
19 }
20
21 puts(""); // end a bar with a newline
22 }
23 }

Element Value Bar Chart
 0 19 *******************
 1 3 ***
 2 15 ***************
 3 7 *******
 4 11 ***********

1 // fig06_07.c
2 // Roll a six-sided die 60,000,000 times
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6 #define SIZE 7
7
8 // function main begins program execution
9 int main(void) {

10 srand(time(NULL)); // seed random number generator
11
12 int frequency[SIZE] = {0}; // initialize all frequency counts to 0
13

Fig. 6.7 | Roll a six-sided die 60,000,000 times. (Part 1 of 2.)

Fig. 6.6 | Displaying a bar chart. (Part 2 of 2.)

254 Chapter 6 Arrays

Self Check
1 (Code) Rewrite the following code segment to define seven-element double array
m and initialize each of its elements to 10:

int n[5]; // n is an array of five integers

// set elements of array n to 0
for (size_t i = 0; i < 5; ++i) {
 n[i] = 0; // set element at location i to 0
}

Answer:
double m[7]; // m is an array of 7 doubles

// set elements of array m to 10.0
for (size_t i = 0; i < 7; ++i) {
 m[i] = 10.0; // set element at location i to 10.0
}

2 (Multiple Choice) Which of the following statements a), b) or c) is true?
a) For an int array, if you provide fewer initializers than there are elements in

the array, the remaining elements are initialized to 0.
b) It’s a syntax error to provide more initializers in an array initializer list than

there are array elements—for example, int n[3] = {32, 27, 64, 18}; is a
syntax error, because there are four initializers but only three array elements.

14 // roll die 60,000,000 times
15 for (int roll = 1; roll <= 60000000; ++roll) {
16 size_t face = 1 + rand() % 6;
17 ++frequency[face]; // replaces entire switch of Fig. 5.5
18 }
19
20 printf("%s%17s\n", "Face", "Frequency");
21
22 // output frequency elements 1-6 in tabular format
23 for (size_t face = 1; face < SIZE; ++face) {
24 printf("%4zu%17d\n", face, frequency[face]);
25 }
26 }

Face Frequency
 1 9997167
 2 10003506
 3 10001940
 4 9995833
 5 10000843
 6 10000711

Fig. 6.7 | Roll a six-sided die 60,000,000 times. (Part 2 of 2.)

6.5 Using Character Arrays to Store and Manipulate Strings 255

c) If the array size is omitted from a definition with an initializer list, the com-
piler determines the number of elements based on the number of elements in
the initializer list. So, the following creates the three-element int array s:

 int s[] = {10, 20, 30};

d) All of the above statements are true.
Answer: d.

6.5 Using Character Arrays to Store and Manipulate
Strings
Arrays can hold data of any type, though all the elements of a given array must have
the same type. We now discuss storing strings in character arrays. So far, the only
string-processing capability we have is outputting a string with printf. A string such
as "hello" is really an array of individual characters, plus one more thing.

6.5.1 Initializing a Character Array with a String
Character arrays have several unique features. A character array can be initialized using
a string literal. For example,

char string1[] = "first";

initializes the elements of array string1 to the individual characters in the string lit-
eral "first". In this case, the compiler determined array string1’s size based on the
string’s length. The string "first" contains five characters plus a string-terminating
null character. So, string1 actually contains six elements. The escape sequence rep-
resenting the null character is '\0'. All strings end with this character. A character
array representing a string should always be defined large enough to hold the string’s
number of characters and the terminating null character.

6.5.2 Initializing a Character Array with an Initializer List of
Characters
Character arrays also can be initialized with individual character constants in an ini-
tializer list, but this can be tedious. The preceding definition is equivalent to

char string1[] = {'f', 'i', 'r', 's', 't', '\0'};

6.5.3 Accessing the Characters in a String
You can access a string’s individual characters directly using array subscript notation.
So, string1[0] is the character 'f', string1[3] is 's' and string1[5] is '\0'.

6.5.4 Inputting into a Character Array
The following definition creates a character array capable of storing a string of at most
19 characters and a terminating null character:

char string2[20];

256 Chapter 6 Arrays

The statement
scanf("%19s", string2);

reads a string from the keyboard into string2. You pass the array name to scanf with-
out the & used with non-string variables. The & is normally used to provide scanf with
a variable’s location in memory so that a value can be stored there. In Section 6.7,
when we discuss passing arrays to functions, we’ll discuss why the & is not necessary
for array names.

It’s your responsibility to ensure that the array into which the string is read is capa-
ble of holding any string that the user types at the keyboard. Function scanf does not
check how large the array is. It will read characters until a space, tab, newline or end-of-
file indicator is encountered. The string string2 should be no longer than 19 characters
to leave room for the terminating null character. If the user types 20 or more characters,
your program may crash or create a security vulnerability called a buffer overflow. For
this reason, we used the conversion specification %19s. This tells scanf to read a maxi-
mum of 19 characters, preventing it from writing characters into memory beyond the
end of string2. (In Section 6.13, we revisit the potential security issue raised by input-
ting into a character array and discuss the C standard’s scanf_s function.)

6.5.5 Outputting a Character Array That Represents a String
A character array representing a string can be output with printf using the %s con-
version specification. For example, you can print the character array string2 with

printf("%s\n", string2);

Like scanf, printf does not check how large the character array is. It displays the
string’s characters until it encounters a terminating null character. [Consider what
would print if, for some reason, the terminating null character were missing.]

6.5.6 Demonstrating Character Arrays
Figure 6.8 demonstrates initializing a character array with a string literal, reading a
string into a character array, printing a character array as a string and accessing a
string’s individual characters. The program uses a for statement (lines 20–22) to loop
through the string1 array and print the individual characters separated by spaces,
using the %c conversion specification. The condition in the for statement is true
while the counter is less than the array’s size and the terminating null character has
not been encountered in the string. This program reads only strings that do not con-
tain whitespace characters. We’ll show how to read strings containing whitespace
characters in Chapter 8.

SEC

1 // fig06_08.c
2 // Treating character arrays as strings.
3 #include <stdio.h>
4 #define SIZE 20

Fig. 6.8 | Treating character arrays as strings. (Part 1 of 2.)

6.5 Using Character Arrays to Store and Manipulate Strings 257

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) A character array representing a string can be output with printf and the %s
conversion specifier, as in:

 printf("%s\n", month);

b) Function printf, like scanf, does not check how large the character array is.
c) When function printf displays the characters of a character array represent-

ing a string, it stops when it tries to print the first character past the end of
the array.

d) All of the above statements are true.
Answer: c) is false. Actually, printf keeps displaying characters until it encounters a
terminating null character, even if that is well beyond the end of the array.

2 (True/False) The following array can store a string of at most 20 characters and a
terminating null character:

char name1[20];

Answer: False. Actually, the statement creates a character array capable of storing a
string of at most 19 characters and a terminating null character.

5
6 // function main begins program execution
7 int main(void) {
8 char string1[SIZE] = ""; // reserves 20 characters
9 char string2[] = "string literal"; // reserves 15 characters

10
11 // prompt for string from user then read it into array string1
12 printf("%s", "Enter a string (no longer than 19 characters): ");
13 scanf("%19s", string1); // input no more than 19 characters
14
15 // output strings
16 printf("string1 is: %s\nstring2 is: %s\n", string1, string2);
17 puts("string1 with spaces between characters is:");
18
19 // output characters until null character is reached
20 for (size_t i = 0; i < SIZE && string1[i] != '\0'; ++i) {
21 printf("%c ", string1[i]);
22 }
23
24 puts("");
25 }

Enter a string (no longer than 19 characters): Hello there
string1 is: Hello
string2 is: string literal
string1 with spaces between characters is:
H e l l o

Fig. 6.8 | Treating character arrays as strings. (Part 2 of 2.)

258 Chapter 6 Arrays

6.6 Static Local Arrays and Automatic Local Arrays
Chapter 5 discussed the storage-class specifier static. A static local variable exists
for the program’s duration but is visible only in the function body. We can apply
static to a local array definition to prevent the array from being created and initial-
ized every time the function is called and destroyed every time the function exits. This
reduces program execution time, particularly for programs with frequently called
functions that contain large arrays. Arrays that are static are initialized once at pro-
gram startup. If you do not explicitly initialize a static array, that array’s elements
are initialized to zero by default.

Figure 6.9 demonstrates function staticArrayInit (lines 21–38) with a local
static array (line 23) and function automaticArrayInit (lines 41–58) with a local
automatic array (line 43). Function staticArrayInit is called twice (lines 11 and
15). The local static array in the function is initialized to zero at program startup
(line 23). The function prints the array, adds 5 to each element and prints the array
again. The second time the function is called, the static array contains the values
stored during the first call.

1 // fig06_09.c
2 // Static arrays are initialized to zero if not explicitly initialized.
3 #include <stdio.h>
4
5 void staticArrayInit(void); // function prototype
6 void automaticArrayInit(void); // function prototype
7
8 // function main begins program execution
9 int main(void) {

10 puts("First call to each function:");
11 staticArrayInit();
12 automaticArrayInit();
13
14 puts("\n\nSecond call to each function:");
15 staticArrayInit();
16 automaticArrayInit();
17 puts("");
18 }
19
20 // function to demonstrate a static local array
21 void staticArrayInit(void) {
22 // initializes elements to 0 before the function is called
23 static int array1[3];
24
25 puts("\nValues on entering staticArrayInit:");
26
27 // output contents of array1
28 for (size_t i = 0; i <= 2; ++i) {
29 printf("array1[%zu] = %d ", i, array1[i]);
30 }

Fig. 6.9 | Static arrays are initialized to zero if not explicitly initialized. (Part 1 of 2.)

PERF

6.6 Static Local Arrays and Automatic Local Arrays 259

31
32 puts("\nValues on exiting staticArrayInit:");
33
34 // modify and output contents of array1
35 for (size_t i = 0; i <= 2; ++i) {
36 printf("array1[%zu] = %d ", i, array1[i] += 5);
37 }
38 }
39
40 // function to demonstrate an automatic local array
41 void automaticArrayInit(void) {
42 // initializes elements each time function is called
43 int array2[3] = {1, 2, 3};
44
45 puts("\n\nValues on entering automaticArrayInit:");
46
47 // output contents of array2
48 for (size_t i = 0; i <= 2; ++i) {
49 printf("array2[%zu] = %d ", i, array2[i]);
50 }
51
52 puts("\nValues on exiting automaticArrayInit:");
53
54 // modify and output contents of array2
55 for (size_t i = 0; i <= 2; ++i) {
56 printf("array2[%zu] = %d ", i, array2[i] += 5);
57 }
58 }

First call to each function:

Values on entering staticArrayInit:
array1[0] = 0 array1[1] = 0 array1[2] = 0
Values on exiting staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Second call to each function:

Values on entering staticArrayInit:
array1[0] = 5 array1[1] = 5 array1[2] = 5
Values on exiting staticArrayInit:
array1[0] = 10 array1[1] = 10 array1[2] = 10

Values on entering automaticArrayInit:
array2[0] = 1 array2[1] = 2 array2[2] = 3
Values on exiting automaticArrayInit:
array2[0] = 6 array2[1] = 7 array2[2] = 8

Fig. 6.9 | Static arrays are initialized to zero if not explicitly initialized. (Part 2 of 2.)

values preserved from last call

values reinitialized after last call

260 Chapter 6 Arrays

Function automaticArrayInit is also called twice (lines 12 and 16). The auto-
matic local array’s elements are initialized with the values 1, 2 and 3 (line 43). The
function prints the array, adds 5 to each element and prints the array again. The sec-
ond time the function is called, the array elements are initialized to 1, 2 and 3 again
because the array has automatic storage duration

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) A static local variable exists for the duration of the program but is visible
only in the function body.

b) A static local array is created and initialized once, not each time the function
is called. This reduces program execution time, particularly for programs
with frequently called functions that contain large arrays.

c) If you do not explicitly initialize a static array, that array’s elements are ini-
tialized to zero by default.

d) All of the above statements are true.
Answer: d.

6.7 Passing Arrays to Functions
To pass an array argument to a function, specify the array’s name without any brack-
ets. For example, if array hourlyTemperatures has been defined as

int hourlyTemperatures[HOURS_IN_A_DAY];

the function call
modifyArray(hourlyTemperatures, HOURS_IN_A_DAY)

passes array hourlyTemperatures and its size to function modifyArray.
Recall that all arguments in C are passed by value. However, C automatically

passes arrays to functions by reference—the called functions can modify the callers’
original array element values. We’ll see in Chapter 7 that this is not a contradiction.
An array’s name evaluates to the address in memory of the array’s first element.
Because the array’s starting address is passed, the called function knows precisely
where the array is stored. So, any modifications the called function makes to the array
elements change the values of the original array’s elements in the caller.

Showing That an Array Name Is an Address
Figure 6.10 demonstrates that “the value of an array name” is really the address of the
array’s first element by printing array, &array[0] and &array using the %p conversion
specification for printing addresses. The %p conversion specification normally out-
puts addresses as hexadecimal numbers, but this is compiler-dependent. Hexadecimal
(base 16) numbers consist of the digits 0 through 9 and the letters A through F—the
hexadecimal equivalents of the decimal numbers 10–15. Online Appendix E pro-
vides an in-depth discussion of the relationships among binary (base 2), octal (base
8), decimal (base 10; standard integers) and hexadecimal integers. The output shows

6.7 Passing Arrays to Functions 261

that array, &array and &array[0] have the same value. This program’s output is sys-
tem dependent, but the addresses are always identical for each program execution on
a particular computer.

Passing arrays by reference makes sense for performance reasons. If arrays were
passed by value, a copy of each element would be passed. For large, frequently passed
arrays, this would be time-consuming and would consume storage for the copies of
the arrays. It’s possible to pass an array by value (by placing it in a struct, as we
explain in Chapter 10, Structures, Unions, Bit Manipulation and Enumerations).

Passing Individual Array Elements
Although entire arrays are passed by reference, individual array elements are passed by
value, exactly as any other variable. Single pieces of data, such as individual ints, floats
and chars, are called scalars. To pass an array element to a function, use the subscripted
array name as an argument in the function call. In Chapter 7, we show how to pass sca-
lars (i.e., individual variables and array elements) to functions by reference.

Array Parameters
For a function to receive an array through a function call, the function’s parameter
list must expect an array. The function header for function modifyArray (from earlier
in this section) can be written as

void modifyArray(int b[], size_t size)

indicating that modifyArray expects to receive an int array in parameter b and the
array’s number of elements in parameter size. The array’s number of elements is not
required in the array parameter’s brackets. If it’s included, the compiler checks that
it’s greater than zero, then ignores it—specifying a negative value is a compilation
error. When the called function uses the array name b, it will be referring to the
caller’s original array. So, in the function call:

1 // fig06_10.c
2 // Array name is the same as the address of the array’s first element.
3 #include <stdio.h>
4
5 // function main begins program execution
6 int main(void) {
7 char array[5] = ""; // define an array of size 5
8
9 printf(" array = %p\n&array[0] = %p\n &array = %p\n",

10 array, &array[0], &array);
11 }

 array = 0031F930
&array[0] = 0031F930
 &array = 0031F930

Fig. 6.10 | Array name is the same as the address of the array’s first element.

PERF

SE

ERR

262 Chapter 6 Arrays

modifyArray(hourlyTemperatures, HOURS_IN_A_DAY)

modifyArray’s parameter b represents hourlyTemperatures in the caller. In
Chapter 7, we introduce other notations for indicating that a function receives an
array. As we’ll see, these notations are based on the intimate relationship between
arrays and pointers.

Difference Between Passing an Entire Array and Passing an Array Element
Figure 6.11 demonstrates the difference between passing an entire array and passing
an individual array element. The program first prints integer array a’s five elements
(lines 18–20). Next, we pass array a and its size to modifyArray (line 24), which mul-
tiplies each of a’s elements by 2 (lines 45–47). Then, lines 28–30 display a’s updated
contents. As the output shows, modifyArray did, indeed, modify a’s elements. Next,
line 34 prints a[3]’s value and line 36 passes it to function modifyElement. The func-
tion multiplies its argument by 2 (line 53) and prints the new value. When line 39 in
main displays a[3] again, it has not been modified because individual array elements
are passed by value.

1 // fig06_11.c
2 // Passing arrays and individual array elements to functions.
3 #include <stdio.h>
4 #define SIZE 5
5
6 // function prototypes
7 void modifyArray(int b[], size_t size);
8 void modifyElement(int e);
9

10 // function main begins program execution
11 int main(void) {
12 int a[SIZE] = {0, 1, 2, 3, 4}; // initialize array a
13
14 puts("Effects of passing entire array by reference:\n\nThe "
15 "values of the original array are:");
16
17 // output original array
18 for (size_t i = 0; i < SIZE; ++i) {
19 printf("%3d", a[i]);
20 }
21
22 puts(""); // outputs a newline
23
24 modifyArray(a, SIZE); // pass array a to modifyArray by reference
25 puts("The values of the modified array are:");
26
27 // output modified array
28 for (size_t i = 0; i < SIZE; ++i) {
29 printf("%3d", a[i]);
30 }
31

Fig. 6.11 | Passing arrays and individual array elements to functions. (Part 1 of 2.)

6.7 Passing Arrays to Functions 263

Using const to Prevent Functions from Modifying Array Elements
There may be situations in your programs in which a function should not modify
array elements. C’s type qualifier const (short for “constant”) can prevent a function
from modifying an argument. When an array parameter is preceded by the const
qualifier, the function treats the array elements as constants. Any attempt to modify
an array element in the function body results in a compile-time error. This is another
example of the principle of least privilege. A function should not be given the capa-
bility to modify an array in the caller unless it’s absolutely necessary.

The following definition of a function named tryToModifyArray uses the param-
eter const int b[] (line 3) to specify that array b is constant and cannot be modified:

32 // output value of a[3]
33 printf("\n\n\nEffects of passing array element "
34 "by value:\n\nThe value of a[3] is %d\n", a[3]);
35
36 modifyElement(a[3]); // pass array element a[3] by value
37
38 // output value of a[3]
39 printf("The value of a[3] is %d\n", a[3]);
40 }
41
42 // in function modifyArray, "b" points to the original array "a" in memory
43 void modifyArray(int b[], size_t size) {
44 // multiply each array element by 2
45 for (size_t j = 0; j < size; ++j) {
46 b[j] *= 2; // actually modifies original array
47 }
48 }
49
50 // in function modifyElement, "e" is a local copy of array element
51 // a[3] passed from main
52 void modifyElement(int e) {
53 e *= 2; // multiply parameter by 2
54 printf("Value in modifyElement is %d\n", e);
55 }

Effects of passing entire array by reference:

The values of the original array are:
 0 1 2 3 4
The values of the modified array are:
 0 2 4 6 8

Effects of passing array element by value:

The value of a[3] is 6
Value in modifyElement is 12
The value of a[3] is 6

Fig. 6.11 | Passing arrays and individual array elements to functions. (Part 2 of 2.)

SE

ERR

264 Chapter 6 Arrays

Each of the function’s attempts to modify array elements results in a compiler error.
The const qualifier is discussed in additional contexts in Chapter 7.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) Given the following array hourlyTemperatures:
 int hourlyTemperatures[HOURS_IN_A_DAY];

the following function call passes hourlyTemperatures and its size to
modifyArray:

 modifyArray(hourlyTemperatures, HOURS_IN_A_DAY)

b) Recall that all arguments in C are passed by value, so C automatically passes
arrays to functions by value.

c) The array’s name evaluates to the address of the array’s first element.
d) Because the address of the array’s first element is passed, the called function

knows precisely where the array is stored.
Answer: b) is false. Actually, C automatically passes arrays to functions by reference—
the called functions can modify the element values in the callers’ original arrays.

2 (Discussion) Based on the meaningful function name and parameter definitions
in the following function header, describe as much as you can about what this func-
tion probably does:

void modifyArray(int b[], size_t size)

Answer: Function modifyArray expects to receive an array of integers in parameter b
and the number of array elements in parameter size. The array is passed in by refer-
ence, so the function is able to modify the original array in the caller.

6.8 Sorting Arrays
Sorting data—that is, placing the data into ascending or descending order—is one of
the most important computing applications. A bank sorts checks by account number
to prepare individual bank statements at the end of each month. Telephone compa-
nies sort their lists of accounts by last name and, within that, by first name to make
it easy to find phone numbers. Virtually every organization must sort some data, and
in many cases, massive amounts of it. Sorting data is an intriguing problem that has
attracted some of the most intense computer-science research efforts. Here, we dis-

1 // in function tryToModifyArray, array b is const, so it cannot be
2 // used to modify its array argument in the caller
3 void tryToModifyArray(const int b[]) {
4 b[0] /= 2; // error
5 b[1] /= 2; // error
6 b[2] /= 2; // error
7 }

6.8 Sorting Arrays 265

cuss a simple sorting scheme. In Chapters 12 and 13, we investigate more complex
schemes that yield better performance. Often, the simplest algorithms perform
poorly. Their virtue is that they’re easy to write, test and debug. More complex algo-
rithms are often needed to realize maximum performance.

Bubble Sort
Figure 6.12 sorts the 10-element array a’s values (line 8) into ascending order. The
technique we use is called the bubble sort or the sinking sort because the smaller val-
ues gradually “bubble” their way to the top of the array like air bubbles rising in water,
while the larger values sink to the bottom of the array. The technique uses several
passes through the array. On each pass, the algorithm compares successive pairs of ele-
ments (element 0 and element 1, then element 1 and element 2, etc.). If a pair is in
increasing order (or if the values are identical), we leave the values as they are. If a pair
is in decreasing order, we swap their values in the array.

1 // fig06_12.c
2 // Sorting an array's values into ascending order.
3 #include <stdio.h>
4 #define SIZE 10
5
6 // function main begins program execution
7 int main(void) {
8 int a[SIZE] = {2, 6, 4, 8, 10, 12, 89, 68, 45, 37};
9

10 puts("Data items in original order");
11
12 // output original array
13 for (size_t i = 0; i < SIZE; ++i) {
14 printf("%4d", a[i]);
15 }
16
17 // bubble sort
18 // loop to control number of passes
19 for (int pass = 1; pass < SIZE; ++pass) {
20 // loop to control number of comparisons per pass
21 for (size_t i = 0; i < SIZE - 1; ++i) {
22 // compare adjacent elements and swap them if first
23 // element is greater than second element
24 if (a[i] > a[i + 1]) {
25 int hold = a[i];
26 a[i] = a[i + 1];
27 a[i + 1] = hold;
28 }
29 }
30 }
31
32 puts("\nData items in ascending order");
33

Fig. 6.12 | Sorting an array’s values into ascending order. (Part 1 of 2.)

PERF

266 Chapter 6 Arrays

First, the program compares a[0] to a[1], then a[1] to a[2], then a[2] to a[3],
and so on until it completes the pass by comparing a[8] to a[9]. Although there are
10 elements, only nine comparisons are performed. A large value may move down the
array many positions on a single pass because of how the successive comparisons are
made, but a small value may move up only one position.

On the first pass, the largest value is guaranteed to sink to the array’s bottom ele-
ment, a[9]. On the second pass, the second-largest value is guaranteed to sink to
a[8]. On the ninth pass, the ninth-largest value sinks to a[1]. This leaves the smallest
value in a[0], so only nine passes are needed to sort the 10-element array.

Swapping Elements
The sorting is performed by the nested for loops (lines 19–30). If a swap is necessary,
it’s performed by the three assignments in lines 25–27

int hold = a[i];
a[i] = a[i + 1];
a[i + 1] = hold;

The variable hold temporarily stores one of the two values being swapped. The swap
cannot be performed with only the two assignments

a[i] = a[i + 1];
a[i + 1] = a[i];

If, for example, a[i] is 7 and a[i + 1] is 5, after the first assignment, both values will
be 5 and the value 7 will be lost—hence the need for the extra variable hold.

Bubble Sort Is Easy to Implement, But Slow
The chief virtue of the bubble sort is that it’s easy to program. However, it runs slowly
because every exchange moves an element only one position closer to its final desti-
nation. This becomes apparent when sorting large arrays. In the exercises, we’ll
develop more efficient versions of the bubble sort. Far more efficient sorts than the
bubble sort have been developed. We’ll investigate other algorithms in Chapter 13.
More advanced courses investigate sorting and searching in greater depth.

34 // output sorted array
35 for (size_t i = 0; i < SIZE; ++i) {
36 printf("%4d", a[i]);
37 }
38
39 puts("");
40 }

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Fig. 6.12 | Sorting an array’s values into ascending order. (Part 2 of 2.)

6.9 Intro to Data Science Case Study: Survey Data Analysis 267

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is true?

a) The chief virtue of the bubble sort is that it’s easy to program.
b) Bubble sort runs slowly because every exchange moves an element only one

position closer to its final position. This becomes apparent when sorting large
arrays.

c) Far more efficient sorts than the bubble sort have been developed.
d) All of the above statements are true.

Answer: d.

2 (True/False) If a swap is necessary in the bubble sort, it uses the assignments:
a[i] = a[i + 1];
a[i + 1] = a[i];

Answer: False. Actually, the swap requires one more variable and one more statement:
int hold = a[i];
a[i] = a[i + 1];
a[i + 1] = hold;

where the variable hold temporarily stores one of the two values being swapped.

6.9 Intro to Data Science Case Study: Survey Data
Analysis
We now consider a larger example. Computers are commonly used for survey data
analysis to compile and analyze the results of surveys and opinion polls. Figure 6.13
uses the array response initialized with 99 responses to a survey. Each response is a
number from 1 to 9. The program computes the mean, median and mode of the 99
values. This example includes many common manipulations required in array prob-
lems, including passing arrays to functions. Notice that lines 48–52 contain several
string literals separated only by whitespace. C compilers automatically combine such
string literals into one—this helps making long string literals more readable.

1 // fig06_13.c
2 // Survey data analysis with arrays:
3 // computing the mean, median and mode of the data.
4 #include <stdio.h>
5 #define SIZE 99
6
7 // function prototypes
8 void mean(const int answer[]);
9 void median(int answer[]);

10 void mode(int freq[], const int answer[]) ;
11 void bubbleSort(int a[]);
12 void printArray(const int a[]);

Fig. 6.13 | Survey data analysis with arrays: computing the mean, median and mode of the
data. (Part 1 of 5.)

268 Chapter 6 Arrays

13
14 // function main begins program execution
15 int main(void) {
16 int frequency[10] = {0}; // initialize array frequency
17
18 // initialize array response
19 int response[SIZE] =
20 {6, 7, 8, 9, 8, 7, 8, 9, 8, 9,
21 7, 8, 9, 5, 9, 8, 7, 8, 7, 8,
22 6, 7, 8, 9, 3, 9, 8, 7, 8, 7,
23 7, 8, 9, 8, 9, 8, 9, 7, 8, 9,
24 6, 7, 8, 7, 8, 7, 9, 8, 9, 2,
25 7, 8, 9, 8, 9, 8, 9, 7, 5, 3,
26 5, 6, 7, 2, 5, 3, 9, 4, 6, 4,
27 7, 8, 9, 6, 8, 7, 8, 9, 7, 8,
28 7, 4, 4, 2, 5, 3, 8, 7, 5, 6,
29 4, 5, 6, 1, 6, 5, 7, 8, 7};
30
31 // process responses
32 mean(response);
33 median(response);
34 mode(frequency, response);
35 }
36
37 // calculate average of all response values
38 void mean(const int answer[]) {
39 printf("%s\n%s\n%s\n", "--------", " Mean", "--------");
40
41 int total = 0; // variable to hold sum of array elements
42
43 // total response values
44 for (size_t j = 0; j < SIZE; ++j) {
45 total += answer[j];
46 }
47
48 printf("The mean is the average value of the data\n"
49 "items. The mean is equal to the total of\n"
50 "all the data items divided by the number\n"
51 "of data items (%u). The mean value for\n"
52 "this run is: %u / %u = %.4f\n\n",
53 SIZE, total, SIZE, (double) total / SIZE);
54 }
55
56 // sort array and determine median element's value
57 void median(int answer[]) {
58 printf("\n%s\n%s\n%s\n%s", "--------", " Median", "--------",
59 "The unsorted array of responses is");
60
61 printArray(answer); // output unsorted array
62
63 bubbleSort(answer); // sort array

Fig. 6.13 | Survey data analysis with arrays: computing the mean, median and mode of the
data. (Part 2 of 5.)

6.9 Intro to Data Science Case Study: Survey Data Analysis 269

64
65 printf("%s", "\n\nThe sorted array is");
66 printArray(answer); // output sorted array
67
68 // display median element
69 printf("\n\nThe median is element %u of\n"
70 "the sorted %u element array.\n"
71 "For this run the median is %u\n\n",
72 SIZE / 2, SIZE, answer[SIZE / 2]);
73 }
74
75 // determine most frequent response
76 void mode(int freq[], const int answer[]) {
77 printf("\n%s\n%s\n%s\n", "--------", " Mode", "--------");
78
79 // initialize frequencies to 0
80 for (size_t rating = 1; rating <= 9; ++rating) {
81 freq[rating] = 0;
82 }
83
84 // summarize frequencies
85 for (size_t j = 0; j < SIZE; ++j) {
86 ++freq[answer[j]];
87 }
88
89 // output headers for result columns
90 printf("%s%11s%19s\n\n%54s\n%54s\n\n",
91 "Response", "Frequency", "Bar Chart",
92 "1 1 2 2", "5 0 5 0 5");
93
94 // output results
95 int largest = 0; // represents largest frequency
96 int modeValue = 0; // represents most frequent response
97
98 for (size_t rating = 1; rating <= 9; ++rating) {
99 printf("%8zu%11d ", rating, freq[rating]);
100
101 // keep track of mode value and largest frequency value
102 if (freq[rating] > largest) {
103 largest = freq[rating];
104 modeValue = rating;
105 }
106
107 // output bar representing frequency value
108 for (int h = 1; h <= freq[rating]; ++h) {
109 printf("%s", "*");
110 }
111
112 puts(""); // being new line of output
113 }
114

Fig. 6.13 | Survey data analysis with arrays: computing the mean, median and mode of the
data. (Part 3 of 5.)

270 Chapter 6 Arrays

115 // display the mode value
116 printf("\nThe mode is the most frequent value.\n"
117 "For this run the mode is %d which occurred %d times.\n",
118 modeValue, largest);
119 }
120
121 // function that sorts an array with bubble sort algorithm
122 void bubbleSort(int a[]) {
123 // loop to control number of passes
124 for (int pass = 1; pass < SIZE; ++pass) {
125 // loop to control number of comparisons per pass
126 for (size_t j = 0; j < SIZE - 1; ++j) {
127 // swap elements if out of order
128 if (a[j] > a[j + 1]) {
129 int hold = a[j];
130 a[j] = a[j + 1];
131 a[j + 1] = hold;
132 }
133 }
134 }
135 }
136
137 // output array contents (20 values per row)
138 void printArray(const int a[]) {
139 // output array contents
140 for (size_t j = 0; j < SIZE; ++j) {
141
142 if (j % 20 == 0) { // begin new line every 20 values
143 puts("");
144 }
145
146 printf("%2d", a[j]);
147 }
148 }

 Mean

The mean is the average value of the data
items. The mean is equal to the total of
all the data items divided by the number
of data items (99). The mean value for
this run is: 681 / 99 = 6.8788

 Median

The unsorted array of responses is
 6 7 8 9 8 7 8 9 8 9 7 8 9 5 9 8 7 8 7 8
 6 7 8 9 3 9 8 7 8 7 7 8 9 8 9 8 9 7 8 9

Fig. 6.13 | Survey data analysis with arrays: computing the mean, median and mode of the
data. (Part 4 of 5.)

6.9 Intro to Data Science Case Study: Survey Data Analysis 271

Mean
The mean is the arithmetic average of the 99 values. Function mean (lines 38–54)
computes the mean by totaling the 99 elements and dividing the result by 99.

Median
The median is the middle value. Function median (lines 57–73) first sorts the
responses by calling function bubbleSort (defined in lines 122–135). Then it deter-
mines the median by picking the sorted array’s middle element, answer[SIZE / 2].
When the number of elements is even, the median should be calculated as the mean
of the two middle elements—function median does not currently provide this capa-
bility. Lines 61 and 66 call function printArray (lines 138–148) to output the
response array before and after the sort.

 6 7 8 7 8 7 9 8 9 2 7 8 9 8 9 8 9 7 5 3
 5 6 7 2 5 3 9 4 6 4 7 8 9 6 8 7 8 9 7 8
 7 4 4 2 5 3 8 7 5 6 4 5 6 1 6 5 7 8 7

The sorted array is
 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5 5 5 5 5 5
 5 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7
 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8
 8
 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

The median is element 49 of
the sorted 99 element array.
For this run the median is 7

 Mode

Response Frequency Bar Chart

 1 1 2 2
 5 0 5 0 5

 1 1 *
 2 3 ***
 3 4 ****
 4 5 *****
 5 8 ********
 6 9 *********
 7 23 ***********************
 8 27 ***************************
 9 19 *******************

The mode is the most frequent value.
For this run the mode is 8 which occurred 27 times.

Fig. 6.13 | Survey data analysis with arrays: computing the mean, median and mode of the
data. (Part 5 of 5.)

272 Chapter 6 Arrays

Mode
The mode is the value that occurs most frequently among the 99 responses. Function
mode (lines 76–119) determines the mode by counting the number of responses of
each type, then selecting the value with the greatest count. This version of function
mode does not handle a tie (see Exercise 6.14). Function mode also produces a bar chart
to aid in determining the mode graphically.

Related Exercises
This case study is supported by the following exercise:

• Exercise 6.14 (Mean, Median and Mode Program Modifications).

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) The median is the middle value among the sorted data items.
b) The algorithm for finding the median of the values in an array sorts the array

into ascending order, then picks the sorted array’s middle element.
c) When the number of elements is even, the median is calculated as the mean

of the two middle elements.
d) All of the above statements are true.

Answer: d.

2 (Multiple Choice) Which of the following statements is a), b) or c) is false?
a) The mode is the value that occurs most frequently among the data items.
b) The algorithm for finding the mode counts the number of occurrences of

each value, then selects the most frequently occurring value. One problem
with determining the mode is what to do in case of a tie.

c) The mode can be determined visually by graphing the frequencies of the values
in a bar chart—the longest bar represents the mode.

d) All of the above statements are true.
Answer: d.

6.10 Searching Arrays
You’ll often work with large amounts of data stored in arrays. It may be necessary to
determine whether an array contains a value that matches a certain key value. The
process of finding a key value in an array is called searching. This section discusses
two searching techniques—the simple linear search technique and the more efficient
(but more complicated) binary search technique. Exercises 6.32 and 6.33 ask you to
implement recursive versions of the linear search and the binary search.

6.10.1 Searching an Array with Linear Search
A linear search (Fig. 6.14, lines 37–46) compares each array element with the search
key. The array is not sorted, so it’s just as likely the value will be found in the first
element as in the last. On average, therefore, the program will have to compare the

6.10 Searching Arrays 273

search key with half the array elements. If the key value is found, we return the ele-
ment’s subscript; otherwise, we return -1 (an invalid subscript).

1 // fig06_14.c
2 // Linear search of an array.
3 #include <stdio.h>
4 #define SIZE 100
5
6 // function prototype
7 int linearSearch(const int array[], int key, size_t size);
8
9 // function main begins program execution

10 int main(void) {
11 int a[SIZE] = {0}; // create array a
12
13 // create some data
14 for (size_t x = 0; x < SIZE; ++x) {
15 a[x] = 2 * x;
16 }
17
18 printf("Enter integer search key: ");
19 int searchKey = 0; // value to locate in array a
20 scanf("%d", &searchKey);
21
22 // attempt to locate searchKey in array a
23 int subscript = linearSearch(a, searchKey, SIZE);
24
25 // display results
26 if (subscript != -1) {
27 printf("Found value at subscript %d\n", subscript);
28 }
29 else {
30 puts("Value not found");
31 }
32 }
33
34 // compare key to every element of array until the location is found
35 // or until the end of array is reached; return subscript of element
36 // if key is found or -1 if key is not found
37 int linearSearch(const int array[], int key, size_t size) {
38 // loop through array
39 for (size_t n = 0; n < size; ++n) {
40 if (array[n] == key) {
41 return n; // return location of key
42 }
43 }
44
45 return -1; // key not found
46 }

Enter integer search key: 36
Found value at subscript 18

Fig. 6.14 | Linear search of an array. (Part 1 of 2.)

274 Chapter 6 Arrays

6.10.2 Searching an Array with Binary Search
Linear searching works well for small or unsorted arrays. However, for large arrays,
linear searching is inefficient. If the array is sorted, the high-speed binary search tech-
nique can be used.

The binary search algorithm eliminates from consideration one-half of a sorted
array’s elements after each comparison. The algorithm locates the middle array ele-
ment and compares it to the search key. If they’re equal, the algorithm found the
search key, so it returns that element’s subscript. If they’re not equal, the problem
is reduced to searching one-half of the array. If the search key is less than the middle
array element, the algorithm searches the first half of the array; otherwise, it searches
the second half. If the search key is not the middle element in the current subarray (a
piece of the original array), the algorithm repeats on one-quarter of the original array.
The search continues until the search key is equal to the middle element of a subarray,
or until the subarray consists of one element that’s not equal to the search key—that
is, the search key is not found.

Performance of the Binary Search Algorithm
In the worst-case scenario, searching a sorted array of 1023 elements takes only 10
comparisons using a binary search. Repeatedly dividing 1,024 by 2 yields the values
512, 256, 128, 64, 32, 16, 8, 4, 2 and 1. The number 1,024 (210) is divided by 2 only
10 times to get the value 1. Dividing by 2 is equivalent to one comparison in the
binary search algorithm. An array of 1,048,576 (220) elements takes a maximum of
only 20 comparisons to find the search key. A sorted array of one billion elements
takes a maximum of only 30 comparisons to find the search key. This is a tremendous
increase in performance over a linear search of a sorted array, which requires compar-
ing the search key to an average of half of the array elements. For a one-billion-ele-
ment array, this is a difference between an average of 500 million comparisons and a
maximum of 30 comparisons! The maximum comparisons for any array can be deter-
mined by finding the first power of 2 greater than the number of array elements.

Implementing Binary Search
Figure 6.15 presents the iterative version of function binarySearch (lines 39–60).
The function receives four arguments—an integer array b to search, an integer key to
find, the low array subscript and the high array subscript. The last two arguments
define the portion of the array to search. If the search key does not match the middle
element of a subarray, the low subscript or high subscript is modified so that a smaller
subarray can be searched:

Enter integer search key: 37
Value not found

Fig. 6.14 | Linear search of an array. (Part 2 of 2.)

PERF

6.10 Searching Arrays 275

• If the search key is less than the middle element, the algorithm sets the high
subscript to middle - 1 (line 52), then continues the search on the elements
with subscripts in the range low to middle - 1.

• If the search key is greater than the middle element, the algorithm sets the low
subscript to middle + 1 (line 55), then continues the search on the elements
with subscripts in the range middle + 1 to high.

The program uses an array of 15 elements. The first power of 2 greater than the
number of elements in this array is 16 (24), so no more than 4 comparisons are
required to find the search key. We use function printHeader (lines 63–79) to output
the array subscripts and function printRow (lines 83–99) to output each subarray
during the binary search process. We mark the middle element in each subarray with
an asterisk (*) to indicate the element to which the search key is compared.

1 // fig06_15.c
2 // Binary search of a sorted array.
3 #include <stdio.h>
4 #define SIZE 15
5
6 // function prototypes
7 int binarySearch(const int b[], int key, size_t low, size_t high);
8 void printHeader(void);
9 void printRow(const int b[], size_t low, size_t mid, size_t high);

10
11 // function main begins program execution
12 int main(void) {
13 int a[SIZE] = {0}; // create array a
14
15 // create data
16 for (size_t i = 0; i < SIZE; ++i) {
17 a[i] = 2 * i;
18 }
19
20 printf("%s", "Enter a number between 0 and 28: ");
21 int key = 0; // value to locate in array a
22 scanf("%d", &key);
23
24 printHeader();
25
26 // search for key in array a
27 int result = binarySearch(a, key, 0, SIZE - 1);
28
29 // display results
30 if (result != -1) {
31 printf("\n%d found at subscript %d\n", key, result);
32 }
33 else {
34 printf("\n%d not found\n", key);
35 }
36 }

Fig. 6.15 | Binary search of a sorted array. (Part 1 of 3.)

276 Chapter 6 Arrays

37
38 // function to perform binary search of an array
39 int binarySearch(const int b[], int key, size_t low, size_t high) {
40 // loop until low subscript is greater than high subscript
41 while (low <= high) {
42 size_t middle = (low + high) / 2; // determine middle subscript
43
44 // display subarray used in this loop iteration
45 printRow(b, low, middle, high);
46
47 // if key matches, return middle subscript
48 if (key == b[middle]) {
49 return middle;
50 }
51 else if (key < b[middle]) { // if key < b[middle], adjust high
52 high = middle - 1; // next iteration searches low end of array
53 }
54 else { // key > b[middle], so adjust low
55 low = middle + 1; // next iteration searches high end of array
56 }
57 } // end while
58
59 return -1; // searchKey not found
60 }
61
62 // Print a header for the output
63 void printHeader(void) {
64 puts("\nSubscripts:");
65
66 // output column head
67 for (int i = 0; i < SIZE; ++i) {
68 printf("%3d ", i);
69 }
70
71 puts(""); // start new line of output
72
73 // output line of - characters
74 for (int i = 1; i <= 4 * SIZE; ++i) {
75 printf("%s", "-");
76 }
77
78 puts(""); // start new line of output
79 }
80
81 // Print one row of output showing the current
82 // part of the array being processed.
83 void printRow(const int b[], size_t low, size_t mid, size_t high) {
84 // loop through entire array
85 for (size_t i = 0; i < SIZE; ++i) {
86 // display spaces if outside current subarray range
87 if (i < low || i > high) {
88 printf("%s", " ");
89 }

Fig. 6.15 | Binary search of a sorted array. (Part 2 of 3.)

6.10 Searching Arrays 277

Self Check
1 (Multiple Choice) Which of the following statements about linear search is false?

a) It compares every array element with the search key.
b) Because the array is not in any particular order, it’s just as likely that the value

will be found in the first element as in the last.
c) On average, it compares the search key with half the array’s elements.

90 else if (i == mid) { // display middle element
91 printf("%3d*", b[i]); // mark middle value
92 }
93 else { // display other elements in subarray
94 printf("%3d ", b[i]);
95 }
96 }
97
98 puts(""); // start new line of output
99 }

Enter a number between 0 and 28: 25

Subscripts:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 16 18 20 22* 24 26 28
 24 26* 28
 24*

25 not found

Enter a number between 0 and 28: 8

Subscripts:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 0 2 4 6* 8 10 12
 8 10* 12
 8*

8 found at subscript 4

Enter a number between 0 and 28: 6

Subscripts:
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
--
 0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28
 0 2 4 6* 8 10 12

6 found at subscript 3

Fig. 6.15 | Binary search of a sorted array. (Part 3 of 3.)

278 Chapter 6 Arrays

d) It works well for small or unsorted arrays. For large arrays it’s inefficient.
Answer: a) is false. It could find a match before reaching the array’s end, in which case
it would terminate the search before comparing every element with the search key.

2 (Multiple Choice) Which of the following statements about binary search is false?
a) If the array is sorted, the high-speed binary search technique can be used.
b) The binary search algorithm eliminates from consideration two of the ele-

ments in a sorted array after each comparison.
c) The algorithm locates the middle element of the array and compares it to the

search key. If they’re equal, the search key is found and the array index of that
element is returned. If the search key is less than the middle element of the
array, the algorithm then searches the array’s first half; otherwise, the algo-
rithm searches the array’s second half.

d) The search continues until the search key is equal to a subarray’s middle ele-
ment, or until the subarray consists of one element that’s not equal to the
search key (i.e., the search key is not found).

Answer: b) is false. Actually, the binary search algorithm eliminates from consider-
ation one-half of the elements in a sorted array after each comparison.

6.11 Multidimensional Arrays
Arrays can have multiple subscripts. A common use of multidimensional arrays is to
represent tables of values consisting of information arranged in rows and columns. To
identify a particular table element, we specify two subscripts:

• The first (by convention) identifies the element’s row and

• the second (by convention) identifies the element’s column.

Arrays that require two subscripts to identify a particular element commonly are
called two-dimensional arrays. Multidimensional arrays can have more than two
subscripts.

6.11.1 Illustrating a Two-Dimensional Array
The following diagram illustrates a two-dimensional array named a:

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

6.11 Multidimensional Arrays 279

The array contains three rows and four columns, so it’s said to be a 3-by-4 array. In
general, an array with m rows and n columns is called an m-by-n array.

Every element in array a is identified by a name of the form a[i][j], where a is
the array name, and i and j are the subscripts that uniquely identify each element.
The element names in row 0 all have the first subscript 0. The element names in col-
umn 3 all have the second subscript 3. Referencing a two-dimensional array element
as a[x, y] instead of a[x][y] is a logic error. C treats a[x, y] as a[y], so this program-
mer error is not a syntax error. The comma in this context is a comma operator which
guarantees that a list of expressions evaluates from left to right. The value of a comma-
separated list of expressions is the value of the rightmost expression in the list.

6.11.2 Initializing a Double-Subscripted Array
You can initialize a multidimensional array when you define it. For example, you can
define and initialize the two-dimensional array int b[2][2] with:

int b[2][2] = {{1, 2}, {3, 4}};

The values in the initializer list are grouped by row in braces. The values in the first
set of braces initialize row 0 and the values in the second set of braces initialize row
1. So, the values 1 and 2 initialize elements b[0][0] and b[0][1], respectively, and
the values 3 and 4 initialize elements b[1][0] and b[1][1], respectively. If there are
not enough initializers for a given row, that row’s remaining elements are initialized
to 0. So the definition:

int b[2][2] = {{1}, {3, 4}};

would initialize b[0][0] to 1, b[0][1] to 0, b[1][0] to 3 and b[1][1] to 4.
Figure 6.16 demonstrates defining and initializing two-dimensional arrays.

ERR

1 // fig06_16.c
2 // Initializing multidimensional arrays.
3 #include <stdio.h>
4
5 void printArray(int a[][3]); // function prototype
6
7 // function main begins program execution
8 int main(void) {
9 int array1[2][3] = {{1, 2, 3}, {4, 5, 6}};

10 puts("Values in array1 by row are:");
11 printArray(array1);
12
13 int array2[2][3] = {{1, 2, 3}, {4, 5}};
14 puts("Values in array2 by row are:");
15 printArray(array2);
16
17 int array3[2][3] = {{1, 2}, {4}};
18 puts("Values in array3 by row are:");
19 printArray(array3);
20 }

Fig. 6.16 | Initializing multidimensional arrays. (Part 1 of 2.)

280 Chapter 6 Arrays

array1 Definition
The program defines three arrays of two rows and three columns. The definition of
array1 (line 9) provides six initializers in two sublists. The first sublist initializes row
0 to the values 1, 2 and 3, and the second sublist initializes row 1 to the values 4, 5
and 6.

array2 Definition
The definition of array2 (line 13) provides five initializers in two sublists, initializing
row 0 to 1, 2 and 3, and row 1 to 4, 5 and 0. Any elements that do not have an explicit
initializer are initialized to zero automatically, so array2[1][2] is initialized to 0.

array3 Definition
The definition of array3 (line 17) provides three initializers in two sublists. The first
row’s sublist explicitly initializes the row’s first two elements to 1 and 2 and implicitly
initializes the third element to 0. The second row’s sublist explicitly initializes the first
element to 4 and implicitly initializes the last two elements to 0.

printArray Function
The program calls printArray (lines 23–33) to output each array’s elements. The
function definition specifies the array parameter as int a[][3]. In a one-dimensional
array parameter, the array brackets are empty. The first subscript of a multidimen-
sional array is not required, but all subsequent subscripts are required. The compiler

21
22 // function to output array with two rows and three columns
23 void printArray(int a[][3]) {
24 // loop through rows
25 for (size_t i = 0; i <= 1; ++i) {
26 // output column values
27 for (size_t j = 0; j <= 2; ++j) {
28 printf("%d ", a[i][j]);
29 }
30
31 printf("\n"); // start new line of output
32 }
33 }

Values in array1 by row are:
1 2 3
4 5 6
Values in array2 by row are:
1 2 3
4 5 0
Values in array3 by row are:
1 2 0
4 0 0

Fig. 6.16 | Initializing multidimensional arrays. (Part 2 of 2.)

6.11 Multidimensional Arrays 281

uses these subscripts to determine the locations in memory of a multidimensional
array’s elements. All array elements are stored consecutively in memory regardless of
the number of subscripts. In a two-dimensional array, the first row is stored in mem-
ory, followed by the second row.

Providing the subscript values in a parameter declaration enables the compiler to
tell the function how to locate an array element. In a two-dimensional array, each row
is basically a one-dimensional array. To locate an element in a particular row, the
compiler must know how many elements are in each row so that it can skip the proper
number of memory locations when accessing the array. So, when accessing a[1][2]
in our example, the compiler knows to skip the three elements of the first row to get
to the second row (row 1). Then, the compiler accesses element 2 of that row.

6.11.3 Setting the Elements in One Row
Many common array manipulations use for iteration statements. For example, the
following statement sets all the elements in row 2 of the 3-by-4 int array a to zero:

for (int column = 0; column <= 3; ++column) {
 a[2][column] = 0;
}

We specified row 2, so the first subscript is always 2. The loop varies only the column
subscript. The preceding for statement is equivalent to the assignment statements:

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

6.11.4 Totaling the Elements in a Two-Dimensional Array
The following nested for statement totals the elements in the 3-by-4 int array a:

int total = 0;

for (int row = 0; row <= 2; ++row) {
 for (int column = 0; column <= 3; ++column) {
 total += a[row][column];
 }
}

The for statement totals the elements one row at a time. The outer for statement
begins by setting the row subscript to 0 so that row’s elements may be totaled by the
inner for statement. The outer for statement then increments row to 1, so that row’s
elements can be totaled. Then, the outer for statement increments row to 2, so that
row’s elements can be totaled. When the nested for statement terminates, total con-
tains the sum of all the elements in the array a.

6.11.5 Two-Dimensional Array Manipulations
Figure 6.17 uses for statements to perform several common array manipulations on
a 3-by-4 array named studentGrades. Each row represents a student, and each col-

282 Chapter 6 Arrays

umn represents a grade on one of the four exams the students took during the semes-
ter. The array manipulations are performed by four functions:

• Function minimum (lines 38–52) finds the lowest grade of any student for the
semester.

• Function maximum (lines 55–69) finds the highest grade of any student for the
semester.

• Function average (lines 72–81) calculates a particular student’s semester
average.

• Function printArray (lines 84–98) displays the two-dimensional array in a
neat, tabular format.

1 // fig06_17.c
2 // Two-dimensional array manipulations.
3 #include <stdio.h>
4 #define STUDENTS 3
5 #define EXAMS 4
6
7 // function prototypes
8 int minimum(const int grades[][EXAMS], size_t pupils, size_t tests);
9 int maximum(const int grades[][EXAMS], size_t pupils, size_t tests);

10 double average(const int setOfGrades[], size_t tests);
11 void printArray(const int grades[][EXAMS], size_t pupils, size_t tests);
12
13 // function main begins program execution
14 int main(void) {
15 // initialize student grades for three students (rows)
16 int studentGrades[STUDENTS][EXAMS] =
17 {{77, 68, 86, 73},
18 {96, 87, 89, 78},
19 {70, 90, 86, 81}};
20
21 // output array studentGrades
22 puts("The array is:");
23 printArray(studentGrades, STUDENTS, EXAMS);
24
25 // determine smallest and largest grade values
26 printf("\n\nLowest grade: %d\nHighest grade: %d\n",
27 minimum(studentGrades, STUDENTS, EXAMS),
28 maximum(studentGrades, STUDENTS, EXAMS));
29
30 // calculate average grade for each student
31 for (size_t student = 0; student < STUDENTS; ++student) {
32 printf("The average grade for student %zu is %.2f\n",
33 student, average(studentGrades[student], EXAMS));
34 }
35 }

Fig. 6.17 | Two-dimensional array manipulations. (Part 1 of 3.)

6.11 Multidimensional Arrays 283

36
37 // Find the minimum grade
38 int minimum(const int grades[][EXAMS], size_t pupils, size_t tests) {
39 int lowGrade = 100; // initialize to highest possible grade
40
41 // loop through rows of grades
42 for (size_t row = 0; row < pupils; ++row) {
43 // loop through columns of grades
44 for (size_t column = 0; column < tests; ++column) {
45 if (grades[row][column] < lowGrade) {
46 lowGrade = grades[row][column];
47 }
48 }
49 }
50
51 return lowGrade; // return minimum grade
52 }
53
54 // Find the maximum grade
55 int maximum(const int grades[][EXAMS], size_t pupils, size_t tests) {
56 int highGrade = 0; // initialize to lowest possible grade
57
58 // loop through rows of grades
59 for (size_t row = 0; row < pupils; ++row) {
60 // loop through columns of grades
61 for (size_t column = 0; column < tests; ++column) {
62 if (grades[row][column] > highGrade) {
63 highGrade = grades[row][column];
64 }
65 }
66 }
67
68 return highGrade; // return maximum grade
69 }
70
71 // Determine the average grade for a particular student
72 double average(const int setOfGrades[], size_t tests) {
73 int total = 0; // sum of test grades
74
75 // total all grades for one student
76 for (size_t test = 0; test < tests; ++test) {
77 total += setOfGrades[test];
78 }
79
80 return (double) total / tests; // average
81 }
82
83 // Print the array
84 void printArray(const int grades[][EXAMS], size_t pupils, size_t tests) {
85 // output column heads
86 printf("%s", " [0] [1] [2] [3]");
87

Fig. 6.17 | Two-dimensional array manipulations. (Part 2 of 3.)

284 Chapter 6 Arrays

Nested Loops in Functions minimum, maximum and printArray
Functions minimum, maximum and printArray each receive three arguments—the stu-
dentGrades array (called grades in each function), the number of students (rows in
the array) and the number of exams (columns in the array). Each function loops
through array grades using nested for statements. The following nested for state-
ment is from the function minimum definition:

// loop through rows of grades
for (size_t row = 0; row < pupils; ++row) {
 // loop through columns of grades
 for (size_t column = 0; column < tests; ++column) {
 if (grades[row][column] < lowGrade) {
 lowGrade = grades[row][column];
 }
 }
}

The outer for statement begins by setting row to 0 so that row’s elements (i.e., the
first student’s grades) can be compared to variable lowGrade in the inner for state-
ment. The inner for statement loops through a particular row’s four grades and com-
pares each grade to lowGrade. If a grade is less than lowGrade, the nested if statement
sets lowGrade to that grade. The outer for statement then increments row to 1, and
that row’s elements are compared to lowGrade. The outer for statement then incre-
ments row to 2, and that row’s elements are compared to lowGrade. When the nested

88 // output grades in tabular format
89 for (size_t row = 0; row < pupils; ++row) {
90 // output label for row
91 printf("\nstudentGrades[%zu] ", row);
92
93 // output grades for one student
94 for (size_t column = 0; column < tests; ++column) {
95 printf("%-5d", grades[row][column]);
96 }
97 }
98 }

The array is:
 [0] [1] [2] [3]
studentGrades[0] 77 68 86 73
studentGrades[1] 96 87 89 78
studentGrades[2] 70 90 86 81

Lowest grade: 68
Highest grade: 96
The average grade for student 0 is 76.00
The average grade for student 1 is 87.50
The average grade for student 2 is 81.75

Fig. 6.17 | Two-dimensional array manipulations. (Part 3 of 3.)

6.12 Variable-Length Arrays 285

statement completes execution, lowGrade contains the smallest grade in the two-
dimensional array. Function maximum works similarly to function minimum.

Function average
Function average (lines 72–81) takes two arguments—a one-dimensional array of
test results for a particular student (setOfGrades) and the number of test results in the
array. When line 33 calls average, the first argument—studentGrades[student]—
passes the address of one row of the two-dimensional array. The argument student-
Grades[1] is the starting address of row 1 of the array. Remember that a two-dimen-
sional array is basically an array of one-dimensional arrays, and the name of a one-
dimensional array is the address of that array in memory. Function average calculates
the sum of the array elements, divides the total by the number of test results and
returns the floating-point result.

Self Check
1 (What Does This Code Do?) What does the following nested for statement do?

product = 1;

for (row = 0; row <= 2; ++row) {
 for (column = 0; column <= 3; ++column) {
 product *= m[row][column];
 }
}

Answer: It calculates the product of all the element values in 3-by-4 double array m.

2 (What Does This Code Do?) What does the following nested for statement do?
// loop through rows of grades
for (i = 0; i < pupils; ++i) {
 // loop through columns of grades
 for (j = 0; j < tests; ++j) {
 if (grades[i][j] < lowGrade) {
 lowGrade = grades[i][j];
 }
 }
}

Answer: It loops through a two-dimensional array grades with pupils rows and
tests columns attempting to find the minimum grade in the array. Assuming the
grades would be zero through 100, lowGrade would need to be initialized to a value
of 100 or greater.

6.12 Variable-Length Arrays
For each array you’ve defined so far, you’ve specified its size at compilation time. But
what if you cannot determine an array’s size until execution time? In the past, to han-
dle this, you had to use dynamic memory allocation (introduced in Chapter 12, Data
Structures). For cases in which an array’s size is not known at compilation time, C

286 Chapter 6 Arrays

has variable-length arrays (VLAs)—arrays whose lengths are determined by expres-
sions evaluated at execution time.2 The program of Fig. 6.18 declares and prints sev-
eral VLAs.

2. This feature is not supported in Microsoft Visual C++.

1 // fig06_18.c
2 // Using variable-length arrays in C99
3 #include <stdio.h>
4
5 // function prototypes
6 void print1DArray(size_t size, int array[size]);
7 void print2DArray(size_t row, size_t col, int array[row][col]);
8
9 int main(void) {

10 printf("%s", "Enter size of a one-dimensional array: ");
11 int arraySize = 0; // size of 1-D array
12 scanf("%d", &arraySize);
13
14 int array[arraySize]; // declare 1-D variable-length array
15
16 printf("%s", "Enter number of rows and columns in a 2-D array: ");
17 int row1 = 0; // number of rows in a 2-D array
18 int col1 = 0; // number of columns in a 2-D array
19 scanf("%d %d", &row1, &col1);
20
21 int array2D1[row1][col1]; // declare 2-D variable-length array
22
23 printf("%s",
24 "Enter number of rows and columns in another 2-D array: ");
25 int row2 = 0; // number of rows in a 2-D array
26 int col2 = 0; // number of columns in a 2-D array
27 scanf("%d %d", &row2, &col2);
28
29 int array2D2[row2][col2]; // declare 2-D variable-length array
30
31 // test sizeof operator on VLA
32 printf("\nsizeof(array) yields array size of %zu bytes\n",
33 sizeof(array));
34
35 // assign elements of 1-D VLA
36 for (size_t i = 0; i < arraySize; ++i) {
37 array[i] = i * i;
38 }
39
40 // assign elements of first 2-D VLA
41 for (size_t i = 0; i < row1; ++i) {
42 for (size_t j = 0; j < col1; ++j) {
43 array2D1[i][j] = i + j;
44 }
45 }
46

Fig. 6.18 | Using variable-length arrays in C99. (Part 1 of 3.)

6.12 Variable-Length Arrays 287

47 // assign elements of second 2-D VLA
48 for (size_t i = 0; i < row2; ++i) {
49 for (size_t j = 0; j < col2; ++j) {
50 array2D2[i][j] = i + j;
51 }
52 }
53
54 puts("\nOne-dimensional array:");
55 print1DArray(arraySize, array); // pass 1-D VLA to function
56
57 puts("\nFirst two-dimensional array:");
58 print2DArray(row1, col1, array2D1); // pass 2-D VLA to function
59
60 puts("\nSecond two-dimensional array:");
61 print2DArray(row2, col2, array2D2); // pass other 2-D VLA to function
62 }
63
64 void print1DArray(size_t size, int array[size]) {
65 // output contents of array
66 for (size_t i = 0; i < size; i++) {
67 printf("array[%zu] = %d\n", i, array[i]);
68 }
69 }
70
71 void print2DArray(size_t row, size_t col, int array[row][col]) {
72 // output contents of array
73 for (size_t i = 0; i < row; ++i) {
74 for (size_t j = 0; j < col; ++j) {
75 printf("%5d", array[i][j]);
76 }
77
78 puts("");
79 }
80 }

Enter size of a one-dimensional array: 6
Enter number of rows and columns in a 2-D array: 2 5
Enter number of rows and columns in another 2-D array: 4 3

sizeof(array) yields array size of 24 bytes

One-dimensional array:
array[0] = 0
array[1] = 1
array[2] = 4
array[3] = 9
array[4] = 16
array[5] = 25

First two-dimensional array:
 0 1 2 3 4
 1 2 3 4 5

Fig. 6.18 | Using variable-length arrays in C99. (Part 2 of 3.)

288 Chapter 6 Arrays

Creating the VLAs
Lines 10–29 prompt the user for the desired sizes for a one-dimensional array and two
two-dimensional arrays and use the input values in lines 14, 21 and 29 to create VLAs.
These lines are valid as long as the variables representing the array sizes are integers.

sizeof Operator with VLAs
After creating the arrays, we use the sizeof operator in lines 32–33 to check our one-
dimensional VLA’s length. Operator sizeof is normally a compile-time operation,
but it operates at runtime when applied to a VLA. The output window shows that
the sizeof operator returns a size of 24 bytes—four times the number we entered
because the size of an int on our machine is 4 bytes.

Assigning Values to VLA Elements
Next, we assign values to our VLAs’ elements (lines 36–52). We use the loop-contin-
uation condition i < arraySize when filling the one-dimensional array. As with
fixed-length arrays, there’s no protection against stepping outside the array bounds.

Function print1DArray
Lines 64–69 define function print1DArray that displays its one-dimensional VLA
argument. VLA function parameters have the same syntax as regular array parame-
ters. We use the parameter size in parameter array’s declaration, but it’s purely doc-
umentation for the programmer.

Function print2DArray
Function print2DArray (lines 71–80) displays a two-dimensional VLA. Recall that
you must specify a size for all but the first subscript in a multidimensional array
parameter. The same restriction holds true for VLAs, except that the sizes can be spec-
ified by variables. The initial value of col passed to the function determines where
each row begins in memory, just as with a fixed-size array.

Self Check
1 (True/False) Unlike with fixed-length arrays, VLAs offer protection against step-
ping outside the array bounds.
Answer: False. Actually, as with fixed-length arrays, there is no protection against
stepping outside the array bounds.

Second two-dimensional array:
 0 1 2
 1 2 3
 2 3 4
 3 4 5

Fig. 6.18 | Using variable-length arrays in C99. (Part 3 of 3.)

6.13 Secure C Programming 289

2 (True/False) sizeof is a compile-time-only operation.
Answer: False. Actually, generally sizeof is a compile-time operation, but when ap-
plied to a VLA, sizeof operates at runtime.

6.13 Secure C Programming
Bounds Checking for Array Subscripts
It’s important to ensure that every subscript used to access an array element is within
the array’s bounds. A one-dimensional array’s subscripts must be greater than or equal
to 0 and less than the number of elements. A two-dimensional array’s row and column
subscripts must be greater than or equal to 0 and less than the numbers of rows and
columns, respectively. This also applies to arrays with additional dimensions.

Allowing programs to read from or write to array elements outside an array’s
bounds are common security flaws. Reading from out-of-bounds array elements can
cause a program to crash or even appear to execute correctly while using bad data.
Writing to an out-of-bounds element (known as a buffer overflow) can corrupt a pro-
gram’s data in memory, crash a program and even allow attackers to exploit the sys-
tem and execute their own code.

C provides no automatic bounds checking for arrays. You must ensure that array
subscripts are always greater than or equal to 0 and less than the array’s number ele-
ments. For additional techniques that help you prevent such problems, see CERT
guideline ARR30-C at https://wiki.sei.cmu.edu/confluence.

scanf_s
Bounds checking is also important in string processing. When reading a string into a
char array, scanf does not automatically prevent buffer overflows. If the number of
characters input is greater than or equal to the array’s length, scanf will write charac-
ters—including the string’s terminating null character ('\0')—beyond the end of the
array. This might overwrite other variables’ values in memory. In addition, if the pro-
gram writes to those other variables, it might overwrite the string’s '\0'.

A function determines where a string ends by looking for its terminating '\0'
character. For example, recall that function printf outputs a string by reading char-
acters from the beginning of the string in memory and continuing until it encounters
the string’s '\0'. If the '\0' is missing, printf continues reading from memory (and
printing) until it encounters some later '\0' in memory. This can lead to strange
results or cause a program to crash.

The C11 standard’s optional Annex K provides more secure versions of many
string-processing and input/output functions. When reading a string into a character
array, function scanf_s performs checks to ensure that it does not write beyond the
end of the array. Assuming that myString is a 20-character array, the statement

scanf_s("%19s", myString, 20);

reads a string into myString. Function scanf_s requires two arguments for each %s in
the format string:

SEC

https://wiki.sei.cmu.edu/confluence

290 Chapter 6 Arrays

• a character array in which to place the input string and

• the array’s number of elements.

The function uses the number of elements to prevent buffer overflows. For example,
it’s possible to supply a field width for %s that’s too long for the underlying character
array, or to simply omit the field width entirely. With scanf_s, if the number of char-
acters input plus the terminating null character is larger than the number of array ele-
ments specified, the %s conversion fails. For the preceding statement, which contains
only one conversion specification, scanf_s would return 0, indicating no conversions
were performed. The array myString would be unaltered. We discuss additional
Annex K functions in later Secure C Programming sections.

Not all compilers support the C11 standard’s Annex K functions. For programs
that must compile on multiple platforms and compilers, you might have to edit your
code to use the versions of scanf_s or scanf available on each platform. Your com-
piler might also require a specific setting to enable you to use the Annex K functions.

Don’t Use Strings Read from the User as Format-Control Strings
You might have noticed that throughout this book, we do not use single-argument
printf statements. Instead, we use one of the following forms:

• When we need to output a '\n' after the string, we use function puts (which
automatically outputs a '\n' after its single string argument), as in
 puts("Welcome to C!");

• When we need the cursor to remain on the same line as the string, we use
function printf, as in
 printf("%s", "Enter first integer: ");

Because we were displaying string literals, we certainly could have used the one-argu-
ment form of printf, as in

printf("Welcome to C!\n");
printf("Enter first integer: ");

When printf evaluates the format-control string in its first (and possibly only)
argument, it performs tasks based on the conversion specification(s) in that string. If the
format-control string were obtained from the user, an attacker could supply malicious
conversion specifications that would be “executed” by the formatted output function.
Now that you know how to read strings into character arrays, it’s important to note
that you should never use as a printf’s format-control string a character array that
might contain user input. For more information, see CERT guideline FIO30-C at
https://wiki.sei.cmu.edu/confluence.

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) It’s important to ensure that every index you use to access an array element is
within the array’s bounds. A one-dimensional array’s indexes must be greater

https://wiki.sei.cmu.edu/confluence

 Summary 291

than or equal to 0 and less than the number of array elements. A two-dimen-
sional array’s row and column indexes must be greater than or equal to 0 and
less than the numbers of rows and columns, respectively.

b) C provides no automatic bounds checking for arrays, so you must provide
your own. Allowing programs to read from or write to array elements outside
the bounds of arrays are common security flaws.

c) Reading from out-of-bounds array elements can cause a program to crash or
even appear to execute correctly while using bad data.

d) All of the above statements are true.
Answer: d.

2 (True/False) When printf evaluates the format-control string in its first (and pos-
sibly its only) argument, the function performs tasks based on the conversion speci-
fier(s) in that string. If the format-control string were obtained from the user, an
attacker could supply malicious conversion specifiers that would be “executed” by the
formatted output function. You should never use as a printf’s format-control string
a character array that might contain user input.
Answer: True.

Summary

Section 6.1 Introduction
• Arrays (p. 244) are data structures consisting of related data items of the same type.
• Arrays are “static” entities in that they remain the same size throughout program execution.

Section 6.2 Arrays
• An array is a contiguous group of memory locations related by the fact that they all have

the same name and the same type.
• To refer to a particular location or element (p. 244), specify the array’s name and the posi-

tion number (p. 245) of the element.
• The first element in every array is at location 0.
• The position number contained within square brackets is more formally called a subscript

(p. 245) or index. A subscript must be an integer or an integer expression.
• The brackets that enclose an array subscript are an operator with the highest level of prece-

dence.

Section 6.3 Defining Arrays
• You specify the array’s element type and number of elements so that the computer may re-

serve the appropriate amount of memory.
• An array of type char can be used to store a character string.

Section 6.4 Array Examples
• Type size_t represents an unsigned integral type. This type is recommended for any vari-

able that represents an array’s size or an array’s subscripts. The header <stddef.h> defines
size_t and is often included by other headers (such as <stdio.h>).

292 Chapter 6 Arrays

• An array’s elements can be initialized when the array is defined by following the definition
with an equals sign and braces, {}, containing a comma-separated list of initializers
(p. 248). If there are fewer initializers than array elements, the remaining elements are ini-
tialized to zero.

• The statement int n[10] = {0}; explicitly initializes the first element to zero and initializes
the remaining nine elements to zero because there are fewer initializers than array elements.

• If the array size is omitted from a definition with an initializer list, the compiler determines
the array’s number of elements from the number of initializers.

• The #define preprocessor directive can define a symbolic constant—an identifier that the
preprocessor replaces with replacement text before the program is compiled. When a pro-
gram is preprocessed, all occurrences of the symbolic constant are replaced with the replace-
ment text (p. 249). Using symbolic constants to specify array sizes makes programs easier to
read and more modifiable.

• C has no array bounds checking to prevent a program from referring to an element that
does not exist. Thus, an executing program can “walk off” the end of an array without warn-
ing. You should ensure that all array references remain within the bounds of the array.

Section 6.5 Using Character Arrays to Store and Manipulate Strings
• A string literal such as "hello" is really an array of individual characters in C.
• A character array can be initialized using a string literal. In this case, the array’s size is de-

termined by the compiler based on the string’s length.
• Every string contains a special string-termination character called the null character

(p. 255). The character constant representing the null character is '\0'.
• A character array representing a string should always be defined large enough to hold the

number of characters in the string and the terminating null character.
• Character arrays also can be initialized with individual character constants in an initializer list.
• Because a string is really an array of characters, we can access individual characters in a string

directly using array subscript notation.
• You can input a string directly into a character array from the keyboard using scanf and the

conversion specification %s. The character array’s name is passed to scanf without the pre-
ceding & used with non-array variables.

• Function scanf reads characters from the keyboard until the first whitespace character is en-
countered—it does not check the array size. Thus, scanf can write beyond the end of an
array. For this reason, when reading a string into a char array with scanf, you should always
use a field width that’s one less than the char array’s size (e.g., "%19s" for a 20-char array).

• A character array representing a string can be output with printf and the %s conversion
specification. The characters of the string are printed until a terminating null character is
encountered.

Section 6.6 Static Local Arrays and Automatic Local Arrays
• We can apply static to a local array definition so the function does not create and initialize

the array in each call and destroy it each time the function exits. This reduces program ex-
ecution time, particularly for programs with frequently called functions that contain large
arrays.

• Arrays that are static are automatically initialized once at program startup. If you do not
explicitly initialize a static array, that array’s elements are initialized to zero by the com-
piler.

 Summary 293

Section 6.7 Passing Arrays to Functions
• To pass an array argument to a function, specify the array name without any brackets.
• Unlike char arrays that contain strings, other array types do not have a special terminator.

For this reason, the array’s size is passed to a function, so the function can process the proper
number of elements.

• C automatically passes arrays to functions by reference—the called functions can modify
the element values in the callers’ original arrays. An array name evaluates to the address of
the array’s first element. Because the starting address of the array is passed, the called func-
tion knows precisely where the array is stored and can modify the original array in the caller.

• Although entire arrays are passed by reference, individual array elements are passed by val-
ue exactly as simple variables are.

• Single pieces of data (such as individual ints, floats and chars) are called scalars (p. 261).
• To pass an array element to a function, use the subscripted name of the array element.
• For a function to receive an array through a function call, the function’s parameter list must

specify that an array will be received. The array’s size is not required between the array
brackets. If it’s included, the compiler checks that it’s greater than zero, then ignores it.

• If an array parameter is preceded by the const qualifier (p. 263), any attempt to modify an
element in the function body results in a compilation error.

Section 6.8 Sorting Arrays
• Sorting data—that is, placing the data into ascending or descending order—is one of the

most important computing applications.
• One sorting technique is called the bubble sort (p. 265) or the sinking sort, because the

smaller values gradually “bubble” their way upward to the top of the array like air bubbles
rising in water, while the larger values sink to the bottom of the array. The technique is to
make several passes through the array. On each pass, successive pairs of elements are com-
pared. If a pair is in increasing order (or the values are identical), we leave the values as they
are. If a pair is in decreasing order, their values are swapped in the array.

• Bubble sort may move a large value down the array many positions on a single pass but may
move a small value up only one position.

• The chief virtue of the bubble sort is that it’s easy to program. However, it runs slowly. This
becomes apparent when sorting large arrays.

Section 6.9 Intro to Data Science Case Study: Survey Data Analysis
• The mean is the arithmetic average of a set of values.
• The median is the “middle value” in a sorted set of values.
• The mode is the value that occurs most frequently in a set of values.

Section 6.10 Searching Arrays
• The process of finding a particular array element is called searching (p. 272).
• The linear search compares each array element with a search key (p. 272). The array is not in

any particular order, so it’s just as likely that the value will be found in the first element as in
the last. On average, therefore, the search key will be compared with half the array’s elements.

• The linear search algorithm (p. 272) works well for small or unsorted arrays. For sorted ar-
rays, the high-speed binary search algorithm can be used.

294 Chapter 6 Arrays

• The binary search algorithm (p. 272) eliminates from consideration one-half of a sorted ar-
ray’s elements after each comparison. The algorithm locates the middle array element and
compares it to the search key. If they’re equal, the search key is found, and that element’s
subscript is returned. If they’re not equal, the problem is reduced to searching one-half
of the array. If the search key is less than the middle array element, the array’s first half is
searched; otherwise, the second half is searched. If the search key is not found in the speci-
fied subarray, the algorithm is repeated on one-quarter of the original array. The search con-
tinues until the search key is equal to a subarray’s middle element, or until the subarray
consists of one element that’s not equal to the search key (i.e., the search key is not found).

• When using a binary search, the maximum number of comparisons required for any array
can be determined by finding the first power of 2 greater than the number of array elements.

Section 6.11 Multidimensional Arrays
• A common use of multidimensional arrays (p. 278) is to represent tables of values consist-

ing of rows and columns. To identify a particular table element, we specify two subscripts.
By convention, the first identifies the element’s row, and the second identifies its column.

• Arrays that require two subscripts to identify an element are called two-dimensional arrays
(p. 278). Multidimensional arrays can have more than two subscripts.

• A multidimensional array can be initialized when it’s defined. The values in a two-dimen-
sional array’s initializer list are grouped by row in braces. If there are not enough initializers
for a given row, its remaining elements are initialized to 0.

• The first subscript of a multidimensional array parameter declaration is not required, but
all subsequent subscripts are. The compiler uses these sizes to determine the locations in
memory of elements in multidimensional arrays. All array elements are stored consecutively
in memory, regardless of the number of subscripts. In a two-dimensional array, the first row
is stored in memory, followed by the second row, and so on.

• Providing the subscript values in a parameter declaration enables the compiler to tell the
function how to locate an array element. In a two-dimensional array, each row is basically
a one-dimensional array. To locate an element in a particular row, the compiler must know
how many elements are in each row, so it can skip the proper number of memory locations
when accessing elements of a given row.

Section 6.12 Variable-Length Arrays
• A variable-length array (p. 286) is an array for which the size is defined by an expression

evaluated at execution time.
• When applied to a variable-length array, sizeof operates at runtime.
• Variable-length arrays are optional in C—they may not be supported by your compiler.

Self-Review Exercises
6.1 Answer each of the following:

a) Lists and tables of values are stored in .
b) The number used to refer to a particular array element is called its .
c) A(n) should be used to specify the size of an array because it makes

the program more modifiable.
d) Placing the elements of an array in order is called the array.
e) Determining whether an array contains a key value is called the array.
f) An array that uses two subscripts is referred to as a(n) array.

 Self-Review Exercises 295

6.2 State whether the following are true or false. If the answer is false, explain why.
a) An array can store many different types of values.
b) An array subscript can be of data type double.
c) If there are fewer initializers in an initializer list than there are array elements,

the remaining elements are initialized with the initializer list’s last value.
d) It’s an error if an initializer list contains more initializers than there are array

elements.
e) An individual array element that’s passed to a function as an argument of

the form a[i] and modified in the called function will contain the modified
value in the calling function.

6.3 Follow the instructions below regarding an array called fractions.
a) Define a symbolic constant SIZE with the replacement text 10.
b) Define a double array with SIZE elements and initialize the elements to 0.
c) Refer to array element 4.
d) Assign the value 1.667 to array element nine.
e) Assign the value 3.333 to the seventh element of the array.
f) Print array elements 6 and 9 with two digits of precision to the right of the

decimal point, and show the output that’s displayed on the screen.
g) Print all the elements of an array using a for iteration statement. Use the

variable x as the loop’s control variable. Show the output.

6.4 Write statements to accomplish the following:
a) Define table to be an integer array and to have 3 rows and 3 columns. As-

sume the symbolic constant SIZE has been defined to be 3.
b) How many elements does the array table contain? Print the total number

of elements.
c) Use a for iteration statement to initialize each element of table to the sum

of its subscripts. Use variables x and y as control variables.
d) Print the values of each element of array table. Assume the array was initial-

ized with the definition:
int table[SIZE][SIZE] = {{1, 8}, {2, 4, 6}, {5}};

6.5 Find the error in each of the following program segments and correct the error.
a) #define SIZE 100;
b) SIZE = 10;
c) int b[10] = {0};

int i;

for (size_t i = 0; i <= 10; ++i) {

 b[i] = 1;

}

d) #include <stdio.h>;
e) int a[2][2] = {{1, 2}, {3, 4}};

a[1, 1] = 5;
f) #define VALUE = 120

296 Chapter 6 Arrays

Answers to Self-Review Exercises
6.1 a) arrays. b) subscript (or index). c) symbolic constant. d) sorting. e) searching.
f) two-dimensional.

6.2 a) False. An array can store only values of the same type.
b) False. An array subscript must be an integer or an integer expression.
c) False. C automatically initializes the remaining elements to zero.
d) True.
e) False. Individual elements of an array are passed by value. If the entire array is

passed to a function, any modifications will be reflected in the original array.

6.3 a) #define SIZE 10
b) double fractions[SIZE] = {0.0};
c) fractions[4]
d) fractions[9] = 1.667;
e) fractions[6] = 3.333;
f) printf("%.2f %.2f\n", fractions[6], fractions[9]);

Output: 3.33 1.67.
g) for (size_t x = 0; x < SIZE; ++x) {

 printf("fractions[%zu] = %f\n", x, fractions[x]);

}

Output:
fractions[0] = 0.000000
fractions[1] = 0.000000
fractions[2] = 0.000000
fractions[3] = 0.000000
fractions[4] = 0.000000
fractions[5] = 0.000000
fractions[6] = 3.333000
fractions[7] = 0.000000
fractions[8] = 0.000000
fractions[9] = 1.667000

6.4 a) int table[SIZE][SIZE];
b) Nine elements. printf("%d\n", SIZE * SIZE);
c) for (size_t x = 0; x < SIZE; ++x) {

 for (size_t y = 0; y < SIZE; ++y) {

 table[x][y] = x + y;

 }

}
d) for (size_t x = 0; x < SIZE; ++x) {

 for (size_t y = 0; y < SIZE; ++y) {

 printf("table[%d][%d] = %d\n", x, y, table[x][y]);

 }

}
Output:

table[0][0] = 1

 Exercises 297

table[0][1] = 8
table[0][2] = 0
table[1][0] = 2
table[1][1] = 4
table[1][2] = 6
table[2][0] = 5
table[2][1] = 0
table[2][2] = 0

6.5 a) Error: Semicolon at the end of the #define preprocessor directive.
Correction: Eliminate semicolon.

b) Error: Assigning a value to a symbolic constant using an assignment statement.
Correction: Assign a value to the symbolic constant in a #define preproces-
sor directive without using the assignment operator, as in #define SIZE 10.

c) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the control variable’s final value to 9 or change <= to <.

d) Error: Semicolon at the end of the #include preprocessor directive.
Correction: Eliminate semicolon.

e) Error: The array subscripting is done incorrectly.
Correction: Change the statement to a[1][1] = 5;

f) Error: A symbolic constant’s value is not defined using =.
Correction: Change the preprocessor directive to #define VALUE 120.

Exercises
6.6 Fill in the blanks in each of the following:

a) C stores lists of values in .
b) An array’s elements are related by the fact that they .
c) When referring to an array element, the position number contained within

square brackets is called a(n) .
d) The names of array p’s five elements are , , ,

and .
e) The content of a particular array element is called that element’s .
f) Naming an array, stating its type and specifying its number of elements is

called the array.
g) Placing an array’s elements into either ascending or descending order is

called .
h) In a two-dimensional array, the first subscript identifies the element’s

and the second identifies its .
i) An m-by-n array contains rows, columns and el-

ements.
j) The name of the element in row 3 and column 5 of array d is .

6.7 State which of the following are true and which are false. If false, explain why.
a) To refer to a particular location or element within an array, specify the ar-

ray’s name and the value of the particular element.
b) An array definition reserves space for the array.

298 Chapter 6 Arrays

c) To indicate that 100 locations should be reserved for integer array p, write
p[100];

d) A program that initializes a 15-element array’s elements to zeros must con-
tain a for statement.

e) A program that totals the elements of a two-dimensional array must contain
nested for statements.

f) The mean, median and mode of the following set of values are 5, 6 and 7,
respectively: 1, 2, 5, 6, 7, 7, 7.

6.8 Write statements to accomplish each of the following:
a) Display the value of the seventh element of character array f.
b) Input a value into element 4 of one-dimensional floating-point array b.
c) Initialize each of the five elements of one-dimensional integer array g to 8.
d) Total the elements of floating-point 100-element array c.
e) Copy array a into the first portion of array b. Assume a has 11 elements, be

has 34 elements, and both arrays have the same element type.
f) Determine and print the smallest and largest values contained in 99-element

floating-point array w.

6.9 Consider a 2-by-5 integer array t.
a) Write a definition for t.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write the names of all the elements in the second row of t.
f) Write the names of all the elements in the third column of t.
g) Write a single statement that sets the element of t in row 1 and column 2 to 0.
h) Write a series of statements that initialize each element of t to zero. Do not

use an iteration statement.
i) Write a nested for statement that initializes each element of t to zero.
j) Write a statement that inputs the values for the elements of t from the ter-

minal.
k) Write a series of statements that determine and print the smallest value in

array t.
l) Write a statement that displays the elements of the first row of t.
m)Write a statement that totals the elements of the fourth column of t.
n) Write a series of statements that print the array t in tabular format. List the

column subscripts as headings across the top and list the row subscripts at
the left of each row.

6.10 (Sales Commissions) Use a one-dimensional array to solve the following prob-
lem. A company pays its salespeople on a commission basis. The salespeople receive
$200 per week plus 9% of their gross sales for that week. For example, a salesperson
who grosses $3000 in sales in a week receives $200 plus 9% of $3000 for a total of
$470. Write a C program (using an array of counters) that determines how many

 Exercises 299

salespeople earned salaries in each of the following ranges—assume that each sales-
person’s salary is truncated to an integer amount:

a) $200–299
b) $300–399
c) $400–499
d) $500–599
e) $600–699
f) $700–799
g) $800–899
h) $900–999
i) $1000 and over

6.11 (Bubble Sort) The bubble sort presented in Fig. 6.12 is inefficient for large ar-
rays. Make the following modifications to improve its performance:

a) After the first pass, the largest number is guaranteed to be in the highest-
numbered array element; after the second pass, the two highest numbers are
“in place,” and so on. Instead of making nine comparisons on every pass,
modify the bubble sort to make eight comparisons on the second pass, seven
on the third pass and so on.

b) The data in the array may already be in the proper or near-proper order, so
why make nine passes if fewer will suffice? Modify the sort to check at the
end of each pass whether any swaps have been made. If there were none,
then the data must already be in the proper order, so the sort should termi-
nate. If swaps have been made, then at least one more pass is needed.

6.12 Write loops that perform each of the following one-dimensional array opera-
tions:

a) Initialize the 10 elements of integer array counts to zeros.
b) Add 1 to each of the 15 elements of integer array bonus.
c) Read the 12 values of float array monthlyTemperatures from the keyboard.
d) Print the five values of integer array bestScores in column format.

6.13 Find the error(s) in each of the following statements:
a) Assume: char str[5] = "";

 scanf("%s", str); // User types hello

b) Assume: int a[3];
 printf("$d %d %d\n", a[1], a[2], a[3]);

c) double f[3] = {1.1, 10.01, 100.001, 1000.0001};
d) Assume: double d[2][10] = {0};

 d[1, 9] = 2.345;

6.14 (Mean, Median and Mode Program Modifications) Modify the program of
Fig. 6.13 so function mode can handle a tie for the mode value. If there are two values
with the same frequency, the data is “bimodal” and both values should be displayed.
If there are more than two values with the same frequency, the data is “multimodal”
and all the values with the same frequency should be displayed. Also modify the me-

300 Chapter 6 Arrays

dian function to average the two middle elements in an array with an even number
of elements.

6.15 (Duplicate Elimination) Use a one-dimensional array to solve the following
problem. Read 20 numbers, each of which is between 10 and 100, inclusive. As each
number is read, print it only if it’s not a duplicate of a number already read. Provide
for the “worst case” in which all 20 numbers are different. Use the smallest possible
array to solve this problem.

6.16 Label the elements of 3-by-5 two-dimensional array sales to indicate the order
in which they’re set to zero by the following program segment:

for (size_t row = 0; row <= 2; ++row) {
 for (size_t column = 0; column <= 4; ++column) {
 sales[row][column] = 0;
 }
}

6.17 What does the following program do?

6.18 What does the following program do?

1 // ex06_17.c
2 // What does this program do?
3 #include <stdio.h>
4 #define SIZE 10
5
6 int whatIsThis(const int b[], size_t p); // function prototype
7
8 int main(void) {
9 // initialize array a

10 int a[SIZE] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
11
12 int x = whatIsThis(a, SIZE);
13 printf("Result is %d\n", x);
14 }
15
16 // what does this function do?
17 int whatIsThis(const int b[], size_t p) {
18 if (1 == p) { // base case
19 return b[0];
20 }
21 else { // recursion step
22 return b[p - 1] + whatIsThis(b, p - 1);
23 }
24 }

1 // ex06_18.c
2 // What does this program do?
3 #include <stdio.h>
4 #define SIZE 10
5
6 // function prototype
7 void someFunction(const int b[], size_t start, size_t size);

 Exercises 301

6.19 (Dice Rolling) Write a program that simulates rolling two dice. The program
should use rand twice to roll the first and second die, respectively, then calculate their
sum. Because each die can have an integer value from 1 to 6, the sum of the values will
vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 the least frequent
sums. The following diagram shows the 36 possible combinations of the two dice:

Your program should roll the two dice 36,000 times. Use a one-dimensional array to
tally the numbers of times each possible sum appears. Print the results in tabular for-
mat. Also, determine whether the totals are reasonable—for example, there are six
ways to roll a 7, so approximately one-sixth of all the rolls should be 7.

6.20 (Craps Game Statistics) Write a program that runs 1,000,000 games of craps
(without human intervention) and answers each of the following questions:

a) How many games are won on the first roll, second roll, …, twentieth roll
and after the twentieth roll?

b) How many games are lost on the first roll, second roll, …, twentieth roll and
after the twentieth roll?

c) What are the chances of winning at craps? You should discover that craps is
one of the fairest casino games. What do you suppose this means?

d) What’s the average length of a game of craps?
e) Do the chances of winning improve with the length of the game?

8
9 // function main begins program execution

10 int main(void) {
11 int a[SIZE] = {8, 3, 1, 2, 6, 0, 9, 7, 4, 5}; // initialize a
12
13 puts("Answer is:");
14 someFunction(a, 0, SIZE);
15 puts("");
16 }
17
18 // What does this function do?
19 void someFunction(const int b[], size_t start, size_t size) {
20 if (start < size) {
21 someFunction(b, start + 1, size);
22 printf("%d ", b[start]);
23 }
24 }

1 2 3 4 5 6

6 7 8 9 10 11

7 8 9 10 11 12

5

5 6 7 8 9 104

4 5 6 7 8 93

3 4 5 6 7 82

2 3 4 5 6 71

6

302 Chapter 6 Arrays

6.21 (Airline Reservations System) A small airline has just purchased a computer for
its new automated reservations system. The president has asked you to program the
new system. You’ll write a program to assign seats on each flight of the airline’s only
plane (capacity: 10 seats).

Your program should display the following menu of alternatives:
Please type 1 for "first class"
Please type 2 for "economy"

If the person types 1, assign a seat in the first-class section (seats 1–5). If the person
types 2, assign a seat in the economy section (seats 6–10). Your program should then
print a boarding pass indicating the person's seat number and whether it’s in the first-
class or economy section of the plane.

Use a one-dimensional array to represent the plane’s seating chart. Initialize all
the elements of the array to 0 to indicate that all seats are empty. As each seat is
assigned, set the corresponding element of the array to 1 to indicate that the seat is
no longer available.

Your program should, of course, never assign a seat that has already been assigned.
When the first-class section is full, your program should ask the person if it’s acceptable
to be placed in the economy section (and vice versa). If yes, then make the appropriate
seat assignment. If no, then print the message, "Next flight leaves in 3 hours."

6.22 (Total Sales) Use a two-dimensional array to solve the following problem. A
company has four salespeople (1 to 4) who sell five different products (1 to 5). Once
a day, each salesperson passes in a slip for each different type of product sold. Each
slip contains:

a) The salesperson number
b) The product number
c) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the
information from all of the slips for last month is available. Write a program that
reads all this sales information and summarizes the total sales by salesperson by prod-
uct. All totals should be stored in the two-dimensional array sales. After processing
all the information for last month, print the results in tabular format with each col-
umn representing a particular salesperson and each row representing a particular
product. Cross-total each row to get the total sales of each product for last month;
cross total each column to get the total sales by salesperson for last month. Your tab-
ular printout should include these cross totals to the right of the totaled rows and to
the bottom of the totaled columns.

6.23 (Turtle Graphics) The Logo language made the concept of turtle graphics fa-
mous. Imagine a mechanical turtle that walks around the room under the control of
a C program. The turtle holds a pen in one of two positions, up or down. While the
pen is down, the turtle traces out shapes as it moves; while the pen is up, the turtle
moves about freely without writing anything. In this problem, you’ll simulate the op-
eration of the turtle and create a computerized sketchpad as well.

 Exercises 303

Use a 50-by-50 array floor that’s initialized to zeros. Read commands from an
array that contains them. Keep track of the current turtle position at all times and
whether the pen is currently up or down. Assume that the turtle always starts at posi-
tion 0, 0 of the floor with its pen up. The set of turtle commands your program
must process are shown in the following table:

Suppose that the turtle is somewhere near the center of the floor. The following
“program” would draw and print a 12-by-12 square:

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

As the turtle moves with the pen down, set elements of array floor to 1s. When the
6 command is given, display an asterisk for each 1 in the array. For each zero, display
a blank. Write a program to implement the turtle-graphics capabilities discussed
here. Write several turtle graphics programs to draw interesting shapes. Add other
commands to increase the power of your turtle-graphics language.

6.24 (Knight’s Tour) One of the more interesting puzzles for chess buffs is the
Knight’s Tour problem, originally proposed by the mathematician Euler. The ques-
tion is this: Can the chess piece called the knight move around an empty chessboard
and touch each of the 64 squares once and only once? We study this intriguing prob-
lem in-depth here.

The knight makes L-shaped moves (two in one direction and then one in a per-
pendicular direction). Thus, from a square in the middle of an empty chessboard,
the knight can make eight different moves (numbered 0 through 7), as shown in the
following diagram:

Command Meaning

1 Pen up
2 Pen down
3 Turn right
4 Turn left
5, 10 Move forward 10 spaces (or a number other than 10)
6 Print the 50-by-50 array
9 End of data (sentinel)

304 Chapter 6 Arrays

a) Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight’s Tour
by hand. Put a 1 in the first square you move to, a 2 in the second square, a
3 in the third, and so on. Before starting the tour, estimate how far you think
you’ll get, remembering that a full tour consists of 64 moves. How far did
you get? Were you close to the estimate?

b) Now let’s develop a program that will move the knight around a chessboard.
The board itself is represented by an 8-by-8 two-dimensional array board.
Each square is initialized to zero. We describe each of the eight possible
moves in terms of both its horizontal and vertical components. For example,
a move of type 0, as shown in the preceding diagram, consists of moving two
squares horizontally to the right and one square vertically upward. Move 2
consists of moving one square horizontally to the left and two squares verti-
cally upward. Horizontal moves to the left and vertical moves upward are
indicated with negative numbers. The eight moves may be described by two
one-dimensional arrays, horizontal and vertical, as follows:

horizontal[0] = 2 vertical[0] = -1
horizontal[1] = 1 vertical[1] = -2
horizontal[2] = -1 vertical[2] = -2
horizontal[3] = -2 vertical[3] = -1
horizontal[4] = -2 vertical[4] = 1
horizontal[5] = -1 vertical[5] = 2
horizontal[6] = 1 vertical[6] = 2
horizontal[7] = 2 vertical[7] = 1

The variables currentRow and currentColumn indicate the row and column
of the knight’s current position. To make a move of type moveNumber, where
moveNumber is between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber];
currentColumn += horizontal[moveNumber];

Keep a counter that varies from 1 to 64. Record the latest count in each
square the knight moves to. Remember to test each potential move to see if
the knight has already visited that square. And, of course, test every poten-
tial move to make sure that the knight does not land off the chessboard.

0 1 2 3 4 5 6 7

4 4 7

3 K

2 3 0

1 2 1

0

5 5 6

6

7

 Exercises 305

Now write a program to move the knight around the chessboard. Run the
program. How many moves did the knight make?

c) After attempting to write and run a Knight’s Tour program, you have prob-
ably developed some valuable insights. We’ll use these to develop a heuristic
(or strategy) for moving the knight. Heuristics do not guarantee success, but
a carefully developed heuristic greatly improves the chance of success. You
may have observed that the outer squares are in some sense more trouble-
some than the squares nearer the center of the board. In fact, the most trou-
blesome, or inaccessible, squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the
most troublesome squares first and leave open those that are easiest to get
to, so that when the board gets congested near the end of the tour, there
will be a greater chance of success.

We develop an “accessibility heuristic” by classifying each square according
to how accessible it is and always moving the knight to the square (within the
knight’s L-shaped moves, of course) that’s most inaccessible. We label a two-
dimensional array accessibility with numbers indicating from how many
squares each particular square is accessible. On a blank chessboard, the center
squares are therefore rated as 8s, the corner squares are rated as 2s, and the
other squares have accessibility numbers of 3, 4, or 6 as follows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Now write a version of the Knight’s Tour program using the accessibility
heuristic. At any time, the knight should move to the square with the low-
est accessibility number. In case of a tie, the knight may move to any of the
tied squares. Therefore, the tour may begin in any of the four corners.
[Note: As the knight moves around the chessboard, your program should
reduce the accessibility numbers as more and more squares become occu-
pied. In this way, at any given time during the tour, each available square’s
accessibility number will remain equal to precisely the number of squares
from which that square may be reached.] Run this version of your program.
Did you get a full tour? (Optional: Modify the program to run 64 tours,
one from each square of the chessboard. How many full tours did you get?)

d) Write a version of the Knight’s Tour program which, when encountering a
tie between two or more squares, decides what square to choose by looking
ahead to those squares reachable from the “tied” squares. Your program
should move to the square for which the next move would arrive at a square
with the lowest accessibility number.

306 Chapter 6 Arrays

6.25 (Knight’s Tour: Brute-Force Approaches) In Exercise 6.24, we developed a
Knight’s Tour solution. The approach used, called the “accessibility heuristic,” gener-
ates many solutions and executes efficiently. As computers continue increasing in pow-
er, we’ll be able to solve many problems with sheer computer power and relatively
unsophisticated algorithms. Let’s call this approach brute-force problem solving.

a) Use random numbers to enable the knight to walk at random around the
chessboard in its legitimate L-shaped moves. Your program should run one
tour and print the final chessboard. How far did the knight get?

b) Most likely, the preceding program produced a relatively short tour. Now
modify your program to attempt 1000 tours. Use a one-dimensional array
to keep track of the number of tours of each length. When your program
finishes attempting the 1000 tours, it should print this information in a tab-
ular format. What was the best result?

c) Most likely, the preceding program gave you some “respectable” tours but
no full tours. Now “pull all the stops out” and simply let your program run
until it produces a full tour. [Caution: This could run for hours on a power-
ful computer.] Once again, track the number of tours of each length and
print this table when the first full tour is found. How many tours did your
program attempt before producing a full tour? How much time did it take?

d) Compare the Knight’s Tour brute-force version with the accessibility-heuris-
tic version. Which required more careful study of the problem? Which was
more difficult to develop? Which required more computer power? Could we
be certain (in advance) of obtaining a full tour with the accessibility heuristic?
Could we be certain (in advance) of obtaining a full tour with brute force? Ar-
gue the pros and cons of brute-force problem solving in general.

6.26 (Eight Queens) Another puzzle for chess buffs is the Eight Queens problem.
Simply stated: Is it possible to place eight queens on an empty chessboard so that no
queen is “attacking” any other—that is, so that no two queens are in the same row,
the same column, or along the same diagonal? Use the kind of thinking developed in
Exercise 6.24 to formulate a heuristic for solving the Eight Queens problem. Run
your program. Hint: It’s possible to assign a numeric value to each square of the chess-
board indicating how many squares of an empty chessboard are “eliminated” once a
queen is placed in that square. For example, each of the four corners would be as-
signed the value 22, as illustrated in the following diagram:

* *****

* *

* *

* *

* *

* *

*

*

*

*

*

*

 Exercises 307

Once these “elimination numbers” are placed in all 64 squares, an appropriate heu-
ristic might be: Place the next queen in the square with the smallest elimination
number. Why is this strategy intuitively appealing?

6.27 (Eight Queens: Brute-Force Approaches) In this exercise, you’ll develop several
brute-force approaches to solving the Eight Queens problem introduced in
Exercise 6.26.

a) Solve the Eight Queens problem, using the random brute-force technique
developed in Exercise 6.25.

b) Use an exhaustive technique (i.e., try all possible combinations of eight
queens on the chessboard).

c) Why do you suppose the exhaustive brute-force approach may not be appro-
priate for solving the Eight Queens problem?

d) Compare and contrast the random brute-force and exhaustive brute-force
approaches in general.

6.28 (Duplicate Elimination) In Chapter 12, we explore the high-speed binary
search tree data structure. One feature of a binary search tree is that duplicate values
are discarded when insertions are made into the tree. This is referred to as duplicate
elimination. Write a program that produces 20 random numbers between 1 and 20.
The program should store all nonduplicate values in an array. Use the smallest possi-
ble array to accomplish this task.

6.29 (Knight’s Tour: Closed Tour Test) In the Knight’s Tour, a full tour occurs
when the knight makes 64 moves touching each square of the chessboard once and
only once. A closed tour occurs when the 64th move is one move away from the lo-
cation in which the knight started the tour. Modify the Knight’s Tour program you
wrote in Exercise 6.24 to test for a closed tour if a full tour has occurred.

6.30 (The Sieve of Eratosthenes) A prime integer is any integer greater than 1 that
can be divided evenly only by itself and 1. In this exercise, you’ll use the Sieve of Er-
atosthenes to find all the prime numbers less than 1000. It works as follows:

a) Create a 100-element array with all elements initialized to 1 (true). Array el-
ements with prime subscripts will remain 1. All other array elements will
eventually be set to zero.

b) Starting with subscript 2 (1 is not prime), every time an array element is
found whose value is 1, loop through the remainder of the array and set to
zero every element whose subscript is a multiple of the subscript for the el-
ement with value 1. For array subscript 2, all elements beyond 2 in the array
that are multiples of 2 will be set to zero (subscripts 4, 6, 8, 10, and so on).
For array subscript 3, all elements beyond 3 in the array that are multiples
of 3 will be set to zero (subscripts 6, 9, 12, 15, and so on).

When this process is complete, the array elements that are still set to 1 indicate that
the subscript is a prime number. Write a program that determines and prints the
prime numbers between 1 and 999. Ignore element 0 of the array.

308 Chapter 6 Arrays

Recursion Exercises
6.31 (Palindromes) A palindrome is a string that’s spelled the same way forward and
backward. Some examples of palindromes are: “radar,” “able was i ere i saw elba,”
and, if you ignore blanks, “a man a plan a canal panama.” Write a recursive function
testPalindrome that returns 1 if the string stored in the array is a palindrome and 0
otherwise. The function should ignore spaces and punctuation in the string.

6.32 (Linear Search) Modify the program of Fig. 6.14 to use a recursive linear-
Search function to perform the linear search of the array. The function should receive
an integer array, the size of the array and the search key as arguments. If the search
key is found, return the array subscript; otherwise, return –1.

6.33 (Binary Search) Modify the program of Fig. 6.15 to use a recursive binarySe-
arch function to perform the binary search of the array. The function should receive
an integer array, the starting subscript, the ending subscript and the search key as ar-
guments. If the search key is found, return the array subscript; otherwise, return –1.

6.34 (Eight Queens) Modify the Eight Queens program you created in Exercise 6.26
to solve the problem recursively.

6.35 (Print an Array) Write a recursive function printArray that takes an array and
the size of the array as arguments, prints the array, and returns nothing. The function
should stop processing and return when it receives an array of size zero.

6.36 (Print a String Backward) Write a recursive function stringReverse that takes
a character array as an argument, prints it back-to-front and returns nothing. The
function should stop processing and return when the terminating null character of
the string is encountered.

6.37 (Find the Minimum Value in an Array) Write a recursive function recursive-
Minimum that takes an integer array and the array size as arguments and returns the
smallest element of the array. The function should stop processing and return when
it receives an array of one element.

7Pointers

O b j e c t i v e s
In this chapter, you’ll:
■ Use pointers and pointer

operators.
■ Pass arguments to functions

by reference using pointers.
■ Understand the const

qualifier’s various placements
and how they affect what
operations you can perform on
a variable.

■ Use the sizeof operator with
variables and types.

■ Use pointer arithmetic to
process array elements.

■ Understand the close
relationships among pointers,
arrays and strings.

■ Define and use arrays of
strings.

■ Use function pointers.
■ Learn about secure C

programming with pointers.

310 Chapter 7 Pointers

O
ut

lin
e

7.1 Introduction
In this chapter, we discuss one of C’s most powerful features—the pointer. Pointers
enable programs to

• accomplish pass-by-reference,

• pass functions between functions,

• manipulate strings and arrays, and

• create and manipulate dynamic data structures that grow and shrink at execu-
tion time, such as linked lists, queues, stacks and trees.

This chapter explains basic pointer concepts. In Section 7.13, we discuss various
pointer-related security issues. Chapter 10 examines using pointers with structures.
Chapter 12 introduces dynamic memory management and shows how to create and
use dynamic data structures.

7.1 Introduction
7.2 Pointer Variable Definitions and

Initialization
7.3 Pointer Operators
7.4 Passing Arguments to Functions

by Reference
7.5 Using the const Qualifier with

Pointers
7.5.1 Converting a String to Uppercase

Using a Non-Constant Pointer to
Non-Constant Data

7.5.2 Printing a String One Character at a
Time Using a Non-Constant Pointer
to Constant Data

7.5.3 Attempting to Modify a Constant
Pointer to Non-Constant Data

7.5.4 Attempting to Modify a Constant
Pointer to Constant Data

7.6 Bubble Sort Using Pass-By-
Reference

7.7 sizeof Operator
7.8 Pointer Expressions and Pointer

Arithmetic
7.8.1 Pointer Arithmetic Operators
7.8.2 Aiming a Pointer at an Array
7.8.3 Adding an Integer to a Pointer

7.8.4 Subtracting an Integer from a
Pointer

7.8.5 Incrementing and Decrementing a
Pointer

7.8.6 Subtracting One Pointer from
Another

7.8.7 Assigning Pointers to One Another
7.8.8 Pointer to void
7.8.9 Comparing Pointers

7.9 Relationship between Pointers and
Arrays

7.9.1 Pointer/Offset Notation
7.9.2 Pointer/Subscript Notation
7.9.3 Cannot Modify an Array Name with

Pointer Arithmetic
7.9.4 Demonstrating Pointer Subscripting

and Offsets
7.9.5 String Copying with Arrays and

Pointers
7.10 Arrays of Pointers
7.11 Random-Number Simulation Case

Study: Card Shuffling and Dealing
7.12 Function Pointers

7.12.1 Sorting in Ascending or Descending
Order

7.12.2 Using Function Pointers to Create a
Menu-Driven System

7.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises | Array of
Function Pointer Exercises | Special Section: Building Your Own Computer as a Virtual Machine |
Special Section; Embedded Systems Programming Case Study: Robotics with the Webots Simulator

7.2 Pointer Variable Definitions and Initialization 311

7.2 Pointer Variable Definitions and Initialization
Pointers are variables whose values are memory addresses. Usually, a variable directly
contains a specific value. A pointer, however, contains the address of another variable
that contains a specific value. The pointer points to that variable. In this sense, a vari-
able name directly references a value, and a pointer indirectly references a value, as in
the following diagram:

Referencing a value through a pointer is called indirection.

Declaring Pointers
Pointers, like all variables, must be defined before they can be used. The following
statement defines the variable countPtr as an int *—a pointer to an integer:

int *countPtr;

This definition is read right-to-left, “countPtr is a pointer to int” or “countPtr
points to an object1 of type int.” The * indicates that the variable is a pointer.

Pointer Variable Naming
Our convention is to end each pointer variable’s name with Ptr to indicate that the
variable is a pointer and should be handled accordingly. Other common naming con-
ventions include starting the variable name with p (e.g., pCount) or p_ (e.g., p_count).

Define Variables in Separate Statements
The * in the following definition does not distribute to each variable:

int *countPtr, count;

so countPtr is a pointer to int, but count is just an int. For this reason, you should
always write the preceding declaration as two statements to prevent ambiguity:

int *countPtr;
int count;

Initializing and Assigning Values to Pointers
Pointers should be initialized when they’re defined, or they can be assigned a value.
A pointer may be initialized to NULL, 0 or an address:

7
The pointer countPtr indirectly
references a variable that
contains the value 7

countcountPtr

7
The name count directly references
a variable that contains the value 7

count

1. In C, an “object” is a region of memory that can hold a value. So objects in C include primitive
types such as ints, floats, chars and doubles, as well as aggregate types such as arrays and
structs (which we discuss in Chapter 10).

312 Chapter 7 Pointers

• A pointer with the value NULL points to nothing. NULL is a symbolic constant
with the value 0 and is defined in the header <stddef.h> (and several other
headers, such as <stdio.h>).

• Initializing a pointer to 0 is equivalent to initializing it to NULL. The constant
NULL is preferred because it emphasizes that you’re initializing a pointer rather
than a variable that stores a number. When 0 is assigned, it’s first converted
to a pointer of the appropriate type. The value 0 is the only integer value that
can be assigned directly to a pointer variable.

• Assigning a variable’s address to a pointer is discussed in Section 7.3. Initialize
pointers to prevent unexpected results.

Self Check
1 (True/False) The definition:

int *countPtr, count;

specifies that countPtr and count are of type int *—each is a pointer to an integer.
Answer: False. Actually, count is an int, not a pointer to an int. The * applies only
to countPtr and does not distribute to the other variable(s) in the definition.

2 (Multiple Choice) Which of the following statements is false?
a) A pointer may be initialized to NULL, 0 or an address.
b) Initializing a pointer to 0 is equivalent to initializing a pointer to NULL, but

0 is preferred.
c) The only integer that can be assigned directly to a pointer variable is 0.
d) Initialize pointers to prevent unexpected results.

Answer: b) is false. Actually, NULL is preferred because it highlights the fact that the
variable is of a pointer type.

7.3 Pointer Operators
Next, let’s discuss the address (&) and indirection (*) operators, and their relationship.

The Address (&) Operator
The unary address operator (&) returns the address of its operand. For example, given
the following definition of y:

int y = 5;

the statement
int *yPtr = &y;

initializes pointer variable yPtr with variable y’s address—yPtr is then said to “point
to” y. The following diagram shows the variables yPtr and y in memory:

ERR

5

yyPtr

7.3 Pointer Operators 313

Pointer Representation in Memory
The following diagram shows the preceding pointer’s representation in memory,
assuming that integer variable y is stored at location 600000 and the pointer variable
yPtr is stored at location 500000:

The operand of & must be a variable; the address operator cannot be applied to literal
values (like 27 or 41.5) or expressions.

The Indirection (*) Operator
You apply the unary indirection operator (*), also called the dereferencing operator,
to a pointer operand to get the value of the object to which the pointer points. For
example, the following statement prints 5, which is the value of variable y:

printf("%d", *yPtr);

Using * in this manner is called dereferencing a pointer.
Dereferencing a pointer that has not been initialized with or assigned the address

of another variable in memory is an error. This could

• cause a fatal execution-time error,

• accidentally modify important data and allow the program to run to comple-
tion with incorrect results, or

• lead to a security breach.2

Demonstrating the & and * Operators
Figure 7.1 demonstrates the pointer operators & and *. The printf conversion spec-
ification %p outputs a memory location as a hexadecimal integer on most platforms.3

The output shows that the address of a and the value of aPtr are identical, confirming
that a’s address was indeed assigned to the pointer variable aPtr (line 7). The & and
* operators are complements of one another. Applying both consecutively to aPtr in
either order (line 12) produces the same result. The addresses in the output will vary
across systems that use different processor architectures, different compilers and even
different compiler settings.

5

y

600000
location
500000

yPtr

location
600000

2. https://cwe.mitre.org/data/definitions/824.html.
3. See online Appendix E for more information on hexadecimal integers.

1 // fig07_01.c
2 // Using the & and * pointer operators.
3 #include <stdio.h>
4
5 int main(void) {

Fig. 7.1 | Using the & and * pointer operators. (Part 1 of 2.)

ERR

https://cwe.mitre.org/data/definitions/824.html

314 Chapter 7 Pointers

The following table lists the precedence and grouping of the operators introduced
to this point:

Self Check
1 (True/False) Assuming the definitions

double d = 98.6;
double *dPtr;

the following statement assigns variable d’s address to the pointer variable dPtr:
dPtr = &d;

Variable dPtr is then said to “point to” d.
Answer: True.

6 int a = 7;
7 int *aPtr = &a; // set aPtr to the address of a
8
9 printf("Address of a is %p\nValue of aPtr is %p\n\n", &a, aPtr);

10 printf("Value of a is %d\nValue of *aPtr is %d\n\n", a, *aPtr);
11 printf("Showing that * and & are complements of each other\n");
12 printf("&*aPtr = %p\n*&aPtr = %p\n", &*aPtr, *&aPtr);
13 }

Address of a is 0x7fffe69386cc
Value of aPtr is 0x7fffe69386cc

Value of a is 7
Value of *aPtr is 7

Showing that * and & are complements of each other
&*aPtr = 0x7fffe69386cc
*&aPtr = 0x7fffe69386cc

Operators Grouping Type

() [] ++ (postfix) -- (postfix) left to right postfix
+ - ++ -- ! * & (type) right to left unary
* / % left to right multiplicative
+ - left to right additive
< <= > s>= left to right relational
== != left to right equality
&& left to right logical AND
|| left to right logical OR
?: right to left conditional
= += -= *= /= %= right to left assignment
, left to right comma

Fig. 7.1 | Using the & and * pointer operators. (Part 2 of 2.)

7.4 Passing Arguments to Functions by Reference 315

2 (Fill-In) The unary indirection operator (*) returns the value of the object to
which its pointer operand points. Using * in this manner is called .
Answer: dereferencing a pointer.

7.4 Passing Arguments to Functions by Reference
There are two ways to pass arguments to a function—pass-by-value and pass-by-ref-
erence. By default, arguments (other than arrays) are passed by value. As you’ve seen,
arrays are passed by reference. Functions often need to modify variables in the caller
or to receive a pointer to a large data object to avoid the overhead of copying the
object (as in pass-by-value). As we saw in Chapter 5, a return statement can return
at most one value from a called function to its caller. Pass-by-reference also can enable
a function to “return” multiple values by modifying the caller’s variables.

Use & and * to Accomplish Pass-By-Reference
Pointers and the indirection operator enable pass-by-reference. When calling a func-
tion with arguments that should be modified in the caller, you use & to pass each vari-
able’s address. As we saw in Chapter 6, arrays are not passed using operator & because
an array’s name is equivalent to &arrayName[0]—the array’s starting location in
memory. A function that receives the address of a variable in the caller can use the
indirection operator (*) to modify the value at that location in the caller’s memory,
thus effecting pass-by-reference.

Pass-By-Value
The programs in Figs. 7.2 and 7.3 present two versions of a function that cubes an
integer—cubeByValue and cubeByReference. Line 11 of Fig. 7.2 passes the variable
number by value to function cubeByValue (lines 16–18), which cubes its argument
and returns the new value. Line 11 assigns the new value to number in main, replacing
number’s value.

1 // fig07_02.c
2 // Cube a variable using pass-by-value.
3 #include <stdio.h>
4
5 int cubeByValue(int n); // prototype
6
7 int main(void) {
8 int number = 5; // initialize number
9

10 printf("The original value of number is %d", number);
11 number = cubeByValue(number); // pass number by value to cubeByValue
12 printf("\nThe new value of number is %d\n", number);
13 }
14

Fig. 7.2 | Cube a variable using pass-by-value. (Part 1 of 2.)

316 Chapter 7 Pointers

Pass-By-Reference
Line 12 of Fig. 7.3 passes the variable number’s address to function cubeByReference
(lines 17–19)—passing the address enables pass-by-reference. The function’s parameter
is a pointer to an int called nPtr (line 17). The function uses the expression *nPtr to
dereference the pointer and cube the value to which it points (line 18). It assigns the
result to *nPtr—which is really the variable number in main—thus changing number’s
value in main. Use pass-by-value unless the caller explicitly requires the called function
to modify the argument variable’s value in the caller. This prevents accidental modifi-
cation of the caller’s arguments and is another example of the principle of least privilege.

Use a Pointer Parameter to Receive an Address
A function receiving an address as an argument must receive it in a pointer parameter.
For example, in Fig. 7.3, function cubeByReference’s header (line 17) is

void cubeByReference(int *nPtr) {

15 // calculate and return cube of integer argument
16 int cubeByValue(int n) {
17 return n * n * n; // cube local variable n and return result
18 }

The original value of number is 5
The new value of number is 125

1 // fig07_03.c
2 // Cube a variable using pass-by-reference with a pointer argument.
3
4 #include <stdio.h>
5
6 void cubeByReference(int *nPtr); // function prototype
7
8 int main(void) {
9 int number = 5; // initialize number

10
11 printf("The original value of number is %d", number);
12 cubeByReference(&number); // pass address of number to cubeByReference
13 printf("\nThe new value of number is %d\n", number);
14 }
15
16 // calculate cube of *nPtr; actually modifies number in main
17 void cubeByReference(int *nPtr) {
18 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
19 }

The original value of number is 5
The new value of number is 125

Fig. 7.3 | Cube a variable using pass-by-reference with a pointer argument.

Fig. 7.2 | Cube a variable using pass-by-value. (Part 2 of 2.)

ERR

7.4 Passing Arguments to Functions by Reference 317

which specifies that cubeByReference receives the address of an integer variable as an
argument, stores the address locally in parameter nPtr and does not return a value.

Pointer Parameters in Function Prototypes
The function prototype for cubeByReference (Fig. 7.3, line 6) specifies an int *
parameter. As with other parameters, it’s not necessary to include pointer names in
function prototypes—they’re ignored by the compiler—but it’s good practice to
include them for documentation purposes.

Functions That Receive One-Dimensional Arrays
For a function that expects a one-dimensional array argument, the function’s proto-
type and header can use the pointer notation shown in the parameter list of function
cubeByReference (line 17). The compiler does not differentiate between a function
that receives a pointer and one that receives a one-dimensional array. So, the function
must “know” when it’s receiving an array vs. a single variable passed by reference.
When the compiler encounters a function parameter for a one-dimensional array of
the form int b[], the compiler converts the parameter to the pointer notation int
*b. The two forms are interchangeable. Similarly, for a parameter of the form const
int b[] the compiler converts the parameter to const int *b.

Pass-By-Value vs. Pass-By-Reference Step-By-Step
Figures 7.4 and 7.5 analyze graphically and step-by-step the programs in Figs. 7.2
and 7.3, respectively.

Fig. 7.4 | Analysis of a typical pass-by-value. (Part 1 of 2.)

Step 1: Before main calls cubeByValue:

int main(void) {

 int number = 5;

 number = cubeByValue(number);
}

125

5

number

5

number

5

number

Step 2: After cubeByValue receives the call:

int main(void) {

 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n) {

 return n * n * n;

} 5

n

5

n

Step 3: After cubeByValue cubes parameter n and before cubeByValue returns to main:

int main(void) {

 int number = 5;

 number = cubeByValue(number);
}

int cubeByValue(int n) {

 return n * n * n;

}

318 Chapter 7 Pointers

Fig. 7.5 | Analysis of a typical pass-by-reference with a pointer argument.

Fig. 7.4 | Analysis of a typical pass-by-value. (Part 2 of 2.)

125

125125

5

number

125

number

Step 4: After cubeByValue returns to main and before assigning the result to number:

int main(void) {

 int number = 5;

 number = cubeByValue(number);
}

Step 5: After main completes the assignment to number:

int main(void) {

 int number = 5;

 number = cubeByValue(number);
}

Step 1: Before main calls cubeByReference:

int main(void)
{
 int number = 5;

 cubeByReference(&number);
}

125

5

number

125

number

5

number

nPtr

nPtr

Step 2: After cubeByReference receives the call and before *nPtr is cubed:

int main(void)
{
 int number = 5;

 cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{
 *nPtr = *nPtr * *nPtr * *nPtr;
}

Step 3: After *nPtr is cubed and before program control returns to main:

int main(void)
{
 int number = 5;

 cubeByReference(&number);
}

void cubeByReference(int *nPtr)
{

 *nPtr = *nPtr * *nPtr * *nPtr;
}

called function modifies caller’s
variable

call establishes this pointer

7.5 Using the const Qualifier with Pointers 319

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) By default, arguments (other than arrays) are passed by value. Arrays are
passed by reference.

b) Functions often require the capability to modify variables in the caller or re-
ceive a pointer to a large data object to avoid copying the object.

c) return can return one or more values from a called function to a caller.
d) Pass-by-reference also can enable a function to “return” multiple values by

modifying variables in the caller.
Answer: c) is false. return may be used to return at most one value from a called func-
tion to a caller.

2 (Multiple Choice) Which of the following statements is false?
a) You use pointers and the indirection operator to accomplish pass-by-refer-

ence.
b) When calling a function with arguments that should be modified, use the

address operator (&) to pass the argument’s addresses.
c) Arrays are passed by reference using operator &.
d) All of the above statements are true.

Answer: c) is false. Arrays are not passed by reference using operator & because an
array’s name is equivalent to the address of its first element—&arrayName[0].

7.5 Using the const Qualifier with Pointers
The const qualifier enables you to inform the compiler that a particular variable’s
value should not be modified, thus enforcing the principle of least privilege. This can
reduce debugging time and prevent unintentional side effects, making a program
more robust, and easier to modify and maintain. If an attempt is made to modify a
value that’s declared const, the compiler catches it and issues an error.

Over the years, a large base of legacy code was written in early C versions that did
not use const because it was not available. Even more current code does not use const
as often as it should. So, there are significant opportunities for improvement by re-
engineering existing C code.

There are four ways to pass to a function a pointer to data:

• a non-constant pointer to non-constant data.

• a constant pointer to non-constant data.

• a non-constant pointer to constant data.

• a constant pointer to constant data.

Each of the four combinations provides different access privileges and is discussed in
the next several examples. How do you choose one of the possibilities? Let the prin-
ciple of least privilege be your guide. Always award a function enough access to the
data in its parameters to accomplish its specified task, but absolutely no more.

SE

ERR

320 Chapter 7 Pointers

7.5.1 Converting a String to Uppercase Using a Non-Constant
Pointer to Non-Constant Data
The highest level of data access is granted by a non-constant pointer to non-constant
data. The data can be modified through the dereferenced pointer, and the pointer can
be modified to point to other data items. A function might use such a pointer to
receive a string argument, then process (and possibly modify) each character in the
string. Function convertToUppercase in Fig. 7.6 declares its parameter, a non-con-
stant pointer to non-constant data called sPtr (line 18). The function processes the
array string (pointed to by sPtr) one character at a time. C standard library function
toupper (line 20) from the <ctype.h> header converts each character to its corre-
sponding uppercase letter. If the original character is not a letter or is already upper-
case, toupper returns the original character. Line 21 increments the pointer to point
to the next character in the string. Chapter 8 presents many C standard library char-
acter- and string-processing functions.

7.5.2 Printing a String One Character at a Time Using a Non-
Constant Pointer to Constant Data
A non-constant pointer to constant data can be modified to point to any data item of
the appropriate type, but the data to which it points cannot be modified. A function

1 // fig07_06.c
2 // Converting a string to uppercase using a
3 // non-constant pointer to non-constant data.
4 #include <ctype.h>
5 #include <stdio.h>
6
7 void convertToUppercase(char *sPtr); // prototype
8
9 int main(void) {

10 char string[] = "cHaRaCters and $32.98"; // initialize char array
11
12 printf("The string before conversion is: %s\n", string);
13 convertToUppercase(string);
14 printf("The string after conversion is: %s\n", string);
15 }
16
17 // convert string to uppercase letters
18 void convertToUppercase(char *sPtr) {
19 while (*sPtr !=) { // current character is not
20 *sPtr = toupper(*sPtr); // convert to uppercase
21 ++sPtr; // make sPtr point to the next character
22 }
23 }

The string before conversion is: cHaRaCters and $32.98
The string after conversion is: CHARACTERS AND $32.98

Fig. 7.6 | Converting a string to uppercase using a non-constant pointer to non-constant data.

7.5 Using the const Qualifier with Pointers 321

might receive such a pointer to process an array argument’s elements without modi-
fying them. For example, function printCharacters (Fig. 7.7) declares parameter
sPtr to be of type const char * (line 20). The declaration is read from right to left as
“sPtr is a pointer to a character constant.” The function’s for statement outputs each
character until it encounters a null character. After displaying each character, the loop
increments pointer sPtr to point to the string’s next character.

Trying to Modify Constant Data
Figure 7.8 shows the errors from compiling a function that receives a non-constant
pointer (xPtr) to constant data and tries to use it to modify the data. The error shown
is from the Visual C++ compiler. The C standard does not specify compiler warning
or error messages, and the compiler vendors do not normalize these messages across
compilers. So, the actual error message you receive is compiler-specific. For example,
Xcode’s LLVM compiler reports the error:

error: read-only variable is not assignable

and the GNU gcc compiler reports the error:
error: assignment of read-only location ‘*xPtr’

1 // fig07_07.c
2 // Printing a string one character at a time using
3 // a non-constant pointer to constant data.
4
5 #include <stdio.h>
6
7 void printCharacters(const char *sPtr);
8
9 int main(void) {

10 // initialize char array
11 char string[] = "print characters of a string";
12
13 puts("The string is:");
14 printCharacters(string);
15 puts("");
16 }
17
18 // sPtr cannot be used to modify the character to which it points,
19 // i.e., sPtr is a "read-only" pointer
20 void printCharacters(const char *sPtr) {
21 // loop through entire string
22 for (; *sPtr != ; ++sPtr) { // no initialization
23 printf("%c", *sPtr);
24 }
25 }

The string is:
print characters of a string

Fig. 7.7 | Printing a string one character at a time using a non-constant pointer to constant data.

322 Chapter 7 Pointers

Passing Structures vs. Arrays
As you know, arrays are aggregate types that store related data items of the same type
under one name. Chapter 10 discusses another form of aggregate type called a struc-
ture (sometimes called a record or tuple in other languages), which can store related
data items of the same or different types under one name—e.g., employee informa-
tion, such as an employee’s ID number, name, address and salary.

Unlike arrays, structures are passed by value—a copy of the entire structure is
passed. This requires the execution-time overhead of making a copy of each data item
in the structure and storing it on the computer’s function call stack. Passing large
objects such as structures by using pointers to constant data obtains the performance
of pass-by-reference and the security of pass-by-value. In this case, the program copies
only the address at which the structure is stored—typically four or eight bytes.

If memory is low and execution efficiency is a concern, use pointers. If memory
is in abundance and efficiency is not a major concern, pass data by value to enforce
the principle of least privilege. Some systems do not enforce const well, so pass-by-
value is still the best way to prevent data from being modified.

7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data
A constant pointer to non-constant data always points to the same memory location,
but the data at that location can be modified through the pointer. This is the default
for an array name, which is a constant pointer to the array’s first element. All data in
the array can be accessed and changed by using the array name and array subscripting.
A constant pointer to non-constant data can be used to receive an array as an argu-

1 // fig07_08.c
2 // Attempting to modify data through a
3 // non-constant pointer to constant data.
4 #include <stdio.h>
5 void f(const int *xPtr); // prototype
6
7 int main(void) {
8 int y = 7; // define y
9

10 f(&y); // f attempts illegal modification
11 }
12
13 // xPtr cannot be used to modify the
14 // value of the variable to which it points
15 void f(const int *xPtr) {
16 *xPtr = 100; // error: cannot modify a const object
17 }

Microsoft Visual C++ Error Message

fig07_08.c(16,5): error C2166: l-value specifies const object

Fig. 7.8 | Attempting to modify data through a non-constant pointer to constant data.

PERF

7.5 Using the const Qualifier with Pointers 323

ment to a function that accesses array elements using array subscript notation. Point-
ers that are declared const must be initialized when they’re defined. If the pointer is
a function parameter, it’s initialized with a pointer argument as the function is called.

Figure 7.9 attempts to modify a constant pointer. Pointer ptr is defined in line
11 to be of type int * const, which is read right-to-left as “ptr is a constant pointer
to an integer.” The pointer is initialized (line 11) with the address of integer variable
x. The program attempts to assign y’s address to ptr (line 14), but the compiler gen-
erates an error.

7.5.4 Attempting to Modify a Constant Pointer to Constant Data
The least access privilege is granted by a constant pointer to constant data. Such a
pointer always points to the same memory location, and the data at that memory loca-
tion cannot be modified. This is how an array should be passed to a function that only
looks at the array’s elements using array subscript notation and does not modify the
elements. Figure 7.10 defines pointer variable ptr (line 12) to be of type const int
*const, which is read right-to-left as “ptr is a constant pointer to an integer constant.”
The output shows the error messages generated when we attempt to modify the data
to which ptr points (line 15) and when we attempt to modify the address stored in the
pointer variable (line 16).

1 // fig07_09.c
2 // Attempting to modify a constant pointer to non-constant data.
3 #include <stdio.h>
4
5 int main(void) {
6 int x = 0; // define x
7 int y = 0; // define y
8
9 // ptr is a constant pointer to an integer that can be modified

10 // through ptr, but ptr always points to the same memory location
11 int * const ptr = &x;
12
13 *ptr = 7; // allowed: *ptr is not const
14 ptr = &y; // error: ptr is const; cannot assign new address
15 }

Microsoft Visual C++ Error Message

fig07_09.c(14,4): error C2166: l-value specifies const object

Fig. 7.9 | Attempting to modify a constant pointer to non-constant data.

1 // fig07_10.c
2 // Attempting to modify a constant pointer to constant data.
3 #include <stdio.h>

Fig. 7.10 | Attempting to modify a constant pointer to constant data. (Part 1 of 2.)

324 Chapter 7 Pointers

Self Check
1 (Multiple Choice) What is sPtr in the following prototype?

void convertToUppercase(char *sPtr);

a) A non-constant pointer to constant data.
b) A constant pointer to non-constant data.
c) A non-constant pointer to non-constant data.
d) A constant pointer to constant data.

Answer: c.

2 (Fill-In) The least access privilege is granted by a pointer to data.
Such a pointer always points to the same memory location, and the data at that memory
location cannot be modified.
Answer: constant, constant.

7.6 Bubble Sort Using Pass-By-Reference
Let’s improve the bubble-sort4 program of Fig. 6.12 to use two functions—bubble-

Sort and swap (Fig. 7.11). Function bubbleSort sorts the array. It calls function swap
(line 42) to exchange the array elements array[j] and array[j + 1].

4
5 int main(void) {
6 int x = 5;
7 int y = 0;
8
9 // ptr is a constant pointer to a constant integer. ptr always

10 // points to the same location; the integer at that location
11 // cannot be modified
12 const int *const ptr = &x; // initialization is OK
13
14 printf("%d\n", *ptr);
15 *ptr = 7; // error: *ptr is const; cannot assign new value
16 ptr = &y; // error: ptr is const; cannot assign new address
17 }

Microsoft Visual C++ Error Message

fig07_10.c(15,5): error C2166: l-value specifies const object
fig07_10.c(16,4): error C2166: l-value specifies const object

Fig. 7.10 | Attempting to modify a constant pointer to constant data. (Part 2 of 2.)

4. In Chapter 12 and Appendix C, we investigate sorting schemes that yield better performance.

7.6 Bubble Sort Using Pass-By-Reference 325

1 // fig07_11.c
2 // Putting values into an array, sorting the values into
3 // ascending order and printing the resulting array.
4 #include <stdio.h>
5 #define SIZE 10
6
7 void bubbleSort(int * const array, size_t size); // prototype
8
9 int main(void) {

10 // initialize array a
11 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
12
13 puts("Data items in original order");
14
15 // loop through array a
16 for (size_t i = 0; i < SIZE; ++i) {
17 printf("%4d", a[i]);
18 }
19
20 bubbleSort(a, SIZE); // sort the array
21
22 puts("\nData items in ascending order");
23
24 // loop through array a
25 for (size_t i = 0; i < SIZE; ++i) {
26 printf("%4d", a[i]);
27 }
28
29 puts("");
30 }
31
32 // sort an array of integers using bubble sort algorithm
33 void bubbleSort(int * const array, size_t size) {
34 void swap(int *element1Ptr, int *element2Ptr); // prototype
35
36 // loop to control passes
37 for (int pass = 0; pass < size - 1; ++pass) {
38 // loop to control comparisons during each pass
39 for (size_t j = 0; j < size - 1; ++j) {
40 // swap adjacent elements if they’re out of order
41 if (array[j] > array[j + 1]) {
42 swap(&array[j], &array[j + 1]);
43 }
44 }
45 }
46 }
47

Fig. 7.11 | Putting values into an array, sorting the values into ascending order and printing
the resulting array. (Part 1 of 2.)

326 Chapter 7 Pointers

Function swap
Remember that C enforces information hiding between functions, so swap does not
have access to individual array elements in bubbleSort by default. Because bubble-
Sort wants swap to have access to the array elements to swap, bubbleSort passes each
element’s address to swap, so the elements are passed by reference. Although entire
arrays are automatically passed by reference, individual array elements are scalars and
are ordinarily passed by value. So, bubbleSort uses the address operator (&) on each
array element:

swap(&array[j], &array[j + 1]);

Function swap receives &array[j] in element1Ptr (line 50). Function swap may use
*element1Ptr as a synonym for array[j]. Similarly, *element2Ptr is a synonym for
array[j + 1]. Even though swap is not allowed to say

int hold = array[j];
array[j] = array[j + 1];
array[j + 1] = hold;

precisely the same effect is achieved by lines 51 through 53:
int hold = *element1Ptr;
*element1Ptr = *element2Ptr;
*element2Ptr = hold;

Function bubbleSort’s Array Parameter
Note that function bubbleSort’s header (line 33) declares array as int * const array
rather than int array[] to indicate that bubbleSort receives a one-dimensional array
argument. Again, these notations are interchangeable; however, array notation gen-
erally is preferred for readability.

Function swap’s Prototype in Function bubbleSort’s Body
The prototype for function swap (line 34) is included in bubbleSort’s body because
only bubbleSort calls swap. Placing the prototype in bubbleSort restricts proper swap

48 // swap values at memory locations to which element1Ptr and
49 // element2Ptr point
50 void swap(int *element1Ptr, int *element2Ptr) {
51 int hold = *element1Ptr;
52 *element1Ptr = *element2Ptr;
53 *element2Ptr = hold;
54 }

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Fig. 7.11 | Putting values into an array, sorting the values into ascending order and printing
the resulting array. (Part 2 of 2.)

7.6 Bubble Sort Using Pass-By-Reference 327

calls to those made from bubbleSort (or any function that appears after swap in the
source code). Other functions defined before swap that attempt to call swap do not
have access to a proper function prototype, so the compiler generates one automati-
cally. This normally results in a prototype that does not match the function header
(and generates a compilation warning or error) because the compiler assumes int for
the return and parameter types. Placing function prototypes in the definitions of
other functions enforces the principle of least privilege by restricting proper function
calls to the functions in which the prototypes appear.

Function bubbleSort’s size Parameter
Function bubbleSort receives the array size as a parameter (line 33). When an array
is passed to a function, the memory address of the array’s first element, of course, does
not convey the number of array elements. Therefore, you must pass the array size to
the function to know how many elements to sort. Another common practice is to pass
a pointer to the array’s first element and a pointer to the location just beyond the
array’s end. As you’ll learn in Section 7.8, the difference between these two pointers
is the array’s length, and the resulting code is simpler.

There are two main benefits to passing the array size to bubbleSort—software
reusability and proper software engineering. By defining the function to receive the
array size as an argument, we enable the function to be used by any program that sorts
one-dimensional integer arrays of any size.

We could have stored the array’s size in a global variable accessible to the entire
program. However, other programs that require an integer array-sorting capability
may not have the same global variable, so the function cannot be used in those pro-
grams. Global variables usually violate the principle of least privilege and can lead to
poor software engineering. Global variables should be used only to represent truly
shared resources, such as the time of day.

The array size could have been programmed directly into the function. This
would restrict the function’s use to processing an array of a specific size and signifi-
cantly reduce its reusability. Only programs processing one-dimensional integer
arrays of the specific size coded into the function can use the function.

Self Check
1 (Code) Our bubbleSort function used the address operator (&) on each of the
array elements in the swap call to effect pass-by-reference as follows:

swap(&array[j], &array[j + 1]);

Suppose function swap receives &array[j] and &array[j + 1] in int * pointers named
firstPtr and secondPtr, respectively. Write the pointer-based code in function swap
to switch the values in these two elements, using a temporary int variable temp.
Answer:

int temp = *firstPtr;
*firstPtr = *secondPtr;
*secondPtr = temp;

SE

SE

SE

328 Chapter 7 Pointers

2 (Discussion) Typically, when we pass an array to a function, we also pass the array
size as another argument. Alternatively, we could build the array size directly into the
function definition. What’s wrong with that approach?
Answer: It would limit the function to processing arrays of a specific size, significant-
ly reducing the function’s reusability.

7.7 sizeof Operator
C provides the unary operator sizeof to determine an object’s or type’s size in bytes.
This operator is applied at compilation time unless its operand is a variable-length
array (VLA; Section 6.12). When applied to an array’s name as in Fig. 7.12 (line 12),
sizeof returns as a size_t value the array’s total number of bytes. Variables of type
float on our computer are stored in four bytes of memory, and array is defined to
have 20 elements. Therefore, there are 80 bytes in array. sizeof is a compile-time
operator, so it does not incur any execution-time overhead (except for VLAs).

Even though function getSize receives an array of 20 elements as an argument,
the function’s parameter ptr is simply a pointer to the array’s first element. When you
use sizeof with a pointer, it returns the pointer’s size, not the size of the item to which
it points. On our 64-bit Windows, Mac and Linux test systems, a pointer’s size is
eight bytes, so getSize returns 8. On older 32-bit systems, a pointer’s size is typically
four bytes, so getSize would return 4.

1 // fig07_12.c
2 // Applying sizeof to an array name returns
3 // the number of bytes in the array.
4 #include <stdio.h>
5 #define SIZE 20
6
7 size_t getSize(const float *ptr); // prototype
8
9 int main(void){

10 float array[SIZE]; // create array
11
12 printf("Number of bytes in the array is %zu\n", sizeof(array));
13 printf("Number of bytes returned by getSize is %zu\n", getSize(array));
14 }
15
16 // return size of ptr
17 size_t getSize(const float *ptr) {
18 return sizeof(ptr);
19 }

Number of bytes in the array is 80
Number of bytes returned by getSize is 8

Fig. 7.12 | Applying sizeof to an array name returns the number of bytes in the array.

PERF

7.7 sizeof Operator 329

The number of elements in an array also can be determined with sizeof. For
example, consider the following array definition:

double real[22];

Variables of type double normally are stored in eight bytes of memory. Thus, the
array real contains 176 bytes. The following expression determines the array’s num-
ber of elements:

sizeof(real) / sizeof(real[0])

The expression divides the array real’s number of bytes by the number of bytes used
to store one element of the array (a double value). This calculation works only when
using the actual array’s name, not when using a pointer to the array.

Determining the Sizes of the Standard Types, an Array and a Pointer
Figure 7.13 calculates the number of bytes used to store each of the standard types.
The results of this program are implementation dependent. They often differ across
platforms and sometimes across different compilers on the same platform. The out-
put shows the results from our Mac system using the Xcode C++ compiler.

1 // fig07_13.c
2 // Using operator sizeof to determine standard type sizes.
3 #include <stdio.h>
4
5 int main(void) {
6 char c = ;
7 short s = 0;
8 int i = 0;
9 long l = 0;

10 long long ll = 0;
11 float f = 0.0F;
12 double d = 0.0;
13 long double ld = 0.0;
14 int array[20] = {0}; // create array of 20 int elements
15 int *ptr = array; // create pointer to array
16
17 printf(" sizeof c = %2zu\t sizeof(char) = %2zu\n",
18 sizeof c, sizeof(char));
19 printf(" sizeof s = %2zu\t sizeof(short) = %2zu\n",
20 sizeof s, sizeof(short));
21 printf(" sizeof i = %2zu\t sizeof(int) = %2zu\n",
22 sizeof i, sizeof(int));
23 printf(" sizeof l = %2zu\t sizeof(long) = %2zu\n",
24 sizeof l, sizeof(long));
25 printf(" sizeof ll = %2zu\t sizeof(long long) = %2zu\n",
26 sizeof ll, sizeof(long long));
27 printf(" sizeof f = %2zu\t sizeof(float) = %2zu\n",
28 sizeof f, sizeof(float));
29 printf(" sizeof d = %2zu\t sizeof(double) = %2zu\n",
30 sizeof d, sizeof(double));

Fig. 7.13 | Using operator sizeof to determine standard type sizes. (Part 1 of 2.)

330 Chapter 7 Pointers

The number of bytes used to store a particular type may vary between systems.
When writing programs that depend on type sizes and that will run on several com-
puter systems, use sizeof to determine the number of bytes used to store the types.

You can apply sizeof to any variable name, type or value (including the value of
an expression). When applied to a variable name (that’s not an array name) or a con-
stant, the number of bytes used to store the specific type of variable or constant is
returned. The parentheses are required when a type is supplied as sizeof’s operand.

Self Check
1 (Fill-In) Given the array definition:

double temperatures[31];

the expression:
sizeof(temperatures) / sizeof(temperatures[0])

determines what attribute of temperatures?
Answer: The number of elements in the array (in this case, 31).

2 (True/False) When you use sizeof with a pointer, it returns the size of the item
to which the pointer points.
Answer: False. Actually, when you use sizeof with a pointer, it returns the pointer’s
size, not the size of the item to which the pointer points. If you use sizeof with an
array name, it returns the array’s size.

7.8 Pointer Expressions and Pointer Arithmetic
Pointers are valid operands in arithmetic expressions, assignment expressions and
comparison expressions. However, not all arithmetic operators are valid with pointer
variables. This section describes the operators that can have pointers as operands, and
how these operators are used.

31 printf(" sizeof ld = %2zu\tsizeof(long double) = %2zu\n",
32 sizeof ld, sizeof(long double));
33 printf("sizeof array = %2zu\n sizeof ptr = %2zu\n",
34 sizeof array, sizeof ptr);
35 }

 sizeof c = 1 sizeof(char) = 1
 sizeof s = 2 sizeof(short) = 2
 sizeof i = 4 sizeof(int) = 4
 sizeof l = 8 sizeof(long) = 8
 sizeof ll = 8 sizeof(long long) = 8
 sizeof f = 4 sizeof(float) = 4
 sizeof d = 8 sizeof(double) = 8
 sizeof ld = 16 sizeof(long double) = 16
sizeof array = 80
 sizeof ptr = 8

Fig. 7.13 | Using operator sizeof to determine standard type sizes. (Part 2 of 2.)

SE

7.8 Pointer Expressions and Pointer Arithmetic 331

7.8.1 Pointer Arithmetic Operators
The following arithmetic operations are allowed for pointers:

• incrementing (++) or decrementing (--),

• adding an integer to a pointer (+ or +=),

• subtracting an integer from a pointer (- or -=), and

• subtracting one pointer from another—meaningful only when both pointers
point into the same array.

Pointer arithmetic on pointers that do not refer to array elements is a logic error.

7.8.2 Aiming a Pointer at an Array
Assume the array int v[5] is defined, and its first element is at location 3000 in mem-
ory. Also, assume the pointer vPtr points to v[0]—so the value of vPtr is 3000. The
following diagram illustrates this scenario for a machine with four-byte integers:

The variable vPtr can be initialized to point to array v with either of the statements
vPtr = v;
vPtr = &v[0];

7.8.3 Adding an Integer to a Pointer
In conventional arithmetic, 3000 + 2 yields the value 3002. This is normally not the
case with pointer arithmetic. When you add an integer to or subtract one from a
pointer, the pointer increments or decrements by that integer times the size of the
object to which the pointer refers. For example, the statement

vPtr += 2;

would produce 3008 (3000 + 2 * 4), assuming an integer is stored in four bytes of
memory. In the array v, vPtr would now point to v[2], as in the following diagram:

ERR

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

pointer variable vPtr

v[0] v[1] v[2] v[3] v[4]

3000
location

3004 3008 3012 3016

332 Chapter 7 Pointers

The object’s size, depends on its type. When performing pointer arithmetic on a char-
acter array, the results will be consistent with regular arithmetic because each charac-
ter is one byte. Type sizes can vary by platform and compiler, so pointer arithmetic
is platform- and compiler-dependent.

7.8.4 Subtracting an Integer from a Pointer
If vPtr had been incremented to 3016 (v[4]), the statement

vPtr -= 4;

would set vPtr back to 3000 (v[0])—the beginning of the array. Using pointer arith-
metic to adjust pointers to point outside an array’s bounds is a logic error that could
lead to security problems.

7.8.5 Incrementing and Decrementing a Pointer
To increment or decrement a pointer by one, use the increment (++) and decrement
(--) operators. Either of the statements

++vPtr;
vPtr++;

increments the pointer to point to the next array element. Either of the statements
--vPtr;
vPtr--;

decrements the pointer to point to the previous array element.

7.8.6 Subtracting One Pointer from Another
If vPtr contains the location 3000 and v2Ptr contains the address 3008, the statement

x = v2Ptr - vPtr;

assigns to x the number of array elements between vPtr and v2Ptr, in this case, 2 (not
8). Pointer arithmetic is undefined unless performed on elements of the same array.
We cannot assume that two variables of the same type are stored side-by-side in mem-
ory unless they’re adjacent elements of an array.

7.8.7 Assigning Pointers to One Another
Pointers of the same type may be assigned to one another. This rule’s exception is a
pointer to void (i.e., void *)—a generic pointer that can represent any pointer type.
All pointer types can be assigned to a void *, and a void * can be assigned a pointer
of any type (including another void *). In both cases, a cast operation is not required.

7.8.8 Pointer to void
A pointer to void cannot be dereferenced. Consider this: The compiler knows on a
machine with four-byte integers that an int * points to four bytes of memory. How-
ever, a void * contains a memory location for an unknown type—the precise number
of bytes to which the pointer refers is not known by the compiler. The compiler must

ERR
SEC

ERR

7.9 Relationship between Pointers and Arrays 333

know the type to determine the number of bytes that represent the referenced value.
Dereferencing a void * pointer is a syntax error.

7.8.9 Comparing Pointers
You can compare pointers using equality and relational operators, but such compar-
isons are meaningful only if the pointers point to elements of the same array; other-
wise, such comparisons are logic errors. Pointer comparisons compare the addresses
stored in the pointers. Such a comparison could show, for example, that one pointer
points to a higher-numbered array element than the other. A common use of pointer
comparison is determining whether a pointer is NULL.

Self Check
1 (Fill-In) When you add an integer to or subtract an integer from a pointer, the
pointer increments or decrements by that integer times .
Answer: the size of the object to which the pointer points.

2 (Fill-In) Pointers v1Ptr and v2Ptr point to elements of the same array of eight-
byte double values. If v1Ptr contains the address 3000 and v2Ptr contains the address
3016, then the statement

size_t x = v2Ptr - v1Ptr;

will assign to x.
Answer: 2 (not 16)—2 is the number of elements between the pointers.

7.9 Relationship between Pointers and Arrays
Arrays and pointers are intimately related and often may be used interchangeably.
You can think of an array name as a constant pointer to the array’s first element. Point-
ers can be used to do any operation involving array subscripting.

Assume the following definitions:
int b[5];
int *bPtr;

Because the array name b (without a subscript) is a pointer to the array’s first element,
we can set bPtr to the address of the array b’s first element with the statement:

bPtr = b;

This is equivalent to taking the address of array b’s first element as follows:
bPtr = &b[0];

7.9.1 Pointer/Offset Notation
Array element b[3] can alternatively be referenced with the pointer expression

*(bPtr + 3)

The 3 in the expression is the offset to the pointer. When bPtr points to the array’s
first element, the offset indicates which array element to reference—the offset’s value

ERR

ERR

334 Chapter 7 Pointers

is identical to the array subscript. This notation is referred to as pointer/offset nota-
tion. The parentheses are required because the precedence of * is higher than that of
+. Without the parentheses, the above expression would add 3 to the value of the
expression *bPtr (i.e., 3 would be added to b[0], assuming bPtr points to the begin-
ning of the array). Just as the array element can be referenced with a pointer expres-
sion, the address

&b[3]

can be written with the pointer expression
bPtr + 3

An array’s name also can be treated as a pointer and used in pointer arithmetic.
For example, the expression

*(b + 3)

refers to element b[3]. In general, all subscripted array expressions can be written
with a pointer and an offset. In this case, pointer/offset notation was used with the
array’s name as a pointer. The preceding statement does not modify the array name
in any way; b still points to the first element.

7.9.2 Pointer/Subscript Notation
Pointers can be subscripted like arrays. If bPtr has the value b, the expression

bPtr[1]

refers to the array element b[1]. This is referred to as pointer/subscript notation.

7.9.3 Cannot Modify an Array Name with Pointer Arithmetic
An array name always points to the beginning of the array, so it’s like a constant
pointer. Thus, the expression

b += 3

is invalid because it attempts to modify the array name’s value with pointer arithme-
tic. Attempting to modify the value of an array name with pointer arithmetic is a
compilation error.

7.9.4 Demonstrating Pointer Subscripting and Offsets
Figure 7.14 uses the four methods we’ve discussed for referring to array elements—
array subscripting, pointer/offset with the array name as a pointer, pointer subscript-
ing, and pointer/offset with a pointer—to print the four elements of the integer array b.

1 // fig07_14.cpp
2 // Using subscripting and pointer notations with arrays.
3 #include <stdio.h>
4 #define ARRAY_SIZE 4

Fig. 7.14 | Using subscripting and pointer notations with arrays. (Part 1 of 3.)

ERR

7.9 Relationship between Pointers and Arrays 335

5
6 int main(void) {
7 int b[] = {10, 20, 30, 40}; // create and initialize array b
8 int *bPtr = b; // create bPtr and point it to array b
9

10 // output array b using array subscript notation
11 puts("Array b printed with:\nArray subscript notation");
12
13 // loop through array b
14 for (size_t i = 0; i < ARRAY_SIZE; ++i) {
15 printf("b[%zu] = %d\n", i, b[i]);
16 }
17
18 // output array b using array name and pointer/offset notation
19 puts("\nPointer/offset notation where the pointer is the array name");
20
21 // loop through array b
22 for (size_t offset = 0; offset < ARRAY_SIZE; ++offset) {
23 printf("*(b + %zu) = %d\n", offset, *(b + offset));
24 }
25
26 // output array b using bPtr and array subscript notation
27 puts("\nPointer subscript notation");
28
29 // loop through array b
30 for (size_t i = 0; i < ARRAY_SIZE; ++i) {
31 printf("bPtr[%zu] = %d\n", i, bPtr[i]);
32 }
33
34 // output array b using bPtr and pointer/offset notation
35 puts("\nPointer/offset notation");
36
37 // loop through array b
38 for (size_t offset = 0; offset < ARRAY_SIZE; ++offset) {
39 printf("*(bPtr + %zu) = %d\n", offset, *(bPtr + offset));
40 }
41 }

Array b printed with:
Array subscript notation
b[0] = 10
b[1] = 20
b[2] = 30
b[3] = 40

Pointer/offset notation where the pointer is the array name
*(b + 0) = 10
*(b + 1) = 20
*(b + 2) = 30
*(b + 3) = 40

Fig. 7.14 | Using subscripting and pointer notations with arrays. (Part 2 of 3.)

336 Chapter 7 Pointers

7.9.5 String Copying with Arrays and Pointers
To further illustrate array and pointer interchangeability, let’s look at two string-
copying functions—copy1 and copy2—in Fig. 7.15. Both functions copy a string
into a character array, but they’re implemented differently.

Pointer subscript notation
bPtr[0] = 10
bPtr[1] = 20
bPtr[2] = 30
bPtr[3] = 40

Pointer/offset notation
*(bPtr + 0) = 10
*(bPtr + 1) = 20
*(bPtr + 2) = 30
*(bPtr + 3) = 40

1 // fig07_15.c
2 // Copying a string using array notation and pointer notation.
3 #include <stdio.h>
4 #define SIZE 10
5
6 void copy1(char * const s1, const char * const s2); // prototype
7 void copy2(char *s1, const char *s2); // prototype
8
9 int main(void) {

10 char string1[SIZE]; // create array string1
11 char *string2 = "Hello"; // create a pointer to a string
12
13 copy1(string1, string2);
14 printf("string1 = %s\n", string1);
15
16 char string3[SIZE]; // create array string3
17 char string4[] = "Good Bye"; // create an array containing a string
18
19 copy2(string3, string4);
20 printf("string3 = %s\n", string3);
21 }
22
23 // copy s2 to s1 using array notation
24 void copy1(char * const s1, const char * const s2) {
25 // loop through strings
26 for (size_t i = 0; (s1[i] = s2[i]) != ; ++i) {
27 ; // do nothing in body
28 }
29 }

Fig. 7.15 | Copying a string using array notation and pointer notation. (Part 1 of 2.)

Fig. 7.14 | Using subscripting and pointer notations with arrays. (Part 3 of 3.)

7.9 Relationship between Pointers and Arrays 337

Copying with Array Subscript Notation
Function copy1 uses array subscript notation to copy the string in s2 to the character
array s1. The function defines counter variable i as the array subscript. The for state-
ment header (line 26) performs the entire copy operation. The statement’s body is the
empty statement. The header specifies that i is initialized to zero and incremented by
one during each iteration. The expression s1[i] = s2[i] copies one character from s2
to s1. When the null character is encountered in s2, it’s assigned to s1. Since the
assignment’s value is what gets assigned to the left operand (s1), the loop terminates
when an element of s1 receives the null character, which has the value 0 and therefore
is false.

Copying with Pointers and Pointer Arithmetic
Function copy2 uses pointers and pointer arithmetic to copy the string in s2 to the
character array s1. Again, the for statement header (line 34) performs the copy oper-
ation. The header does not include any variable initialization. The expression *s1 =
*s2 performs the copy operation by dereferencing s2 and assigning that character to
the current location in s1. After the assignment, line 34 increments s1 and s2 to point
to each string’s next character. When the assignment copies the null character into
s1, the loop terminates.

Notes Regarding Functions copy1 and copy2
The first argument to both copy1 and copy2 must be an array large enough to hold the sec-
ond argument’s string. Otherwise, a logic error may occur when an attempt is made to
write into a memory location that’s not part of the array. In both functions, the sec-
ond argument is copied into the first argument—characters are read from it one at a
time, but the characters are never modified. Therefore, the second parameter is
declared to point to a constant value so that the principle of least privilege is enforced.
Neither function requires the capability of modifying the string in the second argu-
ment, so we simply disallow it.

30
31 // copy s2 to s1 using pointer notation
32 void copy2(char *s1, const char *s2) {
33 // loop through strings
34 for (; (*s1 = *s2) != ; ++s1, ++s2) {
35 ; // do nothing in body
36 }
37 }

string1 = Hello
string3 = Good Bye

Fig. 7.15 | Copying a string using array notation and pointer notation. (Part 2 of 2.)

ERR

338 Chapter 7 Pointers

Self Check
1 (True/False) If bPtr points to array b’s second element (b[1]), then element b[3]
also can be referenced with the pointer/offset notation expression *(bPtr + 3).
Answer: False. Since the pointer points to array b’s second element (b[1]), the expres-
sion should be *(bPtr + 2).

2 (Fill-In) Pointers can be subscripted like arrays. If bPtr points to the array b’s first
element, the expression

bPtr[1]

refers to the array element .
Answer: b[1].

7.10 Arrays of Pointers
Arrays may contain pointers. A common use of an array of pointers is to form an
array of strings, referred to simply as a string array. Each element in a C string is
essentially a pointer to its first character. So, each entry in an array of strings is actually
a pointer to a string’s first character. Consider the definition of the string array suit,
which might be useful in representing a deck of cards.

const char *suit[4] = {"Hearts", "Diamonds", "Clubs", "Spades"};

The array has four elements. The char * indicates that each suit element is of type
“pointer to char.” The qualifier const indicates that the string each element points
to cannot be modified. The strings "Hearts", "Diamonds", "Clubs" and "Spades" are
placed into the array. Each is stored in memory as a null-terminated character string
that’s one character longer than the number of characters in the quotes. So, the strings
are 7, 9, 6 and 7 characters long. Although it appears these strings are being placed
into the array, only pointers are actually stored, as shown in the following diagram:

Each pointer points to the first character of its corresponding string. Thus, even
though a char * array is fixed in size, it can point to character strings of any length.
This flexibility is one example of C’s powerful data-structuring capabilities.

The suits could have been placed in a two-dimensional array, in which each row
would represent a suit, and each column would represent a letter from a suit name.
Such a data structure would have to have a fixed number of columns per row, and
that number would have to be as large as the largest string. Therefore, considerable
memory could be wasted when storing many strings that are shorter than the longest
string. We use string arrays to represent a deck of cards in the next section.

'S'suit[3]

suit[2]

suit[1]

suit[0]

'p' 'a' 'd' 'e' 's' '\0'

'C' 'l' 'u' 'b' 's' '\0'

'D' 'i' 'a' 'm' 'o' 'n' 'd' 's' '\0'

'H' 'e' 'a' 'r' 't' 's' '\0'

7.11 Random-Number Simulation Case Study: Card Shuffling and Dealing 339

Self Check
1 (Fill-In) A common use of an array of pointers is to form an array of strings,
referred to simply as a .
Answer: string array.

2 (True/False) The characters of the strings in this section’s suit array are stored
directly in the array’s elements.
Answer: False. Though the array appears to contain four strings, each element actu-
ally contains the address of the corresponding string’s first character. The actual let-
ters and terminating null characters are stored elsewhere in memory.

7.11 Random-Number Simulation Case Study: Card
Shuffling and Dealing
Let’s use random number generation to develop a card shuffling and dealing simula-
tion program, which can then be used to implement programs that play card games.
To reveal some subtle performance problems, we’ve intentionally used suboptimal
shuffling and dealing algorithms. In this chapter’s exercises and in Chapter 10, we
develop more efficient algorithms.

Using the top-down, stepwise refinement approach, we develop a program that
will shuffle a deck of 52 playing cards, then deal each card. The top-down approach
is particularly useful in attacking more complex problems than you’ve seen in earlier
chapters.

Representing a Deck of Cards as a Two-Dimensional Array
We use a 4-by-13 two-dimensional array deck to represent the deck of playing cards:

The rows correspond to the suits—row 0 corresponds to hearts, row 1 to diamonds,
row 2 to clubs and row 3 to spades. The columns correspond to the cards’ face values.
Columns 0 through 9 correspond to ace through ten, and columns 10 through 12
correspond to jack, queen and king. We’ll load string array suit with character strings
representing the four suits, and load string array face with character strings represent-
ing the 13 face values.

0 543

deck[2][12] represents the King of Clubs

Clubs King

21

1

2

0

3

Diamonds

Clubs

Hearts

Spades

6 7 98 10 11 12

A
ce

Si
x

Fi
ve

Fo
ur

Th
re

e

Tw
o

Se
ve

n

Ei
gh

t

Te
n

N
in

e

Ja
ck

Q
ue

en

Ki
ng

340 Chapter 7 Pointers

Shuffling the Two-Dimensional Array
This simulated deck of cards may be shuffled as follows. First, set all elements of deck
to 0. Then, choose a row (0–3) and a column (0–12) at random. Place the number 1
in array element deck[row][column] to indicate that this card will be the first one
dealt from the shuffled deck. Repeat this process for the numbers 2, 3, …, 52, ran-
domly inserting each in the deck array to indicate which cards are to be dealt second,
third, …, and fifty-second in the shuffled deck. As the deck array begins to fill with
card numbers, a card may be selected again—i.e., deck[row][column] will be nonzero
when it’s selected. Ignore this selection and choose other random row and column val-
ues repeatedly until you find an unselected card. Eventually, the numbers 1 through
52 will occupy the deck array’s 52 slots. At that point, the deck of cards is fully shuf-
fled.

Possibility of Indefinite Postponement
This shuffling algorithm can execute indefinitely if cards that have already been shuf-
fled are repeatedly selected at random. This phenomenon is known as indefinite
postponement. In this chapter’s exercises, we discuss a better shuffling algorithm that
eliminates the possibility of indefinite postponement.

Sometimes an algorithm that emerges in a “natural” way can contain subtle per-
formance problems, such as indefinite postponement. Seek algorithms that avoid
indefinite postponement.

Dealing Cards from the Two-Dimensional Array
To deal the first card, we search the array for deck[row][column] equal to 1 using
nested for statements that vary row from 0 to 3 and column from 0 to 12. What card
does that element of the array correspond to? The suit array has been preloaded with
the four suits, so to get the card’s suit, we print the character string suit[row]. Sim-
ilarly, to get the card’s face, we print the character string face[column]. We also print
the character string " of ", as in "King of Clubs", "Ace of Diamonds" and so on.

Developing the Program’s Logic with Top-Down, Stepwise Refinement
Let’s proceed with the top-down, stepwise refinement process. The top is simply:

Shuffle and deal 52 cards

Our first refinement yields:

Initialize the suit array
Initialize the face array
Initialize the deck array
Shuffle the deck
Deal 52 cards

“Shuffle the deck” may be refined as follows:

For each of the 52 cards
Place card number in a randomly selected unoccupied element of deck

PERF

7.11 Random-Number Simulation Case Study: Card Shuffling and Dealing 341

“Deal 52 cards” may be refined as follows:

For each of the 52 cards
Find the card number in the deck array and print its face and suit

The complete second refinement is:

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Place card number in a randomly selected unoccupied slot of deck

For each of the 52 cards
Find the card number in the deck array and print the card’s face and suit

“Place card number in randomly selected unoccupied slot of deck” may be refined as:

Choose slot of deck randomly

While chosen slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

“Find the card number in the deck array and print its face and suit” may be refined as:

For each slot of the deck array
If slot contains card number

 Print the card’s face and suit

Incorporating these expansions yields our third refinement:

Initialize the suit array
Initialize the face array
Initialize the deck array

For each of the 52 cards
Choose slot of deck randomly

While slot of deck has been previously chosen
Choose slot of deck randomly

Place card number in chosen slot of deck

For each of the 52 cards
For each slot of deck array

 If slot contains desired card number
 Print the card’s face and suit

This completes the refinement process.

Implementing the Card Shuffling and Dealing Program
The card shuffling and dealing program and a sample execution are shown in
Fig. 7.16. When function printf uses the conversion specification %s to print a

342 Chapter 7 Pointers

string, the corresponding argument must be a pointer to char that points to a string
or a char array that contains a string. Line 59’s format specification displays the card’s
face right-aligned in a field of five characters followed by " of " and the card’s suit left-
aligned in a field of eight characters. The minus sign in %-8s indicates left-alignment.

1 // fig07_16.c
2 // Card shuffling and dealing.
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 #define SUITS 4
8 #define FACES 13
9 #define CARDS 52

10
11 // prototypes
12 void shuffle(int deck[][FACES]);
13 void deal(int deck[][FACES], const char *face[], const char *suit[]);
14
15 int main(void) {
16 // initialize deck array
17 int deck[SUITS][FACES] = {0};
18
19 srand(time(NULL)); // seed random-number generator
20 shuffle(deck); // shuffle the deck
21
22 // initialize suit array
23 const char *suit[SUITS] = {"Hearts", "Diamonds", "Clubs", "Spades"};
24
25 // initialize face array
26 const char *face[FACES] = {"Ace", "Deuce", "Three", "Four", "Five",
27 "Six", "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King"};
28
29 deal(deck, face, suit); // deal the deck
30 }
31
32 // shuffle cards in deck
33 void shuffle(int deck[][FACES]) {
34 // for each of the cards, choose slot of deck randomly
35 for (size_t card = 1; card <= CARDS; ++card) {
36 size_t row = 0; // row number
37 size_t column = 0; // column number
38
39 // choose new random location until unoccupied slot found
40 do {
41 row = rand() % SUITS;
42 column = rand() % FACES;
43 } while(deck[row][column] != 0);
44
45 deck[row][column] = card; // place card number in chosen slot
46 }
47 }

Fig. 7.16 | Card shuffling and dealing. (Part 1 of 2.)

7.11 Random-Number Simulation Case Study: Card Shuffling and Dealing 343

Improving the Dealing Algorithm
There’s a weakness in the dealing algorithm. Once a match is found, the two inner
for statements continue searching deck’s remaining elements. We correct this defi-
ciency in this chapter’s exercises and in a Chapter 10 case study.

Related Exercises
This Card Shuffling and Dealing case study is supported by the following exercises:

• Exercise 7.12 (Card Shuffling and Dealing: Dealing Poker Hands)

• Exercise 7.13 (Project: Card Shuffling and Dealing—Which Poker Hand is
Better?)

• Exercise 7.14 (Project: Card Shuffling and Dealing—Simulating the Dealer)

• Exercise 7.15 (Project: Card Shuffling and Dealing—Allowing Players to
Draw Cards)

48
49 // deal cards in deck
50 void deal(int deck[][FACES], const char *face[], const char *suit[]) {
51 // deal each of the cards
52 for (size_t card = 1; card <= CARDS; ++card) {
53 // loop through rows of deck
54 for (size_t row = 0; row < SUITS; ++row) {
55 // loop through columns of deck for current row
56 for (size_t column = 0; column < FACES; ++column) {
57 // if slot contains current card, display card
58 if (deck[row][column] == card) {
59 printf("%5s of %-8s %c", face[column], suit[row],
60 card % 4 == 0 ? :); // 2-column format
61 }
62 }
63 }
64 }
65 }

 Ace of Hearts Jack of Hearts Five of Clubs King of Clubs
Eight of Diamonds Three of Clubs Deuce of Hearts Four of Hearts
 Ace of Clubs Deuce of Spades Queen of Diamonds Six of Hearts
Seven of Clubs Five of Hearts Deuce of Clubs King of Hearts
 Nine of Spades Ace of Spades Ace of Diamonds Eight of Spades
Eight of Hearts Ten of Spades Ten of Hearts Queen of Clubs
 Jack of Spades Jack of Diamonds Three of Spades Four of Clubs
 Four of Spades Ten of Clubs King of Diamonds Six of Spades
 Nine of Clubs Six of Diamonds Queen of Spades King of Spades
 Four of Diamonds Eight of Clubs Jack of Clubs Seven of Hearts
Seven of Diamonds Three of Hearts Five of Spades Nine of Hearts
 Nine of Diamonds Three of Diamonds Deuce of Diamonds Queen of Hearts
 Six of Clubs Seven of Spades Five of Diamonds Ten of Diamonds

Fig. 7.16 | Card shuffling and dealing. (Part 2 of 2.)

344 Chapter 7 Pointers

• Exercise 7.16 (Card Shuffling and Dealing Modification: High-Performance
Shuffle)

Self Check
1 (Fill-In) The shuffling algorithm we presented can execute indefinitely if cards
that have already been shuffled are repeatedly selected at random. This phenomenon
is known as .
Answer: indefinite postponement.

2 (True/False) The format specification "%5s of %-8s" prints a string left-aligned in
a field of five characters followed by " of " and a string right-aligned in a field of eight
characters.
Answer: False. Actually, this format specification prints a string right-aligned in a field
of five characters followed by " of " and a string left-aligned in a field of eight characters.

7.12 Function Pointers
In Chapter 6, we saw that an array name is really the address in memory of the array’s
first element. Similarly, a function’s name is really the starting address in memory of
the code that performs the function’s task. A pointer to a function contains the
address of the function in memory. Pointers to functions can be passed to functions,
returned from functions, stored in arrays, assigned to other function pointers of the
same type and compared with one another for equality or inequality.

7.12.1 Sorting in Ascending or Descending Order
To demonstrate pointers to functions, Fig. 7.17 presents a modified version of
Fig. 7.11’s bubble-sort program. The new version consists of main and functions bub-
bleSort, swap, ascending and descending. Function bubbleSort receives a pointer to
a function as an argument—either function ascending or function descending—in
addition to an int array and the array’s size. The user chooses whether to sort the
array in ascending (1) or descending (2) order. If the user enters 1, main passes a pointer
to function ascending to function bubbleSort. If the user enters 2, main passes a
pointer to function descending to function bubbleSort.

1 // fig07_17.c
2 // Multipurpose sorting program using function pointers.
3 #include <stdio.h>
4 #define SIZE 10
5
6 // prototypes
7 void bubbleSort(int work[], size_t size, int (*compare)(int a, int b));
8 int ascending(int a, int b);
9 int descending(int a, int b);

10

Fig. 7.17 | Multipurpose sorting program using function pointers. (Part 1 of 3.)

7.12 Function Pointers 345

11 int main(void) {
12 // initialize unordered array a
13 int a[SIZE] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
14
15 printf("%s", "Enter 1 to sort in ascending order,\n"
16 "Enter 2 to sort in descending order: ");
17 int order = 0;
18 scanf("%d", &order);
19
20 puts("\nData items in original order");
21
22 // output original array
23 for (size_t counter = 0; counter < SIZE; ++counter) {
24 printf("%5d", a[counter]);
25 }
26
27 // sort array in ascending order; pass function ascending as an
28 // argument to specify ascending sorting order
29 if (order == 1) {
30 bubbleSort(a, SIZE, ascending);
31 puts("\nData items in ascending order");
32 }
33 else { // pass function descending
34 bubbleSort(a, SIZE, descending);
35 puts("\nData items in descending order");
36 }
37
38 // output sorted array
39 for (size_t counter = 0; counter < SIZE; ++counter) {
40 printf("%5d", a[counter]);
41 }
42
43 puts("\n");
44 }
45
46 // multipurpose bubble sort; parameter compare is a pointer to
47 // the comparison function that determines sorting order
48 void bubbleSort(int work[], size_t size, int (*compare)(int a, int b)) {
49 void swap(int *element1Ptr, int *element2ptr); // prototype
50
51 // loop to control passes
52 for (int pass = 1; pass < size; ++pass) {
53 // loop to control number of comparisons per pass
54 for (size_t count = 0; count < size - 1; ++count) {
55 // if adjacent elements are out of order, swap them
56 if ((*compare)(work[count], work[count + 1])) {
57 swap(&work[count], &work[count + 1]);
58 }
59 }
60 }
61 }
62

Fig. 7.17 | Multipurpose sorting program using function pointers. (Part 2 of 3.)

346 Chapter 7 Pointers

Function Pointer Parameter
The following parameter appears in the function header for bubbleSort (line 48):

int (*compare)(int a, int b)

This tells bubbleSort to expect a parameter (compare) that’s a pointer to a function,
specifically for a function that receives two ints and returns an int result. The paren-
theses around *compare are required to group the * with compare and indicate that
compare is a pointer. Without the parentheses, the declaration would have been

int *compare(int a, int b)

which declares a function that receives two integers as parameters and returns a
pointer to an integer.

63 // swap values at memory locations to which element1Ptr and
64 // element2Ptr point
65 void swap(int *element1Ptr, int *element2Ptr) {
66 int hold = *element1Ptr;
67 *element1Ptr = *element2Ptr;
68 *element2Ptr = hold;
69 }
70
71 // determine whether elements are out of order for an ascending order sort
72 int ascending(int a, int b) {
73 return b < a; // should swap if b is less than a
74 }
75
76 // determine whether elements are out of order for a descending order sort
77 int descending(int a, int b) {
78 return b > a; // should swap if b is greater than a
79 }

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 1

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in ascending order
 2 4 6 8 10 12 37 45 68 89

Enter 1 to sort in ascending order,
Enter 2 to sort in descending order: 2

Data items in original order
 2 6 4 8 10 12 89 68 45 37
Data items in descending order
 89 68 45 37 12 10 8 6 4 2

Fig. 7.17 | Multipurpose sorting program using function pointers. (Part 3 of 3.)

7.12 Function Pointers 347

To call the function passed to bubbleSort via its function pointer, we deference
it, as shown in the if statement at line 56:

if ((*compare)(work[count], work[count + 1]))

The call to the function could have been made without dereferencing the pointer as in
if (compare(work[count], work[count + 1]))

which uses the pointer directly as the function name. The first method of calling a
function through a pointer explicitly shows that compare is a pointer to a function
that’s dereferenced to call the function. The second technique makes it appear that
compare is an actual function name. This may confuse someone reading the code
who’d like to see compare’s function definition and finds that it’s never defined.

7.12.2 Using Function Pointers to Create a Menu-Driven System
A common use of function pointers is in menu-driven systems. A program prompts a
user to select an option from a menu (possibly from 0 to 2) by typing the menu item’s
number. The program services each option with a different function. It stores point-
ers to each function in an array of function pointers. The user’s choice is used as an
array subscript, and the pointer in the array is used to call the function.

Figure 7.18 provides a generic example of the mechanics of defining and using an
array of function pointers. We define three functions—function1, function2 and
function3. Each takes an integer argument and returns nothing. We store pointers
to these functions in array f (line 13). Beginning at the leftmost set of parentheses,
the definition is read, “f is an array of 3 pointers to functions that each take an int as
an argument and return void.” The array is initialized with the names of the three
functions. When the user enters a value between 0 and 2, we use the value as the sub-
script into the array of pointers to functions. In the function call (line 23), f[choice]
selects the pointer at location choice in the array. We dereference the pointer to call the
function, passing choice as the function’s argument. Each function prints its argu-
ment’s value and its function name to show that the function was called correctly. In
this chapter’s exercises, you’ll develop several menu-driven systems.

1 // fig07_18.c
2 // Demonstrating an array of pointers to functions.
3 #include <stdio.h>
4
5 // prototypes
6 void function1(int a);
7 void function2(int b);
8 void function3(int c);
9

10 int main(void) {
11 // initialize array of 3 pointers to functions that each take an
12 // int argument and return void
13 void (*f[3])(int) = {function1, function2, function3};

Fig. 7.18 | Demonstrating an array of pointers to functions. (Part 1 of 2.)

348 Chapter 7 Pointers

Self Check
1 (True/False) Consider the following parameter which appeared in the function
header for our bubble sort function:

int (*compare)(int a, int b)

This compare parameter is a pointer to a function that receives two integer parameters
and returns an integer result. The parentheses around *compare are optional but we
include them for clarity.

14
15 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
16 int choice = 0;
17 scanf("%d", &choice);
18
19 // process user
20 while (choice >= 0 && choice < 3) {
21 // invoke function at location choice in array f and pass
22 // choice as an argument
23 (*f[choice])(choice);
24
25 printf("%s", "Enter a number between 0 and 2, 3 to end: ");
26 scanf("%d", &choice);
27 }
28
29 puts("Program execution completed.");
30 }
31
32 void function1(int a) {
33 printf("You entered %d so function1 was called\n\n", a);
34 }
35
36 void function2(int b) {
37 printf("You entered %d so function2 was called\n\n", b);
38 }
39
40 void function3(int c) {
41 printf("You entered %d so function3 was called\n\n", c);
42 }

Enter a number between 0 and 2, 3 to end: 0
You entered 0 so function1 was called

Enter a number between 0 and 2, 3 to end: 1
You entered 1 so function2 was called

Enter a number between 0 and 2, 3 to end: 2
You entered 2 so function3 was called

Enter a number between 0 and 2, 3 to end: 3
Program execution completed.

Fig. 7.18 | Demonstrating an array of pointers to functions. (Part 2 of 2.)

7.13 Secure C Programming 349

Answer: False. The parentheses are required to group *compare to indicate that com-
pare is a pointer. Without the parentheses, the declaration would have been

int *compare(int a, int b)

which simply is the header of a function that receives two integers as parameters and
returns a pointer to an integer.

2 (Fill-In) Just as a pointer to a variable is dereferenced to access the variable’s value,
a pointer to a function is dereferenced to .
Answer: call the function.

7.13 Secure C Programming
printf_s, scanf_s and Other Secure Functions
Earlier Secure C Programming sections presented printf_s and scanf_s and men-
tioned other more secure versions of standard library functions described by Annex
K of the C standard. A key feature of functions like printf_s and scanf_s that makes
them more secure is that they have runtime constraints requiring their pointer argu-
ments to be non-NULL. The functions check these runtime constraints before attempt-
ing to use the pointers. Any NULL pointer argument is a constraint violation and causes
the function to fail and return a status notification. A call to scanf_s returns EOF if
any of its pointer arguments (including the format-control string) are NULL. A call to
printf_s stops outputting data and returns a negative number if the format-control
string is NULL or any argument that corresponds to a %s is NULL. For complete details
of the Annex K functions, see the C standard document or your compiler’s library
documentation.

Other CERT Guidelines Regarding Pointers
Misused pointers are the source of many common security vulnerabilities in systems
today. CERT provides various guidelines to help you prevent such problems. If you’re
building industrial-strength C systems, you should familiarize yourself with the CERT
C Secure Coding Standard at https://wiki.sei.cmu.edu/. The following guidelines
apply to pointer programming techniques that we presented in this chapter:

• EXP34-C: Dereferencing NULL pointers typically causes programs to crash,
but CERT has encountered cases in which dereferencing NULL pointers can
allow attackers to execute code.

• DCL13-C: Section 7.5 discussed uses of const with pointers. If a function
parameter points to a value that will not be changed by the function, const
should be used to indicate that the data is constant. For example, to represent
a pointer to a string that will not be modified, use const char * as the pointer
parameter’s type.

• WIN04-C: This guideline discusses techniques for encrypting function
pointers on Microsoft Windows to help prevent attackers from overwriting
them and executing attack code.

https://wiki.sei.cmu.edu/

350 Chapter 7 Pointers

Self Check
1 (Fill-In) A key feature of functions like printf_s and scanf_s is that they have
runtime constraints requiring their pointer arguments to be .
Answer: non-NULL.

2 (True/False) Misused pointers lead to many of the most common security vulner-
abilities in systems today.
Answer: True.

Summary

Section 7.2 Pointer Variable Definitions and Initialization
• A pointer (p. 310) contains an address of another variable that contains a value. In this

sense, a variable name directly references a value, and a pointer indirectly references a value.
• Referencing a value through a pointer is called indirection (p. 311).
• Pointers can be defined to point to objects of any type.
• Pointers should be initialized either when they’re defined or in an assignment statement. A

pointer may be initialized to NULL, 0 or an address. A pointer with the value NULL points to
nothing. Initializing a pointer to 0 is equivalent to initializing a pointer to NULL, but NULL is
preferred for clarity. The value 0 is the only integer value that can be assigned directly to a
pointer variable.

• NULL is a symbolic constant defined in the <stddef.h> header (and several other headers).

Section 7.3 Pointer Operators
• The &, or address operator (p. 312), is a unary operator that returns its operand’s address.
• The operand of the address operator must be a variable.
• The indirection operator * (p. 313) returns the value of the object to which its operand

points.
• The printf conversion specification %p outputs a memory location as a hexadecimal integer

on most platforms.

Section 7.4 Passing Arguments to Functions by Reference
• In C, arguments (other than arrays) are passed by value (p. 315).
• C programs accomplish pass-by-reference (p. 315) by using pointers and the indirection

operator. To pass a variable by reference, apply the address operator (&) to the variable’s
name.

• When the address of a variable is passed to a function, the indirection operator (*) may be
used in the function to read and/or modify the value at that location in the caller’s memory.

• A function receiving an address as an argument must define a pointer parameter to receive
the address.

• The compiler does not differentiate between a function that receives a pointer and one that
receives a one-dimensional array. A function must “know” when it’s receiving an array vs.
a single variable passed by reference.

• When the compiler encounters a function parameter for a one-dimensional array of the
form int b[], the compiler converts the parameter to the pointer notation int *b.

 Summary 351

Section 7.5 Using the const Qualifier with Pointers
• The const qualifier (p. 319) indicates that a variable’s value should not be modified.
• There are four ways to pass a pointer to a function (p. 319): a non-constant pointer to non-

constant data, a constant pointer to non-constant data, a non-constant pointer to con-
stant data, and a constant pointer to constant data.

• With a non-constant pointer to non-constant data, the data can be modified through the
dereferenced pointer, and the pointer can be modified to point to other data items.

• A non-constant pointer to constant data can be modified to point to any data item of the
appropriate type, but the data to which it points cannot be modified.

• A constant pointer to non-constant data always points to the same memory location, and
the data at that location can be modified through the pointer. This is the default for an array
name.

• A constant pointer to constant data always points to the same memory location, and the
data at that memory location cannot be modified.

Section 7.7 sizeof Operator
• Unary operator sizeof (p. 328) determines the size in bytes of a variable or type.
• When applied to an array’s name, sizeof returns the array’s total number of bytes.
• Operator sizeof can be applied to any variable name, type or value.
• The parentheses used with sizeof are required if a type name is supplied as its operand.

Section 7.8 Pointer Expressions and Pointer Arithmetic
• A limited set of arithmetic operations (p. 331) may be performed on pointers. You can in-

crement (++) or decrement (--) a pointer, add an integer to a pointer (+ or +=), subtract an
integer from a pointer (- or -=) and subtract one pointer from another.

• When you add an integer to or subtract an integer from a pointer, the pointer is increment-
ed or decremented by that integer times the size of the object to which the pointer refers.

• Two pointers to elements of the same array may be subtracted from one another to deter-
mine the number of elements between them.

• A pointer can be assigned to another pointer if both have the same type. An exception is a
void * pointer (p. 332), which can represent any pointer type. All pointer types can be as-
signed a void * pointer, and a void * pointer can be assigned a pointer of any type.

• A void * pointer cannot be dereferenced.
• Pointers can be compared using equality and relational operators, but such comparisons are

meaningless unless the pointers point to elements of the same array. Pointer comparisons
compare the addresses stored in the pointers.

• A common use of pointer comparison is determining whether a pointer is NULL.

Section 7.9 Relationship between Pointers and Arrays
• Arrays and pointers are intimately related in C and often may be used interchangeably.
• An array name can be thought of as a constant pointer.
• Pointers can be used to do any operation involving array subscripting.
• When a pointer points to the beginning of an array, adding an offset (p. 333) to the pointer

indicates which element of the array should be referenced. The offset value is identical to
the array subscript. This is referred to as pointer/offset notation.

352 Chapter 7 Pointers

• An array name can be treated as a pointer and used in pointer arithmetic expressions that
do not attempt to modify the pointer’s value.

• Pointers can be subscripted (p. 334) like arrays. This is referred to as pointer/subscript no-
tation.

• A parameter of type const char * typically represents a constant string.

Section 7.10 Arrays of Pointers
• Arrays may contain pointers (p. 338). A common use of an array of pointers is to form an

array of strings (p. 338). Each element is a string, but a C string is essentially a pointer to
its first character. So, each element is actually a pointer to the first character of a string.

Section 7.12 Function Pointers
• A function pointer (p. 347) contains the address of a function in memory. A function name

is really the starting address in memory of the code that performs the function’s task.
• Pointers to functions can be passed to functions, returned from functions, stored in arrays

assigned to other function pointers and compared with one another for equality or in-
equality.

• A pointer to a function is dereferenced to call the function. A function pointer can be used
directly as the function name when calling the function.

• A common use of function pointers is in menu-driven systems.

Self-Review Exercises
7.1 Answer each of the following:

a) A pointer variable contains as its value another variable’s .
b) Three values can be used to initialize a pointer— , and

.
c) The only integer that can be assigned to a pointer is .

7.2 State whether the following are true or false. If the answer is false, explain why.
a) A pointer that’s declared to be void can be dereferenced.
b) Pointers of different types may not be assigned to one another without a cast

operation.

7.3 Answer each of the following. Assume that single-precision floating-point
numbers are stored in four bytes, and that the array’s starting address is location
1002500 in memory. Each part of the exercise should use the results of previous parts
where appropriate.

a) Define a float array called numbers with 10 elements, and initialize the el-
ements to the values 0.0, 1.1, 2.2, …, 9.9. Assume the symbolic constant
SIZE has been defined as 10.

b) Define a pointer, nPtr, that points to a float.
c) Use a for statement and array subscript notation to print array numbers’ el-

ements. Use one digit of precision to the right of the decimal point.
d) Give two separate statements that assign the starting address of array num-

bers to the pointer variable nPtr.

 Self-Review Exercises 353

e) Print numbers’ elements using pointer/offset notation with the pointer nPtr.
f) Print numbers’ elements using pointer/offset notation with the array name

as the pointer.
g) Print numbers’ elements by subscripting pointer nPtr.
h) Refer to element 4 of numbers using array subscript notation, pointer/offset

notation with the array name as the pointer, pointer subscript notation with
nPtr and pointer/offset notation with nPtr.

i) Assuming that nPtr points to the beginning of array numbers, what address
is referenced by nPtr + 8? What value is stored at that location?

j) Assuming that nPtr points to numbers[5], what address is referenced by
nPtr –= 4? What’s the value stored at that location?

7.4 For each of the following, write a statement that performs the specified task.
Assume that float variables number1 and number2 are defined and that number1 is ini-
tialized to 7.3.

a) Define the variable fPtr to be a pointer to an object of type float.
b) Assign the address of variable number1 to pointer variable fPtr.
c) Print the value of the object pointed to by fPtr.
d) Assign the value of the object pointed to by fPtr to variable number2.
e) Print the value of number2.
f) Print the address of number1. Use the %p conversion specification.
g) Print the address stored in fPtr. Use the %p conversion specifier. Is the value

printed the same as the address of number1?

7.5 Do each of the following:
a) Write the function header for a function exchange that takes two pointers

to floating-point numbers x and y as parameters and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for a function evaluate that returns an integer

and that takes as parameters integer x and a pointer to function poly, which
represents a function that takes an integer parameter and returns an integer.

d) Write the function prototype for the function in part (c).

7.6 Find the error in each of the following program segments. Assume:
int *zPtr; // zPtr will reference array z
int *aPtr = NULL;
void *sPtr = NULL;
int number;
int z[5] = {1, 2, 3, 4, 5};
sPtr = z;

a) ++zptr;
b) // use pointer to get array

number = zPtr;
c) // assign array element 2 to number; assume zPtr is initialized

number = *zPtr[2];

354 Chapter 7 Pointers

d) // print entire array z; assume zPtr is initialized
for (size_t i = 0; i <= 5; ++i) {

 printf("%d ", zPtr[i]);

}
e) // assign the value pointed to by sPtr to number

number = *sPtr;
f) ++z;

Answers to Self-Review Exercises
7.1 a) address. b) 0, NULL, an address. c) 0.

7.2 a) False. A pointer to void cannot be dereferenced, because there’s no way to
know exactly how many bytes of memory to dereference. b) False. Pointers of type
void can be assigned pointers of other types, and pointers of type void can be assigned
to pointers of other types.

7.3 See the answers below:
a) float numbers[SIZE] =

 {0.0, 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9};
b) float *nPtr;
c) for (size_t i = 0; i < SIZE; ++i) {

 printf("%.1f ", numbers[i]);

}
d) nPtr = numbers;

nPtr = &numbers[0];
e) for (size_t i = 0; i < SIZE; ++i) {

 printf("%.1f ", *(nPtr + i));

}
f) for (size_t i = 0; i < SIZE; ++i) {

 printf("%.1f ", *(numbers + i));

}
g) for (size_t i = 0; i < SIZE; ++i) {

 printf("%.1f ", nPtr[i]);

}
h) numbers[4]

*(numbers + 4)

nPtr[4]

*(nPtr + 4)
i) The address is 1002500 + 8 * 4 = 1002532. The value is 8.8.
j) The address of numbers[5] is 1002500 + 5 * 4 = 1002520.

The address of nPtr -= 4 is 1002520 - 4 * 4 = 1002504.
The value at that location is 1.1.

7.4 See the answers below:
a) float *fPtr;

 Exercises 355

b) fPtr = &number1;
c) printf("The value of *fPtr is %f\n", *fPtr);
d) number2 = *fPtr;
e) printf("The value of number2 is %f\n", number2);
f) printf("The address of number1 is %p\n", &number1);
g) printf("The address stored in fptr is %p\n", fPtr);

Yes, the value is the same.

7.5 a) void exchange(float *x, float *y)
b) void exchange(float *x, float *y);
c) int evaluate(int x, int (*poly)(int))
d) int evaluate(int x, int (*poly)(int));

7.6 a) Error: zPtr has not been initialized.
Correction: Initialize zPtr with zPtr = z; before doing pointer arithmetic.

b) Error: The pointer is not dereferenced.
Correction: Change the statement to number = *zPtr;

c) Error: zPtr[2] is not a pointer and should not be dereferenced.
Correction: Change *zPtr[2] to zPtr[2].

d) Error: Referring to an array element outside the array bounds with pointer
subscripting.
Correction: Change the operator <= in the for condition to <.

e) Error: Dereferencing a void pointer.
Correction: To dereference the pointer, it must first be cast to an integer
pointer. Change the statement to number = *((int *) sPtr);

f) Error: Trying to modify an array name with pointer arithmetic.
Correction: Use a pointer variable instead of the array name to accomplish
pointer arithmetic, or subscript the array name to refer to a specific element.

Exercises
7.7 Answer each of the following:

a) The operator returns its operand’s location in memory.
b) The operator returns the value of the object to which its operand

points.
c) To accomplish pass-by-reference when passing a nonarray variable to a func-

tion, it’s necessary to pass the of the variable to the function.

7.8 State whether the following are true or false. If false, explain why.
a) Two pointers that point to different arrays cannot be compared meaningfully.
b) Because the name of an array is a pointer to the first element of the array,

array names may be manipulated in precisely the same manner as pointers.

7.9 Answer each of the following. Assume that integers are stored in four bytes and
that the starting address of the array is at location 1002500 in memory.

a) Define a five-element int array values, and initialize the elements to the even
integers from 2 to 10. Assume the symbolic constant SIZE is defined as 5.

356 Chapter 7 Pointers

b) Define a pointer vPtr that points to an object of type int.
c) Print the elements of array values using array subscript notation. Use a for

statement and assume integer control variable i has been defined.
d) Give two separate statements that assign the starting address of array values

to pointer variable vPtr.
e) Print the elements of array values using pointer/offset notation.
f) Print the elements of array values using pointer/offset notation with the ar-

ray name as the pointer.
g) Print the elements of array values by subscripting the pointer to the array.
h) Refer to element 4 of values using array subscript notation, pointer/offset

notation via the array name, pointer subscript notation, and pointer/offset
notation.

i) What address is referenced by vPtr + 3? What value is stored at that location?
j) Assuming vPtr points to values[4], what address is referenced by vPtr -= 4?

What value is stored at that location?

7.10 For each of the following, write a single statement that performs the indicated
task. Assume that long integer variables value1 and value2 have been defined and
that value1 has been initialized to 200000.

a) Define the variable lPtr to be a pointer to an object of type long.
b) Assign the address of variable value1 to pointer variable lPtr.
c) Print the value of the object pointed to by lPtr.
d) Assign the value of the object pointed to by lPtr to variable value2.
e) Print the value of value2.
f) Print the address of value1.
g) Print the address stored in lPtr. Is the value the same as the address of value1?

7.11 Do each of the following:
a) Write the function header for function zero, which takes a long integer ar-

ray parameter bigIntegers and does not return a value.
b) Write the function prototype for the function in part (a).
c) Write the function header for function add1AndSum, which takes an integer

array parameter oneTooSmall and returns an integer.
d) Write the function prototype for the function described in part (c).

Note: Exercises 7.12–7.15 are reasonably challenging. Once you have done these
problems, you ought to be able to implement most popular card games easily.
7.12 (Card Shuffling and Dealing: Dealing Poker Hands) Modify the program in
Fig. 7.16 so that the card-dealing function deals a five-card poker hand. Then write
the following additional functions:

a) Determine whether the hand contains a pair.
b) Determine whether the hand contains two pairs.
c) Determine whether the hand contains three of a kind (e.g., three jacks).
d) Determine whether the hand contains four of a kind (e.g., four aces).

 Exercises 357

e) Determine whether the hand contains a flush (i.e., all five cards of the same
suit).

f) Determine whether the hand contains a straight (i.e., five cards of consecu-
tive face values).

7.13 (Project: Card Shuffling and Dealing—Which Poker Hand is Better?) Use the
functions developed in Exercise 7.12 to write a program that deals two five-card pok-
er hands, evaluates each, and determines which is the better hand.

7.14 (Project: Card Shuffling and Dealing—Simulating the Dealer) Modify the
program developed in Exercise 7.13 so that it can simulate the dealer. The dealer’s
five-card hand is dealt “face down” so the player cannot see it. The program should
then evaluate the dealer’s hand, and based on the quality of the hand, the dealer
should draw one, two or three more cards to replace the corresponding number of
unneeded cards in the original hand. The program should then reevaluate the dealer’s
hand. [Caution: This is a difficult problem!]

7.15 (Project: Card Shuffling and Dealing—Allowing Player’s to Draw Cards)
Modify the program developed in Exercise 7.14 so that it can handle the dealer’s
hand automatically, but the player is allowed to decide which cards of the player’s
hand to replace. The program should then evaluate both hands and determine who
wins. Now use this new program to play 20 games against the computer. Who wins
more games, you or the computer? Have one of your friends play 20 games against
the computer. Who wins more games? Based on these games’ results, refine your pok-
er-playing program (this, too, is a difficult problem). Play 20 more games. Does your
modified program play a better game?

7.16 (Card Shuffling and Dealing Modification: High-Performance Shuffle) In
Fig. 7.16, we intentionally used an inefficient card shuffling algorithm with the possi-
bility of indefinite postponement. In this problem, you’ll create a high-performance
shuffling algorithm that avoids indefinite postponement.

Modify the program of Fig. 7.16 as follows. Begin by initializing the deck array
as shown below:

Modify the shuffle function to loop row-by-row and column-by-column through
the array, touching every element once. Each element should be swapped with a ran-
domly selected element of the array. Print the resulting array to determine whether
the deck is satisfactorily shuffled. The following is a sample set of shuffled values:

Unshuffled array

0 1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11 12 13

1 14 15 16 17 18 19 20 21 22 23 24 25 26

2 27 28 29 30 31 32 33 34 35 36 37 38 39

3 40 41 42 43 44 45 46 47 48 49 50 51 52

358 Chapter 7 Pointers

You may want your program to call the shuffle function several times to ensure a
satisfactory shuffle.

Although the approach in this problem improves the shuffling algorithm, the deal-
ing algorithm still requires searching the deck array for card 1, then card 2, then card 3,
and so on. Worse yet, even after the dealing algorithm locates and deals the card, the
algorithm still searches through the remainder of the deck. Modify the program of
Fig. 7.16 so that once a card is dealt, no further attempts are made to match that card
number, and the program immediately proceeds with dealing the next card. In
Chapter 10, we develop a dealing algorithm that requires only one operation per card.

7.17 What does this program do, assuming the user enters two strings of the same
length?

Sample shuffled array

0 1 2 3 4 5 6 7 8 9 10 11 12
0 19 40 27 25 36 46 10 34 35 41 18 2 44

1 13 28 14 16 21 30 8 11 31 17 24 7 1

2 12 33 15 42 43 23 45 3 29 32 4 47 26

3 50 38 52 39 48 51 9 5 37 49 22 6 20

1 // ex07_19.c
2 // What does this program do?
3 #include <stdio.h>
4 #define SIZE 80
5
6 void mystery1(char *s1, const char *s2); // prototype
7
8 int main(void) {
9 char string1[SIZE]; // create char array

10 char string2[SIZE]; // create char array
11
12 puts("Enter two strings: ");
13 scanf("%39s%39s" , string1, string2);
14 mystery1(string1, string2);
15 printf("%s", string1);
16 }
17
18 // What does this function do?
19 void mystery1(char *s1, const char *s2) {
20 while (*s1 !=) {
21 ++s1;
22 }
23
24 for (; *s1 = *s2; ++s1, ++s2) {
25 ; // empty statement
26 }
27 }

 Exercises 359

7.18 What does this program do?

7.19 Find the error in each of the following program segments. If the error can be
corrected, explain how.

a) int *number;

printf("%d\n", *number);
b) float *realPtr;

long *integerPtr;

integerPtr = realPtr;
c) int * x, y;

x = y;
d) char s[] = "this is a character array";

int count;

for (; *s != ; ++s) {

 printf("%c ", *s);

}
e) short *numPtr, result;

void *genericPtr = numPtr;

result = *genericPtr + 7;
f) float x = 19.34;

float xPtr = &x;

printf("%f\n", xPtr);

1 // ex07_20.c
2 // what does this program do?
3 #include <stdio.h>
4 #define SIZE 80
5
6 size_t mystery2(const char *s); // prototype
7
8 int main(void) {
9 char string[SIZE]; // create char array

10
11 puts("Enter a string: ");
12 scanf("%79s", string);
13 printf("%d\n", mystery2(string));
14 }
15
16 // What does this function do?
17 size_t mystery2(const char *s) {
18 size_t x;
19
20 // loop through string
21 for (x = 0; *s != ; ++s) {
22 ++x;
23 }
24
25 return x;
26 }

360 Chapter 7 Pointers

g) char *s;

printf("%s\n", s);

7.20 (Maze Traversal) The following grid is a two-dimensional array representation
of a maze. The # symbols represent the maze’s walls, and the periods (.) represent
squares in the possible paths through the maze.

The Wikipedia page https://en.wikipedia.org/wiki/Maze_solving_algorithm
lists several algorithms for finding a maze’s exit. A simple algorithm for walking
through a maze guarantees finding the exit (assuming there’s an exit). Place your right
hand on the wall to your right, and begin walking forward. Never remove your hand
from the wall. If the maze turns to the right, you follow the wall to the right. As long as
you do not remove your hand from the wall, eventually you’ll arrive at the maze’s exit.
If there’s not an exit, you’ll eventually arrive back at the starting location. There may be
a shorter path than the one you’ve taken, but you’re guaranteed to get out of the maze.

Write recursive function mazeTraverse to walk through the maze. The function
should receive as arguments a 12-by-12 character array representing the maze and
the maze’s starting location. As mazeTraverse attempts to locate the exit from the
maze, it should place the character X in each square in the path. The function should
display the maze after each move so the user can watch as the maze is solved.

7.21 (Generating Mazes Randomly) Write a function mazeGenerator that takes as
an argument a two-dimensional 12-by-12 character array and randomly produces a
maze. The function should also provide the starting and ending locations of the maze.
Try your function mazeTraverse from Exercise 7.20 using several randomly generat-
ed mazes.

7.22 (Mazes of Any Size) Generalize functions mazeTraverse and mazeGenerator of
Exercises 7.20–7.21 to process mazes of any width and height.

7.23 What does this program do, assuming that the user enters two strings of the
same length?

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

1 // ex07_26.c
2 // What does this program do?
3 #include <stdio.h>

https://en.wikipedia.org/wiki/Maze_solving_algorithm

 Arrays of Function Pointers 361

Arrays of Function Pointers
7.24 (Arrays of Function Pointers) Rewrite the program of Fig. 6.17 to use a menu-
driven interface. The program should offer the user four options as follows:

One restriction on using arrays of pointers to functions is that all the pointers must
have the same type. The pointers must be to functions of the same return type that
receive arguments of the same type. For this reason, the functions in Fig. 6.17 must
be modified so that they each return the same type and take the same parameters.
Modify functions minimum and maximum to print the minimum or maximum value
and return nothing. For option 3, modify function average of Fig. 6.17 to output
the average for each student (not a specific student). Function average should return
nothing and take the same parameters as printArray, minimum and maximum. Store the
pointers to the four functions in array processGrades and use the choice made by the
user as the subscript into the array for calling each function.

7.25 (Calculating Circle Circumference, Circle Area or Sphere Volume Using Func-
tion Pointers) Using the techniques from Fig. 7.18, create a menu-driven program.

4 #define SIZE 80
5
6 int mystery3(const char *s1, const char *s2); // prototype
7
8 int main(void) {
9 char string1[SIZE]; // create char array

10 char string2[SIZE]; // create char array
11
12 puts("Enter two strings: ");
13 scanf("%79s%79s", string1 , string2);
14 printf("The result is %d\n", mystery3(string1, string2));
15 }
16
17 int mystery3(const char *s1, const char *s2) {
18 int result = 1;
19
20 for (; *s1 != && *s2 != ; ++s1, ++s2) {
21 if (*s1 != *s2) {
22 result = 0;
23 }
24 }
25
26 return result;
27 }

Enter a choice:
 0 Print the array of grades
 1 Find the minimum grade
 2 Find the maximum grade
 3 Print the average on all tests for each student
 4 End program

362 Chapter 7 Pointers

Allow the user to choose whether to calculate a circle’s circumference, a circle’s area or
a sphere’s volume. The program should then input a radius from the user, perform the
appropriate calculation and display the result. Use an array of function pointers in
which each pointer represents a function that returns void and receives a double param-
eter. The corresponding functions should each display messages indicating which cal-
culation was performed, the value of the radius and the result of the calculation.

7.26 (Calculator Using Function Pointers) Using the techniques you learned in
Fig. 7.18, create a menu-driven program that allows the user to choose whether to
add, subtract, multiply or divide two numbers. The program should then input two
double values from the user, perform the appropriate calculation and display the re-
sult. Use an array of function pointers in which each pointer represents a function
that returns void and receives two double parameters. The corresponding functions
should each display messages indicating which calculation was performed, the values
of the parameters and the result of the calculation.

7.27 (Carbon Footprint Calculator) Using arrays of function pointers, as you learned
in this chapter, you can specify a set of functions that are called with the same types of
arguments and return the same type of data. Governments and companies worldwide
are becoming increasingly concerned with carbon footprints (annual releases of carbon
dioxide into the atmosphere) from buildings burning various types of fuels for heat, ve-
hicles burning fuels for power, and the like. Many scientists blame these greenhouse gas-
es for the phenomenon called global warming. Create three functions that help
calculate the carbon footprint of a building, a car and a bicycle, respectively. Each func-
tion should input appropriate data from the user, then calculate and display the carbon
footprint. (Check out a few websites that explain how to calculate carbon footprints.)
Each function should receive no parameters and return void. Write a program that
prompts the user to enter the type of carbon footprint to calculate, then calls the corre-
sponding function in the array of function pointers. For each type of carbon footprint,
display some identifying information and the object’s carbon footprint.

Special Section—Building Your Own Computer as a Virtual
Machine
In the next several exercises, we take a temporary diversion away from the world of
high-level language programming. We “peel open” a fake simple computer and look
at its internal structure. We introduce machine-language programming for this com-
puter and write several machine-language programs. To make this an especially valu-
able experience, we then build a software-based simulation of this computer on
which you actually can execute your machine-language programs! Such a simulated
computer is often called a virtual machine.

7.28 (Machine-Language Programming) Let’s create a computer we’ll call the Sim-
pletron. As its name implies, it’s a simple machine, but as we’ll soon see, it’s a pow-
erful one as well. The Simpletron runs programs written in the only language it
directly understands—that is, Simpletron Machine Language, or SML for short.

 Special Section—Building Your Own Computer as a Virtual Machine 363

The Simpletron contains an accumulator—a “special register” in which informa-
tion is put before the Simpletron uses that information in calculations or examines it
in various ways. All information in the Simpletron is handled in terms of words. A
word is a signed four-digit decimal number such as +3364, -1293, +0007, -0001, etc.
The Simpletron is equipped with a 100-word memory, and these words are refer-
enced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load or place the program into mem-
ory. The first instruction (or statement) of every SML program is always placed in
location 00.

Each SML instruction occupies one word of the Simpletron’s memory, so
instructions are signed four-digit decimal numbers. We assume an SML instruction’s
sign is always plus, but a data word’s sign may be plus or minus. Each Simpletron
memory location may contain an instruction, a data value used by a program or an
unused (and hence undefined) area of memory. Each SML instruction’s first two
digits are the operation code specifying the operation to perform. The SML opera-
tion codes are summarized in the following table:

An SML instruction’s last two digits are the operand—the memory location con-
taining the word to which the operation applies.

Operation code Meaning

Input/output operations:
#define READ 10 Read a word from the keyboard into a specific location in memory.
#define WRITE 11 Write a word from a specific location in memory to the screen.

Load/store operations:
#define LOAD 20 Load a word from a specific location in memory into the accumulator.
#define STORE 21 Store a word from the accumulator into a specific location in memory.

Arithmetic operations:
#define ADD 30 Add a word from a specific location in memory to the word in the

accumulator (leave the result in the accumulator).
#define SUBTRACT 31 Subtract a word from a specific location in memory from the word

in the accumulator (leave the result in the accumulator).
#define DIVIDE 32 Divide a word from a specific location in memory into the word in

the accumulator (leave the result in the accumulator).
#define MULTIPLY 33 Multiply a word from a specific location in memory by the word in

the accumulator (leave the result in the accumulator).

Transfer-of-control operations:
#define BRANCH 40 Branch to a specific location in memory.
#define BRANCHNEG 41 Branch to a specific location in memory if the accumulator is negative.
#define BRANCHZERO 42 Branch to a specific location in memory if the accumulator is zero.
#define HALT 43 Halt—i.e., the program has completed its task.

364 Chapter 7 Pointers

Sample SML Program That Adds Two Numbers
Let’s consider several simple SML programs. The following SML program reads two
numbers from the keyboard, then computes and prints their sum:

The instruction +1007 reads the first number from the keyboard and places it into
location 07. Then +1008 reads the next number into location 08. The load instruc-
tion, +2007, copies the first number into the accumulator. The add instruction,
+3008, adds the second number to the number in the accumulator. All SML arithme-
tic instructions leave their results in the accumulator. The store instruction, +2109, cop-
ies the result from the accumulator into memory location 09, from which the write
instruction, +1109, then takes the number and prints it as a signed four-digit decimal
number to the screen. The halt instruction, +4300, terminates execution.

Sample SML Program That Determines the Largest of Two Values
The next SML program reads two numbers from the keyboard, then determines and
prints the larger value:

Location Number Instruction

00 +1007 (Read A)
01 +1008 (Read B)
02 +2007 (Load A)
03 +3008 (Add B)
04 +2109 (Store C)
05 +1109 (Write C)
06 +4300 (Halt)
07 +0000 (Variable A)
08 +0000 (Variable B)
09 +0000 (Result C)

Location Number Instruction

00 +1009 (Read A)
01 +1010 (Read B)
02 +2009 (Load A)
03 +3110 (Subtract B)
04 +4107 (Branch negative to 07)
05 +1109 (Write A)
06 +4300 (Halt)
07 +1110 (Write B)
08 +4300 (Halt)
09 +0000 (Variable A)
10 +0000 (Variable B)

 Special Section—Building Your Own Computer as a Virtual Machine 365

The instruction +4107 is a conditional transfer of control, like an if statement.
Now write SML programs to accomplish each of the following tasks.

a) Use a sentinel-controlled loop to read positive integers, then compute and
print their sum.

b) Use a counter-controlled loop to read seven numbers, some positive and
some negative. Compute and print their average.

c) Read a series of numbers. Determine and print the largest number. The first
number read indicates how many numbers should be processed.

7.29 (A Computer Simulator) It may at first seem outrageous, but in this exercise
you’ll build your own computer. No, you won’t be soldering components together.
Rather, you’ll use the powerful technique of software-based simulation to create a
software model of the Simpletron. You will not be disappointed. Your Simpletron
simulator will turn the computer you’re using into a Simpletron, and you’ll actually
be able to run, test and debug the SML programs you wrote in Exercise 7.28!

When you run your Simpletron simulator, it should begin by printing:

Simulate the memory of the Simpletron with a 100-element one-dimensional
array memory. Now assume that the simulator is running, and let’s examine the dialog
as we enter the program of Example 2 of Exercise 7.28:

The SML program has now been placed (or loaded) into the array memory. Next,
the Simpletron executes the SML program. It begins with the instruction in location

*** Welcome to Simpletron ***
*** ***
*** Please enter your program one instruction ***
*** (or data word) at a time. I will type the ***
*** location number and a question mark (?). ***
*** You then type the word for that location. ***
*** Type the sentinel -99999 to stop entering ***
*** your program. ***

 00 ? +1009
 01 ? +1010
 02 ? +2009
 03 ? +3110
 04 ? +4107
 05 ? +1109
 06 ? +4300
 07 ? +1110
 08 ? +4300
 09 ? +0000
 10 ? +0000
 11 ? -99999
 *** Program loading completed ***
 *** Program execution begins ***

366 Chapter 7 Pointers

00 and continues sequentially, unless directed to some other part of the program by a
transfer of control.

Use the variable accumulator to represent the accumulator register. Use the vari-
able instructionCounter to store the number of the memory location (00 to 99)
containing the instruction being performed. Use the variable operationCode to store
the operation currently being performed (the instruction word’s left two digits). Use
the variable operand to store the number of the memory location on which the cur-
rent instruction operates. Thus, if an instruction has an operand, it’s the rightmost
two digits of the instruction currently being performed. Do not execute instructions
directly from memory. Rather, transfer the next instruction to be performed from
memory to a variable called instructionRegister. Then “pick off” the left two dig-
its and place them in the variable operationCode, and “pick off” the right two digits
and place them in operand.

When Simpletron begins execution, the special registers are initialized as follows:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

Now let’s “walk through” the execution of the first SML instruction, +1009 in
memory location 00. This process is called an instruction execution cycle.

The instructionCounter tells us the location of the next instruction to be per-
formed. We fetch the contents of that location from memory by using the C statement

instructionRegister = memory[instructionCounter];

The operation code and the operand are extracted from the instruction register by
the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now the Simpletron must determine that the operation code is actually a read
(versus a write, a load, and so on). A switch statement differentiates among the
twelve operations of SML. The switch simulates the behavior of various SML
instructions as follows (we leave the others to the reader):

read: scanf("%d", &memory[operand]);

load: accumulator = memory[operand];

add: accumulator += memory[operand];

Various branch instructions: We’ll discuss these shortly.
halt: This instruction prints the message
 *** Simpletron execution terminated ***

then prints the name and contents of each register as well as the complete contents
of all 100 memory locations. Such a printout is often called a computer dump. To
help you program your dump function, the output below shows a sample dump:

 Special Section—Building Your Own Computer as a Virtual Machine 367

A dump after executing a Simpletron program would show the actual values of
instructions and data values at the moment execution terminated. You can print
leading 0s in front of an integer that is shorter than its field width by placing the 0
formatting flag before the field width in the format specifier as in "%02d". You can
place a + or - sign before a value with the + formatting flag. So to produce a number
of the form +0000, you can use the format specifier "%+05d".

Let’s proceed with the execution of our program’s first instruction, namely the
+1009 in location 00. As we’ve indicated, the switch statement simulates this by per-
forming the statement

scanf("%d", &memory[operand]);

A question mark (?) should be displayed on the screen before the scanf is exe-
cuted to prompt the user for input. The Simpletron waits for the user to type a value
and then press the Return (or Enter) key. The value is then read into location 09.

At this point, simulation of the first instruction is completed. All that remains is
to prepare the Simpletron to execute the next instruction. Because the instruction
just performed was not a transfer of control, we need merely increment the instruc-
tion counter register as follows:

++instructionCounter;

This completes the simulated execution of the first instruction. The entire pro-
cess (i.e., the instruction execution cycle) begins anew with the fetch of the next
instruction to be executed.

Now let’s consider how the branching instructions—the transfers of control—
are simulated. All we need to do is adjust the value in the instruction counter appro-
priately. Therefore, the unconditional branch instruction (40) is simulated within
the switch as

instructionCounter = operand;

REGISTERS:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
 0 1 2 3 4 5 6 7 8 9
 0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

368 Chapter 7 Pointers

The conditional “branch if accumulator is zero” instruction is simulated as
if (accumulator == 0) {
 instructionCounter = operand;
}

At this point, you should implement your Simpletron simulator and run the
SML programs you wrote in Exercise 7.28. You may embellish SML with additional
features and provide for these in your simulator. Exercise 7.30 lists several possible
embellishments.

Your simulator should check for various types of errors. During the program
loading phase, for example, each number the user types into the Simpletron’s memory
must be in the range -9999 to +9999. Your simulator should use a while loop to test
that each number entered is in this range, and, if not, keep prompting the user to
reenter the number until a correct number is entered.

During the execution phase, your simulator should check for serious errors, such
as attempts to divide by zero, attempts to execute an invalid operation code and
accumulator overflows (i.e., arithmetic operations resulting in values larger than
+9999 or smaller than -9999). Such serious errors are fatal errors. When a fatal error
is detected, print an error message such as:

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

and print a full computer dump in the format we’ve discussed previously. This will
help the user locate the error in the program.

Implementation Note: When you implement the Simpletron Simulator, define
the memory array and all the registers as variables in main. The program should con-
tain three other functions—load, execute and dump. Function load reads the SML
instructions from the user at the keyboard. (Once you study file processing in Chap-
ter 11, you’ll be able to read the SML instruction from a file.) Function execute exe-
cutes the SML program currently loaded in the memory array. Function dump displays
the contents of memory and all of the registers stored in main’s variables. Pass the mem-
ory array and registers to the other functions as necessary to complete their tasks.
Functions load and execute need to modify variables that are defined in main, so
you’ll need to pass those variables to the functions by reference using pointers. You’ll
need to modify the statements we showed throughout this problem description to
use the appropriate pointer notations.

7.30 (Modifications to the Simpletron Simulator) In this exercise, we propose sever-
al modifications and enhancements to Exercise 7.29’s Simpletron Simulator. In
Exercises 12.24 and 12.25, we propose building a compiler that converts programs
written in a high-level programming language (a variation of BASIC) to Simpletron
Machine Language. Some of the following modifications and enhancements may be
required to execute the programs produced by the compiler:

a) Extend the Simpletron Simulator’s memory to contain 1000 memory loca-
tions (000 to 999) to enable the Simpletron to handle larger programs.

 Robotics with the Webots Simulator 369

b) Allow the simulator to perform remainder calculations. This requires an ad-
ditional Simpletron Machine Language instruction.

c) Allow the simulator to perform exponentiation calculations. This requires
an additional Simpletron Machine Language instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to
represent Simpletron Machine Language instructions. Online Appendix E,
Number Systems, discusses hexadecimal.

e) Modify the simulator to allow output of a newline. This requires an addi-
tional Simpletron Machine Language instruction.

f) Modify the simulator to process floating-point values in addition to integer
values.

g) Modify the simulator to detect division by 0 logic errors.
h) Modify the simulator to detect arithmetic-overflow errors.
i) Modify the simulator to handle string input. [Hint: Each Simpletron word

can be divided into two groups, each holding a two-digit integer. Each two-
digit integer represents the ASCII decimal equivalent of a character. Add a
machine-language instruction that will input a string and store it beginning
at a specific Simpletron memory location. The first half of the word at that
location will be a count of the number of characters in the string (i.e., the
length of the string). Each succeeding half word contains one ASCII char-
acter expressed as two decimal digits. The machine-language instruction
converts each character into its ASCII equivalent and assigns it to either a
left or right half word.]

j) Modify the simulator to handle output of strings stored in the format of part
(g). [Hint: Add a machine-language instruction that prints a string begin-
ning at a specified Simpletron memory location. The first half of the word
at that location is the length of the string in characters. Each succeeding half
word contains one ASCII character expressed as two decimal digits. The ma-
chine-language instruction checks the length and prints the string by trans-
lating each two-digit number into its equivalent character.]

Special Section—Embedded Systems Programming Case
Study: Robotics with the Webots Simulator
7.31 Webots5,6 is an open-source, full-color, 3D, robotics simulator with console-
game-quality graphics. It enables you to create a virtual reality in which robots inter-
act with simulated real-world environments. It runs on Windows, macOS and Linux.
The simulator is widely used in industry and research to test robots’ viability and de-

5. “Webots Open Source Robot Simulator.”Accessed December 11, 2020. https://cyberbot-
ics.com.

6. The Webots environment screen captures in this case study are Copyright 2020 Cyberbotics Ltd.,
which is licensed under the Apache License, Version 2.0 (http://www.apache.org/
licenses/LICENSE-2.0).

https://cyberbotics.com
http://www.apache.org/licenses/LICENSE-2.0
https://cyberbotics.com
http://www.apache.org/licenses/LICENSE-2.0

370 Chapter 7 Pointers

velop controller software for those robots. Webots uses an Apache open-source li-
cense. The following is from their license webpage:7

“Webots is released under the terms of the Apache 2.0 license agreement.
Apache 2.0 is a [sic] industry friendly, non-contaminating, permissive open
source license that grants everyone the right to use a software source code, free of
charge, for any purpose, including commercial applications.”

Webots was first developed in 1996 at the Swiss Federal Institute of Technology
(EPFL). In 1998, the EPFL spin-off Cyberbotics Ltd. was founded to take over the
Webots simulator development. Until 2018, Webots was sold as proprietary licensed
software. In 2018, Cyberbotics open-sourced Webots under the Apache 2.0 license.8,9

Robotics is not typically discussed in introductory programming textbooks, but
Webots makes it easy. Webots comes bundled with simulations for dozens of today’s
most popular real-world robots that walk, fly, roll, drive and more. For a current list
of bundled robots, visit

https://cyberbotics.com/doc/guide/robots

Self-Contained Development Environment
Webots is a self-contained robotics-simulation environment with everything you
need to begin developing and experimenting with robotics. It includes:

• an interactive 3D simulation area for viewing and interacting with simulations,

• a code editor where you can view the bundled simulation code, modify it and
write your own, and

• compilers and interpreters that enable you to write Webots code in C, C++,
Java, Python and MatLab.

You can easily modify existing simulations and re-run their code to see the effects of
your changes. You also can develop entirely new simulations, as you’ll do in this case
study.

Installing Webots
First, check the Webots system requirements at

https://cyberbotics.com/doc/guide/system-requirements

You can download the Webots installer for Windows, macOS or Linux from the
Cyberbotics home page:

https://cyberbotics.com/

Once downloaded, run the installer and follow the on-screen prompts.

7. “Webots User Guide R2020b revision 2—License Agreement.” Accessed December 14, 2020.
https://cyberbotics.com/doc/guide/webots-license-agreement.

8. “Cyberbotics.” Accessed December 13, 2020. https://cyberbotics.com/#cyberbotics.
9. “Webots.” Accessed December 13, 2020. https://en.wikipedia.org/wiki/Webots.

https://cyberbotics.com/doc/guide/robots
https://cyberbotics.com/doc/guide/system-requirements
https://cyberbotics.com/
https://cyberbotics.com/doc/guide/webots-license-agreement
https://cyberbotics.com/#cyberbotics
https://en.wikipedia.org/wiki/Webots

 Robotics with the Webots Simulator 371

Guided Tour
Once the installation completes, run the Webots application on your system. You
can get a quick overview of many bundled robotics simulations and the robots’ capa-
bilities in the Webots guided tour. To do so, select Help > Webots Guided Tour… (the
first time you open the Webots environment, this guided tour will begin automati-
cally). Then, in the window that appears (Fig. 7.19), check the Auto checkbox and
click Next. This will begin the automated guided tour, which will show you each
demonstration for a short time, then switch to the next. The Guided Tour - Webots
window displays a brief description of each simulation. Figure 7.19 shows the
description for the third simulation, which appears in Fig. 7.20.

As the guided tour overviews each simulation, you’ll see it live in the Webots envi-
ronment’s 3D viewing area—shown in the center portion of Fig. 7.20. As you’ll soon
see:

• the environment’s left side enables you to manage and configure the compo-
nents in your robotics simulations, and

• the environment’s right side provides an integrated code editor for writing
and compiling the C code that controls a robot in your simulation.

We narrowed the code editor for this screen capture. As in most IDEs, the areas
within the window can be resized by dragging the divider bars.

Fig. 7.19 | A brief description of the ROBOTIS OP3 robot shown in Fig. 7.20. [The screen
captures in this case study are Copyright 2020 Cyberbotics Ltd., which is licensed under the
Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0.]

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

372 Chapter 7 Pointers

User Interface Overview
Familiarize yourself with the Webots environment’s user interface by reading the fol-
lowing overview:

https://cyberbotics.com/doc/guide/the-user-interface

Webots Tutorial 1: Your First Simulation in Webots
The Webots team provides eight tutorials that introduce you to many aspects of the
Webots environment and its robotics-simulation capabilities:

• Tutorial 1: Your First Simulation in Webots

• Tutorial 2: Modification of the Environment

• Tutorial 3: Appearance

• Tutorial 4: More about Controllers

• Tutorial 5: Compound Solid and Physics Attributes

• Tutorial 6: 4-Wheels Robot

• Tutorial 7: Your First PROTO

• Tutorial 8: Using ROS

In this case study, you’ll follow their first tutorial to create a robotics simulation using
several predefined items:

• a RectangleArena in which your robot will roam,

• several WoodenBox obstacles, and

Fig. 7.20 | A ROBOTIS OP3 robotics simulation running in Webots.

https://cyberbotics.com/doc/guide/the-user-interface

 Robotics with the Webots Simulator 373

• an e-puck robot—a simple simulated robot that will move around the Rect-
angleArena and change directions when it encounters a WoodenBox or a wall.

The e-puck simulator corresponds to a real-world, educational robot10 that has:

• two independently controlled wheels (known as differential wheels), so the
robot can change direction by moving its wheels at different speeds,

• a camera (the upper-left corner of the Webots environment’s 3D viewing area
shows a small window in which you can view what a robot “sees”),

• eight distance sensors, and

• 10 LED lights with controllable intensity—other e-puck robots can “see”
these via their camera for visual interactions between multiple e-puck robots.

This tutorial focuses on using the wheels to make the robot move. You can work
through Webots Tutorials 2–4 to use additional e-puck features. For more informa-
tion on the e-puck robot, visit:

http://www.e-puck.org/

Tutorial Steps
You can find the first Webots tutorial at

https://cyberbotics.com/doc/guide/tutorial-1-your-first-simulation-
in-webots

Below, we overview each tutorial step, provide additional insights and clarify some of
the tutorial instructions.11 The step numbers in the rest of this exercise correspond to
the “Hands-on” steps in the Webots tutorial. For each step, you should:

1. read the Webots tutorial step,

2. read our additional comments for that step, then

3. perform the step’s task(s).

The tutorial shows only one diagram of the robotics simulation you’ll create. To help
you work through the tutorial, we include additional screen captures12 to clarify the
tutorial instructions. As you work through the steps, be sure to save your changes
after each modification. If you have to reset the simulation, it will revert to the last
saved version.

10. “The e-puck, a Robot Designed for Education in Engineering.” Accessed December 13, 2020.
https://infoscience.epfl.ch/record/135236?ln=en.

11. This discussion was written in December 2020. The software, documentation and tutorials could
change. If you run into problems, visit the Webots forum (https://discord.com/invite/
nTWbN9m) and check the Webots StackOverflow questions (https://stackoverflow.com/
questions/tagged/webots) or e-mail us at deitel@deitel.com.

12. We changed the background color in our version of the simulation so that the screen captures
would be more readable in print.

http://www.e-puck.org/
https://cyberbotics.com/doc/guide/tutorial-1-your-first-simulationin-webots
https://infoscience.epfl.ch/record/135236?ln=en
https://discord.com/invite/nTWbN9m
https://stackoverflow.com/questions/tagged/webots
mailto:deitel@deitel.com
https://discord.com/invite/nTWbN9m
https://stackoverflow.com/questions/tagged/webots

374 Chapter 7 Pointers

Step 1: Launch the Webots Application
In Step 1, you’ll simply open the Webots environment. You’ll then perform the addi-
tional steps discussed below.

Step 2: Create Your Virtual World
A world defines the simulation environment and is stored in a .wbt file. Internally,
this file uses Virtual Reality Modeling Language (VRML) to describe your world’s
elements. Each world can have characteristics, such as gravity, that affect object inter-
actions. The world specifies the area in which your robot can roam and the objects
with which it can interact. The Wizards menu’s Create a Webots project directory wiz-
ard (Figs. 7.21–7.24) will guide you through setting up a new world with Webots’
required folder structure.

In the first screen of the Create a Webots project directory wizard (Fig. 7.21), sim-
ply click Continue (or Next) to move to the next step.

In the wizard’s Directory selection step (Fig. 7.22), change your project’s directory
name from my_project (the default) to my_first_simulation—this folder’s default
location is your user account’s Documents folder.13

In the wizard’s World settings step (Fig. 7.23), you’ll change the world’s filename
from empty.wbt (the default) to my_first_simulation.wbt and ensure that all four
checkboxes are checked. This will add several Webots predefined components to your
virtual world.

The wizard’s Conclusion step (Fig. 7.24) shows all the folders and files the wizard
will generate for your simulation. In subsequent steps, you’ll add obstacles and an e-
puck robot, configure various settings and write some C code that controls the robot.

Fig. 7.21 | Initial Create a Webots project directory wizard window.

13. You can change the location where your Webots project is stored. Ours is stored in our user ac-
count’s /Users/pauldeitel/Documents folder, which you’ll see in several screen captures.

 Robotics with the Webots Simulator 375

Fig. 7.22 | Changing the default project directory name to my_first_simulation.

Fig. 7.23 | Changing the default world filename and ensuring all checkboxes are checked.

Fig. 7.24 | Summary of the folders and files the wizard will generate for your simulation.

376 Chapter 7 Pointers

When you click Done (macOS) or Finish (Windows and Linux) in the Create a
Webots project directory wizard (Fig. 7.24), the Webots 3D viewing area displays an
empty RectangleArena with a checkered floor—the default for a RectangleArena
(Fig. 7.25). There are several floor-style options. You can experiment with these after
you learn how to change settings for the elements in your world. In the 3D viewing
area, you can zoom in and out using your mouse wheel, and you can click and drag
the RectangleArena to view it from different angles and rotate it.

Step 3: Modify the RectangleArena
Each element in the simulation is a node in the world’s scene tree, which you can see
at the left side of the Webots environment. In this step, you’ll select a node in the
scene tree, then change some of its settings, called fields. After you perform this step,
the environment should appear as in Fig. 7.26.

The colored arrows over the RectangleArena appear for any object you select in
the world, either by clicking it in the 3D viewing area or by clicking its node in the
scene tree. You can drag these arrowheads to move, rotate and tilt the object.14 Drag-
ging a straight arrowhead moves the object along that axis. Dragging a circular arrow-
head rotates or tilts the object around that axis. Save your environment, then
experiment with these arrowheads to see how they affect the RectangleArena’s posi-
tion. You can then reset the environment to restore the original position.

Fig. 7.25 | Initial view of the RectangleArena after completing the Create a Webots
project directory wizard.

14. “Webots User Guide R2020b revision 2 — The 3D Window — Moving a Solid Object.” Ac-
cessed December 13, 2020. https://cyberbotics.com/doc/guide/the-3d-win-
dow#moving-a-solid-object.

https://cyberbotics.com/doc/guide/the-3d-window#moving-a-solid-object
https://cyberbotics.com/doc/guide/the-3d-window#moving-a-solid-object

 Robotics with the Webots Simulator 377

Step 4: Add WoodenBox Obstacles
The Webots environment comes with almost 800 predefined objects and robots—
called PROTO nodes. A PROTO node describes a complex object or robot that you
can add to your simulations. The wide variety of PROTO nodes enables you to create
realistic 3D simulations of real-world environments. You also can create your own
PROTO nodes.

In this step, you’ll add a WoodenBox PROTO node using the Add a node dialog
(Fig. 7.27). When you select a PROTO node in the dialog, it shows a brief node
description, provides a link to the node’s more detailed online documentation and
shows the node’s licensing information (with a link for more license information).
Browse through the Add a node dialog to get a sense of the wide variety of animate
(robots and vehicles) and inanimate (walls, buildings, furniture, plants, etc.)
PROTO nodes you can use in your simulations.

Next, you’ll size the WoodenBox and move it. Then you’ll make two copies and
move them to other locations within the RectangleArena. When this step asks you to
copy-and-paste a WoodenBox, the new one will have the same size and location as the
one you copied. Hold the Shift key and drag the new one to a different location to
see it. We found it easier to copy nodes by selecting them in the scene tree. When you
complete this step, your world should appear similar to Fig. 7.28. The last WoodenBox
you moved will be selected in your world.15

Fig. 7.26 | RectangleArena after changing the checkerboard floor pattern’s square size and
reducing the wall height.

15. “Webots User Guide R2020b revision 2 — The 3D Window.” Accessed December 13, 2020.
https://cyberbotics.com/doc/guide/the-3d-window#moving-a-solid-object.

https://cyberbotics.com/doc/guide/the-3d-window#moving-a-solid-object

378 Chapter 7 Pointers

Fig. 7.27 | Selecting a WoodenBox PROTO node in the Add a node dialog.

Fig. 7.28 | Virtual world after creating and positioning three WoodenBox objects.

 Robotics with the Webots Simulator 379

Step 5: Add a Robot to Your Virtual World
In this step, you’ll use the Add a node dialog to add an e-puck robot to the simulation
(Fig. 7.29). When you select the E-puck (Robot) node, the dialog displays a descrip-
tion of the robot, the robot’s website (http://www.e-puck.org), the robot’s Webots
documentation link and the robot’s license information.

The e-puck is preconfigured to move forward, rotating left to change direction if
it collides with an obstacle, such as a WoodenBox or a wall. Though small, an e-puck
robot actually is loaded with technology, including distance sensors, which can be used
to program it to avoid collisions entirely. In Webots Tutorial 4, you’ll learn how to
avoid obstacles using these distance sensors.

A robot’s behavior is specified by its controller. The default e-puck robot control-
ler we just described is named e-puck_avoid_obstacles (you can view this code in
the text editor, by selecting Tools > Text Editor). Studying existing bundled controllers
is a great way to learn more about controlling Webots robots. To complete this step,
you’ll run the e-puck robot’s default controller (Fig. 7.30). We clicked the world’s
background area to deselect all the simulation elements.

Step 6: Playing with Physics
The Webots simulator has a physics engine that enables objects to act and interact as
they would in the real world. Some physics options you can configure include den-
sity, mass, inertia, friction and bounce. For more, visit:

https://cyberbotics.com/doc/reference/physics

Fig. 7.29 | Adding an e-puck robot PROTO node to the simulation.

http://www.e-puck.org
https://cyberbotics.com/doc/reference/physics

380 Chapter 7 Pointers

In this step, you’ll use your mouse to apply a force to the e-puck robot. After you
do this, your world should appear similar to Fig. 7.31, with the red arrow indicating the
force’s direction. When you perform this step, you might accidentally tip over the robot
if you apply too much force—as shown in Fig. 7.31. Of course, robots can tip over in
the real world, too. To fix this in the simulation, click the Reset Simulation button,
which will restore the simulation to the point of your most recent save.

The WoodenBox obstacles you created in Step 4 are stuck to the floor by default and
do not move when the e-puck bumps into them. You’ll see in this step that setting the
WoodenBoxes’ masses enables them to respond to force. The smaller a WoodenBox’s mass,

Fig. 7.30 | Simulation with an e-puck robot roaming the RectangleArena.

Fig. 7.31 | Manually applying a force to the e-puck robot. In this case, too much force was
applied, tipping over the robot.

 Robotics with the Webots Simulator 381

the more it will move when the e-puck robot collides with it. The tutorial recommends
setting the WoodenBoxes’ masses to 0.2 kilograms. Try setting each WoodenBox’s mass to
smaller and larger values to see how these masses affect the physics interactions.

Step 7: Decrease the World’s Time Step
Throughout a simulation, Webots keeps track of your simulation’s virtual time. The
basic time step is a value in milliseconds. Throughout the simulation, when virtual
time increases by the basic time step, Webots performs its physics calculations:16

• Larger basic-time-step values decrease the physics-calculation frequency. This
enables simulations to run faster because they perform fewer calculations;
however, this can make physics interactions, such as collisions between
objects, less accurate, and the simulation can feel clunky.

• Smaller values increase the physics-calculation frequency, making physics cal-
culations more accurate. This causes simulations to run slower because they
perform more calculations, but movements may appear smoother.

When you created this simulation’s files, Webots set the basic time step to 32 milli-
seconds. In this step, you’ll decrease the basic time-step value to 16 milliseconds. For
tips on Webots simulation speed and performance, see:

https://www.cyberbotics.com/doc/guide/speed-performance

Step 8: Create a C Source-Code File for Your Robot’s Controller
In this step, you’ll replace the default e-puck_avoid_obstacles controller with a new
custom controller. Many robots can use each controller you create, but each robot may
have only one controller at a time. Figures 7.32–7.35 show the steps you’ll go through
after selecting Wizards > New Robot Controller…. These steps will create a new C source-
code file for your custom controller and open it in the code editor at the Webots envi-
ronment’s right side:

• In the New controller creation step (Fig. 7.32), you’ll simply click Continue.

• In the Language selection step (Fig. 7.33), ensure that C is selected, then click
Continue.

• In the Name selection step (Fig. 7.34), change the default custom controller
name to epuck_go_forward from my_controller and click Continue.

• The Conclusion step (Fig. 7.35) shows all the folders and files the wizard will
generate for your controller.

16. “Webots Reference Manual R2020b revision 2: WorldInfo.” Accessed December 12, 2020.
https://www.cyberbotics.com/doc/reference/worldinfo.

https://www.cyberbotics.com/doc/guide/speed-performance
https://www.cyberbotics.com/doc/reference/worldinfo

382 Chapter 7 Pointers

Fig. 7.32 | Initial Create a new robot controller wizard window.

Fig. 7.33 | Selecting the C programming language for your custom robot controller.

Fig. 7.34 | Changing the default custom controller name to epuck_go_forward.

 Robotics with the Webots Simulator 383

Step 9: Modify Your Controller’s Code to Move the Robot Forward
The new controller you created in Step 8 contains the basic framework of a simple
controller. In this step, you’ll add code to this file that will make the e-puck move
forward a short distance. The tutorial does not specify precisely where each statement
should be added to the controller code, so make the following changes to your con-
troller’s source-code file:

1. Add the following #include before main:
 #include <webots/motor.h>

2. Next, you’ll use the Webots wb_robot_get_device function17 to get the de-
vices that represent the e-puck robot’s left- and right-wheel motors. Add the
following code in main after the call to wb_robot_init:
 // get the motor devices
 WbDeviceTag left_motor =
 wb_robot_get_device("left wheel motor");
 WbDeviceTag right_motor =
 wb_robot_get_device("right wheel motor");

3. Finally, you’ll use the Webots wb_motor_set_position function18 to move
the robot a short distance. Add the following code after the calls to wb_ro-
bot_get_device and before the while loop:
 wb_motor_set_position(left_motor, 10.0);
 wb_motor_set_position(right_motor, 10.0);

Fig. 7.35 | Summary of the folders and files the wizard will generate for your custom
controller.

17. “Webots Reference Manual R2020b revision 2—Robot.” Accessed December 13, 2020.
https://cyberbotics.com/doc/reference/robot#wb_robot_get_device.

18. “Webots Reference Manual R2020b revision 2—Motor.” Accessed December 13, 2020.
https://cyberbotics.com/doc/reference/motor#wb_motor_set_position.

https://cyberbotics.com/doc/reference/robot#wb_robot_get_device
https://cyberbotics.com/doc/reference/motor#wb_motor_set_position

384 Chapter 7 Pointers

Experiment with different values for wb_motor_set_position’s second argument to
get a sense of how they affect the distance traveled. Also try using different values in
the two calls to wb_motor_set_position so that the two wheels do not rotate the same
amount.

Step 10: Modify Your Controller’s Code to Change the Robot’s Speed
In this final step, you’ll modify your controller code to specify the wheels’ speeds.
Make the following changes to your controller’s source-code file:

1. Speeds in Webots use radians for rotational motors, such as those used in
wheels; otherwise, speeds use meters per second. Add the following #define
directive after #include <webots/robot.h> to define the robot’s maximum
wheel-rotation speed in radians (6.28 is 2π radians):
 #define MAX_SPEED 6.28

2. Modify your two calls to the wb_motor_set_position function, replacing
their second arguments with the Webots constant INFINITY, so the wheels
spin continuously (at the speed you’ll set momentarily) throughout the sim-
ulation:
 // set wheels to spin continuously
 wb_motor_set_position(left_motor, INFINITY);
 wb_motor_set_position(right_motor, INFINITY);

3. Finally, you’ll use the Webots function wb_motor_set_velocity function19 to
specify the wheel-rotation speeds in radians per second. Add the following
code after the calls to wb_robot_get_device and before the while loop:
 // set up the motor speeds at 10% of the MAX_SPEED
 wb_motor_set_velocity(left_motor, 0.1 * MAX_SPEED);
 wb_motor_set_velocity(right_motor, 0.1 * MAX_SPEED);

Experiment with different values for wb_motor_set_velocity’s second argument to
see how they affect the robot’s speed. Try using different values in the two calls so
that the two wheels do not rotate in unison. Be careful how you set these values—
they could cause the robot to spin around in circles.

Additional Tutorials
Once you complete Tutorial 1, you may wish to continue with Webots Tutorials 2–
8. Tutorials 2–4 perform various modifications to the world you just created:

• In Tutorial 2, you’ll add a ball to your world. You’ll learn more about node
types and how to configure physics options that enable the ball to roll in the
simulation.

• In Tutorial 3, you’ll learn how to improve your simulation’s graphics with
lighting effects and textures.

19. “Webots Reference Manual R2020b revision 2—Motor.” Accessed December 13, 2020.
https://cyberbotics.com/doc/reference/motor#wb_motor_set_velocity.

https://cyberbotics.com/doc/reference/motor#wb_motor_set_velocity

 Robotics with the Webots Simulator 385

• In Tutorial 4, you’ll create a more elaborate controller that enables the e-puck
to use its distance sensors to avoid the obstacles you created previously.

Challenge: Once you complete Tutorial 4, try building a maze in your world and see
if you can program the e-puck robot to traverse the maze. The following page lists
several algorithms for finding a maze’s exit:

https://en.wikipedia.org/wiki/Maze_solving_algorithm

Tutorials 5–7 dive into more advanced features:

• In Tutorial 5, you’ll learn more about physics in Webots.

• In Tutorial 6, you’ll work with a four-wheeled robot and learn more about
sensors.

• In Tutorial 7, you’ll create your own PROTO node.

In the advanced Tutorial 8, you’ll learn about working with Webots nodes from the
webots_ros. ROS is the Robot Operating System20—a framework for writing robot
software. If you’re going to do this tutorial, Webots recommends that you first learn
more about ROS in the tutorials at

http://wiki.ros.org/ROS/Tutorials

Mastering Webots Tutorials 2–8 will be a “resume-worthy” accomplishment.

7.32 (Challenge Project: Webots Tortoise-and-Hare-Race Case Study) For this chal-
lenging exercise, we recommend that you first complete the Webots tutorials 2–7
mentioned at the end of Exercise 7.31. In Exercise 5.54, you simulated the Tortoise
and the Hare race. Now that you’re familiar with the Webots 3D robotics simulator,
let your imagination run wild with Webots’ amazing capabilities. Recreate the race
using two robots from the dozens available in Webots. Consider using a small slow
one for the tortoise (such as the e-puck from Exercise 7.31) and a larger fast one for
the hare (such as the Boston Dynamics Spot21,22 robot). Recall from the Webots Guid-
ed Tour that there are many other environments in which your robots may roam.
Consider copying an existing terrain environment with objects like grass, flowers,
trees and hills in which to race your robots.

20. “About ROS.” Accessed December 13, 2020. https://www.ros.org/about-ros/.
21. "Webots User Guide—Boston Dynamics' Spot.” Accessed December 31, 2020. https://

www.cyberbotics.com/doc/guide/spot.
22. “Spot.” Accessed December 31, 2020. https://www.bostondynamics.com/spot.

https://en.wikipedia.org/wiki/Maze_solving_algorithm
http://wiki.ros.org/ROS/Tutorials
https://www.ros.org/about-ros/
https://www.cyberbotics.com/doc/guide/spot
https://www.bostondynamics.com/spot
https://www.cyberbotics.com/doc/guide/spot

8Characters and Strings

O b j e c t i v e s
In this chapter, you’ll:
■ Use the functions of the

character-handling library
(<ctype.h>).

■ Use the string-conversion
functions of the general
utilities library
(<stdlib.h>).

■ Use the string and character
input/output functions of the
standard input/output library
(<stdio.h>).

■ Use the string-processing
functions of the string-
handling library
(<string.h>).

■ Use the memory-processing
functions of the string-
handling library
(<string.h>).

388 Chapter 8 Characters and Strings

O
ut

lin
e

8.1 Introduction
This chapter introduces the C standard library functions that help you process char-
acters, strings, lines of text and blocks of memory. The chapter discusses the tech-
niques used to develop editors, word processors, page-layout software and other kinds
of text-processing software. The text manipulations performed by formatted input/
output functions like printf and scanf can be implemented using the functions this
chapter presents.

8.2 Fundamentals of Strings and Characters
Characters are the fundamental building blocks of your programs. Every program is
composed of characters that—when grouped together meaningfully—the computer
interprets as a series of instructions used to accomplish a task. A program may contain
character constants—each is an int value represented as a character in single quotes.
A character constant’s value is that character’s integer value in the machine’s character

8.1 Introduction
8.2 Fundamentals of Strings and

Characters
8.3 Character-Handling Library

8.3.1 Functions isdigit, isalpha,
isalnum and isxdigit

8.3.2 Functions islower, isupper,
tolower and toupper

8.3.3 Functions isspace, iscntrl,
ispunct, isprint and
isgraph

8.4 String-Conversion Functions
8.4.1 Function strtod
8.4.2 Function strtol
8.4.3 Function strtoul

8.5 Standard Input/Output Library
Functions

8.5.1 Functions fgets and putchar
8.5.2 Function getchar
8.5.3 Function sprintf
8.5.4 Function sscanf

8.6 String-Manipulation Functions of
the String-Handling Library

8.6.1 Functions strcpy and strncpy
8.6.2 Functions strcat and strncat

8.7 Comparison Functions of the
String-Handling Library

8.8 Search Functions of the String-
Handling Library

8.8.1 Function strchr
8.8.2 Function strcspn
8.8.3 Function strpbrk
8.8.4 Function strrchr
8.8.5 Function strspn
8.8.6 Function strstr
8.8.7 Function strtok

8.9 Memory Functions of the String-
Handling Library

8.9.1 Function memcpy
8.9.2 Function memmove
8.9.3 Function memcmp
8.9.4 Function memchr
8.9.5 Function memset

8.10 Other Functions of the String-
Handling Library

8.10.1 Function strerror
8.10.2 Function strlen

8.11 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Advanced String-Manipulation Exercises | A Challenging String-Manipula-
tion Project | Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua Boklnxhmywex |

Secure C Programming Case Study: Public-Key Cryptography

8.2 Fundamentals of Strings and Characters 389

set. For example, 'z' represents the letter z’s integer value, and '\n' represents a new-
line’s integer value.

A string is a series of characters treated as a single unit. A string may include let-
ters, digits and various special characters such as +, -, *, / and $. String literals, or
string constants, are written in double quotation marks as follows:

"John Q. Doe" (a name)
"99999 Main Street" (a street address)
"Waltham, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

Strings Are Null Terminated
Every string must end with the null character ('\0'). Printing a “string” that does not
contain a terminating null character is a logic error. The results of this are undefined.
On some systems, printing will continue past the end of the “string” until a null char-
acter is encountered. On others, your program will terminate prematurely (i.e.,
“crash”) and indicate a “segmentation fault” or “access violation” error.

Strings and Pointers
You access a string via a pointer to its first character. A string’s “value” is the address
of its first character. Thus, in C, it’s appropriate to say that a string is a pointer to the
string’s first character. This is just like arrays, because strings are simply arrays of char-
acters.

Initializing char Arrays and char * Pointers
You can initialize a character array or a char * variable with a string. The definitions

char color[] = "blue";
const char *colorPtr = "blue";

initialize color and colorPtr to the string "blue". The first definition creates a 5-ele-
ment array color containing the modifiable characters 'b', 'l', 'u', 'e' and '\0'.
The second definition creates the pointer variable colorPtr that points to the letter
'b' in "blue", which is not modifiable.

The color array definition also can be written as
char color[] = {'b', 'l', 'u', 'e', '\0'};

The preceding definition automatically determines the array’s size based on its num-
ber of initializers (5). When storing a string in a char array, the array must be large
enough to store the string and its terminating null character. Not allocating sufficient
space in a character array to store the null character that terminates a string is an error.
C allows you to store strings of any length. If a string is longer than the char array in
which you store it, characters beyond the array’s end may overwrite other data in
memory.

ERR

ERR

390 Chapter 8 Characters and Strings

String Literals Should Not Be Modified
The C standard indicates that a string literal is immutable—that is, not modifiable.
If you might need to modify a string, it must be stored in a character array.

Reading a String with scanf
Function scanf can read a string and store it in a char array. Assume we have a char
array word containing 20 elements. You can read a string into the array with

scanf("%19s", word);

Since word is an array, the array name is a pointer to the array’s first element. So, the
& that we typically use with scanf’s arguments is not required.

Recall from Section 6.5.4 that scanf reads characters until it encounters a space,
tab, newline or end-of-file indicator. The field width 19 in the preceding statement
ensures that scanf reads a maximum of 19 characters, saving the last array element for
the string’s terminating null character. This prevents scanf from writing characters
into memory beyond the array’s last element.

Without the field width 19 in the conversion specification %19s, the user input
could exceed 19 characters and overwrite other data in memory. If so, your program
might crash, or overwrite other data in memory. So, always use a field width when
reading strings with scanf. (For reading input lines of arbitrary length, there’s a non-
standard—yet widely supported—function readline, usually included in stdio.h.)

Self Check
1 (Fill-In) A string is accessed via a to the string’s first character.
Answer: pointer.

2 (True/False) The following definition initializes the color array to the character
string "blue":

char color[] = {'b', 'l', 'u', 'e'};

Answer: False. Actually, to be a character string, the color array must end with the
null character, as in

char color[] = {'b', 'l', 'u', 'e', '\0'};

3 (True/False) Printing a string that does not contain a terminating null character
is a logic error—program execution terminates immediately.
Answer: False. Actually, printing will continue past the end of the string until a null
character is encountered.

8.3 Character-Handling Library
The character-handling library (<ctype.h>) contains functions that test and manip-
ulate character data. Each function receives an unsigned char (represented as an int)
or EOF as an argument. As we discussed in Chapter 4, characters are often manipu-
lated as integers because a character in C is a one-byte integer. EOF’s value is typically
–1. The following table summarizes the character-handling library functions.

SE

8.3 Character-Handling Library 391

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit
Figure 8.1 demonstrates functions isdigit, isalpha, isalnum and isxdigit. Func-
tion isdigit determines whether its argument is a digit (0–9). Function isalpha
determines whether its argument is an uppercase (A–Z) or lowercase letter (a–z).
Function isalnum determines whether its argument is an uppercase letter, a lowercase
letter or a digit. Function isxdigit determines whether its argument is a hexadecimal
digit (A–F, a–f, 0–9).

Prototype Function description

int isblank(int c); Returns a true value if c is a blank character that separates words in a
line of text; otherwise, it returns 0 (false).

int isdigit(int c); Returns a true value if c is a digit; otherwise, it returns 0 (false).
int isalpha(int c); Returns a true value if c is a letter; otherwise, it returns 0 (false).
int isalnum(int c); Returns a true value if c is a digit or a letter; otherwise, it returns 0

(false).
int isxdigit(int c); Returns a true value if c is a hexadecimal digit character; otherwise, it

returns 0 (false). (See online Appendix E for a detailed explanation of
binary numbers, octal numbers, decimal numbers and hexadecimal
numbers.)

int islower(int c); Returns a true value if c is a lowercase letter; otherwise, it returns 0
(false).

int isupper(int c); Returns a true value if c is an uppercase letter; otherwise, it returns 0
(false).

int tolower(int c); If c is an uppercase letter, tolower returns c as a lowercase letter; oth-
erwise, it returns the argument unchanged.

int toupper(int c); If c is a lowercase letter, toupper returns c as an uppercase letter; oth-
erwise, it returns the argument unchanged.

int isspace(int c); Returns a true value if c is a whitespace character—newline ('\n'),
space (' '), form feed ('\f'), carriage return ('\r'), horizontal tab
('\t') or vertical tab ('\v')—otherwise, it returns 0 (false).

int iscntrl(int c); Returns a true value if c is a control character—horizontal tab
('\t'), vertical tab ('\v'), form feed ('\f'), alert ('\a'), backspace
('\b'), carriage return ('\r'), newline ('\n') and others—otherwise,
it returns 0 (false).

int ispunct(int c); Returns a true value if c is a printing character other than a space, a
digit, or a letter—such as $, #, (,), [,], {, }, ;, : or %—otherwise, it
returns 0 (false).

int isprint(int c); Returns a true value if c is a printing character (i.e., a character that’s
visible on the screen) including a space; otherwise, it returns 0 (false).

int isgraph(int c); Returns a true value if c is a printing character other than a space;
otherwise, it returns 0 (false).

392 Chapter 8 Characters and Strings

1 // fig08_01.c
2 // Using functions isdigit, isalpha, isalnum, and isxdigit
3 #include <ctype.h>
4 #include <stdio.h>
5
6 int main(void) {
7 printf("%s\n%s%s\n%s%s\n\n", "According to isdigit: ",
8 isdigit('8') ? "8 is a " : "8 is not a ", "digit",
9 isdigit('#') ? "# is a " : "# is not a ", "digit");

10
11 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n", "According to isalpha:",
12 isalpha('A') ? "A is a " : "A is not a ", "letter",
13 isalpha('b') ? "b is a " : "b is not a ", "letter",
14 isalpha('&') ? "& is a " : "& is not a ", "letter",
15 isalpha('4') ? "4 is a " : "4 is not a ", "letter");
16
17 printf("%s\n%s%s\n%s%s\n%s%s\n\n", "According to isalnum:",
18 isalnum('A') ? "A is a " : "A is not a ", "digit or a letter",
19 isalnum('8') ? "8 is a " : "8 is not a ", "digit or a letter",
20 isalnum('#') ? "# is a " : "# is not a ", "digit or a letter");
21
22 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s\n", "According to isxdigit:",
23 isxdigit('F') ? "F is a " : "F is not a ", "hexadecimal digit",
24 isxdigit('J') ? "J is a " : "J is not a ", "hexadecimal digit",
25 isxdigit('7') ? "7 is a " : "7 is not a ", "hexadecimal digit",
26 isxdigit('$') ? "$ is a " : "$ is not a ", "hexadecimal digit",
27 isxdigit('f') ? "f is a " : "f is not a ", "hexadecimal digit");
28 }

According to isdigit:
8 is a digit
is not a digit

According to isalpha:
A is a letter
b is a letter
& is not a letter
4 is not a letter

According to isalnum:
A is a digit or a letter
8 is a digit or a letter
is not a digit or a letter

According to isxdigit:
F is a hexadecimal digit
J is not a hexadecimal digit
7 is a hexadecimal digit
$ is not a hexadecimal digit
f is a hexadecimal digit

Fig. 8.1 | Using functions isdigit, isalpha, isalnum and isxdigit.

8.3 Character-Handling Library 393

Figure 8.1 uses the conditional operator (?:) to determine whether the string
" is a " or the string " is not a " should be printed in the output for each character
tested. For example, the expression

isdigit('8') ? "8 is a " : "8 is not a "

indicates that if '8' is a digit, the string "8 is a " is printed, and if '8' is not a digit
(i.e., isdigit returns 0), the string "8 is not a " is printed.

8.3.2 Functions islower, isupper, tolower and toupper
Figure 8.2 demonstrates functions islower, isupper, tolower and toupper. Function
islower determines whether its argument is a lowercase letter (a–z). Function isup-
per determines whether its argument is an uppercase letter (A–Z). Function tolower
converts an uppercase letter to a lowercase letter and returns the lowercase letter. If
the argument is not an uppercase letter, tolower returns the argument unchanged.
Function toupper converts a lowercase letter to an uppercase letter and returns the
uppercase letter. If the argument is not a lowercase letter, toupper returns the argu-
ment unchanged.

1 // fig08_02.c
2 // Using functions islower, isupper, tolower and toupper
3 #include <ctype.h>
4 #include <stdio.h>
5
6 int main(void) {
7 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n", "According to islower:",
8 islower('p') ? "p is a " : "p is not a ", "lowercase letter",
9 islower('P') ? "P is a " : "P is not a ", "lowercase letter",

10 islower('5') ? "5 is a " : "5 is not a ", "lowercase letter",
11 islower('!') ? "! is a " : "! is not a ", "lowercase letter");
12
13 printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n", "According to isupper:",
14 isupper('D') ? "D is an " : "D is not an ", "uppercase letter",
15 isupper('d') ? "d is an " : "d is not an ", "uppercase letter",
16 isupper('8') ? "8 is an " : "8 is not an ", "uppercase letter",
17 isupper('$') ? "$ is an " : "$ is not an ", "uppercase letter");
18
19 printf("%s%c\n%s%c\n%s%c\n%s%c\n",
20 "u converted to uppercase is ", toupper('u'),
21 "7 converted to uppercase is ", toupper('7'),
22 "$ converted to uppercase is ", toupper('$'),
23 "L converted to lowercase is ", tolower('L'));
24 }

According to islower:
p is a lowercase letter
P is not a lowercase letter
5 is not a lowercase letter
! is not a lowercase letter

Fig. 8.2 | Using functions islower, isupper, tolower and toupper. (Part 1 of 2.)

394 Chapter 8 Characters and Strings

8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph
Figure 8.3 demonstrates functions isspace, iscntrl, ispunct, isprint and isgraph.
Function isspace determines whether a character is one of the following whitespace
characters: space (' '), form feed ('\f'), newline ('\n'), carriage return ('\r'), hor-
izontal tab ('\t') or vertical tab ('\v'). Function iscntrl determines whether a char-
acter is one of the following control characters: horizontal tab ('\t'), vertical tab
('\v'), form feed ('\f'), alert ('\a'), backspace ('\b'), carriage return ('\r') or new-
line ('\n'). Function ispunct determines whether a character is a printing character
other than a space, a digit or a letter, such as $, #, (,), [,], {, }, ;, : or %. Function
isprint determines whether a character can be displayed on the screen (including the
space character). Function isgraph is the same as isprint, except that the space char-
acter is not included.

According to isupper:
D is an uppercase letter
d is not an uppercase letter
8 is not an uppercase letter
$ is not an uppercase letter

u converted to uppercase is U
7 converted to uppercase is 7
$ converted to uppercase is $
L converted to lowercase is l

1 // fig08_03.c
2 // Using functions isspace, iscntrl, ispunct, isprint and isgraph
3 #include <ctype.h>
4 #include <stdio.h>
5
6 int main(void) {
7 printf("%s\n%s%s%s\n%s%s%s\n%s%s\n\n", "According to isspace:",
8 "Newline", isspace('\n') ? " is a " : " is not a ",
9 "whitespace character",

10 "Horizontal tab", isspace('\t') ? " is a " : " is not a ",
11 "whitespace character",
12 isspace('%') ? "% is a " : "% is not a ", "whitespace character");
13
14 printf("%s\n%s%s%s\n%s%s\n\n", "According to iscntrl:",
15 "Newline", iscntrl('\n') ? " is a " : " is not a ",
16 "control character",
17 iscntrl('$') ? "$ is a " : "$ is not a ", "control character");
18
19 printf("%s\n%s%s\n%s%s\n%s%s\n\n", "According to ispunct:",
20 ispunct(';') ? "; is a " : "; is not a ", "punctuation character",
21 ispunct('Y') ? "Y is a " : "Y is not a ", "punctuation character",
22 ispunct('#') ? "# is a " : "# is not a ", "punctuation character");

Fig. 8.3 | Using functions isspace, iscntrl, ispunct, isprint and isgraph. (Part 1 of 2.)

Fig. 8.2 | Using functions islower, isupper, tolower and toupper. (Part 2 of 2.)

8.3 Character-Handling Library 395

Self Check
1 (Multiple Choice) Which functions is described by “Returns a true value if the
argument character is a digit or a letter; otherwise, returns 0 (false)”?

a) isalnum.
b) isdigit.
c) isalpha.
d) isxdigit.

Answer: a.

2 (Code) What does the following printf print?
printf("%s\n%s%s\n%s%s\n%s%s\n%s%s\n\n", "According to isalpha:",
 isalpha('X') ? "X is a " : "X is not a ", "letter",
 isalpha('m') ? "m is a " : "m is not a ", "letter",
 isalpha('$') ? "$ is a " : "$ is not a ", "letter",
 isalpha('7') ? "7 is a " : "7 is not a ", "letter");

23
24 printf("%s\n%s%s\n%s%s%s\n\n", "According to isprint:",
25 isprint('$') ? "$ is a " : "$ is not a ", "printing character",
26 "Alert", isprint('\a') ? " is a " : " is not a ",
27 "printing character");
28
29 printf("%s\n%s%s\n%s%s%s\n", "According to isgraph:",
30 isgraph('Q') ? "Q is a " : "Q is not a ",
31 "printing character other than a space",
32 "Space", isgraph(' ') ? " is a " : " is not a ",
33 "printing character other than a space");
34 }

According to isspace:
Newline is a whitespace character
Horizontal tab is a whitespace character
% is not a whitespace character

According to iscntrl:
Newline is a control character
$ is not a control character

According to ispunct:
; is a punctuation character
Y is not a punctuation character
is a punctuation character

According to isprint:
$ is a printing character
Alert is not a printing character

According to isgraph:
Q is a printing character other than a space
Space is not a printing character other than a space

Fig. 8.3 | Using functions isspace, iscntrl, ispunct, isprint and isgraph. (Part 2 of 2.)

396 Chapter 8 Characters and Strings

Answer:
According to isalpha:
X is a letter
m is a letter
$ is not a letter
7 is not a letter

8.4 String-Conversion Functions
This section presents the string-conversion functions from the general utilities
library (<stdlib.h>). These functions convert strings of digits to integer and float-
ing-point values. The following table summarizes the string-conversion functions.
The C standard also includes strtoll and strtoull for converting strings to long
long int and unsigned long long int, respectively.

8.4.1 Function strtod
Function strtod (Fig. 8.4) converts a sequence of characters representing a floating-
point value to double. The function returns 0 if it’s unable to convert part of its first
argument to double. The function receives two arguments—a string (char *) and a
pointer to a string (char **). The string argument contains the character sequence to be
converted to double. Whitespace characters at the beginning of the string are ignored.
The function uses the char ** argument to aim a char * in the caller (stringPtr) at the
first character after the converted portion of the string. If nothing can be converted, the
function aims the pointer at the beginning of the string. Line 10 assigns d the double
value converted from string and aims stringPtr at the % in string.

Function prototype Function description

double strtod(const char *nPtr, char **endPtr);
Converts the string nPtr to double.

long strtol(const char *nPtr, char **endPtr, int base);
Converts the string nPtr to long.

unsigned long strtoul(const char *nPtr, char **endPtr, int base);
Converts the string nPtr to unsigned long.

1 // fig08_04.c
2 // Using function strtod
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void) {
7 const char *string = "51.2% are admitted";
8 char *stringPtr = NULL;

Fig. 8.4 | Using function strtod. (Part 1 of 2.)

8.4 String-Conversion Functions 397

8.4.2 Function strtol
Function strtol (Fig. 8.5) converts to long int a sequence of characters representing
an integer. The function returns 0 if it’s unable to convert any portion of its first argu-
ment to long int. The function’s three arguments are a string (char *), a pointer to
a string and an integer. This function works identically to strtod, but the third argu-
ment specifies the base of the value being converted.

Line 10 assigns x the long value converted from string and aims remainderPtr
at the "a" in string. Using NULL for the second argument causes the remainder of the
string to be ignored. The third argument, 0, indicates that the value to convert can be
in octal (base 8), decimal (base 10) or hexadecimal (base 16) format. The base can be

9
10 double d = strtod(string, &stringPtr);
11
12 printf("The string \"%s\" is converted to the\n", string);
13 printf("double value %.2f and the string \"%s\"\n", d, stringPtr);
14 }

The string "51.2% are admitted" is converted to the
double value 51.20 and the string "% are admitted"

1 // fig08_05.c
2 // Using function strtol
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void) {
7 const char *string = "-1234567abc";
8 char *remainderPtr = NULL;
9

10 long x = strtol(string, &remainderPtr, 0);
11
12 printf("%s\"%s\"\n%s%ld\n%s\"%s\"\n%s%ld\n",
13 "The original string is ", string,
14 "The converted value is ", x,
15 "The remainder of the original string is ", remainderPtr,
16 "The converted value plus 567 is ", x + 567);
17 }

The original string is "-1234567abc"
The converted value is -1234567
The remainder of the original string is "abc"
The converted value plus 567 is -1234000

Fig. 8.5 | Using function strtol.

Fig. 8.4 | Using function strtod. (Part 2 of 2.)

398 Chapter 8 Characters and Strings

specified as 0 or any value between 2 and 36.1 Integer representations from base 11
to base 36 use the letters A–Z to represent the integer values 10–35. For example,
hexadecimal values can consist of the digits 0–9 and the characters A–F.

8.4.3 Function strtoul
Function strtoul (Fig. 8.6) converts to unsigned long int a sequence of characters
representing an unsigned long int value. The function works identically to function
strtol. Line 10 assigns x the unsigned long int value converted from string and
aims remainderPtr at the "a" in string. The third argument, 0, indicates that the
value to convert can be in octal, decimal or hexadecimal format.

Self Check
1 (Discussion) Why would a function’s parameter list contain a char ** parameter?
Answer: A char ** typically is a pointer to a char * pointer in the caller. A called func-
tion uses such a pointer to receive a char * by reference to modify it in the caller—
for example, to aim it at another string. This is an example of a pointer to a pointer.

2 (Multiple Choice) Which of the following statements about function strtol is false?
a) It converts to long int a sequence of characters representing an integer, or it

returns 0 if it’s unable to convert any portion of its first argument to long int.

1. See online Appendix E for a detailed explanation of the octal, decimal and hexadecimal number
systems.

1 // fig08_06.c
2 // Using function strtoul
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 int main(void) {
7 const char *string = "1234567abc";
8 char *remainderPtr = NULL;
9

10 unsigned long int x = strtoul(string, &remainderPtr, 0);
11
12 printf("%s\"%s\"\n%s%lu\n%s\"%s\"\n%s%lu\n",
13 "The original string is ", string,
14 "The converted value is ", x,
15 "The remainder of the original string is ", remainderPtr,
16 "The converted value minus 567 is ", x - 567);
17 }

The original string is "1234567abc"
The converted value is 1234567
The remainder of the original string is "abc"
The converted value minus 567 is 1234000

Fig. 8.6 | Using function strtoul.

8.5 Standard Input/Output Library Functions 399

b) strtol’s three arguments are a string (char *), a pointer to a string (char **)
and an integer.

c) The string argument contains the character sequence to convert to long—any
whitespace characters at the beginning of the string are ignored.

d) The function uses the char ** argument to give the caller access to the nu-
meric portion of the string being converted.

Answer: d) is false. Actually, the function uses the char ** argument to modify a
char * in the caller to point to the location of the first character after the string’s con-
verted portion. If nothing is converted, the function modifies the char * to point to
the entire string.

8.5 Standard Input/Output Library Functions
This section presents the standard input/output (<stdio.h>) library’s character- and
string-manipulation functions, which we summarize in the following table.

8.5.1 Functions fgets and putchar
Figure 8.7 uses functions fgets and putchar to read a line of text from the standard
input (keyboard) and recursively output the line’s characters in reverse order. Line 12
uses fgets to read characters into its char array argument until it encounters a new-
line or the end-of-file indicator, or until the maximum number of characters is read.

Function prototype Function description

int getchar(void); Returns the next character from the standard input as an integer.
char *fgets(char *s, int n, FILE *stream);

Reads characters from the specified stream into the array s until
a newline or end-of-file character is encountered, or until n - 1
bytes are read. This chapter uses the stream stdin—the standard
input stream—to read characters from the keyboard. A termi-
nating null character is appended to the array. Returns the string
that was read into s. If a newline is encountered, it’s included in
the stored string.

int putchar(int c); Prints the character stored in c and returns it as an integer.
int puts(const char *s); Prints the string s followed by a newline character. Returns a

nonzero integer if successful, or EOF if an error occurs.
int sprintf(char *s, const char *format, ...);

Equivalent to printf, but the output is stored in the array s
instead of printed on the screen. Returns the number of charac-
ters written to s, or EOF if an error occurs.

int sscanf(char *s, const char *format, ...);
Equivalent to scanf, but the input is read from the array s
rather than from the keyboard. Returns the number of items
successfully read by the function, or EOF if an error occurs.

400 Chapter 8 Characters and Strings

The maximum number of characters is one fewer than fgets’s second argument. The
third argument is the stream from which to read characters—in this case, the standard
input stream (stdin). When reading terminates, fgets appends a null character
('\0') to the array. Function putchar (line 27) prints its character argument.

Function reverse
The program calls the recursive function reverse2 to print the line of text backward.
If the array’s first character is the null character '\0', reverse returns. Otherwise,
reverse calls itself recursively with the subarray’s address beginning at element
sPtr[1]. Line 27 outputs the character at sPtr[0] when the recursive call completes.

1 // fig08_07.c
2 // Using functions fgets and putchar
3 #include <stdio.h>
4 #define SIZE 80
5
6 void reverse(const char * const sPtr);
7
8 int main(void) {
9 char sentence[SIZE] = "";

10
11 puts("Enter a line of text:");
12 fgets(sentence, SIZE, stdin); // read a line of text
13
14 printf("\n%s", "The line printed backward is:");
15 reverse(sentence);
16 puts("");
17 }
18
19 // recursively outputs characters in string in reverse order
20 void reverse(const char * const sPtr) {
21 // if end of the string
22 if ('\0' == sPtr[0]) { // base case
23 return;
24 }
25 else { // if not end of the string
26 reverse(&sPtr[1]); // recursion step
27 putchar(sPtr[0]); // use putchar to display character
28 }
29 }

Enter a line of text:
Characters and Strings

The line printed backward is:
sgnirtS dna sretcarahC

Fig. 8.7 | Using functions fgets and putchar.

2. We use recursion here for demonstration purposes. It’s usually more efficient to use a loop to
iterate from a string’s last character (the one at the position one less than the string’s length) to
its first character (the one at position 0).

8.5 Standard Input/Output Library Functions 401

The order of the two statements in lines 26 and 27 causes reverse to walk to the
string’s terminating null character before displaying any characters. As the recursive
calls complete, the characters are output in reverse order.

8.5.2 Function getchar
Figure 8.8 uses functions getchar to read one character at a time from the standard
input into the character array sentence, then uses puts to display the characters as a
string. Function getchar reads a character from the standard input and returns the
character as an integer. Recall from Section 4.6 that an integer is returned to support
the end-of-file indicator. As you know, puts takes a string as an argument and dis-
plays the string followed by a newline character. The program stops inputting char-
acters when 79 characters have been read or when getchar reads a newline character.
Line 18 appends a null character to sentence to terminate the string. Then line 21
uses puts to display sentence.

8.5.3 Function sprintf
Figure 8.9 uses function sprintf to print formatted data into char array s. The func-
tion uses the same conversion specifications as printf (see Chapter 9 for a detailed

1 // fig08_08.c
2 // Using function getchar
3 #include <stdio.h>
4 #define SIZE 80
5
6 int main(void) {
7 int c = 0; // variable to hold character input by user
8 char sentence[SIZE] = "";
9 int i = 0;

10
11 puts("Enter a line of text:");
12
13 // use getchar to read each character
14 while ((i < SIZE - 1) && (c = getchar()) != '\n') {
15 sentence[i++] = c;
16 }
17
18 sentence[i] = '\0'; // terminate string
19
20 puts("\nThe line entered was:");
21 puts(sentence); // display sentence
22 }

Enter a line of text:
This is a test.

The line entered was:
This is a test.

Fig. 8.8 | Using function getchar.

402 Chapter 8 Characters and Strings

discussion of formatting). The program inputs an int value and a double value to be
formatted and printed to array s. Array s is the first argument of sprintf.

8.5.4 Function sscanf
Figure 8.10 demonstrates function sscanf, which works like scanf but reads format-
ted data from a string. The program reads an int and a double from char array s,
stores them in x and y, then displays them.

1 // fig08_09.c
2 // Using function sprintf
3 #include <stdio.h>
4 #define SIZE 80
5
6 int main(void) {
7 int x = 0;
8 double y = 0.0;
9

10 puts("Enter an integer and a double:");
11 scanf("%d%lf", &x, &y);
12
13 char s[SIZE] = {'\0'}; // create char array
14 sprintf(s, "integer:%6d\ndouble:%7.2f", x, y);
15
16 printf("The formatted output stored in array s is:\n%s\n", s);
17 }

Enter an integer and a double:
298 87.375
The formatted output stored in array s is:
integer: 298
double: 87.38

Fig. 8.9 | Using function sprintf.

1 // fig08_10.c
2 // Using function sscanf
3 #include <stdio.h>
4
5 int main(void) {
6 char s[] = "31298 87.375";
7 int x = 0;
8 double y = 0;
9

10 sscanf(s, "%d%lf", &x, &y);
11 puts("The values stored in character array s are:");
12 printf("integer:%6d\ndouble:%8.3f\n", x, y);
13 }

Fig. 8.10 | Using function sscanf. (Part 1 of 2.)

8.6 String-Manipulation Functions of the String-Handling Library 403

Self Check
1 (Multiple Choice) Which function is described by “Prints the character stored in
its parameter and returns it as an integer”?

a) getchar.
b) sprintf.
c) puts.
d) putchar.

Answer: d.

2 (True/False) Function getchar reads a character from the standard input and
returns it as a char.
Answer: False. Actually, getchar returns an int to support the end-of-file indicator,
which is -1.

8.6 String-Manipulation Functions of the String-
Handling Library
The string-handling library (<string.h>) provides useful functions for:

• manipulating string data (copying strings and concatenating strings),

• comparing strings,

• searching strings for characters and other strings,

• tokenizing strings (separating strings into logical pieces), and

• determining the length of strings.

This section presents the string-handling library’s string-manipulation functions,
which are summarized in the following table. Other than strncpy, each function
appends the null character to its result.

The values stored in character array s are:
integer: 31298
double: 87.375

Function prototype Function description

char *strcpy(char *s1, const char *s2)
Copies string s2 into array s1 and returns s1.

char *strncpy(char *s1, const char *s2, size_t n)
Copies at most n characters of string s2 into array s1 and returns s1.

char *strcat(char *s1, const char *s2)

Appends string s2 to array s1 and returns s1. String s2’s first char-
acter overwrites s1’s terminating null character.

Fig. 8.10 | Using function sscanf. (Part 2 of 2.)

404 Chapter 8 Characters and Strings

Functions strncpy and strncat specify a size_t parameter. Function strcpy
copies the string in the second argument into the char array in its first argument. You
must ensure that the array is large enough to store the string and its terminating null
character, which is also copied. Function strncpy is equivalent to strcpy but copies
only the specified number of characters. Function strncpy will not copy the terminat-
ing null character of its second argument unless the number of characters to be copied is
more than the string’s length. For example, if "test" is the second argument, a termi-
nating null character is written only if the third argument to strncpy is at least 5 (four
characters in "test" plus a terminating null character). If the third argument is larger
than 5, some implementations append null characters to the array until the total
number of characters specified by the third argument is written. Other implementa-
tions stop after writing the first null character. It’s a logic error if you do not append
a terminating null character to strncpy’s first argument when the third argument is
less than or equal to the second argument’s string length.

8.6.1 Functions strcpy and strncpy
Figure 8.11 uses strcpy to copy the entire string in array x into array y. It uses
strncpy to copy the first 14 characters of array x into array z. Line 19 appends a null
character ('\0') to array z because the strncpy call does not write a terminating null
character—the third argument is less than the second argument’s string length.

char *strncat(char *s1, const char *s2, size_t n)
Appends at most n characters of string s2 to array s1 and returns s1.
String s2’s first character overwrites s1’s terminating null character.

1 // fig08_11.c
2 // Using functions strcpy and strncpy
3 #include <stdio.h>
4 #include <string.h>
5 #define SIZE1 25
6 #define SIZE2 15
7
8 int main(void) {
9 char x[] = "Happy Birthday to You"; // initialize char array x

10 char y[SIZE1] = ""; // create char array y
11 char z[SIZE2] = ""; // create char array z
12
13 // copy contents of x into y
14 printf("%s%s\n%s%s\n",
15 "The string in array x is: ", x,
16 "The string in array y is: ", strcpy(y, x));
17

Fig. 8.11 | Using functions strcpy and strncpy. (Part 1 of 2.)

Function prototype Function description

ERR

8.6 String-Manipulation Functions of the String-Handling Library 405

8.6.2 Functions strcat and strncat
Function strcat appends its second argument string to the string in its char array
first argument, replacing the first argument’s null ('\0') character. You must ensure
that the array used to store the first string is large enough to store the first string, the second
string and the terminating null character copied from the second string. Function strncat
appends a specified number of characters from the second string to the first string and
adds a terminating '\0'. Figure 8.12 demonstrates function strcat and function
strncat.

18 strncpy(z, x, SIZE2 - 1); // copy first 14 characters of x into z
19 z[SIZE2 - 1] = '\0'; // terminate string in z, because '\0' not copied
20 printf("The string in array z is: %s\n", z);
21 }

The string in array x is: Happy Birthday to You
The string in array y is: Happy Birthday to You
The string in array z is: Happy Birthday

1 // fig08_12.c
2 // Using functions strcat and strncat
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 char s1[20] = "Happy "; // initialize char array s1
8 char s2[] = "New Year "; // initialize char array s2
9 char s3[40] = ""; // initialize char array s3 to empty

10
11 printf("s1 = %s\ns2 = %s\n", s1, s2);
12
13 // concatenate s2 to s1
14 printf("strcat(s1, s2) = %s\n", strcat(s1, s2));
15
16 // concatenate first 6 characters of s1 to s3
17 printf("strncat(s3, s1, 6) = %s\n", strncat(s3, s1, 6));
18
19 // concatenate s1 to s3
20 printf("strcat(s3, s1) = %s\n", strcat(s3, s1));
21 }

s1 = Happy
s2 = New Year
strcat(s1, s2) = Happy New Year
strncat(s3, s1, 6) = Happy
strcat(s3, s1) = Happy Happy New Year

Fig. 8.12 | Using functions strcat and strncat.

Fig. 8.11 | Using functions strcpy and strncpy. (Part 2 of 2.)

406 Chapter 8 Characters and Strings

Self Check
1 (Multiple Choice) Which of the following statements about functions strcat and
strncat is false?

a) Function strcat appends its second argument string to the string in its char
array first argument.

b) The first character of strcat’s second argument is placed immediately after
the null ('\0') that terminates the string in the first argument.

c) You must ensure that the array containing the first string is large enough to
store the first string, the second string and the terminating '\0' copied from
the second string.

d) Function strncat appends a specified number of characters from the second
string to the first string. A terminating '\0' is automatically appended to the
result.

Answer: b) is false. Actually, the first character of strcat’s second argument replaces
the null ('\0') that terminates the string in the first argument.

2 (Fill-In) Function strcpy copies its second argument (a string) into its first argu-
ment, which is a character array that must be .
Answer: large enough to store the string, including its terminating null character.

8.7 Comparison Functions of the String-Handling
Library
This section presents the string-handling library’s string-comparison functions,
strcmp and strncmp, which are summarized below.

Figure 8.13 compares three strings using strcmp and strncmp. Function strcmp
performs a character-by-character comparison of its two string arguments. The func-
tion returns:

• 0 if the strings are equal,

• a negative value if the first string is less than the second string, or

• a positive value if the first string is greater than the second string.

Function prototype Function description

int strcmp(const char *s1, const char *s2);
Compares the string s1 with the string s2. The function returns 0,
less than 0 or greater than 0 if s1 is equal to, less than or greater
than s2, respectively.

int strncmp(const char *s1, const char *s2, size_t n);
Compares up to n characters of the string s1 with the string s2.
The function returns 0, less than 0 or greater than 0 if s1 is equal
to, less than or greater than s2, respectively.

8.7 Comparison Functions of the String-Handling Library 407

Function strncmp is equivalent to strcmp but compares up to a specified number of
characters. Function strncmp does not compare characters following a null character
in a string. The program prints the integer value returned by each function call.

How Strings Are Compared
To understand what it means for one string to be “greater than” or “less than”
another, consider the process of alphabetizing last names. You’d, no doubt, place
“Jones” before “Smith” because “J” comes before “S” in the alphabet. But the alpha-
bet is more than just a list of 26 letters—it’s an ordered list of characters. Each letter
occurs in a specific position within the list. “Z” is more than merely a letter of the
alphabet—specifically, “Z” is the alphabet’s 26th letter. Also, recall that lowercase let-
ters have higher numeric values than uppercase letters, so “a” is greater than “A.”

How do the string-comparison functions know that one particular letter comes
before another? All characters are represented inside the computer as numeric codes

1 // fig08_13.c
2 // Using functions strcmp and strncmp
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *s1 = "Happy New Year"; // initialize char pointer
8 const char *s2 = "Happy New Year"; // initialize char pointer
9 const char *s3 = "Happy Holidays"; // initialize char pointer

10
11 printf("s1 = %s\ns2 = %s\ns3 = %s\n\n%s%2d\n%s%2d\n%s%2d\n\n",
12 s1, s2, s3,
13 "strcmp(s1, s2) = ", strcmp(s1, s2),
14 "strcmp(s1, s3) = ", strcmp(s1, s3),
15 "strcmp(s3, s1) = ", strcmp(s3, s1));
16
17 printf("%s%2d\n%s%2d\n%s%2d\n",
18 "strncmp(s1, s3, 6) = ", strncmp(s1, s3, 6),
19 "strncmp(s1, s3, 7) = ", strncmp(s1, s3, 7),
20 "strncmp(s3, s1, 7) = ", strncmp(s3, s1, 7));
21 }

s1 = Happy New Year
s2 = Happy New Year
s3 = Happy Holidays

strcmp(s1, s2) = 0
strcmp(s1, s3) = 1
strcmp(s3, s1) = -1

strncmp(s1, s3, 6) = 0
strncmp(s1, s3, 7) = 1
strncmp(s3, s1, 7) = -1

Fig. 8.13 | Using functions strcmp and strncmp.

408 Chapter 8 Characters and Strings

in character sets such as ASCII and Unicode; when the computer compares two
strings, it actually compares the characters’ numeric codes in each string. This is
called a lexicographical comparison. See Appendix B for the ASCII characters’
numeric values. ASCII is a subset of the Unicode character set.

The negative and positive values returned by strcmp and strncmp are implemen-
tation-dependent. For some, these values are -1 or 1, as in Fig. 8.13. For others, the
values returned are the difference between the numeric codes of the first different
characters in each string. For this program’s comparisons, that’s the difference
between the numeric codes of "N" in "New" and "H" in "Holidays"—6 or -6, depend-
ing on which string is the first argument.

Self Check
1 (Multiple Choice) Which of the following statements about functions strcmp and
strncmp is false?

a) Function strcmp compares its first string argument with its second string ar-
gument, character-by-character.

b) Function strcmp returns 0 if the strings are equal, a negative value if the first
string is less than the second and a positive value if the first string is greater
than the second.

c) Function strncmp is equivalent to strcmp but compares up to a specified
number of characters.

d) Function strncmp compares characters following a null character in a string.
Answer: d) is false. Actually, function strncmp does not compare characters following
a null character in a string.

2 (Discussion) How do the string-comparison functions strcmp and strncmp know
that one particular letter “comes before” another?
Answer: All characters are represented inside the computer as numeric codes in char-
acter sets such as ASCII and Unicode. When the computer compares two strings, it
compares the characters’ numeric codes. This is called a lexicographical comparison.

8.8 Search Functions of the String-Handling Library
This section presents the string-handling library functions that search strings for char-
acters and other strings, summarized in the following table.

Function prototypes and descriptions

char *strchr(const char *s, int c);
Locates the first occurrence of character c in string s. If c is found, strchr returns a pointer
to c in s. Otherwise, a NULL pointer is returned.

size_t strcspn(const char *s1, const char *s2);
Determines and returns the length of the initial segment of string s1 consisting of charac-
ters not contained in string s2.

8.8 Search Functions of the String-Handling Library 409

8.8.1 Function strchr
Function strchr searches for the first occurrence of a character in a string. If the char-
acter is found, strchr returns a pointer to the character in the string; otherwise,
strchr returns NULL. Figure 8.14 searches for the first occurrences of 'a' and 'z' in
"This is a test".

size_t strspn(const char *s1, const char *s2);
Determines and returns the length of the initial segment of string s1 consisting only of
characters contained in string s2.

char *strpbrk(const char *s1, const char *s2);
Locates the first occurrence in string s1 of any character in string s2. If a character from s2
is found, strpbrk returns a pointer to that character in s1. Otherwise, it returns NULL.

char *strrchr(const char *s, int c);
Locates the last occurrence of c in string s. If c is found, strrchr returns a pointer to c in
string s. Otherwise, it returns NULL.

char *strstr(const char *s1, const char *s2);
Locates the first occurrence in string s1 of string s2. If the string is found, strstr returns a
pointer to the string in s1. Otherwise, it returns NULL.

char *strtok(char *s1, const char *s2);
A sequence of calls to strtok breaks string s1 into tokens separated by characters contained
in string s2. Tokens are logical pieces, such as words in a line of text. The first call uses s1 as
the first argument. Subsequent calls to continue tokenizing the same string require NULL as
the first argument. Each call returns a pointer to the current token. If there are no more
tokens, strtok returns NULL.

1 // fig08_14.c
2 // Using function strchr
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *string = "This is a test"; // initialize char pointer
8 char character1 = 'a';
9 char character2 = 'z';

10
11 // if character1 was found in string
12 if (strchr(string, character1) != NULL) { // can remove "!= NULL"
13 printf("\'%c\' was found in \"%s\".\n", character1, string);
14 }
15 else { // if character1 was not found
16 printf("\'%c\' was not found in \"%s\".\n", character1, string);
17 }

Fig. 8.14 | Using function strchr. (Part 1 of 2.)

Function prototypes and descriptions

410 Chapter 8 Characters and Strings

8.8.2 Function strcspn
Function strcspn (Fig. 8.15) determines the length of the initial part of its first string
argument that does not contain any characters from its second string argument. The
function returns the segment’s length.

8.8.3 Function strpbrk
Function strpbrk searches its first string argument for the first occurrence of any char-
acter in its second string argument. If a character from the second argument is found,
strpbrk returns a pointer to the character in the first argument; otherwise, it returns
NULL. Figure 8.16 locates the first occurrence in string1 of any character from string2.

18
19 // if character2 was found in string
20 if (strchr(string, character2) != NULL) { // can remove "!= NULL"
21 printf("\'%c\' was found in \"%s\".\n", character2, string);
22 }
23 else { // if character2 was not found
24 printf("\'%c\' was not found in \"%s\".\n", character2, string);
25 }
26 }

'a' was found in "This is a test".
'z' was not found in "This is a test".

1 // fig08_15.c
2 // Using function strcspn
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 // initialize two char pointers
8 const char *string1 = "The value is 3.14159";
9 const char *string2 = "1234567890";

10
11 printf("string1 = %s\nstring2 = %s\n\n%s\n%s%zu\n", string1, string2,
12 "The length of the initial segment of string1",
13 "containing no characters from string2 = ",
14 strcspn(string1, string2));
15 }

string1 = The value is 3.14159
string2 = 1234567890

The length of the initial segment of string1
containing no characters from string2 = 13

Fig. 8.15 | Using function strcspn.

Fig. 8.14 | Using function strchr. (Part 2 of 2.)

8.8 Search Functions of the String-Handling Library 411

8.8.4 Function strrchr
Function strrchr searches for the last occurrence of the specified character in a string.
If the character is found, strrchr returns a pointer to the character in the string; oth-
erwise, it returns NULL. Figure 8.17 searches for the last occurrence of the character
'z' in the string "A zoo has many animals including zebras".

8.8.5 Function strspn
Function strspn (Fig. 8.18) determines the length of the initial part of its first argu-
ment containing only characters from the string in its second argument. The function
returns the length of the segment.

1 // fig08_16.c
2 // Using function strpbrk
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *string1 = "This is a test";
8 const char *string2 = "beware";
9

10 printf("%s\"%s\"\n'%c'%s \"%s\"\n",
11 "Of the characters in ", string2, *strpbrk(string1, string2),
12 " appears earliest in ", string1);
13 }

Of the characters in "beware"
'a' appears earliest in "This is a test"

Fig. 8.16 | Using function strpbrk.

1 // fig08_17.c
2 // Using function strrchr
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *s1 = "A zoo has many animals including zebras";
8 int c = 'z'; // character to search for
9

10 printf("%s '%c' %s\n\"%s\"\n",
11 "Remainder of s1 beginning with the last occurrence of character",
12 c, "is:", strrchr(s1, c));
13 }

Remainder of s1 beginning with the last occurrence of character 'z' is:
"zebras"

Fig. 8.17 | Using function strrchr.

412 Chapter 8 Characters and Strings

8.8.6 Function strstr
Function strstr searches for the first occurrence of its second string argument in its
first string argument. If the second string is found in the first, strstr returns a pointer
to the second string’s location in the first. Figure 8.19 uses strstr to find the string
"def" in the string "abcdefabcdef".

1 // fig08_18.c
2 // Using function strspn
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *string1 = "The value is 3.14159";
8 const char *string2 = "aehi lsTuv";
9

10 printf("string1 = %s\nstring2 = %s\n\n%s\n%s%zu\n", string1, string2,
11 "The length of the initial segment of string1",
12 "containing only characters from string2 = ",
13 strspn(string1, string2));
14 }

string1 = The value is 3.14159
string2 = aehi lsTuv

The length of the initial segment of string1
containing only characters from string2 = 13

Fig. 8.18 | Using function strspn.

1 // fig08_19.c
2 // Using function strstr
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *string1 = "abcdefabcdef";
8 const char *string2 = "def"; // string to search for
9

10 printf("string1 = %s\nstring2 = %s\n\n%s\n%s%s\n", string1, string2,
11 "The remainder of string1 beginning with the",
12 "first occurrence of string2 is: ", strstr(string1, string2));
13 }

string1 = abcdefabcdef
string2 = def

The remainder of string1 beginning with the
first occurrence of string2 is: defabcdef

Fig. 8.19 | Using function strstr.

8.8 Search Functions of the String-Handling Library 413

8.8.7 Function strtok
Function strtok (Fig. 8.20) breaks a string into a series of tokens—also called tokeniz-
ing the string. A token is a sequence of characters separated by delimiters, such as spaces
or punctuation marks. A delimiter can be any character. For example, in a line of text,
each word is a token, and the spaces and punctuation separating the words are delimit-
ers. You can change the delimiter string in each strtok call. Figure 8.20 tokenizes the
string "This is a sentence with 7 tokens" and prints the tokens. Function strtok mod-
ifies the input string by placing '\0' at the end of each token, so copy the string if you
intend to use it after the calls to strtok. See CERT recommendation STR06-C for the
problems with assuming that strtok does not modify the string in its first argument

First strtok Call
Multiple calls to strtok are required to tokenize a string, assuming it contains more
than one token. The first call to strtok (line 12) receives as arguments a string to
tokenize and a string containing characters that separate the tokens. The statement

char *tokenPtr = strtok(string, " "); // begin tokenizing sentence

1 // fig08_20.c
2 // Using function strtok
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 char string[] = "This is a sentence with 7 tokens";
8
9 printf("The string to be tokenized is:\n%s\n\n", string);

10 puts("The tokens are:");
11
12 char *tokenPtr = strtok(string, " "); // begin tokenizing sentence
13
14 // continue tokenizing sentence until tokenPtr becomes NULL
15 while (tokenPtr != NULL) {
16 printf("%s\n", tokenPtr);
17 tokenPtr = strtok(NULL, " "); // get next token
18 }
19 }

The string to be tokenized is:
This is a sentence with 7 tokens

The tokens are:
This
is
a
sentence
with
7
tokens

Fig. 8.20 | Using function strtok.

SEC

414 Chapter 8 Characters and Strings

assigns tokenPtr a pointer to the first token in string. The second argument, " ",
indicates that tokens are separated by spaces. Function strtok searches for the first
character in string that’s not a delimiter (space). This begins the first token. The
function then finds the next delimiter in the string and replaces it with a null ('\0')
character to terminate the current token. Function strtok saves a pointer to the char-
acter following that token in string and returns a pointer to the current token.

Subsequent strtok Calls
Subsequent strtok calls in line 17 continue tokenizing string. These calls receive
NULL as their first argument to indicate that they should continue tokenizing from the
location in string saved by the last call. If no tokens remain, strtok returns NULL.

Self Check
1 (Multiple Choice) Which function is described by “Locates the first occurrence in
string s1 of string s2—if the string is found, the function returns a pointer to the
string in s1; otherwise, it returns NULL”?

a) strpbrk.
b) strstr.
c) strspn.
d) strcspn.

Answer: b. strstr.

2 (Fill-In) In the context of function strtok, a is a sequence of characters
separated by delimiters.
Answer: token.

8.9 Memory Functions of the String-Handling Library
The string-handling library functions in this section manipulate, compare and search
blocks of memory. These functions treat memory as character arrays and can manip-
ulate any block of data. The following table summarizes the string-handling library’s
memory functions. In the function discussions, “object” refers to a block of data.

Function prototype Function description

void *memcpy(void *s1, const void *s2, size_t n);
Copies n bytes from the object pointed to by s2 into the object pointed
to by s1, then returns a pointer to the resulting object.

void *memmove(void *s1, const void *s2, size_t n);
Copies n bytes from the object pointed to by s2 into the object pointed
to by s1. The copy is performed as if the bytes were first copied from the
object pointed to by s2 into a temporary array and then from the tem-
porary array into the object pointed to by s1. A pointer to the resulting
object is returned.

8.9 Memory Functions of the String-Handling Library 415

The pointer parameters are declared void *, so they can be used to manipulate
memory for any data type. Recall from Chapter 7 that any pointer can be assigned
directly to a void * pointer, and a void * pointer can be assigned directly to a pointer
of any other type. Because a void * pointer cannot be dereferenced, each function
receives a size argument that specifies the number of bytes the function will process.
For simplicity, the examples in this section manipulate character arrays (blocks of
characters). The preceding table’s functions do not check for terminating null charac-
ters because they manipulate blocks of memory that are not necessarily strings.

8.9.1 Function memcpy
Function memcpy copies a specified number of bytes from the object pointed to by its
second argument into the one pointed to by its first argument. The function can receive
a pointer to any type of object. Its result is undefined if the two objects overlap in mem-
ory—that is, they’re parts of the same object. In such cases, use memmove instead.
Figure 8.21 uses memcpy to copy the string in array s2 to array s1. Function memcpy is
more efficient than strcpy when you know the size of the string you’re copying.

int memcmp(const void *s1, const void *s2, size_t n);
Compares the first n bytes of the objects pointed to by s1 and s2. The
function returns 0, less than 0 or greater than 0 if s1 is equal to, less than
or greater than s2.

void *memchr(const void *s, int c, size_t n);
Locates the first occurrence of c (converted to unsigned char) in the first
n bytes of the object pointed to by s. If c is found, memchr returns a
pointer to c in the object; otherwise, it returns NULL.

void *memset(void *s, int c, size_t n);
Copies c (converted to unsigned char) into the first n bytes of the object
pointed to by s, then returns a pointer to the result.

1 // fig08_21.c
2 // Using function memcpy
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 char s1[17] = "";
8 char s2[] = "Copy this string";
9

10 memcpy(s1, s2, 17); // 17 so we copy s2's terminating \0
11 puts("After s2 is copied into s1 with memcpy, s1 contains:");
12 puts(s1);
13 }

Fig. 8.21 | Using function memcpy. (Part 1 of 2.)

Function prototype Function description

PERF

416 Chapter 8 Characters and Strings

8.9.2 Function memmove
Like memcpy, function memmove copies a specified number of bytes from the object
pointed to by its second argument into the object pointed to by its first argument.
Copying is performed as if the bytes were copied from the second argument into a
temporary array, then copied from the temporary array into the first argument. This
allows bytes from one part of a string (or block of memory) to be copied into another
part of the same string (or block of memory), even if the two portions overlap. Other
than memmove, string-manipulation functions that copy characters have undefined
results when copying between parts of the same string. Figure 8.22 uses memmove to
copy the last 10 bytes of array x into the first 10 bytes of array x.

8.9.3 Function memcmp
Function memcmp (Fig. 8.23) compares the specified number of bytes of its first argu-
ment with its second argument’s corresponding bytes. The function returns a value
greater than 0 if the first argument is greater than the second, 0 if the arguments are
equal or a value less than 0 if the first argument is less than the second.

After s2 is copied into s1 with memcpy, s1 contains:
Copy this string

1 // fig08_22.c
2 // Using function memmove
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 char x[] = "Home Sweet Home"; // initialize char array x
8
9 printf("The string in array x before memmove is: %s\n", x);

10 printf("The string in array x after memmove is: %s\n",
11 (char *) memmove(x, &x[5], 10));
12 }

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

Fig. 8.22 | Using function memmove.

1 // fig08_23.c
2 // Using function memcmp
3 #include <stdio.h>
4 #include <string.h>

Fig. 8.23 | Using function memcmp. (Part 1 of 2.)

Fig. 8.21 | Using function memcpy. (Part 2 of 2.)

ERR

8.9 Memory Functions of the String-Handling Library 417

8.9.4 Function memchr
Function memchr searches for the first occurrence of a byte, represented as unsigned
char, in the specified number of bytes of an object. If the byte is found, memchr
returns a pointer to the byte in the object; otherwise, it returns NULL. Figure 8.24
searches for the byte containing 'r' in the string "This is a string".

8.9.5 Function memset
Function memset copies the value of the byte in its second argument into the first n
bytes of the object pointed to by its first argument, where n is specified by the third
argument. You can use memset to set an array’s elements to 0 rather than assigning 0
to each element. For example, a five-element int array n could be reset to 0s with

memset(n, 0, 5);

5
6 int main(void) {
7 char s1[] = "ABCDEFG";
8 char s2[] = "ABCDXYZ";
9

10 printf("s1 = %s\ns2 = %s\n\n%s%2d\n%s%2d\n%s%2d\n", s1, s2,
11 "memcmp(s1, s2, 4) = ", memcmp(s1, s2, 4),
12 "memcmp(s1, s2, 7) = ", memcmp(s1, s2, 7),
13 "memcmp(s2, s1, 7) = ", memcmp(s2, s1, 7));
14 }

s1 = ABCDEFG
s2 = ABCDXYZ

memcmp(s1, s2, 4) = 0
memcmp(s1, s2, 7) = -1
memcmp(s2, s1, 7) = 1

1 // fig08_24.c
2 // Using function memchr
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *s = "This is a string";
8
9 printf("The remainder of s after character 'r' is found is \"%s\"\n",

10 (char *) memchr(s, 'r', 16));
11 }

The remainder of s after character 'r' is found is "ring"

Fig. 8.24 | Using function memchr.

Fig. 8.23 | Using function memcmp. (Part 2 of 2.)

PERF

418 Chapter 8 Characters and Strings

Many hardware architectures have a block copy or clear instruction that the compiler
can use to optimize memset for high-performance zeroing of memory. Figure 8.25
uses memset to copy 'b' into the first 7 bytes of string1.

Self Check
1 (Multiple Choice) Which of the following statements about function memcpy is
false?

a) The function copies a specified number of bytes from the object pointed to
by its second argument into the object pointed to by its first argument.

b) The function can receive a pointer to any type of object.
c) The result of this function is undefined if the two objects are completely sep-

arate in memory.
d) The function is more efficient than strcpy when you know the size of the

string you’re copying.
Answer: c) is false. Actually, the result is undefined if the two objects overlap in mem-
ory—that is, they’re parts of the same object. In such cases, use memmove.

2 (Fill-In) The memory-handling functions of the string-handling library manipu-
late, compare and search blocks of memory, which the functions treat as .
Answer: character arrays.

3 (True/False) Function memmove copies a specified number of bytes from the object
pointed to by its second argument into the object pointed to by its first argument.
Copying is performed as if the bytes were copied from the second argument into a
temporary array, then copied from the temporary array into the first argument. This
allows bytes from one block of memory to be copied into another part of the same
block of memory, even if the two portions overlap.
Answer: True.

1 // fig08_25.c
2 // Using function memset
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 char string1[15] = "BBBBBBBBBBBBBB";
8
9 printf("string1 = %s\n", string1);

10 printf("string1 after memset = %s\n", (char *) memset(string1, 'b', 7));
11 }

string1 = BBBBBBBBBBBBBB
string1 after memset = bbbbbbbBBBBBBB

Fig. 8.25 | Using function memset.

8.10 Other Functions of the String-Handling Library 419

8.10 Other Functions of the String-Handling Library
The two remaining string-handling library functions are strerror and strlen, which
are summarized in the following table.

8.10.1 Function strerror
Function strerror takes an error number and creates an error message string. A
pointer to the string is returned. Figure 8.26 demonstrates strerror.

8.10.2 Function strlen
Function strlen takes a string as an argument and returns the number of characters
in the string—the terminating null character is not included in the length.
Figure 8.27 demonstrates function strlen.

Function prototype Function description

char *strerror(int errornum);
Maps errornum to a full text string in a compiler- and locale-specific
manner and returns the string. Error numbers are defined in errno.h.

size_t strlen(const char *s);
Returns the length of string s—that is, the number of characters pre-
ceding the string’s terminating null character.

1 // fig08_26.c
2 // Using function strerror
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 printf("%s\n", strerror(2));
8 }

No such file or directory

Fig. 8.26 | Using function strerror.

1 // fig08_27.c
2 // Using function strlen
3 #include <stdio.h>
4 #include <string.h>
5
6 int main(void) {
7 const char *string1 = "abcdefghijklmnopqrstuvwxyz";
8 const char *string2 = "four";
9 const char *string3 = "Boston";

Fig. 8.27 | Using function strlen. (Part 1 of 2.)

420 Chapter 8 Characters and Strings

Self Check
1 (True/False) The error message strings returned by function strerror are uni-
form across platforms.
Answer: False. The messages vary by compiler and locale.

2 (True/False) Function strlen takes a string as an argument and returns the num-
ber of characters in the string, including the terminating null character.
Answer: False. Actually, the terminating null character is not included in the length.

8.11 Secure C Programming

Secure String-Processing Functions
Earlier Secure C Programming sections covered C11’s functions printf_s and scan-
f_s. This chapter presented functions sprintf, strcpy, strncpy, strcat, strncat,
strtok, strlen, memcpy, memmove and memset. The C11 standard’s optional Annex K
provides versions of these and many other string-processing and input/output func-
tions. If your C compiler supports Annex K, consider using the secure versions of
these functions. Among other things, the Annex K versions help prevent buffer over-
flows by requiring additional parameters that specify the number of elements in a tar-
get array and by ensuring that pointer arguments are non-NULL.

Reading Numeric Inputs and Input Validation
It’s important to validate the data that you input into a program. For example, when
you ask the user to enter an int in the range 1–100, then attempt to read that int
using scanf, there are several possible problems. The user could enter:

• an int that’s outside the program’s required range (such as 102).

• an int that’s outside that computer’s allowed range for ints (such as
8,000,000,000 on a machine with 32-bit ints).

• a non-integer numeric value (such as 27.43).

• a non-numeric value (such as FOVR).

10
11 printf("%s\"%s\"%s%zu\n%s\"%s\"%s%zu\n%s\"%s\"%s%zu\n",
12 "The length of ", string1, " is ", strlen(string1),
13 "The length of ", string2, " is ", strlen(string2),
14 "The length of ", string3, " is ", strlen(string3));
15 }

The length of "abcdefghijklmnopqrstuvwxyz" is 26
The length of "four" is 4
The length of "Boston" is 6

Fig. 8.27 | Using function strlen. (Part 2 of 2.)

 Summary 421

You can use various functions that you learned in this chapter to fully validate
such input. For example, you could

• use fgets to read the input as a line of text,

• convert the string to a number using strtol and ensure that the conversion
was successful, then

• ensure that the value is in range.

For more information and techniques for converting input to numeric values, see
CERT guideline INT05-C at https://wiki.sei.cmu.edu/.

Self Check
1 (Fill-In) Among other things, the secure string-processing functions of Annex K
help prevent buffer by requiring additional parameters that specify the num-
ber of elements in a target array and by ensuring that pointer arguments are non-NULL.
Answer: overflows.

2 (True/False) It’s important to validate the data you input into a program. You can
use various string-and-character-processing functions to fully validate inputs. For
example, you could use fgets to read the input as a line of text, convert the string to
a number using strtol, ensure the conversion was successful, then ensure that the
value is in range.
Answer: True.

Summary
Section 8.2 Fundamentals of Strings and Characters
• Characters are the fundamental building blocks of source programs. Every program is com-

posed of a sequence of characters that—when grouped together meaningfully—is interpret-
ed by the computer as instructions used to accomplish a task.

• A character constant (p. 388) is an int value represented as a character in single quotes. The
value of a character constant is the character’s integer value in the machine’s character set
(p. 389).

• A string (p. 389) is a series of characters treated as a single unit. A string may include letters,
digits and various special characters (p. 389) such as +, -, *, / and $. String literals, or string
constants, are written in double quotation marks.

• A string in C is an array of characters ending in the null character (p. 389; '\0').
• A string is accessed via a pointer to its first character. The value of a string is the address of

its first character.
• A character array or a variable of type char * can be initialized with a string in a definition.
• When defining a character array to contain a string, the array must be large enough to store

the string and its terminating null character.
• A string can be stored in an array using scanf. Function scanf will read characters until a

space, tab, newline or end-of-file indicator is encountered.
• For a character array to be printed as a string, the array must contain a terminating null

character.

https://wiki.sei.cmu.edu/

422 Chapter 8 Characters and Strings

Section 8.3 Character-Handling Library
• Function isdigit (p. 391) determines whether its argument is a digit (0–9).
• Function isalpha (p. 391) determines whether its argument is an uppercase letter (A–Z) or

a lowercase letter (a–z).
• Function isalnum (p. 391) determines whether its argument is an uppercase letter (A–Z), a

lowercase letter (a–z) or a digit (0–9).
• Function isxdigit (p. 391) determines whether its argument is a hexadecimal digit

(p. 391; A–F, a–f, 0–9).
• Function islower (p. 393) determines whether its argument is a lowercase letter (a–z).
• Function isupper (p. 393) determines whether its argument is an uppercase letter (A–Z).
• Function toupper (p. 393) converts a lowercase letter to uppercase and returns it.
• Function tolower (p. 393) converts an uppercase letter to lowercase and returns it.
• Function isspace (p. 394) determines whether its argument is one of the following

whitespace characters: ' ' (space), '\f', '\n', '\r', '\t' or '\v'.
• Function iscntrl (p. 394) determines whether its argument is one of the following control

characters: '\t', '\v', '\f', '\a', '\b', '\r' or '\n'.
• Function ispunct (p. 394) determines whether its argument is a printing character other

than a space, a digit or a letter.
• Function isprint (p. 394) determines whether its argument is any printing character, in-

cluding the space character.
• Function isgraph (p. 394) determines whether its argument is a printing character other

than the space character.

Section 8.4 String-Conversion Functions
• Function strtod (p. 396) converts a sequence of characters representing a floating-point

value to double. The location specified by its pointer to char * argument is assigned the re-
mainder of the string after the conversion, or to the entire string if no portion of the string
can be converted.

• Function strtol (p. 397) converts a sequence of characters representing an integer to long.
This function works identically to strtod, but the third argument specifies the base of the
value being converted.

• Function strtoul (p. 398) works identically to strtol but converts a sequence of characters
representing an integer to unsigned long int.

Section 8.5 Standard Input/Output Library Functions
• Function fgets (p. 399) reads characters until a newline character or the end-of-file indicator

is encountered. The arguments to fgets are an array of type char, the maximum number of
characters to read and the stream from which to read. A null character ('\0') is appended to
the array after reading terminates. If a newline is encountered, it’s included in the input string.

• Function putchar (p. 399) prints its character argument.
• Function getchar (p. 401) reads a single character from the standard input and returns it

as an integer. If the end-of-file indicator is encountered, getchar returns EOF.
• Function puts (p. 401) takes a string (char *) as an argument and prints the string followed

by a newline character.
• Function sprintf (p. 401) uses the same conversion specifications as function printf to

print formatted data into an array of type char.

 Summary 423

• Function sscanf (p. 402) uses the same conversion specifications as function scanf to read
formatted data from a string.

Section 8.6 String-Manipulation Functions of the String-Handling Library
• Function strcpy copies its second argument string into its first argument char array. You

must ensure that the array is large enough to store the string and its terminating null character.
• Function strncpy (p. 404) is equivalent to strcpy, but specifies the maximum number of

characters to copy from the string into the array. The terminating null character will be cop-
ied only if the number of characters to be copied is one more than the string’s length.

• Function strcat (p. 405) appends its second argument string—including its terminating
null character—to its first argument string. The first character of the second string replaces
the null ('\0') character of the first string. You must ensure that the array used to store the
first string is large enough to store both the first string and the second string.

• Function strncat (p. 404) appends a specified number of characters from the second string
to the first string. A terminating null character is appended to the result.

Section 8.7 Comparison Functions of the String-Handling Library
• Function strcmp (p. 406) compares its first string argument to its second string argument,

character by character. It returns 0 if the strings are equal, a negative value if the first string
is less than the second or a positive value if the first string is greater than the second.

• Function strncmp (p. 406) is equivalent to strcmp, except that strncmp compares a specified
number of characters. If one of the strings is shorter than the number of characters specified,
strncmp compares characters until the null character in the shorter string is encountered.

Section 8.8 Search Functions of the String-Handling Library
• Function strchr (p. 409) searches for the first occurrence of a character in a string. If found,
strchr returns a pointer to the character in the string; otherwise, strchr returns NULL.

• Function strcspn (p. 410) determines the length of the initial part of the string in its first
argument that does not contain any characters from the string in its second argument. The
function returns the segment’s length.

• Function strpbrk (p. 410) searches for the first occurrence in its first argument of any char-
acter in its second argument. If a character from the second argument is found, strpbrk re-
turns a pointer to the character; otherwise, strpbrk returns NULL.

• Function strrchr (p. 411) searches for the last occurrence of a character in a string. If
found, strrchr returns a pointer to the character in the string; otherwise, strrchr returns
NULL.

• Function strspn (p. 412) determines the length of the initial part of the string in its first
argument that contains only characters from the string in its second argument. The func-
tion returns the length of the segment.

• Function strstr (p. 412) searches for the first occurrence of its second string argument in
its first string argument. If the second string is found in the first string, a pointer to the lo-
cation of the string in the first argument is returned.

• A sequence of calls to strtok (p. 413) breaks its first string argument into tokens (p. 413)
that are separated by characters contained in the second string argument. The first call con-
tains the string to tokenize as the first argument. Subsequent calls to continue tokenizing
that string contain NULL as the first argument. A pointer to the current token is returned by
each call. If there are no more tokens when the function is called, it returns NULL.

424 Chapter 8 Characters and Strings

Section 8.9 Memory Functions of the String-Handling Library
• Function memcpy (p. 415) copies a specified number of bytes from the object to which its

second argument points into the object to which its first argument points. The function can
receive a pointer to any type of object.

• Function memmove (p. 416) copies a specified number of bytes from the object pointed to by
its second argument to the object pointed to by its first argument. Copying is accomplished
as if the bytes were copied from the second argument to a temporary array and then copied
from the temporary array to the first argument.

• Function memcmp (p. 416) compares the specified number of bytes of its first and second ar-
guments.

• Function memchr (p. 417) searches for the first occurrence of a byte, represented as unsigned
char, in the specified number of bytes of an object. If the byte is found, a pointer to the byte
is returned; otherwise, a NULL pointer is returned.

• Function memset (p. 417) copies its second argument, treated as an unsigned char, to a
specified number of bytes of the object pointed to by the first argument.

Section 8.10 Other Functions of the String-Handling Library
• Function strerror (p. 419) maps an integer error number into a full text string in a locale-

specific manner. A pointer to the string is returned.
• Function strlen (p. 419) takes a string as an argument and returns the number of charac-

ters in the string—the terminating null character is not included in the length of the string.

Self-Review Exercises
8.1 Write a single statement to accomplish each of the following. Assume variable
c is a char, variables x, y and z are ints, variables d, e and f are doubles, variable ptr
is a char * and s1 and s2 are 100-element char arrays.

a) Convert the character stored in variable c to an uppercase letter. Assign the
result to variable c.

b) Determine whether the value of variable c is a digit. Use the conditional op-
erator as shown in Figs. 8.1–8.3 to print " is a " or " is not a " when the
result is displayed.

c) Determine whether the value of variable c is a control character. Use the con-
ditional operator to print " is a " or " is not a " when the result is displayed.

d) Read a line of text into array s1 from the keyboard. Do not use scanf.
e) Print the line of text stored in array s1. Do not use printf.
f) Assign ptr the location of the last occurrence of c in s1.
g) Print the value of variable c. Do not use printf.
h) Determine whether the value of c is a letter. Use the conditional operator to

print " is a " or " is not a " when the result is displayed.
i) Read a character from the keyboard and store the character in variable c.
j) Assign ptr the location of the first occurrence of s2 in s1.
k) Determine whether the value of variable c is a printing character. Use the

conditional operator to print " is a " or " is not a " when the result is dis-
played.

 Answers to Self-Review Exercises 425

l) Read three double values into variables d, e and f from the string "1.27 10.3
9.432".

m)Copy the string stored in array s2 into array s1.
n) Assign ptr the location of the first occurrence in s1 of any character from s2.
o) Compare the string in s1 with the string in s2. Print the result.
p) Assign ptr the location of the first occurrence of c in s1.
q) Use sprintf to print the values of integer variables x, y and z into array s1.

Each value should be printed with a field width of 7.
r) Append 10 characters from the string in s2 to the string in s1.
s) Determine the length of the string in s1. Print the result.
t) Assign ptr to the location of the first token in s2. Tokens in the string s2

are separated by commas (,).

8.2 Show two different ways to initialize char array vowel with the string "AEIOU".

8.3 What, if anything, prints when each of the following C statements is per-
formed? If the statement contains an error, describe the error and indicate how to cor-
rect it. Assume the following variable definitions:

char s1[50] = "jack";
char s2[50] = "jill";
char s3[50] = "";

a) printf("%c%s", toupper(s1[0]), &s1[1]);
b) printf("%s", strcpy(s3, s2));
c) printf("%s", strcat(strcat(strcpy(s3, s1), " and "), s2));
d) printf("%zu", strlen(s1) + strlen(s2));
e) printf("%zu", strlen(s3)); // using s3 after part (c) executes

8.4 Find the error in each of the following and explain how to correct it:
a) char s[10] = "";

strncpy(s, "hello", 5);

printf("%s\n", s);
b) printf("%s", 'a');
c) char s[12] = "";

strcpy(s, "Welcome Home");
d) if (strcmp(string1, string2)) {

 puts("The strings are equal");

}

Answers to Self-Review Exercises
8.1 See the answers below:

a) c = toupper(c);
b) printf("'%c'%sdigit\n", c, isdigit(c) ? " is a " : " is not a ");
c) printf("'%c'%scontrol character\n",

 c, iscntrl(c) ? " is a " : " is not a ");
d) fgets(s1, 100, stdin);

426 Chapter 8 Characters and Strings

e) puts(s1);
f) ptr = strrchr(s1, c);
g) putchar(c);
h) printf("'%c'%sletter\n", c, isalpha(c) ? " is a " : " is not a ");
i) c = getchar();
j) ptr = strstr(s1, s2);
k) printf("'%c'%sprinting character\n",

 c, isprint(c) ? " is a " : " is not a ");
l) sscanf("1.27 10.3 9.432", "%f%f%f", &d, &e, &f);
m)strcpy(s1, s2);
n) ptr = strpbrk(s1, s2);
o) printf("strcmp(s1, s2) = %d\n", strcmp(s1, s2));
p) ptr = strchr(s1, c);
q) sprintf(s1, "%7d%7d%7d", x, y, z);
r) strncat(s1, s2, 10);
s) printf("strlen(s1) = %zu\n", strlen(s1));
t) ptr = strtok(s2, ",");

8.2 char vowel[] = "AEIOU";
char vowel[] = {'A', 'E', 'I', 'O', 'U', '\0'};

8.3 See the answers below:
a) Jack
b) jill
c) jack and jill
d) 8
e) 13

8.4 See the answers below:
a) Error: Function strncpy does not write a terminating null character to array

s, because its third argument is equal to the length of the string "hello".
Correction: Make the third argument of strncpy 6, or assign '\0' to s[5].

b) Error: Attempting to print a character constant as a string.
Correction: Use %c to output the character, or replace 'a' with "a".

c) Error: Character array s is not large enough to store the terminating null
character.
Correction: Declare the array with more elements.

d) Error: Function strcmp returns 0 if the strings are equal; therefore, the con-
dition in the if statement is false, and the printf will not execute.
Correction: Compare the result of strcmp with 0 in the condition.

Exercises
8.5 (Character Testing) Write a program that inputs a character from the keyboard
and tests it with each of the character-handling library functions. The program
should print the value returned by each function.

 Exercises 427

8.6 (Displaying Strings in Uppercase and Lowercase) Write a program that inputs
a line of text into char array s[100]. Display the line in uppercase letters and in low-
ercase letters.

8.7 (Converting Strings to Integers for Calculations) Write a program that inputs
four strings representing integers, converts the strings to integers, sums the values and
prints the total of the four values.

8.8 (Converting Strings to Floating Point for Calculations) Write a program that
inputs four strings representing floating-point values, converts the strings to double
values, sums the values and prints the total of the four values.

8.9 (Comparing Strings) Write a program that uses function strcmp to compare
two strings input by the user. The program should state whether the first string is less
than, equal to or greater than the second string.

8.10 (Comparing Portions of Strings) Write a program that uses function strncmp
to compare two strings input by the user. The program should input the number of
characters to be compared, then display whether those characters from the first string
are less than, equal to or greater than the second string.

8.11 (Random Sentences) Use random-number generation to create sentences. Your
program should use four arrays of pointers to char called article, noun, verb and
preposition. Create a sentence by selecting a word at random from each array in the
following order: article, noun, verb, preposition, article and noun. The arrays
should be filled as follows: The article array should contain the articles "the", "a",
"one", "some" and "any"; the noun array should contain the nouns "boy", "girl",
"dog", "town" and "car"; the verb array should contain the verbs "drove", "jumped",
"ran", "walked" and "skipped"; the preposition array should contain the preposi-
tions "to", "from", "over", "under" and "on".

As each word is picked, concatenate it to the previous words in an array large
enough to hold the entire sentence. Separate the words by spaces. The final sentence
should start with a capital letter and end with a period. Generate 20 such sentences.
Modify your program to produce a short story consisting of several of these sen-
tences. (How about the possibility of a random term-paper writer?)

8.12 (Limericks) A limerick is a humorous five-line verse in which the first and sec-
ond lines rhyme with the fifth, and the third line rhymes with the fourth. Using tech-
niques similar to those developed in Exercise 8.11, write a program that produces
random limericks. Polishing this program to produce good limericks is a challenging
problem, but the result will be worth the effort!

8.13 (Pig Latin) Write a program that encodes English-language phrases into pig
Latin. Pig Latin is a form of coded language often used for amusement. Many varia-
tions exist in the methods used to form pig-Latin phrases. For simplicity, use the fol-
lowing algorithm:

To form a pig-Latin phrase from an English-language phrase, tokenize the phrase
into words with function strtok. To translate each English word into a pig-Latin

428 Chapter 8 Characters and Strings

word, place the first letter of the English word at the end of the English word and
add the letters "ay". Thus the word "jump" becomes "umpjay", the word "the"
becomes "hetay" and the word "computer" becomes "omputercay". Blanks between
words remain as blanks. Assume the following: The English phrase consists of words
separated by blanks, there are no punctuation marks, and all words have two or more
letters. Function printLatinWord should display each word. [Hint: Each time str-
tok finds a token, pass the token pointer to function printLatinWord, and print the
pig-Latin word. We’ve provided simplified pig-Latin conversion rules here. For more
detailed rules and variations, visit https://en.wikipedia.org/wiki/Pig_latin.]

8.14 (Tokenizing Telephone Numbers) Write a program that inputs a telephone
number as a string in the form (555) 555-5555. Use function strtok to extract as to-
kens the area code, the first three digits of the phone number and the last four digits
of the phone number. Concatenate the phone number’s seven digits into one string.
Convert the area-code string and phone-number string to integers, then display both.

8.15 (Displaying a Sentence with Its Words Reversed) Write a program that inputs
a line of text, tokenizes the line with function strtok and outputs the tokens in re-
verse order.

8.16 (Searching for Substrings) Write a program that inputs a line of text and a
search string from the keyboard. Using function strstr, locate the first occurrence of
the search string in the line of text. Assign the location to variable searchPtr of type
char *. If the search string is found, print the remainder of the line of text beginning
with the search string. Then, use strstr again to locate the next occurrence of the
search string in the line of text. If a second occurrence is found, print the remainder
of the line of text beginning with the second occurrence. [Hint: The second call to
strstr should contain searchPtr + 1 as its first argument.]

8.17 (Counting the Occurrences of a Substring) Write a program based on
Exercise 8.16 that inputs several lines of text and a search string and uses function
strstr to determine the total occurrences of the search string in the lines of text. Print
the result.

8.18 (Counting the Occurrences of a Character) Write a program that inputs several
lines of text and a search character and uses function strchr to determine the total
occurrences of the character in the lines of text.

8.19 (Counting the Letters of the Alphabet in a String) Write a program based on
the program of Exercise 8.18 that inputs several lines of text and uses function strchr
to determine the total occurrences of each letter of the alphabet in the lines of text.
Uppercase and lowercase letters should be counted together. Store the totals for each
letter in an array and print the values in tabular format after the totals have been de-
termined.

8.20 (Counting the Number of Words in a String) Write a program that inputs sev-
eral lines of text and uses strtok to count the total number of words. Assume that the
words are separated by either spaces or newline characters.

https://en.wikipedia.org/wiki/Pig_latin

 Special Section: Advanced String-Manipulation Exercises 429

8.21 (Alphabetizing a List of Strings) Use the string-comparison functions and the
techniques for sorting arrays to write a program that alphabetizes a list of strings. Use
the names of 10 or 15 towns in your area as data for your program.

8.22 Appendix B shows the numeric code representations for the ASCII character
set. Study Appendix B, then state whether each of the following is true or false.

a) The letter "A" comes before the letter "B".
b) The digit “9” comes before the digit "0".
c) The commonly used symbols for addition, subtraction, multiplication and

division all come before any of the digits.
d) The digits come before the letters.
e) If a sort program sorts strings into ascending sequence, then the program

will place the symbol for a right parenthesis before the symbol for a left pa-
renthesis.

8.23 (Strings Starting with "b") Write a program that reads a series of strings and
prints only those beginning with the letter "b".

8.24 (Strings Ending with "ed") Write a program that reads a series of strings and
prints only those that end with the letters "ed".

8.25 (Printing Letters for Various ASCII Codes) Write a program that inputs an AS-
CII code and prints the corresponding character.

8.26 (Write Your Own Character-Handling Functions) Using the ASCII character
chart in Appendix B as a guide, write your own versions of the character-handling
functions in Section 8.3.

8.27 (Write Your String-Conversion Functions) Write your own versions of the
functions in Section 8.4 for converting strings to numbers.

8.28 (Write Your Own String-Copy and String-Concatenation Functions) Write
two versions of each string-copy and string-concatenation function in Section 8.6.
The first version should use array indexing, and the second should use pointers and
pointer arithmetic.

8.29 (Write Your Own String-Comparison Functions) Write two versions of each
string-comparison function in Fig. 8.13. The first version should use array indexing,
and the second should use pointers and pointer arithmetic.

8.30 (Write Your Own String-Length Function) Write two versions of function
strlen in Fig. 8.27. The first version should use array indexing, and the second
should use pointers and pointer arithmetic.

Special Section: Advanced String-Manipulation Exercises
The preceding exercises are keyed to the text and designed to test the reader’s under-
standing of fundamental string-manipulation concepts. This section contains inter-
mediate and advanced problems that you should find challenging yet enjoyable.
They vary considerably in difficulty. Some require an hour or two of programming.

430 Chapter 8 Characters and Strings

Others are useful for lab assignments that might require two or three weeks of study
and implementation. Some are challenging term projects.

8.31 (Text Analysis) String-manipulation capabilities enable some rather interesting
approaches to analyzing the writings of great authors. Much attention has been fo-
cused on whether William Shakespeare ever lived. Some scholars find substantial ev-
idence that Christopher Marlowe actually penned the masterpieces attributed to
Shakespeare. Researchers have used computers to find similarities in the writings of
these two authors. This exercise examines three methods for analyzing texts with a
computer.

a) Write a program that reads several lines of text and prints a table indicating
the number of occurrences of each letter of the alphabet in the text. For ex-
ample, the following phrase contains one “a,” two “b’s,” no “c’s,” and so on:

To be, or not to be: that is the question:

b) Write a program that reads several lines of text and prints a table indicating
the number of one-letter words, two-letter words, three-letter words, and so
on, appearing in the text. For example, the phrase

Whether 'tis nobler in the mind to suffer

contains

c) Write a program that reads several lines of text and prints a table indicating
the number of occurrences of each different word in the text. The program
should include the words in the table in the same order in which they appear
in the text. For example, the lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the words "to" three times, "be" two times, "or" once, and so on.

8.32 (Printing Dates in Various Formats) Dates are commonly printed in several
different formats in business correspondence. Two of the more common formats are

07/21/2003 and July 21, 2003

Write a program that reads a date in the first format and prints it in the second for-
mat.

Word length Occurrences

1 0
2 2
3 1
4 2 (including ’tis)
5 0
6 2
7 1

 Special Section: Advanced String-Manipulation Exercises 431

8.33 (Check Protection) Computers are frequently used in check-writing systems,
such as payroll and accounts-payable applications. Many stories circulate regarding
weekly paychecks being printed (by mistake) for amounts in excess of $1 million.
Weird amounts are printed by computerized check-writing systems because of hu-
man error and/or machine failure. Systems designers, of course, make every effort to
build controls into their systems to prevent erroneous checks from being issued.

Another serious problem is someone intentionally altering a check amount then
cashing it fraudulently. To prevent a dollar amount from being altered, most comput-
erized check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in
which the computer may print an amount. Suppose a paycheck contains nine blank
spaces in which the computer is supposed to print the amount of a weekly paycheck. If
the amount is large, then all nine of those spaces will be filled—for example:

11,230.60 (check amount)

123456789 (position numbers)

On the other hand, if the amount is less than $1,000, then several of the spaces
will ordinarily be left blank—for example,

 99.87

123456789

contains four blank spaces. If a check is printed with blank spaces, it’s easier for
someone to alter the amount of the check. To prevent such alteration, many check-
writing systems insert leading asterisks to protect the amount as follows:

****99.87

123456789

Write a program that inputs a dollar amount to be printed on a check and then
prints the amount in check-protected format with leading asterisks if necessary.
Assume that nine spaces are available for printing an amount.

8.34 (Word Equivalent of a Check Amount) Continuing the discussion of the previ-
ous exercise: One common check-writing security method requires that the check
amount be both written in numbers and “spelled out” in words. Even if someone is able
to alter the numerical amount of the check, it’s extremely difficult to change the
amount in words. Write a program that inputs a numeric check amount and writes the
word equivalent of the amount. For example, the amount 52.43 should be written as

FIFTY TWO and 43/100

8.35 (Project: A Metric Conversion Program) Write a program that assists the user
with metric conversions. Allow the user to specify the names of the units as strings (i.e.,
centimeters, liters, grams, and so on for the metric system and inches, quarts, pounds,
and so on for the English system) and should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

432 Chapter 8 Characters and Strings

Your program should recognize invalid conversions. For example, the following ques-
tion is not meaningful—"feet" are length units while "kilograms" are mass units.

"How many feet are in 5 kilograms?"

8.36 (Cooking with Healthier Ingredients) Obesity in the United States is increasing
at an alarming rate. Check the Centers for Disease Control and Prevention (CDC)
webpage at www.cdc.gov/obesity/data/index.html, which contains United States
obesity data and facts. As obesity increases, so do occurrences of related problems (e.g.,
heart disease, high blood pressure, high cholesterol, type 2 diabetes). Write a program
that helps users choose healthier ingredients when cooking, and helps those allergic to
certain foods (e.g., nuts, gluten) find substitutes. The program should read a recipe
from the user and suggest healthier replacements for some of the ingredients. For sim-
plicity, your program should assume the recipe has no abbreviations for measures such
as teaspoons, cups, and tablespoons, and uses numerical digits for quantities (e.g., 1 egg,
2 cups) rather than spelling them out (one egg, two cups). Some common substitutions
are shown in the following table. Your program should display a warning such as, “Al-
ways consult your physician before making significant changes to your diet.”

Your program should take into consideration that replacements are not always
one-for-one. For example, if a cake recipe calls for three eggs, it might reasonably use
six egg whites instead. Conversion data for measurements and substitutes can be
obtained at various websites. Your program should consider the user’s health con-
cerns, such as high cholesterol, high blood pressure, weight loss, gluten allergy, and
so on. For high cholesterol, the program should suggest substitutes for eggs and
dairy products; if the user wishes to lose weight, low-calorie substitutes for ingredi-
ents such as sugar should be suggested.

8.37 (Spam Scanner) Spam (or junk e-mail) costs U.S. organizations billions of dol-
lars a year in spam-prevention software, equipment, network resources, bandwidth,

Ingredient Substitution

1 cup sour cream 1 cup yogurt
1 cup milk 1/2 cup evaporated milk and 1/2 cup water
1 teaspoon lemon juice 1/2 teaspoon vinegar
1 cup sugar 1/2 cup honey, 1 cup molasses or 1/4 cup agave nectar
1 cup butter 1 cup margarine or yogurt
1 cup flour 1 cup rye or rice flour
1 cup mayonnaise 1 cup cottage cheese or 1/8 cup mayonnaise and 7/8 cup yogurt
1 egg 2 tablespoons cornstarch, arrowroot flour or potato starch or 2 egg

whites or 1/2 of a large banana (mashed)
1 cup milk 1 cup soy milk
1/4 cup oil 1/4 cup applesauce
white bread whole-grain bread

www.cdc.gov/obesity/data/index.html
www.cdc.gov/obesity/data/index.html

 A Challenging String-Manipulation Project 433

and lost productivity. Research online some of the most common spam e-mail mes-
sages and words, and check your own junk e-mail folder. Create a list of 30 words and
phrases commonly found in spam messages. Write a program in which the user enters
an e-mail message. Read the message into a large character array and ensure that the
program does not attempt to insert characters past the end of the array. Then scan
the message for each of the 30 keywords or phrases. For each occurrence of one of
these within the message, add a point to the message’s “spam score.” Next, rate the
likelihood that the message is spam, based on the number of points it received.

8.38 (SMS Language) Short Message Service (SMS) is a communications service that
allows sending text messages of 160 or fewer characters between mobile phones. With
the proliferation of mobile phone use worldwide, SMS is being used in many develop-
ing nations for political purposes (e.g., voicing opinions and opposition), reporting
news about natural disasters, and so on. Because the length of SMS messages is limited,
SMS Language—abbreviations of common words and phrases in mobile text messages,
e-mails, instant messages, etc.—is often used. For example, “in my opinion” is “IMO”
in SMS Language. Research SMS Language online. Write a program that lets the user
enter a message using SMS Language, then translates it into English (or your own lan-
guage). Also provide a mechanism to translate text written in English (or your own lan-
guage) into SMS Language. One potential problem is that one SMS abbreviation could
expand into a variety of phrases. For example, IMO (as used above) could also stand for
“International Maritime Organization,” “in memory of,” etc.

8.39 (Gender Neutrality) In Exercise 1.6, you researched eliminating sexism in all
forms of communication. You then described the algorithm you’d use to read
through a paragraph of text and replace gender-specific words with gender-neutral
equivalents. Create a program that reads a paragraph of text, then replaces gender-
specific words with gender-neutral ones. Display the resulting gender-neutral text.

A Challenging String-Manipulation Project
8.40 (Project: A Crossword-Puzzle Generator) Most people have worked a cross-
word puzzle at one time or another, but few have ever attempted to generate one.
Generating a crossword puzzle is a difficult problem. It’s suggested here as a string-
manipulation project requiring substantial sophistication and effort. There are many
issues you must resolve to get even the simplest crossword-puzzle generator program
working. For example, how does one represent the grid of a crossword puzzle inside
the computer? Should one use a series of strings, or perhaps two-dimensional arrays?
You need a source of words (i.e., a computerized dictionary) that can be directly ref-
erenced by the program. In what form should these words be stored to facilitate the
complex manipulations required by the program? The really ambitious reader will
want to generate the “clues” portion of the puzzle in which the brief hints for each
“across” word and each “down” word are printed for the puzzle worker. Merely print-
ing a version of the blank puzzle itself is not a simple problem.

434 Chapter 8 Characters and Strings

Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua
Boklnxhmywex
8.41 (Pqyoaf X Nylfomigrob: Cuzqvbpcxo vlk Adzdujcjjl) No doubt, you noticed
the section title above and this exercise’s title both look like gibberish. This is not a
mistake! In this exercise, we continue our focus on security by introducing cryptog-
raphy. You’ll create functions that implement a Vigenère secret-key cipher.3,4 After
encrypting and decrypting your own text, you can use your decrypt function with
our secret key to decrypt the encrypted titles above.

Cryptography
Cryptography has been used for thousands of years5,6 and is critically important in
today’s connected world. Every day, cryptography is used behind the scenes to ensure
that your Internet-based communications are private and secure. For example, most
websites (including deitel.com) now use the HTTPS protocol to encrypt and decrypt
your web interactions.

Caesar Cipher
Julius Caesar used a simple substitution cipher to encrypt military communications.7

Known as the Caesar cipher, his technique replaces every letter in a message with the
letter three ahead in the alphabet. So, A is replaced with D, B with E, C with F, …
X with A, Y with B and Z with C. Thus, the unencrypted text

Caesar Cipher

would be encrypted as
Fdhvdu Flskhu

The encrypted text is known as ciphertext. The unencrypted text is known as plain-
text or cleartext.

Experimenting with Ciphers
For a fun way to play with the Caesar cipher and many other cipher algorithms, visit:

https://cryptii.com/pipes/caesar-cipher

which is an online implementation of the open-source cryptii project:
https://github.com/cryptii/cryptii

On cryptii.com, you can enter plaintext, choose a cipher to use, specify that cipher’s
settings and view the resulting ciphertext.

3. “Crypto Corner—Vigenère Cipher.” Accessed December 23, 2020. https://crypto.inter-
active-maths.com/vigenegravere-cipher.html.

4. “Vigenère cipher.” Accessed December 23, 2020. https://en.wikipedia.org/wiki/
Vigenère_cipher.

5. “Cryptography.” Accessed December 23, 2020. https://en.wikipedia.org/wiki/Cryptog-
raphy#History_of_cryptography_and_cryptanalysis.

6. Binance Academy, “History of Cryptography.” Accessed December 23, 2020. https://
www.binance.vision/security/history-of-cryptography.

7. “Caesar Cipher.” Accessed December 23, 2020. https://en.wikipedia.org/wiki/
Caesar_cipher.

SEC

https://cryptii.com/pipes/caesar-cipher
https://github.com/cryptii/cryptii
https://crypto.interactive-maths.com/vigenegravere-cipher.html
https://en.wikipedia.org/wiki/Vigen�re_cipher
https://en.wikipedia.org/wiki/Cryptography#History_of_cryptography_and_cryptanalysis
https://www.binance.vision/security/history-of-cryptography
https://en.wikipedia.org/wiki/Caesar_cipher
https://crypto.interactive-maths.com/vigenegravere-cipher.html
https://en.wikipedia.org/wiki/Vigen�re_cipher
https://en.wikipedia.org/wiki/Cryptography#History_of_cryptography_and_cryptanalysis
https://www.binance.vision/security/history-of-cryptography
https://en.wikipedia.org/wiki/Caesar_cipher

 Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua Boklnxhmywex 435

Vigenère Cipher
Simple substitution ciphers like the Caesar cipher are relatively easy to decrypt. For
example, “e” is the most frequently used English letter. So, you could study English
ciphertext and assume that the most frequently appearing character probably is an “e.”

The Vigenère secret-key cipher uses letters from the plaintext and a secret key to
locate replacement characters in 26 Caesar ciphers—one for each letter of the alphabet.
These 26 ciphers form a 26-by-26 two-dimensional array called the Vigenère square:

You look up substitutions using the bold blue letters that label the rows and columns.

Secret-Key Requirements
For the Vigenère cipher described here, the secret key must contain only letters. Like
passwords, the secret key should not be easy to guess. To create the ciphertext in the
titles at the beginning of this exercise, we used as our secret key the following 11 ran-
domly selected characters:

XMWUJBVYHXZ

Your key can have as many characters as you like. The person decrypting the cipher-
text must know the secret key used to create the ciphertext.8 Presumably, you’d pro-
vide that in advance—possibly in a face-to-face meeting. The secret key must, of
course, be carefully guarded.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

8. There are many websites offering Vigenère cipher decoders that attempt to decrypt ciphertext
without the original secret key. We tried several, but none restored our original text.

436 Chapter 8 Characters and Strings

The Vigenère Cipher Encryption Algorithm
To see how the Vigenère cipher works, let’s use the key "XMWUJBVYHXZ" and encrypt
the plaintext string:

Welcome to encryption

Our encryption and decryption implementations preserve the plaintext’s original
case. Uppercase letters in the plaintext remain as uppercase in the ciphertext and vice
versa, and lowercase letters in the plaintext remain as lowercase in the ciphertext and
vice versa. We chose to pass non-letters in the plaintext—like spaces, digits and punc-
tuation—through to the ciphertext and vice versa.

First, we repeat the secret key until the length matches the plaintext:

In the diagram above, we highlighted in light blue the secret key, then in darker blue
the secret key’s eight repeated letters.

We begin the encryption by using the first letter in the repeating key text ('X') to
select a row in the Vigenère square and using the first letter in the plaintext ('W') to
select a column. The intersection of that row and column (highlighted below) con-
tains the letter to substitute in the ciphertext for 'W'—in this case, 'T':

Plaintext: W e l c o m e t o e n c r y p t i o n

Repeating key text: X M W U J B V Y H X Z X M W U J B V Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

 Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua Boklnxhmywex 437

This process continues for each pair of letters from the secret key and the plaintext:

Decrypting with the Vigenère Cipher
The decryption process returns the ciphertext to the original plaintext. It’s similar to
what we described above and requires the same secret key used to encrypt the text.
Like the encryption algorithm, the decryption algorithm cycles through the secret key’s
letters. So, again, we repeat the secret key until the length matches the ciphertext:

We begin the decryption by using the first letter in the repeating key text ('X') to
select a row in the Vigenère square. Next, we locate within that row the first letter in
the ciphertext ('T'). Finally, we replace the ciphertext letter with the plaintext letter
at the top of that column ('W'), as highlighted in the Vigenère square below:

This process continues for each pair of letters from the secret key and the ciphertext:

Plaintext: W e l c o m e t o e n c r y p t i o n

Repeating key text: X M W U J B V Y H X Z X M W U J B V Y

Ciphertext: T q h w x n z r v b m z d u j c j j l

Ciphertext: T q h w x n z r v b m z d u j c j j l

Repeating key text: X M W U J B V Y H X Z X M W U J B V Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Ciphertext: T q h w x n z r v b m z d u j c j j l

Repeating key text: X M W U J B V Y H X Z X M W U J B V Y

Plaintext: W e l c o m e t o e n c r y p t i o n

438 Chapter 8 Characters and Strings

Implementing the Vigenère Cipher
For this exercise, you should implement your Vigenère cipher code in the file
cipher.c. This source-code file should contain the following items:

• Function checkKey receives a secret-key string and returns true if that string
consists only of letters. Otherwise, this function returns false, in which case
the key cannot be used with the Vigenère cipher algorithm. This function is
called by the encrypt and decrypt functions described below.

• Function getSubstitution receives a secret-key character, a character from a
plaintext or ciphertext string and a bool indicating whether to encrypt (true)
or decrypt (false) the character in the second argument. This function is
called by the encrypt and decrypt functions (described below) to perform the
Vigenère cipher encryption or decryption algorithm for one character. The
function contains the Vigenère square as a 26-by-26 two-dimensional static
const char array.

• Function encrypt receives a string containing the plaintext to encrypt, a char-
acter array in which to write the encrypted text, and the secret key. The func-
tion iterates through the plaintext characters. For each letter, encrypt calls
getSubstitution, passing the current secret-key character, the letter to encrypt
and true. Function getSubstitution then performs the Vigenère cipher
encryption algorithm for that letter and returns its ciphertext equivalent.

• Function decrypt receives a string containing the ciphertext to decrypt, a
character array in which to write the resulting plaintext, and the secret key
used to create the ciphertext. The function iterates through the ciphertext
characters. For each letter, decrypt calls getSubstitution, passing the current
secret key character, the letter to decrypt and false. Function getSubstitu-
tion then performs the Vigenère cipher decryption algorithm for that letter
and returns its plaintext equivalent.

Other Files You Should Create
In addition to cipher.c, you should create the following code files:

• cipher.h should contain the encrypt and decrypt function prototypes.

• cipher_test.c, which #includes "cipher.h" and uses your encrypt and
decrypt functions to encrypt and decrypt text.

cipher_test.c
In your application, perform the following tasks:

1. Prompt for and input a plaintext sentence to encrypt and a secret key con-
sisting only of letters, call encrypt to create the ciphertext, then display it. Use
our secret key XMWUJBVYHXZ—this will enable you to decrypt the gibberish at
the beginning of this exercise.

 Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua Boklnxhmywex 439

2. Use your decrypt function and the secret key you entered in Step 1 to decrypt
the ciphertext you just created. Display the resulting plaintext to ensure your
decrypt function worked correctly.

3. Prompt for and input either the ciphertext section title that precedes this ex-
ercise or the exercise ciphertext title. Then, use your decrypt function and the
secret-key text you entered in Step 1 to decrypt the ciphertext.

As always, you should ensure that the character arrays into which you write encrypted
or decrypted text are large enough to store the text and its terminating null character.

Once your Vigenère cipher encryption and decryption algorithms work, have
some fun sending and receiving encrypted messages with your friends. When you
pass your secret key to the person who’ll use it to decrypt your ciphertext messages,
focus on keeping your key secure.

Compiling Your Code
In Visual C++ and Xcode, simply add all three files to your project, then compile and
run the code. For GNU gcc, execute the following command from the folder con-
taining cipher.c, cipher.h and cipher_test.c files:

gcc -std=c18 -Wall cipher.c cipher_test.c -o cipher_test

This will create the command cipher_test, which you can run with ./cipher_test.

Weakness in Secret-Key Cryptography: A Look to Public-Key Cryptography
Secret-key encryption and decryption have a weakness—the ciphertext is only as
secure as the secret key. The ciphertext can be decrypted by anyone who discovers or
steals the secret key. In the next exercise, we introduce public-key cryptography. This
technique performs encryption with a public key known to every sender who may
want to send a secret message to a particular receiver. The public key can be used to
encrypt messages but not decrypt them. The messages can be decrypted only with a
paired private key known only to the receiver, so it’s much more secure than the secret
key in secret-key cryptography. In the next case study exercise, you’ll explore public-
key cryptography.

A Note about Cryptography and Computing Power
Ideally, Ciphertext should be impossible to “break”—that is, it should not be possible
to determine the plaintext from the ciphertext without the decryption key. For vari-
ous reasons, that goal is impractical. So, designers of cryptography schemes settle for
making them extraordinarily difficult to break. One problem with today’s increas-
ingly powerful computers is that they’re making it possible to break most encryption
schemes in use over the last few decades.

Cryptography is at the root of cryptocurrencies such as Bitcoin.9 The phenome-
nally powerful computers that quantum computing will make possible are putting

9. “Cryptocurrency.” Accessed December 25, 2020. https://www.investopedia.com/terms/c/
cryptocurrency.asp.

https://www.investopedia.com/terms/c/cryptocurrency.asp
https://www.investopedia.com/terms/c/cryptocurrency.asp

440 Chapter 8 Characters and Strings

cryptography schemes and cryptocurrencies at risk.10,11 The cryptocurrency commu-
nity is working on these challenges.12,13,14

8.42 (Vigenère Cipher Modification—Supporting All ASCII Characters) Your
Vigenère cipher implementation from Exercise 8.41 encrypts and decrypts only the
letters A–Z. All other characters simply pass through as is. Modify your implementa-
tion to support the complete ASCII character set shown in Appendix B.

Secure C Programming Case Study: Public-Key Cryptography
8.43 (RSA15,16,17 Public-Key Cryptography) In the last case study, you began learning
about secret-key cryptography. The sender’s plaintext is encrypted with a secret key to
form ciphertext. The receiver uses the same secret key to decode the ciphertext, forming
the original plaintext—this is called symmetric encryption. A problem with secret-key
cryptography is that the security of the ciphertext is only as good as the security of the
secret key, and several copies of that key are “floating around.” In an attempt to correct
this problem, public-key cryptography was proposed by Diffie–Hellman.18

In this case-study exercise, we walk step-by-step through the RSA Public-Key
Cryptography algorithm. In particular, we focus on how to generate:

• the public key that any sender can use to encrypt plaintext into ciphertext for
a particular receiver, and

• the private key that only the particular receiver can use to decrypt the
ciphertext.

RSA is based on sophisticated mathematics, but the steps you need to perform to gen-
erate the public and private keys, encrypt messages with the public key and decrypt

10. “The Impact of Quantum Computing on Present Cryptography.” Accessed December 25,
2020. https://arxiv.org/pdf/1804.00200.pdf.

11. “Quantum Computing and its Impact on Cryptography.” Accessed December 25, 2020.
https://www.cryptomathic.com/news-events/blog/quantum-computing-and-its-impact-
on-cryptography.

12. “How Should Crypto Prepare for Google’s ‘Quantum Supremacy’?” Accessed December 25,
2020. https://www.coindesk.com/how-should-crypto-prepare-for-googles-quantum-
supremacy.

13. “Here’s Why Quantum Computing Will Not Break Cryptocurrencies.” Accessed December 25,
2020. https://www.forbes.com/sites/rogerhuang/2020/12/21/heres-why-quantum-
computing-will-not-break-cryptocurrencies/.

14. “How the Crypto World Is Preparing for Quantum Computing, Explained.” Accessed Decem-
ber 25, 2020. https://cointelegraph.com/explained/how-the-crypto-world-is-pre-
paring-for-quantum-computing-explained.

15. “RSA (cryptosystem).” Accessed January 6, 2021. https://en.wikipedia.org/wiki/
RSA_(cryptosystem).

16. “RSA Algorithm.” Accessed January 6, 2021. https://simple.wikipedia.org/wiki/
RSA_algorithm.

17. “PKCS #1: RSA Cryptography Specifications Version 2.2.” Accessed January 8, 2021. https://
tools.ietf.org/html/rfc8017.

18. “New Directions in Cryptography.” Accessed January 8, 2021. https://ee.stanford.edu/
~hellman/publications/24.pdf.

SEC

https://arxiv.org/pdf/1804.00200.pdf
https://www.cryptomathic.com/news-events/blog/quantum-computing-and-its-impact-on-cryptography
https://www.coindesk.com/how-should-crypto-prepare-for-googles-quantum-supremacy
https://www.forbes.com/sites/rogerhuang/2020/12/21/heres-why-quantum-computing-will-not-break-cryptocurrencies/
https://cointelegraph.com/explained/how-the-crypto-world-is-preparing-for-quantum-computing-explained
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://simple.wikipedia.org/wiki/RSA_algorithm
https://ee.stanford.edu/~hellman/publications/24.pdf
https://www.coindesk.com/how-should-crypto-prepare-for-googles-quantum-supremacy
https://www.forbes.com/sites/rogerhuang/2020/12/21/heres-why-quantum-computing-will-not-break-cryptocurrencies/
https://cointelegraph.com/explained/how-the-crypto-world-is-preparing-for-quantum-computing-explained
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://simple.wikipedia.org/wiki/RSA_algorithm
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8017
https://ee.stanford.edu/~hellman/publications/24.pdf

 Secure C Programming Case Study: Public-Key Cryptography 441

messages with the private key are straightforward, as we’ll show momentarily.
Industrial-quality RSA works with enormous prime numbers consisting of hundreds
of digits. To keep our explanations simple and to enable you to quickly build a small-
scale working version of RSA, we’re going to use only small prime numbers in our
explanations. Such small-prime-number RSA versions are not very secure, but they’ll
help you understand how RSA works.

Public-Key Cryptography
Whitfield Diffie and Martin Hellman, in their paper “New Directions in Cryptogra-
phy,”19 introduced public-key cryptography to address the weakness of secret-key
cryptography—which is the vulnerability of the secret key having to be known by
both the sender and the receiver. They came up with the idea but not an implemen-
tation of the scheme.

RSA Public-Key Cryptography
Rivest, Shamir and Adelman were the first to publish a working implementation of
public-key cryptography. The scheme, called RSA20, bears the initials of their last
names. RSA is one of the most widely implemented public-key cryptography schemes
in the world.21 Because RSA can be slow,22 many organizations prefer to stick to
faster private-key encryption, using RSA to securely send the secret key.

Historical Notes
Clifford Cocks in the U.K. created a workable public-key scheme several years before
the RSA paper was published,23 but his work was classified, so it was not revealed
until about 20 years after RSA appeared.

The company RSA Security held a patent on the RSA algorithm. In 2000, that
patent was coming due for renewal—instead of renewing, they placed the algorithm
into the public domain.24

19. “New Directions in Cryptography.” Accessed January 8, 2021. https://ee.stanford.edu/
~hellman/publications/24.pdf.

20. R. Rivest; A. Shamir; L. Adleman (February 1978). “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems” (PDF). Communications of the ACM. 21 (2): 120–126.
https://people.csail.mit.edu/rivest/Rsapaper.pdf.

21. “RSA algorithm (Rivest-Shamir-Adleman).” Accessed January 8, 2021. https://searchsecu-
rity.techtarget.com/definition/RSA.

22. “RSA (cryptosystem).” Accessed January 6, 2021. https://en.wikipedia.org/wiki/
RSA_(cryptosystem).

23. “Clifford Cocks.” Accessed January 8, 2021. https://en.wikipedia.org/wiki/Clif-
ford_Cocks.

24. “RSA Security Releases RSA Encryption Algorithm into Public Domain.” Accessed January 8,
2021. https://web.archive.org/web/20071120112201/http://www.rsa.com/press_re-
lease.aspx?id=261.

PERF

https://ee.stanford.edu/~hellman/publications/24.pdf
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://searchsecurity.techtarget.com/definition/RSA
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Clifford_Cocks
https://web.archive.org/web/20071120112201/http://www.rsa.com/press_release.aspx?id=261
https://ee.stanford.edu/~hellman/publications/24.pdf
https://searchsecurity.techtarget.com/definition/RSA
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Clifford_Cocks
https://web.archive.org/web/20071120112201/http://www.rsa.com/press_release.aspx?id=261

442 Chapter 8 Characters and Strings

RSA Algorithm Steps
Steps 1–5 below use small integer values to explain how the RSA algorithm generates
a public-key/private-key pair. Then, Step 6 uses the public key to encrypt plaintext
into ciphertext, and Step 7 uses the private key to decrypt the ciphertext back to the
original plaintext. The steps we show are based on the original RSA paper25 and the
RSA Algorithm Wikipedia page.26

RSA Algorithm Step 1—Choose Two Prime Numbers
Choose two different prime numbers p and q. For this case study, we’ll use small
prime numbers—p = 13 and q = 17. This will keep the calculations manageable in our
discussions and on your computer using C with its limited-range, built-in integer
data types. In commercial-grade RSA cryptography systems, these prime numbers
typically are hundreds of digits each and chosen at random. For a sense of how large
the integers in RSA can be, visit the RSA Numbers webpage

https://en.wikipedia.org/wiki/RSA_numbers

which shows various integers from 100 to 617 digits in length. The C integer data
types int, long int and long long int cannot hold integers this large, so special pro-
cessing is required to accommodate such large numbers.

RSA Algorithm Step 2—Calculate the Modulus (n), Which Is Part of Both
the Public and Private Keys
Calculate the modulus n, which is simply the product of p and q:

n = p * q

Based on p = 13 and q = 17, n is 221. As you’ll see, n is part of both the public and
private keys. The p and q values are kept private.

RSA Algorithm Step 3—Calculate the Totient Function
Calculate —pronounced “phi of n”—which is Euler’s totient function.27 This
is calculated simply as:

 = (p - 1) * (q - 1)

Given p = 13 and q = 17, is

 = 12 * 16 = 192

This number is used in the calculations that determine the encryption exponent (e)
and decryption exponent (d), which will help us encrypt plaintext and decrypt
ciphertext, respectively, as you’ll see below.

25. R. Rivest; A. Shamir; L. Adleman (February 1978). “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems” (PDF). Communications of the ACM. 21 (2): 120–126.
https://people.csail.mit.edu/rivest/Rsapaper.pdf.

26. “RSA Algorithm.” Accessed January 6, 2021. https://simple.wikipedia.org/wiki/
RSA_algorithm.

27. “Euler’s totient function.” Accessed January 7, 2021. https://en.wikipedia.org/wiki/
Euler%27s_totient_function.

Φ n()

Φ n()

Φ n()

Φ n()

https://en.wikipedia.org/wiki/RSA_numbers
https://people.csail.mit.edu/rivest/Rsapaper.pdf
https://simple.wikipedia.org/wiki/RSA_algorithm
https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://simple.wikipedia.org/wiki/RSA_algorithm
https://en.wikipedia.org/wiki/Euler%27s_totient_function

 Secure C Programming Case Study: Public-Key Cryptography 443

RSA Algorithm Step 4—Select the Public-Key Exponent (e) for Encryption
Calculations
Next, we choose an exponent, e, for encryption, which is subject to the following rules:

• 1 < e <

• e must be coprime with .

Two integers are coprime if they have no common factors other than 1.
In our example, the integers that satisfy the first rule for = 192 are the values

2–191. The prime factorization of 192 is
192 = 2 * 2 * 2 * 2 * 2 * 2 * 3

The value for e must be coprime with , so we must eliminate from consideration
for e any prime factors and all their multiples. Thus, the value 2 and all the other even
integers from 2–190 are eliminated, as are the value 3 and all its multiples. This leaves
the following odd values as possible values for e:

 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49
 53 55 59 61 65 67 71 73 77 79 83 85 89 91 95 97
101 103 107 109 113 115 119 121 125 127 131 133 137 139 143 145
149 151 155 157 161 163 167 169 173 175 179 181 185 187 191

Any of these values can be used as the public encryption key’s exponent (e). For our
continuing discussion we’ll choose 37, so our public key is (37, 221).

RSA Algorithm Step 5—Select the Private-Key Exponent (d) for Encryp-
tion Calculations
The final step is to determine the private key’s exponent, d, for decryption. We must
choose a value for d such that

(d * e) mod = 1

In our example, the first value of d for which this is true is 109. We can check whether
the preceding calculation produces 1 by plugging in the values of d, e and :

(109 * 37) mod 192

The value of 109 * 37 is 4033. If you multiply 192 by 21, the result is 4032, leaving a
remainder of 1. So, 109 is a valid value for d. There are many potential values of d—
each is 109 plus a multiple of the totient (192). For instance, 301 (109 + 1 * 192):

(301 * 37) mod 192

301 * 37 is 11137, which has the remainder 1 when divided by 192—192 * 58 is 11136,
leaving a remainder of 1. So values for d such as the following will work:

109 301 493 685 877 ...

We chose 109, so our private key is (109, 221).

Encrypting a Message with RSA
Once you have the public key, it’s easy to encrypt a message using RSA. Given a
plaintext integer message (M) to encrypt into ciphertext (C) and a public key consist-

Φ n()
Φ n()

Φ n()

Φ n()

Φ n()

Φ n()

444 Chapter 8 Characters and Strings

ing of two positive integers e (for encrypt) and n—commonly represented as (e,
n)—a message sender can encrypt M with the calculation:

C = Me mod n

The value of M must be in the range 0 <= M < n. Otherwise, you must break the mes-
sage into values within that range and encrypt each separately.

Let’s encrypt the M value 122 using our public key (37, 221):

C = 12237 mod 221

The value 12237 is an enormous number, but you can perform this calculation using
the Wolfram Alpha website at

https://www.wolframalpha.com/input/

Enter the calculation as follows (the ^ represents exponentiation in Wolfram Alpha):
122^37 mod 221

You’ll see that the result is 5, which is our ciphertext.

Decrypting a Message with RSA
It’s also easy to decrypt a message if you have the private key. Given a ciphertext inte-
ger message (C) to decrypt into the original plaintext message (M) and a private key
consisting of two positive integers d and n—commonly represented as (d, n)—a
message receiver can decrypt C with the following calculation:

M = Cd mod n

Let’s decrypt the C value 5 using our public key (109, 221):

C = 5109 mod 221

Once again, the value 5109 is an enormous number, but you can perform this calcu-
lation using Wolfram Alpha by entering the calculation as follows:

5^109 mod 221

You’ll see that the result is 122, which is our plaintext.
Note that n is part of both the public key and the private key. You’ll also see that

the exponent d’s value is based on the exponent e and the modulus value n.

Encrypting and Decrypting Strings
Suppose you wish to use RSA to encrypt a plaintext message, such as

Damn the torpedoes, full speed ahead!28

As you know, the RSA algorithm encrypts only integer messages in the range 0 <= M < n.
To encrypt the preceding message, you must map the characters to integer values.

One way to convert characters to integers is to use each character’s numeric value
in the underlying character set. For this exercise, assume ASCII characters, which
have integer values in the range 0–127 (see Appendix B). Provided that a character’s

28. David Glasgow Farragut—an American Civil War Union officer and the first full admiral in the
U.S. Navy. Accessed January 8, 2021. https://en.wikipedia.org/wiki/David_Farragut.

https://www.wolframalpha.com/input/
https://en.wikipedia.org/wiki/David_Farragut

 Secure C Programming Case Study: Public-Key Cryptography 445

integer value is less than n, you can encrypt that value as shown previously. You can
store each resulting ciphertext integer in an integer array. If you try to display those
ciphertext integers as characters, you may see some strange symbols. For instance, the
ciphertext integers may represent special characters, such as newlines or tabs, or may
be outside the ASCII range. When you decrypt the ciphertext, you can take each
resulting integer, cast it to a char, then place it into a char array that will represent
the deciphered plaintext. Be sure to null-terminate your string before displaying it.

Programming the RSA Algorithm
Now, implement the RSA algorithm in C. Enable the user to encrypt and decrypt a
simple integer, then encrypt and decrypt a line of text. Your program should produce
an output dialog similar to the following:

As you implement the RSA algorithm, keep the following hints in mind:

• Modular exponentiation: Raising a plaintext message to a large exponent (e.g.,
12237) results in enormous values that C’s limited-range, built-in integer types
cannot represent. As you know, RSA encryption and decryption calculations
perform both exponentiation and modulus operations. These can be combined
using modular exponentiation to keep the RSA encryption and decryption

Enter a prime number for p: 13
Enter a prime number for q: 17
n is 221
totient is 192

Candidates for e: 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65
67 71 73 77 79 83 85 89 91 95 97 101 103 107 109 113 115 119 121 125 127 131 133
137 139 143 145 149 151 155 157 161 163 167 169 173 175 179 181 185 187 191

Select a value for e from the preceding candidates: 37

Candidate for d: 109

Select a value for d--either the d candidate above
or d plus a multiple of the totient: 109

Enter a non-negative integer less than n to encrypt: 122

The ciphertext is: 5

The decrypted plaintext is: 122

Enter a sentence to encrypt:
Damn the torpedoes, full speed ahead!

The ciphertext is:
DG`
ue
;X}eW;es9 fh s}eeW GueGW!

The decrypted plaintext is:
Damn the torpedoes, full speed ahead!

446 Chapter 8 Characters and Strings

calculations within manageable ranges. Define a function named modularPow
that performs modular exponentiation. For the modular exponentiation algo-
rithm, see the psuedocode at
 https://en.wikipedia.org/wiki/Modular_exponentiation#Memory-

efficient_method

• Calculating the greatest common divisor: The candidate values for e (Step 4)
must be coprime with the totient—again, their only common factor is 1. To
determine if two numbers are coprime, you’ll need a function gcd that calcu-
lates the greatest common divisor of two integers. Your program should dis-
play all possible candidate values for e. You were asked to write a gcd function
in Exercise 5.29.

• Checking for prime numbers—The RSA algorithm requires two prime num-
bers, p and q. You should define a function isPrime that determines if an
integer is indeed a prime number—use it to confirm that the p and q values
the user entered are prime. Exercise 6.30 asked you to implement the Sieve of
Eratosthenes to find prime values.

Your program also should define the following functions:

• A function to encrypt a plaintext message M using the public key (e, n):
 int encrypt(int M, int e, int n);

• A function to decrypt a ciphertext message C using the private key (d, n):
 int decrypt(int C, int d, int n);

• A function to encrypt a string by calling the encrypt function for each char-
acter of the string and placing the results into an integer array:
 void encryptString(
 char* plaintext, int ciphertext[], int e, int n);

• A function to decrypt ciphertext from an integer array by calling the decrypt
function for each integer and placing the results into a char array. The size
parameter represents the number of characters that were encrypted. Be sure to
terminate the string in decryptedPlaintext with a null character ('\0'):
 void decryptString(int ciphertext[],
 char decryptedPlaintext[], size_t size, int d, int n);

References
For a nice video explanation of the RSA algorithm, see the following two-part video
presentation:

• The RSA Encryption Algorithm (1 of 2: Computing an Example):29

 https://www.youtube.com/watch?v=4zahvcJ9glg

• The RSA Encryption Algorithm (2 of 2: Generating the Keys):30

29. Woo, Eddie (misterwootube). “The RSA Encryption Algorithm (1 of 2: Computing an Exam-
ple),” November 4, 2014. https://www.youtube.com/watch?v=4zahvcJ9glg.

https://en.wikipedia.org/wiki/Modular_exponentiation#Memoryefficient_method
https://www.youtube.com/watch?v=4zahvcJ9glg
https://www.youtube.com/watch?v=4zahvcJ9glg

 Secure C Programming Case Study: Public-Key Cryptography 447

 https://www.youtube.com/watch?v=oOcTVTpUsPQ

8.44 (An Improvement to the RSA Algorithm) In 1998, an improvement was made
to the RSA algorithm replacing with (pronounced “lambda of n”):31,32

 = lcm((p - 1), (q - 1))

where lcm represents the least common multiple.33 We used in the previous RSA
exercise with p = 13 and q = 17. The corresponding new calculation would be

 = lcm(12, 16)

where the least common multiple of 12 and 16 is 48, as you can see in the lists of mul-
tiples below:

12 24 36 48 ...
16 32 48 60 ...

Make a copy of your code solution for the previous exercise and replace each use of
 with , then test your updated code with the same prime-number values

for p and q. When you encrypt the plaintext using the approach, your ciphertext
will likely be different, but the decrypted plaintext should be the same.

8.45 (Stress Testing Your RSA Algorithm’s Limits) Try your program with gradually
increasing values for p and q. How large do they get before the program no longer
works? Also, test your program with increasingly larger candidates for e and d.

8.46 (Enhancing Your RSA Code) Modify your RSA program as follows:
a) Your program displayed all the possible candidates for the encryption expo-

nent e. Modify your program to show the first five potential values for the
decryption exponent d (i.e., the first value of d plus 1 * totient, the first val-
ue of d plus 2 * totient, etc.). Follow your list of possibilities with an ellipsis
(…).

b) As your prime numbers p and q get larger, you’ll eventually surpass the int
type’s maximum value limit, which you can find in <limits.h>. Modify
your code to do all RSA integer calculations using type long long int. Note
that even that type will be inadequate for holding the enormous integers
you’d use in industrial quality RSA. It would require special programming
to use such larger integer values. Remember to change any printf and scanf
statements’ %d conversion specifiers to %lld.

30. Woo, Eddie (misterwootube). “The RSA Encryption Algorithm (2 of 2: Generating the Keys),”
November 4, 2014. https://www.youtube.com/watch?v=oOcTVTpUsPQ.

31. “RSA Algorithm.” Accessed January 7, 2021. https://simple.wikipedia.org/wiki/
RSA_algorithm.

32. "PKCS #1: RSA Cryptography Specifications, Version 2.0." Accessed January 7, 2021. https://
tools.ietf.org/html/rfc2437.

Φ n() λ n()

λ n()

33. “Least common multiple.” Accessed January 7, 2021. https://en.wikipedia.org/wiki/
Least_common_multiple.

Φ n()
λ n()

λ n()

Φ n() λ n()
λ n()

https://simple.wikipedia.org/wiki/RSA_algorithm
https://en.wikipedia.org/wiki/Least_common_multiple
https://www.youtube.com/watch?v=oOcTVTpUsPQ
https://simple.wikipedia.org/wiki/RSA_algorithm
https://tools.ietf.org/html/rfc2437
https://tools.ietf.org/html/rfc2437
https://en.wikipedia.org/wiki/Least_common_multiple
https://www.youtube.com/watch?v=oOcTVTpUsPQ

448 Chapter 8 Characters and Strings

8.47 (Challenge Project: The RSA Problem34) In this exercise, you’ll research attacks
that have been perpetrated on industrial-strength RSA implementations. You’ll then
try your own hand at cracking RSA ciphertext created by the small-scale RSA imple-
mentation you built in Exercise 8.43. Again, such small-scale implementations are
not secure.

a) Research the kinds of attacks that have been perpetrated against industrial-
strength RSA systems. Note which kinds have succeeded and which have
failed.

b) RSA’s strength comes from the enormous prime numbers p and q (each typ-
ically hundreds of digits) used to calculate the far more enormous value of n
(which is p * q) and the computational expense of factoring n to find p and
q. The “RSA Problem” is the task of decrypting ciphertext given only the
public key (e, n). This requires you to find n’s prime factors p and q from
which you would then derive d and decrypt the ciphertext.

Assume you have a public key (e, n) and ciphertext that was encrypted
using that key with your small-scale RSA implementation, but you do not
know the private key required to decrypt the ciphertext. Use brute-force
computing techniques to find n’s prime factors p and q. Then, do the calcu-
lations necessary to recover d and decrypt the message.

34. “RSA Problem.” Accessed January 8, 2021. https://en.wikipedia.org/wiki/RSA_problem.

https://en.wikipedia.org/wiki/RSA_problem

9Formatted Input/Output

O b j e c t i v e s
In this chapter, you’ll:
■ Use input and output streams.
■ Use print formatting

capabilities.
■ Use input formatting

capabilities.
■ Print integers, floating-point

numbers, strings and
characters.

■ Print with field widths and
precisions.

■ Use formatting flags in the
printf format control string.

■ Output literals and escape
sequences.

■ Read formatted input using
scanf.

450 Chapter 9 Formatted Input/Output

O
ut

lin
e

9.1 Introduction
Presenting results is an important part of the solution to any problem. This chapter
discusses in-depth printf and scanf formatting features, which output data to the
standard output stream and input data from the standard input stream. Include the
header <stdio.h> in programs that call these functions. Chapter 11 discusses several
additional functions included in the standard input/output (<stdio.h>) library.

9.2 Streams
Input and output are performed with sequences of bytes called streams:

• In input operations, the bytes flow into main memory from a device, such as
a keyboard, a solid-state drive, a network connection, and so on.

• In output operations, bytes flow from main memory to a device, such as a com-
puter’s screen, a printer, a solid-state drive, a network connection, and so on.

When program execution begins, the program has access to three streams:

• the standard input stream, which is connected to the keyboard,

• the standard output stream, which is connected to the screen, and

• the standard error stream, which also is connected to the screen.

Operating systems allow these streams to be redirected to other devices. Chapter 11
discusses stream-processing in detail.

9.1 Introduction
9.2 Streams
9.3 Formatting Output with printf
9.4 Printing Integers
9.5 Printing Floating-Point Numbers

9.5.1 Conversion Specifiers e, E and f
9.5.2 Conversion Specifiers g and G
9.5.3 Demonstrating Floating-Point

Conversion Specifiers
9.6 Printing Strings and Characters
9.7 Other Conversion Specifiers
9.8 Printing with Field Widths and

Precision
9.8.1 Field Widths for Integers
9.8.2 Precisions for Integers, Floating-

Point Numbers and Strings
9.8.3 Combining Field Widths and

Precisions

9.9 printf Format Flags
9.9.1 Right- and Left-Alignment
9.9.2 Printing Positive and Negative

Numbers with and without the + Flag
9.9.3 Using the Space Flag
9.9.4 Using the # Flag
9.9.5 Using the 0 Flag

9.10 Printing Literals and Escape
Sequences

9.11 Formatted Input with scanf
9.11.1 scanf Syntax
9.11.2 scanf Conversion Specifiers
9.11.3 Reading Integers
9.11.4 Reading Floating-Point Numbers
9.11.5 Reading Characters and Strings
9.11.6 Using Scan Sets
9.11.7 Using Field Widths
9.11.8 Skipping Characters in an Input

Stream
9.12 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

9.3 Formatting Output with printf 451

Self Check
1 (Fill-In) You can the standard streams to other devices.
Answer: redirect.

2 (Multiple Choice) Which of the following statements is false?
a) Input and output are performed with arrays, which are sequences of bytes.
b) In input operations, the bytes flow from a device to main memory.
c) In output operations, bytes flow from main memory to a device.
d) When execution begins, the standard streams are connected to the program.

Answer: a) is false. Actually, input and output are performed with streams, which are
sequences of bytes.

9.3 Formatting Output with printf
Throughout the book, you’ve seen various printf output formatting features. Every
printf call contains a format control string that describes the output format. The
format control string consists of conversion specifiers, flags, field widths, precisions
and literal characters. Together with the percent sign (%), these form conversion
specifications. Function printf can perform the following formatting capabilities:

1. Rounding floating-point values to an indicated number of decimal places.

2. Aligning columns of numbers at their decimal points.

3. right-aligning and left-aligning outputs.

4. Inserting literal characters at precise locations in a line of output.

5. Representing floating-point numbers in exponential format.

6. Representing unsigned integers in octal and hexadecimal format. Online
Appendix E discusses octal and hexadecimal values.

7. Displaying data with fixed-size field widths and precisions.

The printf function has the form

printf(format-control-string, other-arguments);

The format-control-string describes the output format, and the optional other-argu-
ments correspond to the format-control-string’s conversion specifications. Every con-
version specification begins with a percent sign (%) and ends with a conversion
specifier. There can be many conversion specifications in one format control string.

Self Check
1 (Fill-In) Every printf call contains a that describes the output format.
Answer: format control string.

2 (Multiple Choice) Which of the following is a formatting capability function
printf can perform?

a) Rounding floating-point values to an indicated number of decimal places,
and aligning a column of numbers at their decimal points.

452 Chapter 9 Formatted Input/Output

b) Representing floating-point numbers in exponential format. Representing
unsigned integers in octal and hexadecimal format.

c) Displaying all types of data with fixed-size field widths and precisions.
d) All of the above are printf formatting capabilities.

Answer: d.

9.4 Printing Integers
An integer is a whole number, such as 776, 0 or –52. Integer values are displayed in
one of several formats described by the following integer conversion specifiers.

Figure 9.1 prints an integer using each integer conversion specifier. Note that
plus signs do not display by default, but we’ll show later how to force them to display.
Lines 10–11 use the hd and ld conversion specifiers to display short and long integer
values. The L suffix on the literal 2000000000L indicates that its type is long—C treats
whole-number literals as int. Printing a negative value with a conversion specifier
that expects an unsigned value is a logic error. When line 14 displays -455 with %u,
the result is the unsigned value 4294966841. A small negative value displays as a large
positive integer due to the value’s “sign bit” in the underlying binary representation.
See online Appendix E for a discussion of the binary number system and the sign bit.

Conversion specifier Description

d Display as a signed decimal integer.
i Display as a signed decimal integer.
o Display as an unsigned octal integer.
u Display as an unsigned decimal integer.
x or X Display as an unsigned hexadecimal integer. X uses the digits 0-9

and the uppercase letters A-F, and x uses the digits 0-9 and the
lowercase letters a-f.

h, l or ll (letter “ell”) These length modifiers are placed before any integer conversion
specifier to indicate that the value to display is a short, long or
long long integer.

1 // fig09_01.c
2 // Using the integer conversion specifiers
3 #include <stdio.h>
4
5 int main(void) {
6 printf("%d\n", 455);
7 printf("%i\n", 455); // i same as d in printf
8 printf("%d\n", +455); // plus sign does not print
9 printf("%d\n", -455); // minus sign prints

Fig. 9.1 | Using the integer conversion specifiers. (Part 1 of 2.)

ERR

9.5 Printing Floating-Point Numbers 453

Self Check
1 (Multiple Choice) Which integer conversion specifier is described by “Display as
an unsigned decimal integer”?

a) ud.
b) ui.
c) u.
d) None of the above.

Answer: c.

2 (What Does This Code Do?) Show precisely what the following code prints:
printf("%d\n", 235);
printf("%i\n", 235);
printf("%d\n", +235);
printf("%d\n", -235);

Answer:
235
235
235
-235

9.5 Printing Floating-Point Numbers
Floating-point values contain a decimal point, as in 33.5, 0.0 or -657.983. Floating-
point values are displayed using the conversion specifiers summarized below.

10 printf("%hd\n", 32000); // print as type short
11 printf("%ld\n", 2000000000L); // print as type long
12 printf("%o\n", 455); // octal
13 printf("%u\n", 455);
14 printf("%u\n", -455);
15 printf("%x\n", 455); // hexadecimal with lowercase letters
16 printf("%X\n", 455); // hexadecimal with uppercase letters
17 }

455
455
455
-455
32000
2000000000
707
455
4294966841
1c7
1C7

Fig. 9.1 | Using the integer conversion specifiers. (Part 2 of 2.)

454 Chapter 9 Formatted Input/Output

Exponential Notation
The conversion specifiers e and E display floating-point values in exponential nota-
tion—the computer equivalent of scientific notation used in mathematics. For
example, the value 150.4582 is represented in scientific notation as

1.504582 x 102

and in exponential notation as
1.504582E+02

In this notation, the E stands for “exponent” and indicates that 1.504582 is multiplied
by 10 raised to the second power (E+02).

9.5.1 Conversion Specifiers e, E and f
Values displayed with the conversion specifiers e, E and f show six digits of precision
to the decimal point’s right by default (e.g., 1.045927). You can specify other preci-
sions explicitly. Conversion specifier f always prints at least one digit to the left of
the decimal point, so fractional values will be preceded by "0.". Conversion specifiers
e and E precede the exponent with lowercase e or uppercase E. Each prints exactly one
digit to the decimal point’s left.

9.5.2 Conversion Specifiers g and G
Conversion specifier g (or G) prints in either e (E) or f format with no trailing zeros,
so 1.234000 displays as 1.234. The conversion specifier g uses the e (E) format if, after
conversion to exponential notation, the value’s exponent is less than -4, or the expo-
nent is greater than or equal to the specified precision. Otherwise, g uses the conver-
sion specifier f to print the value. The default precision is six significant digits for g
and G—a maximum of six digits will display.

At least one decimal digit is required for the decimal point to be output. For
example, the values 0.0000875, 8750000.0, 8.75 and 87.50 are printed as 8.75e-05,
8.75e+06, 8.75 and 87.5 with the conversion specifier g. The value 0.0000875 uses e
notation because, when it’s converted to exponential notation, its exponent (-5) is less
than -4. The value 8750000.0 uses e notation because its exponent (6) is equal to the
default precision.

Conversion specifier Description

e or E Display a floating-point value in exponential notation.
f or F Display floating-point values in fixed-point notation.
g or G Display a floating-point value in either the fixed-point form f or

the exponential form e (or E), based on the value’s magnitude.
L Place this length modifier before any floating-point conversion

specifier to indicate that a long double floating-point value
should be displayed.

9.5 Printing Floating-Point Numbers 455

Precision
For conversion specifiers g and G, the precision indicates the maximum number of
significant digits to display, including the digit to the left of the decimal point. So,
the value 1234567.0 displays as 1.23457e+06, using conversion specification %g.
Remember that all floating-point conversion specifiers have a default precision of 6.
There are six significant digits in the result—1 to the left of the decimal point and
23457 to the right. For exponential notation, g and G precede the exponent with a
lowercase e or uppercase E. When displaying data, make it clear to users whether the
data may be imprecise due to formatting, such as rounding errors from specifying pre-
cisions.

9.5.3 Demonstrating Floating-Point Conversion Specifiers
Figure 9.2 demonstrates each of the floating-point conversion specifiers. The %E, %e
and %g conversion specifications perform rounding, but %f does not.

Self Check
1 (Fill-In) The conversion specifiers e and E display floating-point values in expo-
nential notation—the computer equivalent of used in mathematics.
Answer: scientific notation.

2 (Multiple Choice) Which statement about conversion specifiers e, E and f is false?
a) Values displayed with the conversion specifiers e, E and f show six digits of

precision to the decimal point’s right by default.

1 // fig09_02.c
2 // Using the floating-point conversion specifiers
3 #include <stdio.h>
4
5 int main(void) {
6 printf("%e\n", 1234567.89);
7 printf("%e\n", +1234567.89); // plus does not print
8 printf("%e\n", -1234567.89); // minus prints
9 printf("%E\n", 1234567.89);

10 printf("%f\n", 1234567.89); // six digits to right of decimal point
11 printf("%g\n", 1234567.89); // prints with lowercase e
12 printf("%G\n", 1234567.89); // prints with uppercase E
13 }

1.234568e+06
1.234568e+06
-1.234568e+06
1.234568E+06
1234567.890000
1.23457e+06
1.23457E+06

Fig. 9.2 | Using the floating-point conversion specifiers.

456 Chapter 9 Formatted Input/Output

b) Conversion specifier f always prints exactly one digit to the left of the decimal
point.

c) Conversion specifiers e and E print lowercase e and uppercase E, respectively,
preceding the exponent, and exactly one digit to the left of the decimal point.

d) All of the above statements are true.
Answer: b) is false. Actually, conversion specifier f prints at least one digit to the left
of the decimal point.

9.6 Printing Strings and Characters
The c and s conversion specifiers are used to print individual characters and strings,
respectively. Conversion specifier c requires a char argument. Conversion specifier
s requires a pointer to char as an argument. Conversion specifier s prints characters
until a terminating null ('\0') character is encountered. If the string does not have a
null terminator, the result is undefined—printf will either continue printing until it
encounters a zero byte or the program will terminate prematurely (i.e., “crash”) and
indicate a “segmentation fault” or “access violation” error. The program in Fig. 9.3
displays characters and strings with conversion specifiers c and s.

Errors in Format Control Strings
Most compilers do not catch format-control-string errors. You’ll typically become
aware of such errors when a program fails or produces incorrect results at runtime.

• Using %c to print a string is a logic error—%c expects a char argument. A
string is a pointer to char (i.e., a char *).

1 // fig09_03.c
2 // Using the character and string conversion specifiers
3 #include <stdio.h>
4
5 int main(void) {
6 char character = 'A'; // initialize char
7 printf("%c\n", character);
8
9 printf("%s\n", "This is a string");

10
11 char string[] = "This is a string"; // initialize char array
12 printf("%s\n", string);
13
14 const char *stringPtr = "This is also a string"; // char pointer
15 printf("%s\n", stringPtr);
16 }

A
This is a string
This is a string
This is also a string

Fig. 9.3 | Using the character and string conversion specifiers.

ERR

ERR

9.7 Other Conversion Specifiers 457

• Using %s to print a char argument usually causes a fatal execution-time logic
error called an access violation. The conversion specification %s expects an
argument of type pointer to char, so it treats the char’s numeric value as a
pointer. Such small numeric values often represent memory addresses that are
restricted by the operating system.

Self Check
1 (Fill-In) Conversion specifier s causes characters to be printed until a is
encountered.
Answer: terminating null ('\0') character.

2 (True/False) Compilers catch errors in the format-control string, so you will not
experience incorrect results at runtime.
Answer: False. Actually, most compilers do not catch errors in the format-control
string. You typically will not become aware of such errors until a program fails or pro-
duces incorrect results at runtime.

9.7 Other Conversion Specifiers
Consider the p and % conversion specifiers:

• p—Displays a pointer value in an implementation-defined manner.

• %—Displays the percent character.

Figure 9.4’s %p prints ptr’s value and x’s address in an implementation-defined man-
ner, typically using hexadecimal notation. Variables ptr and x have identical values
because line 7 assigns x’s address to ptr. The addresses displayed on your system will
vary. The last printf statement uses %% to display the % character—%% is required
because printf normally treats % as the beginning of a conversion specification. Try-
ing to display a literal percent character using % rather than %% in the format control
string is an error. When % appears in a format control string, it must be followed by
a conversion specifier.

1 // fig09_04.c
2 // Using the p and % conversion specifiers
3 #include <stdio.h>
4
5 int main(void) {
6 int x = 12345;
7 int *ptr = &x;
8
9 printf("The value of ptr is %p\n", ptr);

10 printf("The address of x is %p\n\n", &x);
11
12 printf("Printing a %% in a format control string\n");
13 }

Fig. 9.4 | Using the p and % conversion specifiers. (Part 1 of 2.)

ERR

ERR

458 Chapter 9 Formatted Input/Output

Self Check
1 (Fill-In) A printf statement uses to print the % character.
Answer: %%.

2 (True/False) The conversion specifier p displays an address in decimal notation.
Answer: False. Actually, the conversion specifier p displays an address in an imple-
mentation-defined manner—typically, using hexadecimal notation.

9.8 Printing with Field Widths and Precision
The exact size of a field in which data is printed is specified by a field width. If the
field width is larger than the data being printed, the data will normally be right-
aligned within that field. An integer representing the field width is inserted between
the percent sign (%) and the conversion specifier (e.g., %4d).

9.8.1 Field Widths for Integers
Figure 9.5 prints two groups of five numbers each, right-aligning those numbers con-
taining fewer digits than the field width. Values wider than the field still display in
full. Note that the minus sign for a negative value uses one character position in the
field width. Field widths can be used with all conversion specifiers. Not providing a
sufficiently large field width to handle a printed value can offset other data being
printed, producing confusing outputs. Know your data!

The value of ptr is 0x7ffff6eb911c
The address of x is 0x7ffff6eb911c

Printing a % in a format control string

1 // fig09_05.c
2 // Right-aligning integers in a field
3 #include <stdio.h>
4
5 int main(void) {
6 printf("%4d\n", 1);
7 printf("%4d\n", 12);
8 printf("%4d\n", 123);
9 printf("%4d\n", 1234);

10 printf("%4d\n\n", 12345);
11
12 printf("%4d\n", -1);
13 printf("%4d\n", -12);
14 printf("%4d\n", -123);
15 printf("%4d\n", -1234);
16 printf("%4d\n", -12345);
17 }

Fig. 9.5 | Right-aligning integers in a field. (Part 1 of 2.)

Fig. 9.4 | Using the p and % conversion specifiers. (Part 2 of 2.)

ERR

9.8 Printing with Field Widths and Precision 459

9.8.2 Precisions for Integers, Floating-Point Numbers and Strings
Function printf also enables you to specify the precision with which data is printed.
Precision has different meanings for different types:

• When used with integer conversion specifiers, precision indicates the mini-
mum number of digits to be printed. If the printed value contains fewer digits
than the specified precision and the precision value has a leading zero or dec-
imal point, zeros are prefixed to the printed value until the total number of
digits is equivalent to the precision. If neither a zero nor a decimal point is
present in the precision value, spaces are inserted instead. The default preci-
sion for integers is 1.

• When used with floating-point conversion specifiers e, E and f, the precision
is the number of digits to appear after the decimal point.

• When used with conversion specifiers g and G, the precision is the maximum
number of significant digits to be printed.

• When used with conversion specifier s, the precision is the maximum number
of characters written from the beginning of the string.

To use precision, place a decimal point (.), followed by an integer representing
the precision between the percent sign and the conversion specifier. Figure 9.6
demonstrates the use of precision in format control strings. When you print a float-
ing-point value with a precision smaller than the value’s original number of decimal
places, it’s rounded.

 1
 12
 123
1234
12345

 -1
 -12
-123
-1234
-12345

1 // fig09_06.c
2 // Printing integers, floating-point numbers and strings with precisions
3 #include <stdio.h>
4
5 int main(void) {
6 puts("Using precision for integers");
7 int i = 873; // initialize int i
8 printf("\t%.4d\n\t%.9d\n\n", i, i);

Fig. 9.6 | Printing integers, floating-point numbers and strings with precisions. (Part 1 of 2.)

Fig. 9.5 | Right-aligning integers in a field. (Part 2 of 2.)

460 Chapter 9 Formatted Input/Output

9.8.3 Combining Field Widths and Precisions
The field width and the precision can be combined by placing the field width, fol-
lowed by a decimal point, followed by a precision between the percent sign and the
conversion specifier, as in the statement

printf("%9.3f", 123.456789);

which displays 123.457 with three digits to the right of the decimal point right-
aligned in a nine-digit field.

Specifying Field Widths and Precisions As Arguments
It’s possible to specify the field width and the precision using integer expressions in
the argument list following the format control string. To use this feature, insert an
asterisk (*) in place of the field width or precision (or both). The matching int argu-
ment in the argument list is evaluated and used in place of the asterisk. A field width’s
value may be either positive or negative (which causes the output to be left-aligned in
the field, as described in the next section). The statement

printf("%*.*f", 7, 2, 98.736);

uses 7 for the field width, 2 for the precision and outputs the value 98.74 right-
aligned.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) The default precision for integers is 1.

9
10 puts("Using precision for floating-point numbers");
11 double f = 123.94536; // initialize double f
12 printf("\t%.3f\n\t%.3e\n\t%.3g\n\n", f, f, f);
13
14 puts("Using precision for strings");
15 char s[] = "Happy Birthday"; // initialize char array s
16 printf("\t%.11s\n", s);
17 }

Using precision for integers
 0873
 000000873

Using precision for floating-point numbers
 123.945
 1.239e+02
 124

Using precision for strings
 Happy Birth

Fig. 9.6 | Printing integers, floating-point numbers and strings with precisions. (Part 2 of 2.)

9.9 printf Format Flags 461

b) When used with floating-point conversion specifiers e, E and f, the precision
is the number of digits to appear before the decimal point.

c) When used with conversion specifiers g and G, the precision is the maximum
number of significant digits to be printed.

d) When used with conversion specifier s, the precision is the maximum num-
ber of characters written from the beginning of the string.

Answer: b) is false. When used with floating-point conversion specifiers e, E and f,
the precision is the number of digits to appear after the decimal point.

2 (What Does This Code Do?) Describe precisely what the following code prints:
printf("%9.3f", 123.456789);

Answer: The code right-aligns in a nine-digit field the rounded value 123.457.

3 (What Does This Code Do?) Describe precisely what the following code prints:
printf("%*.*f", 7, 2, 98.736);

Answer: The statement uses 7 for the field width, 2 for the precision and outputs the
value 98.74 right-aligned in a field of 7.

9.9 printf Format Flags
Function printf also provides flags to supplement its output formatting capabilities.
The following table summarizes the five flags you can use in format control strings.

9.9.1 Right- and Left-Alignment
Flags in a conversion specification are placed immediately to the right of the % and
before the format specifier. Several flags may be combined in one conversion speci-
fier. Figure 9.7 demonstrates right-alignment and left-alignment of a string, an inte-
ger, a character and a floating-point number. Lines 6 and 8 output lines of numbers
representing the column positions, so you can confirm that the right- and left-align-
ment worked correctly.

Flag Description

- (minus sign) Left-align the output within the specified field.
+ Display a plus sign preceding positive values and a minus sign preceding neg-

ative values.
space Print a space before a positive value not printed with the + flag.
Prefix 0 to the output value when used with the octal conversion specifier o.

Prefix 0x or 0X to the output value when used with the hexadecimal conver-
sion specifiers x or X.
Force a decimal point for a floating-point number printed with e, E, f, g or G
that does not contain a fractional part. Normally, the decimal point is printed
only if a digit follows it. For g and G specifiers, trailing zeros are not eliminated.

0 (zero) Pad a field with leading zeros.

462 Chapter 9 Formatted Input/Output

9.9.2 Printing Positive and Negative Numbers with and without
the + Flag
Figure 9.8 prints a positive number and a negative number, each with and without
the + flag. The minus sign is displayed in both cases, but the plus sign is displayed
only when the + flag is used.

9.9.3 Using the Space Flag
Figure 9.9 prefixes a space to the positive number with the space flag. This is useful
for aligning positive and negative numbers with the same number of digits. The value
-547 is not preceded by a space in the output because of its minus sign.

1 // fig09_07.c
2 // Right- and left-aligning values
3 #include <stdio.h>
4
5 int main(void) {
6 puts("1234567890123456789012345678901234567890");
7 printf("%10s%10d%10c%10f\n\n", "hello", 7, 'a', 1.23);
8 puts("1234567890123456789012345678901234567890");
9 printf("%-10s%-10d%-10c%-10f\n", "hello", 7, 'a', 1.23);

10 }

1234567890123456789012345678901234567890
 hello 7 a 1.230000

1234567890123456789012345678901234567890
hello 7 a 1.230000

Fig. 9.7 | Right- and left-aligning values.

1 // fig09_08.c
2 // Printing positive and negative numbers with and without the + flag
3 #include <stdio.h>
4
5 int main(void) {
6 printf("%d\n%d\n", 786, -786);
7 printf("%+d\n%+d\n", 786, -786);
8 }

786
-786
+786
-786

Fig. 9.8 | Printing positive and negative numbers with and without the + flag.

9.9 printf Format Flags 463

9.9.4 Using the # Flag
Figure 9.10 uses the # flag to prefix 0 to the octal value and 0x and 0X to the hexadec-
imal values. For g, it forces the decimal point to print.

9.9.5 Using the 0 Flag
Figure 9.11 combines the + flag and the 0 (zero) flag to print 452 in a nine-space field
with a + sign and leading zeros, then prints 452 again using only the 0 flag and a nine-
space field.

1 // fig09_09.c
2 // Using the space flag
3 // not preceded by + or -
4 #include <stdio.h>
5
6 int main(void) {
7 printf("% d\n% d\n", 547, -547);
8 }

 547
-547

Fig. 9.9 | Using the space flag.

1 // fig09_10.c
2 // Using the # flag with conversion specifiers
3 // o, x, X and any floating-point specifier
4 #include <stdio.h>
5
6 int main(void) {
7 int c = 1427; // initialize c
8 printf("%#o\n", c);
9 printf("%#x\n", c);

10 printf("%#X\n", c);
11
12 double p = 1427.0; // initialize p
13 printf("\n%g\n", p);
14 printf("%#g\n", p);
15 }

02623
0x593
0X593

1427
1427.00

Fig. 9.10 | Using the # flag with conversion specifiers.

464 Chapter 9 Formatted Input/Output

Self Check
1 (Multiple Choice) Which printf format flag is described by, “display a plus sign
preceding positive values and a minus sign preceding negative values”?

a) –.
b) +.
c) 0).
d) None of the above.

Answer: b.

2 (What Does This Code Do?) Show precisely what the following code prints:
puts("1234567890123456789012345678901234567890");
printf("%10s%10d%10c%10f\n\n", "C18", 9, 'g', 6.41);
puts("1234567890123456789012345678901234567890");
printf("%-10s%-10d%-10c%-10f\n", "C18", 9, 'g', 6.41);

Answer:
1234567890123456789012345678901234567890
 C18 9 g 6.410000

1234567890123456789012345678901234567890
C18 9 g 6.410000

3 (What Does This Code Do?) Show precisely what the following code prints:
printf("%d\n%d\n", 437, -437);
printf("%+d\n%+d\n", 437, -437);

Answer:
437
-437
+437
-437

9.10 Printing Literals and Escape Sequences
As you’ve seen throughout the book, literal characters included in the format control
string are simply output by printf. However, there are several “problem” characters,

1 // fig09_11.c
2 // Using the 0 (zero) flag
3 #include <stdio.h>
4
5 int main(void) {
6 printf("%+09d\n", 452);
7 printf("%09d\n", 452);
8 }

+00000452
000000452

Fig. 9.11 | Using the 0 (zero) flag.

9.11 Formatted Input with scanf 465

such as the quotation mark (") that delimits the format control string itself. Various
control characters, such as newline and tab, must be represented by escape sequences.
An escape sequence is represented by a backslash (\), followed by a particular escape
character. The following table lists the escape sequences and the actions they cause.

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) Literal characters included in the format control string are ignored by printf.
b) Various control characters, such as newline and tab, must be represented by

escape sequences.
c) An escape sequence is represented by a backslash (\), followed by a particular

escape character.
d) All of the above statements are true.

Answer: a) is false. Actually, printf displays any literal characters included in the for-
mat control string.

2 (Multiple Choice) Which escape sequence is described by “Cause an audible (bell)
or visual alert (typically, flashing the window in which the program is running)”?

a) \b.
b) \r.
c) \a.
d) \v.

Answer: \a.

9.11 Formatted Input with scanf
Precise input formatting can be accomplished with scanf. Every scanf statement con-
tains a format control string that describes the format of the data to be input. The

Escape sequence Description

\' (single quote) Output the single quote (') character.
\" (double quote) Output the double quote (") character.
\? (question mark) Output the question mark (?) character.
\\ (backslash) Output the backslash (\) character.
\a (alert or bell) Cause an audible (bell) or visual alert (typically, flashing

the window in which the program is running).
\b (backspace) Move the cursor back one position on the current line.
\f (new page or form feed) Move the cursor to the next logical page’s start.
\n (newline) Move the cursor to the beginning of the next line.
\r (carriage return) Move the cursor to the beginning of the current line.
\t (horizontal tab) Move the cursor to the next horizontal tab position.
\v (vertical tab) Move the cursor to the next vertical tab position.

466 Chapter 9 Formatted Input/Output

format control string consists of conversion specifiers and literal characters. Function
scanf has the following input formatting capabilities:

1. Inputting all types of data.

2. Inputting specific characters from an input stream.

3. Skipping specific characters in the input stream.

9.11.1 scanf Syntax
Function scanf is written in the following form:

scanf(format-control-string, other-arguments);

The format-control-string describes the input formats, and other-arguments are point-
ers to variables in which the inputs will be stored.

When inputting data, prompt the user for one data item or a few data items at a
time. Avoid asking the user to enter many data items in response to a single prompt.
Always consider what the user and your program will do when incorrect data is
entered—for example, a value for an integer that’s nonsensical in a program’s context,
or a string with missing punctuation or spaces.

9.11.2 scanf Conversion Specifiers
The following table summarizes the conversion specifiers used to input all types of
data. Note that the d and i conversion specifiers have different meanings for input
with scanf, but are interchangeable for output with printf.

Conversion specifier Description

Integers
d Read an optionally signed decimal integer. The corresponding argu-

ment is a pointer to an int.
i Read an optionally signed decimal, octal or hexadecimal integer. The

corresponding argument is a pointer to an int.
o Read an octal integer. The corresponding argument is a pointer to an

unsigned int.
u Read an unsigned decimal integer. The corresponding argument is a

pointer to an unsigned int.
x or X Read a hexadecimal integer. The corresponding argument is a

pointer to an unsigned int.
h, l and ll Place before any integer conversion specifier to indicate that a short,

long or long long integer is to be input.

Floating-point numbers
e, E, f, g or G Read a floating-point value. The corresponding argument is a

pointer to a floating-point variable.

9.11 Formatted Input with scanf 467

9.11.3 Reading Integers
Figure 9.12 reads integers with the various integer conversion specifiers and displays
the integers as decimal numbers. Conversion specification %i can input decimal, octal
and hexadecimal integers.

l or L Place before any floating-point conversion specifier to indicate that a
double or long double value is to be input. The corresponding argu-
ment is a pointer to a double or long double variable.

Characters and strings
c Read a character. The corresponding argument is a pointer to a char;

no null ('\0') is added.
s Read a string. The corresponding argument is a pointer to an array of

type char that’s large enough to hold the string and a terminating
null ('\0') character—which is automatically added.

Scan set
[scan characters] Scan a string for a set of characters that are stored in an array.

Miscellaneous
p Read an address of the same form produced when an address is out-

put with %p in a printf statement.
n Store the number of characters input so far in this call to scanf. The

corresponding argument must be a pointer to an int.
% Skip a percent sign (%) in the input.

1 // fig09_12.c
2 // Reading input with integer conversion specifiers
3 #include <stdio.h>
4
5 int main(void) {
6 int a = 0;
7 int b = 0;
8 int c = 0;
9 int d = 0;

10 int e = 0;
11 int f = 0;
12 int g = 0;
13
14 puts("Enter seven integers: ");
15 scanf("%d%i%i%i%o%u%x", &a, &b, &c, &d, &e, &f, &g);
16
17 puts("\nThe input displayed as decimal integers is:");
18 printf("%d %d %d %d %d %d %d\n", a, b, c, d, e, f, g);
19 }

Fig. 9.12 | Reading input with integer conversion specifiers. (Part 1 of 2.)

Conversion specifier Description

468 Chapter 9 Formatted Input/Output

9.11.4 Reading Floating-Point Numbers
When inputting floating-point numbers, any of the floating-point conversion speci-
fiers e, E, f, g or G can be used. Figure 9.13 reads three floating-point numbers, one
with each of the three types of floating conversion specifiers, and displays all three
numbers with conversion specifier f.

9.11.5 Reading Characters and Strings
Characters and strings are input using the conversion specifiers c and s, respectively.
Figure 9.14 prompts the user to enter a string. The program inputs the first character
of the string with %c and stores it in the character variable x, then inputs the remain-
der of the string with %s and stores it in character array y.

Enter seven integers:
-70 -70 070 0x70 70 70 70

The input displayed as decimal integers is:
-70 -70 56 112 56 70 112

1 // fig09_13.c
2 // Reading input with floating-point conversion specifiers
3 #include <stdio.h>
4
5 int main(void) {
6 double a = 0.0;
7 double b = 0.0;
8 double c = 0.0;
9

10 puts("Enter three floating-point numbers:");
11 scanf("%le%lf%lg", &a, &b, &c);
12
13 puts("\nUser input displayed in plain floating-point notation:");
14 printf("%f\n%f\n%f\n", a, b, c);
15 }

Enter three floating-point numbers:
1.27987 1.27987e+03 3.38476e-06

User input displayed in plain floating-point notation:
1.279870
1279.870000
0.000003

Fig. 9.13 | Reading input with floating-point conversion specifiers.

Fig. 9.12 | Reading input with integer conversion specifiers. (Part 2 of 2.)

9.11 Formatted Input with scanf 469

9.11.6 Using Scan Sets
A sequence of characters can be input using a scan set—a set of characters enclosed
in square brackets, [], and preceded by a percent sign in the format control string. A
scan set scans the characters in the input stream, looking only for those characters that
match characters contained in the scan set. Each time a character is matched, it’s
stored in the scan set’s corresponding character array argument. The scan set stops
inputting characters when scanf encounters a character not contained in the scan set.
If the first character in the input stream does not match a character in the scan set,
scanf does not modify its corresponding array argument. Figure 9.15 uses the scan
set [aeiou] to scan the input stream for vowels. For our input "ooeeooahah", the first
seven letters are input. The eighth letter (h) is not in the scan set, so scanf stops scan-
ning for characters.

1 // fig09_14.c
2 // Reading characters and strings
3 #include <stdio.h>
4
5 int main(void) {
6 char x = '\0';
7 char y[9] = "";
8
9 printf("%s", "Enter a string: ");

10 scanf("%c%8s", &x, y);
11
12 printf("The input was '%c' and \"%s\"\n", x, y);
13 }

Enter a string: Sunday
The input was 'S' and "unday"

Fig. 9.14 | Reading characters and strings.

1 // fig09_15.c
2 // Using a scan set
3 #include <stdio.h>
4
5 int main(void) {
6 char z[9] = "";
7
8 printf("%s", "Enter string: ");
9 scanf("%8[aeiou]", z); // search for set of characters

10
11 printf("The input was \"%s\"\n", z);
12 }

Fig. 9.15 | Using a scan set. (Part 1 of 2.)

470 Chapter 9 Formatted Input/Output

Inverting the Scan Set
An inverted scan set can scan for characters not contained in the scan set. To create an
inverted scan set, place a caret (^) in the square brackets before the scan characters.
When a character contained in the inverted scan set is encountered, input terminates.
Figure 9.16 uses the inverted scan set [^aeiou] to search for “non-vowels.”

9.11.7 Using Field Widths
A field width can be used in a scanf conversion specifier to read a specific number of
characters from the input stream. Figure 9.17 inputs a series of consecutive digits as
a two-digit integer and an integer consisting of the remaining digits in the input
stream.

Enter string: ooeeooahah
The input was "ooeeooa"

1 // fig09_16.c
2 // Using an inverted scan set
3 #include <stdio.h>
4
5 int main(void) {
6 char z[9] = "";
7
8 printf("%s", "Enter a string: ");
9 scanf("%8[^aeiou]", z); // inverted scan set

10
11 printf("The input was \"%s\"\n", z);
12 }

Enter a string: String
The input was "Str"

Fig. 9.16 | Using an inverted scan set.

1 // fig09_17.c
2 // Inputting data with a field width
3 #include <stdio.h>
4
5 int main(void) {
6 int x = 0;
7 int y = 0;
8
9 printf("%s", "Enter a six digit integer: ");

10 scanf("%2d%d", &x, &y);

Fig. 9.17 | Inputting data with a field width. (Part 1 of 2.)

Fig. 9.15 | Using a scan set. (Part 2 of 2.)

9.11 Formatted Input with scanf 471

9.11.8 Skipping Characters in an Input Stream
You may want to skip certain characters in the input stream. Whitespace characters,
such as space, newline and tab, at the beginning of a format control string skip all
leading whitespace. Other literal characters ignore those characters at specific posi-
tions in the input. For example, your program might input a date as

11-10-1999

Each number in the date needs to be stored, but the dashes that separate the numbers
can be discarded. To eliminate unnecessary characters, include them in scanf’s for-
mat control string. For example, to discard the dashes in the input, use the statement

scanf("%d-%d-%d", &month, &day, &year);

Assignment Suppression Character
Although the preceding scanf does eliminate the dashes in the input, it’s possible that
the user might enter the date as

10/11/1999

In this case, the preceding scanf would not eliminate the unnecessary characters. For
this reason, scanf provides the assignment suppression character *. This character
enables scanf to read and discard data from the input without assigning it to a vari-
able. Figure 9.18 uses the assignment suppression character in the %c conversion spec-
ification to indicate that a character appearing in the input stream should be read and
discarded. Only the month, day and year are stored. We print the variable’s values to
demonstrate that they’re input correctly. The argument lists for each scanf call do
not contain variables for the conversion "%*c" specifiers containing the assignment
suppression character. The corresponding characters are simply discarded.

11
12 printf("The integers input were %d and %d\n", x, y);
13 }

Enter a six digit integer: 123456
The integers input were 12 and 3456

Fig. 9.17 | Inputting data with a field width. (Part 2 of 2.)

1 // fig09_18.c
2 // Reading and discarding characters from the input stream
3 #include <stdio.h>
4
5 int main(void) {
6 int month = 0;
7 int day = 0;
8 int year = 0;

Fig. 9.18 | Reading and discarding characters from the input stream. (Part 1 of 2.)

472 Chapter 9 Formatted Input/Output

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) A scan set scans the characters in the input stream, looking only for those
characters that match characters in the scan set.

b) Each time a character is matched, it’s stored in the scan set’s corresponding
character array argument.

c) The scan set stops inputting characters when a character that’s not contained
in the scan set is encountered.

d) If the stream’s first character matches a character in the scan set, scanf does
not modify the corresponding array argument.

Answer: d) is false. Actually, if the stream’s first character does not match a character
in the scan set, scanf does not modify the corresponding array argument.

2 (Fill-In) A(n) can be used in a scanf conversion specifier to read a spe-
cific number of characters from the input stream.
Answer: field width.

3 (Fill-In) The scanf character enables scanf to read and dis-
card data from the input without assigning it to a variable.
Answer: assignment suppression, *.

9.12 Secure C Programming
The C standard lists many cases in which using incorrect library-function arguments
can result in undefined behaviors. These can cause security vulnerabilities, so they
should be avoided. Such problems can occur when using printf (or any of its vari-
ants, such as sprintf, fprintf, printf_s, etc.) with improperly formed conversion
specifications. CERT rule FIO00-C (https://wiki.sei.cmu.edu/) discusses these
issues. It presents a table showing the valid combinations of formatting flags, length
modifiers and conversion-specifier characters that can be used to form conversion

9 printf("%s", "Enter a date in the form mm-dd-yyyy: ");
10 scanf("%d%*c%d%*c%d", &month, &day, &year);
11 printf("month = %d day = %d year = %d\n\n", month, day, year);
12
13 printf("%s", "Enter a date in the form mm/dd/yyyy: ");
14 scanf("%d%*c%d%*c%d", &month, &day, &year);
15 printf("month = %d day = %d year = %d\n", month, day, year);
16 }

Enter a date in the form mm-dd-yyyy: 07-04-2021
month = 7 day = 4 year = 2021

Enter a date in the form mm/dd/yyyy: 01/01/2021
month = 1 day = 1 year = 2021

Fig. 9.18 | Reading and discarding characters from the input stream. (Part 2 of 2.)

SEC

https://wiki.sei.cmu.edu/

 Summary 473

specifications. The table also shows the proper argument type for each valid conver-
sion specification. As you study any programming language, if the language specifi-
cation says that doing something can lead to undefined behavior, avoid doing it to
prevent security vulnerabilities.

Self Check
1 (True/False) Undefined behaviors can cause security vulnerabilities, so they
should be avoided.
Answer: True.

Summary
Section 9.2 Streams
• Input and output are performed with streams (p. 450), which are sequences of bytes.
• The standard input stream is connected to the keyboard. The standard output and error

streams are connected to the computer screen (p. 450).
• Operating systems allow the standard streams to be redirected to other devices.

Section 9.3 Formatting Output with printf
• A format control string (p. 451) describes the formats for values to output. It consists of

conversion specifiers, flags, field widths, precisions and literal characters.
• A conversion specification (p. 451) consists of a % (p. 451) and a conversion specifier.

Section 9.4 Printing Integers
• Integers are printed with the following conversion specifiers (p. 452): d or i for optionally

signed integers, o for unsigned integers in octal form, u for unsigned integers in decimal
form and x or X for unsigned integers in hexadecimal form. The modifiers h, l or ll are pre-
fixed to the preceding conversion specifiers to indicate a short, long or long long integer.

Section 9.5 Printing Floating-Point Numbers
• Floating-point values are printed with the following conversion specifiers: e or E (p. 454)

for exponential notation, f (p. 454) for regular floating-point notation, and g or G for either
e (or E) notation or f notation. When the g (or G, p. 454) conversion specifier is indicated,
the e (or E) conversion specifier is used if the value’s exponent is less than -4 or greater than
or equal to the precision with which the value is printed.

• The precision for the g and G conversion specifiers indicates the maximum number of sig-
nificant digits printed.

Section 9.6 Printing Strings and Characters
• The conversion specifier c (p. 456) prints a character.
• The conversion specifier s (p. 456) prints a string of characters ending in the null character.

Section 9.7 Other Conversion Specifiers
• The conversion specifier p (p. 457) displays an address in an implementation-defined man-

ner (on many systems, hexadecimal notation is used).
• The conversion specifier %% (p. 457) causes a literal % to be output.

474 Chapter 9 Formatted Input/Output

Section 9.8 Printing with Field Widths and Precision
• If the field width (p. 451) is larger than the object being printed, the object is right-aligned

by default.
• Field widths can be used with all conversion specifiers.
• Precision for integer conversion specifiers indicates the minimum number of digits printed.
• Precision for floating-point conversion specifiers e, E and f indicates the number of digits

after the decimal point. Precision for floating-point conversion specifiers g and G indicates
the number of significant digits to appear.

• Precision for conversion specifier s indicates the number of characters to print.
• The field width and the precision can be combined by placing the field width, followed by

a decimal point, followed by the precision between the percent sign and the conversion
specifier.

• It’s possible to specify the field width and the precision through integer expressions in the
argument list following the format control string. To do so, use an asterisk (*) for the field
width or precision. The matching argument in the argument list is used in place of the asterisk.

Section 9.9 printf Format Flags
• The - flag left-aligns its argument in a field.
• The + flag (p. 462) prints a plus sign for positive values and a minus sign for negative values.
• The space flag (p. 462) prints a space preceding a positive value that’s not displayed with

the + flag.
• The # flag (p. 463) prefixes 0 to octal values and 0x or 0X to hexadecimal values and forces

the decimal point to be printed for floating-point values printed with e, E, f, g or G.
• The 0 flag (p. 463) prints leading zeros for a value that does not occupy its entire field width.

Section 9.10 Printing Literals and Escape Sequences
• Most literal characters to be printed in a printf statement can simply be included in the

format control string. However, there are several “problem” characters, such as the quota-
tion mark (", p. 465) that delimits the format control string itself. Various control charac-
ters, such as newline and tab, must be represented by escape sequences. An escape sequence
is represented by a backslash (\) followed by a particular escape character.

Section 9.11 Formatted Input with scanf
• Input formatting is accomplished with the scanf library function.
• scanf inputs integers with the conversion specifiers d and i (p. 467) for optionally signed

integers and o, u, x or X for unsigned integers in octal, decimal and hexadecimal formats.
The modifiers h, l or ll are placed before an integer conversion specifier to input a short,
long or long long integer.

• scanf inputs floating-point values with the conversion specifiers e, E, f, g or G. The modi-
fiers l and L are placed before any of the floating-point conversion specifiers to indicate that
the input value is a double or long double value.

• scanf inputs characters with the conversion specifier c (p. 468).
• scanf inputs strings with the conversion specifier s (p. 468).
• A scanf with a scan set (p. 469) scans the characters in the input, looking only for those char-

acters that match characters contained in the scan set. Each matching character is stored in a
character array. Input stops when a character not contained in the scan set is encountered.

 Self-Review Exercises 475

• To create an inverted scan set (p. 470), place a caret (^) in the square brackets before the
scan characters. scanf stores characters not appearing in the inverted scan set and stops
when a character contained in the inverted scan set is encountered.

• scanf inputs address values with the conversion specifier p.
• Conversion specifier n stores the number of characters input so far in the current scanf.

The corresponding argument is a pointer to int.
• The assignment suppression character (*, p. 471) reads and discards data from the input

stream.
• A field width is used in scanf to read a specific number of characters from the input stream.

Self-Review Exercises
9.1 Fill-In the blanks in each of the following:

a) Input and output are dealt with in the form of .
b) The stream is normally connected to the keyboard.
c) The stream is normally connected to the computer screen.
d) Precise output formatting is accomplished with the function.
e) The format control string may contain , , , and

.
f) The conversion specifier or may be used to output a signed

decimal integer.
g) The conversion specifiers , and display unsigned inte-

gers in octal, decimal and hexadecimal form.
h) The modifiers and are placed before the integer conversion

specifiers to display short or long integer values.
i) The conversion specifier displays a floating-point value in exponen-

tial notation.
j) The modifier is placed before any floating-point conversion specifier

to display a long double value.
k) The conversion specifiers e, E and f are displayed with digits of pre-

cision to the decimal point’s right if no precision is specified.
l) The conversion specifiers and print strings and characters.
m)All strings end in the character.
n) The field width and precision in a printf conversion specifier can be con-

trolled with integer expressions by substituting a(n) for the field
width or for the precision and placing an integer expression in the corre-
sponding argument.

o) The flag left-aligns output in a field.
p) The flag displays values with either a plus sign or a minus sign.
q) Precise input formatting is accomplished with the function.
r) A(n) scans a string for specific characters and stores the characters in

an array.
s) The conversion specifier inputs optionally signed octal, decimal and

hexadecimal integers.

476 Chapter 9 Formatted Input/Output

t) The conversion specifiers can be used to input a double value.
u) The reads and discards data from the input stream without assigning

it to a variable.
v) A(n) can be used in a scanf conversion specifier to indicate that a

specific number of characters or digits should be read from the input stream.

9.2 Find the error in each of the following and explain how it can be corrected.
a) The following statement should print the character 'c'.

 printf("%s\n", 'c');
b) The following statement should print 9.375%.

 printf("%.3f%", 9.375);
c) The following statement should print the first character of "Monday".

 printf("%c\n", "Monday");
d) puts(""A string in quotes"");
e) printf(%d%d, 12, 20);
f) printf("%c", "x");
g) printf("%s\n", 'Richard');

9.3 Write a statement for each of the following:
a) Print 1234 right-aligned in a 10-digit field.
b) Print 123.456789 in exponential notation with a sign (+ or -) and 3 digits of

precision.
c) Read a double value into variable number.
d) Print 100 in octal form preceded by 0.
e) Read a string into character array string.
f) Read characters into array n until a nondigit character is encountered.
g) Use integer variables x and y to specify the field width and precision used to

display the double value 87.4573.
h) Read a value of the form 3.5%. Store the percentage in float variable per-

cent and eliminate the % from the input stream. Do not use the assignment
suppression character.

i) Print 3.333333 as a long double value with a sign (+ or -) in a field of 20
characters with a precision of 3.

Answers to Self-Review Exercises
9.1 a) streams. b) standard input. c) standard output. d) printf. e) conversion
specifiers, flags, field widths, precisions, literal characters. f) d, i. g) o, u, x (or X). h) h,
l. i) e (or E). j) L. k) 6. l) s, c. m) NULL ('\0'). n) asterisk (*). o) - (minus). p) + (plus).
q) scanf. r) scan set. s) i. t) le, lE, lf, lg or lG. u) assignment suppression character
(*). v) field width.

9.2 See the answers below:
a) Error: Conversion specifier s expects an argument of type pointer to char.

Correction: To print the character 'c', use the conversion specifier %c or
change 'c' to "c".

 Exercises 477

b) Error: Trying to print the literal character % without using the conversion
specifier %%.
Correction: Use %% to print a literal % character.

c) Error: Conversion specifier c expects an argument of type char.
Correction: To print the first character of "Monday" use the conversion spec-
ifier %.1s.

d) Error: Trying to print the literal character " without using the \" escape se-
quence.
Correction: Replace each quote in the inner set of quotes with \".

e) Error: The format control string is not enclosed in double quotes.
Correction: Enclose %d%d in double quotes.

f) Error: The character x is enclosed in double quotes.
Correction: Character constants to be printed with %c must be enclosed in
single quotes.

g) Error: The string to be printed is enclosed in single quotes.
Correction: Use double quotes instead of single quotes to represent a string.

9.3 a) printf("%10d\n", 1234);
b) printf("%+.3e\n", 123.456789);
c) scanf("%lf", &number);
d) printf("%#o\n", 100);
e) scanf("%s", string);
f) scanf("%[0123456789]", n);
g) printf("%*.*f\n", x, y, 87.4573);
h) scanf("%f%%", &percent);
i) printf("%+20.3Lf\n", 3.333333);

Exercises
9.4 Write a printf or scanf statement for each of the following:

a) Print unsigned integer 40000 left-aligned in a 15-digit field with 8 digits.
b) Read a hexadecimal value into variable hex.
c) Print 200 with and without a sign.
d) Print 100 in hexadecimal form preceded by 0x.
e) Read characters into array s until the letter p is encountered.
f) Print 1.234 in a 9-digit field with preceding zeros.
g) Read a time of the form hh:mm:ss, storing the parts of the time in the integer

variables hour, minute and second. Skip the colons (:) in the input stream.
Use the assignment suppression character.

h) Read a string of the form "characters" from the standard input. Store the
string in character array s. Eliminate the quotation marks from the input.

i) Read a time of the form hh:mm:ss, storing the parts of the time in the integer
variables hour, minute and second. Skip the colons (:) in the input stream.
Do not use the assignment suppression character.

478 Chapter 9 Formatted Input/Output

9.5 Show what each of the following statements prints. If a statement is incorrect,
indicate why.

a) printf("%-10d\n", 10000);
b) printf("%c\n", "This is a string");
c) printf("%*.*lf\n", 8, 3, 1024.987654);
d) printf("%#o\n%#X\n%#e\n", 17, 17, 1008.83689);
e) printf("% ld\n%+ld\n", 1000000, 1000000);
f) printf("%10.2E\n", 444.93738);
g) printf("%10.2g\n", 444.93738);
h) printf("%d\n", 10.987);

9.6 Find the error(s) in each of the following program segments. Explain how each
error can be corrected.

a) printf("%s\n", 'Happy Birthday');
b) printf("%c\n", 'Hello');
c) printf("%c\n", "This is a string");
d) The following statement should print "Bon Voyage":

printf(""%s"", "Bon Voyage");
e) char day[] = "Sunday";

printf("%s\n", day[3]);
f) puts('Enter your name: ');
g) printf(%f, 123.456);
h) The following statement should print the characters 'O' and 'K':

printf("%s%s\n", 'O', 'K');
i) char s[10];

scanf("%c", s[7]);

9.7 (Differences Between %d and %i) Write a program to test the difference between
the %d and %i conversion specifiers when used in scanf statements. Ask the user to
enter two integers separated by a space. Use the statements

scanf("%i%d", &x, &y);
printf("%d %d\n", x, y);

to input and print the values. Test the program with the following sets of input data:
 10 10
 -10 -10
 010 010
0x10 0x10

9.8 (Printing Numbers in Various Field Widths) Write a program that prints the
integer value 12345 and the floating-point value 1.2345 in fields of various sizes. What
happens when the values are printed in fields containing fewer digits than the values?

9.9 (Rounding Floating-Point Numbers) Write a program that prints 100.453627
rounded to the nearest digit, tenth, hundredth, thousandth and ten-thousandth.

 Exercises 479

9.10 (Temperature Conversions) Write a program that converts integer Fahrenheit
temperatures from 0 to 212 degrees to floating-point Celsius temperatures with 3 dig-
its of precision. Perform the calculation using the formula

celsius = 5.0 / 9.0 * (fahrenheit - 32);

Display the output in two right-aligned columns of 10 characters each. Precede the
Celsius temperatures by a sign for both positive and negative values.

9.11 (Escape Sequences) Write a program to test the escape sequences \', \", \?, \\,
\a, \b, \n, \r and \t. For the escape sequences that move the cursor, print a character
before and after printing the escape sequence so it’s clear where the cursor has moved.

9.12 (Printing a Question Mark) Write a program that determines whether ? can
be printed as part of a printf format control string as a literal character rather than
using the \? escape sequence.

9.13 (Reading an Integer with Each scanf Conversion Specifier) Write a program
that inputs the value 437 using each of the scanf integer conversion specifiers. Print
each input value using all the integer conversion specifiers.

9.14 (Outputting a Number with the Floating-Point Conversion Specifiers) Write a
program that uses each of the conversion specifiers e, f and g to input the value
1.2345. Print the values of each variable to prove that each conversion specifier can
be used to input this same value.

9.15 (Reading Strings in Quotes) In some programming languages, strings are en-
tered surrounded by either single or double quotation marks. Write a program that
reads the three strings suzy, "suzy" and 'suzy'. Are the single and double quotes ig-
nored by C or read as part of the string?

9.16 (Printing a Question Mark as a Character Constant) Write a program that de-
termines whether ? can be printed as the character constant '?' rather than the char-
acter constant escape sequence '\?'. Use the conversion specifier %c in the format
control string of a printf statement.

9.17 (Using %g with Various Precisions) Write a program that uses the conversion
specifier g to output the value 9876.12345. Print the value with precisions ranging
from 1 to 9.

10Structures, Unions, Bit
Manipulation and
Enumerations

O b j e c t i v e s
In this chapter, you’ll:
■ Create and use structs,
unions and enums.

■ Understand self-referential
structs.

■ Learn about the operations
that can be performed on
struct instances.

■ Initialize struct members.
■ Access struct members.
■ Pass struct instances to

functions by value and by
reference.

■ Use typedefs to create
aliases for existing type names.

■ Learn the operations that can
be performed on unions.

■ Initialize unions.
■ Manipulate integer data with

the bitwise operators.
■ Create bit fields for storing

data compactly.
■ Use enum constants.
■ Consider the security issues of

working with structs, bit
manipulation and enums.

482 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

O
ut

lin
e

10.1 Introduction
Structures are collections of related variables under one name, known as aggregates
in the C standard. Structures may contain many variables of different types. That’s in
contrast to arrays, which contain only elements of the same type. Here, we’ll discuss:

• typedefs—for creating aliases for previously defined data types.

• unions—similar to structures, but with members that share the same storage.

• bitwise operators—for manipulating the bits of integral operands.

• bit fields—unsigned int or int members of structures or unions for which
you specify the number of bits in which the members are stored, helping you
pack information tightly.

• enumerations—sets of integer constants represented by identifiers.

In Chapters 11 and 12, you’ll see that

• structures commonly define records to be stored in files, and

• pointers and structures facilitate forming data structures such as linked lists,
queues, stacks and trees.

Self Check
1 (Fill-In) are similar to structures, but with members that share the same
storage space.
Answer: unions.

10.1 Introduction
10.2 Structure Definitions

10.2.1 Self-Referential Structures
10.2.2 Defining Variables of Structure Types
10.2.3 Structure Tag Names
10.2.4 Operations That Can Be Performed

on Structures
10.3 Initializing Structures
10.4 Accessing Structure Members with

. and ->
10.5 Using Structures with Functions
10.6 typedef
10.7 Random-Number Simulation Case

Study: High-Performance Card
Shuffling and Dealing

10.8 Unions
10.8.1 Union Declarations
10.8.2 Allowed union Operations

10.8.3 Initializing unions in Declarations
10.8.4 Demonstrating unions

10.9 Bitwise Operators
10.9.1 Displaying an Unsigned Integer’s Bits
10.9.2 Making Function displayBits

More Generic and Portable
10.9.3 Using the Bitwise AND, Inclusive

OR, Exclusive OR and Complement
Operators

10.9.4 Using the Bitwise Left- and Right-
Shift Operators

10.9.5 Bitwise Assignment Operators
10.10 Bit Fields

10.10.1 Defining Bit Fields
10.10.2 Using Bit Fields to Represent a

Card’s Face, Suit and Color
10.10.3 Unnamed Bit Fields

10.11 Enumeration Constants
10.12 Anonymous Structures and Unions
10.13 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
Special Section: Raylib Game-Programming Case Studies

10.2 Structure Definitions 483

2 (Fill-In) are sets of integer constants represented by identifiers.
Answer: Enumerations.

10.2 Structure Definitions
Structures are derived data types—they’re constructed using objects of other types.
The keyword struct introduces a structure definition, as in

struct card {
 const char *face;
 const char *suit;
};

The identifier card is the structure tag, which you use with struct to declare vari-
ables of the structure type—e.g., struct card. Variables declared within a struct’s
braces are the structure’s members. A struct’s members must have unique names,
though separate structure types may contain members of the same name without con-
flict. Each structure definition ends with a semicolon.

The struct card definition contains const char * members face and suit. Struc-
ture members can be const or non-const primitive-type variables (e.g., ints, doubles,
etc.) or aggregates, such as arrays or other struct-type objects. Chapter 6 showed that
an array’s elements all have the same type. Structure members, however, can be of dif-
ferent types. For example, the following struct contains char array members for an
employee’s first and last names, an int member for the employee’s age and a double
member for the employee’s hourly salary:

struct employee {
 char firstName[20];
 char lastName[20];
 int age;
 double hourlySalary;
};

10.2.1 Self-Referential Structures
A struct type may not contain a variable of its own struct type (which is a compi-
lation error), but it may contain a pointer to that struct type. For example, the
updated struct employee below contains a pointer to the employee’s manager, which
would be another struct employee object:

struct employee {
 char firstName[20];
 char lastName[20];
 unsigned int age;
 double hourlySalary;
 struct employee *managerPtr; // pointer
};

A structure containing a member that’s a pointer to the same struct type is a self-
referential structure. Self-referential structures are used to build linked data struc-
tures.

ERR

484 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

10.2.2 Defining Variables of Structure Types
A structure definition does not reserve any space in memory. Rather, it creates a new
data type you can use to define variables. It’s like a blueprint showing how to build
instances of that struct. The following statements reserve memory for variables using
the type struct card:

struct card myCard;
struct card deck[52];
struct card *cardPtr;

Variable myCard is a struct card object, array deck consists of 52 struct card objects,
and cardPtr is a pointer to a struct card object.

Variables of a given structure type may also be defined by placing a comma-sep-
arated list of variable names between the struct’s closing brace and terminating semi-
colon. For example, you can incorporate the preceding definitions into the struct
card definition:

struct card {
 const char *face;
 const char *suit;
} myCard, deck[52], *cardPtr;

10.2.3 Structure Tag Names
The structure tag name is optional. If a structure definition does not specify a tag name,
you must define any variables of the type, as shown in the preceding code snippet.
Always provide a structure tag name so you can declare new variables of that type later.

10.2.4 Operations That Can Be Performed on Structures
You can perform the following operations on structs:

• assigning one struct variable to another of the same type (Section 10.7)—for
a pointer member, this copies only the address stored in the pointer,

• taking the address (&) of a struct variable (Section 10.4),

• accessing a struct variable’s members (Section 10.4),

• using the sizeof operator to determine a struct variable’s size, and

• zero initializing a struct variable in its definition, as in
 struct card myCard = {};

Assigning a structure of one type to one of a different type is a compilation error.

Comparing Structure Objects Is Not Allowed
Structures may not be compared using operators == and !=, because structure mem-
bers may not be stored in consecutive bytes of memory. Sometimes there are “holes”
in a structure because computers store some data types only on certain memory
boundaries, such as half-word, word or double-word boundaries. This is machine-
dependent. A word is a memory unit used to store data in a computer, usually four
bytes or eight bytes.

ERR

10.2 Structure Definitions 485

Consider the following structure definition, which also defines variables sample1
and sample2:

struct example {
 char c;
 int i;
} sample1, sample2;

A computer with four-byte words might require that each struct example member
be aligned on a word boundary, i.e., at the beginning of a word. The following dia-
gram shows a possible memory alignment for a struct example variable that has been
assigned the character and the integer 97. We show the bit representations here.

If each member is stored beginning at a word boundary, each struct example variable
has a three-byte hole in bytes 1–3. The hole’s value is unspecified. Even if sample1’s
and sample2’s member values are equal, the holes are not likely to contain identical
values, so the structures are not necessarily equal. Data type sizes and memory align-
ment considerations are machine-dependent.

Self Check
1 (Multiple Choice) Consider the struct name definition:

struct name {
 const char *first;
 const char *last;
};

Which of the following statements a), b) or c) is false?
a) Keyword struct introduces the structure definition.
b) The structure tag name can be used with struct to declare variables of the

structure type.
c) Variables declared within a struct’s braces are the structure’s members,

which must have unique names.
d) All of the above statements are true.

Answer: d.

2 (Multiple Choice) Which of the following a), b) or c) is not a valid operation that
may be performed on a structure?

a) Assigning struct variables to struct variables of the same type.
b) Dereferencing a struct variable.
c) Accessing a struct variable’s members and using sizeof to determine the

size of a struct variable.
d) All of the above statements are true.

Answer: b) is not valid. You cannot dereference a struct because it’s not a pointer,
but you can take a struct’s address with &.

00000000 0110000100000000 0000000001100001

0 1 2 3
Byte

4 765

SE

486 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

10.3 Initializing Structures
Like arrays, you can initialize a struct variable via an initializer list. For example, the
following statement creates variable myCard using type struct card (Section 10.2)
and initializes member face to "Three" and member suit to "Hearts":

struct card myCard = {"Three", "Hearts"};

If there are fewer initializers than members, the remaining members are automatically
initialized to 0 or NULL (for pointer members). Structure variables defined outside a
function definition (i.e., externally) are initialized to 0 or NULL if they’re not explicitly
initialized in the external definition. You may also assign structure variables to other
structure variables of the same type or assign values to individual structure members.

Self Check
1 (True/False) If there are fewer initializers in the list than members in the struc-
ture, the remaining members are not initialized.
Answer: False. Actually, they’re initialized to 0 (or NULL if the member is a pointer).

2 (True/False) You may assign structure variables to other structure variables of the
same type or assign values to individual structure members.
Answer: True.

10.4 Accessing Structure Members with . and ->
You can access structure members with:

• the structure member operator (.), or dot operator, and

• the structure pointer operator (->), or arrow operator.

Structure Member Operator (.)
The structure member operator accesses a structure member via a structure variable
name. For example, using the structure variable myCard from Section 10.3, we can
print the suit member with the statement:

printf("%s", myCard.suit); // displays Hearts

Structure Pointer Operator (->)
You can access a structure member via a pointer to the structure using the structure
pointer operator—a minus (-) sign and a greater than (>) sign with no intervening
spaces. If the pointer cardPtr points to the struct card object myCard we defined ear-
lier, we can print its member suit with the statement:

printf("%s", cardPtr->suit); // displays Hearts

The expression cardPtr->suit is equivalent to (*cardPtr).suit, which dereferences
the pointer and accesses the member suit using the structure member operator (.). The
parentheses are needed here because the structure member operator (.) has higher pre-
cedence than the pointer dereferencing operator (*). The structure pointer operator and

10.4 Accessing Structure Members with . and -> 487

structure member operator have the highest precedence and group from left-to-right,
along with parentheses (for calling functions) and brackets ([]) used for array indexing.

Spacing Conventions
Do not put spaces around the -> and . (dot) operators to emphasize that the expres-
sions the operators are contained in are essentially single variable names. Inserting
space between the structure pointer operator’s - and > or between any other multiple-
keystroke operator’s components (except ?:) is a syntax error.

Demonstrating the Structure Member and Structure Pointer Operators
Figure 10.1 refers to members of structure myCard using the structure member and
structure pointer operators. Lines 16–17 assign "Ace" and "Spades" to myCard’s
members. Line 19 assigns myCard’s address to cardPtr. Lines 21–23 display myCard’s
members using:

• the structure member operator and variable name myCard,

• the structure pointer operator and pointer cardPtr, and

• the structure member operator with dereferenced pointer cardPtr.

1 // fig10_01.c
2 // Structure member operator and
3 // structure pointer operator
4 #include <stdio.h>
5
6 // card structure definition
7 struct card {
8 const char *face; // define pointer face
9 const char *suit; // define pointer suit

10 };
11
12 int main(void) {
13 struct card myCard; // define one struct card variable
14
15 // place strings into myCard
16 myCard.face = "Ace";
17 myCard.suit = "Spades";
18
19 struct card *cardPtr = &myCard; // assign myCard
20
21 printf("%s of %s\n", myCard.face, myCard.suit);
22 printf("%s of %s\n", cardPtr->face, cardPtr->suit);
23 printf("%s of %s\n", (*cardPtr).face, (*cardPtr).suit);
24 }

Ace of Spades
Ace of Spades
Ace of Spades

Fig. 10.1 | Structure member operator and structure pointer operator.

ERR

488 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Self Check
1 (Fill-In) The structure member operator and the structure pointer oper-
ator can be used to access structure members.
Answer: . (dot) , ->.

2 (True/False) The expression cardPtr->suit is equivalent to (*cardPtr).suit,
which dereferences the pointer and accesses the member suit using the structure
member operator. The parentheses are optional.
Answer: False. The expressions, as shown, are equivalent. The parentheses are needed
here because the structure member operator (.) has higher precedence than the point-
er dereferencing operator (*).

10.5 Using Structures with Functions
With structures, you can pass to functions:

• individual structure members,

• entire structure objects, or

• pointers to structure objects.

Individual structure members and entire structure objects are passed by value, so
functions cannot modify them in the caller. To pass a structure by reference, use the
structure object’s address. Passing structures by reference is more efficient than pass-
ing structures by value, which requires the entire structure to be copied. Arrays of
structure objects—like all other arrays—are automatically passed by reference.

Passing an Array By Value
In Chapter 6, we stated that you can use a structure to pass an array by value. To do
so, create a structure with an array member. Structures are passed by value, so its
members are passed by value.

Self Check
1 (Fill-In) Structure objects and individual structure members are passed to func-
tions by .
Answer: value.

2 (Discussion) How can you pass an array by value?
Answer: Simply place the array in a structure and pass the structure. Structures nor-
mally pass by value.

10.6 typedef
The keyword typedef enables you to create synonyms (or aliases) for previously
defined types. It’s commonly used to create shorter names for struct types and sim-
plify declarations of types like function pointers. For example, the following typedef
defines Card as a synonym for type struct card:

typedef struct card Card;

PERF

10.7 High-Performance Card Shuffling and Dealing 489

By convention, capitalize the first letter of typedef names to emphasize that they’re
synonyms for other type names.

You can now use Card to declare variables of type struct card. The declaration
Card deck[52];

declares an array of 52 Card structures (i.e., variables of type struct card). Creating
a new name with typedef does not create a new type; typedef creates an alternate type
name, which may be used as an alias for an existing type name. A meaningful name
helps make the program self-documenting. For example, when we read the previous
declaration, we know “deck is an array of 52 Cards.”

Combining typedef with struct Definitions
Programmers often use typedef to define a structure type, so a structure tag is not
required. For example, the following definition also creates the structure type Card:

typedef struct {
 const char *face;
 const char *suit;
} Card;

Synonyms for Built-In Types
Using typedefs can help make a program more readable and maintainable. Often,
typedef is used to create synonyms for built-in types. For example, a program requir-
ing four-byte integers may use type int on one system and type long on another. Pro-
grams designed for portability often use typedef to create an alias for four-byte
integers, such as Integer. To port the program to another platform, you can simply
change the Integer typedef and recompile the program.

Self Check
1 (Code) Write a typedef statement that creates for structure type struct dice the
shorter type name Dice.
Answer: typedef struct dice Dice;

2 (True/False) Creating a new name with typedef creates a new type.
Answer: False. Creating a new name with typedef does not create a new type. It sim-
ply creates a new type name, which may be used as an alias for an existing type name.

10.7 Random-Number Simulation Case Study: High-
Performance Card Shuffling and Dealing
Figure 10.2 is based on Chapter 7’s card shuffling and dealing simulation. This pro-
gram represents the deck of cards as an array of Card structs and uses high-perfor-
mance shuffling and dealing algorithms.

490 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

1 // fig10_02.c
2 // Card shuffling and dealing program using structures
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <time.h>
6
7 #define CARDS 52
8 #define FACES 13
9

10 // card structure definition
11 struct card {
12 const char *face; // define pointer face
13 const char *suit; // define pointer suit
14 };
15
16 typedef struct card Card; // new type name for struct card
17
18 // prototypes
19 void fillDeck(Card * const deck, const char *faces[], const char *suits[]);
20 void shuffle(Card * const deck);
21 void deal(const Card * const deck);
22
23 int main(void) {
24 Card deck[CARDS]; // define array of Cards
25
26 // initialize faces array of pointers
27 const char *faces[] = { "Ace", "Deuce", "Three", "Four", "Five",
28 "Six", "Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King"};
29
30 // initialize suits array of pointers
31 const char *suits[] = { "Hearts", "Diamonds", "Clubs", "Spades"};
32
33 srand(time(NULL)); // randomize
34
35 fillDeck(deck, faces, suits); // load the deck with Cards
36 shuffle(deck); // put Cards in random order
37 deal(deck); // deal all 52 Cards
38 }
39
40 // place strings into Card structures
41 void fillDeck(Card * const deck, const char * faces[],
42 const char * suits[]) {
43 // loop through deck
44 for (size_t i = 0; i < CARDS; ++i) {
45 deck[i].face = faces[i % FACES];
46 deck[i].suit = suits[i / FACES];
47 }
48 }
49

Fig. 10.2 | Card shuffling and dealing program using structures. (Part 1 of 2.)

10.7 High-Performance Card Shuffling and Dealing 491

Line 35 calls function fillDeck (lines 41–48) to initialize the Card array in order
with "Ace" through "King" of each suit. Line 36 passes the Card array to function
shuffle (lines 51–59), which implements the high-performance shuffling algorithm.
Function shuffle takes an array of 52 Cards as an argument. The function loops
through the 52 Cards. For each Card, the algorithm chooses a random number
between 0 and 51, then swaps the current Card and the randomly selected Card. The
algorithm performs 52 swaps in a single pass of the entire array, and the array of Cards
is shuffled! This algorithm cannot suffer from indefinite postponement like
Chapter 7’s shuffling algorithm. The Cards were swapped in place in the array, so the
high-performance dealing algorithm in function deal (lines 62–68) can deal the shuf-
fled Cards in only one pass of the array.

50 // shuffle cards
51 void shuffle(Card * const deck) {
52 // loop through deck randomly swapping Cards
53 for (size_t i = 0; i < CARDS; ++i) {
54 size_t j = rand() % CARDS;
55 Card temp = deck[i];
56 deck[i] = deck[j];
57 deck[j] = temp;
58 }
59 }
60
61 // deal cards
62 void deal(const Card * const deck) {
63 // loop through deck
64 for (size_t i = 0; i < CARDS; ++i) {
65 printf("%5s of %-8s%s", deck[i].face, deck[i].suit,
66 (i + 1) % 4 ? " " : "\n");
67 }
68 }

Three of Hearts Jack of Clubs Three of Spades Six of Diamonds
 Five of Hearts Eight of Spades Three of Clubs Deuce of Spades
 Jack of Spades Four of Hearts Deuce of Hearts Six of Clubs
Queen of Clubs Three of Diamonds Eight of Diamonds King of Clubs
 King of Hearts Eight of Hearts Queen of Hearts Seven of Clubs
Seven of Diamonds Nine of Spades Five of Clubs Eight of Clubs
 Six of Hearts Deuce of Diamonds Five of Spades Four of Clubs
Deuce of Clubs Nine of Hearts Seven of Hearts Four of Spades
 Ten of Spades King of Diamonds Ten of Hearts Jack of Diamonds
 Four of Diamonds Six of Spades Five of Diamonds Ace of Diamonds
 Ace of Clubs Jack of Hearts Ten of Clubs Queen of Diamonds
 Ace of Hearts Ten of Diamonds Nine of Clubs King of Spades
 Ace of Spades Nine of Diamonds Seven of Spades Queen of Spades

Fig. 10.2 | Card shuffling and dealing program using structures. (Part 2 of 2.)

492 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Related Exercise—Fisher-Yates Shuffling Algorithm
It’s recommended that you use an unbiased shuffling algorithm for real card games.
Such an algorithm ensures that all possible shuffled card sequences are equally likely
to occur. Exercise 10.18 asks you to research the popular unbiased Fisher-Yates shuf-
fling algorithm and use it to reimplement function shuffle in Fig. 10.2.

Self Check
1 (Code) Rewrite the following code to avoid the separate typedef statement:

struct name {
 const char *first;
 const char *last;
};

typedef struct name Name;

Answer:
typedef struct name {
 const char *first;
 const char *last;
} Name;

2 (Code) Correct the following code, which is supposed to swap elements i and j
of the deck array of Cards:

deck[i] = deck[j];
deck[j] = deck[i];

Answer:
Card temp = deck[i];
deck[j] = deck[i];
deck[i] = temp;

3 (Discussion) Why did the card shuffling algorithm we presented in Chapter 7 suf-
fer from indefinite postponement? Why doesn’t this chapter’s card shuffling algo-
rithm suffer from indefinite postponement?
Answer: Chapter 7’s card shuffling and dealing example used a 4-by-13 array to rep-
resent the four suits and 13 faces in a deck. The shuffling algorithm used sentinel-
controlled looping to place 1–52 (representing dealing order) into randomly selected
rows and columns. This loop could execute indefinitely if the randomly selected cells
already contain one of these values. This chapter’s shuffling algorithm uses counter-
controlled iteration to make one pass of a one-dimensional array. The loop iterates
once for each card, then terminates, so it cannot suffer from indefinite postponement.

10.8 Unions
Like a structure, a union is a derived data type, but its members share the same mem-
ory. At different times during program execution, some variables may not be relevant
when others are. So, a union shares the space rather than wasting storage on variables
that are not in use. A union’s members can be of any type. The number of bytes used
to store a union must be at least enough to hold its largest member.

10.8 Unions 493

In most cases, unions contain two or more items of different types. You can ref-
erence only one member—and thus only one type—at a time. It’s your responsibility
to reference the data with the proper type. Referencing the currently stored data with
a variable of the wrong type is a logic error—the result is implementation-dependent.

Union Portability
The amount of memory required to store a union is implementation-dependent.
Operator sizeof will always return a value at least as large as the size in bytes of the
union’s largest member. Some unions may not port easily among computer systems.
Whether a union is portable or not often depends on the memory alignment require-
ments for a union’s member types on a given system.

10.8.1 union Declarations
The following union has two members—int x and double y:

union number {
 int x;
 double y;
};

The union definition is normally placed in a header and included in all source files
that use the union type. As with a struct definition, a union definition simply creates
a new type. It does not reserve any memory until you use the type to create variables.

10.8.2 Allowed unions Operations
The operations that can be performed on a union are:

• assigning a union to another union of the same type,

• taking a union variable’s address (&),

• accessing union members via the structure member operator (.) and the struc-
ture pointer operator (->), and

• zero-initializing the union.

Two unions may not be compared using operators == and != for the same reasons that
two structures cannot be compared.

10.8.3 Initializing unions in Declarations
You can initialize a union in a declaration with a value of the union’s first member
type. The union number in Section 10.8.1 has an int as its first member, so we can
initialize an object of this type with the following statement:

union number value = {10};

If you initialize the object with a double, as in
union number value = {1.43};

C will truncate the initializer value’s floating-point part—some compilers will issue a
warning about this.

ERR

SE

SE

SE

494 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

10.8.4 Demonstrating unions
Figure 10.3 displays a union number variable named value (line 12) as both an int
and a double. This program’s output is implementation-dependent.

Self Check
1 (Discussion) Like a struct, a union is a derived data type. How is a union different
from a struct?

1 // fig10_03.c
2 // Displaying the value of a union in both member data types
3 #include <stdio.h>
4
5 // number union definition
6 union number {
7 int x;
8 double y;
9 };

10
11 int main(void) {
12 union number value; // define a union variable
13
14 value.x = 100; // put an int into the union
15 puts("Put 100 in the int member and print both members:");
16 printf("int: %d\ndouble: %.2f\n\n", value.x, value.y);
17
18 value.y = 100.0; // put a double into the same union
19 puts("Put 100.0 in the double member and print both members:");
20 printf("int: %d\ndouble: %.2f\n\n", value.x, value.y);
21 }

Microsoft Visual Studio

Put 100 in the int member and print both members:
int: 100
double: -92559592117433135502616407313071917486139351398276445610442752.00

Put 100.0 in the double member and print both members:
int: 0
double: 100.00

GNU GCC and Apple Xcode

Put 100 in the int member and print both members:
int: 100
double: 0.00

Put 100.0 in the double member and print both members:
int: 0
double: 100.00

Fig. 10.3 | Displaying the value of a union in both member data types.

10.9 Bitwise Operators 495

Answer: A union shares its memory among all of its members. Only one member
may be stored in a union at any time. You must keep track of which member is cur-
rently stored.

2 (True/False) The following union definition indicates that number is a union type
with members int x and double y:

union number {
 int x;
 double y;
};

For a machine with four-byte ints and eight-byte doubles, the compiler must reserve
at least 12 bytes for a variable of this union type.
Answer: False. Only one of these members is active at a time, so the union needs to
reserve only as much storage as is needed for the largest member—in this case, eight
bytes.

10.9 Bitwise Operators
Computers represent all data internally as sequences of bits. Each bit can assume the
value 0 or the value 1. On most systems, a sequence of eight bits forms a byte—the
typical storage unit for a char variable. The bitwise operators are used to manipulate
the bits of integral operands, both signed and unsigned, though unsigned integers
are typically used. Bitwise data manipulations are machine-dependent. The following
table summarizes the bitwise operators.

Operator Description

& bitwise AND Compares its two operands bit by bit. The bits in the result
are set to 1 if the corresponding bits in the two operands are
both 1.

| bitwise inclusive OR Compares its two operands bit by bit. The bits in the result
are set to 1 if at least one of the corresponding bits in the two
operands is 1.

^ bitwise exclusive OR
(also known as bit-
wise XOR)

Compares its two operands bit by bit. The bits in the result
are set to 1 if the corresponding bits in the two operands are
different.

<< left shift Shifts the bits of the first operand left by the number of bits
specified by the second operand; fill from the right with 0 bits.

>> right shift Shifts the bits of the first operand right by the number of bits
specified by the second operand; the method of filling from
the left is machine-dependent when the left operand is nega-
tive.

~ complement All 0 bits are set to 1, and all 1 bits are set to 0. This is often
called toggling the bits.

SE

496 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Detailed discussions of each bitwise operator appear in the examples that follow.
The examples show the binary representations of the integer operands.

10.9.1 Displaying an Unsigned Integer’s Bits
When using the bitwise operators, it’s useful to display values in binary1 to show each
operator’s precise effects. Figure 10.4 prints an unsigned int in its binary representa-
tion using eight-bit groups for readability. All the compilers we used to test these
examples store unsigned ints in 4 bytes (32 bits) of memory.

1. See online Appendix E for a detailed explanation of the binary (base-2) number system.

1 // fig10_04.c
2 // Displaying an unsigned int in bits
3 #include <stdio.h>
4
5 void displayBits(unsigned int value); // prototype
6
7 int main(void) {
8 unsigned int x = 0; // variable to hold user input
9

10 printf("%s", "Enter a nonnegative int: ");
11 scanf("%u", &x);
12 displayBits(x);
13 }
14
15 // display bits of an unsigned int value
16 void displayBits(unsigned int value) {
17 // define displayMask and left shift 31 bits
18 unsigned int displayMask = 1 << 31;
19
20 printf("%10u = ", value);
21
22 // loop through bits
23 for (unsigned int c = 1; c <= 32; ++c) {
24 putchar(value & displayMask ? :);
25 value <<= 1; // shift value left by 1
26
27 if (c % 8 == 0) { // output space after 8 bits
28 putchar();
29 }
30 }
31
32 putchar();
33 }

Enter a nonnegative int: 65000
 65000 = 00000000 00000000 11111101 11101000

Fig. 10.4 | Displaying an unsigned int in bits.

10.9 Bitwise Operators 497

Displaying the Bits of an Integer
Function displayBits (lines 16–33) uses the bitwise AND operator to combine vari-
able value with the variable displayMask (line 24). Often, the bitwise AND operator
is used with an operand called a mask—an integer value with specific bits set to 1.
Masks are used to hide some bits in a value while selecting other bits. In function dis-
playBits, line 18 assigns the mask variable displayMask the value

1 << 31 (10000000 00000000 00000000 00000000)

The left-shift operator shifts the value 1 from the low-order (rightmost) bit to the
high-order (leftmost) bit in displayMask and fills in 0 bits from the right. Line 24

putchar(value & displayMask ? :);

determines whether to display a 1 or a 0 for the current leftmost bit of value. Combin-
ing value and displayMask with & “masks off” (hides) all the bits except the high-order
bit in value—any bit “ANDed” with 0 yields 0. If the leftmost bit is 1, value & dis-
playMask evaluates to a nonzero (true) value and line 24 displays 1; otherwise, it displays
0. Line 25 left shifts the variable value one bit with the expression value <<= 1. Func-
tion displayBits repeats these steps for each bit in value. Using the logical AND oper-
ator (&&) for the bitwise AND operator (&)—and vice versa—is a logic error. The table
below summarizes the results of combining two bits with the bitwise AND operator.

10.9.2 Making Function displayBits More Generic and Portable
In line 18 of Fig. 10.4, we hard-coded the integer 31 to indicate that the value 1 should
be shifted to the leftmost bit in the variable displayMask. Similarly, in line 23, we hard-
coded the integer 32 to indicate that the loop should iterate 32 times, once for each bit
in value. We assumed that unsigned ints are always stored in 32 bits (four bytes) of
memory. Today’s popular computers generally use 32-bit- or 64-bit-word hardware
architectures. As a C programmer, you’ll tend to work across many hardware architec-
tures, and sometimes unsigned ints will be stored in smaller or larger numbers of bits.

Figure 10.4 can be made more generic and portable by replacing the integers 31
(line 18) and 32 (line 23) with expressions that calculate these integers, based on the
size of an unsigned int for a given platform. The symbolic constant CHAR_BIT (defined
in <limits.h>) represents the number of bits in a byte (normally 8). Recall sizeof
determines the number of bytes used to store an object or type. The expression
sizeof(unsigned int) evaluates to 4 for 32-bit unsigned ints and 8 for 64-bit
unsigned ints. You can replace 31 with

CHAR_BIT * sizeof(unsigned int) - 1

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

0 1 0

1 0 0

1 1 1

ERR

SE

498 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

and replace 32 with
CHAR_BIT * sizeof(unsigned int)

For 32-bit unsigned ints, these expressions evaluate to 31 and 32. For 64-bit
unsigned ints, they evaluate to 63 and 64.

10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and
Complement Operators
Figure 10.5 demonstrates the bitwise AND, the bitwise inclusive OR, the bitwise
exclusive OR and the bitwise complement operators. The program uses function dis-
playBits (lines 45–62) to display the unsigned int values.

1 // fig10_05.c
2 // Using the bitwise AND, bitwise inclusive OR, bitwise
3 // exclusive OR and bitwise complement operators
4 #include <stdio.h>
5
6 void displayBits(unsigned int value); // prototype
7
8 int main(void) {
9 // demonstrate bitwise AND (&)

10 unsigned int number1 = 65535;
11 unsigned int mask = 1;
12 puts("The result of combining the following");
13 displayBits(number1);
14 displayBits(mask);
15 puts("using the bitwise AND operator & is");
16 displayBits(number1 & mask);
17
18 // demonstrate bitwise inclusive OR (|)
19 number1 = 15;
20 unsigned int setBits = 241;
21 puts("\nThe result of combining the following");
22 displayBits(number1);
23 displayBits(setBits);
24 puts("using the bitwise inclusive OR operator | is");
25 displayBits(number1 | setBits);
26
27 // demonstrate bitwise exclusive OR (^)
28 number1 = 139;
29 unsigned int number2 = 199;
30 puts("\nThe result of combining the following");
31 displayBits(number1);
32 displayBits(number2);
33 puts("using the bitwise exclusive OR operator ^ is");
34 displayBits(number1 ^ number2);
35

Fig. 10.5 | Using the bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise
complement operators. (Part 1 of 2.)

10.9 Bitwise Operators 499

36 // demonstrate bitwise complement (~)
37 number1 = 21845;
38 puts("\nThe one);
39 displayBits(number1);
40 puts("is");
41 displayBits(~number1);
42 }
43
44 // display bits of an unsigned int value
45 void displayBits(unsigned int value) {
46 // declare displayMask and left shift 31 bits
47 unsigned int displayMask = 1 << 31;
48
49 printf("%10u = ", value);
50
51 // loop through bits
52 for (unsigned int c = 1; c <= 32; ++c) {
53 putchar(value & displayMask ? :);
54 value <<= 1; // shift value left by 1
55
56 if (c % 8 == 0) { // output a space after 8 bits
57 putchar();
58 }
59 }
60
61 putchar();
62 }

The result of combining the following
 65535 = 00000000 00000000 11111111 11111111
 1 = 00000000 00000000 00000000 00000001
using the bitwise AND operator & is
 1 = 00000000 00000000 00000000 00000001

The result of combining the following
 15 = 00000000 00000000 00000000 00001111
 241 = 00000000 00000000 00000000 11110001
using the bitwise inclusive OR operator | is
 255 = 00000000 00000000 00000000 11111111

The result of combining the following
 139 = 00000000 00000000 00000000 10001011
 199 = 00000000 00000000 00000000 11000111
using the bitwise exclusive OR operator ^ is
 76 = 00000000 00000000 00000000 01001100

The one
 21845 = 00000000 00000000 01010101 01010101
is
4294945450 = 11111111 11111111 10101010 10101010

Fig. 10.5 | Using the bitwise AND, bitwise inclusive OR, bitwise exclusive OR and bitwise
complement operators. (Part 2 of 2.)

500 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Bitwise AND Operator (&)
Line 10 assigns the value 65535

00000000 00000000 11111111 11111111

to the integer variable number1, and line 11 assigns the value 1
00000000 00000000 00000000 00000001

to the variable mask. When you combine number1 and mask using the bitwise AND
operator (&) in the expression number1 & mask (line 16), the result is

00000000 00000000 00000000 00000001

All the bits except the low-order bit in number1 are “masked off” (hidden) by “AND-
ing” with variable mask.

Bitwise Inclusive OR Operator (|)
The bitwise inclusive OR operator sets specific bits to 1 in an operand. Line 19
assigns 15

00000000 00000000 00000000 00001111

to the variable number1 and line 20 assigns 241
00000000 00000000 00000000 11110001

to the variable setBits. When you combine number1 and setBits with the bitwise
inclusive OR operator in the expression number1 | setBits (line 25), the result is 255

00000000 00000000 00000000 11111111

The following table summarizes the results of combining two bits with the bitwise
inclusive OR operator.

Bitwise Exclusive OR Operator (^)
The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of
the corresponding bits in its two operands is 1. Line 28 assigns number1 the value 139

00000000 00000000 00000000 10001011

and line 29 assigns number2 the value 199

00000000 00000000 00000000 11000111

When you combine these variables with the bitwise exclusive OR operator in the
expression number1 ^ number2 (line 34), the result is

00000000 00000000 00000000 01001100

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

0 1 1

1 0 1

1 1 1

10.9 Bitwise Operators 501

The following table summarizes the results of combining two bits with the bitwise
exclusive OR operator.

Bitwise Complement Operator (~)
The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result
and sets all 0 bits to 1. This is otherwise referred to as “taking the one’s complement
of the value.” Line 37 assigns number1 the value 21845

00000000 00000000 01010101 01010101

The expression ~number1 (line 41) toggles all the bits producing
11111111 11111111 10101010 10101010

10.9.4 Using the Bitwise Left- and Right-Shift Operators
Figure 10.6 demonstrates the left-shift (<<) and right-shift (>>) operators. Again, we
use the function displayBits to display the unsigned int values.

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

0 1 1

1 0 1

1 1 0

1 // fig10_06.c
2 // Using the bitwise shift operators
3 #include <stdio.h>
4
5 void displayBits(unsigned int value); // prototype
6
7 int main(void) {
8 unsigned int number1 = 960; // initialize number1
9

10 // demonstrate bitwise left shift
11 puts("\nThe result of left shifting");
12 displayBits(number1);
13 puts("8 bit positions using the left shift operator << is");
14 displayBits(number1 << 8);
15
16 // demonstrate bitwise right shift
17 puts("\nThe result of right shifting");
18 displayBits(number1);
19 puts("8 bit positions using the right shift operator >> is");
20 displayBits(number1 >> 8);
21 }
22

Fig. 10.6 | Using the bitwise shift operators. (Part 1 of 2.)

502 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Left-Shift Operator (<<)
The left-shift operator (<<) shifts the bits of its left operand to the left by the number
of bits specified in its right operand. Bits vacated to the right are replaced with 0s. Bits
shifted off the left are lost. Line 8 assigns the variable number1 the value 960

00000000 00000000 00000011 11000000

Left-shifting number1 eight bits with the expression number1 << 8 (line 14) results in
the value 245760

00000000 00000011 11000000 00000000

Right-Shift Operator (>>)
The right-shift operator (>>) shifts the bits of its left operand to the right by the num-
ber of bits specified in its right operand. Right-shifting an unsigned int replaces the
vacated bits at the left with 0s. Bits shifted off the right are lost. The result of right-
shifting number1 with the expression number1 >> 8 (line 20) is 3

00000000 00000000 00000000 00000011

23 // display bits of an unsigned int value
24 void displayBits(unsigned int value) {
25 // declare displayMask and left shift 31 bits
26 unsigned int displayMask = 1 << 31;
27
28 printf("%10u = ", value);
29
30 // loop through bits
31 for (unsigned int c = 1; c <= 32; ++c) {
32 putchar(value & displayMask ? :);
33 value <<= 1; // shift value left by 1
34
35 if (c % 8 == 0) { // output a space after 8 bits
36 putchar();
37 }
38 }
39
40 putchar();
41 }

The result of left shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the left shift operator << is
 245760 = 00000000 00000011 11000000 00000000

The result of right shifting
 960 = 00000000 00000000 00000011 11000000
8 bit positions using the right shift operator >> is
 3 = 00000000 00000000 00000000 00000011

Fig. 10.6 | Using the bitwise shift operators. (Part 2 of 2.)

10.9 Bitwise Operators 503

The result of right- or left-shifting a value is undefined if the right operand is negative
or if the right operand is larger than the number of bits in the left operand. The result
of right-shifting a negative number is implementation-defined.

10.9.5 Bitwise Assignment Operators
Each binary bitwise operator has a corresponding assignment operator. The following
table summarizes these bitwise assignment operators.

The following table shows in decreasing order the precedence and grouping of the
operators introduced to this point in the text.

Self Check
1 (Fill-In) Often, the bitwise AND operator is used with an operand called a

, which is an integer value with specific bits set to 1. This is used to hide some
bits in a value while selecting other bits.
Answer: mask.

Bitwise assignment operators

&= Bitwise AND assignment operator.
|= Bitwise inclusive OR assignment operator.
^= Bitwise exclusive OR assignment operator.
<<= Left-shift assignment operator.
>>= Right-shift assignment operator.

Operator Grouping Type

() [] . -> ++ (postfix) -- (postfix) left-to-right highest
+ - ++ -- ! & * ~ sizeof (type) right-to-left unary
* / % left-to-right multiplicative
+ - left-to-right additive
<< >> left-to-right shifting
< <= > >= left-to-right relational
== != left-to-right equality
& left-to-right bitwise AND
^ left-to-right bitwise XOR
| left-to-right bitwise OR
&& left-to-right logical AND
|| left-to-right logical OR
?: left-to-right conditional
= += -= *= /= %= &= |= ^= <<= >>= left-to-right assignment
, left-to-right comma

ERR

SE

504 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

2 (True/False) The bitwise exclusive OR operator sets each bit in the result to 1 if
the corresponding bit in either (or both) operand(s) is 1.
Answer: False. Actually, what’s described above is the bitwise inclusive OR operator.
The bitwise exclusive OR operator sets each bit in the result to 1 if the corresponding
bits in each operand are different.

3 (Fill-In) The bitwise complement operator sets all 0 bits in its operand to 1 in the
result and sets all 1 bits to 0. This is often called the bits.
Answer: toggling.

4 (True/False) Because of the machine-dependent nature of bitwise manipulations,
programs including them might not work correctly or might work differently across
systems.
Answer: True.

10.10 Bit Fields
You can specify the number of bits in which to store an unsigned or signed integral
member of a struct or union. Known as bit fields, these enable better memory utili-
zation by storing data in the minimum number of bits required. Bit field members
typically are declared as int or unsigned int.

10.10.1 Defining Bit Fields
The following struct bitCard

struct bitCard {
 unsigned int face : 4;
 unsigned int suit : 2;
 unsigned int color : 1;
};

contains three unsigned int bit fields—face, suit and color—that can represent a
card in a deck of 52 cards. You declare a bit field by following an unsigned or signed
integral member’s name with a colon (:) and an integer constant representing the bit
field’s width—the number of bits in which to store the member. The width must be
an integer constant between 0 and the total number of bits used to store an int on
your system, inclusive. Our examples were tested on a computer with four-byte (32-
bit) integers.

The preceding structure definition indicates that members face, suit and color
are stored in 4 bits, 2 bits and 1 bit, respectively. The number of bits is based on the
desired range of values for each member:

• face stores values from 0 (Ace) through 12 (King)—4 bits can store values in
the range 0–15,

• suit stores values from 0 through 3 (0 = Hearts, 1 = Diamonds, 2 = Clubs, 3 =
Spades)—2 bits can store values in the range 0–3, and

• color stores either 0 (Red) or 1 (Black)—1 bit can store either 0 or 1.

10.10 Bit Fields 505

10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color
Figure 10.7 creates the array deck containing 52 struct bitCard structures in line 19.
Function fillDeck (lines 30–37) inserts the 52 cards in the deck array, and function
deal (lines 41–49) prints the 52 cards. Notice that bit field members of structures are
accessed exactly as any other structure member.

1 // fig10_07.c
2 // Representing cards with bit fields in a struct
3 #include <stdio.h>
4 #define CARDS 52
5
6 // bitCard structure definition with bit fields
7 struct bitCard {
8 unsigned int face : 4; // 4 bits; 0-15
9 unsigned int suit : 2; // 2 bits; 0-3

10 unsigned int color : 1; // 1 bit; 0-1
11 };
12
13 typedef struct bitCard Card; // new type name for struct bitCard
14
15 void fillDeck(Card * const deck); // prototype
16 void deal(const Card * const deck); // prototype
17
18 int main(void) {
19 Card deck[CARDS]; // create array of Cards
20
21 fillDeck(deck);
22
23 puts("Card values 0-12 correspond to Ace through King");
24 puts("Suit values 0-3 correspond to Hearts, Diamonds, Clubs and Spades");
25 puts("Color values 0-1 correspond to red and black\n");
26 deal(deck);
27 }
28
29 // initialize Cards
30 void fillDeck(Card * const deck) {
31 // loop through deck
32 for (size_t i = 0; i < CARDS; ++i) {
33 deck[i].face = i % (CARDS / 4);
34 deck[i].suit = i / (CARDS / 4);
35 deck[i].color = i / (CARDS / 2);
36 }
37 }
38
39 // output cards in two-column format; cards 0-25 indexed with
40 // k1 (column 1); cards 26-51 indexed with k2 (column 2)
41 void deal(const Card * const deck) {
42 // loop through deck
43 for (size_t k1 = 0, k2 = k1 + 26; k1 < CARDS / 2; ++k1, ++k2) {

Fig. 10.7 | Representing cards with bit fields in a struct. (Part 1 of 2.)

506 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Bit fields can reduce the amount of memory a program needs, but are machine-
dependent. Although bit fields save space, using them can cause the compiler to gen-
erate slower-executing machine-language code. This occurs because it takes extra
machine-language operations to access only portions of an addressable storage unit.
This is one of many examples of the kinds of space/time trade-offs that occur in com-
puter science.

Bit fields do not have addresses, so attempting to take the address of a bit field
with the & operator is an error. Also, using sizeof with a bit field is an error.

44 printf("Card:%3d Suit:%2d Color:%2d ",
45 deck[k1].face, deck[k1].suit, deck[k1].color);
46 printf("Card:%3d Suit:%2d Color:%2d\n",
47 deck[k2].face, deck[k2].suit, deck[k2].color);
48 }
49 }

Card values 0-12 correspond to Ace through King
Suit values 0-3 correspond to Hearts, Diamonds, Clubs and Spades
Color values 0-1 correspond to red and black

Card: 0 Suit: 0 Color: 0 Card: 0 Suit: 2 Color: 1
Card: 1 Suit: 0 Color: 0 Card: 1 Suit: 2 Color: 1
Card: 2 Suit: 0 Color: 0 Card: 2 Suit: 2 Color: 1
Card: 3 Suit: 0 Color: 0 Card: 3 Suit: 2 Color: 1
Card: 4 Suit: 0 Color: 0 Card: 4 Suit: 2 Color: 1
Card: 5 Suit: 0 Color: 0 Card: 5 Suit: 2 Color: 1
Card: 6 Suit: 0 Color: 0 Card: 6 Suit: 2 Color: 1
Card: 7 Suit: 0 Color: 0 Card: 7 Suit: 2 Color: 1
Card: 8 Suit: 0 Color: 0 Card: 8 Suit: 2 Color: 1
Card: 9 Suit: 0 Color: 0 Card: 9 Suit: 2 Color: 1
Card: 10 Suit: 0 Color: 0 Card: 10 Suit: 2 Color: 1
Card: 11 Suit: 0 Color: 0 Card: 11 Suit: 2 Color: 1
Card: 12 Suit: 0 Color: 0 Card: 12 Suit: 2 Color: 1
Card: 0 Suit: 1 Color: 0 Card: 0 Suit: 3 Color: 1
Card: 1 Suit: 1 Color: 0 Card: 1 Suit: 3 Color: 1
Card: 2 Suit: 1 Color: 0 Card: 2 Suit: 3 Color: 1
Card: 3 Suit: 1 Color: 0 Card: 3 Suit: 3 Color: 1
Card: 4 Suit: 1 Color: 0 Card: 4 Suit: 3 Color: 1
Card: 5 Suit: 1 Color: 0 Card: 5 Suit: 3 Color: 1
Card: 6 Suit: 1 Color: 0 Card: 6 Suit: 3 Color: 1
Card: 7 Suit: 1 Color: 0 Card: 7 Suit: 3 Color: 1
Card: 8 Suit: 1 Color: 0 Card: 8 Suit: 3 Color: 1
Card: 9 Suit: 1 Color: 0 Card: 9 Suit: 3 Color: 1
Card: 10 Suit: 1 Color: 0 Card: 10 Suit: 3 Color: 1
Card: 11 Suit: 1 Color: 0 Card: 11 Suit: 3 Color: 1
Card: 12 Suit: 1 Color: 0 Card: 12 Suit: 3 Color: 1

Fig. 10.7 | Representing cards with bit fields in a struct. (Part 2 of 2.)

PERF

PERF

ERR

10.11 Enumeration Constants 507

10.10.3 Unnamed Bit Fields
An unnamed bit field is used as padding in a struct. For example, the definition

struct example {
 unsigned int a : 13;
 unsigned int : 19;
 unsigned int b : 4;
};

uses an unnamed 19-bit field as padding. Nothing can be stored in those 19 bits. Mem-
ber b (assuming a four-byte-word computer) is stored in a separate word of memory.

An unnamed bit field with a zero width aligns the next bit field on a new storage-
unit boundary. For example, the struct

struct example {
 unsigned int a : 13;
 unsigned int : 0;
 unsigned int : 4;
};

uses an unnamed 0-bit field to skip the remaining bits (as many as there are) of the
storage unit in which a is stored and to align b on the next storage-unit boundary.

Self Check
1 (Fill-In) The structure definition

struct example {
 unsigned int a : 13;
 unsigned int : 19;
 unsigned int b : 4;
};

uses an unnamed 19-bit field as —nothing can be stored in those 19 bits.
Answer: padding.

2 (Multiple Choice) Which of the following statements a), b) or c) about
Section 10.10.1’s struct bitCard is false?

a) A bit field is declared by following an unsigned or signed integral member
name with a colon (:) and an integer constant representing the bit field’s width.

b) The struct bitCard definition indicates that member face is stored in 4 bits,
member suit is stored in 2 bits, and member color is stored in 1 bit.

c) The number of bits in a bit field is based on each structure member’s desired
range of values.

d) All of the above statements are true.
Answer: d.

10.11 Enumeration Constants
Section 5.11 introduced the keyword enum for defining a set of integer enumeration
constants represented by identifiers. Values in an enum start with 0, unless specified
otherwise, and increment by 1. For example, the enumeration

508 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

enum months {
 JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
};

creates the new type enum months in which the identifiers are set to the integers 0
through 11. To number the months 1 to 12, use:

enum months {
 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
};

which explicitly sets JAN to 1. The remaining values increment from 1, resulting in
the values 1 through 12.

The identifiers in any enumeration accessible in a given scope must be unique. Each
enumeration constant’s value can be set explicitly in the definition by assigning a value
to the identifier. Multiple enumeration members can have the same constant value.
Assigning a value to an enumeration constant after it’s been defined is a syntax error.
You should use only uppercase letters in enumeration constant names to make them
stand out in a program and as a reminder that enumeration constants are not variables.

 Figure 10.8 uses the enumeration variable month in a for statement to print the
months of the year from the array monthName. We set monthName[0] to the empty
string "" and ignore it in this example.

1 // fig10_08.c
2 // Using an enumeration
3 #include <stdio.h>
4
5 // enumeration constants represent months of the year
6 enum months {
7 JAN = 1, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC
8 };
9

10 int main(void) {
11 // initialize array of pointers
12 const char *monthName[] = { "", "January", "February", "March",
13 "April", "May", "June", "July", "August", "September", "October",
14 "November", "December" };
15
16 // loop through months
17 for (enum months month = JAN; month <= DEC; ++month) {
18 printf("%2d%11s\n", month, monthName[month]);
19 }
20 }

 1 January
 2 February
 3 March
 4 April
 5 May
 6 June

Fig. 10.8 | Using an enumeration. (Part 1 of 2.)

ERR

10.12 Anonymous Structures and Unions 509

Self Check
1 (Code) The following enumeration creates a new type, enum days, in which the
identifiers are set to the integers 0 to 6:

enum days {
 MON, TUE, WED, THU, FRI, SAT, SUN
};

Rewrite this enumeration to number the days 1 to 7.
Answer:

enum days {
 MON = 1, TUE, WED, THU, FRI, SAT, SUN
;

2 (True/False) Multiple enumeration constants in the same scope can have the same
identifier.
Answer: False. Actually, the identifiers in any enumeration accessible in the same
scope must be unique. Multiple members of an enumeration can have the same con-
stant value.

10.12 Anonymous Structures and Unions
Anonymous structs and unions can be nested in named structs and unions. The
members in a nested anonymous struct or union are members of the enclosing
struct or union. They can be accessed directly through an object of the enclosing
type. For example, consider the following struct declaration:

struct myStruct {
 int member1;
 int member2;

 struct { # anonymous struct
 int nestedMember1;
 int nestedMember2;
 }; // end nested struct
}; // end outer struct

For a struct myStruct variable named object, you can access the members as
object.member1;
object.member2;
object.nestedMember1;
object.nestedMember2;

 7 July
 8 August
 9 September
10 October
11 November
12 December

Fig. 10.8 | Using an enumeration. (Part 2 of 2.)

510 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Self Check
1 (True/False) The members in a nested anonymous struct or union are members
of the enclosing struct or union. They can be accessed directly through an object of
the enclosing type.
Answer: True.

10.13 Secure C Programming
Various CERT guidelines and rules apply to this chapter’s topics. For more informa-
tion on each, visit https://wiki.sei.cmu.edu/.

CERT Guidelines for structs
As we discussed in Section 10.2.4, the boundary alignment requirements for struct
members may result in extra bytes containing undefined data for each struct variable
you create. Each of the following guidelines is related to this issue:

• EXP03-C: Because of boundary alignment requirements, a struct variable’s
size is not necessarily the sum of its members’ sizes. Always use sizeof to
determine a struct variable’s number of bytes. We’ll use this technique to
manipulate fixed-length records that are written to and read from files
(Chapter 11) and to create custom data structures (Chapter 12).

• EXP04-C: Section 10.2.4 discussed that struct variables cannot be com-
pared for equality or inequality because they might contain bytes of undefined
data. Therefore, you must compare their individual members.

• DCL39-C: In a struct variable, the undefined extra bytes could contain
secure data—left over from prior use of those memory locations—that should
not be accessible. This CERT guideline discusses compiler-specific mecha-
nisms for packing the data to eliminate these extra bytes.

CERT Guideline for typedef
• DCL05-C: Complex type declarations, such as those for function pointers,

can be difficult to read. You should use typedef to create self-documenting
type names that make your programs more readable.

CERT Guidelines for Bit Manipulation
• INT02-C: As a result of the integer promotion rules (discussed in

Section 5.6), performing bitwise operations on integer types smaller than int
can lead to unexpected results. Explicit casts are required to ensure correct
results.

• INT13-C: Some bitwise operations on signed integer types are implementa-
tion-defined—this means that the operations may have different results across
C compilers. For this reason, unsigned integer types should be used with the
bitwise operators.

SEC

https://wiki.sei.cmu.edu/

 Summary 511

• EXP46-C: The logical operators && and || are frequently confused with the
bitwise operators & and |, respectively. Using & and | in a conditional expres-
sion’s condition (?:) can lead to unexpected behavior because the & and |
operators do not use short-circuit evaluation.

CERT Guideline for enum
• INT09-C: Allowing multiple enumeration constants to have the same value can

result in difficult-to-find logic errors. In most cases, an enum’s enumeration con-
stants should each have unique values to help prevent such logic errors.

Self Check
1 (Fill-In) struct variables cannot be compared for equality or inequality, because
they might contain bytes of undefined data. Instead, you must .
Answer: compare their individual members.

2 (True/False) Allowing multiple enumeration constants to have the same value can
result in difficult-to-find logic errors. In most cases, an enum’s enumeration constants
should each have unique values to help prevent such logic errors.
Answer: True.

Summary
Section 10.1 Introduction
• Structures (p. 482) are collections of related variables under one name. They may contain

variables of many different data types.
• Structures are commonly used to define records to be stored in files.
• Pointers and structures can be used to form more complex data structures, such as linked

lists, queues, stacks and trees.

Section 10.2 Structure Definitions
• Keyword struct introduces a structure definition (p. 483).
• The structure tag (p. 483) following keyword struct names the structure definition. It’s

used with the keyword struct to declare variables of the struct type.
• Variables declared within the braces of a struct definition are the struct’s members.
• Members of the same struct type must have unique names.
• Each struct definition must end with a semicolon.
• struct members can have primitive or aggregate data types.
• A struct cannot contain an instance of itself but may include a pointer to its type.
• A struct containing a member that’s a pointer to the same struct type is referred to as a

self-referential structure. Self-referential structures (p. 483) are used to build linked data
structures.

• struct definitions create new data types that are used to define variables.
• Variables of a given struct type can be declared by placing a comma-separated list of vari-

able names between the struct definition’s closing brace and its ending semicolon.

512 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

• If a struct definition does not contain a structure tag name, variables of the struct type
may be declared only in the struct definition.

• The only valid operations that may be performed on structs are assigning struct variables
to variables of the same type, taking the address (&) of a struct variable, accessing the mem-
bers of a struct variable and using the sizeof operator to determine the size of a struct
variable.

Section 10.3 Initializing Structures
• structs can be initialized using initializer lists.
• If there are fewer initializers in the list than members in the struct, the remaining members

are automatically initialized to 0 (or NULL if the member is a pointer).
• Members of struct variables defined outside a function definition are initialized to 0 or
NULL if they’re not explicitly initialized in the external definition.

Section 10.4 Accessing Structure Members with . and ->
• The structure member operator (.) and the structure pointer operator (->) are used to ac-

cess structure members (p. 486).
• The structure member operator accesses a structure member via a struct variable name.
• The structure pointer operator accesses a struct member via a pointer to a struct object

(p. 486).

Section 10.5 Using Structures with Functions
• struct members, entire struct objects or pointers to struct objects may be passed to func-

tions.
• Entire struct objects are passed by value by default.
• To pass a struct object by reference, pass its address. Arrays of struct objects are automat-

ically passed by reference.
• To pass an array by value, create a struct with the array as a member. structs are passed

by value, so the array is passed by value.

Section 10.6 typedef
• The keyword typedef (p. 488) creates synonyms for previously defined types.
• Names for structure types are often defined with typedef to create shorter type names.

Section 10.8 Unions
• A union (p. 492) is declared with the keyword union. Its members share the same storage

space.
• A union’s members can be of any data type. Operator sizeof will always return a value at

least as large as the size in bytes of the union’s largest member
• Only one union member can be referenced at a time. It’s your responsibility to access the

currently stored member.
• The valid operations on a union are assigning a union to another of the same type, taking

the address (&) of a union variable, and accessing union members using the structure mem-
ber operator and the structure pointer operator.

• A union may be initialized in a declaration with a value of the first union member’s type.

 Summary 513

Section 10.9 Bitwise Operators
• Computers represent all data internally as sequences of bits with the values 0 or 1.
• On most systems, a sequence of 8 bits form a byte—the standard storage unit for a variable

of type char. Other data types are stored in larger numbers of bytes.
• The bitwise operators manipulate the bits of integral operands (char, short, int and long;

both signed and unsigned). Unsigned integers are normally used.
• The bitwise operators (p. 495) are bitwise AND (&), bitwise inclusive OR (|), bitwise ex-

clusive OR (^), left shift (<<), right shift (>>) and complement (~).
• The bitwise AND, bitwise inclusive OR and bitwise exclusive OR operators compare their

two operands bit by bit. The bitwise AND operator (p. 495) sets each bit in the result to 1
if the corresponding bit in both operands is 1. The bitwise inclusive OR operator (p. 495)
sets each bit in the result to 1 if the corresponding bit in either (or both) operand(s) is 1.
The bitwise exclusive OR operator (p. 495) sets each bit in the result to 1 if the correspond-
ing bits in both operands are different.

• The left-shift operator (p. 495) shifts the bits of its left operand to the left by the number
of bits specified in its right operand. Bits vacated to the right are replaced with 0s; bits shift-
ed off the left are lost.

• The right-shift operator (p. 495) shifts the bits in its left operand to the right by the num-
ber of bits specified in its right operand. Performing a right shift on an unsigned int causes
the vacated bits at the left to be replaced by 0s; bits shifted off the right are lost.

• The bitwise complement operator (p. 495) sets all 0 bits in its operand to 1 and all 1 bits
to 0 in the result.

• Often, bitwise AND is used with an operand called a mask (p. 497)—an integer value with
specific bits set to 1. Masks are used to hide some bits in a value while selecting other bits.

• CHAR_BIT (p. 497; defined in <limits.h>) represents the number of bits in a byte (normally
8). It can be used to make a bit-manipulation program more generic and portable.

• Each binary bitwise operator has a corresponding bitwise assignment operator (p. 503).

Section 10.10 Bit Fields
• A bit field (p. 504) specifies the number of bits in which an unsigned or signed integral

member of a structure or union is stored.
• A bit field is declared by following an unsigned int or int member name with a colon (:)

and an integer constant representing the width of the field (p. 504). The constant must be
an integer between 0 and the total number of bits used to store an int on your system, in-
clusive.

• Bit-field members of structures are accessed exactly as any other structure member.
• It’s possible to specify an unnamed bit field (p. 507) to be used as padding in a structure

(p. 507).
• An unnamed bit field with a zero width (p. 507) aligns the next bit field on a new storage-

unit boundary.

Section 10.11 Enumeration Constants
• An enum defines a set of integer constants represented by identifiers (p. 507). Values in an
enum start with 0, unless specified otherwise, and are incremented by 1.

• The identifiers in an enum must be unique.
• The value of an enum constant can be set explicitly via assignment in the enum definition.

514 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Self-Review Exercises
10.1 Fill-In the blanks in each of the following:

a) A(n) is a collection of related variables under one name.
b) A(n) is a collection of variables under one name in which the vari-

ables share the same memory.
c) In an expression using the operator, bits are set to 1 if the corre-

sponding bits in each operand are 1. Otherwise, the bits are set to zero.
d) The variables declared in a structure definition are called its .
e) In an expression using the operator, bits are set to 1 if at least one of

the corresponding bits in either operand is 1. Otherwise, the bits are set to 0.
f) Keyword introduces a structure declaration.
g) Keyword creates a synonym for a previously defined data type.
h) In an expression using the operator, bits are set to 1 if exactly one of

the corresponding bits in either operand is 1. Otherwise, the bits are set to 0.
i) The bitwise AND operator (&) is often used to bits—that is, to se-

lect certain bits while zeroing others.
j) Keyword is used to introduce a union definition.
k) The name of the structure is referred to as the structure .
l) You access a structure member with the or operators.
m)The and operators shift the bits of a value left or right.
n) A(n) is a set of integers represented by identifiers.

10.2 State whether each of the following is true or false. If false, explain why.
a) structs may contain variables of only one data type.
b) Two unions can be compared (using ==) to determine whether they’re equal.
c) The tag name of a struct is optional.
d) Members of different structs must have unique names.
e) Keyword typedef is used to define new data types.
f) structs are always passed to functions by reference.
g) structs may not be compared by using operators == and !=.

10.3 Write code to accomplish each of the following:
a) Define a struct called part containing unsigned int variable partNumber

and char array partName with values that may be as long as 25 characters (in-
cluding the terminating null character).

b) Define Part to be a synonym for the type struct part.
c) Use Part to declare variable a to be of type struct part, array b[10] to be of

type struct part and variable ptr to be of type pointer to struct part.
d) Read a part number and a part name from the keyboard into the individual

members of variable a.
e) Assign the member values of variable a to element 3 of array b.
f) Assign the address of array b to the pointer variable ptr.
g) Print the member values of element 3 of array b using the variable ptr and

the structure pointer operator to refer to the members.

 Answers to Self-Review Exercises 515

10.4 Find the error in each of the following:
a) Assume that struct card contains two const char * pointers named face

and suit. Also, the variable c is a struct card, and the variable cPtr is a
pointer to struct card. Variable cPtr has been assigned the address of c.

printf("%s\n", *cPtr->face);

b) Assume that struct card contains two const char * pointers named face
and suit. Also, the array hearts[13] is an array of type struct card. The
following statement should print the member face of array element 10.

printf("%s\n", hearts.face);

c) union values {

 char w;

 float x;

 double y;

};

union values v = {1.27};
d) struct person {

 char lastName[15];

 char firstName[15];

 unsigned int age;

}
e) Assume struct person has been defined as in part (d) but with the appro-

priate correction.
person d;

f) Assume variable p has type struct person and the variable c is a struct
card.

p = c;

Answers to Self-Review Exercises
10.1 a) structure. b) union. c) bitwise AND (&). d) members. e) bitwise inclusive
OR (|). f) struct. g) typedef. h) bitwise exclusive OR (^). i) mask. j) union. k) tag
name. l) structure member, structure pointer. m) left-shift (<<), right-shift (>>).
n) enumeration.

10.2 See the answers below:
a) False. A structure can contain variables of many data types.
b) False. Unions cannot be compared because there might be bytes of unde-

fined data with different values in union variables that are otherwise identi-
cal.

c) True.
d) False. The members of separate structures can have the same names, but the

members of a given structure must have unique names.

516 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

e) False. Keyword typedef is used to define new names (synonyms) for previ-
ously defined data types.

f) False. Structures are always passed to functions by value.
g) True, because of alignment problems.

10.3 See the answers below:
a) struct part {

 unsigned int partNumber;

 char partName[25];

};
b) typedef struct part Part;
c) Part a, b[10], *ptr;
d) scanf("%d%24s", &a.partNumber, a.partName);
e) b[3] = a;
f) ptr = b;
g) printf("%d %s\n", (ptr + 3)->partNumber, (ptr + 3)->partName);

10.4 See the answers below:
a) The parentheses that should enclose *cPtr have been omitted, causing the

order of evaluation of the expression to be incorrect. The expression should
be
 cPtr->face

or
 (*cPtr).face

b) The array index is missing. The expression should be hearts[10].face.
c) A union can be initialized only with a value that has the same type as the

union’s first member.
d) A semicolon is required to end a structure definition.
e) Keyword struct was omitted from the variable declaration. The declaration

should be
 struct person d;

f) Variables of different structure types cannot be assigned to one another.

Exercises
10.5 Provide the definition for each of the following structures and unions:

a) struct inventory containing character array partName[30], integer part-
Number, floating-point price, integer stock and integer reorder.

b) union data containing char c, short s, long b, float f and double d.
c) A struct called address that contains character arrays

streetAddress[25], city[20], state[3] and zipCode[6].
d) struct student that contains arrays firstName[15] and lastName[15] and

variable homeAddress of type struct address from part (c).
e) struct test containing sixteen-bit fields of one bit each. The names of the

bit fields are the letters a to p.

 Exercises 517

10.6 Given the following struct and variable definitions:
struct customer {
 char lastName[15];
 char firstName[15];
 unsigned int customerNumber;

 struct {
 char phoneNumber[11];
 char address[50];
 char city[15];
 char state[3];
 char zipCode[6];
 } personal;
} customerRecord, *customerPtr;

customerPtr = &customerRecord;

write an expression that accesses the struct members in each of the following parts:
a) Member lastName of struct customerRecord.
b) Member lastName of the struct pointed to by customerPtr.
c) Member firstName of struct customerRecord.
d) Member firstName of the struct pointed to by customerPtr.
e) Member customerNumber of struct customerRecord.
f) Member customerNumber of the struct pointed to by customerPtr.
g) Member phoneNumber of member personal of struct customerRecord.
h) Member phoneNumber of member personal of the struct pointed to by

customerPtr.
i) Member address of member personal of struct customerRecord.
j) Member address of member personal of the struct pointed to by custom-

erPtr.
k) Member city of member personal of struct customerRecord.
l) Member city of member personal of the struct pointed to by custom-

erPtr.
m)Member state of member personal of struct customerRecord.
n) Member state of member personal of the struct pointed to by custom-

erPtr.
o) Member zipCode of member personal of struct customerRecord.
p) Member zipCode of member personal of the struct pointed to by custom-

erPtr.

10.7 (Card Shuffling and Dealing Modification) Modify Figure 10.7 to shuffle the
cards using a high-performance shuffle (as shown in Fig. 10.2). Print the resulting
deck in a two-column format that uses the face and suit names. Precede each card
with its color.

10.8 (Using Unions) Create union integer with members char c, short s, int i and
long b. Write a program that inputs values of type char, short, int and long and
stores the values in union variables of type union integer. Each union variable should
be printed as a char, a short, an int and a long. Do the values always print correctly?

518 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

10.9 (Using Unions) Create union floatingPoint with members float f, double d
and long double x. Write a program that inputs values of type float, double and long
double and stores the values in union variables of type union floatingPoint. Each
union variable should be printed as a float, a double and a long double. Do the val-
ues always print correctly?

10.10 (Right-Shifting Integers) Write a program that right-shifts an integer variable
4 bits. The program should print the integer in bits before and after the shift opera-
tion. Does your system place 0s or 1s in the vacated bits?

10.11 (Left-Shifting Integers) Left-shifting an unsigned int by 1 bit is equivalent to
multiplying the value by 2. Write function power2 that takes two integer arguments
number and pow and calculates

number * 2pow

Use the shift operator to calculate the result. Print the values as integers and as bits.

10.12 (Packing Characters into an Integer) The left-shift operator can be used to
pack four character values into a four-byte unsigned int variable. Write a program
that inputs four characters from the keyboard and passes them to function packChar-
acters. To pack four characters into an unsigned int variable, assign the first char-
acter to the unsigned int variable, shift the unsigned int variable left by 8 bit
positions and combine the unsigned variable with the second character using the bit-
wise inclusive OR operator. Repeat this process for the third and fourth characters.
Print the characters in their bit format before and after they’re packed into the un-
signed int to prove that the characters are, in fact, packed correctly in the unsigned
int variable.

10.13 (Unpacking Characters from an Integer) Using the right-shift operator, the
bitwise AND operator and a mask, write function unpackCharacters that takes the
unsigned int from Exercise 10.12 and unpacks it into four characters. To unpack
characters from a four-byte unsigned int, combine the unsigned int with the mask
4278190080 (11111111 00000000 00000000 00000000) and right-shift the result 8 bits.
Assign the resulting value to a char variable. Then combine the unsigned int with
the mask 16711680 (00000000 11111111 00000000 00000000). Assign the result to an-
other char variable. Continue this process with the masks 65280 and 255. Print the
unsigned int in bits before it’s unpacked, then print the characters in bits to confirm
that they were unpacked correctly.

10.14 (Reversing the Order of an Integer’s Bits) Write a program that reverses the or-
der of the bits in an unsigned int value. The program should input the value from
the user and call function reverseBits to print the bits in reverse order. Print the val-
ue in bits both before and after the bits are reversed to confirm that the bits are re-
versed properly.

10.15 (Portable displayBits Function) Modify function displayBits of Fig. 10.4
so it’s portable between systems using two-byte integers and systems using four-byte

 Exercises 519

integers. [Hint: Use the sizeof operator to determine the size of an integer on a par-
ticular machine.]

10.16 (What’s the Value of X?) The following program uses function multiple to de-
termine if the integer entered from the keyboard is a multiple of some integer X. Ex-
amine the function multiple, then determine X’s value.

10.17What does the following program do?

1 // ex10_16.c
2 // This program determines whether a value is a multiple of X.
3 #include <stdio.h>
4
5 int multiple(int num); // prototype
6
7 int main(void) {
8 int y; // y will hold an integer entered by the user
9

10 puts("Enter an integer between 1 and 32000: ");
11 scanf("%d", &y);
12
13 // if y is a multiple of X
14 if (multiple(y)) {
15 printf("%d is a multiple of X\n", y);
16 }
17 else {
18 printf("%d is not a multiple of X\n", y);
19 }
20 }
21
22 // determine whether num is a multiple of X
23 int multiple(int num) {
24 int mask = 1; // initialize mask
25 int mult = 1; // initialize mult
26
27 for (int i = 1; i <= 10; ++i, mask <<= 1) {
28 if ((num & mask) != 0) {
29 mult = 0;
30 break;
31 }
32 }
33
34 return mult;
35 }

1 // ex10_17.c
2 #include <stdio.h>
3
4 int mystery(unsigned int bits); // prototype
5
6 int main(void) {
7 unsigned int x; // x will hold an integer entered by the user
8

520 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

10.18 (Fisher-Yates Shuffling Algorithm) Research the Fisher-Yates shuffling algo-
rithm online, then use it to reimplement the shuffle function in Fig. 10.2.

Special Section: Raylib Game-Programming Case Studies
You’re about to begin an exciting and challenging journey into the worlds of graphics,
animation, multimedia and game development with the free, open-source, cross-
platform raylib game programming library.2,3 The library supports Windows,
macOS, Linux and several other platforms, including Android, Raspberry Pi and the
web. Raylib is a C library, but it can be used with C++, C#, Java, JavaScript, Python
and many other programming languages.4

In this Special Section’s first three case studies, you’ll study two games and a sim-
ulation that we created to help you learn raylib fundamentals:

• In Exercise 10.19, you’ll study our completely coded SpotOn game, which
tests your reflexes by requiring you to click fast-moving spots before they dis-
appear. With each new game level, the spots move even faster, making the
game more challenging.

• In Exercise 10.20, you’ll study our completely coded Cannon game, which
challenges you to destroy nine moving targets before a time limit expires. A
moving blocker makes the game more challenging.

• In Exercise 10.21, you’ll use a dynamic visualization to make the law of large
numbers “come alive.” You’ll study our completely coded die-rolling simula-
tion that displays an animated bar chart. As the simulation rolls the die, it

9 puts("Enter an integer: ");
10 scanf("%u", &x);
11
12 printf("The result is %d\n", mystery(x));
13 }
14
15 // What does this function do?
16 int mystery(unsigned int bits) {
17 unsigned int mask = 1 << 31; // initialize mask
18 unsigned int total = 0; // initialize total
19
20 for (unsigned int i = 1; i <= 32; ++i, bits <<= 1) {
21 if ((bits & mask) == mask) {
22 ++total;
23 }
24 }
25
26 return !(total % 2) ? 1 : 0;
27 }

2. Raylib is Copyright ©2013-2020 Ramon Santamaria (@raysan5).
3. “raylib.” Accessed November 14, 2020. https://www.raylib.com.
4. “raylib bindings.” Accessed December 14, 2020. https://github.com/raysan5/raylib/

blob/master/BINDINGS.md.

https://www.raylib.com
https://github.com/raysan5/raylib/blob/master/BINDINGS.md
https://github.com/raysan5/raylib/blob/master/BINDINGS.md

 Special Section: Raylib Game-Programming Case Studies 521

updates the frequencies in an array. Then, it displays each die face’s frequency,
its percentage of the total rolls and a bar representing the frequency’s magni-
tude. For a six-sided die, the values 1 through 6 should each occur with “equal
likelihood”—the probability of each is 1/6th or 16.67%. If we rolled a die
6000 times, we’d expect about 1000 of each face. Like coin tossing, die rolling
is random, so some faces could occur fewer or more than 1000 times. As the
number of die rolls increases, you’ll watch the frequencies approach 16.67%
and the bars in the bar chart become nearly identical in length, confirming the
law of large numbers.

These games and simulations use many raylib capabilities—shapes, text, colors,
sounds, animation, collision detection and handling user-input events (such as mouse
clicks and keystrokes). Each exercise suggests improvements you can make to our code.

Studying Our Complete Code Solutions
A key aspect of becoming a professional programmer is reading and understanding lots
of other people’s code. You’ll frequently visit sites like GitHub.com looking for open-
source code that you can incorporate into your own projects. For these first three raylib
case studies, we provide fully coded solutions in the raylib subfolder with the chap-
ter’s example code that you download from

https://deitel.com/c-how-to-program-9-e

Each source-code file includes extensive comments that:

• overview the code’s top-level functions,

• list the raylib functions we use, and

• provide details you need to understand how each program works.

You should compile, run and play with each and carefully study our code. This will
be challenging but rewarding. You’ll work with the cool, open-source raylib package,
taking a nice leap into computer graphics and game programming. You’ll then have
a good foundation for attempting our suggested code modifications and other game-
programming exercises.

Raylib Sample Code
The raylib development team provides many C programming demos at

https://www.raylib.com/examples.html

and sample games at
https://www.raylib.com/games.html

with complete source code. Consider studying the complete source code provided
with raylib for each of these examples and games to learn other raylib features and
techniques.

https://deitel.com/c-how-to-program-9-e
https://www.raylib.com/examples.html
https://www.raylib.com/games.html

522 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Implementing Your Own Raylib Games and Simulations
Using what you learn from our code in Exercises 10.19–10.21, you’ll enhance our
raylib games and simulation and begin creating your own:

• In Exercise 10.22, you’ll reimplement your solution to The Tortoise and the
Hare Race from Exercise 5.54. You’ll incorporate the sounds of a traditional
horse race, an image of a tortoise and an image of a hare, and you’ll play the
William Tell Overture in the background during the race.

• In Exercise 10.23, you’ll reimplement Section 10.7’s high-performance card
shuffling and dealing simulation using raylib and attractive public-domain
card images to display a deck of cards.

• In Exercises 10.26 and 10.27, you’ll attempt enhancements to our SpotOn
and Cannon games.

• In Exercises 10.28–10.30, you’ll create visualizations for coin tossing, rolling
two six-sided dice (producing the sums 2–12) and showing the win/loss
results for the casino dice game Craps, based on the lengths of the games.

Subsequent exercises propose various other games. Get creative—design and build
your own games too!

Self-Contained Raylib Windows Environment
Raylib has a self-contained Windows environment with everything you need to create
your own games using raylib. The bundle contains:

• the raylib game-programming library,

• the raylib examples and sample games,

• the gcc compiler in MinGW5 (Minimalist GNU for Windows), and

• the Notepad++ text editor, which is preconfigured to enable you to compile
and run the raylib example code, raylib sample games and your own games.

You can download the MinGW version of this self-contained environment for free
from

https://raysan5.itch.io/raylib

Compiling and running the raylib examples and sample games in this environment
is as simple as opening the C file in Notepad++ and pressing the F6 key. This displays
a window in which you’ll see the compilation and execution commands that will run
when you click OK. For applications that do not have command-line arguments, sim-
ply click OK to compile and run your code. For applications with command-line
arguments, such as our die-rolling simulation, modify the Execute program command
to place the command-line arguments at the end of the line, then click OK.

5. “MinGW (Minimalist GNU for Windows).” Accessed December 16, 2020. http://
www.mingw.org/.

https://raysan5.itch.io/raylib
http://www.mingw.org/
http://www.mingw.org/

 Special Section: Raylib Game-Programming Case Studies 523

Installing Raylib on Windows, macOS and Linux
The following URLs contain raylib download and install instructions for Windows,
macOS and Linux. Windows users who choose the self-contained environment
option do not need to perform these additional install instructions:

• Windows (for those who wish to use raylib with other Windows compilers):
https://github.com/raysan5/raylib/wiki/Working-on-Windows

• macOS: https://github.com/raysan5/raylib/wiki/Working-on-macOS

• Linux: https://github.com/raysan5/raylib/wiki/Working-on-GNU-Linux

Raylib Cheatsheet
Though raylib is relatively easy to use, its functions are not extensively documented
on raylib.com. For a complete list of raylib’s functions, see the raylib cheat sheet:

https://www.raylib.com/cheatsheet/cheatsheet.html

Each function is listed with its prototype followed by a comment that briefly explains
its purpose. The cheat sheet also contains the names of raylib’s custom types and color
constants. You’ll notice that raylib’s functions are named with a capital first letter. This
differs from the C convention of starting function names with a lowercase first letter.

raylib.h Header on GitHub
When working with open-source software, occasionally, you may need to look at the
source code to get your questions answered. For instance, raylib defines many of its
own types—typically as structs or enums. Most of these are not listed in the cheat-
sheet. However, the full raylib source code is available in its GitHub repository:

https://github.com/raysan5/raylib/

The header raylib.h contains the raylib type definitions:
https://github.com/raysan5/raylib/blob/master/src/raylib.h

Some of the raylib types you’ll use include:

• Vector2: Contains x and y members to represent an x-y coordinate pair.

• Rectangle: Contains x, y, width and height members to represent the upper-
left corner, width and height of a rectangle.

• Color: Colors in raylib are defined using RGBA colors. Each color has red (r),
green (g), blue (b) and alpha (a; transparency) components with values in the
range 0–255. See the raylib cheat sheet for a list of raylib’s predefined color
constants. You may also specify custom colors by creating Color objects and
setting their r, g, b and a members.

• Sound: Contains members for storing sounds loaded into memory with ray-
lib’s LoadSound function.

• Texture2D: Contains members representing a texture loaded into graphics
processing unit (GPU) memory.

For these raylib case studies, you do not need to know the Sound and Texture2D type
details. If you’re curious, you can view their definitions in raylib.h.

https://github.com/raysan5/raylib/wiki/Working-on-Windows
https://github.com/raysan5/raylib/wiki/Working-on-GNU-Linux
https://www.raylib.com/cheatsheet/cheatsheet.html
https://github.com/raysan5/raylib/
https://github.com/raysan5/raylib/blob/master/src/raylib.h
https://github.com/raysan5/raylib/wiki/Working-on-macOS

524 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Raylib Uses Frame-By-Frame Animations
In a raylib game, a game loop drives a frame-by-frame animation. Each loop itera-
tion performs two steps:

1. Update the game elements for the next animation frame: In this step, you im-
plement the game logic that determines the game elements’ new states. This is
where the game-play logic is implemented. Tasks performed here include up-
dating element positions, checking for user-input events (such as mouse clicks),
detecting collisions between game elements, updating the score, checking
wheter the game is over, etc. Element positions are specified as x-y coordinate
pairs within the screen’s width and height—0,0 is the upper-left corner.

2. Draw the next animation frame’s game elements: In this step, you use raylib’s
drawing functions to draw the game’s elements at their current positions. Raylib
stores the pixels of the new animation frame in memory—known as an off-
screen buffer. When the drawing step completes, raylib displays the off-screen
buffer’s contents, replacing the previous animation frame on the screen.

Raylib Game Structure
A typical raylib game has the following structure in its main function, which we
explain below the code listing:

• The raylib function InitWindow (line 3) specifies the game window’s width in
pixels, height in pixels and title.

• A typical raylib sample game contains a user-defined InitGame function (line
4). This is where you load sounds, textures and images, initialize the game ele-
ments and initialize the variables that maintain the game’s state. When a game
terminates and the user chooses to play again, you typically call InitGame to
reset the game state before starting a new game.

• The raylib function SetTargetFPS (line 5) specifies the number of animation
frames raylib tries to draw each second—higher frame rates produce smoother

1 int main(void) {
2 // initialization
3 InitWindow(screenWidth, screenHeight, "Window Title");
4 InitGame();
5 SetTargetFPS(60);
6
7 // game loop
8 while (!WindowShouldClose()) {
9 UpdateGame(); // update game elements

10 DrawGame(); // draw next animation frame
11 }
12
13 // cleanup
14 UnloadGame(); // release game resources
15 CloseWindow(); // close game window
16 }

 Special Section: Raylib Game-Programming Case Studies 525

animations. Today’s console games typically try to display 60 frames per sec-
ond, though some games use more and some fewer. A minimum of 30FPS is
recommended for smooth animation.

• The main game loop (lines 8–11) drives the game updates and animation.
This loop runs until raylib’s WindowShouldClose function returns true—when
the user closes the window or presses the Esc key. This loop updates the game
elements, then draws them. Most raylib sample games place the updating
code in a function named UpdateGame and the drawing code in a function
named DrawGame. This makes the code easier to maintain.

• When the game loop terminates, UnloadGame (line 14) unloads any game
resources you loaded in InitGame, such as sounds, textures and images.

• Raylib function CloseWindow (line 15) releases the game window’s resources
and closes the game window. Then, the application terminates.

In this code, InitGame, UpdateGame, DrawGame and UnloadGame are user-defined
functions that define game logic. The raylib code examples and sample games tend to
use these names, which follow the capital first letter naming convention used for ray-
lib’s functions. We use the same names or similar names in our games and similar
names in our simulations that are not games (e.g., InitSimulation rather than Init-
Game). We define any other supporting functions with our usual function-naming
conventions used throughout this book.

Global Variables and Constants
For performance, raylib games define the game elements and game state variables as
static global variables. Such variables are known only from their definitions until the
end of the file in which they’re defined. Using static global variables enables the
game’s functions to access the game’s elements and state directly without passing
them to the functions as arguments. This eliminates the overhead of the function call/
return mechanisms. As you’ll see, even relatively simple games tend to have many
game elements and game-state variables. Defining functions with large numbers of
parameters tends to make the code harder to maintain, modify and debug.

How to Approach These Case Study Exercises
For each of the first three raylib exercises, we describe what the game does and show
screen captures of the game in action. For each game, you should:

1. Read the exercise description to get a sense of the game or simulation.

2. Compile then run the game or simulation several times. For the games, play
them to get a feel for how they work.

3. Immerse yourself in the fully coded and commented programs we provide.

4. Tweak the code and rerun it to see the effects of your modifications.

Generally, our code starts with comments that overview the game’s functions that we
wrote, summarize the raylib functions we use and more.

PERF

526 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Interacting with the Raylib Community
Here are some key sites6 where you can interact with other raylib users and watch ray-
lib videos:

• Discord: https://discord.gg/VkzNHUE

• Twitter: http://www.twitter.com/raysan5

• Twitch: http://www.twitch.tv/raysan5

• Reddit: https://www.reddit.com/r/raylib

• Patreon: https://www.patreon.com/raylib

• YouTube: https://www.youtube.com/c/raylib

Raylib rFXGen Sound-Effect Generator
Raylib has several online tools that help you create items for your games, including
icons, textures, graphical user interface elements and layouts and sound effects:

https://raylibtech.itch.io/

We used raylib’s rFXGen online sound-effect generator:
https://raylibtech.itch.io/rfxgen

to create sound effects for our games. You can use the sound effects we provided or
create your own.

Game-Programming Case Study Exercise: SpotOn Game
10.19 (Game Programming Case Study: SpotOn Game) In this game-programming
case study exercise, you’ll study our SpotOn game, which tests your reflexes by requir-
ing you to click fast-moving spots before they disappear:

6. “README.md.” Accessed December 16, 2020. https://github.com/raysan5/raylib/
README.md.

http://www.twitter.com/raysan5
http://www.twitch.tv/raysan5
https://www.reddit.com/r/raylib
https://www.patreon.com/raylib
https://www.youtube.com/c/raylib
https://raylibtech.itch.io/
https://raylibtech.itch.io/rfxgen
https://github.com/raysan5/raylib/README.md
https://discord.gg/VkzNHUE
https://github.com/raysan5/raylib/README.md

 Game-Programming Case Study: Cannon Game 527

The game begins on level one by displaying three colored spots at random loca-
tions. These move at random speeds in random directions. You reach a new level for
every 10 spots you click—this increases the spot speed by 5%, making the game
increasingly challenging. When you click a spot, the app makes a popping sound, and
the spot disappears. You receive points (10 times the current level) for each clicked
spot. Accuracy is essential—any click that misses a spot plays a raspberry sound and
decreases the score by 15 times the current level. Your current level and score are dis-
played in the game’s top-left corner.

You begin the game with three lives—displayed as small circles in the game’s bot-
tom-left corner. If a spot disappears before you click it, you hear a whoosh sound and
lose a life. You gain a life for each new level reached, up to a maximum of seven lives.
When you lose all your lives, the game ends. You may pause the game at any time by
pressing the P key, and resume the game by pressing P again.

Compile and run the game and play it several times. Next, study this game’s code
(including extensive comments). Consider tweaking the code to see how your
changes affect gameplay. For example, you can change the spotSpeed constant’s value
to make the spots move faster or slower. Finally, improve the game by implementing
the enhancements we suggest in Exercise 10.26.

Game-Programming Case Study: Cannon Game
10.20 (Game Programming Case Study: Cannon Game) In the Cannon game, you
must destroy nine targets before a ten-second time limit expires:

Game time remaining

Cannon

Blocker

Cannonball in flight

Remaining Targets

528 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

The game has four types of visual components:

• a cannon that you control,

• a cannonball,

• nine targets that move up and down at various speeds, and

• a blocker that moves up and down, defending the targets.

The targets and the blocker move vertically at different but fixed speeds, reversing
direction when they hit the screen’s top or bottom.

To fire the cannon, you click the mouse. The cannon rotates toward the click
point, fires a fast-moving cannonball in a straight line in that direction and plays a
boom sound. Only one cannonball can be on the screen at a time.

Each time you destroy a target, a target-destruction sound plays, the target dis-
appears, and the time remaining increases by a three-second time bonus. The blocker
cannot be destroyed. When the cannonball hits the blocker, a blocker-hit sound
plays, the cannonball bounces back, and the time remaining decreases by a two-sec-
ond time penalty.

You win by destroying all nine target sections before the time expires. If the timer
reaches zero, you lose. At the end of the game, the app displays whether you won or
lost and shows the number of shots fired and the elapsed time. You may pause the
game at any time by pressing the P key, and resume the game by pressing P again.

Compile and run the game and play it several times. Next, study this game’s code
and extensive comments. This application requires some trigonometry to:

• determine the cannon barrel’s endpoint, based on its angle, and

• determine the cannonball’s x and y increments used to move the cannonball
in each animation frame—these also are based on the cannon’s barrel angle.

We provide the trigonometry calculations for you.
Consider tweaking the code to see how your changes affect gameplay. For exam-

ple, you could change how fast the cannonball moves. Finally, improve the game by
implementing the enhancements we suggest in Exercise 10.27.

 Visualization with raylib—Law of Large Numbers Animation 529

Visualization with raylib—Law of Large Numbers Animation
10.21 (Law of Large Numbers Animation) In Sections 5.10 and 6.4.7, we used ran-
dom-number generation to simulate the roll of a six-sided die. In this next raylib case
study exercise, you’ll use dynamic visualization to make the Law of Large Numbers7,8

“come alive” in a die-rolling simulation that displays an animated bar chart. As the
simulation repeatedly rolls the die, it updates an array of the frequencies with which
each face appears. Then, it displays each die face’s frequency, its percentage of the to-
tal rolls and a bar whose length represents the frequency’s magnitude.

For a six-sided die, the face values 1 through 6 each should occur with “equal like-
lihood”—the probability of each face appearing on any roll is 1/6th or approximately
16.67%. If we roll a die 6000 times, we’d expect about 1000 of each face to appear.
Like coin tossing, die rolling is random, so faces could occur fewer or more than 1000
times. As the number of die rolls increases, the Law of Large Numbers says that each
of the frequencies should approach the expected value of 16.67%. If so, the bars in
the bar chart should become nearly identical in length, as shown in the following
screen captures of three sample executions for 60, 6000 and 6,000,0000 dice:

7. “Law of large numbers.” Accessed December 18, 2020. https://encyclopediaofmath.org/
index.php?title=Law_of_large_numbers.

8. “Law of large numbers.” Accessed December 18, 2020. https://en.wikipedia.org/wiki/
Law_of_large_numbers.

‘

https://encyclopediaofmath.org/index.php?title=Law_of_large_numbers
https://en.wikipedia.org/wiki/Law_of_large_numbers
https://encyclopediaofmath.org/index.php?title=Law_of_large_numbers
https://en.wikipedia.org/wiki/Law_of_large_numbers

530 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Running the Simulation on MacOs or Linux
When you execute this simulation, it requires two command-line arguments repre-
senting:

• the length of the simulation in animation frames, and

• the number of dice to roll per animation frame.

If the name of the program’s executable is RollDieDynamic, the following macOS or
Linux command will run the simulation for 60 animation frames, rolling one die per
frame for a total of 60 rolls:

./RollDieDynamic 60 1

Similarly, the following will run the simulation for 600 animation frames, rolling
1000 dice per frame for a total of 600,000 rolls:

./RollDieDynamic 600 1000

Though we do not discuss the details of command-line arguments until Section 15.3,
this completely coded simulation provides the statements you need to receive the
command-line arguments.

 The Tortoise and the Hare with raylib—a Multimedia “Extravaganza” 531

Running the Simulation on MacOs or Linux
For the raylib self-contained Windows environment, perform the following steps to
run this simulation:

1. Open RollDieDynamic.c in Notepad++.

2. Press the F6 key.

3. In the Execute dialog, modify the last line of the compilation and execution
commands to include your command-line arguments, as in:
 cmd /c IF EXIST $(NAME_PART).exe $(NAME_PART).exe 600 1000

Notepad++ replaces $(NAME_PART) with the base name of the file you’re run-
ning—RollDieDynamic in this case.

4. Click OK to compile and run the program.

Run the Program Several Times
Compile the simulation and run it several times, varying the command-line argu-
ments. Next, study the simulation code (including extensive comments). As in our
raylib games, you may pause the simulation at any time by pressing the P key and
resume the simulation by pressing P again. Once you’ve studied the code, try
Exercises 10.28–10.30, where you’ll create visualizations for coin tossing, rolling two
six-sided dice (producing the sums 2–12) and showing the win/loss results for the
casino dice game Craps, based on the lengths of the games. You may want to use the
techniques you’ve learned to analyze the results of playing popular card games like
blackjack and various versions of poker.

Case Study: The Tortoise and the Hare with raylib—a Multi-
media “Extravaganza”
10.22 (Multimedia Tortoise and the Hare Race with Raylib) In this exercise, you’ll
use raylib graphics, animation and sound features from Exercises 10.19–10.21 to en-
hance Exercise 5.54’s The Tortoise and the Hare Race. You’ll incorporate a tradi-
tional horse race’s sounds and multiple tortoise and hare images to create a fun,
animated multimedia “extravaganza.” For use in your race, we’ve provided in this
chapter’s examples folder a resources subfolder containing the following audio clips
and images:9

• An audio recording we created of the “Call to Post” trumpet piece played at
the beginning of a horse race.

• A cannon-firing sound we created for our raylib Cannon game. You could use
raylib’s rFXGen sound generator (https://raylibtech.itch.io/rfxgen) to
create a firing sound of your own.

9. We created these audios and images. If you prefer, you could search the web for others or create
your own. Be sure to comply with the license terms for any media you’ll use in your applications.

https://raylibtech.itch.io/rfxgen)

532 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

• An audio clip we created of an announcer saying, “And they’re off!” You could
record yourself as the announcer saying this and other phrases to play
throughout the race, such as “Tortoise pulls ahead!”, “Hare pulls ahead!”,
“Down the stretch they come!”, etc.

• A public-domain Wikimedia audio recording of the William Tell Overture10,
which we have edited down to just the gallop portion (bada bum, bada bum,
bada bum bum bum…) and placed in this chapter’s resources folder for you
to play during the race.

• Two slightly different tortoise images and two slightly different hare images we
created:

We toggle between these images to create simple animations of the animals
running. You can see the animations by viewing the tortoise.gif and
hare.gif animated GIF images provided in the resources folder with this
chapter’s examples. Feel free to use these images or have some fun creating
your own.

Implementing the Race
Implement the race using the basic raylib game structure you learned in the preceding
raylib exercises. In your race, perform the following tasks:

a) Before the race begins, play the trumpet audio of the “Call to Post,” signify-
ing that the racers should take their mark. As the “Call to Post” plays, the
tortoise and hare should appear from the screen’s left side and take their po-
sitions.

b) Play the cannon sound to start the race, followed by the announcer saying,
“And they’re off!” At this point, the race animation begins.

c) Throughout the race, play the provided William Tell Overture’s gallop por-
tion in the background repeatedly. See the raylib code sample at https://
www.raylib.com/examples/web/audio/loader.html?name=audio_mu-

sic_stream to learn how to play music in the background.
d) As the tortoise and the hare move across the screen, toggle between each an-

imal’s two images to make it appear to be running. The tortoise moves slow-

10. “File:Gioachino Rossini, William Tell Overture (military band version, 2000).ogg.” Accessed
January 2, 2021. https://commons.wikimedia.org/wiki/File:Gioachino_Rossini,_Wil-
liam_Tell_Overture_(military_band_version,_2000).ogg.

https://www.raylib.com/examples/web/audio/loader.html?name=audio_music_stream
https://commons.wikimedia.org/wiki/File:Gioachino_Rossini,_William_Tell_Overture_(military_band_version,_2000).ogg
https://www.raylib.com/examples/web/audio/loader.html?name=audio_music_stream
https://www.raylib.com/examples/web/audio/loader.html?name=audio_music_stream
https://commons.wikimedia.org/wiki/File:Gioachino_Rossini,_William_Tell_Overture_(military_band_version,_2000).ogg

 High-Performance Card Shuffling and Dealing with Card Images and raylib 533

er than the hare, so you may want to toggle between the tortoise’s two images
slower than between the hare’s two images. When the hare sleeps, stop tog-
gling between its images.

e) When the tortoise and the hare are at the same position, display “OUCH!”
for the turtle biting the hare and optionally play a high-pitched “OUCH!”
audio clip.

f) If the tortoise wins, display “Tortoise wins!” and optionally play a “Tortoise
wins!” audio clip followed by cheering. If the hare wins, display “Hare wins”
and optionally play a “Hare wins” audio clip followed by booing. If the race
ends in a tie, you may want to favor the tortoise as the underdog or have the
announcer say, “It’s a tie!”

g) You could play crowd cheering and booing sounds and additional announcer
commentary as appropriate throughout the race. You might be able to find
public-domain crowd sounds online.

Random-Number Simulation Case Study: High-Performance
Card Shuffling and Dealing with Card Images and raylib
10.23 (Card Shuffling and Dealing with Card Images and Raylib) In Section 10.7,
you implemented a high-performance card-shuffling-and-dealing simulation using
an array of Card objects. In this exercise, you’ll incorporate raylib capabilities into
your simulation and use them to display attractive, free public-domain card images
for each card in the deck. Once you complete this exercise, you’ll have the fundamen-
tal capabilities you need to begin implementing your favorite card games and to up-
grade your solutions to the card-game exercises in earlier chapters.

You’ll load the unshuffled 52 card images as raylib Texture2D objects, then dis-
play them in a 4-by-13 grid:

534 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

Each time the user clicks the mouse, shuffle and redisplay the cards:

Public-Domain Card Images from Wikimedia Commons
We downloaded these public-domain11 card images from:

https://commons.wikimedia.org/wiki/
Category:SVG_English_pattern_playing_cards

and provided them for you in the card_images subfolder with this chapter’s exam-
ples. We named each card-image file using the card’s face and suit. For example, the
images for the Spades suit are named as follows:

• Ace_of_Spades.png

• Deuce_of_Spades.png

• 3_of_Spades.png

• …

• Jack_of_Spades.png

• Queen_of_Spades.png

• King_of_Spades.png

Implementing the Simulation
Using the basic raylib game framework you learned in Exercises 10.19–10.21, and
the image-processing techniques you learned in Exercise 10.21, perform the follow-
ing tasks:

a) Modify Fig. 10.2’s struct card definition to include a Texture2D member
named image. This will store raylib’s information about a loaded card image.

b) When the application begins executing, initialize the unshuffled deck of
cards in your raylib application’s InitSimulation function. Modify the code
that initializes your deck array to load each card’s image. You can use string-

11. https://creativecommons.org/publicdomain/zero/1.0/deed.en.

https://commons.wikimedia.org/wiki/Category:SVG_English_pattern_playing_cards
https://creativecommons.org/publicdomain/zero/1.0/deed.en

 Additional Raylib Exercises 535

processing capabilities to assemble each card’s face and suit strings into the
card’s image file name using the format:

 face_of_suit.png (where you fill in the face and suit)

c) The first time the raylib application’s DrawFrame function executes, display
the unshuffled array of 52 Card objects, as shown earlier. You’ll need to per-
form calculations that determine each image’s upper-left corner x-y coordi-
nates.

d) In the raylib application’s Update function, check whether the user clicked
the left mouse button. If so, shuffle the cards. The next call to DrawFrame will
display the shuffled deck.

Drawing Notes
The following notes will help you implement your simulation:

• For this exercise, set the raylib window’s screenWidth to 1280 and screen-
Height to 620 to provide additional room for displaying the card images.

• When drawing each image, set the raylib function DrawTextureEx’s scale
argument to 0.25. This scales down the images, giving you enough room to
draw them in four rows of 13 images each without overlapping one another.

• After drawing each image, use raylib function DrawRectangleLines as shown
below to place a black border around each image for contrast with the win-
dow’s white background:
 DrawRectangleLines(x, y, deck[i].image.width * scale,
 deck[i].image.height * scale, BLACK);

Set variable scale to 0.25 to draw the rectangle using the same scale as the
image.

Additional Raylib Exercises
10.24 (Raylib Demos) Compile, run and interact with several of raylib’s bundled ex-
amples located in the raylib folder’s examples subfolder. Study the source code pro-
vided for each of those examples to learn more about raylib’s features.

10.25 (Raylib Sample Games) Compile, run and interact with several of raylib’s sam-
ple games located in the raylib folder’s games subfolder. Study the source code pro-
vided for each of those examples to learn more about raylib features. Be creative. Try
modifying the games with your own enhancements.

10.26 (Project: Enhanced SpotOn Game) Try several of the following SpotOn game
modifications:

a) Display more spots for higher levels.
b) Use bigger, possibly randomized speed boosts.
c) Give a bonus for destroying multiple spots with one click.
d) Use different point values for each spot color.

536 Chapter 10 Structures, Unions, Bit Manipulation and Enumerations

e) Make the spots more elusive by allowing them to blink on and off, change
direction spontaneously, change size spontaneously and move along nonlin-
ear paths.

f) Intermix smaller, harder-to-click spots.
g) When the user clicks a spot, animate its destruction. For example, it could

become concentric circles that fade away from the outside in, or it could be-
come four pizza slices that spread out from the spot’s center and fade away.

h) Play a siren sound when the game moves to the next level.
i) Display text for significant events like gaining or losing a life. The text can

remain on the screen for a short time, then fade away.
j) Have a specially colored, fast-moving spot. Clicking that spot destroys all

the spots on the screen and gives the player a large point bonus.

10.27 (Project: Enhanced Cannon Game) Try several of the following Cannon game
modifications:

a) Display a dashed line showing the cannonball’s path.
b) Play a sound when the blocker hits the top or bottom of the screen.
c) Play a sound when a target hits the top or bottom of the screen.
d) Enhance the game to have levels. In each level, increase the number of target

pieces.
e) Keep score. Increase the user’s score for each target piece hit by 10 times the

current level. Decrease the score by 15 times the current level each time the
cannonball hits the blocker. Display the score on the screen in the upper-left
corner.

f) Add cannonball and target explosion animations each time a cannonball hits
a target.

g) Add an explosion animation for the cannonball each time one hits the
blocker.

h) When the cannonball hits the blocker, increase the blocker’s length by 5%.
i) Make the game more difficult as it progresses by gradually increasing the

speed of the targets and the blocker.
j) Increase the number of independently moving blockers between the cannon

and the targets.
k) Add a bonus round that lasts for four seconds. Change the color of the tar-

gets and add music to indicate that it is a bonus round. If the user hits a tar-
get during those four seconds, give the user 1000 bonus points.

l) Allow the user to move the cannon up and down via the arrow keys so it can
be fired from different positions.

10.28 (Intro to Data Science: Dynamic Visualization of Coin Tossing) Modify the Law
of Large Numbers die-rolling simulation from Exercise 10.21 to simulate flipping a
coin. Use randomly generated 1s and 2s to represent heads and tails, respectively. Run
simulations for 20, 200, 20,000 and 2,000,000 coin flips. Do you get approximately
50% heads and 50% tails? Do you see the “Law of Large Numbers” in action?

 Additional Raylib Exercises 537

10.29 (Intro to Data Science: Dynamic Visualization of Rolling Two Dice) Modify
our Law of Large Numbers die-rolling simulation from Exercise 10.21 to simulate
rolling two dice. Calculate the sum of the two face values. Each die has a value from
1 to 6, so the sum will vary from 2 to 12, with 7 being the most frequent sum, and 2
and 12 the least frequent. The following diagram shows the 36 equally likely possible
combinations of the two dice and their corresponding sums:

If you roll the dice 36,000 times:

• The values 2 and 12 each occur with a probability of 1/36th (2.778%), so you
should expect about 1000 of each.

• The values 3 and 11 each occur with a probability of 2/36ths (5.556%), so
you should expect about 2000 of each, and so on. You should expect about
6000 7s.

Display a dynamic bar plot with bars for each of the sums 2–12 summarizing their
frequencies. Run the simulation for 360, 36,000 and 36,000,000 rolls.

10.30 (Intro to Data Science Project: Dynamic Visualization of Casino Game Win/
Loss Statistics) Reimplement your solution to Exercise 6.20 using raylib to create a
dynamic bar chart showing the wins and losses on the first roll, second roll, third roll,
etc. Use pairs of green and red bars to indicate wins and losses, respectively, for each
number of rolls.

10.31 (Project: Brick Game) Create a game similar to the cannon game that shoots
pellets at a stationary brick wall. The goal is to destroy enough of the wall to shoot
the moving target behind it. The faster you break through the wall and hit the target,
the higher your score. Include multiple layers to the wall and a small moving target.
Keep score. Increase difficulty with each round by building the wall using more layers
and smaller bricks and increasing the speed of the moving target.

10.32 (Project: Digital Clock) Create an app that displays a digital clock on the
screen.

10.33 (Project: Analog Clock) Create an app that displays an analog clock with hour,
minute and second hands of appropriate lengths and thicknesses that rotate as the
time changes.

1 2 3 4 5 6

6 7 8 9 10 11

7 8 9 10 11 12

5

5 6 7 8 9 104

4 5 6 7 8 93

3 4 5 6 7 82

2 3 4 5 6 71

6

11File Processing

O b j e c t i v e s
In this chapter, you’ll:
■ Understand the concepts of

files and streams.
■ Write data to and read data

from files using sequential-
access text-file processing.

■ Write data to, update data in
and read data from files using
random-access file processing
and binary files.

■ Develop a substantial
transaction-processing
program.

■ Study Secure C programming
in the context of file
processing.

540 Chapter 11 File Processing

O
ut

lin
e

11.1 Introduction
You studied the data hierarchy in Chapter 1. Data in variables is temporary—it’s lost
when a program terminates. Files enable long-term data retention. Computers store
files on secondary storage devices, such as solid-state drives, flash drives and hard
drives. This chapter explains how to create, update and process data files. We consider
both sequential-access and random-access file processing.

11.2 Files and Streams
C views each file as a sequential stream of bytes, as shown in the following diagram:

Each file ends with an end-of-file marker or at a specific byte number recorded in a
system-maintained, administrative data structure. This is platform-dependent and
hidden from you.

Standard Streams in Every Program
When you open a file, C associates a stream with it. When program execution begins,
C opens three streams automatically:

• The standard input stream receives input from the keyboard.

• The standard output stream displays output on the screen.

• The standard error stream displays error messages on the screen.

11.1 Introduction
11.2 Files and Streams
11.3 Creating a Sequential-Access File

11.3.1 Pointer to a FILE
11.3.2 Using fopen to Open a File
11.3.3 Using feof to Check for the End-of-

File Indicator
11.3.4 Using fprintf to Write to a File
11.3.5 Using fclose to Close a File
11.3.6 File-Open Modes

11.4 Reading Data from a Sequential-
Access File

11.4.1 Resetting the File Position Pointer
11.4.2 Credit Inquiry Program

11.5 Random-Access Files
11.6 Creating a Random-Access File
11.7 Writing Data Randomly to a

Random-Access File
11.7.1 Positioning the File Position Pointer

with fseek
11.7.2 Error Checking

11.8 Reading Data from a Random-
Access File

11.9 Case Study: Transaction-
Processing System

11.10 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises |
AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works? |

AI/Data-Science Case Study—Machine Learning with GNU Scientific Library |
AI/Data-Science Case Study: Time Series and Simple Linear Regression |
Web Services and the Cloud Case Study—libcurl and OpenWeatherMap

0 1 2 3 4 5 6 7 8 9 ... n–1

end-of-file marker...

11.2 Files and Streams 541

FILE Structure
Opening a file returns a pointer to a FILE structure (defined in <stdio.h>) containing
information the program needs to process the file. In some operating systems, this
structure includes a file descriptor—an integer index into an operating-system array
called the open file table. Each array element contains a file control block (FCB)—
information that the operating system uses to administer a particular file. You manip-
ulate the standard input, standard output and standard error streams using the FILE
pointers stdin, stdout and stderr.

File-Processing Function fgetc
The standard library provides many functions for reading data from and writing data
to files. Function fgetc, like getchar, reads one character from the file specified by
its FILE pointer argument. For example, the call fgetc(stdin) reads one character
from the standard input stream. This call is equivalent to the call getchar().

File-Processing Function fputc
Function fputc, like putchar, writes the character in its first argument to the file spec-
ified by the FILE pointer in its second argument. For example, the function call
fputc('a', stdout) writes a character to the standard output stream and is equiva-
lent to putchar('a').

Other File-Processing Functions
Several other functions used to read data from standard input and write data to stan-
dard output have similarly named file-processing functions. The fgets and fputs
functions, for example, read a line of text from a file and write a line of text to a file,
respectively. The next few sections introduce the file-processing equivalents of func-
tions scanf and printf—fscanf and fprintf. Later in the chapter, we discuss func-
tions fread and fwrite.

Self Check
1 (Fill-In) When program execution begins, C opens three streams automatically:
the , and streams.
Answer: standard input, standard output, standard error.

2 (Fill-In) C views each file as a sequential stream of bytes. Each file ends either
with a(n) or at a specific byte number recorded in a system-maintained,
administrative data structure.
Answer: end-of-file marker.

542 Chapter 11 File Processing

11.3 Creating a Sequential-Access File
C imposes no structure on a file. Thus, notions such as a record of a file are not part
of the C language. The following example shows how you can impose your own
record structure on a file.

Figure 11.1 creates a simple sequential-access file that might be used in an accounts-
receivable system to track the amounts owed by a company’s credit clients. For each cli-
ent, the program obtains the client’s account number, name and balance—the amount
the client owes the company for goods and services received in the past. The data for
each client constitutes a “record” for that client. The account number is this applica-
tion’s record key. This program assumes the user enters the records in account-number
order. In a comprehensive accounts-receivable system, a sorting capability would enable
the user to enter records in any order. The program would then sort the records and
write them to the file. Figures 11.2–11.3 use the data file created in Fig. 11.1, so you
must run the program in Fig. 11.1 before the programs in Figs. 11.2–11.3.

1 // fig11_01.c
2 // Creating a sequential file
3 #include <stdio.h>
4
5 int main(void){
6 FILE *cfPtr = NULL; // cfPtr = clients.txt file pointer
7
8 // fopen opens the file. Exit the program if unable to create the file
9 if ((cfPtr = fopen("clients.txt", "w")) == NULL) {

10 puts("File could not be opened");
11 }
12 else {
13 puts("Enter the account, name, and balance.");
14 puts("Enter EOF to end input.");
15 printf("%s", "? ");
16
17 int account = 0; // account number
18 char name[30] = ""; // account name
19 double balance = 0.0; // account balance
20
21 scanf("%d%29s%lf", &account, name, &balance);
22
23 // write account, name and balance into file with fprintf
24 while (!feof(stdin)) {
25 fprintf(cfPtr, "%d %s %.2f\n", account, name, balance);
26 printf("%s", "? ");
27 scanf("%d%29s%lf", &account, name, &balance);
28 }
29
30 fclose(cfPtr); // fclose closes file
31 }
32 }

Fig. 11.1 | Creating a sequential file. (Part 1 of 2.)

11.3 Creating a Sequential-Access File 543

11.3.1 Pointer to a FILE
Line 6 defines cfPtr as a pointer to a FILE structure. A program refers to each open
file with a separate FILE pointer. You need not know the FILE structure’s specifics to
use files. If you’re interested, you can study its declaration in stdio.h.

11.3.2 Using fopen to Open a File
Line 9 calls fopen to create the file "clients.txt" and establish a “line of communi-
cation” with it. The file pointer that fopen returns is assigned to cfPtr.

Function fopen takes two arguments:

• a filename (which can include path information leading to the file’s location)
and

• a file open mode.

The file open mode "w" indicates fopen should open the file for writing. If the file
does not exist and the file open mode is "w", fopen creates the file. If you open an
existing file, fopen discards the file’s contents without warning. This is a logic error,
if your program is not supposed to replace the existing file.

The if statement determines whether the file pointer cfPtr is NULL. If it’s NULL,
the file could not be opened, possibly because the program does not have permission
to create a file in the specified folder. In this program, the file gets created in the same
folder as the program. If cfPtr is NULL, the program prints an error message and
terminates. Otherwise, the program processes the user’s inputs and writes them to the
file.

11.3.3 Using feof to Check for the End-of-File Indicator
The program prompts the user to enter the various fields for each record or to enter
end-of-file when data entry is complete. The key combinations for end-of-file are plat-
form-dependent:

• Windows: <Ctrl> + z, then press Enter

• macOS/Linux: <Ctrl> + d

Enter the account, name, and balance.
Enter EOF to end input.
? 100 Jones 24.98
? 200 Doe 345.67
? 300 White 0.00
? 400 Stone -42.16
? 500 Rich 224.62
? ^Z

Fig. 11.1 | Creating a sequential file. (Part 2 of 2.)

ERR

544 Chapter 11 File Processing

Line 24 calls feof to determine whether the end-of-file indicator is set for stdin.
The end-of-file indicator informs the program that there’s no more data to process.
When the user enters the end-of-file key combination, the operating system sets the
end-of-file indicator for the standard input stream. The feof function’s argument is
a FILE pointer to the file to test for the end-of-file indicator—stdin in this case. The
function returns a nonzero (true) value when the end-of-file indicator has been set;
otherwise, the function returns zero (false). This program’s while statement continues
executing until the user enters the end-of-file indicator.

11.3.4 Using fprintf to Write to a File
Line 25 writes a record as a line of text to the file clients.txt. You can retrieve the
data later using a program designed to read the file (Section 11.4). The fprintf func-
tion is equivalent to printf, but fprintf also receives a FILE pointer argument spec-
ifying the file to which the data will be written. Function fprintf can output data to
the standard output by using stdout as the FILE pointer argument.

11.3.5 Using fclose to Close a File
After the user enters end-of-file, the program closes the clients.txt file by calling
fclose (line 30), then terminates. Function fclose receives the FILE pointer as an
argument. If you do not call fclose explicitly, the operating system normally will
close the file when program execution terminates. This is an example of operating-
system “housekeeping.” You should close each file as soon as it’s no longer needed.
This frees resources for which other users or programs may be waiting.

In Fig. 11.1’s sample execution, the user enters information for five accounts,
then enters end-of-file to complete data entry. The sample execution does not show
how the data records actually appear in the file. The next section presents a program
that reads the file and displays its contents to verify that the program created the file
successfully.

Relationship Between FILE Pointers, FILE Structures and FCBs
The following diagram illustrates the relationship between FILE pointers, FILE struc-
tures and FCBs. When a program opens "clients.txt", the operating system copies
an FCB for the file into memory. The figure shows the connection between the file
pointer returned by fopen and the FCB used by the operating system to administer
the file. Programs may process no files, one file or several files. Each file has a different
file pointer returned by fopen. All subsequent file-processing functions after the file is
opened must refer to the file with the appropriate file pointer.

PERF

11.3 Creating a Sequential-Access File 545

11.3.6 File-Open Modes
The following table summarizes the file-open modes. The ones containing the letter
"b" are for manipulating binary files, which we discuss in Sections 11.5–11.9 when
we introduce random-access files.

User has access to this
1

2

cfPtr = fopen("clients.dat", "w");
fopen returns a pointer to a FILE structure
(defined in <stdio.h>).

When the program issues an I/O call such as

 fprintf(cfPtr, "%d %s %.2f",
 account, name, balance);

the program locates the descriptor (7) in the
FILE structure and uses the descriptor to find
the FCB in the Open File Table.

FILE structure for
"clients.dat"
contains a descriptor,
i.e., a small integer
that is an index into
the Open File Table.

4

Open File Table

Only the operating system
has access to this

This entry is
is inserted in the table
when the file is opened.

The program calls an operating-
system service that uses data in
the FCB to control all input and
output to the actual file on the
disk. Note: The user cannot
directly access the FCB.

3

FCB for "clients.dat"

.

.

.

.

.

.

7

cfPtr

7

5

6

4

3

2

1

0

546 Chapter 11 File Processing

C11 Exclusive Write Mode
C11 added the exclusive write mode,1 indicated with "wx", "w+x", "wbx" or "wb+x".
In exclusive write mode, fopen fails if the file already exists or cannot be created. If
your program successfully opens a file in exclusive write mode and the underlying sys-
tem supports exclusive file access, then only your program can access the file while it’s
open. If an error occurs while opening a file in any mode, fopen returns NULL.

Common File-Processing Errors
Some common file-processing logic errors you might encounter include:

• Opening a nonexistent file for reading.

• Opening a file for reading or writing without having been granted the appro-
priate access rights to the file (this is operating-system dependent).

• Opening a file for writing when no space is available.

• Opening a file in write mode ("w") when it should be opened in update mode
("r+")—"w" discards the file’s contents.

Self Check
1 (Code) Where will the following statement write its output?

 fprintf(stdout, "%d %s %.2f\n", account, name, balance);

Answer: The standard output device, which is normally the screen.

Mode Description

r Open an existing file for reading.
w Create a file for writing. If the file already exists, discard the current contents.
a Open or create a file for writing at the end of a file—this is for write operations that

append data to a file.
r+ Open an existing file for update (reading and writing).
w+ Create a file for reading and writing. If the file already exists, discard the current contents.
a+ Open or create a file for reading and updating where all writing is done at the end of

the file—that is, write operations append data to the file.
rb Open an existing binary file for reading.
wb Create a binary file for writing. If the file already exists, discard the current contents.
ab Open or create a binary file for writing at the end of the file (appending).
rb+ Open an existing binary file for update (reading and writing).
wb+ Create a binary file for update. If the file already exists, discard the current contents.
ab+ Open or create a binary file for update. Writing is done at the end of the file.

1. Some compilers and platforms do not support exclusive write mode.

ERR

11.4 Reading Data from a Sequential-Access File 547

2 (True/False) The notion of a record of a file is built into C.
Answer: False. Actually, C imposes no structure on a file, so notions such as a record
of a file are not part of the C language. You can impose your own record structure on
a file.

3 (Fill-In) A C program administers each file with a separate structure.
Answer: FILE.

4 (True/False) When you open a file for writing, fopen warns you if the file already
exists.
Answer: False. fopen discards the file’s contents without warning.

5 (Multiple Choice) Which file-open mode corresponds to the description, “open
an existing file for update (reading and writing)”?

a) u.
b) rw.
c) r+.
d) w+.

Answer: c.

11.4 Reading Data from a Sequential-Access File
Data is stored in files so that it can be retrieved for processing when needed. The pre-
vious section demonstrated how to create a file for sequential access. This section
shows how to read data sequentially from a file. If a file’s contents should not be mod-
ified, open the file only for reading. This prevents unintentional modification of the
file’s contents and is another example of the principle of least privilege.

Figure 11.2 reads and displays records from the file "clients.txt" created in
Fig. 11.1. Line 6 defines the FILE pointer cfPtr. Line 9 attempts to open the file for
reading ("r") and determines whether it opened successfully—that is, fopen did not
return NULL. Line 18 reads a “record” from the file. Function fscanf is equivalent to
scanf but receives as its first argument a FILE pointer for the file from which to read.
The first time this statement executes, account will have the value 100, name will have
the value "Jones" and balance will have the value 24.98. Each subsequent call to
fscanf (line 23) reads another record from the file and gives new values to account,
name and balance. When there is no more data to read, line 26 closes the file, and the
program terminates. Function feof returns true only after the program attempts to
read past the file’s last line.

1 // fig11_02.c
2 // Reading and printing a sequential file
3 #include <stdio.h>
4
5 int main(void) {
6 FILE *cfPtr = NULL; // cfPtr = clients.txt file pointer

Fig. 11.2 | Reading and printing a sequential file. (Part 1 of 2.)

548 Chapter 11 File Processing

11.4.1 Resetting the File Position Pointer
When retrieving data sequentially from a file, a program normally reads from the
beginning of the file until the desired data is found. In some cases, a program must
process a file sequentially several times from the beginning. The statement

rewind(cfPtr);

repositions the file position pointer to the beginning (byte 0) of the file pointed to by
cfPtr. The file position pointer is not really a pointer. It’s an integer indicating the byte
number of the next byte to read or write. This is sometimes referred to as the file offset.
The file position pointer is a member of the FILE structure associated with each file.

11.4.2 Credit Inquiry Program
The program of Fig. 11.3 allows a credit manager to obtain lists of customers with:

• zero balances—customers who do not owe any money,

• credit balances—customers to whom the company owes money, or

• debit balances—customers who owe money for goods and services received.

7
8 // fopen opens file; exits program if file cannot be opened
9 if ((cfPtr = fopen("clients.txt", "r")) == NULL) {

10 puts("File could not be opened");
11 }
12 else { // read account, name and balance from file
13 int account = 0; // account number
14 char name[30] = ""; // account name
15 double balance = 0.0; // account balance
16
17 printf("%-10s%-13s%s\n", "Account", "Name", "Balance");
18 fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);
19
20 // while not end of file
21 while (!feof(cfPtr)) {
22 printf("%-10d%-13s%7.2f\n", account, name, balance);
23 fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);
24 }
25
26 fclose(cfPtr); // fclose closes the file
27 }
28 }

Account Name Balance
100 Jones 24.98
200 Doe 345.67
300 White 0.00
400 Stone -42.16
500 Rich 224.62

Fig. 11.2 | Reading and printing a sequential file. (Part 2 of 2.)

11.4 Reading Data from a Sequential-Access File 549

A credit balance is a negative amount, and a debit balance is a positive amount. The
program displays a menu and allows the credit manager to enter one of four options:

• Option 1 produces a list of accounts with zero balances.

• Option 2 produces a list of accounts with credit balances.

• Option 3 produces a list of accounts with debit balances.

• Option 4 terminates program execution.

1 // fig11_03.c
2 // Credit inquiry program
3 #include <stdbool.h>
4 #include <stdio.h>
5
6 enum Options {ZERO_BALANCE = 1, CREDIT_BALANCE, DEBIT_BALANCE, END};
7
8 // determine whether to display a record
9 bool shouldDisplay(enum Options option, double balance) {

10 if ((option == ZERO_BALANCE) && (balance == 0)) {
11 return true;
12 }
13
14 if ((option == CREDIT_BALANCE) && (balance < 0)) {
15 return true;
16 }
17
18 if ((option == DEBIT_BALANCE) && (balance > 0)) {
19 return true;
20 }
21
22 return false;
23 }
24
25 int main(void) {
26 FILE *cfPtr = NULL; // clients.txt file pointer
27
28 // fopen opens the file; exits program if file cannot be opened
29 if ((cfPtr = fopen("clients.txt", "r")) == NULL) {
30 puts("File could not be opened");
31 }
32 else {
33 // display request options
34 printf("%s", "Enter request\n"
35 " 1 - List accounts with zero balances\n"
36 " 2 - List accounts with credit balances\n"
37 " 3 - List accounts with debit balances\n"
38 " 4 - End of run\n? ");
39 int request = 0;
40 scanf("%d", &request);
41

Fig. 11.3 | Credit inquiry program. (Part 1 of 3.)

550 Chapter 11 File Processing

42 // display records
43 while (request != END) {
44 switch (request) {
45 case ZERO_BALANCE:
46 puts("\nAccounts with zero balances:");
47 break;
48 case CREDIT_BALANCE:
49 puts("\nAccounts with credit balances:");
50 break;
51 case DEBIT_BALANCE:
52 puts("\nAccounts with debit balances:");
53 break;
54 }
55
56 int account = 0;
57 char name[30] = "";
58 double balance = 0.0;
59
60 // read account, name and balance from file
61 fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);
62
63 // read file contents (until eof)
64 while (!feof(cfPtr)) {
65 // output only if balance is 0
66 if (shouldDisplay(request, balance)) {
67 printf("%-10d%-13s%7.2f\n", account, name, balance);
68 }
69
70 // read account, name and balance from file
71 fscanf(cfPtr, "%d%29s%lf", &account, name, &balance);
72 }
73
74 rewind(cfPtr); // return cfPtr to beginning of file
75
76 printf("%s", "\n? ");
77 scanf("%d", &request);
78 }
79
80 puts("End of run.");
81 fclose(cfPtr); // close the file
82 }
83 }

Enter request
 1 - List accounts with zero balances
 2 - List accounts with credit balances
 3 - List accounts with debit balances
 4 - End of run
? 1

Accounts with zero balances:
300 White 0.00

Fig. 11.3 | Credit inquiry program. (Part 2 of 3.)

11.4 Reading Data from a Sequential-Access File 551

Updating a Sequential File
You cannot modify data in this type of sequential file without the risk of destroying
other data. For example, if the name "White" needs to be changed to "Worthington",
you cannot simply overwrite the old name. The record for White was written to the
file as

300 White 0.00

If you were to rewrite the record beginning at the same location in the file using the
new name, the record would be

300 Worthington 0.00

The new record has more characters than the original record. The characters beyond
the second "o" in "Worthington" will overwrite the beginning of the next sequential
record in the file. The problem here is that in the formatted input/output model
using fprintf and fscanf, fields and records can vary in size. For example, the values
7, 14, –117, 2074 and 27383 are all ints stored internally in the same number of
bytes, but they’re different-sized fields when displayed on the screen or written to a
file as text.

So, sequential access with fprintf and fscanf typically is not used to update
records in place. Instead, the entire file is rewritten. In a sequential-access file, we’d
make the preceding name change by

• copying the records before 300 White 0.00 to a new file,

• writing the new record,

• copying the records after 300 White 0.00 to the new file, then

• replacing the old file with the new one.

This requires processing every record in the file to update one record.

? 2

Accounts with credit balances:
400 Stone -42.16

? 3

Accounts with debit balances:
100 Jones 24.98
200 Doe 345.67
500 Rich 224.62

? 4
End of run.

Fig. 11.3 | Credit inquiry program. (Part 3 of 3.)

552 Chapter 11 File Processing

Self Check
1 (Fill-In) Function fscanf is equivalent to function scanf, but fscanf receives as
an argument a(n) .
Answer: file pointer for the file from which to read data.

2 (True/False) Function feof returns true only after the program attempts to read
the nonexistent data following the last line.
Answer: True.

3 (Fill-In) The following statement repositions a file’s to the file’s byte 0.
rewind(cfPtr);

Answer: file position pointer.

4 (True/False) In the formatted input/output model using fprintf and fscanf,
fields—and hence records—are fixed in size.
Answer: False. Actually, in this model, fields—and hence records—can vary in size.

11.5 Random-Access Files
Records that you create with the formatted output function fprintf may vary in
length. A random-access file, on the other hand, uses fixed-length records that may be
accessed directly (and thus quickly) without searching through other records. This
makes random-access files appropriate for transaction-processing systems that
require rapid access to specific data, such as airline reservation systems, banking sys-
tems and point-of-sale systems. There are other ways to implement random-access
files, but we’ll limit our discussion to this straightforward approach using fixed-length
records.

Because every record in a random-access file normally has the same length, each
record’s exact location relative to the beginning of the file can be calculated as a func-
tion of the record key. We’ll soon see how this facilitates immediate access to specific
records, even in large files.

The following diagram illustrates one way to implement a random-access file.
Such a file is like a freight train with many cars—some empty and some with cargo.
Each car in the train has the same length.

Fixed-length records enable a program to insert data in a random-access file with-
out destroying other data in the file. Data stored previously also can be updated or
deleted without rewriting the entire file. In the sections that follow, we explain how to

100 bytes 100 bytes 100 bytes 100 bytes 100 bytes 100 bytes

byte
offsets

0 100 200 300 400 500

11.6 Creating a Random-Access File 553

• create a random-access file,

• enter data,

• read the data both sequentially and randomly,

• update the data, and

• delete data that’s no longer needed.

Self Check
1 (True/False) Individual records that you write to and read from a random-access
file may be accessed directly without searching through other records. This makes
random-access files appropriate for systems that require rapid access to specific data.
Answer: True.

2 (Fill-In) A random-access file uses fixed-length records, so the exact location of a
record relative to the beginning of the file can be calculated based on the .
Answer: record key.

11.6 Creating a Random-Access File
Function fwrite writes a specified number of bytes from a specified location in mem-
ory to a file. The data is written at the file position pointer’s current location. Func-
tion fread reads a specified number of bytes from the file position pointer’s current
location to a specified area in memory. Writing a four-byte integer with

fprintf(fPtr, "%d", number);

could output as many as 11 digits—10 digits plus a sign, each of which requires at
least one byte of storage, based on the character set for the locale. With random-access
files, the statement

fwrite(&number, sizeof(int), 1, fPtr);

always writes four bytes (on a system with four-byte integers) from the int variable
number to the file represented by fPtr. We’ll explain the argument 1 in a moment.
Later, we can use fread to read those four bytes into an int variable. Although fread
and fwrite read and write data in fixed-size rather than variable-size format, they pro-
cess data as “raw” bytes, rather than in printf’s and scanf’s human-readable text for-
mat. The “raw” data representation is system-dependent, so “raw” data may not be
readable on other systems, or by programs produced by other compilers or with dif-
ferent compilation options.

fwrite and fread Can Write and Read Arrays
Functions fwrite and fread can write and read arrays. The third argument of both
fwrite and fread is the number of elements to write or read. The preceding fwrite
function call writes a single integer to a file, so the third argument is 1—as if we were
writing one array element. File-processing programs rarely write a single field to a file.
Normally, they write one struct at a time, as we show in the following examples.

554 Chapter 11 File Processing

Problem Statement
Consider the following problem statement:

Create a transaction-processing system capable of storing up to 100 fixed-
length records. Each record should have an account number (the record key), a
last name, a first name and a balance. The program should use a random-
access file and should be able to update an account, insert a new account,
delete an account and list all the records in a formatted text file for printing.

The next several sections introduce the techniques we’ll use to create the transaction-
processing program. Figure 11.4 shows how to open a random-access file, define a
record format using a struct, write data to the file and close the file. This program
initializes all 100 records of the file "accounts.dat" with empty structs using the
function fwrite. Each empty struct contains the account number 0, empty strings
("") for the last and first names, and the balance 0.0. We initialize all the records to
create the space in which the file will be stored and to make it possible to determine
whether a record contains data.

1 // fig11_04.c
2 // Creating a random-access file sequentially
3 #include <stdio.h>
4
5 // clientData structure definition
6 struct clientData {
7 int account;
8 char lastName[15];
9 char firstName[10];

10 double balance;
11 };
12
13 int main(void) {
14 FILE *cfPtr = NULL; // accounts.dat file pointer
15
16 // fopen opens the file; exits if file cannot be opened
17 if ((cfPtr = fopen("accounts.dat", "wb")) == NULL) {
18 puts("File could not be opened.");
19 }
20 else {
21 // create clientData with default information
22 struct clientData blankClient = {0, "", "", 0.0};
23
24 // output 100 blank records to file
25 for (int i = 1; i <= 100; ++i) {
26 fwrite(&blankClient, sizeof(struct clientData), 1, cfPtr);
27 }
28
29 fclose (cfPtr); // fclose closes the file
30 }
31 }

Fig. 11.4 | Creating a random-access file sequentially.

11.7 Writing Data Randomly to a Random-Access File 555

Line 17 opens the file "accounts.dat" for writing in binary mode ("wb"). Func-
tion fwrite (line 26) writes a block of bytes to a file. The arguments are:

• &blankClient—the address of the object to write,

• sizeof(struct clientData)—the size in bytes of the object to write,

• 1—the number of objects of that size to write, and

• cfPtr—a FILE * representing the file in which the bytes will be stored.

Recall that sizeof returns the size in bytes of its operand, struct clientData.

Writing an Array of Objects
In line 26, fwrite writes one object that’s not an array element. To write an array,
pass it to fwrite as the first argument and specify as the third argument the number
of elements to output.

Self Check
1 (True/False) For a four-byte int variable number, the following statement always
writes four bytes, even if the number’s text representation could be as many as 11 digits:

fwrite(&number, sizeof(int), 1, fPtr);

Answer: True.

2 (Fill-In) Functions fread and fwrite read and write data in “raw data” format—
that is, as of data.
Answer: bytes.

3 (Fill-In) Function fwrite can write several array elements. In the call to fwrite,
specify a pointer to an array and as the first and third arguments.
Answer: the number of elements to write.

11.7 Writing Data Randomly to a Random-Access File
[Note: Figures 11.5, 11.6 and 11.7 use the data file created in Fig. 11.4, so you must
run Fig. 11.4 before Figs. 11.5, 11.6 and 11.7.]

Figure 11.5 writes data to the file "accounts.dat". It uses fseek and fwrite to store
data at specific locations in the file. Function fseek sets the file position pointer to a
specific byte position, then fwrite writes the data there.

1 // fig11_05.c
2 // Writing data randomly to a random-access file
3 #include <stdio.h>
4

Fig. 11.5 | Writing data randomly to a random-access file. (Part 1 of 3.)

556 Chapter 11 File Processing

5 // clientData structure definition
6 struct clientData {
7 int account;
8 char lastName[15];
9 char firstName[10];

10 double balance;
11 }; // end structure clientData
12
13 int main(void) {
14 FILE *cfPtr = NULL; // accounts.dat file pointer
15
16 // fopen opens the file; exits if file cannot be opened
17 if ((cfPtr = fopen("accounts.dat", "rb+")) == NULL) {
18 puts("File could not be opened.");
19 }
20 else {
21 // create clientData with default information
22 struct clientData client = {0, "", "", 0.0};
23
24 // require user to specify account number
25 printf("%s", "Enter account number (1 to 100, 0 to end input): ");
26 scanf("%d", &client.account);
27
28 // user enters information, which is copied into file
29 while (client.account != 0) {
30 // user enters last name, first name and balance
31 printf("%s", "Enter lastname, firstname, balance: ");
32
33 // set record lastName, firstName and balance value
34 fscanf(stdin, "%14s%9s%lf", client.lastName,
35 client.firstName, &client.balance);
36
37 // seek position in file to user-specified record
38 fseek(cfPtr, (client.account - 1) *
39 sizeof(struct clientData), SEEK_SET);
40
41 // write user-specified information in file
42 fwrite(&client, sizeof(struct clientData), 1, cfPtr);
43
44 // enable user to input another account number
45 printf("%s", "\nEnter account number: ");
46 scanf("%d", &client.account);
47 }
48
49 fclose(cfPtr); // fclose closes the file
50 }
51 }

Enter account number (1 to 100, 0 to end input): 37
Enter lastname, firstname, balance: Barker Doug 0.00

Enter account number: 29
Enter lastname, firstname, balance: Brown Nancy -24.54

Fig. 11.5 | Writing data randomly to a random-access file. (Part 2 of 3.)

11.7 Writing Data Randomly to a Random-Access File 557

11.7.1 Positioning the File Position Pointer with fseek
Lines 38–39 position the file position pointer for the file referenced by cfPtr to the
byte location calculated by

(client.account - 1) * sizeof(struct clientData)

This expression’s value is the offset or displacement. In this example, the account num-
ber is 1–100. The file starts with byte 0, so we subtract 1 from the account number
when calculating the record’s byte location. For record 1, lines 38–39 set the file posi-
tion pointer to byte 0 of the file. The symbolic constant SEEK_SET indicates that fseek
should move the file position pointer relative to the beginning of the file.

The following diagram illustrates the FILE pointer referring to a FILE structure in
memory. The file position pointer in this diagram indicates that the next byte to be
read or written is byte number 5.

fseek Function Prototype
The function prototype for fseek is

int fseek(FILE *stream, long int offset, int whence);

Enter account number: 96
Enter lastname, firstname, balance: Stone Sam 34.98

Enter account number: 88
Enter lastname, firstname, balance: Smith Dave 258.34

Enter account number: 33
Enter lastname, firstname, balance: Dunn Stacey 314.33

Enter account number: 0

Fig. 11.5 | Writing data randomly to a random-access file. (Part 3 of 3.)

5

0 1 2 3 4 5 6 7 8 9 ...

cfPtr

Byte
number (File position

pointer)

Memory

558 Chapter 11 File Processing

where offset is the number of bytes to seek from whence in the file pointed to by
stream. Positive offsets seek forward, and negative offsets seek backward. The
argument whence can be SEEK_SET, SEEK_CUR or SEEK_END (all defined in <stdio.h>),
which indicate the location from which the seek begins:

• SEEK_SET indicates that the seek is measured from the beginning of the file.

• SEEK_CUR indicates that the seek is measured from the current location in the file.

• SEEK_END indicates that the seek is measured from the end of the file.

You should use only positive offsets with SEEK_SET and only negative ones with
SEEK_END.

11.7.2 Error Checking
For simplicity, the programs in this chapter do not perform error checking. Indus-
trial-strength programs should determine whether functions such as fscanf

(Fig. 11.5, lines 34–35), fseek (lines 38–39) and fwrite (line 42) operate correctly
by checking their return values. Function fscanf returns the number of data items
successfully read or the value EOF if a problem occurs while reading data. Function
fseek returns a nonzero value if the seek operation cannot be performed (e.g.,
attempting to seek to a position before the start of the file). Function fwrite returns
the number of items it successfully output. If this number is less than the third argu-
ment in the function call, then a write error occurred.

Self Check
1 (Fill-In) Function sets the file position pointer to a specific byte posi-
tion in the file.
Answer: fseek.

2 (Fill-In) The symbolic constant indicates that the file position pointer
should be positioned relative to the beginning of the file.
Answer: SEEK_SET.

11.8 Reading Data from a Random-Access File
Function fread reads a specified number of bytes from a file into memory. For example,

fread(&client, sizeof(struct clientData), 1, cfPtr);

reads the number of bytes determined by sizeof(struct clientData) from the file
referenced by cfPtr, stores the data in client and returns the number of bytes read.
It reads bytes from the location specified by the file position pointer.

Function fread can read several fixed-size array elements by providing a pointer
to the array in which the elements will be stored and by indicating the number of ele-
ments to be read. The preceding statement reads one element. To read more than
one, specify the number of elements as fread’s third argument. Function fread

11.8 Reading Data from a Random-Access File 559

returns the number of items it successfully input. If this number is less than the func-
tion call’s third argument, a read error occurred.

Figure 11.6 sequentially reads each record in the "accounts.dat" file, determines
whether it contains data and, if so, displays the formatted data. Function feof deter-
mines when the end of the file is reached, and the fread function (lines 28–29) trans-
fers data from the file to the clientData structure client.

1 // fig11_06.c
2 // Reading a random-access file sequentially
3 #include <stdio.h>
4
5 // clientData structure definition
6 struct clientData {
7 int account;
8 char lastName[15];
9 char firstName[10];

10 double balance;
11 };
12
13 int main(void){
14 FILE *cfPtr = NULL; // accounts.dat file pointer
15
16 // fopen opens the file; exits if file cannot be opened
17 if ((cfPtr = fopen("accounts.dat", "rb")) == NULL) {
18 puts("File could not be opened.");
19 }
20 else {
21 printf("%-6s%-16s%-11s%10s\n", "Acct", "Last Name",
22 "First Name", "Balance");
23
24 // read all records from file (until eof)
25 while (!feof(cfPtr)) {
26 // read a record
27 struct clientData client = {0, "", "", 0.0};
28 size_t result =
29 fread(&client, sizeof(struct clientData), 1, cfPtr);
30
31 // display record
32 if (result != 0 && client.account != 0) {
33 printf("%-6d%-16s%-11s%10.2f\n", client.account,
34 client.lastName, client.firstName, client.balance);
35 }
36 }
37
38 fclose(cfPtr); // fclose closes the file
39 }
40 }

Fig. 11.6 | Reading a random-access file sequentially. (Part 1 of 2.)

560 Chapter 11 File Processing

Self Check
1 (True/False) Function fread returns the number of bytes it successfully input.
Answer: False. Function fread returns the number of items it successfully input.
Each item can be many bytes. If the number of items is fewer than fread’s third ar-
gument, then the read operation did not complete successfully.

2 (True/False) Function fread can read several fixed-size array elements by provid-
ing a pointer to the array in which the elements will be stored and by indicating the
number of elements to be read.
Answer: True.

11.9 Case Study: Transaction-Processing System
Let’s create a transaction-processing program (Fig. 11.7) using random-access files. The
program maintains a bank’s account information—updating existing accounts, adding
new accounts, deleting accounts and storing a listing of current accounts in a text file
for printing. We assume that the program of Fig. 11.4 created the file accounts.dat.

Option 1: Create a Formatted List of Accounts
The program has five options—option 5 terminates the program. Option 1 calls func-
tion textFile (lines 58–86) to store a formatted account report in a text file called
accounts.txt, which can be printed later. The function uses fread and the sequential
file-access techniques shown in Fig. 11.6. After option 1, accounts.txt contains:

Option 2: Update an Account
Option 2 calls the function updateRecord (lines 89–125) to update an account. The
function updates only a record that already exists, so the function first checks whether
the record specified by the user is empty. First, we read the record into structure cli-
ent with fread. If the member account is 0, the record contains no information. So,

Acct Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Acct Last Name First Name Balance
29 Brown Nancy -24.54
33 Dunn Stacey 314.33
37 Barker Doug 0.00
88 Smith Dave 258.34
96 Stone Sam 34.98

Fig. 11.6 | Reading a random-access file sequentially. (Part 2 of 2.)

11.9 Case Study: Transaction-Processing System 561

the program displays a message that the record is empty, then redisplays the menu
choices. If the record contains information, function updateRecord inputs the trans-
action amount, calculates the new balance and rewrites the record to the file. A typical
output for option 2 is

Option 3: Create a New Account
Option 3 calls the function newRecord (lines 128–161) to add a new account to the
file. If the user enters an account number for an existing account, newRecord displays
an error message indicating that the record already contains information, and the
menu choices are printed again. This function uses the same process to add a new
account, as does the program in Fig. 11.5. A typical output for option 3 is

Option 4: Delete an Account
Option 4 calls function deleteRecord (lines 164–190) to delete a record from the file.
Deletion is accomplished by asking the user for the account number and reinitializing
the record. If the account contains no information, deleteRecord displays an error
message indicating that the account does not exist.

Code for the Transaction-Processing Program
The program is shown in Fig. 11.7. The file "accounts.dat" is opened for update
(reading and writing) using "rb+" mode.

Enter account to update (1 - 100): 37
37 Barker Doug 0.00

Enter charge (+) or payment (-): +87.99
37 Barker Doug 87.99

Enter new account number (1 - 100): 22
Enter lastname, firstname, balance
? Johnston Sarah 247.45

1 // fig11_07.c
2 // Transaction-processing program reads a random-access file sequentially,
3 // updates data already written to the file, creates new data to
4 // be placed in the file, and deletes data previously stored in the file.
5 #include <stdio.h>
6
7 // clientData structure definition
8 struct clientData {
9 int account;

10 char lastName[15];
11 char firstName[10];
12 double balance;
13 };

Fig. 11.7 | Transaction-processing program. (Part 1 of 5.)

562 Chapter 11 File Processing

14
15 // prototypes
16 int enterChoice(void);
17 void textFile(FILE *readPtr);
18 void updateRecord(FILE *fPtr);
19 void newRecord(FILE *fPtr);
20 void deleteRecord(FILE *fPtr);
21
22 int main(void) {
23 FILE *cfPtr = NULL; // accounts.dat file pointer
24
25 // fopen opens the file; exits if file cannot be opened
26 if ((cfPtr = fopen("accounts.dat", "rb+")) == NULL) {
27 puts("File could not be opened.");
28 }
29 else {
30 int choice = 0; // user
31
32 // enable user to specify action
33 while ((choice = enterChoice()) != 5) {
34 switch (choice) {
35 case 1: // create text file from record file
36 textFile(cfPtr);
37 break;
38 case 2: // update record
39 updateRecord(cfPtr);
40 break;
41 case 3: // create record
42 newRecord(cfPtr);
43 break;
44 case 4: // delete existing record
45 deleteRecord(cfPtr);
46 break;
47 default: // display message for invalid choice
48 puts("Incorrect choice");
49 break;
50 }
51 }
52
53 fclose(cfPtr); // fclose closes the file
54 }
55 }
56
57 // create formatted text file for printing
58 void textFile(FILE *readPtr) {
59 FILE *writePtr = NULL; // accounts.txt file pointer
60
61 // fopen opens the file; exits if file cannot be opened
62 if ((writePtr = fopen("accounts.txt", "w")) == NULL) {
63 puts("File could not be opened.");
64 }

Fig. 11.7 | Transaction-processing program. (Part 2 of 5.)

11.9 Case Study: Transaction-Processing System 563

65 else {
66 rewind(readPtr); // sets pointer to beginning of file
67 fprintf(writePtr, "%-6s%-16s%-11s%10s\n",
68 "Acct", "Last Name", "First Name","Balance");
69
70 // copy all records from random-access file into text file
71 while (!feof(readPtr)) {
72 // create clientData with default information
73 struct clientData client = {0, "", "", 0.0};
74 size_t result =
75 fread(&client, sizeof(struct clientData), 1, readPtr);
76
77 // write single record to text file
78 if (result != 0 && client.account != 0) {
79 fprintf(writePtr, "%-6d%-16s%-11s%10.2f\n", client.account,
80 client.lastName, client.firstName, client.balance);
81 }
82 }
83
84 fclose(writePtr); // fclose closes the file
85 }
86 }
87
88 // update balance in record
89 void updateRecord(FILE *fPtr) {
90 // obtain number of account to update
91 printf("%s", "Enter account to update (1 - 100): ");
92 int account = 0; // account number
93 scanf("%d", &account);
94
95 // move file pointer to correct record in file
96 fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);
97
98 // read record from file
99 struct clientData client = {0, "", "", 0.0};
100 fread(&client, sizeof(struct clientData), 1, fPtr);
101
102 // display error if account does not exist
103 if (client.account == 0) {
104 printf("Account #%d has no information.\n", account);
105 }
106 else { // update record
107 printf("%-6d%-16s%-11s%10.2f\n\n", client.account, client.lastName,
108 client.firstName, client.balance);
109
110 // request transaction amount from user
111 printf("%s", "Enter charge (+) or payment (-): ");
112 double transaction = 0.0; // transaction amount
113 scanf("%lf", &transaction);
114 client.balance += transaction; // update record balance
115

Fig. 11.7 | Transaction-processing program. (Part 3 of 5.)

564 Chapter 11 File Processing

116 printf("%-6d%-16s%-11s%10.2f\n", client.account, client.lastName,
117 client.firstName, client.balance);
118
119 // move file pointer to correct record in file
120 fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);
121
122 // write updated record over old record in file
123 fwrite(&client, sizeof(struct clientData), 1, fPtr);
124 }
125 }
126
127 // create and insert record
128 void newRecord(FILE *fPtr) {
129 // obtain number of account to create
130 printf("%s", "Enter new account number (1 - 100): ");
131 int account = 0; // account number
132 scanf("%d", &account);
133
134 // move file pointer to correct record in file
135 fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);
136
137 // read record from file
138 struct clientData client = {0, "", "", 0.0};
139 fread(&client, sizeof(struct clientData), 1, fPtr);
140
141 // display error if account already exists
142 if (client.account != 0) {
143 printf("Account #%d already contains information.\n",
144 client.account);
145 }
146 else { // create record
147 // user enters last name, first name and balance
148 printf("%s", "Enter lastname, firstname, balance\n? ");
149 scanf("%14s%9s%lf", &client.lastName, &client.firstName,
150 &client.balance);
151
152 client.account = account;
153
154 // move file pointer to correct record in file
155 fseek(fPtr, (client.account - 1) * sizeof(struct clientData),
156 SEEK_SET);
157
158 // insert record in file
159 fwrite(&client, sizeof(struct clientData), 1, fPtr);
160 }
161 }
162
163 // delete an existing record
164 void deleteRecord(FILE *fPtr) {
165 // obtain number of account to delete
166 printf("%s", "Enter account number to delete (1 - 100): ");
167 int account = 0; // account number
168 scanf("%d", &account);

Fig. 11.7 | Transaction-processing program. (Part 4 of 5.)

11.9 Case Study: Transaction-Processing System 565

Related Exercises
This Transaction-Processing System case study is supported by Exercise 11.11
(Hardware Inventory) and Exercise 11.17 (Modified Transaction-Processing Sys-
tem).

Self Check
1 (Discussion) In the following code, what does the if statement’s condition test?

if ((cfPtr = fopen("accounts.dat", "rb+")) == NULL)

Answer: The condition tests whether the file accounts.dat was opened successfully
in binary mode for reading and writing.

169
170 // move file pointer to correct record in file
171 fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);
172
173 // read record from file
174 struct clientData client = {0, "", "", 0.0};
175 fread(&client, sizeof(struct clientData), 1, fPtr);
176
177 // display error if record does not exist
178 if (client.account == 0) {
179 printf("Account %d does not exist.\n", account);
180 }
181 else { // delete record
182 // move file pointer to correct record in file
183 fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);
184
185 struct clientData blankClient = {0, "", "", 0}; // blank client
186
187 // replace existing record with blank record
188 fwrite(&blankClient, sizeof(struct clientData), 1, fPtr);
189 }
190 }
191
192 // enable user to input menu choice
193 int enterChoice(void) {
194 // display available options
195 printf("%s", "\nEnter your choice\n"
196 "1 - store a formatted text file of accounts called\n"
197 " \"accounts.txt\" for printing\n"
198 "2 - update an account\n"
199 "3 - add a new account\n"
200 "4 - delete an account\n"
201 "5 - end program\n? ");
202
203 int menuChoice = 0; // variable to store user
204 scanf("%d", &menuChoice); // receive choice from user
205 return menuChoice;
206 }

Fig. 11.7 | Transaction-processing program. (Part 5 of 5.)

566 Chapter 11 File Processing

2 (Discussion) What does the following statement do in the program of Fig. 11.7?
fseek(fPtr, (account - 1) * sizeof(struct clientData), SEEK_SET);

Answer: This statement moves the file position pointer for the file that fPtr rep-
resents to the position for the clientData record account.

11.10 Secure C Programming
fprintf_s and fscanf_s
The examples in Sections 11.3–11.4 used functions fprintf and fscanf to write text
to and read text from files, respectively. The C standard’s Annex K provides versions
of these functions named fprintf_s and fscanf_s that are identical to the printf_s
and scanf_s functions we’ve previously introduced, except that you also specify a
FILE pointer argument indicating the file to manipulate. If your C compiler’s stan-
dard libraries include these functions, you should use them instead of fprintf and
fscanf. As with scanf_s and printf_s, Microsoft’s versions of fprintf_s and fscan-
f_s differ from those in Annex K.

Chapter 9 of the SEI CERT C Coding Standard
Chapter 9 of the SEI CERT C Coding Standard is dedicated to input/output recom-
mendations and rules—many apply to file processing in general, and several of these
apply to the file-processing functions presented in this chapter. For more information
on each, visit https://wiki.sei.cmu.edu/:

• FIO03-C: When opening a file for writing using the nonexclusive file-open
modes discussed in this chapter, if the file exists, function fopen opens it and
truncates its contents, providing no indication of whether the file existed
before the fopen call. To ensure that an existing file is not opened and trun-
cated, you can use C11’s exclusive write mode (discussed in Section 11.3),
which allows fopen to open the file only if it does not already exist.

• FIO04-C: In industrial-strength code, you should always check the return
values of file-processing functions that return error indicators to ensure that
the functions performed their tasks correctly.

• FIO07-C. Function rewind does not return a value, so you cannot test
whether the operation was successful. It’s recommended instead that you use
function fseek because it returns a nonzero value if it fails.

• FIO09-C. We demonstrated both text files and binary files in this chapter.
Due to differences in binary data representations across platforms, files writ-
ten in binary format often are not portable. For more portable file representa-
tions, consider using text files or a function library that can handle the
differences in binary file representations across platforms.

• FIO14-C. Some library functions do not operate identically on text files and
binary files. In particular, function fseek is not guaranteed to work correctly
with binary files if you seek from SEEK_END, so SEEK_SET should be used.

https://wiki.sei.cmu.edu/

 Summary 567

• FIO42-C. On many platforms, you can have only a limited number of files
open at once. For this reason, you should always close a file as soon as it’s no
longer needed by your program.

Self Check
1 (Fill-In) When you open a file for writing, you can ensure that an existing file is
not truncated by using , which allows fopen to open the file only if it does
not exist.
Answer: exclusive write mode.

2 (True/False) Function rewind does not return a value, so you cannot test whether
the operation was successful. Instead, use function fseek because it returns a nonzero
value if it fails.
Answer: True.

3 (True/False) Many platforms allow only a limited number of files to be open at
once. So, you should always close a file as soon as it’s no longer needed.
Answer: True.

Summary
Section 11.1 Introduction
• Files (p. 540) are used for permanent retention of large amounts of data.
• Computers store files on secondary storage devices, such as solid-state drives, flash drives

and hard drives.

Section 11.2 Files and Streams
• C views each file as a sequential stream of bytes (p. 540). When a file is opened, a stream is

associated with the file.
• Three streams are automatically opened when program execution begins—the standard in-

put (p. 540), the standard output (p. 540) and the standard error (p. 540).
• Streams provide communication channels between files and programs.
• The standard input stream enables a program to read data from the keyboard, and the

standard output stream enables a program to print data on the screen.
• Opening a file returns a pointer to a FILE structure (defined in <stdio.h>; p. 541) that con-

tains information used to process the file. This structure includes a file descriptor
(p. 541)—an index into an operating-system array called the open file table (p. 541). Each
array element contains a file control block (FCB; p. 541) that the operating system uses to
administer a particular file.

• The standard input, standard output and standard error are manipulated using the pre-
defined file pointers stdin, stdout and stderr.

• Function fgetc (p. 541) reads one character from a file. It receives as an argument a FILE
pointer for the file from which a character will be read.

• Function fputc (p. 541) writes one character to a file. It receives as arguments a character
to be written and a FILE pointer for the file to which the character will be written.

• Functions fgets and fputs (p. 541) read a line from a file or write a line to a file, respectively.

568 Chapter 11 File Processing

Section 11.3 Creating a Sequential-Access File
• C imposes no structure on a file. You must provide a file structure to meet the requirements

of a particular application.
• A C program administers each file with a separate FILE structure.
• Each open file must have a separately declared FILE pointer that’s used to refer to the file.
• Function fopen (p. 543) takes as arguments a filename and a file-open mode (p. 543) and re-

turns a pointer to the FILE structure for the file opened or NULL if the file could not be opened.
• The file-open mode "w" is used to open a file for writing. If the file does not exist, fopen

creates it. If the file exists, the contents are discarded without warning.
• Function feof (p. 544) receives a pointer to a FILE and returns a nonzero (true) value when

the end-of-file indicator has been set; otherwise, the function returns zero. Any attempt to
read from a file for which feof returns true will fail.

• Function fprintf (p. 544) is equivalent to printf but also receives as an argument a file
pointer for the file to which the data will be written.

• Function fclose (p. 544) receives a file pointer as an argument and closes the specified file.
• When a file is opened, the file control block (FCB) for the file is copied into memory. The

FCB is used by the operating system to administer the file.
• To read an existing file, open it for reading ("r").
• To add records to the end of an existing file, open the file for appending ("a").
• To open a file for reading and writing, use an update mode—"r+", "w+" or "a+". Mode
"r+" opens a file for reading and writing. Mode "w+" creates a file for reading and writing,
but an existing file’s contents are discarded. Mode "a+" opens a file for reading and writ-
ing—all writing is done at the end of the file. If the file does not exist, it’s created.

• Each file-open mode has a corresponding binary mode (b) for manipulating binary files.
• Exclusive write mode ensures that an existing file is not overwritten. If your program suc-

cessfully opens a file in exclusive write mode and the underlying system supports exclusive
file access, then only your program can access the file while it’s open.

Section 11.4 Reading Data from a Sequential-Access File
• Function fscanf (p. 547) is equivalent to function scanf but receives as an argument a file

pointer for the file from which the data is read.
• Function rewind repositions a program’s file position pointer (p. 548) to the beginning of

the file (i.e., byte 0) pointed to by its argument.
• The file position pointer is an integer value that specifies the byte location in the file at which

the next read or write is to occur. This is sometimes referred to as the file offset (p. 548). The
file position pointer is a member of the FILE structure associated with each file.

• The data in a sequential text file typically cannot be modified without the risk of destroying
other data in the file.

Section 11.5 Random-Access Files
• Random-access files (p. 552) use fixed-length records that may be accessed directly without

searching through other records.
• Every record in a random-access file normally has the same length, so the exact location of

a record relative to the beginning of the file can be calculated as a function of the record key.
• Fixed-length records enable data to be inserted in a random-access file without destroying oth-

er data. Data stored previously can also be updated or deleted without rewriting the entire file.

 Self-Review Exercises 569

Section 11.6 Creating a Random-Access File
• Function fwrite (p. 552) transfers a specified number of bytes beginning at a specified loca-

tion in memory to a file. The data is written beginning at the file position pointer’s location.
• Function fread (p. 552) transfers a specified number of bytes from the location in the file

specified by the file position pointer to an area in memory beginning with a specified address.
• Functions fwrite and fread are capable of reading and writing arrays of data from and to

files. The third argument of both fread and fwrite is the number of elements to process.
• File-processing programs normally write one struct at a time.

Section 11.7 Writing Data Randomly to a Random-Access File
• Function fseek (p. 555) repositions a file’s file position pointer to a specific byte position.

Its second argument indicates the number of bytes to seek, and its third argument indicates
the location from which to seek. The third argument can be—SEEK_SET, SEEK_CUR or
SEEK_END. SEEK_SET (p. 557) indicates that the seek starts at the beginning of the file;
SEEK_CUR (p. 558) indicates that the seek starts at the current location in the file; and
SEEK_END (p. 558) indicates that the seek is measured from the end of the file.

• Industrial-strength programs should determine whether functions such as fscanf, fseek
and fwrite operate correctly by checking their return values.

• Function fscanf returns the number of fields successfully read or the value EOF if a problem
occurs while reading data.

• Function fseek returns a nonzero value if the seek operation cannot be performed.
• Function fwrite returns the number of items it successfully output. If this number is less

than the third argument in the function call, then a write error occurred.

Section 11.8 Reading Data from a Random-Access File
• Function fread reads a specified number of bytes from a file into memory.
• Function fread can read several fixed-size array elements by providing a pointer to the array

in which the elements will be stored and by indicating the number of elements to be read.
• Function fread returns the number of items it successfully input. If this number is less than

the third argument in the function call, then a read error occurred.

Self-Review Exercises
11.1 Fill-In the blanks in each of the following:

a) Function closes a file.
b) The function reads data from a file in a manner similar to how

scanf reads from stdin.
c) Function reads a character from a specified file.
d) Function reads a line from a specified file.
e) Function opens a file.
f) Function is normally used when reading data from a file in random-

access applications.
g) Function repositions the file position pointer to a specific location

in the file.

11.2 State which of the following are true and which are false. If false, explain why.
a) Function fscanf cannot be used to read data from the standard input.

570 Chapter 11 File Processing

b) You must explicitly use fopen to open the standard input, standard output
and standard error streams.

c) A program must explicitly call function fclose to close a file.
d) If the file position pointer points to a location in a sequential file other than

the beginning of the file, the file must be closed and reopened to read from
the beginning of the file.

e) Function fprintf can write to the standard output.
f) Data in sequential-access files can be updated without overwriting other data.
g) It’s not necessary to search through all the records in a random-access file to

find a specific record.
h) Records in random-access files are not of uniform length.
i) Function fseek may seek only relative to the beginning of a file.

11.3 Write a single statement to accomplish each of the following. Assume that each
of these statements applies to the same program.

a) Open the file "oldmast.dat" for reading and assign the returned file pointer
to ofPtr.

b) Open the file "trans.dat" for reading and assign the returned file pointer
to tfPtr.

c) Open the file "newmast.dat" for writing (and creation) and assign the re-
turned file pointer to nfPtr.

d) Read a record from the file "oldmast.dat". The record consists of integer ac-
count, string name and floating-point currentBalance.

e) Read a record from the file "trans.dat". The record consists of the integer
account and floating-point dollarAmount.

f) Write a record to the file "newmast.dat". The record consists of the integer
account, string name and floating-point currentBalance.

11.4 Find the error in each of the following and explain how to correct it.
a) The file referred to by fPtr ("payables.dat") has not been opened.

 printf(fPtr, "%d%s%d\n", account, company, amount);

b) open("receive.dat", "r+");
c) The following should read a record from "payables.dat". File pointer payPtr

refers to this file, and file pointer recPtr refers to the file "receive.dat":
 scanf(recPtr, "%d%s%d\n", &account, company, &amount);

d) The file "tools.dat" should be opened to add data to the file without dis-
carding the current data.
 if ((tfPtr = fopen("tools.dat", "w")) != NULL)

e) The file "courses.dat" should be opened for appending without modifying
the current contents of the file.
 if ((cfPtr = fopen("courses.dat", "w+")) != NULL)

Answers to Self-Review Exercises
11.1 a) fclose. b) fscanf. c) fgetc. d) fgets. e) fopen. f) fread. g) fseek.

 Exercises 571

11.2 See the answers below:
a) False. Function fscanf can be used to read from the standard input by includ-

ing the pointer to the standard input stream, stdin, in the call to fscanf.
b) False. These three streams are opened automatically by C when program ex-

ecution begins.
c) False. The files will be closed when program execution terminates, but all

files should be explicitly closed with fclose.
d) False. Function rewind can be used to reposition the file position pointer to

the beginning of the file.
e) True.
f) False. In most cases, sequential file records are not of uniform length. There-

fore, it’s possible that updating a record will cause other data to be overwritten.
g) True.
h) False. Records in a random-access file are normally of uniform length.
i) False. It’s possible to seek from the beginning of the file, from the end of the

file and from the current location in the file.

11.3 a)ofPtr = fopen("oldmast.dat", "r");
b) tfPtr = fopen("trans.dat", "r");
c) nfPtr = fopen("newmast.dat", "w");
d) fscanf(ofPtr, "%d%s%f", &account, name, ¤tBalance);
e) fscanf(tfPtr, "%d%f", &account, &dollarAmount);
f) fprintf(nfPtr, "%d %s %.2f", account, name, currentBalance);

11.4 See the answers below:
a) Error: "payables.dat" has not been opened before using fPtr.

Correction: Use fopen to open "payables.dat" for writing, appending or up-
dating.

b) Error: Function open is not a Standard C function.
Correction: Use function fopen.

c) Error: The function scanf should be fscanf. Function fscanf uses the in-
correct file pointer to refer to file "payables.dat".
Correction: Use payPtr to refer to "payables.dat" and use fscanf.

d) Error: The contents of the file are discarded because the file is opened for
writing ("w").
Correction: To add data to the file, either open the file for updating ("r+")
or open the file for appending ("a" or "a+").

e) Error: File "courses.dat" is opened for updating in "w+" mode, which dis-
cards the current contents of the file.
Correction: Open the file in "a" or "a+" mode.

Exercises
11.5 Fill-In the blanks in each of the following:

a) Large amounts of data are stored on secondary storage devices as .
b) A(n) is composed of several fields.

572 Chapter 11 File Processing

c) To facilitate the retrieval of specific records from a file, one field in each re-
cord is chosen as a(n) .

d) A group of related characters that conveys meaning is called a(n) .
e) The file pointers for the three streams that are opened automatically when

program execution begins are named , and .
f) Function writes a character to a specified file.
g) Function writes a line to a specified file.
h) Function is generally used to write data to a random-access file.
i) Function repositions the file-position pointer to the beginning of

the file.

11.6 (Creating Data for a File-Matching Program) Write a simple program to cre-
ate some test data for checking out the program of Exercise 11.7. Use the following
sample account data:

11.7 (File Matching) Exercise 11.3 asked you to write a series of single statements.
These statements form the core of an important type of file-processing program,
namely, a file-matching program. In commercial data processing, it’s common to
have several files in each system. In an accounts-receivable system, for example,
there’s generally a master file containing detailed information about each customer
such as the customer’s name, address, telephone number, outstanding balance, credit
limit, discount terms, contract arrangements and possibly a condensed history of re-
cent purchases and cash payments.

As transactions occur, such as sales and payments, they’re entered into a file. At
the end of each business period (i.e., a month for some companies, a week for others
and a day in some cases), the file of transactions (called "trans.dat" in Exercise
11.3) is applied to the master file (called "oldmast.dat" in Exercise 11.3), to update
each account’s purchase and payment record. During an update, the master file is
rewritten as a new file ("newmast.dat"), which is then used at the end of the next
business period to begin the updating process again.

File-matching programs must deal with certain problems that do not exist in sin-
gle-file programs. For example, a match does not always occur. A customer on the
master file might not have made any purchases or cash payments in the current busi-
ness period, and therefore no record for this customer will appear on the transaction
file. Similarly, a customer who did make some purchases or cash payments might

Master File:
Account number Name Balance

Transaction File:
Account number Dollar amount

100 Alan Jones 348.17 100 27.14

300 Mary Smith 27.19 300 62.11

500 Sam Sharp 0.00 400 100.56

700 Suzy Green -14.22 900 82.17

 Exercises 573

have just moved to this community, and the company may not have had a chance to
create a master record for this customer.

Use the statements in Exercise 11.3 as the basis for a complete file-matching
accounts-receivable program. Use the account number on each file as the record key
for matching purposes. Assume that each file is a sequential file with records stored
in increasing account-number order.

When a match occurs (i.e., records with the same account number appear on
both the master file and the transaction file), add the dollar amount on the transac-
tion file to the current balance on the master file and write the "newmast.dat"
record. (Assume that purchases are indicated by positive amounts on the transaction
file and that payments are indicated by negative amounts.) When there’s a master
record for a particular account but no corresponding transaction record, merely
write the master record to "newmast.dat". When there’s a transaction record but no
corresponding master record, print the message "Unmatched transaction record for
account number …" (fill in the account number from the transaction record).

11.8 (Testing the File-Matching Exercises) Run the program of Exercise 11.7 using
the files of test data created in Exercise 11.6. Check the results carefully.

11.9 (File Matching with Multiple Transactions) It’s possible (actually common) to
have several transaction records with the same record key. This occurs because a par-
ticular customer might make several purchases and cash payments during a business
period. Rewrite your accounts-receivable file-matching program of Exercise 11.7 to
provide for the possibility of handling several transaction records with the same re-
cord key. Modify the test data of Exercise 11.6 to include the following additional
transaction records:

11.10(Write Statements to Accomplish a Task) Write statements that accomplish
each of the following. Assume that the structure

struct person {
 char lastName[15];
 char firstName[15];
 char age[4];
};

has been defined and that the file is already open for writing.
a) Initialize the file "nameage.dat" so that there are 100 records with lastName

= "unassigned", firstname = "" and age = "0".
b) Input 10 last names, first names and ages, and write them to the file.
c) Update a record; if there’s no information in the record, tell the user "No info".

Account
number

Dollar
amount

300 83.89

700 80.78

700 1.53

574 Chapter 11 File Processing

d) Delete a record that has information by reinitializing that particular record.

11.11(Hardware Inventory) You’re the owner of a hardware store and need to keep
an inventory that can tell you what tools you have, how many you have and the cost
of each one. Write a program that initializes the file "hardware.dat" to 100 empty
records, lets you input the data concerning each tool, enables you to list all your tools,
lets you delete a record for a tool that you no longer have and lets you update any
information in the file. The tool identification number should be the record number.
Use the following information to start your file:

11.12(Telephone-Number Word Generator) Standard telephone keypads contain
the digits 0–9. The numbers 2–9 each have three letters associated with them, as is
indicated by the following table:

Many people find it difficult to memorize phone numbers, so they use the corre-
spondence between digits and letters to develop seven-letter words that correspond
to their phone numbers. For example, a person whose telephone number is 686-
2377 might use the correspondence indicated in the above table to develop the
seven-letter word "NUMBERS".

Businesses frequently attempt to get telephone numbers that are easy for their
clients to remember. If a business can advertise a simple word for its customers to
dial, then, no doubt, the business will receive a few more calls.

Each seven-letter word corresponds to exactly one seven-digit telephone number.
The restaurant wishing to increase its take-home business could surely do so with
the number 825-3688 (i.e., "TAKEOUT").

Each seven-digit phone number corresponds to many separate seven-letter
words. Unfortunately, most of these represent unrecognizable juxtapositions of let-

Record # Tool name Quantity Cost

3 Electric sander 7 57.98
17 Hammer 76 11.99
24 Jig saw 21 11.00
39 Lawn mower 3 79.50
56 Power saw 18 99.99
68 Screwdriver 106 6.99
77 Sledge hammer 11 21.50
83 Wrench 34 7.50

Digit Letter Digit Letter

2 A B C 6 M N O

3 D E F 7 P R S

4 G H I 8 T U V

5 J K L 9 W X Y

 Exercises 575

ters. It’s possible, however, that the owner of a barbershop would be pleased to know
that the shop’s telephone number, 424-7288, corresponds to "HAIRCUT". The owner
of a liquor store would, no doubt, be delighted to find that the store’s telephone
number, 233-7226, corresponds to "BEERCAN". A veterinarian with the phone num-
ber 738-2273 would be pleased to know that the number corresponds to the letters
"PETCARE".

Write a C program that, given a seven-digit number, writes to a file every possi-
ble seven-letter word corresponding to that number. There are 2187 (3 to the sev-
enth power) such words. Avoid phone numbers with the digits 0 and 1.

11.13(Project: Telephone-Number Word Generator Modification) If you have a
computerized dictionary available, modify the program you wrote in Exercise 11.12
to look up the words in the dictionary. Some seven-letter combinations created by
this program consist of two or more words (e.g., the phone number 843-2677 pro-
duces "THEBOSS").

11.14(Using File-Processing Functions with Standard Input/Output Streams) Mod-
ify the example of Fig. 8.8 to use functions fgetc and fputs rather than getchar and
puts. The program should give the user the option to read from the standard input
and write to the standard output or to read from a specified file and write to a speci-
fied file. If the user chooses the second option, have the user enter the filenames for
the input and output files.

11.15(Outputting Type Sizes to a File) Write a program that uses the sizeof opera-
tor to determine the sizes in bytes of the various data types on your computer system.
Write the results to the file "datasize.dat" so you may print the results later. The
format for the results in the file should be as follows (the type sizes on your computer
might be different from those shown in the sample output):

11.16(Simpletron with File Processing) In Exercise 7.29, you wrote a software simu-
lation of a computer that used a special machine language called Simpletron Machine
Language (SML). In the simulation, each time you wanted to run an SML program,
you entered the program into the simulator from the keyboard. If you made a mistake
while typing the SML program, the simulator was restarted, and the SML code was
reentered. It would be nice to be able to read the SML program from a file rather than

Data type Size
char 1
unsigned char 1
short int 2
unsigned short int 2
int 4
unsigned int 4
long int 4
unsigned long int 4
float 4
double 8
long double 16

576 Chapter 11 File Processing

type it each time. This would reduce time and mistakes in preparing to run SML pro-
grams.

a) Modify the simulator you wrote in Exercise 7.29 to read SML programs
from a file specified by the user at the keyboard.

b) After the Simpletron executes, it outputs the contents of its registers and
memory on the screen. It would be nice to capture the output in a file, so
modify the simulator to write its output to a file in addition to displaying it
on the screen.

11.17(Modified Transaction-Processing System) Modify the program of Section 11.9
to include an option that displays the list of accounts on the screen. Consider modifying
function textFile to use either the standard output or a text file based on an additional
function parameter that specifies where the output should be written.

11.18(Project: Phishing Scanner) Phishing is a form of identity theft in which, in an
e-mail, a sender posing as a trustworthy source attempts to acquire private informa-
tion, such as your user names, passwords, credit-card numbers and Social Security
number. Phishing e-mails claiming to be from popular banks, credit-card companies,
auction sites, social networks and online payment services may look quite legitimate.
These fraudulent messages often provide links to spoofed (fake) websites where you’re
asked to enter sensitive information.

Visit https://snopes.com and other websites to find lists of the top phishing
scams. Also, check out the Anti-Phishing Working Group (https://apwg.org/), and
the FBI’s Cyber Investigations website (https://www.fbi.gov/investigate/cyber),
where you’ll find information about the latest scams and how to protect yourself.

Create a list of 30 words, phrases and company names commonly found in phish-
ing messages. Assign a point value to each based on your estimate of its likeliness to be
in a phishing message (e.g., one point if it’s somewhat likely, two points if moderately
likely, or three points if highly likely). Write a program that scans a file of text for these
terms and phrases. For each occurrence of a keyword or phrase within the text file, add
the assigned point value to the total points for that word or phrase. For each keyword
or phrase found, output one line with the word or phrase, the number of occurrences
and the point total. Then show the point total for the entire message. Does your pro-
gram assign a high point total to some actual phishing e-mails you’ve received? Does it
assign a high point total to some legitimate e-mails you’ve received?

AI Case Study: Intro to NLP—Who Wrote Shakespeare’s
Works?
11.19 (Intro to Natural Language Processing and Similarity Detection) Every day,
we use natural language in various forms of communication, including:

• You read your text messages and check the latest news clips.

• You speak to family, friends and colleagues and listen to their responses.

https://snopes.com
https://apwg.org/
https://www.fbi.gov/investigate/cyber

 AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works? 577

• You have a hearing-impaired friend with whom you communicate via sign
language and who enjoys close-captioned video programs.

• You have a blind colleague who reads braille, listens to audiobooks and listens
to a screen reader speak about what’s on the computer screen.

• You read e-mails, distinguishing junk from important communications.

• You receive a client e-mail in Spanish and run it through a free translation
program, then respond in English, knowing that your client can easily trans-
late your e-mail back to Spanish.

• You drive, observing road signs like “Stop,” “Speed Limit 35” and “Road
Under Construction.”

• You give your car verbal commands, like “call home” or “play classical music,”
or ask questions like, “Where’s the nearest gas station?”

• You teach a child how to speak and read.

• You learn a foreign language.

Natural Language Processing (NLP) helps computers understand, analyze and
process human text and speech. Natural language processing is performed on text col-
lections composed of Tweets, Facebook posts, conversations, movie reviews, Shake-
speare’s plays, historical documents, news items, meeting logs, and so much more. A
text collection is known as a corpus, the plural of which is corpora.

Some key NLP applications include:

• Natural language understanding—understanding text content or spoken
language.

• Sentiment analysis—determining whether text has positive, neutral or nega-
tive sentiment. For example, companies analyze the sentiment of tweets about
their products.

• Readability assessment—determining how readable text is, based on the
vocabulary used, word lengths, sentence lengths, sentence structure, topics
covered and more. While writing this book, we used the paid NLP tool Gram-
marly2 to help us tune the writing to ensure the text’s readability for a wide
audience.

• Intelligent virtual assistants—software that helps you perform everyday
tasks. Popular intelligent virtual assistants include Amazon Alexa, Apple Siri,
Microsoft Cortana and Google Assistant.

• Text summarization—summarizing the key points of a large text. This can
save valuable time for busy people.

• Speech recognition—converting speech to text.

• Speech synthesis—converting text to speech.

2. Grammarly also has a free version (https://www.grammarly.com).

https://www.grammarly.com

578 Chapter 11 File Processing

• Language identification—receiving a text when you don’t know its language
in advance then automatically determining the language.

• Interlanguage translation—converting text to other spoken languages.

• Named-entity recognition—locating and categorizing items like dates, times,
quantities, places, people, things, organizations and more.

• Chatbots—AI-based software that humans interact with via natural language.
One popular chatbot application is automated customer support.

• Similarity detection—examining documents to determine how alike they are.
Basic similarity metrics include average sentence length, frequency distribu-
tion of sentence lengths, average word length, frequency distribution of word
lengths, frequency distribution of word usage, and more.

Many lower-level NLP tasks support the applications above as they perform their
tasks, including:

• Tokenization—splitting text into tokens, which are meaningful units, such
as words and numbers.

• Parts-of-speech (POS) tagging—identifying each word’s part of speech, such
as noun, verb, adjective, etc.

• Noun phrase extraction—locating groups of words representing nouns, such
as “red brick factory.”3

• Spell checking and spelling correction.

• Stemming—reducing words to their stems by removing prefixes or suffixes.
For example, the stem of “varieties” is “varieti.”

• Lemmatization—like stemming, but produces real words based on the original
words’ context. For example, the lemmatized form of “varieties” is “variety.”

• Word frequency counting—determining how often each word appears in a
corpus.

• Stop-word elimination—removing common words, such as a, an, the, I, we,
you and more to analyze the important words in a corpus.

• n-grams—producing sets of consecutive words in a corpus for use in identi-
fying words that frequently appear adjacent to one another. n-grams are com-
monly used for predictive text input, such as when your smartphone suggests
possible next words as you type a text message.

This case study exercise serves two purposes:

• First, it introduces the crucial AI subtopic of natural language processing, which
will play a key role in the future of anyone learning programming today.

3. The phrase “red brick factory” illustrates why natural language is such a difficult subject. Is a
“red brick factory” a factory that makes red bricks? Is it a red factory that makes bricks of any
color? Is it a factory built of red bricks that makes products of any type? In today’s music world,
it could even be the name of a rock band or the name of a game on your smartphone.

 AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works? 579

• Second, it introduces the NLP subtopic of similarity detection, which you’ll
perform using straightforward array-, string- and file-processing techniques.

Project Gutenberg
A great source of text for analysis is the massive collection of free e-books at Project
Gutenberg:

https://www.gutenberg.org

The site contains over 60,000 e-books in various formats, including plain-text files.
These are out of copyright in the United States. For information about Project
Gutenberg’s Terms of Use and copyright in other countries, see:

https://www.gutenberg.org/policy/terms_of_use.html

For this case-study exercise, you’ll use the plain-text e-book files for William
Shakespeare’s Romeo and Juliet:

https://www.gutenberg.org/ebooks/1513

and Christopher Marlowe’s Edward the Second:
https://www.gutenberg.org/ebooks/20288

Each of these is available free for download at Project Gutenberg.

Downloading E-Books from Project Gutenberg
Project Gutenberg does not allow programmatic access to its e-books. You must
download the books to your own system before analyzing them.4 To download
Romeo and Juliet as a plain-text file, right-click the Plain Text UTF-8 link on the play’s
web page, then select

• Save Link As… (Chrome/Firefox/Microsoft Edge),

• Download Linked File As… (Safari), or

to save the play to the folder in which you’ll place your solution to this exercise. Save
the files with the names RomeoAndJuliet.txt and EdwardTheSecond.txt.

Who Wrote Shakespeare’s Works?
Some people believe that William Shakespeare’s works might have been penned by
Christopher Marlowe, Sir Francis Bacon or others. You can learn more about this
controversy at

https://en.wikipedia.org/wiki/Shakespeare_authorship_question

With some simple similarity-detection techniques, you can begin to compare Shake-
speare’s works with those of other authors. In this case-study exercise, your ultimate
goal is to perform similarity detection between Romeo and Juliet and Christopher
Marlowe’s Edward the Second to determine whether Christopher Marlowe might have

4. “Information About Robot Access to our Pages.” Accessed January 1, 2021. https://
www.gutenberg.org/policy/robot_access.html.

https://www.gutenberg.org
https://www.gutenberg.org/policy/terms_of_use.html
https://www.gutenberg.org/ebooks/1513
https://www.gutenberg.org/ebooks/20288
https://en.wikipedia.org/wiki/Shakespeare_authorship_question
https://www.gutenberg.org/policy/robot_access.html
https://www.gutenberg.org/policy/robot_access.html

580 Chapter 11 File Processing

authored Shakespeare’s works. If you really get into this issue, you can explore more
sophisticated similarity-detection techniques.

Analyzing Romeo and Juliet to Prepare for Simple Similarity Detection
You’ll now perform some simple statistical analysis as a basis for determining docu-
ment similarity. You’ll begin by focusing on Shakespeare’s Romeo and Juliet. Later,
you’ll perform the same tasks on Edward the Second, then compare your analyses’
results. As a control, you also might want to analyze a play from a third author who
is not involved in this controversy. You’ll track the following items as you read and
process Romeo and Juliet, then use them to display various statistics:

• The total number of sentences.

• The total number of words.

• The total number of characters.

• The number of sentences of each length.

• The number of words of each length.

• The unique words’ frequencies.

Cleaning Romeo and Juliet Before Analyzing It
Data does not always come ready for analysis. It could, for example, be in the wrong
format. Data scientists spend a large portion of their time preparing data before per-
forming analyses. Preparing data for analysis is called data munging or data wrangling.

Each e-book you download from Project Gutenberg contains information and
legal paragraphs that you will not want to include in your analyses. You should open
Romeo and Juliet in a text editor and “clean” it by removing the Project Gutenberg
text. In particular, remove everything from the beginning of the document up to and
including the title “THE TRAGEDY OF ROMEO AND JULIET,” then remove
everything from the following text through the end of the file:

End of the Project Gutenberg EBook of Romeo and Juliet,
by William Shakespeare

You should do some additional text cleaning with a text editor before running your
analytics on the play:

• Each character’s name is mentioned each time that character speaks—this is
standard in plays. You don’t need the characters’ names for the particular ana-
lytics you’re going to run in this case study. In fact, they’ll “get in the way.”
For more sophisticated similarity detection, you might want to keep them.

• Plays also include many staging directions indicating when characters
should enter and leave the stage, duel one another, fall down and die when
poisoned, and the like. These directions also should be removed.

You could write a program to handle these cleaning chores. Be careful, though—scru-
tinizing the manuscript may reveal many special cases that your code would need to
handle. Programming for them could be time-consuming and error-prone.

 AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works? 581

Arrays You’ll Need to Perform Your Analysis
You are now ready to analyze Romeo and Juliet to create the statistics you’ll use for
simple similarity detection. Use three arrays to record various counts that characterize
the text of the play.

• The sentenceLengths array will keep counts of how many sentences consist
of one word, two words, three words, etc.

• The wordLengths array will keep counts of how many words consist of one
character, two characters, three characters, etc.

• The wordFrequencies array contains a struct for each distinct word in the
play. The struct’s members are the word and a count of how many times that
word appears in the play. The word should be stored as a string in a fixed-
length char array, which must be large enough to store the longest word in
the play and its terminating null character.

Analyzing a Sentence
Consider the sentence:

“O Romeo, Romeo, wherefore art thou Romeo.”

• The sentence has seven words, so your program would add 1 to sen-
tenceLengths[7].

• The first word (“O”) has one letter, so your program would add 1 to word-
Lengths[1].

• The second word (“Romeo”) has five letters, so your program would add 1 to
wordLengths[5], and so on.

To perform word-frequency counting, convert the words to lowercase letters, so
that all occurrences of the same word will compare as equal. As you process each
word, search the wordFrequencies array to determine whether the word already is in
the array. If so, add one to that word’s count. Otherwise, place the word in the next
empty wordFrequencies array element and set its count to 1.

Implementing Your Analysis Code
Use the array-, string- and file-processing techniques you’ve learned to read the con-
tents of Romeo and Juliet and perform the following tasks:

• Every sentence ends with a sentence terminator—a period (.), a question
mark (?) or an exclamation point (!). Define a processSentence function that
reads words until it encounters a sentence terminator. This function updates
the sentence, word and character counters as you process each word. When
you hit the end of a sentence, increment the appropriate counter in the sen-
tenceLengths array and reset the word counter to zero.

• For every word, processSentence should call the processWord function to
increment the appropriate counter in the wordLengths array, and either incre-

582 Chapter 11 File Processing

ment the word’s counter in the wordFrequencies array or add the word to the
wordFrequencies array with a count of 1.

Remember to keep track of the total number of sentences, words and characters.

Analysis Report
Next, display the following statistics for Romeo and Juliet:

• The total number of sentences.

• The total number of words.

• The total number of characters.

• The mean (average) sentence length.

• The mean word length.

• The median sentence length.

• The median word length.

• A table of sentence lengths and their percentages among all sentence lengths.

• A table of word lengths and their percentages among all word lengths.

• A frequency-distribution table containing the play’s unique words, their fre-
quencies and their percentages among all words in the play—display these in
descending order by frequency.

Your program also should output these statistics to a file to make it easier to study the
results you produce and compare them between plays.

Analyzing Christopher Marlowe’s Play Edward the Second
Now that you’ve analyzed Romeo and Juliet, use a text editor to clean Christopher
Marlowe’s play Edward the Second. As part of any data-science study, it’s important
to get to know your data. The conventions used in Edward the Second for specifying
who’s speaking and the play’s staging directions are different from those you saw in
Romeo and Juliet. So, be careful to observe these differences when cleaning Edward the
Second. After you clean the text, run your analytics program on Edward the Second.
Compare the analytics with those you produced for Romeo and Juliet. Comment on
the similarities you find between these plays.

AI/Data-Science Case Study—Machine Learning with GNU
Scientific Library
11.20 (Machine Learning with Simple Linear Regression) Machine learning is one
of the most exciting and promising subfields of artificial intelligence. Our goal here
is to give you a friendly, hands-on introduction to one of the simpler machine-learn-
ing techniques.

Prediction
Machine learning is typically used to make predictions, based on existing data—and
often lots of it. Wouldn’t it be fantastic if you could improve weather forecasting to

 AI/Data-Science Case Study—Machine Learning with GNU Scientific Library 583

save lives, minimize injuries and property damage? What if we could improve cancer
diagnoses and treatment regimens to save lives, or improve business forecasts to max-
imize profits and secure people’s jobs? What about detecting fraudulent credit-card
purchases and insurance claims? How about predicting customer “churn,” what
prices houses are likely to sell for, ticket sales of new movies, and more generally,
anticipated revenue of new products and services? How about predicting the best
strategies for coaches and players to use to win more games and championships? All
of these kinds of predictions are happening today with machine learning.

GNU Scientific Library and gnuplot
In this case study, you’ll examine a completely coded program that demonstrates the
machine-learning technique called simple linear regression, performed with a func-
tion from the open-source GNU Scientific Library:

https://www.gnu.org/software/gsl/

This library defines many commonly used algorithms from engineering, science and
mathematics. The program you’ll study then passes commands to the 2D and 3D
plotting application gnuplot to create several plot images. As you’ll see, gnuplot uses
its own plotting language different from C, so in our code, we provide extensive com-
ments that explain the gnuplot commands.

Descriptive Statistics
In data science, you’ll often use statistics to describe and summarize your data. Some
basic descriptive statistics are:

• minimum—the smallest value in a collection of values.

• maximum—the largest value in a collection of values.

• range—the difference between the maximum and minimum values.

• count—the number of values in a collection.

• sum—the total of the values in a collection.

Measures of dispersion (also called measures of variability), such as range, determine
how spread out values are. Other measures of dispersion include variance and stan-
dard deviation.5,6,7

Additional descriptive statistics include mean, median and mode, which we dis-
cussed in Section 6.9. These are measures of central tendency—each is a way of pro-
ducing a single value that represents a “central” value in a set of values, i.e., one which
is in some sense typical of the others.

5. “Understanding Descriptive Statistics.” Accessed January 1, 2021. https://towardsdata-
science.com/understanding-descriptive-statistics-c9c2b0641291.

6. “Standard deviation.” Accessed January 1, 2021. https://en.wikipedia.org/wiki/Stan-
dard_deviation.

7. “Variance.” Accessed January 1, 2021. https://en.wikipedia.org/wiki/Variance.

https://www.gnu.org/software/gsl/
https://towardsdatascience.com/understanding-descriptive-statistics-c9c2b0641291
https://en.wikipedia.org/wiki/Standard_deviation
https://en.wikipedia.org/wiki/Variance
https://towardsdatascience.com/understanding-descriptive-statistics-c9c2b0641291
https://en.wikipedia.org/wiki/Standard_deviation

584 Chapter 11 File Processing

Anscombe’s Quartet
An important step in data analytics is “getting to know your data.” The basic descrip-
tive statistics above certainly help you know more about your data. One caution,
though, is that dramatically different datasets actually can have identical or nearly
identical descriptive statistics. For an example of this phenomenon, we’ll consider
Anscombe’s Quartet:

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

Anscombe’s Quartet consists of the following four sets of x-y coordinate pairs with 11
data samples each:

Interestingly, these datasets have nearly identical descriptive statistics. For instance, in
all four datasets, the x- and y-coordinates’ mean values are 9 and 7.5, respectively.

The following diagrams—which our fully coded case study example creates—
plot the x1-y1, x2-y2, x3-y3 and x4-y4 data, respectively:

x1 y1 x2 y2 x3 y3 x4 y4

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

https://en.wikipedia.org/wiki/Anscombe%27s_quartet

 AI/Data-Science Case Study—Machine Learning with GNU Scientific Library 585

We’ll discuss the lines (known as regression lines) shortly. As you can see in the visu-
alizations—but not necessarily by simply looking at the data in the preceding table—
these Anscombe’s Quartet datasets are significantly different. Yet, like their descriptive
statistics, their regression lines appear to be identical. This shows that you cannot just
draw conclusions from descriptive statistics and regressions. You must use additional
tools, like the visualizations above, to get to know your data.

Simple Linear Regression
Given a collection of points (x-y coordinate pairs) representing an independent vari-
able (x) and a dependent variable (y), simple linear regression describes the linear
relationship between the dependent and independent variables with a straight line,
known as the regression line. The lines in the preceding diagrams are the regression
lines for each of the four datasets in Anscombe’s Quartet.

Consider the linear relationship between Celsius and Fahrenheit temperatures.
Given a Celsius temperature, we can calculate the corresponding Fahrenheit tempera-
ture using the following formula:

fahrenheit = 9 / 5 * celsius + 32

In this formula, celsius is the independent variable, and fahrenheit is the dependent
variable. Each fahrenheit temperature depends on the celsius temperature used in
the calculation. If we were to plot the Fahrenheit temperature for each Celsius tem-
perature, all of the points would appear along the same straight line, revealing a linear
relationship between the two temperature scales.

Components of the Simple-Linear-Regression Equation
The points along any straight line (in two dimensions) like the regression lines shown
in the preceding diagrams can be calculated with the equation:

y = mx + b

where

• m is the line’s slope,

• b is the line’s intercept with the y-axis (at x = 0), or simply the y-intercept,

• x is the independent variable, and

• y is the dependent variable.

In the formula for converting Celsius temperatures to Fahrenheit temperatures:

• m is 9 / 5,

• b is 32,

• x is celsius—the independent Celsius temperature, and

• y is fahrenheit—dependent Fahrenheit temperature produced by the calcu-
lation.

In simple linear regression, y is the predicted value for a given x. Of course, a line has
an infinite number of points. If you can determine with simple linear regression the

586 Chapter 11 File Processing

equation for a straight line from a modest finite number of sample points, you then
have the means to make an infinite number of predictions, even for independent vari-
able values you’ve never seen before.

How Simple Linear Regression Works
Simple linear regression is a machine-learning technique that determines the slope
(m) and y intercept (b) of a straight line that “best fits” your data. The simple linear
regression algorithm iteratively adjusts the slope and intercept and, for each adjust-
ment, calculates the square of each point’s distance from the line. The “best fit”
occurs when the slope and intercept values minimize the sum of those squared dis-
tances. This is known as an ordinary least squares calculation.8

Performing Simple Linear Regression with the GNU Scientific Library
The GNU Scientific Library’s gsl_fit_linear function encapsulates simple linear
regression’s calculations, giving you as results the slope and y-intercept for the straight
line that best fits the data. After calling gsl_fit_linear, you can plug into the
y = mx + b equation the slope (m) and intercept (b), then predict dependent y values,
based on independent x values. We also use these values with gnuplot to display the
regression line for the data along with the data points.

Comma-Separated Values (CSV) Files
We provided the Anscombe’s Quartet data for you in the file anscombe.csv. This file
and this case-study exercise’s source code are located in the AnscombesQuartet sub-
folder of this chapter’s examples folder. The .csv filename extension indicates that
the file is in CSV (comma-separated values) format—a particularly popular file for-
mat for distributing datasets. CSV files are simply text files in which each line is one
record of information with its items separated by commas. The following are the first
two rows of anscombe.csv:

x1,y1,x2,y2,x3,y3,x4,y4
10,8.04,10,9.14,10,7.46,8,6.58

A CSV file’s first row typically contains column names for the data in subsequent
rows. In anscombe.csv, the remaining rows are the numeric values for the columns.
In our code, the function readAnscombesQuartetData loads the data into arrays.

Installing the GNU Scientific Library on macOS
On macOS, you can install the GNU Scientific Library using the Homebrew pack-
age manager9 as follows:

brew install gsl

Installing the GNU Scientific Library on Windows
In Visual Studio, you add the GNU Scientific Library to each project in which you
wish to use it. With your project open in Visual Studio, perform the following steps:

8. https://en.wikipedia.org/wiki/Ordinary_least_squares.
9. If the brew command is not found, visit https://brew.sh/ for install instructions.

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://brew.sh/

 AI/Data-Science Case Study—Machine Learning with GNU Scientific Library 587

1. Select Tools > NuGet Package Manager > Manage NuGet Packages for Solution….

2. In the Browse tab, search for "gsl-msvc-", then select gsl-msvc-x64.

3. In the right side of the NuGet package manager, click the checkbox next to
your project’s name, then click Install to add the library to your project.

Installing gnuplot on macOS
Install the gnuplot using the Homebrew package manager as follows:

brew install gnuplot

Installing gnuplot on Windows
Download and run the gnuplot Windows installer (gp541-win64-mingw.exe) from:

https://sourceforge.net/projects/gnuplot/files/gnuplot/5.4.1/

Click Next > until you reach the Select Additional Tasks step, then:

• Under Select gnuplot’s default terminal, select the windows radio button.

• Scroll to the bottom of the settings and check the Add application directory to
your PATH environment variable checkbox.

Click Next >, then Install. Once the installation completes, reboot your computer.

Compiling and Running the Program on macOS
On macOS, compile anscome_macos.c by performing the following steps:

1. Open a Terminal window.

2. Use the cd command to change to AnscombesQuartet subfolder of this chap-
ter’s examples folder.

3. Compile the program with the following command:
 clang -std=c18 anscombe_macos.c -lgsl -o anscombe_macos

4. Run the program:
 ./anscombe_macos

The program will create four PNG image files in the same folder as anscome_macos.c
on macOS. You can open these image files to view the four plots.

Compiling and Running the Program on Windows
In the Visual Studio solution where you added the GNU Scientific library:

• Add to your project the file anscome_windows.c from the AnscombesQuartet
subfolder of this chapter’s examples folder.

• Modify line 72 to specify the location of anscombe.csv on your system

• Build and run your project.

When you run the program it will create four PNG image files in your project’s
folder. Use File Explorer to navigate to that folder, then open the image files to view
the four plots.

https://sourceforge.net/projects/gnuplot/files/gnuplot/5.4.1/

588 Chapter 11 File Processing

Extensively Commented Code
Next, study the code to learn how to use the gsl_fit_linear function of the GNU
Scientific Library to perform simple linear regression, and how to send gnuplot com-
mands from a C program to the gnuplot application. Consider tweaking the gnuplot
commands to see how your changes affect the plots our program produces. For exam-
ple, you can change the plot’s pointtype, linewidth and linecolor values.

AI/Data-Science Case Study: Time Series and Simple Linear Regression
Now that you’ve carefully studied the code for Anscombe’s Quartet, you can adapt
the program to other simple-linear-regression problems. Simple linear regression is
commonly used to analyze time series—sequences of values (called observations)
associated with points in time. Some examples are daily closing stock prices, hourly
temperature readings, the changing positions of a plane in flight, annual crop yields
and quarterly company profits. Perhaps the ultimate time series is the stream of time-
stamped tweets coming from Twitter users worldwide.

Time Series
For this exercise, you’ll use simple linear regression to analyze a time series containing
New York City’s average January temperatures ordered by year for the years 1895–
2020. This is a univariate time series—it contains one observation per time. A mul-
tivariate time series has two or more observations per time, such as hourly tempera-
ture, humidity and barometric-pressure readings in a weather application. Your goal
in this exercise is to determine whether the regression line has:

• a negative slope, indicating a declining average temperature trend over that
time,

• a zero slope, indicating a stable average temperature trend over that time, or

• a positive slope, indicating an increasing average temperature trend over that
time.

Getting Weather Data from NOAA
The National Oceanic and Atmospheric Administration (NOAA)

http://www.noaa.gov

provides extensive public historical weather data, including time series for average
temperatures in specific cities over various time intervals.

We obtained the New York City January average temperatures for 1895–2020
(the maximum date range available at the time of this writing) from NOAA’s “Cli-
mate at a Glance” time series at:

https://www.ncdc.noaa.gov/cag/city/time-series

You can select weather data for the entire U.S., regions within the U.S., states, cities
and more. After selecting the data you need and the time frame to analyze, click Plot
to display a diagram and view a table of the selected data. At the top of that table are
icons you can click to download the data in several formats, including CSV.

http://www.noaa.gov
https://www.ncdc.noaa.gov/cag/city/time-series

 Web Services and the Cloud Case Study—libcurl and OpenWeatherMap 589

For your convenience, we provided the file nyc_ave_january_temps.csv contain-
ing the data you’ll use in this exercise. The file is located in the nycdata subfolder of
this chapter’s examples folder. We also “cleaned” the data, so the file contains the fol-
lowing two columns per observation:

• Date—A value of the form YYYY (such as 2020). The downloaded data is in the
form YYYYMM (such as 202001), where 01 represents January. We removed 01
from each data item in this column, leaving only the year.

• Temperature—A floating-point Fahrenheit temperature. We renamed this
column from Value in the downloaded data.

We deleted a third column called Anomaly that’s not required for this exercise.

Performing the Regression
Modify the Anscombe’s Quartet code to perform simple linear regression using the
New York City average January temperatures data and to plot the data with a regres-
sion line. What trend do you see over the last 126 years?

Web Services and the Cloud Case Study—libcurl and Open-
WeatherMap
11.21 (Getting a City’s Weather Report with OpenWeatherMap) This is another of
our challenge case-study exercises. Section 1.11 introduced the Internet, the web, the
cloud, web services and mashups. In this case-study exercise, you’ll dive into the world
of web services using the open-source libcurl10 and cJSON11 libraries to invoke a web
service and process the results it returns. You’ll study a fully coded, heavily comment-
ed program that interacts with an OpenWeatherMap free web service from

https://openweathermap.org/

to get the current weather report for a city of your choosing.
We’ll then challenge you to create your first mashup using what you’ve learned

from this fully coded example. If you’re entrepreneurial, you can quickly prototype
powerful new applications by weaving existing web services into mashups. Even if
you’re not going to do the related challenge project, just mastering this case study’s
code will open up the vast world of web services to you.

Web Services
The machine on which a web service resides is referred to as a web-service host. A
client application (in our case, a C program) sends a request over a network to the
web-service host, which processes the request and returns a response over the network
to the client. This kind of distributed computing benefits systems in various ways.
For example, an application without direct access to data on another system might be

10. “libcurl — the multiprotocol file transfer library.” Accessed January 4, 2021. https://curl.se/
libcurl/.

11. “cJSON.” Accessed January 4, 2021. https://github.com/DaveGamble/cJSON.

https://openweathermap.org/
https://curl.se/libcurl/
https://curl.se/libcurl/
https://github.com/DaveGamble/cJSON

590 Chapter 11 File Processing

able to retrieve the data via a web service. Similarly, an application lacking the pro-
cessing power to perform specific computations could use a web service to take advan-
tage of another system’s superior resources.

Representational State Transfer (REST)
Most web services today use an architectural style known as Representational State
Transfer (REST) and are often called RESTful web services. In a RESTful web ser-
vice, each function you can call is identified by a unique URL. URLs (Uniform
Resource Locators) identify the locations on the Internet of resources, such as web
sites and web services. When a web server receives a request to a RESTful web service,
it immediately knows what function to call on that server. RESTful web services can
be called from programs, as you’ll do here, or directly from a web browser’s address
bar by entering the appropriate URL.

OpenWeatherMap
OpenWeatherMap provides a free tier to many of its weather web services. Before you
can use them, you must sign up for a free account at https://openweathermap.org/
. They will send you an email to verify your account. Once you do, they’ll reply with
an email that contains your free API key. You also can find this under the API Keys
tab in your account when you log into the site.

You can view the variety of OpenWeatherMap APIs and their documentation at
https://openweathermap.org/api

Some are free and some are available only to subscribers. With a free API key, you can
access:

• the Current Weather Data for a specified location, which we use in this case
study,

• the One Call API, which returns a combination of current and future weather
data for a specified location, and

• the 5 Day / 3 Hour Forecast for a specified location.

JavaScript Object Notation (JSON)
Many cloud-based services like OpenWeatherMap communicate with your applica-
tions via JSON objects. JSON (JavaScript Object Notation) is a text-based, human-
and-computer-readable, data-interchange format used to represent data as collections
of name/value pairs. JSON has become the preferred data format for transmitting
data over the Internet between applications. This is especially true for invoking cloud-
based web services.

Each JSON object contains a comma-separated list of property names and values
in curly braces. For example, the following key–value pairs might represent a client
record:

{"account": 100, "name": "Jones", "balance": 24.98}

https://openweathermap.org/
https://openweathermap.org/api

 Web Services and the Cloud Case Study—libcurl and OpenWeatherMap 591

JSON also supports arrays, which are comma-separated values in square brackets. For
example, the following is an acceptable JSON array of numbers:

[100, 200, 300]

Values in JSON objects and arrays can be:

• strings in double quotes (like "Jones"),

• numbers (like 100 or 24.98),

• JSON Boolean values (represented as true or false),

• null (to represent no value, like NULL in C),

• arrays (like [100, 200, 300]), and

• other JSON objects.

Figure 11.8 contains a sample JSON response from OpenWeatherMap’s Current
Weather Data web service, which we formatted for readability. Even though you may
never have seen JSON-encoded data, you should find this to be well organized, read-
able and pretty understandable.

1 {
2 "coord": {
3 "lon": -71.06,
4 "lat": 42.36
5 },
6 "weather": [
7 {
8 "id": 803,
9 "main": "Clouds",

10 "description": "broken clouds",
11 "icon": "04n"
12 }
13],
14 "base": "stations",
15 "main": {
16 "temp": 0.03,
17 "feels_like": -4.96,
18 "temp_min": -1.11,
19 "temp_max": 1.11,
20 "pressure": 1014,
21 "humidity": 93
22 },
23 "visibility": 10000,
24 "wind": {
25 "speed": 4.1,
26 "deg": 360
27 },
28 "clouds": {
29 "all": 75
30 },
31 "dt": 1609815037,

Fig. 11.8 | Sample OpenWeatherMap response for Boston, MA, USA. (Part 1 of 2.)

592 Chapter 11 File Processing

Open-Source libcurl Library
To obtain the JSON response in Fig. 11.8, our application uses functions from the
open-source libcurl library:

https://curl.se/libcurl/

The library supports many Internet and web protocols for transmitting data between
applications and can be used to invoke web services and receive their responses. You
can find the documentation for libcurl’s C functions at:

https://curl.se/libcurl/c/

In our fully coded example, weather.c, located in the weather folder of this chapter’s
examples folder, we extensively comment the libcurl functions you need to invoke a
web service and save its response to a file.

To install libcurl on macOS or Linux:

• For macOS, you can install the libcurl library using the Homebrew package
manager12 as follows:
 brew install libcurl4

• For Ubuntu Linux, execute the command
 sudo apt install libcurl4-openssl-dev

In Visual Studio, you add libcurl to each project in which you wish to use it. With
your project open in Visual Studio, perform the following steps:

1. Select Tools > NuGet Package Manager > Manage NuGet Packages for Solution….

2. In the Browse tab, search for "curl", then select “curl by curl contributors.”

3. In the right side of the NuGet Package Manager, click the checkbox next to
your project’s name, then click Install to add the library to your project.

Open Source cJSON Library
The libcurl part of our application writes the OpenWeatherMap JSON response to
a file. To display the weather report, our app reads the file’s contents into a string,

32 "sys": {
33 "type": 1,
34 "id": 3486,
35 "country": "US",
36 "sunrise": 1609762409,
37 "sunset": 1609795488
38 },
39 "timezone": -18000,
40 "id": 4930956,
41 "name": "Boston",
42 "cod": 200
43 }

Fig. 11.8 | Sample OpenWeatherMap response for Boston, MA, USA. (Part 2 of 2.)

12. If the brew command is not found, visit https://brew.sh/ for install instructions.

https://curl.se/libcurl/
https://curl.se/libcurl/c/
https://brew.sh/

 Web Services and the Cloud Case Study—libcurl and OpenWeatherMap 593

then uses the open-source cJSON library to extract items from the JSON. You can
download cJSON from:

https://github.com/DaveGamble/cJSON

There is no installation procedure for this library. You simply include the library’s
cJSON.h and cJSON.c files in your project.

cJSON’s functions enable you to access items in the JSON response so we can dis-
play a weather report like the following:

Boston Weather
Temperature: 0.0 C
 Feels like: -5.0 C
 Pressure: 1014 hPa
 Humidity: 93%
 Conditions: broken clouds

In weather.c, we extensively commented the cJSON functions you need to extract
the data above for the city you specify when you run the application (discussed
below).

Compiling and Running the Program on macOS and Linux
On macOS and Linux, compile the weather app by performing the following steps:

1. Open a Terminal window.

2. Use the cd command to change to weather subfolder of this chapter’s exam-
ples folder.

3. Compile the program with one of the following commands—clang on
macOS or gcc on Linux:
 clang -std=c18 -Wall weather.c cJSON.c -lcurl -o weather
 gcc -std=c18 -Wall weather.c cJSON.c -lcurl -o weather

This application receives two command-line arguments. Though we do not discuss
the details of command-line arguments until Section 15.3, this completely coded
simulation provides the statements you need to receive the command-line arguments.
The first is the city for which you’d like to get the current weather, such as

Boston,MA,USA

If the city’s name contains a space, enclose the location in quotes:
"Los Angeles,CA,USA"

The second command-line argument is your OpenWeatherMap API key. The fol-
lowing command would get the current weather data for Boston, MA, USA:

./weather Boston,MA,USA API_KEY

Be sure to replace API_KEY with the OpenWeatherMap API key you received when
you signed up for your free account.

Compile the program and run it several times. Next, study this application’s code
(including the extensive comments).

https://github.com/DaveGamble/cJSON

594 Chapter 11 File Processing

Compiling and Running the Weather App in Visual Studio
In the Visual Studio solution where you added the libcurl library, add to your project
the files weather.c and cJSON.c from the weather subfolder of this chapter’s examples
folder. Specify the command-line arguments as follows:

• Right-click the project name in the Solution Explorer and select Properties.

• Expand Configuration Properties and select Debugging.

• Enter the arguments in the textbox to the right of Command Arguments.

• Build and run your project.

Challenge: Create Your Own Mashup
We introduced mashups in Section 1.11.3. After studying our libcurl-and-web-
services-based weather application’s code, including the extensive comments, as a
challenge exercise attempt your first mashup. Web mashups typically combine capa-
bilities from two or more complementary web services. For many popular mashups
one of those is a mapping service, such as Google Maps or Microsoft’s Bing Maps,
but there are many mashup possibilities that do not use mapping.

To build a web-services mashup, you typically need:

• two or more complementary web services, which when you mash them up will
help you produce a valuable new application.

• to be able to send a request from your C program to a web service, as you
learned how to do with libcurl in this case study.

• to be able to receive results back from that web service in a form (typically
JSON) that your C program can understand.

The web-services directory ProgrammableWeb
https://programmableweb.com/

lists nearly 24,000 web services and 8,000 mashups. They also provide “how-to”
guides and sample code for working with web services and creating your own mashups.
According to their website, some of the most widely used web services are Google Maps
and others from Facebook, Twitter and YouTube.

Familiarize yourself with ProgrammableWeb. Look at lots of the web services
they describe, focusing on free ones—it’s common for web-service providers to offer
some free services and some paid. Read the ProgrammableWeb “how-to” guides on
creating your own mashups. For inspiration, glance through some of the 8,000 mash-
ups they list on their site. Try to find two complementary free web services from which
you can create a valuable mashup, then build that mashup.

https://programmableweb.com/

12Data Structures

O b j e c t i v e s
In this chapter, you’ll:
■ Allocate and free memory

dynamically for data objects.
■ Form linked data structures

using pointers, self-referential
structures and recursion.

■ Create and manipulate linked
lists, queues, stacks and binary
trees.

■ Learn important applications
of linked data structures.

■ Study Secure C programming
recommendations for pointers
and dynamic memory
allocation.

■ Optionally build your own
compiler in the exercises.

596 Chapter 12 Data Structures

12.1 Introduction
We’ve studied fixed-size data structures, including one-dimensional arrays, two-
dimensional arrays and structs. This chapter introduces dynamic data structures
that can grow and shrink at execution time:

• Linked lists are collections of data items “lined up in a row.” You can insert
and delete items anywhere in a linked list.

• Stacks are important in compilers and operating systems. You can insert and
delete items only at one end of a stack, known as its top.

• Queues represent waiting lines. You can insert only at the queue’s back and
delete only from its front. The back and front are known as the queue’s tail
and head.

• Binary trees facilitate high-speed searching and sorting of data, efficiently
eliminating duplicate data items and compiling expressions into machine lan-
guage.

Each of these data structures has many other interesting applications.

Optional Project: Building Your Own Compiler
We hope you’ll attempt the optional major project described in the special section
entitled Building Your Own Compiler at the end of the exercises. You’ve been using
a compiler to translate your C programs to machine language so that you could exe-
cute them. In this project, you’ll build your own compiler. It will read a file of state-
ments written in a simple yet powerful, high-level language. Your compiler will
translate these statements into a file of Simpletron Machine Language (SML) instruc-
tions. SML is the (Deitel-created) language you learned in Chapter 7’s special section,
Building Your Own Computer. Your Simpletron Simulator program will then exe-
cute the SML program produced by your compiler! This project enables you to exer-
cise most of what you’ve learned in this book. The special section carefully walks you

12.1 Introduction
12.2 Self-Referential Structures
12.3 Dynamic Memory Management
12.4 Linked Lists

12.4.1 Function insert
12.4.2 Function delete
12.4.3 Functions isEmpty and printList

12.5 Stacks
12.5.1 Function push
12.5.2 Function pop
12.5.3 Applications of Stacks

12.6 Queues
12.6.1 Function enqueue
12.6.2 Function dequeue

12.7 Trees
12.7.1 Function insertNode
12.7.2 Traversals: Functions inOrder,

preOrder and postOrder
12.7.3 Duplicate Elimination
12.7.4 Binary Tree Search
12.7.5 Other Binary Tree Operations

12.8 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Special Section: Building Your Own Compiler

12.2 Self-Referential Structures 597

through the high-level language’s specifications and describes the algorithms for con-
verting each high-level language statement into machine-language instructions. If
you enjoy challenges, you might attempt the many enhancements to both the com-
piler and the Simpletron Simulator we suggest in the exercises.

Self Check
1 (Fill-In) Which data structure is described by “facilitates high-speed searching
and sorting of data, efficiently eliminating duplicate data items and compiling expres-
sions into machine language”? .
Answer: Binary tree.

2 (Fill-In) Which data structure is described by “a collection of data items lined up
in a row—insertions and deletions are made anywhere in the data structure”?

.
Answer: Linked list.

3 (Fill-In) Which dynamic data structure is described by “You can insert and delete
items only at one end, the top”? .
Answer: Stack.

12.2 Self-Referential Structures
A self-referential structure contains a pointer member that points to a structure of
the same structure type. For example, the following definition creates the type, struct
node:

struct node {
 int data;
 struct node *nextPtr;
};

Our struct node has two members—integer member data and pointer member
nextPtr. The nextPtr points to another struct node. This structure has the same
type as the one we’re defining, hence the term self-referential structure. Member
nextPtr is a link—it can be used to link a struct node to another struct node. We
link self-referential structure objects to form lists, queues, stacks and trees.

The following diagram illustrates two self-referential structure objects linked
together to form a list:

The slash1 in the last node represents a NULL pointer, which indicates that the node
does not point to another node. A NULL pointer indicates the end of a data structure.
Not setting the last node’s link to NULL can lead to runtime errors.

1. The slash is only for illustration purposes. It does not correspond to the C’s backslash character.

1015

ERR

598 Chapter 12 Data Structures

Self Check
1 (Fill-In) What should replace ??? in the following code to make this a self-refer-
ential struct? .

struct node {
 int data;
 ??? *nextPtr;
};

Answer: struct node.

2 (Fill-In) A pointer indicates the end of a data structure.
Answer: NULL.

3 (Fill-In) Self-referential structures can be together to form data struc-
tures such as lists, queues, stacks and trees.
Answer: linked.

12.3 Dynamic Memory Management
Creating and maintaining dynamic data structures that grow and shrink at execution
time requires dynamic memory management, which has two components:

• obtaining more memory at execution time to hold new nodes, and

• releasing memory no longer needed.

The function malloc, the function free and the operator sizeof are essential to
dynamic memory management.

The malloc Function
To request memory at execution time, pass to the function malloc the number of
bytes to allocate. If successful, malloc returns a void * pointer to the allocated mem-
ory. Recall that a void * pointer may be assigned to a variable of any pointer type.

Function malloc most commonly is used with sizeof. For example, the following
statement determines a struct node object’s size in bytes with sizeof(struct node),
allocates a new area in memory of that number of bytes and stores a pointer to the
allocated memory in newPtr:

newPtr = malloc(sizeof(struct node));

The memory is not guaranteed to be initialized, though many implementations ini-
tialize it for security. If no memory is available, malloc returns NULL. Always test for
a NULL pointer before accessing the dynamically allocated memory to avoid runtime
errors that might crash your program.

The free Function
When you no longer need a block of dynamically allocated memory, return it to the
system immediately by calling the free function to deallocate the memory. This

SE

12.4 Linked Lists 599

returns it to the system for potential reallocation in the future. To free the memory
from the preceding malloc call, use the statement

free(newPtr);

After deallocating memory, set the pointer to NULL. This prevents accidentally refer-
ring to that memory, which may have already been allocated for another purpose.

Not freeing dynamically allocated memory when it’s no longer needed can cause
the system to run out of memory prematurely. This is sometimes called a “memory
leak.” Referring to memory that has been freed is an error that typically causes a pro-
gram to crash. Freeing memory that you did not allocate dynamically with malloc is
an error.

Functions calloc and realloc
C also provides the functions calloc and realloc for creating and modifying the size
of dynamic arrays. Section 15.8 discusses these functions.

Self Check
1 (True/False) Function malloc takes as an argument the number of bytes to be
allocated and returns a NULL pointer.
Answer: False. Actually, malloc returns a void * pointer with the allocated memory’s
address or returns a NULL pointer if the memory could not be allocated.

2 (Discussion) Describe precisely what the following statement does:

 newPtr = malloc(sizeof(struct node));

Answer: The statement evaluates sizeof(struct node) to determine the object’s size
in bytes, allocates a new area in memory of that number of bytes and stores a pointer
to the allocated memory in newPtr.

3 (Discussion) Write a statement that frees the memory that was dynamically allo-
cated to newPtr by malloc.
Answer: free(newPtr);

4 (Fill-In) Not freeing dynamically allocated memory when it’s no longer needed
can cause the system to run out of memory. This is sometimes called a(n) .
Answer: memory leak.

12.4 Linked Lists
A linked list is a linear collection of self-referential struct objects, called nodes, con-
nected by pointer links—hence the term “linked” list. You access a linked list via a
pointer to its first node and access subsequent nodes via the nodes’ pointer link mem-
bers. You dynamically store data in a linked list by creating each node as necessary. A
node may contain any type of data, including other struct objects. Stacks and queues
are also linear data structures. You’ll soon see that these are constrained versions of
linked lists.

ERR

ERR

600 Chapter 12 Data Structures

Arrays vs. Linked Lists
You can store lists of data in arrays, but linked lists provide several advantages:

• A linked list is appropriate when the number of data items is unpredictable.
A linked list is dynamic, so its length can increase or decrease as necessary.
Arrays are fixed-size data structures (though Section 15.8 shows how to
dynamically allocate and reallocate arrays).

• An array can be declared to contain more elements than the number of data
items expected, but this can waste memory. Using linked lists and dynamic
memory allocation for data structures that grow and shrink at execution time
can save memory. Keep in mind, however, that the pointers in a list’s nodes
require additional memory. Also, dynamic memory allocation incurs the
overhead of function calls.

• Fixed-size arrays can become full. Linked lists become full only when the sys-
tem has insufficient memory to satisfy dynamic storage-allocation requests.

• Linked lists can be maintained in sorted order by inserting each new element
at the appropriate point in the list. Inserting into and deleting from a sorted
array can be time-consuming. All elements following the inserted or deleted
element must be shifted appropriately.

Arrays Are Faster for Direct Element Access
On the other hand, array elements are stored contiguously in memory. This allows
immediate access to any array element—any element’s address can be calculated
directly based on its position relative to the beginning of the array. Linked lists do not
afford such immediate access to their elements.

Illustrating a Linked List
Linked-list nodes are not guaranteed to be stored contiguously in memory. Logically,
however, the nodes appear to be contiguous. The following diagram illustrates a
linked list with several nodes.

Implementing a Linked List
Figure 12.1 manipulates a list of characters. You can insert a character in the list in
alphabetical order (function insert) or delete a character from the list (function
delete). A detailed discussion of the program follows. We’ve split this program’s
code for discussion purposes—the output is shown at the end of the first code table
below.

PERF

PERF

PERF

2917 ... 93

startPtr

12.4 Linked Lists 601

1 // fig12_01.c
2 // Inserting and deleting nodes in a list
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 // self-referential structure
7 struct listNode {
8 char data; // each listNode contains a character
9 struct listNode *nextPtr; // pointer to next node

10 };
11
12 typedef struct listNode ListNode; // synonym for struct listNode
13 typedef ListNode *ListNodePtr; // synonym for ListNode*
14
15 // prototypes
16 void insert(ListNodePtr *sPtr, char value);
17 char delete(ListNodePtr *sPtr, char value);
18 int isEmpty(ListNodePtr sPtr);
19 void printList(ListNodePtr currentPtr);
20 void instructions(void);
21
22 int main(void) {
23 ListNodePtr startPtr = NULL; // initially there are no nodes
24 char item = '\0'; // char entered by user
25
26 instructions(); // display the menu
27 printf("%s", "? ");
28 int choice = 0; // user's choice
29 scanf("%d", &choice);
30
31 // loop while user does not choose 3
32 while (choice != 3) {
33 switch (choice) {
34 case 1: // insert an element
35 printf("%s", "Enter a character: ");
36 scanf("\n%c", &item);
37 insert(&startPtr, item); // insert item in list
38 printList(startPtr);
39 break;
40 case 2: // delete an element
41 if (!isEmpty(startPtr)) { // if list is not empty
42 printf("%s", "Enter character to be deleted: ");
43 scanf("\n%c", &item);
44
45 // if character is found, remove it
46 if (delete(&startPtr, item)) { // remove item
47 printf("%c deleted.\n", item);
48 printList(startPtr);
49 }
50 else {
51 printf("%c not found.\n\n", item);
52 }
53 }

Fig. 12.1 | Inserting and deleting nodes in a list. (Part 1 of 3.)

602 Chapter 12 Data Structures

54 else {
55 puts("List is empty.\n");
56 }
57
58 break;
59 default:
60 puts("Invalid choice.\n");
61 instructions();
62 break;
63 }
64
65 printf("%s", "? ");
66 scanf("%d", &choice);
67 } // end while
68
69 puts("End of run.");
70 }
71
72 // display program instructions to user
73 void instructions(void) {
74 puts("Enter your choice:\n"
75 " 1 to insert an element into the list.\n"
76 " 2 to delete an element from the list.\n"
77 " 3 to end.");
78 }
79

Enter your choice:
 1 to insert an element into the list.
 2 to delete an element from the list.
 3 to end.
? 1
Enter a character: B
The list is:
B --> NULL

? 1
Enter a character: A

The list is:
A --> B --> NULL

? 1
Enter a character: C
The list is:
A --> B --> C --> NULL

? 2
Enter character to be deleted: D
D not found.

Fig. 12.1 | Inserting and deleting nodes in a list. (Part 2 of 3.)

12.4 Linked Lists 603

Lines 7–10 define the self-referential structure struct listNode, which we use to
build this example’s linked list. Lines 12 and 13 define typedefs that we use to make
the code more readable. The name ListNode represents a struct listNode object, and
the name ListNodePtr represents a pointer to a struct listNode object. The main
function enables you to insert characters in the list (lines 34–39), delete items from
the list (lines 40–58) or terminate the program. Initially, startPtr (line 23) is set to
NULL to indicate an empty list. The program’s primary linked-list functions are insert
(Section 12.4.1) and delete (Section 12.4.2).

12.4.1 Function insert
For this example, we insert characters in the list in alphabetical order. Function
insert (lines 81–110) receives as an argument the address of the pointer to the list’s first
node and a character to insert. This enables insert to modify the caller’s pointer to
the list’s first node to point to a new first node when a data item is placed at the front
of the list. So we pass the pointer by reference. Passing a pointer’s address creates a
pointer to a pointer—this is sometimes called double indirection. This is a complex
notion that requires careful programming.

? 2
Enter character to be deleted: B
B deleted.
The list is:
A --> C --> NULL

? 2
Enter character to be deleted: C
C deleted.
The list is:
A --> NULL

? 2
Enter character to be deleted: A
A deleted.
List is empty.

? 4
Invalid choice.

Enter your choice:
 1 to insert an element into the list.
 2 to delete an element from the list.
 3 to end.
? 3
End of run.

Fig. 12.1 | Inserting and deleting nodes in a list. (Part 3 of 3.)

604 Chapter 12 Data Structures

The insert function performs the following steps:

1. Call malloc to create a new node and assign newPtr the allocated memory’s
address (line 82).

2. If the memory was allocated, assign the character to insert to newPtr->data (line
85), and assign NULL to newPtr->nextPtr (line 86). Always assign NULL to a new
node’s link member. Pointers should be initialized before they’re used.

3. We’ll use pointers previousPtr and currentPtr to store the locations of the
node preceding and after the insertion point, respectively. Initialize previousPtr
to NULL (line 88) and currentPtr to *sPtr (line 89)—the first node’s address.

4. Locate the new value’s insertion point. While currentPtr is not NULL and the
value to insert is greater than currentPtr->data (line 92), assign currentPtr to
previousPtr (line 93), then advance currentPtr to the list’s next node (line 94).

5. Insert the new value in the list. If previousPtr is NULL (line 98), insert the new
node as the first in the list (lines 99–100). Assign *sPtr to newPtr->nextPtr (the
new node’s link points to the former first node), and assign newPtr to *sPtr so
startPtr in main points to the new first node. Otherwise, insert the new node

80 // insert a new value into the list in sorted order
81 void insert(ListNodePtr *sPtr, char value) {
82 ListNodePtr newPtr = malloc(sizeof(ListNode)); // create node
83
84 if (newPtr != NULL) { // is space available?
85 newPtr->data = value; // place value in node
86 newPtr->nextPtr = NULL; // node does not link to another node
87
88 ListNodePtr previousPtr = NULL;
89 ListNodePtr currentPtr = *sPtr;
90
91 // loop to find the correct location in the list
92 while (currentPtr != NULL && value > currentPtr->data) {
93 previousPtr = currentPtr; // walk to ...
94 currentPtr = currentPtr->nextPtr; // ... next node
95 }
96
97 // insert new node at beginning of list
98 if (previousPtr == NULL) {
99 newPtr->nextPtr = *sPtr;
100 *sPtr = newPtr;
101 }
102 else { // insert new node between previousPtr and currentPtr
103 previousPtr->nextPtr = newPtr;
104 newPtr->nextPtr = currentPtr;
105 }
106 }
107 else {
108 printf("%c not inserted. No memory available.\n", value);
109 }
110 }
111

12.4 Linked Lists 605

in place (lines 103–104). Assign newPtr to previousPtr->nextPtr (the previous
node points to the new node) and assign currentPtr to newPtr->nextPtr (the
new node link points to the current node).

For simplicity, we implemented function insert (and other similar functions in this
chapter) with a void return type. Function malloc may fail to allocate the requested
memory. In this case, it would be better for our insert function to return a status
that indicates whether the operation was successful.

Illustrating an Insert
The following diagram illustrates inserting a node containing 'C' into an ordered list.
Part (a) shows the list and the new node just before the insertion. Part (b) shows the
result of inserting the new node. Dotted arrows represent the reassigned pointers.

12.4.2 Function delete
Function delete (lines 113–141) receives the address of the pointer to the list’s first
node and a character to delete.

112 // delete a list element
113 char delete(ListNodePtr *sPtr, char value) {
114 // delete first node if a match is found
115 if (value == (*sPtr)->data) {
116 ListNodePtr tempPtr = *sPtr; // hold onto node being removed
117 *sPtr = (*sPtr)->nextPtr; // de-thread the node
118 free(tempPtr); // free the de-threaded node
119 return value;
120 }

BA ED

*sPtr previousPtr currentPtr

C

(b)

newPtr

BA ED

*sPtr previousPtr currentPtr

C

(a)

newPtr

606 Chapter 12 Data Structures

The delete function performs the following steps:

1. If the character to delete matches the first node’s character (line 115), we must
remove the first node. Assign *sPtr to tempPtr, which we’ll use to free the
node’s memory. Assign (*sPtr)->nextPtr to *sPtr, so that startPtr in main
now points to what was previously the list’s second node. Call free to deallocate
the memory pointed to by tempPtr. Return the character that was deleted.

2. Otherwise, initialize previousPtr with *sPtr and initialize currentPtr with
(*sPtr)->nextPtr (lines 122–123) to advance to the second node.

3. Locate the character to delete. While currentPtr is not NULL and the value to
delete is not equal to currentPtr->data (line 126), assign currentPtr to pre-
viousPtr (line 127) and assign currentPtr->nextPtr to currentPtr (line
128) to advance to the list’s next node.

4. If currentPtr is not NULL (line 132), the character is in the list. Assign cur-
rentPtr to tempPtr (line 133), which we’ll use to deallocate the node. Assign
currentPtr->nextPtr to previousPtr->nextPtr (line 134) to connect the
node before and the node after the one being removed. Free the node pointed
to by tempPtr (line 135), then return the deleted character (line 136).

If nothing has been returned yet, line 140 returns the null character ('\0') to signify
that the character was not found in the list.

Illustrating a Delete
The following diagram illustrates deleting the node containing 'C' from a linked list.
Part (a) shows the linked list before the deletion. Part (b) shows the link reassign-
ments. Pointer tempPtr is used to free the memory allocated to the node that stores

121 else {
122 ListNodePtr previousPtr = *sPtr;
123 ListNodePtr currentPtr = (*sPtr)->nextPtr;
124
125 // loop to find the correct location in the list
126 while (currentPtr != NULL && currentPtr->data != value) {
127 previousPtr = currentPtr; // walk to ...
128 currentPtr = currentPtr->nextPtr; // ... next node
129 }
130
131 // delete node at currentPtr
132 if (currentPtr != NULL) {
133 ListNodePtr tempPtr = currentPtr;
134 previousPtr->nextPtr = currentPtr->nextPtr;
135 free(tempPtr);
136 return value;
137 }
138 }
139
140 return '\0';
141 }
142

12.4 Linked Lists 607

'C'. Note that in lines 118 and 135, we free tempPtr. Previously, we recommended
setting a freed pointer to NULL. We do not do that here because tempPtr is a local auto-
matic variable, and the function returns immediately after freeing the memory.

12.4.3 Functions isEmpty and printList
Function isEmpty (lines 144–146) is a predicate function—it does not alter the list
in any way. Rather, isEmpty determines whether the list is empty—that is, the pointer
to the first node is NULL. If the list is empty, isEmpty returns 1; otherwise, it returns 0.

143 // return 1 if the list is empty, 0 otherwise
144 int isEmpty(ListNodePtr sPtr) {
145 return sPtr == NULL;
146 }
147
148 // print the list
149 void printList(ListNodePtr currentPtr) {
150 // if list is empty
151 if (isEmpty(currentPtr)) {
152 puts("List is empty.\n");
153 }
154 else {
155 puts("The list is:");
156
157 // while not the end of the list
158 while (currentPtr != NULL) {
159 printf("%c --> ", currentPtr->data);
160 currentPtr = currentPtr->nextPtr;
161 }
162
163 puts("NULL\n");
164 }
165 }

BA C

*sPtr previousPtr currentPtr

ED

(a)

BA C

*sPtr previousPtr currentPtr

ED

(b)

tempPtr

608 Chapter 12 Data Structures

Function printList (lines 149–165) prints a list. The function’s currentPtr
parameter receives a pointer to the list’s first node. The function first determines
whether the list is empty (lines 151–153) and, if so, prints "List is empty." and ter-
minates. Otherwise, lines 155–163 print the list’s data. While currentPtr is not
NULL, line 159 prints the value in currentPtr->data, and line 160 assigns cur-
rentPtr->nextPtr to currentPtr to advance to the next node. If the link in the last
node of the list is not NULL, the printing algorithm will try to print past the end of the
list, which is a logic error. This printing algorithm is identical for linked lists, stacks
and queues.

List-Based Recursion Exercises
Exercise 12.17 asks you to implement a recursive function that prints a list backward.
Exercise 12.18 asks you to implement a recursive function that searches a linked list
for a particular data item.

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) A linked list is a linear collection of self-referential structures, called nodes,
connected by pointer links—hence, the term “linked” list.

b) A linked list is accessed via a pointer to the first node of the list.
c) Subsequent nodes in a linked list are accessed via the link pointer member

stored in each node.
d) All of the above statements are true.

Answer: d.

2 (True/False) A linked list is appropriate when the number of data items to store
in the data structure is unpredictable.
Answer: True.

3 (True/False) The elements in a linked list are stored contiguously in memory.
This allows immediate access to any elements because its address can be calculated
directly, based on its position relative to the beginning of the linked list. Arrays do
not afford such immediate access to their elements.
Answer: False. Actually, the reverse is true. An array’s elements are stored contiguous-
ly in memory and support immediate access by position. Linked lists do not afford
such immediate access to their elements.

4 (Fill-In) Passing into a function the address of the pointer to a linked list’s first
node creates a pointer to a pointer. This is often called double .
Answer: indirection.

12.5 Stacks
A stack can be implemented as a constrained version of a linked list. You add new
nodes and remove existing ones only at the top. For this reason, a stack is referred to

ERR

12.5 Stacks 609

as a last-in, first-out (LIFO) data structure. You access a stack via a pointer to its top
element. The link member in the stack’s last node is set to NULL to indicate the stack’s
bottom. Not terminating the stack with NULL can lead to runtime errors.

The following diagram illustrates a stack with several nodes—stackPtr points to
the stack’s top element. We represent stacks and linked lists in these figures identi-
cally. The difference between them is that insertions and deletions may occur any-
where in a linked list, but only at the top of a stack.

Primary Stack Operations
A stack’s primary functions are push and pop. Function push creates a new node and
places it on top of the stack. Function pop removes a node from the stack’s top, frees
that node’s memory and returns the popped value.

Implementing a Stack
Figure 12.2 implements a simple stack of integers. The program allows you to push
a value onto the stack (function push), pop a value off the stack (function pop) and
terminate the program. Lines 7–10 define struct stackNode, which we’ll use to rep-
resent the stack’s nodes. As in Fig. 12.1, we use typedefs (lines 12–13) to make the
code more readable. Initially, stackPtr (line 23) is set to NULL to indicate an empty
stack. Much of this application’s logic is similar to Fig. 12.1, so we focus on the dif-
ferences here.

1 // fig12_02.c
2 // A simple stack program
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 // self-referential structure
7 struct stackNode {
8 int data; // define data as an int
9 struct stackNode *nextPtr; // stackNode pointer

10 };
11
12 typedef struct stackNode StackNode; // synonym for struct stackNode
13 typedef StackNode *StackNodePtr; // synonym for StackNode*
14
15 // prototypes
16 void push(StackNodePtr *topPtr, int info);
17 int pop(StackNodePtr *topPtr);
18 int isEmpty(StackNodePtr topPtr);
19 void printStack(StackNodePtr currentPtr);
20 void instructions(void);
21

Fig. 12.2 | A simple stack program. (Part 1 of 4.)

ERR

28 ... 3

stackPtr

610 Chapter 12 Data Structures

22 int main(void) {
23 StackNodePtr stackPtr = NULL; // points to stack top
24 int value = 0; // int input by user
25
26 instructions(); // display the menu
27 printf("%s", "? ");
28 int choice = 0; // user's menu choice
29 scanf("%d", &choice);
30
31 // while user does not enter 3
32 while (choice != 3) {
33 switch (choice) {
34 case 1: // push value onto stack
35 printf("%s", "Enter an integer: ");
36 scanf("%d", &value);
37 push(&stackPtr, value);
38 printStack(stackPtr);
39 break;
40 case 2: // pop value off stack
41 // if stack is not empty
42 if (!isEmpty(stackPtr)) {
43 printf("The popped value is %d.\n", pop(&stackPtr));
44 }
45
46 printStack(stackPtr);
47 break;
48 default:
49 puts("Invalid choice.\n");
50 instructions();
51 break;
52 }
53
54 printf("%s", "? ");
55 scanf("%d", &choice);
56 }
57
58 puts("End of run.");
59 }
60
61 // display program instructions to user
62 void instructions(void) {
63 puts("Enter choice:\n"
64 "1 to push a value on the stack\n"
65 "2 to pop a value off the stack\n"
66 "3 to end program");
67 }
68
69 // insert a node at the stack top
70 void push(StackNodePtr *topPtr, int info) {
71 StackNodePtr newPtr = malloc(sizeof(StackNode));
72

Fig. 12.2 | A simple stack program. (Part 2 of 4.)

12.5 Stacks 611

73 // insert the node at stack top
74 if (newPtr != NULL) {
75 newPtr->data = info;
76 newPtr->nextPtr = *topPtr;
77 *topPtr = newPtr;
78 }
79 else { // no space available
80 printf("%d not inserted. No memory available.\n", info);
81 }
82 }
83
84 // remove a node from the stack top
85 int pop(StackNodePtr *topPtr) {
86 StackNodePtr tempPtr = *topPtr;
87 int popValue = (*topPtr)->data;
88 *topPtr = (*topPtr)->nextPtr;
89 free(tempPtr);
90 return popValue;
91 }
92
93 // print the stack
94 void printStack(StackNodePtr currentPtr) {
95 if (currentPtr == NULL) { // if stack is empty
96 puts("The stack is empty.\n");
97 }
98 else {
99 puts("The stack is:");
100
101 while (currentPtr != NULL) { // while not the end of the stack
102 printf("%d --> ", currentPtr->data);
103 currentPtr = currentPtr->nextPtr;
104 }
105
106 puts("NULL\n");
107 }
108 }
109
110 // return 1 if the stack is empty, 0 otherwise
111 int isEmpty(StackNodePtr topPtr) {
112 return topPtr == NULL;
113 }

Enter choice:
1 to push a value on the stack
2 to pop a value off the stack
3 to end program
? 1

Enter an integer: 5
The stack is:
5 --> NULL

Fig. 12.2 | A simple stack program. (Part 3 of 4.)

612 Chapter 12 Data Structures

12.5.1 Function push
Function push (lines 70–82) places a new node onto the stack using the following steps:

1. Call malloc to create a new node, then assign the allocated memory’s address
to newPtr (line 71).

2. Assign to newPtr->data the value to push onto the stack (line 75) and assign
*topPtr (the pointer to the stack’s top) to newPtr->nextPtr (line 76). The
link member of the new top node now points to the previous top node.

3. Assign newPtr to *topPtr (line 77)—this modifies stackPtr in main to point
to the new stack top.

The following diagram illustrates a push operation. Part (a) shows the stack and the
new node before the push operation inserts the new node at the stack’s top—*topPtr

represents stackPtr in main. The dotted arrows in Part (b) illustrate Steps 2 and 3 of
the preceding discussion, which insert the node containing 12 at the top.

? 1
Enter an integer: 6
The stack is:
6 --> 5 --> NULL

? 1
Enter an integer: 4
The stack is:
4 --> 6 --> 5 --> NULL

? 2
The popped value is 4.
The stack is:
6 --> 5 --> NULL

? 2
The popped value is 6.
The stack is:
5 --> NULL

? 2
The popped value is 5.
The stack is empty.

? 2
The stack is empty.

? 4
Invalid choice.

Enter choice:
1 to push a value on the stack
2 to pop a value off the stack
3 to end program
? 3
End of run.

Fig. 12.2 | A simple stack program. (Part 4 of 4.)

12.5 Stacks 613

12.5.2 Function pop
Function pop (lines 85–91) removes the stack’s top node. Function main determines
whether the stack is empty before calling pop. The pop operation consists of five steps:

1. Assign *topPtr to tempPtr (line 86), which will be used to free the node’s
memory.

2. Assign (*topPtr)->data to popValue (line 87) to save the top node’s value so
we can return it.

3. Assign (*topPtr)->nextPtr to *topPtr (line 88) so that stackPtr in main
now points to what was previously the stack’s second element (or NULL if there
were no other elements).

4. Free the memory pointed to by tempPtr (line 89).

5. Return popValue to the caller (line 90).

The following diagram illustrates a pop operation. Part (a) shows the stack before
removing the node containing 12—*topPtr represents stackPtr in main. Part (b)
shows tempPtr pointing to the node being popped and *topPtr pointing to the new
top node. Then we can free the memory to which tempPtr points.

12.5.3 Applications of Stacks
Stacks have many interesting applications. For example, whenever a function call is
made, the called function must know how to return to its caller, so the return address
is pushed onto a stack (Section 5.7). In a series of function calls, the successive return
addresses are pushed onto the stack in last-in, first-out order so that each function can
return to its caller. Stacks support recursive function calls in the same manner as con-
ventional nonrecursive calls.

*topPtr

117

newPtr

12

(a) *topPtr

117

newPtr

12

(b)

*topPtr

712 11

(a)

*topPtr

712

tempPtr

(b)

11

614 Chapter 12 Data Structures

Stacks contain the space created for automatic local variables on each invocation
of a function. When the function returns to its caller, the space for that function’s
automatic variables is popped off the stack, and these variables are no longer known
to the program. Stacks also are sometimes used by compilers in the process of evalu-
ating expressions and generating machine-language code. The exercises explore sev-
eral stack applications.

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) A stack must be implemented as a constrained version of a linked list.
b) New nodes are added to and removed from a stack only at the top.
c) A stack is a last-in, first-out (LIFO) data structure.
d) A stack is referenced via a pointer to its top element.

Answer: (a) is false. Actually, a stack can be implemented as a constrained version of
a linked list, but it need not be.

2 (Multiple Choice) Which of the following statements a), b) or c) is false?
a) When a function is called, it must know how to return to its caller, so the

called function’s return address is pushed onto the stack.
b) In a series of function calls, the successive return addresses are pushed onto the

stack in last-in, first-out order so that each function can return to its caller.
c) Stacks support recursive function calls in the same manner as conventional

nonrecursive calls.
d) All of the above statements are true.

Answer: (a) is false. Actually, the caller’s return address is pushed onto the stack.

12.6 Queues
A queue is similar to a checkout line in a grocery store:

• The first person in line receives service first.

• Other customers enter the line only at the end and wait for service.

You remove queue nodes only from its head (front) and insert nodes only at its tail
(back). For this reason, a queue is referred to as a first-in, first-out (FIFO) data struc-
ture. The insert and remove operations are known as enqueue (pronounced “en-cue”)
and dequeue (pronounced “dee-cue”), respectively.

Queue Applications
Queues have many applications in computer systems:

• For computers that have only a single processor, only one user at a time may
be serviced. Entries for the other users are placed in a queue. Each entry grad-
ually advances to the front of the queue as users receive service. The entry at
the front of the queue is the next to receive service.

12.6 Queues 615

• Similarly, for today’s multicore systems, there could be more programs run-
ning than there are processors. The programs not currently running are placed
in a queue until a currently busy processor becomes available. In Appendix C,
we discuss multithreading. When a program’s work is divided into multiple
threads capable of executing in parallel, there could be more threads than pro-
cessors. The threads not currently running need to wait in a queue.

• Queues also support print spooling. An office may have only one printer.
Many users can send documents to print at a given time. When the printer is
busy, additional documents are spooled to memory or secondary storage, just
as sewing thread is wrapped around a spool until it’s needed. The documents
wait in a queue until the printer becomes available.

• Information packets traveling over computer networks, like the Internet, also
wait in queues. Each time a packet arrives at a network node, it must be routed
to the next node on the network along the path to its final destination. The
routing node routes one packet at a time, so additional packets are enqueued
until the router can route them.

Illustrating a Queue
The following diagram illustrates a queue with several nodes. Note the separate point-
ers to the queue’s head and tail. As with lists and stacks, not setting the link in the
queue’s last node to NULL can lead to logic errors.

Implementing a Queue
Figure 12.3 performs queue manipulations. The program provides options to insert
a node in the queue (function enqueue), remove a node from the queue (function
dequeue) and terminate the program. Lines 7–10 define struct queueNode, which
we’ll use to represent the queue’s nodes. Again, we use typedefs (lines 12–13) to
make the code more readable. Much of the logic in this application is similar to our
list and stack examples, so we focus on the differences here. Initially, headPtr and
tailPtr (lines 23–24) are both NULL to indicate an empty queue.

1 // fig12_03.c
2 // Operating and maintaining a queue
3 #include <stdio.h>
4 #include <stdlib.h>
5

Fig. 12.3 | Operating and maintaining a queue. (Part 1 of 5.)

ERR

DH ... Q

headPtr tailPtr

616 Chapter 12 Data Structures

6 // self-referential structure
7 struct queueNode {
8 char data; // define data as a char
9 struct queueNode *nextPtr; // queueNode pointer

10 };
11
12 typedef struct queueNode QueueNode;
13 typedef QueueNode *QueueNodePtr;
14
15 // function prototypes
16 void printQueue(QueueNodePtr currentPtr);
17 int isEmpty(QueueNodePtr headPtr);
18 void enqueue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr, char value);
19 char dequeue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr);
20 void instructions(void);
21
22 int main(void) {
23 QueueNodePtr headPtr = NULL; // initialize headPtr
24 QueueNodePtr tailPtr = NULL; // initialize tailPtr
25 char item = '\0'; // char input by user
26
27 instructions(); // display the menu
28 printf("%s", "? ");
29 int choice = 0; // user's menu choice
30 scanf("%d", &choice);
31
32 // while user does not enter 3
33 while (choice != 3) {
34 switch(choice) {
35 case 1: // enqueue value
36 printf("%s", "Enter a character: ");
37 scanf("\n%c", &item);
38 enqueue(&headPtr, &tailPtr, item);
39 printQueue(headPtr);
40 break;
41 case 2: // dequeue value
42 // if queue is not empty
43 if (!isEmpty(headPtr)) {
44 item = dequeue(&headPtr, &tailPtr);
45 printf("%c has been dequeued.\n", item);
46 }
47
48 printQueue(headPtr);
49 break;
50 default:
51 puts("Invalid choice.\n");
52 instructions();
53 break;
54 }
55
56 printf("%s", "? ");
57 scanf("%d", &choice);
58 }

Fig. 12.3 | Operating and maintaining a queue. (Part 2 of 5.)

12.6 Queues 617

59
60 puts("End of run.");
61 }
62
63 // display program instructions to user
64 void instructions(void) {
65 printf ("Enter your choice:\n"
66 " 1 to add an item to the queue\n"
67 " 2 to remove an item from the queue\n"
68 " 3 to end\n");
69 }
70
71 // insert a node at queue tail
72 void enqueue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr, char value) {
73 QueueNodePtr newPtr = malloc(sizeof(QueueNode));
74
75 if (newPtr != NULL) { // is space available?
76 newPtr->data = value;
77 newPtr->nextPtr = NULL;
78
79 // if empty, insert node at head
80 if (isEmpty(*headPtr)) {
81 *headPtr = newPtr;
82 }
83 else {
84 (*tailPtr)->nextPtr = newPtr;
85 }
86
87 *tailPtr = newPtr;
88 }
89 else {
90 printf("%c not inserted. No memory available.\n", value);
91 }
92 }
93
94 // remove node from queue head
95 char dequeue(QueueNodePtr *headPtr, QueueNodePtr *tailPtr) {
96 char value = (*headPtr)->data;
97 QueueNodePtr tempPtr = *headPtr;
98 *headPtr = (*headPtr)->nextPtr;
99
100 // if queue is empty
101 if (*headPtr == NULL) {
102 *tailPtr = NULL;
103 }
104
105 free(tempPtr);
106 return value;
107 }
108

Fig. 12.3 | Operating and maintaining a queue. (Part 3 of 5.)

618 Chapter 12 Data Structures

109 // return 1 if the queue is empty, 0 otherwise
110 int isEmpty(QueueNodePtr headPtr) {
111 return headPtr == NULL;
112 }
113
114 // print the queue
115 void printQueue(QueueNodePtr currentPtr) {
116 if (currentPtr == NULL) { // if queue is empty
117 puts("Queue is empty.\n");
118 }
119 else {
120 puts("The queue is:");
121
122 while (currentPtr != NULL) { // while not end of queue
123 printf("%c --> ", currentPtr->data);
124 currentPtr = currentPtr->nextPtr;
125 }
126
127 puts("NULL\n");
128 }
129 }

Enter your choice:
 1 to add an item to the queue
 2 to remove an item from the queue
 3 to end

? 1
Enter a character: A
The queue is:
A --> NULL

? 1
Enter a character: B
The queue is:
A --> B --> NULL

? 1
Enter a character: C
The queue is:
A --> B --> C --> NULL

? 2
A has been dequeued.
The queue is:
B --> C --> NULL

? 2
B has been dequeued.
The queue is:
C --> NULL

Fig. 12.3 | Operating and maintaining a queue. (Part 4 of 5.)

12.6 Queues 619

12.6.1 Function enqueue
Function enqueue (lines 72–92) receives three arguments:

• the address of headPtr—the pointer to the queue’s head,

• the address of tailPtr—the pointer to the queue’s tail, and

• the value to insert.

The function performs the following steps:

1. Line 73 calls malloc to create a new node and assigns the allocated memory
location to newPtr.

2. If the memory was allocated correctly, lines 76–77 assign the value to insert
to newPtr->data, and assign NULL to newPtr->nextPtr.

3. If the queue is empty (line 80), line 81 assigns newPtr to *headPtr because the
new node is both the queue’s head and tail; otherwise, line 84 assigns newPtr
to (*tailPtr)->nextPtr because the new node is the new tail node.

4. Line 87 assigns newPtr to *tailPtr to update the tail pointer to the new tail
node.

Illustrating an enqueue Operation
The following diagram illustrates an enqueue operation. Part (a) shows main’s
headPtr and tailPtr and enqueue’s new node before the operation. The dotted
arrows in Part (b) illustrate Steps 3 and 4 in the preceding discussion, which add the
new node to the tail of a non-empty queue.

? 2
C has been dequeued.
Queue is empty.

? 2
Queue is empty.

? 4
Invalid choice.

Enter your choice:
 1 to add an item to the queue
 2 to remove an item from the queue
 3 to end
? 3
End of run.

Fig. 12.3 | Operating and maintaining a queue. (Part 5 of 5.)

620 Chapter 12 Data Structures

12.6.2 Function dequeue
Function dequeue (lines 95–107) receives as arguments the addresses of the queue’s
head and tail pointers and removes the queue’s first node. The dequeue operation per-
forms the following steps:

1. Line 96 assigns (*headPtr)->data to value to save the data being dequeued.

2. Line 97 assigns *headPtr to tempPtr, which will be used to free the memory.

3. Line 98 assigns (*headPtr)->nextPtr to *headPtr so that the queue’s head
pointer in main now points to the new head node.

4. Line 101 checks whether *headPtr is NULL. If so, line 102 assigns NULL to
*tailPtr because the queue is now empty.

5. Line 105 frees the memory pointed to by tempPtr.

6. Line 106 return value to the caller.

Illustrating a dequeue Operation
The following diagram illustrates function dequeue. Part (a) shows the queue before
the dequeue operation—*headPtr and *tailPtr in dequeue are used to modify main’s
headPtr and tailPtr. Part (b) shows tempPtr pointing to the dequeued node, and
main’s headPtr updated to point to the queue’s new first node.

AR ND

*headPtr *tailPtr newPtr(a)

AR ND

*headPtr *tailPtr newPtr(b)

AR ND

*headPtr *tailPtr(a)

AR ND

*headPtr

tempPtr

*tailPtr(b)

12.7 Trees 621

Self Check
1 (Multiple Choice) Which of the following statements about queues is false?

a) A queue is similar to a checkout line in a grocery store—the first person in
line receives service first, and other customers enter the line at the end and
wait for service.

b) Queue nodes are removed only from the queue’s head (start) and inserted
only at the queue’s tail (end).

c) A queue is a first-in, last-out (FILO) data structure.
d) The insert and remove operations are known as enqueue (pronounced “en-

cue”) and dequeue (pronounced “dee-cue”), respectively.
Answer: (c) is false. Actually, a queue is a first-in, first-out (FIFO) data structure.

2 (Fill-In) For today’s systems, there could be more programs running
than there are processors, so the programs not currently running are placed in a queue
until a currently busy processor becomes available.
Answer: multicore.

12.7 Trees
So far, we’ve presented linear data structures—linked lists, stacks and queues. A tree
is a nonlinear, two-dimensional data structure with special properties. Tree nodes
contain two or more links. This section discusses binary trees—trees whose nodes
contain two links, as in the following diagram:

None, one, or both of the links in each node may be NULL. The root node is the first
node in a tree. Each link in the root node refers to a child. The left child is the first
node in the left subtree, and the right child is the first in the right subtree. A given
node’s children are called siblings. A node with no children is a leaf node. Not setting
a leaf node’s links to NULL can lead to runtime errors. Computer scientists typically
draw trees with the root node at the top—exactly the opposite of trees in nature.

Binary Search Tree
This section presents a binary search tree containing unique values, which has the
characteristic that the values in any left subtree are less than the value in its parent

root node pointer

left subtree
of node

containing B

right subtree
of node
containing B

B

A D

C

ERR

622 Chapter 12 Data Structures

node, and the values in any right subtree are greater than the value in its parent node.
The figure below illustrates a binary search tree with nine values:

The shape of the binary search tree for a set of data can vary, based on the order in
which you insert its values.

Implementing a Binary Search Tree
Figure 12.4 creates a binary search tree and traverses its nodes—that is, it visits each
node in the tree to do something with the node values, like display them. We’ll tra-
verse the tree three ways—inorder, preorder and postorder. The program generates
10 random numbers and inserts each in the tree, except that we discard duplicate val-
ues. Lines 9–13 define struct treeNode, which we’ll use to represent the tree’s nodes.
Again, we use typedefs (lines 15–16) to make the code more readable.

1 // fig12_04.c
2 // Creating and traversing a binary tree
3 // preorder, inorder, and postorder
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 // self-referential structure
9 struct treeNode {

10 struct treeNode *leftPtr; // pointer to left subtree
11 int data; // node value
12 struct treeNode *rightPtr; // pointer to right subtree
13 };
14
15 typedef struct treeNode TreeNode; // synonym for struct treeNode
16 typedef TreeNode *TreeNodePtr; // synonym for TreeNode *
17
18 // prototypes
19 void insertNode(TreeNodePtr *treePtr, int value);
20 void inOrder(TreeNodePtr treePtr);
21 void preOrder(TreeNodePtr treePtr);
22 void postOrder(TreeNodePtr treePtr);
23
24 int main(void) {
25 TreeNodePtr rootPtr = NULL; // tree initially empty
26

Fig. 12.4 | Creating and traversing a binary tree. (Part 1 of 3.)

47

25

11 43 65

77

31 44 68

12.7 Trees 623

27 srand(time(NULL));
28 puts("The numbers being placed in the tree are:");
29
30 // insert random values between 0 and 14 in the tree
31 for (int i = 1; i <= 10; ++i) {
32 int item = rand() % 15;
33 printf("%3d", item);
34 insertNode(&rootPtr, item);
35 }
36
37 // traverse the tree preOrder
38 puts("\n\nThe preOrder traversal is:");
39 preOrder(rootPtr);
40
41 // traverse the tree inOrder
42 puts("\n\nThe inOrder traversal is:");
43 inOrder(rootPtr);
44
45 // traverse the tree postOrder
46 puts("\n\nThe postOrder traversal is:");
47 postOrder(rootPtr);
48 }
49
50 // insert node into tree
51 void insertNode(TreeNodePtr *treePtr, int value) {
52 if (*treePtr == NULL) { // if tree is empty
53 *treePtr = malloc(sizeof(TreeNode));
54
55 if (*treePtr != NULL) { // if memory was allocated, then assign data
56 (*treePtr)->data = value;
57 (*treePtr)->leftPtr = NULL;
58 (*treePtr)->rightPtr = NULL;
59 }
60 else {
61 printf("%d not inserted. No memory available.\n", value);
62 }
63 }
64 else { // tree is not empty
65 if (value < (*treePtr)->data) { // value goes in left subtree
66 insertNode(&((*treePtr)->leftPtr), value);
67 }
68 else if (value > (*treePtr)->data) { // value goes in right subtree
69 insertNode(&((*treePtr)->rightPtr), value);
70 }
71 else { // duplicate data value ignored
72 printf("%s", "dup");
73 }
74 }
75 }
76

Fig. 12.4 | Creating and traversing a binary tree. (Part 2 of 3.)

624 Chapter 12 Data Structures

12.7.1 Function insertNode
The functions in Fig. 12.4 that create a binary search tree and traverse it are recursive.
Function insertNode (lines 51–75) receives as arguments the address of the pointer
to the tree’s root node and an integer to insert. Each new node in a binary search tree
initially is inserted as a leaf node. The steps for inserting a new node are as follows:

1. If *treePtr is NULL (line 52), line 53 calls malloc to create a new leaf node and
assigns the allocated memory to *treePtr. Lines 56 assigns to (*treePtr)-

77 // begin inorder traversal of tree
78 void inOrder(TreeNodePtr treePtr) {
79 // if tree is not empty, then traverse
80 if (treePtr != NULL) {
81 inOrder(treePtr->leftPtr);
82 printf("%3d", treePtr->data);
83 inOrder(treePtr->rightPtr);
84 }
85 }
86
87 // begin preorder traversal of tree
88 void preOrder(TreeNodePtr treePtr) {
89 // if tree is not empty, then traverse
90 if (treePtr != NULL) {
91 printf("%3d", treePtr->data);
92 preOrder(treePtr->leftPtr);
93 preOrder(treePtr->rightPtr);
94 }
95 }
96
97 // begin postorder traversal of tree
98 void postOrder(TreeNodePtr treePtr) {
99 // if tree is not empty, then traverse
100 if (treePtr != NULL) {
101 postOrder(treePtr->leftPtr);
102 postOrder(treePtr->rightPtr);
103 printf("%3d", treePtr->data);
104 }
105 }

The numbers being placed in the tree are:
 6 7 4 12 7dup 2 2dup 5 7dup 11

The preOrder traversal is:
 6 4 2 5 7 12 11

The inOrder traversal is:
 2 4 5 6 7 11 12

The postOrder traversal is:
 2 5 4 11 12 7 6

Fig. 12.4 | Creating and traversing a binary tree. (Part 3 of 3.)

12.7 Trees 625

>data the integer to store. Lines 57–58 assign NULL to (*treePtr)->leftPtr
and (*treePtr)->rightPtr. Then control returns to the caller—either main
or a previous call to insertNode.

2. If *treePtr is not NULL and the value to insert is less than (*treePtr)->data,
line 66 recursively calls insertNode with the address of (*treePtr)->leftPtr
to insert the new node in the left subtree of the node pointed to by treePtr.

3. If the value to insert is greater than (*treePtr)-> data, line 69 recursively
calls insertNode with the address of (*treePtr)->rightPtr to insert the node
in the right subtree of the node pointed to by treePtr.

The recursive steps continue until insertNode finds a NULL pointer, then Step 1 inserts
the new node as a leaf node.

12.7.2 Traversals: Functions inOrder, preOrder and postOrder
Functions inOrder (lines 78–85), preOrder (lines 88–95) and postOrder (lines 98–
105) each receive a pointer to a tree’s root node and traverse the tree. Below we
describe the traversals and show the result of applying each for the following tree:

inOrder Traversal
The steps for an inOrder traversal are:

1. Traverse the left subtree inOrder (line 81).

2. Process the value in the node (line 82).

3. Traverse the right subtree inOrder (line 83).

This traversal processes each node’s value after processing the values in the left sub-
tree. The inOrder traversal of the preceding tree is:

6 13 17 27 33 42 48

A binary search tree’s inOrder traversal processes the nodes in ascending order. Cre-
ating a binary search tree actually sorts the data. So, this process is called a binary tree
sort.

preOrder Traversal
The steps for a preOrder traversal are:

1. Process the value in the node (line 91).

2. Traverse the left subtree preOrder (line 92).

3. Traverse the right subtree preOrder (line 93).

27

13

6 17 33

42

48

626 Chapter 12 Data Structures

This traversal processes each node’s value as the node is visited. After processing the
value, a preOrder traversal processes the left subtree’s values, then the right subtree’s
values. The preOrder traversal of the preceding tree is:

27 13 6 17 42 33 48

postOrder Traversal
The steps for a postOrder traversal are:

1. Traverse the left subtree postOrder (line 101).

2. Traverse the right subtree postOrder (line 102).

3. Process the value in the node (line 103).

This traversal processes each node’s value after processing the values of the node’s
children in both the left and right subtrees. The postOrder traversal of the preceding
tree is:

6 17 13 33 48 42 27

12.7.3 Duplicate Elimination
Binary search trees facilitate duplicate elimination. As you insert values to create the
tree, a duplicate value will follow the same “go left” or “go right” decisions on each
comparison as the original value did. So, the duplicate eventually will be compared
with a node in the tree containing the same value. At that point, the duplicate value
can be ignored.

12.7.4 Binary Tree Search
Searching for a value that matches a key also is fast. If the tree is tightly packed, each
level contains about twice as many elements as the previous level. So, a binary search
tree with n elements would have a maximum of log2n levels, and thus requires a max-
imum of log2n comparisons to find a match or to determine that no match exists.
When searching a tightly packed 1,000-element binary search tree, no more than 10
comparisons need to be made because 210 > 1,000. When searching a tightly packed
1,000,000-element binary search tree, no more than 20 comparisons need to be made
because 220 > 1,000,000.

12.7.5 Other Binary Tree Operations
In the exercises, we present algorithms for several other binary tree operations, such
as printing a binary tree in a two-dimensional tree format and performing a level
order traversal of a binary tree. The level order traversal visits a tree’s nodes row-by-
row starting at the root node level. The nodes on each level are visited from left to
right. Other binary tree exercises include allowing a binary search tree to contain
duplicate values, creating a tree of strings and determining a binary tree’s number of
levels.

12.8 Secure C Programming 627

Self Check
1 (True/False) Linked lists, stacks, queues and trees are linear data structures.
Answer: False. Actually, trees are nonlinear, two-dimensional data structures.

2 (Fill-In) Three popular ways to traverse a binary search tree are , preor-
der and postorder.
Answer: inorder.

3 (Fill-In) The process of creating a binary search tree actually the data.
Answer: sorts.

4 (True/False) The shape of the binary search tree that corresponds to a set of data
is independent of the order in which the values are inserted into the tree.
Answer: False. Actually, the shape of the binary search tree that corresponds to a set
of data varies, based on the order in which the values are inserted into the tree.

5 (True/False) A node can be inserted only as a root node in a binary search tree.
Answer: False. Actually, a node can be inserted only as a leaf node in a binary search
tree.

6 (Fill-In) A binary search tree facilitates . As you insert values to create
the tree, identical values follow the same “go left” or “go right” decisions on each
comparison as the original value did. An identical value eventually will be compared
with a node in the tree containing the same value.
Answer: duplicate elimination.

7 (True/False) A tightly packed binary tree with n elements would have a maximum
of about log2n levels. Searching such a binary tree requires a maximum of about
log2n comparisons to find a match or to determine that no match exists. So, searching
a (tightly packed) 1,000,000,000-element binary search tree requires no more than
20 comparisons.
Answer: False. Actually, this requires no more than 30 comparisons.

12.8 Secure C Programming
Chapter 8 of the SEI CERT C Coding Standard is dedicated to memory-management
recommendations and rules—many apply this chapter’s uses of pointers and dynamic
memory management. For more information, visit https://wiki.sei.cmu.edu/.

• MEM01-C/MEM30-C: Pointers should always be initialized with NULL or
the address of a valid item in memory. When you use free to deallocate
dynamically allocated memory, the pointer passed to free is not assigned a
new value, so it still points to the memory location where the dynamically
allocated memory used to be. Using such a “dangling” pointer can lead to pro-
gram crashes and security vulnerabilities. When you free dynamically allo-
cated memory, immediately assign the pointer either NULL or a valid address.
We chose not to do this for local pointer variables that immediately go out of
scope after a call to free.

https://wiki.sei.cmu.edu/

628 Chapter 12 Data Structures

• MEM01-C: Undefined behavior occurs when you attempt to use free to
deallocate dynamic memory that was already deallocated—this is known as a
“double free vulnerability.” To ensure that you don’t attempt to deallocate
the same memory more than once, immediately set a pointer to NULL after the
call to free. Freeing a NULL pointer has no effect.

• ERR33-C: Most standard-library functions return values that you can check
to determine whether the functions performed their tasks successfully. Func-
tion malloc, for example, returns NULL if it’s unable to allocate the requested
memory. You should always ensure that malloc did not return NULL before
attempting to use the pointer that stores malloc’s return value.

Self Check
1 (True/False) Pointers should always be initialized to NULL.
Answer: False. Actually, pointers should always be initialized either to NULL or to the
address of a valid item in memory.

2 (True/False) To avoid deallocating the same memory twice and causing unde-
fined behavior, set the freed pointer to NULL.
Answer: True. Freeing a NULL pointer does not cause undefined behavior.

3 (Fill-In) If malloc can’t fulfill a memory-allocation request, it returns .
Always check for this value before using malloc’s pointer return.
Answer: NULL.

Summary
Section 12.1 Introduction
• Dynamic data structures (p. 596) grow and shrink at execution time.
• Linked lists (p. 596) are collections of data items “lined up in a row”—insertions and dele-

tions are made anywhere in a linked list.
• With stacks (p. 596), insertions and deletions are made only at the top (p. 596).
• Queues (p. 596) represent waiting lines. Insertions are made at the back (the tail; p. 596).

Deletions are made from the front (the head; p. 596).
• Binary trees facilitate high-speed searching and sorting of data, efficient duplicate elimina-

tion, representing file-system directories and compiling expressions into machine language.

Section 12.2 Self-Referential Structures
• A self-referential structure (p. 597) contains a pointer member that points to a structure of

the same type.
• Self-referential structures can be linked together to form lists, queues, stacks and trees.
• A NULL pointer indicates the end of a data structure.

Section 12.3 Dynamic Memory Management
• Creating and maintaining dynamic data structures requires dynamic memory management

(p. 598).

 Summary 629

• Functions malloc and free, and operator sizeof, are essential to dynamic memory allocation.
• Function malloc (p. 598) receives the number of bytes to be allocated and returns a void *

pointer to the allocated memory. A void * pointer may be assigned to a variable of any
pointer type.

• If no memory is available, malloc returns NULL.
• Function free (p. 598) deallocates memory so that it can be reallocated in the future.
• C also provides functions calloc and realloc for creating and modifying dynamic arrays.

Section 12.4 Linked Lists
• A linked list is a linear collection of self-referential structures, called nodes (p. 599), con-

nected by pointer links (p. 599).
• A linked list is accessed via a pointer to the first node. Subsequent nodes are accessed via the

link pointer member stored in each node.
• By convention, the link pointer in the last node of a list is set to NULL to mark the end of the

list.
• Data is stored in a linked list dynamically—each node is created as necessary.
• A node can contain data of any type, including other struct objects.
• Linked lists are dynamic, so the length of a list can increase or decrease as necessary.
• Linked-list nodes are not guaranteed to be stored contiguously in memory. Logically, how-

ever, the nodes of a linked list appear to be contiguous.

Section 12.5 Stacks
• A stack (p. 608) can be implemented as a constrained version of a linked list. New nodes

are added to and removed from a stack only at the top.
• A stack is a last-in, first-out (LIFO; p. 609) data structure.
• The primary functions used to manipulate a stack are push and pop. Function push creates a

new node and places it on top of the stack. Function pop removes a node from the top of the
stack, frees the memory that was allocated to the popped node and returns the popped value.

• When you call a function, it must know how to return to its caller, so the caller’s return address
is pushed onto a stack. If a series of function calls occurs, the successive return values are
pushed onto the stack in last-in, first-out order so that each function can return to its caller.
Stacks support recursive function calls in the same manner as conventional nonrecursive calls.

• Stacks are used by compilers in the process of evaluating expressions and generating ma-
chine-language code.

Section 12.6 Queues
• Queue nodes are removed only from the head of the queue and inserted only at the tail of

the queue—referred to as a first-in, first-out (FIFO; p. 614) data structure.
• The insert and remove operations for a queue are known as enqueue and dequeue (p. 615).

Section 12.7 Trees
• A tree (p. 621) is a nonlinear, two-dimensional data structure. Tree nodes contain two or

more links.
• Binary trees (p. 621) are trees whose nodes all contain two links.

630 Chapter 12 Data Structures

• The root node (p. 621) is the first node in a tree. Each link in the root node of a binary tree
refers to a child (p. 621). The left child (p. 621) is the first node in the left subtree (p. 621),
and the right child (p. 621) is the first node in the right subtree (p. 621). A node’s children
are called siblings (p. 621).

• A node with no children is called a leaf node (p. 621).
• A binary search tree (with no duplicate node values; p. 621) has the characteristic that the

values in any left subtree are less than the value in its parent node (p. 622), and the values
in any right subtree are greater than the value in its parent node.

• A node can be inserted only as a leaf node in a binary search tree.
• The steps for an in-order traversal are: Traverse the left subtree in-order, process the value

in the node, then traverse the right subtree in-order. The value in a node is not processed
until the values in its left subtree are processed.

• The in-order traversal (p. 622) of a binary search tree processes the node values in ascending
order. Creating a binary search tree actually sorts the data, so this process is called the binary
tree sort (p. 625).

• The steps for a pre-order traversal (p. 622) are: Process the value in the node, traverse the
left subtree pre-order, then traverse the right subtree pre-order. After this traversal processes
a given node’s value, it processes the node’s left subtree values, then its right subtree values.

• The steps for a post-order traversal (p. 622) are: Traverse the left subtree post-order, traverse
the right subtree post-order, then process the value in the node. The value in each node is
not processed until the values of its children are processed.

• A binary search tree facilitates duplicate elimination (p. 626). As the tree is created, an at-
tempt to insert a duplicate value will be recognized because a duplicate will follow the same
“go left” or “go right” decisions on each comparison as the original value did. Thus, the du-
plicate will eventually be compared with a node in the tree containing the same value. The
duplicate value may simply be discarded at this point.

• Searching a binary tree for a value that matches a key is fast. In a tightly packed tree, each
level contains about twice as many elements as the previous level. A binary search tree with
n elements would have a maximum of log2n levels, and thus it requires a maximum of log2n
comparisons to find a match or to determine that no match exists. Searching a tightly
packed 1,000-element binary search tree requires no more than 10 comparisons because 210

> 1,000. Searching a tightly packed 1,000,000-element binary search tree requires no more
than 20 comparisons because 220 > 1,000,000.

Self-Review Exercises
12.1 Fill-In the blanks in each of the following:

a) A self- structure is used to form dynamic data structures.
b) Function is used to dynamically allocate memory.
c) A(n) is a specialized version of a linked list in which nodes can be

inserted and deleted only from the start of the list.
d) Functions that look at a linked list but do not modify it are referred to as

.
e) A queue is referred to as a(n) data structure.
f) The pointer to the next node in a linked list is referred to as a(n) .
g) Function is used to reclaim dynamically allocated memory.

 Self-Review Exercises 631

h) A(n) is a specialized version of a linked list in which nodes can be
inserted only at the start of the list and deleted only from the end of the list.

i) A(n) is a nonlinear, two-dimensional data structure that contains
nodes with two or more links.

j) A stack is referred to as a(n) data structure because the last node
inserted is the first node removed.

k) The nodes of a(n) tree contain two link members.
l) The first node of a tree is the node.
m)Each link in a tree node points to a(n) or of that node.
n) A tree node that has no children is called a(n) node.
o) The three traversal algorithms (covered in this chapter) for a binary tree are

, and .

12.2 (Discussion) What are the differences between a linked list and a stack?

12.3 (Discussion) What are the differences between a stack and a queue?

12.4 Write a statement or set of statements to accomplish each of the following. As-
sume that all the manipulations occur in main (therefore, no addresses of pointer vari-
ables are needed), and assume the following definitions:

struct gradeNode {
 char lastName[20];
 double grade;
 struct gradeNode *nextPtr;
};

typedef struct gradeNode GradeNode;
typedef GradeNode *GradeNodePtr;

a) Create a pointer to the start of the list called startPtr. The list is empty.
b) Create a new node of type GradeNode that’s pointed to by pointer newPtr of

type GradeNodePtr. Assign the string "Jones" to member lastName and the
value 91.5 to member grade (use strcpy). Provide any necessary declara-
tions and statements.

c) Assume that the list pointed to by startPtr currently consists of two
nodes—one containing "Jones" and one containing "Smith". The nodes are
in alphabetical order. Provide the statements necessary to insert nodes con-
taining the following data for lastName and grade—be sure to insert the
nodes in order:

"Adams" 85.0
"Thompson" 73.5
"Pritchard" 66.5

Use pointers previousPtr, currentPtr and newPtr to perform the inser-
tions. State what previousPtr and currentPtr point to before each inser-
tion. Assume newPtr always points to the new node and the new node has
already been assigned the data.

d) Write a while loop that prints the data in each node of the list. Use pointer
currentPtr to move along the list.

632 Chapter 12 Data Structures

e) Write a while loop that deletes all the nodes in the list and frees the memory
associated with each node. Use pointer currentPtr and pointer tempPtr to
walk along the list and free memory, respectively.

12.5 (Binary Search Tree Traversals) Provide the inorder, preorder and postorder
traversals of the following binary search tree.

Answers to Self-Review Exercises
12.1 a) referential. b) malloc. c) stack. d) predicates. e) FIFO. f) link. g) free. h)
queue. i) tree. j) LIFO. k) binary. l) root. m) child, subtree. n) leaf. o) inorder, preor-
der, postorder.

12.2 It’s possible to insert a node anywhere in a linked list and remove a node from
anywhere in a linked list. However, nodes in a stack may be inserted only at the top
of the stack and removed only from the top of a stack.

12.3 A queue has pointers to both its head and its tail so that nodes may be inserted
at the tail and deleted from the head. A stack has a single pointer to the top of the
stack where both insertion and deletion of nodes is performed.

12.4 See the answers below:
a) GradeNodePtr startPtr = NULL;
b) GradeNodePtr newPtr;

newPtr = malloc(sizeof(GradeNode));

strcpy(newPtr->lastName, "Jones");

newPtr->grade = 91.5;

newPtr->nextPtr = NULL;
c) To insert "Adams":

previousPtr is NULL, currentPtr points to the first element in the list.
newPtr->nextPtr = currentPtr;

startPtr = newPtr;

To insert "Thompson":
previousPtr points to the last element in the list (containing "Smith")
currentPtr is NULL.
newPtr->nextPtr = currentPtr;

previousPtr->nextPtr = newPtr;

To insert "Pritchard":
previousPtr points to the node containing "Jones"
currentPtr points to the node containing "Smith"

49

28 83

97

92 9969 72

7140

32 4411 19

18

 Exercises 633

newPtr->nextPtr = currentPtr;

previousPtr->nextPtr = newPtr;

d) currentPtr = startPtr;
while (currentPtr != NULL) {

 printf("Lastname = %s\nGrade = %6.2f\n",

 currentPtr->lastName, currentPtr->grade);

 currentPtr = currentPtr->nextPtr;

}
e) currentPtr = startPtr;

while (currentPtr != NULL) {

 tempPtr = currentPtr;

 currentPtr = currentPtr->nextPtr;

 free(tempPtr);

}

startPtr = NULL;

12.5 The inorder traversal is: 11 18 19 28 32 40 44 49 69 71 72 83 92 97 99
The preorder traversal is: 49 28 18 11 19 40 32 44 83 71 69 72 97 92 99
The postorder traversal is: 11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

Exercises
12.6 (Concatenating Lists) Write a program that concatenates two linked lists of
characters. The program should include function concatenate that takes pointers to
both lists as arguments and concatenates the second list to the first list.

12.7 (Merging Ordered Lists) Write a program that merges two ordered lists of in-
tegers into a single ordered list. Function merge should receive pointers to the first
node of each of the lists to be merged and return a pointer to the first node of the
merged list.

12.8 (Inserting into an Ordered List) Write a program that inserts 25 random inte-
gers from 0 to 100 in order in a linked list. The program should calculate the ele-
ments’ sum and floating-point average.

12.9 (Creating a Linked List, Then Reversing Its Elements) Write a program that
creates a linked list of 10 characters, then creates a copy of the list in reverse order.

12.10 (Reversing the Words of a Sentence) Write a program that inputs a line of text
and uses a stack to print the line reversed.

12.11 (Palindrome Tester) Write a program that uses a stack to determine whether
a string is a palindrome (i.e., the string is spelled identically backward and forward).
The program should ignore spaces and punctuation.

12.12 (Supermarket Simulation) Write a program that simulates a check-out line at
a supermarket. The line is a queue. Customers arrive in random integer intervals of 1
to 4 minutes. Also, each customer is serviced in random integer intervals of 1 to 4
minutes. Obviously, the rates need to be balanced. If the average arrival rate is larger

634 Chapter 12 Data Structures

than the average service rate, the queue will grow infinitely. Even with balanced rates,
randomness can still cause long lines. Run the supermarket simulation for a 12-hour
day (720 minutes) using the following algorithm:

1. Choose a random integer between 1 and 4 to determine the minute at which
the first customer arrives.

2. At the first customer’s arrival time:
Determine customer’s service time (random int 1–4);
Begin servicing the customer;
Schedule arrival time of next customer (random int 1–4 added to current time).

3. For each minute of the day:
If the next customer arrives,

Say so;
Enqueue the customer;
Schedule the arrival time of the next customer.

If service was completed for the last customer,
Say so;
Dequeue next customer to be serviced;
Determine customer’s service completion time

(random integer from 1 to 4 added to the current time).

Now run your simulation for 720 minutes and answer each of the following:
a) What’s the maximum number of customers in the queue at any time?
b) What’s the longest wait any one customer experiences?
c) What happens if the arrival interval is changed from 1 to 4 minutes to 1 to

3 minutes?

12.13 (Allowing Duplicates in a Binary Tree) Modify the program of Fig. 12.4 to
allow the binary tree to contain duplicate values.

12.14 (Binary Search Tree of Strings) Write a program based on the program of
Fig. 12.4 that inputs a line of text, tokenizes the sentence into separate words, inserts
the words in a binary search tree, and prints the inorder, preorder, and postorder tra-
versals of the tree.

Read the line of text into an array. Use strtok to tokenize the text. When a
token is found, create a new node for the tree, assign the pointer returned by strtok
to member string of the new node, and insert the node in the tree.

12.15 (Duplicate Elimination) We’ve seen that duplicate elimination is straightfor-
ward when creating a binary search tree. Describe how you would perform duplicate
elimination using only a one-dimensional array. Compare the performance of array-
based duplicate elimination with the performance of binary-search-tree-based dupli-
cate elimination.

 Exercises 635

12.16 (Depth of a Binary Tree) Write a function depth that receives a binary tree and
determines how many levels it has.

12.17 (Recursively Print a List Backward) Write a function printListBackward that
recursively outputs the items in a list in reverse order. Use your function in a test pro-
gram that creates a sorted list of integers and prints the list in reverse order.

12.18 (Recursively Search a List) Write a function searchList that recursively
searches a linked list for a specified value. The function should return a pointer to the
value if it’s found; otherwise, NULL should be returned. Use your function in a test
program that creates a list of integers. The program should prompt the user for a value
to locate in the list.

12.19 (Binary Tree Search) Write function binaryTreeSearch that attempts to lo-
cate a specified value in a binary search tree. The function should take as arguments
a pointer to the root node of the binary tree and a search key to be located. If the node
containing the search key is found, the function should return a pointer to that node;
otherwise, the function should return a NULL pointer.

12.20 (Level-Order Binary Tree Traversal) The program of Fig. 12.4 illustrated
three recursive methods of traversing a binary tree—inorder traversal, preorder tra-
versal, and postorder traversal. This exercise presents the level-order traversal of a bi-
nary tree. This traversal processes the node values level-by-level from left-to-right
starting at the root-node level. The level-order traversal is not a recursive algorithm.
It uses the queue data structure to process the nodes in the correct order. The algo-
rithm is as follows:

1. Insert the root node in the queue.

2. While there are nodes left in the queue,
Get the next node in the queue.
Print the node’s value.
If the pointer to the left child of the node is not NULL

Insert the left child node in the queue.
If the pointer to the right child of the node is not NULL

Insert the right child node in the queue.

Write function levelOrder to perform a level order traversal of a binary tree.
The function should take as an argument a pointer to the binary tree’s root node.
Modify the program of Fig. 12.4 to use this function. Compare the output from this
function to the other traversals’ outputs to see that it worked correctly. You’ll need to
modify and incorporate the queue-processing functions of Fig. 12.3 in this program.

12.21 (Printing Trees) Write a recursive function outputTree to display a binary
tree. The function should output the tree row-by-row with the top of the tree at the
left of the screen and the bottom of the tree toward the right of the screen. Each row
is output vertically. For example, the binary tree in Exercise 12.5 is output as follows:

636 Chapter 12 Data Structures

Note that the rightmost leaf node appears at the top of the output in the rightmost
column, and the root node appears at the left of the output. Each column of output
starts five spaces to the right of the previous column. Function outputTree should
receive as arguments a pointer to the tree’s root node and an integer totalSpaces
representing the number of spaces preceding the value to output. This variable
should start at zero so that the root node is output at the left of the screen. The func-
tion uses a modified inorder traversal to output the tree. The algorithm is as follows:

While the pointer to the current node is not NULL,
Recursively call outputTree with the current node’s right subtree and

totalSpaces + 5.
Use a for statement to count from 1 to totalSpaces and output spaces.
Output the value in the current node.
Recursively call outputTree with the current node’s left subtree and

totalSpaces + 5.

Special Section: Systems Software Case Study—Building Your
Own Compiler
In Exercise 7.28, we introduced the made-up Simpletron Machine Language (SML).
In Exercise 7.29, you used simulation to create the Simpletron computer—a virtual
machine—to execute programs written in SML. In this challenge section, you’ll build a
compiler that converts programs written in Simple—a made-up, concise, high-level
programming language—to SML. This section “ties” together key pieces of the pro-
gramming process. You’ll:

• write several Simple high-level language programs,

• compile the programs using the compiler you’ll build, generating SML
machine-language code into a file,

 99
 97
 92
 83
 72
 71
 69
49
 44
 40
 32
 28
 19
 18
 11

 Special Section: Systems Software Case Study—Building Your Own Compiler 637

• load the SML machine-language code from that file into the Simpletron’s
memory, and

• execute the SML machine-language programs on the Simpletron virtual
machine you built in Exercise 7.29.

This section consists of six exercises. The first two cover some key computer-science
technology you’ll need to implement your compiler. The third introduces the Simple
high-level language with some completely coded examples and asks you to write sev-
eral of your own Simple programs. The fourth guides you through building your
compiler. The fifth introduces the crucial topic of compiler optimization—you’ll
modify your compiler to reduce the number of SML instructions it generates, which
will make your SML programs more memory efficient and enable them to execute
faster. The final exercise gives you an opportunity to modify your compiler to add
more useful features.

12.22 (Infix-to-Postfix Converter) Compilers use stacks to help evaluate expressions
and generate machine-language code. In this and the next exercise, we investigate
how compilers evaluate arithmetic expressions consisting only of single-digit integer
constants, operators and parentheses. You can easily modify the algorithms we pres-
ent to work with multiple-digit integers and floating-point numbers as well.

People generally write expressions like 3 + 4 and 7 / 9 with the operator between
its operands. This is called infix notation. Computers “prefer” postfix notation, in
which the operator is written to the right of its two operands. The preceding infix
expressions would appear in postfix notation as 3 4 + and 7 9 /.

To evaluate an infix expression, some compilers

• first convert the expression to postfix notation, then

• evaluate the postfix version.

Each of these stack-oriented algorithms requires one left-to-right pass of the expres-
sion. In this exercise, you’ll implement the infix-to-postfix conversion algorithm. In
the next, you’ll implement the postfix-expression evaluation algorithm.

Write a program that converts a valid infix arithmetic expression with single-
digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is
6 2 + 5 * 8 4 / -

Note that postfix expressions contain no parentheses. The program should read the
expression into character array infix and use the stack functions implemented in
this chapter to help create the postfix expression in character array postfix. The
algorithm for creating a postfix expression is as follows:

638 Chapter 12 Data Structures

1. Push a left parenthesis '(' onto the stack.

2. Append a right parenthesis ')' to the end of infix.

3. While the stack is not empty, read infix from left to right and do the following:
If infix’s current character is a digit, copy it to the next element of postfix.
If infix’s current character is a left parenthesis, push it onto the stack.
If infix’s current character is an operator,

Pop operators (if there are any) at the top of the stack while they have
equal or higher precedence than the current operator, and insert
the popped operators in postfix.

Push the current character in infix onto the stack.
If infix’s current character is a right parenthesis,

Pop operators from the top of the stack and insert them in postfix
until a left parenthesis is at the top of the stack.

Pop (and discard) the left parenthesis from the stack.

The following arithmetic operations are allowed in an expression:

+ addition
- subtraction
* multiplication
/ division

The stack should be maintained with the following declarations:
struct stackNode {
 char data;
 struct stackNode *nextPtr;
};

typedef struct stackNode StackNode;
typedef StackNode *StackNodePtr;

The program should consist of main and eight other functions with the following
function prototypes:

Function prototype Description

void convertToPostfix(char infix[], char postfix[]);
Convert the infix expression to postfix notation.

bool isOperator(char c);
Return true if c is an operator; otherwise, return false. Recall that bool,
true and false are defined in stdbool.h.

int precedence(char operator1, char operator2);
Return -1, 0 or 1 to indicate whether the precedence of operator1 is less
than, equal to, or greater than the precedence of operator2, respectively.

void push(StackNodePtr *topPtr, char value);
Push a value onto the stack.

 Special Section: Systems Software Case Study—Building Your Own Compiler 639

12.23 (Postfix-Expression Evaluator) Write a program that evaluates a valid postfix
expression such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of single digits and opera-
tors into a character array. Postfix expressions do not contain parentheses—they’re
eliminated during the infix-to-postfix conversion. The program should scan the
postfix expression and evaluate it using the following algorithm and the stack func-
tions implemented earlier in this chapter:

1. Append the null character ('\0') to the end of the postfix expression. When
the algorithm encounters this null character, the evaluation of the postfix ex-
pression is complete.

2. While the null character ('\0') has not been encountered, read the expression
from left to right:

If the current character is a digit,
Push its integer value onto the stack. The integer value of a digit

character is its value in the computer’s character set minus the value
of the zero character ('0') in the computer’s character set.

Otherwise, if the current character is an operator,
Pop the stack’s two top elements into variables x and y.
Calculate y operator x.
Push the calculation’s result onto the stack.

3. When the null character ('\0') is encountered in the expression, pop the
stack’s top value. This is the postfix expression’s result.

This algorithm supports only binary arithmetic operators. So in Step 2, if the opera-
tor is '/', the top of the stack is 2, and the next element in the stack is 8, you’d pop
2 into x, pop 8 into y, evaluate 8 / 2, and push the result, 4, back onto the stack. This
applies to each binary arithmetic operator.

char pop(StackNodePtr *topPtr);
Pop a value off the stack and return that value.

char stackTop(StackNodePtr topPtr);
Return the stack’s top value without popping the stack.

bool isEmpty(StackNodePtr topPtr);
Return true if the stack is empty (that is, topPtr is NULL); otherwise,
return false.

void printStack(StackNodePtr topPtr);
Print the stack—this function traverses the linked list that implements the
stack, but does not modify it.

Function prototype Description

640 Chapter 12 Data Structures

The arithmetic operations allowed in an expression are:

+ addition
- subtraction
* multiplication
/ division

The stack should be maintained with the following declarations:
struct stackNode {
 int data;
 struct stackNode *nextPtr;
};

typedef struct stackNode StackNode;
typedef StackNode *StackNodePtr;

The program should consist of main and six other functions with the following func-
tion prototypes:

12.24 (The Simple Programming Language—Writing Simple Programs) Before
building the compiler, let’s discuss a simple yet powerful, high-level language similar
to early versions of the BASIC programming language. We call the language Simple.
Every Simple statement consists of a line number and a Simple instruction. Line
numbers must appear in ascending order. Each instruction begins with one of the fol-
lowing Simple commands: rem, input, let, print, goto, if…goto or end, which we
describe in the following table. Simple evaluates only integer expressions using the +,
-, * and / operators. These operators have the same precedence as in C. Parentheses
can change an expression’s order of evaluation. Exercise 12.27 suggests enhance-

Function prototype Description

int evaluatePostfixExpression(char *expr);
Evaluate the postfix expression and return its result.

int calculate(int op1, int op2, char operator);
Evaluate the expression op1 operator op2 and return its result.

void push(StackNodePtr *topPtr, int value);
Push a value onto the stack.

int pop(StackNodePtr *topPtr);
Pop a value off the stack and return that value.

bool isEmpty(StackNodePtr topPtr);
Return true if the stack is empty (that is, topPtr is NULL); otherwise,
return false.

void printStack(StackNodePtr topPtr);
Print the stack—this function traverses the linked list that implements
the stack, but does not modify it.

 Special Section: Systems Software Case Study—Building Your Own Compiler 641

ments to the Simple compiler. Several of the suggested enhancements, such as adding
floating-point capability, require modifications to the Simpletron virtual machine as
well.

Additional Simple Language Rules
Simple also has the following language rules:

• The Simple compiler recognizes only lowercase letters—all characters in a
Simple program should be lowercase.

• A variable name is a single letter. Multi-character variable names are not
allowed, so Simple programs should document their variables in rem state-
ments.

• Simple uses only int variables.

• Simple does not have variable declarations—merely mentioning a variable
name in a program declares the variable and initializes it to zero.

• Simple’s syntax does not allow string manipulation (reading a string, writing
a string, comparing strings, etc.).

• Simple uses the conditional branch if…goto statement and the uncondi-
tional branch goto statement to alter a program’s flow of control. If the con-
dition in the if…goto statement is true, control transfers to the specified line
number. The following relational and equality operators <, >, <=, >=, == or !=
are valid in an if…goto statement. Their precedence is the same as in C.

Our compiler assumes that Simple programs are entered correctly. Exercise 12.27
asks you to modify the compiler to perform syntax-error checking.

Command Example statement Description

rem 50 rem this is a remark Text following the command rem is for documen-
tation purposes only and is ignored—no SML
code is generated.

input 30 input x Display a question mark to prompt the user to
enter a single integer. Read that integer from the
keyboard and store the integer in x.

let 80 let u = 4 * (j - 7)) Assign to u the value of 4 * (j - 7). An arbitrarily
complex infix expression can appear to the right
of the equal sign.

print 10 print w Display the value of single integer variable w.
goto 70 goto 45 Transfer program control to line 45.
if…goto 35 if i == z goto 80 Compare i and z for equality and transfer control

to line 80 if the condition is true; otherwise, con-
tinue execution with the next statement.

end 99 end Terminate program execution.

642 Chapter 12 Data Structures

Simple Program Examples
Let’s consider several Simple programs that demonstrate the language’s features. The
first (Fig. 12.5) reads two integers from the keyboard, stores the values in variables a
and b, and computes and prints their sum (stored in variable c).

The next program (Fig. 12.6) determines and prints the larger of two integers.
The integers are input from the keyboard and stored in the variables s and t. The
if…goto statement tests the condition s >= t. If the condition is true, control trans-
fers to line 90, which displays s. Otherwise, the program displays t, then transfers
control to the end statement in line 99, where the program terminates.

Simple does not have repetition statements like C’s for, while or do…while.
However, you can simulate each of these using the if…goto and goto statements.
Figure 12.7 uses a sentinel-controlled loop to calculate the squares of several inte-
gers. Each integer is input from the keyboard and stored in variable j. If the value
entered is the sentinel -9999, control transfers to line 99, where the program termi-

10 rem input two integers, then determine and print their sum
15 rem
20 rem input the two integers
30 input a
40 input b
45 rem
50 rem add integers and store result in c
60 let c = a + b
65 rem
70 rem print the result
80 print c
90 rem terminate program execution
99 end

Fig. 12.5 | Input two integers, then determine and print their sum.

10 rem input two integers, then determine and print the larger one
20 input s
30 input t
32 rem
35 rem test if s is greater than or equal to t
40 if s >= t goto 90
45 rem
50 rem t is greater than s, so print t
60 print t
70 goto 99
75 rem
80 rem s is greater than or equal to t, so print s
90 print s
99 end

Fig. 12.6 | Input two integers, then determine and print the larger one.

 Special Section: Systems Software Case Study—Building Your Own Compiler 643

nates. Otherwise, k is assigned the square of j, k is output to the screen and control
is passed to line 20, where the next integer is input.

Write Your Own Simple Programs
Using the sample programs of Figs. 12.5–12.7 as your guide, write Simple programs
to accomplish each of the following:

a) Input three integers, determine their average and print the result.
b) Use a sentinel-controlled loop to input 10 integers and compute and print

their sum.
c) Use a counter-controlled loop to input seven integers, some positive and

some negative, and compute and print their average.
d) Input a series of integers and determine and print the largest. The first inte-

ger input indicates how many numbers should be processed.
e) Input 10 integers and print the smallest.
f) Calculate and print the sum of the even integers from 2 to 30.
g) Calculate and print the product of the odd integers from 1 to 9.

12.25 (Building a Compiler; Prerequisite: Complete Exercises 7.28, 7.29, 12.22,
12.23 and 12.24) Now that we’ve presented the Simple language (Exercise 12.24),
let’s discuss how to build a Simple compiler. The following diagram summarizes the
process for compiling a Simple program into SML, then executing it in the Sim-
pletron simulator:

10 rem calculate squares of integers until user enters -9999 sentinel to end
20 input j
23 rem
25 rem test for sentinel value
30 if j == -9999 goto 99
33 rem
35 rem calculate square of j and assign result to k
40 let k = j * j
50 print k
53 rem
55 rem loop to get next j
60 goto 20
99 end

Fig. 12.7 | Calculate squares of integers until user enters -9999 to end.

Simpletron
Simulator

compiler
SML file

output to
disk

output to
screen

Simple file

644 Chapter 12 Data Structures

The compiler reads a file containing a Simple program, compiles it into SML
code, then writes the SML one instruction per line to a text file. Next, the Sim-
pletron simulator loads the SML file into the Simpletron’s 100-element memory
array, executes the program and outputs the results to the screen and to a file. We
also send all screen outputs to a file to make it easy to print a hard copy.

The Simpletron simulator you developed in Exercise 7.29 takes its input from
the keyboard, not a file. You must modify the Simpletron to read from a file so it can
run the programs your Simple compiler produces.

The compiler performs two passes of a Simple program to convert it to SML:

• The first pass constructs a symbol table (discussed in detail below). The com-
piler stores in the symbol table every line number, variable name and constant
of the Simple program. Each is stored with its type and its location in the final
SML code. The first pass also produces the corresponding SML instruction(s)
for each Simple statement. As you’ll see, if the Simple program contains state-
ments that transfer control to lines later in the program, the first pass results
in an SML program containing some incomplete instructions.

• The second pass locates and completes the unfinished instructions and out-
puts the SML program to a file. The compiler’s first pass code is much larger
than its second pass code.

First Pass
The compiler begins by reading into memory the Simple program’s first statement.
The compiler separates the line into its individual tokens (i.e., “pieces” of a state-
ment) for processing and compilation. You can use function strtok to do this.
Recall that every statement begins with a line number followed by a command. As
the compiler breaks the rest of the statement into tokens, if a token is a line number,
a variable, or a constant, it’s placed in the symbol table. A line number is placed in
the symbol table only if it’s the first token in a statement—you’ll soon see what the
compiler does with line numbers that are targets of conditional or unconditional
branches.

The symbolTable is an array of tableEntry structures representing each symbol
in the program. There’s no restriction on the number of symbols that can appear in
the program. So, the symbolTable could be large. Make the symbolTable a 200-
element array for now. You can adjust its size once you have a working compiler.

The tableEntry structure is declared as follows:
struct tableEntry {
 int symbol;
 char type; // 'C' (constant), 'L' (line number), 'V' (variable)
 int location; // 00 to 99
};

Each tableEntry contains three members:

• symbol is an integer containing a variable’s ASCII representation (again, vari-
able names are single characters), a line number, or an integer constant.

 Special Section: Systems Software Case Study—Building Your Own Compiler 645

• type is a character indicating the symbol’s type—'C' for a constant, 'L' for
a line number, or 'V' for a variable.

• location contains the Simpletron memory location (00 to 99) associated with
the symbol. Simpletron memory is an array of 100 integers in which SML
instructions and data are stored. For a line number, the location is the Sim-
pletron memory array element at which the Simple statement’s SML instruc-
tions begin. For a variable or constant, the location is the Simpletron memory
array element that stores the variable or constant. Variables and constants are
allocated from location 99 of the Simpletron’s memory downward. The first
variable or constant is stored in location 99, the next in location 98, and so on.

The symbol table plays an integral part in converting Simple programs to SML.
We learned in Exercise 7.28 that an SML instruction is a signed four-digit integer
that comprises two parts—the operation code and the operand. The operation code
is determined by the Simple command. For example, the Simple command input
corresponds to SML operation code 10 (read), and the Simple command print cor-
responds to SML operation code 11 (write). The operand is a memory location
containing the data on which the operation code performs its task. For instance, the
operation code 10 reads a value from the keyboard and stores it in the memory
location specified by the operand. The compiler searches symbolTable to determine
the Simpletron memory location for each symbol so the corresponding location can
be used to complete the SML instructions.

Each Simple statement’s compilation process is based on the particular com-
mand. For example, after the line number in a rem statement is inserted in the sym-
bol table, the compiler ignores the statement’s remainder—a rem statement is for
documentation purposes only—no SML code is generated. The input, print, goto
and end statements correspond to the SML read, write, branch (to a specific loca-
tion) and halt instructions. The compiler converts statements containing these Sim-
ple commands directly to SML. A goto statement may initially contain an
unresolved reference if the specified line number refers to a statement later in the
Simple program file. This is called a forward reference.

When a goto statement is compiled with an unresolved reference, the SML
instruction must be flagged to indicate that the compiler’s second pass must com-
plete the instruction. The flags are stored in 100-element array int flags, in which
each element is initialized to -1. If the memory location to which a line number
refers is not yet known (that is, it’s not in the symbol table), its line number is
stored in array flags in the element with the same subscript as the incomplete
instruction. The incomplete instruction’s operand is set temporarily to 00. For
example, an unconditional branch instruction (making a forward reference) is left
as +4000 until the compiler’s second pass, which we’ll describe shortly.

Compiling an if…goto or let statement is more complicated than other state-
ments—each produces more than one SML instruction. For an if…goto statement,
the compiler produces code to test the condition and possibly branch to another line.
The result of the branch could be an unresolved forward reference. Each Simple rela-

646 Chapter 12 Data Structures

tional and equality operator can be simulated using SML’s branch zero and branch
negative instructions (or possibly a combination of both).

For a let statement, the compiler produces code to evaluate an arbitrarily com-
plex infix arithmetic expression consisting of operators, single-letter integer variable
names, integer constants and possibly parentheses. Expressions should separate each
operand and operator with a space. Exercises 12.22–12.23 presented the infix-to-post-
fix conversion algorithm and the postfix-evaluation algorithm compilers use to evalu-
ate expressions. Before building your compiler, you should complete those exercises.
The compiler converts each expression from infix notation to postfix notation, then
evaluates the postfix expression. As you’ll see, the compiler actually generates machine-
language instructions in the process of performing the postfix expression evaluation.

How is it that the compiler produces the machine language to evaluate an expres-
sion containing variables? The postfix-evaluation algorithm contains a “hook” that
allows our compiler to generate SML instructions rather than actually evaluating
the expression. To enable this “hook” in the compiler, the postfix-evaluation algo-
rithm must be modified to:

• search the symbol table for each symbol it encounters (and possibly insert it),

• determine the symbol’s corresponding memory location, and

• push the memory location instead of the symbol onto the stack.

When an operator is encountered in the postfix expression, the stack’s top two mem-
ory locations are popped, and SML for effecting the operation is produced using the
memory locations as operands. Each subexpression’s result is stored in a temporary
memory location and pushed back onto the stack, so the postfix expression’s evalu-
ation can continue. When postfix evaluation is complete, the result’s memory loca-
tion is the only location left on the stack. This is popped, and SML instructions are
generated to assign the result to the variable at the left of the let statement.

Second Pass
The compiler’s second pass performs two tasks:

• resolve any unresolved references, and

• output the SML code to a file.

Resolution of each reference occurs as follows:

1. Search the flags array for an unresolved reference (i.e., an element with a
value other than -1).

2. Locate the structure in array symbolTable containing the symbol stored in the
flags array (be sure that the type of the symbol is 'L' for line number).

3. Insert the memory location from structure member location into the instruc-
tion with the unresolved reference (remember that an instruction containing
an unresolved reference has operand 00).

4. Repeat Steps 1–3 until the end of the flags array is reached.

 Special Section: Systems Software Case Study—Building Your Own Compiler 647

After the resolution process is complete, the compiler outputs the SML code to a file
with one SML instruction per line. The Simpletron can read this file and execute its
instructions (after the simulator is modified to read its input from a file, of course).

A Complete Example
The following example illustrates a complete conversion of a Simple program to
SML. Consider a Simple program that inputs an integer, sums the values from 1 to
that integer and prints that sum. So, if the user enters 4, the program would calculate
1 + 2 + 3 + 4, which is 10 and print that value. Figure 12.8 shows the program and
the SML instructions produced by the compiler’s first pass. Figure 12.9 shows the
symbol table constructed by the compiler’s first pass. Figure 12.10 shows how the
compiler allocates Simpletron memory downward from cell 99. In a moment, we’ll do
a step-by-step walkthrough showing precisely how the compiler creates these tables.

 Simple program
SML location
and instruction Description

5 rem sum 1 to x none rem ignored
10 input x 00 +1099 read x into location 99
15 rem check y == x none rem ignored
20 if y == x goto 60 01 +2098 load y (location 98) into accumulator

02 +3199 sub x (location 99) from accumulator
03 +4200 branch zero to unresolved location

25 rem increment y none rem ignored
30 let y = y + 1 04 +2098 load y (location 98) into accumulator

05 +3097 add 1 (location 97) to accumulator
06 +2196 store in temporary location 96
07 +2096 load from temporary location 96
08 +2198 store accumulator in y (location 98)

35 rem add y to total t none rem ignored
40 let t = t + y 09 +2095 load t (location 95) into accumulator

10 +3098 add y (location 98) to accumulator
11 +2194 store in temporary location 94
12 +2094 load from temporary location 94
13 +2195 store accumulator in t (location 95)

45 rem loop to y == x test none rem ignored
50 goto 20 14 +4001 branch to location 01
55 rem output result none rem ignored
60 print t 15 +1195 output t (location 95) to screen
99 end 16 +4300 terminate execution

Fig. 12.8 | SML instructions produced after the compiler’s first pass.

648 Chapter 12 Data Structures

Most Simple statements convert directly to single SML instructions. The excep-
tions in this program are rem statements, the if…goto statement in line 20 and the
let statements in lines 30 and 40. Remarks do not translate into machine language.
However, the line number for a remark is placed in the symbol table in case the line
number is referenced in a goto or an if…goto statement.

Line 20 of the program specifies that if the condition y == x is true, program con-
trol should transfer to line 60. Because line 60 appears later in the program, the com-
piler’s first pass has not yet placed 60 in the symbol table (line numbers are placed in

Symbol Type Location

5 L 00

10 L 00

'x' V 99

15 L 01

20 L 01

'y' V 98

25 L 04

30 L 04

1 C 97

Temporary 96 allocated
35 L 09

40 L 09

't' V 95

Temporary 94 allocated
45 L 14

50 L 14

55 L 15

60 L 15

99 L 16

Fig. 12.9 | Symbol table for program of Fig. 12.8.

Data counter Value Type

...
93 Next Simpletron memory cell to allocate
94 none Temporary variable
95 't' Variable
96 none Temporary variable
97 1 Constant
98 'y' Variable
99 'x' Variable

Fig. 12.10 | Compiler allocates Simpletron memory downward from
the last cell of memory (99).

 Special Section: Systems Software Case Study—Building Your Own Compiler 649

the symbol table only when they appear as the first token in a statement the com-
piler has processed). Therefore, it’s not possible at this time to determine the oper-
and of the SML branch-zero instruction at location 03 in the array of SML
instructions. The compiler places 60 in location 03 of the flags array to indicate
that the second pass will complete this instruction.

We must keep track of the next instruction location in the SML array because
there is not a one-to-one correspondence between Simple statements and SML
instructions. For example, the if…goto statement of line 20 compiles into three
SML instructions. Each time an instruction is produced, we must increment the
instruction counter to the next SML array location. The Simpletron’s limited mem-
ory size could present a problem for Simple programs with many statements, variables
and constants. It’s conceivable that the compiler could run out of Simpletron mem-
ory. To test for this case, your program should contain a data counter to keep track of
the location at which the next variable or constant will be stored in the SML array. If
the value of the instruction counter is larger than the data counter’s value, the SML
array is full. In this case, the compilation process should terminate, and the compiler
should display an “out-of-memory” error message.

Step-by-Step Explanation of the Compilation Process’s First Pass
Let’s walk through the compilation process for the Simple program in Fig. 12.8. The
compiler reads the first line of the program:

5 rem sum 1 to x

The first token in the statement (the line number) is determined using strtok
(Chapter 8 discussed C’s string-manipulation functions). The token returned by
strtok is converted to an integer using atoi, so the symbol 5 can be placed in the
symbol table. If the symbol is not found, it’s inserted in the symbol table. Since we’re
at the beginning of the program and this is the first line, no symbols are in the table
yet. So, 5 is inserted into the symbol table as type L (line number) and assigned the
first location in the SML memory array (00). Although this line is a remark, a space
in the symbol table is allocated for the line number (in case it’s referenced by a goto
or an if…goto). If a program branches to a rem statement’s line number, control
resumes with the first executable statement after the rem. No SML instruction is
generated for a rem statement, so the instruction counter is not incremented.

Next, the compiler tokenizes the statement
10 input x

The line number 10 is placed in the symbol table as type L and assigned the first
location in the SML array (00)—a remark began the program, so the instruction
counter is still 00. The command input indicates that the next token is a variable
(only a variable can appear as an argument in an input statement). Because input
corresponds directly to an SML operation code, the compiler simply has to deter-
mine the location of x in the SML array. Symbol x is not found in the symbol table.
So, it’s inserted into the symbol table as the ASCII representation of x, given type V

650 Chapter 12 Data Structures

(for variable), and assigned location 99 in the SML array. Data storage begins at 99
and is allocated downward—98, 97, and so on. SML code can now be generated for
this statement. Operation code 10 (the SML read operation code) is multiplied by
100, and x’s location (as determined in the symbol table) is added to it, which com-
pletes the instruction +1099. This is then stored in the SML array at location 00. The
instruction counter is incremented by 1 because a single SML instruction was pro-
duced.

Next, the compiler tokenizes the statement
15 rem check y == x

The symbol table is searched for line number 15, which is not found. The line num-
ber is inserted as type L and assigned the SML array’s next location (01). Again, rem
statements do not produce code, so the instruction counter is not incremented.

Next, the compiler tokenizes the statement
20 if y == x goto 60

Line number 20 is inserted in the symbol table and given type L with the next location
in the SML array, 01. The command if indicates that a condition is to be evaluated.
The variable y is not found in the symbol table, so it’s inserted and given the type V and
the SML location 98. Next, SML instructions are generated to evaluate the condition.
There is no direct equivalent in SML for the if…goto, so it must be simulated by per-
forming a calculation using x and y and branching based on the result. If y equals x,
the result of subtracting x from y is zero. So, the SML branch-zero instruction can be
used with the calculation result to simulate the if…goto statement.

The first step requires that y be loaded (from SML location 98) into the accumu-
lator. This produces the instruction 01 +2098. Next, x is subtracted from the accu-
mulator. This produces the instruction 02 +3199. The value in the accumulator may
be zero, positive or negative. Since the operator is ==, we want to branch zero. First,
the symbol table is searched for the branch location (60), which is not found. So, 60
is placed in the flags array at location 03, and the instruction 03 +4200 is generated.
We cannot add the branch location because we have not yet assigned a location to
line 60 in the SML array—this location will be resolved later. The instruction
counter is incremented to 04.

The compiler proceeds to the statement
25 rem increment y

The line number 25 is inserted in the symbol table as type L and assigned SML loca-
tion 04. The instruction counter is not incremented.

When the statement
30 let y = y + 1

is tokenized, the line number 30 is inserted in the symbol table as type L and
assigned SML location 04. Command let indicates that the line is an assignment
statement. First, all the symbols on the line are inserted in the symbol table (if they
are not already there). The constant integer 1 is inserted as type C and assigned SML

 Special Section: Systems Software Case Study—Building Your Own Compiler 651

location 97. Next, the right side of the assignment is converted from infix to postfix
notation. Then the postfix expression (y 1 +) is evaluated. Symbol y is located in the
symbol table, and its corresponding memory location, 98, is pushed onto the stack.
Symbol 1 is also located in the symbol table, and its corresponding memory loca-
tion, 97, is pushed onto the stack. When the operator + is encountered, the postfix
evaluator pops the stack into the right operand of the operator and pops the stack again
into the left operand of the operator, then produces the SML instructions

04 +2098 (load y)
05 +3097 (add 1)

The result of the expression is stored in a temporary location in memory (96) with
instruction

06 +2196 (store temporary)

and the temporary location is pushed onto the stack. Now that the expression has been
evaluated, the result must be stored in the let statement’s variable y. So, the tempo-
rary location is loaded into the accumulator, and the accumulator is stored in y with
the instructions

07 +2096 (load temporary)
08 +2198 (store y)

Notice that some of these SML instructions—storing the accumulator into tempo-
rary location 96, then immediately reloading the accumulator from location 96—
appear to be redundant. Eliminating such redundancy is an example of compiler
optimization, which we’ll say more about shortly.

When the compiler tokenizes the statement
35 rem add y to total

it inserts line number 35 in the symbol table as type L and assigns it location 09.
The following statement is similar to line 30:

40 let t = t + y

The variable t is inserted in the symbol table as type V and assigned SML location
95. The instructions follow the same logic and format as line 30, and the instructions
09 +2095, 10 +3098, 11 +2194, 12 +2094, and 13 +2195 are generated. The result of
t + y is assigned to temporary location 94 before being assigned to t (95). The
instructions in memory locations 11 and 12 also appear to be redundant. Again,
we’ll discuss this optimization issue shortly.

The statement
45 rem loop to y == x test

is a remark, so line 45 is inserted in the symbol table as type L and assigned SML
location 14.

The statement
50 goto 20

652 Chapter 12 Data Structures

transfers control to line 20. Line number 50 is inserted in the symbol table as type L
and assigned SML location 14. The equivalent of goto in SML is the unconditional
branch (40) instruction that transfers control to a specific SML location. The com-
piler searches the symbol table for line 20 and finds that it corresponds to SML loca-
tion 01. The operation code (40) is multiplied by 100, and location 01 is added to
produce the instruction +4001 at location 14.

The statement
55 rem output result

is a remark, so line 55 is inserted in the symbol table as type L and assigned SML
location 15.

The statement
60 print t

is an output statement. Line number 60 is inserted in the symbol table as type L and
assigned SML location 15. The equivalent of print in SML is operation code 11
(write). Variable t’s location is determined from the symbol table, then added to the
result of multiplying the operation code by 100. This forms the instruction +1195 at
location 15.

The statement
99 end

is the final line of the program. Line number 99 is stored in the symbol table as type
L and assigned SML location 16. The end command produces the SML instruction
+4300 (43 is halt in SML). This is written as the final instruction in the SML mem-
ory array. The halt instruction has no operand. Can you think of a useful reason to
allow an operand for the halt instruction?

The Compilation Process’s Second Pass
On the compiler’s second pass, we begin by searching the flags array for values other
than -1. Location 03 contains 60, so the compiler knows that instruction 03 is incom-
plete. The compiler completes the instruction by searching the symbol table for 60,
determining its location and adding the location to the incomplete instruction. In
this case, the search determines that line 60 corresponds to SML location 15, so the
completed instruction +4215 at location 03 is produced, replacing +4200. The Simple
program has now been compiled successfully.

Building Your Compiler
To build the compiler, you’ll have to perform each of the following tasks:

a) Modify the Simpletron simulator program you wrote in Exercise 7.29 to take
its input from a file specified by the user (see Chapter 11). The simulator
should also output its results to a file in the same format as the screen output.

 Special Section: Systems Software Case Study—Building Your Own Compiler 653

b) Modify the infix-to-postfix evaluation algorithm of Exercise 12.22 to pro-
cess multi-digit integer operands and single-letter variable-name operands.
Standard library function strtok can be used to locate each constant and
variable in an expression. Constants can be converted from strings to inte-
gers using standard-library function atoi. The postfix expression's data rep-
resentation must be altered to support variable names and integer constants.

c) Modify the postfix evaluation algorithm to process multi-digit-integer oper-
ands and single-letter variable-name operands. The algorithm also should
now implement the previously discussed “hook” so that it produces SML in-
structions rather than directly evaluating the expression. Standard-library
function strtok can be used to locate each constant and variable in an expres-
sion, and constants can be converted from strings to integers using standard-
library function atoi. The data representation of the postfix expression must
be altered to support variable names and integer constants.

d) Build the compiler—incorporate Part b and Part c for evaluating expressions
in let statements. Your program should contain a function that performs the
compiler’s first pass and one that performs its second pass.

12.26 (Optimizing the Simple Compiler) When a program is compiled and convert-
ed into SML, a set of instructions is generated. Certain combinations of instructions
often repeat themselves, usually in triplets called productions. A production normally
consists of three instructions such as load, add and store. For example, Fig. 12.11
shows five of the SML instructions produced while compiling the program in
Fig. 12.8. The first three instructions are the production that adds 1 to y. Instructions
06 and 07 store the accumulator value in temporary location 96, then load the value
from that location right back into the accumulator so instruction 08 can store the
value in location 98. Often a production is followed by a load instruction for the same
location that was just stored. This code can be optimized by eliminating the store in-
struction and the subsequent load instruction that operate on the same memory
location. This optimization would decrease the SML program’s “memory footprint”
by 25% and improve its execution speed. Figure 12.12 shows the optimized SML for
the program of Fig. 12.8. There are four fewer instructions in the optimized code.
Modify your compiler to perform the optimization you learned in this exercise.

04 +2098 (load)
05 +3097 (add)

06 +2196 (store)
07 +2096 (load)

08 +2198 (store)

Fig. 12.11 | Unoptimized code from the program of Fig. 12.8.

654 Chapter 12 Data Structures

12.27 (Enhancing the Simple Compiler) Perform the following modifications to the
Simple compiler. Some of these may also require modifications to the Simpletron
Simulator program you wrote in Exercise 7.29. Many of these are quite challenging
and could require substantial effort.

a) Modify the Simpletron’s memory to have 1000 cells (000–999). Modify the
compiler to generate machine language appropriate for the 1000-element
Simpletron memory.

b) Allow the compiler to process floating-point values in addition to integers.
The Simpletron Simulator must also be modified to process floating-point
values.

c) Add support for unary minus to specify negative integer values.
d) Allow the modulus operator (%) to be used in let statements. Modify the

Simpletron Machine Language to include a modulus instruction.
e) Allow exponentiation in a let statement using ^ as the exponentiation op-

erator. Modify the Simpletron Machine Language to include an exponenti-
ation instruction.

Simple program
SML location
and instruction Description

5 rem sum 1 to x none rem ignored
10 input x 00 +1099 read x into location 99
15 rem check y == x none rem ignored
20 if y == x goto 60 01 +2098 load y (98) into accumulator

02 +3199 sub x (99) from accumulator
03 +4211 branch to location 11 if zero

25 rem increment y none rem ignored
30 let y = y + 1 04 +2098 load y into accumulator

05 +3097 add 1 (97) to accumulator
06 +2198 store accumulator in y (98)

35 rem add y to total none rem ignored
40 let t = t + y 07 +2096 load t from location (96)

08 +3098 add y (98) to accumulator
09 +2196 store accumulator in t (96)

45 rem loop to y == x test none rem ignored
50 goto 20 10 +4001 branch to location 01
55 rem output result none rem ignored
60 print t 11 +1196 output t (96) to screen
99 end 12 +4300 terminate execution

Fig. 12.12 | Optimized code for the program of Fig. 12.8.

 Special Section: Systems Software Case Study—Building Your Own Compiler 655

f) Allow the compiler to recognize uppercase and lowercase letters in Simple
statements. So, x and X would be treated as different variables. No modifi-
cations to the Simpletron Simulator are required.

g) Allow input statements to read values for multiple variables, such as input
x, y. No modifications to the Simpletron Simulator are required.

h) Allow the compiler to output multiple values in a single print statement,
such as print a, b, c. This would output the variables’ values, each separat-
ed from the next by one space. No modifications to the Simpletron Simula-
tor are required.

i) Allow the print statement’s operand to be an infix expression.
j) Add syntax-checking capabilities to the compiler so error messages are out-

put when syntax errors are encountered in a Simple program. No modifica-
tions to the Simpletron Simulator are required.

k) Allow integer arrays. No modifications to the Simpletron Simulator are re-
quired.

l) Allow subroutines specified by the Simple commands gosub and return.
Command gosub passes program control to a subroutine, and command re-
turn passes control back to the statement after the gosub. This is similar to
a function call in C. The same subroutine can be called from many gosubs
distributed throughout a program. No modifications to the Simpletron
Simulator are required.

m)Allow repetition structures of the form
for x = 2 to 10
 rem Simple statements
next

This for statement loops from 2 to 10 with a default increment of 1. No
modifications to the Simpletron Simulator are required.

n) Allow repetition structures of the form
for x = 2 to 10 step 2
 rem Simple statements
next

This for statement loops from 2 to 10 with an increment of 2. The next
line marks the end of the body of the for statement. No modifications to
the Simpletron Simulator are required.

13Computer-Science Thinking:
Sorting Algorithms and Big O

O b j e c t i v e s
In this chapter, you’ll:
■ Sort an array using the

selection sort algorithm.
■ Sort an array using the

insertion sort algorithm.
■ Sort an array using the

recursive merge sort algorithm.
■ Learn about the efficiency of

sorting algorithms and express
it in “Big O” notation.

■ Explore (in the exercises) other
recursive sorts, including
quicksort and a recursive
selection sort.

■ Explore (in the exercises) the
high-performance bucket sort.

658 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

O
ut

lin
e

13.1 Introduction
In Chapter 6, you learned that sorting places data in ascending or descending order
based on one or more sort keys. Here, we introduce the selection sort and insertion
sort algorithms and the more efficient, but more complex, merge sort. We introduce
Big O notation, which is used to estimate the worst-case run time for an algorithm—
that is, how hard an algorithm may have to work to solve a problem.

For sorting arrays, it’s important to understand that the result will be the same no
matter which sorting algorithm you use. Your algorithm choice affects only the pro-
gram’s run time and memory use. The selection sort and insertion sort algorithms we
study here are easy to program but inefficient. The third algorithm—recursive merge
sort—is more efficient but harder to program.

The exercises present two more recursive sorts—quicksort and a recursive version
of selection sort. Another exercise presents the bucket sort, which achieves high per-
formance by cleverly using considerably more memory than the other sorts we dis-
cuss.

Self Check
1 (Fill-In) Sorting places data in ascending or descending order based on one or
more sort .
Answer: keys.

2 (Multiple Choice) Which of the following statements is false?
a) Big O notation estimates an algorithm’s best-case run time—that is, how

hard an algorithm may have to work to solve a problem.
b) In sorting, the sorted array will be the same no matter which sorting algo-

rithm you use.
c) The sorting algorithm you choose affects your program’s run time and mem-

ory use.
d) The selection sort and insertion sort algorithms are easy to program but inef-

ficient. The recursive merge sort is more efficient but harder to program.
Answer: a) is false. Actually, Big O notation estimates the worst-case run time.

13.1 Introduction
13.2 Efficiency of Algorithms: Big O

13.2.1 O(1) Algorithms
13.2.2 O(n) Algorithms
13.2.3 O(n2) Algorithms

13.3 Selection Sort
13.3.1 Selection Sort Implementation
13.3.2 Efficiency of Selection Sort

13.4 Insertion Sort
13.4.1 Insertion Sort Implementation
13.4.2 Efficiency of Insertion Sort

13.5 Case Study: Visualizing the High-
Performance Merge Sort

13.5.1 Merge Sort Implementation
13.5.2 Efficiency of Merge Sort
13.5.3 Summarizing Various Algorithms’

Big O Notations

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

13.2 Efficiency of Algorithms: Big O 659

13.2 Efficiency of Algorithms: Big O
One way to describe an algorithm’s effort is with Big O notation, which indicates
how hard an algorithm may have to work to solve a problem. For searching and sort-
ing algorithms, this depends mainly on how many data elements there are. In this
chapter, we use Big O to describe various sorting algorithms’ worst-case run times.

13.2.1 O(1) Algorithms
Suppose an algorithm tests whether an array’s first element is equal to its second. If
the array has 10 elements, this algorithm requires one comparison. If the array has
1,000 elements, the algorithm still requires one comparison. In fact, the algorithm is
completely independent of the array’s number of elements. This algorithm is said to
have constant run time, which we represent in Big O notation as O(1) and pro-
nounce “order 1.” An O(1) algorithm does not necessarily require only one compar-
ison. O(1) means that the number of comparisons is constant—it does not grow as the
array size increases. An algorithm that tests whether the first array element is equal to
any of the next three elements is still O(1), even though it requires three comparisons.

13.2.2 O(n) Algorithms
An algorithm that tests whether an array’s first element is equal to any of the array’s
other elements requires at most n – 1 comparisons, where n is the array’s number of
elements. If the array has 10 elements, this algorithm requires up to nine compari-
sons. If the array has 1,000 elements, this algorithm requires up to 999 comparisons.

As n grows larger, the n in the expression n – 1 “dominates,” so subtracting 1
becomes inconsequential. Big O is designed to highlight these dominant terms and
ignore those that become unimportant as n grows. For this reason, an algorithm that
requires n – 1 comparisons is said to be O(n). An O(n) algorithm is referred to as hav-
ing a linear run time. O(n) is often pronounced “on the order of n” or just “order n.”

13.2.3 O(n2) Algorithms
Suppose an algorithm tests whether any array element is duplicated elsewhere in the
array. The algorithm compares the first element with all of the array’s other elements.
The algorithm then compares the second element with all of the array’s other ele-
ments except the first—the second was already compared to the first. Then, the algo-
rithm compares the third element with all the other elements except the first two. In
the end, this algorithm will end up making a total of (n – 1) + (n – 2) + … + 2 + 1 or
n2/2 – n/2 comparisons. As n increases, the n2 term dominates, and the n term
becomes inconsequential. Big O notation highlights the n2 term, leaving n2/2. But as
we’ll soon see, constant factors are omitted in Big O notation.

Big O is concerned with how an algorithm’s run time grows in relation to the
number of items processed. Suppose an algorithm requires n2 comparisons. With
four elements, the algorithm will require 16 comparisons; with eight elements, the
algorithm will require 64 comparisons. With this algorithm, doubling the number of

PERF

660 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

elements quadruples the number of comparisons. Consider a similar algorithm requir-
ing n2/2 comparisons. With four elements, the algorithm will require eight compar-
isons; with eight elements, the algorithm will require 32 comparisons. Again,
doubling the number of elements quadruples the number of comparisons. Both algo-
rithms grow as the square of n, so Big O ignores the constant and both algorithms are
considered to be O(n2) . This is referred to as quadratic run time and pronounced
“on the order of n-squared” or simply “order n-squared.”

When n is small, O(n2) algorithms (running on today’s billion-operations-per-
second personal computers) will not noticeably affect performance. But as n grows,
you’ll start to notice the performance degradation. An O(n2) algorithm running on a
million-element array would require a trillion “operations,” where each could actually
require several machine instructions to execute. This could require a few hours to exe-
cute. A billion-element array would require a quintillion operations, a number so
large that the algorithm could take decades! As you’ll see in this chapter, O(n2) algo-
rithms are easy to write. You’ll also see an algorithm with a more favorable Big O
measure. Efficient algorithms often require clever coding and more work to create.
Their superior performance can be well worth the extra effort, especially as n gets
large and as algorithms are combined into larger programs.

Self Check
1 (True/False) O(n2) algorithms running on today’s billion-operations-per-second
personal computers will not noticeably affect performance.
Answer: False. Actually, when n is small, O(n2) algorithms will not noticeably affect
performance. But as n grows, you’ll start to notice the performance degradation, even
on today’s powerful systems.

2 (Fill-In) Big O is concerned with how an algorithm’s run time grows in relation
to the .
Answer: number of items processed.

3 (True/False) An algorithm that is O(1) requires only one comparison.
Answer: False. O(1) means the number of comparisons is constant. The algorithm
may require multiple comparisons, but that number does not grow as the array’s size
increases.

4 (Fill-In) An O(n) algorithm is referred to as having a run time.
Answer: linear.

5 (Fill-In) An O(n2) algorithm is referred to as having run time.
Answer: quadratic.

13.3 Selection Sort
Selection sort is a simple but inefficient sorting algorithm:

• The algorithm’s first iteration selects the array’s smallest element and swaps it
with the array’s first element.

13.3 Selection Sort 661

• The second iteration selects the second-smallest element—which is the small-
est of those remaining—and swaps it with the second element.

• The algorithm continues until the last iteration selects the second-largest ele-
ment and swaps it with the second-to-last element. This leaves the largest ele-
ment as the last.

After the ith iteration, the array’s i smallest values will be sorted into increasing order
in the array’s first i elements.

As an example, consider the array
34 56 4 10 77 51 93 30 5 52

The selection sort first determines the array’s smallest element (4), then swaps it with
the value in element 0 (34), resulting in

4 56 34 10 77 51 93 30 5 52

The selection sort then determines the smallest remaining value beginning at element
1, which is the value 5 located in element 8. The program swaps 5 with the value 56
in element 1, resulting in

4 5 34 10 77 51 93 30 56 52

On the third iteration, the selection sort determines the next smallest value—10 in
element 3—and swaps it with 34 in element 2, resulting in

4 5 10 34 77 51 93 30 56 52

The process continues until after nine iterations the array is fully sorted, as in
4 5 10 30 34 51 52 56 77 93

After the first iteration, the smallest element is in element 0. After the second itera-
tion, the two smallest elements are in order in elements 0 and 1. After the third iter-
ation, the three smallest elements are in order in elements 0–2, and so on.

13.3.1 Selection Sort Implementation
Figure 13.1 implements the selection sort algorithm. Lines 18–20 fill array with 10
random int values. The main function prints the unsorted array, passes array to the
function selectionSort (line 29), then prints array again after it has been sorted.

1 // fig13_01.c
2 // The selection sort algorithm.
3 #define SIZE 10
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 // function prototypes
9 void selectionSort(int array[], size_t length);

10 void swap(int array[], size_t first, size_t second);
11 void printPass(int array[], size_t length, int pass, size_t index);

Fig. 13.1 | The selection sort algorithm. (Part 1 of 3.)

662 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

12
13 int main(void) {
14 int array[SIZE] = {0}; // declare the array of ints to be sorted
15
16 srand(time(NULL)); // seed the rand function
17
18 for (size_t i = 0; i < SIZE; i++) {
19 array[i] = rand() % 90 + 10; // give each element a value
20 }
21
22 puts("Unsorted array:");
23
24 for (size_t i = 0; i < SIZE; i++) { // print the array
25 printf("%d ", array[i]);
26 }
27
28 puts("\n");
29 selectionSort(array, SIZE);
30 puts("Sorted array:");
31
32 for (size_t i = 0; i < SIZE; i++) { // print the array
33 printf("%d ", array[i]);
34 }
35
36 puts("");
37 }
38
39 // function that selection sorts the array
40 void selectionSort(int array[], size_t length) {
41 // loop over length - 1 elements
42 for (size_t i = 0; i < length - 1; i++) {
43 size_t smallest = i; // first index of remaining array
44
45 // loop to find index of smallest element
46 for (size_t j = i + 1; j < length; j++) {
47 if (array[j] < array[smallest]) {
48 smallest = j;
49 }
50 }
51
52 swap(array, i, smallest); // swap smallest element
53 printPass(array, length, i + 1, smallest); // output pass
54 }
55 }
56
57 // function that swaps two elements in the array
58 void swap(int array[], size_t first, size_t second) {
59 int temp = array[first];
60 array[first] = array[second];
61 array[second] = temp;
62 }
63

Fig. 13.1 | The selection sort algorithm. (Part 2 of 3.)

13.3 Selection Sort 663

In function selectionSort (lines 40–55), variable smallest (line 43) stores the
smallest remaining element’s index. Lines 42–54 loop length - 1 times. Line 43
assigns to smallest the index i—the first index in the array’s unsorted portion. Lines

64 // function that prints a pass of the algorithm
65 void printPass(int array[], size_t length, int pass, size_t index) {
66 printf("After pass %2d: ", pass);
67
68 // output elements till selected item
69 for (size_t i = 0; i < index; i++) {
70 printf("%d ", array[i]);
71 }
72
73 printf("%d* ", array[index]); // indicate swap
74
75 // finish outputting array
76 for (size_t i = index + 1; i < length; i++) {
77 printf("%d ", array[i]);
78 }
79
80 printf("%s", "\n "); // for alignment
81
82 // indicate amount of array that is sorted
83 for (int i = 0; i < pass; i++) {
84 printf("%s", "-- ");
85 }
86
87 puts(""); // add newline
88 }

Unsorted array:
72 34 88 14 32 12 34 77 56 83

After pass 1: 12 34 88 14 32 72* 34 77 56 83
 --
After pass 2: 12 14 88 34* 32 72 34 77 56 83
 -- --
After pass 3: 12 14 32 34 88* 72 34 77 56 83
 -- -- --
After pass 4: 12 14 32 34* 88 72 34 77 56 83
 -- -- -- --
After pass 5: 12 14 32 34 34 72 88* 77 56 83
 -- -- -- -- --
After pass 6: 12 14 32 34 34 56 88 77 72* 83
 -- -- -- -- -- --
After pass 7: 12 14 32 34 34 56 72 77 88* 83
 -- -- -- -- -- -- --
After pass 8: 12 14 32 34 34 56 72 77* 88 83
 -- -- -- -- -- -- -- --
After pass 9: 12 14 32 34 34 56 72 77 83 88*
 -- -- -- -- -- -- -- -- --
After pass 10: 12 14 32 34 34 56 72 77 83 88*
 -- -- -- -- -- -- -- -- -- --
Sorted array:
12 14 32 34 34 56 72 77 83 88

Fig. 13.1 | The selection sort algorithm. (Part 3 of 3.)

664 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

46–50 process the remaining elements. For each, line 47 determines whether the ele-
ment’s value is less than the one at index smallest. If so, line 48 assigns the current
element’s index to smallest. After this loop, smallest contains the smallest remaining
element’s index. Line 52 calls swap (lines 58–62) to exchange the values at locations i
and smallest, placing the smallest remaining element at position i in the array.

The output uses dashes to underline the portion of the array that’s guaranteed to
be sorted after each pass. We place an asterisk next to the element that was swapped
with the smallest element on that pass. The element to the asterisk’s left and the ele-
ment above the rightmost dashes were the two values that were swapped on each pass.

13.3.2 Efficiency of Selection Sort
The selection sort algorithm runs in O(n2) time. In our selectionSort function, the
outer loop (lines 42–54) processes the array’s first n – 1 elements, swapping the small-
est remaining item into its sorted position. The inner loop (lines 46–50) processes the
remaining items, searching for the smallest element. This loop executes n – 1 times
during the first outer-loop iteration, n – 2 times during the second, then n – 3, …,
3, 2, 1. So, this inner loop iterates a total of n(n – 1) / 2 or (n2 – n)/2. In Big O nota-
tion, smaller terms drop out, and constants are ignored, leaving a Big O of O(n2).

Self Check
1 (Discussion) Consider the following array, which reflects the result of a selection
sort’s first pass:

4 56 34 10 77 51 93 30 5 52

What does the second pass do? Show the resulting array.
Answer: The second pass swaps 56 with 5 (the second smallest element), resulting in:

4 5 34 10 77 51 93 30 56 52

2 (Code) Consider the following selectionSort function:

What statement should replace the ??? in line 9 to complete the code?
Answer: smallest = j;

1 void selectionSort(int array[], size_t length) {
2 // loop over length - 1 elements
3 for (size_t i = 0; i < length - 1; i++) {
4 size_t smallest = i; // first index of remaining array
5
6 // loop to find index of smallest element
7 for (size_t j = i + 1; j < length; j++) {
8 if (array[j] < array[smallest]) {
9 ???

10 }
11 }
12
13 swap(array, i, smallest); // swap smallest element
14 printPass(array, length, i + 1, smallest); // output pass
15 }
16 }

13.4 Insertion Sort 665

13.4 Insertion Sort
Insertion sort is another simple but inefficient sorting algorithm. This algorithm’s
first iteration takes the array’s second element and, if it’s less than the first element,
swaps it with the first element. The second iteration looks at the third element and
inserts it into the correct position with respect to the first two elements, so all three
elements are in order. After this algorithm’s ith iteration, the first i elements in the
original array are sorted.

Consider as an example the following array:
34 56 4 10 77 51 93 30 5 52

The insertion sort’s first iteration looks at the array’s first two elements, 34 and 56.
These elements are already in order, so the algorithm continues. If they were out of
order, the algorithm would swap them.

In the next iteration, the algorithm looks at the third value, 4. This value is less
than 56, so the algorithm stores 4 in a temporary variable and moves 56 one element
to the right. The algorithm then determines that 4 is less than 34, so it moves 34 one
element to the right. The program has now reached the beginning of the array, so it
places 4 in element 0, resulting in

4 34 56 10 77 51 93 30 5 52

In the next iteration, the algorithm stores the value 10 in a temporary variable. Then
the program compares 10 to 56 and moves 56 one element to the right because it’s
larger than 10. The program then compares 10 to 34, moving 34 right one element.
When the program compares 10 to 4, it observes that 10 is larger than 4 and places 10
in element 1, resulting in

4 10 34 56 77 51 93 30 5 52

After the ith iteration, the array’s first i + 1 elements are sorted with respect to one
another. However, they may not be in their final locations, because there may be
smaller values later in the array.

13.4.1 Insertion Sort Implementation
Figure 13.2 implements the insertion sort algorithm. In function insertionSort
(lines 39–55), the variable insert (line 43) holds the element you’re going to insert
until we’ve moved the other elements. Lines 41–54 process the array’s items from
index 1 through the end. Each iteration stores in moveItem (line 42) the location
where an item will be inserted and stores in insert (line 43) the value that will be
inserted into its sorted portion. Lines 46–50 locate the position at which to insert the
element. This loop terminates either when the algorithm reaches the front of the array
or reaches an element that’s less than the value to insert. Line 48 moves an element
to the right, and line 49 decrements the position at which to insert the next element.
After the nested loop ends, line 52 inserts the element into place. The program’s out-
put uses dashes to indicate the portion of the array that’s sorted after each pass. We
place an asterisk next to the element that was inserted into place on that pass.

666 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

1 // fig13_02.c
2 // The insertion sort algorithm.
3 #define SIZE 10
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 // function prototypes
9 void insertionSort(int array[], size_t length);

10 void printPass(int array[], size_t length, int pass, size_t index);
11
12 int main(void) {
13 int array[SIZE] = {0}; // declare the array of ints to be sorted
14
15 srand(time(NULL)); // seed the rand function
16
17 for (size_t i = 0; i < SIZE; i++) {
18 array[i] = rand() % 90 + 10; // give each element a value
19 }
20
21 puts("Unsorted array:");
22
23 for (size_t i = 0; i < SIZE; i++) { // print the array
24 printf("%d ", array[i]);
25 }
26
27 puts("\n");
28 insertionSort(array, SIZE);
29 puts("Sorted array:");
30
31 for (size_t i = 0; i < SIZE; i++) { // print the array
32 printf("%d ", array[i]);
33 }
34
35 puts("");
36 }
37
38 // function that sorts the array
39 void insertionSort(int array[], size_t length) {
40 // loop over length - 1 elements
41 for (size_t i = 1; i < length; i++) {
42 size_t moveItem = i; // initialize location to place element
43 int insert = array[i]; // holds element to insert
44
45 // search for place to put current element
46 while (moveItem > 0 && array[moveItem - 1] > insert) {
47 // shift element right one slot
48 array[moveItem] = array[moveItem - 1];
49 --moveItem;
50 }
51
52 array[moveItem] = insert; // place inserted element

Fig. 13.2 | The insertion sort algorithm. (Part 1 of 2.)

13.4 Insertion Sort 667

53 printPass(array, length, i, moveItem);
54 }
55 }
56
57 // function that prints a pass of the algorithm
58 void printPass(int array[], size_t length, int pass, size_t index) {
59 printf("After pass %2d: ", pass);
60
61 // output elements till selected item
62 for (size_t i = 0; i < index; i++) {
63 printf("%d ", array[i]);
64 }
65
66 printf("%d* ", array[index]); // indicate swap
67
68 // finish outputting array
69 for (size_t i = index + 1; i < length; i++) {
70 printf("%d ", array[i]);
71 }
72
73 printf("%s", "\n "); // for alignment
74
75 // indicate amount of array that is sorted
76 for (size_t i = 0; i <= pass; i++) {
77 printf("%s", "-- ");
78 }
79
80 puts(""); // add newline
81 }

Unsorted array:
72 16 11 92 63 99 59 82 99 30

After pass 1: 16* 72 11 92 63 99 59 82 99 30
 -- --
After pass 2: 11* 16 72 92 63 99 59 82 99 30
 -- -- --
After pass 3: 11 16 72 92* 63 99 59 82 99 30
 -- -- -- --
After pass 4: 11 16 63* 72 92 99 59 82 99 30
 -- -- -- -- --
After pass 5: 11 16 63 72 92 99* 59 82 99 30
 -- -- -- -- -- --
After pass 6: 11 16 59* 63 72 92 99 82 99 30
 -- -- -- -- -- -- --
After pass 7: 11 16 59 63 72 82* 92 99 99 30
 -- -- -- -- -- -- -- --
After pass 8: 11 16 59 63 72 82 92 99 99* 30
 -- -- -- -- -- -- -- -- --
After pass 9: 11 16 30* 59 63 72 82 92 99 99
 -- -- -- -- -- -- -- -- -- --
Sorted array:
11 16 30 59 63 72 82 92 99 99

Fig. 13.2 | The insertion sort algorithm. (Part 2 of 2.)

668 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

13.4.2 Efficiency of Insertion Sort
Like selection sort, the insertion sort algorithm runs in O(n2) time. Like our function
selectionSort in Section 13.3.1, the insertionSort function uses nested loops. The
outer loop (lines 41–54) iterates SIZE - 1 times, inserting an element into the appro-
priate position in the elements sorted so far. For this application’s purposes, SIZE - 1

is equivalent to n – 1, as SIZE is the array’s number of elements. The nested loop
(lines 46–50) iterates over the array’s preceding elements. In the worst case, this while
loop requires n – 1 comparisons. Each individual loop runs in O(n) time. In Big O
notation, you must multiply the number of iterations of each loop in nested loops.
For each outer-loop iteration, there will be a certain number of inner-loop iterations.
In this algorithm, for each O(n) outer-loop iterations, there will be O(n) inner-loop
iterations. Multiplying these values results in a Big O of O(n2).

Self Check
1 (Fill-In) The insertion sort algorithm’s first iteration takes the array’s second ele-
ment and, if it’s less than the first element, swaps it with the first element. The second
iteration looks at the third element and inserts it into the correct position with respect
to the first two, so all three elements are in order. After the algorithm’s ith iteration,
the array’s elements will be sorted.
Answer: first i.

2 (Discussion) The insertion sort and selection sort algorithms both run in O(n2)
time. What program structure that they each have causes the O(n2) run time?
Answer: They each have a nested for-loop.

13.5 Case Study: Visualizing the High-Performance
Merge Sort
The merge sort algorithm is efficient but conceptually more complex than selection
sort and insertion sort. The merge sort algorithm sorts an array by splitting it into two
equal-sized subarrays, sorting each subarray, then merging them into one larger array.
With an odd number of elements, the algorithm creates the two subarrays, such that
one has one more element than the other.

Our merge sort implementation in this example is recursive. The base case is a
one-element array, which is, of course, sorted. So, merge sort immediately returns
when it’s called with a one-element array. The recursion step splits an array of two or
more elements into two equal-sized subarrays, recursively sorts each subarray, then
merges them into one larger, sorted array. Again, if there are an odd number of ele-
ments, one subarray is one element larger than the other.

Suppose the algorithm has already merged smaller arrays to create sorted arrays A:
4 10 34 56 77

and B:
5 30 51 52 93

13.5 Case Study: Visualizing the High-Performance Merge Sort 669

Merge sort combines these two arrays into one larger, sorted array. The smallest element
in A is 4 (located in element 0). The smallest element in B is 5 (located in element 0).
To determine the smallest element in the merged array, the algorithm compares 4 and
5. The value from A is smaller, so 4 becomes the first element in the merged array. Next,
the algorithm compares 10 (element 1 in A) to 5 (element 0 in B). The value from B is
smaller, so 5 becomes the second element in the merged array. The algorithm continues
by comparing 10 to 30, with 10 becoming the third element in the array, and so on.

13.5.1 Merge Sort Implementation
Figure 13.3 implements the merge sort algorithm. Lines 35–37 define the mergeSort
function. Line 36 calls function sortSubArray with the arguments 0 and length - 1

(length is the array’s size). The arguments are the beginning and ending subscripts of
the array to sort, so this call to sortSubArray operates on the entire array. Lines 40–
62 define the sortSubArray function. Line 42 tests the base case. If the subarray size
is 1, the subarray is sorted, so the function simply returns immediately. If the subar-
ray’s size is greater than 1, the function splits the subarray in two, recursively calls
function sortSubArray to sort the two halves, then merges them. Line 56 recursively
calls function sortSubArray for the subarray’s first half, and line 57 recursively calls
function sortSubArray for the subarray’s second half. When these two calls return,
each half is sorted. Line 60 calls function merge (lines 65–111) on the two halves to
combine them into one larger sorted subarray.

1 // fig13_03.c
2 // The merge sort algorithm.
3 #define SIZE 10
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 // function prototypes
9 void mergeSort(int array[], size_t length);

10 void sortSubArray(int array[], size_t low, size_t high);
11 void merge(int array[], size_t left, size_t middle1,
12 size_t middle2, size_t right);
13 void displayElements(int array[], size_t length);
14 void displaySubArray(int array[], size_t left, size_t right);
15
16 int main(void) {
17 int array[SIZE] = {0}; // declare the array of ints to be sorted
18
19 srand(time(NULL)); // seed the rand function
20
21 for (size_t i = 0; i < SIZE; i++) {
22 array[i] = rand() % 90 + 10; // give each element a value
23 }
24

Fig. 13.3 | The merge sort algorithm. (Part 1 of 5.)

670 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

25 puts("Unsorted array:");
26 displayElements(array, SIZE); // print the array
27 puts("\n");
28 mergeSort(array, SIZE); // merge sort the array
29 puts("Sorted array:");
30 displayElements(array, SIZE); // print the array
31 puts("");
32 }
33
34 // function that merge sorts the array
35 void mergeSort(int array[], size_t length) {
36 sortSubArray(array, 0, length - 1);
37 }
38
39 // function that sorts a piece of the array
40 void sortSubArray(int array[], size_t low, size_t high) {
41 // test base case: size of array is 1
42 if ((high - low) >= 1) { // if not base case...
43 size_t middle1 = (low + high) / 2;
44 size_t middle2 = middle1 + 1;
45
46 // output split step
47 printf("%s", "split: ");
48 displaySubArray(array, low, high);
49 printf("%s", "\n ");
50 displaySubArray(array, low, middle1);
51 printf("%s", "\n ");
52 displaySubArray(array, middle2, high);
53 puts("\n");
54
55 // split array in half and sort each half recursively
56 sortSubArray(array, low, middle1); // first half
57 sortSubArray(array, middle2, high); // second half
58
59 // merge the two sorted arrays
60 merge(array, low, middle1, middle2, high);
61 }
62 }
63
64 // merge two sorted subarrays into one sorted subarray
65 void merge(int array[], size_t left, size_t middle1,
66 size_t middle2, size_t right) {
67 size_t leftIndex = left; // index into left subarray
68 size_t rightIndex = middle2; // index into right subarray
69 size_t combinedIndex = left; // index into temporary array
70 int tempArray[SIZE] = {0}; // temporary array
71
72 // output two subarrays before merging
73 printf("%s", "merge: ");
74 displaySubArray(array, left, middle1);
75 printf("%s", "\n ");
76 displaySubArray(array, middle2, right);
77 puts("");

Fig. 13.3 | The merge sort algorithm. (Part 2 of 5.)

13.5 Case Study: Visualizing the High-Performance Merge Sort 671

78
79 // merge the subarrays until the end of one is reached
80 while (leftIndex <= middle1 && rightIndex <= right) {
81 // place the smaller of the two current elements in result
82 // and move to the next space in the subarray
83 if (array[leftIndex] <= array[rightIndex]) {
84 tempArray[combinedIndex++] = array[leftIndex++];
85 }
86 else {
87 tempArray[combinedIndex++] = array[rightIndex++];
88 }
89 }
90
91 if (leftIndex == middle2) { // if at end of left subarray ...
92 while (rightIndex <= right) { // copy the right subarray
93 tempArray[combinedIndex++] = array[rightIndex++];
94 }
95 }
96 else { // if at end of right subarray...
97 while (leftIndex <= middle1) { // copy the left subarray
98 tempArray[combinedIndex++] = array[leftIndex++];
99 }
100 }
101
102 // copy values back into original array
103 for (size_t i = left; i <= right; i++) {
104 array[i] = tempArray[i];
105 }
106
107 // output merged subarray
108 printf("%s", " ");
109 displaySubArray(array, left, right);
110 puts("\n");
111 }
112
113 // display elements in array
114 void displayElements(int array[], size_t length) {
115 displaySubArray(array, 0, length - 1);
116 }
117
118 // display certain elements in array
119 void displaySubArray(int array[], size_t left, size_t right) {
120 // output spaces for alignment
121 for (size_t i = 0; i < left; i++) {
122 printf("%s", " ");
123 }
124
125 // output elements left in array
126 for (size_t i = left; i <= right; i++) {
127 printf(" %d", array[i]);
128 }
129 }

Fig. 13.3 | The merge sort algorithm. (Part 3 of 5.)

672 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

Unsorted array:
 79 86 60 79 76 71 44 88 58 23

split: 79 86 60 79 76 71 44 88 58 23
 79 86 60 79 76
 71 44 88 58 23

split: 79 86 60 79 76
 79 86 60
 79 76

split: 79 86 60
 79 86
 60

split: 79 86
 79
 86

merge: 79
 86
 79 86

merge: 79 86
 60
 60 79 86

split: 79 76
 79
 76

merge: 79
 76
 76 79

merge: 60 79 86
 76 79
 60 76 79 79 86

split: 71 44 88 58 23
 71 44 88
 58 23

split: 71 44 88
 71 44
 88

split: 71 44
 71
 44

merge: 71
 44
 44 71

merge: 44 71
 88
 44 71 88

Fig. 13.3 | The merge sort algorithm. (Part 4 of 5.)

13.5 Case Study: Visualizing the High-Performance Merge Sort 673

Lines 80–89 in function merge loop until reaching the end of either subarray.
Line 83 tests which element at the beginning of the subarrays is smaller. If the left
subarray element is smaller or equal, line 84 places it in position in the merged array.
If the right subarray element is smaller, line 87 places it in position in the merged
array. When the while loop completes, one entire subarray is placed in the merged
array, but the other still contains data. Line 91 tests whether we reached the left sub-
array’s end. If so, lines 92–94 add the right subarray’s remaining elements to the
merged array. Otherwise, we reached the right subarray’s end, and lines 97–99 add
the left subarray’s remaining elements to the merged array. Finally, lines 103–105
copy tempArray’s values into the correct portion of the original array. This program’s
output displays the splits and merges performed by merge sort, showing the sort’s
progress at each step of the algorithm.

13.5.2 Efficiency of Merge Sort
Merge sort is a far more efficient algorithm than either insertion sort or selection sort
(although that may be difficult to believe when looking at the busy output in Fig. 13.3).
Consider the first (nonrecursive) call to function sortSubArray. This results in

• two recursive calls to function sortSubArray with subarrays that are each
approximately half the original array’s size, and

• a single call to function merge.

The merge call requires, at worst, n – 1 comparisons to fill the original array, which
is O(n). Recall that each merged element is chosen by comparing one element from
each subarray. The two calls to sortSubArray result in

• four more recursive calls to sortSubArray, each with a subarray approximately
one-quarter the original array’s size, and

• two more calls to function merge.

split: 58 23
 58
 23

merge: 58
 23
 23 58

merge: 44 71 88
 23 58
 23 44 58 71 88

merge: 60 76 79 79 86
 23 44 58 71 88
 23 44 58 60 71 76 79 79 86 88

Sorted array:
 23 44 58 60 71 76 79 79 86 88

Fig. 13.3 | The merge sort algorithm. (Part 5 of 5.)

674 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

These two calls to the function merge each require, at worst, n/2 – 1 comparisons, for
a total of O(n) comparisons. This process continues with each call to sortSubArray
generating two additional calls to sortSubArray and a call to merge until the algo-
rithm has split the original array into one-element subarrays. At each level, O(n) com-
parisons are required to merge the subarrays. Each level splits the arrays in half, so
doubling the array size requires one more level. Quadrupling the array size requires
two more levels. This pattern is logarithmic and results in log2n levels. This results in
a total efficiency of O(n log n).

Supporting Exercises
This Merge Sort Visualization Case Study is supported by exercises on other complex
sorts: Exercise 13.6 (Bucket Sort) and Exercise 13.7 (Quicksort). The bucket sort
achieves high performance by cleverly using considerably more memory than the
other sorts we discuss—this is an example of a space–time trade-off.

13.5.3 Summarizing Various Algorithms’ Big O Notations
The following table summarizes the Big O of the sorting algorithms we’ve covered
and the quicksort algorithm, which you’ll implement in Exercise 13.7.

The following table lists the Big O values we’ve covered in this chapter along with
a number of values for n to highlight the differences in the growth rates. The table
includes O(log n), which is the Big O for binary search you learned in Chapter 6.

Self Check
1 (Discussion) The recursive merge sort algorithm sorts an array by splitting it into
two equal-size subarrays, sorting each subarray, then merging them into one larger

Algorithm Big O

Insertion sort O(n2)
Selection sort O(n2)
Merge sort O(n log n)
Bubble sort O(n2)
Quicksort Worst case: O(n2)

Average case: O(n log n)

n
Approximate
decimal value O(log n) O(n) O(n log n) O(n2)

210 1000 10 210 10 ⋅ 210 220

220 1,000,000 20 220 20 ⋅ 220 240

230 1,000,000,000 30 230 30 ⋅ 230 260

 Summary 675

array. The subarrays in merge sort are not sorted with sorts we’ve covered, such as the
bubble sort, selection sort or insertion sort. Explain how the subarrays actually are
sorted in merge sort.
Answer: If the array has an even number of elements, the merge sort splits the array
into two equal-size halves. If the array has an odd number of elements, one “half” has
one more element than the other “half.”

Each half is then recursively split into two smaller halves. This halving process
continues until each half contains only one element. This is the base case of the recur-
sion, because a one-element array is sorted.

Next, those individual elements are merged into a two-element sorted subarray
based on their values. So, in answer to the question, the sorting is actually trivial. As
the algorithm’s recursion unwinds, merge sort keeps merging smaller sorted subarrays
to form larger sorted subarrays. Every merge of two sorted subarrays results in a larger
sorted subarray that’s about double the size of the ones being merged. The last merge
results in a sorted version of the original array.

2 (Discussion) Here are the first three lines of our merge sort example’s output:
split: 79 86 60 79 76 71 44 88 58 23
 79 86 60 79 76
 71 44 88 58 23

and here are the last three lines of the output:
merge: 60 76 79 79 86
 23 44 58 71 88
 23 44 58 60 71 76 79 79 86 88

Compare these outptus. How are your observations consistent with how the merge
sort works?
Answer: 1. In the final merge phase, each subarray corresponds to one of the unsorted
subarrays produced by the algorithm’s first split pass. 2. Each subarray entering the fi-
nal merge phase is sorted. 3. The 10-element final merged array contains the same el-
ements as the original unsorted array that entered the first split pass. 4. The 10-
element final merged array is, in fact, sorted. The recursive merge sort splits the origi-
nal unsorted array into smaller and smaller pieces until they are down to single-
element pieces, which it ultimately merges to form the smallest sorted pieces of the
original array. It keeps merging those sorted pieces to form larger and larger sorted
pieces until it finally merges the two—now sorted—halves of the original unsorted
array to form the final sorted array.

Summary
Section 13.1 Introduction
• Sorting involves arranging data into order.

Section 13.2, Efficiency of Algorithms: Big O
• One way to describe an algorithm’s efficiency is with Big O notation (O; p. 658), which

indicates how hard an algorithm may have to work to solve a problem.

676 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

• For searching and sorting algorithms, Big O describes how an algorithm’s amount of effort
varies, depending on how many elements are in the data.

• An O(1) algorithm is said to have a constant run time (p. 659). This does not mean that
the algorithm requires only one comparison. It just means that the number of comparisons
does not grow as the size of the array increases.

• An O(n) algorithm is referred to as having a linear run time (p. 659).
• An O(n2) algorithm is referred to as having a quadratic run time (p. 660).
• Big O is designed to highlight dominant factors and ignore terms that become unimportant

with high values of n.
• Big O notation is concerned with the growth rate of algorithm run times, so constants are

ignored.

Section 13.3, Selection Sort
• The first iteration of a selection sort (p. 660) selects the smallest element in the array and

swaps it with the first element. The second iteration selects the second-smallest element (the
smallest of those remaining) and swaps it with the second element. Selection sort continues
until the last iteration selects the second-largest element and swaps it with the second-to-
last, leaving the largest element as the last. At the ith iteration of selection sort, the array’s
smallest i elements are sorted into the array’s first i positions.

• The selection sort algorithm runs in O(n2) time (p. 664).

Section 13.4, Insertion Sort
• The first iteration of insertion sort (p. 665) takes the second element in the array and, if it’s

less than the first element, swaps it with the first element. The second iteration of insertion
sort looks at the third element and inserts it in the correct position with respect to the first
two elements. After the ith iteration of insertion sort, the first i elements in the original array
are sorted. Only n – 1 iterations are required.

• The insertion sort algorithm runs in O(n2) time (p. 668).

Section 13.5, Case Study: Visualizing the High-Performance Merge Sort
• The merge sort algorithm (p. 668) is faster but more complex to implement than selection

sort and insertion sort.
• The merge sort algorithm sorts an array by splitting it into two equal-size subarrays, sorting

each subarray and merging the subarrays into one larger array.
• Merge sort’s base case is an array with one element, which is already sorted, so merge sort

immediately returns when it’s called with a one-element array. The merge part of merge sort
takes two sorted arrays (these could be one-element arrays) and combines them into one
larger sorted array.

• The merge is performed by looking at each array’s first element, which is also the smallest
element. Merge sort places the smallest of these in the first element of the larger, sorted ar-
ray. If there are still elements in the subarray, merge sort looks at the second element in that
subarray (which is now the smallest element remaining) and compares it to the first element
in the other subarray. Merge sort continues this process until all the elements in one of the
subarrays has been processed. Then, merge sort adds the remaining elements of the other
subarray to the larger array.

• The merging portion of the merge sort algorithm is performed on two subarrays, each of
approximately size n/2. Creating each subarray requires n/2–1 comparisons for each subar-

 Self-Review Exercises 677

ray, or O(n) comparisons total. This pattern continues, as each level works on twice as many
arrays, but each is half the previous array’s size.

• This halving results in log n levels, each level requiring O(n) comparisons, for a total effi-
ciency of O(n log n) (p. 674), which is far more efficient than O(n2).

Self-Review Exercises
13.1 Fill-In the blanks in each of the following statements:

a) A selection sort application would take approximately times as long
to run on a 128-element array as on a 32-element array.

b) The efficiency of merge sort is .

13.2 The Big O of the linear search is O(n), and the Big O of the binary search is
O(log n). What key aspect of both the binary search (Chapter 6) and the merge sort
accounts for the logarithmic portion of their respective Big Os?

13.3 In what sense is the insertion sort superior to the merge sort? In what sense is
the merge sort superior to the insertion sort?

13.4 In the text, we say that after the merge sort splits the array into two subarrays,
it then sorts these two subarrays and merges them. Why might someone be puzzled
by our statement that “it then sorts these two subarrays”?

Answers to Self-Review Exercises
13.1 a) 16, because an O(n2) algorithm takes 16 times as long to sort four times as
much information. b) O(n log n).

13.2 Both algorithms incorporate “halving”—somehow reducing something by half
on each pass. The binary search eliminates from consideration one-half of the array
after each comparison. The merge sort splits the array in half each time it’s called.

13.3 The insertion sort is easier to understand and implement than the merge sort.
The merge sort is far more efficient—O(n log n)—than the insertion sort—O(n2).

13.4 In a sense, it does not really sort these two subarrays. It simply keeps splitting
the original array in half until it provides a one-element subarray, which is, of course,
sorted. It then builds up the original two subarrays by merging these one-element ar-
rays to form larger subarrays, which are then merged, and so on.

Exercises
13.5 (Recursive Selection Sort) A selection sort searches an array looking for the ar-
ray’s smallest element. When that element is found, it’s swapped with the first ele-
ment of the array. The process is then repeated for the subarray, beginning with the
second element. Each pass of the array results in one element being placed in its prop-
er location. This sort requires processing capabilities similar to bubble sort—for an
array of n elements, n – 1 passes must be made, and for each subarray, n – 1 compar-
isons must be made to find the smallest value. When the subarray being processed

678 Chapter 13 Computer-Science Thinking: Sorting Algorithms and Big O

contains one element, the array is sorted. Write a recursive function selectionSort
to perform this algorithm.

13.6 (Bucket Sort) A bucket sort begins with a one-dimensional array of positive in-
tegers to sort, and a two-dimensional array of integers with rows subscripted from 0
to 9 and columns subscripted from 0 to n – 1, where n is the array’s number of values
to sort. Each row of the two-dimensional array is a “bucket.” In this exercise, you’ll
write a bucketSort function that takes as arguments an int array and its size.

The algorithm is as follows:
a) Loop through the one-dimensional array and, based on each value’s ones

digit, place the value in a bucket (a row of the two-dimensional bucket ar-
ray). For example, place 97 in row 7, 3 in row 3 and 100 in row 0.

b) Loop through the bucket array’s rows and columns and copy the values back
to the original array. The new order of the above values in the one-dimen-
sional array is 100, 3 and 97.

c) Repeat this process for each subsequent digit position (tens, hundreds, thou-
sands, and so on) and stop when the largest number’s leftmost digit has been
processed.

The second pass of the array places 100 in row 0, 3 in row 0 (it had only one
digit, so we treat it as 03) and 97 in row 9. After this pass, the values’ order in the
one-dimensional array is 100, 3 and 97. The third pass places 100 in row 1, 3 (003)
in row zero and 97 (097) in row zero (after 3). The bucket sort is guaranteed to
properly sort all the values after processing the leftmost digit of the largest number.
The bucket sort knows it’s done when all the values are copied into row zero of the
two-dimensional bucket array.

The two-dimensional bucket array is ten times the size of the int array being
sorted. This sorting technique provides far better performance than, for example, a
bubble sort but requires much larger storage capacity. Bubble sort requires only one
additional memory location for the type of data being sorted. Bucket sort is an
example of a space–time trade-off. It uses more memory but performs better.

The bucket sort algorithm described above requires copying all the data back to
the original array on each pass. Another possibility is to create a second two-dimen-
sional bucket array and repeatedly move the data between the two bucket arrays
until all the data is copied into row zero of one of the arrays. Row zero then contains
the sorted array.

13.7 (Quicksort) We discussed various sorting techniques in the examples and exer-
cises of Chapter 6 and this chapter. We now present the recursive quicksort sorting
technique. The basic algorithm for a one-dimensional array of values is as follows:

a) Partitioning Step: Take the unsorted array’s first element and determine its
final location in the sorted array. That’s the position for which all values to
the element’s left are less than that value, and all values to the element’s right
are greater than that value. We now have one element in its proper location
and two unsorted subarrays.

b) Recursive Step: Perform the partitioning step on each unsorted subarray.

 Exercises 679

For each subarray, the partitioning step places another element in its final location of
the sorted array and creates two more unsorted subarrays. A subarray consisting of
one element is sorted, so that element is in its final location.

The basic algorithm seems simple enough, but how do we determine the final
position of each subarray’s first element? As an example, consider the following set of
values—the element in bold is the partitioning element that will be placed in its
final location in the sorted array:

37 2 6 4 89 8 10 12 68 45

a) Starting from the rightmost array element, compare each element with 37
until an element less than 37 is found, then swap 37 and that element. The
first element less than 37 is 12, so we swap 37 and 12. In the updated array
below, we show 12 in italic to indicate that it was just swapped with 37:

12 2 6 4 89 8 10 37 68 45

b) Starting from the array’s left, but beginning with the element after 12, com-
pare each element with 37 until an element greater than 37 is found, then
swap 37 and that element. The first element greater than 37 is 89, so we swap
37 and 89. The updated array is

12 2 6 4 37 8 10 89 68 45

c) Starting from the right, but beginning with the element before 89, compare
each element with 37 until an element less than 37 is found, then swap 37
and that element. The first element less than 37 is 10, so we swap 37 and 10.
The updated array is

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare
each element with 37 until an element greater than 37 is found, then swap
37 and that element. There are no more elements greater than 37. When we
compare 37 with itself, we know that 37 is in its final location in the sorted
array.

Once the partition has been applied to the array, there are two unsorted subarrays.
The subarray with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray
with values greater than 37 contains 89, 68 and 45. Quicksort continues by partition-
ing both subarrays in the same manner as the original array.

Write recursive function quicksort to sort a one-dimensional integer array. The
function should receive as arguments an int array, a starting subscript and an ending
subscript. The quicksort should call the function partition to perform the parti-
tioning step.

14Preprocessor

O b j e c t i v e s
In this chapter, you’ll:
■ Use #include to help

manage files in large programs.
■ Use #define to create

macros with and without
arguments.

■ Use conditional compilation
to specify portions of a
program that should not
always be compiled, such as
code that assists you in
debugging.

■ Display error messages during
conditional compilation.

■ Use assertions to test whether
the expression values are
correct.

14.1 Introduction 682

O
ut

lin
e

14.1 Introduction
The C preprocessor executes before each program compiles. It:

• includes other files into the file being compiled,

• defines symbolic constants and macros,

• conditionally compiles program code and

• conditionally executes preprocessor directives.

Preprocessor directives begin with #. Only whitespace characters and comments
delimited by /* and */ may appear before a preprocessor directive on a line.

C has perhaps the largest installed base of “legacy code” of any modern program-
ming language. It’s been in use for about five decades. As a professional C program-
mer, you’re likely to encounter code written many years ago using older
programming techniques. This chapter presents several of those techniques and rec-
ommends some newer techniques that can replace them.

Self Check
1 (Multiple Choice) Which of the following are actions performed by the prepro-
cessor?

a) The inclusion of other files into the file being compiled.
b) Definition of symbolic constants and macros.
c) Conditional compilation of program code and conditional execution of pre-

processor directives.
d) All of the above.

Answer: d.

2 (True/False) C has perhaps the largest installed base of “legacy code” of any mod-
ern programming language. It’s been in active use for about five decades.
Answer: True.

14.1 Introduction
14.2 #include Preprocessor Directive
14.3 #define Preprocessor Directive:

Symbolic Constants
14.4 #define Preprocessor Directive:

Macros
14.4.1 Macro with One Argument
14.4.2 Macro with Two Arguments
14.4.3 Macro Continuation Character
14.4.4 #undef Preprocessor Directive
14.4.5 Standard-Library Macros
14.4.6 Do Not Place Expressions with Side

Effects in Macros

14.5 Conditional Compilation
14.5.1 #if…#endif Preprocessor Directive
14.5.2 Commenting Out Blocks of Code

with #if…#endif
14.5.3 Conditionally Compiling Debug Code

14.6 #error and #pragma
Preprocessor Directives

14.7 # and ## Operators
14.8 Line Numbers
14.9 Predefined Symbolic Constants

14.10 Assertions
14.11 Secure C Programming

Summary | Self-Review Exercises | Answers to Self-Review Exercises | Exercises

14.2 #include Preprocessor Directive 683

14.2 #include Preprocessor Directive
You’ve used the #include preprocessor directive throughout this book. When the
preprocessor encounters a #include, it replaces the directive with a copy of the spec-
ified file. The two forms of the #include directive are:

#include <filename>
#include "filename"

The difference between these is the location where the preprocessor begins searching
for the file. For filenames enclosed in angle brackets (< and >)—such as standard
library headers—the preprocessor searches in implementation-dependent compiler
and system folders. You typically use filenames enclosed in quotes ("") to include
headers that you define for use with your program. In this case, the preprocessor
begins searching in the same folder as the file in which the #include directive appears.
If the compiler cannot find the specified file in the current folder, it searches the
implementation-dependent compiler and system folders.

In addition to using #include for standard library headers, you’ll frequently use
it in programs consisting of multiple source files. You’ll often create headers for a pro-
gram’s common declarations, then include that file into multiple source files. Exam-
ples of such declarations are:

• struct and union declarations,

• typedefs,

• enums, and

• function prototypes.

Self Check
1 (Fill-In) The preprocessor directive causes a copy of a specified file to
be included in place of the directive.
Answer: #include.

2 (Fill-In) If the filename in an #include directive is enclosed in quotes, the pre-
processor begins its search for the file in .
Answer: the same directory as the file being compiled.

14.3 #define Preprocessor Directive: Symbolic
Constants
The #define directive creates:

• symbolic constants—constants represented as identifiers, and

• macros—operations defined as symbols.

The #define directive’s format is

#define identifier replacement-text

684 Chapter 14 Preprocessor

By convention, a symbolic constant’s identifier should contain only uppercase letters
and underscores. Using meaningful names for symbolic constants helps make pro-
grams self-documenting.

Replacing Symbolic Constants
When the preprocessor encounters a #define directive, it replaces identifier with
replacement text throughout that source file, ignoring any occurrences of identifier in
string literals or comments. For example,

#define PI 3.14159

replaces all subsequent occurrences of the symbolic constant PI with 3.14159. Sym-
bolic constants enable you to create named constants and use their names throughout
the program.

Common Error with Symbolic Constants
Everything to the right of a symbolic constant’s name replaces the symbolic constant.
For example,

#define PI = 3.14159

causes the preprocessor to replace every occurrence of PI with "= 3.14159". Incorrect
#define directives cause many subtle logic and syntax errors. So, in preference to the
preceding #define, you may prefer to use const variables, such as

const double PI = 3.14159;

These have the additional benefit that they’re defined in C, so the compiler can check
them for proper syntax and type safety.

Self Check
1 (Fill-In) The #define directive creates constants and .
Answer: symbolic, macros.

2 (True/False) The statement
#define PI 3.14159;

replaces all subsequent occurrences of the symbolic constant PI with the numeric
constant 3.14159.
Answer: False. Actually, this #define is a common error. Preprocessor directives are
not C statements and generally should not end in semicolons. The above statement
would replace all occurrences of PI with 3.14159; (including the semicolon), proba-
bly causing one or more compilation errors.

14.4 #define Preprocessor Directive: Macros
Technically, any identifier defined in a #define preprocessor directive is a macro. As
with symbolic constants, the macro-identifier is replaced with replacement-text
before the program is compiled. Macros may be defined with or without arguments.

ERR

14.4 #define Preprocessor Directive: Macros 685

A macro without arguments is a symbolic constant. When the preprocessor encoun-
ters a macro with arguments, it substitutes the arguments in the replacement text,
then expands the macro—that is, it replaces the macro with its replacement-text and
argument list.

14.4.1 Macro with One Argument
Consider the following one-argument macro definition that calculates a circle’s area:

#define CIRCLE_AREA(x) ((PI) * (x) * (x))

Expanding a Macro with an Argument
Wherever CIRCLE_AREA(argument) appears in the file, the preprocessor:

• substitutes argument for x in the replacement-text,

• replaces PI with its value 3.14159 (from Section 14.3), and

• expands the macro in the program.

For example, the preprocessor expands
double area = CIRCLE_AREA(4);

to
double area = ((3.14159) * (4) * (4));

At compile time, the compiler evaluates the preceding expression and assigns the
result to the variable area.

Importance of Parentheses
The parentheses around each x in the replacement-text force the proper evaluation
order when a macro’s argument is an expression. Consider the statement

double area = CIRCLE_AREA(c + 2);

which expands to
double area = ((3.14159) * (c + 2) * (c + 2));

This evaluates correctly because the parentheses force the proper evaluation order. If
you omit the macro definition’s parentheses, the macro expansion is

double area = 3.14159 * c + 2 * c + 2;

which evaluates incorrectly as
double area = (3.14159 * c) + (2 * c) + 2;

because of C’s operator precedence rules. For this reason, you should always enclose
macro arguments in parentheses in the replacement-text to prevent logic errors.

It’s Better to Use a Function
Defining the CIRCLE_AREA macro as a function is safer. The circleArea function

double circleArea(double x) {
 return 3.14159 * x * x;
}

ERR

686 Chapter 14 Preprocessor

performs the same calculation as macro CIRCLE_AREA, but a function’s argument is
evaluated only once when the function is called. Also, the compiler performs type
checking on functions. The preprocessor does not support type checking. In the past,
programmers often used macros to replace function calls with inline code to eliminate
the function-call overhead. Today’s optimizing compilers often inline function calls
for you, so many programmers no longer use macros for this purpose. You can also
use the C standard’s inline keyword (see Appendix C).

14.4.2 Macro with Two Arguments
The following two-argument macro calculates a rectangle’s area:

#define RECTANGLE_AREA(x, y) ((x) * (y))

Wherever RECTANGLE_AREA(x, y) appears in the program, the preprocessor substitutes
the values of x and y in the macro’s replacement-text and expands the macro in the
program. For example, the statement

int rectangleArea = RECTANGLE_AREA(a + 4, b + 7);

is expanded to
int rectangleArea = ((a + 4) * (b + 7));

14.4.3 Macro Continuation Character
A macro’s or symbolic constant’s replacement-text is everything to the identifier’s
right in the #define directive. If the replacement-text is longer than the remainder of
the line, you can place a backslash (\) continuation character at the end of the line to
continue the replacement-text on the next line.

14.4.4 #undef Preprocessor Directive
Symbolic constants and macros can be discarded for the remainder of a source file
using the #undef preprocessor directive. Directive #undef undefines a symbolic con-
stant or macro name. A macro’s or symbolic constant’s scope is from its definition
until it’s undefined with #undef, or until the end of the source file. Once undefined,
a macro or symbolic constant can be redefined with #define.

14.4.5 Standard-Library Macros
Some standard-library functions actually are defined as macros, based on other library
functions. A macro commonly defined in the <stdio.h> header is

#define getchar() getc(stdin)

The macro definition of getchar uses function getc to get one character from the
standard input stream. The <stdio.h> header’s putchar function and the <ctype.h>
header’s character-handling functions often are implemented as macros as well.

PERF

14.5 Conditional Compilation 687

14.4.6 Do Not Place Expressions with Side Effects in Macros
Expressions with side effects (e.g., variable values are modified) should not be passed
to a macro, because macro arguments may be evaluated more than once. We’ll show
an example of this in Section 14.11.

Self Check
1 (True/False) The following two-argument macro calculates a rectangle’s area:

#define RECTANGLE_AREA(x, y) ((x) * (y))

Wherever RECTANGLE_AREA(x, y) appears in the program, the values of x and y are
substituted in the macro replacement-text and the macro is expanded in place of the
macro name. For example, the statement

double rectArea = RECTANGLE_AREA(a + 4, b + 7);

is expanded to
double rectArea = (a + 4 * b + 7);

The value of the expression is evaluated at runtime and assigned to variable rectArea.
Answer: False. Actually, the correct expansion is:

double rectArea = ((a + 4) * (b + 7));

2 (Fill-In) Expressions with should not be passed to a macro because
macro arguments may be evaluated more than once.
Answer: side effects.

14.5 Conditional Compilation
Conditional compilation enables you to control which preprocessor directives exe-
cute and whether parts of your C code compile. Each conditional preprocessor direc-
tive evaluates a constant integer expression. Cast expressions, sizeof expressions and
enumeration constants cannot be evaluated in preprocessor directives.

14.5.1 #if…#endif Preprocessor Directive
The conditional preprocessor construct is much like the if selection statement. Con-
sider the following preprocessor code:

#if !defined(MY_CONSTANT)
 #define MY_CONSTANT 0
#endif

This determines whether MY_CONSTANT is defined—that is, whether MY_CONSTANT has
already appeared in an earlier #define directive within the current source file. The
expression defined(MY_CONSTANT) evaluates to 1 (true) if MY_CONSTANT is defined; oth-
erwise, it evaluates to 0 (false). If the result is 0, !defined(MY_CONSTANT) evaluates to
1, indicating that MY_CONSTANT was not defined previously, so the #define directive
executes. Otherwise, the preprocessor skips the #define directive.

688 Chapter 14 Preprocessor

Every #if construct ends with #endif. The directives #ifdef and #ifndef are
shorthand for #if defined(name) and #if !defined(name). You can test a multiple-
part conditional preprocessor construct by using

• #elif (the equivalent of else if in an if statement) and

• #else (the equivalent of else in an if statement) directives.

Conditional preprocessor directives are frequently used to prevent header files from
being included multiple times in the same source file. These directives frequently are
used to enable and disable code that makes software compatible with a range of plat-
forms.

14.5.2 Commenting Out Blocks of Code with #if…#endif
During program development, it’s often helpful to “comment out” portions of your
code to prevent them from being compiled. If the code contains multiline comments,
/* and */ cannot do this because you cannot nest multiline comments. Instead, you
can use the following preprocessor construct:

#if 0

 code prevented from compiling
#endif

To enable the code to be compiled, replace the 0 in the preceding construct with 1.

14.5.3 Conditionally Compiling Debug Code
Conditional compilation is sometimes used as a debugging aid. For example, some
programmers use printf statements to print variable values and to confirm a pro-
gram’s flow of control. You can enclose such printf statements in conditional pre-
processor directives so the statements are compiled only while you’re still debugging
your code. For example,

#ifdef DEBUG
 printf("Variable x = %d\n", x);
#endif

compiles the printf statement if the symbolic constant DEBUG is defined with
#define DEBUG

before #ifdef DEBUG. When you complete your debugging phase, you remove or com-
ment out the #define directive in the source file, and the printf statements inserted
for debugging purposes are ignored during compilation. In larger programs, you
might define several symbolic constants that control the conditional compilation in
separate sections of the source file.

Many compilers allow you to define and undefine symbolic constants like DEBUG
with a compiler flag that you supply each time you compile the code so that you do
not need to change the code. When inserting conditionally compiled printf state-
ments in locations where C expects a single statement (e.g., a control statement’s
body), ensure that the conditionally compiled statements are enclosed in braces ({}).

14.6 #error and #pragma Preprocessor Directives 689

Self Check
1 (True/False) The conditional compilation statement

#ifdef DEBUG
 printf("Variable x = %d\n", x);
#endif

compiles the printf statement if the symbolic constant DEBUG is defined (#define
DEBUG) before #ifdef DEBUG.
Answer: True.

2 (True/False) During program development, it’s often helpful to “comment out”
portions of code to prevent them from being compiled. If the code contains multiline
comments, /* and */ should be used to accomplish this task.
Answer: False. Actually, if the code contains multiline comments, /* and */ cannot
be used to accomplish this task, because such comments cannot be nested. Instead,
you can use the following preprocessor construct:

#if 0

 code prevented from compiling
#endif

14.6 #error and #pragma Preprocessor Directives
The #error directive

#error tokens

prints an implementation-dependent message, including the tokens specified in the
directive. The tokens are sequences of characters separated by spaces. For example,

#error 1 - Out of range error

contains 6 tokens. When the #error directive is processed on some systems, the
tokens are displayed as an error message, preprocessing stops, and the program does
not compile.

The #pragma directive

#pragma tokens

causes an implementation-defined action. A #pragma not recognized by the implemen-
tation is ignored. For more information on #error and #pragma, see the documenta-
tion for your C compiler.

Self Check
1 (Fill-In) When a(n) preprocessor directive is processed on some sys-
tems, the tokens in the directive are displayed as an error message, preprocessing stops
and the program does not compile.
Answer: #error.

2 (Fill-In) The #pragma directive causes a(n) action
Answer: implementation-defined.

690 Chapter 14 Preprocessor

14.7 # and ## Operators
The # operator converts a replacement-text token to a string surrounded by quotes.
Consider the following macro definition:

#define HELLO(x) puts("Hello, " #x);

When HELLO(John) appears in a program file, the preprocessor expands it to
puts("Hello, " "John");

replacing #x with the string "John". Strings separated by whitespace are concatenated
during preprocessing, so the preceding statement is equivalent to

puts("Hello, John");

The # operator must be used in a macro with arguments because #’s operand refers to
one of the macro’s arguments.

The ## operator concatenates two tokens. Consider the following macro definition:
#define TOKENCONCAT(x, y) x ## y

When TOKENCONCAT appears in a file, the preprocessor concatenates the arguments
and uses the result to replace the macro. For example, TOKENCONCAT(O, K) is replaced
by OK in the program. The ## operator must have two operands.

Self Check
1 (Fill-In) The preprocessor operator causes a replacement-text token to
be converted to a string surrounded by quotes.
Answer: #.

2 (Code) The ## preprocessor operator concatenates two tokens. Write the macro
definition described by, “When SIDEBYSIDE appears in the program, its arguments are
concatenated and used to replace the macro. So, SIDEBYSIDE(GOOD, BYE) is replaced
by GOODBYE in the program.”
Answer: #define SIDEBYSIDE(a, b) a ## b

14.8 Line Numbers
The #line preprocessor directive causes the subsequent source-code lines to be
renumbered, starting with the specified constant integer value. The directive

#line 100

starts line numbering from 100 beginning with the next source-code line. Including
a filename in the #line directive, as in

#line 100 "file1.c"

indicates that lines are numbered from 100 beginning with the next source-code line
and that the filename for the purpose of any compiler messages is "file1.c". This
version of the #line directive normally helps make the messages produced by syntax
errors and compiler warnings more meaningful. The line numbers do not appear in
the source file.

14.9 Predefined Symbolic Constants 691

Self Check
1 (True/False) The preprocessor directive

#line 100 "file1.c"

indicates that lines are numbered from 100 beginning with the next source-code line
and that the name of the file for the purpose of any compiler messages is "file1.c".
Answer: True.

14.9 Predefined Symbolic Constants
Standard C provides predefined symbolic constants, several of which are shown in
the following table:

The remaining predefined symbolic constants are in Section 6.10.8 of the C stan-
dard. These identifiers begin and end with two underscores and often are useful for
including additional information in error messages. These identifiers and the defined
identifier (used in Section 14.5) cannot be used in #define or #undef directives.

Self Check
1 (Fill-In) The predefined symbolic constant is described by, “The value
1 if the compiler supports Standard C; 0 otherwise.”
Answer: __STDC__.

14.10 Assertions
The assert macro—defined in <assert.h>—tests an expression’s value at execution
time. If the value is false (0), assert prints an error message and terminates the pro-
gram by calling function abort of the general utilities library (<stdlib.h>).

The assert macro is a useful debugging tool for testing whether a variable has a
correct value. For example, suppose variable x should never be larger than 10 in a pro-
gram. You can use an assertion to test x’s value and print an error message if it’s
greater than 10, as in

assert(x <= 10);

Symbolic constant Explanation

__LINE__ The line number of the current source-code line (an integer constant).
__FILE__ The name of the source file (a string).
__DATE__ The date the source file was compiled (in the form "Mmm dd yyyy",

such as "Jan 19 2002").
__TIME__ The time the source file was compiled (in the form "hh:mm:ss").
__STDC__ The value 1 if the compiler supports Standard C; 0 otherwise.

Requires the compiler flag /Za in Visual C++.

692 Chapter 14 Preprocessor

If x is greater than 10 when this statement executes, the program displays an error
message containing the line number and filename where the assert statement
appears, then terminates. You’d then focus on this area of the code to find the error.

If the symbolic constant NDEBUG is defined, subsequent assertions in the source file
are ignored. So, when assertions are no longer needed, rather than deleting each asser-
tion manually, you can insert the following line in the source file:

#define NDEBUG

Many compilers have debug and release modes that automatically define and unde-
fine NDEBUG.

Assertions are not meant as a substitute for error handling during normal runtime
conditions. You should use them only to find logic errors during program develop-
ment. The C standard also includes a capability called _Static_assert, which is
essentially a compile-time version of assert that produces a compilation error if the
assertion fails. We discuss _Static_assert in Appendix C.

Self Check
1 (True/False) The assert macro—defined in <assert.h>—tests the value of an
expression at compile time.
Answer: False. Actually, the assert macro tests the value of an expression at execution
time. _Static_assert is essentially a compile-time version of assert that produces a
compilation error if the assertion fails.

2 (Fill-In) When assertions are no longer needed, you can insert the line in
the code file rather than delete each assertion manually.
Answer: #define NDEBUG.

14.11 Secure C Programming
The CIRCLE_AREA macro defined in Section 14.4:

#define CIRCLE_AREA(x) ((PI) * (x) * (x))

is an unsafe macro, because it evaluates its argument x more than once. This can cause
subtle errors. If the macro argument contains side effects—such as incrementing a
variable or calling a function that modifies a variable’s value—those side effects would
be performed multiple times.

For example, if we call CIRCLE_AREA as follows:
double result = CIRCLE_AREA(++radius);

The preprocessor expands this to
double result = ((3.14159) * (++radius) * (++radius));

which increments radius twice. Also, the preceding statement’s result is undefined,
because C allows a variable to be modified only once in a statement. In a function call,
the argument is evaluated only once before it’s passed to the function. So, functions
are always preferred to unsafe macros.

 Summary 693

Self Check
1 (Fill-In) The CIRCLE_AREA macro

#define CIRCLE_AREA(x) ((PI) * (x) * (x))

is considered unsafe because it . This can cause subtle errors.
Answer: evaluates its argument x more than once.

2 (True/False) Macros are always preferred to functions.
Answer: False. Actually, functions are always preferred to unsafe macros.

Summary
Section 14.1 Introduction
• The preprocessor executes before a program compiles.
• All preprocessor directives (p. 683) begin with #.
• Only whitespace characters and comments may appear before a preprocessor directive on a

line.

Section 14.2 #include Presprocessor Directive
• The #include directive (p. 683) includes a copy of the specified file. If the filename is en-

closed in quotes, the preprocessor begins searching in the same folder as the file being com-
piled. If the filename is enclosed in angle brackets (< and >), as is the case for C standard
library headers, the search is performed in an implementation-defined manner.

Section 14.3 #define Preprocessor Directive: Symbolic Constants
• The #define preprocessor directive (p. 683) creates symbolic constants and macros.
• A symbolic constant (p. 683) is a name for a constant.

Section 14.4 #define Preprocessor Directive: Macros
• A macro is an operation defined in a #define preprocessor directive. Macros may be defined

with or without arguments.
• Replacement-text (p. 684) is specified after a symbolic constant’s identifier or after the clos-

ing right parenthesis of a macro’s argument list. If the replacement-text for a macro or sym-
bolic constant is longer than the remainder of the line, use a backslash (\; p. 686) at the end
of the line to indicate that the replacement-text continues on the next line.

• Symbolic constants and macros can be discarded using the #undef preprocessor directive
(p. 686). Directive #undef “undefines” the symbolic constant or macro name.

• The scope (p. 686) of a symbolic constant or macro is from its definition until it’s unde-
fined with #undef or until the end of the file.

Section 14.5 Conditional Compilation
• Conditional compilation (p. 688) enables you to control whether preprocessor directives

execute and whether program code compiles.
• The conditional preprocessor directives evaluate constant integer expressions. Cast expres-

sions, sizeof expressions and enum constants cannot be evaluated in preprocessor directives.
• Every #if construct ends with #endif (p. 688).

694 Chapter 14 Preprocessor

• Directives #ifdef and #ifndef (p. 688) are provided as shorthand for #if defined(name)
and #if !defined(name).

• Multiple-part conditional preprocessor constructs may be tested with directives #elif and
#else (p. 688).

Section 14.6 #error and #pragma Preprocessor Directives
• The #error directive (p. 689) terminates preprocessing, prevents compilation and prints an

implementation-dependent message that includes the tokens specified in the directive.
• The #pragma directive (p. 689) causes an implementation-defined action. If the #pragma is

not recognized by the implementation, it’s ignored.

Section 14.7 # and ## Operators
• The # operator converts a replacement-text token to a string surrounded by quotes. The #

operator must be used in a macro with arguments because #’s operand must be one of the
macro’s arguments.

• The ## operator concatenates two tokens. The ## operator must have two operands.

Section 14.8 Line Numbers
• The #line preprocessor directive (p. 690) causes the subsequent source-code lines to be re-

numbered, starting with the specified constant integer value. This directive also enables you
to specify the filename used for that source-code file in compiler error messages.

Section 14.9 Predefined Symbolic Constants
• Constant __LINE__ (p. 691) is the line number (an integer) of the current source-code line.
• Constant __FILE__ (p. 691) is the name of the file (a string).
• Constant __DATE__ (p. 691) is the date the source file is compiled (a string).
• Constant __TIME__ (p. 691) is the time the source file is compiled (a string).
• Constant __STDC__ (p. 691) indicates whether the compiler supports Standard C.
• Each of the predefined symbolic constants begins and ends with two underscores.

Section 14.10 Assertions
• Macro assert (p. 691; <assert.h> header) tests the value of an expression. If the value is 0

(false), assert prints an error message and calls function abort (p. 691) to terminate pro-
gram execution.

Self-Review Exercises
14.1 Fill-In the blanks in each of the following:

a) Every preprocessor directive must begin with .
b) The conditional compilation construct may be extended to test for multiple

cases by using the and directives.
c) The directive creates macros and symbolic constants.
d) Only characters may appear before a preprocessor directive on a line.
e) The directive discards symbolic constant and macro names.
f) The and directives are provided as shorthand notation

for #if defined(name) and #if !defined(name).

 Answers to Self-Review Exercises 695

g) enables you to control whether preprocessor directives execute and
whether code compiles.

h) The macro prints a message and terminates program execution if
the macro’s expression evaluates is 0.

i) The directive inserts a file in another file.
j) The preprocessor operator concatenates its two arguments.
k) The preprocessor operator converts its operand to a string.
l) The character indicates that the replacement-text for a symbolic

constant or macro continues on the next line.
m)The directive causes the source-code lines to be numbered from

the indicated value beginning with the next source-code line.

14.2 Write a program to print the values of the predefined symbolic constants listed
in Section 14.9.

14.3 Write a preprocessor directive to accomplish each of the following:
a) Define the symbolic constant YES to have the value 1.
b) Define the symbolic constant NO to have the value 0.
c) Include the header common.h. The header is found in the same directory as

the file being compiled.
d) Renumber the remaining lines in the file beginning with line number 3000.
e) If the symbolic constant TRUE is defined, undefine it and redefine it as 1. Do

not use #ifdef.
f) If the symbolic constant TRUE is defined, undefine it and redefine it as 1. Use

the #ifdef preprocessor directive.
g) If the symbolic constant TRUE is not equal to 0, define symbolic constant

FALSE as 0. Otherwise define FALSE as 1.
h) Define the macro CUBE_VOLUME that computes the volume of a cube. The

macro takes one argument.

Answers to Self-Review Exercises
14.1 a) #. b) #elif, #else. c) #define. d) whitespace. e) #undef. f) #ifdef, #ifndef.
g) Conditional compilation. h) assert. i) #include. j) ##. k) #. l) \. m) #line.

14.2 See below. [Note: In Visual Studio, __STDC__ works requires the /Za compiler
flag.]

1 // ex14_02.c
2 // Print the values of the predefined macros
3 #include <stdio.h>
4 int main(void) {
5 printf("__LINE__ = %d\n", __LINE__);
6 printf("__FILE__ = %s\n", __FILE__);
7 printf("__DATE__ = %s\n", __DATE__);
8 printf("__TIME__ = %s\n", __TIME__);
9 printf("__STDC__ = %d\n", __STDC__);

10 }

696 Chapter 14 Preprocessor

14.3 See the answers below:
a) #define YES 1
b) #define NO 0
c) #include "common.h"
d) #line 3000
e) #if defined(TRUE)

 #undef TRUE

 #define TRUE 1

#endif
f) #ifdef TRUE

 #undef TRUE

 #define TRUE 1

#endif
g) #if TRUE

 #define FALSE 0

#else

 #define FALSE 1

#endif
h) #define CUBE_VOLUME(x) ((x) * (x) * (x))

Exercises
14.4 (Volume of a Sphere) Write a program that defines a macro with one argument
to compute a sphere’s volume. Use the macro to compute the volumes for spheres of
radius 1 to 10 and print the results in tabular format. The formula for a sphere’s vol-
ume is

(4.0 / 3) * π * r3

where π is 3.14159.

14.5 (Adding Two Numbers) Write a program that defines macro SUM with two ar-
guments, x and y, and use SUM to produce the following output:

14.6 (Smaller of Two Numbers) Write a program that defines and uses a macro
named MINIMUM2 to determine the smaller of two numeric values.

__LINE__ = 5
__FILE__ = ex14_02.c
__DATE__ = Jan 01 2021
__TIME__ = 11:39:12
__STDC__ = 1

The sum of x and y is 13

 Exercises 697

14.7 (Smallest of Three Numbers) Write a program that defines and uses a macro
named MINIMUM3 to determine the smallest of three numeric values. Macro MINIMUM3
should use macro MINIMUM2 from Exercise 14.6 to determine the smallest number.

14.8 (Printing a String) Write a program that defines and uses macro PRINT to print
a string value.

14.9 (Printing an Array) Write a program that defines and uses macro PRINTARRAY
to print an array of integers. The macro should receive the array and its number of
elements as arguments.

14.10 (Totaling an Array’s Contents) Write a program that defines and uses macro
SUMARRAY to sum the values in a numeric array. The macro should receive the array
and its number of elements as arguments.

15Other Topics

O b j e c t i v e s
In this chapter, you’ll:
■ Write functions that use

variable-length argument lists.
■ Process command-line

arguments.
■ Compile multiple-source-file

programs.
■ Assign specific types to

numeric constants.
■ Terminate programs with
exit and atexit.

■ Process external asynchronous
events in a program.

■ Dynamically allocate arrays
and resize memory that was
dynamically allocated
previously.

700 Chapter 15 Other Topics

O
ut

lin
e

15.1 Introduction
This chapter presents additional topics not ordinarily covered in introductory
courses. Some capabilities discussed here are specific to particular operating systems,
especially macOS/Linux and Windows.

15.2 Variable-Length Argument Lists
Most programs in the text have used the standard-library function printf. At a min-
imum, printf must receive a string as its first argument, but printf can receive any
number of additional arguments. The function prototype for printf is

int printf(const char *format, ...);

The ellipsis (…) in the function prototype indicates that the function receives a vari-
able number of arguments of any type. You can use this syntax to define your own func-
tions with variable-length argument lists. The ellipsis must be the last parameter.
Placing the ellipsis in the middle of the parameter list is a syntax error.

The following table contains the variable arguments (<stdarg.h>) header’s mac-
ros and definitions for building functions with variable-length argument lists:

15.1 Introduction
15.2 Variable-Length Argument Lists
15.3 Using Command-Line Arguments
15.4 Compiling Multiple-Source-File

Programs
15.4.1 extern Declarations for Global

Variables in Other Files
15.4.2 Function Prototypes
15.4.3 Restricting Scope with static

15.5 Program Termination with exit
and atexit

15.6 Suffixes for Integer and Floating-
Point Literals

15.7 Signal Handling
15.8 Dynamic Memory Allocation

Functions calloc and realloc
15.9 goto: Unconditional Branching

Summary | Self-Review Exercise | Answers to Self-Review Exercise | Exercises

Identifier Explanation

va_list A type for holding information needed by macros va_start, va_arg and va_end.
To access the arguments in a variable-length argument list, an object of type
va_list must be defined.

va_start A macro that you must invoke before accessing a variable-length argument list’s
arguments. This macro initializes the object declared with va_list for use by the
va_arg and va_end macros.

va_arg A macro that expands to the variable-length argument list’s next argument value.
The value has the type you specify as the macro’s second argument. Each use of
va_arg modifies the object declared with va_list to point to the next argument.

va_end A macro that facilitates a normal return from a function whose variable-length
argument list was referred to by the va_start macro.

ERR

15.2 Variable-Length Argument Lists 701

Figure 15.1 demonstrates a function average (lines 23–36) with a variable-length
argument list. The function’s first argument is the number of values to average.

The average function (lines 23–36) uses all the definitions and macros of header
<stdarg.h>, except va_copy (Section C.7.8), which was added in C11. The va_list
variable ap (short for “argument pointer”; line 25) is used by macros va_start,
va_arg and va_end to process function average’s variable-length argument list. First,

1 // fig15_01.c
2 // Using variable-length argument lists
3 #include <stdarg.h>
4 #include <stdio.h>
5
6 double average(int i, ...); // ... represents variable arguments
7
8 int main(void) {
9 double w = 37.5;

10 double x = 22.5;
11 double y = 1.7;
12 double z = 10.2;
13
14 printf("%s%.1f; %s%.1f; %s%.1f; %s%.1f\n\n",
15 "w = ", w, "x = ", x, "y = ", y, "z = ", z);
16 printf("%s%.3f\n%s%.3f\n%s%.3f\n",
17 "The average of w and x is ", average(2, w, x),
18 "The average of w, x, and y is ", average(3, w, x, y),
19 "The average of w, x, y, and z is ", average(4, w, x, y, z));
20 }
21
22 // calculate average
23 double average(int i, ...) {
24 double total = 0; // initialize total
25 va_list ap; // stores information needed by va_start and va_end
26
27 va_start(ap, i); // initializes the va_list object
28
29 // process variable-length argument list
30 for (int j = 1; j <= i; ++j) {
31 total += va_arg(ap, double);
32 }
33
34 va_end(ap); // clean up variable-length argument list
35 return total / i; // calculate average
36 }

w = 37.5; x = 22.5; y = 1.7; z = 10.2

The average of w and x is 30.000
The average of w, x, and y is 20.567
The average of w, x, y, and z is 17.975

Fig. 15.1 | Using variable-length argument lists.

702 Chapter 15 Other Topics

the function invokes macro va_start (line 27) to initialize object ap for use by va_arg
and va_end. The va_start macro receives:

• the object ap, and

• the identifier of the rightmost argument in the parameter list before the ellipsis
(i in this example)—va_start uses this argument to determine where the
variable-length argument list begins.

Next, the average function repeatedly adds the variable-length argument list’s
arguments to the variable total (lines 30–32). The macro va_arg retrieves the next
value to add to total. The macro receives two arguments:

• the object ap, and

• the value type expected in the argument list—double in this case.

The macro returns the argument’s value. Line 34 invokes the macro va_end with the
object ap as an argument to facilitate a normal return to the caller from average.
Finally, line 35 calculates the average and returns it to main.

You might wonder how functions with variable-length argument lists like printf
and scanf know what type to use in each va_arg macro call. The answer is that, as
the program executes, they scan the format conversion specifiers in the format control
string to determine the type of the next argument to process.

Self Check
1 (Fill-In) The function prototype for printf is

int printf(const char *format, ...);

The ellipsis (...) in the prototype indicates that the function receives .
Answer: a variable number of arguments of any type.

2 (Multiple Choice) Which macro corresponds to the description: “To access the
arguments in a variable-length argument list, an object of this type must be defined.”

a) va_start

b) va_end

c) va_list

d) va_arg

Answer: c.

15.3 Using Command-Line Arguments
Command-line arguments are commonly used to pass options and filenames to a pro-
gram. The main function may receive arguments from a command line if the func-
tion’s parameter list contains the parameters int argc and char *argv[]:

• The argc parameter receives the number of command-line arguments that the
user has entered.

• The argv parameter is an array of strings containing the command-line argu-
ments.

15.3 Using Command-Line Arguments 703

Figure 15.2 copies a file one character at a time into another file. Assume that the
executable file for this program is called mycopy. A typical command line for executing
this program is

mycopy input output

This command line indicates that the file input should be copied to the file output.
When the program executes, if argc is not 3 (mycopy counts as one of the arguments),
the program prints an error message (line 8) and terminates. Otherwise, the array
argv contains the strings "mycopy", "input" and "output". This program uses its sec-
ond and third command-line arguments as filenames.

1 // fig15_02.c
2 // Using command-line arguments
3 #include <stdio.h>
4
5 int main(int argc, char *argv[]) {
6 // check number of command-line arguments
7 if (argc != 3) {
8 puts("Usage: mycopy infile outfile");
9 }

10 else {
11 FILE *inFilePtr = NULL; // input file pointer
12
13 // try to open the input file
14 if ((inFilePtr = fopen(argv[1], "r")) != NULL) {
15 FILE *outFilePtr = NULL; // output file pointer
16
17 // try to open the output file
18 if ((outFilePtr = fopen(argv[2], "w")) != NULL) {
19 int c = 0; // holds characters read from source file
20
21 // read and output characters
22 while ((c = fgetc(inFilePtr)) != EOF) {
23 fputc(c, outFilePtr);
24 }
25
26 fclose(outFilePtr); // close the output file
27 }
28 else { // output file could not be opened
29 printf("File \"%s\" could not be opened\n", argv[2]);
30 }
31
32 fclose(inFilePtr); // close the input file
33 }
34 else { // input file could not be opened
35 printf("File \"%s\" could not be opened\n", argv[1]);
36 }
37 }
38 }

Fig. 15.2 | Using command-line arguments.

704 Chapter 15 Other Topics

We use the function fopen to open these files for reading (line 14) and writing
(line 18), respectively. If the program opens both files successfully, lines 22–24 read
characters from the file input and write them to the file output. This process contin-
ues until the end of input is reached. Then the program terminates. The result is an
exact copy of the file input—if no errors occur during processing.

[Note: In Visual C++, you specify command-line arguments by right-clicking the
project name in the Solution Explorer and selecting Properties, then expanding Con-
figuration Properties, selecting Debugging and entering the arguments in the textbox to
the right of Command Arguments.]

Self Check
1 (Fill-In) You can pass command-line arguments to main by including parameters
int argc and in main’s parameter list.
Answer: char *argv[].

2 (Discussion) Assuming inFilePtr represents a successfully opened input file and
outFilePtr represents a successfully opened output file, what does the following code
segment do?

while ((c = fgetc(inFilePtr)) != EOF) {
 fputc(c, outFilePtr);
}

Answer: This loop reads one character at a time from the input file and writes it to
the output file until the end-of-file indicator for the input file is set.

15.4 Compiling Multiple-Source-File Programs
It’s possible to build programs that consist of multiple source files. There are several
considerations when creating programs in multiple files. For example, the definition
of a function must be entirely contained in one file—it cannot span two or more files.

15.4.1 extern Declarations for Global Variables in Other Files
Chapter 5 introduced storage class and scope concepts. We learned that variables
declared outside any function definition are global variables. Global variables are acces-
sible to any function defined in the same file after the variable is declared. Global vari-
ables also can be accessible to functions in other files if they’re declared in each file
that uses them. For example, to refer to the global integer variable flag in another
file, you can use the declaration

extern int flag;

The storage-class specifier extern indicates that flag is defined either later in the same
file or in a different file. The compiler informs the linker that unresolved references to
the variable flag appear in the file. If the linker finds a proper global definition, the
linker resolves the references to flag. If the linker cannot locate a definition of flag,
it issues an error message and does not produce an executable file. Any identifier that’s

15.4 Compiling Multiple-Source-File Programs 705

declared at file scope is extern by default. You should avoid global variables unless
application performance is critical because they violate the principle of least privilege.

15.4.2 Function Prototypes
Just as extern declarations can be used to declare that global variables are defined in
other program files, function prototypes can extend the scope of a function beyond
the file in which it’s defined. The extern specifier is not required in a function pro-
totype. Simply include the function prototype in each file that calls the function, and
compile the files together (see Section 14.2). Function prototypes indicate that the
specified function is defined either later in the same file or in a different file. Again,
the compiler does not resolve references to such a function—the linker performs that
task. If the linker cannot locate a proper function definition, the linker issues an error
message.

As an example of using function prototypes to extend the scope of a function,
consider any program containing the preprocessor directive #include <stdio.h>,
which includes a file containing the function prototypes for printf, scanf and many
other functions. A file that #includes <stdio.h> can use printf and scanf, even
though they’re defined in other files. We do not need to know where they’re defined.
The linker resolves our references to these functions automatically.

Software Reusability
Creating programs in multiple source files facilitates software reusability and good
software engineering. Functions that are common to many applications should be
stored in their own source files. Each source file should have a corresponding header
containing the function prototypes. This enables programmers of different applica-
tions to reuse the same code by including the proper header file and compiling their
applications with the corresponding source file.

15.4.3 Restricting Scope with static
It’s possible to restrict a global variable’s or function’s scope to the file in which it’s
defined. Applying the storage-class specifier static to a global variable or function
prevents it from being used outside the file that defines it. This is known as internal
linkage. Global variables and functions not preceded by static in their definitions
have external linkage. They can be accessed in other files containing proper declara-
tions.

The global variable definition
static const double PI = 3.14159;

creates constant variable PI of type double, initializes it to 3.14159 and indicates that
PI is known only to functions in the file in which it’s defined.

The static specifier is commonly used with utility functions called only within
a particular file. If a function is not required outside a file, enforce the principle of
least privilege by applying static to both the function’s definition and prototype.

SE

SE

706 Chapter 15 Other Topics

Self Check
1 (Multiple Choice) Which of the following statements is false?

a) Variables declared outside any function definition are global variables.
b) Global variables are accessible to any function defined in the same file after

the variable is declared.
c) Global variables also are accessible to functions in other files.
d) Once a global variable is defined, it’s known to all the application’s files.

Answer: d) is false. Actually, global variables must be declared in each file in which
they’re used.

2 (Fill-In) Any identifier that’s declared at file scope is by default.
Answer: extern.

3 (True/False) You should prefer global variables to local variables because global
variables enforce the principle of least privilege.
Answer: False. Actually, you should avoid global variables unless application perfor-
mance is critical because they violate the principle of least privilege.

4 (Fill-In) Applying static to a global variable or a function prevents it from being
used by any function that’s not defined in the same file—this is called linkage.
Answer: internal.

5 (True/False) The following global variable definition indicates that PI is known
only to functions in the file in which it’s defined:

static const double PI = 3.14159;

Answer: True.

15.5 Program Termination with exit and atexit
The general utilities library (<stdlib.h>) provides methods of terminating program
execution by means other than a conventional return from function main.

exit Function
The exit function terminates a program immediately. This function often is used to
terminate a program when an error is detected. The function takes one argument—
normally, EXIT_SUCCESS or EXIT_FAILURE: These contain implementation-defined
values for successful and unsuccessful termination.

atexit Function
The atexit function registers a function to call when the program terminates by
reaching the end of main or when exit is invoked. This function takes as an argument
another function’s name. Recall that a function name is a pointer to that function.
Functions called at program termination cannot have arguments and cannot return a
value. When a program terminates, any functions previously registered with atexit
are invoked in the reverse order of their registration.

15.5 Program Termination with exit and atexit 707

Using Functions exit and atexit
Figure 15.3 tests functions exit and atexit. The program prompts the user to deter-
mine whether the program should be terminated with exit or by reaching the end of
main. Function print is executed at program termination in each case.

1 // fig15_03.c
2 // Using the exit and atexit functions
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 void print(void); // prototype
7
8 int main(void) {
9 atexit(print); // register function print

10 puts("Enter 1 to terminate program with function exit\n"
11 "Enter 2 to terminate program normally");
12 int answer = 0; // user
13 scanf("%d", &answer);
14
15 // call exit if answer is 1
16 if (answer == 1) {
17 puts("\nTerminating program with function exit");
18 exit(EXIT_SUCCESS);
19 }
20
21 puts("\nTerminating program by reaching the end of main");
22 }
23
24 // display message before termination
25 void print(void) {
26 puts("Executing function print at program termination\n"
27 "Program terminated");
28 }

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
1

Terminating program with function exit
Executing function print at program termination
Program terminated

Enter 1 to terminate program with function exit
Enter 2 to terminate program normally
2

Terminating program by reaching the end of main
Executing function print at program termination
Program terminated

Fig. 15.3 | Using the exit and atexit functions.

708 Chapter 15 Other Topics

Self Check
1 (True/False) Function atexit terminates a program immediately.
Answer: False. Actually, function exit causes a program to terminate immediately.
Function atexit registers a function to call when a program terminates by reaching
the end of main or when exit is invoked.

2 (True/False) Calling exit with EXIT_SUCCESS returns 1 to the calling environ-
ment, and calling exit with EXIT_FAILURE returns 0.
Answer: False. Actually, calling exit with EXIT_SUCCESS or EXIT_FAILURE returns
implementation-defined values for successful or unsuccessful termination.

15.6 Suffixes for Integer and Floating-Point Literals
Integer and floating-point suffixes enable you to specify explicitly the data types of lit-
eral values. By default, an integer literal’s type is determined by the first type capable
of storing the value—int, then long int, then unsigned long int, etc. A floating-
point literal with no suffix has type double.

The integer suffixes are u or U for unsigned ints, l or L for long ints, and ll or
LL for long long ints. L and LL are preferred for readability, as a lowercase l can be
mistaken as a 1 (one). You can combine u or U with those for long int and long long
int to create unsigned literals for the larger integer types. The following literals have
types unsigned int, long int, unsigned long int and unsigned long long int:

174u
8358L
28373ul
9876543210llu

The floating-point suffixes are f or F for floats, and l or L for long doubles.
Again, L is preferred for readability. The following are float and long double literals:

1.28f
3.14159L

Self Check
1 (Fill-In) C provides integer and floating-point for explicitly specifying
the types of integer and floating-point literal values.
Answer: suffixes.

2 (Fill-In) The following constants have types and .
1.28f
3.14159L

Answer: float, long double.

15.7 Signal Handling
An external asynchronous event, or signal, can cause a program to terminate prema-
turely. Some events include:

15.7 Signal Handling 709

• interrupts, such as typing <Ctrl> c (Linux or Windows) or <command> c
(macOS), and

• termination orders from the operating system.

The signal-handling library (<signal.h>) enables programs to trap unexpected
events with function signal, which receives two arguments:

• an integer signal number, and

• a pointer to a signal-handling function.

A program can generate signals by calling function raise, which takes an integer sig-
nal number as an argument. The following table summarizes the standard signals from
the <signal.h> header:

Demonstrating Signal Handling
Figure 15.4 uses function signal to trap a SIGINT. Line 11 calls signal with SIGINT
and a pointer to the function signalHandler. When a SIGINT signal occurs, control
passes to function signalHandler, which prints a message and gives the user the
option to continue normal program execution. If the user wishes to continue execu-
tion, line 49 reinitializes the signal handler by calling signal again, and control
returns to the point in the program at which the signal was detected.

Signal Explanation

SIGABRT Abnormal termination of the program (such as a call to function abort).
SIGFPE An erroneous arithmetic operation, such as a divide-by-zero or an operation

resulting in overflow.
SIGILL Detection of an illegal instruction.
SIGINT Receipt of an interactive attention signal (<Ctrl> c or <command> c).
SIGSEGV An attempt to access memory that is not allocated to a program.
SIGTERM A termination request sent to the program.

1 // fig15_04.c
2 // Using signal handling
3 #include <signal.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <time.h>
7
8 void signalHandler(int signalValue); // prototype
9

10 int main(void) {
11 signal(SIGINT, signalHandler); // register signal handler
12 srand(time(NULL));
13

Fig. 15.4 | Using signal handling. (Part 1 of 3.)

710 Chapter 15 Other Topics

14 // output numbers 1 to 100
15 for (int i = 1; i <= 100; ++i) {
16 int x = 1 + rand() % 50; // generate random number to raise SIGINT
17
18 // raise SIGINT when x is 25
19 if (x == 25) {
20 raise(SIGINT);
21 }
22
23 printf("%4d", i);
24
25 // output \n when i is a multiple of 10
26 if (i % 10 == 0) {
27 printf("%s", "\n");
28 }
29 }
30 }
31
32 // handles signal
33 void signalHandler(int signalValue) {
34 printf("\n%s%d%s\n%s",
35 "Interrupt signal (", signalValue, ") received.",
36 "Do you wish to continue (1 = yes or 2 = no)? ");
37 int response = 0; // user
38 scanf("%d", &response);
39
40 // check for invalid responses
41 while (response != 1 && response != 2) {
42 printf("%s", "(1 = yes or 2 = no)? ");
43 scanf("%d", &response);
44 }
45
46 // determine whether to continue
47 if (response == 1) {
48 // reregister signal handler for next SIGINT
49 signal(SIGINT, signalHandler);
50 }
51 else {
52 exit(EXIT_SUCCESS);
53 }
54 }

 1 2 3 4 5 6 7 8 9 10
 11 12 13 14 15 16 17 18 19 20
 21 22 23 24 25 26 27 28 29 30
 31 32 33 34 35 36
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 1
 37 38 39 40
 41 42 43 44 45 46 47 48 49 50
 51 52 53 54 55 56 57 58 59 60
 61 62 63 64 65 66 67 68 69 70

Fig. 15.4 | Using signal handling. (Part 2 of 3.)

15.8 Dynamic Memory Allocation Functions calloc and realloc 711

In this program, function raise simulates a SIGINT. We choose a random number
between 1 and 50. If the number is 25, line 20 calls raise to generate the signal. Nor-
mally, SIGINTs are initiated outside the program when someone types <Ctrl> c (Linux
or Windows) or <command> c (macOS) to terminate program execution. Signal
handling can be used to trap the SIGINT and prevent the program from terminating.

Self Check
1 (Fill-In) An external asynchronous event, or , can cause a program to ter-
minate prematurely.
Answer: signal.

2 (Multiple Choice) Which standard signal is described by: “An erroneous arithme-
tic operation, such as a divide-by-zero or an operation resulting in overflow.”

a) SIGILL
b) SIGABRT
c) SIGINT
d) SIGFPE

Answer: d.

15.8 Dynamic Memory Allocation Functions
calloc and realloc
Chapter 12 introduced the notion of dynamically allocating memory using function
malloc. As we stated in Chapter 12, arrays are better than linked lists for rapid sort-
ing, searching and data access. Arrays are normally static data structures that cannot
be resized. The general utilities library (<stdlib.h>) provides dynamic memory allo-
cation functions calloc and realloc to create dynamic arrays and modify their sizes.

calloc Function
The calloc (“contiguous allocation”) function

void *calloc(size_t nmemb, size_t size);

dynamically allocates an array. Its two arguments are

• the array’s number of elements (nmemb), and

• each element’s size (size).

 71 72 73 74 75 76 77 78 79 80
 81 82 83 84 85 86 87 88 89 90
 91 92
Interrupt signal (2) received.
Do you wish to continue (1 = yes or 2 = no)? 2

Fig. 15.4 | Using signal handling. (Part 3 of 3.)

712 Chapter 15 Other Topics

Function calloc also initializes the array’s elements to zero. The function returns a
pointer to the allocated memory or a NULL pointer if it could not allocate the memory.
The primary difference between malloc and calloc is that calloc clears the memory
it allocates, whereas malloc does not.

realloc Function
The realloc function

void *realloc(void *ptr, size_t size);

changes the size of an object allocated by a previous malloc, calloc or realloc call.
The original object’s contents are not modified as long as the amount of memory allo-
cated is larger than the amount allocated previously. Otherwise, the contents are
unchanged up to the new object’s size. The functions two arguments are

• a pointer to the original object (ptr), and

• the object’s new size (size).

If ptr is NULL, realloc works identically to malloc. If ptr is not NULL and size is
greater than zero, realloc tries to allocate a new block of memory for the object. If
the new space cannot be allocated, the object pointed to by ptr is unchanged. Func-
tion realloc returns either a pointer to the reallocated memory or a NULL pointer to
indicate that the memory was not reallocated.

Self Check
1 (Fill-In) The general utilities library (<stdlib.h>) dynamic memory allocation
functions and create and modify dynamic arrays.
Answer: calloc and realloc.

2 (Multiple Choice) Which of the following statements is false?
a) Function calloc dynamically allocates memory for an array.
b) Function calloc’s parameters size_t nmemb and size_t size represent the

new array’s number of elements and each element’s size.
c) Function calloc initializes a dynamically allocated array’s elements to zero.

The function returns a pointer to the allocated memory, or NULL if the mem-
ory could not be allocated.

d) Functions malloc and calloc clear the memory they allocate.
Answer: d) is false. Actually, calloc clears the memory it allocates, but malloc does
not.

3 (True/False) If realloc’s first argument is NULL, it works identically to malloc.
Otherwise, if realloc’s size argument is greater than zero, it tries to allocate a new
block of memory. If it cannot be allocated, the object pointed to by the function’s
first argument is unchanged. The function returns either a pointer to the reallocated
memory or a NULL pointer to indicate that the memory was not reallocated.
Answer: True.

15.9 goto: Unconditional Branching 713

15.9 goto: Unconditional Branching
We’ve stressed the importance of using structured-programming techniques to build
reliable software that’s easy to debug, maintain and modify. In some cases, perfor-
mance is more important than strict adherence to structured-programming tech-
niques. In these cases, some unstructured-programming techniques may be used. For
example, we can use break to terminate an iteration statement’s execution before the
loop-continuation condition becomes false. This saves unnecessary iterations of the
loop if the task is completed before loop termination.

Another instance of unstructured programming is the goto statement—an
unconditional branch. The goto statement alters the flow of control, continuing exe-
cution with the first statement after the label specified in the statement. A label is an
identifier followed by a colon (:). A label must appear in the same function as the goto
statement that refers to it. Labels need not be unique among functions.

Demonstrating goto
Figure 15.5 uses goto statements to loop ten times and print a counter value each
time. Line 6 initializes count to 1. The label start: is skipped, because labels do not
perform any action. Line 9 tests whether count is greater than 10. If so, line 10 trans-
fers control from the goto to the first statement after the label end: (line 19). Other-
wise, lines 13–14 print and increment count, and control transfers from the goto (line
16) to the first statement after the label start: (line 9).

1 // fig15_05.c
2 // Using the goto statement
3 #include <stdio.h>
4
5 int main(void) {
6 int count = 1; // initialize count
7
8 start: // label
9 if (count > 10) {

10 goto end;
11 }
12
13 printf("%d ", count);
14 ++count;
15
16 goto start; // goto start on line 9
17
18 end: // label
19 putchar('\n');
20 }

1 2 3 4 5 6 7 8 9 10

Fig. 15.5 | Using the goto statement.

714 Chapter 15 Other Topics

Chapter 3 stated you can write any program in terms of sequence, selection and
iteration statements. When following the structured-programming rules, you can cre-
ate deeply nested control structures within a function from which it’s difficult to
escape efficiently. Some programmers use goto statements in such situations as a
quick exit from a deeply nested structure. This eliminates the need to test multiple
conditions to escape from a control structure. There are other situations where goto
is actually recommended—see, for example, CERT recommendation MEM12-C,
“Consider using a Goto-Chain when leaving a function on error when using and
releasing resources.” Note that the goto statement is unstructured and can lead to
programs that are more difficult to debug, maintain and modify.

Self Check
1 (Multiple Choice) Which of the following statements a), b) or c) is false?

a) Structured-programming techniques help you to build reliable software that’s
easy to debug, maintain and modify.

b) In some cases, performance is more important than strict adherence to struc-
tured-programming techniques. In these cases, you might choose to use some
unstructured-programming techniques.

c) We can use break to terminate an iteration statement early. This saves unnec-
essary iterations of the loop if the task is completed before loop termination.

d) All of the above statements are true.
Answer: d.

2 (Multiple Choice) Which of the following statements a), b) or c) is false?
a) An instance of unstructured programming is the goto statement—an uncon-

ditional branch.
b) The goto statement alters the flow of control by continuing execution with

the first statement after the label specified in the statement. A label is an iden-
tifier followed by a colon.

c) Labels must be unique among all the functions in an application. A label
that’s the target of a particular goto statement may appear in any function in
an application.

d) All of the above statements are true.
Answer: c) is false. Actually, labels need not be unique among functions. Also, a label
that’s the target of a goto statement in a function must appear in that function.

3 (True/False) When you follow the rules of structured programming, it’s possible
to create deeply nested control structures within a function from which it’s difficult
to escape efficiently. Some programmers use goto statements in such situations as a
quick exit from a deeply nested structure. This eliminates the need to test multiple
conditions to escape from a control structure.
Answer: True.

PERF

SE

 Summary 715

Summary
Section 15.2 Variable-Length Argument Lists
• The header <stdarg.h> (p. 700) provides capabilities for building functions with variable-

length argument lists.
• An ellipsis (...; p. 700) in a function prototype indicates a variable number of arguments.
• A va_list (p. 701) holds information needed by macros va_start, va_arg and va_end.
• Macro va_start (p. 701) initializes a va_list object for use by the va_arg and va_end.
• Macro va_arg (p. 701) expands to the value and type of the variable-length argument list’s

next argument. Each invocation of va_arg modifies the object declared with va_list to
point to the next argument.

• Macro va_end (p. 701) facilitates a normal return from a function whose variable-length ar-
gument list was referred to by the va_start macro.

Section 15.3 Using Command-Line Arguments
• To pass arguments to main from the command line, include the parameters int argc and
char *argv[] (p. 702) in main’s parameter list. Parameter argc receives the number of com-
mand-line arguments. Parameter argv is an array of strings in which the command-line ar-
guments are stored.

Section 15.4 Compiling Multiple-Source-File Programs
• A function definition must be entirely contained in one file.
• The storage-class specifier extern (p. 704) indicates that a variable is defined either later in

the same file or in a different file of the program.
• Global variables must be declared in each file in which they’re used.
• A function prototype can extend a function’s scope beyond the file in which it’s defined.
• Applying storage-class specifier static to a global variable or function prevents it from be-

ing used outside the current file. This is called internal linkage (p. 705). Global variables
and functions not preceded by static have external linkage (p. 705) and can be accessed
in other files if those files contain proper declarations or function prototypes.

• The static specifier is commonly used with utility functions that are called only by func-
tions in a particular file.

• If a function is not required outside a particular file, apply static to it to enforce the prin-
ciple of least privilege.

Section 15.5 Program Termination with exit and atexit
• Function exit (p. 706) forces a program to terminate.
• Function atexit (p. 706) registers a function to call when the program terminates by reach-

ing the end of main or when exit is invoked.
• Function atexit takes a pointer to a function as an argument. Functions called at program

termination cannot have arguments and cannot return a value.
• Function exit takes one argument, normally the symbolic constant EXIT_SUCCESS (p. 706)

or the symbolic constant EXIT_FAILURE (p. 706).
• When function exit is invoked, any functions registered with atexit are invoked in the re-

verse order of their registration.

716 Chapter 15 Other Topics

Section 15.6 Suffixes for Integer and Floating-Point Literals
• Integer and floating-point suffixes can be used to specify the types of integer and floating-

point constants. The integer suffixes are u or U for an unsigned integer, l or L for a long
integer, and ul or UL for an unsigned long integer. The type of an integer constant with no
suffix is determined by the first type capable of storing a value of that size (int, then long
int, then unsigned long int, etc.). The floating-point suffixes are f or F for a float, and l
or L for a long double. A floating-point constant with no suffix has type double.

Section 15.7 Signal Handling
• The signal-handling library (p. 709) enables trapping of unexpected events with function
signal (p. 709).

• Function signal receives two arguments—an integer signal number and a pointer to the
signal-handling function.

• Signals can also be generated with function raise (p. 709) and an integer argument.

Section 15.8 Dynamic Memory Allocation: Functions calloc and realloc
• The general utilities library (<stdlib.h>) provides dynamic memory allocation functions
calloc and realloc for creating dynamic arrays and resizing them.

• Function calloc (p. 711) allocates memory for an array. It receives the array’s number of
elements and each element’s size and initializes the array’s elements to zero. It returns either
a pointer to the allocated memory or a NULL pointer if the memory is not allocated.

• Function realloc changes the size of an object allocated by a previous malloc, calloc or
realloc call. The original object’s contents are not modified as long as the amount of mem-
ory allocated is larger than the amount allocated previously.

• Function realloc receives a pointer to the original object and the new size of the object. If
ptr is NULL, realloc works identically to malloc. Otherwise, if ptr is not NULL and size is
greater than zero, realloc tries to allocate a new block of memory for the object. If the new
space cannot be allocated, the object pointed to by ptr is unchanged. Function realloc re-
turns either a pointer to the reallocated memory or a NULL pointer to indicate that memory
was not reallocated.

Section 15.9 Unconditional Branching with goto
• The goto statement (p. 713) alters a program’s flow of control. Program execution contin-

ues at the first statement after the label (p. 713) specified in the goto statement.
• A label is an identifier followed by a colon. A label must appear in the same function as the
goto statement that refers to it.

Self-Review Exercise
15.1 Fill-In the blanks in each of the following:

a) A(n) in the parameter list of a function indicates that the function
can receive a variable number of arguments.

b) Macro must be invoked before the arguments in a variable-length
argument list can be accessed.

c) Macro accesses the individual arguments of a variable-length argu-
ment list.

 Answers to Self-Review Exercise 717

d) Macro facilitates a normal return from a function whose variable-
length argument list was referred to by macro va_start.

e) Argument of main receives the number of arguments in a com-
mand line.

f) Argument of main stores command-line arguments as character
strings.

g) Function forces a program to terminate execution.
h) Function registers a function to be called upon normal program

termination.
i) An integer or floating-point can be appended to an integer or float-

ing-point constant to specify the exact type of the constant.
j) Function can be used to trap unexpected events.
k) Function generates a signal from within a program.
l) Function dynamically allocates memory for an array and initializes

the elements to zero.
m)Function changes the size of a block of previously allocated dy-

namic memory.

Answers to Self-Review Exercise
15.1 a) ellipsis (...). b) va_start. c) va_arg. d) va_end. e) argc. f) argv. g) exit.
h) atexit. i) suffix. j) signal. k) raise. l) calloc. m) realloc.

Exercises
15.2 (Variable-Length Argument List: Calculating Products) Write a program that
calculates the product of a series of integers that are passed to function product using
a variable-length argument list. Test your function with several calls, each with a dif-
ferent number of arguments.

15.3 (Printing Command-Line Arguments) Write a program that prints the com-
mand-line arguments of the program.

15.4 (Sorting Integers) Write a program that sorts an array of integers into ascending
or descending order. Use command-line arguments to pass either argument -a for as-
cending order or -d for descending order. [Note: This is the standard format for pass-
ing options to a program in UNIX.]

15.5 (Signal Handling) Read the documentation for your compiler to determine
which signals are supported by the signal-handling library (<signal.h>). Write a pro-
gram that contains signal handlers for the standard signals SIGABRT and SIGINT. The
program should trap these signals by calling function abort to generate a signal of
type SIGABRT and by having the user type <Ctrl> c or <command> C to generate a sig-
nal of type SIGINT.

15.6 (Dynamic Array Allocation) Write a program that dynamically allocates an ar-
ray of integers. The size of the array should be input from the keyboard. The elements

718 Chapter 15 Other Topics

of the array should be assigned values input from the keyboard. Print the array’s val-
ues. Next, reallocate the memory for the array to half of the current number of ele-
ments. Print the array’s remaining values to confirm they match the first half of the
original array’s values.

15.7 (Command-Line Arguments) Write a program that takes two filenames as
command-line arguments, reads the first file’s characters one at a time and writes
them to the second file in reverse order.

A
Operator Precedence Chart
Operators are shown in decreasing order of precedence from top to bottom.

Operator Type Associativity

()

[]

.

->

++

--

parentheses (function-call operator)
array subscript
member selection via object
member selection via pointer
unary postincrement
unary postdecrement

left to right

++

--

+

-

!

~

(type)
*

&

sizeof

unary preincrement
unary predecrement
unary plus
unary minus
unary logical negation
unary bitwise complement
C-style unary cast
dereference
address
determine size in bytes

right to left

*

/

%

multiplication
division
modulus

left to right

+

-
addition
subtraction

left to right

<<

>>
bitwise left shift
bitwise right shift

left to right

<

<=

>

>=

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to

left to right

==

!=
relational is equal to
relational is not equal to

left to right

& bitwise AND left to right

720 Appendix A Operator Precedence Chart

^ bitwise exclusive OR left to right
| bitwise inclusive OR left to right
&& logical AND left to right
|| logical OR left to right
?: ternary conditional right to left
=

+=

-=

*=

/=

%=

&=

^=

|=

<<=

>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive-OR assignment
bitwise inclusive-OR assignment
bitwise left-shift assignment
bitwise right-shift assignment

right to left

, comma left to right

Operator Type Associativity

B
ASCII Character Set
In the following table, the digits in the left column are the left digits of the character
code’s decimal equivalent (0–127), and the digits in the top row are the right digits
of the character code’s decimal equivalent. For example, the character code for “A” in
row number 6 and column number 5 is 65, and the character code for “&” in row
number 3 and column number 8 is 38.

ASCII Character Set

0 1 2 3 4 5 6 7 8 9
0 nul soh stx etx eot enq ack bel bs ht

1 lf vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

CMultithreading/Multicore and
Other C18/C11/C99 Topics

O b j e c t i v e s
In this appendix, you’ll:
■ Understand the purpose of

C18.
■ Learn the headers added in

C99 and C11/C18.
■ Initialize arrays and structs

with designated initializers.
■ Use data type bool to create

boolean variables whose data
values can be true or false.

■ Perform arithmetic operations
on complex variables.

■ Learn about preprocessor
enhancements.

■ Use multithreading to improve
performance on today’s
multicore systems.

724 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

O
ut

lin
e

C.1 Introduction
The C99 (1999) and C11 (2011) standards refined and expanded C’s capabilities.
Since C11, there has been only one new version, C181 (2018). It “addressed defects
in C11 without introducing new language features.”2 Some features added by the
C99 and C11/C18 standards are designated as optional. Before using the features
shown in this appendix, check that your compiler supports them. Our goal is to intro-
duce these capabilities and provide resources for further reading.

We explain with complete code examples and code snippets designated initializers,
compound literals, type bool and complex numbers. We provide brief explanations of
additional features, including restricted pointers, reliable integer division, flexible array
members, generic math, inline functions and return without expression.

We discuss C11/C18 capabilities, including improved Unicode® support, the
function specifier _Noreturn, type-generic expressions, the quick_exit function,
memory alignment control, static assertions, analyzability and floating-point types.

C11/C18 Multithreading
A key feature of this appendix is Section C.9’s introduction to multithreading. In
today’s multicore systems, the hardware can put multiple processors (cores) to work
on different parts of your task. This enables the tasks (and the program) to complete
faster. To take advantage of multicore architecture from C programs, you need to
write multithreaded applications. When a program splits tasks into separate threads,

C.1 Introduction
C.2 Headers Added in C99
C.3 Designated Initializers and

Compound Literals
C.4 Type bool
C.5 Complex Numbers
C.6 Macros with Variable-Length

Argument Lists
C.7 Other C99 Features

C.7.1 Compiler Minimum Resource Limits
C.7.2 The restrict Keyword
C.7.3 Reliable Integer Division
C.7.4 Flexible Array Members
C.7.5 Type-Generic Math
C.7.6 Inline Functions
C.7.7 __func__ Predefined Identifier
C.7.8 va_copy Macro

C.8 C11/C18 Features
C.8.1 C11/C18 Headers
C.8.2 quick_exit Function
C.8.3 Unicode® Support
C.8.4 _Noreturn Function Specifier
C.8.5 Type-Generic Expressions
C.8.6 Annex L: Analyzability and

Undefined Behavior
C.8.7 Memory Alignment Control
C.8.8 Static Assertions
C.8.9 Floating-Point Types

C.9 Case Study: Performance with
Multithreading and Multicore
Systems

C.9.1 Example: Sequential Execution of
Two Compute-Intensive Tasks

C.9.2 Example: Multithreaded Execution
of Two Compute-Intensive Tasks

C.9.3 Other Multithreading Features

1. ISO/IEC 9899:2018, Information technology — Programming languages — C, https://
www.iso.org/standard/74528.html.

2. https://en.wikipedia.org/wiki/C18_(C_standard_revision). Also http://www.iso-
9899.info/wiki/The_Standard.

https://www.iso.org/standard/74528.html
https://en.wikipedia.org/wiki/C18_(C_standard_revision)
http://www.iso-9899.info/wiki/The_Standard
https://www.iso.org/standard/74528.html
http://www.iso-9899.info/wiki/The_Standard

C.2 Headers Added in C99 725

a multicore system can run those threads in parallel—that is, simultaneously.
Section C.9 first demonstrates two long-running calculations performed in sequence.
Then we separate those calculations into two threads to demonstrate the significant
performance improvement of running the threads in parallel on multiple cores.

C.2 Headers Added in C99
The following table lists the standard-library headers added in C99—these remain
available in C11/C18. We’ll discuss the new C11/C18 headers in Section C.8.1.

C.3 Designated Initializers and Compound Literals
[This section can be read after Section 10.3.]
Designated initializers allow you to initialize array elements by subscript and union
or struct members by name. Figure C.1 shows that we can use designated initializers
to initialize specific array elements.

Header Explanation

<complex.h> Contains support for complex numbers (see Section C.5).
<fenv.h> Provides information about the C implementation’s floating-point

environment and capabilities.
<inttypes.h> Defines portable integral types and provides format specifiers for them.
<stdbool.h> Contains macros defining bool, true and false, used for boolean vari-

ables (see Section C.4).
<stdint.h> Defines extended integer types and related macros.
<tgmath.h> Provides type-generic macros that allow functions from <math.h> to be

used with a variety of parameter types (see Section C.7).

1 // figC_01.c
2 // Initializing specific array elements with designated initializers.
3 #include <stdio.h>
4
5 int main(void) {
6 int values[5] = {
7 [0] = 123, // initialize element 0
8 [4] = 456 // initialize element 4
9 }; // semicolon is required

10
11 // output array contents
12 printf("values: ");
13
14 for (size_t i = 0; i < 5; ++i) {
15 printf("%d ", values[i]);
16 }

Fig. C.1 | Initializing specific array elements with designated initializers. (Part 1 of 2.)

726 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

Lines 6–9 define an array and initialize its elements 0 and 4 within the braces.
Note the syntax. You separate each initializer from the next by a comma. The initial-
izer list’s end brace must be followed by a semicolon. Elements that are not explicitly
initialized are implicitly initialized to zero.

Compound Literals
You can use an initializer list to create an unnamed array, struct or union. This is
known as a compound literal. For example, you could pass Fig. C.1’s array to a func-
tion without having to declare it beforehand, as in

demoFunction((int [5]) {[0] = 1, [4] = 2});

Figure C.2 uses compound literals as designated initializers for specific elements in an
array of structs. Lines 12 and 13 each use a designated initializer to explicitly initial-
ize a struct element in the array. For example, in line 12, the following expression is
a compound literal that creates an anonymous struct object of type struct twoInt:

{.x = 1, .y = 2}

That object’s x and y members are initialized to 1 and 2. Designated initializers for
struct and union members list each member’s name preceded by a dot (.).

17
18 puts("");
19 }

values: 123 0 0 0 456

Fig. C.1 | Initializing specific array elements with designated initializers. (Part 2 of 2.)

1 // figC_02.c
2 // Initializing struct members with designated initializers.
3 #include <stdio.h>
4
5 struct twoInt { // declare a struct of two integers
6 int x;
7 int y;
8 };
9

10 int main(void) {
11 struct twoInt a[5] = {
12 [0] = {.x = 1, .y = 2},
13 [4] = {.x = 10, .y = 20}
14 };
15
16 // output array contents
17 printf("%2s%5s\n", "x", "y");
18

Fig. C.2 | Initializing struct members with designated initializers. (Part 1 of 2.)

C.4 Type bool 727

Lines 11–14 are more straightforward than following executable code, which does
not use designated initializers:

struct twoInt a[5];

a[0].x = 1;
a[0].y = 2;
a[4].x = 10;
a[4].y = 20;

Using initializers rather than runtime assignments improves program startup time.

C.4 Type bool
[This section can be read after Section 3.6.]
The boolean type—_Bool—can hold only the values 0 or 1. Recall that in C condi-
tions, zero represents false, and any nonzero value represents true. Assigning any non-
zero value to a _Bool sets it to 1. The <stdbool.h> header defines macros bool, false
and true. These macros replace bool with the keyword _Bool, false with 0, and true
with 1. Figure C.3 uses a function named isEven (lines 28–35) that returns the bool
value true if the function’s argument is even and false if it’s odd.

19 for (size_t i = 0; i < 5; ++i) {
20 printf("%2d%5d\n", a[i].x, a[i].y);
21 }
22 }

 x y
 1 2
 0 0
 0 0
 0 0
10 20

Fig. C.2 | Initializing struct members with designated initializers. (Part 2 of 2.)

1 // figC_03.c
2 // Using bool, true and false.
3 #include <stdio.h>
4 #include <stdbool.h> // allows the use of bool, true, and false
5
6 bool isEven(int number); // function prototype
7
8 int main(void) {
9 // loop for 2 inputs

10 for (int i = 0; i < 2; ++i) {
11 printf("Enter an integer: ");
12 int input = 0; // value entered by user
13 scanf("%d", &input);
14

Fig. C.3 | Using bool, true and false. (Part 1 of 2.)

PERF

728 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

Line 15 declares the bool variable valueIsEven and passes the user’s input to
function isEven, which returns a bool value. Line 29 determines whether the argu-
ment is divisible by 2. If so, line 30 returns true; otherwise, line 33 returns false.
The result is assigned to bool variable valueIsEven in line 15. If valueIsEven is true,
line 19 displays a string indicating that the value is even. If valueIsEven is false, line
22 displays a string indicating that the value is odd. Function isEven’s body can be
written more concisely as

return number % 2 == 0;

but we wanted to demonstrate the <stdbool.h> header’s true and false macros.

C.5 Complex Numbers
[This section can be read after Section 5.3.]
C99 introduced support for complex numbers and complex arithmetic. Figure C.4
shows basic complex-number operations. We compiled and ran this program using
Apple’s Xcode. Microsoft Visual C++ supports only the complex-number features
defined by the C++ standard, not those from C.

15 bool valueIsEven = isEven(input); // determine if input is even
16
17 // determine whether input is even
18 if (valueIsEven) {
19 printf("%d is even\n\n", input);
20 }
21 else {
22 printf("%d is odd\n\n", input);
23 }
24 }
25 }
26
27 // isEven returns true if number is even
28 bool isEven(int number) {
29 if (number % 2 == 0) { // is number divisible by 2?
30 return true;
31 }
32 else {
33 return false;
34 }
35 }

Enter an integer: 34
34 is even

Enter an integer: 23
23 is odd

Fig. C.3 | Using bool, true and false. (Part 2 of 2.)

C.5 Complex Numbers 729

To use complex numbers, include the <complex.h> header (line 3). This will
expand the macro complex to the keyword _Complex—a type that reserves an array of
exactly two elements, corresponding to the complex number’s real part and imaginary
part. You define complex variables as shown in lines 7, 8, 13, 16, 19, 22 and 25. We
define each variable as double complex, indicating that the complex number’s real and
imaginary parts are stored as double values. C also supports float complex or long
double complex.

The arithmetic operators work with complex numbers and the <complex.h>
header provides additional math functions, such as cpow in line 25. You can also use
the operators !, ++, --, &&, ||, ==, != and unary & with complex numbers.

Lines 13–26 output the results of various arithmetic operations. You access a com-
plex number’s real part and imaginary part via functions creal and cimag, respectively,
as shown in line 10. In line 26’s output, we use the symbol ̂ to indicate exponentiation.

1 // figC_04.c
2 // Complex number operations.
3 #include <complex.h> // for complex type and math functions
4 #include <stdio.h>
5
6 int main(void) {
7 double complex a = 3.0 + 2.0 * I;
8 double complex b = 2.7 + 4.9 * I;
9

10 printf("a is %.1f + %.1fi\n", creal(a), cimag(a));
11 printf("b is %.1f + %.1fi\n", creal(b), cimag(b));
12
13 double complex sum = a + b; // perform complex addition
14 printf("a + b is: %.1f + %.1fi\n", creal(sum), cimag(sum));
15
16 double complex difference = a - b; // perform complex subtraction
17 printf("a - b is: %.1f + %.1fi\n", creal(difference), cimag(difference));
18
19 double complex product = a * b; // perform complex multiplicaton
20 printf("a * b is: %.1f + %.1fi\n", creal(product), cimag(product));
21
22 double complex quotient = a / b; // perform complex division
23 printf("a / b is: %.1f + %.1fi\n", creal(quotient), cimag(quotient));
24
25 double complex power = cpow(a, 2.0); // perform complex exponentiation
26 printf("a ^ b is: %.1f + %.1fi\n", creal(power), cimag(power));
27 }

a is 3.0 + 2.0i
b is 2.7 + 4.9i
a + b is: 5.7 + 6.9i
a - b is: 0.3 + -2.9i
a * b is: -1.7 + 20.1i
a / b is: 0.6 + -0.3i
a ^ b is: 5.0 + 12.0i

Fig. C.4 | Complex number operations.

730 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

C.6 Macros with Variable-Length Argument Lists
Macros may have variable-length argument lists. This allows for macro wrappers
around functions like printf. For example, to automatically add the name of the cur-
rent file to a debug statement, you can define a macro as follows:

#define DEBUG(...) printf(__FILE__ ": " __VA_ARGS__)

This DEBUG macro takes a variable number of arguments, as indicated by the ... in
the argument list. As with functions, the ... must be the last argument. Unlike func-
tions, the ... can be the macro’s only argument. The identifier __VA_ARGS__, which
begins and ends with two underscores, is a placeholder for the variable-length argu-
ment list. Assuming this macro appears in the file file.c, the preprocessor replaces
the following macro call:

DEBUG("x = %d, y = %d\n", x, y);

with
printf("file.c" ": " "x = %d, y = %d\n", x, y);

Recall that strings separated by whitespace are concatenated during preprocessing, so
the three string literals will be combined to form printf’s first argument.

C.7 Other C99 Features
Here we provide brief overviews of some additional C99 features. These include key-
words, language capabilities and standard-library additions.

C.7.1 Compiler Minimum Resource Limits
[This section can be read after Section 15.4.]
Before C99, the standard required C implementations to support identifiers of

• no less than 31 characters for identifiers with internal linkage, and

• no less than six characters for identifiers with external linkage (Section 15.4).

C99 increased these limits to 63 characters for identifiers with internal linkage and
31 characters for identifiers with external linkage. These are just lower limits. Com-
pilers are free to support identifiers with more characters than these limits. For more
information, see the C18 standard’s Section 5.2.4.1.

C also sets minimum limits on many language features. For example, compilers
must support at least 1,023 members in a struct, enum or union, and at least 127
parameters to a function. For more information on other limits, see the C18 Standard
Section 5.2.4.1.

C.7.2 The restrict Keyword
[This section can be read after Section 7.5.]
The keyword restrict declares a restricted pointer that should have exclusive access
to a region of memory. Objects accessed through a restricted pointer cannot be

C.7 Other C99 Features 731

accessed by other pointers, except when those pointers’ values are derived from the
restricted pointer’s value, e.g., by assigning a restrict qualified pointer to a non-
restrict qualified pointer.

We can declare a restricted pointer to an int as:
int *restrict ptr;

Restricted pointers allow the compiler to optimize the way the program accesses
memory. For example, the standard-library function memcpy is defined as follows:

void *memcpy(void *restrict s1, const void *restrict s2, size_t n);

The memcpy function’s specification states that it should not be used to copy between
overlapping regions of memory. Using restricted pointers allows the compiler to
optimize the copy operation by copying multiple bytes simultaneously, which is more
efficient. Incorrectly declaring a pointer as restricted when another pointer points to
the same region of memory can result in undefined behavior. For more information,
see C99 Standard Section 6.7.3.1.

C.7.3 Reliable Integer Division
[This section can be read after Section 2.5.]
In early C compilers, integer division behaviors varied across implementations. Some
rounded a negative quotient toward negative infinity, while others rounded toward
zero, resulting in different answers. Consider dividing –28 by 5. The exact answer is
–5.6. If we round the quotient toward zero, we get –5. If we round –5.6 toward neg-
ative infinity, we get –6. Today’s C compilers simply discard the fractional part (the
equivalent of rounding the quotient toward zero), making integer division results reli-
able across systems. For more information, see the C Standard Section 6.5.5.

C.7.4 Flexible Array Members
[This section can be read after Section 10.3.]
The last member of a struct may be an array of unspecified length, as in:

struct s {
 int arraySize;
 int array[];
};

This is called a flexible array member and is declared by specifying empty square
brackets ([]) after the array’s name. To allocate a struct with a flexible array member,
use code such as:

int desiredSize = 5;
struct s *ptr;
ptr = malloc(sizeof(struct s) + sizeof(int) * desiredSize);

The sizeof operator ignores flexible array members, so sizeof(struct s) returns the
size of all the struct’s members except the flexible array member. The extra space we
allocate with sizeof(int) * desiredSize is the flexible array’s size.

PERF

732 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

Flexible-Array-Member Restrictions
There are many restrictions on flexible array members:

• A flexible array member may be declared only as a struct’s last member, so
each struct may contain at most one flexible array member.

• A flexible array cannot be a struct’s only member—the struct must have
one or more fixed members.

• A struct containing a flexible array may not be a member of another struct.

• A struct with a flexible array member must be allocated dynamically. You
cannot fix the flexible array member’s size at compile time.

For more information, see C99 Standard Section 6.7.2.1.

C.7.5 Type-Generic Math
[This section can be read after Section 5.3.]
C99 <tgmath.h> header provides type-generic macros for many math functions in
<math.h>. For example, after including <tgmath.h> the expression sin(x) will call:

• sinf (the float version of sin) if x is a float,

• sin (which takes a double argument) if x is a double,

• sinl (the long double version of sin) if x is a long double, or

• one of csin, csinf or csinl (the sin functions for complex types) if x is a complex.

C11/C18 adds more generics capabilities, which we mention later in this appendix.

C.7.6 Inline Functions
[This section can be read after Section 5.5.]
You can declare inline functions by placing the keyword inline before the function
declaration, as in:

inline void someFunction();

This can improve performance. Function calls take time. When we declare a function
as inline, the program might no longer call that function. Instead, the compiler has
the option to replace every call to an inline function with a copy of that function’s
code body. This improves the runtime performance, but it may increase the pro-
gram’s size. Declare functions as inline only if they are short and called frequently.
If you change an inline function’s definition, you must recompile any code that calls
that function. The inline declaration is only advice to the compiler, which can
decide to ignore it. Compilers also may optimize performance by inlining functions
not declared inline. For more information, see C99 Standard Section 6.7.4.

C.7.7 __func__ Predefined Identifier
[This section can be read after Section 14.9.]
The __func__ predefined identifier is similar to the __FILE__ and __LINE__ prepro-
cessor macros. When used in a function’s body, __func__ is a string containing the

PERF

C.8 C11/C18 Features 733

current function’s name. Unlike __FILE__ and __LINE__, __func__ is a real variable,
not a string literal visible at preprocessing time. So, __func__ cannot be concatenated
with other literals during preprocessing.

C.7.8 va_copy Macro
[This section can be read after Section 15.2.]
Section 15.2 introduced the <stdarg.h> header and functions with variable-length
argument lists. The va_copy macro takes two va_lists and copies its second argu-
ment into its first argument. This allows for multiple passes over a variable-length
argument list without starting from the beginning each time.

C.8 C11/C18 Features
C11/C18 refined and expanded C’s capabilities. Some of C11/C18’s features are con-
sidered optional. Microsoft Visual C++ provides only partial support for features that
were added in C99 and C11/C18.

C.8.1 C11/C18 Headers
The following table lists the standard-library headers that were added in C11.

C.8.2 quick_exit Function
In addition to exit (Section 15.5) and abort, C11/C18 provide function quick_exit
(header <stdlib.h>) to terminate a program. Like exit, you call quick_exit and pass
it an exit status as an argument—typically EXIT_SUCCESS or EXIT_FAILURE, but other
platform-specific values are possible. The program returns the exit status value to the
calling environment to indicate whether the program terminated successfully or an
error occurred.

When called, quick_exit can, in turn, call up to at least 32 other functions to per-
form cleanup tasks. You register these functions, which must return void and have a
void parameter list, with the at_quick_exit function (similar to atexit in
Section 15.5). They’re called in the reverse order from which they were registered.
The motivation for functions quick_exit and at_quick_exit is explained at

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1327.htm

Header Explanation

<stdalign.h> Provides type-alignment controls.
<stdatomic.h> Provides uninterruptible access to objects used in multithreading.
<stdnoreturn.h> Nonreturning functions.
<threads.h> Thread library (see Section C.9).
<uchar.h> UTF-16 and UTF-32 character utilities.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1327.htm

734 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

C.8.3 Unicode® Support
Internationalization and localization is the process of creating software that supports
multiple spoken languages and locale-specific requirements—such as displaying
monetary formats. The Unicode® character set contains characters for many of the
world’s languages and symbols.

C11/C18 includes support for both the 16-bit (UTF-16) and 32-bit (UTF-32)
Unicode character sets, making it easier for you to internationalize and localize your
apps. Section 6.4.5 in the C18 standard discusses how to create Unicode string liter-
als. Section 7.28 in the standard discusses the Unicode utilities header (<uchar.h>),
which includes the new types char16_t and char32_t for UTF-16 and UTF-32 char-
acters, respectively.

C.8.4 _Noreturn Function Specifier
The _Noreturn function specifier indicates that a function will not return to its caller.
For example, function exit (Section 15.5) terminates a program, so it does not return
to its caller. Such C standard-library functions are now declared with _Noreturn. For
example, the C11/C18 standards show function exit’s prototype as:

_Noreturn void exit(int status);

If the compiler knows that a function does not return, it can perform various optimi-
zations. It can also issue error messages if a _Noreturn function is inadvertently writ-
ten to return.

C.8.5 Type-Generic Expressions
C11/C18’s _Generic keyword provides a mechanism that you can use to create a
macro (Chapter 14) that can invoke different type-specific versions of functions
based on the macro’s argument type. In C11/C18, _Generic is used to implement the
features of the type-generic math header (<tgmath.h>). Many math functions provide
separate versions that take float, double or long double arguments. In such cases,
there is a macro that automatically invokes the corresponding type-specific version.
For example, the macro ceil invokes the function ceilf when the argument is a
float, ceil when the argument is a double and ceill when the argument is a long
double. Section 6.5.1.1 of the C18 standard discusses the details of using _Generic.

C.8.6 Annex L: Analyzability and Undefined Behavior
The C11/C18 standards documents define the features of the language that compiler
vendors must implement. Because of the extraordinary range of hardware and soft-
ware platforms and other issues, the standard specifies in several places that the result
of an operation is undefined behavior. These can raise security and reliability con-
cerns. Whenever there’s an undefined behavior, something happens that could leave
a system open to attack or failure. The term “undefined behavior” appears approxi-
mately 50 times in the C18 standard document.

C.8 C11/C18 Features 735

The people responsible for C11/C18’s optional Annex L are from the CERT
Division of Carnegie Mellon’s Software Engineering Institute:

https://www.sei.cmu.edu/about/divisions/cert/index.cfm

They scrutinized all undefined behaviors mentioned in the C standard and discovered
that these fall into two categories:

• those for which compiler implementers should be able to do something rea-
sonable to avoid serious consequences—known as bounded undefined behav-
iors, and

• those for which implementers would not be able to do anything reasonable—
known as critical undefined behaviors.

It turned out that most undefined behaviors belong to the first category. David Kea-
ton (a researcher from the CERT Secure Coding Program) explains the categories in
the following article:

https://insights.sei.cmu.edu/sei_blog/2012/06/improving-security-
in-the-latest-c-programming-language-standard.html

The C11/C18 standard’s Annex L identifies the critical undefined behaviors.
Including this annex as part of the standard provides an opportunity for compiler
implementors. A compiler that’s Annex L compliant can be depended upon to do
something reasonable for most of the undefined behaviors that might have been
ignored in earlier implementations. Annex L still does not guarantee reasonable
behavior for critical undefined behaviors. A program can determine whether the
implementation is Annex L compliant by using conditional compilation directives
(Section 14.5) that test whether the macro __STDC_ANALYZABLE__ is defined.

C.8.7 Memory Alignment Control
In Chapter 10, we discussed that computer platforms have different boundary align-
ment requirements, which could lead to struct objects requiring more memory than
the total of their members’ sizes. C11/C18 allows you to specify the boundary align-
ment requirements of any type using features of the <stdalign.h> header. _Alignas
is used to specify alignment requirements. Operator alignof returns its argument’s
alignment requirement. Function aligned_alloc allows you to dynamically allocate
memory for an object and specify its alignment requirements. For more details, see
Section 6.2.8 of the C18 standard document.

C.8.8 Static Assertions
In Section 14.10, you learned that C’s assert macro tests an expression’s value at exe-
cution time. If the condition’s value is false, assert prints an error message and calls
function abort to terminate the program. This is useful for debugging purposes. C11/
C18 provides _Static_assert for compile-time assertions that test constant expres-
sions after the preprocessor executes and at a point during compilation when the
expressions’ types are known. For more details, see Section 6.7.10 of the C18 standard
document.

https://www.sei.cmu.edu/about/divisions/cert/index.cfm
https://insights.sei.cmu.edu/sei_blog/2012/06/improving-securityin-the-latest-c-programming-language-standard.html

736 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

C.8.9 Floating-Point Types
C11/C18 compilers may optionally provide support for the IEC 60559 floating-
point arithmetic standard. Among its features, IEC 60559 defines how floating-point
arithmetic should be performed to ensure that you always get the same results across
implementations, whether the calculations are performed by hardware, software or
both. You can learn more about this standard at:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/
catalogue_detail.htm?csnumber=57469

C.9 Case Study: Performance with Multithreading
and Multicore Systems
It would be nice if we could focus our attention on performing only one task at a time
and doing it well. That’s usually difficult to do in a complex world where there’s so
much going on at once. This section presents C’s capabilities for creating and man-
aging multiple tasks. As we’ll demonstrate, this can significantly improve program
performance and responsiveness.

Concurrency vs. Parallelism
When we say that two tasks are operating concurrently, we mean that they’re both
making progress at once. Until the early 2000s, most computers had only a single pro-
cessor. Operating systems on such computers execute tasks concurrently by rapidly
switching between them, doing a small portion of each before moving on to the next
so that all tasks keep progressing. For example, it’s common for your computer to
perform many tasks concurrently, such as compiling a program, sending a file to a
printer, receiving e-mail messages, posting a tweet, uploading a video to YouTube,
uploading a photo to Facebook or Instagram and more.

When we say that two tasks are operating in parallel, we mean that they’re exe-
cuting truly simultaneously. In this sense, parallelism is a subset of concurrency. The
human body performs a great variety of operations in parallel. For example, respira-
tion, blood circulation, digestion, thinking and walking can occur in parallel, as can
all the senses—sight, hearing, touch, smell and taste.

No one knows exactly how powerful the human brain is, but various articles state
that it has the equivalent of 100 billion “processors”3,4,5 and one article we found says
the brain has the equivalent of “five million contemporary 200 million transistor chip

3. “How Many Supercomputers Would Fit Inside Your Brain?” Accessed December 4, 2020.
https://fountainmagazine.com/2016/issue-111-may-june-2016/how-many-supercom-
puters-would-fit-inside-your-brain.

4. “When compared to a computer CPU, is human brain single-core or multi-core?” Accessed De-
cember 4, 2020. https://www.quora.com/When-compared-to-a-computer-CPU-is-human-
brain-single-core-or-multi-core/answer/Frank-Heile.

5. “Which is the equivalent processing of human brain in terms of computer processing?” Accessed
December 4, 2020. https://cs.stackexchange.com/questions/20016/which-is-the-
equivalent-processing-of-human-brain-in-terms-of-computer-processin/40075.

PERF

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57469
https://fountainmagazine.com/2016/issue-111-may-june-2016/how-many-supercomputers-would-fit-inside-your-brain
https://www.quora.com/When-compared-to-a-computer-CPU-is-human-brain-single-core-or-multi-core/answer/Frank-Heile
https://cs.stackexchange.com/questions/20016/which-is-the-equivalent-processing-of-human-brain-in-terms-of-computer-processin/40075
https://www.quora.com/When-compared-to-a-computer-CPU-is-human-brain-single-core-or-multi-core/answer/Frank-Heile
https://cs.stackexchange.com/questions/20016/which-is-the-equivalent-processing-of-human-brain-in-terms-of-computer-processin/40075

C.9 Case Study: Performance with Multithreading and Multicore Systems 737

cores.”6 Today’s multicore computers have multiple processors that can perform
tasks in parallel.

C Concurrency
C programs can have multiple threads of execution, each with its own function-call
stack and program counter (which keeps track of the next instruction to execute),
allowing that thread to execute concurrently with other threads. This capability is
called multithreading.

A problem with single-threaded applications is that lengthy activities must com-
plete before others can begin—that can lead to poor responsiveness. In a multi-
threaded application, threads can be distributed across multiple available cores so that
multiple tasks execute in parallel, enabling the application to operate more efficiently.
Multithreading can also increase performance on single-processor systems—when
one thread cannot proceed (because, for example, it’s waiting for an event to occur,
such as a timer expiration or the completion of an I/O operation), another can use
the processor.

A single-core system with multithreading can have several threads executing con-
currently, but not in parallel. A multicore system with multithreading can have some
threads executing concurrently and some executing truly in parallel.

Multicore Systems
Though multithreading has been around since the late 1960s,7 interest in it is rising
quickly due to the proliferation of multicore systems. Smartphones and tablets com-
monly contain multicore processors.

The first multicore CPU was introduced by IBM in 2001.8 Most new processors
today have at least two cores, with three, four and eight cores now common. Apple’s
recently introduced M1 processor has eight CPU cores and up to eight additional
graphics processing unit (GPU) cores.9 AMD has desktop processors with up to 32
cores.10 Intel has processors with up to 18 cores11 for consumers and high-end pro-
cessors with up to 72 cores for supercomputers, high-end servers and ultra-high-per-
formance desktop systems.12 To take full advantage of multicore architecture, you
need to write multithreaded applications.

6. “Neural waves of brain.” December 4, 2020. https://biophilic.blogspot.com/2011/05/
neural-waves-of-brain.html.

7. “Thread (computing)” Accessed December 4, 2020. https://en.wikipedia.org/wiki/
Thread_(computing).

8. "Power 4: The First Multi-Core, 1GHz Processor" Accessed December 4, 2020. https://
www.ibm.com/ibm/history/ibm100/us/en/icons/power4/.

9. “Apple unleashes M1.” Accessed November 18, 2020. https://www.apple.com/newsroom/
2020/11/apple-unleashes-m1.

10. “AMD unveils world's most powerful desktop CPUs.” Accessed November 18, 2020. https:/
/www.zdnet.com/article/amd-unveils-worlds-most-powerful-desktop-cpus/.

11. “Intel Core Processor Family.” Accessed November 18, 2020. https://www.intel.com/
content/www/us/en/products/processors/core.html.

12. "Xeon Phi" Accessed November 18, 2020. https://en.wikipedia.org/wiki/Xeon_Phi.

PERF

https://biophilic.blogspot.com/2011/05/neural-waves-of-brain.html
https://en.wikipedia.org/wiki/Thread_(computing)
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
https://www.zdnet.com/article/amd-unveils-worlds-most-powerful-desktop-cpus/
https://www.intel.com/content/www/us/en/products/processors/core.html
https://en.wikipedia.org/wiki/Xeon_Phi
https://biophilic.blogspot.com/2011/05/neural-waves-of-brain.html
https://en.wikipedia.org/wiki/Thread_(computing)
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/
https://www.apple.com/newsroom/2020/11/apple-unleashes-m1
https://www.zdnet.com/article/amd-unveils-worlds-most-powerful-desktop-cpus/
https://www.intel.com/content/www/us/en/products/processors/core.html

738 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

Concurrent Programming Is Difficult
Writing multithreaded programs can be tricky. Although the human mind can per-
form functions concurrently, people find it difficult to jump between parallel trains
of thought. To see why multithreaded programs can be challenging to write and
understand, try the following experiment: Open three books to page 1 and try read-
ing the books concurrently. Read a few words from the first book, then a few from
the second, then a few from the third, then loop back and read the next few words
from the first book, and so on. After this experiment, you’ll appreciate many of mul-
tithreading’s challenges. You must

• switch between the books,

• read briefly,

• remember your place in each book,

• move the book you’re reading closer so that you can see it and

• push the books you’re not reading aside.

And, amid all this chaos of rapidly repeating these tasks, you must try to comprehend
the content of the books!

Standard Multithreading Implementation
Previously, C multithreading libraries were nonstandard, platform-specific language
extensions. C programmers often want their code to be portable across platforms—this
is a key benefit of standardized multithreading. The <threads.h> header declares the
(optional) multithreading capabilities for writig more portable multithreaded code.

Microsoft Visual C++ and Apple’s version of the Clang compiler in Xcode do not
support <threads.h>. So, we tested this section’s examples, using:

• GNU gcc 10.2 on Ubuntu Linux,

• GNU gcc 10.2 in the GNU Compiler Collection Docker container, which
can run on Windows, macOS and Linux,

• GNU gcc 10.2 on Ubuntu Linux running in the Windows Subsystem for
Linux (WSL), and

• Clang 10.0 on Linux.

In this section, we introduce basic features that enable you to create and execute
threads and simple multithreaded applications. At the end of the section, we mention
several other multithreading features you’ll want to explore if you would like to create
more sophisticated multithreaded applications.

Running Multithreaded Programs
When you run a program, its tasks compete for the processors’ attention with

• the operating system,

• other programs, and

• other activities the operating system runs on your behalf.

C.9 Case Study: Performance with Multithreading and Multicore Systems 739

When you execute the examples in this section, the time to perform each calculation
will vary based on your computer’s

• processor speed,

• number of processor cores, and

• what’s running on your computer.

It’s like driving to a store—the time it takes can vary, based on traffic conditions,
weather and other factors. Some days the drive might take 10 minutes, but it could
take longer during rush hour or bad weather.

There’s also overhead inherent in multithreading itself. Simply dividing a task into
two threads and running it on a dual-core system does not run it twice as fast, though
it will typically run faster than performing the thread’s tasks in sequence. Executing
a multithreaded application on a single-core processor can actually take longer than
simply performing the thread’s tasks in sequence.

Overview of This Section’s Examples
To provide a convincing demonstration of multithreading’s power on a multicore
system, this section presents two programs:

• One performs two compute-intensive calculations sequentially.

• The other executes the same compute-intensive calculations in parallel threads.

The outputs shown were produced using the GNU Compiler Collection Docker
container. Docker allows you to specify the number of cores dedicated to the con-
tainer when you launch it by using the command-line argument:

--cpus=numberOfCores

We executed each program using the Docker container with one core then with two to
show the programs’ performance in each scenario. We show the individual calculation
times and total calculation time for each program. The outputs show the time improve-
ment when the multithreaded program executes on two cores instead of just one.

C.9.1 Example: Sequential Execution of Two Compute-Intensive Tasks
Lines 35–42 of Fig. C.5 define the recursive fibonacci function, originally discussed
in Section 5.15. As we saw in that section, for larger Fibonacci values, the recursive
implementation can require significant computation time. This example sequentially
performs the calculations fibonacci(50) (line 14) and fibonacci(49) (line 23).

PERF

1 // figC_05.c
2 // Fibonacci calculations performed sequentially
3 #include <stdio.h>
4 #include <time.h>

Fig. C.5 | Fibonacci calculations performed sequentially. (Part 1 of 3.)

740 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

5
6 long long int fibonacci(int n); // function prototype
7
8 int main(void) {
9 puts("Sequential calls to fibonacci(50) and fibonacci(49)");

10
11 // calculate fibonacci value for 50
12 time_t startTime1 = time(NULL);
13 puts("Calculating fibonacci(50)");
14 long long int result1 = fibonacci(50);
15 time_t endTime1 = time(NULL);
16
17 printf("fibonacci(50) = %llu\n", result1);
18 printf("Calculation time = %f minutes\n\n",
19 difftime(endTime1, startTime1) / 60.0);
20
21 time_t startTime2 = time(NULL);
22 puts("Calculating fibonacci(49)");
23 long long int result2 = fibonacci(49);
24 time_t endTime2 = time(NULL);
25
26 printf("fibonacci(49) = %llu\n", result2);
27 printf("Calculation time = %f minutes\n\n",
28 difftime(endTime2, startTime2) / 60.0);
29
30 printf("Total calculation time = %f minutes\n",
31 difftime(endTime2, startTime1) / 60.0);
32 }
33
34 // Recursively calculates fibonacci numbers
35 long long int fibonacci(int n) {
36 if (0 == n || 1 == n) { // base case
37 return n;
38 }
39 else { // recursive step
40 return fibonacci(n - 1) + fibonacci(n - 2);
41 }
42 }

a) Run on a Docker Container with One Core

Sequential calls to fibonacci(50) and fibonacci(49)
Calculating fibonacci(50)
fibonacci(50) = 12586269025
Calculation time = 1.700000 minutes

Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 1.050000 minutes

Total calculation time = 2.750000 minutes

Fig. C.5 | Fibonacci calculations performed sequentially. (Part 2 of 3.)

C.9 Case Study: Performance with Multithreading and Multicore Systems 741

Before and after each fibonacci call, we capture the time so we can determine the
calculation’s total processing time. We also use these times to calculate the total time
required for both calculations. Lines 19, 28 and 31 use function difftime (from
header <time.h>) to determine the number of seconds between two times.

The first output shows the program’s results in the GNU Compiler Docker Con-
tainer using one core. The second shows the results of running the program with the
Docker container configured to use two cores. Figure C.5 does not use multithread-
ing, so the program can execute only on one core, even on the two-core Docker con-
tainer. In our testing, running the programs multiple times with one and two cores
produced slightly different results each time. Using a single core generally took longer
because the processor was being shared between this program and Docker.

C.9.2 Example: Multithreaded Execution of Two Compute-
Intensive Tasks
Figure C.6 also uses the recursive fibonacci function but executes each call in a sep-
arate thread. To compile this program with GNU gcc—either in Linux or in the
GNU Compiler Collection Docker container—use the command:

gcc -std=c18 figC_06.c -pthread

The linker uses the -pthread option to link our program to the Linux operating sys-
tem’s threading library. If you have Clang on Linux, you can compile the program with:

clang -std=c18 figC_06.c -pthread

b) Run on a Docker Container with Two Cores

Sequential calls to fibonacci(50) and fibonacci(49)
Calculating fibonacci(50)
fibonacci(50) = 12586269025
Calculation time = 1.666667 minutes

Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 1.066667 minutes

Total calculation time = 2.733333 minutes

Fig. C.5 | Fibonacci calculations performed sequentially. (Part 3 of 3.)

1 // figC_06.c
2 // Fibonacci calculations performed in separate threads
3 #include <stdio.h>
4 #include <threads.h>
5 #include <time.h>
6
7 #define NUMBER_OF_THREADS 2

Fig. C.6 | Fibonacci calculations performed in separate threads. (Part 1 of 4.)

742 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

8
9 int startFibonacci(void *nPtr);

10 long long int fibonacci(int n);
11
12 typedef struct ThreadData {
13 time_t startTime; // time thread starts processing
14 time_t endTime; // time thread finishes processing
15 int number; // fibonacci number to calculate
16 } ThreadData; // end struct ThreadData
17
18 int main(void) {
19 // data passed to the threads; uses designated initializers
20 ThreadData data[NUMBER_OF_THREADS] =
21 {[0] = {.number = 50},
22 [1] = {.number = 49}};
23
24 // each thread needs a thread identifier of type thrd_t
25 thrd_t threads[NUMBER_OF_THREADS];
26
27 puts("fibonacci(50) and fibonacci(49) in separate threads");
28
29 // create and start the threads
30 for (size_t i = 0; i < NUMBER_OF_THREADS; ++i) {
31 printf("Starting thread to calculate fibonacci(%d)\n",
32 data[i].number);
33
34 // create a thread and check whether creation was successful
35 if (thrd_create(&threads[i], startFibonacci, &data[i]) !=
36 thrd_success) {
37 puts("Failed to create thread");
38 }
39 }
40
41 // wait for each of the calculations to complete
42 for (size_t i = 0; i < NUMBER_OF_THREADS; ++i) {
43 thrd_join(threads[i], NULL);
44 }
45
46 // determine time that first thread started
47 time_t startTime = (data[0].startTime < data[1].startTime) ?
48 data[0].startTime : data[1].startTime;
49
50 // determine time that last thread terminated
51 time_t endTime = (data[0].endTime > data[1].endTime) ?
52 data[0].endTime : data[1].endTime;
53
54 // display total time for calculations
55 printf("Total calculation time = %f minutes\n",
56 difftime(endTime, startTime) / 60.0);
57 }
58

Fig. C.6 | Fibonacci calculations performed in separate threads. (Part 2 of 4.)

C.9 Case Study: Performance with Multithreading and Multicore Systems 743

59 // Called by a thread to begin recursive Fibonacci calculation
60 int startFibonacci(void *ptr) {
61 // cast ptr to ThreadData * so we can access arguments
62 ThreadData *dataPtr = (ThreadData *) ptr;
63
64 dataPtr->startTime = time(NULL); // time before calculation
65
66 printf("Calculating fibonacci(%d)\n", dataPtr->number);
67 printf("fibonacci(%d) = %lld\n",
68 dataPtr->number, fibonacci(dataPtr->number));
69
70 dataPtr->endTime = time(NULL); // time after calculation
71
72 printf("Calculation time = %f minutes\n\n",
73 difftime(dataPtr->endTime, dataPtr->startTime) / 60.0);
74 return thrd_success;
75 }
76
77 // Recursively calculates fibonacci numbers
78 long long int fibonacci(int n) {
79 if (0 == n || 1 == n) { // base case
80 return n;
81 }
82 else { // recursive step
83 return fibonacci(n - 1) + fibonacci(n - 2);
84 }
85 }

a) Run on a Docker Container with Two Cores

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 1.083333 minutes

fibonacci(50) = 12586269025
Calculation time = 1.733333 minutes

Total calculation time = 1.733333 minutes

b) Run on a Docker Container with Two Cores

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 1.033333 minutes

Fig. C.6 | Fibonacci calculations performed in separate threads. (Part 3 of 4.)

744 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

The first two outputs show the multithreaded Fibonacci example executing on a
two-core Docker container. Though execution times varied, the total time to perform
both Fibonacci calculations (in our tests) was less than Fig. C.5’s sequential execu-
tions—the total execution time was the same as the longer fibonacci(50) calcula-
tion. Splitting our program into two threads enabled the two Fibonacci calculations
to execute simultaneously—one on each core. The last two outputs show the example
executing on a one-core Docker container. Again, times varied for each execution,
but the total time was more than Fig. C.5’s sequential executions due to the overhead
of sharing one processor among the program’s threads and Docker.

struct ThreadData
Lines 12–16 define a ThreadData struct type containing the number we pass to func-
tion fibonacci and two time_t members where we store the time before and after

fibonacci(50) = 12586269025
Calculation time = 1.600000 minutes

Total calculation time = 1.600000 minutes

c) Run on a Docker Container with One Core

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 2.150000 minutes

fibonacci(50) = 12586269025
Calculation time = 2.816667 minutes

Total calculation time = 2.816667 minutes

d) Run on a Docker Container with One Core

fibonacci(50) and fibonacci(49) in separate threads
Starting thread to calculate fibonacci(50)
Starting thread to calculate fibonacci(49)
Calculating fibonacci(50)
Calculating fibonacci(49)
fibonacci(49) = 7778742049
Calculation time = 2.166667 minutes

fibonacci(50) = 12586269025
Calculation time = 2.833333 minutes

Total calculation time = 2.833333 minutes

Fig. C.6 | Fibonacci calculations performed in separate threads. (Part 4 of 4.)

C.9 Case Study: Performance with Multithreading and Multicore Systems 745

each thread’s fibonacci call. The function that each thread executes in this example
receives a ThreadData object as its argument. Lines 20–22 create a ThreadData array
and use designated initializers (introduced in Section C.3) to set their number mem-
bers to 50 and 49—the Fibonacci numbers we’ll calculate.

thrd_t
Line 25 creates an array of thrd_t objects. When you create a thread, the multi-
threading library creates a unique thread ID and stores it in a thrd_t object. The
thread’s ID can be used with various multithreading functions.

Creating and Executing a Thread
Lines 30–39 create two threads by calling function thrd_create (line 35). The func-
tion’s three arguments are:

• A thrd_t pointer that thrd_create uses to store the thread’s ID.

• A pointer to a function (startFibonacci) specifying the task to perform in the
thread—This function must return an int and receive a void * pointer repre-
senting the function’s argument. The int return value represents the thread’s
state when it terminates. The void * pointer enables this function to receive
an argument of any type that’s appropriate for your application—in our case,
a pointer to a ThreadData object. Recall that any pointer type can be assigned
to a void *.

• A void * pointer to the argument that thrd_create will pass to the function
in the second argument.

Function thrd_create returns thrd_success if the thread is created, thrd_nomem if
there was not enough memory to allocate the thread or thrd_error otherwise. If the
thread is created successfully, the function specified as thrd_create’s second argu-
ment begins executing in the new thread.

Joining the Threads
To ensure that the program does not terminate until the threads terminate, lines 42–
44 call thrd_join for each thread. This causes the program to wait until both threads
terminate before executing the remaining code in main. Function thrd_join receives
the thrd_t ID of the thread to join and an int pointer where thrd_join stores the
status the thread returns when it terminates—if you don’t need this status, pass NULL
for this argument.

Calculating the Execution Times
After the threads terminate, lines 47–56 calculate and display the total execution time
by determining the time difference between the time the first thread started and the
second thread ended.

Function startFibonacci
Function startFibonacci (lines 60–75) specifies the tasks to perform. In this case, we:

746 Appendix C Multithreading/Multicore and Other C18/C11/C99 Topics

• call fibonacci to perform a calculation recursively,

• time the calculation,

• display the calculation’s result, and

• display the time the calculation took (as we did in Fig. C.5).

The thread executes until startFibonacci returns the thread’s status (thrd_success,
line 74), at which point the thread terminates. When this function finishes executing,
its corresponding thread terminates.

C.9.3 Other Multithreading Features
There are many other multithreading features, including _Atomic variables and
atomic operations, thread-local storage, conditions and mutexes. For more informa-
tion on these topics, see the C18 Standard Sections 6.7.2.4, 6.7.3, 7.17 and 7.26 and
the following blog post and article:

https://smartbear.com/blog/test-and-monitor/c11-a-new-c-standard-
aiming-at-safer-programming/

http://lwn.net/Articles/508220/

For documentation, see the threads page at:
https://en.cppreference.com/w/c/thread

https://smartbear.com/blog/test-and-monitor/c11-a-new-c-standard-aiming-at-safer-programming/
http://lwn.net/Articles/508220/
https://en.cppreference.com/w/c/thread

D
Intro to Object-Oriented
Programming Concepts

D.1 Introduction
After you learn C, you’ll likely learn one or more C-based or C-influenced object-ori-
ented languages. These include Java, C++, C#, Objective-C, Python, Swift and many
more. These languages often support several programming paradigms:

• procedural programming,

• object-oriented programming,

• generic programming, and

• functional-style programming.

This appendix presents a friendly overview of object-oriented programming termi-
nology and concepts.

D.2 Object-Oriented Programming Languages
C spawned a whole new generation of programming languages that go beyond C’s
procedural-programming model. As demands for new and more powerful software
soar, building software quickly, correctly and economically is important. Objects, or
more precisely, the classes objects come from, are essentially reusable software com-
ponents. There are date objects, time objects, audio objects, video objects, automo-
bile objects, people objects, etc. Almost any noun can be reasonably represented as a
software object in terms of attributes (e.g., name, color and size) and behaviors (e.g.,
calculating, moving and communicating). Software-development groups can use a
modular, object-oriented design-and-implementation approach to be more produc-
tive than with earlier popular techniques. Object-oriented programs are often easier
to understand, correct and modify.

748 Appendix D Intro to Object-Oriented Programming Concepts

D.3 Automobile as an Object1

To help you understand objects and their contents, consider a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal.
What must happen before you can do this? Well, before you can drive a car, someone
has to design it. A car typically begins as engineering drawings, similar to the blue-
prints that describe a house’s design. These drawings include the design for an accel-
erator pedal. The pedal hides from the driver the complex mechanisms that make the
car go faster, just as the brake pedal “hides” the mechanisms that slow the car, and the
steering wheel “hides” the mechanisms that turn the car. This enables people to drive
a car even if they have little to no knowledge of how engines, braking and steering
mechanisms work.

Just as you cannot cook meals in a kitchen’s blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineer-
ing drawings that describe it. A completed car has an actual accelerator pedal to make
it go faster, but even that’s not enough. The car won’t accelerate on its own (hope-
fully!), so the driver must press the pedal to accelerate the car.

D.4 Methods and Classes
Performing a task in an object-oriented program requires a method. Methods house
the program statements that perform their tasks. Each method hides these statements
from its user, just as a car’s accelerator pedal hides from the driver the mechanisms
that make the car go faster. In object-oriented programming, a program unit called a
class houses the set of methods that perform the class’s tasks. For example, a class rep-
resenting a bank account might contain one method to deposit money into an
account, another to withdraw money from an account and a third to inquire what the
account’s balance is. A class is similar in concept to a car’s engineering drawings,
which house the designs for the accelerator pedal, steering wheel, and so on.

D.5 Instantiation
Just as someone has to build a car from its engineering drawings before you can drive
a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

D.6 Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you
can reuse a class many times to build many objects. Reusing existing classes when
building new classes and programs saves time and effort. Reuse also helps you build

1. As you read the remainder of this appendix, think of how self-driving cars would affect the dis-
cussion.

Appendix D Intro to Object-Oriented Programming Concepts 749

more reliable and effective systems. Existing classes and components often have
undergone extensive testing and debugging (finding and removing errors) and per-
formance tuning. Just as the notion of interchangeable parts was crucial to the Indus-
trial Revolution, reusable classes are crucial to the software revolution that has been
spurred by object technology.

In object-oriented languages like C++, Java, C#, Python, Swift and many more,
you’ll typically use a building-block approach to create your programs. To avoid
reinventing the wheel, you’ll use existing high-quality pieces wherever possible. This
software reuse is a key benefit of object-oriented programming.

D.7 Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a
task—that is, to go faster. Similarly, you send messages to an object. Each message is
implemented as a method call that tells a method of the object to perform its task.
For example, a program might call a bank-account object’s deposit method to
increase the account’s balance by a specified amount.

D.8 Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its
color, its number of doors, the amount of gas in its tank, its current speed and its
record of total miles driven (that is, its odometer reading). Like its capabilities, the
car’s attributes are represented as part of its design in its engineering diagrams (which,
for example, include an odometer and a fuel gauge). As you drive an actual car, these
attributes are carried along with the car. Every car maintains its own attributes. For
example, each car knows how much gas is in its own gas tank, but not how much is
in other cars’ tanks.

An object, similarly, has attributes that it carries along as it’s used in a program.
These attributes are specified as part of the object’s class. For example, a bank-account
object has a balance attribute representing the amount of money in the account. Each
bank-account object knows the balance in the account it represents, but not the bal-
ances of the bank’s other accounts. Attributes are specified by the class’s instance vari-
ables. A class’s (and its objects’) attributes and methods are intimately related, so
classes wrap together their attributes and methods.

D.9 Inheritance
A new class of objects can be created conveniently by inheritance—the new class
(called the subclass) starts with the characteristics of an existing class (called the
superclass), possibly customizing them and adding unique characteristics of its own.
In our car analogy, an object of class convertible certainly is an object of the more gen-
eral class “automobile,” but more specifically, the roof can be raised or lowered.

750 Appendix D Intro to Object-Oriented Programming Concepts

D.10 Object-Oriented Analysis and Design (OOAD)
Many programmers create the code (i.e., the program instructions) for their programs
without an initial planning phase. This approach may work for small programs like
those we presented in the early chapters of this book. But what if you were asked to
create a software system to control thousands of automated teller machines for a
bank? Or suppose you were asked to work on a team of 1,000 software developers
building the next generation of the U.S. air traffic control system?

To create the best solutions for projects so large and complex, you should follow
a detailed analysis process for determining your project’s requirements—that is,
define what the system is supposed to do. You’d then develop a design that satisfies
those requirements—that is, specify how the system should do it. Ideally, before writ-
ing any code, you’d go through this process and carefully review the design and have
your design reviewed by other software professionals. If this process involves analyz-
ing and designing your system from an object-oriented perspective, it’s called an
object-oriented analysis-and-design (OOAD) process. Programming in an object-
oriented language is called object-oriented programming (OOP) and allows you to
implement an object-oriented design as a working system.

Symbols
\t horizontal-tab escape se-

quence 58
, (comma operator) 279
!, logical negation (NOT)

operator 153, 155
!=, inequality operator 69
? 92
?:, conditional operator 92,

113, 217, 218
. dot operator 486
.wbt file (Webots) 374
* assignment suppression

character 471
*, multiplication operator

65, 104
*, pointer operators 313
*=, multiplication assign-

ment operator 113
/, division operator 104
/*…*/ multi-line comment

57
//, single-line comment 56
/=, division assignment op-

erator 113
\? escape sequence 465
\' single-quote-character

escape sequence 465
\" double-quote-character

escape sequence 465
\\ backslash-character es-

cape sequence 465
\0 null-character escape se-

quence 255

\a alert escape sequence 58,
465

\b escape sequence 465
\f escape sequence 391
\f form-feed escape se-

quence 465
\n newline escape sequence

58, 391, 465
\r carriage-return escape se-

quence 391, 465
\t horizontal-tab escape se-

quence 465
\v vertical-tab escape se-

quence 391, 465
&, address operator 62, 313
&, bitwise AND operator

495
&&, logical AND operator

153, 217, 218
&=, bitwise AND assign-

ment operator 503
formatting flag 463
#, preprocessor operator 57,

690
##, preprocessor operator

690
% character in a conversion

specifier 104, 451
%, remainder operator 65,

198
%% conversion specifier 457
%=, remainder assignment

operator 113

%c conversion specification
256

%c conversion specifier 190,
456, 468

%d conversion specifier 62,
63, 190

%E conversion specifier 455,
468

%e conversion specifier 455,
468

%f conversion specification
105

%f conversion specifier 190
%g conversion specifier 468
%hd conversion specifier 190
%hu conversion specifier 190
%i conversion specifier 467
%ld conversion specifier 190
%Lf conversion specifier 190
%lf conversion specifier 190
%lld conversion specifier

190
%llu conversion specifier

190
%lu conversion specifier 190
%p conversion specification

313
%p conversion specifier 457
%s conversion specification

74
%s conversion specifier 341,

457, 468
%u conversion specifier 190,

452

Index

752 Index

%X conversion specifier 466
%zu conversion specification

247
^ inverted scan set 469
^, bitwise exclusive OR op-

erator 495
^=, bitwise exclusive OR as-

signment operator 503
+ flag 461, 462
-, unary minus operator

113
+, unary plus operator 113
--, decrement operator 111,

113, 332
++, increment operator 111,

113, 332
+=, addition assignment op-

erator 110, 113
<, less than operator 69
<<, left-shift operator 495,

501
<<=, left-shift assignment

operator 503
=, assignment operator 63,

113
-=, subtraction assignment

operator 113
>, greater than operator 69
->, structure pointer opera-

tor 486
>>, right-shift operator 495,

501
>>=, right-shift assignment

operator 503
|, bitwise inclusive OR op-

erator 495
|=, bitwise inclusive OR as-

signment operator 503
||, logical OR operator

153, 217
~, bitwise complement op-

erator 495, 501

Numerics
0 Conversion specifier 62,

467, 468

0x 463

A
a file open mode 546
a.out 22
a+ file open mode 546
ab file open mode 546
ab+ file open mode 546
abnormal program termina-

tion 709
abort function 691
absolute value 182
abstraction 183
accelerometer 5
access privileges 319
access violation 62, 389,

456, 457
accessibility heuristic 305
accounts receivable 174
accumulator 363, 364, 368
accumulator overflow 368
action 58, 69, 69, 86, 87
action statement 87
action symbol 89
action/decision model 91
add an integer to a pointer

331
addition 6
addition assignment opera-

tor (+=) 110
addition program 60
address 603
address of a bit field 506
address operator (&) 62, 256,

312, 315, 326, 327
“administrative” section of

the computer 6
Advanced string manipula-

tion exercises 429
aggregate data types 322,

482
AI xxx, xl
airline reservation system

302
alert (\a) 58
algebra 65

algorithm 86
development xxv, xxviii,

xli
insertion sort 665
merge sort 668
selection sort 660

_Alignas keyword 735
aligned_alloc 735
aligning 451
AlphaGo 50
AlphaZero 50
ALU (arithmetic and logic

unit) 6
Amazon Alexa xxxii, 53
AMD processors 737
American National Stan-

dards Committee on
Computers and Informa-
tion Processing 17

American National Stan-
dards Institute (ANSI) 17

ampersand (&) 62
Analog Clock exercise 537
analysis 750
analysis of examination re-

sults 109
analyzability 724
AND 495
Android

operating system 15
smartphone 15

animated visualization xxxvi
animation in raylib 521
Annex K xxxiii, 289

remove from C standard
xxxiii

anomaly detection 46
Anscombe’s Quartet xxvi,

xxxvii, 584, 585
ANSI 17
Apache Software Founda-

tion 14
Apple 14

Macintosh 14
Siri xxxii, 53
TV 15

Index 753

Watch 15
Xcode xxiv, li

Apple M1 processor 737
applied approach xxx
arc4random function

POSIX secure random
numbers 221

arc4random function
POSIX secure random
numbers) 221

area of a circle 131
argc 702
argument 58, 62

of a function 181
argument coercion 189
arguments 684
argv 702
arithmetic 23

assignment operators 110
conversion rules 189
mean 67
operators xxiv, 65
overflow 114

arithmetic and logic unit
(ALU) 6

arithmetic assignment oper-
ators
=, +=, -=, *=, /=, and %=

110
arithmetic average (mean)

271
arithmetic expressions 330
arithmetic operations 363
ARPANET 36
array 244

bounds checking 252,
289

data structure xxv
initializer 248
JSON 591
notation 336
of pointers 338, 347

array (cont.)
of pointers to functions

361

subscript notation 255,
323, 337

array”of strings 338
arrow operator (->) 486
artificial general intelligence

49, 53
artificial intelligence (AI)

xxiv, xxvi, xl, 49
as-a-service

big data (BDaas) 37
Hadoop (Haas) 37
Infrastructure (Iaas) 37
platform (Paas) 37
software (Saas) 37
storage (Saas) 37

ASCII (American Standard
Code for Information In-
terchange) 146, 408
character set 8, 408

assembler 12
assembly language 11
assert macro 691
<assert.h> 196, 691
assertions xxvii
assignment

operator = 63, 70
statement 63

assignment expressions 330
assisting people with dis-

abilities 46
associativity 67
asterisk (*) 65
at_quick_exit 733
atexit function 706
atomic operation 745
_Atomic variable 745
attribute 749

of a class 747
of an object 749

attributes of an object 749
audible (bell) 465
auto storage class specifier

206
automated closed caption-

ing 46
automatic storage 206, 260

autonomous vehicles 6
average 67

mean 271
Awesome C libraries list 19

B
B language 16
backslash (\) 58, 465, 686
bandwidth 5, 36
bank account program 561
bar chart 174, 252
base 10 number system 397
base 16 number system 397
base 8 number system 397
base case(s) 211
basic descriptive statistics

xxvi, xxxiv
mean 271
median 271
mode 272

BASIC programming lan-
guage 19

basic time step (Webots)
381

BCPL 16
BCryptGenRandom function

(Microsoft secure ran-
dom numbers) 221

BDaaS (Big data as a Ser-
vice) 37

behavior
of a class 747

Bell Laboratories 16
big data xx, xxiv, 10, 45

analytics 46
Big O notation xxvii, 658,

659, 664
binary 391
binary (base-2) number sys-

tem 496
binary digit (bit) 8
binary files xxvi, 545
binary number 175
binary number system 8,

452
binary operator 63

754 Index

binary search 24, 219, 272,
274, 275, 308

binary search tree 621, 625,
626, 634

binary-to-decimal conver-
sion problem 130

binary tree xxvii, 621
creating and traversing

622
binary tree insert 219
binary tree sort 625
bit (“binary digit”) 6, 8
bit field 504, 505
Bitcoin 43, 54, 439
bitwise AND (&) operator

495, 500, 518
bitwise AND, bitwise inclu-

sive OR, bitwise exclusive
OR and bitwise comple-
ment operators 498

bitwise assignment opera-
tors 503

bitwise complement opera-
tor (~) 498, 501

bitwise exclusive OR (^) op-
erator 495, 500

bitwise inclusive OR (|) op-
erator 495, 500

bitwise operators xxvi, 495
bitwise shift operators 501
bitwise XOR 495
Bjarne Stroustrup 19
blank 91
block 57, 94, 186
block of data 414
block scope 208
blockchain 43, 54
body of a function 57, 71
body of a while 96
Böhm and Jacopini 88
_Bool 727
bool xxviii, 724
bool 725
_Bool Data Type 156
boolean type 156, 727

Boolean values in JSON
591

bounds checking 252, 289
braces ({}) 94
brain mapping 46
branch 645

negative 646
zero 646, 649, 650, 652

branching instructions 367
break 147, 151, 152, 153,

177
Brick Game exercise 537
brute force computing 49
bubble sort 265, 271, 299,

324, 326, 327, 344
with pass-by-reference

324
bucket sort 678
buffer overflow 256, 289
build your own computer

365
building a casino game xxv
building-block approach 18
Building Your Own Com-

piler 596
building your own compiler

636, 642, 643, 644, 647,
649, 650, 651, 653, 655

Building Your Own Com-
piler case study xxx, 643

Building Your Own Com-
puter 596

Building Your Own Com-
puter case study xxx, xxxv,
xxxviii, 11

building-block approach
749

byte 6, 8, 495

C
C

code repositories xxxi
forums xlv
language 16

C (cont.)
Language Reference xlv

Language Reference (Mi-
crosoft) xlv

open-source community
xxxi

preprocessor 22, 57, 682
standard ISO/IEC

9899:2018 17
C standard

document xxviii
C Standard Library 320
C standard library 18, 21,

180, 197
functions xxvi
headers xlv

C# programming language
20

C++ 188
C++ programming language

19
C11 xxix, 724
C11 headers 733
C18 xxix, 32, 724
C99 17, 724
C99 headers 725
Caesar cipher 434
calculations 7, 63, 74
California Consumer Priva-

cy Act (CCPA) xxxii, 53
call a function 181, 185
call-by-reference 488
call-by-value 488
caller 181
calling 185
calling function (caller) 181
calloc 711
camel casing 62
cancer diagnosis 46
Cannon Game (game-pro-

gramming case study)
527

Cannon Game App exercise
enhancements 536

card games 356
card images 522, 533
Card Shuffling and Dealing

339, 341, 342, 489

Index 755

caret (^) 470
Carnegie Mellon Universi-

ty’s Software Engineering
Institute (SEI) 54

Carnegie Mellon’s Software
Engineering Institute
xxxix, 734

carriage return (’\r’) 391
case label 147, 148, 208
case sensitive 61, 99
case studies xx
casino dice game xxxiv
cast 687
cast operator 102, 104, 190

(float) 104
cbrt function 182
CC2020

Paradigms for Future
Computing Curricula
xl

CCPA (California Con-
sumer Privacy Act) xxxii,
53

ceil function 182
Celsius 479
central processing unit

(CPU) 6
CERT C Coding Standard

54
CERT C Secure Coding

Standard 349
CERT Division of Carnegie

Mellon University’s Soft-
ware Engineering Insti-
tute xxxix, 54

Challenge Project: The RSA
Problem 448

char * 456
char ** 396
char fundamental type 190
char primitive type 146,

389
CHAR_BIT symbolic constant

497
character 8

set 8

character and string conver-
sion specifiers 456

character array 255, 256
character constant 321, 388
character handling library

390
character set 83, 146, 388
character string 58, 246
chatbots 578
check if a string is a palin-

drome 219
check protection 431
checkerboard 130
chess 49, 303
child 621
Christopher Marlowe’s Ed-

ward the Second xli
cimag function 729
cipher

algorithms 434
Caesar 434
cryptii.com 434
substitution 434
Vigenère 438, 439

ciphertext 434, 442
circumference of a circle

131
cJSON library 589, 593
Clang compiler li, 3, 25
clang-tidy xxxiii
class 748

instance variable 749
class-average problem 97,

102
counter-controlled itera-

tion 98
sentinel-controlled itera-

tion 103
classes 747
classes in object-oriented

languages 215
cleartextin cryptography

434
client application 589
Climate at a Glance time se-

ries 588

Climate at a Glance” time
series 588

clock 201
CloseWindow function (ray-

lib) 525
cloud xx, xxxvii, 37, 589

computing 37
cloud-based

services xxxvii, 37
tools xli

cloud-based services 590
clusters of computers 48
code 2
code repositories xxxi
coding standards xxxiii
coercion of arguments 189
coin tossing 234
collision detection in raylib

521
Color type in raylib 523
colors in raylib 521
column 278
comma operator (,) 217,

218, 279
comma-separated list 279
comma-separated values

(CSV) file xxvi
Command Line Tool project

in Xcode 29
Command Prompt window

25, 27
command-line arguments

xxvii, 530, 593, 702, 703
comment 56
commission 125, 298
Common programming er-

rors xliv
Communications of the

ACM 88
communications systems

xxxii
comparing strings 403
comparison expressions 330
compilation error 22, 157
compilation process 649
compile 21

756 Index

compile and run a program
in Xcode 30

compile phase 21
compile-time error 22
compiler 12, 22, 57, 58

Apple Xcode (macOS) li
Clang 3, 25
GNU gcc li, 3, 25
Microsoft Visual Studio li
Visual Studio Communi-

ty edition 3, 25
Xcode on macOS 3, 25

compiler optimization 651
compiling multiple-source-

file programs xxvii
complement operator (~)

495
complete algorithm 89
complex 729
_Complex keyword 729
complex number xxviii, 728
complex number 729
complex numbers 724, 725
complex.h 725, 729
complex.h header 182
component 747
compound interest 140,

141, 173
compound literal xxviii, 726
compound literals 724
compound statement 94
computational thinking xli
computer dump 366
computer hardware xix
computer memory concepts

xxiv
computer networks 615
computer program 4
computer science xxiv
Computer Science and Arti-

ficial Intelligence Labora-
tory (CSAIL) xxx

Computer Science Curricu-
la xxxix, xl

computer-science topics
xxvii

computer simulator 365
computer software xix
computer vision 46, 53
computer-vision applica-

tions 49
Computer-Assisted Instruc-

tion (CAI) 239, 240
Computer-Assisted Instruc-

tion (CAI): Difficulty
Levels 240

Computer-Assisted Instruc-
tion (CAI): Monitoring
Student Performance 240

Computer-Assisted Instruc-
tion (CAI): Reducing
Student Fatigue 240

Computer-Assisted Instruc-
tion (CAI): Varying the
Types of Problems 240

computers in education 239
Computing Curricula 2020

(CC2020) xlviii
computing the sum of the

elements of an array 250
concatenating strings 403
concurrent operations 736
condition 69, 153
conditional compilation

xxvii, 682, 687
conditional execution of

preprocessor directives
682

conditional expression 92
conditional operator (?:)

92, 113
conditional transfer of con-

trol 365
connector symbol 89
const keyword 263, 319,

322, 338
constant 637
constant integral expression

149
constant pointer 322, 323,

333

constant pointer to constant
data 319, 323

constant pointer to non-
constant data 319, 322,
323

constant run time 659
constraint violation 349
container (Docker) xlii, liv
continue 151, 153, 177
control characters 394
control statement xxv

nesting 89
stacking 89, 90

control structure 88, 90
control variable 134, 140

increment 135
initial value 135
name 135

controller (Webots) 379,
381, 383, 384

controlling expression in a
switch 147

conversion rules 189
conversion specification 62,

63
%c 256
%p 313
%zu 247

conversion specifications
451
%d 62, 63
%s 74

conversion specifier 451,
463
%X 466
0 (zero) flag 464
c 456
e and E 454
f 454
g (or G) 454
s 456

convert lowercase letters to
uppercase letters 196

Cooking with Healthier In-
gredients 432

coprime 443

Index 757

copy 197
copying strings 403
corpus 577

corpora (plural of corpus)
577

correction 23
cos function 183
cosine 183
count statistic 583
counter 97, 127
counter-controlled iteration

xxv, 97, 135, 136
counter-controlled looping

106, 107
counting letter grades 147
counting loop 136
counting word frequencies

578
CPU (central processing

unit) 6, 23
cracking RSA ciphertext

448
CraigsList 38
craps (casino game) 239
craps game 202
Craps Game Statistics 301
crash a program 389, 456
“crashing” 101
creal function 729
create sentences 427
creating algorithms xli
credit limit problem 125
credit limits 173
credit scoring 46
crime prevention 46
CRISPR gene editing 46
crop yield improvement 46
crossword puzzle generator

433
crowdsourced data 47
cryptocurrency 43, 44, 54,

439

cryptography xxxv, 434
cleartext 434

Cryptography API
Next Generation (Micro-

soft) 221
CSV (comma-separated val-

ue) file xxvi
.csv filename extension 586
<Ctrl> c 709
<ctype.h> header file 390,

196, 686
cube a variable

using pass by reference
316

using pass by value 315
cube root function 182
current technology trends

xxiv
custom functions xxv
custom header 196
customer

churn 46
retention 46
service agents 46

Cyberbotics Ltd. 370
cybersecurity xl, 46
Cybersecurity Curricula

xxxix, xl

D

dangling pointer 627
dangling-else problem 94,

128, 129
data 4
data counter (Simple com-

piler) 649
data hierarchy xxiv, 8
data mining 10

Twitter 46
data munging 580
data samples 584

data science xxiv, xxv, xxvi,
xl, xli, 46, 582, 583
get to know your data

582
use cases 46

data science curriculum
proposal xli

data scientist 580
data structure xxvii, xli, 596
data types

int 61
data visualization 46
data wrangling 580
database xli, 9
data-interchange format

JSON 590
dataset 584
date 196
__DATE__, predefined sym-

bolic constant 691
deallocate memory 598
debug 88
Debug area (Xcode) 30
debugging xxviii, 749
debugging (online appendi-

ces) xlvi
decimal 177, 391, 397

digit 8
decision 69, 74
decision making xxiv
decision symbol 91
deck of cards 338
decomposition 184
decrement 135, 139, 332
decrement a pointer 331
decrement operator (--)

111
decrypt 132
deep learning xl, 48, 53
DeepBlue 49
default case 147, 148
default precision 105, 454
#define preprocessor direc-

tive 249, 683
definite iteration 97
definition 61

758 Index

delimiting characters 413
DeMorgan’s Laws 176
dependent variable 585,

585
depth of a binary tree 634
dequeue 614, 615
dereferencing a pointer 313
dereferencing a void *

pointer 333
dereferencing operator (*)

313, 486, 488
derived data type 483, 492
descriptive statistics xxvi,

xxxiv, 583, 583
design pattern 39
design process 750
designated initializer xxviii,

724, 725, 725, 726, 744
destructive 64, 65
determining the length of

strings 403
developing algorithms xxv
development environments

xli
devices 21, 24
diagnose medical condi-

tions 49
diagnostic medicine 46
diagnostics 196
diameter of a circle 131
diamond symbol 91
dice game 202
dice rolling 199, 202, 253

simulation xxxi
using arrays instead of

switch 253
dictionary 575
die-rolling simulation 520,

529
differential wheels (Webots)

373
difftime function (header

time.h) 741
digit 83
Digital Clock exercise 537
direct-access files xxvi, xxxvi

directly reference a value
311

disk 23
displacement 557
display

a binary tree 635
displaying

an unsigned integer in
bits 496

value of a union in both
member data types 494

distance between two points
237

divide and conquer 180,
183

divide by zero 368
division 6, 65

by zero 24, 101
do...while iteration state-

ment 89
do…while statement exam-

ple 150
Docker xlii, liv

container xlii, liv
GNU Compiler Collec-

tion (GCC) container
3, 25, 34

image liv
Docker Desktop installer liv
Docker Hub account liv
document a program 56
DOS (Disk Operating Sys-

tem) 13
dot operator (.) 486
(double) cast operator 104
double complex 729
double fundamental type

102, 104, 189
double indirection (pointer

to a pointer) 603
double primitive type 141
double quote character (")

58
double-selection statement

89, 107
download examples xlii

DrawGame function in a ray-
lib game 525

drawing graphs 174
DrawRectangleLines func-

tion (raylib) 535
DrawTextureEx function

(raylib) 535
dual-core processor 7
dummy value 99
dump 366
duplicate elimination 300,

307, 626, 634
duration 206, 208
dynamic

driving routes 46
pricing 46

dynamic animated visual-
ization xxxvi

dynamic array 711
dynamic data structure

xxvii, 310, 596
dynamic memory

allocation xxvii
dynamic memory allocation

711
dynamic memory manage-

ment 310, 598

E
Eclipse Foundation 14
edit phase 21, 23
editor 21, 388
Editor area (Xcode) 30
Edward the Second xli
EEPs (examples, exercises

and projects) xxx
efficiency of

insertion sort 668
merge sort 673
selection sort 664

Eight Queens 219, 306, 308
Eight Queens: Brute Force

approach 307
electronic health records 46
element of an array 244,

245

Index 759

element positions in raylib
524

#elif 688
ellipsis (...) in a function

prototype 700
#else 688
emacs 21
e-mail (electronic mail) 36
embedded system xxxii, 4,

14, 17
Embedded Systems Pro-

gramming case study
xxxiv

emotion detection 46
employee identification

number 9
Empty Project template 25
empty statement 71
encrypt 132
“end of data entry” 99
end-of-file 147, 390, 399,

540, 543, 544
#endif 688
Enforcing Privacy with

Cryptography 132
English-like abbreviations

11
enqueue 615
Enter key 22, 62, 148
enum 205, 507
enumeration xxvi, 205, 508
enumeration constant 205,

507, 687
enumeration example 508
environment 21
EOF 146, 147, 390
e-puck robot 373
e-puck robot (Webots) 373
e-puck_avoid_obstacles

controller (Webots) 379
equality and relational oper-

ators 333
equality operator (==) 69
e-reader device 15
<errno.h> 196

error 23
condition 196
fatal 66
message 23, 24
nonfatal 66

error checking (in file pro-
cessing) 558

#error preprocessor direc-
tive 689

escape character 58, 465
escape sequence 58, 465,

479
Ethereum 43, 54
ethics xxxii, xli, 54
Euler 303
Euler’s totient function 442
event 708
exabytes (EB) 41
exaflops 42
exam results analysis 109
examination results prob-

lem 108
examples (download) xlii
examples, exercises and

projects (EEPs) xxx, xxxi
exclusive write mode 546
executable image 22
executable program 58
execute 23

a program 5
in parallel xxxviii
phase 21

execution-time error 24
exit function 706

atexit functions 707
EXIT_FAILURE 706, 733
EXIT_SUCCESS 706, 733
exp function 182
expand a macro 685
explicit conversion 104
exponential complexity 218
exponential format 451, 452
exponential function 182
exponential notation 454
exponentiation 68

modular 445

exponentiation operator
141

expression 144, 149, 186
extensible languages 215
extern 206, 704
external linkage 705, 730

F
f or F for a float 708
fabs function 182
Facebook 14
Facial Recognition 47
factorial 131, 173
factorial function 212, 219
Fahrenheit temperatures

479
false boolean value 69,

725
fatal error 24, 66, 83, 101,

368, 457
fatal logic error 95
FCB 541
fclose function 544
fenv.h 725
feof function 544, 559
fetch 366
fetch the next instruction

367
fgetc function 541, 575
fgets function 399, 541
Fibonacci function 217,

219
Fibonacci series 215, 235
field 9, 9
field width 142, 451, 458,

460, 470
inputting data 470

fields (Webots) 376
FIFO (first-in first-out) 614
file 9, 540

name 21
scope 208

file control block (FCB)
541

file descriptor 541
file-matching program 572

760 Index

file offset 548
file open mode 543, 546
FILE pointer 541
file position pointer 548
__FILE__, predefined sym-

bolic constant 691
file processing

error checking 558
files for long-term data re-

tention xxvi
filter project templates in

Visual Studio 26
final value 135
final value of a control vari-

able 140
find the minimum value in

an array 308
first-in first-out (FIFO) 614
first refinement 100, 107
Fisher-Yates Shuffling Algo-

rithm 492
five-card poker 357
fixed-point notation 454
flag value 99
flagged 645
flags 451, 461
flexible array member 731
flexible array members

xxviii, 724
flipped classroom xlii
float fundamental type

104, 190
float type 142
<float.h> 196
floating point 455

number 99, 102, 104,
105, 106

size limits 196
floating-point literal 142

double by default 142
floating-point conversion

specifiers 455, 459, 467
using 455

floating-point suffix
f or F for a float 708
l or L for a long double

708
floating-point types 724
floor function 182
FLOPS (floating-point op-

erations per second) 42
flow of control 75
flowchart 88, 91

sequence structure 88
flowcharting the do...while

iteration statement 151
flowline 88
fmod function 183
Folding@home network 42
font conventions in this

book xliii
fopen function 543
for iteration statement 89,

140
format control string 62, 63,

451, 459, 466
formatted input/output

model 551
formatting xxvi
form-feed character (\f)

391
forward reference (Simple

compiler) 645
four V’s of big data 45
fprintf function 541
fprintf_s function 566
fputc function 541
fputs function 541
fractional parts 104
frame-by-frame animation

524
frames-per-second 525
fraud detection 47
fread function 541, 553
free function 598, 613
front of a queue 596
fscanf function 541
fscanf_s function 566
fseek function 555

__func__ predefined identi-
fier 732

function 18, 22, 57, 163,
180
argument 181
body 186
call 181, 186
call and return 196
call stack xxv
call/return mechanism

xxv
caller 181
header 186, 346, 348
invoke 181, 185
name 185, 207, 220, 344
parameter 185, 317, 323
pointer 344, 347
prototype 142, 185, 186,

188, 207, 317, 327
prototype scope 207, 208
return from 181, 182
rewind 548
scope 208

function call
stack 322

functional-style program-
ming xxxiii, 747

function-call stack 191
functions xxv
fundamental data types xxiv
fundamental types

long double 142
fwrite 541, 553, 555

G
game loop 524
game of craps 202, 301
game playing 47, 197
game programming xxx,

xxxv
Game Programming Case

Study
Cannon Game 527
SpotOn Game 526

game-programming case
study 526

Index 761

game systems xxxii
“garbage value” 99
Gary Kasparov 49
gcc compilation command

22
GDPR (General Data Pro-

tection Regulation) xxxii,
53

Gender Neutrality 433
General Data Protection

Regulation (GDPR) xxxii
general utilities library (st-

dlib) 396
generating mazes randomly

360
_Generic keyword 734
generic math 724
generic pointer 332
generic programming xxxiii,

747
get to know your data 582,

585
getc 686
getchar 401, 575, 686
getting questions answered

xlv
getting your questions an-

swered xlv
gigabytes (GB) 6, 40
gigaflops 42
GitHub xxx, xxxi, xxxii, xlv,

13
global variable 207, 208,

327, 704
GNU C Standard Library

Reference Manual xlv
GNU Compiler Collection

(GCC) Docker container
xxiv, 3, 25, 34, 739

GNU gcc xxiv, xliv, li, 3, 25
GNU Scientific Library

583, 586
gsl_fit_linear func-

tion 586
gnuplot xxxvii, 583

install 587

Go board game 50
golden mean 215
golden ratio 215
good programming practic-

es xliv
Google Assistant xxxii, 53
Google Maps 38
Gosling, James 20
goto elimination 88
goto-less programming 88
goto statement 88, 208, 713,

713, 713
GPS (Global Positioning

System)
device 5

GPS sensor 48
GPU (graphics processing

unit) 737
graphical user interface

(GUI) 14
graphics processing unit

(GPU) 737
gravity in Webots 374
Greatest common divisor

219
greatest common divisor

446
grouping of operators 245,

314, 503
gsl_fit_linear function of

the GNU Scientific Li-
brary 586

guess the number exercise
235

GUI (Grahical User Inter-
face) 14

Guido van Rossum 19

H
Hadoop (Apache)

as a Service (HaaS) 37
halt 366
halt instruction 645
hard disk 5
hard drive 4, 21
hardware xix, xxiv, 2, 4, 11

hardware independent 16
hardware platform 17
head of a queue 596, 614
header (file) 57, 156, 195,

683
<ctype.h> 390
<stdio.h> 399
<stdlib.h> 396
<string.h> 403
complex.h 725, 729
fenv.h 725
inttypes.h 725
stdbool. 725
stdbool.h 727
stdint.h 725
tgmath.h 725

headers
complex.h 182

Health Insurance Portabili-
ty and Accountability Act
(HIPAA) xxxii

health outcome improve-
ment 47

heuristic 305
hexadecimal 175, 391, 397,

451, 452
hexadecimal integer 313
high-level language 12
highest level of precedence

66
high-order bit 497
High-performance card

shuffling and dealing
simulation 489, 490

HIPAA (Health Insurance
Portability and Account-
ability Act) xxxii, 53

Histogram printing 252
hook (Simple compiler)

646
horizontal tab (\t) 58, 391
HTML (HyperText Mark-

up Language) 37
HTTP (HyperText Trans-

fer Protocol) 37
HTTPS protocol 434

762 Index

human genome sequencing
47

HyperText Markup Lan-
guage (HTML) 37

HyperText Transfer Proto-
col (HTTP) 37

hypotenuse of a right trian-
gle 232

I
IBM DeepBlue 49
IBM Watson xxxii, 49, 53
identifier(s) 61, 684
identity theft prevention 47
#if 688
if selection statement 69
if statements, relational op-

erators, and equality op-
erators 70

if...else selection state-
ment 89, 92

#ifdef preprocessor direc-
tive 688

#ifndef preprocessor direc-
tive 688

image 22
image (Docker) liv
immunotherapy 47
immutable (not modifiable)

390
implicit conversion 104
in parallel 736
#include preprocessor di-

rective 683
including headers 196
increment a control variable

135, 140
increment a pointer 331
increment operator (++)

111
incremented 332
indefinite iteration 99
indefinite postponement

340, 357, 491
indentation 91, 94

independent variable 585,
585

index (subscript) 245
indirection 311, 315
indirection operator (*)

313, 315
indirectly reference a value

311
infinite loop 96, 104, 138
infinite recursion 214
infix notation 637
infix-to-postfix conversion

637
Infix-to-Postfix Converter

exercise 637
information hiding 208,

326
Information Revolution 5
information technology

(IT) 10
Information Technology

Curricula xxxix
Information Technology

Curricula 2017 xl
Infrastructure as a Service

(IaaS) 37
inheritance 749
InitGame function in a ray-

lib game 524
initial value of a control

variable 135, 140
initialization phase 102
initialize 61
initializer list 255, 279
Initializing multidimen-

sional arrays 279
initializing structures 486
Initializing the elements of

an array to zeros 247
Initializing the elements of

an array with an initializ-
er list 248

InitWindow function (ray-
lib) 524

inline function 724, 732
inner block 208

innermost pair of parenthe-
ses 66

inorder traversal of a binary
tree 219, 622, 625

input xxiv
input device 5
input events in raylib 521
input unit 5
input/output operators 363
inputting data with a field

width 470
inserting literal characters

451
insertion sort algorithm

665, 666, 668
instance 748
instance variable 749
instantiation 748
instruction 23, 640

counter 649
instruction execution cycle

366, 367
Instructor Solutions Manu-

al xlvi
instructor supplements xlvi
int type 57, 61, 190
integer 57, 61
integer array 244
integer constant 323
integer conversion specifiers

452
using 452

integer division 66, 104
integer promotion 190
integer suffix

l or L for a long int 708
ll or LL for a long long

int 708
u or U for an unsigned int

708
integral size limits 196
integral types

portable 725
integrated development en-

vironments (IDEs) 21
Intel processors 737

Index 763

intelligent assistants xxxii,
47, 53
Amazon Alexa xxxii, 53
Apple Siri xxxii, 53
Google Assistant xxxii, 53
IBM Watson xxxii, 53
Microsoft Cortana xxxii,

53
intelligent virtual assistants

577
interactive attention signal

709
interactive computing 63
intercept 585
Interface Builder 14
interlanguage translation

578
internal linkage 705, 730
International Standards Or-

ganization (ISO) 17
Internet 36, 589
Internet bandwidth xix
Internet of Things (IoT) xx,

15, 38, 45, 48, 54
medical device monitor-

ing 47
Internet Protocol (IP) 36
interpreter 12
interrupt 709
Intro to Data Science

Dynamic Visualization of
Coin Tossing 536

Dynamic Visualization of
Rolling Two Dice 537

Intro to Data Science Project
Dynamic Visualization of

Casino Game Win/
Loss Statistics 537

inttypes.h 725
invalid operation code 368
inventory 574
Inventory Control 47
inverted scan set 470
invoke a function 181, 185
iOS 13, 15
IoT (Internet of Things) 45

IP address 36, 38
iPad 15
iPadOS 15
iPhone 15
isalnum function 391
isalpha function 391
isblank function 391
iscntrl function 394
isdigit function 391
isgraph function 394
islower function 393
ISO (International Stan-

dards Organization) 17
ISO/IEC 9899

2018 (C standard docu-
ment) 17

isprint function 391, 394
ispunct function 391, 394
isspace function 391, 394
Issue navigator 30
isupper function 393
isxdigit function 391
iteration 218
iteration statement xxv, 88,

90, 96
iterative function 274

J
Jacopini, G. 88
Java programming language

15, 20
JavaScript 20
Jobs, Steve 14
JSON (JavaScript Object

Notation) xxxviii, 48, 590
array 591
Boolean values 591
cJSON library 589, 593
data-interchange format

590
false 591
JSON object 590
null 591
number 591
string 591
true 591

K
kernel of an operating sys-

tem 13
Kernighan, B. W. 17
key value 272
keyboard 4, 60, 62, 399
keywords 72

added in C11 72
added in C99 72

Knight’s Tour 303
Brute Force approaches

306
Closed tour test 307

Kotlin programming lan-
guage 15

L
l or L suffix for a long dou-

ble literal 708
l or L suffix for a long int

literal 708
label 208, 713
language identification 578
language translation 47
larger of two numbers 124
largest number problem 82
last-in, first-out (LIFO)

191, 609
Law of Large Numbers 529
leading asterisks 431
leaf node 621
least access privilege 323,

324
least common multiple 447
left align 142
left child 621
left justify 146, 451

strings in a field 462
left justify in a field 462
left subtree 621
left-shift operator (<<) 495,

518
legacy code 319
lemmatization 578
length modifier 452
letter 8

764 Index

level order binary tree tra-
versal 635

lexicographical comparison
408

libcurl library 589
libcurl library (for invoking

web services) 592
libcurl open source library

xxxvii
library function 18
LIFO (last-in, first-out)

191, 609
limerick exercise 427
<limits.h> header 196, 497
line number 640, 644
__LINE__, predefined sym-

bolic constant 691
#line preprocessor directive

690
linear data structure 599
linear regression 585
linear relationship 585, 585
linear run time 659
linear search 219, 272, 273,

308
link (pointer in a self-refer-

ential structure) 597
link phase 21
linkage 206
linkage of an identifier 206
linked list 310, 482, 596,

599
linked lists xxvii
linker 22, 58, 704
linker error 704
linking 22
links 599
Linux 21, 22, 700

shell prompt 3, 25
Linux operating system 13

kernel 14
literal 58

floating point 142
literal characters 451
live-code approach xix
live-code examples xliv

ll or LL suffix for a long
long int literal 708

-lm command line option
for using the math library
142

load 653
load a program into memo-

ry 363
load phase 21
load/store operations 363
loader 23
loading 23
loading phase 368
local variable 185, 186, 206,

207, 258
locale 196
<locale.h> header 196
location 64
location-based services 47
log function 182
log10 function 182
log2n comparisons 626
logic error 95, 99, 138, 158,

250, 493
logical AND operator (&&)

153, 497
logical decision 4
logical negation (NOT) op-

erator (!) 153, 155
logical operators xxv, 153
logical OR operator (||)

153
logical page 465
logical unit 5
Logo language 302
long 149
long double 190
long double fundamental

type 142
long int 190
long long int 190
loop 96, 99, 105, 137
loop continuation condi-

tion 134, 136, 137, 150
loop-continuation condi-

tion 135, 138

lowercase letter 9, 83, 196
low-order bit 497
lvalue ("left value") 158,

245

M
M1 processor (Apple) 737
machine dependent 11
machine independent 16
machine language 11, 22

programming xxxv, 11,
362

machine learning xxx,
xxxvii, xl, xli, 48, 582, 586

Macintosh 14
macOS 14
macro 196, 682, 684

arguments 685
complex 729
definition 685
expansion 685
identifier 684
variable-length argument

list 730
main 57
main window in Visual Stu-

dio 26
malloc function 598, 711
Malware Detection 47
“manufacturing” section of

the computer 6
marketing

analytics 47
mashup xxxviii, 38
mashups 589
mask 497
massively parallel processing

48
master file 572
math library functions 196,

238
<math.h> header file 142,

182, 196
mathematics xli
maximum 127
maximum 187

Index 765

maximum statistic 583
maze traversal 219, 360
mazes of any size 360
m-by-n array 279
mean 267
mean (average) xxxiv, 271
measures of central tenden-

cy 583
measures of dispersion 583

standard deviation 583
variance 583

measures of variability 583
median xxxiv, 267, 271
megabytes (MB) 40
member of a struct 483
members 483
memchr function 415, 417
memcmp function 415, 416
memcpy function 414, 415,

731
memmove function 416
memory 5, 6, 23

unit 6
memory addresses 311
memory alignment control

724
memory allocation 196
memory boundaries 484
memory footprint 653
memory functions of the

string handling library
414

memory utilization 504
memset function 415, 417
menu-driven system 347
merge sort algorithm 668,

669, 673
merge two arrays 668
message 58
method 748

call 749
metric conversion program

431

Microsoft xxxii
Cortana xxxii, 53
Visual C++ xxiv
Visual Studio Communi-

ty edition li, 21, 25
Microsoft’s Cryptography

API
Next Generation 221

mileage problem 124
minimum statistic 583
minimum value in an array

219
MIT Computer Science

and Artificial Intelligence
Laboratory (CSAIL) xxx

MIT Project MAC xxx
mixed-type expressions 190
mobile application 15
mode xxxiv, 267, 272, 299

bimodal 299
multimodal 299

modular architecture of this
book xxii

modular exponentiation
445

Moore’s Law 4, 45
motion information 5
mouse 4
Mozilla Foundation 14
multicore computers xxx
multicore processor xxxviii,

7
multicore systems xxxiii,

737
multidimensional array xxv,

278, 279, 281
initialize 279

multiple selection statement
89, 147

multiple-source-file pro-
grams 206, 207, 704, 705

multiples of an integer 130
multiplication 65
multiplicative operators 104
multiply two integers 219

Multipurpose sorting pro-
gram using function
pointers 344

multithreaded applications
xxxviii

multithreading xxvii, xxx,
xxxii, xxxviii, 615, 736
-pthread option 741

multivariate time series 588
mutex (multithreading) 745

N
n factorial (n!) 212
name 135, 245
name of a control variable

135
name of a variable 64, 65
name of an array 245
named entity recognition

578
National Oceanic and At-

mospheric Administra-
tion (NOAA) xxxi, 588

Natural 577
natural language 48, 576
natural language processing

578
natural language processing

(NLP) xxx, xxxvi, xl, 48,
577
case study xxvi

natural language translation
47

natural logarithm 182
Navigator area (Xcode) 30

Issue 30
Project 30

nested 107
nested building block 161
nested control statement

106
nested if...else statement

93, 94
nested parentheses 66, 67
nesting 106
nesting rule 161

766 Index

neural network 50
new pharmaceuticals 47
newline (\n) 58, 91, 256,

389, 390, 391, 471
NeXTSTEP operating sys-

tem 14
n-grams 578
NLP (natural language pro-

cessing) xl
node (Webots) 376
NodeJS 20
nodes 598, 599
non-constant pointer to

constant data 319, 321
non-constant pointer to

non-constant data 319
nondestructive 65
nonfatal error 24, 66, 83, 95,

189
nonlinear data structure 621
nonrecursive function 235
_Noreturn function specifi-

er 724, 734
not modifiable (immutable)

390
Notepad++ text editor 522
noun phrase extraction 578
NULL 311, 333, 337, 543,

604
null character ('\0') 255,

256, 321, 337, 389, 639
null in JSON 591
NULL pointer 597, 712
null-terminated string 338
number systems xxviii
numbers in JSON 591
numeric codes 407

O
O(1) 659
O(n log n) time 674
O(n) time 659
O(n2) time 660, 664, 668
object 747
object code 22

object-oriented analysis and
design (OOAD) 750

object-oriented language
750

object-oriented languages
xxii, xxviii, xxxiii

object-oriented program-
ming (OOP) xxxiii, 14,
19, 183, 750
terminology and con-

cepts xxviii
object program 58
Objective-C 14
object-oriented languages

747
object-oriented program-

ming 747
observations in a time series

588
octa-core processor 7
octal number 175, 391, 397,

451, 452
off-by-one error 138
off-screen buffer 524
offset 333, 557
one-dimensional array 326,

339
one-dimensional array

problem 302
one’s complement 501
online C forums xlv
online forums xlv
OOAD (object-oriented

analysis and design) 750
OOP (object-oriented pro-

gramming) 750
open file table 541
open source 13, 15

code xxxi
community xxxi
increases productivity 13
libraries 47
movement xix
software xxx, 47

OpenAI 14
OpenCV 14

OpenML 14
OpenWeatherMap xxxviii

Current Weather Data
590

One Call API 590
OpenWeatherMap web ser-

vice 589
operand 63, 363, 645
operating system xxxii, 13,

14, 16
operation code 363, 645
operator precedence 72, 245

rules 66
operator precedence chart

719
Operator sizeof when ap-

plied to an array name re-
turns the number of bytes
in the array 328

operators xxv, 110
optimize (Simple compiler)

653
optimized code 654
optimizing the simple com-

piler 653
order 86, 88, 90
order of evaluation of oper-

ands 217
ordinary least squares 586
orientation information 5
OS X 14
outer block 208, 211
out-of-bounds array ele-

ments 289
output xxiv
output device 6
output unit 6
oval symbol 89
overflow 709
overlapping regions of

memory 731
overtime pay problem 126

P
 175
packets 36

 767

padding 507
page layout software 388
palindrome 308
palindrome problem 130
parallel 736
parallel operations 736
parallel threads xxxviii
parameter 185
parameter list 186, 223
parameter of a function

185
parameter types 327
parent node 621
parentheses () 66, 72
partitioning step of Quick-

sort 678
parts-of-speech (POS) tag-

ging 578
pass-by-reference xxv, 260,

261, 310, 315, 317, 326
pass-by-value 315, 317
passing an array 262
passing an array element

262
Passing arrays and individ-

ual array elements to
functions 262

pattern of 1s and 0s 8
percent sign (%) 65
perfect number 234
performance xliv, 18
performance requirements

207
performance tuning 749
performance-intensive sys-

tems xxxii
performing operations

concurrently 736
persistent storage 7
personal assistants 47
personalized medicine 47
personally identifiable in-

formation (PII) 53
petabytes (PB) 41
petaflops 4, 42
phases of basic programs

initialization phase 102
processing phase 102
termination phase 102

phishing 576
phishing elimination 47
Phishing Scanner 576
physics engine (Webots)

379
physics in Webots 385
Pig Latin exercise 427
plaintext 442
Platform as a Service

(PaaS) 37
pointer xxv, 310, 312, 314,

315
arithmetic 331, 332, 334,

429
arrow (->) operator 486
comparisons 333
expression 333, 334
notation 317, 334, 336
parameter 316
subscripting 334
to a function 344
to a pointer (double in-

direction) 398, 603
to a structure 486
to void (void *) 332
variable 323

pointer/offset notation 334
pointer/subscript notation

334
poker 356
poll 250
pollution reduction 47
polynomial 68
pop 609
pop off a stack 191
portability 18
portable 18
portable code 16, 18
portable integral types 725
position number 245
postdecrement 111
postfix evaluation 646

postfix-expression evalua-
tion algorithm 637

Postfix Expression Evalua-
tor exercise 639

postfix increment and dec-
rement operators 111

postfix notation 637
postincrement 111
postorder traversal 622,

625, 626
postorder traversal of a bi-

nary tree 219
pow (power) function 68,

142, 182
power 182
PowerPoint slides xlvi
#pragma processor directive

689, 689
precedence 66, 245, 314

of arithmetic operators
xxiv

precedence of arithmetic
operators 72

precision 104, 142, 451,
452, 454
default 454

precision for integers, float-
ing-point numbers and
strings 459

precision medicine 47
predecrement operator 111
predefined symbolic con-

stants 691
predicate function 607
predicted value in simple

linear regression 585
predicting

disease outbreaks 47
weather-sensitive prod-

uct sales 47
predictive analytics 47
prefix increment and dec-

rement operators 111
preincrement 111

operator 111

768 Preface

preorder traversal of a bina-
ry tree 219, 622, 625

preprocess phase 21
preprocessor xxvii, 22, 196,

682
preprocessor directive 22,

682, 683, 686
preventative medicine 47
preventing

disease outbreaks 47
primary memory 6
prime number 234, 446
principle of least privilege

208, 263, 316, 319, 322,
327

print
trees 635

print a hollow square 130
print a linked list back-

wards 219
print a square 129
print a string backwards

219, 308
print an array 219, 308
print an array backwards

219
print characters 393
print patterns 173
printf 450
printf function 58
printf_s function xxxiii
printing a string input at

the keyboard backwards
219

Printing a string one char-
acter at a time using a
non-constant pointer to
constant data 321

printing character 394
printing dates in various

formats 430
printing multiple lines

with a single printf 59
printing one line with two

printf statements 59

printing positive and nega-
tive numbers with and
without the + flag 462

privacy xxxii, xxxv, xli, 53,
434

private decryption key 440
private key 440, 442, 444
probability 198
problem solving xxv, xxviii
procedural programming

xxxiii, 747
procedure 86
Processing a queue 615
processing phase 100, 102,

105
processing unit 4
product 80
production (Simple com-

piler) 653
program 4, 4
program control 87
program execution stack

191
Program to simulate the

game of craps 203
ProgrammableWeb xxxviii,

38, 594
programmer 4
Programmer-defined maxi-

mum function 187
programming xli
programming fundamen-

tals xx, xli
programming languages

xxiv
programming paradigms

xxxiii, 747
Project Gutenberg xxxi,

579
project in Visual Studio 25
project in Xcode 29
Project MAC (MIT) xxx
Project navigator 30
promotion 190
prompt 62
proprietary software 13

protecting the environ-
ment 47

PROTO nodes (Webots)
377

pseudo-random numbers
200

pseudocode 87, 102, 105
-pthread option (multi-

threading) 741
public domain

card images 522, 533
images 534

public-domain card images
533

public encryption key 440,
443

public key 440, 442, 443
public-key cryptography

xxxv, 439, 441
public-key/private-key pair

442
push 609, 612
push onto a stack 191
putchar 399
puts 401, 575
puts function 74
Pythagorean Triples 176
Python 19
Python Software Founda-

tion 14

Q
quad-core processor 7
quadratic run time 660
quantum computers 43
questions

getting answered xlv
queue xxvii, 310, 482, 596,

614, 615
quick_exit function 724
quicksort 219, 678

R
r file open mode 546
R programming language

19, 21

 769

r+ file open mode 546
radians 183
radius 131
raise 709
raising an integer to an in-

teger power 219
ralib game-programming

library
element positions 524

RAM (Random Access
Memory) 6

rand 197
RAND_MAX 198, 201
random function POSIX se-

cure random numbers
221

random number 196
generation xxv, xxxiv

random number genera-
tion 339, 427

random-access file 552,
555

randomizing 200
range checking 164
range statistic 583
raylib

Cannon game 527
raylib

Law of Large Numbers Ani-
mation 529

raylib cheat sheet 523
raylib game programming

library xxxv, 520
animation xxxvi, 521
collision detection xxxvi,

521
colors 521
input events xxxvi, 521
shapes xxxvi, 521
sounds xxxvi, 521

raylib game-programming
library
C programming demos

521
CloseWindow function

525

color constants 523
Color type 523
custom types 523
DrawGame function 525
DrawRectangleLines

function 535
DrawTextureEx function

535
frame-by-frame anima-

tion 524
game loop 524
InitGame function 524
InitWindow function

524
Law of Large Numbers

529
Rectangle type 523
rFXGen online sound-

effect generator 526
RGBA color 523
sample games 521
SetTargetFPS function

524
Sound type 523
types 523
UnloadGame function

525
UpdateGame function

525
Vector2 type 523
WindowShouldClose

function 525
raylib.h header 523
rb file open mode 546
rb+ file open mode 546
read 645
readability 71, 577
reading and discarding

characters from the in-
put stream 471

reading characters and
strings 469

reading input with float-
ing-point conversion
specifiers 468

reading input with integer
conversion specifiers 467

readline function (non-
standard) 390

real-time systems xxxii
real-world data xli
realloc 711
“receiving” section of the

computer 5
recommender systems 47
record 9, 322, 542
record key 542
rectangle 91
rectangle symbol 89
Rectangle type in raylib

523
RectangleArena (Webots)

372, 376
recursion xxv, 211, 217

recursion step 212
recursive call 212
recursive definition 212
recursive function 211
recursive function gcd

237
recursive function power

235
vs. iteration 218

recursion examples
binary search 219
binary tree insert 219
check if a string is a pal-

indrome 219
Eight Queens 219
Factorial function 219
Fibonacci function 219
Greatest common divi-

sor 219
inorder traversal of a bi-

nary tree 219
linear search 219
maze traversal 219

770 Preface

recursion examples (cont.)
minimum value in an ar-

ray 219
multiply two integers

219
postorder traversal of a

binary tree 219
preorder traversal of a bi-

nary tree 219
print a linked list back-

wards 219
print a string backwards

219
print an array 219
print an array backwards

219
printing a string input at

the keyboard back-
wards 219

quicksort 219
raising an integer to an

integer power 219
recursive main 219
search a linked list 219
selection sort 219
sum of the elements of

an array 219
Towers of Hanoi 219
visualizing recursion 219

recursive
search of a list 635

recursive main 219
recursive selection sort 677
recursive step of Quicksort

678
reddit xlv
redirect input or output

450, 451
reducing carbon emissions

47
redundant parentheses 68
refactoring 39
register 206
regression line 585
reinforcement learning 50
reinventing the wheel 180

relational database 9
relational operators 69
reliable integer division

724, 731
remainder 183
remainder operator (%) 65,

82, 198
repeatability 200
replacement text 249, 684
representational error in

floating point 142
Representational State

Transfer (REST) 590
reproducibility xli, xlii, 53
request to a web service

589
requirements 207
requirements statement

750
research and project exer-

cises xxx
reserved word 72
response from a web service

589
RESTful web services 590
restrict 730
restricted pointer 730
restricted pointers 724
return 315
return a result 57, 185
return from a function

181, 182
return key 22, 367
return statement 185, 187
return type 327
return value type 186, 223
reusable software compo-

nents 747
reuse 748
rewind function 548
rFXGen online sound-ef-

fect generator (raylib)
526

RGBA (red, green, blue, al-
pha) color 523

Richards, Martin 16

ride sharing 47
right align in a field 142,

458
right brace (}) 57
right child 621
right justify in a field 451,

458, 462
right subtree 621
right-justifying integers in

a field 458
right-shift (>>) operator

518
rise-and-shine algorithm 86
risk minimization 47
risk monitoring and mini-

mization 47
Ritchie, D. 16
robo advisers 47
robot

e-puck 373
robotics simulations xxxiv
robotics simulator 369, 385
Robotics with Webot Sim-

ulator xxxiv
roll a six-sided die 199
Romeo and Juliet xxxi, xli
root node of a binary tree

621, 635
rounded 105
rounding 80, 211, 451
rounding a number 143
rounding toward negative

infinity 731
rounding toward zero 731
rows 278
RSA algorithm xxxv
RSA ciphertext

cracking 448
RSA Problem 448
RSA Public-Key Cryptog-

raphy algorithm 440
rules of operator prece-

dence 66
runtime constraint 349
runtime error 24
rvalue ("right value") 158

 771

S
samples (in datasets) 584
Satya Nadella xxxii
savings account example

140
scalar 261, 326
scaling 198
scaling factor 198, 202
scan characters 467
scan set 469

inverted 470
scanf 450
scanf function 62
scanf_s function xxxiii,

289
scanning images 5
scene tree (Webots) 376,

377
science, technology, engi-

neering and math
(STEM) xx

scientific computing 19
scientific notation 454
scope 686
scope of an identifier 206,

208
Scoping example 209
screen 4, 6, 24
SDK (Software Develop-

ment Kit) 39
search a linked list 219
search functions of the

string handling library
408

search key 272
search strings 408
searching 272, 274

arrays xxv
searching a binary tree 626
searching strings 403
second refinement 100,

101, 108
secondary storage 5

device 21
unit 7

secure C 73

Secure C Programming
sections xxxix

Secure Coding in C and
C++, 2/e 164

secure random numbers
arc4random function

221
BCryptGenRandom func-

tion 221
random function 221

security xxxv, xxxix, xli, 434
security vulnerabilities 74,

472
seed 201
seed the rand function 200
SEEK_CUR 558
SEEK_END 558
SEEK_SET 557, 558
segmentation fault 62, 389,

456
SEI (Carnegie Mellon Uni-

versity’s Software Engi-
neering Institute) 54

SEI CERT C Coding Stan-
dard xxi, 54, 73

selection sort 219, 677
recursive 677

selection sort algorithm
660, 661, 664

selection statement xxv, 90
selection structure 88, 90
Self Check exercises xxix
self documenting 61
self-driving cars 47, 49
self-referential structure

483, 597
semicolon (;) 58, 71
send a message to an object

749
sentiment analysis 47, 577
sentinel-controlled itera-

tion xxv, 101
sentinel value 99, 101, 102,

124
sequence structure 88, 90

sequence structure flow-
chart 88

sequential access file 542
sequential execution 88
sequential file 542
service-oriented architec-

ture (SOA) 37
<setjmp.h> 196
SetTargetFPS function

(raylib) 524
Shakespeare xxxvii, 579

Romeo and Juliet xli
shapes in raylib 521
share memory (union) 492
sharing economy 47
shell prompt on Linux 3,

25
shift 198
Shifted, scaled integers

produced by 1 + rand()
% 6 198

shifting value 202
“shipping” section of the

computer 6
short 149, 189
short-circuit evaluation

155
sibling 621
side effect 197, 207, 217
Sieve of Eratosthenes 307
SIGABRT 709
SIGFPE 709
SIGILL 709
SIGINT 709
sign bit 452
signal 709
signal handling xxvii, 709

library 709
signal value 99
<signal.h> 196, 709
signed decimal integer 452
SIGSEGV 709
SIGTERM 709
silicon 4
similarity detection 47,

578, 579

772 Preface

Simple
made up programming

language 636
Simple compiler

 645
data counter 649
enhancements 654
first pass 644
hool 646
optimize 653
production 653
second pass 644
symbol table 644
token 644
unresolved forward ref-

erence 645
Simple compiler case study

xxxviii, 643
Simple programming

language 640
simple condition 154
simple interest problem

126
simple linear regression

xxvi, xxxvii, 586
simplest flowchart 160
Simpletron 575
Simpletron computer case

study xxxv
Simpletron Machine Lan-

guage xxxv, xxxviii
Simpletron Machine Lan-

guage (SML) 362, 596
Simpletron simulator 362,

365, 368
modifications 368

Simpletron virtual ma-
chine 637, 641

simulated robots xxxiv
simulation xxx, 197, 339

techniques xxv, xxxiv
simulations xli
sin function 183
sine 183

single entry/single exit con-
trol statement 89, 91,
161

single-selection statement
89

sinking sort 265
size_t 247, 404
sizeof operator 328, 484,

575, 598, 687
slope 585
smallest number problem

82
smart cities 47
smart homes 47
smart thermostats 47
smart traffic control 47
smartmeters 47
smartphone 15
SML 362, 365, 368

instruction 363
SMS Language 433
social graph analysis 47
software xix, xxiv, 2
Software as a Service (SaaS)

37
software-based simulation

xxxv, 362, 365
Software Development Kit

(SDK) 39
software engineering 153,

208, 327
Software Engineering In-

stitute (Carnegie Mel-
lon) xxxix, 734

Software Engineering In-
stitute (SEI) 54

software engineering obser-
vations xliv

software model 365
software reuse 18, 183,

327, 705
solid-state drive 4, 5
Solution Explorer 26

add an existing file 26
display 26

solution in Visual Studio
25

solve problems xli
sort algorithms

bucket sort 678
insertion sort 665
merge sort 668
Quicksort 678
recursive selection sort

677
selection sort 660

sort key 658
sorting 265, 658

arrays xxv
Sound type in raylib 523
sounds in raylib 521
source code 12
space 471
space flag 462, 463
space–time trade-off 674
spam

detection 47
Spam Scanner 432
speaking to a computer 5
special characters 389
Special Section: Advanced

String Manipulation Ex-
ercises 429

special symbol 8
speech recognition xl, 48,

577
speech synthesis xl, 48, 577
spell checking 578
spelling correction 578
split the array in merge sort

668
SpotOn Game (game-pro-

gramming case
study)’raylib
SpotOn game 526

SpotOn Game App exercise
enhancements 535

sprintf 399, 401
sqrt function 182
square brackets ([]) 245
square root 182

 773

srand 200
sscanf 399, 402
stack 191, 310, 482, 596,

608
stack frame 192
stack overflow 192
Stack program 609
stacked building blocks

161
stacking rule 160
StackOverflow xxx, xxxi,

xlv
stacks xxvii
Standard C 17
standard data types 329
standard deviation 583
standard error stream (st-

derr) 24, 450, 541
standard input 62
standard input stream 450
standard input stream (st-

din) xxvi, 24, 450, 541
standard input/output

header (stdio.h) 57
standard input/output li-

brary (stdio) 399
standard library 22

header 195, 683
standard output stream

450
standard output stream

(stdout) xxvi, 24, 450,
541

standard version of C 17
statement 58, 88, 640
statement terminator (;)

58
statements

return 185
static 206, 206, 207, 208,

258
Static arrays are automati-

cally initialized to zero if
not explicitly initialized
by the programmer 258

_Static_assert 692

static assertions 724
static code analysis tools

xxxiii
static data structures 711
static global variable 525
static storage duration 206
_Static_assert 735
statistical thinking xli
statistics

count 583
craps game 301
maximum 583
measures of central ten-

dency 583
measures of dispersion

583
measures of variability

583
minimum 583
range 583
standard deviation 583
sum 583
variance 583

stdalign.h header 735
stdarg.h 196, 700
stdbool.h 156, 725, 727
stddef.h 196, 312
stderr (standard error

stream) 24, 541
stdin (standard input

stream) 24, 399, 541
stdint.h 725
stdio.h 57, 146, 196, 207,

399, 450, 541, 686
stdlib.h 196, 197, 198,

396, 706
stdout (standard output

stream) 24, 541, 544
stemming 578
stepwise refinement 339
stepwise refinement, 100
stock market forecasting 47
stop word elimination 578
Storage as a Service (SaaS)

37
storage class 206

storage class of an identifier
206

storage duration 206, 260
storage duration of an

identifier 206
storage unit boundary 507
storage-class specifiers 206
Store 363
store 653
stored array 600
straight-line form 66
strcat function 405
strchr function 409
strcmp function 406
strcpy function 404
strcspn function 410
stream 450, 540
strerror 419
string 58, 389

processing xxvi
string array 338
string built-in type

in JSON 591
string comparison

lexicographical 408
string comparison func-

tions 406
string concatenation 429
string constant 389
string conversion functions

396
string copy 429
string is a pointer 389
string literal 256, 389, 390
string literals separated

only by whitespace 267
string manipulation func-

tions of the string han-
dling library 403, 407

string processing 196, 255
<string.h> 403
<string.h> header file 196
strlen function 419
strncat function 404, 405
strncmp function 406
strncpy function 404

774 Preface

strpbrk 410
strpbrk function 409, 411
strrchr function 409, 411
strspn function 411, 412
strstr function 409, 412
strtod function 396
strtok function 409, 413,

413
strtol function 397
strtoul function 396, 398
struct 244, 483
structure xxvi, 322, 482

definition 483, 484
member (.) operator

486, 487, 493
pointer (->) operator

486, 487, 493
tag name 483, 484
type 483

structured programming
56, 75, 86, 88, 713

structured programming
summary 158

Structures 482
student poll analysis pro-

gram 251
subclass 749
subscript 245, 252
subscript notation 323
substitution cipher 434,

435
subtract an integer from a

pointer 331
subtracting one pointer

from another 331
subtraction 6
suffix

floating point 708
integer 708

sum 80
sum of numbers 123
sum of the elements of an

array 219, 250
sum statistic 583
summarizing text 47
superclass 749

supercomputer 4
supercomputing 43
supermarket simulation

633
supplements for instructors

xlvi
survey data analysis xxv,

267
Survey data analysis pro-

gram 267
swapping values 660, 665
Swift programming lan-

guage 15, 20
Swiss Federal Institute of

Technology (EPFL) 370
switch multiple-selection

statement 89, 144, 147
symbol 83, 89
symbol table 644
symbol table (Simple com-

piler) 644
symbolic constant 146,

249, 682
symmetric encryption 440
syntax coloring conven-

tions in this book xliii
syntax error 22, 95, 112,

114, 158
Systems Software case

studies xxiii

T
tab 58, 83, 91, 465, 471
tables of values 278
tablet computer 15
tabular format 247
tail of a queue 596, 614
tail recursion 239
tan 183
tangent 183
TCP (Transmission Con-

trol Protocol) 36
TCP/IP 36
telemedicine 47
telephone number pro-

gram 428

telephone-number word
problem 574

temporary copy 104
temporary double repre-

sentation 142
terabytes (TB) 7, 40
teraflop 42
terminate 24
terminating null character

255, 389, 401, 456
termination phase 102,

105
termination request 709
ternary operator 92, 217
terrorist attack prevention

47
Test Item File xlvi
testing 749
text analysis 430
text files xxvi
text processing 388
text summarization 577
tgmath.h 725
The CERT Division of

Carnegie Mellon’s Soft-
ware Engineering Insti-
tute 734

the cloud xx, xxxvii, 37, 589
The Twelve Days of Christ-

mas 147
theft prevention 47
Thinking Like a Developer

xxxi
Thompson, Ken 16
thrd_create function 744
thrd_error 745
thrd_join function 745
thrd_nomem 745
thrd_success 745
thrd_t type 744, 744
thread

of execution 736
thread ID 744
thread local storage 745
_Thread_local storage

class specifier 206

 775

threads xxxviii
<threads.h> header 738
time 196
time function of header

time.h 201
__STDC__, predefined sym-

bolic constant 691
__TIME__, predefined sym-

bolic constant 691
time series 588

Climate at a Glance 588
observations 588

<time.h> 196
timing operations xxxii
Tiobe Index 2
toggling bits 495
token 409, 644, 690
tokenization 578
tokenize a string 413
tokenizing a string 413
tokenizing strings 403
tokens 413, 578
tokens (Simple compiler)

644
tokens in reverse 428
tolower function 393
top 100
top-down, stepwise refine-

ment xxv, 100, 102, 105,
106, 107, 339, 340

top of a stack 596
Tortoise and the Hare Race

240
multimedia with raylib

531
total 99
totient 442
toupper function 320, 393
Towers of Hanoi 219, 236
trailing zeros 454
transaction file 572
transaction-processing pro-

gram 552, 560
transaction-processing sys-

tem xxvi, xxxvi

transfer of control 88, 363,
367

translate speech 49
translation 11
translator program 12
Transmission Control Pro-

tocol (TCP) 36
trap 709
trap a SIGINT 711
traversing a binary tree 622
Treating character arrays as

strings 256
tree 67, 310, 482, 621
Trend spotting 47
trigonometric cosine 183
trigonometric sine 183
trigonometric tangent 183
true 725
true boolean value 69
truncated 104
truth 154
truth table 154
turtle graphics 302
tvOS 15
two-dimensional array

278, 282, 338
type 64, 65
type checking 189
typedef 488
typedef keyword xxvi
type-generic expressions

724
type-generic macro 732
types of programming lan-

guages xxiv

U
u or U for an unsigned int

708
Ubuntu Linux 29

in the Windows Subsys-
tem for Linux 29

unary operator 104, 113,
312
sizeof 328

unbiased shuffling algo-
rithm 492

unconditional branch 652,
713

#undef preprocessor direc-
tive 686, 691

undefined behavior 734
undefined behaviors 472
underscore (_) 61
Unicode 408
Unicode character set 8,

146, 408
Unicode support 724
union 492, 493, 494, 517
unions xxvi
univariate time series 588
UNIX 147
UNIX operating system 16
UnloadGame function in a

raylib game 525
unnamed bit field 507
unnamed bit field with a

zero width 507
unresolved forward refer-

ence (Simple compiler)
645

unresolved references 704
unsafe macro 692
unsigned decimal integer

452
unsigned hexadecimal inte-

ger 452
unsigned int 190
unsigned integer 495
unsigned long int 398
unsigned long long int

213, 214, 215
unsigned octal integer 452
unsigned short 190
UpdateGame function in a

raylib game 525
uppercase letter 83, 196
URL (Uniform Resource

Locator) 590
use cases 46
using the # flag with 463

776 Preface

usual arithmetic conver-
sion rules 189

Utilities area (Xcode) 30
utility function 196

V
V’s of big data 45
va_arg 701
__VA_ARGS__ 730
va_copy macro 733
va_end 701
va_list 701
va_start 701
validate data 164
value 245
value of a variable 64, 65
variable 61
variable arguments header

stdarg.h 700
variable initialization 337
variable-length argument

list xxvii
variable-length array

(VLA) xxv
variable name 641, 644
variable-length argument

list 700, 701
macro 730

variable-length array
(VLA) 286

variance 583
variety (in big data) 45
Vector2 type in raylib 523
velocity (in big data) 45
veracity (in big data) 45
version control tools xxxii
vertical tab ('\v') 391
vi editor 21
Vigenère cipher 438, 439

Vigenère square 435,
438

Vigenère secret-key cipher
xxxv, 434

Vignère secret-key cipher
435

virtual machine xxv, xxx,
xxxv, 362, 636

virtual reality 369
Virtual Reality Modeling

Language (VRML) 374
virtual time 381
Visual C++ compiler xxxiii,

lii, 25
Visual C++ programming

language 20
visual product search 47
Visual Studio 21

add an existing file to a
project 26

Command Prompt win-
dow 27

Community Edition xliv
Community edition li, 3,

25
compile and run a pro-

gram 27
display the Solution Ex-

plorer 26
Empty Project template

25
filter project templates

26
main window 26
project 25
Search for templates 26
solution 25
Solution Explorer 26

visualization xxxi, xli, 48,
585
animated xxxvi

Visualization with raylib
Law of Large Numbers

Animation 529
visualizing recursion 219,

237
voice recognition 47
void * (pointer to void)

332, 415, 598
volatile information 6
volume (in big data) 45

W
w file open mode 546
w+ file open mode 546
W3C (World Wide Web

Consortium) 37
“warehouse” section of the

computer 7
watchOS 15
Waze GPS navigation app

47
wb file open mode 546
wb+ file open mode 546
Weather Forecasting 47
web 589
web service xxxvii, xxxviii,

37, 590
invoke with libcurl 592
request 589
response 589

web service host 589
web services 589

web service host 589
Webot robotics simulator

xxxiv
Webots xxxiv, 369

.wbt file 374
avoid obstacles 385
basic time step 381
controller 379, 381, 383,

384
Create a Webots project

directory wizard 374
differential wheels 373
e-puck robot 373
e-puck_avoid_obsta-

cles 379
fields 376
gravity 374
guided tour 371
lighting effects 384
node 376
physics 385
physics engine 379
physics options 384
PROTO nodes 377

Index 777

RectangleArena 372, 376
scene tree 376, 377
textures 384
WoodenBox 372, 377
world 374

Webots Guided Tour 371
Welcome to Xcode window

29
while iteration statement

96
whitespace character 57, 91

string literals separated
267

width of a bit field 504, 507
William Gates xxxi
Windows operating system

13, 700, 709
Windows Subsystem for Li-

nux (WSL) xxiv, xlv, liii,
29

WindowShouldClose func-
tion (raylib) 525

WoodenBox (Webots) 372,
377

word boundary 485
word frequency counting

578
words 363
workspace window in

Xcode 30
world in Webots 374
World Population Growth

178
World Population Growth

exercise 131
World Wide Web 37, 37
worst-case run time for an

algorithm 659
worst-case runtime for an

algorithm 658
Wozniak, Steve 14
write 645
writing to a file 544

X
Xcode xliv, li, 3, 21, 25

Command Line Tool proj-
ect 29

Xcode (cont.)
compile and run a pro-

gram 30
Debug area 30
Editor area 30
Issue navigator 30
Navigator area 30
project 29
Project navigator 30
Utilities area 30
Welcome to Xcode win-

dow 29
workspace window 30

Xerox PARC (Palo Alto Re-
search Center) 14

Y

y-intercept 585, 586

Z

0 (zero) flag 463
zettabytes (ZB) 41

• C is one of the world’s most popular
and senior programming languages

• C18/C11 standards
• Topical, innovative presentation
• Rich coverage of fundamentals
• Problem-solving/developing algorithms
• 20+ fun computer-science, data-science

and artificial-intelligence case studies
show C as it’s intended to be used—
some are fully implemented, some are
partially implemented and some re-
quire students to do online research

• 147 complete working programs
• 350+ integrated self-check exercises

with answers
• 445 end-of-chapter exercises/projects
• Use with Windows®, macOS®, Linux®
• Visual C++®, Xcode® and GNU™ gcc

• Analysis of algorithms with Big O
• Enhanced security and data science

coverage as per ACM/IEEE 2020
curricula recommendations

• Use free open-source libraries and tools
• Real-world examples and data
• Traditional or “flipped” classrooms
• Secure C Programming, privacy, ethics
• Case studies in systems programming

and applications programming
• Think like a developer with GitHub®,

open-source, StackOverflow and more

• Emphasis on visualization
• Static code analysis tools
• Performance, multithreading, multicore
• Questions? deitel@deitel.com
• Updates and errata:
https://deitel.com/chtp9

Algorithm Development
• Counter-Controlled Iteration
• Sentinel-Controlled Iteration
• Nested Control Statements

Random-Number Simulation
• Building a Casino Game

• Card Shuffling/Dealing with Card Images
• The Tortoise and the Hare Race

Intro to Data Science
• Data Analysis: Mean, Median & Mode

Direct-Access File Processing
• Transaction-Processing System

Visualizing Searching & Sorting
Artificial Intelligence/Data Science

• Machine Learning, GNU Scientific
Library, Plotting with gnuplot, CSV Files
• NLP: Who Wrote Shakespeare’s Works?

Game Programming with raylib
• SpotOn and Cannon Games

Security Via Cryptography
• Secret-Key & RSA Public-Key Crypto

Visualization with raylib
• Law of Large Numbers Animation

Multimedia: Audio & Animation
Web Services, Mashups, Cloud

• Accessing Web Services with libcurl;
OpenWeatherMap JSON Results

• Rapid Applications Development with
Web-Service Mashups

9. Formatted Input/Output
scanf and printf formatting, Secure C

10. Structures, Unions, Bit
Manipulation and Enumerations
Creating Custom Types with structs

and unions, Bitwise Operators,
Enumeration Constants, Secure C

11. File Processing
Streams, Text and Binary Files, CSV Files,

Sequential and Random-Access Files,
Secure C

12. Data Structures
Dynamic Memory Allocation, Lists,

Stacks, Queues & Binary Trees, Secure C
13. Computer-Science Thinking:

Sorting Algorithms and Big O
Insertion Sort, Selection Sort, Visualizing

Merge Sort, Additional Algorithms
including Quicksort in the Exercises

A. Operator Precedence
B. ASCII Character Set

C. Multithreading/Multicore and
Other C11/C18 Topics

D. Intro to Object-Oriented Programming

6. Arrays
One- & Two-Dimensional Arrays, Passing

Arrays to Functions, Searching, Binary
Search Visualization, Sorting, Secure C

7. Pointers
Pointer operators & and *,

Pass-By-Value vs. Pass-By-Reference,
Array and Pointer Relationship, Secure C

8. Characters and Strings
C Standard Library String- and

Character-Processing Functions, Secure C

1. Introduction to Computers and C
Intro to Hardware, Software & Internet;

Test-Drive Microsoft Visual Studio, Apple
Xcode, GNU gcc & GNU gcc in Docker

2. Intro to C Programming
Input, Output, Types, Arithmetic,

Decision Making, Secure C
3. Structured Program

Development
Algorithm Development, Problem

Solving, if, if/else, while, Secure C
4. Program Control

for, do/while, switch, break,
continue, Logical Operators, Secure C

5. Functions
Custom Functions, Simulation,
Random-Number Generation,

Enumerations, Function Call and Return
Mechanism, Recursion, Recursive

Factorial, Recursive Fibonacci, Secure C

PART 1 (Introductory)
Programming Fundamentals

Quickstart

PART 2 (Intermediate)
Arrays, Pointers

and Strings

Appendices

Systems Programming
Case Studies

C How to Program, Ninth Edition
with Case Studies Introducing Applications Programming and Systems Programming

by Paul Deitel & Harvey Deitel

PART 4 (Advanced)
Data Structures and

Algorithms

Systems Software
• Building Your Own Computer

• Building Your Own Compiler with
Infix and Postfix Notation

Embedded Systems Programming
• Webots 3D Robotics Simulator

Performance: Threading/Multicore

14. Preprocessor
#include, Conditional Compilation,

Macros/Arguments, Assertions, Secure C
15. Other Topics

Variable-Length Argument Lists,
Command-Line Arguments, Multiple-
Source-File Programs, extern, exit/
atexit, calloc/realloc, goto,

Numeric Literal Suffixes, Signal Handling

PART 5 (Advanced)
Preprocessor and Other Topics

E. Number Systems
F–H. Using the Visual Studio,

GNU gdb and Xcode Debuggers

Online Appendices

PART 3 (Intermediate)
Formatted Input/Output, Structs

and File Processing

Applications Programming
Case Studies

mailto:deitel@deitel.com
https://deitel.com/chtp9/

❝ The Deitel book easily provides the clearest and most in-depth approach to standard C programming for students of all abilities. With this
book, my students have a tremendous resource that will enable them to succeed not only in my classroom but in the professional work-
place for years to come.~ —William Smith, Tulsa Community College

❝ The end-of-chapter exercises are worth their weight in gold if you are learning, and especially teaching, C. My favorites—writing
a simulator for an invented machine; then writing a compiler for a small language that targets that machine simulator.
Teaching some fundamental and interesting computer science makes the book much richer than simply another C textbook.~
—Jim Hogg, Program Manager, C/C++ Compiler Team, Microsoft

❝ The new raylib graphics and game-programming case studies and the new Webots 3D robotics simulator case study
in this ninth edition are real-world, contemporary, fun and cool.~—Danny Kalev, A Certified System Analyst, C Expert and
Former Member of the C++ Standards Committee

❝ The extended examples, along with the supporting text, are the best of any of the C texts I’ve seen. Running the code for the supplied
examples in conjunction with reading the text provides students with a laboratory for gaining a thorough understanding of how C works.~

—Tom Rethard, University of Texas at Arlington
❝ I’ve especially liked the strong focus on secure C programming that permeates this ninth edition. It would be hard for anyone not to

understand pointers clearly after reading this text!~—José Antonio González Seco, Parliament of Andalusia
❝ A great introduction to the C programming language and software engineering. It’s fresh and up to date with modern software industry

realities. There are quite a few fun, involving exercises that make me want to code.~—Vytautus Leonavicius, Microsoft

Comments from Ninth Edition and Earlier Editions Reviewers (and Their Affiliations at the Time)

More Comments Inside the Back Cover

❝ An excellent introductory computer science text. While C is a complex language, this book does a good job making this material accessible while providing a strong foundation
for further learning.~ —Robert C. Seacord, Secure Coding Manager at SEI/CERT, author of The CERT C Secure Coding Standard and technical expert for the
international standardization working group for C

❝ Nearly 50 years after its introduction, C is still as relevant as ever: almost every operating system’s kernel is implemented in C, as are many web servers, compilers,
networking protocols and embedded systems. Mastering C can be tricky—unless you pick the right textbook. Be it zero-indexed arrays, pointers, data structures,
algorithms, and the C preprocessor, the Deitels have packed these and more in this accessible, up-to-date ninth edition of C How to Program. Source code has
been rigorously tested on three IDEs. Each chapter includes integrated Self-Check Q&A, end-of-chapter self-review exercises with solutions, a summary,
performance tips, secure coding guidelines and—most importantly—plain English definitions of key concepts. With C How to Program, 9/e, learning C
has never been easier!~ —Danny Kalev, A Certified System Analyst, C Expert and Former Member of the C++ Standards Committee

❝ An excellent introduction to C, with many clear examples. Pitfalls of the language are identified and concise programming methods are defined to avoid them.~
 —John Benito, Blue Pilot Consulting, Inc., and Convener of ISO WG14—the working group responsible for the C Programming Language Standard

❝ An already excellent book now becomes superb. This new ninth edition focuses on secure programming and provides extensive coverage of C11 features, including
multicore programming. All of this, of course, while maintaining the typical characteristics of the Deitels’ How to Program series—astonishing writing quality,
great selection of real-world examples and exercises, and programming tips and best practices that prepare students for industry.~
 —José Antonio González Seco, Parliament of Andalusia

❝ Covers essential topics that form the foundation of any education in computer science, as well as important practices from software engineering, like approaches
to software design and secure programming. A clear introduction to computing in general and to C programming in particular; nice to see context and history
given before diving into the language. Up-to-date examples. Great job introducing core concepts. Good use of pseudocode. Good job covering program structure. An
excellent pointers chapter; pointers are the most difficult part of learning C and the topic is presented here in an easy-to-understand way. I found the function
pointers section easy to read; nice exercises, too (particularly, the Simpletron simulator). Strings chapter really shines with its exercises, especially
the larger-scale ones. The Formatted I/O chapter is just right—it does a fine job explaining printf and scanf features. Structs are explained clearly—the
playing-card example does a good job illustrating their use. This chapter brings back fond memories of learning data structures in C; it does a great job of
covering those lessons in a clear and interesting way; with the exercises at the end, the usefulness of these structures should become readily apparent to the student,
and implementing them should be fun practice. A good job highlighting the pitfalls of macros. Great introduction to sorting—the examples do a good job
illustrating sort algorithms and make it clear why some are more efficient than others. Other Topics chapter is very interesting to read; many of the topics indicate
how code will interact with the world outside the OS—redirections, errors, build systems (make), command line, etc.—which is nice.~

 —Brandon Invergo, GNU/European Bioinformatics Institute

❝ Teaches a beginning programmer how to write good C programs. Covers all the topics you would expect, explained in an easy, matter-of-fact style, with lots of exam-
ples. But it also covers topics you might not expect: recursion, algorithms, Big-O notation, tree traversals and multithreading—in that same style that makes them
simple and natural. Another excellent feature is the long list of coding exercises at the end of each chapter.~
 —Jim Hogg, Program Manager, C/C++ Compiler Team, Microsoft Corporation

❝ This ninth edition includes an intriguing new intro chapter that lists 21st century computing challenges and software-industry trends. Clear presentations of
algorithms, structured programming and pseudocode. Excellent coverage of the function-call mechanism and stack frames, enum types, storage class specifiers,
scoping rules and recursion. The code listings and the self-check questions and exercises are incredibly useful. A very good introduction to some of the trickiest
features of C, i.e., arrays, pointers and pointers to functions. Code examples, including the card-shuffling-and-dealing simulation, exemplify efficient and
safe programming with reuse and modularity. Building Your Own Computer is an excellent exercise to demonstrate the power of C programming and along
the way, become acquainted with the concepts of machine code. Covers the essential techniques and the standard string- and memory-manipulation functions.
Few textbooks dedicate a complete code listing for every standard library string function—this is a key feature of this book. The string exercises are very good, particularly
the advanced string manipulation exercises for random sentence generation and style and textual analysis. There are plenty of formatted I/O examples
with every format flag and a detailed explanation. Explains C’s derived types: structs, unions and enumerations. Presents bit-fields and their related
bitwise operators. Straightforward tutorial of file processing. Very good (and rare among C textbooks) presentation of data structures design and
implementation—one of the strongest features of this book. Introduces Big O notation, exemplifying it with real-world examples of sorting algorithms.
A detailed guide for the C preprocessor.~ —Danny Kalev, A Certified System Analyst, C Expert and Former Member of the C++ Standards Committee

Comments from Ninth Edition and Earlier Editions Reviewers (and Their Affiliations at the Time)

❝ Having reviewed programming books for nearly 20 years, I recognize quality right from page 1. The first sign is the use of standard terminology. And yet, C How to

Program offers much more: an emphasis on secure C programming including Annex K (the so-called secure standard library functions), self-testing exercises,
a summary of the topics discussed in each chapter and most importantly complete code listings that have been thoroughly tested and distilled. It’s no secret that C intimidates
novices. Its raw pointers, zero-based array indexes, unchecked arrays and funky strings are a fertile source of bugs and security loopholes. C How To Program addresses these
issues without fear, presenting effective techniques for avoiding them. The main strength of this book is a clear, professional and reader-friendly style. Up-to-date, accurate and covers
just about everything a C novice would need to know.~ —Danny Kalev, Certified System Analyst, C Expert and Former Member of the C++ Standards Committee

❝A great book for the beginning programmer. Covers material that will be useful in later programming classes and the job market.~
 —Fred J. Tydeman, Tydeman Consulting, Vice-Chair of J11 (ANSI C)

❝ Clear explanation of arrays—and especially good exercises. A really good pointers chapter; the exercises are particularly good, especially the Simpletron machine
simulator. String exercises are innovative and challenging. Formatted input/output examples are good. Provides the information required for a beginner to perform
file I/O, which opens the gateway to building realistic apps. Good data structures chapter that guides the reader carefully thru using pointers and linked lists; the
exercises are, again, excellent; I love the very last one on building your own compiler; by working through this example, the reader gets a good feel for the
essence of how a compiler works—an exciting topic in computer science. Great examples that show the evolution of each sort. Useful overview of what features
arrived with C99 and C11—multithreading will impact readers most.~ —Jim Hogg, Program Manager, C/C++ Compiler Team, Microsoft Corporation

❝Nice selection of exercises in Structured Program Development—good job.~ —Alan Bunning of Purdue University

❝ I like the structured programming summary with instructions on forming structured programs by using the flowchart building blocks; I also like the questions
at the end of the chapter and the Secure C Programming section.~ —Susan Mengel, Texas Tech University

❝The descriptions of function calls and the call stack will be helpful to beginning programmers learning how functions work—plenty of function exercises.~

 —Michael Geiger, University of Massachusetts, Lowell

❝ The examples and end-of-chapter programming projects are valuable. This is the only C book that offers so many detailed C examples—I am pleased to be able to have
such a resource to share with my students. I feel confident that this book prepares my students for industry. A great book. I always enjoy lecturing the Arrays chapter;
examples are perfect for my CE, EE and CSE students. Chapters 8 and above are used for my Data Structures class. This is the only textbook that covers bitwise
operations in such detail.~

 —Sebnem Onsay, Special Instructor, Oakland University School of Engineering and Computer Science

❝ Excellent introductory C text. Just the right coverage of arrays. Pointers chapter is well-written and the exercises are rigorous. Excellent discussion of string functions.
Fine chapters on formatted input/output and files. I was pleased to see a hint at Big O running time in the binary search example.~

 —Dr. John F. Doyle, Indiana U. Southeast

❝ I have been teaching introductory programming courses since 1975, and programming in the C language since 1986. When Deitel, C How to Program, 1/e, came
out, we jumped on it—it was clearly the best text on C. The new edition continues a tradition—it’s by far the best student-oriented textbook on programming in the
C language! A thorough, careful treatment of the language and the ideas, concepts and techniques of programming! ‘Live code’ is also a big plus, encouraging
active participation by the student. A great text!~ —Richard Albright, Goldey-Beacom College

❝ I like the writing quality. Outlines common beginner mistakes. Nice visualization of binary search. The card shuffling example illustrates an end-to-end solution to the
problem with nice pseudocode, great coding and explanation. Card and maze exercises are very involving.~ —Vytautus Leonavicius, Microsoft Corporation

❝ Gets you ready for the job market, with best practices and development tips. Nice multi-platform explanation [running Visual C++ on Windows,
GNU C on Linux and Xcode on macOS].~ —Hemanth H.M., Software Engineer at SonicWALL

❝ Control statements chapters are excellent; the number of exercises is amazing. Great coverage of functions. The Data Structures chapter is well written, and the
examples and exercises are great; I especially like the section about building a compiler. Sorting algorithms are explained clearly, especially the harder ones like
merge sort and quicksort, which become trivial after reading this. Great job!~ —José Antonio González Seco, Parliament of Andalusia

❝ The live-code approach makes it easy to understand C programming basics. I highly recommend this textbook as both a teaching text and a reference.~

 —Xiaolong Li, Indiana State University

 ❝ An exceptional textbook and reference for the C programmer.~ —Roy Seyfarth, University of Southern Mississippi

❝ An invaluable resource for beginning and seasoned programmers. The explanations of the concepts, techniques and practices are comprehensive, engaging and easy to
understand. A must-have book.~ —Bin Wang, Department of CS and Engineering, Wright State University

More Comments on Facing Page and Inside Front Cover

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	Acknowledgments
	About the Authors
	Before You Begin
	1 Introduction to Computers and C
	1.1 Introduction
	1.2 Hardware and Software
	1.2.1 Moore's Law
	1.2.2 Computer Organization

	1.3 Data Hierarchy
	1.4 Machine Languages, Assembly Languages and High-Level Languages
	1.5 Operating Systems
	1.6 The C Programming Language
	1.7 The C Standard Library and Open-Source Libraries
	1.8 Other Popular Programming Languages
	1.9 Typical C Program-Development Environment
	1.9.1 Phase 1: Creating a Program
	1.9.2 Phases 2 and 3: Preprocessing and Compiling a C Program
	1.9.3 Phase 4: Linking
	1.9.4 Phase 5: Loading
	1.9.5 Phase 6: Execution
	1.9.6 Problems That May Occur at Execution Time
	1.9.7 Standard Input, Standard Output and Standard Error Streams

	1.10 Test-Driving a C Application in Windows, Linux and macOS
	1.10.1 Compiling and Running a C Application with Visual Studio 2019 Community Edition on Windows 10
	1.10.2 Compiling and Running a C Application with Xcode on macOS
	1.10.3 Compiling and Running a C Application with GNU gcc on Linux
	1.10.4 Compiling and Running a C Application in a GCC Docker Container Running Natively over Windows 10, macOS or Linux

	1.11 Internet, World Wide Web, the Cloud and IoT
	1.11.1 The Internet: A Network of Networks
	1.11.2 The World Wide Web: Making the Internet User-Friendly
	1.11.3 The Cloud
	1.11.4 The Internet of Things

	1.12 Software Technologies
	1.13 How Big Is Big Data?
	1.13.1 Big-Data Analytics
	1.13.2 Data Science and Big Data Are Making a Difference: Use Cases

	1.14 Case Study—A Big-Data Mobile Application
	1.15 AI—at the Intersection of Computer Science and Data Science

	2 Intro to C Programming
	2.1 Introduction
	2.2 A Simple C Program: Printing a Line of Text
	2.3 Another Simple C Program: Adding Two Integers
	2.4 Memory Concepts
	2.5 Arithmetic in C
	2.6 Decision Making: Equality and Relational Operators
	2.7 Secure C Programming

	3 Structured Program Development
	3.1 Introduction
	3.2 Algorithms
	3.3 Pseudocode
	3.4 Control Structures
	3.5 The if Selection Statement
	3.6 The if…else Selection Statement
	3.7 The while Iteration Statement
	3.8 Formulating Algorithms Case Study 1: Counter-Controlled Iteration
	3.9 Formulating Algorithms with Top-Down, Stepwise Refinement Case Study 2: Sentinel-Controlled Iteration
	3.10 Formulating Algorithms with Top-Down, Stepwise Refinement Case Study 3: Nested Control Statements
	3.11 Assignment Operators
	3.12 Increment and Decrement Operators
	3.13 Secure C Programming

	4 Program Control
	4.1 Introduction
	4.2 Iteration Essentials
	4.3 Counter-Controlled Iteration
	4.4 for Iteration Statement
	4.5 Examples Using the for Statement
	4.6 switch Multiple-Selection Statement
	4.7 do…while Iteration Statement
	4.8 break and continue Statements
	4.9 Logical Operators
	4.10 Confusing Equality (==) and Assignment (=) Operators
	4.11 Structured-Programming Summary
	4.12 Secure C Programming

	5 Functions
	5.1 Introduction
	5.2 Modularizing Programs in C
	5.3 Math Library Functions
	5.4 Functions
	5.5 Function Definitions
	5.5.1 square Function
	5.5.2 maximum Function

	5.6 Function Prototypes: A Deeper Look
	5.7 Function-Call Stack and Stack Frames
	5.8 Headers
	5.9 Passing Arguments by Value and by Reference
	5.10 Random-Number Generation
	5.11 Random-Number Simulation Case Study: Building a Casino Game
	5.12 Storage Classes
	5.13 Scope Rules
	5.14 Recursion
	5.15 Example Using Recursion: Fibonacci Series
	5.16 Recursion vs. Iteration
	5.17 Secure C Programming—Secure Random-Number Generation
	Random-Number Simulation Case Study: The Tortoise and the Hare

	6 Arrays
	6.1 Introduction
	6.2 Arrays
	6.3 Defining Arrays
	6.4 Array Examples
	6.4.1 Defining an Array and Using a Loop to Set the Array’s Element Values
	6.4.2 Initializing an Array in a Definition with an Initializer List
	6.4.3 Specifying an Array’s Size with a Symbolic Constant and Initializing Array Elements with Calculations
	6.4.4 Summing the Elements of an Array
	6.4.5 Using Arrays to Summarize Survey Results
	6.4.6 Graphing Array Element Values with Bar Charts
	6.4.7 Rolling a Die 60,000,000 Times and Summarizing the Results in an Array

	6.5 Using Character Arrays to Store and Manipulate Strings
	6.5.1 Initializing a Character Array with a String
	6.5.2 Initializing a Character Array with an Initializer List of Characters
	6.5.3 Accessing the Characters in a String
	6.5.4 Inputting into a Character Array
	6.5.5 Outputting a Character Array That Represents a String
	6.5.6 Demonstrating Character Arrays

	6.6 Static Local Arrays and Automatic Local Arrays
	6.7 Passing Arrays to Functions
	6.8 Sorting Arrays
	6.9 Intro to Data Science Case Study: Survey Data Analysis
	6.10 Searching Arrays
	6.10.1 Searching an Array with Linear Search
	6.10.2 Searching an Array with Binary Search

	6.11 Multidimensional Arrays
	6.11.1 Illustrating a Two-Dimensional Array
	6.11.2 Initializing a Double-Subscripted Array
	6.11.3 Setting the Elements in One Row
	6.11.4 Totaling the Elements in a Two-Dimensional Array
	6.11.5 Two-Dimensional Array Manipulations

	6.12 Variable-Length Arrays
	6.13 Secure C Programming

	7 Pointers
	7.1 Introduction
	7.2 Pointer Variable Definitions and Initialization
	7.3 Pointer Operators
	7.4 Passing Arguments to Functions by Reference
	7.5 Using the const Qualifier with Pointers
	7.5.1 Converting a String to Uppercase Using a Non-Constant Pointer to Non-Constant Data
	7.5.2 Printing a String One Character at a Time Using a Non-Constant Pointer to Constant Data
	7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data
	7.5.4 Attempting to Modify a Constant Pointer to Constant Data

	7.6 Bubble Sort Using Pass-By-Reference
	7.7 sizeof Operator
	7.8 Pointer Expressions and Pointer Arithmetic
	7.8.1 Pointer Arithmetic Operators
	7.8.2 Aiming a Pointer at an Array
	7.8.3 Adding an Integer to a Pointer
	7.8.4 Subtracting an Integer from a Pointer
	7.8.5 Incrementing and Decrementing a Pointer
	7.8.6 Subtracting One Pointer from Another
	7.8.7 Assigning Pointers to One Another
	7.8.8 Pointer to void
	7.8.9 Comparing Pointers

	7.9 Relationship between Pointers and Arrays
	7.9.1 Pointer/Offset Notation
	7.9.2 Pointer/Subscript Notation
	7.9.3 Cannot Modify an Array Name with Pointer Arithmetic
	7.9.4 Demonstrating Pointer Subscripting and Offsets
	7.9.5 String Copying with Arrays and Pointers

	7.10 Arrays of Pointers
	7.11 Random-Number Simulation Case Study: Card Shuffling and Dealing
	7.12 Function Pointers
	7.12.1 Sorting in Ascending or Descending Order
	7.12.2 Using Function Pointers to Create a Menu-Driven System

	7.13 Secure C Programming
	Special Section: Building Your Own Computer as a Virtual Machine
	Special Section—Embedded Systems Programming Case Study: Robotics with the Webots Simulator

	8 Characters and Strings
	8.1 Introduction
	8.2 Fundamentals of Strings and Characters
	8.3 Character-Handling Library
	8.3.1 Functions isdigit, isalpha, isalnum and isxdigit
	8.3.2 Functions islower, isupper, tolower and toupper
	8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph

	8.4 String-Conversion Functions
	8.4.1 Function strtod
	8.4.2 Function strtol
	8.4.3 Function strtoul

	8.5 Standard Input/Output Library Functions
	8.5.1 Functions fgets and putchar
	8.5.2 Function getchar
	8.5.3 Function sprintf
	8.5.4 Function sscanf

	8.6 String-Manipulation Functions of the String-Handling Library
	8.6.1 Functions strcpy and strncpy
	8.6.2 Functions strcat and strncat

	8.7 Comparison Functions of the String-Handling Library
	8.8 Search Functions of the String-Handling Library
	8.8.1 Function strchr
	8.8.2 Function strcspn
	8.8.3 Function strpbrk
	8.8.4 Function strrchr
	8.8.5 Function strspn
	8.8.6 Function strstr
	8.8.7 Function strtok

	8.9 Memory Functions of the String-Handling Library
	8.9.1 Function memcpy
	8.9.2 Function memmove
	8.9.3 Function memcmp
	8.9.4 Function memchr
	8.9.5 Function memset

	8.10 Other Functions of the String-Handling Library
	8.10.1 Function strerror
	8.10.2 Function strlen

	8.11 Secure C Programming
	Pqyoaf X Nylfomigrob Qwbbfmh Mndogvk: Rboqlrut yua Boklnxhmywex
	Secure C Programming Case Study: Public-Key Cryptography

	9 Formatted Input/Output
	9.1 Introduction
	9.2 Streams
	9.3 Formatting Output with printf
	9.4 Printing Integers
	9.5 Printing Floating-Point Numbers
	9.5.1 Conversion Specifiers e, E and f
	9.5.2 Conversion Specifiers g and G
	9.5.3 Demonstrating Floating-Point Conversion Specifiers

	9.6 Printing Strings and Characters
	9.7 Other Conversion Specifiers
	9.8 Printing with Field Widths and Precision
	9.8.1 Field Widths for Integers
	9.8.2 Precisions for Integers, Floating-Point Numbers and Strings
	9.8.3 Combining Field Widths and Precisions

	9.9 printf Format Flags
	9.9.1 Right- and Left-Alignment
	9.9.2 Printing Positive and Negative Numbers with and without the + Flag
	9.9.3 Using the Space Flag
	9.9.4 Using the # Flag
	9.9.5 Using the 0 Flag

	9.10 Printing Literals and Escape Sequences
	9.11 Formatted Input with scanf
	9.11.1 scanf Syntax
	9.11.2 scanf Conversion Specifiers
	9.11.3 Reading Integers
	9.11.4 Reading Floating-Point Numbers
	9.11.5 Reading Characters and Strings
	9.11.6 Using Scan Sets
	9.11.7 Using Field Widths
	9.11.8 Skipping Characters in an Input Stream

	9.12 Secure C Programming

	10 Structures, Unions, Bit Manipulation and Enumerations
	10.1 Introduction
	10.2 Structure Definitions
	10.2.1 Self-Referential Structures
	10.2.2 Defining Variables of Structure Types
	10.2.3 Structure Tag Names
	10.2.4 Operations That Can Be Performed on Structures

	10.3 Initializing Structures
	10.4 Accessing Structure Members with . and ->
	10.5 Using Structures with Functions
	10.6 typedef
	10.7 Random-Number Simulation Case Study: High-Performance Card Shuffling and Dealing
	10.8 Unions
	10.8.1 union Declarations
	10.8.2 Allowed unions Operations
	10.8.3 Initializing unions in Declarations
	10.8.4 Demonstrating unions

	10.9 Bitwise Operators
	10.9.1 Displaying an Unsigned Integer’s Bits
	10.9.2 Making Function displayBits More Generic and Portable
	10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and Complement Operators
	10.9.4 Using the Bitwise Left- and Right-Shift Operators
	10.9.5 Bitwise Assignment Operators

	10.10 Bit Fields
	10.10.1 Defining Bit Fields
	10.10.2 Using Bit Fields to Represent a Card’s Face, Suit and Color
	10.10.3 Unnamed Bit Fields

	10.11 Enumeration Constants
	10.12 Anonymous Structures and Unions
	10.13 Secure C Programming
	Special Section: Raylib Game-Programming Case Studies
	Game-Programming Case Study Exercise: SpotOn Game
	Game-Programming Case Study: Cannon Game
	Visualization with raylib—Law of Large Numbers Animation
	Case Study: The Tortoise and the Hare with raylib—a Multimedia “Extravaganza”
	Random-Number Simulation Case Study: High-Performance Card Shuffling and Dealing with Card Images and raylib

	11 File Processing
	11.1 Introduction
	11.2 Files and Streams
	11.3 Creating a Sequential-Access File
	11.3.1 Pointer to a FILE
	11.3.2 Using fopen to Open a File
	11.3.3 Using feof to Check for the End-of-File Indicator
	11.3.4 Using fprintf to Write to a File
	11.3.5 Using fclose to Close a File
	11.3.6 File-Open Modes

	11.4 Reading Data from a Sequential-Access File
	11.4.1 Resetting the File Position Pointer
	11.4.2 Credit Inquiry Program

	11.5 Random-Access Files
	11.6 Creating a Random-Access File
	11.7 Writing Data Randomly to a Random-Access File
	11.7.1 Positioning the File Position Pointer with fseek
	11.7.2 Error Checking

	11.8 Reading Data from a Random-Access File
	11.9 Case Study: Transaction-Processing System
	11.10 Secure C Programming
	AI Case Study: Intro to NLP—Who Wrote Shakespeare’s Works?
	AI/Data-Science Case Study—Machine Learning with GNU Scientific Library
	AI/Data-Science Case Study: Time Series and Simple Linear Regression
	Web Services and the Cloud Case Study—libcurl and OpenWeatherMap

	12 Data Structures
	12.1 Introduction
	12.2 Self-Referential Structures
	12.3 Dynamic Memory Management
	12.4 Linked Lists
	12.4.1 Function insert
	12.4.2 Function delete
	12.4.3 Functions isEmpty and printList

	12.5 Stacks
	12.5.1 Function push
	12.5.2 Function pop
	12.5.3 Applications of Stacks

	12.6 Queues
	12.6.1 Function enqueue
	12.6.2 Function dequeue

	12.7 Trees
	12.7.1 Function insertNode
	12.7.2 Traversals: Functions inOrder, preOrder and postOrder
	12.7.3 Duplicate Elimination
	12.7.4 Binary Tree Search
	12.7.5 Other Binary Tree Operations

	12.8 Secure C Programming
	Special Section: Systems Software Case Study—Building Your Own Compiler

	13 Computer-Science Thinking: Sorting Algorithms and Big O
	13.1 Introduction
	13.2 Efficiency of Algorithms: Big O
	13.2.1 O(1) Algorithms
	13.2.2 O(n) Algorithms
	13.2.3 O(n²) Algorithms
	13.3 Selection Sort
	13.3.1 Selection Sort Implementation
	13.3.2 Efficiency of Selection Sort

	13.4 Insertion Sort
	13.4.1 Insertion Sort Implementation
	13.4.2 Efficiency of Insertion Sort

	13.5 Case Study: Visualizing the High-Performance Merge Sort
	13.5.1 Merge Sort Implementation
	13.5.2 Efficiency of Merge Sort
	13.5.3 Summarizing Various Algorithms’ Big O Notations

	14 Preprocessor
	14.1 Introduction
	14.2 #include Preprocessor Directive
	14.3 #define Preprocessor Directive: Symbolic Constants
	14.4 #define Preprocessor Directive: Macros
	14.4.1 Macro with One Argument
	14.4.2 Macro with Two Arguments
	14.4.3 Macro Continuation Character
	14.4.4 #undef Preprocessor Directive
	14.4.5 Standard-Library Macros
	14.4.6 Do Not Place Expressions with Side Effects in Macros

	14.5 Conditional Compilation
	14.5.1 #if…#endif Preprocessor Directive
	14.5.2 Commenting Out Blocks of Code with #if…#endif
	14.5.3 Conditionally Compiling Debug Code

	14.6 #error and #pragma Preprocessor Directives
	14.7 # and ## Operators
	14.8 Line Numbers
	14.9 Predefined Symbolic Constants
	14.10Assertions
	14.11 Secure C Programming

	15 Other Topics
	15.1 Introduction
	15.2 Variable-Length Argument Lists
	15.3 Using Command-Line Arguments
	15.4 Compiling Multiple-Source-File Programs
	15.4.1 extern Declarations for Global Variables in Other Files
	15.4.2 Function Prototypes
	15.4.3 Restricting Scope with static

	15.5 Program Termination with exit and atexit
	15.6 Suffixes for Integer and Floating-Point Literals
	15.7 Signal Handling
	15.8 Dynamic Memory Allocation Functions calloc andrealloc
	15.9 goto: Unconditional Branching

	A Operator Precedence Chart
	B ASCII Character Set
	C Multithreading/Multicore and Other C18/C11/C99 Topics
	C.1 Introduction
	C.2 Headers Added in C99
	C.3 Designated Initializers and Compound Literals
	C.4 Type bool
	C.5 Complex Numbers
	C.6 Macros with Variable-Length Argument Lists
	C.7 Other C99 Features
	C.7.1 Compiler Minimum Resource Limits
	C.7.2 The restrict Keyword
	C.7.3 Reliable Integer Division
	C.7.4 Flexible Array Members
	C.7.5 Type-Generic Math
	C.7.6 Inline Functions
	C.7.7 __func__ Predefined Identifier
	C.7.8 va_copy Macro

	C.8 C11/C18 Features
	C.8.1 C11/C18 Headers
	C.8.2 quick_exit Function
	C.8.3 Unicode® Support
	C.8.4 _Noreturn Function Specifier
	C.8.5 Type-Generic Expressions
	C.8.6 Annex L: Analyzability and Undefined Behavior
	C.8.7 Memory Alignment Control
	C.8.8 Static Assertions
	C.8.9 Floating-Point Types

	C.9 Case Study: Performance with Multithreading and Multicore Systems
	C.9.1 Example: Sequential Execution of Two Compute-Intensive Tasks
	C.9.2 Example: Multithreaded Execution of Two Compute-Intensive Tasks
	C.9.3 Other Multithreading Features

	D Intro to Object-Oriented Programming Concepts
	D.1 Introduction
	D.2 Object-Oriented Programming Languages
	D.3 Automobile as an Object
	D.4 Methods and Classes
	D.5 Instantiation
	D.6 Reuse
	D.7 Messages and Method Calls
	D.8 Attributes and Instance Variables
	D.9 Inheritance
	D.10 Object-Oriented Analysis and Design (OOAD)

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

